
Detecting Deviating Behaviors Without Models

Xixi Lu1(B), Dirk Fahland1, Frank J.H.M. van den Biggelaar2,
and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{x.lu,d.fahland,w.m.p.v.d.aalst}@tue.nl

2 Maastricht University Medical Center, Maastricht, The Netherlands
f.vanden.biggelaar@mumc.nl

Abstract. Deviation detection is a set of techniques that identify devia-
tions from normative processes in real process executions. These diagnos-
tics are used to derive recommendations for improving business processes.
Existing detection techniques identify deviations either only on the
process instance level or rely on a normative process model to locate
deviating behavior on the event level. However, when normative models
are not available, these techniques detect deviations against a less accu-
rate model discovered from the actual behavior, resulting in incorrect
diagnostics. In this paper, we propose a novel approach to detect devi-
ation on the event level by identifying frequent common behavior and
uncommon behavior among executed process instances, without discov-
ering any normative model. The approach is implemented in ProM and
was evaluated in a controlled setting with artificial logs and real-life logs.
We compare our approach to existing approaches to investigate its pos-
sibilities and limitations. We show that in some cases, it is possible to
detect deviating events without a model as accurately as against a given
precise normative model.

1 Introduction

Immense amounts of event data have been recorded across different applica-
tion domains, reflecting executions of manifold business processes. The recorded
data, also called event logs or observed behavior, show that real-life executions of
process instances often deviate from normative processes [12]. Deviation detec-
tion, in the context of conformance checking, is a set of techniques that check
process conformance of recorded executions against a normative process and
identify where observed behavior does not fit in and thus deviates from the nor-
mative process model [1]. Accurately detecting deviating behavior at the event
level is important for finding root causes and providing diagnostic information.
The diagnosis can be used to derive recommendations for improving process
compliance and performance [13].

Existing techniques for detecting deviations, such as alignment-based tech-
niques [1], require a normative process in the form of a process model. However,
normative models are often not available, especially in flexible environments.
For instance, in healthcare, each patient often follows a unique path through
c© Springer International Publishing Switzerland 2016
M. Reichert and H.A. Reijers (Eds.): BPM Workshops 2015, LNBIP 256, pp. 126–139, 2016.
DOI: 10.1007/978-3-319-42887-1 11

Detecting Deviating Behaviors Without Models 127

the process with one-of-a-kind deviations [11]. A solution is to discover a model
from an event log. The discovered model is assumed to describe the norma-
tive behavior, and then conformance checking techniques discern where the log
deviates. However, the quality of deviation detection depends heavily on the
discovered model, which again depends on the discovery algorithm used and the
design decisions made in the algorithm. When an event log shows high variety
(for example, containing multiple process variants), discovering one normative
process almost always results in underfitting models, rendering them useless for
detecting deviations.

In this paper, we consider the problem of detecting deviations without discov-
ering a normative process model. We limit our scope to only detecting deviating
events; we define deviations as additional behavior observed in an event log but
not allowed in the normative process; other deviations, such as steps of the nor-
mative process that are skipped, are not considered in this paper. We present
a new technique to detect deviating events by computing mappings between
events, which specify similar and dissimilar behavior between process instances.
The more they that agree on a certain behavior, the less such a behavior is a
deviation. We use this information to classify deviations.

The approach has been implemented as ProM plugin and was evaluated using
artificial logs and real life logs. We compared our approach to existing approaches
to investigate the possibility and the limitations of detecting deviations without
a model. We show that the approach helps identify deviations without using a
normative process model. In cases where dependencies between events can be
discovered precisely, it is possible to detect deviating events as accurately as
when using a given precise normative model. In other cases, when deviating
events happen frequently and in patterns, it is more difficult to distinguish them
from the conforming behavior without a normative model. We discuss ideas to
overcome these problems in our approach.

In the remainder, we first discuss related work in Sect. 2, including input for
our approach. Sections 3, 4 and 5 explain our method in more depth: in Sect. 3,
we define and explain the relevant concepts, e.g. similar and dissimilar behav-
ior, mapping, and cost function; Sect. 4 presents two algorithms to compute
mappings; Sect. 5 discusses how to use mappings for detecting deviations. The
evaluation results are presented in Sects. 6 and 7 discusses the limitations and
concludes the paper.

2 Related Work

We consider an event log as input for our approach for detecting deviations. In
addition, we discuss related work more in detail in this section.

Event Logs and Partial Orders. An event log is a collection of traces, each of
which is a sequence of events describing the observed execution for a case. Most
process mining techniques use an event log as input. Recently, research has been
conducted to obtain partial orders over events, called partially ordered traces,
and use them instead to improve process mining [6,9]. The work in [9] discussed

128 X. Lu et al.

various ways to convert sequential traces into partially ordered traces and has
shown that such a conduct improves the quality of conformance checking when
the as-is total ordering of events is unreliable. The approach proposed in this
paper can handle partial orders as inputs, which we refer to as execution graphs.
Two types of partial order [9] are used in this paper: data based partial order
over events, i.e. two events are dependent if they access the same data attributes;
and time based partial order over events, i.e. two events are dependent if they
have different time stamps.

Outlier Detection and Deviance Mining. Existing outlier detection
approaches have a different focus and are not applicable to our problem. These
approaches first converting executions of cases to items of features and then using
classification or clustering techniques [7]. However, they only identify deviating
cases (thus items) and omit deviation on the event level (an analogy to classical
data mining would be detecting a deviating value in a item for one feature) and
are often unable to handle the situation in which a multitude of cases contain
deviation. One different stream, known as deviance mining, classifies cases as
normal or deviant, independent of their control-flow execution, but rather based
on their performance (e.g. whether throughput time of a case is acceptable) [10].
Our approach is inspired by and similar to a log visualization technique known
as trace alignment [3]. However, this visualization technique does not classify
deviations but simply visualizes the mappings between traces to a user.

Conformance Checking. A state-of-art conformance checking technique is
known as (model-log) alignment [1,9], which computes a most similar run of
a given normative model with respect to each input trace. Events observed in
traces that have no matching behavior in such a run are classified as deviating
events, also known as log moves. However, the current cost function used by the
approach is rather simple and static. For example, it is unable to distinguish
consecutive events sharing the same event class. In addition, a precise model
is required to identify deviations accurately, which might be unavailable and
difficult to discover, whereas our approach does not require models.

Process Discovery and Trace Clustering. Process discovery algorithms aim
to discover structured process models using an event log [4,8], but still face var-
ious difficulties [5]. When event logs are highly unstructured and contain devi-
ating behavior, discovery algorithms often fail to find the underlying structure
and return spaghetti models due to overfitting. Some discovery algorithms aim
to be noise/deviation robust but often result in returning over-generalized or
underfitted models. To discover better models, one may preprocess event logs
using, for example, trace clustering. Syntactic-based trace clustering [5] is a set of
techniques that focus on clustering traces in such a way that structured models
can be discovered as different variant of the normative model. In our evaluation,
we compare our approach to [1,2,5,8,9] more in depth.

Detecting Deviating Behaviors Without Models 129

3 Mappings - Similarities and Dissimilarities Between
Executions

In this section, we introduce the key concepts used in this paper and explain how
similarity and dissimilarity between executions of cases helps identify deviations.

Execution Graphs and Neighbors. For describing execution of a case, we use an
execution graph. An execution graph is a directed acyclic graph G = (E,R, l):
the nodes E are the events recorded for the case, the edges R are the relations
between the events, and the function l assigns to each event its event type.
Each event is unique and has a set of attributes; one event belongs to one single
execution graph. Figure 1 shows two execution graphs. On the right of Fig. 1,
e8, e9, e10 are considered concurrent because, for example, they have the same
timestamps [9]. Let e be an event in an execution graph. k-predecessors Np

k (e)
denotes the set of events from which (1) there is a path in the execution graph
to e and (2) the length of the path is at least 1 and at most k; similar for k-
successors Ns

k(e). In addition, we call the set of events for which there is no path
to or from e the concurrences N c(e) of e. Moreover, for e′ ∈ N c(e), we define
the distance distG(e, e′) = 0, in contrast to the traditional graph theory.

Fig. 1. Two examples of execution graphs. (Color
figure online)

The k-neighbors Nk(e) of
e is a 3-tuple composed of
the k-predecessors, the concur-
rences and the k-successors
of e. For example, as shown
in Fig. 1, N1(e8) = ({e7},
{e9, e10}, {e11}).

Deviations, Mappings and Sim-
ilarity. We consider deviations
as non-conforming behavior that consists of observed events in an execution
graph. The assumption is that such deviating events occur much less frequently
and occur in a highly dissimilar context, e.g. have dissimilar neighbors and loca-
tions, since they are not specified in the normative process. In addition, it would
be difficult to find the events in other cases that are similar and comparable to
these deviating events. Therefore, we compute similar behavior and dissimilar
behavior between each two execution graphs as a mapping : the similar behav-
ior is formed by all pairs of events that are mapped to each other, whereas
events that are not mapped are dissimilar behavior. Formally, a mapping λ(G,G′)
between two execution graphs is a set of binary, symmetric relations between
their events, in which each event is only mapped to one other event. Figure 2
exemplifies a mapping between the two execution graphs shown in Fig. 1. For
instance, the mapping in Fig. 2 specifies that e3 and e8 are not mapped, and
therefore, according to this particular mapping, they are dissimilar and show
discrepancies between the two cases. We use λ to refer to the set of events that
are not mapped, i.e. λ(G,G′) = {e ∈ E | ¬∃e′ ∈ E′ : (e, e′) ∈ λ} ∪ {e′ ∈ E′ |
¬∃e ∈ E : (e, e′) ∈ λ}1.
1 We omit G and G′ for both λ and λ where the context is clear.

130 X. Lu et al.

Based on a mapping, we also obtain similar neighbors and dissimilar neigh-
bors surrounding two events and are able to compare the events more accu-
rately. A pair of events are more similar, if they share more similar neighbors.
For example, using a mapping, we can derive the similar predecessors and the
dissimilar predecessors of two paired events (e, e′). We refer to the dissimilar pre-
decessors as DNp

k (e, e′, λ), where the k indicates the k-predecessors. The same
applies to the set of dissimilar successors DNs

k(e, e′, λ) and dissimilar concur-
rences DN c(e, e′, λ). Figure 2 shows an example: because events e5 and e11 have
respectively {e3, e4} and {e7, e8, e9, e10} as their 2-predecessors, of which e4 and
e10 are paired, therefore DNp

2 (e5, e11, λ) = {e3, e7, e8, e9}. The pair (e5, e11) has
two dissimilar successors e6 and e12, but no dissimilar concurrences as shown in
Fig. 2. Hence, DNs

2 (e5, e11, λ) = {e6, e12}, and DN c(e5, e11, λ) = ∅.

Cost Function and Cost Configurations. To evaluate a mapping, we define a
cost function that assesses the similarity between paired events in the mapping.
A mapping that captures more similar behavior is assigned with a lower cost. The
mappings with the minimal cost are the optimal mappings. The cost function
is shown in Eq. 1 and comprises three components costMatched, costStruc and
costNoMatch that assess a mapping as follows. For each pair of events (mapped
to each other) in a mapping, costMatched and costStruc assess their local similarity
and global similarity, respectively. Moreover, costNoMatch assigns a penalty to
the mapping for each event that is classified to be dissimilar (i.e. not mapped).
For each component, we assign a weight, i.e. wM , wS , wN .

cost(G,G′, λ) = wM ∗ costMatched(G,G′, λ) + wS ∗ costStruc(G,G′, λ)
+ wN ∗ costNoMatch(G,G′, λ) (1)

Fig. 2. An example of a mapping specifying similar
and dissimilar behavior.

The function costMatched,
defined in Eq. 2, helps to assess
the similarity between two
events regarding their prop-
erties and their local execu-
tion contexts (in this case their
labels and their neighbors).
The more similar, the lower
the cost. Thus, a higher cost
is assigned to prevent two locally dissimilar events being mapped to each other.
In this paper, we only allow two events with the same label to be mapped to
each other, i.e. cost(l(e), l(e′)) = 0 if l(e) = l(e′), otherwise infinite.

costMatched(G, G′, λ) =
∑

(e,e′)∈λ cost(l(e), l(e′))

+ | DNp
k (e, e′, λ) | + | DNs

k(e, e′, λ) | + | DNc(e, e′, λ) | (2)

In addition, the function costStruc(G,G′, λ) =
∑

(p,p′),(e,e′)∈λ
|distG(p,e)−distG′ (p′,e′)|

2 helps to assess how similar two events are with respect

Detecting Deviating Behaviors Without Models 131

to their positions in the global context of execution graphs. The more similar
their positions in the global context, the lower cost; the cost is high if they are
in very different stages of execution graphs.

Futhermore, we define the function costNoMatch(G,G′, λ) =
∑

e∈λ CN+
| Nk(e) |, which assigns a cost to events that are not mapped and helps to
asses when not to map an event. For example, a higher cost is assigned to a
not-mapped event if it is important and should be mapped. We use the number
of neighbors of an event to indicate the importance in addition to a basic cost
CN of not matching an event.

The final cost of a mapping depends on the k (defining the neighbors) and the
four weights wM , wS , wN and CN . A 5-tuple composed of these five numbers is
called a cost configuration of the cost function. The mappings with the minimal
cost between two execution graphs according to a configured cost function are
the optimal mappings.

4 Algorithms for Computing Mappings

For computing mappings between execution graphs, we propose two algorithms:
one uses backtracking with a heuristic function and guarantees the return of
the optimal mappings; the other provides no guarantees but runs in polynomial
time.

Backtracking and Heuristic Function. The backtracking algorithm uses a
heuristic function to prune our search space. The heuristic function is similar
to the cost function and reuses costMatched, costStruc, and costNoMatch. The
same configuration as the cost function is required to guarantee the lower bound
property.

Fig. 3. An example of an incomplete map-
ping and the estimated lowerbound cost.
(Color figure online)

The algorithm starts with an
empty mapping between two cases
and then inductively computes the
cost of the next decision, i.e. to con-
sider two events similar or not, using
the heuristic function. After making
a decision to map two events, a part
of the similar and dissimilar neighbors
of the two events is known, according
to the mapping so far, for which the
heuristic function uses costMatched to compute the cost. For the neighbors not
yet mapped, the heuristic function estimates the cost by predicting an optimal
situation of a future complete mapping. The optimal situation means that a
maximal set of possibly similar neighbors, i.e. the neighbors that have the same
label and are not mapped yet, becomes similar neighbors. Maximizing the set
of possibly similar neighbors minimizes the set of possibly dissimilar neighbors
(impossible to become similar neighbors in the future) and thus gives us a lower
bound of the unknown part of the cost. Formally, we perform label multiset
subtraction of not mapped neighbors to estimate the lower bound.

132 X. Lu et al.

Figure 3 illustrates an incomplete mapping that states e4 and e10 are similar
and e9 is dissimilar (i.e. λsofar = {e4 → e10, e9 → ⊥}). If we decide that e5
and e11 are similar (thus mapping e5 to e11), we obtain their similar neighbors
e4 and e10 and dissimilar neighbor e9 according to the mapping so far. We also
identify the possibly similar neighbors e3 and e8 (both labeled with c and not
mapped yet), and possibly dissimilar neighbors e7, e6 and e12. Thus, the cost
returned by costMatched is 1 and the estimated additional future cost is 3. The
cost of structure returns 2 because the distance from S to e5 is 5, which differs
from the distance of 3 between S and e11.

The running time of the back tracking algorithm is O(2n), if each graph
contains n events all with unique labels, because for each event, there is a choice
between mapping the event or not. In the worst case when all events have the
same label, the running time is O((n + 1)!).

Greedy Algorithm. The second algorithm we propose is greedy and runs in
polynomial time. The greedy algorithm makes the current optimal choice to map
two events or not. The quality of the algorithm depends heavily on the ordering
of the choice that is made. The idea is to start with finding the “most important
and unique” event e (which has the least probability to be a deviating event or
to be matched to another deviating event); then, select, for e, the current most
similar event, if any. As the mapping becomes more complete, the cost returned
by the heuristic function resembles more accurately the cost returned by the cost
function, which helps the algorithm to make more difficult choices later.

For formalizing this “importance and uniqueness”, we introduce the concept
of a k-context and its frequency as an example. A k-context Ck(e) of an event e
consists of the label of e, the labels of its k-predecessors, the labels of its concur-
rences, and the labels of its k-successors. Figure 4 shows three 3-contexts with
label a (on the right) based on the four execution graphs on the left. For exam-
ple, C3(e5) = C3(e25) = C3(e35) = (a, [b, c, d], [], [f,E]). The absolute frequency
of a k-context of an event e is the number of events that have the exact same
k-context and is formally defined as follows. Let G denote a set of execution
graphs. For each event e in E of G ∈ G, the absolute frequency of a k-context is
FreqG(Ck(e)) =

∑
G∈G

| {e′ ∈ E | Ck(e) = Ck(e′)} |. For example, in Fig. 4, we
have Freq(a, [b, c, d], [], [f,E]) = 3. A context having a high absolute frequency
indicates that there is a large set of events sharing the same context and can be
mapped to each other.

To compute a good mapping between two given execution graphs, the greedy
algorithm first sorts the nodes (i.e. events) based on the absolute frequencies of
their context, and then simply starts with the “most important” node according
to the ordering, and selects the best match for this node using the heuristic
function introduced in the previous section. This process of making choices is
repeated, and the algorithm simply works through the nodes linearly. Therefore,
the running time of the greedy algorithm is quadratic in terms of the number of
events.

Detecting Deviating Behaviors Without Models 133

Fig. 4. 3-contexts and
their absolute frequency.

Fig. 5. Fusion process: two regs fused into
one reg

5 Deviation Detection Using Mappings

We use the mappings to compute representative execution graphs (regs) of cases
and use them to locate uncommon behavior and identify deviations. A reg can
be seen as an aggregation of a cluster of similar execution graphs and represents
one variant of process execution. Each node of a reg represents a set of similar
events; the number of events a node represent indicates the commonness of this
behavior among cases of the reg. Similarly, each edge depicts a set of similar
relations between the events. Figure 5 shows three regs. As can be seen, a reg
resembles a directly follows graph with unfolded duplicated labels and shows
executions of its cases, but the commonness of the nodes can also be used for
detecting deviations and visualizing their positions.

Figure 5 also shows the process of aggregating execution graphs into a reg
which we refer to as fusion. We compute regs of cases by fusing execution graphs
among which all mappings are consistent regarding all behavior. In other words,
the mappings between a set of execution graphs are consistent when all of them
agree with each other about the similar behaviors. Formally, assuming a set of
execution graphs is given, and Λ denotes the set of all mappings between them: Λ
is consistent iff. Λ is transitive, i.e. for all (e, e′), (e′, e′′) ∈ Λ ⇒ (e, e′′) ∈ Λ. The
consistency of guarantees that the ordering of fusing a set of similar events (e.g.
e, e′, e′′) is irrelevant (thus commutative and associative). Figure 5 illustrates a
fusion of two regs representing four cases. The nodes m1 and v1 are fused into
n1, meaning that the mappings between them all agree that the four events are
similar. The same holds for the rest of the nodes. Now, assume that, according
to a mapping, one of the events of m1 is actually similar to one of the events
of v4 instead of v1, then the two regs will not be fused. We apply this principle
incrementally by simply fusing the two most similar (groups of) cases indicated
by the cost of their mappings. The algorithm returns a set of regs that can no
further be fused.

Deviations are assumed to be uncommon behavior. If the number of events
that a node n in a reg represents is low, it indicates that the behavior rarely
occurs among the cases that are similar. If this number is below a certain thresh-
old T relative to the maximum number of events represented by another node
that has the same label in the same reg, we classify this node n to be uncommon
and the events of n to be deviating. For example, assuming we have the reg on

134 X. Lu et al.

the right of Fig. 5 and T is 60%, then the events of nodes n5 and n6 are classified
as conforming since they represent the maximum number of events with respect
to their labels g and f , respectively, whereas the one of n4 is only 50% of the
maximum as 2 of 4 (represented by node n1). Thus, the events of n4 are classified
as deviating. Another example, if the two regs shown on the left of Fig. 5 were
not fused due to inconsistency and T is 60%, then all events are classified as
normal behavior; the same for any reg that only represents one execution graph.

6 Evaluation and Results

The proposed deviation detection approach is implemented in the process mining
toolkit ProM2. We conducted controlled experiments to compare our approach
to existing approaches and discuss the results in this section.

Experimental Setup. We compared our approach to other techniques on how
accurately deviating events are detected as shown in Fig. 6. Given a log with each
event labeled as deviant or conforming, our approach and existing approaches
classify each of the events as deviating or conforming. Events correctly classified
as deviations (based on the labels) are considered true positives (TP). Similarly,
false positives (FP) are conforming events that are incorrectly classified as devi-
ations; false negatives (FN) are deviating events that are incorrectly classified
as conforming events; true negatives (TN) are correctly classified as conforming
events. Based on this, we compute the accuracy score (abbreviated to acc)3, i.e.
acc = (TP +TN)/(TP +TN +FP +FN). For example, achieving an accuracy
score of 0.9 after classifying 10 events means one of the events is incorrectly
classified as deviating (FP) or conforming (FN).

We compared the accuracy of our approach to three existing methods shown
in Fig. 6: (1) classify deviations by checking conformance [1] against the given
normative model; (2) discover a normative model and then apply conformance
checking using the discovered model; (3) first cluster traces to discover a more
precise normative model for each process variant, and then check conformance for
each cluster of traces against the corresponding variant model. For conformance
checking, we use alignments [1,9]. The Inductive Miner (IMinf) [8] with filter
(from 0.2 to 1.04) is used for discovering models and the best result is chosen. For
clustering, we used the ActiTraC (4 clusters) [5] and the Generic Edit Distance
(GED with 4 and 10 clusters) [2] with standard settings.

We ran this experiment on 1 artificial and 2 real-life logs. In an artificial
setting, an artificial normative model was used to generate a perfect log. For
2 Both the plugins and the experiments can be found in the TraceMatching package

of the ProM.
3 In this paper, we only discuss the accuracy score. However, one may use the confusion

matrix and compute the F1 score of event identification or swap the confusion matrix
to compute the F1 score of deviation identification. We have computed all three, and
they have shown similar results.

4 Using filter from 0.0 to 0.2, IMinf returns a flower model which is the same as
classifying all events as conforming.

Detecting Deviating Behaviors Without Models 135

Fig. 6. Experiment design: comparing our approach to existing approaches

each trace in the perfect log, we then randomly add kdev deviating events to
derive a log with deviations labeled. The artificial hospital process model in [9]
was used for generating event logs. The generated logs contain 1000 cases, 6590
events, and data-based relations between events which are used to derive the
execution graphs.

For the two real-life logs, i.e. the MUMC and the Municipality (GOV) logs,
we acquired their normative process model and used alignments to label devi-
ating events (thus (1) achieves an accuracy of 1). The labeled real-life logs are
then used to compare our approach to (2) and (3). The MUMC data set pro-
vided by Maastricht University Medical Center (a large academic hospital in
the Netherlands) contains 2832 cases and 28163 events. The Municipality log5

contains 1434 cases and 8577 events.

Results. In the following, we show results organized in the forms of experiments.
Experiment 1: How does our approach perform in comparison to (1), (2) and
(3), and what is the effect of different configurations? Figure 7 shows the accu-
racy scores (on the y-axis) of our algorithms along different configurations (on
the x-axis)6. For other approaches, the accuracy scores remain constant (i.e.
the horizontal lines) along our configurations. Interestingly, using the right con-
figuration (highlighted by boxes), the backtracking algorithm is able to detect
deviating events more accurately than sequential alignments (1) against the nor-
mative model. This is due to the situation in which two events of the same event
type executed consecutively. From these two events, sequential alignments can-
not find the deviating event, whereas our cost function uses the neighbors and
their relative position in a global structure to distinguish them. Both backtrack-
ing and greedy have higher accuracies than (2) and (3). Another observation is
that a configuration has a strong influence on the accuracy scores since the score
fluctuates along the x-axis. We observe that no weight has a dominant effect on
the accuracy. Some of the configurations that achieve the highest accuracies are
the following: k = 1, cn = 3, wM = wN ≥ wS , e.g. wS = wM = wN = 1 (we
write [k1M1N1C3S1] as a shorthand).

5 http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.
6 For each case, we added one deviating event resulting in a log with 13.2 % deviating

events. Repeating this five times, we show the average acc scores.

http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

136 X. Lu et al.

Fig. 7. Avg. accuracy scores using data
and compared to existing approaches
(Color figure online)

Fig. 8. Avg. acc scores using the
sequential ordering (Color figure
online)

Experiment 2: What is the effect of using sequential orders instead of partial
orders on the scores? Figure 8 (similar to Fig. 7) shows the acc scores of our
approach using sequential ordering. The acc scores in Fig. 8 show a decrease in
backtracking if sequential ordering is used instead of data-based partial orders.
However, we still observe that our approach can perform better than partially
ordered alignments [9] and (2) and (3). Interestingly, the greedy approach shows
that it is less sensitive for the input format; accuracy is, for some configurations,
even higher when using sequential traces.

Experiment 3: What is the effect of different deviation levels? The effects of
increasing the number of deviations from 13.2% up to 43.1% (by increasing
kdev) on the accuracy of identifying deviating events are shown in Fig. 9. For the
backtracking and the greedy approach, we used configuration [k1M1N1S1C3]
and configuration [k2M2N1S1C5] based on the previous results. As can be
seen, backtracking [k1M1N1S1C3] with T = 100 performs as well as (1) using
sequential alignments. Also, as expected, using the same configuration but with
a lower threshold T = 40, the approach classifies fewer events as deviating and
therefore is less accurate when the level of deviation increases.

Experiment 4: Performance and Scalability. We compute the average running
time of the approach of 5 runs while increasing the average number of events per
trace from 6.59 to 10.59. The running time of the greedy algorithm increased
only by 78 %, from 0.18 min (11.8 s) to 0.32 min (19.2 s), whereas the backtrack-
ing shows an exponential increase from 2.7 min to more than 3 h, which is more
than 10000 %. The average running time of using ActiTraC together with discov-
ery and alignments increased from 0.016 min to 0.172 min, showing an increase
of 975 %. For GED, the average running time increased by 800 %, from about
0.010 min to 0.090 min.

Detecting Deviating Behaviors Without Models 137

Fig. 9. Effect of deviation level on
Backtrac. v.s. Greedy with selected
settings (Color figure online)

Fig. 10. Accuracy of different
approaches on real life logs (Color
figure online)

Experiment 5: Different Models and Real-life Logs. For the two real-life logs,
the results are shown in Fig. 10. For the MUMC data set, existing approaches
perform better than our approach. ActiTraC achieves the best accuracy and
is about 0.02 higher than our approach. Surprisingly, discovering an imprecise
model that allows all activities to be executed in any order was better than apply-
ing our approach. For the GOV data set, our approach achieves the second best
accuracy with 0.002 lower than the ActiTraC method. Most other approaches
perform worse than when classifying all events as conforming behavior. This is
due to an event class which occurs frequently in the log and all occurrences are
deviations. Techniques (2) based on discovery only are unable to detect these
deviations.

7 Discussion and Conclusion

In this paper, we investigated the problem of detecting deviating events in event
logs. We compared existing techniques, which either use or construct a normative
model to detect deviations via conformance checking, with a new technique that
detects deviations from event logs only. The result of our evaluation shows four
interesting observations.

Firstly, when the deviations are less structured and the dependencies between
events are precise, we can detect deviations as accurately as performing confor-
mance checking using a precise normative model. This indicates that our cost
function is indeed able to distinguish individual events and accurately identify
similar and dissimilar behavior. However, we also observe that the accuracy of
our approach depends heavily on the way the cost function is configured. Some
possible solutions to ease choosing a configuration could be: (1) normalizing the
cost function (e.g. one divided by each components); (2) having predefined crite-
ria or configurations such as “matching as many events as possible”; (3) showing

138 X. Lu et al.

visual mappings between events, allowing the users to select the right ones, and
ranking configurations accordingly.

Another interesting observation is that, using the cost function, the backtrack-
ing algorithm performs worse than the greedy approach for sequential traces.
This may suggest that the current definition of neighbor and structure is too rigid
for sequential ordering of concurrent events. One may consider the union of prede-
cessors, concurrences and successors as the neighbor of an event, instead of distin-
guishing them.

We also observer that when deviations are frequent and more structured,
our approach achieves slight lower accuracy than existing approaches. However,
all approaches performed rather poorly on the real life data sets. One way to
improve this is to conduct “cross checking” between different process variants
using the mappings between regs to find frequent deviations that occur in one
variant but not in others. Still, all current approaches have difficulty in detecting
very frequent deviations, when no normative model is available, as shown by the
results for GOV data sets.

A interesting challenge is to use mappings for detecting other deviations such
as missing events. Detecting some events are missing may be simple (e.g. frequent
but incomplete nodes in regs), whereas the deduction of the exact events that
are missing only from an event log appears to be much more difficult. In any
cases, it is possible to implement many other deviation classifiers using regs, or
to use the computed costs of mappings as a measure of similarity for clustering
traces and detecting deviating traces instead of events. Future research will be
aimed at investigating these possibilities, different cost functions, and the use of
regs for improving process discovery.

References

1. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev. Data Min. Knowl. Disc. 2(2), 182–192 (2012)

2. Bose, R., van der Aalst, W.M.P.: Context aware trace clustering: towards improving
process mining results. In: Proceedings of the SIAM International Conference on
Data Mining, SDM 2009, Sparks, Nevada, USA, 30 April–2 May, pp. 401–412
(2009)

3. Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment:
opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)

4. Carmona, J., Cortadella, J.: Process discovery algorithms using numerical abstract
domains. IEEE Trans. Knowl. Data Eng. 26(12), 3064–3076 (2014)

5. De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

6. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

7. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for
process mining applications. In: An, A., Matwin, S., Raś, Z.W., Śl ↪ezak, D. (eds.)
ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 150–159. Springer, Heidelberg (2008)

Detecting Deviating Behaviors Without Models 139

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78.
Springer, Heidelberg (2014)

9. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Work-
shops. LNBIP, vol. 202, pp. 75–88. Springer, Heidelberg (2015)

10. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business
process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T.,
Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS,
vol. 8841, pp. 436–445. Springer, Heidelberg (2014)

11. Rebuge, A., Ferreira, D.: Business process analysis in healthcare environments: a
methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)

12. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Under-
standing process behaviours in a large insurance company in Australia: a case
study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol.
7908, pp. 449–464. Springer, Heidelberg (2013)

13. Yang, W., Hwang, S.: A process-mining framework for the detection of healthcare
fraud and abuse. Expert Syst. Appl. 31(1), 56–68 (2006)

	Detecting Deviating Behaviors Without Models
	1 Introduction
	2 Related Work
	3 Mappings - Similarities and Dissimilarities Between Executions
	4 Algorithms for Computing Mappings
	5 Deviation Detection Using Mappings
	6 Evaluation and Results
	7 Discussion and Conclusion
	References

