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4.1 Introduction

Sewage treatment has always been one of the core problems of environmental
protection as wastewaters contain a variety of harmful substances such as heavy
metals, dyes and phenolics (Rangabhashiyam et al. 2014). Disposing the sludge
generated from sewage treatment plant in a safe way is also challenging. The
surface and ground waters in many parts of the world have been subject to pollution
due to the emission of industrial wastewater and cannot be used as drinking water
(Rangabhashiyam et al. 2014). For the basic needs of life, there is the increasing
need of pollution control and water quality protection. Various water treatment
methods using physical and chemical techniques have been applied. The main
methods include: (i) filtration (Zouboulis et al. 2002), (ii) ion exchange
(Kabsch-Korbutowicz and Krupinska 2008), (iii) solvent extraction (Lin and Juang
2002), (iv) advanced oxidation processes (Esplugas et al. 2002), (v) activated
carbon adsorption (Kurniawan et al. 2006). But most of technologies mentioned
above are limited due to their high cost. Biological treatment is a relatively eco-
nomical when comparing to the traditional physical and chemical processes (Crini
2006). Biological technologies such as biological adsorption and microbial
degradation are commonly applied to the treatment of industrial effluents because
many microorganisms such as bacteria and fungi are able to concentrate selected
substances and degrade different contaminants (Fu and Viraraghavan 2001a;
McMullan et al. 2001; Volesky 2007; Chen et al. 2014a; Wang et al. 2015).
Utilizing fungi for biological treatment have been extensively studied due to their
vast amounts of biomass generated from fermentation industries (Zhou and Kiff
1991). On the fungal cell wall there exist many functional groups such as carboxyl,
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hydroxyl, amino, sulfonate, and phosphonate, which bring about the excellent
adsorption property in fungi (Cabib et al. 1988; Bowman and Free 2006). Fungi
also possess multiple mechanisms for degradation of organic and inorganic pol-
lutants (Awasthi et al. 2014; Mishra and Malik 2014b). Thus, fungi are playing
increasingly important roles in wastewater treatment. The following notable fea-
tures of fungi made them excellent candidates for treatment processes: (i) high
adsorption capacity, (ii) easy solid–liquid separation, (iii) good adverse resistance,
and (iv) broad degradation ability. The main goal of this review is to provide
up-to-date information pertaining to the application of biological adsorption and
biodegradation functions of fungi in sewage treatment.

4.2 Biosorption Function

Many literatures have reported the fungal application for wastewater treatment in
recent years. Filamentous fungi are promising materials to replace or supplement
traditional treatment processes (Sharma et al. 2011). Many genera of fungi have
been researched both in living or inactivated form (Srinivasan and Viraraghavan
2010). For living cells, the mechanism involves biosorption and biodegradation
because fungi can produce laccase or other enzymes to mineralize organic pollu-
tants (Raghukumar et al. 1996). For dead cells, the mechanism is biosorption
without active metabolic transport process (Volesky 2007).

4.2.1 Performance of Wastewater Treatment for Dyes,
Heavy Metals and Phenolic Compounds

The ingredient of wastewater is usually very complex, containing all kinds of
pollutants. This paper mainly focuses on fungal biosorption effect on organic dyes,
heavy metals and phenolic compounds.

(1) Dyes

Dye wastewater is one of the most difficult industrial wastewaters to treat.
Particularly from the textile industry, more than 1.5 � 108 m3 of colored effluents
are discharged annually (Ip et al. 2010). These dyes may be mutagenic or car-
cinogenic in human beings and could lead to dysfunctions of the liver, kidneys,
central nervous and reproductive system (Dincer et al. 2007; Shen et al. 2009). It is
also recognized that color is the first obvious sign of sewage. The presence of trace
amounts of dyes in water can be easily visible and undesirable (Banat et al. 1996;
Robinson et al. 2001). Activated carbon is an effective adsorbent which was widely
used for dye removal in sewage treatment with several advantages such as the large
surface area and high adsorption capacity. But the usage of activated carbon would be
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limited in many cases because of its disposal problem and the high running cost (Xiong
et al. 2010). The application of fungi for the removal of dyes is an attractive alternative
to the colored sewage treatment (Solis et al. 2012). Fungal species such as Pencillium
oxalicum, Aspergillus niger, Trametes versicolor, Rhizopus stolonifer, Rhizopus oryzae.
have been widely reported as biosorbents for the removal of dye from aqueous solution
(Abd El-Rahim et al. 2003; Bayramoğlu and Arica 2007; Binupriya et al. 2007;
Srinivasan and Viraraghavan 2010; Solis et al. 2012; Akar et al. 2013;
Rangabhashiyam et al. 2014). The representative examples of dye decolorization by
fungi are tabulated in Table 4.1. Since color is the first obvious sign of the presence of
sewage, the decolorization rate, i.e., the removal percent becomes one of the most
important indices for colored wastewater treatment. From the table it is obvious that a
wide variety of fungi are capable of decolorizing all kinds of dyes. With regard to a
certain type of dye, different species of fungi tend to have different adsorption effec-
tiveness. For example, the removal efficiency of Reactive Black 5 can exceed 99 %
after 48 h treatment by using Penicillium geastrivorus (Yang et al. 2003), but the
removal rate drops to 88 % when the adsorbent is change into Aspergillus niger over
60 h (Taskin and Erdal 2010), which suggests that dye adsorption in fungi is species
specific. Meanwhile, some special types of fungi are found to have high biosorption
effectiveness on multiple dyes that make them potential candidates to treat colored
wastewater generated from industry contain a variety of dyes. For instance, mycelial
pellets formed of marine-derived Penicillium janthinellum P1 have a broad spectrum of
adsorption capacity (Fig. 4.1): its decolouration efficiency of Congo Red, Naphthol
Green B, Eriochrome Black T, Amino Black 10B could exceed 99 %, and the removal
rate of Neutral Magenta, Methyl Red, Acid Fuchsin, Crystal Violet, and Brilliant Green
could reach up to 94.4, 82.1, 63.5, 56.9, and 63.0 %, respectively (Wang et al. 2015).

(2) Heavy metals

In addition to dyes, the existence of heavy metals in wastewater presents further
complexity in processing. Industries that discharge heavy metals sewage includes:
electroplating, battery manufacturing, mining engineering, printing, photography
industry (Kadirvelu et al. 2001). Heavy metals in the environment may accumulate
in the food chain and eventually cause great harm to human health (Kurniawan
et al. 2006; Dal Bosco et al. 2006; Fu and Wang 2011). Although many biological
materials can adsorb heavy metals, only those with sufficiently high metal-binding
capacity and selectivity for heavy metals are appropriate for use in the biosorption
process (Sag 2001). Fungal cell wall surface contains different functional groups,
many of which are found to play vital roles in metal chelation (Rangabhashiyam
et al. 2014). Fungi have a large capacity for heavy metal sorption from aqueous
solutions and in certain circumstance even outperformed activated carbon
(Rangabhashiyam et al. 2014). Fungal species such as Aspergillus niger, Pleurotus
ostreatus, Phanerochaete chrysosporium, Rhizopus arrhizus, Trametes versicolor,
and Fusarium sp. have been extensively researched in the removal of heavy metal
ions as they are abundantly available and low cost in mass production. Biosorption
capacities of heavy metal ions on various fungal species are compared in Table 4.2.
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Table 4.1 Results of dye decolorization by fungi

Fungi Dye Percent
removal
(%)

Initial dye
concentration
(mg/L)

Time of
contact

References

Rhizopus oryzae Rhodamine
B

90 100 5 h Das et al.
(2006)

Pencillium
oxalicum

Reactive
Blue 19

91 100 80 min Zhang et al.
(2003)

Aspergillus
niger 31

Polar Red 94 300 8 d Abd El-Rahim
et al. (2003)

Direct Blue
1

63.2 800 6 h Bayramoğlu
and Arica
(2007)

Aspergillus
niger

Acid Blue
29

80 50 30 h Fu and
Viraraghavan
(2001b)

Penicillium
geastrivorus

Reactive
Black 5

>99 100 48 h Yang et al.
(2003)

Aspergillus
niger

Reactive
Black-5

88 100 60 h Taskin and
Erdal (2010)

Penicillium
chrysogenum
MT-6

Reactive
Black-5

89 300 100 h Erdal and
Taskin (2010)

Trametes
pubescens

Congo Red 98 100 60 min Si et al. (2015)

Phanerochaete
chrysosporium

Amido
black 10B

98 1000 3 day Senthilkumar
et al. (2014)

Aspergillus
lentulus

Acid Blue
120

90 100 12 h Kaushik et al.
(2014)

Thamnidium
elegans

Reactive
Red 198

98 100 75 min Akar et al.
(2013)

Penicillium
janthinellum P1

Congo Red >99 150 24 h Wang et al.
(2015)Naphthol

Green B
>99 150 24 h

Eriochrome
Black T

>99 150 24 h

Amino
Black 10B

>99 150 24 h

Neutral
Magenta

94.4 150 24 h

Methyl Red 82.1 150 24 h

Acid
Fuchsin

63.5 150 24 h

Crystal
Violet

56.9 150 24 h

Brilliant
Green

63.0 150 24 h
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The maximum hexavalent chromium adsorption capacities are ranging from 10.75
to 117.33 mg/g by different species of fungi, which shows the specific differences.

(3) Phenolic compounds

Phenol can cause harm to human health even in minute quantity (Senturk et al.
2009; Hank et al. 2014), thus US Environmental Protection Agency have taken
stringent measures to lower phenol content in the wastewater to <1 mg/L (Banat
et al. 2000). Many other phenolic compounds also have different degrees of toxi-
city, which are contained in sewages originated from petrochemical, phenol pro-
ducing, coal conversion and other chemical processes (Hamdaoui and Naffrechoux
2007a, b). In recent years, many studies have focused on fungi that are able to
biosorb phenols and chlorophenols. Table 4.3 shows the data on the biosorption
capacities of phenol and phenolic compounds by various fungi.

4.2.2 Mechanisms

Due to the diversity of the fungi and the complexity of contaminants in wastewater,the
mechanism of fungal biosorption is often difficult to characterize, except perhaps in the
simplest laboratory systems where a variety of mechanisms may be operative under
given conditions (Gadd 2009). There are variety of ways for the pollutant to be
captured by fungal cell, thus biosorption mechanisms could be multiple and in many
cases they are still not very well understood (Sag 2001). The biosorption mechanisms
are classified to different types on the basis of cell metabolism status or pollutants
sorption location (Fig. 4.2).

Fig. 4.1 The decolorization
rate of Penicillium
janthinellum P1 in treating
nine different dyes (Wang
et al. 2015)
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Table 4.2 Biosorption capacities of heavy metals by fungi

Fungi Heavy
metal

Adsorption capacities (mg/g
biomass)

References

Ganoderma lucidum Zr(IV) 142.5 Hanif et al. (2015)

Coriolus versicolor Zr(IV) 110.75 Amin et al. (2013)

Penicillium citrinum U(VI) 127.3 Pang et al. (2011)

Rhizopus arrihizus U(VI) 112.2 Wang et al. (2010)

Yarrowia lipolytica Ni(II) 95.33 Shinde et al. (2012)

Pleurotus ostreatus Cr(VI) 10.75 Javaid et al. (2011)

Aspergillus niger Cr(VI) 117.33 Khambhaty et al.
(2009)

Coriolus versicolor Cr(VI) 62.89 Sanghi et al. (2009)

Rhizopus arrhizus Cr(VI) 78 Aksu and Balibek
(2007)

Saccharomyces
cerevisiae

Cr(VI) 32.6 Ozer and Ozer (2003)

Surfactant-modified
yeast

Cr(VI) 94.34 Bingol et al. (2004)

Trametes versicolor Cu(II) 140.9 Subbaiah et al. (2011a)

Aspergillus niger Cu(II) 20.91 Iskandar et al. (2011)

Penicillium
simplicissimum

Cu(II) 16.18 Iskandar et al. (2011)

Trichoderma
asperellum

Cu(II) 12.81 Iskandar et al. (2011)

Mucor rouxii Zn(II) 53.85 Yan and Viraraghavan
(2003)

(continued)

Fig. 4.2 The biosorption mechanisms are classified to different types on the basis of cell
metabolism status or pollutants sorption location
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According to the correlation with the cell metabolism, fungal biosorption mecha-
nisms can be divided into two types: (i) Non-metabolism dependent (passive uptake)—
involving ion exchange, precipitation, complexation and physical adsorption (Veglio
and Beolchini 1997), and (ii) Metabolism dependent (active uptake)—comprising an
energy-driven process (Gadd 2009). Biosorption by dead fungal cells is a passive
process which based on the interaction between the cell biomass and adsorbate. Dead
cells capture pollutants through chemical functional groups on the cell wall which takes
up most of the cellular dry weight. Passive uptake could also be present when the cell is
metabolically active, however, it may be suppressed by cellular protective mechanisms
against the toxic pollutants, e.g., active metal exclusion processes (Volesky 2007). Thus
the dead fungal biomass holds promising biosorption capacity towards the toxic pol-
lutants such as heavy metals and phenolic compounds (Kumar et al. 2008; Rao and
Viraraghavan 2002). When living cells are used, the biosorption mechanisms become
much more complicated. A lot of mechanisms may exist simultaneously since many
cell metabolisms may be involved in biosorption. In addition, a variety of reaction, such
as (i) adsorption, (ii) ion exchange, (iii) complexation, and (iv) precipitation may be
affected by the change of the microenvironment around the cells, which can be altered
by fungal cellular metabolism; for instance: nutrient uptake, respiration and metabolite
release (Gadd and White 1993).

According to the location where the pollutants were captured and concentrated,
fungal biosorption may also be classified as: (i) extracellular accumulation or precip-
itation, (ii) cell surface sorption (e.g., ion exchange, complexation, physical adsorption,
precipitation), and (iii) intracellular accumulation (e.g., transport across cell membrane)
(Muraleedharan et al. 1991). The chemical constitution and structural organization of
the fungal cell wall are very complicated and all kinds of pollutant can either be bound
in its surface or be deposited within its structure before they entry into the cytoplasm
where they could be detained by other compounds or organelles. Fungal cell wall
consists mainly of polysaccharides, proteins and lipids, offering diverse function
groups, such as carboxyl (–COOH), phosphate (PO4

3−), hydroxyl (–OH), amino (–
NH2), thiol (–SH) (Crini 2006) that are able to interact with adsorbed contaminants in
different degrees. Many species of fungi have microfibrillar layer structures inside the

Table 4.2 (continued)

Fungi Heavy
metal

Adsorption capacities (mg/g
biomass)

References

Trametes versicolor Pb(II) 208.3 Subbaiah et al.
(2011b)Cd(II) 166.6

Amanita rubescens Pb(II) 38.4 Sari and Tuzen (2009)

Cd(II) 27.3

Clitopilus
scyphoides

Cd(II) 200 Moussous et al. (2012)

Auricularia
polytricha

Cd(II) 63.3 Huang et al. (2012)

Cu(II) 73.7

Pb(II) 221
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cell wall, which are composed of chitin or cellulose chains. The chitosan plays very
important roles in fungal biosorption. Heavy metal ions could bind to the amine sites of
chitin (R2–NH) and chitosan (R–NH2). Meanwhile, these amine sites also appear to be
the major reactive groups for dyes, since intermolecular interactions of the dye mole-
cules are most probable in chitosan–dye systems (Crini and Badot 2008). The
Mucorales family (e.g., Rhizopus arrhizus), have outstanding biosorbent performances,
which may be attributed to the high chitin content in their cell walls.

The diversity of chemical structures encountered in organic pollutants meant that their
molecular size, charge, solubility, hydrophobicity, and reactivity, all affect the wastewater
composition, choice of biosorbent and their biosorption efficiency. Pragmatically, of
course, it may not be necessary to understand what mechanism is operative if the prime
research goal is to identify an efficient biosorbent system (Gadd 2009).

4.2.3 Factors Influencing Biosorption Capacities

A variety of factors can affect biosorption. The type and nature of the fungal
biomass or derived product can be very important. The properties of the biomass

Table 4.3 Biosorption capacities of phenolic compounds by fungi

Fungi Phenolic compounds Adsorption capacities
(mg/g biomass)

References

Aspergillus niger Phenol 0.5 Rao and
Viraraghavan
(2002)

Emericella
nidulans

2,4-dichlorophenol 9.1 Benoit et al.
(1998)p-chlorophenol 3.0

Rhizopus arrhizus Pentachlorophenol 14.9 Bell and Tsezos
(1987)

Trametes
versicolor

Phenol 50 Kumar et al.
(2009)o-chlorophenol 86

p-chlorophenol 112

Schizophyllum
commune

Phenol 120 Kumar and Min
(2011)o-chlorophenol 178

p-chlorophenol 244

Pleurotus
sajor-caju

Phenol 89 Denizli et al.
(2005)o-chlorophenol 159

p-chlorophenol 188

2,4,6-trichlorophenol 372

Phanerochaete
chrysosporium

Phenol 115 Denizli et al.
(2004)o-chlorophenol 190

p-chlorophenol 228

2,4,6-trichlorophenol 421
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can be influenced by the age and growth condition of the fungal cells, which lead to
changes in cell size, cell wall components, extracellular secretion, and other
metabolic activities. Changes of cellular properties can also be achieved by physical
and chemical pretreatment. The environment of biosorption and the use of biore-
actors would dramatically influence the reactions between the biomass and con-
taminants thereby alter the biosorption efficiency.

(1) Pretreatment for fungal biosorbents: physical or chemical treatment

Physical processing of fungal biomass usually includes autoclaving, drying and
crushing. Many researches in the biosorption of organic compounds, heavy metals or
other toxicity pollutants with fungal biomass showed that enhanced sorption capacity was
obtained using dead fungal biomass rather than the living cells (Rao and Viraraghavan
2002; Kumar et al. 2008). That may be because the living fungi can prevent toxic
substances from entering into cells by cellular protective mechanisms. Physical treatments
such as boiling, drying, lyophilisation or autoclaving will kill the fungal cells and improve
the efficiency of sorption accordingly. Autoclaving could also rupture the fungal structure
and expose the potential binding sites for certain adsorbate (Fu and Viraraghavan 2000).
Drying can bring convenience to storage and transportation of fungal biomass and
crushing will enhance the surface area so as to improve the adsorption rate.

Chemical treatments such as alkali treatment can improve biosorption capacity in some
circumstances: chitin deacetylation resulting in the formation of chitosan-glucan com-
plexes with higher metal affinities compare to the control group (Wang and Chen 2006).
Acid pretreatment could change the negatively charged surface of fungal biomass to
positively charged and thus increasing the attraction between fungal biomass and anionic
dyes (Fu and Viraraghavan 2001b). In practical application, the specific pretreatment
methods are determined by the types of adsorbates and fungal species. For instance, acid
and alkali treatment decrease the adsorption capacity of Congo red onto fungal biomass of
Trametes versicolor, while autoclaving could improve the removal percentage (Fig. 4.3).

(2) The environment of biosorption: pH, temperature and salinity

The solution pH value determines the surface electrical charge of fungal biomass
and the ionic forms of contaminants. Therefore, solution pH affects both adsorbate
chemistry and the fungal biomass binding sites. Heavy metal biosorption is strongly
pH-dependent in almost all systems examined. Competition between cations and
protons for binding sites leads to inferior biosorption efficiency of metals like Cu, Cd,
Ni, Co, and Zn at low pH values (Gadd and White 1985; Shroff and Vaidya 2011).
Conversely, anionic metal species like TcO4

−, PtCl4
3−, CrO4

2−, SeO4
2−, Au(CN)2

− may
have a higher absorption rate at lower pH values. There also exists competition between
cations, which can depress the biosorption of the metal. For dye biosorption, the
decolorization rate usually has higher value when pH is lower (Fig. 4.3). For instance,
the biosorption of Reactive Red 120 dye on the fungal biomass Lentinus sajor-caju
increased as the pH was decreased, and similarly, maximum removal of reactive dye
Remazol Black-B was found in the range of pH 1–2 and dropped sharply at higher
values (O’Mahony et al. 2002; Arica and Bayramoğlu 2007).
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The effect on biosorption of temperature does not appear to be as strong as pH
values. In some cases, higher temperature would enhance the biosorption efficiency
due to the increase of the surface activity of fungal biomass and the kinetic energy
of dye (Bakshi et al. 2006; Kaushik and Malik 2009). But at relatively high tem-
perature, e.g., above 40 °C, the biosorption capacity often decrease in many cases
(Iqbal and Saeed 2007; Erden et al. 2011), possibly due to the deactivation of the
cell surface and destruction of some binding sites. Low temperature could restrain
living cell metabolism systems and most of auxiliary processes which aid
biosorption resulting in the decrease of biosorption efficiency (Gadd 2009).

Certain types of industrial wastewaters contain high salt concentration which may
influence the biosorption processes. For example, the addition of 50 g/L salt resulting in
a 28.8 % reduction in the biosorption capacity of Yellow RL dye of the Rhizopus
arrhizus biomass (Aksu and Balibek 2010). However, some marine-derived fungi, like
Penicillium janthinellum ZJU-BS-P1, have a strong tolerance with high salt concen-
trations (Fig. 4.4).

In addition to the above factors, the ionic strength, initial pollutant concentration
and sorbent dosage would also affect the biosorption efficiency to a certain extent
(Zhou and Banks 1993; Asgher et al. 2008; Khelifi et al. 2009; Levin et al. 2010).

(3) Biomass immobilization

The immobilization of fungal biomass may enhance biosorption capacity due to:
(i) improved mechanical strength, (ii) increased porosity characteristics, (iii) less
clogging, (iv) ease for regeneration and (v) multiple biosorbent recycle (Aksu and
Gonen 2004; Aksu 2005; Solis et al. 2012). A number of materials have been
successfully applied to immobilize fungal biomass. For example, nylon sponges,
polyurethane foam, Luffa sponges, polystyrene foam, Ca-alginate beads, lignite

Fig. 4.3 Effect of pH on
biosorption of Congo red
fungal biomass of Trametes
versicolor pretreated by
different methods (Binupriya
et al. 2008)
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granules, ZrOCl2-activated pumice (Karimi et al. 2006; Maurya et al. 2006; Iqbal
and Saeed 2007; Bohmer et al. 2010; Enayatzamir et al. 2010; Grinhut et al. 2011).
Kocaoba and Arisoy (2011) observed that the biosorption capacity of Pleurotus
ostreatus immobilized on Amberlite XAD-4 to remove Cr(III), Cd(II) and Cu(II)
remained stable even after 10 cycles of sorption and desorption.

4.3 Biodegradation Function

Biodegradation is a kind of wastewater treatment that tackles the pollutants more
thoroughly than biosorption and has a wide range of applications. In contrast to
biosorption that can use dead fungal cells (and sometimes their effect is even better than
living cells), biodegradation must be performed by living cells since the degradation
process is controlled by enzymes secreted by fungi. Meanwhile, the wastewater sludge
processing is one of the important applications of fungal degradation.

4.3.1 Biodegradable Application in Sludge Treatment

(1) Roles of fungal laccases1

Among the different types of enzymes produced by fungi, laccase is one of the
best researched. It is a multicopper oxidase glycoprotein that is well known to be

Fig. 4.4 a Effects of NaCl concentration on the biosorption of Congo red by marine-derived
Penicillium janthinellum. b Congo red solutions after 24 h treatment (lane 1: control solution, lane
2–10: NaCl concentration 0, 20, 40, 60, 80, 100, 120, 150 and 200 g L−1) (Wang et al. 2015)

1Additional information on the role of fungal laccase in wastewater treatment can be found in
Chap. 5—Potential of white-rot fungi to treat xenobiotic-containing waster and Chap. 6—Fungal
bioremediation of emerging micropollutants in municipal wastewaters.
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ubiquitous in all kinds of living organisms. Fungal laccases play important roles in
catalyzing the oxidation of a wide range of environmental pollutants, such as lignin,
dyes and phenolic compounds (Aust and Benson 1993; Xu 1996; Giardina et al.
2010). Laccases consist of a sequence of polypeptide of about 500 amino acid
residues and are linked to saccharides. Most fungal laccases are extracellular
secretions and their molecular weights range is about 60–70 kDa (Baldrian 2006;
Giardina et al. 2010). Laccases are nonspecific enzymes to their substrates, thus
they are able to catalyze the oxidation of many organic contaminants including
phenols (Reiss et al. 2011). They have also been used for the decolorization and
detoxification of effluents from textile and paper making industries (Harms et al.
2011). As shown in Table 4.4, laccases has been used for the removal of many
emerging organic contaminants from wastewater treatment plant effluents (Gasser
et al. 2014a). For instance, laccases from T. versicolor could remove natural and
synthetic estrogens, including estrone and 17b-estradiol, estriol from municipal
wastewater (Auriol et al. 2007, 2008). In another batch study, T. versicolor was
found to be able to remove 95–100 % of oxybenzone (Garcia et al. 2011). Funalia
trogii ATCC 200800 had a strong ability to mineralize synthetic dyes by producing
the laccase or MnP (Raghukumar et al. 1996). Laccase from Trametes sp. had been
applied to biodegrade phenolic endocrine-disrupting chemicals including bisphenol
A, nonylphenol, octylphenol, and ethynylestradiol (Tanaka et al. 2001).

(2) Sludge treatment

Traditional wastewater treatment generates plenty of sewage sludge which must
be disposed of to maintain environmental protection (Zaidi 2008). Sludges contain

Table 4.4 Pollutants removal by laccases in various effluents

Sources of fungal
laccase

Pollutants
investigated

Percent removal
(%)

References

Trametes versicolor E1, E2, E3, EE2 100 Auriol et al. (2007)

Trametes versicolor E1, E2, E3, EE2 97 Auriol et al. (2008)

Thielavia genus BPA 98 Hommes et al.
(2012)

Coriolopsis polyzona BPA 93 Hommes et al.
(2012)

Myceliophthora
thermophila

E1 98 Lloret et al. (2013b)

E2 � 97

EE2 � 99

Coriolopsis polyzona BPA 90 Demarche et al.
(2012)

Coriolopsis gallica BPA � 85 Nair et al. (2013)

diclofenac 30

EE2 � 85

Thielavia genu BPA � 66 Gasser et al.
(2014b)

E1 estrone; E2 17 b–estradiol; E3 estriol; EE2 17 a–ethinylestradiol; BPA bisphenol A

76 T. Lu et al.



more than 90 % of water along with organic solids that are problematic during
transportation and treatment process (More et al. 2010). Therefore, the recovery and
disposal of sludge is also an important issue in sewage treatment (Martins et al.
2004). The wastewater sludge contains a variety of microorganisms and organic
matter. Fungi are saprophytic organisms and their nutrient requirement can be
accomplished by the degradation of sludge. (Osiewacz 2002; Fakhru’l-Razi and
Molla 2007). Filamentous fungi have great potential for sludge treatment and their
functions include: (i) organic solids reduction, (ii) bioflocculation, (iii) pathogens
removal, (iv) dewaterability, and (v) detoxification; a detailed account was given by
More et al. (2010). Fungi have some advantages over bacteria in sludge treatment
because of their strong capability to degrade more complex and variety of substrates
(Khursheed and Kazmi 2011). Various fungi have been used for sludge treatment.
For example: Aspergillus niger (Mannan et al. 2005), Phanerochaete chrysospo-
rium (Molla et al. 2001), Penicillium expansum (Subramanian et al. 2008),
Trichoderma sp. (Verma et al. 2005).

(3) Extensive applications

Residues of pesticides in the wastewater are harmful to the environment. For
example, triclosan, which is a powerful bacteriostat, has been used extensively in
soaps, shampoos, toothpastes, and disinfectants. It has long half-life and may
potentially cause long term health risks in human body. Triclosan biodegradation
yield can reach 71.91 % at about 7.5 mg/L initial concentration in semi-synthetic
medium by using Aspergillus versicolor (Tastan and Donmez 2015). Coking
wastewater contains various phenolic compounds and many other contaminants that
are refractory, toxic and carcinogenic. When treated with Phanerochaete
chrysosporium, a white-rot fungus, the removal rates of phenolic compounds and
COD (Chemical Oxygen Demand) can achieve 84 and 80 %, respectively in 3 days
(Lu et al. 2009). It is also found that laccase from a Trametes species has ability of
degradation on polyunsaturated fatty acids and conjugated resin acids (Zhang et al.
2005). Thus, selected fungi and enzymes are also used for pitch removal (Singh and
Singh 2014).

4.3.2 Factors Influencing Fungal Biodegradation

Various physicochemical operational parameters, including temperature, pH,
nutrition, redox mediator, and the type of bioreactor, can influence the efficiency of
fungal biodegradation.

(1) Temperature, pH and nutrition

Temperature is an important factor for all processes associated with fungal vitality.
The maximum rate of biodegradation is generally related to the optimum growth
temperature for each fungal species. It is worth mentioning that the oxidations catalyzed
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by laccases usually occur at ambient temperature (20–40 °C), thus laccases have
become green and environmentally friendly for the elimination of pollutants (Wells
et al. 2006). The pH has a great effect on the efficiency of biodegradation by
influencing the enzyme activity. Fungi and yeast often show better biodegradation
activities at acidic or neutral pH than bacteria (Khan et al. 2013). The effects of pH are
also related to the transport of pollutant molecule across the cell membrane, which is
considered as the rate limiting step for the biological catalysis (Kodam et al. 2005). For
example, the removal rates of phenolic compounds and COD from coking wastewater
by immobilized fungus Phanerochaete chrysosporium was significantly affected by pH
and temperature (Fig. 4.5).

Enzymes production is dependent on the supply of nutrients to a certain degree.
Certain types of wastewater, such as printing and dyeing effluents, lack nutrition, and
require additional nutrients to improve the degradation efficiency of the fungi. Many
studies on the azo dye decolorization were performed in the presence of additional
carbon and nitrogen sources. The addition of glucose has frequently been demonstrated
to improve the efficacy of azo dye degradation (Khan et al. 2013). But carbon sources
seemed to be less effective than nitrogen sources (such as peptone, urea and yeast
extract) in promoting biodegradation, probably due to the fact that nitrogen is the
necessary building block of protein synthesis. Nitrogen sources can also regenerate
NADH, which acts as an electron donor for the reduction of contaminants by
microorganisms (Chang et al. 2000).

(2) Mediator

Laccases and other oxidases are able to oxidize small chemical compounds leading
to radical formation (Canas and Camarero 2010). These radicals can act as redox
mediators oxidizing compounds that might otherwise not be oxidized, thus broadening
the substrate range. Redox mediators can also enhance many reductive processes under
anaerobic conditions (Kodam et al. 2005). For instance, complete diclofenac removal
could be achieved at pH 4 after 4, 2, and 0.5 h using no mediator, syringaldehyde, and
1-hydroxybenzotriazole, respectively (Lloret et al. 2013a).

Fig. 4.5 Effect of pH on phenolic compounds removal rate (temperature 30 °C) and effect of
temperature on phenolic compounds removal rate (pH 6.0) from coking wastewater by
immobilized fungus Phanerochaete chrysosporium. Initial concentration of phenolic compounds
and COD 313.5 and 3420 mg/L, respectively (Lu et al. 2009)
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(3) Use of bioreactors

Bioreactor is an important tool for biodegradation. It can control the interaction
pattern between fungal cells and pollutants in wastewater, thus influence the
biodegradation efficiency greatly. Rotating drum, packed bed, fluidized bed,
immobilized, and membrane bioreactors have been used as bioreactors. For
instance, a membrane bioreactor using Trametes versicolor combined with reverse
osmosis was effective for decolorization of dye wastewater (Kim et al. 2004).
A wood-rotting fungal strain F29 decolorized 95–99 % Orange II in a continuous
packed bed and fluidized bed bioreactor systems (Zhang et al. 1999). Immobilized
bioreactors have been found to exhibit good biological activities and abilities for
longtime operation (Srinivasan and Viraraghavan 2010).

4.4 Mix Fungi and Cooperation

Most studies demonstrate the effectiveness of a certain fungal strain to remove a
particular contaminant; however, such specificity may limit the range of pollutants
that can be treated by the fungus. Moreover, there are wide variations in the
pollutant uptake capacity among different fungal strains. As industrial effluents
contain various organic and inorganic contaminants, to develop a biological system
capable of remediating all kinds of wastewaters, diverse types of microbial strains
should be used in the form of a consortium (Mishra and Malik 2014a).

4.4.1 Cooperation Between Fungi

Different fungal strains usually possess different capacity to adsorb a specific
pollutant. Therefore, the combination of fungi that exhibit different biosorption
functions would enhance the total contaminants removal rate. For instance, a tri-
partite fungal consortium was studied for the abilities to remove metals (Cr6+ and
Cu2+) and dyes (Acid Blue 161 and Pigment Orange 34) from mixed waste streams
(Mishra and Malik 2014b). The consortium consisted of Aspergillus lentulus,
Aspergillus terreus and Rhizopus oryzae was significantly more effective than
individual in removing the metals and dyes (Fig. 4.6).

The degradation function of fungi is very powerful, but there are large differ-
ences between the species. Therefore, the utilization of mix fungi has huge potential
to improve the degradation efficiency. For instance, a mixed filamentous fungi
culture (Aspergillus niger and Penicillium corylophilum) was used in a sewage
sludge bioremediation study, and the highest removal of turbidity, total suspended
solid and COD were achieved at 99, 98, and 93 %, respectively, by day 10 com-
pared to the control (Rahman et al. 2014).
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During the liquid culture process, filamentous fungal could form mycelial pel-
lets. As self-immobilized and bioactive particles, these pellets show advantages
over mycelium for some industrial applications, such as: (i) strong surviving ability,
(ii) fast settlement rates, (iii) easy solid–liquid separation and (iv) good reusability.
Mycelia pellet can be used as a biological carrier for whole-cell immobilization due
to its stable structural characteristics. As shown in Fig. 4.7, an innovative
two-species whole-cell immobilization system was achieved simply by inoculating
the Pestalotiopsis sp. J63 conidia into culture medium containing Penicillium
janthinellum P1 pre-grown mycelia pellets and the resulting co-immobilization
system was used for the treatment of paper mill effluent. Numerous insoluble fine
fibers in the sewage were successfully and rapidly biodegraded and removed using
this novel co-immobilization system (Chen et al. 2014a, b).

4.4.2 Cooperation Between Fungus and Bacterium

Bacteria have strong degradation ability on certain contaminants and they can be
fixed by fungal mycelial pellets as biological carrier so as to form an immobilization

Fig. 4.6 a Performance of fungal consortium versus individual strain in terms of a relative
biomass reduction and b pollutant removal from mixed pollutant. AB Acid Blue 161, PO Pigment
Orange 34, DM dye mixture (Mishra and Malik 2014b)
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system of fungi—bacteria that possesses multiple functions including biosorption
and biodegradation. For instance, mycelial pellet of Aspergillus niger Y3 was used
to immobilize the aniline degradation bacterium, Acinetobacter calcoaceticus JH-9
and other COD rapid removal bacteria. The combined mycelial pellets were applied
in the SBR and the biological removal efficiency was about 0.9 mg aniline (L/d)
(Zhang et al. 2011). A new azo dyes-decolorizing fungal strain Penicillium sp. QQ
was used to immobilize Sphingomonas xenophaga QYY which has good azore-
ductase activity, the co-cultures were found to perform better than individual strains
(Gou et al. 2009). Biosorption and direct biodegradation of polycyclic aromatic
hydrocarbons (PAHs) in soil can be stimulated by P. chrysosporium and promoted
synergistically by wild microorganisms (Chen and Ding 2012); the schematic
diagram was shown in Fig. 4.8.

Fig. 4.7 The treatment of paper mill effluent by using a novel two-species whole-cell
immobilization system. The immobilized pellets (IP) was made by inoculating the
marine-derived fungus Pestalotiopsis sp. J63 spores into culture medium containing another
fungus Penicillium janthinellum P1 pre-grown mycelia pellets (MP) for 2 days. a The different
pellet sizes. b Biodegradation capacity of immobilized pellets and mycelia pellets in the process of
wastewater treatment. c Diluted wastewater. d The effect of wastewater treatment using
immobilized pellets. Modified and cited from Chen et al. (2014a)
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4.5 Conclusions

Fungal biosorption and biodegradation of wastewater have received much attention
as they are cost-effective methods for pollutants removal. The selection of the best
treatment option for the harmless disposal of a certain type of industrial wastewaters
is a difficult task because of their complex composition. The best way is often a
combination of two or more species, and the choice of such consortium depends on
the effluent composition, cost, toxicity of the degradation products and future use of
the treated water (Solis et al. 2012). Most of researches on fungi in treatment of
sewage and wastewater have been performed on a laboratory scale. Therefore,
extensive laboratory works followed by series of pilot scale studies are essential for
future industrial process applications.
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