Chapter 5
Potential of White-Rot Fungi to Treat
Xenobiotic-Containing Wastewater

Susana Rodriguez-Couto

5.1 Introduction

Industrial effluents from different industries contain a high load of pollutants, which
could cause detrimental effects to the ecosystem if they are released without
pre-treatment. Most of these compounds are xenobiotics i.e., strange to the bio-
sphere, and are resistant to the biodegradation by the indigenous micro-organisms.
In addition, most of them are harmful to living beings including humans. Therefore,
they have to be removed before being released into the environment. However, the
physico, chemical and physico-chemical in-use techniques for the treatment of
wastewater fail in degrading such compounds resulting in their accumulation in the
environment, posing a hazard to the plants, animals and humans. Consequently,
alternative methods to remove xenobiotic compounds from wastewater are needed.
The use of biological degradation is seen as an economic and ecological alternative
to remove hazardous compounds from wastewater. Among them, the use of
white-rot fungi (WRF) represents a promising approach.

WREF have the unique ability to degrade the bulky, heterogeneous and recalci-
trant polymer lignin (Fig. 5.1). This ability is due to the secretion of an extracellular
non-specific enzymatic complex during their secondary metabolism (idiophasic),
usually under nitrogen depletion. This enzymatic complex is mainly composed of
lignin peroxidases (LiPs), manganese-dependent peroxidases (MnPs), versatile
peroxidases (VPs) and laccases together with accessory enzymes (mostly H,O,-
generating oxidases and dehydrogenases) (Mester et al. 2004).
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Fig. 5.1 Schematic structure of a lignin molecule. Source http://www.research.uky.edu/odyssey/
winter07/green_energy.html

The ligninolytic enzymes secreted by the WRF have wide substrate specificity
and are able to degrade a wide variety of complex molecules and even a mixture of
them. This ability has driven the interest in the development of biotechnology
processes based on WREF in the past couple of decades. However, studies dealing
with the treatment of real wastewater are scarce. Therefore, in this chapter the latest
research on xenobiotic removal from real wastewater by WRF is reviewed.

5.2 White-Rot Fungi

WREF are filamentous wood-degrading fungi, ubiquitous in nature. Most WRF
belong to the Basidiomycota phylum (Polyporales and Agaricales orders) and
together with some related litter-decomposing fungi are the only organisms able to
mineralise lignin efficiently (Kirk and Cullen 1998; Hatakka 2001a, b).


http://www.research.uky.edu/odyssey/winter07/green_energy.html
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Some WRF as grown in nature are shown in Fig. 5.2. The fungus
Phanerochaete chrysosporium (order Thelephorales) was the first white-rot fungus
studied and has become a model fungus for lignin biodegradation studies. The name
white-rot derives from the bleached appearance of the wood attacked by these fungi
due to the removal of the dark coloured lignin (Fig. 5.3). They grow mostly on
hardwoods e.g., birch and aspen, although certain species grow on softwoods such
as spruce and pine (Blanchette 1995). Some WRF degrade all wood components
(i.e., cellulose, hemicellulose and lignin) simultaneously whereas others degrade
lignin selectively. The former are called simultaneous or non-selective white-rot
degraders and the latter selective white-rot degraders. The selective white-rot
degraders are very interesting from a biotechnological point of view, since they
remove lignin leaving the valuable cellulose intact (Dashtban et al. 2010).
Simultaneous white-rot occurs mainly on hardwoods, whereas selective white-rot
occurs both on hardwood and softwood. The typical characteristics of selective and
simultaneous white-rot types are summarised in Table 5.1.

Pleurotus ostreatus Bjerkandera adusta

Fig. 5.2 Pictures of the white-rot fungi Phanerochaete chrysosporium. Source http://botit.botany.
wisc.edu/toms_fungi/may97.html, Trametes versicolor. Photo Copyright © Michael Wood http://
www.mykoweb.com/, Pleurotus ostreatus. Photo Copyright © Fred Stevens http://www.
mykoweb.com/ and Bjerkandera adusta. Photo Copyright © Michael Wood http://www.
mykoweb.com/
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Fig. 5.3 Photograph of wood
attacked by a white-rot
fungus. Source www.bio.
miami.edu/dana/pix/whiterot.

Jpg

The same mechanism that gives these fungi the potential to degrade lignin also
allows them to degrade a wide variety of recalcitrant pollutants. Hence, the WRF
are promising and attractive candidates for the bioremediation of xenobiotic
compounds.

The mechanism used by the WRF to degrade pollutants gives them several
advantages (Christian et al. 2005). For example:

e The WREF are able to mineralise a wide variety of toxic xenobiotics and complex
mixtures as their enzymatic system is non-specific, non-stereoselective and
based on free radicals.

e The WREF are ubiquitously found in nature.

e The WREF are able to oxidise low soluble compounds at high concentrations due
to the extracellular nature of their main enzymatic system.

e The ligninolytic system of the WREF is triggered by nutrient limitation; hence,
they do not need any pre-conditioning of the target pollutant.

e The WRF can degrade very low pollutant concentrations to non-detectable
levels.

e The WREF can be cultivated on inexpensive substrates like agro and forestry
wastes as well as in liquid media and in soil.

e The WRF also produce oxygen radicals (e.g., OH-) which are able to oxidise
biomolecules such as proteins and DNA, and help to destroy microbes.

e The WRF are able to adjust the pH of their surrounding environment using the
plasma membrane-dependent redox system.

The above-mentioned advantages helped to generate much interest in the
development of technologies based on WRF for the biodegradation of hazardous
and recalcitrant pollutants.


http://www.bio.miami.edu/dana/pix/whiterot.jpg
http://www.bio.miami.edu/dana/pix/whiterot.jpg
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Table 5.1 Typical characteristics of selective and simultaneous white-rot

Selective white-rot

Simultaneous white-rot

References

Degraded cell
wall

Initial stages of decay:
Hemicellulose and

Cellulose, hemicellulose
and lignin

Adasgavek et al.
(1995); Fackler et al.

components lignin (2006)

Later stages:

Hemicellulose, cellulose

and lignin
Anatomical Middle lamella Eroded cell walls, Blanchette (1995)
features of dissolved degradation beginning

decayed wood

Adjacent wood cells
separated

from the secondary wall
proceeding to middle
lamella

Lignin loss

Lignin loss diffusive
throughout wood cell
wall without major
degradation of
polysaccharides

Lignin loss together
with wood cell wall
polysaccharides starting
progressively from
lumen

Blanchette (1995)

Representatives

Ceriporiopsis
subvermispora, Phlebia
radiata, Pleurotus spp.,
D. squalens,
Ganoderma austral,
Phlebia tremellosa,

P. cinnabarinus,
Phellinus pini

Phanerochaete
chrysosporium, Fomes
fomentarius, Phellinus,
robustus, Trametes
versicolor, Irpex
lacteus, Heterobasidium
annosum

Blanchette (1995);
Otjen et al. (1987);
Nishida et al. (1988);
Martinez et al. (2005)

5.3 Enzymatic System of WRF

In addition to lignin, WRF can oxidise a wide variety of organic compounds with
structural similarities to lignin including soil humic substances (Hofrichter et al.
1998), organic pollutants (Tuomela and Hatakka 2011a, b) and synthetic dyes
(Glenn and Gold 1983).

WREF usually produce one or more ligninolytic enzymes in different combina-
tions according to which they can be divided into four groups (Hatakka 1994; Tuor
et al. 1995; Nerud and Misurcova 1996): (i) laccase, LiP and MnP-producing,
(ii) laccase and at least one of the peroxidases, (iii) laccases only and (iv) peroxi-
dases only.

The ligninolytic enzymes most frequently found in the WRF are laccases and MnPs,
and the least, LiPs and VPs. The ligninolytic enzymes can act jointly or separately but
accessory enzymes (glyoxal oxidase, aryl alcohol oxidase, pyranose 2-oxidase, cel-
lobiose dehydrogenase, etc.) are required to complete the process of lignin or xeno-
biotic degradation. In addition, intracellular cytochrome P450 monooxygenases as well
as low-molecular mass oxidants such as hydroxyl radicals and chelated Mn>* have also
shown to be involved in the degradation of lignin and many xenobiotics (ten Have and
Teunissen 2001; Hammel et al. 2002; Subramanian and Yadav 2009; Taboada-Puig
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et al. 2011). Recently dye-decolourising peroxidases (DyPs), involved in the
decolouration of high redox potential synthetic dyes and non-phenolic lignin model
compounds (Liers et al. 2010), and aromatic peroxygenases (APOs), involved in the
catalysis of oxygen transfer reactions resulting in the cleavage of ethers (Hofrichter
et al. 2010; Liers et al. 2011), have been found to be part of the ligninolytic system of
the WRF. The main ligninolytic enzymes, their substrates and reactions are summarised
in Table 5.2.

It is worth pointing out that although a white-rot fungus species can potentially
secrete laccase, MnP and LiP, a particular strain may not secrete all of them. Thus,
for instance Trametes versicolor generally produces all the three enzymes (i.e.,
laccase, MnP and LiP) but laccase may be predominant in certain strains (Yang

Table 5.2 Ligninolytic enzymes and their main reactions (Hatakka 2001a, b; Harms et al. 2011;

Tuomela and Hatakka 2011a, b; Lundell and Mékela 2013)

Enzyme and Cofactor | Substrate, mediator Reaction Occurrence in
abbreviation fungi
Laccase (EC O, Phenols, mediators Phenols are Basidiomycota
1.10.3.2) e.g., oxidised to and
hydroxybenzotriazole | phenoxyl Ascomycota, in
or ABTS radicals; other most white-rot
reactions in the fungi and
presence of litter-degrading
mediators fungi
Lignin peroxidase | H,O, Veratryl alcohol Aromatic ring Basidiomycota
(EC 1.11.1.4), LiP oxidised to cation |only in few
radical white-rot fungi
Manganese H,0, Mn, organic acids as | Mn(II) oxidised Basidiomycota,
peroxidase (EC chelators, thiols, to Mn(III); common in
1.11.1.13), MnP unsaturated fatty acids | chelated Mn(IlI) | white-rot fungi
oxidises phenolic |and
compounds to litter-degrading
phenoxyl fungi
radicals; other
reactions in the
presence of
additional
compounds
Versatile H,0, Mn, veratryl alcohol, | Mn(II) oxidised Basidiomycota,
peroxidase (EC compounds similar to | to Mn(III), only in
1.11.1.16), VP LiP and MnP oxidation of Pleurotus sp.,
phenolic and Bjerkandera
non-phenolic sp. and
compounds, and Trametes
dyes versicolor
Dye-decolourising | H,O, Antraquinonic dyes Oxidation of Basidiomycota
peroxidase (EC organic and
1.11.1.19), DyP compounds; Ascomycota
decolouration of
Reactive Blue 5
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Table 5.3 Characteristics of the main ligninolytic enzymes (Dashtban et al. 2010; Sigoillot et al.
2012; Liers et al. 2014)

Enzyme | Molecular mass | Isolectric Glycosylation | Redox Localization
(kDa) point (pI) potential (eV)

Laccase |54-80 34 Yes (10— 0.4-0.8 Mostly
20 %)* extracellular
N-glycosylated

LiP 35-48 3.1-4.7 Yes (up to 20— | 1.2 (at pH 3.0) | Extracellular
30 %)
N-glycosylated

MnP 38-62.5 29-7.1 Yes (4-18 %) | 0.8 (at pH 4.5) | Extracellular
N-glycosylated

VP 4045 34-39 Yes >1 Extracellular

DyP 40-67 3543 Yes (9-31 %) |1.1-1.2 Extracellular

“in some cases they can reach up to 49 %

et al. 2013). In addition, the secretion of specific enzymes may also depend on the
culture conditions including the composition of the growth medium.
The characteristic of the main ligninolytic enzymes are presented in Table 5.3.

5.3.1 Lignin Peroxidases

Lignin peroxidases (EC 1.11.1.14, 1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol:
hydrogen-peroxide oxidoreductase, family 2 at http://www.cazy.org, LiPs) were
first discovered in the white-rot fungus Phanerochaete chrysosporium in the
mid-1980s. They are considered as true ligninases since they directly catalyse lignin
oxidation. LiPs are glycoproteins and contain an iron protoporphyrin IX (heme) as a
prosthetic group.

LiPs catalyse the monoelectronic and H,O,-dependent oxidation of a wide variety
of aromatic compounds through a multistep reaction. These reactions induce the for-
mation of aryl cationic radicals, which further undergo many non-enzymatic reactions
generating a number of end products such as glycolate and oxalate. Both the catalytic
cycle (Fig. 5.4) and the enzymatic intermediates are similar to those of the other
peroxidases. Veratryl alcohol enhances the action of LiP on many substrates, including
lignin (Hammel et al. 1993), by acting as a mediator (Harvey et al. 1986) or by
protecting the enzyme against inactivation by H,O, (Wariishi and Gold 1989).

5.3.2 Manganese-Dependent Peroxidases

Manganese-dependent peroxidases (EC 1.11.1.13, Mn(Il)-hydrogen-peroxide oxi-
doreductase, family 2 at http://www.cazy.org, MnPs). The first extracellular MnP
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Fig. 5.4 The catalytic cycle 03/HO; VA
of lignin peroxidase (LiP); Native LiP - \_ v LiPm
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was purified from P. chrysosporium and its expression and production showed to be
regulated by the presence of Mn(Il) in the culture medium (Bonnarme and Jeffries
1990). The catalytic cycle of MnP (Fig. 5.5) is essentially the same as for LiP with
the exception that Mn(Il) is necessary to complete the cycle.

5.3.3 Laccases

Laccases (EC 1.10.3.2, p-diphenol:oxygen oxidoreductases, lignin oxidases family
1, http://www.cazy.org/Auxiliary-Activities.html) are multi-copper-containing
oxidases which catalyse the four-electron reduction of O, to water coupled with
the oxidation of various organic substrates. They are widely distributed in nature
and are found in plants, fungi, bacteria (Dwivedi et al. 2011) and a few insects (Xu
1999).

Laccases cannot directly oxidise all substrates either because of their large size,
which hinders their introduction into the enzyme active site, or because of their
particular high redox potential. However, it was shown that in the presence of
low-molecular weight organic compounds acting as electron transfer mediators,
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Fig. 5.6 Catalytic cycle of the laccase enzyme; E: native laccase; E™: oxidised laccase; S:
substrate; S-: substrate radical; NS: non-substrate; NS-: non-substrate radical; P: end products; O,:
oxygen; O ": divalent oxygen; M: mediator; M": oxidised mediator. Reprinted from Enzyme and
Microbial Technology 41, Copyright Kurniawati and Nicell (2007), with permission from Elsevier
Ltd., UK

laccases were also able to oxidise non-phenolic structures (Bourbonnais and Paice
1990; Call and Miicke 1997). The first step of the laccase mediator system (LMS) is
the oxidation of the mediator by the laccase enzyme. Then, the oxidised mediator
oxidises the bulky or high redox potential substrate. Thus, the mediator acts as an
electron shuttle between the substrate and the enzyme (Galli and Gentili 2004;
Widsten and Kandelbauer 2008).

Figure 5.6 represents the catalytic cycle of laccase. In typical interactions of
laccase with a substrate, the catalytic site of laccase abstracts electrons from the
substrate and releases an oxidised product. When a mediator is present, the
mediator can be oxidised by laccase and further oxidises another compound that is
either a substrate or a non-substrate of laccase resulting in the formation of oxidised
product(s) and the mediator regeneration (Banci et al. 1999).

5.3.4 Versatile Peroxidases

Versatile peroxidases (EC 1.11.1.16, hybrid peroxidases, polyvalente peroxidases,
family 2 at http://www.cazy.org, VPs) share catalytic properties of both LiP and
MnP (Dosoretz and Reddy 2007; Hofrichter et al. 2010). Thus like MnPs, they have
high affinity for Mn(II) and catalyse the oxidation of Mn(II) to Mn(III) and oxidise
both phenolic and non-phenolic substrates in the absence of Mn(Il) like LiPs.

VPs seem to be produced only by fungi from the genera Pleurotus, Bjerkandera
and Lepista (Heinfling et al. 1998; Mester and Field 1998; Ruiz-Duefias et al. 1999;
Zorn et al. 2003) and maybe also by Panus and Trametes species (Martinez 2002;
Lisov et al. 2003). In Fig. 5.7 the catalytic cycle of VP is depicted (Pérez-Boada
et al. 2005).


http://www.cazy.org
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Fig. 5.7 The catalytic cycle VA'
of versatile peroxidase. vP
Reprinted from Journal of [Fe"‘]

Molecular Biology 354 C-fs

Copyright Pérez-Boada et al. HZOZ i [Fe*Trp]
(2005), with permission from
Elsevier Ltd., UK

Mnlo

-, c-i,
[Fe*=0P] ; ; [Fe =0]

C'JB
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5.3.5 Dye-Decolourising Peroxidases

Dye-decolourising peroxidases (DyP-type peroxidases; EC 1.11.1.19, DyPs) are
glycoproteins having one heme as a cofactor and require H,O, for all enzyme
reactions, indicating that they function as peroxidases. They are named after their
ability to oxidise a wide range of synthetic dyes, in particular, anthraquinonic dyes,
which are poorly oxidised by other peroxidases (Kim and Shoda 1999; Passardi
et al. 2005; Sugano 2009). In addition, they function under lower pH conditions
than other peroxidases. A very important characteristic of DyPs is that they have a
free position for the H,O, binding (Petrides and Nauseef 2000).

Typical peroxidase substrates degraded by DyPs are, for example, 2,2" azinobis-
(3-ethylbenzthiazoline-6-sulphonate and phenolic compounds. DyPs have also been
reported to cleave B-carotene and other carotenoids as well as oxidise methoxylated
aromatics such as veratryl alcohol and non-phenolic B-O-4 lignin model com-
pounds (van Bloois et al. 2009; Zelena et al. 2009; Liers et al. 2010). However,
their physiological function still remains unclear.

5.4 Xenobiotics Degraded by WRF

The ability of the WRF to degrade xenobiotic compounds comes from their ability
to degrade lignin, since it resembles the chemical structure of many xenobiotics
(Fig. 5.8). Thus, the same mechanisms that give the WRF the ability to degrade



5 Potential of White-Rot Fungi to Treat Xenobiotic-Containing Wastewater 101

H
i cl O NH; O Nao's"o
Cl 2 I 0% 0
Npione 3 O
| : 0
= o]

o
Cl Cl Ehk g“/“‘o -#—ONa HaN
cl © g

Pentachlorophenol Remazol Brilliant Blue R Reactive Black 5

HsC CHs — ‘
L0, GO g
P 0

Bisphenol A Carbamazepine Benzo(a)pyrene

Fig. 5.8 Chemical structures of different xenobiotic compounds

lignin can be used to degrade a wide variety of recalcitrant pollutants. Under
ligninolytic conditions, many xenobiotics are oxidised and mineralised to different
extents by the WRF (Field et al. 1993).

Several reviews about environmental pollutant degradation by the WRF have
already been published (Bumpus et al. 1985; Reddy 1995; Raghukumar et al. 2008;
Pointing 2001; Reddy and Mathew 2001; Wesenberg et al. 2003; Chang 2008;
Pinedo-Rivlla et al. 2009; Majeau et al. 2010). However, there are few reports focused
on the application of WRF in the treatment of real wastewater. In this section, recent
reports on xenobiotic removal from real wastewater are reviewed (Table 5.4).

5.4.1 Pharmaceuticals’

Accinelli et al. (2010) studied the potential of P. chrysosporium entrapped in
granular bioplastics to remove different pharmaceutical compounds (i.e., the
antiviral drug oseltamivir and the antibiotics erythromycin, sulfamethoxazole and
ciprofloxacin) from a municipal wastewater treatment plant (WWTP). It was found

"For further information on fungal treatment of wastewater containing pharmaceutical products,
please refer to Chap. 6—Fungal bioremediation of emerging micropollutants in municipal
wastewaters and Chap. 8—Mycoremediation of organic pollutants: principles, opportunities
and pitfalls.
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Table 5.4 Degradation of real wastewater containing different xenobiotic compounds by different
white-rot fungi in the past years

White-rot fungus | Wastewater Xenobiotic Removal Reference
source
Pharmaceuticals
Phanerochaete Municipal Oseltamivir >50 % in Accinelli et al.
chrysosporium WWTP (Italy) | (Tamiflu) 30 days (2010)
Erythromycin >80 % in
5 days
Sulfamethoxazole | >50 % in
5 days
Ciprofloxacin >70 % in
5 days
P. chrysosporium | Municipal Carbamazepine 60 % in Zhang and Geissen
WWTP (1 mg/L) 100 days (2012)
(Germany)
T. versicolor Urban (Spain) | Pharmaceutical 50 % Cruz-Morat6 et al.
compounds (2013)
T. versicolor Hospital Pharmaceutical 83.2 % Cruz-Morat9 et al.
(Spain) and endocrine (sterile) in (2014)
disrupting 8 days;
compounds 533 %
(non-sterile) in
8 days
T. versicolor Hospital Iopromide 87 % (sterile), | Gros et al. (2014)
(Spain) 65.4 %
(non-sterile) in
8 days
Ofloxacin 98.5 %
(sterile), 99 %
(non-sterile) in
8 days
Textile wastewater
Bjerkandera Textile (Italy) | Dyes Up to 84 % Anastasi et al.
adusta during 10 (2010)
cycles
B. adusta Textile (Italy) | Dyes 40 % in 24 h | Anastasi et al.
(2011)
P. chrysosporium | Textile (India) | Dyes 84 % in Sangeeta et al.
6 days (2011)
T. pubescens Textile (Italy) | Dyes 76 % Anastasi et al.
decolouration | (2012)
in 24 h, COD
reduction and
toxicity
removal
(flasks); 30 %
decolouration
(bioreactor)

(continued)
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White-rot fungus | Wastewater Xenobiotic Removal Reference
source

Bjerkandera sp. Textile Dyes Everzol 65 % (sterile) | Osorio-Echavarria
(Colombia) Black EDR and and 40 % et al. (2012)

Everzol Black
EDG

(non-sterile) in
8 days

P. chrysosporium | Textile (India) | Dyes 80 % (5 g/L Pakshirajan and
glucose); 83 % | Kheria (2012)
(10 g/
glucose)
Curvularia Textile Indigo dye 95 % de Miranda et al.
lunata (Brazil) (non-aerated) (2013)
and 93 %
(aerated) in
10 days
P. chrysosporium 95 %
(non-aerated)
and 98 %
(aerated) in
10 days
Pleurotus Textile (India) | Dyes 71.2 % colour, | Sathian et al.
floridanus 80.5 % COD (2013)
B. adusta Textile Industrial dyes 71-92 % in Choi et al. (2014)
effluent from a 3 weeks
WWTP (South
Korea)
Ganoderma Textile Indigoid and 85.1 % in Ma et al. (2014)
sp. En3 (China) sulphur dyes 8 days
Combination of Textile (India) | Dyes 71.3 % colour | Sathian et al.
P. floridanus, G. and 79.4 % (2014)
lucidum and T. COD (HRT
pubescens 5 days)
Olive mills
Trametes Olive mill Phenolics 60 % colour, Cerrone et al.
versicolor (Italy) (277 mg/L) 72 % phenols | (2011)

(shaken flasks)
in 216 h; 65 %
colour, 89 %
phenols
(reactor,
continuous) in
192 h

(continued)
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White-rot fungus

Wastewater
source

Xenobiotic

Removal

Reference

Ganoderma spp.

Pleurotus spp.

Olive mill
(Greece)

Phenolics
(4.9 mg/mL)

40-46 %
colour,
64-67 %
phenolics in
20 days

60-65 %
colour, 74—
81 %
phenolics in
20 days

Ntougias et al.
(2012)

Pleurotus
ostreatus

Olive mill
(Italy)

Polyphenols
(G g/lb)

70 % in

4-7 days
(batch); 42—
68 % for 5
cycles (batch
with biomass
recycling and
nutrient
addition)

Olivieri et al.
(2012)

Wastewater from

other sources

Trametes
pubescens
Ceriporiopsis
subvermispora

Pycnoporus
cinnabarinus

P. chrysosporium

Distillery
(South Africa)

Phenolics
(866 mg/L)

86 % in
2 days

57 % in
2 days

69 % in
2 days

<40 % in
2 days

Strong (2010)

P. chrysosporium

Pulp and paper
mill (India)

83 % colour in
96 h

Gomathi et al.
(2012)

P. ostreatus

Petrochemical
(Italy)

Mixture of
2-NSA
(2-naphthalene
sulfonic acid)
polymers

70 % (20—

24 % adsorbed
by fungal
biomass) in
40 days

Palli et al. (2014)

WWTP Wastewater

treatment plant

HRT Hydraulic retention time

that the antibiotics were more readily removed by P. chrysosporium than the
antiviral drug (Table 5.4). DNA analysis showed that fungal growth was mainly
confined to the bioplastic carriers making it easy to insert the fungus to the polluted

site.

Zhang and Geissen (2012) studied the degradation of carbamazepine in an
effluent from a municipal WWTP by P. chrysosporium immobilised on polyether
foam in a novel plate bioreactor. Carbamazepine (1 mg/L) was removed by 60 % in
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100 days of continuous operation provided that additional glucose and nitrogen
were supplied.

Cruz-Morat6 et al. (2013) reported for the first time the degradation of phar-
maceutical compounds (PhACs) in urban wastewater by T. versicolor pellets in a
batch fluidised-bed bioreactor operating under non-sterile conditions where 50 % of
the detected PhACs was removed. In addition, a considerable reduction in toxicity
was achieved after the fungal treatment. In the following study, Cruz-Morat¢ et al.
(2014) reported the removal of PhACs and endocrine disruptor compounds (EDCs)
from hospital effluents under sterile and non-sterile conditions using the same
approach. They found that the overall load removal was 83.2 % under sterile and
53.3 % under non-sterile conditions after 8 days of treatment. In addition, toxicity
tests showed the reduction of wastewater toxicity after the fungal treatment.

Gros et al. (2014) studied the degradation of the X-ray contrast agent iopromide
(IOP) and the antibiotic ofloxacin (OFLOX) in hospital wastewater by T. versicolor
in a 10-L fluidised-bioreactor. They found that within 8 days, IOP and OFLOX
were degraded by 87 and 98.5 % respectively, under sterile conditions, and by 65.4
and 99 % respectively, under non-sterile conditions. In addition, toxicity of the
treated wastewater was reduced after the fungal treatment.

5.4.2 Textile Wastewater’

Anastasi et al. (2010) reported the ability of Bjerkandera adusta to treat wastewater
from a textile factory in a fixed-bed reactor operated in continuous mode. This
fungus was able to decolourise the effluent up to 84 % during 10 cycles under
non-sterile conditions. In addition, the chemical oxygen demand (COD) and the
toxicity were effectively reduced after the fungal treatment. Subsequently, Anastasi
et al. (2011) tested the capacity of the same fungus to degrade wastewater from a
textile industry after a secondary treatment and found that the fungal treatment
decolourised the effluent by 40 % in 24 h. Further, they (Anastasi et al. 2012)
showed that fungal treatment with Trametes pubescens followed by activated
sludge of wastewater from a cotton dyeing industry led to very good results in terms
of decolouration (76 % in 24 h), COD reduction and toxicity removal. However,
the scale-up in a 5-L moving-bed bioreactor (working volume 2 L) with 7. pub-
escens immobilised on 2 cm® cubes of polyurethane foam (PUF) led to lower
decolouration (30 %). Therefore, optimisation of the reactor technology is needed
before fungal treatment could be successfully applied.

Sangeeta et al. (2011) studied the decolouration of textile wastewater by
P. chrysosporium in shaken flasks and found that the decolouration of raw

2Additional information on treatment of dye using fungi is presented in Chap. 4—Application
of biosorption and biodegradation function of fungi in wastewater and sludge treatment.
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wastewater was negligible. Nevertheless, when wastewater was diluted with med-
ium containing glucose and other nutrients, the decolouration considerably
increased (84 % in 6 days).

Osorio-Echavarria et al. (2012) reported the decolouration of textile wastewater
by the white-rot fungus anamorph R1 of Bjerkandera sp. under sterile and
non-sterile conditions. The former led to a decolouration percentage of 65 % in
8 days, whereas the latter led to a decolouration percentage of 40 % for the same
period of time. The decolouration under non-sterile conditions was mainly due to
dye adsorption onto fungal mycelium since the pH increased affecting both the
fungus and the ligninolytic enzymes. They found that the presence of high con-
centration of salts (i.e. NaCl and Na,CO;3) in the wastewater favoured the
decolouration process. This indicates that the fungus anamorph R1 of Bjerkandera
sp. is able to grow under hypersaline conditions. This makes this fungus advan-
tageous for the treatment of industrial effluents with high salt concentrations such as
those from the textile industries.

Pakshirajan and Kheria (2012) investigated the continuous treatment of textile
wastewater by P. chrysosporium in a rotating biological contactor reactor operating
at an HRT of 48 h. The fungus was able to decolourise the effluent by more than
64 % when diluted with media containing glucose. Maximum decolouration effi-
ciencies of 83 and 80 % were attained with 10 and 5 g/L of glucose respectively.

de Miranda et al. (2013) investigated the decolouration of a textile effluent by the
white-rot fungi Curvularia lunata and P. chrysosporium in static bioreactors under
aerated and non-aerated conditions. The effluent was almost totally decolourised
within 10 days under both conditions. However, the effluent treated by
P. chrysosporium contained a mutagenic byproduct from indigo biodegradation that
was not found in the effluent treated by C. lunata. This indicates that different
degradation pathways are used by different ligninolytic fungi and that degradation
is not always accompanied by detoxification.

Sathian et al. (2013) studied the decolouration of textile wastewater by Pleurotus
floridanus in batch culture. After optimisation of different parameters, the fungal
treatment achieved 71.2 % decolouration and 80.5 % COD reduction. Furthermore,
in studying the ability of the white-rot fungi Coriolus versicolor, P. floridanus,
Ganoderma lucidum and T. pubescens to decolourise textile wastewater in pure and
mixed cultures, Sathian et al. (2014) found that the combination of P. floridanus, G.
lucidum and T. pubescens led to the best results (87.2 % decolouration) and this
combination was used subsequently in a sequential batch reactor (SBR). When
operating at the optimised conditions, a decolouration percentage of 71.3 % and a
COD reduction of 79.4 % could be obtained.

Choi et al. (2014) investigated the ability of the white-rot fungi B. adusta,
Ceriporia lacerata, Phanerochaete calotricha and Porostereum spadiceum to
decolourise an untreated textile effluent from a WWTP. They found that only B.
adusta was able to decolourise the effluent significantly (71-92 % in 3 weeks). In
addition, wastewater toxicity decreased after fungal B. adusta treatment. These
results highlight again the different degrading abilities of different fungal species.
Ma et al. (2014) reported that Ganoderma sp. En3, a white-rot fungus isolated from
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a forest in China, was able to decolourise indigo jean dyeing wastewater from a
textile factory up to 85.1 % in 8 days.

5.4.3 Olive Mills

Cerrone et al. (2011) evaluated the white-rot fungi Panus tigrinus, Funalia trogii
and T. versicolor to treat olive washing wastewater (OWW) and found that T.
versicolor performed well, reducing colour, COD and phenols by 60, 72 and 87 %,
respectively, in 216 h. Also, only this fungus grew well in a bubble-column
bioreactor (working volume 1 L) and the treatment of OWW in continuous oper-
ation reduced colour, COD and phenols by 65, 73 and 89 %, respectively, after
192 h.

Ntougias et al. (2012) studied the treatment of olive mill wastewater (OMW) by
different strains belonging to the Ganoderma and Pleurotus genera and found that
the Ganoderma spp removed 40-46 % colour and 64—67 % phenolics and the
Pleurotus spp removed 60—65 % colour and 74-81 % phenolics within 20 incu-
bation days. This indicates that different fungal species exhibit different degrading
abilities.

Olivieri et al. (2012) studied the removal of polyphenols in raw OMW by
P. ostreatus under controlled non-sterile conditions in flasks and in an internal loop
airlift bioreactor (ILAB) operating in batch with biomass recycling and in contin-
uous culture. Biomass recycling with nutrient addition was the most effective
configuration, removing 42-68 % of polyphenols for 5 cycles. The continuous
treatment in the ILAB was effectively performed provided that OMW was previ-
ously aerated to avoid oxygen consumption by endogenous micro-organisms.

5.4.4 Wastewater from Other Sources

Strong (2010) studied the treatment of Amarula distillery wastewater by 7. pub-
escens,  Ceriporiopsis  subvermispora,  Pycnoporus  cinnabarinus  and
P. chrysosporium. T. pubescens was found to be the most efficient fungus in
phenolic removal (86 %) followed by P. cinnabariunus (69 %) and C. subver-
mispora (57 %) within 2 cultivation days. However, P. chrysosporium removed
less than 40 % of the phenolics for the same time period. In addition, 7. pubescens
was also very effective in removing colour and reducing COD. Therefore, this study
showed the possibility to treat an effluent containing high COD and high phenolic
concentration using the white-rot fungus 7. pubescens.

Gomathi et al. (2012) reported high decolouration (83 % in 96 h) of a pulp and
paper mill effluent by P. chrysosporium entrapped in calcium alginate when 1 %
sucrose and 1 % ammonium chloride were added to the effluent.
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Palli et al. (2014) assessed the ability of P. ostreatus to remove
2-naphthalenesulfonic acid polymers (2-NSAP) from petrochemical wastewater. In
the presence of an adequate carbon source, the fungus was able to remove about
70 % of the oligomers in 40 days, from which about 20-24 % was adsorbed by the
fungal biomass. Furthermore, respirometric tests showed a considerable increase of
the BOD/COD ratio (from 9 % up to 57 %) after the fungal treatment which
confirmed that the fungus did not mineralise the NSAP but increased their
biodegradability.

5.5 Concluding Remarks

WRF hold an enormous potential for the biodegradation of a great variety of
xenobiotic compounds due to the secretion of enzymatic complexes with broad
substrate specificity. Different WRF show different biodegrading abilities for dif-
ferent xenobiotic compounds mainly due to their different physiology, culture
and/or environmental conditions and nature of enzymes secreted. Also, the char-
acteristics of the ligninolytic enzymes from different WRF sources differ
considerably.

Despite the promising results reported so far, in order to assess the true technical
potential of WRF to biodegrade xenobiotics, more studies under real industrial
conditions are needed. However, most studies using real wastewater were per-
formed required some pre-conditioning of wastewater (dilution, pH adjustment,
sterilisation, addition of nutrients).

Detailed characterisation of the intermediates and metabolites produced during
biodegradation as well as toxicity tests should also be carried out to measure the
detoxification of the fungal treated wastewater and prevent accumulation of toxic
byproducts. Although some studies regarding the metabolic pathway of xenobiotic
degradation by WRF have been performed there is still a gap in the degradation
mechanisms of xenobiotics by WRF and their ligninolytic enzymes.
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