
Chapter 11

Sequencing and Single-Machine Scheduling

Abstract In this chapter we provide an in-depth study of representing and handling
single-machine scheduling and sequencing problems with decision diagrams. We
provide exact and relaxed MDD representations, together with MDD filtering algo-
rithms for various side constraints, including time windows, precedence constraints,
and sequence-dependent setup times. We extend a constraint-based scheduling
solver with these techniques, and provide an experimental evaluation for a wide
range of problems, including the traveling salesman problem with time windows,
the sequential ordering problem, and minimum-tardiness sequencing problems. The
results demonstrate that MDD propagation can improve a state-of-the-art constraint-
based scheduler by orders of magnitude in terms of solving time.

11.1 Introduction

Sequencing problems are among the most widely studied problems in operations re-
search. Specific variations of sequencing problems include single-machine schedul-
ing, the traveling salesman problemwith time windows, and precedence-constrained
machine scheduling. Sequencing problems are those where the best order for per-
forming a set of tasks must be determined, which in many cases leads to an NP-hard
problem [71, Section A5]. Sequencing problems are prevalent in manufacturing and
routing applications, including production plants where jobs should be processed
one at a time on an assembly line, and in mail services where packages must
be scheduled for delivery on a vehicle. Industrial problems that involve multiple
facilities may also be viewed as sequencing problems in certain scenarios, e.g., when
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a machine is the bottleneck of a manufacturing plant [128]. Existing methods for
sequencing problems either follow a dedicated heuristic for a specific problem class
or utilize a generic solving methodology such as integer programming or constraint
programming.

In this chapter we present a new approach for solving sequencing problems,
based on MDDs. We argue that relaxed MDDs can be particularly useful as a
discrete relaxation of the feasible set of sequencing problems. We focus on a broad
class of sequencing problems where jobs should be scheduled on a single machine
and are subject to precedence and time window constraints, and in which setup times
can be present. It generalizes a number of single-machine scheduling problems and
variations of the traveling salesman problem (TSP). The relaxation provided by
the MDD, however, is suitable for any problem where the solution is defined by a
permutation of a fixed number of tasks, and it does not directly depend on particular
constraints or on the objective function.

The structure of this chapter is as follows: We first introduce a representation of
the feasible set of a sequencing problem as an MDD, and show how we can obtain
a relaxed MDD. We then show how the relaxed MDD can be used to compute
bounds on typical objective functions in scheduling, such as the makespan and
total tardiness. Moreover, we describe how to derive more structured sequencing
information from the relaxed MDD, in particular a valid set of precedence relations
that must hold in any feasible solution.

We also propose a number of techniques for strengthening the MDD relax-
ation, which take into account the precedence and time window constraints. We
demonstrate that these generic techniques can be used to derive a polynomial-
time algorithm for a particular TSP variant introduced by [14] by showing that the
associated MDD has polynomial size.

To demonstrate the use of relaxed MDDs in practice, we apply our techniques to
constraint-based scheduling [17]. Constraint-based scheduling plays a central role
as a general-purpose methodology in complex and large-scale scheduling problems.
Examples of commercial applications that apply this methodology include yard
planning of the Singapore port and gate allocation of the Hong Kong airport [68],
Brazilian oil-pipeline scheduling [112], and home healthcare scheduling [136]. We
show that, by using the relaxed MDD techniques described here, we can improve
the performance of the state-of-the-art constraint-based schedulers by orders of
magnitude on single-machine problems without losing the generality of the method.
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11.2 Problem Definition

As mentioned above, we focus on generic sequencing problems, presented here in
terms of ‘unary machine’ scheduling. Note that a machine may refer to any resource
capable of handling at most one activity at a time.

Let J = { j1, . . . , jn} be a set of n jobs to be processed on a machine that can
perform at most one job at a time. Each job j ∈ J has an associated processing
time p j, which is the number of time units the job requires from the machine, and a
release date r j, the time from which job j is available to be processed. For each pair
of distinct jobs j, j′ ∈ J a setup time t j, j′ is defined, which indicates the minimum
time that must elapse between the end of j and the beginning of j′ if j′ is the first job
processed after j finishes. We assume that jobs are non-preemptive, i.e., we cannot
interrupt a job while it is being processed on the machine.

We are interested in assigning a start time s j ≥ r j for each job j ∈ J such that
job processing intervals do not overlap, the resulting schedule observes a number
of constraints, and an objective function f is minimized. Two types of constraints
are considered in this chapter: precedence constraints, requiring that s j ≤ s j′ for
certain pairs of jobs ( j, j′) ∈ J ×J , which we equivalently write j � j′; and
time window constraints, where the completion time c j = s j + p j of each job
j ∈ J must be such that c j ≤ d j for some deadline d j. Furthermore, we study three
representative objective functions in scheduling: the makespan, where we minimize
the completion time of the schedule, or max j∈J c j; the total tardiness, where we
minimize ∑ j∈J (max{0, c j − δ j}) for given due dates δ j; and the sum of setup
times, where we minimize the value obtained by accumulating the setup times t j, j′
for all consecutive jobs j, j′ in a schedule. Note that for these objective functions
we can assume that jobs should always be processed as early as possible (i.e., idle
times do not decrease the value of the objective function).

Since jobs are processed one at a time, any solution to such scheduling problem
can be equivalently represented by a total ordering π = (π1,π2, . . . ,πn) of J .
The start time of job j implied by π is given by s j = r j if j = π1, and s j =
max{r j, sπi−1 + pπi−1 + tπi−1, j} if j = πi for some i ∈ {2, . . . ,n}. We say that an
ordering π of J is feasible if the implied job times observe the precedence and
time window constraints, and optimal if it is feasible and minimizes f .
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Job parameters
Job Release (r j) Deadline (d j) Processing (p j)

j1 2 20 3
j2 0 14 4
j3 1 14 2

Setup times
j1 j2 j3

j1 - 3 2
j2 3 - 1
j3 1 2 -

(a) Instance data.
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j3 j1 j2
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π3

(b) MDD.

Fig. 11.1 Example of an MDD for a sequencing problem.

11.3 MDD Representation

We have already seen examples of single-machine scheduling in Section 3.8 and
Section 8.3, and we will follow a similar MDD representation in this chapter. That
is, we define an MDD M whose paths represent the feasible orderings of J .
The set of nodes of M are partitioned into n+ 1 layers L1, . . . ,Ln+1, where layer
Li corresponds to the i-th position πi of the feasible orderings encoded by M ,
for i= 1, . . . ,n. Layers L1 and Ln+1 are singletons representing the root r and the
terminal t, respectively. In this chapter, an arc a = (u,v) of M is always directed
from a source node u in some layer Li to a target node v in the subsequent layer Li+1,
i ∈ {1, . . . ,n}. We write �(a) to indicate the layer of the source node u of the arc a
(i.e., u ∈ L�(a)).

With each arc a of M we associate a label d(a) ∈ J that represents the
assignment of the job d(a) to the �(a)-th position of the orderings identified by the
paths traversing a. Hence, an arc-specified path (a1, . . . ,an) from r to t identifies the
ordering π = (π1, . . . ,πn), where πi = d(ai) for i= 1, . . . ,n. Every feasible ordering
is identified by some path from r to t in M , and conversely every path from r to t
identifies a feasible ordering.

Example 11.1. We provide an MDD representation for a sequencing problem with
three jobs j1, j2, and j3. The instance data are presented in Fig. 11.1(a), and the
associated MDD M is depicted in Fig. 11.1(b). No precedence constraints are
considered. There are four feasible orderings in total, each identified by a path from
r to t in M . In particular, the path traversing nodes r, u2, u4, and t represents a
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solution where jobs j3, j2, and j1 are performed in this order. The completion times
for this solution are c j1 = 15, c j2 = 9, and c j3 = 3. Note that we can never have a
solution where j1 is first on the machine, otherwise either the deadline of j2 or j3
would be violated. Hence, there is no arc a with d(a) = j1 directed out of r.

We next show how to compute the orderings that yield the optimal makespan and
the optimal sum of setup times in polynomial time in the size of M . For the case of
total tardiness and other similar objective functions, we are able to provide a lower
bound on its optimal value also in polynomial time in M .

• Makespan. For each arc a in M , define the earliest completion time of a, or ecta,
as the minimum completion time of the job d(a) among all orderings that are
identified by the paths in M containing a. If the arc a is directed out of r, then a
assigns the first job that is processed in such orderings, thus ecta = rd(a) + pd(a).
For the remaining arcs, recall that the completion time cπi of a job πi depends
only on the completion time of the previous job πi−1, the setup time tπi−1,πi , and
on the specific job parameters; namely, cπi = max{rπi , cπi−1 + tπi−1,πi}+ pπi . It
follows that the earliest completion time of an arc a= (u,v) can be computed by
the relation

ecta =max{rd(a), min{ecta′ + td(a′),d(a) : a′ ∈ in(u)}}+ pd(a). (11.1)

The minimum makespan is given by mina∈in(t) ecta, as the arcs directed to t
assign the last job in all orderings represented by M . An optimal ordering can
be obtained by recursively retrieving the minimizer arc a′ ∈ in(u) in the “min” of
(11.1).

• Sum of Setup Times. The minimum sum of setup times is computed analogously:
For an arc a= (u,v), let sta represent the minimum sum of setup times up to job
d(a) among all orderings that are represented by the paths in M containing a. If
a is directed out of r, we have sta = 0; otherwise,

sta =min{sta′ + td(a′),d(a) : a′ ∈ in(u)}. (11.2)

The minimum sum of setup times is given by mina∈in(t) sta.
• Total Tardiness. The tardiness of a job j is defined by max{0, c j− δ j} for some

due date δ j. Unlike the previous two cases, the tardiness value that a job attains
in an optimal solution depends on the sequence of all activities, not only on its
individual contribution or the value of its immediate predecessor. Nonetheless, as
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the tardiness function for a job is nondecreasing in its completion time, we can
utilize the earliest completion time as follows: For any arc a = (u,v), the value
max{0, ecta−δd(a)} yields a lower bound on the tardiness of the job d(a) among
all orderings that are represented by the paths in M containing a. Hence, a lower
bound on the total tardiness is given by the length of the shortest path from r to
t, where the length of an arc a is set to max{0, ecta − δd(a)}. Observe that this
bound is tight if the MDD is composed by a single path.

We remark that valid bounds for many other types of objective in the scheduling
literature can be computed in an analogous way as above. For example, suppose the
objective is to minimize ∑ j∈J f j(c j), where f j is a function defined for each job j
and which is nondecreasing in the completion time c j. Then, as in total tardiness, the
value fd(a)(ecta) for an arc a = (u,v) yields a lower bound on the minimum value
of fd(a)(cd(a)) among all orderings that are identified by the paths in M containing
a. Using such bounds as arc lengths, the shortest path from r to t represents a lower
bound on ∑ j∈J f j(c j). This bound is tight if f j(c j) = c j, or if M is composed by
a single path. Examples of such objectives include weighted total tardiness, total
square tardiness, sum of (weighted) completion times, and number of late jobs.

Example 11.2. In the instance depicted in Fig. 11.1, we can apply the recurrence re-
lation (11.1) to obtain ectr,u1 = 4, ectr,u2 = 3, ectu1,u3 = 10, ectu1,u4 = 7, ectu2,u4 = 9,
ectu2,u5 = 7, ectu3,t = 14, ectu4,t = 11, and ectu5,t = 14. The optimal makespan is
min{ectu3,t,ectu4,t,ectu5,t} = ectu4,t = 11; it corresponds to the path (r,u1,u4, t),
which identifies the optimal ordering ( j2, j3, j1). The same ordering also yields the
optimal sum of setup times with a value of 2.

Suppose now that we are given due dates δ j1 = 13, δ j2 = 8, and δ j3 = 3. The
length of an arc a is given by la = max{0, ecta − δd(a)}, as described earlier. We
have lu1,u4 = 4, lu2,u4 = 1, lu3,t = 11, and lu5,t = 6; all remaining arcs a are such
that la = 0. The shortest path in this case is (r,u2,u4, t) and has a value of 1. The
minimum tardiness, even though it is given by the ordering identified by this same
path, ( j3, j2, j1), has a value of 3.

The reason for this gap is that the ordering with minimum tardiness does not
necessarily coincide with the schedule corresponding to the earliest completion
time. Namely, we computed lu4,t = 0 considering ectu4,t = 11, since the completion
time of the job d(u4, t) = j1 is 11 in ( j2, j3, j1). However, in the optimal ordering
( j3, j2, j1) for total tardiness, the completion time of j1 would be 15; this solution
yields a better cost than ( j2, j3, j1) due to the reduction in the tardiness of j3.
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Fig. 11.2 Two relaxed MDDs for the sequencing problem in Fig. 11.1.

11.4 Relaxed MDDs

We next consider the compilation of relaxedMDDs for sequencing problems, which
represent a superset of the feasible orderings of J . As an illustration, Fig. 11.2(a)
and 11.2(b) present two examples of a relaxed MDD with maximum widthW = 1
and W = 2, respectively, for the problem depicted in Fig. 11.1. In particular, the
MDD in Fig. 11.2(a) encodes all the orderings represented by permutations of J

with repetition, hence it trivially contains the feasible orderings of any sequencing
problem. It can be generally constructed as follows: We create one node ui for each
layer Li and connect the pair of nodes ui and ui+1, i = 1, . . . ,n, with arcs a1, . . . ,an
such that d(al) = jk for each job jk.

It can also be verified that the MDD in Fig. 11.2(b) contains all the feasible
orderings of the instance in Fig. 11.1. However, the rightmost path going through
nodes r, u2, u4, and t identifies an ordering π = ( j3, j1, j1), which is infeasible as
job j1 is assigned twice in π .

The procedures in Section 11.3 for computing the optimal makespan and the
optimal sum of setup times now yield a lower bound on such values when applied
to a relaxed MDD, since all feasible orderings of J are encoded in the diagram.
Moreover, the lower bounding technique for total tardiness remains valid.

Considering that a relaxed MDD M can be easily constructed for any sequenc-
ing problem (e.g., the 1-width relaxation of Fig. 11.2(a)), we can now apply the
techniques presented in Section 4.7 and Chapter 9 to incrementally modify M in
order to strengthen the relaxation it provides, while observing the maximum width
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W . Under certain conditions, we obtain the reduced MDD representing exactly the
feasible orderings of J , provided thatW is sufficiently large.

Recall that we modify a relaxed MDD M by applying the operations of filtering
and refinement, which aim at approximating M to an exact MDD, i.e., one that
exactly represents the feasible orderings of J . We revisit these concepts below,
and describe them in the context of sequencing problems:

• Filtering. An arc a inM is infeasible if all the paths in M containing a represent
orderings that are not feasible. Filtering consists of identifying infeasible arcs
and removing them from M , which would hence eliminate one or more infea-
sible orderings that are encoded in M . We will provide details on the filtering
operation in Section 11.5.

• Refinement. A relaxed MDD can be intuitively perceived as a diagram obtained
by merging nonequivalent nodes of an exact MDD for the problem. Refinement
consists of identifying these nodes in M that are encompassing multiple equiv-
alence classes, and splitting them into two or more new nodes to represent such
classes more accurately (as long as the maximum width W is not violated). In
particular, a node u in layer Li can be split if there exist two partial orderings π ′

1,
π ′
2 identified by paths from r to u such that, for some π∗ = (πi, . . . ,πn), (π ′

1,π∗) is
a feasible orderingwhile (π ′

2,π∗) is not. If this is the case, then the partial paths in
M representing such orderings must end in different nodes of the MDD, which
will be necessarily nonequivalent by definition. We will provide details on the
refinement operation in Section 11.7.

Observe that, if a relaxed MDD M does not have any infeasible arcs and
no nodes require splitting, then by definition M is exact. However, it may not
necessarily be reduced.

As mentioned in Chapter 9, filtering and refinement are independent operations
that can be applied to M in any order that is suitable for the problem at hand. In
this chapter we assume a top-down approach: We traverse layers L2, . . . ,Ln+1 one
at a time in this order. At each layer Li, we first apply filtering to remove infeasible
arcs that are directed to the nodes in Li. After the filtering is complete, we perform
refinement to split the nodes in layer Li as necessary, while observing the maximum
widthW .

Example 11.3. Figure 11.3 illustrates the top-down application of filtering and re-
finement for layers L2 and L3. Assume a scheduling problem with three jobs
J = { j1, j2, j3} and subject to a single precedence constraint stating that job j2



11.4 Relaxed MDDs 213

r

u

v

t

j1 j2 j3

j1 j2 j3

j1 j2 j3

π1

π2

π3

L1

L2

L3

L4
(a) Initial relaxation.

r

u1 u2

v

t

j2 j3

j3
j2

j1

j3
j2

j1

j1 j2 j3

(b) After processing L2.

r

u1 u2

v1 v2

t

j2 j3

j1 j3 j2

j1
j2
j3 j3

j2
j1

(c) After processing L3.

Fig. 11.3 Example of filtering and refinement. The scheduling problem is such that job j2 must
precede j1 in all feasible orderings. Shaded arrows represent infeasible arcs detected by the
filtering.

must precede job j1. The initial relaxed MDD is a 1-width relaxation, depicted in
Fig. 11.3(a). Our maximum width is set toW = 2.

We start by processing the incoming arcs at layer L2. The filtering operation
detects that the arc a ∈ in(u) with d(a) = j1 is infeasible, otherwise we will have
an ordering starting with job j1, violating the precedence relation. Refinement will
split node u into nodes u1 and u2, since for any feasible ordering starting with job
j2, i.e., ( j2,π ′) for some π ′, the ordering ( j3,π ′) is infeasible as it will necessarily
assign job j3 twice. The resulting MDD is depicted in Fig. 11.3(b). Note that, when
a node is split, we replicate its outgoing arcs to each of the new nodes.

We now process the incoming arcs at layer L3. The filtering operation detects that
the arc with label j2 directed out of u1 and the arc with label j3 directed out of u2
are infeasible, since the corresponding paths from r to v would yield orderings that
assign some job twice. The arc with label j1 leaving node u2 is also infeasible, since
we cannot have any orderingwith prefix ( j3, j1). Finally, refinementwill split node v
into nodes v1 and v2; note in particular that the feasible orderings prefixed by ( j2, j3)
and ( j3, j2) have the same completions, namely ( j1), therefore the corresponding
paths end at the same node v1. The resulting MDD is depicted in Fig. 11.3(c). We
can next process the incoming arcs at layer L4, and remove arcs with labels j1 and
j2 out of v1, and arcs with labels j2 and j3 out of v2.
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11.5 Filtering

We next apply the methodology developed in Chapter 9 to sequencing problems.
That is, for each constraint type of our problem, we identify necessary conditions
for the infeasibility of an arc in M . To this end, for each constraint typeC , we equip
the nodes and arcs of M with state information that is specific to C .

We take care that the conditions for infeasibility can be tested in polynomial time
in the size of the relaxed MDD M . Namely, we restrict our state definitions to have
sizeO(|J |) and to beMarkovian, in that they only depend on the states of the nodes
and arcs in the adjacent layers. Thus, the states can be computed simultaneously
with the filtering and refinement operations during the top-down approach described
in Section 11.4. We also utilize additional state information that is obtained through
an extra bottom-up traversal of the MDD and that, when combined with the top-
down states, leads to stronger tests.

11.5.1 Filtering Invalid Permutations

The feasible orderings of any sequencing problem are permutations of J without
repetition, which can be enforced with the constraint ALLDIFFERENT(π1, . . . ,πn).
Hence, we can directly use the filtering conditions for this constraint described in
Section 4.7.1, based on the states All↓u ⊆ J and Some↓u ⊆ J for each node u of
M . Recall that the state All↓u is the set of arc labels that appear in all paths from the
root node r to u, while the state Some↓u is the set of arc labels that appear in some
path from the root node r to u. As presented in Section 4.7.1, an arc a = (u,v) is
infeasible if either d(a) ∈ All↓u (condition 4.6) or |Some↓u|= �(a) and d(a) ∈ Some↓u
(condition 4.7).

We also equip the nodes with additional states that can be derived from a bottom-
up perspective of the MDD. Namely, we define two new states All↑u ⊆ J and
Some↑u ⊆ J for each node u of M . They are similar to the states All↓u and Some↓u,
but now they are computed with respect to the paths from t to u instead of the paths
from r to u, and analogously computed recursively.

It follows from Section 4.7.1 that an arc a= (u,v) is infeasible if we have either
d(a) ∈ All↑v (condition 4.10), |Some↑v |= n−�(a) and d(a)∈ Some↑v (condition 4.11),
or |Some↓u∪{d(a)}∪Some↑v |< n (condition 4.12).
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11.5.2 Filtering Precedence Constraints

We next consider filtering a given set of precedence constraints, where we write
j � j′ if a job j should precede job j′ in any feasible ordering. We assume the
precedence relations are not trivially infeasible, i.e., there are no cycles of the form
j � j1 � ··· � jm � j. We can apply the same states defined for the ALLDIFF-
ERENT constraint in Section 11.5.1 for this particular case.

Lemma 11.1. An arc a= (u,v) with label d(a) is infeasible if either of the following
conditions hold:

∃ j ∈ (J \ Some↓u) s.t. j � d(a), (11.3)

∃ j ∈ (J \ Some↑v) s.t. d(a)� j. (11.4)

Proof. Let π ′ be any partial ordering identified by a path from r to u, and consider
(11.3). By definition of Some↓u, we have that any job j in the set J \ Some↓u is not
assigned to any position in π ′. Thus, if any such job j must precede d(a), then all
orderings prefixed by (π ′,d(a)) will violate this precedence constraint, and the arc
is infeasible. The condition (11.4) is the symmetrical version of (11.3). ��

11.5.3 Filtering Time Window Constraints

Consider now that a deadline d j is imposed for each job j ∈ J . With each arc a we
associate the state ecta as defined in Section 11.3: It corresponds to the minimum
completion time of the job in the �(a)-th position among all orderings that are
identified by paths in M containing the arc a. As in relation (11.1), the state ecta
for an arc a= (u,v) is given by the recurrence

ecta =

⎧⎪⎪⎨
⎪⎪⎩

rd(a) + pd(a) if a ∈ out(r),

max{rd(a), min{ecta′ + td(a′),d(a) : a′ ∈ in(u),d(a) 	= d(a′)}}+ pd(a)
otherwise.

Here we added the trivial condition d(a) 	= d(a′) to strengthen the bound on ecta
in the relaxed MDD M . We could also include the condition d(a) 	� d(a′) if
precedence constraints are imposed over d(a).
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We next consider a symmetrical version of ecta to derive a necessary infeasibility
condition for time window constraints. Namely, with each arc a we associate the
state lsta, which represents the latest start time of a: For all orderings that are
identified by paths in M containing the arc a, the value lsta corresponds to an
upper bound on the maximum start time of the job in the �(a)-th position so that
no deadlines are violated in such orderings. The state lsta for an arc a = (u,v) is
given by the following recurrence, which can be computed through a single bottom-
up traversal of M :

lsta =

⎧⎪⎪⎨
⎪⎪⎩

dd(a)− pd(a) if a ∈ in(t),

min{dd(a), max{lsta′ − td(a),d(a′) : a′ ∈ out(v),d(a) 	= d(a′)}}− pd(a)
otherwise.

We combine ecta and lsta to derive the following rule:

Lemma 11.2. An arc a= (u,v) is infeasible if

ecta > lsta+ pd(a). (11.5)

Proof. The value lsta + pd(a) represents an upper bound on the maximum time
the job d(a) can be completed so that no deadlines are violated in the orderings
identified by paths in M containing a. Since ecta is the minimum time that job d(a)
will be completed among all such orderings, no feasible ordering identified by a
path traversing a exists if rule (11.5) holds. ��

11.5.4 Filtering Objective Function Bounds

As described in Section 9.2, in constraint programming systems the objective
function is treated as a constraint z ≤ z∗, where z represents the objective function,
and z∗ is an upper bound of the objective function value. The upper bound typically
corresponds to the best feasible solution found during the search for an optimal
solution.

Below we describe filtering procedures for the ‘objective constraint’ for sequenc-
ing problems. Given z∗, an arc a is infeasible with respect to the objective if all paths
in M that contain a have objective value greater than z∗. However, the associated
filtering method depends on the form of the objective function. We consider here



11.5 Filtering 217

three types of objectives: minimize makespan, minimize the sum of setup times,
and minimize total (weighted) tardiness.

Minimize Makespan

If the objective is to minimize makespan, we can replace the deadline d j by
d′j = min{d j,z∗} for all jobs j and apply the same infeasibility condition as in
Lemma 11.2.

Minimize Sum of Setup Times

If z∗ represents an upper bound on the sum of setup times, we proceed as follows:
For each arc a = (u,v) in M , let st↓a be the minimum possible sum of setup times
incurred by the partial orderings represented by paths from r to v that contain a. We
recursively compute

st↓a =

{
0, if a ∈ out(r),
min{td(a′),d(a) + st↓a′ : a

′ ∈ in(u),d(a) 	= d(a′)}, otherwise.

Now, for each arc a = (u,v) let st↑a be the minimum possible sum of setup times
incurred by the partial orderings represented by paths from u to t that contain a.
The state st↑a can be recursively computed through a bottom-up traversal of M , as
follows:

st↑a =

{
0, if a ∈ in(t),
min{td(a),d(a′) + st↑a′ : a

′ ∈ out(v),d(a) 	= d(a′)}, otherwise.

Lemma 11.3. An arc a is infeasible if

st↓a+ st↑a > z∗. (11.6)

Proof. It follows directly from the definitions of st↓a and st↑a . ��
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Minimize Total Tardiness

To impose an upper bound z∗ on the total tardiness, assume ecta is computed for
each arc a. We define the length of an arc a as la =max{0,ecta−δd(a)}. For a node
u, let sp↓u and sp↑u be the shortest path from r to u and from t to u, respectively, with
respect to the lengths la. That is,

sp↓u =

{
0, if u= r,
min{la+ sp↓v : a= (v,u) ∈ in(u)}, otherwise

and

sp↑u =

{
0, if u= t,
min{la+ sp↑v : a= (u,v) ∈ out(u)}, otherwise.

Lemma 11.4. A node u should be removed from M if

sp↓u+ sp↑u > z∗. (11.7)

Proof. Length la represents a lower bound on the tardiness of job d(a) with respect
to solutions identified by r–t paths that contain a. Thus, sp↓u and sp↑u are a lower
bound on the total tardiness for the partial orderings identified by paths from r to u
and t to u, respectively, since the tardiness of a job is nondecreasing in its completion
time. ��

11.6 Inferring Precedence Relations from Relaxed MDDs

Given a set of precedence relations for a problem (e.g., that were possibly derived
from other relaxations), we can use the filtering rules (11.3) and (11.4) from
Section 11.5.2 to strengthen a relaxedMDD. In this section, we show that a converse
relation is also possible. Namely, given a relaxed MDD M , we can deduce all
precedence relations that are satisfied by the partial orderings represented by M

in polynomial time in the size of M . To this end, assume that the states All↓u, All↑u,
Some↓u, and Some↑u as described in Section 11.5.1 are computed for all nodes u in
M . We have the following results:

Theorem 11.1. Let M be an MDD that exactly identifies all the feasible orderings
of J . A job j must precede job j′ in any feasible ordering if and only if either
j′ 	∈ All↓u or j 	∈ All↑u for all nodes u in M .
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Proof. Suppose there exists a node u in layer Li, i∈{1, . . . ,n+1}, such that j′ ∈ All↓u
and j ∈ All↑u. By definition, there exists a path (r, . . . ,u, . . . , t) that identifies an
ordering where job j′ starts before job j. This is true if and only if job j does not
precede j′ in any feasible ordering. ��

Corollary 11.1. The set of all precedence relations that must hold in any feasible
ordering can be extracted from M in O(n2 |M |).

Proof. Construct a digraph G∗ = (J ,E∗) by adding an arc ( j, j′) to E∗ if and only
if there exists a node u inM such that j′ ∈All↓u and j ∈All↑u. Checking this condition
for all pairs of jobs takes O(n2) for each node in M , and hence the time complexity
to construct G∗ is O(n2|M |). According to Theorem 11.1 and the definition of G∗,
the complement graph of G∗ contains an edge ( j, j′) if and only if j � j′. ��

As we are mainly interested in relaxed MDDs, we derive an additional corollary
of Theorem 11.1.

Corollary 11.2. Given a relaxed MDD M , an activity j must precede activity j′ in
any feasible solution if ( j′ 	∈ Some↓u) or ( j 	∈ Some↑u) for all nodes u in M .

Proof. It follows from the state definitions that All↓u ⊆ Some↓u and All↑u ⊆ Some↑u.
Hence, if the conditions for the relation j � j′ from Theorem 11.1 are satisfied by
Some↓u and Some↑v , they must be also satisfied by any MDD which only identifies
feasible orderings. ��

By Corollary 11.2, the precedence relations implied by the solutions of a relaxed
MDD M can be extracted by applying the algorithm in Corollary 11.1 to the states
Some↓v and Some↑v . Since M has at most O(nW ) nodes and O(nW 2) arcs, the time
to extract the precedences has a worst-case complexity ofO(n3W 2) by the presented
algorithm. These precedences can then be used for guiding search or communicated
to other methods or relaxations that may benefit from them.

11.7 Refinement

As in Section 4.7.1.2, we will develop a refinement procedure based on the per-
mutation structure of the jobs, represented by the ALLDIFFERENT constraint. The
goal of our heuristic refinement is to be as precise as possible with respect to the
equivalence classes that refer to jobs with a higher priority, where the priority of a
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job follows from the problem data. More specifically, we will develop a heuristic for
refinement that, when combinedwith the infeasibility conditions for the permutation
structure described in Section 11.5.1, yields a relaxed MDD where the jobs with a
high priority are represented exactly with respect to that structure; that is, these jobs
are assigned to exactly one position in all orderings encoded by the relaxed MDD.
We also take care that a given maximum width W is observed when creating new
nodes in a layer.

Thus, if higher priority is given to jobs that play a greater role in the feasibility
or optimality of the sequencing problem at hand, the relaxed MDD may represent
more accurately the feasible orderings of the problem, providing, e.g., better bounds
on the objective function value. For example, suppose we wish to minimize the
makespan on an instance where certain jobs have very large release dates and
processing times in comparison with other jobs. If we construct a relaxed MDD
where these longer jobs are assigned exactly once in all orderings encoded by the
MDD, the bound on the makespan would be potentially tighter with respect to the
ones obtained from other possible relaxed MDDs for this same instance. Examples
of job priorities for other objective functions are presented in Section 11.9. Recall
from Section 4.7.1.2 that the refinement heuristic requires a ranking of jobs J ∗ =
{ j∗1, . . . , j∗n}, where jobs with smaller index in J ∗ have higher priority.

We note that the refinement heuristic also yields a reduced MDD M for certain
structured problems, given a sufficiently large width. The following corollary, stated
without proof, is directly derived from Lemma 4.4 and Theorem 4.3.

Corollary 11.3. Assume W = +∞. For a sequencing problem having only prece-
dence constraints, the relaxed MDD M that results from the constructive proof of
Theorem 4.3 is a reduced MDD that exactly represents the feasible orderings of this
problem.

Lastly, recall that equivalence classes corresponding to constraints other than the
permutation structure may also be taken into account during refinement. Therefore,
if the maximum widthW is not met in the refinement procedure above, we assume
that we will further split nodes by arbitrarily partitioning their incoming arcs. Even
though this may yield false equivalence classes, the resulting M is still a valid
relaxation and may provide a stronger representation.
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11.8 Encoding Size for Structured Precedence Relations

The actual constraints that define a problem instance greatly impact the size of an
MDD. If these constraints carry a particular structure, we may be able to compactly
represent that structure in an MDD, perhaps enabling us to bound its width.

In this section we present one such case for a problem class introduced by [14], in
which jobs are subject to discrepancy precedence constraints: For a fixed parameter
k ∈ {1, . . . ,n}, the relation jp � jq must be satisfied for any two jobs jp, jq ∈ J

if q ≥ p+ k. This precedence structure was motivated by a real-world application
in steel rolling mill scheduling. The work by [15] also demonstrates how solution
methods to this class of problems can serve as auxiliary techniques in other cases,
for example, as heuristics for the TSP and vehicle routing with time windows.

We stated in Corollary 11.3 that we are able to construct the reduced MDD
M when only precedence constraints are imposed and a sufficiently large W is
given. We have the following results for M if the precedence relations satisfy the
discrepancy structure for a given k:

Lemma 11.5. We have All↓v ⊆ { j1, . . . , jmin{m+k−1,n}} for any given node v ∈ Lm+1,
m= 1, . . . ,n.

Proof. If m+ k− 1 > n we obtain the redundant condition All↓u ⊆ J , therefore
assume m+ k− 1 ≤ n. Suppose there exists jl ∈ All↓v for some v ∈ Lm+1 such that
l > m+ k− 1. Then, for any i = 1, . . . ,m, we have l − i ≥ m+ k− i ≥ m+ k−
m = k. This implies { j1, . . . , jm} ⊂ All↓v , since job jl belongs to a partial ordering
π only if all jobs ji for which l− i ≥ k are already accounted for in π . But then
|All↓v | ≥ m+ 1, which is a contradiction since v ∈ Lm+1 implies that |All↓v | = m, as
any partial ordering identified by a path from r to vmust containm distinct jobs. ��
Theorem 11.2. The width of M is 2k−1.

Proof. Let us first assume n≥ k+2 and restrict our attention to layer Lm+1 for some
m ∈ {k, . . . ,n−k+1}. Also, let F := {All↓u : u∈ Lm+1}. It can be shown that, if M

is reduced, no two nodes u,v ∈ Lm+1 are such that All↓u = All↓v . Thus, |F |= |Lm+1|.
We derive the cardinality of F as follows: Take All↓v ∈ F for some v ∈ Lm+1.

Since |All↓v | = m, there exists at least one job ji ∈ All↓v such that i ≥ m. According
to Lemma 11.5, the maximum index of a job in All↓v is m+ k− 1. So consider the
jobs indexed by m+ k−1− l for l = 0, . . . ,k−1; at least one of them is necessarily
contained in All↓v . Due to the discrepancy precedence constraints, jm+k−1−l ∈ All↓v
implies that any ji with i≤ m− l− 1 is also contained in All↓v (if m− l− 1> 0).
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Now, consider the sets in F which contain a job with index m+ k− 1− l,
but do not contain any job with index greater than m+ k− 1− l. Any such set
All↓u contains the jobs j1, . . . , jm−l−1 according to Lemma 11.5. Hence, the remain-
ing m− (m− l− 1)− 1= l job indices can be freely chosen from the sequence
m− l, . . . ,m+ k− l− 2. Notice there are no imposed precedences on these remain-
ingm+k− l−2−(m− l)+1= k−1 elements; thus, there exist

(k−1
l
)
such subsets.

But these sets define a partition of F . Therefore

|F |= |Lm+1|=
k−1

∑
l=0

(
k− 1
l

)
=

(
k− 1
0

)
+ · · ·+

(
k− 1
k− 1

)
= 2k−1.

We can use an analogous argument for the layers Lm+1 such that m < k or
m> n− k+ 1, or when k = n− 1. The main technical difference is that we have
fewer than k−1 possibilities for the new combinations, and so the maximumnumber
of nodes is strictly less than 2k−1 for these cases. Thus the width of M is 2k−1. ��

According to Theorem 11.2, M has O(n2k−1) nodes as it contains n+ 1 layers.
Since arcs only connect nodes in adjacent layers, the MDD contains O(n22k−2)

arcs (assuming a worst-case scenario where all nodes in a layer are adjacent to all
nodes in the next layer, yielding at most 2k−1 · 2k−1 = 22k−2 arcs directed out of a
layer). Using the recursive relation (11.2) in Section 11.3, we can compute, e.g.,
the minimum sum of setup times in worst-case time complexity of O(n2 22k−2).
The work by [14] provides an algorithm that minimizes this same function in
O(nk2 2k−2), but that is restricted to this particular objective.

11.9 Application to Constraint-Based Scheduling

We next describe how the techniques of the previous sections can be added to IBM
ILOG CP Optimizer (CPO), a state-of-the-art general-purpose constraint program-
ming solver. In particular, it contains dedicated syntax and associated propagation
algorithms for sequencing and scheduling problems. Given a sequencing problem as
considered in this chapter, CPO applies a depth-first branch-and-boundsearch where
jobs are recursively appended to the end of a partial ordering until no jobs are left
unsequenced. At each node of the branching tree, a number of sophisticated propa-
gation algorithms are used to reduce the possible candidate jobs to be appended to
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the ordering. Examples of such propagators include edge-finding, not-first/not-last
rules, and deductible precedences; details can be found in [17] and [154].

We have implemented our techniques by introducing a new user-defined con-
straint type to the CPO system, representing a generic sequencing problem. We
maintain a relaxed MDD for this constraint type, and we implemented the filtering
and refinement techniques in the associated propagation algorithm. The constraint
participates in the constraint propagation cycle of CPO; each time it is activated
it runs one round of top-down filtering and refinement. In particular, the filtering
operation takes into account the search decisions up to that point (i.e., the jobs
that are already fixed in the partial ordering) and possible precedence constraints
that are deduced by CPO. At the end of a round, we use the relaxed MDD to
reduce the number of candidate successor jobs (by analyzing the arc labels in the
appropriate layers) and to communicate new precedence constraints as described in
Section 11.6, which may trigger additional propagation by CPO. Our implementa-
tion follows the guidelines from [101].

In this section we present computational results for different variations of single-
machine sequencing problems using theMDD-based propagator.Our goal is twofold.
First, we want to analyze the sensitivity of the relaxed MDD with respect to the
width and refinement strategy. Second, we wish to provide experimental evidence
that combining a relaxed MDD with existing techniques for sequencing problems
can improve the performance of constraint-based solvers.

11.9.1 Experimental Setup

Three formulations were considered for each problem: a CPO model with its
default propagators, denoted by CPO; a CPOmodel containing only theMDD-based
propagator, denoted by MDD; and a CPO model with the default and MDD-based
propagators combined, denoted by CPO+MDD. The experiments mainly focus on the
comparison between CPO and CPO+MDD, as these indicate whether incorporating
the MDD-based propagator can enhance existing methods.

We have considered two heuristic strategies for selecting the next job to be
appended to a partial schedule. The first, denoted by lex search, is a static method
that always tries to first sequence the job with the smallest index, where the index of
a job is fixed per instance and defined by the order in which it appears in the input.
This allows for a more accurate comparison between two propagation methods,
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since the branching tree is fixed. In the second strategy, denoted by dynamic search,
the CPO engine automatically selects the next job according to its own state-of-the-
art scheduling heuristics. The purpose of the experiments that use this search is to
verify how the MDD-based propagator is influenced by strategies that are known to
be effective for constraint-based solvers. The dynamic search is only applicable to
CPO and CPO+MDD.

We measure two performance indicators: the total solving time and the number
of fails. The number of fails corresponds to the number of times during search that a
partial ordering was detected to be infeasible, i.e., either some constraint is violated
or the objective function is greater than a known upper bound. The number of fails
is proportional to the size of the branching tree and, hence, to the total solving time
of a particular technique.

The techniques presented here do not explore any additional problem structure
that was not described in this chapter, such as specific search heuristics, problem
relaxations, or dominance criteria (except only if such structure is already explored
by CPO). More specifically, we used the same MDD-based propagator for all
problems, which dynamically determines what node state and refinement strategy
to use according to the input constraints and the objective function.

The experiments were performed on a computer equipped with an Intel Xeon
E5345 at 2.33GHz with 8GBRAM. TheMDD codewas implemented in C++ using
the CPO callable library from ILOG CPLEX Academic Studio V.12.4.01. We set
the following additional CPO parameters for all experiments: Workers=1, to use a
single computer core; DefaultInferenceLevel=Extended, to use the max-
imum possible propagation available in CPO; and SearchType=DepthFirst.

11.9.2 Impact of the MDD Parameters

We first investigate the impact of the maximumwidth and refinement on the number
of fails and total solving time for the MDD approaches. As a representative test
case, we consider the traveling salesman problem with time windows (TSPTW).
The TSPTW is the problem of finding a minimum-cost tour in a weighted digraph
starting from a selected vertex (the depot), visiting each vertex within a given time
window, and returning to the original vertex. In our case, each vertex is a job, the
release dates and deadlines are defined according to the vertex time windows, and
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Fig. 11.4 Impact of the MDD width on the number of fails and total time for the TSPTW instance
n20w200.001 from the Gendreau class. The axes are in logarithmic scale.

travel distances are perceived as setup times. The objective function is to minimize
the sum of setup times.

We selected the instance n20w200.001 from the well-knownGendreau bench-
mark proposed by [72], as it represents the typical behavior of an MDD. It consists
of a 20-vertex graph with an average time window width of 200 units. The tested
approach was the MDD model with lex search. We used the following job ranking
for the refinement strategy described in Section 11.7: The first job in the ranking,
j∗1, was set as the first job of the input. The i-th job in the ranking, j∗i , is the
one that maximizes the sum of the setup times to the jobs already ranked, i.e.,
j∗i = argmaxp∈J \{ j∗1,..., j∗i−1}{∑

i−1
k=1 t j∗k ,p} for the setup times t. The intuition is that

we want jobs with largest travel distances to be exactly represented in M .
The number of fails and total time to find the optimal solution for different

MDD widths are presented in Fig. 11.4. Due to the properties of the refinement
technique in Theorem 4.3, we consider only powers of 2 as widths. We note from
Fig. 11.4(a) that the number of fails is decreasing rapidly as the width increases, up
to a point where it becomes close to constant (from 512 to 1024). This indicates that,
at a certain point, the relaxed MDD is very close to an actual exact representation
of the problem, and hence no benefit is gained from any increment of the width.
The number of fails has a direct impact on the total solving time, as observed in
Fig. 11.4(b). Namely, the times decrease accordingly as the width increases. At
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Fig. 11.5 Performance comparison between random and structured refinement strategies for the
TSPTW instance n20w200.001. The axes are in logarithm scale.

the point where the relaxed MDD is close to exact, larger widths only introduce
additional overhead, thus increasing the solving time.

To analyze the impact of the refinement, we generated 50 job rankings uniformly
at random for the refinement strategy described in Section 11.7. These rankingswere
compared with the structured one for setup times used in the previous experiment.
To make this comparison, we solved the MDD model with lex search for each of
the 51 refinement orderings, considering widths from 4 to 1024. For each random
order, we divided the resulting number of fails and time by the ones obtained
with the structured refinement for the same width. Thus, this ratio represents how
much better the structured refinement is over the random strategies. The results are
presented in the box-and-whisker plots of Fig. 11.5. For each width the horizontal
lines represent, from top to bottom, the maximum observed ratio, the upper quartile,
the median ratio, the lower quartile, and the minimum ratio.

We interpret Fig. 11.5 as follows: An MDD with very small width captures
little of the jobs that play a more important role in the optimality or feasibility
of the problem, in view of Theorem 4.3. Thus, distinct refinement strategies are
not expected to differ much on average, as shown, e.g., in the width-4 case of
Fig. 11.5(a). As the width increases, there is a higher chance that these crucial jobs
are better represented by the MDD, leading to a good relaxation, but also a higher
chance that little of their structure is captured by a random strategy, leading in turn
to a weak relaxation. This yields a larger variance in the refinement performance.
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Finally, for sufficiently large widths, we end up with an almost exact representation
of the problem and the propagation is independent of the refinement order (e.g.,
widths 512 and 1024 of Fig. 11.5(a)). Another aspect we observe in Fig. 11.5(b)
is that, even for relatively small widths, the structured refinement can be orders of
magnitude better than a random one. This emphasizes the importance of applying
an appropriate refinement strategy for the problem at hand.

11.9.3 Traveling Salesman Problem with Time Windows

We first evaluate the relative performance of CPO and CPO+MDD on sequencing
problems with time window constraints, and where the objective is to minimize
the sum of setup times. We considered a set of well-known TSPTW instances
defined by the Gendreau, Dumas, and Ascheuer benchmark classes, which were
proposed by [72], [56], and [10], respectively. We selected all instances with up to
100 jobs, yielding 388 test cases in total. The CPO and the CPO+MDD models were
initially solved with lex search, considering a maximumwidth of 16. A time limit of
1,800 seconds was imposed for all methods, and we used the structured job ranking
described in Section 11.9.2.

The CPO approach was able to solve 26 instances to optimality, while the
CPO+MDD approach solved 105 instances to optimality. The number of fails and
solution times are presented in the scatter plots of Fig. 11.6, where we only
considered instances solved by both methods. The plots provide a strong indication
that the MDD-based propagator can greatly enhance the CPO inference mechanism.
For example, CPO+MDD can reduce the number of fails from over 10 million (CPO)
to less than 100 for some instances.

In our next experiment we compared CPO and CPO+MDD considering a maxi-
mum width of 1024 and applying instead a dynamic search, so as to verify if we
could still obtain additional gains with the general-purpose scheduling heuristics
provided by CPO. A time limit of 1,800 seconds was imposed for all approaches.

With the above configuration, the CPO approach solved to optimality 184 out of
the 388 instances, while the CPO+MDD approach solved to optimality 311 instances.
Figure 11.7(a) compares the times for instances solved by both methods, while
Fig. 11.7(b) depicts the performance plot. In particular, the overhead introduced
by the MDD is only considerable for small instances (up to 20 jobs). In the majority
of the cases, CPO+MDD is capable of proving optimality much quicker.
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Fig. 11.6 Performance comparison between CPO and CPO+MDD for minimizing sum of setup
times on Dumas, Gendreau, and Ascheuer TSPTW classes with lex search. The vertical and
horizontal axes are in logarithmic scale.
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Fig. 11.7 Performance comparison between CPO and CPO+MDD for minimizing sum of setup
times on Dumas, Gendreau, and Ascheuer TSPTW classes using default depth-first CPO search.
The horizontal and vertical axes in (a) are in logarithmic scale.

11.9.4 Asymmetric Traveling Salesman Problem with Precedence
Constraints

We next evaluate the performance of CPO and CPO+MDD on sequencing problems
with precedence constraints, while the objective is again to minimize the sum of
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setup times. As benchmark problem,we consider the asymmetric traveling salesman
problem with precedence constraints (ATSPP), also known as the sequential order-
ing problem. The ATSPP is a variation of the asymmetric TSP where precedence
constraints must be observed. Namely, given a weighted digraph D = (V,A) and a
set of pairs P = V ×V , the ATSPP is the problem of finding a minimum-weight
Hamiltonian tour T such that vertex v precedes u in T if (v,u) ∈ P.

The ATSPP has been shown to be extremely challenging for exact methods. In
particular, a number of instances with fewer than 70 vertices from the well-known
[147] benchmark, proposed initially by [11], are still open. We refer to the work
of [6] for a more detailed literature review of exact and heuristic methods for the
ATSPP.

We applied the CPO and CPO+MDDmodels with dynamic search and a maximum
width of 2048 for 16 instances of the ATSPP from the TSPLIB benchmark. A
time limit of 1,800 seconds was imposed, and we used the structured job ranking
described in Section 11.9.2. The results are reported in Table 11.1. For each instance
we report the size (number of vertices) and the current best lower and upper bound
from the literature.1 The column ‘Best’ corresponds to the best solution found by a
method, and the column ‘Time’ corresponds to the computation time in which the
solution was proved optimal. A value TL indicates that the time limit was reached.

We were able to close three of the unsolved instances with our generic approach,
namely p43.2, p43.3, and ry48p.4. In addition, instance p43.4 was solved before
with more than 22 hours of CPU time by [92] (for a computer approximately 10
times slower than ours), and by more than 4 hours by [76] (for an unspecified
machine), while we could solve it in less than 90 seconds. The presence of more
precedence constraints (indicated for these instances by a larger suffix number)
is more advantageous to our MDD approach, as shown in Table 11.1. On the
other hand, less constrained instances are better suited to approaches based on
mixed integer linear programming; instances p43.1 and ry48p.1 are solved by a
few seconds in [11].

As a final observation, we note that the bounds for the p43.1-4 instances reported
in the TSPLIB are inconsistent. They do not match any of the bounds from existing
works we are aware of or the ones provided by [11], where these problems were
proposed. This includes the instance p43.1 which was solved in that work.

1 Since the TSPLIB results are not updated on the TSPLIB website, we report updated bounds
obtained from [92], [76], and [6].
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Table 11.1 Results on ATSPP instances. Values in bold represent instances solved for the first
time. TL represents that the time limit (1,800 s) was reached.

CPO CPO+MDD
width 2048

Instance Vertices Bounds Best Time (s) Best Time (s)

br17.10 17 55 55 0.01 55 4.98
br17.12 17 55 55 0.01 55 4.56
ESC07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57
p43.2 43 [28175, 28480] 28545 TL 28480 279.18
p43.3 43 [28366, 28835] 28930 TL 28835 177.29
p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 [15220, 15805] 18209 TL 16561 TL
ry48p.2 48 [15524, 16666] 18649 TL 17680 TL
ry48p.3 48 [18156, 19894] 23268 TL 22311 TL
ry48p.4 48 [29967, 31446] 34502 TL 31446 96.91
ft53.1 53 [7438, 7531] 9716 TL 9216 TL
ft53.2 53 [7630, 8026] 11669 TL 11484 TL
ft53.3 53 [9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79

11.9.5 Makespan Problems

Constraint-based solvers are known to be particularly effective when the objective
is to minimize makespan, which is largely due to specialized domain propagation
techniques that can be used in such cases; see, e.g., [17].

In this section we evaluate the performance of CPO and CPO+MDD on sequencing
problems with time window constraints and where the objective is to minimize
makespan. Our goal is to test the performance of such procedures on makespan
problems, and verify the influence of setup times on the relative performance.
In particular, we will empirically show that the MDD-based propagator makes
schedulers more robust for makespan problems, especially when setup times are
present.

To compare the impact of setup times between methods, we performed the
following experiment: Using the scheme from [41], we first generated three random
instances with 15 jobs. The processing times pi are selected uniformly at random
from the set {1,100}, and release dates are selected uniformly at random from the
set {0, . . . ,α∑i pi} for α ∈ {0.25,0.5,0.75}. No deadlines are considered. For each
of the three instances above, we generated additional random instances where we
add a setup time for all pairs of jobs i and j selected uniformly at random from the set
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Fig. 11.8 Comparison between CPO and CPO+MDD for minimizing makespan on three instances
with randomly generated setup times. The vertical axes are in logarithmic scale.

{0, . . . ,(50.5)β}, where β ∈{0,0.5,1, . . . ,4}. In total, 10 instances are generated for
each β . We computed the number of fails and total time to minimize the makespan
using CPO and CPO+MDD models with a maximum width of 16, applying a lex
search in both cases. We then divided the CPO results by the CPO+MDD results,
and computed the average ratio for each value of β . The job ranking for refinement
is done by sorting the jobs in decreasing order according to the value obtained by
summing their release dates with their processing times. This forces jobs with larger
completion times to have higher priority in the refinement.

The results are presented in Fig. 11.8. For each value of α , we plot the ratio
of CPO and CPO+MDD in terms of the number of fails (Fig. 11.8(a)) and time
(Fig. 11.8(b)). The plot in Fig. 11.8(a) indicates that the CPO+MDD inference
becomes more dominant in comparison with CPO for larger values of β , that is,
when setup times become more important. The MDD introduces a computational
overhead in comparison with the CPO times (around 20 times slower for this
particular problem size). This is compensated as β increases, since the number of
fails for the CPO+MDD model becomes orders of magnitude smaller in comparison
with CPO. The same behavior was observed on average for other base instances
generated under the same scheme.

To evaluate this on structured instances, we consider the TSPTW instances
defined by the Gendreau and Dumas benchmark classes, where we changed the
objective function to minimize makespan instead of the sum of setup times. We
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Fig. 11.9 Performance comparison between CPO and CPO+MDD for minimizing makespan on
Dumas and Gendreau TSPTW classes. The vertical and horizontal axes are in logarithmic scale.

selected all instances with up to 100 jobs, yielding 240 test cases in total. We solved
the CPO and the CPO+MDD models with lex search, so as to compare the inference
strength for these problems. A maximum width of 16 was set for CPO+MDD, and a
time limit of 1,800 seconds was imposed for both cases. The job ranking is the same
as in the previous experiment.

The CPO approach was able to solve 211 instances to optimality, while the
CPO+MDD approach solved 227 instances to optimality (including all the instances
solved by CPO). The number of fails and solving time are presented in Fig. 11.9,
where we only depict instances solved by both methods. In general, for easy
instances (up to 40 jobs or with a small time window width), the reduction of
the number of fails induced by CPO+MDD was not significant, and thus did not
compensate the computational overhead introduced by the MDD. However, we note
that the MDD presented better performance for harder instances; the lower diagonal
of Fig. 11.9(b) is mostly composed by instances from the Gendreau class with
larger time windows, for which the number of fails was reduced by five and six
orders of magnitude. We also note that the result for the makespan objective is less
pronounced than for the sum of setup times presented in Section 11.9.3.
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11.9.6 Total Tardiness

Constraint-based schedulers are usually equipped with specific filtering techniques
for minimizing total tardiness, which are based on the propagation of a piecewise-
linear function as described by [17]. For problems without any constraints, however,
the existing schedulers are only capable of solving small instances, and heuristics
end up being more appropriate as the propagators are not sufficiently strong to
deduce good bounds.

In this section we evaluate the performance of CPO and CPO+MDD on sequencing
problems where the objective is to minimize the total tardiness. Since we are
interested in evaluating the inference strength of the objective function bounding
mechanism, we do not take into account any additional side constraints and we
limit our problem size to 15 jobs. Moreover, jobs are only subject to a release date,
and no setup time is considered.

We have tested the total tardiness objective using random instances, again gen-
erated with the scheme of [41]. The processing times pi are selected uniformly at
random from the set {1,10}, the release dates ri are selected uniformly at random
from the set {0, . . . ,α∑i pi}, and the due dates are selected uniformly at random
from the set {ri+ pi, . . . ,ri+ pi+β ∑i pi}. To generate a good diversity of instances,
we considered α ∈ {0,0.5,1.0,1.5} and β ∈ {0.05,0.25,0.5}. For each random
instance generated, we create a new one with the same parameters but where we
assign tardiness weights selected uniformly at random from the set {1, . . . ,10}. We
generated 5 instances for each configuration, hence 120 instances in total. A time
limit of 1,800 seconds was imposed for all methods. The ranking procedure for
refinement is based on sorting the jobs in decreasing order of their due dates.

We compared the CPO and the CPO+MDDmodels for different maximum widths,
and lex search was applied to solve the models. The results for unweighted total tar-
diness are presented in Fig. 11.10(a), and the results for the weighted total tardiness
instances are presented in Fig. 11.10(b). We observe that, even for relatively small
widths, the CPO+MDD approach was more robust than CPO for unweighted total
tardiness; more instances were solved in less time even for a width of 16, which
is a reflection of a great reduction of the number of fails. On the other hand, for
weighted total tardiness CPO+MDD required larger maximum widths to provide a
more significant benefit with respect to CPO. We believe that this behavior may be
due to a weaker refinement for the weighted case, which may require larger widths
to capture the set of activities that play a bigger role in the final solution cost.
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Fig. 11.10 Performance comparison between CPO and CPO+MDD for minimizing total tardiness
on randomly generated instances with 15 jobs.

In all cases, a minimum width of 128 would suffice for the MDD propagation to
provide enough inference to solve all the considered problems.
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