Deducing Case IDs for Unlabeled Event Logs

Dina Bayomie®™®, Iman M.A. Helal®,
Ahmed Awad, Ehab Ezat, and Ali ElBastawissi

Faculty of Computers and Information, Information Systems Department,
Cairo University, Giza, Egypt
{dina.sayed,i.helal,a.gaafar,e.ezat,alibasta}@fci-cu.edu.eg

Abstract. Event logs are invaluable sources of knowledge about the actual exe-
cution of processes. A large number of techniques to mine, check conformance
and analyze performance have been developed based on logs. All these tech-
niques require at least case ID, activity ID and the timestamp to be in the log.
If one of those is missing, these techniques cannot be applied. Real life logs are
rarely originating from a centrally orchestrated process execution. Thus, case ID
might be missing, known as unlabeled log. This requires a manual preprocessing
of the log to assign case ID to events in the log.

In this paper, we propose a new approach to deduce case ID for the unlabeled
event log depending on the knowledge about the process model. We provide a set
of labeled logs instead of a single labeled log with different rankings. We evaluate
our prototypical implementation against similar approaches.

Keywords: Unlabeled event log + Missing data + Event correlation - Decision
trees * Process mining + Unmanaged business process

1 Introduction

Most of information systems produce event logs as an evidence of the activities that
have been executed. An event log consists of a set of events. Each event represents an
executed activity in a business process. Events have specific timestamps and might be
associated with other context data such as the human resources who participated to the
completion of the activity, input and output data etc.

Postmortem analysis techniques of an event log, e.g., process discovery [2], confor-
mance checking or process performance analysis assume the existence of case identifier
associated with each event. A case identifier is important to correlate the different events
recorded in a log. However, case identifiers only exist in execution logs of centrally
orchestrated process instance, so called labeled event log.

Logs with automatically assigned case identifiers are classified as (x x % x) or higher
level of maturity of event logs [2], also classified as level-5 of logging information as
in [6]. On the other hand, when the process is executed in an unmanaged environment,
logs extracted from the different information systems do not have case identifier, so
called unlabeled event logs. There are many reasons why business processes may pro-
duce event logs with missing information and errors [6,8], such as: some events are
© Springer International Publishing Switzerland 2016

M. Reichert and H.A. Reijers (Eds.): BPM Workshops 2015, LNBIP 256, pp. 242-254, 2016.
DOI: 10.1007/978-3-319-42887-1_20

Deducing Case IDs 243

collected and recorded by humans, as well as the lack of central systems that are aware
of the process model. The latter case is the most common case in real life and represents
the middle level of the event logs categories [2], as well as level-4 or lower of logging
information as in [6]. This calls for a preprocessing step of a fresh unlabeled log to
assign a case identifier for the different events before any of the log analysis techniques
can be applied.

The problem of labeling unlabeled logs has received little attention in the commu-
nity of business process management [1]. The work in [6,7, 18] has addressed the issue
in the form of directly mining process models from unlabeled event logs. The approach
presented in [7] turns an unlabeled log into a labeled log. However, there might be
uncertainty in deducing case ID for an unlabeled event, which means that there are
several possible ways to label such a log.

In this paper, we address one of process mining challenges which is “Finding, Merg-
ing, and Cleaning Event Data” [2]. This challenge is concerned with extracting and
preparing event logs for analysis. We are concerned with the subproblem of the pre-
processing needed to prepare the unlabeled event logs for any further usages. We pro-
pose an approach to automate this preprocessing step by deducing the case identifiers
(DCI) for the unlabeled event logs. In addition to the execution log, DCI requires as
input the executed process model and heuristic information about the execution time of
the different activities within the process. The output is a set of labeled event logs, each
with a ranking score indicating the degree of trust in the labeling of events within each
log.

The remainder of this paper is organized as follows: an overview of the approach
along with foundational concepts and techniques are discussed in Sect.2. In Sect. 3,
we present the details of DCI. Implementation details and comparison with related
approaches are discussed in Sect. 4. Related work is discussed in Sect.5. Finally, we
conclude the paper in Sect. 6 with a critical discussion and an outlook on future work.

2 Approach Overview

The DCI approach overview is described in Fig. 1. It has three main inputs: the unla-
beled event log, the heuristic data, and the process model. Also, it has an optional input:
the ranking-score threshold, to display the results based on the user-specified value (by
default: display all results). DCI produces a set of labeled event logs due to the inherent
uncertainty, as a single unlabeled event might be assigned to more than one case with
different probabilities.

There is a preprocessing step to produce an relation matrix between activities of the
process model, so called the behavioral profile [21] of the process model. The generated
behavioral profile is an adapted version of the original in [21], we elaborate more on
this shortly.

The case ID deducing process starts with the “Build Case Decision Tree” step. It
uses the unlabeled event log to construct a decision tree. It benefits from the behavioral
profile and the heuristics data to filter for permissible labelings while building the tree.
The “Build Event Logs” step generates the different compatible combinations of cases
and writes each combination into a different labeled event log along with its ranking

244 D. Bayomie et al.

Deducing Case IDs

Ranking Score b

threshold ! Build
' [Unlabeled event log Case Decision
o s tree
(algorithm 3.1)
Labeled
Heuristics data event logs
Process Preprocessing
Model (Behavioral
Profile)

Build

Event Logs
(algorithm 3.2)

Adapted Behavioral
profile
BP

Fig. 1. Approach overview

score. The resulted logs provides variety of choices to enhance quality for post analysis
and mining techniques. Details about how DCI works are presented in Sect. 3. The rest
of this section provides the background concepts needed to help understand how DCI
works in addition to discussing the running example.

2.1 Decision Tree

In general, a decision tree represents the different decisions and their possible course
of actions. Each node has a set of properties that describe its conditional probability to
its parent and how it contributes to decisions in the tree. In the context of this paper, a
decision tree is used to represent the different possible labelings of each input unlabeled
event. Each unlabeled event may be represented by more than one node in the tree.

Definition 1 (Case Decision Tree).
CTree = (Node, F, root, Leaves)

— Node is the set of nodes within a tree. Each node is further attributed by the caseld,
timestamp, activity, and a probability,

— F C Node X Node is the relationship between nodes,

— root € Node is the root node of the tree, defined with caseld = 0

— Leaves C Node is the set of leaf nodes in the tree.

A branch(n;) o in the tree is the sequence of nodes visited when traversing the tree from
the node n; to the root. o = n;,n;_y, ...n1, root|(root,ny) € F A \/fzz(ni_l, n;) € F.

Definition 1 describes the structure of the decision tree used in deducing case IDs.
Each child of the root is a start of a new case, i.e. increments the case ID. Each node car-
ries its conditional probability w.r.t its parent node. This will help calculate the ranking
score for the generated labeled log. We elaborate more on that in Sect. 2.3.

2.2 Behavioral Profile

A Behavioral profile (BP) [20,21] describes a business process model (BPM) in terms
of abstract relations between activities of the model.

Deducing Case IDs 245

Definition 2 (Behavioral Profile). Let A be the set of activities within a process model
BPM. The behavioral profile is a function BP : A X A — {L,~>, +,||} that for any pair
of activities defines the behavioral relation as none L, sequence ~», exclusive + or
parallel ||.

A behavioral profile returns one of the relationships ~», +, ||, or <~ for any pair of
activities (a, b) that belong to the process model under investigation [21]. However,
as per Definition 2, we have restricted the relationships to be defined among adjacent
activities only. This is needed for the calculations in the deduction algorithms.

2.3 Additional Information

In Fig. 1, one of the required inputs is heuristic data about the execution time of the
individual activities within the process model.

Activity Heuristics. Each activity in a business process model has some properties.
Such properties could be (timestamp, case ID, data, resource, ...). However, there is
some other information related to the expected execution duration of each activity. The
execution duration could be in the range [avg — S D,avg + S D], where (avg) is the
average execution time, and (S D) is an user-defined standard deviation for execution
time. This information is very useful in filtering the case decision tree.

Definition 3 (Execution Heuristics). Let A be the set of all activities within a process
model. Execution Heuristics is a function defined using hq,,, : A — R; is the aver-
age execution time of an activity. hsp : A — R is user defined standard deviation
execution time of an activity, aka acceptable error. Ngpge = [Ravg — hsp, Bavg + hspl; is
Heuristic range.

Node Probability. As we will be guessing about the likelihood of membership of an
event, in the log, within a specific case, we employ probabilities to assign events as
nodes in the decision tree. In general the probability of an activity within an event log
is fairly distributed and calculated as:

plactivity) = E (D
n

where k is the number of occurrences of an activity in a sample space of size n. In our
case the sample space is the unlabeled event log.

Based on Definition 1, each node has a conditional probability that describes the
existence of node given its parent. Equation 2 describes how a node satisfying hg,, will
be prioritized than other nodes. Equation 3 describes how to calculate the probability of
a node in heuristic range.

m+1
p(havg) = 7; Vhavg € Havg (2)

246 D. Bayomie et al.

|Havg‘
Hrangel
p(hrange) = T7 thnge € Hmnge (3)

In the above formulas, m is the number of possible parent nodes for the event that
will be classified, H,, is the set of nodes satisfying average heuristics, H, g, is the set
of nodes satisfying other parents in heuristic range.

Ranking Score Function. Deducing case IDs for an unlabeled event log will generate
different possible labeled event logs. Each of these labeled logs should have a score
that reflects the degree to which DCI trusts that events should be correlated that way.
Scoring uses the Rule of Elimination [19] to describe the probability of an event log, i.e.
selected branches for each case, w.r.t the included nodes. The resulting value is divided
by the number of the extracted cases from the unlabeled event log. Equation 4 shows
the scoring function we use.

RS (W) = Zle p(node|parentNode;)p(activity) @
- number of cases per log

where W represents a labeled event log, k is the number of total nodes, i.e. represent
the events in the selected branch of the case, in W, p(activity) is calculated based on
Eq. 1, and p(node|parentNode;) represents the conditional probability of node w.r.t its
parentNode; calculated based on Eqs. 2 and 3.

Check order
(A)

Reject order
(8)

Finalize order
(D)

Fig. 2. Simple order handling process

Handle order
©

2.4 Running Example

Considering the order business process model in Fig. 2, our approach as described in
Fig. 1 needs the following inputs:

(1) The behavioral profile. This is represented as the matrix M for the process model
in Fig. 2. The matrix is shown in Fig. 3a.
M is presenting the adapted behavioral profile matrix based on Definition 2. For
example, in the model presented in Fig. 2, BP(A, C) is ~», while BP(A, D) is L, as
there is no direct relation between them.

Deducing Case IDs 247

(2) The unlabeled event log S with activity and timestamp pairs, where case ID is
unknown. A sample unlabeled log is shown in Fig. 3b.

(3) The activities heuristics #, cf. Definition 3, data about the execution of each activity,
i.e. avg, SD, which will affect the filtering process on the case decision tree from
the unlabeled log S. Example values of these heuristics for activities of the process
in Fig. 2 are shown in Fig. 3c.

(4) The threshold ranking-score (optional) will eliminate some of the generated labeled

event log.
A B C D Case ID | Activity | Timestamp —

AT+ w» w | - A | 2015-01-01 01:00:00 Activity | Avg | SD
A 2015-01-01 02:00:00 A 5 3
B |L + + w B 2015-01-01 08:00:00 B 5 5
cll + 4+ w C | 2015-01-01 09:00:00 c 7 3

D | 2015-01-01 13:00:00
DL1I 1 1 + D | 2015-01-01 17:00:00 D 7 12
(a) BP Matrix (b) Unlabeled Event Log (S) (c) Heuristic Data

Fig. 3. Required input for example in Fig. 2

There are some assumptions that are considered while deducing case IDs for events
in the unlabeled event log S'. First, each event in S has a timestamp that represents the
completion time of an activity and the start time of the next activity. Second, the process
model is an acyclic model. Third, the process model has a single start so we can identify
the new case.

The result of DCI is a set of labeled logs that are categorized into either complete or
noisy event logs. Complete logs include all events recorded in S. Whereas noisy logs
contain inconsistent events with the model, its behavioral profile, or the heuristic data.

3 Deducing Case IDs

In this section, we explain in details how DCI works (cf. Fig. 1). Section 3.1 shows the
steps to build the CTree from the unlabeled log S. It describes the filtering process
to avoid incorrect combinations based on the input model and the heuristics data.
Section 3.2 illustrates the process of generating the set of labeled event logs from the
CTree with their ranking scores.

3.1 Building Case Decision Tree

The first step in generating labeled event logs is deducing case identifier (caseld) for
each event in the unlabeled log (S) while building Case Decision Tree (CTree).
Algorithm 3.1 builds the CT'ree, cf. Definition 1. It uses the unlabeled event log S,
the behavioral profile BP and the heuristic data Heur. By processing unlabeled events
with their appearance order in S, based on the time stamp, the CT ree is built by finding

248 D. Bayomie et al.

Algorithm 3.1. Building Case Decision Tree

Input: S //the unlabeled event log (Fig. 3b)

Input: BP //the behavioral profile (Fig. 3a)

Input: Heur //the heuristics about activity executions (Fig. 3c)
Output: Tree // case decision tree CT ree in Definition 1

1: Tree = new CTree()
2: labelCaseld = 1
3: forall (s S)do
Parents = modelBasedParentFiltering(s, BP, Tree) //using Definition 2
heurDic = heuristicsBasedParentFiltering(s, Heur, BP, Tree, Parents) //using Definition 3
Parents = heurDic[avg] U heurDiclotherRange] [/list of possible parents
for all (n € Parents) do
caseld = n.caseld

4:
5:
6:
7:
8:
9: if (caseld == 0) then //n represents root
10: caseld = labelCaseld //defines a new case
11: labelCaseld+ = 1
12: end if
13: node = new Node() // in Definition 1
14: node.setProbability(heurDic) [/calculated using (Eq: 2, 3)
15: node.setTimestamp(timestamp), node.setActivity(activity), node.setCaselD(caseld), node.setParent(n)
16: Tree.addNode(node);
17: end for
18: end for
Root
e 1 /\ Case 2
(LLA, 1) (22.A,1)
(1,8,B,0.5) (1,9,C, 0.25) (2.8.B,0.5) (2.9,C,0.75)

— } . |

(1,13,D,0.5) (1,17,D,0.25) (1,17,D,0.25) (2,13,D,0.5) (2,17,D,0.25) (2,17,D, 0.25)

Fig. 4. Case decision tree

the different possible parents of event s € S. The candidate parents are identified based
on model and heuristic data (cf. Definitions 2 and 3). For candidate parents that pass the
filtering steps, a new node, representing the labeled version of s, is added as a child of
the candidate parent respectively with a probability computed based on (Egs. 2 and 3).
Due to space limitations, we excluded the details of model- and heuristic-based filtering,
these details can be found in [3].

Figure 4 presents the decision tree generated by Algorithm 3.1 for the inputs in
Fig.3. The tuple (id, ts, a, p) with each node defines the deduced case ID, the time
stamp, the activity name and node probability respectively. Timestamps are abstracted
to hours from the original timestamps in Fig. 3b. In Fig. 4, event (9; C) is represented
in Tree by two nodes, case 1 includes one node with probability 0.25 for this event
and the same for case 2 but with probability 0.75 based on Egs.2 and 3. In order to
assign node (9; C), it is checked w.r.t. its heuristics avg = 7,SD = 2 for its set of possible
parents, i.e. (1,1, A, 1),(2,2, A, 1). Hence, children nodes for node (2,2, A, 1) are calcu-
lated using Eq. 2, while children nodes for node (1, 1, A, 1) are calculated using Eq. 3.
Also note that the event (17; D) is represented by four nodes, in case 1 it has two nodes
with different parents and the same for case 2.

Deducing Case IDs 249

3.2 Generating Labeled Event Logs

Algorithm 3.2 uses the CT'ree built by Algorithm 3.1 to generate a set of labeled event
logs associated with their ranking score. The generation process avoids any unnecessary
event logs, to prevent both redundant cases and duplicated events in the same labeled
event log.

Algorithm 3.2. Generate Labeled Event Log(s)

Input: Tree /] CTree built in algorithm 3.1

Input: rsThresold // user-defined Ranking Score threshold

Output: Ws = {completeEls, NoisyEls} // set of labeled event logs contains both complete and noisy event logs sets

1: ELDic = newDici() // {ID:Branches} where branch represents one of possible execution of the case

2: EventLogld = 1

3: numOfCases = count(Tree[‘root’].children)

4: completeELs = {} [/set of generated complete event log(s)

5: noisyELs = { } // set of generated noisy event log(s)

6: for all (b € Tree.Branches) do

7 templDs = getELsIDs(ELDic, caseld—1) [/set of ids for each log in ELDic includes the previous case(caseld—1)
8 for all (el;y € tempIDs) do

9 conflictS et = {branch for branch in ELDiclel;;] where b.caseld = branch.caseld}

10: conflictSet = conflictSet \J {branch for branch in ELDiclel;;] where b.events (1 branch.events}
11: if (conflictSer == ¢) then

12: ELDiclel;y] = ELDicleliq) | {b}

13: else

14: ELDic[EventLogld] = ELDiclel;] — conflictS et

15: ELDic[EventLogld] = ELDiclel;g] | {b}

16: EventLogld+ =1

17: end if

18: end for

19: end for

20: validLogs = getELsValues(ELDic,numO fCases) [/set of event logs from ELDic which contain last case
21: for all (el € validLogs) do

22: rs = RS(el) //based on Eq.4

23: if (length(el) == length(S) & rs > rsThresold) then
24 completeELs = completeELs |) {el}

25: else

26: noisyELs = noisyELss | {el}

27: end if

28: end for

29: Ws = {completeELs, noisyELs)

Algorithm 3.2 considers the combination Cﬁ’ , Where b is the number of branches in
CTree and r is the number of cases. Ordering of the branches by caseld is used to avoid
unnecessary event logs. For example, a branch with leaf node (2:13:D), with caseld =
2, checks only the event logs containing branch with caseld = 1, cf. Fig. 4. The output
categorizes the labeled event logs into completeELs and noisyELs event logs, based
on the given threshold and the number of events in the generated labeled event log.

Score : ©.229175

tA 1:8:B 2:9:C 1:13:D 2:20:D
core : ©.1875

2:8:B 1:9:C 2:13:D 1:20:D

> n

Fig. 5. All possible event logs for example in Fig. 2

250 D. Bayomie et al.

Figure 5 is the output for the given inputs, cf. Fig. 3, after applying Algorithms 3.1 and
3.2 respectively.

4 Evaluation

In this section, we explain the evaluation setup of our approach. We discuss our proto-
type in Sect. 4.1. Section 4.2 shows the evaluation procedure and results.

4.1 DCI Implementation

We implemented a prototype' for the DCI using Python. As a preprocessing of the
input, we modified the implementation of the behavioral profile [12] presented in Java
as defined in Definition 2. The implementation of DCI is divided into two subprocesses,
cf. Fig. I:

— Building Case Decision tree (Algorithm 3.1): Its performance is affected by both the
length of the unlabeled event log S and the number of branches in CTree. The time
complexity of this part is defined as in Eq. 5.

O(nm) = n(km + p) (5)

where n is the number of events in S, m is the number of leaf nodes in CT ree, k is
the number of activities in the process model, p is the number of nodes in the tree.

— Generating Labeled Event Log (Algorithm 3.2): Its performance is affected by the
number of generated combinations between CTree branches, where the complexity
of bCr increases exponentially with the growth of the number of branches b. Hence,
avoiding incorrect combinations, while building labeled event logs, overcomes this
problem. The time complexity is defined as in Eq. 6.

O(u(m+ 1)) = km.bu + u (6)

where u is the number of generated labeled event logs, m is the number of leaf
nodes in CT'ree, k is the number of activities in the process model, b is the number
of branches within the event log, i.e. maximum number of cases in S .

4.2 Evaluation Procedure

Figure 6 shows the evaluation steps of DCI with both synthetic and real life logs. To
generate synthetic logs, we use the ProM [16] plug-in: “Perform a simple simulation
of a (stochastic) Petri net”. Then the simulated log is updated to reflect the heuristic
data. For real life logs, we used the ProM [16] plug-in: “Mine Petri net with Induc-
tive Miner” for inductive mining technique [10] to obtain the process model. Then we
extract heuristic information from the real life log using a tool we built. In either case,

! Complete implementation in https://github.com/DinaBayomie/DeducingCaseld.

https://github.com/DinaBayomie/DeducingCaseId

Deducing Case IDs 251

we remove caseld from the labeled log to produce an unlabeled log. Also we build the
behavioral profile for the process model.

We evaluate DCI against the Expectation-Maximization approach (E-Max) [7].
E-Max is a greedy algorithm that mines the unlabeled event log. Table I compares
between DCI and E-Max. DCI produces multiple labeled event logs. E-Max gener-
ates a single log. As a consequence, E-Max is sensitive to overlapping cases [7], which
is irrelevant for DCI. Moreover, E-Max partially supports parallelism, while DCI fully
supports. Neither DCI nor E-max support Loops.

Table 1. Comparison between DCI and E-Max [7] features

Inputs Event logs | Effect of overlapping cases | Parallelism | Loop
E-Max | Unlabeled log 1 + +/- —
DCI | Unlabeled log + m - + —
Model + Heuristics

Table 2 shows that execution time of E-Max approach is usually smaller than DCI,
since E-Max is a greedy algorithm that generates one labeled log. However, the real
log (CoSeLoG project) has many default paths in the original model that affects the
breadth of the decision tree in DCI exponentially. Regarding the number of generated
cases, DCI is more accurate in determining the instances executed in the event log than
E-Max, which is a consequence of considering the process model. From mining the
generated event logs, DCI-based models are closer to the original model than E-Max-
based model. More details about models and results could be found in https://github.
com/DinaBayomie/DeducingCaseld.

Remove Case ID s Unlabeled log I
:—{ Labeled log Using extract heuristic _
Data :

A 4
GeneratedLog | __________ { Heuristic Data DCI Set of labeled logs
tool
A
Updated BP
B Process model Updated BP version
Inductive miner

Fig. 6. Evaluation steps

Inductive miner

Simulated log

https://github.com/DinaBayomie/DeducingCaseId
https://github.com/DinaBayomie/DeducingCaseId

252 D. Bayomie et al.

Table 2. Comparison between DCI and E-Max execution

Original model Log size | Criteria DCI E-Max
CoSeLoG project® | 521 events | Execution time Number of cases | ~ 36000s 100 | ~3.58 s 100
Synthetic log 1 651 events | Execution time Number of cases | 18.428s 100 | 0.907s 104

Synthetic log 2 498 events | Execution time Number of cases | 10.773s 100 | 2.2612s 149
Receipt phase of an environmental permit application process (WABO), CoSeLoG project http://
data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

5 Related Work

In [4,5], a business provenance graph data model was used to generate an automated
auditing report. One of the main challenges was to create internal controls to deal with
incomplete data. Moreover [11] has presented a method of modeling the uncertainty
associated with the raw information and deducing relationships within the provenance
model [9]. The main deduced item is the timestamp of an activity, and its level of con-
fidence and accuracy. In [13,14], a stochastic process model is used to repair missing
events in the log. It uses path probabilities to determine which are the most likely miss-
ing events. We can see that work in [4,5,9,11,13,14] is complementary to our work,
where we deduce the missing case identifier, whereas the other work deduces or predicts
the timestamp.

There are several process mining techniques that discover and conform the model
from event logs. Most of these techniques need a labeled event log to proceed [1]. Also
there are different performance analysis techniques that use labeled event logs to extract
process performance indicators [15]. We see our work as intermediate step between low
quality logs, according to [2], and those mining and analysis approaches.

In [6], authors discuss how to discover web service workflows and the difficulty of
finding a rich log with specific information. The execution of web services has missing
workflow and case identifiers in order to analyze workflow execution log. They also
discuss the need of extra information regarding execution time heuristics.

Moreover, the work in [17, 18] discusses the problem from a different point of view.
Instead of generating labeled log, it provides a sequence partitioning approach to pro-
duce a set partitions that represents the minimum cover of the unlabeled log. The main
limitations of the approach are handling loops and also the representation of parallelism
as it will represent the execution of concurrent parts of the process into different patterns
as if they are not related. We share the same limitation with respect to loops. However,
our approach can handle concurrency.

6 Conclusion and Future Work

In this paper, we have introduced an approach to deduce case IDs for unlabeled event
logs, DCI. We use as input, in addition to the unlabeled event log, process behavioral
profiles and heuristic data about activity execution in order to generate a set of labeled
event logs with ranking scores.

DCT handles noise in event log as defined in [1]. The noisy unlabeled event log might
contain a different behavior other than the presented in the process model. Another type

http://data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
http://data.3tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

Deducing Case IDs 253

of noise is based on inaccurate heuristic data with the actual process model execution.
Also, DCI handles incompleteness of event log [1], i.e. a snapshot from a process exe-
cution which violates the process model.

As a limitation, DCI does not support cyclic models. Cyclic models is a problem in
most of process mining techniques. Also, the performance of our algorithm is affected
by the number of concurrent branches within the process as the number of combinations
grows exponentially. Finally, if the heuristic data are inaccurate this will also affect the
the number of possible labelings of the event log.

As a future work, we intend to address labeling event logs of cyclic process models.
Also, we intend to consider the availability of additional contextual data in the log.

References

1. der Aalst, W.V.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, Heidelberg (2011)

2. van der Aalst, W.M.P,, et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar,
S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169-194. Springer, Heidelberg
(2012)

3. Bayomie, D., Helal, LM.A., Awad, A., Ezat, E., ElBastawissi, A.: Deducing Case IDs
for unlabeled Event Logs. Technical report, Cairo University. http://scholar.cu.edu.eg/?
gq=ahmedawad/files/bplabellingeventlog.pdf

4. Doganata, Y.N.: Designing internal control points in partially managed processes by using
business vocabulary. In: ICDE Workshops. pp. 267-272. IEEE (2011)

5. Doganata, Y., Curbera, F.: Effect of using automated auditing tools on detecting compliance
failures in unmanaged processes. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 310-326. Springer, Heidelberg (2009)

6. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services interaction
mining. Int. J. Bus. Process Integr. Manag. 1(4), 256 (2006)

7. Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143—
158. Springer, Heidelberg (2009)

8. Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards process evaluation in non-automated
process execution environments. In: ZEUS. CEUR Workshop Proceedings, vol. 847, pp. 97—
103 (2012). www.CEUR-WS.org

9. Idika, N.C., Varia, M., Phan, H.: The probabilistic provenance graph. In: IEEE Symposium
on Security and Privacy Workshops. pp. 34—41. IEEE Computer Society (2013)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) Business Process Management Workshops. LNBIP, vol. 171, pp. 66-78. Springer,
Heidelberg (2014)

11. Mukhi, N.K.: Monitoring unmanaged business processes. In: Meersman, R., Dillon, T.S.,
Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 44-59. Springer, Heidelberg (2010)

12. Polyvyanyy, A., Weidlich, M.: Towards a compendium of process technologies - the jBPT
library for process model analysis. In: CEUR Workshop Proceedings onCAiSE 2013 Forum,
vol. 998, pp. 106-113 (2013). www.CEUR-WS.org

13. Rogge-Solti, A.: Probabilistic Estimation of Unobservered Process Events. University of
Potsdam, Ph.D. (2014)

http://scholar.cu.edu.eg/?q=ahmedawad/files/bplabellingeventlog.pdf
http://scholar.cu.edu.eg/?q=ahmedawad/files/bplabellingeventlog.pdf
http://ceur-ws.org/
http://ceur-ws.org/

254

14.

15.

16.

17.

18.

19.

20.

21.

D. Bayomie et al.

Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Repairing event logs using
timed process models. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013 Workshops 2013.
LNCS, vol. 8186, pp. 705-708. Springer, Heidelberg (2013)

Suriadi, S., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H.: Event Gap Analysis: Under-
standing Why Processes Take Time. Technical report QUT: ePrints (2014)

Van Der Aalst, W.M.P., Van Dongen, B.F.,, Giinther, C., Rozinat, A., Verbeek, HM.W.,
Weijters, A.: Prom: the process mining toolkit. In: CEUR Workshop Proceedings, vol. 489
(2009)

Walicki, M., Ferreira, D.R.: Mining sequences for patterns with non-repeating symbols. In:
IEEE Congress on Evolutionary Computation, CEC. pp. 1-8. IEEE (2010)

Walicki, M., Ferreira, D.R.: Sequence partitioning for process mining with unlabeled event
logs. Data Knowl. Eng. 70(10), 821-841 (2011)

Walpole, E.R., Myers, R.H., Myers, S.L., Ye, K.E.: Probability and Statistics for Engineers
and Scientists, 9th edn. Pearson, London (2011)

Weidlich, M.: Behavioral profiles - a relational approach to behaviour consistency. Ph.D.
thesis, University of Potsdam (2011)

Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - effi-
cient computation, applications, and evaluation. Fundamenta Informaticae 113, 399435
(2011)

	Deducing Case IDs for Unlabeled Event Logs
	1 Introduction
	2 Approach Overview
	2.1 Decision Tree
	2.2 Behavioral Profile
	2.3 Additional Information
	2.4 Running Example

	3 Deducing Case IDs
	3.1 Building Case Decision Tree
	3.2 Generating Labeled Event Logs

	4 Evaluation
	4.1 DCI Implementation
	4.2 Evaluation Procedure

	5 Related Work
	6 Conclusion and Future Work
	References

