David Bergman

Andre A. Cire
Willem-Jan van Hoeve

John Hooker

Decision
Diagrams for
Optimization

@ Springer

Artificial Intelligence: Foundations, Theory,
and Algorithms

Series editors

Barry O’Sullivan, Cork, Ireland
Michael Wooldridge, Oxford, UK

More information about this series at http://www.springer.com/series/13900

http://www.springer.com/series/13900

David Bergman - Andre A. Cire
Willem-Jan van Hoeve - John Hooker

Decision Diagrams
for Optimization

@ Springer

David Bergman Willem-Jan van Hoeve
Department of Operations and Information Tepper School of Business

Management, School of Business Carnegie Mellon University
University of Connecticut Pittsburgh, PA
Storrs, CT USA
USA

John Hooker

Andre A. Cire Tepper School of Business
Department of Management, UTSC Carnegie Mellon University
University of Toronto Pittsburgh, PA
Toronto, ON USA
Canada
ISSN 2365-3051 ISSN 2365-306X (electronic)
Artificial Intelligence: Foundations, Theory, and Algorithms
ISBN 978-3-319-42847-5 ISBN 978-3-319-42849-9 (eBook)

DOI 10.1007/978-3-319-42849-9
Library of Congress Control Number: 2016953636

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Imtroduction............ 1
1.1 Motivation forthe Book o i 1

1.2 A New Solution Technologycciiiiiiiiiiiian. 2

1.3 AnExample. ... 4

1.4 Planofthe Book i 8

2 Historical Overview 11
2.1 Introductiono 11

2.2 Origins of Decision Diagrams, 12

2.3 Decision Diagrams in Optimizationc.ccouuuo.. 15
2.3.1 Early Applicationsc.c.oouuuiiiiiiiiiinn... 15

2.3.2 A Discrete Optimization Method 16

2.3.3 Decision Diagrams in Constraint Programming 17

2.3.4 Relaxed Decision Diagramso..... 18

2.3.5 A General-Purpose Solver...................ooi.... 19

2.3.6 Markov Decision Processes................oooiiiunn... 21

3 ExactDecision Diagrams.................. 23
3.1 Introduction ... 23

3.2 BasicDefinitionsooutinr i 24

3.3 Basic Concepts of Decision Diagrams 25

3.4 Compiling Exact Decision Diagrams 27
3.4.1 Dynamic Programmingciiiiiinenn... 28

3.4.2 Top-Down Compilationcovviiiiiiinnnn.. 30

3.5 Maximum Independent Set Problem 32

vi

Contents

3.6 SetCoveringProblem............... i 34
3.7 SetPackingProblem.............. i 37
3.8 Single-Machine Makespan Minimization....................... 39
3.9 Maximum CutProblem 42
3.10 Maximum 2-Satisfiability Problem 44
3.11 Compiling Decision Diagrams by Separation 46
3.12 Correctness of the DP Formulations 50
Relaxed Decision Diagrams 55
4.1 Introductionttt e 55
4.2 Top-Down Compilation of Relaxed DDs 57
4.3 Maximum IndependentSet 59
4.4 Maximum CutProblem L 60
4.5 Maximum 2-Satisfiability Problem 63
4.6 Computational Studyc.c.iiiiiiiiii 64
4.6.1 Merging Heuristicsottt it iie i 64

4.6.2 Variable Ordering Heuristic............................ 65

4.6.3 Bounds vs. Maximum BDD Width...................... 66
4.6.4 Comparison with LP Relaxation........................ 67

4.7 Compiling Relaxed Diagrams by Separation 74
4.7.1 Single-Machine Makespan Minimization 76
Restricted Decision Diagrams 83
5.1 Introductiont 83
5.2 Top-Down Compilation of Restricted DDs 85
5.3 Computational Study 86
5.3.1 Problem Generation i, 87

5.3.2 Solution Quality and Maximum BDD Width 89

533 SetCoVeringcoviiiiiitiiiete e 90

534 SetPackingc.oiiiiiiiii 92
Branch-and-Bound Based on Decision Diagrams 95
6.1 Introductiont 95
6.2 Sequential Branch-and-Bound 96
6.3 EXaCtCutsetsuiiiit 97
6.4 Enumeration of Subproblems................ oL 98

6.4.1 ExactCutset Selectionc.coiiininininnnon. 100

Contents vii

6.5 Computational Study 100
6.5.1 Resultsforthe MISP, 101

6.52 Resultsforthe MCP.........., 104

6.5.3 Results for MAX-2SAT ..., 108

6.6 Parallel Branch-and-Bound 109
6.6.1 A Centralized Parallelization Scheme 112
6.6.2 The Challenge of Effective Parallelization 113

6.6.3 Global and LocalPools 113

6.6.4 LoadBalancing............... ...t 114

6.6.5 DDX10: Implementing Parallelization Using X10......... 116

6.6.6 Computational Study, 116

7 Variable Ordering........... i 123
7.1 Introductionot 123
7.2 ExactBDD Orderings..............cooviiiiiiiiiiia... 125
7.3 Relaxed BDD Orderings...........ccovviiieeineiinnennnennn. 130
7.4 Experimental Results i, 131
7.4.1 ExactBDDsforTreesccoviiiiiiinnennnn.. 132

7.4.2 Exact BDD Width Versus Relaxation BDD Bound 132

7.4.3 RelaxationBounds il 134

8 Recursive Modeling 137
8.1 Introductiont 137
8.2 General Form of a Recursive Model 139
83 Examples 141
8.3.1 Single-Machine Scheduling 141

8.3.2 Sequence-Dependent Setup Times 142

8.3.3 Minimum Bandwidth................................. 144

8.4 State-Dependent Costs ..., 146
8.4.1 Canonical Arc CoStS.ottt 147

8.4.2 Example: Inventory Management....................... 151

8.5 Nonserial Recursive Modeling...................., 153
9 MDD-Based Constraint Programming............................ 157
9.1 Introductionuuiiiiiiiiii i, 157
9.2 Constraint Programming Preliminaries......................... 158

9.3 MDD-Based Constraint Programming 164

viii

10

11

Contents

9.3.1 MDD Propagationcciiiiiiiiiin. 166

9.3.2 MDD CONSiSteNCY .. .vvvvtt et eeiie e iiee e 167

9.3.3 MDD Propagation by Intersection 169

9.4 Specialized Propagators il 173
9.4.1 Equality and Not-Equal Constraints 173

9.4.2 Linear Inequalitiescouiiniiinennennn.. 174

9.4.3 Two-Sided Inequality Constraints....................... 174

9.4.4 ALLDIFFERENT Constraint 175

9.4.5 AMONG Constraintccoiiiiiiiiinneeenn.. 176
9.4.6 ELEMENT Constraint.............c.oouvieiuunnneennnn. 177
9.4.7 Using Conventional Domain Propagators 178

9.5 Experimental Results L. 178
MDD Propagation for SEQUENCE Constraints 183
10.1 Introduction ...ttt 183
10.2 MDD Consistency for SEQUENCE IsNP-Hard 186
10.3 MDD Consistency for SEQUENCE Is Fixed Parameter Tractable ... 189
10.4 Partial MDD Filtering for SEQUENCEc..ccvviieinnnnn. 190
10.4.1 Cumulative Sums Encoding 191
10.4.2 Processing the Constraints.ooviiinennn.. 192
10.4.3 Formal Analysisccoviiiiiiiniin i, 194

10.5 Computational Results, 196
10.5.1 Systems of SEQUENCE Constraints 198
10.5.2 Nurse Rostering Instancesooviiininn... 201
10.5.3 Comparing MDD Filtering for SEQUENCE and AMONG ... 203
Sequencing and Single-Machine Scheduling 205
11.1 Introductiont 205
11.2 Problem Definitionottt 207
11.3 MDD Representationouuiieeunernneennnnnnnns 208
11.4 Relaxed MDDSot 211
11.5 FIlteringo oottt e 214
11.5.1 Filtering Invalid Permutations.......................... 214
11.5.2 Filtering Precedence Constraints 215
11.5.3 Filtering Time Window Constraints 215
11.5.4 Filtering Objective Function Bounds 216

11.6 Inferring Precedence Relations from Relaxed MDDs 218

Contents ix

11.7 Refinement 219
11.8 Encoding Size for Structured Precedence Relations 221
11.9 Application to Constraint-Based Scheduling 222
11.9.1 Experimental Setupcoviiiiiiiiinna.. 223
11.9.2 Impact of the MDD Parameters 224
11.9.3 Traveling Salesman Problem with Time Windows 227
11.9.4 Asymmetric Traveling Salesman Problem with Precedence
CONSIAINLS .+ ..ottt e et et e e 228
11.9.5 MakespanProblems iiiii... 230
11.9.6 Total Tardinessoueiiininnieininneennn.. 233
References 235

Foreword

This book provides an excellent demonstration of how the concepts and tools of one
research community can cross into another, yielding powerful insights and ideas.

Early work on decision diagrams focused on modeling and verifying properties
of digital systems, including digital circuits and abstract protocols. Decision dia-
grams (DDs) provided a compact representation of these systems and a useful data
structure for algorithms to construct these representations and to answer queries
about them. Fundamentally, though, they were used to solve problems having yes/no
answers, such as: “Is it possible for the system to reach a deadlocked state?”, or “Do
these two circuits compute the same function?”

Using DDs for optimization introduces an entirely new set of possibilities and
challenges. Rather than just finding some satisfying solution, the program must
find a “best” solution, based on some objective function. Researchers in the digital
systems and verification communities recognized that, given a DD representation of
a solution space, it is easy to count the number of solutions and to find an optimal
solution based on very general classes of objective functions. But, it took the skill of
leading experts in optimization, including the authors of this book, to fully expand
DDs into a general-purpose framework for solving optimization problems.

The authors show how the main strategies used in discrete optimization, includ-
ing problem relaxation, branching search, constraint propagation, primal solving,
and problem-specific modeling, can be adapted and cast into a DD framework. DDs
become a data structure for managing the entire optimization process: finding upper
bounds and feasible solutions, storing solutions to subproblems, applying global
constraints, and guiding further search. They are especially effective for solving
problems that fare poorly with traditional optimization techniques, including linear

xi

xii Foreword

programming relaxation, such as ones having combinatorial constraints and non-
convex cost functions.

Over the 10 years in which the authors have been developing these ideas,
they have transformed DDs well beyond what has been used by the verification
community. For example, whereas most DD-based verification techniques build the
representations from the bottom up, based on a symbolic execution of the system
description, the authors build their DDs from the top down, based on a direct
encoding of the solution space. Some of the ideas presented here have analogs in the
verification world, for example the idea of restricted and relaxed DDs are similar
to the abstraction-refinement approaches used in verification. Others, however,
are strikingly new. Perhaps some of these ideas could be transferred back to the
verification community to increase the complexity and classes of systems they can
verify.

Pittsburgh, USA, August 2016 Randal E. Bryant

Chapter 1

Introduction

Abstract This introductory chapter explains the motivation for developing decision
diagrams as a new discrete optimization technology. It shows how decision diagrams
implement the five main solution strategies of general-purpose optimization and
constraint programming methods: relaxation, branching search, constraint propaga-
tion, primal heuristics, and intelligent modeling. It presents a simple example to
illustrate how decision diagrams can be used to solve an optimization problem. It
concludes with a brief outline of the book.

1.1 Motivation for the Book

Optimization is virtually ubiquitous in modern society. It determines how flight
crews are scheduled, how ads are displayed on web sites, how courier services route
packages, how banks manage investments, and even the order of songs played on
online radio. Spurred by the increasing availability of data and computer resources,
the variety of applications promises to grow even more rapidly in the future.

One reason for this trend is steady improvement in optimization methods. We
have seen dramatic reductions in solution times, not only for techniques specialized
to particular problems, but even more markedly for general-purpose mathematical
programming and constraint programming solvers. Problems that took hours or days
to solve in the past now solve in seconds, due more to algorithmic advancements
than to increases in computer power [33].

Despite these advances, a wide range of problems remain beyond the reach of

generic optimization solvers. There are various reasons for this. The problems may

© Springer International Publishing Switzerland 2016 1
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_1

2 1 Introduction

contain a combinatorial structure that is hard to exploit by existing techniques. They
may involve cost functions and constraints that are too difficult to formulate for
general-purpose solvers. Most importantly, human activities are becoming rapidly
more complex and integrated. They pose optimization problems that often grow too
rapidly for solvers to keep up. The integer or constraint programming models for
these problems may be too large even to load into an existing solver. These reasons
alone suffice to motivate research on new general-purpose optimization technologies

that accommodate alternative modeling paradigms.

1.2 A New Solution Technology

We present a solution technology based on decision diagrams, which have recently
brought a new perspective to the field of discrete optimization. A decision diagram
is a graphical data structure originally used to represent Boolean functions [3, 110],
with successful applications in circuit design and formal verification [37, 99].
Decision diagrams were only recently introduced into optimization and constraint
programming [4, 19, 81, 83, 86, 108, 157], and they are already showing potential
as an alternative to existing methods. They provide new approaches to implement-
ing the five primary solution strategies of general-purpose methods: relaxation,
branching search, constraint propagation, primal heuristics, and modeling to exploit
problem structure. These new approaches can enhance existing solvers or provide
the basis for a solver based entirely on decision diagrams.

Relaxation is an essential element of general-purpose optimization methods,
particularly for mathematical programming problems. It most often takes the form
of a continuous relaxation, perhaps strengthened by cutting planes, and it almost
always requires a problem formulation in terms of inequality constraints, preferably
using linear (or at least convex) expressions. Relaxation is key because the optimal
value of a relaxation is a bound on the optimal value of the original problem, and a
good bound is often indispensable to keeping the search time within practical limits.
Decision diagrams can provide an equally useful discrete relaxation of the problem.
While one can, in principle, build a decision diagram that exactly represents the
problem, the construction procedure can be modified to yield a much smaller
diagram that represents a relaxation of the problem. The length of a shortest (or
longest) path in this diagram is an easily computed bound on the optimal value of the

original problem. This approach has the advantage that it does not rely on inequality

1.2 A New Solution Technology 3

formulations, linearity, convexity, or even closed-form expressions, but exploits
quite different properties of the problem. Decision diagrams may therefore benefit
from combinatorial structures that have proved intractable for existing methods.

Branching search is ubiquitous in general-purpose solvers. Decision diagrams
enable a type of branching search that is significantly different from conventional
schemes and could prove more efficient. Rather than branch on the values of a
variable, one branches on nodes of a relaxed decision diagram. This in effect
enumerates structured pools of solutions, reduces symmetry, and takes advantage of
information about the problem that is encoded in the relaxed decision diagram. The
bounds provided by relaxed diagrams limit the complexity of the search, resulting in
a branch-and-bound algorithm somewhat analogous to those used in mixed-integer
programming but relying on bounds obtained from shortest paths in the branching
structure itself. In addition, computational testing to date indicates that branching
in a decision diagram parallelizes much more effectively than search algorithms in
mixed-integer programming solvers.

Constraint propagation is an essential tool for constraint programming solvers.
Specialized algorithms exploit the structure of high-level constraints in the problem
(known as “global constraints™) to exclude values that individual variables cannot
assume in any feasible solution. These reduced variable domains are passed on
(propagated) to other constraints, where they can be reduced further. Decision
diagrams enable a potentially more powerful form of constraint propagation. Rather
than transmit a limited amount of information through individual variable domains,
one can transmit much more information through a relaxed decision diagram that
carries relationships between variables. This, in turn, can reduce the search substan-
tially by identifying infeasible subtrees before they are explored.

Primal heuristics are methods for finding feasible solutions of the problem. They
are contrasted with “dual” methods (such as solving a relaxation), which find bounds
for proving optimality. A variety of primal heuristics have proved essential to the
speedups that general-purpose solvers have exhibited in the past few years. Decision
diagrams again provide an attractive alternative, because restricted diagrams (the
opposite of relaxed diagrams) provide a very competitive primal heuristic that is
fast, based on a single technology, and simple to implement. A restricted diagram is
constructed by judiciously omitting nodes from an exact diagram as it is constructed,
and any shortest path in the resulting diagram corresponds to a good feasible

solution.

4 1 Introduction

Intelligent modeling is often a prerequisite to obtaining a solution in reasonable
time. In mixed-integer programming, one uses an inequality formulation that ideally
has a tight linear relaxation and perhaps contains redundant valid inequalities that
further tighten the relaxation. In constraint programming, one selects variables and
global constraints that best capture the structure of the problem and lead to effective
propagation. Decision diagrams, by contrast, are based on recursive modeling very
similar to that used in deterministic dynamic programming. One must define state
variables, but any constraint or cost function definable in terms of the current state
is permissible. This allows one to formulate a wide range of problems that have
no practical inequality or constraint-based formulation, and in which linearity or
convexity is no longer an issue.

Recursive formulations are generally seen as too problem-specific for imple-
mentation in general-purpose solvers. Worse, hand-coded methods must typically
enumerate a state space that grows exponentially (the “curse of dimensionality”)
or make do with a more tractable approximation of it. Decision diagrams offer a
possible solution to these dilemmas. They allow modeling flexibility very similar
to that of dynamic programming while solving the model with a branch-and-bound
method rather than by enumerating the state space, thus possibly ameliorating the
“curse” and opening the door to a general-purpose solver for recursive models. An
added advantage is that recursive models tend to be compact, thus obviating the
necessity of loading a huge constraint-based model into the solver.

1.3 An Example

A small example will illustrate some of the key concepts of optimization with
decision diagrams. Consider the integer programming problem

1.3 An Example 5

max 5x;+3xp —x3— 15x4 — 3x5
subjectto x;+x; >1
X1 +x3+x5 <2
x1—x3—x5<0 (1.1)
—Xx1+x3—x5<0
X1 +3x—4x4 <0
Xiy...,x5 €{0,1}

The example is chosen for its simplicity, and not because decision diagram tech-
nology is primarily directed at integer programming problems. This is only one of
many classes of problems that can be formulated recursively for solution by decision
diagrams.

A decision diagram for this problem instance represents possible assignments to
the variables x1,...,xs5 and is depicted in Fig. 1.1. It is a directed acyclic graph in
which the nodes are partitioned into six layers so that an arc leaving a node at layer
i corresponds to a value assignment for variable x;. Since all variables are binary in
this problem, the diagram is a binary decision diagram and has two types of arcs:
dashed arcs in layer i represent the assignment x; = 0, and solid arcs represent x; = 1.
Any path from the root node r to the terminal node ¢ represents a complete value
assignment to the variables x;. One can verify that the diagram in Fig. 1.1 exactly
represents the seven feasible solutions of problem (1.1).

To capture the objective function, we associate with each arc a weight that
represents the contribution of that value assignment to the objective function.
Dashed arcs have a weight of zero in this instance, while solid arcs have weight
equal to the objective function coefficient of that variable. It follows that the value
assignment that maximizes the objective function corresponds to the longest path
from r to ¢ with respect to these arc weights. For the diagram in Fig. 1.1, the
longest path has value —8 and indicates the assignment (xy,...,xs) = (1,1,1,1,0),
which is the optimal solution of (1.1). In general, any linear function (or, more
generally, any separable function) can be optimized in polynomial time in the size
of the diagram. This fact, alongside the potential to represent feasible solutions in a
compact fashion, were early motivations for the application of decision diagrams to
optimization.

A formidable obstacle to this approach, however, is that a decision diagram
that exactly represents the feasible solutions of a problem can grow exponentially

6 1 Introduction

X1 0,7 5
‘/
/
!
X2 3 01 3
\\A
: »
| d
X3 0 : —1 0,7 -1
v e
X4 —15 —15 —15

X5

Fig. 1.1 A decision diagram for problem (1.1). Arcs are partitioned into layers, one for each
problem variable. Dashed and solid arcs in layer i represent the assignments x; = 0 and x; = 1,
respectively.

with the problem size. This is true in particular of integer programming, because
a shortest- or longest-path computation in the associated diagram is a linear pro-
gramming problem, and there are integer programming problems that cannot be
reformulated as linear programming problems of polynomial size [65]. In fact, most
practical problem classes result in decision diagrams that grow exponentially and
thus can be solved only in very small instances.

To circumvent this issue, the authors in [4] introduced the concept of a relaxed
decision diagram, which is a diagram of limited size that represents an overapprox-
imation of the solution set. That is, all feasible solutions are associated with some
path in the diagram, but not all paths in the diagram correspond to a feasible solution
of the problem. The size of the diagram is controlled by limiting its width, which is
the maximum number of nodes in any layer. A key property of relaxed diagrams is
that a longest path now yields an upper bound on the maximum value of an objective
function (and a shortest path yields a lower bound for minimization problems).

For example, Fig. 1.2 depicts a relaxed decision diagram for problem (1.1) with
a limited width of 2. Of the ten r— paths, seven represent the feasible solutions
of (1.1), and the remaining three represent infeasible solutions. In particular, the

1.3 An Example 7

X1 0,7 5

X2

X3

X4

X5

Fig. 1.2 A relaxed decision diagram for problem (1.1), with a limited width of at most two nodes
in any layer.

longest path represents an infeasible assignment (xi,...,x5) = (1,1,0,1,0) with
value —7, which is an upper bound of the optimal solution value, —8. Such a dual
bound can be tighter than those provided by other generic technologies. For exam-
ple, the linear programming relaxation for problem (1.1), obtained by replacing the
integrality constraints by 0 < x; < 1, yields a relatively weak upper bound of 0.25.
Relaxed decision diagrams were initially proposed in [4] as an alternative to the
domain store commonly used in constraint programming solvers. It was shown that
relaxed diagrams can reveal inconsistent variable assignments that conventional
domain propagation fails to detect. For instance, we can deduce from the relaxed
decision diagram in Fig. 1.2 that x4 = 1 in any feasible solution, which does not
follow from domain consistency maintenance. Generic methods for systematically
compiling relaxed diagrams for constraint programming models were developed in
[84, 94]. Decision diagrams were first used to obtain optimization bounds in [28],
where lower bounds for set covering instances were compared with those obtained
by integer programming. In this book, we further develop these techniques and apply

them to a wide variety of optimization and constraint programming problems.

8 1 Introduction

1.4 Plan of the Book

After a brief literature review in Chapter 2, the book develops methods for construct-
ing exact, relaxed, and restricted decision diagrams for optimization problems. It
then presents a general-purpose method for solving discrete optimization problems,
followed by discussions of variable order, recursive modeling, constraint program-
ming, and two special classes of problems.

Chapter 3 formally develops methods for constructing decision diagrams for
discrete optimization, based on a recursive (dynamic programming) model of the
problem that associates states with nodes of the diagram. It presents recursive
models of three classical optimization problems that reappear in later chapters: the
maximum independent set problem, the maximum cut problem on a graph, and the
maximum 2-satisfiability problem.

Chapter 4 modifies the compilation procedure of the previous chapter to create
a relaxed decision diagram by merging states as the diagram is constructed. It
investigates how various parameters affect the quality of the resulting bound. It
reports computational tests showing that, for the independent set problem, relaxed
decision diagrams can deliver tighter bounds, in less computation time, than those
obtained by linear programming and cutting planes at the root node in a state-of-
the-art integer programming solver.

Chapter 5 presents an algorithm for top-down construction of restricted decision
diagrams that provide a primal heuristic for finding feasible solutions. Computa-
tional results show that restricted diagrams can deliver better solutions than integer
programming technology for large set covering and set packing problems.

Chapter 6 combines the ideas developed in previous chapters to devise a general-
purpose solution method for discrete optimization, based entirely on decision dia-
grams. It introduces a novel search algorithm that branches on nodes of a relaxed
or restricted decision diagram. It reports computational tests showing that a solver
based on decision diagrams is competitive with or superior to state-of-the-art in-
teger programming technology on the three classes of problems described earlier,
even though integer programming benefits from decades of development, and even
though these problems have natural integer programming models. Further compu-
tational tests indicate that branching in a decision diagram can utilize massively
parallel computation much more effectively than integer programming methods.

Chapter 7 examines more deeply the effect of variable ordering on the size of
exact decision diagrams and the quality of bounds provided by relaxed diagrams,

1.4 Plan of the Book 9

with particular emphasis on the maximum independent set problem. It shows,
for example, that the width of an exact diagram for this problem is bounded by
Fibonacci numbers for an appropriate ordering.

Chapter 8 focuses on the type of recursive modeling that is required for solution
by decision diagrams. It presents a formal development that highlights how solution
by decision diagrams differs from traditional enumeration of the state space. It
then illustrates the versatility of recursive modeling with examples: single-facility
scheduling, scheduling with sequence-dependent setup times (as in the traveling
salesman problem with time windows), and minimum bandwidth problems. It
shows how to represent state-dependent costs with canonical arc costs in a decision
diagram, a technique that can sometimes greatly simplify the recursion, as illustrated
by a textbook inventory management problem. It concludes with an extension to
nonserial recursive modeling and nonserial decision diagrams.

Chapter 9 describes how decision diagrams can enhance constraint programming
theory and technology. It presents basic concepts of constraint programming, defines
a concept of consistency for decision diagrams, and surveys various algorithms
for propagation through decision diagrams. It then presents specialized propagators
for particular constraints, including equalities and disequalities, linear inequalities,
two-sided inequalities, all-different constraints, among constraints, and element
constraints. It concludes with computational results that show the superiority of
propagation through decision diagrams relative to traditional propagation through
variable domains.

The topic of decision-diagram-based constraint programming is continued in
Chapter 10, which considers the “sequence” global constraint in detail. The se-
quence constraint finds application in, e.g., car manufacturing and nurse rostering
problems. The chapter shows that establishing full consistency for this constraint is
NP-hard, but also describes a specialized propagator that achieves much stronger
results than existing methods that are based on traditional domain propagation.

Chapter 11 focuses on the application of decision diagrams to sequencing and
single-machine scheduling problems. In these problems, the goal is to find the best
order for performing a set of tasks. Typical examples can be found in manufacturing
and routing applications, such as assembly line sequencing and package delivery.
The chapter describes how decision diagrams can be used in generic constraint-
based scheduling systems. The computational results demonstrate that the added
power of decision diagrams can improve the performance of such systems by orders
of magnitude.

Chapter 2

Historical Overview

Abstract This chapter provides a brief review of the literature on decision diagrams,
primarily as it relates to their use in optimization and constraint programming. It
begins with an early history of decision diagrams and their relation to switching
circuits. It then surveys some of the key articles that brought decision diagrams into
optimization and constraint solving. In particular it describes the development of
relaxed and restricted decision diagrams, the use of relaxed decision diagrams for
enhanced constraint propagation and optimization bounding, and the elements of a
general-purpose solver. It concludes with a brief description of the role of decision

diagrams in solving some Markov decision problems in artificial intelligence.

2.1 Introduction

Research on decision diagrams spans more than five decades, resulting in a large
literature and a wide range of applications. This chapter provides a brief review of
this literature, primarily as it relates to the use of decision diagrams in optimization
and constraint programming. It begins with an early history of decision diagrams,
showing how they orginated from representations of switching circuits and evolved
to the ordered decision diagrams now widely used for circuit design, product
configuration, and other purposes.

The chapter then surveys some of the key articles that brought decision diagrams
into optimization and constraint programming. It relates how decision diagrams
initially played an auxiliary role in the solution of some optimization problems

and were subsequently proposed as a stand-alone optimization method, as well as

© Springer International Publishing Switzerland 2016 11
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_2

12 2 Historical Overview

a filtering technique in constraint programming. At this point the key concept of a
relaxed decision diagram was introduced and applied as an enhanced progagation
mechanism in constraint programming and a bounding technique in optimization.
These developments led to a general-purpose optimization algorithm based entirely
on decision diagram technology. The chapter concludes with a brief description of
the auxiliary role of decision diagrams in solving some Markov decision problems
in artificial intelligence.

This discussion is intended as a brief historical overview rather than an exhaus-
tive survey of work in the field. Additional literature is cited throughout the book as

it becomes relevant.

2.2 Origins of Decision Diagrams

The basic idea behind decision diagrams was introduced by Lee [110] in the form
of a binary-decision program, which is a particular type of computer program that
represents a switching circuit. Shannon had shown in his famous master’s thesis
[144] that switching circuits can be represented in Boolean algebra, thus bringing
Boole’s ideas into the computer age. Lee’s objective was to devise an alternative
representation that is more conducive to the actual computation of the outputs of
switching circuits.

Figure 2.1, taken from Lee’s article, presents a simple switching circuit. The
switches are controlled by binary variables x, y and z. The symbol x in the circuit
indicates a switch that is open when x = 0, while x indicates a switch that is open
when x = 1, and similarly for the other variables. The output of the circuit is 1 if
there is an open path from left to right, and otherwise the output is 0. For instance,
(x,5,z) = (1,1,0) leads to an output of 1, while (x,y) = (0,0) leads to an output of
0, irrespective of the value of z.

A binary-decision program consists of a single type of instruction that Lee calls
T, which has the form

T: x; A,B.

The instruction states: if x = 0, go to the instruction at address 4, whereas if x = 1,
go to the instruction at address B. The switching circuit of Fig. 2.1 is represented by
the binary-decision program

2.2 Origins of Decision Diagrams 13

X y 4
y/
x y z

Fig. 2.1 Example of a switching circuit from [110].

1. T:x; 2,4
2. T:y; 6,3
3. T:z 06,1 2.1
4. T: y; 3,5
5. T:z 1,0

where 6 is Lee’s symbol for an output of 0, and / for an output of 1. The five
instructions correspond conceptually to the nodes of a decision diagram, because
at each node there is a choice to move to one or two other nodes, and the choice
depends on the value of an associated variable. However, the nodes need not be
organized into layers that correspond to the variables, and a given assignment to the
variables need not correspond to a path in the diagram. A BDD representation of
(2.1) appears in Fig. 2.2. In this case, the nodes can be arranged in layers, but there
is no path corresponding to (x,y,z) = (0,0,1).!

Lee formulated rules for constructing a switching circuit from a binary-decision
program. He also provided bounds on the minimum number of instructions that
are necessary to represent a given Boolean function. In particular, he showed that
computing the output of a switching circuit with a binary-decision program is in
general faster than computing it through Boolean operations and, or, and sum, often
by orders of magnitude.

The graphical structure we call a binary decision diagram, as well as the term,
were introduced by Akers [3]. Binary-decision programs and BDDs are equivalent
in some sense, but there are advantages to working with a graphical representation.
It is easier to manipulate and provides an implementation-free description of a

Boolean function, in the sense that it can be used as the basis for different algorithms

! There is such a path, in this case, if one treats the arc from y to 0 as a “long arc,” meaning that z
can take either value on this arc.

14 2 Historical Overview

Fig. 2.2 Binary decision diagram corresponding to the binary-decision program (2.1).

for computing outputs. Akers used BDDs to analyze certain types of Boolean
functions and as a tool for test generation; that is, for finding a set of inputs which
can be used to confirm that a given implementation performs correctly. He also
showed that a BDD can often be simplified by superimposing isomorphic portions
of the BDD.

The advance that led to the widespread application of BBDs was due to Bryant
[37]. He adopted a data structure in which the decision variables are restricted
to a particular ordering, forcing all nodes in a layer of the BDD to correspond
to the same decision variable. The result is an ordered decision diagram (which
we refer to simply as a decision diagram in this book). For any given ordering
of the variables, all Boolean functions can be represented by ordered BDDs, and
many ordered BDDs can be simplified by superimposing isomorphic portions of
the BDD. A BDD that can be simplified no further in this fashion is known as a
reduced ordered binary decision diagram (RO-BDD). A fundamental result is that
RO-BDDs provide a canonical representation of Boolean functions. That is, for any
given variable ordering, every Boolean function has a unique representation as an
RO-BDD. This allows one to check whether a logic circuit implements a desired
Boolean function, for example, by constructing an RO-BDD for either and noting
whether they are identical.

Another advantage of ordered BDDs is that operations on Boolean functions,
such as disjunction and conjunction, can be performed efficiently by an appropriate
operation on the corresponding diagrams. The time complexity for an operation is
bounded by the product of the sizes of the BDDs. Unfortunately, the BDDs for some

popular circuits can grow exponentially even when they are reduced. For example,

2.3 Decision Diagrams in Optimization 15

the RO-BDD grows linearly for an adder circuit but exponentially for a multiplier
circuit. Furthermore, the size of a reduced BDD can depend dramatically on the
variable ordering. Computing the ordering that yields the smallest BDD is a co-
NP-complete problem [71]. Ordering heuristics that take into account the problem
domain may therefore be crucial in obtaining small BDDs for practical applications.

The canonical representation and efficient operations introduced by Bryant led
to a stream of BDD-related research in computer science. Several variants of the
basic BDD data structure were proposed for different theoretical and practical
purposes. A monograph by Wegener [157] provides a comprehensive survey of
different BDD types and their uses in practice. Applications of BDDs include formal
verification [99], model checking [50], product configuration [5]—and, as we will

see, optimization.

2.3 Decision Diagrams in Optimization

Decision diagrams initially played an auxiliary role in optimization, constraint
programming, and Markov decision processes. In recent years they have been
proposed as an optimization technique in their own right. We provide a brief survey
of this work, focusing primarily on early contributions.

2.3.1 Early Applications

One of the early applications of decision diagrams was to solution counting in
combinatorial problems, specifically to the counting of knight’s tours [111]. A BDD
is created to represent the set of feasible solutions, as described in the previous
chapter. Since the BDD is a directed acyclic graph, the number of solutions can then
be counted in linear time (in the size of the BDD) using a simple recursive algorithm.
This approach is impractical when the BDD grows exponentially with instance size,
as it often does, but in such case BDDs can be combined with backtracking and
divide-and-conquer strategies.

Lai, Pedram and Vrudhula [108] used BDDs to represent the feasible sets of
0/1 programming subproblems while a search tree is under construction. Their
solution algorithm begins by building a search tree by a traditional branch-and-
cut procedure. After some branching rounds, it generates BDDs to represent the

16 2 Historical Overview

feasible sets of the relatively small subproblems at leaf nodes. The optimal solutions
of the subproblems are then extracted from the BDDs, so that no more branching is
necessary. Computational experiments were limited to a small number of instances
but showed a significant improvement over the IP methods of the time. We remark
in passing that Wegener’s monograph [157], mentioned earlier, proposes alternative
methods for formulating 0/1 programming problems with BDDs, although they have
not been tested experimentally. It also studies the growth of BDD representations for
various types of Boolean functions.

Hachtel and Somenzi [81] showed how BDDs can help solve maximum flow
problems in large-scale 0/1 networks, specifically by enumerating augmenting
paths. Starting with a flow of 0, a corresponding flow-augmenting BDD is compiled
and analyzed to compute the next flow. The process is repeated until there are no
more augmenting paths, as indicated by an empty BDD. Hachtel and Somenzi were
able to compute maximum flows for graphs having more than 10?7 vertices and 10%°
edges. However, this was only possible for graphs with short augmenting paths,
because otherwise the resulting BDDs would be too large.

Behle [19] showed how BDDs can help generate valid inequalities (cutting
planes) for general 0/1 programming. He first studied the reduced BDD that encodes
the threshold function represented by a 0/1 linear inequality, which he called a
threshold BDD. He also showed how to compute a variable ordering that minimizes
the size of the BDD. To obtain a BDD for a 0/1 programming problem, he conjoined
the BDDs representing the individual inequalities in the problem, using an algorithm
based on parallel computation. The resulting BDD can, of course, grow quite large
and is practical only for small problem instances. He observed that when the BDD
is regarded as a flow network, the polytope representing its feasible set is the convex
hull of the feasible set of the original 0/1 problem. Based on this, he showed how
to generate valid inequalities for the 0/1 problem by analyzing the polar of the flow
polytope, a method that can be effective for small but hard problem instances.

2.3.2 A Discrete Optimization Method

Decision diagrams were proposed as a stand-alone method for discrete optimization
by Hadzi¢ and Hooker [82, 86], using essentially the approach described in the
previous chapter, but initially without the concept of a relaxed diagram. They noted

that decision diagrams can grow exponentially but provide two benefits that are

2.3 Decision Diagrams in Optimization 17

not enjoyed by other optimization methods: (a) they are insensitive to whether
the constraint and objective function are linear or convex, which makes them
appropriate for global optimization, and (b) they are well suited to comprehensive
postoptimality analysis.

Postoptimality analysis is arguably important because simply finding an optimal
solution misses much of the information and insight encoded in an optimization
model. Decision diagrams provide a transparent data structure from which one can
quickly extract answers to a wide range of queries, such as how the optimal solution
would change if certain variables were fixed to certain values, or what alternative
solutions are available if one tolerates a small increase in cost. The power of this
analysis is illustrated in [82, 86] for capital budgeting, network reliability, and
portfolio design problems.

In subsequent work [83], Hadzi¢ and Hooker proposed a cost-bounding method
for reducing the size of the decision diagram used for postoptimality analysis.
Assuming that the optimal value is given, they built a BDD that represents all
solutions whose cost is within a given tolerance of the optimum. Since nearly all
postoptimality analysis of interest is concerned with solutions near the optimum,
such a cost-bounded BDD is adequate. They also showed how to reduce the size of
the BDD significantly by creating a sound cost-bounded BDD rather than an exact
one. This is a BDD that introduces some infeasible solutions, but only when their
cost is outside the tolerance. When conducting sensitivity analysis, the spurious
solutions can be quickly discarded by checking their cost. Curiously, a sound BDD
can be substantially smaller than an exact one even though it represents more
solutions, provided it is properly constructed. This is accomplished by pruning and
contraction methods that remove certain nodes and arcs from the BDD. A number
of experiments illustrated the space-saving advantages of sound BDDs.

Due to the tendency of BDDs to grow exponentially, a truly scalable solution
algorithm for discrete optimization became available only with the introduction of
relaxed decision diagrams. These are discussed in Section 2.3.4 below.

2.3.3 Decision Diagrams in Constraint Programming

Decision diagrams initially appeared in constraint programming as a technique for
processing certain global constraints, which are high-level constraints frequently

used in constraint programming models. An example of a global constraint is

18 2 Historical Overview

ALLDIFFERENT(X), which requires that the set X of variables take distinct values.
Each global constraint represents a specific combinatorial structure that can be
exploited in the solution process. In particular, an associated filtering algorithm
removes infeasible values from variable domains. The reduced domains are then
propagated to other constraints, whose filtering mechanisms reduce them further.?

Decision diagrams have been proposed as a data structure for certain filtering
algorithms. For example, they are used in [70, 90, 107] for constraints defined on
set variables, whose domains are sets of sets. They have also been used in [44, 45] to
help filter “table” constraints, which are defined by an explicit list of allowed tuples
for a set of variables.

It is important to note that in this research, decision diagrams help to filter
domains for one constraint at a time, while information is conveyed to other
constraints in the standard manner through individual variable domains (i.e., through
a domain store). However, decision diagrams can be used for propagation as well,
as initially pointed out by Andersen, Hadzi¢, Hooker and Tiedemann [4]. Their
approach, and the one emphasized in this book, is to transmit information though a
“relaxed” decision diagram rather than through a domain store, as discussed in the
next section. Another approach is to conjoin MDDs associated with constraints that
contain only a few variables in common, as later proposed by Hadzi¢, O’Mahony,
O’Sullivan and Sellmann [87] for the market split problem. Either mechanism prop-
agates information about inter-variable relationships, as well as about individual
variables, and can therefore reduce the search significantly.

2.3.4 Relaxed Decision Diagrams

The concept of a relaxed decision diagram introduced by Andersen, Hadzi¢, Hooker
and Tiedemann [4] plays a fundamental role in this book. This is a decision diagram
that represents a superset of the feasible solutions and therefore provides a discrete
relaxation of the problem, as contrasted with the continuous relaxations typically
used in optimization. A key advantage of relaxed decision diagrams is that they can
be much smaller than exact ones while still providing a useful relaxation, if they
are properly constructed. In fact, one can control the size of a relaxed diagram by
specifying an upper bound on the width as the diagram is built. A larger bound
results in a diagram that more closely represents the original problem.

2 Chapter 9 describes the filtering process in more detail.

2.3 Decision Diagrams in Optimization 19

Andersen et al. originally proposed relaxed decision diagrams as an enhanced
propagation medium for constraint programming, as noted above. They developed
two propagation mechanisms: the removal of arcs that are not used by any solu-
tion, and node refinement, which introduces new nodes in order to represent the
solution space more accurately. They implemented MDD-based propagation for a
system of ALLDIFFERENT constraints (which is equivalent to the graph coloring
problem) and showed experimentally that it can result in a solution that is order of
magnitude faster than using the conventional domain store. MDD-based propagation
for equality constraints was studied in [85]. Following this, generic methods were
developed in [84, 94] for systematically compiling relaxed decision diagrams in a
top-down fashion. The details will described in the remainder of the book, but the
fundamental idea is to construct the diagram in an incremental fashion, associating
state information with the nodes of the diagram to indicate how new nodes and arcs
should be created.

This kind of MDD-based propagation can be added to an existing constraint
programming solver by treating the relaxed decision diagram as a new global
constraint. Ciré and van Hoeve [49] implemented this approach and applied it to
sequencing problems, resulting in substantial improvements over state-of-the-art
constraint programming, and closing several open problem instances.

Relaxed decision diagrams can also provide optimization bounds, because the
shortest top-to-bottom path length in a diagram is a lower bound on the optimal
value (of a minimization problem). This idea was explored by Bergman, Cir¢, van
Hoeve and Hooker in [25, 28], who used state information to build relaxed decision
diagrams for the set covering and stable set problems. They showed that relaxed
diagrams can yield tighter bounds, in less time, than the full cutting plane resources
of commercial integer programming software. Their technique would become a key
component of a general-purpose optimization method based on decision diagrams.

2.3.5 A General-Purpose Solver

Several elements converged to produce a general-purpose discrete optimization
method that is based entirely on decision diagrams. One is the top-down compilation
method for generating a relaxed decision diagram already discussed. Another is
a compilation method for restricted decision diagrams, which are important for

obtaining good feasible solutions (i.e., as a primal heuristic). A restricted diagram is

20 2 Historical Overview

one that represents a proper subset of feasible solutions. Bergman, Ciré, van Hoeve
and Yunes [27] showed that restricted diagrams are competitive with the primal
heuristics in state-of-the-art solvers when applied to set covering and set packing
problems.

A third element is the connection between decision diagrams and dynamic pro-
gramming, studied by Hooker in [97]. A weighted decision diagram, which is one in
which costs are associated with the arcs, can be viewed as the state transition graph
for a dynamic programming model. This means that problems are most naturally
formulated for an MDD-based solver as dynamic programming models. The state
variables in the model are those used in the top-down compilation of relaxed and
restricted diagrams.

One advantage of dynamic programming models is that they allow for state-
dependent costs, affording a great deal of flexibility in the choice of objective
function. A given state-dependent cost function can be represented in multiple
ways by assigning costs to arcs of an MDD, but it is shown in [97] that if the
cost assignment is “‘canonical,” there is a unique reduced weighted diagram for the
problem. This generalizes the uniqueness theorem for classical reduced decision
diagrams. A similar result is proved by Sanner and McAllester [138] for affine
algebraic decision diagrams. The use of canonical costs can reduce the size of a
weighted decision diagram dramatically, as is shown in [97] for a textbook inventory
management problem.

A solver based on these elements is described in [26]. It uses a branch-and-
bound algorithm in which decision diagrams play the role of the linear programming
relaxation in traditional integer programming methods. The solver also uses a novel
search scheme that branches on nodes of a relaxed decision diagram rather than on
variables. It proved to be competitive with or superior to a state-of-the-art integer
programming solver on stable set, maximum cut, and maximum 2-SAT problems,
even though integer programming technology has improved by orders of magnitude
over decades of solver development.

The use of relaxed decision diagrams in the solver has a superficial resem-
blance to state space relaxation in dynamic programming, an idea introduced by
Christofides, Mingozzi and Toth [47]. However, there are fundamental differences.
Most importantly, the problem is solved exactly by a branch-and-bound search
rather than approximately by enumerating states. In addition, the relaxation is
created by splitting or merging nodes in a decision diagram (state transition graph)
rather than mapping the state space into a smaller space. It is tightened by filtering

2.3 Decision Diagrams in Optimization 21

techniques from constraint programming, and it is constructed dynamically as the
decision diagram is built, rather than by defining a mapping a priori. Finally, the
MDD-based relaxation uses the same state variables as the exact formulation, which
allows the relaxed decision diagram to serve as a branching framework for finding

an exact solution of the problem.

2.3.6 Markov Decision Processes

Decision diagrams have also played an auxiliary role in the solution of planning
problems that arise in the artificial intelligence (Al) literature. These problems
are often modeled as stochastic dynamic programming problems, because a given
action or control can result in any one of several state transitions, each with a given
probability. Nearly all the attention in Al has been focused on Markov decision
processes, a special case of stochastic dynamic programming in which the state
space and choice of actions are the same in each period or stage. A Markov decision
process can also be partially observable, meaning that one cannot observe the
current state directly but can observe only a noisy signal that indicates that the
system could be in one of several possible states, each with a known probability.

The solution of stochastic dynamic programming models is complicated not only
by the large state spaces that characterize deterministic models, but by the added
burden of calculating expected immediate costs and costs-to-go that depend on
probabilistic outcomes.® A natural strategy is to simplify and/or approximate the
cost functions, an option that has been explored for many years in the optimization
world under the name approximate dynamic programming (see [129] for a survey).
The Al community has devised a similar strategy. The most obvious approximation
technique is state aggregation, which groups states into sets and lets a single state
represent each set. A popular form of aggregation in Al is “abstraction,” in which
states are implicitly grouped by ignoring some of the problem variables.

This is where decision diagrams enter the picture. The cost functions are sim-
plified or approximated by representing them with weighted decision diagrams, or
rather algebraic decision diagrams (ADDs), which are a special case of weighted

decision diagrams in which costs are attached to terminal nodes. One well-known

3 The expected immediate cost of an action in a given state is the expected cost of taking that action
in that state. The expected cost-to-go is the expected total cost of taking that action and following
an optimal policy thereafter.

22 2 Historical Overview

approach [95] uses ADDs as an abstraction technique to simplify the immediate cost
functions in fully observable Markov decision processes. Some related techniques
are developed in [63, 143].

Relaxation is occasionally used in these methods, but it is very different from the
type of relaxation described above. Perhaps the closest analog appears in [146],
which uses ADDs to represent a relaxation of the cost-to-go function, thereby
providing a valid bound on the cost. Specifically, it attaches cost intervals to leaf
nodes of an ADD that represents the cost function. The ADD is reduced by merging
some leaf nodes and taking the union of the associated intervals. This does not create
a relaxation of the entire recursion, as does node merger as employed in this book,
but only relaxes the cost-to-go in an individual stage of the recursion. The result is
a relaxation that embodies less information about the interaction of stages.

On the other hand, the methods we present here do not accommodate stochastic
dynamic programming. All state transitions are assumed to be deterministic. It
is straightforward to define a stochastic decision diagram, in analogy with the
transition graph in stochastic dynamic programming, but it is less obvious how to
relax a stochastic decision diagram by node merger or other techniques. This poses
an interesting research issue that is currently under study.

Chapter 3

Exact Decision Diagrams

Abstract In this chapter we introduce a modeling framework based on dynamic
programming to compile exact decision diagrams. We describe how dynamic pro-
gramming models can be used in a top-down compilation method to construct
exact decision diagrams. We also present an alternative compilation method based
on constraint separation. We illustrate our framework on a number of classical
combinatorial optimization problems: maximum independent set, set covering, set

packing, single machine scheduling, maximum cut, and maximum 2-satisfiability.

3.1 Introduction

In this chapter we introduce a modeling framework based on dynamic program-
ming (DP) to compile exact decision diagrams, i.e., decision diagrams that exactly
represent the feasible solutions to a discrete optimization problem. We show two
compilation techniques that can exploit this framework: the top-down compilation
method and an alternative method based on constraint separation. Top-down com-
pilation exploits a complete recursive description of the problem, and it is directly
derived from the DP model of the problem. Constraint separation, in turn, is more
suitable to problems that are more naturally written as a composition of models,
each representing a particular substructure of the constraint set.

The chapter is organized as follows: In Section 3.2 we introduce the basic
concepts of exact decision diagrams and the notation to be used throughout this
book. Section 3.4 presents the modeling framework and the top-down compilation

procedure, which are exemplified in a number of classical optimization problems.

© Springer International Publishing Switzerland 2016 23
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_3

24 3 Exact Decision Diagrams

Table 3.1 Data for a small knapsack problem.

Item Profit Weight

1 8 3
2 7 3
3 6 4
4 14 6
Capacity: 6

Section 3.11 presents the constraint by separation method. Finally, Section 3.12

shows the validity of some key DP formulations used throughout this chapter.

3.2 Basic Definitions

In this book we focus on discrete optimization problems of the form

max f(x)
Ci(x), i=1,....m (2)
xeD,
where x = (x1,...,x,) is a tuple of # decision variables, f is a real-valued function
over x, Cj,...,Cy is a set of m constraints, and D = D(x]) X --- X D(x,) is the

Cartesian product of the domains of the variables, i.e., x; € D(x;) for each j. We
assume here that D(x;) is finite for all x;. A constraint C;(x) states an arbitrary
relation between two or more variables, and it is satisfied by x if the relation is
observed and violated otherwise. A solution to & is any x € D, and a feasible
solution to & is any solution that satisfies all constraints C;(x). The set of feasible
solutions of & is denoted by Sol(4?). A feasible solution x* is optimal for & if
f(x*) > f(x) for all x € Sol(4?). We denote by z* = f(x*) the optimal solution
value of Z.

A classical example of a discrete optimization problem is the 0/ knapsack
problem. Given n items, each associated with a weight and a profit, we wish to select
a subset of the items so as to maximize the sum of profits while keeping the total
weight within a specified capacity. For example, Table 3.1 depicts a small knapsack
problem with four items and a knapsack capacity of 6. This instance can be written
as the following discrete optimization problem:

3.3 Basic Concepts of Decision Diagrams 25

max 8x; + 7xp + 6x3 + 14x4
3x1+3x+4x3+6x4 <6 (31)
Xj € {0,1}, j=1,....4.

In the formulation above, we define a variable x; for each item ;j with binary
domain D(x;) = {0, 1} indicating whether item ; is selected (x; = 1) or not (x; = 0).
The objective function is the total profit of the selected items, and there is a single
linear constraint enforcing the weight capacity. The set of feasible solutions is
Sol(£?) = {(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)}. The
optimal solution is x* = (1,1,0,0) and has a value of z* = 15.

3.3 Basic Concepts of Decision Diagrams

For the purposes of this book, a decision diagram (DD) is a graphical structure that
encodes a set of solutions to a discrete optimization problem <. Formally, B =
(U,A4,d) is a layered directed acyclic multigraph with node set U, arc set 4, and arc
labels d. The node set U is partitioned into layers Ly,...,L,,1, where layers L; and
L, consist of single nodes, the root node r and the terminal node t, respectively.
Each arc a € 4 is directed from a node in some L; to a node in L;y; and has a
label d(a) € D(x;) that represents the assignment of value d(a) to variable x;. Thus,
every arc-specified path p = (a(l)7 . ,a(")) from r to t encodes an assignment to the
variables x1,...,x,, namely x; = d(a(-f)) for j=1,...,n. We denote this assignment
by xP. The set of r to t paths of B represents the set of assignments Sol(B).

Figure 3.1 depicts a decision diagram B for the knapsack problem (3.1). The
diagram is composed of five layers, where the first four layers correspond to
variables x1,...,x4, respectively. Every arc a in B represents either a value of 0,
depicted as a dashed arc in the figure, or a value of 1, depicted as a solid arc; e.g.,
d((uy,v1)) = 0. In particular, this DD encodes exactly the set of feasible solutions
to the knapsack problem (3.1). For example, the path p = (r,u;, v, w;, t) represents
the assignment x” = (0, 1,0,0).

The width |L;| of layer L; is the number of nodes in the layer, and the width of
a DD is max;{|L;|}. The size |B| of a DD B is given by its number of nodes. For
instance, the width of B in Fig. 3.1 is 2 and |B| = 8. No two arcs leaving the same
node have the same label, which means that every node has a maximum out-degree
of |D(x;)|. If all variables are binaries, then the DD is a binary decision diagram

26 3 Exact Decision Diagrams

[
T

X1

X2

X3

X4

Fig. 3.1 Exact BDD for the knapsack instance of Table 3.1. Dashed and solid arcs represent arc
labels 0 and 1, respectively. The numbers on the arcs indicate their length.

(BDD), which has been the subject of the majority of studies in the area due to
the applications in Boolean logic [110, 99, 37]. On the other hand, a multivalued
decision diagram (MDD) allows out-degrees higher than 2 and therefore encodes
values of general finite-domain variables.

Because we are interested in optimization, we focus on weighted DDs, in
which each arc a has an associated length v(a). The length of a directed path
p= (a(l)7 e ,a(k)) rooted at r corresponds to v(p) = 2;;1 v(a)). A weighted DD
B represents an optimization problem £ in a straightforward way. Namely, B is an
exact decision diagram representation of & if the r—t paths in B encode precisely
the feasible solutions of &, and the length of a path is the objective function value
of the corresponding solution. More formally, we say that B is exact for &2 when

Sol(Z7) = Sol(B) (3.2)
f(x) = v(p), for all — paths p in B. (3.3)

In Fig. 3.1 the length v(a) is represented by a number on each arc a. One can
verify that the BDD B depicted in this figure satisfies both conditions (3.2) and (3.3)

3.4 Compiling Exact Decision Diagrams 27

for the knapsack problem (3.1). For example, the path p = (r,u;, vy, wy,t) has a
length v(p) = 3, which coincides with f(x?) = £((0,1,0,0)) = 3.

An exact DD reduces discrete optimization to a longest-path problem on a
directed acyclic graph. If p is a longest path in a DD B that is exact for &2, then x” is
an optimal solution of £, and its length v(p) is the optimal value z* (&) = f(x?) of
Z. For Fig. 3.1, the longest path is given by the path p* with length v(p*) = 15 that
crosses nodes (r,uy,v2,ws, t), representing the optimal solution X = (1,1,0,0).

It is common in the DD literature to allow various types of long arcs that skip one
or more layers [37, 116]. Long arcs can improve efficiency because they represent
multiple partial assignments with a single arc, but to simplify exposition, we will
suppose with minimal loss of generality that there are no long arcs throughout this
book. DDs also typically have two terminal nodes, corresponding to true and false,
but for our purposes only a true node is required as the terminal for feasible paths.

Given a DD B, two nodes belonging to the same layer L; are equivalent when the
paths from each to the terminal t are the same; i.e., they correspond to the same set of
assignments to (x;,...,x,), which implies they are redundant in the representation.
A reduced DD is such that no two nodes of a layer are equivalent, as in the case
of the DD in Fig. 3.1. For a given ordering of the variables over the diagram layers,
there exists a unique (canonical) reduced DD which has the smallest width across
DDs with that ordering. A DD can be reduced in linear time on the number of arcs
and nodes of the graph [37, 157].

3.4 Compiling Exact Decision Diagrams

We now present a generic framework for compiling an exact decision diagram en-
coding the solutions of a discrete optimization problem &2. The framework requires
& to be written as a dynamic programming (DP) model and extracts a decision
diagram from the resulting state transition graph. We first describe the elements of a
dynamic programming model, then outline the details of our framework, and finally
show DD examples on different problem classes.

28 3 Exact Decision Diagrams

3.4.1 Dynamic Programming

Dynamic programming (DP) is a recursive optimization method in which a discrete
optimization problem & is formulated in terms of states as opposed to variable
assignments. A DP model is solved in stages, each representing the transition from
a particular state of the system to the next until a final (or ferminal) state is reached.
Each transition is governed by a variable of the problem and incurs a value. The
optimal solution to the problem corresponds to a maximum-value set of transitions
from a given root state to the terminal state.

To illustrate the main ingredients of a DP model, recall the knapsack problem
(3.1). Suppose the weights and profits of item j are w; and p;, respectively, and
that the knapsack capacity is U. We consider a DP formulation where each state
represents the total weight of the selected items up to that stage. Namely, the state
s/ at stage j represents the weight considering that items 1,2, ..., j — 1 have already
been considered for selection or not.

In the initial stage no items have been considered thus far, hence the root state is
such that s! = 0. The transition from stage ; to stage j + 1 depends on the variable
x; (also denoted by control in DP jargon). In stage j, if the control x; selects item
Jj (ie., x; = 1), then the total weight increases by w; and we transition to state
s/t = s/ +w;. Otherwise, the total weight remains the same and we transition to
s/t =/ Thus, s/T! =&/ +w;x;. Since we are only interested in feasible solutions,
the final state s"*!, denoted by terminal state, must satisfy s"*! < U.

Finally, the objective function is represented by profits incurred by each transi-
tion. For the knapsack, we assign a cost of 0 if x; = 0, and p; otherwise. We wish
to find a set of transitions that lead us from the root state to the terminal state with
maximum transition profit. By representing the reached states as state variables in
an optimization model, the resulting DP model for the 0/1 knapsack problem is

given as follows:

n
max ijxj
J=1

S1+1:S1+W]xl’ jil,,l’l (34)
Sl :07 S}’l+l SU

Xj€{071}7 j=1,....n.

3.4 Compiling Exact Decision Diagrams 29

One can verify that any valid solution (x,s) to the DP model above leads to an
assignment x that is feasible to the knapsack model (3.1). Conversely, any feasible
assignment x to model (3.1) has a unique completion (s,x) that is feasible to the
DP model above, thus both models are equivalent. Notice also that the states are
Markovian; i.e., the state s/*! only depends on the control x ; and the previous state
s/, which is a fundamental property of DP models.

The main components of a DP model are the states, the way in which the
controls govern the transitions, and finally the costs of each transition. To specify
this formally, a DP model for a given problem & with n variables having domains
D(x1),...,D(x,) must, in general, consist of the following four elements:

1. A state space S with a root state 7 and a countable set of terminal states
f,b,... k. To facilitate notation, we also consider an infeasible state 0 that
leads to infeasible solutions to &?. The state space is partitioned into sets for
each of the n+ 1 stages; i.e., S is the union of the sets Si,...,S,+1, where
Sy = {7}, Spe1 ={A,....0,0},and 0 € Sjforj=2,....n.

2. Transition functions t; representing how the controls govern the transition
between states; i.e., ; : S; x D; — §;11 for j=1,... 5. Also, a transition from
an infeasible state always leads to an infeasible state as well, regardless of the
control value: ¢;(0,d) = 0 for any d € D;.

3. Transition cost functions hj : SxD; — Rfor j=1,...,n

4. To account for objective function constants, we also consider a root value v,
which is a constant that will be added to the transition costs directed out of the

root state.

The DP formulation has variables (s,x) = (s',...,s""!,x,...,x,) and is written

n
min fsx:z s ,Xj)

sJ“fl,(’ xj), forall x;eD;, j=1,..
sfeSj, j=1,...,n+1.

3.5)

The formulation (3.5) is valid for & if, for every x € D, there is an s € S such
that (s,x) is feasible in (3.5) and

1 =7fand f(s,x) = f(x), if x is feasible for & (3.6)
+1 =0, if x is infeasible for 2. (3.7)

30 3 Exact Decision Diagrams

Algorithm 1 Exact DD Top-Down Compilation

I: Create node r =7andletL; = {r}

2: for j=1tondo

3: let Liv1= 0

4 foralluel;jandd € D;do

5 if¢; (u,d) # 0 then

6: letu' =t;(u,d), add v’ to L1, and set by(u) = ', v(u,u’) = hj(u,u’)
7: Merge nodes in L,y into terminal node t

3.4.2 Top-Down Compilation

The construction of an exact weighted decision diagram from a DP formulation is
straightforward in principle. For a DD B, let b, (u) denote the node at the opposite
end of an arc leaving node u with value v (if it exists). The compilation procedure
is stated as Algorithm 1 and in essence builds the BDD layer by layer starting at
the root node, as follows: Begin with the root node r in layer 1, which corresponds
to the root state 7. Proceed recursively, creating a node for each feasible state that
can be reached from r. Thus, having constructed layer j, let L;;| contain nodes
corresponding to all distinct feasible states to which one can transition from states
represented in L ;. Then add an arc from layer j to layer j+ 1 for each such transition,
with length equal to the transition cost. At the last stage, identify all terminal states
fi,...,f to a terminal node t. Because distinct nodes always have distinct states, the
algorithm identifies each node with the state associated with that node.

Figure 3.2 depicts three consecutive iterations of Algorithm 1 for the 0/1 knap-
sack problem (3.1). The DP states from model (3.4) are represented as grey boxes
next to the nodes that identify them. In the first iteration, presented in Fig. 3.2(a),
layer L is built with the root node r having state 0, and layer L, is built with nodes
u; and u; having states 0 and 3, respectively. In the second iteration, layer L3 is built
with three nodes, as Fig. 3.2(b) shows. Since the arc with label 1 leaving node u;
and the arc with label 0 leaving node u; transition to the same state, their endpoints
are directed to the same node at layer L3. Fig. 3.2(c) depicts one more iteration for
the construction of layer L4. Note that nodes with states 7 and 10 can be removed,
since they violate the knapsack capacity of 6.

Algorithm 1 assumes that the controls xi,...,x, are ordered according to the
DP model input. Nevertheless, as studied in [18], it is often possible to reorder the
controls and obtain DDs of drastically different sizes. In the context of decision
diagrams for optimization, the orderings and the respective size of a DD are closely

3.4 Compiling Exact Decision Diagrams 31
L 0
X1 /

Ly 0@ 3 0

X2 0’
x3

Ly

X4
(a) L] and Lz. (b) L}. (C) L4.

Fig. 3.2 Three consecutive iterations of Algorithm 1 for the 0/1 knapsack problem (3.1). Grey
boxes correspond to the DP states in model (3.4), and black-filled nodes indicate infeasible nodes.

related to the combinatorial structure of the problem that the DD represents. We
present a study case on this relationship in Chapter 7.

The outlined DD construction procedure can also be perceived as a particular
representation of the state-graph of the DP formulation [97]. Suppose that (3.5)
is valid for problem &2, and consider the state-transition graph for (3.5). Omit
all occurrences of the infeasible state 0, and let each remaining arc from state s/
to state tj(sf ,xj) have length equal to the transition cost 4 j(sf ,xj). The resulting
multigraph Bpp is an exact DD for &2, because paths from state » to state ¢ in
Bpp correspond precisely to feasible solutions of (3.5), and the objective function
value of the corresponding solution is the path length. A thorough discussion of this
relationship is discussed in Chapter 8

Finally, we remark in passing that the resulting DD is not necessarily reduced.
Note that, in the DD examples of Fig. 3.2, nodes v, and v3 in layer L3 are equivalent
according to the exact BDD in Fig. 3.1, but they are not merged in the top-down
compilation procedure. In general, identifying if two nodes are equivalent is NP-
hard (which is the case of the knapsack problem), though this can be done efficiently
for certain classes of combinatorial problems such as the maximum independent set
(Section 3.5) and set covering (Section 3.9). Moreover, although reduced DDs play
a key role in circuit verification and some other applications, they can be unsuitable
for optimization, because the arc lengths from equivalent nodes may differ. This will
be the case, e.g., for maximum cut problems described in Section 3.9.

32 3 Exact Decision Diagrams

In the next section we exemplify the DP formulation and the diagram con-
struction for different problem classes in optimization. To facilitate reading, proofs
certifying the validity of the formulations are shown in Section 3.12.

3.5 Maximum Independent Set Problem

Given a graph G = (V,E) with an arbitrarily ordered vertex set ¥ = {1,2,...,n}, an
independent set I is a subset I C V' such that no two vertices in / are connected by
an edge in E. If we associate weights w; > 0 with each vertex j € V/, the maximum
independent set problem (MISP) asks for a maximum-weight independent set of G.
For example, in the graph depicted in Fig. 3.3, the maximum weighted independent
set is / = {2,5} and has a value of 13. The MISP (which is equivalent to the
maximum clique problem) has found applications in many areas, including data
mining [61], bioinformatics [59], and social network analysis [16].
The MISP can be formulated as the following discrete optimization problem:

max Wij

n
j=1
xi+x; <1, forall (i,j) € E (3.8)

x; €{0,1}, forall jeV.

In the formulation above, we define a variable x; for each vertex j € V' with
binary domain D(x;) = {0, 1}, indicating whether vertex j is selected (x; = 1) or
not (x; = 0). The objective function is the weight of the independent set, f(x) =
2;?:1 w;x;, and the constraint set prevents two vertices connected by an edge from
being selected simultaneously. For the graph in Fig. 3.3, the corresponding model is
such that the optimal solution is x* = (0,1,0,0, 1) and the optimal solution value is
z* = 13. Moreover, Sol(2?) is defined by the vectors x that represent the family of
independent sets VU {{1,4},{1,5},{2,5},{3,5}}.

Figure 3.4 shows an exact weighted BDD B for the MISP problem defined over
the graph G in Fig. 3.3. Any r— path in B represents a variable assignment that
corresponds to a feasible independent set of G; conversely, all independent sets
are represented by some r—¢ path in B, hence Sol(Z?) = Sol(B). The size of B is
|B| =11, and its width is 3, which is the width of layer L;. Finally, notice that
the length of each path p corresponds exactly to the weight of the independent set

3.5 Maximum Independent Set Problem 33

2 7

Fig. 3.3 Example of a graph with vertex weights for the MISP. Vertices are assumed to be labeled
arbitrarily, and the number alongside each circle indicates the vertex weight.

represented by x”. In particular, the longest path in B has a value of 13 and yields
the assignment x* = (0,1,0,0, 1), which is the optimum solution to the problem.
To formulate a DP model for the MISP, we introduce a state space where in stage
j we decide if vertex j will be added to a partial independent set, considering that we
have already decided whether vertices 1,2,...,j— 1 are in this partial independent
set or not. In particular, each state s/ in our formulation represents the set of vertices
that still can be added to the partial independent set we have constructed up to stage
Jj. In the first stage of the system, no independent set has been considered so far, thus
the root state is 7 =V, i.e., all vertices are eligible to be added. The terminal state is

X 0, 3
Ve
%
x v 0
N N
/.
s
X3 22 0
N N 7/
X \ -
4 O‘ -0 2
7 v
\
s m//o

Fig. 3.4 Exact BDD for the MISP on the graph in Fig. 3.3. Dashed and solid arcs represent labels
0 and 1, respectively.

34 3 Exact Decision Diagrams

when no more vertices can be considered, 0 = 0. Finally, a state s/ in the j-th stage
is such that s/ C {j,j+1,...,n}.

Given a state s/ in stage j of the MISP, the assignment of the control x ; defines the
next state s/ 1. If x; = 0, then by definition vertex j is not added to the independent
set thus far, and hence s/*! =s;\ {j}. If x; = 1, we add vertex j to the existing
independent set constructed up to stage j, but now we are unable to add any of the
adjacent vertices of j, N(j) ={j’ | (j,j') € E}, to our current independent set. Thus
the new eligibility vertex set is /7! =s;\ (N(j) U{,}). Note that the transition
triggered by x; = 1 will lead to an infeasible independent set if j ¢ s;. Finally, we
assign a transition cost of 0 if x; = 0, and w; otherwise. We wish to find a set of
transitions that lead us from the root state to the terminal state with maximum cost.

Formally, the DP model of the MISP is composed of the following components:

e State spaces: S; = 2"7 for j=2,...,n,#=V,and7 =0
-] A A A J\N(j) , ifj €5/
e Transition functions: ¢;(s/,0) =s/\ {j}, ;(s/,1) = Li\ U) %j v
‘ 0 ,ifjé s/
e Cost functions: h;(s/,0) =0, 2;(s/,1) = w;
e A root value of 0

As an illustration, consider the MISP for the graph in Fig. 3.3. The states
associated with nodes of Bpp are shown in Fig. 3.5. For example, node u; has
state {2,3,4,5}, representing the vertex set 7'\ {1}. The state space described above
yields a reduced DD [23], thus it is the smallest possible DD for a fixed ordering of
variables over the layers.

3.6 Set Covering Problem

The set covering problem (SCP) is the binary program

min ¢!x

Ax> e

ij{O,l}, j=1,...,n,

where ¢ is an n-dimensional real-valued vector, 4 is a 0—1 m X n matrix, and e is the
m-dimensional unit vector. Let a; ; be the element in the i-th row and j-th column
of 4, and define 4; = {i | a; j = 1} for j =1,...,n. The SCP asks for a minimum-

3.6 Set Covering Problem 35
{1,2,3,4,5)
X1 0~ 3

{4,5}

X2

N0 0

A A
(ug) (3,45 (45){4,5)

o0

(165 {5) (w75 (4,5}

-

2
(u9) 0
0

X3

X4

X5

Fig. 3.5 Exact BDD with states for the MISP on the graph in Fig. 3.3.

cost subset V7 C {1,...,n} of the sets A; such that, for all i,a; ; = 1 for some j € V,
i.e., V covers {1,...,m}. It is widely applied in practice, and it was one of the first
combinatorial problems to be proved NP-complete [71].

We now formulate the SCP as a DP model. The state in a particular stage of our
model indicates the set of constraints that still need to be covered. Namely, let C; be
the set of indices of the variables that participate in constraint i, C; = {j |a; ; = 1},
and let last(C;) = max{j|j € C;} be the largest index of C;. The components of
the DP model are as follows:

e State spaces: In any stage, a state contains the set of constraints that still need to
be covered: S; = 2{1-m} U {0} for j = 2,...,n. Initially, all constraints need to
be satisfied, hence 7 = {1,...,m}. There is a single terminal state which indicates
that all constraints are covered: 7 = 0.

o Transition functions: Consider a state s/ in stage j. If the control satisfies x =1
then all constraints that variable x; covers, 4; = {i|a; ;= 1} = {i: j € C;}, canbe
removed from s/. However, if x 7 = 0, then the transition will lead to an infeasible
state if there exists some i such that 1ast(C;) = j, since then constraint i will
never be covered. Otherwise, the state remains the same. Thus:

36 3 Exact Decision Diagrams

ti(s/,1) =5/ \ 4;

4(s7,0) 5:1’ if last'(Ci) > jforallic s/,
0, otherwise.
e Cost functions: hj(sj7xj) = —cx;.

e A root value of 0.

Consider the SCP problem

minimize 2x| 4 xp + 4x3 + 3x4 + 4x5 + 3x¢

subject to x; +x2 +x3 > 1
X1 +x4+x5 > 1 (3.9
X +x4+x6 21

x€{0,1}, i=1,....6.

Figure 3.6 shows an exact reduced BDD for this SCP instance where the nodes
are labeled with their corresponding states. If outgoing 1-arcs (0-arcs) of nodes in
layer j are assigned a cost of ¢; (zero), a shortest #— path corresponds to the solution
(1,1,0,0,0,0) with an optimal value of 3.

Different than the MISP, this particular DP model does not yield reduced DDs in
general. An example is the set covering problem

{1,2,3}

Fig. 3.6 Exact BDD for the SCP problem (3.9).

3.7 Set Packing Problem 37

minimize xj +x, + X3
subject to x; +x3 > 1
xp+x3>1

x1,x2,x3 € {0,1}

and the two partial solutions x' = (1,0), x*> = (0, 1). We have that the state reached
by applying the first and second set of controls is {2} and {1}, respectively. Thus,
they would lead to different nodes in the resulting DD. However, both have the
single feasible completion ¥ = (1).

There are several ways to modify the state function so that the resulting DD is
reduced, as presented in [28]. This requires only polynomial time to compute per
partial solution, but nonetheless at an additional computational cost.

3.7 Set Packing Problem

A problem closely related to the SCP, the set packing problem (SPP), is the binary

program

max CTX

Ax<e

x,E{O,l}, jil,...,l’l,

where c is an n-dimensional real-valued vector, 4 is a 0—1 m X n matrix, and e is the
m-dimensional unit vector. Let a; ; be the element in the i-th row and j-th column
of 4, and define 4; = {i | a; j = 1} for j =1,...,n. The SPP asks for the maximum-
cost subset ¥ C {1,...,n} of the sets A; such that, for all 7,a; ; = 1 for at most one
jev.

We now formulate the SPP as a DP model. The state in a particular stage of our
model indicates the set of constraints for which no variables have been assigned a 1
and could still be violated. As in the SCP, let C; be the set of indices of the variables
that participate in constraint i, C; = {j|a; ; = 1}, and let 1ast(C;) = max{/|j € C;}
be the largest index of C;. The components of the DP model are as follows:

e State spaces: In any stage, a state contains the set of constraints for which no
variables have been assigned a 1: §; = 2{L-mb {0} for j =2,...,n. Initially,

38 3 Exact Decision Diagrams

7 ={1,...,m}. There is a single terminal state f/ = @, when no more constraints
need to be considered.

o Transition functions: Consider a state s/ in stage j. By the definition of a state,
the control x; = 1 leads to the infeasible state 0 if there exists a constraint i that
contains variable x; (i € 4;) and does not belong to s/ If x 7 = 0, then we can
remove from s/ any constraints i for which j = last(C;), since these constraints
will not be affected by the remaining controls. Thus:

tj(s7,0) ="\ {i| 1ast(Ci) = j}

s/, 1) =4 4 S
/ otherwise.

)

o Cost functions: /1;(s/,x;) = —c;x;.
e A root value of 0.

Consider the SPP instance

6
maximize 2)@
i=1

subjectto x| +xp +x3 < 1
X1 +x4+x5 <1 (3.10)
Xy +x4+x6 <1
x;€{0,1}, i=1,....6.

Figure 3.7 shows an exact reduced BDD for this SPP instance. The nodes are
labeled with their corresponding states, and we assign arc costs 1/0 to each 1/0-arc.
A longest r— path, which can be computed by a shortest path on arc weights ¢’ = —¢
because the BDD is acyclic, corresponds to the solution (0,0, 1,0,1,1) and proves
an optimal value of 3.

As in the case of the SCP, the above state function does not yield reduced DDs.
The problem

max xj +x2 +Xx3
x1+x3<1
x+x3<1

x1,%x2,x3 € {0,1}

3.8 Single-Machine Makespan Minimization 39

{1,2,3}

/{1.,2:& 3)
/{w:& {2} “y 3}
.

Fig. 3.7 Exact reduced BDD for the SPP instance (3.10).

has two partial solutions x' = (1,0), x> = (0,1). We have distinct states {2} and
{1} reached by the controls x! and x?, respectively, but both have the single feasible
completion, X = (0).

There are several ways to modify the state function above so that the DD
construction algorithm outputs reduced decision diagrams. For example, one can
reduce the SPP to an independent set problem and apply the state function defined
in Section 3.5, which we demonstrate to have this property in Section 7.

3.8 Single-Machine Makespan Minimization

Let 7 ={1,...,n} for any positive integer n. A permutation w of ¢ is a complete
ordering (71, 7,,...,m,) of the elements of ¢, where m; € # for all i and m; #
m; for all i # j. Combinatorial problems involving permutations are ubiquitous in
optimization, especially in applications involving sequencing and scheduling.

For example, consider the following variant of a single-machine makespan
minimization problem (MMP) [128]: Let _# represent a set of n jobs that must
be scheduled on a single machine. The machine can process at most one job at
a time, and a job must be completely finished before starting the next job. With
each job we associate a position-dependent processing time. Namely, let p;; be the
processing time of job j if it is the i-th job to be performed on the machine. We want

to schedule jobs to minimize the total completion time, or makespan.

40 3 Exact Decision Diagrams

Table 3.2 Processing times of a single-machine makespan minimization problem. Rows and
columns represent the job index and the position in the schedule, respectively.

Position in Schedule
Jobs 1 2 3

1 4 5 9
2 3 7 8
3 1 2 10

Table 3.2 depicts an instance of the MMP with three jobs. According to the
given table, performing jobs 3, 2, and 1 in that order would result in a makespan
of 1 +7+9 = 17. The minimum makespan is achieved by the permutation (2,3,1)
and has a value of 2 + 3 4+ 9 = 14. Notice that the MMP presented here can be solved
as a classical matching problem [122]. More complex position-dependent problems
usually represent machine deterioration, and the literature on this topic is relatively
recent [2].

To formulate the MMP as an optimization problem, we let x; represent the i-th
job to be processed on the machine. The MMP can be written as

n

min Dix;
i=1
xi#x;, Lj=1,...,ni<]j (3.11)
xi€{l,...,n}, i=1,...,n.
Constraints (3.11) indicate that variables x, . .., x, must assume pairwise distinct

values; i.e., they define a permutation of _#. Hence, the set of feasible solutions
to the MMP is the set of permutation vectors of _#. Note also that the objective
function uses variables as indices, which will be shown to be naturally encoded in a
DP model (and, consequently, easily represented in a MDD).

We now formulate the MMP as a DP model. The state in a particular stage of
our model indicates the jobs that were already performed on the machine. The

components of the DP model are as follows:

e State spaces: In a stage j, a state contains the j — 1 jobs that were performed
previously on the machine: §; = 2{Lnby {6} for j =2,...,n. Initially, no jobs
have been performed, hence 7 = 0. There is a single terminal state / = {1,...,n},

when all jobs have been completed.

3.8 Single-Machine Makespan Minimization 41

Transition functions: Consider a state s/ in stage j. By the definition of a state,
the control x; = d for some d € {1,...,n} simply indicates that job d will now
be processed at stage ;. The transition will lead to an infeasible state 0 if d € s/,

because then job d has already been processed by the machine. Thus:

s/u{d},ifd g s/,

0 otherwise.

tj(sj,d) = {

)

Cost functions: The transition cost corresponds to the processing time of the
machine at that stage: /;(s/,d) = —p; 4.
A root value of 0.

Figure 3.8 depicts the MDD with node states for the MMP instance defined in

Table 3.2. In particular, the path traversing nodes r, u3z, us, and ¢ corresponds to

processing jobs 3, 2, 1, in that order. This path has a length of 14, which is the

optimal makespan of that instance.

X1

X2

X3

Fig. 3.8 Example of an MDD for the minimum makespan problem in Table 3.2. Solid, dashed,
and dotted arcs represent labels 1, 2, and 3, respectively.

42 3 Exact Decision Diagrams

Existing works focus on representation issues of the set of permutation vectors
(e.g., [141, 156, 13]). DD representations of permutations have also been suggested
in the literature [117]. The DP model presented here yields the same DD as in [84].
It will be again the subject of our discussion in Chapter 11, where we discuss how to
minimize different scheduling objective functions over the same decision diagram

representation.

3.9 Maximum Cut Problem

Given a graph G = (V,E) with vertex set ¥ = {1,...,n}, a cut (S,T) is a partition
of the vertices in V. We say that an edge crosses the cut if its endpoints are on
opposite sides of the cut. Given edge weights, the value v(S,T) of a cut is the sum
of the weights of the edges crossing the cut. The maximum cut problem (MCP)
is the problem of finding a cut of maximum value. The MCP has been applied to
very-large-scale integration design, statistical physics, and other problems [88, 64].

To formulate the MCP as a binary optimization problem, let x; indicate the set
(S or T) in which vertex j is placed, so that D; = {S, T}. Using the notation S(x) =
{J|xj=S}and T(x) = {j | x; = T}, the objective function is f(x) = v(S(x), T(x)).
Since any partition is feasible, 4’ = 0. Thus the MCP can be written as

max v(S(x),T(x)) (3.12)
XjE{S,T}, j=1,....n.

Consider the graph G depicted in Fig. 3.9. The optimal solution of the maximum
cut problem defined over G is the cut (S,7) = ({1,2,4},{3}) and has a length of 4,
which is the sum of the weights from edges (1,3), (2,3), and (3,4). In our model
this corresponds to the solution x* = (S, S, T,S) with v(S(x*), T (x*)) = 4.

We now formulate a DP model for the MCP. Let G = (¥, E) be an edge-weighted
graph, which we can assume (without loss of generality) to be complete, because
missing edges can be included with weight 0. A natural state variable s/ would be
the set of vertices already placed in S, as this is sufficient to determine the transition
cost of the next choice. However, we will be interested in merging nodes that lead
to similar objective function values. We therefore let the state indicate, for vertex
j,-..,n, the net marginal benefit of placing that vertex in 7, given previous choices.
We will show that this is sufficient information to construct a DP recursion.

3.9 Maximum Cut Problem 43

-1

Fig. 3.9 Graph with edge weights for the MCP.

Formally, we specify the DP formulation as follows: As before, the control
variable is x; € {S,T}, indicating in which set vertex j is placed, and we set
x1 = S without loss of generality. We will use the notation (o))" = max{«,0} and
()" =min{c,0}.

e State spaces: S; = {sk eR"| sf =0,j=1,...,k— 1}, with root state and ter-

minal state equal to (0,...,0)

k+1 Sk+1

e Transition functions: # (s%,x;) = (0, ... 20,85 1558y

), where

k ; —
el {Sé + Wy, ifxp =S
v =

yA=k+1,....n
Sllf—wkg, ifx, =T

e Transition cost: 41 (s!,x;) = 0 forx; € {S, T}, and

(=" + 3, min{ /).yl . ife =8
>k
s}wﬂgo

(s + 3 min{lsfl, pwyel . ifxe=T
>k
spwje20

hk(sk,xk): 5 k:2,...7n

e Root value: v, = Z (wjj/)’
1<j<j'<n

Note that the root value is the sum of the negative arc weights. The state transition
is based on the fact that, if vertex & is added to S, then the marginal benefit of placing
vertex ¢ > k in T (given choices already made for vertices 1,...,k— 1) is increased
by wye. If k is added to T, the marginal benefit is reduced by wy,. Figure 3.10 shows
the resulting weighted BDD for the example discussed earlier.

44 3 Exact Decision Diagrams

Consider again the graph G in Fig. 3.9. Figure 3.10 depicts an exact BDD for the
MCP on G with the node states as described before. A 0-arc leaving L; indicates that
x; =S, and a l-arc indicates x; = T. Notice that the longest path p corresponds to
the optimal solution x? = (S, S, T, S), and its length 4 is the weight of the maximum
cut (S,7) = ({1,2,4},{3}).

3.10 Maximum 2-Satisfiability Problem

Letx = (x1,...,x,) be a tuple of Boolean variables, where each x; can take value T
or F (corresponding to true or false). A literal is a variable x; or its negation —x;.
A clause c; is a disjunction of literals, which is satisfied if at least one literal in ¢;
is true. If C = {cy,...,cm} is a set of clauses, each with exactly two literals, and if
each ¢; has weight w; > 0, the maximum 2-satisfiability problem (MAX-2SAT) is
the problem of finding an assignment of truth values to xp,...,x, that maximizes
the sum of the weights of the satisfied clauses in C. MAX-2SAT has applications
in scheduling, electronic design automation, computer architecture design, pattern
recognition, inference in Bayesian networks, and many other areas [100, 105, 53].
To formulate the MAX-2SAT as a binary optimization problem, we use the
Boolean variables x; with domain D; = {F,T}. The constraint set ¢ is empty, and

(07 07 07 0)

Fig. 3.10 Exact BDD with states for the MCP on the graph in Fig. 3.9.

3.10 Maximum 2-Satisfiability Problem 45

Table 3.3 Data for a small MAX-2SAT problem.

Clause index ~ Clause = Weight

1 X1 Vx3 3
2 —xpVoxg 5
3 —x1 VX3 4
4 X2 VX3 2
5 —x2 VX3 1
6 X2 VX3 5

the objective function is f(x) = ¥, w;c;(x), where ¢;(x) = 1 if x satisfies clause ¢;,
and ¢;(x) = 0 otherwise. We thus write

max Y wici(x) (3.13)

m
i=1
x; € {F,T}, j=1,...,n.

Table 3.3 shows an example for an instance of MAX-2SAT with three Boolean
variables xj, x;, and x3. The optimal solution consists of setting x = (F, T, T). It has
length 19 since it satisfies all clauses but cs.

To formulate MAX-2SAT as a DP model, we suppose without loss of generality
that a MAX-2SAT problem contains all 4 - (;) possible clauses, because missing
clauses can be given zero weight. Thus ¢ contains x; V xi, x; V —xg, =x; VX, and
—x; V —x for each pair j,k € {1,...,n} with j # k. Let ijkT be the weight assigned

to x; V xg, wlTkF the weight assigned to x; V —=x;, and so forth.
: k

We let each state variable s* be an array (Slf ooy Sy

) in which each s’j‘- is the net
benefit of setting x; to true, given previous settings. The net benefit is the advantage
of setting x; = T over setting x; = F. Suppose, for example, that n = 2 and we have
fixed x; = T. Then x; Vx; and x; V —x; are already satisfied. The value of x, makes
no difference for them, but setting x, = T newly satisfies —x; V xp, while x, = F
newly satisfies —x; V —x;. Setting x, = T therefore obtains net benefit wsz — wg .
If x; has not yet been assigned a truth value, then we do not compute a net benefit

for setting x, = T. Formally, the DP formulation is as follows:

e State spaces: S; = {sk eR”| sf =0,j=1,...,k— 1}, with root state and ter-

minal state equal to (0,...,0)

e Transition functions: #(s*,x;) = (0,...,0,s¢*! skt

1s - sSn), Where

46 3 Exact Decision Diagrams

slg—&—wy—wg, ifx; =F

st = (=k+1

sy . , L= yeeesll
s[—&—wké _kaa ifx, =T

e Transition cost: 41 (s!,x;) = 0 for x; € {F,T}, and

(=50 + Zesi (Wit + W/sz +

min { (s§) " +wil, (=) T+ wif}), ifxe =
(") = ky+ TF | . TT ’
(S5) T+ Xk (Wkg T Wiy +
min{(s[+whl (—=sE) T+ whf }), ifx; =T
k=2,...,n

e Rootvalue: v, =0

Figure 3.11 shows the resulting states and transition costs for the MAX-2SAT
instance of Table 3.3. Notice that the longest path p yields the solution x? = (F, T, T)
with length 14.

3.11 Compiling Decision Diagrams by Separation
Constraint separation is an alternative compilation procedure that modifies a DD

iteratively until an exact representation is attained. It can be perceived as a method

analogous to the separation procedures in integer programming (IP). In particular,

X1

X2

X3

Fig. 3.11 Exact BDD with states for the MAX-2SAT problem of Table 3.3.

3.11 Compiling Decision Diagrams by Separation 47

IP solvers typically enhance a continuous relaxation of the problem by adding
separating cuts in the form of linear inequalities to the model if its optimal solution
is infeasible. Such separating cuts may be general (such as Gomory cuts) or may
exploit problem structure. In the same way, construction by separation considers
separating cuts in a discrete relaxation of the problem. The separating cuts now take
the form of DP models that are used to modify the DD instead of linear inequalities,
and either can be general (e.g., separate arbitrary variable assignments) or may
exploit problem structure.

Given a discrete optimization problem 2, the method starts with a DD B’ that
is a relaxation of the exact DD B: Sol(B’) D Sol(B) = Sol(£?). That is, B’ encodes
all the feasible solutions to &2, but it may encode infeasible solutions as well. Each
iteration consists of separating a constraint over B', i.e., changing the node and arc
set of B’ to remove the infeasible solutions that violate a particular constraint of the
problem. The procedure ends when no more constraints are violated, or when the
longest path according to given arc lengths is feasible to & (if one is only interested
in the optimality). This separation method was first introduced in [84] for building
approximate DDs in constraint programming models. The procedure in the original
work, denoted by incremental refinement, is slightly different than that presented
here and will be described in Section 4.7.

The outline of the method is depicted in Algorithm 2. The algorithm starts with
a DD B’ that is a relaxation of &2 and finds a constraint that is potentially violated
by paths in B’. Such a constraint could be obtained by iterating on the original set
of constraints of &2, or from some analysis of the paths of B’. The method now
assumes that each constraint C is described by its own DP model having a state
space and a transition function tjc. Since the states are particular to this constraint
only, we associate a label s(u) with each node u identifying the current state of u,
which is reset to a value of y every time a new constraint is considered. Hence,
for notation purposes here, nodes are not identified directly with a state as in the
top-down compilation method.

The next step of Algorithm 2 is to analyze each arc of B’ separately in a top-down
fashion. If the arc is infeasible according to IIC, it is removed from B’ (nodes without
incoming or outgoing arcs are assumed to be deleted automatically). If the endpoint
of the arc is not associated with any state, it is then identified with the one that
has the state given by tIC Otherwise, if the endpoint of the arc is already associated
with another state, we have to split the endpoint since each node in the DD must
necessarily be associated with a single state. The splitting operation consists of

48 3 Exact Decision Diagrams

Algorithm 2 Exact DD Compilation by Separation
1: Let B' = (U’,4’) be a DD such that Sol(B’) D Sol(Z)
2: while 3 constraint C violated by B’ do
3: Lets(u) =y forall nodesu € B’

4 s(u):="7

5. forj=1tondo

6: forueL;do

7: for each arc a = (u,v) leaving node u do

8: if 1€ (s(u),d(a)) # 0 then

9: Remove arc a from B
10: else if s(v) = x then
11 s(v) :tiC (s(u),d(a))
12: else if s(v) # 5 (s(u),d(a)) then
13: Remove arc (u,v)
14: Create new node v/ with s(v') = tjC (u,d(a))
15: Add arc (u,V)
16: Copy outgoing arcs from v as outgoing arcs from v/
17: L‘,‘ ZZLJ‘U{V/}

adding a new node to the layer, replicating the outgoing arcs from the original node
(so that no solutions are lost), and resetting the endpoint of the arc to this new node.
By performing these operations for all arcs of the DD, we ensure that constraint
C is not violated by any solution encoded by B’. Transition costs could also be
incorporated at any stage of the algorithm to represent an objective function of .
To illustrate the constraint separation procedure, consider the following optimiza-

tion problem Z:

max ixi
i=1
xp+x <1 (3.14)
x+x3<1
x1+x3<1
X1+2x—3x3>2

x1,%2,x3 € {0,1}.
We partition the constraints into two sets:

C = {x1 +x<lxn+x3<1l,x1+x3< 1} and C) = {X1 +2xp — 3x3 > 2}.

3.11 Compiling Decision Diagrams by Separation 49

(r){1,2,3}
/
7/
X1
X2
X3
(a) Initial relaxed DD. (b) First iteration. (c) DD after separating C;.

Fig. 3.12 First three iterations of the separation method for the problem (3.14).

We will compile the exact BDD for & by separating paths that violate constraint
classes C; and C; in that order. The separation procedure requires a BDD encoding
a relaxation of & as input. This can be trivially obtained by creating a 1-width
BDD that contains the Cartesian product of the variable domains, as depicted in
Fig. 3.12(a). The arc lengths have already been set to represent the transition costs.

We now separate the constraint set Cj. Notice that the inequalities in C| define
the constraints of an independent set problem. Thus, we can directly use the state
definition and transition function from Section 3.5 to separate C;. Recall that the
state in this case represents the variable indices that can still be added to the
independent set so far. The state of the root node r is set to s(r) = {1,2,3}. We now
process layer L. The 0-arc and the 1-arc leaving the root node lead to two distinct
states {2,3} and 0, respectively. Hence, we split node u; into nodes us and us as
depicted in Fig. 3.12(b), partitioning the incoming arcs and replicating the outgoing
arcs so that no solutions are lost. Notice now that, according to the independent set
transition function, the 1-arc leaving node us leads to an infeasible state (shaded in
Fig. 3.12(b)), therefore it will be removed when processing layer L,.

The resulting DD after separating constraint C; is presented in Fig. 3.12(c).
Notice that no solution violating Cj is encoded in the DD. The separation procedure
now repeats the same steps to separate constraint C,, defining a suitable state and

modifying the DD as necessary.

50 3 Exact Decision Diagrams

We remark that, in principle, any constraint C can be separated from a DD B’
simply by conjoining B’ with a second DD that represents all solutions satisfying C.
DDs can be conjoined using a standard composition algorithm [157]. However, we
have presented an algorithm that is designed specifically for separation and operates
directly on the given DD. We do so for two reasons: (i) There is no need for an
additional data structure to represent the second DD. (ii) The algorithm contains
only logic that is essential to separation, which allows us to obtain a sharper bound
on the size of the separating DD in structured cases.

There are some potential benefits of this procedure over the top-down approach
of Section 3.4. First, it allows for an easier problem formulation since the com-
binatorial structure of each constraint can be considered separately when creating
the DD, similarly to the modeling paradigm applied in constraint programming.
Second, the separating constraints can be generated dynamically; for example, given
arc lengths on a DD B, the constraints to be separated could be devised from
an analysis of the longest path of B’, perhaps considering alternative modeling
approaches (such as logic-based Benders decomposition methods [96]). Finally, the
DD B’ that contains a feasible longest path could be potentially much smaller than
the exact DD B for &.

As in the top-down approach of Section 3.4, the resulting DD is not necessarily
reduced. If this property is desired, one can reduce a DD by applying a single
bottom-up procedure to identify equivalent nodes, as described in [157].

3.12 Correctness of the DP Formulations

In this section we show the correctness of the MCP and the MAX-2SAT formula-
tions. The proof of correctness of the MISP formulation can be found in [23], the
proof of correctness of the SCP and the SPP formulations in [27], and finally the
proof of correctness of the MMP formulation in [49].

Theorem 3.1. The specifications in Section 3.9 yield a valid DP formulation of the
MCP.

Proof. Note that any solution x € {S, T'}" is feasible, so that we need only show that

n+1 s the terminal

condition (3.6) holds. The state transitions clearly imply that s
state 7 = (0,...,0), and thus s"*! € {#,0}. If we let (s,x) be an arbitrary solution

of (3.5), it remains to show that f(s,x) = f(x). Let H; be the sum of the first k

3.12 Correctness of the DP Formulations 51

transition costs for solution (s,x), so that Hy = le‘-:l h;(s7,x;) and Hy +v, = f(s,%).

It suffices to show that
Hy+vy =Y {w [1<j<j <nxj#x;}, (3.15)
JiJ'

because the right-hand side is f(x). We prove (3.15) as follows: Note first that the
state transitions imply that

sk=1L{ | —Ri_,, forl>k, (3.16)

where

l__ l _
J<k J<k
5= 5=t

We will show the following inductively:

Hi+Ne= X wjp+ Yomin{LL R}, (3.17)
Jj<j'<k 0>k
G

where Ny is a partial sum of negative arc weights, specifically

Ne= 2 (wi)™+ 2 (me) ™,
J<j'<k j<k<t
so that, in particular, N,, = v,.. This proves the theorem, because (3.17) implies (3.15)
when k = n.
We first note that (3.17) holds for £ = 1, because in this case both sides vanish.
We now suppose (3.17) holds for k£ — 1 and show that it holds for £. The definition

of transition cost implies

Hk = kal + (Gkslli)Jr + Z min {|SIE|, |sz| } s
0>k
()'/(S,ZWMZO

where o is 1 if x; = T and —1 otherwise. This and the inductive hypothesis imply

Hy= Y w;y+ Y min {Lﬁfl,Rﬁfl } —Nj_ 1+ (o) T+ Zmin{|si§|, |Wk[|}.
J<j'<k—1 >k >k
fﬁé)?], GkSﬁW/dZO

52 3 Exact Decision Diagrams

We wish to show that this is equal to the right-hand side of (3.17) minus N;. Making
the substitution (3.16) for state variables, we can establish this equality by showing

2, min {LiqaRiq} — Nie1+ (0u(Lf_y — RE_1)" +Ymin { Ly — Rial, |Wk€|}

0>k 0>k
o(Ly_ | —R}_)w>0
— Y wi+ Y min {Li,Ri} _ N,
J<k 0>k
XXy

(3.18)

We will show that (3.18) holds when x; = T. The proof for x; = S is analogous.
Using the fact that R = Rifl + Wi, (3.18) can be written

. k Ve : I4 14 k k
min {kal Ry } + >, min {kal Ry } +(LE —Ry)"
>k
+Y min { L1 — Ri s |sz|}
>k (3.19)

(Lif] 7R/{71 YWie>0

=Lj_ |+ Y min {LﬁqaRiq +sz} — (Nk = Ni—1).
>k

The first and third terms of the left-hand side of (3.19) sum to Lﬁfl . We can therefore
establish (3.19) by showing that, for each ¢ € {k+1,...,n}, we have

= min {L£717R£71 —i—wkg} — Wy, 1fwyy <0
: l 14 : l 14
mm{kal,kal}Jr(l 75)m1n{Lk71 kafl,wM}

:min{L£717R£71+wkg}, ifwy >0

where 6 =1 if Lfﬁl < R@1 and 6 = 0 otherwise. It is easily checked that both

equations are identities.

Theorem 3.2. The specifications in Section 3.10 yield a valid DP formulation of the
MAX-2SAT problem.

Proof. Since any solution x € {F, T}" is feasible, we need only show that the costs
are correctly computed. Thus if (s,x) is an arbitrary solution of (3.5), we wish to
show that f (s,x) = f(x). If Hy, is as before, we wish to show that H, = SAT,(x),
where SAT(x) is the total weight of clauses satisfied by the settings x1, ..., x;. Thus

3.12 Correctness of the DP Formulations 53

SAT(Y) = > (W' [1<j<j <k ape{FT}x=aoriy=p}
Ji'ep

Note first that the state transitions imply (3.16) as in the previous proof, where

Zw > owl 1f7 R! = Zw +Zw]é7for€>k,

1<)<k 1</<k 1<j<k 1</<k
x=T xj=F x=T xj=F

We will show the following inductively:

Hy = SAT4(x) + ¥ min {L,{,R,{} , (3.20)
1>k
This proves the theorem, because (3.20) reduces to H, = SAT,(x) when k = n.
To simplify the argument, we begin the induction with £ = 0, for which both
sides of (3.20) vanish. We now suppose (3.20) holds for £ — 1 and show that it holds

for k. The definition of transition cost implies

H,=H,_+ Gksk +Z (W&F+W&T+min{(s2‘)+ +W[€T,(7S]éf)+ erllsz}) :
0>k
where oy is 1 if x; = T and —1 otherwise. Also « is the truth value x; and § is the

value opposite x;. This and the inductive hypothesis imply

Hy = SAT;_(¥) + 3, min {L" ,Ri} + (opsk)t
>k

+Y (W]%F+W]%T+min{(slé)++W£[T7(Kyt erBF}).
0>k
We wish to show that this is equal to the right-hand side of (3.20). We will establish
this equality on the assumption that x; = T, as the proof is analogous when x; = F.
Making the substitution (3.16) for state variables, and using the facts that Li =
Ly +wEf and R{ =R} | +wiF, it suffices to show

3 min {L,{,R,{} + min {L’,;,l,Rﬁ,l } Lk —RE T

>k
+ 3 (Wi + i+ min{ (L) = R+ 0] (L) — REL) T })
>k
= Y min {Lk 1 Wi R+ wig } + SAT}(x) — SAT)— (x).
0>k

(3.21)

54 3 Exact Decision Diagrams

The second and third terms of the left-hand side of (3.21) sum to Lﬁfl. Also

SAT.(¥) = SATy1 () = L1 + 3, (wii +wi/).
0>k

We can therefore establish (3.21) by showing that
min {Lifl Riy } +min{(L£71 —Ri_) T (R — L) T+ WEeF}
= min {Lifl + Wi iy + W/EZF}

for ¢ > k. It can be checked that this is an identity.

Chapter 4

Relaxed Decision Diagrams

Abstract Bounds on the optimal value are often indispensable for the practical
solution of discrete optimization problems, as for example in branch-and-bound pro-
cedures. This chapter explores an alternative strategy of obtaining bounds through
relaxed decision diagrams, which overapproximate both the feasible set and the
objective function of the problem. We first show how to modify the top-down com-
pilation from the previous chapter to generate relaxed decision diagrams. Next, we
present three modeling examples for classical combinatorial optimization problems,
and provide a thorough computational analysis of relaxed diagrams for the maxi-
mum independent set problem. The chapter concludes by describing an alternative
method to generate relaxed diagrams, the incremental refinement procedure, and

exemplify its application to a single-machine makespan problem.

4.1 Introduction

A weighted DD B is relaxed for an optimization problem &2 if B represents a
superset of the feasible solutions of &2, and path lengths are upper bounds on the

value of feasible solutions. That is, B is relaxed for &2 if

Sol(#7) C Sol(B), 4.1
S(xP) < v(p), forall r— paths p in B for which x” € Sol(Z?). 4.2)

Suppose & is a maximization problem. In Chapter 3, we showed that an exact

DD reduces discrete optimization to a longest-path problem: If p is a longest path in

© Springer International Publishing Switzerland 2016 55
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_4

56 4 Relaxed Decision Diagrams

2 7

Fig. 4.1 Graph with vertex weights for the MISP.

aBDD B that is exact for &2, then x? is an optimal solution of &2, and its length v(p)
is the optimal value z* (&) = f(x?) of 2. When B is relaxed for &, a longest path p
provides an upper bound on the optimal value. The corresponding solution x” may
not be feasible, but v(p) > z*(Z?). We will show that the width of a relaxed DD is
restricted by an input parameter, which can be adjusted according to the number of
variables of the problem and computer resources.

Consider the graph and vertex weights depicted in Fig. 4.1. Figure 4.2(a) repre-
sents an exact BDD in which each path corresponds to an independent set encoded

by the arc labels along the path, and each independent set corresponds to some path.

x 0 Ne RN
/ d / d
x y 0 o 0, |4 0
AN N \
» N *
X3 \0\ 2 \()\ /()/ 2) \Q ~ : 0
N N S

X4 2 2
Xs

(a) (b)

Fig. 4.2 (a) Exact BDD and (b) relaxed BDD for the MISP on the graph in Fig. 4.1.

4.2 Top-Down Compilation of Relaxed DDs 57

A 1-arc leaving layer L; (solid) indicates that vertex j is in the independent set, and
a 0-arc (dashed) indicates that it is not. The longest »—¢ path in the BDD has value
11, corresponding to solution x = (0,1,0,0, 1) and to the independent set {2,5}, the
maximum-weight independent set in the graph.

Figure 4.2(b) shows a relaxed BDD. Each independent set corresponds to a path,
but there are paths p for which x” is infeasible (i.e., not an independent set). For
example, the path p encoding x” = (0,1,1,0,1) does not represent an independent
set because both endpoints of edge (2,3) are selected. The length of each path that
represents an independent set is the weight of that set, making this a relaxed BDD.
The longest path in the BDD is p, providing an upper bound of 13.

Relaxed DDs were introduced by [4] for the purpose of replacing the domain
store used in constraint programming by a richer data structure. Similar methods
were applied to other types of constraints [84, 85, 94], all of which apply an alterna-
tive method of generating relaxation denoted by incremental refinement, described
in Chapter 9. In this chapter we derive relaxed DDs directly from a DP formulation
of the problem. Weighted DD relaxations were used to obtain optimization bounds
in [28, 24], the former of which applied them to set covering and the latter to the

maximum independent set problem.

4.2 Top-Down Compilation of Relaxed DDs

Relaxed DDs of limited width can be built by considering an additional step in the
modeling framework for exact DDs described in Section 3.4. Recall that such a
framework relies on a DP model composed of a state space, transition functions,
transition cost functions, and a root value. For relaxed DDs, the model should also
have an additional rule describing how to merge nodes in a layer to ensure that the
output DD will satisfy conditions (4.1) and (4.2), perhaps with an adjustment in
the transition costs. The underlying goal of this rule is to create a relaxed DD that
provides a tight bound given the maximum available width.

This rule is applied in the following way. When a layer L; in the DD grows
too large during a top-down construction procedure, we heuristically select a subset
M C L; of nodes in the layer to be merged, perhaps by choosing nodes with similar
states. The state of the merged nodes is defined by an operator & (M), and the length
v of every arc coming into a node u € M is modified to Ijs(v,u). The process is

repeated until |L;| no longer exceeds the maximum width .

58 4 Relaxed Decision Diagrams

Algorithm 3 Relaxed DD Top-Down Compilation for Maximum Width W
I: Create node r =7andletL; = {r}
2: for j=1tondo
3: while |L;| > W do
let M =node select(L;), L; < (L; \M)U{®(M)}
forallu € Ljfl and i EDj with b,(u) € Mdo
bilu) B(M), v(ai(u)) < Tis (v(ai(u)) ,by(w))
let Lj+| =0
forallu € L; and d € D(x;) do
if ¢; (u,d) # 0 then
10: letu' =t;(u,d),add v’ to L1, and set by(u) = ', v(u,u') = h;(u,u’)
11: Merge nodes in L, into terminal node ¢

R e AR A

The relaxed DD construction procedure is formally presented in Algorithm 3.
The algorithm uses the notation a,(u) as the arc leaving node u with label v, and
b,(u) to denote the node at the opposite end of the arc leaving node u with value
v (if it exists). The algorithm identifies a node u with the DP state associated with
it. The relaxed DD construction is similar to the exact DD construction procedure
depicted in Algorithm 1, except for the addition of lines 3 to 6 to account for the
node merging rule. Namely, if the layer L; size exceeds the maximum allotted width
W, a heuristic function node select selects a subset of nodes M. The nodes in M are
merged into a new node with state @(M). The incoming arcs in M are redirected to
@ (M), and their transition costs are modified according to Iis(v,u). This procedure
is repeated until |Z ;| < W; when that is the case, the algorithm then follows the same
steps as in the exact DD construction of Algorithm 1.

The two key operations in a relaxed DD construction are thus the merge operator
®(M) and the node selection rule (represented by the function node select in
Algorithm 3). While the first must ensure that the relaxed DD is indeed a valid
relaxation according to conditions (4.1) and (4.2), the second directly affects the
quality of the optimization bounds provided by relaxed DDs. We will now present
valid relaxation operators @ (M) for the maximum independent set, the maximum
cut problem, and the maximum 2-satisfiability problem. In Section 4.6 we present a
computational analysis of how the choice of nodes to merge influences the resulting

optimization bound for the maximum independent set problem.

4.3 Maximum Independent Set 59

4.3 Maximum Independent Set

The maximum independent set problem (MISP), first presented in Section 3.5, can
be summarized as follows: Given a graph G = (V,E) with an arbitrarily ordered
vertex set V' = {1,2,...,n} and weight w; > 0 for each vertex j € ¥/, we wish to
find a maximum-weight set / C V" such that no two vertices in / are connected by an

edge in E. It is formulated as the following discrete optimization problem:

n
max

WX
j=1
w1, forall () € B

x; €{0,1}, forall jeV.

In the DP model for the MISP, recall from Section 3.5 that the state associated
with a node is the set of vertices that can still be added to the independent set. That

is,
e State spaces: S; = 2"7 for j=2,...,n,# =V, andi =
e Transition functions: #;(s/,0) =s/\ {ji}, #;(s/,1)=

e Cost functions: /;(s/,0) =0, h;(s/, 1) = w;
e A root value of 0

To create a relaxed DD for the MISP, we introduce a merging rule into the
DP model above where states are merged simply by taking their union. Hence,
if M = {u; | i € I}, the merged state is &(M) = J,c;u;. The transition cost is not
changed, so that I};(v,u) = v for all v,u. The correctness follows from the fact that a
transition function leads to an infeasible state only if a vertex j is not in s/, therefore
no solutions are lost.

As an example, Fig. 4.3(a) presents an exact DD for the MISP instance defined
on the graph in Fig. 4.1. Figure 4.3(b) depicts a relaxed BDD for the same graph
with a maximum width of 2, where nodes u, and u3 are merged during the top-down
procedure to obtain #’' = u, Uuz = {3,4,5}. This reduces the BDD width to 2.

In the exact DD of Fig. 4.3(a), the longest path p corresponds to the optimal
solution x” = (0,1,0,0, 1) and its length 11 is the weight of the maximum indepen-
dent set {2,5}. In the relaxed DD of Fig. 4.3(b), the longest path corresponds to the
solution (0,1,1,0, 1) and has length 13, which provides an upper bound of 13 on the

60 4 Relaxed Decision Diagrams

{1,2,3,4,5} {1,2,3,4,5}

X1
{4.5}
“ \ o
(us) (3,45 (us) {4.5)
x3 \g /,’0
(u7) {4,5}
X4 2
(u9) 0
X5 .0

Fig. 4.3 (a) Exact BDD with states for the MISP on the graph in Fig. 4.1. (b) Relaxed BDD for
the same problem instance.

objective function. Note that the longest path in the relaxed DD corresponds to an
infeasible solution to that instance.

4.4 Maximum Cut Problem

The maximum cut problem (MCP) was first presented in Section 3.9. Given a graph
G = (V,E) with vertex set ¥ = {1,...,n}, a cut (S,T) is a partition of the vertices
in V. We say that an edge crosses the cut if its endpoints are on opposite sides of the
cut. Given edge weights, the value v(S,T) of a cut is the sum of the weights of the
edges crossing the cut. The MCP is the problem of finding a cut of maximum value.

The DP model for the MCP in Section 3.9 considers a state that represents the
net benefit of adding vertex ¢ to set 7. That is, using the notation (o)™ = max{c,0}
and (o)~ = min{ ¢, 0}, the DP model was:

e State spaces: S; = {sk eR"| sf =0,j=1,...,k— 1}, with root state and ter-

minal state equal to (O0,...,0)

e Transition functions: #(s*,x;) = (0,...,0,s¢*! shtl

t1s - sSn), Where

4.4 Maximum Cut Problem 61

k H _
b _ {s[+wk4, ifx; =S
=

,b=k+1,...,n
sé‘fwkg, ifx, =T

e Transition cost: /21 (s',x;) = 0 for x; € {S,T}, and

(—si)t+ Z min{|s£|7 |wﬂg|}7 ifx; =S
>k
spwje<0

(5% xp) = , k=2,....n

(50" + X min{|s/], byl }, ifre=T
>k
SéWJ[ZO

e Rootvalue:v, = Y, (w;;)~
1<j<j'<n

Recall that we identify each node u € L; with the associated state vector s*. When
we merge two nodes u' and »? in a layer L;, we would like the resulting node 4"V =
®({u,u'}) to reflect the values in u and u’ as closely as possible, while resulting
in a valid relaxation. In particular, path lengths should not decrease. Intuitively, it
may seem that u;ew = max{u‘}, u%} for each j is a valid relaxation operator, because
increasing state values could only increase path lengths. However, this can reduce
path lengths as well. It turns out that we can offset any reduction in path lengths by
adding the absolute value of the state change to the length of incoming arcs.

This yields the following procedure for merging nodes in M. If, for a given /, the
states uy have the same sign for all nodes u € M, we change each uy to the state with
smallest absolute value, and add the absolute value of each change to the length of
arcs entering u. When the states u, differ in sign, we change each u, to zero and
again add the absolute value of the changes to incoming arcs. More precisely, when

M C L we let

min{u,}, ifuy;>0forallueM

ueM
(M) = —min{lul}, ifu <Oforalluc M ¢, E=Fk....n
ue
0, otherwise (MCP-relax)

Ga(vyu) =v+ Y (lue| = |® (M)]), allue M.
>k

Figure 4.5 shows an exact DD and a relaxed DD for the MCP instance defined
over the graph in Fig. 4.4. The relaxed DD is obtained by merging nodes u, and

62 4 Relaxed Decision Diagrams

-1

Fig. 4.4 Graph with edge weights for the MCP.

u3 during top-down construction. In the exact DD of Fig. 4.5(a), the longest path p
corresponds to the optimal solution x” = (S,S,T,S), and its length 4 is the weight
of the maximum cut (S,7) = ({1,2,4},{3}). In the relaxed DD of Fig. 4.5(b), the
longest path corresponds to the solution (S,S, S, S) and provides an upper bound of
5 on the objective function. Note that the actual weight of this cut is 0.

To show that & and I are valid relaxation operators, we rely on Lemma 4.1:

Lemma 4.1. Let B be an exact BDD generated by Algorithm 1 for an instance &
of the MCP. Suppose we add A to one state sl,f in layer k of B (€ > k), and add |A| to
the length of each arc entering the node u associated with s*. If we then recompute
layers k,...,n+ 1 of B as in Algorithm 3, the result is a relaxed BDD for &.

(0’070a0) (0?07()?_2)

Fig. 4.5 (a) Exact BDD with states for the MCP on the graph in Fig. 4.4. (b) Relaxed BDD for the
same problem instance.

4.5 Maximum 2-Satisfiability Problem 63

Proof. Let B’ be the result of recomputing the BDD, and take any x € {S, T}". It
suffices to show that the path p corresponding to x is no shorter in B’ than in B. We
may suppose p contains u, because otherwise p has the same length in B and B'.
Only arcs of p that leave layers L;_1,...,L, can have different lengths in B’. The
length v(a) of the arc a leaving L;_; becomes v(a) + |A|. The states sé along p in
B for j =k,...,n become sé + A in B, and all other states along p are unchanged.
Thus from the formula for transition cost, the length v(a’) of the arc &’ leaving L,

becomes at least

v(a’)+min{((S0 A))", (st+ A +} mm{ ,(s§)+}
> v(a') +min{ (~5f)* - A<s£>++A}—min{< ANC
>v(d)—1A|.

From the same formula, the lengths of arcs leaving L; for j > k and j # ¢ cannot
decrease. As a result, the length v(p) of p in B becomes at least v(p) +|A| — |A| =
v(p)inB'. O

Theorem 4.1. Operators & and I as defined in (MCP-relax) are valid relaxation
operators for the MCP.

Proof. We can achieve the effect of Algorithm 3 if we begin with the exact BDD,
successively alter only one state s’g and the associated incoming arc lengths as pre-
scribed by (MCP-relax), and compute the resulting exact BDD after each alteration.
We begin with states in L, and work down to L,. In each step of this procedure, we
increase or decrease sk = uy by 8 = |u| — | @ (M),| for some M C Ly, where & (M),
is computed using the states that were in L; immediately after all the states in L;_;
were updated. We also increase the length of arcs into u; by 8. This means we can
let A = +0 in Lemma 4.1 and conclude that each step of the procedure yields a

relaxed BDD. O

4.5 Maximum 2-Satisfiability Problem

The maximum 2-satisfiability problem was described in Section 3.10. The interpre-
tation of states is very similar for the MCP and MAX-2SAT. We therefore use the

64 4 Relaxed Decision Diagrams

same relaxation operators (MCP-relax). The proof of their validity for MAX-2SAT
is analogous to the proof of Theorem 4.1.

Theorem 4.2. Operators & and I as defined in (MCP-relax) are valid relaxation
operators for MAX-2SAT.

4.6 Computational Study

In this section we assess empirically the quality of bounds provided by a relaxed
BDD. We first investigate the impact of various parameters on the bounds. We then
compare our bounds with those obtained by a linear programming (LP) relaxation
of a clique-cover model of the problem, both with and without cutting planes. We
measure the quality of a bound by its ratio with the optimal value (or best lower
bound known if the problem instance is unsolved). Thus a smaller ratio indicates a
better bound.

We test our procedure on two sets of instances. The first set, denoted by random,
consists of 180 randomly generated graphs according to the Erdés—Rényi model
G(n,p), in which each pair of n vertices is joined by an edge with probability p.
We fix n = 200 and generate 20 instances for each p € {0.1,0.2,...,0.9}. The
second set of instances, denoted by dimacs, is composed by the complement
graphs of the well-known DIMACS benchmark for the maximum clique problem,
obtained from http://cs.hbg.psu.edu/txnl31/clique.html. These
graphs have between 100 and 4000 vertices and exhibit various types of structure.
Furthermore, we consider the maximum cardinality optimization problem for our
test bed (i.e., w; = 1 for all vertices v;).

The tests ran on an Intel Xeon E5345 with 8 GB RAM in single-core mode. The
BDD method was implemented in C++.

4.6.1 Merging Heuristics

The selection of nodes to merge in a layer that exceeds the maximum allotted width
W is critical for the construction of relaxed BDDs. Different selections may yield
dramatic differences in the obtained upper bounds on the optimal value, since the
merging procedure adds paths corresponding to infeasible solutions to the BDD.

4.6 Computational Study 65

We now present a number of possible heuristics for selecting nodes. This refers to
how the subsets M are chosen according to the function node select in Algorithm 3.
The heuristics we test are described below.

e random: Randomly select a subset M of size |L;| — W + 1 from L;. This may be
used as a stand-alone heuristic or combined with any of the following heuristics
for the purpose of generating several relaxations.

e minLP: Sort nodes in L; in increasing order of the longest path value up to
those nodes and merge the first |L;| — W + 1 nodes. This is based on the idea
that infeasibility is introduced into the BDD only when nodes are merged. By
selecting nodes with the smallest longest path, we lose information in parts of
the BDD that are unlikely to participate in the optimal solution.

e minSize: Sort nodes in L; in decreasing order of their corresponding state sizes
and merge the first two nodes until |Z;| < W. This heuristic merges nodes that
have the largest number of vertices in their associated states. Because larger
vertex sets are likely to have more vertices in common, the heuristic tends to
merge nodes that represent similar regions of the solution space.

We evaluated these three merging heuristics on the random instance benchmark
by considering a maximum width of W = 10 and using the same BDD variable
ordering heuristic for all cases. Specifically, we applied a Maximal Path Decompo-
sition variable ordering (MPD), to be described in details in Section 7.3. Figure 4.6
displays the resulting bound quality.

We see that, among the merging heuristics tested, minLP achieves by far the
tightest bounds. This behavior reflects the fact that infeasibility is introduced only
at those nodes selected to be merged, and it seems better to preserve the nodes with
the best bounds as in minLP. The plot also highlights the importance of using a
structured merging heuristic, since random yielded much weaker bounds than the
other techniques tested. In light of these results, we used minLP as the merging

heuristic for the remainder of the experiments.

4.6.2 Variable Ordering Heuristic

As will be studied in detail in Chapter 7, the ordering of the vertices plays an
important role in not only the size of exact BDDs, but also in the bound obtained by
relaxed BDDs.

66 4 Relaxed Decision Diagrams

T T T T T T T
minLP ——

minSize - - - -
7 + random —-—]__{ _
p N

Bound / Optimal Value

1 1 1 1 1 1 1 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

Fig. 4.6 Bound quality vs. graph density for each merging heuristic, using the random instance
set with MPD ordering and maximum BDD width 10. Each data point represents an average over
20 problem instances. The vertical line segments indicate the range obtained in five trials of the
random heuristic.

For our experiments we apply a dynamic ordering denoted by minState. Suppos-
ing that we have already built layers Ly,...,L;_|, we select the vertex v; appearing
in the fewest number of states associated with the nodes of the last layer L; ;.
This intuitively minimizes the size of L;, since the nodes that must be considered
from L; | are exactly those nodes containing v; in their associated state. Doing
so limits the number of merging operations that need to be performed, and it was
computationally superior to other ordering heuristics as presented in Chapter 7.

4.6.3 Bounds vs. Maximum BDD Width

The purpose of this experiment is to analyze the impact of the maximum BDD width
on the resulting bound. Figure 4.7 presents the results for instance p-hat 300-1
in the dimacs set. The results are similar for other instances. The maximum width
ranges from W =5 to the value necessary to obtain the optimal value of 8. The
bound approaches the optimal value almost monotonically as ¥ increases, but the

convergence is superexponential in 7.

4.6 Computational Study 67

80

70 -

60

50

40

Bound

30

20

1 1
1 10 100 1000
Maximum BDD Width

Fig. 4.7 Relaxation bound vs. maximum BDD width for the dimacs instance p-hat 300-1.

4.6.4 Comparison with LP Relaxation

We now address the key question of how BDD bounds compare with bounds
produced by traditional LP relaxation and cutting planes. To obtain a tight initial
LP relaxation, we used a cligue cover model [78] of the maximum independent
set problem, which requires computing a clique cover before the model can be
formulated. We then augmented the LP relaxation with cutting planes generated
at the root node by the CPLEX MILP solver.

Given a collection € C 2" of cliques whose union covers all the edges of the

graph G, the clique cover formulation is

max Z Xy

velV

s.t. va <1, forallS§€%

ves

x, €{0,1}.

The clique cover ¥ was computed using a greedy procedure. Starting with € = 0,
let clique S consist of a single vertex v with the highest positive degree in G. Add
to S the vertex with highest degree in G \ S that is adjacent to all vertices in S, and
repeat until no more additions are possible. At this point, add S to %, remove from
G all the edges of the clique induced by S, update the vertex degrees, and repeat the
overall procedure until G has no more edges.

68 4 Relaxed Decision Diagrams

We solved the LP relaxation with ILOG CPLEX 12.4. We used the interior point
(barrier) option because we found it to be up to 10 times faster than simplex on the
larger LP instances. To generate cutting planes, we ran the CPLEX MILP solver
with instructions to process the root node only. We turned off presolve, because no
presolve is used for the BDD method, and it had only a marginal effect on the results
in any case. Default settings were used for cutting plane generation.

The results for the random instance set appear in Table 4.1 and are plotted
in Fig. 4.8. The table displays geometric means, rather than averages, to reduce
the effect of outliers. It uses shifted geometric means! for computation times. The
computation times for LP include the time necessary to compute the clique cover,
which is much less than the time required to solve the initial LP for random
instances, and about the same as the LP solution time for dimacs instances.

The results show that BDDs with width as small as 100 provide bounds that,
after taking means, are superior to LP bounds for all graph densities except 0.1. The
computation time required is about the same overall—more for sparse instances,
less for dense instances. The scatter plot in Fig. 4.9 (top) shows how the bounds
compare on individual instances. The fact that almost all points lie below the
diagonal indicates the superior quality of BDD bounds.

Table 4.1 Bound quality and computation times for LP and BDD relaxations, using random
instances. The bound quality is the ratio of the bound to the optimal value. The BDD bounds
correspond to maximum BDD widths of 100, 1000, and 10,000. Each graph density setting is
represented by 20 problem instances.

Bound quality (geometric mean) Time in seconds (shifted geom. mean)
LP relaxation BDD relaxation LP relaxation BDD relaxation
Density LP only LP+cuts 100 1,000 10,000 LP only LP+cuts 100 1,000 10,000

0.1 1.60 1.50 1.64 1.47 138 0.02 3.74 0.13 1.11 15.0
0.2 1.96 1.76 1.80 1.55 1.40 0.04 9.83 0.10 0.86 13.8
0.3 2.25 1.93 1.83 1.52 1.40 0.04 7.75 0.08 0.82 11.8
0.4 2.42 2.01 1.75 137 1.17 0.05 10.6 0.06 0.73 7.82
0.5 2.59 2.06 1.60 1.23 1.03 0.06 13.6 0.05 049 3.88
0.6 2.66 2.04 143 1.10 1.00 0.06 15.0 0.04 0.23 0.51
0.7 2.73 1.98 1.28 1.00 1.00 0.07 15.3 0.03 0.07 0.07
0.8 2.63 1.79 1.00 1.00 1.00 0.07 9.40 0.02 0.02 0.02
0.9 2.53 1.61 1.00 1.00 1.00 0.08 4.58 0.01 0.01 0.01

All 2.34 1.84 145 1.23 1.13 0.05 9.15 0.06 0.43 2.92

! The shifted geometric mean of the quantities vy, ...,v, is g— &, where g is the geometric mean
ofvi+a,...,v,+a. Weused a = 1 second.

4.6 Computational Study 69

2.8

26

24

22

Bound / Optimal Value

1 \ \ \ e e, .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

Fig. 4.8 Bound quality vs. graph density for random instances, showing results for LP only, LP
plus cutting planes, and BDDs with maximum width 100, 1,000, and 10,000. Each data point is
the geometric mean of 20 instances.

More important, however, is the comparison with the tighter bounds obtained
by an LP with cutting planes, because this is the approach used in practice. BDDs
of width 100 yield better bounds overall than even an LP with cuts, and they do
so in less than 1% of the time. However, the mean bounds are worse for the two
sparsest instance classes. By increasing the BDD width to 1000, the mean BDD
bounds become superior for all densities, and they are still obtained in 5% as much
time overall. See also the scatter plot in Fig. 4.9 (middle). Increasing the width to
10,000 yields bounds that are superior for every instance, as revealed by the scatter
plot in Fig. 4.9 (bottom). The time required is about a third as much as LP overall,
but somewhat more for sparse instances.

The results for the dimacs instance set appear in Table 4.2 and Fig. 4.10, with
scatter plots in Fig. 4.11. The instances are grouped into five density classes, with
the first class corresponding to densities in the interval [0,0.2), the second class to
the interval [0.2,0.4), and so forth. The table shows the average density of each
class. Table 4.3 shows detailed results for each instance.

BDDs of width 100 provide somewhat better bounds than the LP without cuts,
except for the sparsest instances, and the computation time is somewhat less overall.
Again, however, the more important comparison is with LP augmented by cutting
planes. BDDs of width 100 are no longer superior, but increasing the width to

70 4 Relaxed Decision Diagrams

T T T T
3r 1
€
=}
E 25 1
a
o
el
c
3
a 2 - . 1
o //; ° e o .
=4 T e o
% . =
9 & T -
@ 45t - .« A
. - oo
e
.o
- .
1 L i o & 1
1 1.5 2 25 3
LP bound / optimum
T T T T T —
221 A
€ 2r d
>
£
a
o 18 1
o
c
> .
8 16t % ee . em .
o 4 bR P
S YT el e
~ "l". . oo o *
n 14+ ® .o 1
a com
m - o .
12 coeme 1
fa—
1 /// 1 1 1 o Gommee- 1
1 1.2 1.4 1.6 1.8 2 2.2
LP+cuts bound / optimum
T T T T T T
221 1
E 2F 1
=}
£
a
R K] 1
o
c
>
o
Q 1 6 = 4
= 14 ewen ..
8 - "X . o o e]
m T .-
1l -
come
- o
P .
1 /// 1 1 1 o Pri— 1
1 1.2 1.4 1.6 1.8 2 2.2

LP+cuts bound / optimum

Fig. 4.9 Bound quality for an LP relaxation vs. width BDDs for random instances. Each data
point represents one instance. The three plots show results for BDDs of maximum width 100 (top),
1000 (middle), and 10,000 (bottom). The LP bound in the last two plots benefits from cutting
planes.

4.6 Computational Study 71

Table 4.2 Bound quality and computation times for LP and BDD relaxations, using dimacs
instances. The bound quality is the ratio of the bound to the optimal value. The BDD bounds
correspond to maximum BDD widths of 100, 1,000, and 10,000.

Bound quality (geometric mean) Time in seconds (shifted geom. mean)
Avg. LP relaxation BDD relaxation LP relaxation BDD relaxation
Density Count LP only LP+cuts 100 1,000 10,000 LP only LP+cuts 100 1,000 10,000

0.09 25 1.35 1.23 1.62 1.48 1.4l 0.53 6.87 1.22 645 554
029 28 2.07 1.77 194 1.63 146 0.55 502 0.48 3.51 343
0.50 13 2.54 209 216 1.81 159 463 149 099 6.54 43.6
0.72 7 3.66 2.46 1.90 1.40 1.14 2.56 45.1 036 292 104
0.89 5 1.07 1.03 1.00 1.00 1.00 0.81 4.19 0.0l 0.01 0.01

All 78 1.88 1.61 1.78 1.54 1.40 1.08 27.7 072 418 29.7

1000 yields better mean bounds than LP for all but the sparsest class of instances.
The mean time required is about 15% that required by LP. Increasing the width
to 10,000 yields still better bounds and requires less time for all but the sparsest
instances. However, the mean BDD bound remains worse for instances with density
less than 0.2. We conclude that BDDs are generally faster when they provide better
bounds, and they provide better bounds, in the mean, for all but the sparsest dimacs

instances.

BDD 10000 — - -

Bound / Optimal Value

.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

Fig. 4.10 Bound quality vs. graph density for dimacs instances, showing results for LP only, LP
plus cutting planes, and BDDs with maximum width 100, 1,000, and 10,000. Each data point is
the geometric mean of instances in a density interval of width 0.2.

72 4 Relaxed Decision Diagrams

T T ———T—TT T
15 E
o
10+ 1
e | .
E | .]
8. F 4
~ 5 | -
el
5
IS * 1
o .
8 4
[a]
a
o]
1 1 - 1
10 15
LP bound / optimum
T T ———T—TT —
15+ 1
10 1
g [o
€ L i
a L]
o e,
S 5t .]
5
3 L]
Qo .
3
S [K 1
-~ .
[a) .
a * . |
m .
.
.
1 L 1
5 10 15
LP+cuts bound / optimum
10 ; . e
€ r , b
=1 L
£ st A~ 1
a
o
© .
5 ;
5t g 1
o
o .
S o o
=) 5L . ".’ o |
a * P
m e . .
P LA
- . . M
0‘ ‘e) .
.4 S
1 5 10

2
LP+cuts bound / optimum

Fig. 4.11 Bound quality for an LP relaxation vs. BDDs for dimacs instances. The three plots
show results for BDDs of maximum width 100 (top), 1000 (middle), and 10,000 (bottom). The LP
bound in the last two plots benefits from cutting planes.

4.6 Computational Study

Table 4.3 Bound comparison for the dimacs instance set, showing the optimal value (Opt),
the number of vertices (Size), and the edge density (Den). LP times correspond to clique cover
generation (Clique), processing at the root node (CPLEX), and total time. The bound (Bnd) and
computation time are shown for each BDD width. The best bounds are shown in boldface (either

LP bound or one or more BDD bounds).

Instance

Name

brock200 1
brock200 2
brock200 3
brock200 4
brock400 1
brock400 2
brock400 3
brock400 4
brock800 1
brock800 2
brock800 3
brock800 4
C1000.9
C125.9
€2000.5
€2000.9
C250.9
C4000.5
C€500.9
c-fat200-1
c-fat200-2
c-fat200-5
c-fat500-10
c-fat500-1
c-fat500-2
c-fat500-5
2en200 p0.9 44
gen200 p0.9 55
gen400 p0.9 55
gen400 p0.9 65
gen400 p0.9 75
hamming10-2
hamming10-4
hamming6-2
hamming6-4
hamming8-2
hamming8-4
johnson16-2-4
johnson32-2-4
johnson8-2-4
johnson8-4-4
keller4
kellers
keller6
MANN a27
MANN a45
MANN a8l
MANN a9

p hat1000-1
p hat1000-2
p hat1000-3
p hat1500-1
p hat1500-2
p hat1500-3
p hat300-1

p hat300-2

p hat300-3

p hat500-1

p hat500-2

p hat500-3

p hat700-1

p hat700-2

p hat700-3
san1000
san200 0.7 1
san200 0.7 2
san200 0.9 1
san200 0.9 2
san200 0.9 3
san400 0.5 1
san400 0.7 1
san400 0.7 2
san400 0.7 3
san400 0.9 1
sanr200 0.7
sanr200 0.9
sanr400 0.5
sanr400 0.7

Opt

21
12
15
17
27
29
31
33
23
24
25
26
68
34
16
77
44
18
57
12
24
58
126
14
26
64
44
55
55
65
75
512
40
32
4
128
16
8
16
4
14
11
27
59
126
345
1100
16
10
46
68
12
65
9%
8
25
36
9
36
50
11
44
62
15
30
18
70
60
44
13
40
30
22
100
18
42
13
21

Size

200
200
200
200
400
400
400
400
800
800
800
800
1000
125
2000
2000
250
4000
500
200
200
200
500
500
500
500
200
200
400
400
400
1024
1024
64
64
256
256
120
496
28
70
171
776
3361
378
1035
3321
45
1000
1000
1000
1500
1500
1500
300
300
300
500
500
500
700
700
700
1000
200
200
200
200
200
400
400
400
400
400
200
200
400
400

Den

0.25
0.50
0.39
0.34
0.25
0.25
0.25
0.25
0.35
0.35
0.35
0.35
0.10
0.10
0.50
0.10
0.10
0.50
0.10
0.92
0.84
0.57
0.63
0.96
0.93
0.81
0.10
0.10
0.10
0.10
0.10
0.01
0.17
0.10
0.65
0.03
0.36
0.24
0.12
0.44
0.23
035
0.25
0.18
0.01
0.00
0.00
0.07
0.76
0.51
0.26
0.75
0.49
0.25
0.76
0.51
0.26
0.75
0.50
0.25
0.75
0.50
0.25
0.50
0.30
0.30
0.10
0.10
0.10
0.50
0.30
0.30
0.30
0.10
0.30
0.10
0.50
0.30

LP with cutting planes
Time (sec)
Bound Clique CPLEX

3851
2245
28.20
31.54
66.10
66.47
66.35
66.28
96.42
97.24
95.98
96.33
219.934
41.29
154.78
398.924
71.53
295.67
124.21
12.00
24.00
61.70
126.00
16.00
26.00
64.00
44.00
55.00
55.00
65.00
75.00
512.00
51.20
32.00
533
128.00
16.00
8.00
16.00
4.00
14.00
15.00
31.00
63.00
132.82
35797
1129.57
17.00
4345
93.19
152.74
62.83
138.13
223.60
16.778
34.60
55.49
25.69
54.17
86.03
533.10
71.83
114.36
16.00
30.00
18.00
70.00
60.00
44.00
13.00
40.00
30.00
22.00
100.00
34.02
59.60
39.30
60.05

0
0.02
0.01
0.01
0.05
0.04
0.05
0.05
0.73
0.73
0.72
0.73

0.2
0.00
35.78
2.88
0.00
631.09
0.03
0.04
0.05
0.07
1.89
1.03
0.81
1.51
0.00
0.00
0.02
0.02
0.02
0.01
0.50
0.00
0.00
0.00
0.02
0.00
0.01
0.00
0.00
0.00
0.36
55.94
0.00
0.01
0.07
0.00
538
330
1.02
21.71
13.42
4.00
0.10
0.06
0.02
0.52
0.30
0.11
1.64
1.00
0.30
43.14
0.02
0.02
0.00
0.00
0.00
1.09
0.33
0.31
0.28
0.02
0.01
0.00
0.13
0.06

9.13
13.56
11.24

9.11

164.92
178.17
164.55
160.73
1814.64
1824.55
2587.85
1850.77
1204.41
1.51
3601.41
3811.94
6.84
3601.22
64.56

0.95

0.15
3585

2.80
27.79

7.71

3.05

0.52

2.04

1.97

3.08

7.94

0.22

305.75

0.00

0.10

0.01

2.54

0.00

0.00

0.00

0.00

0.45
39.66

3601.09

1.31

1.47
11.22

0.01

362.91
524.82
1112.94
1664.41
1955.38
2665.67
20.74
29.73
25.50
4229
195.59
289.12
115.55
460.58
646.96
180.46

0.74

1.55

0.16

0.49

0.46
10.08
16.91
12.22

6.38

6.52

9.00

332

281.21
168.64

Total

9.13
13.58
11.25

9.12

164.97
178.21
164.60
160.78
1815.37
1825.28
2588.57
1851.50
1204.61
1.51
3637.19
3814.82
6.84
423231
64.59
0.99

0.2
35.92

4.69
28.82

8.52

4.56

0.52

2.04

1.99

3.1
7.96
0.23

306.25

0.00

0.10

0.01

2.56

0.00

0.01

0.00

0.00

0.45
40.02

3657.03

1.31

1.48
11.29

0.01

368.29
528.12
1113.96
1686.12
1968.80
2669.67
20.84
29.79
25.52
42.81
195.89
289.23
117.19
461.58
647.26
223.60

0.76

1.57

0.16

0.49

0.46
11.17
17.24
12,53

6.66

6.54

9.01

332

281.34
168.70

Relaxed BDD
Width 100 Width 1,000 Width 10,000

Bnd

36
17
24
29
68
69
67
68
89

110
114
118
549
111

32

132

12
33

14
15
55

152
387
1263
18
33
118
194
47
187
295
12
42
67
19
70
111
24
96
149
19
30
19
71
66
60

45
39
31
123
31
67
31
58

Sec

0.08
0.06
0.06
0.08
0.34
0.34
0.34
0.35
1.04
1.02
1.01
1.02
3.40
0.05
4.66
13.56
0.21
18.73
0.85
0.00
0.00
0.00
0.01
0.02
0.01
0.01
0.14
0.14
0.56
0.55
0.54
5.05
3.10
0.01
0.00
0.26
0.10
0.02
0.72
0.00
0.00
0.05
1.53
37.02
0.46
2.83
20.83
0.00
0.76
1.23
220
226
311
5.14
0.06
0.11
0.20
0.18
0.31
0.55
0.35
0.60
1.08
1.14
0.08
0.06
0.13
0.13
0.13
0.19
0.32
0.32
0.31
0.56
0.08
0.14
0.21
0.30

Bnd

31
14
19
23
56
57
55
55
67

126

105

367
1215
16
20
103
167
28
155
260

38
60
13
61
97
15
80
134
15
30
18
70
60
54
13
40
32
26
107
28
60
24
47

Sec

0.78
45
0.70
0.81
334
334
3.24
332
13.17
13.11
12.93
12.91
28.93
0.43
67.71
118.00
1.80
195.05
7.42
0.00
0.00
0.00
0.01
0.01
0.00
0.01
1.17
1.19
4.76
4.74
4.64
48.17
3093
0.09
0.00
245
1.01
0.10
6.10
0.00
0.06
0.30
16.96
361.31
3.71
26.73
25423
0.00
13.99
16.48
21.96
35.87
36.76
47.90
0.19
1.25
2.15
2.12
4.23
597
595
8.09
1132
15.01
0.62
0.50
1.08
1.14
1.18
1.27
297
3.50
3.68
4.66
0.82
1.17
4.09
3.52

Bnd

28
12
16
20
48
47
48
48
55
55
55
56
219
39
59
397
67
107
120
12
24
58
126
14
26
64
53
61
92
94
100
542
85
32
4

16
8
29
4
14
11
50
136
136
389
1193
16
14

Sec

13.05
4.09
831

10.92

4751

51.44

4729

47.82

168.72
180.45
209.72
221.07
314.99
573
1207.69
1089.96
23.69
3348.65

84.66
0.00
0.00
0.00
0.01
0.01
0.01
0.01

15.94

15.74

5931

56.99

59.41

484.66
322,94
1.20
0.00

25.70

10.32
0.23

50.65
0.00
0.36
2.59

178.04
3856.53
41.90
285.05
2622.59
0.00
117.45
224.92
313.71
453.13
476.65
503.55
0.22

11.79

27.61
9.54

51.57

85.50

34.68

82.10

127.37

99.71
7.80
6.50

12.88

14.96

15.41
5.00

33.58

38.96

4145

57.46

11.88

15.51

35.88

51.93

74 4 Relaxed Decision Diagrams

4.7 Compiling Relaxed Diagrams by Separation

An alternative procedure to compile relaxed DDs can be obtained by modifying the
separation procedure of Section 3.11 in a straightforward way. Recall that such a
procedure would separate constraint classes one at a time by splitting nodes and
removing arcs until the exact DD was attained. At each iteration of the separation
procedure, the set of solutions represented in the DD was a superset of the solutions
of the problem, and no feasible solutions were ever removed. Thus, the method
already maintains a relaxed DD at all iterations (considering transition costs were
appropriately assigned). To generate a limited-size relaxed DD, we could then
simply stop the procedure when the size of a layer reached a given maximum width
and output the current DD.

Even though valid, this method generates very weak relaxed DDs as not all
constraints of the problem are necessarily considered in the relaxation, i.e., the
procedure may stop if separation on the first constraints generates DDs with max-
imum width. A modified and more effective version of the separation procedure
was developed in [84] and [94] under the name of incremental refinement. Incre-
mental refinement was particularly used to create discrete relaxations for constraint
satisfaction systems. As in the separation construction for exact DDs, the method
also considers one constraint at a time. However, for each constraint, the steps of
the algorithm are partitioned into two phases: filtering and refinement. Filtering
consists of removing arcs for which all paths that cross them necessarily violate the
constraint. Thus, in our notation, filtering is equivalent to removing arcs for which
the corresponding transition functions lead to an infeasible state 0. Refinement
consists of splitting nodes to strengthen the DD representation, as long as the size
of the layer does not exceed the maximum width . As before, we can split nodes
based on the state associated with the constraint.

A key aspect of the filtering and refinement division is that both operations
are perceived as independent procedures that can be modified or applied in any
order that is suitable to the problem at hand. Even if the maximum width is
already met, we can still apply the filtering operation of all constraints to remove
infeasible arcs and strengthen the relaxation. Refinement may also be done in a
completely heuristic fashion, or restricted to only some of the constraints of the
problem. Moreover, we can introduce redundant states during filtering in order to
identify sufficient conditions for the infeasibility of arcs, very much like redundant
constraints in constraint programming potentially result in extra filtering of the

4.7 Compiling Relaxed Diagrams by Separation 75

variable domains. Nevertheless, since not all nodes are split, their associated state
may possibly represent an aggregation of several states from the exact DD. Extra
care must be taken when defining the transition and cost functions to ensure the
resulting DD is indeed a relaxation. This will be exemplified in Section 4.7.1.

A general outline of the relaxed DD compilation procedure is presented in
Algorithm 4. The algorithm also requires a relaxed DD B’ as input, which can
be trivially obtained, e.g., using a 1-width DD as depicted in Fig. 4.12(a). The
algorithm traverses the relaxed DD B’ in a top-down fashion. For each layer j, the
algorithm first performs filtering, i.e., it removes the infeasible arcs by checking
whether the state transition function evaluates to an infeasible state 0. Next, the
algorithm splits the nodes when the maximum width has not been met. If that is not
the case, the procedure updates the state s associated with a node to ensure that the
resulting DD is indeed a relaxation. Notice that the compilation algorithm is similar
to Algorithm 2, except for the width limit, the order in which the infeasible state 0

Algorithm 4 Relaxed DD Compilation by Separation (Incremental Refinement):
Max Width W

1: Let B' = (U’,A’) be a DD such that Sol(B’) D Sol(#)

2: while 3 constraint C violated by B’ do

3: Lets(u) =y forall nodesu € B'

4 s(r):=r
5: forj=1tondo
6: // Filtering
7: forueL;do
8: for each arc a = (u,v) leaving node u do
9: if 1€ (s(u),d(a)) # 0 then
10: Remove arc a from B
11: // Refinement
12: forueL;do
13: for each arc a = (u,v) leaving node u do
14: if s(v) = x then
15: s(v) = tjc (s(u),d(a)
16: else if s(v) # ¢ (s(u),d(a)) and |L;| < W then
17: Remove arc (u,v)
18: Create new node v with s(v/) = 1§ (u,d(a))
19: Add arc (u,V)
20: Copy outgoing arcs from v as outgoing arcs from v/
21: Lj Z:LjU{V/}
22: else

23: Update s(v) with tjC (s(u),d(a))

76 4 Relaxed Decision Diagrams

X3

(a) Initial relaxed DD. (b) Job 1 is exact. (c) Exact DD.

Fig. 4.12 Three phases of refinement for a set of jobs {1,2,3}. Jobs are ranked lexicographically.

and the equivalence of states are checked, and the state update procedure. Filtering
and refinement details (such as their order) can also be modified if appropriate.

4.7.1 Single-Machine Makespan Minimization

We now present an example of the incremental refinement procedure for the single-
machine makespan minimization problem (MMP) presented in Section 3.8. Given a
positive integer n, let _# = {1,...,n} be a set of jobs that we wish to schedule on
a machine that can process at most one job at a time. With each job we associate a
processing time p;;, indicating the time that job j requires on the machine if it is the
i-th job to be processed. We wish to minimize the makespan of the schedule, i.e.,
the total completion time. As discussed in Section 3.8, the MMP can be written as
the following optimization problem:

n

min) piy

i=1
ALLDIFFERENT(X,...,X;) (4.3)

xi€{l,...,n}, i=1,...,n.

We will now show how to define the filtering and refinement operations for the
constraint (4.3). The feasible solutions are defined by all vectors x that satisfy the
ALLDIFFERENT constraint in (4.3); that is, they are the permutations of J without

4.7 Compiling Relaxed Diagrams by Separation 77

repetition. The states used for filtering and refinement for ALLDIFFERENT were
initially introduced by [4] and [94].

4.7.1.1 Filtering

In the filtering operation we wish to identify conditions that indicate when all order-
ings identified by paths crossing an arc a always assign some job more than once.
Let an arc a be infeasible if such a condition holds. We can directly use the state
and transition function defined in Section 3.8; i.c., the state at a stage j represents
the jobs already performed up to j. However, to strengthen the infeasibility test, we
will also introduce an additional redundant state that provides a sufficient condition
to remove arcs. This state represents the jobs that might have been performed up to
a stage. To facilitate notation, we will consider a different state label s(u) with each
one of these states, as they can be computed simultaneously during the top-down
procedure of Algorithm 4.

Namely, let us associate two states Alli C 7 and Somei C _7 to each node u
of the DD. The state All}, is the set of arc labels that appear in a// paths from the
root node r to u (i.e., the same as in Section 3.8), while the state Someﬁ is the set
of arc labels that appear in some path from the root node r to u. We trivially have
Alli = Somei =0.

Instead of defining the transitions in functional form, we equivalently write them
with respective to the graphical structure of the DD. To this end, let in(v) be the set
of incoming arcs at a node v. It follows from the definitions that 4/f; and Some}, for
some node v # r can be recursively computed through the relations

All,= () Ai,u{d(a)}), (4.4)
a=(u,v)€in(v)
Somet = U (Some} U{d(a)}). (4.5)

a=(u,v)€in(v)
For example, in Fig. 4.12(b) we have Allﬁ] = {1} and Some} = {1,2,3}.

Lemma 4.2. An arc a = (u,v) is infeasible if any of the following conditions holds:

d(a) € All, (4.6)
|Some}| =(a) and d(a) € Some. 4.7

78 4 Relaxed Decision Diagrams

Proof. The proof argument follows from [4]. Let 7’ be any partial ordering identi-
fied by a path from r to « that does not assign any job more than once. In condition
(4.6), d(a) € All indicates that d(a) is already assigned to some position in 7/,
therefore appending the arc label d(a) to &’ will necessarily induce a repetition. For
condition (4.7), notice first that the paths from r to u are composed of ¢(«) arcs, and
therefore 7’ represents an ordering with £(a) positions. If [Some};| = £(a), then any
JjE Somei is already assigned to some position in 7/, hence appending d(a) to 7’

also induces a repetition. g

Thus, the tests (4.6) and (4.7) can be applied in lines 6 to 10 in Algorithm 4
to remove infeasible arcs. For example, in Fig. 4.12(b) the two shaded arcs are
infeasible. The arc (u,v;) with label 1 is infeasible due to condition (4.6) since
Alli1 = {1}. The arc (v4,t) with label 2 is infeasible due to condition (4.7) since
2 € Somey, = {2,3} and |Some}, | = 2.

We are also able to obtain stronger tests by equipping the nodes with additional
states that can be derived from a bottom-up perspective of the DD. Namely, as
in [94], we define two new states All, C ¥ and Some], C J for each node u of
A . They are equivalent to the states A/l% and Some}, but now they are computed
with respect to the paths from t to u instead of the paths from r to u. As before, they
are recursively obtained through the relations

All,= () (@fu{d(a)}), (4.8)
a=(u,v)€out(u)
Some), = U (Somel U{d(a)}), (4.9)

a=(u,v)€out(u)

which can be computed by a bottom-up breadth-first search before the top-down
procedure.

Lemma 4.3. An arc a = (u,v) is infeasible if any of the following conditions holds:

d(a) € Al (4.10)
|Somel| =n—((a) and d(a) € Some], (4.11)
|Some} U{d(a)}USomel| < n. (4.12)

Proof. The proofs for conditions (4.10) and (4.11) follow from an argument in [94]
and are analogous to the proof of Lemma 4.2. Condition (4.12) implies that any
ordering identified by a path containing a will never assign all jobs ¢ .

4.7 Compiling Relaxed Diagrams by Separation 79

4.7.1.2 Refinement

Refinement consists of splitting nodes to remove paths that encode infeasible solu-
tions, therefore strengthening the relaxed DD. Ideally, refinement should modify a
layer so that each of its nodes exactly represents a particular state of each constraint.
However, as it may be necessary to create an exponential number of nodes to
represent all such states, some heuristic decision must be considered on which nodes
to split in order to observe the maximum alloted width.

In this section we present a heuristic refinement procedure that exploits the
structure of the ALLDIFFERENT constraint. Our goal is to be as precise as possible
with respect to the jobs with a higher priority, where the priority of a job is defined
according to the problem data. More specifically, we will develop a refinement
heuristic that, when combined with the infeasibility conditions for the permutation
structure, yields a relaxed MDD where the jobs with a high priority are represented
exactly with respect to that structure; that is, these jobs are assigned to exactly one
position in all orderings encoded by the relaxed MDD.

Thus, if higher priority is given to jobs that play a greater role in the feasibility or
optimality of the problem at hand, the relaxed MDD may represent more accurately
the feasible orderings of the problem, providing, e.g., better bounds on the objective
function value. For example, if we give priority to jobs with a larger processing
time, the bound on the makespan would be potentially tighter with respect to the
ones obtained from other possible relaxed MDDs for this same instance. We will
exploit this property for a number of scheduling problems in Chapter 11.

To achieve this property, the refinement heuristic we develop is based on the
following theorem, which we will prove constructively later:

Theorem 4.3. Let W > 0 be the maximum MDD width. There exists a relaxed MDD
M where at least |log, W | jobs are assigned to exactly one position in all orderings

identified by .

Let us represent the job priorities by defining a ranking of jobs _#* ={j},...,ji},
where jobs with smaller index in _#* have a higher priority. We can thus achieve
the desired property of our heuristic refinement by constructing the relaxed MDD
M based on Theorem 4.3, where we ensure that the jobs exactly represented in .#Z
are those with a higher ranking.

Before proving Theorem 4.3, we first identify conditions on when a node violates
the desired refinement property and needs to be modified. To this end, let .# be any

80 4 Relaxed Decision Diagrams

relaxed MDD. Assume the states AL} and Some}, as described before are computed
for all nodes u in .#, and no arcs satisfy the infeasibility conditions (4.6) to (4.12).
We have the following lemma:

Lemma 4.4. 4 job j is assigned to exactly one position in all orderings identified
by A if and only if j & Some} \ All" for all nodes u € M.

Proof. Suppose first that a job j is assigned to exactly one position in all orderings
identified by .#, and take a node u in .# such that j € Somei. From the definition
of Someﬁ, there exists a path from r to # with an arc labeled j. This implies by
hypothesis that all paths from u to t do not have any arcs labeled j, otherwise we
will have a path that identifies an ordering where j is assigned more than once.
But then, also by hypothesis, all paths from r to # must necessarily have some arc
labeled j, thus j € All%, which implies j ¢ Some}, \ AlL,.

Conversely, suppose j € Somei \Alli for all nodes u in .. Then a node u can
only have an outgoing arc a with d(a) = j if j & Some},, which is due to the filtering
rule (4.6). Thus, no job is assigned more than once in any ordering encoded by .7 .

Finally, rule (4.12) ensures that j is assigned exactly once in all paths. 0
We now provide a constructive proof for Theorem 4.3.

Proof. Proof of Theorem 4.3: Let .# be a 1-width relaxation. We can obtain the
desired MDD by applying filtering and refinement on .# in a top-down approach
as described in Section 4.7. For filtering, remove all arcs satisfying the infeasi-
bility rules (4.6) and (4.7). For refining a particular layer L;, apply the following
procedure: For each job j = ji,..., j, in this order, select a node u € L; such that
j € Some},\ All%. Create two new nodes u; and u,, and redirect the incoming arcs
at u to uy and uy as follows: if the arc @ = (v,u) is such that j € (AIIY U {d(a)}),
redirect it to u1; otherwise, redirect it to u,. Replicate all the outgoing arcs of u to
u; and up, remove u, and repeat this until the maximum width W is met, there are
no nodes satisfying this for j, or all jobs were considered.

We now show that this refinement procedure suffices to produce a relaxed
MDD satisfying the conditions of the theorem. Observe first that the conditions of
Lemma 4.4 are satisfied by any job at the root node r, since Somei = (. Suppose, by
induction hypothesis, that the conditions of Lemma 4.4 are satisfied for some job j
at all nodesin layers L1, ..., Ly, i’ < i, and consider we created nodes u; and u; from
some node u € L; such that j € Some;: \Alli as described above. By construction, any
incoming arc @ = (v,uy) at uy satisfies j ¢ (4Il;U{d(a)}); by induction hypothesis,

4.7 Compiling Relaxed Diagrams by Separation 81

Jé Somei, hence j ¢ Some,ﬁ2 \Alli2 by relation (4.4). Analogously, we can show
Jj € AlLL , thus j & Somey, \ All, .

Since the jobs _# are processed in the same order for all layers, we just need now
to compute the minimum number of jobs for which all nodes violating Lemma 4.4
were split when the maximum width W was attained. Just observe that, after all
the nodes were verified with respect to a job, we at most duplicated the number of
nodes in a layer (since each split produces one additional node). Thus, if m jobs
were considered, we have at most 2™ nodes in a layer, thus at least |log, ¥ | nodes
will be exactly represented in .Z . O

We can utilize Theorem 4.3 to guide our top-down approach for filtering and
refinement, following the refinement heuristic based on the job ranking #* de-
scribed in the proof of Theorem 4.3. Namely, we apply the following refinement
at a layer L;: For each job j* = j|,...,j, in the order defined by ¢, identify the
nodes u such that j* € Some}, \ All; and split them into two nodes u; and u,, where
an incoming arc a = (v,u) is redirected to u; if j* € (AIIY\U{d(a)}) or uy otherwise,
and replicate all outgoing arcs for both nodes. Moreover, if the relaxed MDD is a
1-width relaxation, then we obtain the bound guarantee on the number of jobs that
are exactly represented.

This procedure also yields a reduced MDD .# for certain structured problems,
which we will show in Section 11.7. It provides sufficient conditions to split nodes
for any problem where an ALLDIFFERENT constraint is stated on the variables.
Lastly, recall that equivalence classes corresponding to constraints other than the
permutation structure may also be taken into account during refinement. Therefore,
if the maximum width W is not met in the refinement procedure above, we assume
that we will further split nodes by arbitrarily partitioning their incoming arcs. Even
though this may yield false equivalence classes, the resulting .# is still a valid
relaxation and may provide a stronger representation.

As an illustration, let ¢ = {1,2,3} and assume jobs are ranked lexicographi-
cally. Given the relaxed DD in Fig. 4.12(a), Fig. 4.12(b) without the shaded arcs
depicts the result of the refinement heuristics for a maximum width of 2. Notice that
job 1 appears exactly once in all solutions encoded by the DD. Figure 4.12(c) depicts
the result of the refinement for a maximum width of 3. It is also exact and reduced
(which is always the case if we start with a 1-width relaxation and the constraint set
is composed of only one ALLDIFFERENT).

Chapter 5

Restricted Decision Diagrams

Abstract This chapter presents a general-purpose methodology for obtaining a set
of feasible solutions to a discrete optimization problems using restricted decision
diagrams. A restricted diagram can be perceived as a counterpart of the concept
of relaxed diagrams introduced in previous chapters, and represents an underap-
proximation of the feasible set, the objective function, or both. We first show how
to modify the top-down compilation approach to generate restricted diagrams that
observe an input-specified width. Next, we provide a computational study of the
bound provided by restricted diagrams, particularly focusing on the set covering

and set packing problems.

5.1 Introduction

General-purpose algorithms for discrete optimization are commonly branch-and-
bound methods that rely on two fundamental components: a relaxation of the
problem, such as a linear programming relaxation of an integer programming model,
and primal heuristics. Heuristics are used to provide feasible solutions during the
search for an optimal one, which in practice can be often more important than
providing a proof of optimality.

Much of the research effort dedicated to developing heuristics for discrete op-
timization has primarily focused on specific combinatorial optimization problems.
This includes, e.g., the set covering problem [39] and the maximum clique problem
[77, 130]. In contrast, general-purpose heuristics have received much less attention

in the literature. The vast majority of the general techniques are embodied in integer

© Springer International Publishing Switzerland 2016 83
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_5

84 5 Restricted Decision Diagrams

programming technology, such as the feasibility pump [66] and the pivot, cut, and
dive heuristic [60]. A survey of heuristics for integer programming is presented by
[73, 74] and [30]. Local search methods for binary problems can also be found in
[1] and [31].

In this chapter we present a general-purpose heuristic based on restricted deci-
sion diagrams (DDs). A weighted DD B is restricted for an optimization problem
& if B represents a subset of the feasible solutions of &, and path lengths are lower

bounds on the value of feasible solutions. That is, B is restricted for &2 if

Sol(Z) 2 Sol(B), (5.1)
f(xP) > v(p), forall r— paths p in B for which x” € Sol(Z?). (5.2)

Suppose & is a maximization problem. In Chapter 3, we showed that an exact
DD reduces discrete optimization to a longest-path problem: If p is a longest path in
a BDD B that is exact for 2, then x? is an optimal solution of &2, and its length v(p)
is the optimal value z*(%?) = f(xP) of &. When B is restricted for &, a longest
path p provides a lower bound on the optimal value. The corresponding solution
xP is always feasible and v(p) < z*(Z?). Hence, restricted DDs provide a primal
solution to the problem. As in relaxed DDs, the width of a restricted DDs is limited
by an input parameter, which can be adjusted according to the number of variables
of the problem and computer resources.

For example, consider the graph and vertex weights depicted in Fig. 5.1 (the same
as Fig. 4.1). Figure 5.2(a) represents an exact BDD in which each path corresponds
to an independent set encoded by the arc labels along the path, and each independent
set corresponds to some path. The longest »—¢ path in the BDD has value 11,
corresponding to solution x = (0,1,0,0,1) and to the independent set {2,5}, the
maximum-weight independent set in the graph.

Figure 5.2(b) shows a restricted BDD for the same problem instance. Each path
p in the BDD encodes a feasible solution x” with length equal to the corresponding
independent set weight. However, not all independent sets of G are encoded in
the BDD, such as the optimal independent set {2,5} for the original problem.
The longest path in the restricted DD corresponds to solution (1,0,0,0,1) and
independent set {1,5}, and thus provides a lower bound of 10 on the objective

function.

5.2 Top-Down Compilation of Restricted DDs 85

2 7
Fig. 5.1 Graph with vertex weights for the MISP.
X 9/ 3 9/ 3
. (
" / A 0, 0
N ‘e . .
x3 \\\ /\g\ /(/)/ ZI \\Q\ :O
- 0.--
X4 0}///0 IZ 0}/// 12
.\ . .\ .
(a) (b)

Fig. 5.2 (a) Exact BDD and (b) restricted BDD for the MISP on the graph in Fig. 5.1.

5.2 Top-Down Compilation of Restricted DDs

Restricted BDDs can be constructed in a much simpler way than relaxed DDs. We
need only eliminate nodes from a layer when the layer becomes too large. Given a
valid DP formulation of a discrete optimization problem &2 and a maximum width
W, Algorithm 5 outputs a restricted DD for &2. Note that it is similar to Algorithm 1
except for lines 3 to 5. Condition (5.1) for a restricted BDD is satisfied because
the algorithm only deletes solutions, and furthermore, since the algorithm never
modifies the states of any nodes that remain, condition (5.2) must also be satisfied.
Finally, nodes to be eliminated are also selected heuristically according to a pre-
defined function node select.

We remark in passing that it is also possible to apply Algorithm 3 to obtain
restricted DDs. To this end, we modify the operator &(M) so that the algorithm

86 5 Restricted Decision Diagrams

Algorithm 5 Restricted DD Top-Down Compilation for Maximum Width W
I: Create node r =7andletL; = {r}
2: for j=1tondo
while |L;| > W do
let M =node select(L;)
Lj < (L;\ M)
let Lj+| =0
forallu € Ljand d € D(x;) do
if £ (u,d) # 0 then
9: letu' =t;(u,d),add v’ to L;11,and set by(u) =o', v(u,u’) = hj(u,u’)
10: Merge nodes in L, into terminal node ¢

(98

® R0k

outputs restrictions instead of relaxations. For example, in the MISP relaxation
described in Section 4.3, we could apply the intersection operator as opposed to
the union operator. Such a technique will not be exploited in this book, but it could
be useful to ensure certain properties of the restricted DD (e.g., it can be shown that
a restricted DD built with © (M) may contain more solutions than the one obtained

by directly removing nodes).

5.3 Computational Study

In this section, we present a computational study on randomly generated set cover-
ing and set packing instances. The set covering problem (SCP) and the set packing
problem (SPP) were first presented, as integer programming models, in Sections 3.6
and 3.7, respectively. We evaluate our method by comparing the bounds provided
by a restricted BDD with the ones obtained via state-of-the-art integer programming
(IP) technology. We acknowledge that a procedure solely geared toward construct-
ing heuristic solutions is in principle favored against general-purpose IP solvers.
Nonetheless, we sustain that this is still a meaningful comparison, as modern IP
solvers are the best-known general bounding technique for 0—1 problems due to their
advanced features and overall performance. This method of testing new heuristics
for binary optimization problems was employed by the authors in [31], and we
provide a similar study here to evaluate the effectiveness of our algorithm.

The DP models for the set covering and set packing problems are the ones
described in Sections 3.6 and 3.7. The tests ran on an Intel Xeon E5345 with 8 GB of
RAM. The BDD code was implemented in C++. We used ILOG CPLEX 12.4 as our

5.3 Computational Study 87

IP solver. In particular, we took the bound obtained from the root node relaxation.
We set the solver parameters to balance the quality of the bound value and the CPU
time to process the root node. The CPLEX parameters that are distinct from the
default settings are presented in Table 5.1. We note that all cuts were disabled,
since we observed that the root node would be processed orders of magnitude faster
without adding cuts, which did not have a significant effect on the quality of the
heuristic solution obtained for the instances tested.

Table 5.1 CPLEX parameters.
Parameters (CPLEX internal name) Value

Version 12.4

Number of explored nodes (NodeLim) 0 (only root)

Parallel processes (Threads) 1

Cuts (Cuts, Covers, DisjCuts, ...) —1 (off)

Emphasis (MIPEmphasis) 4 (find hidden feasible solutions)
Time limit (TiLim) 3600

Our experiments focus on instances with a particular structure. Namely, we
provide evidence that restricted BDDs perform well when the constraint matrix has
a small bandwidth. The bandwidth of a matrix 4 is defined as

D 8 e U
The bandwidth represents the largest distance, in the variable ordering given by
the constraint matrix, between any two variables that share a constraint. The smaller
the bandwidth, the more structured the problem, in that the variables participating in
common constraints are close to each other in the ordering. The minimum bandwidth
problem seeks to find a variable ordering that minimizes the bandwidth [114, 51, 62,
80, 115, 127, 140]. This underlying structure, when present in 4, can be captured by

BDDs, resulting in good computational performance.

5.3.1 Problem Generation

Our random matrices are generated according to three parameters: the number of
variables 7, the number of ones per row &, and the bandwidth b,,. For a fixed n,
k, and b,,, a random matrix A is constructed as follows: We first initialize 4 as a

88 5 Restricted Decision Diagrams

zero matrix. For each row 7, we assign the ones by selecting & columns uniformly
at random from the index set corresponding to the variables {x;,x;t1,..., %145, }. AS
an example, a constraint matrix with n = 9, k = 3, and b,, = 4 may look like

110100000
011100000
001011000
000101100
000010110
000000111

Consider the case when b,, = k. The matrix 4 has the consecutive ones property
and is totally unimodular [69], and IP is able to find the optimal solution for the
set packing and set covering instances at the root node. Similarly, we argue that an
(m+ 1)-width restricted BDD is an exact BDD for both classes of problems, hence
also yielding an optimal solution for when this structure is present. Indeed, we show
that 4 having the consecutive ones property implies that the state of a BDD node u is
always of the form {j, j+1,...,m} for some j > L(u) during top-down compilation.

To see this, consider the set covering problem. For a partial solution x identified
by a path from r to a certain node u in the BDD, let s(x) be the set covering state
associated with u. We claim that, for any partial solution x’ that can be completed to
a feasible solution, s(x') = {i(x'),i(x') + 1,...,m} for some variable index i(x'), or
s(x") = 0 if x’ satisfies all of the constraints when completed with 0’s. Let j* < j be
the largest index inx” with x’; = 1. Because x’ can be completed to a feasible solution,
for each i < by, + j — 1 there is a variable x;, with a; ;, = 1. All other constraints must
have x; = 0 for all i with a; ; = 0. Therefore s(x') = {by, + j,byw+j+1,...,m}, as
desired. Hence, the state of every partial solution must be of the form i,i+1,...,m
or 0. Because there are at most m + 1 such states, the size of any layer cannot exceed
(m+1). A similar argument works for the SPP.

Increasing the bandwidth b,,, however, destroys the totally unimodular property
of 4 and the bounded width of B. Hence, by changing b,,, we can test how sensitive
IP and the BDD-based heuristics are to the staircase structure dissolving.

We note here that generating instances of this sort is not restrictive. Once the
bandwidth is large, the underlying structure dissolves and each element of the matrix
becomes randomly generated. In addition, as mentioned above, algorithms to solve
the minimum bandwidth problem exactly or approximately have been investigated.

5.3 Computational Study 89

To any SCP or SPP one can therefore apply these methods to reorder the matrix and
then apply the BDD-based algorithm.

5.3.2 Solution Quality and Maximum BDD Width

We first analyze the impact of the maximum width # on the solution quality
provided by a restricted BDD. To this end, we report the generated bound versus the
maximum width W obtained for a set covering instance with n = 1,000, £ = 100,
b,, = 140, and a cost vector ¢ where each c¢; was chosen uniformly at random from
the set {1,...,nc;}, where nc; is the number of constraints in which variable j
participates. We observe that the reported results are common among all instances
tested.

Figure 5.3(a) depicts the resulting bounds, where the width axis is on a logarith-
mic scale, and Fig. 5.3(b) presents the total time to generate the W -restricted BDD
and extract its best solution. We tested all /¥ in the set {1,2,3,...,1,000}. We see
that, as the width increases, the bound approaches the optimal value, with a super-
exponential-like convergence in /. The time to generate the BDD grows linearly
in W, which can be shown to be consistent with the complexity of the construction
algorithm.

2300 T T 2.5 T T T T T T T
2200
2100
2000
1900
1800
1700
1600
1500
1400

1 300 1 1 1 1 1 1 1 1 1 1 1
1 10 100 1000 0 100 200 300 400 500 600 700 800 9001000

Width Width
(a) Upper bound. (b) Time.

T T
TR

T
!

T
!

Upper bound

T
!

T
!

Restricted BDD time (s)

T
!

Fig. 5.3 Restricted BDD performance versus the maximum allotted width for a set covering
instance with n = 1000, £ = 100, b,, = 140, and random cost vector.

90 5 Restricted Decision Diagrams

5.3.3 Set Covering

First, we report the results for two representative classes of instances for the set
covering problem. In the first class, we studied the effect of b,, on the quality of
the bound. To this end, we fixed n = 500, k = 75, and considered b,, as a multiple
of k, namely b,, € {|1.1k], |1.2k],...,|2.6k]}. In the second class, we analyzed if
k, which is proportional to the density of 4, also has an influence on the resulting
bound. For this class we fixed n = 500, k € {25,50,...,250}, and b,, = 1.6k. In
all classes we generated 30 instances for each triple (n,k,b,,) and fixed 500 as the
restricted BDD maximum width.

It is well known that the objective function coefficients play an important role
in the bound provided by IP solvers for the set covering problem. We considered
two types of cost vectors ¢ in our experiments. The first is ¢ = 1, which yields
the combinatorial set covering problem. For the second cost function, let nc; be
the number of constraints that include variable x;, j = 1,...,n. We chose the cost
of variable x; uniformly at random from the range [0.75nc;,1.25nc¢;]. As a result,
variables that participate in more constraints have a higher cost, thereby yielding
harder set covering problems to solve. This cost vector yields the weighted set
covering problem.

The feasible solutions are compared with respect to their optimality gap. The op-
timality gap of a feasible solution is obtained by first taking the absolute difference
between its objective value and a lower bound to the problem, and then dividing this
by the solution’s objective value. In both BDD and IP cases, we used the dual value
obtained at the root node of CPLEX as the lower bound for a particular problem
instance.

The results for the first instance class are presented in Fig. 5.4. Each data point
in the figure represents the average optimality gap, over the instances with that con-
figuration. We observe that the restricted BDD yields a significantly better solution
for small bandwidths in the combinatorial set covering version. As the bandwidth
increases, the staircase structure is lost and the BDD gap becomes progressively
worse in comparison with the IP gap. This is a result of the increasing width of
the exact reduced BDD for instances with larger bandwidth matrices. Thus, more
information is lost when we restrict the BDD size. The same behavior is observed
for the weighted set covering problem, although the gap provided by the restricted
BDD is generally better than the IP gap even for larger bandwidths. Finally, we note
that the restricted BDD time is also comparable to the IP time, which is on average

5.3 Computational Study 91

less than 1 second for this configuration. This time takes into account both BDD
construction and extraction of the best solution it encodes by means of a shortest
path algorithm.

The results for the second instance class are presented in Fig. 5.5. We note that
restricted BDDs provide better solutions when £ is smaller. One possible explanation
for this behavior is that a sparser matrix causes variables to participate in fewer
constraints, thereby decreasing the possible number of BDD node states. Again,
less information is lost by restricting the BDD width. Moreover, we note once again
that the BDD performance, when compared with CPLEX, is better for the weighted
instances tested. Finally, we observe that the restricted BDD time is similar to the
IP time, always below one second for instances with 500 variables.

Next, we compare solution quality and time as the number of variables n
increases. We generated random instances with n € {250,500,750,...,4,000},
k=175, and b,, = 2.2k = 165 to this end. The choice of k and b,, was motivated
by Fig. 5.4(b), corresponding to the configuration where IP outperforms BDD with
respect to solution quality when n = 500. As before, we generated 30 instances for
each n. Moreover, only weighted set covering instances are considered in this case.

The average optimality gap and time are presented in Figs. 5.6(a) and 5.6(b),
respectively. The y axis in Fig. 5.6(b) is on logarithmic scale. For n > 500, we
observe that the restricted BDDs yield better-quality solutions than the IP method,
and as » increases this gap remains constant. However, the IP times grow at a much
faster rate than the restricted BDD times. In particular, with n = 4,000, the BDD

times are approximately two orders of magnitude faster than the corresponding IP

times.
R 55 R 55 T T T T T T T
S S
S 5t E E 5t E
Q. Q
@© @©
O 45+ E O 45 E
2 2
T 40F 1 T 40 1
£ £
B 35 R B 35]
O o
e 30 E o 301 E
o o
g 25r P -] g By IP e
< BDD —x— < BDD —x—
20 oy BPP T 20 oy, BT
1 12 14 16 18 2 22 24 26 1 12 14 16 18 2 22 24 26
Bandwidth/k Bandwidth/k
(a) Combinatorial. (b) Weighted.

Fig. 5.4 Average optimality gaps for combinatorial and weighted set covering instances with
n =500, k=75, and varying bandwidth.

92 5 Restricted Decision Diagrams
__ 60 __ 55
X B
g 55 S 50 i
8 sl 8
> > 45 B
‘T 45| T
£ £ 40r T
o 40 a
o O 5l |
-l 2
o | | S a0l ,
g 30 1P —-e—- g -
< BDD —*— < BDD —*—
25 s s ; ‘ 25 s s s ; .
0 50 100 150 200 250 0 50 100 150 200 250
k k

Fig. 5.5 Average optimality gaps for combinatorial and

(a) Combinatorial.

n = 500, varying k, and b,, = 1.6k.

weighted set covering instances with

(b) Weighted.

R 60 T T T T 1000

3\0/ /.__.,0—.—-0—‘~._.—-o—o—.

g 551 Rt 100 | ,

L4

O /

> / —

250 5 10F]

g Py

B sl |/ £ 1L]

(o) I/ ~

©

=)

© 40 - 0.1 F E

g IP —-e—- P — -

< BDD —»— BDD —»—
35 ! ! ! ! ! ! ! ! 0.01 ! ! ! ! ! i ! !

0

500 1000 1500 2000 2500 3000 3500 4000

n

0

500 1000 1500 2000 2500 3000 3500 4000
n

(a) Average Optimality Gap (in %). (b) Time (in seconds).

Fig. 5.6 Average optimality gaps and times for weighted set covering instances with varying n,
k=175, and b, = 2.2k = 165. The y axis in the time plot is on logarithmic scale.

5.3.4 Set Packing

We extend the same experimental analysis of the previous section to set packing
instances. Namely, we initially compare the quality of the solutions by means of
two classes of instances. In the first class we analyze variations of the bandwidth
by generating random instances with » = 500, k = 75, and setting b,, in the
range {|1.1k],|1.2k],...,|2.5k] }. In the second class, we analyze variations in the
density of the constraint matrix 4 by generating random instances with n = 500,
k € {25,50,...,250}, and with a fixed b,, = 1.6k. In all classes, we created 30
instances for each triple (n,k,b,,) and set 500 as the restricted BDD maximum
width.

The quality is also compared with respect to the optimality gap of the feasible so-
lutions, which is obtained by dividing the absolute difference between the solution’s

5.3 Computational Study 93

R 16 T T T T T T T R 90
St . S 1
Qo Q.
3 L | g 70+ —
8 12 8 ol]
2 10f R Z
T © 50 F 1
E 8f 1 £
= 3 40 T
o 6 1 O 3l i
(] ()
g 4T] g 20 1
2 2r 1P —-e—- $ 10r .
< y BDD —x— <
O 1 1 1 1 1 1 0 1 1 1 1 1
1 12 14 16 18 2 22 24 26 112 14 16 18 2 22 24 26
Bandwidth/k Bandwidth/k
(a) Combinatorial. (b) Weighted.

Fig. 5.7 Average optimality gaps for combinatorial and weighted set packing instances with
n =500, k=75, and varying bandwidth.

objective value and an upper bound to the problem by the solution’s objective value.
We use the dual value at CPLEX’s root node as the upper bound for each instance.

Similarly to the set covering problem, experiments were performed with two
types of objective function coefficients. The first, ¢ = 1, yields the combinatorial set
packing problem. For the second cost function, let nc; again denote the number of
constraints that include variable x;, j = 1,...,n. We chose the objective coefficient
of variable x; uniformly at random from the range [0.75nc;,1.25nc¢;]. As a result,
variables that participate in more constraints have a higher cost, thereby yielding
harder set packing problems since this is a maximization problem. This cost vector
yields the weighted set packing problem.

The results for the first class of instances are presented in Fig. 5.7. For all tested
instances, the solution obtained from the BDD restriction was at least as good as
the IP solution for all cost functions. As the bandwidth increases, the gap also
increases for both techniques, as the upper bound obtained from CPLEX’s root
node deteriorates for larger bandwidths. However, the BDD gap does not increase
as much as the IP gap, which is especially noticeable for the weighted case. We note
that the difference in times between the BDD and IP restrictions are negligible and
lie below one second.

The results for the second class of instances are presented in Fig. 5.8. For all
instances tested, the BDD bound was at least as good as the bound obtained with IP,
though the solution quality from restricted BDDs was particularly superior for the
weighted case. Intuitively, since A4 is sparser, fewer BDD node states are possible

in each layer, implying that less information is lost by restricting the BDD width.

©
=

5 Restricted Decision Diagrams

20 45
X - X
% 18 < 40t B
g 1er <3
O 14t O 35 i
2 2
= 12 5 30f i
E 101 £
2 8t g 25¢ i
(@) o
g °f g 20¢ 1
o 4t ©
¢ Ll g 15r P —-e—-
< < BDD —x—
0 ‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ; ‘
0 50 100 150 200 250 0 50 100 150 200 250
k k
(a) Combinatorial. (b) Weighted.

Fig. 5.8 Average optimality gaps for combinatorial and weighted set packing instances with
n = 500, varying k, and b,, = 1.6k.

Finally, we observe that times were also comparable for both IP and BDD cases, all
below one second.

Next, we proceed analogously to the set covering case and compare solution
quality and time as the number of variables n increases (Fig. 5.9). As before, we
generate 30 random instances per configuration, with n € {250,500, 750, ...,4000},
k=175, and b,, = 2.2k = 165. Only weighted set packing instances are considered.

The average optimality gap and solution times are presented in Figs. 5.9(a)
and 5.9(b), respectively. Similar to the set covering case, we observe that the BDD
restrictions outperform the IP heuristics with respect to both gap and time for this
particular configuration. The difference in gaps between restricted BDDs and IP
remains approximately the same as n increases, while the time to generate restricted

BDDs is orders of magnitude less than the IP times for the largest values of # tested.

__ 100 1000
€ g -
~ r -0 o
o [et et lnd ¢ 100 | E
O 80f g
2 —_
E 70 1 & 10F 7
(0]

= L i €
g 60 E G+ L]
g 50 g
s 01t -
g 40f P -] IP —e--
< 50 .oy, BDD /e 0.01 .oy, BDD /=

0 500 1000 1500 2000 2500 3000 3500 4000 "0 500 1000 1500 2000 2500 3000 3500 4000

n n
(a) Combinatorial. (b) Weighted.

Fig. 5.9 Average optimality gaps and times for weighted set packing instances with varying n,
k=175, and b, = 2.2k = 165. The y axis in the time plot is on logarithmic scale.

Chapter 6

Branch-and-Bound Based on Decision Diagrams

Abstract This chapter proposes an alternative branch-and-bound method in which
decision diagrams take over the functions of the traditional relaxations and heuristics
used in general-purpose optimization techniques. In particular, we show an enumer-
ation scheme that branches on the nodes of a relaxed decision diagram, as opposed
to variable-value assignments as in traditional branch-and-bound. We provide a
computational study of our method on three classical combinatorial optimization
problems, and compare our solution technology with mixed-integer linear program-
ming. Finally, we conclude by showing how the diagram-based branch-and-bound
procedure is suitable for parallelization, and provide empirical evidence of almost

linear speedups on the maximum independent set problem.

6.1 Introduction

Some of the most effective methods for discrete optimization are branch-and-bound
algorithms applied to an integer programming formulation of the problem. Linear
programming (LP) relaxation plays a central role in these methods, primarily by
providing bounds and feasible solutions as well as guidance for branching.

As we analyzed in Chapters 4 and 5, limited-size decision diagrams (DDs)
can be used to provide useful relaxations and restrictions of the feasible set of
an optimization problem in the form of relaxed and restricted DDs, respectively.
We will use them in a novel branch-and-bound scheme that operates within a DD
relaxation of the problem. Rather than branch on values of a variable, the scheme

branches on a suitably chosen subset of nodes in the relaxed DD. Each node gives

© Springer International Publishing Switzerland 2016 95
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_6

96 6 Branch-and-Bound Based on Decision Diagrams

rise to a subproblem for which a relaxed DD can be created, and so on recursively.
This sort of branching implicitly enumerates sets of partial solutions, rather than
values of one variable. It also takes advantage of information about the search space
that is encoded in the structure of the relaxed DD. The branching nodes are selected
on the basis of that structure, rather than on the basis of fractional variables, pseudo-
costs, and other information obtained from an LP solution.

Because our DD-based solver is proposed as a general-purpose method, it is
appropriate to compare it with another general-purpose solver. Integer programming
is widely viewed as the most highly developed technology for general discrete
optimization, and we therefore compare DD-based optimization with a leading
commercial IP solver in Section 6.5. We find that, although IP solvers have improved
by orders of magnitude since their introduction, our rudimentary DD-based solver is
competitive with or superior to the IP state of the art on the tested problem instances.

Finally, we will show that the proposed branch-and-bound method can be easily
parallelized by distributing the DD node processing (i.e., the construction of relaxed
and restricted DDs) across multiple computers. This yields a low-communication
parallel algorithm that is suitable for large clusters with hundreds or thousands
of computers. We will also compare the parallel version of the branch-and-bound
algorithm with IP, since it is a general-purpose solver with parallelization options,
and show that our parallel method achieves almost linear speedups.

6.2 Sequential Branch-and-Bound

We now present our sequential DD-based branch-and-bound algorithm. We first
define the notion of exact and relaxed nodes and indicate how they can be identified.
Then, given a relaxed DD, we describe a technique that partitions the search space
so that relaxed/restricted DDs can be used to bound the objective function for each
subproblem. Finally, we present the branch-and-bound algorithm. For simplifica-
tion, we focus on binary decision diagrams (BDDs), but the concepts presented here
can be easily extended to multivalued decision diagrams.

For a given BDD B and nodes u,u’ € B with L(u) < L(«'), we let B,,s be the
BDD induced by the nodes that lie on directed paths from u to ' (with the same arc
domains and arc cost as in B). In particular, B,; = B.

6.3 Exact Cutsets 97

6.3 Exact Cutsets

The branch-and-bound algorithm is based on enumerating subproblems defined by
nodes in an exact cutset. To develop this idea, let B be a relaxed BDD created by
Algorithm 1 using a valid DP model of the binary optimization problem &2. We say
that a node in B is exact if all 7—u paths in B lead to the same state s/. A cutset of
B is a subset S of nodes of B such that any r—t path of B contains at least one node
in S. We call a cutset exact if all nodes in S are exact.

As an illustration, Fig. 6.1(a) duplicates the relaxed BDD B from Fig. 3.4 and
labels the nodes as exact (E) or relaxed (R). Node uy4 in B is an exact node because
all incoming paths (there is only one) lead to the same state {4,5}. Node u3 is
relaxed because the two incoming paths represent partial solutions (x;,x2) = (0,0)
and (0, 1) that lead to different states, namely {3,4,5} and {5}, respectively. Nodes
u1 and u4 form one possible exact cutset of B.

We now show that an exact cutset provides an exhaustive enumeration of sub-
problems. If B is an exact BDD for the binary optimization problem &, let v*(B,,)
be the length of a longest u— path in B,,,. For a node u in B, we define £|, to
be the restriction of &7 whose feasible solutions correspond to »— paths of B that
contain u. Recall that z*(?) is the optimal value of Z.

x|

X2 v(ug) =3

X3 3+0’

% /0
o

x5

Fig. 6.1 (a) Relaxed BDD for the MISP on the graph Fig. 3.3 with nodes labeled as exact (E) or
relaxed (R); (b) exact BDD for subproblem corresponding to u1; (c) exact BDD for subproblem
corresponding to uy.

98 6 Branch-and-Bound Based on Decision Diagrams

Lemma 6.1. If B is an exact BDD for &, then for any node u in B,
V¥ (Br) +V (B) =2 (P|u).

Proof. z*(],) is the length of a longest 7 path of B that contains , and any such
path has length v*(B,,,) + v*(By). O

Theorem 6.1. Let B be a relaxed BDD created by Algorithm 3 using a valid DP
model of the binary optimization problem &2, and let S be an exact cutset of B. Then

Z(#) = max{z" ()}

Proof. Let B be the exact BDD for & created using the same DP model. Because
each node u € S is exact, it has a corresponding node u in B (i.e., a node associated
with the same state), and S is a cutset of B. Thus

Z(P) = max{v’ (Bru) +v'(Bu)} = max{ P},

where the second equation is due to Lemma 6.1. 0

6.4 Enumeration of Subproblems

We solve a binary optimization problem & by a branching procedure in which we
enumerate a set of subproblems &2, each time we branch, where u ranges over the
nodes in an exact cutset of the current relaxed BDD. We build a relaxed BDD and a
restricted BDD for each subproblem to obtain upper and lower bounds, respectively.

Suppose u is one of the nodes on which we branch. Because u is an exact node,
we have already constructed an exact BDD B,,, down to u, and we know the length
v*(u) = v*(Byy) of a longest path in B,,,. We can obtain an upper bound on z*(Z|,,)
by computing a longest path length v*(B,,) in a relaxed BDD B with root value
v*(u). To build the relaxation B., we start the execution of Algorithm 1 with j =
L(u) and root node u, where the root value is v, = v*(u). We can obtain a lower
bound on z*(?|,) in a similar fashion, except that we use a restricted rather than a
relaxed BDD.

The branch-and-bound algorithm is presented in Algorithm 6. We begin with a
set O = {r} of open nodes consisting of the initial state » of the DP model. Then,

6.4 Enumeration of Subproblems 99

Algorithm 6 Branch-and-Bound Algorithm
1: initialize Q = {r}, where r is the initial DP state
2: let zpy = —oo0, V¥(r) =0
3: while Q # 0 do

4: u <+ select node(Q), O + O\ {u}
5. create restricted BDD B, using Algorithm 1 with root u and v, = v*(u)
6: if v'(Bu) > zopt then
7: Zopt < V*(B')
8: if B), is not exact then
9: create relaxed BDD By, using Algorithm 1 with root u and v, = v*(u)
10 if v¥(Bys) > zopt then B
11: let S be an exact cutset of B,
12: for allu’ € S do N
13: let v¥(u') = v*(u) + v* (B), add v’ to Q

14: return zopt

while open nodes remain, we select a node « from Q. We first obtain a lower bound
on z*(Z|,) by creating a restricted BDD B), as described above, and we update the
incumbent solution zoy. If B, is exact (i.e., |L;| never exceeds W in Algorithm 5),
there is no need for further branching at node u. This is analogous to obtaining
an integer solution in traditional branch-and-bound. Otherwise we obtain an upper
bound on z*(2|,) by building a relaxed BDD B, as described above. If we cannot
prune the search using this bound, we identify an exact cutset S of §u, and add the
nodes in S to Q. Because S is exact, for each v’ € § we know that v* (v) = v*(u) +
v (EW/). The search terminates when Q is empty, at which point the incumbent
solution is optimal by Theorem 6.1.

As an example, consider again the relaxed BDD Bin Fig. 6.1(a). The longest path
length in this graph is v*(B_) = 13, an upper bound on the optimal value. Suppose
that we initially branch on the exact cutset {uy,u4 }, for which we have v(u;) = 0 and
v(ug) = 3. We wish to generate restricted and relaxed BDDs of maximum width 2
for the subproblems. Figure 6.1(b) shows a restricted BDD B}I, for the subproblem
at u;, and Fig. 6.1(c) shows a restricted BDD E@ for the other subproblem. As
it happens, both BDDs are exact, and so no further branching is necessary. The
two BDDs yield bounds v*(By;;) = 11 and v*(By,) = 10, respectively, and so the

optimal value is 11.

100 6 Branch-and-Bound Based on Decision Diagrams

6.4.1 Exact Cutset Selection

Given a relaxed BDD, there are many exact cutsets. Here we present three such
cutsets and experimentally evaluate them in Section 6.5.

e Traditional branching (TB). Branching normally occurs by selecting some vari-
able x; and branching on x; = 0/1. Using the exact cutset S = L, has the same
effect. Traditional branching therefore uses the shallowest possible exact cutset
for some variable ordering.

e Last exact layer (LEL). For a relaxed BDD B, define the last exact layer of Bto
be the set of nodes LEL(B) = L, where ;' is the maximum value of ;j for which
each node in L; is exact. In the relaxed BDD B of Fig. 6.1(a), LEL(B) = {u1,u2}.

e Frontier cutset (FC). For a relaxed BDD B, define the frontier cutset of B to be

the set of nodes

FC(B) = {uin B | u is exact and bo(u) or by (u) is relaxed} .
In the example of Fig. 6.1(a), FC(B) = {uy,u4}. A frontier cutset is an exact
cutset due to the following lemma:

Lemma 6.2. If B is a relaxed BDD that is not exact, then FC(B) is an exact

cutset.

Proof. By the definition of a frontier cutset, each node in the cutset is exact. We
need only show that each solution x € Sol(B) contains some node in FC(B). But
the path p corresponding to x ends at 7, which is relaxed because B is not exact.
Since the root 7 is exact, there must be a first relaxed node u in p. The node

immediately preceding this node in p is in FC(B), as desired. 0

6.5 Computational Study

Since we propose BDD-based branch-and-bound as a general discrete optimization
method, it is appropriate to measure it against an existing general-purpose method.
We compared BDDs with a state-of-the-art IP solver, inasmuch as IP is generally
viewed as a highly developed general-purpose solution technology for discrete

optimization.

6.5 Computational Study 101

Like IP, a BDD-based method requires several implementation decisions, chief
among which are the following:

o Maximum width: Wider relaxed BDDs provide tighter bounds but require more
time to build. For each subproblem in the branch-and-bound procedure, we set
the maximum width /" equal to the number of variables whose value has not yet
been fixed.

e Node selection for merger: The selection of the subset M of nodes to merge
during the construction of a relaxed BDD (line 4 of Algorithm 1) likewise affects
the quality of the bound, as discussed in Chapters 4 and 5. We use the following
heuristic: After constructing each layer L; of the relaxed BDD, we rank the nodes
in L; according to a rank function rank(u) that is specified in the DP model with
the state merging operator @. We then let M contain the lowest-ranked |L;| — W
nodesin L;.

e Jariable ordering: Much as branching order has a significant impact on IP
performance, the variable ordering chosen for the layers of the BDD can affect
branching efficiency and the tightness of the BDD relaxation. We describe below
the variable ordering heuristics we used for the three problem classes.

e Search node selection: We must also specify the next node in the set Q of open
nodes to be selected during branch-and-bound (Algorithm 6). We select the node

u with the minimum value v*(u).

The tests were run on an Intel Xeon E5345 with 8 GB RAM. The BDD-based
algorithm was implemented in C++. The commercial IP solver ILOG CPLEX
12.4 was used for comparison. Default settings, including presolve, were used for
CPLEX unless otherwise noted. No presolve routines were used for the BDD-based
method.

6.5.1 Results for the MISP

We first specify the key elements of the algorithm that we used for the MISP. Node
selection for merger is based on the rank function rank(u) = v*(u). For variable
ordering, we considered the heuristic minState first described in Section 4.6.2: after
selecting the first j — 1 variables and forming layer L;, we choose vertex j as the
vertex that belongs to the fewest number of states in L ;. Finally, we used FC cutsets
for all MISP tests.

102 6 Branch-and-Bound Based on Decision Diagrams

For a graph G = (V,E), a standard IP model for the MISP is

max{ S

icV

xi+x; <1, all (i,)) € E; xiG{O,l},alliGV}. (6.1)

A tighter linear relaxation can be obtained by precomputing a clique cover % of G
and using the model

max{zxi

ieS

x; <l,allS€ ¥, x; € {0,1}, alliGV}. (6.2)

We refer to this as the tight MISP formulation. The clique cover € is computed
using a greedy procedure: Starting with ¢’ = 0, let clique S consist of a single vertex
v with the highest positive degree in G. Add to S the vertex with highest degree
in G\ S that is adjacent to all vertices in S, and repeat until no more additions are
possible. At this point, add S to &, remove from G all the edges of the clique induced
by S, update the vertex degrees, and repeat the overall procedure until G has no more
edges.

We begin by reporting results on randomly generated graphs. We generated
random graphs with n € {250,500, ...,1,750} and density p € {0.1,0.2,...,1} (10
graphs per n, p configuration) according to the Erdés—Rényi model G(n, p) (where
each edge appears independently with probability p).

Figure 6.2 depicts the results. The solid lines represent the average percent gap
for the BDD-based technique after 1,800 seconds, one line per value of n, and the
dashed lines depict the same statistics for the integer programming solver using the
tighter, clique model, only. It is clear that the BDD-based algorithm outperforms
CPLEX on dense graphs, solving all instances tested with density 80% or higher,
and solving almost all instances, except for the largest, with density equal to
70%, whereas the integer programming solver could not close any but the smallest
instances (with n = 250) at these densities.

CPLEX outperformed the BDD technique for the sparsest graphs (with p = 10),
but only for the small values of n. As n grows, we see that the BDD-based algorithm
starts to outperform CPLEX, even on the sparsest graphs, and that the degree to
which the ending percent gaps increase as n grows is more substantial for CPLEX
than it is for the BDD-based algorithm.

6.5 Computational Study 103

250-CPLEX - +-
1400 - 1 T7250-BDD ——
500-CPLEX - X-
1200 1 500-BDD —%—
750-CPLEX - *-
g 1006.0PLER - &
O 1000 | 1 1000-BDD —=—
z 1250-CPLEX - -
g 800 1 "1250-BDD —m—
o 1500-CPLEX - ©-
e 1500-BDD —6—
600 - 1 1750-CPLEX - ®-
g 1750-BDD —e—
[0
5 400 4
z
200 | .
O - .
1 1 1 1 1 1 1 1 1

Density

Fig. 6.2 Average percent gap on randomly generated MISP instances.

We also tested on the 87 instances of the maximum clique problem in the well-
known DIMACS benchmark (http://cs.hbg.psu.edu/txn131/clique.html). The MISP
is equivalent to the maximum clique problem on the complement of the graph.

Figure 6.3 shows a time profile comparing BDD-based optimization with CPLEX
performance for the standard and tight IP formulations. The BDD-based algorithm
is superior to the standard IP formulation but solved four fewer instances than the
tight IP formulation after 30 minutes. However, fewer than half the instances were
solved by any method. The relative gap (upper bound divided by lower bound) for

the remaining instances therefore becomes an important factor. A comparison of the

50

number solved

BDD ——
CPLEX-TIGHT —- =
ol CPLEX = = =

0 200 400 600 800 1000 1200 1400 1600 1800
time (s)

Fig. 6.3 Results on 87 MISP instances for BDDs and CPLEX. Number of instances solved versus
time for the tight IP model (top line), BDDs (middle), standard IP model (bottom).

104 6 Branch-and-Bound Based on Decision Diagrams

Gap Ratio (UB/LB) Comparison

T T T T T T T T T T /]
s
L / -
10 * * % P
s
. 9r s E
C v
T 8 4 i
Q x 7
E o7t e i
X « s
Ll 6 | * ¥ v i
| * 7
o * * s
O 5¢f . i
v
iel /
® 4r x ¥ * 7
Y
o 3+ s .
S X HH
2 «/ % B
Y%
1k %@%&" J
v
Il Il Il Il Il Il Il Il Il Il

1.2 3 4 5 6 7 8 9 10
gap ratio (BDD)

Fig. 6.4 Results on 87 MISP instances for BDDs and CPLEX. End gap comparison after 1800
seconds.

relative gap for BDDs and the tight IP model appears in Fig. 6.4, where the relative
gap for CPLEX is shown as 10 when it found no feasible solution. Points above the
diagonal are favorable to BDDs. It is evident that BDDs tend to provide significantly
tighter bounds. There are several instances for which the CPLEX relative gap is
twice the BDD gap, but no instances for which the reverse is true. In addition,
CPLEX was unable to find a lower bound for three of the largest instances, while
BDDs provided bounds for all instances.

6.5.2 Results for the MCP

We evaluated our approach on random instances for the MCP. For n € {30,40,50}
and p € {0.1,0.2,...,1}, we again generated random graphs (10 per n, p configura-
tion). The weights of the edges generated were drawn uniformly from [—1,1].

We let the rank of a node u € L; associated with state s/ be

n .
rank(u) = v*(u) + Y, sé‘ .
=

We order the variables x; according to the sum of the lengths of the edges incident
to vertex j. Variables with the largest sum are first in the ordering.

6.5 Computational Study 105

A traditional IP formulation of the MCP introduces a 0-1 variable y;; for each
edge (i, j) € E to indicate whether this edge crosses the cut. The formulation is

min{ z Wi;Yij
(

i,j)EE

Yijt+yie+yix <2
Yij T Vik 2 Vjk

alli,j,ke{1,...,n}; yi; € {0,1},all (i,j) €E} .

We first consider instances with n = 30 vertices, all of which were solved by
both BDDs and IP within 30 minutes. Figure 6.5 shows the average solution time for
CPLEX and the BDD-based algorithm, using both LEL and FC cutsets for the latter.
We tested CPLEX with and without presolve because presolve reduces the model
size substantially. We find that BDDs with either type of cutset are substantially
faster than CPLEX, even when CPLEX uses presolve. In fact, the LEL solution
time for BDDs is scarcely distinguishable from zero in the plot. The advantage of
BDDs is particularly great for denser instances.

Results for n = 40 vertices appear in Fig. 6.6. BDDs with LEL are consistently
superior to CPLEX, solving more instances after | minute and after 30 minutes. In
fact, BDD solved all but one of the instances within 30 minutes, while CPLEX with

presolve left 17 unsolved.

Average Run-Time for Random MCP Instances (n=30)

350 T T T T
IP (presolve-off) ——
P fpresolve-on —% -
300 | o i
BDD (LEL) --43--

250 B
200 | g
K
)

E 150 E

100 E

X
-
50 B
% -
ol - gy, B B Tl dEt e
Il Il Il Il Il
0.2 04 0.6 0.8 1

density

Fig. 6.5 Average solution time for MCP instances (n = 30 vertices) using BDDs (with LEL and FC
cutsets) and CPLEX (with and without presolve). Each point is the average of 10 random instances.

106 6 Branch-and-Bound Based on Decision Diagrams

10 BDD (LEL) —— - 10 F N - c "
BDD (FC) — % — ~ 8 .
N IP (presolve-on) - - \ Y \
8 v X IP (presolve-off) --&-- 8 \ | \ -
g e 3 \ %
2 (N = \ ; .
o 6 \ g o 6 Y % -
3 vl @ \ " \
3 . \§< \ 5) \\ | X
L \ i L A
£ 8 {1 £ e \
g \ 3(\ g x \ \
2 - : 2+ S —g X\
\ /x— %=X N N
of oog e e ateag ot ‘ ‘ (o]
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
density density

Fig. 6.6 Number of MCP instances with n = 40 vertices solved after 60 seconds (left) and 1800
seconds (right), versus graph density, using BDDs (with LEL and FC cutsets) and CPLEX (with
and without presolve). The legend is the same for the two plots.

Figure 6.7 (left) shows time profiles for 100 instances with » = 50 vertices. The
profiles for CPLEX (with presolve) and BDDs (with LEL) are roughly competitive,
with CPLEX marginally better for larger time periods. However, none of the
methods could solve even a third of the instances, and so the gap for the remaining
instances becomes important. Figure 6.7 (right) shows that the average percent gap
(i.e., 100(UB — LB)/LB) is much smaller for BDDs on denser instances, and com-
parable on sparser instances, again suggesting greater robustness for a BDD-based
method relative to CPLEX. In view of the fact that CPLEX benefits enormously
from presolve, it is conceivable that BDDs could likewise profit from a presolve
routine.

We also tested the algorithm on the g-set, a classical benchmark set, created by
the authors in [91], which has since been used extensively for computational testing

on algorithms designed to solve the MCP. The 54 instances in the benchmark set are

35 T T T 500 T T
BDD (LEL) —— o BDD (LEL) ——
30 BDD (FC) — » — g H BDD (FC) — » -
IP (with presolve) - - 400 - : IP (presolve-on) - - |
25 - IP (no presolve) - i‘ . ! IP (presolve-off) --@--
3 N :
3 S 300 | ;
@ -
9] S ;
8 2 200 - A H R
€ o} RN »
> o VAN
c
100 4
5 s s s s ok J
0.1 1 10 100 1000
time (s) den5|ty

Fig. 6.7 Time profile (left) for 100 MCP instances with n = 50 vertices, comparing BDDs (with
LEL and FC cutsets) and CPLEX (with and without presolve). Percent gap (right) versus density
after 1800 seconds, where each point is the average over 10 random instances.

6.5 Computational Study 107

large, each having at least 800 vertices. The results appear in Table 6.1 only for those
instances for which the BDD-based algorithm was able to improve upon the best
known integrality gaps. For the instances with 1% density or more, the integrality
gap provided by the BDD-based algorithm is about an order of magnitude worse
than the best known integrality gaps, but for these instances (which are among the
sparsest), we are able to improve on the best known gaps through proving tighter
relaxation bounds and identifying better solutions than have ever been found.

The first column provides the name of the instance. The instances are ordered
by density, with the sparsest instances reported appearing at the top of the table.
We then present the upper bound (UB) and lower bound (LB), after one hour of
computation time, for the BDD-based algorithm, follow by the best known upper
bound and lower bound that we could find in the literature. In the final columns,
we record the previously best known percent gap and the new percent gap obtained
from the BDD-based algorithm. Finally, we present the reduction in percent gap
obtained.

For three instances (g32, g33, and g34), better solutions were identified by
the BDD-based algorithm than have ever been found by any technique, with an
improvement in objective function value of 12, 4, and 4, respectively. In addition,
for four instances (g50, g33, gl1, and g12) better upper bounds were proven than
were previously known, reducing the best known upper bound by 89.18, 1, 60, and
5, respectively. For these instances, the reduction in the percent gap is shown in the
last column. Most notably, for g50 and gl1, the integrality gap was significantly
tightened (82.44 and 95.24 percent reduction, respectively). As the density grows,
however, the BDD-based algorithm is not able to compete with other state-of-the-
art techniques, yielding substantially worse solutions and relaxation bounds than the
best known values.

We note here that the BDD-based technique is a general branch-and-bound
procedure, whose application to the MCP is only specialized through the DP
model that is used to calculate states and determine transition costs. This general
technique was able to improve upon best known solutions obtained by heuristics
and exact techniques specifically designed to solve the MCP. And so, although
the technique is unable to match the best known objective function bounds for all
instances, identifying the best known solution via this general-purpose technique is

an indication of the power of the algorithm.

108 6 Branch-and-Bound Based on Decision Diagrams

Table 6.1 g-set computational results
Instance BDDs Previous best Percent gap
UB LB UB LB Previous BDDs % reduction

250 5899 5880 5988.18 5880 1.84 0.32 82.44
232 1645 1410 1560 1398 11.59 10.64 8.20
g33 1536 1380 1537 1376 1.7 1130 3.39
g34 1688 1376 1541 1372 12.32 11.99 2.65
gll 567 564 627 564 11.17 0.53 95.24
gl2 616 556 621 556 11.69 10.79 7.69

6.5.3 Results for MAX-2SAT

For the MAX-2SAT problem, we created random instances with n € {30,40}
variables and density d € {0.1,0.2,...,1}. We generated 10 instances for each pair
(n,d), with each of the 4 - (;) possible clauses selected with probability d and, if
selected, assigned a weight drawn uniformly from [1,10].

We used the same rank function as for the MCP, and we ordered the variables in
ascending order according to the total weight of the clauses in which the variables
appear.

We formulated the IP using a standard model. Let clause i contain variables x ;)
and x;(;). Let x; be x; if x; is posited in clause i, and 1 —x; if x; is negated. Let O; be
a 0—1 variable that will be forced to 0 if clause i is unsatisfied. Then if there are m
clauses and w; is the weight of clause 7, the IP model is

m
max { Z w;0;
i=1

Xy 3 + (1= 8) > Lall i; x;, 8 € {0,1}, all i,j}.

Figure 6.8 shows the time profiles for the two size classes. BDDs with LEL are
clearly superior to CPLEX for » = 30. When n = 40, BDDs prevail over CPLEX
as the available solving time grows. In fact, BDDs solve all but 2 of the instances
within 30 minutes, while CPLEX leaves 17 unsolved using no presolve, and 22

unsolved using presolve.

6.6 Parallel Branch-and-Bound 109

100 1
80 1
gl
g
5 60 - E
a
@
o
€ 40 g
S
c
20 + 1
BDD (LEL) —+—
BDD (FC) — x —
IP (with presolve) - -
0 ‘ ‘ IP (no presolve) --4-- -
0.01 0.1 1 10 100 1000 10000
time (s)
100 | BDD (LEL) ——]
BDD (FC) — % —
IP (with presolve) - -
IP (no presolve) --3--
80 §§ 8
il
g
5 60 - E
a
@
o
€ 40 1
S
c Xg‘x
20 400 i
X
0 Il Il Il Il]
0.1 1 10 100 1000 10000
time (s)

Fig. 6.8 Time profile for 100 MAX-2SAT instances with » = 30 variables (top) and n = 40
variables (bottom), comparing BDDs (with LEL and FC cutsets) and CPLEX (with and without
presolve).

6.6 Parallel Branch-and-Bound

In recent years, hardware design has increasingly focused on multicore systems and
parallelized computing. In order to take advantage of these systems, it is crucial that
solution methods for combinatorial optimization be effectively parallelized and built
to run not only on one machine but also on a large cluster.

Different combinatorial search methods have been developed for specific prob-
lem classes, including mixed-integer programming (MIP), Boolean satisfiability
(SAT), and constraint programming (CP). These methods represent (implicitly or
explicitly) a complete enumeration of the solution space, usually in the form of a

110 6 Branch-and-Bound Based on Decision Diagrams

branching tree where the branches out of each node reflect variable assignments. The
recursive nature of branching trees suggests that combinatorial search methods are
amenable to efficient parallelization, since we may distribute subtrees to different
compute cores spread across multiple machines of a compute cluster.

Yet, in practice this task has proved to be very challenging. For example, Gurobi,
one of the leading commercial MIP solvers, achieves an average speedup factor
of 1.7 on 5 machines (and only 1.8 on 25 machines) when compared with using
only 1 machine [79]. Furthermore, during the 2011 SAT Competition, the best
parallel SAT solvers obtained an average speedup factor of about 3 on 32 cores,
which was achieved by employing an algorithm portfolio rather than a parallelized
search [102]. The winner of the parallel category of the 2013 SAT Competition also
achieved a speedup of only about 3 on 32 cores.

Constraint programming search appears to be more suitable for parallelization
than search for MIP or SAT. Different strategies, including a recursive application
of search goals [125], work stealing [48], problem decomposition [135], and a
dedicated parallel scheme based on limited discrepancy search [118] all exhibit
good speedups (sometimes near-linear). This is specially true in scenarios involving
infeasible instances or where evaluating the search tree leaves is costlier than evalu-
ating internal nodes. Nonetheless, recent developments in CP and SAT have moved
towards more constraint learning during search (such as lazy clause generation
[120]) for which efficient parallelization becomes increasingly more difficult.

Our goal in this section is to investigate whether branch-and-bound based on
decision diagrams can be effectively parallelized. The key observation is that relaxed
decision diagrams can be used to partition the search space, since for a given layer
in the diagram each path from the root to the terminal passes through a node in
that layer. We can therefore branch on nodes in the decision diagram instead of
branching on variable—value pairs, as is done in conventional search methods. Each
of the subproblems induced by a node in the diagram is processed recursively, and
the process continues until all nodes have been solved by an exact decision diagram
or pruned due to reasoning based on bounds on the objective function.

When designing parallel algorithms geared towards dozens or perhaps hundreds
of workers operating in parallel, the two major challenges are (1) balancing the
workload across the workers, and (2) limiting the communication cost between
workers. In the context of combinatorial search and optimization, most of the
current methods are based on either parallelizing the traditional tree search or
using portfolio techniques that make each worker operate on the entire problem.

6.6 Parallel Branch-and-Bound 111

The former approach makes load balancing difficult as the computational cost of
solving similarly sized subproblems can be orders of magnitude different. The latter
approach typically relies on extensive communication in order to avoid duplication
of effort across workers.

In contrast, using decision diagrams as a starting point for parallelization offers
several notable advantages. For instance, the associated branch-and-bound method
applies relaxed and restricted diagrams that are obtained by limiting the size of
the diagrams to a certain maximum value. The size can be controlled, for example,
simply by limiting the maximum width of the diagrams. As the computation time for
a (sub)problem is roughly proportional to the size of the diagram, by controlling the
size we are able to control the computation time. In combination with the recursive
nature of the framework, this makes it easier to obtain a balanced workload. Further,
the communication between workers can be limited in a natural way by using both
global and local pools of currently open subproblems and employing pruning based
on shared bounds. Upon processing a subproblem, each worker generates several
new ones. Instead of communicating all of these back to the global pool, the worker
keeps several of them to itself and continues to process them. In addition, whenever
a worker finds a new feasible solution, the corresponding bound is communicated
immediately to the global pool as well as to other workers, enabling them to prune
subproblems that cannot provide a better solution. This helps avoid unnecessary
computational effort, especially in the presence of local pools.

Our scheme is implemented in X10 [42, 139, 158], which is a modern pro-
gramming language designed specifically for building applications for multicore
and clustered systems. For example, [34] recently introduced SatX10 as an efficient
and generic framework for parallel SAT solving using X10. We refer to our proposed
framework for parallel decision diagrams as DDX10. The use of X10 allows us
to program parallelization and communication constructs using a high-level, type-
checked language, leaving the details of an efficient backend implementation for a
variety of systems and communication hardware to the language compiler and run-
time. Furthermore, X10 also provides a convenient parallel execution framework,
allowing a single compiled executable to run as easily on one core as on a cluster of
networked machines.

Our main contributions are as follows: First, we describe, at a conceptual level,
a scheme for parallelization of a sequential branch-and-bound search based on
approximate decision diagrams and discuss how this can be efficiently implemented

in the X10 framework. Second, we provide an empirical evaluation on the maximum

112 6 Branch-and-Bound Based on Decision Diagrams

independent set problem, showing the potential of the proposed method. Third, we
compare the performance of DDX10 with a state-of-the-art parallel MIP solver.
Experimental results indicate that DDX10 can obtain much better speedups than
parallel MIP, especially when more workers are available. The results also demon-
strate that the parallelization scheme provides near-linear speedups up to 256 cores,
even in a distributed setting where the cores are split across multiple machines.

The limited amount of information required for each BDD node makes the
branch-and-bound algorithm naturally suitable for parallel processing. Once an
exact cut C is computed for a relaxed BDD, the nodes u € C are independent and
can each be processed in parallel. The information required to process a node u € C
is its corresponding state, which is bounded by the number of vertices of G, |V|.
After processing a node u, only the lower bound v*(G[E (u)]) is needed to compute
the optimal value.

6.6.1 A Centralized Parallelization Scheme

There are many possible parallel strategies that can exploit this natural characteristic
of the branch-and-bound algorithm for approximate decision diagrams. We propose
here a centralized strategy. Specifically, a master process keeps a pool of BDD
nodes to be processed, first initialized with a single node associated with the root
state V. The master distributes the BDD nodes to a set of workers. Each worker
receives a number of nodes, processes them by creating the corresponding relaxed
and restricted BDDs, and either sends back to the master new nodes to explore (from
an exact cut of their relaxed BDD) or sends to the master as well as all workers an
improved lower bound from a restricted BDD.

The workers also send the upper bound obtained from the relaxed BDD from
which the nodes were extracted, which is then used by the master for potentially
pruning the nodes according to the current best lower bound at the time these nodes
are brought out from the global pool to be processed.

Even though conceptually simple, our centralized parallelization strategy in-
volves communication between all workers and many choices that have a significant
impact on performance. After discussing the challenge of effective parallelization,
we explore some of these choices in the rest of this section.

6.6 Parallel Branch-and-Bound 113

6.6.2 The Challenge of Effective Parallelization

Clearly, a BDD constructed in parallel as described above can be very different in
structure and overall size from a BDD constructed sequentially for the same problem
instance. As a simple example, consider two nodes u; and u, in the exact cut C. By
processing u; first, one could potentially improve the lower bound so much that u,
can be pruned right away in the sequential case. In the parallel setting, however,
while worker 1 processes u, worker 2 will already be wasting search effort on
uy, not knowing that u; could simply be pruned if it waited for worker 1 to finish
processing u.

In general, the order in which nodes are processed in the approximate BDD
plays a key role in perfomance. The information passed on by nodes processed
earlier can substantially alter the direction of search later. This is very clear in
the context of combinatorial search for SAT, where dynamic variable activities and
clauses learned from conflicts dramatically alter the behavior of subsequent search.
Similarly, bounds in MIP and impacts in CP influence subsequent search.

Issues of this nature pose a challenge to effective parallelization of anything but
brute-force combinatorial search oblivious to the order in which the search space is
explored. Such a search is, of course, trivial to parallelize. For most search methods
of interest, however, a parallelization strategy that delicately balances independence
of workers with timely sharing of information is often the key to success. As our
experiments will demonstrate, our implementation, DDX10, achieves this balance
to a large extent on both random and structured instances of the independent set
problem. In particular, the overall size of parallel BDDs is not much larger than that
of the corresponding sequential BDDs. In the remainder of this section, we discuss
the various aspects of DDX10 that contribute to this desirable behavior.

6.6.3 Global and Local Pools

We refer to the pool of nodes kept by the master as the global pool. Each node in
the global pool has two pieces of information: a state, which is necessary to build
the relaxed and restricted BDDs, and the longest path value in the relaxed BDD that
created that node, from the root to the node. All nodes sent to the master are first

stored in the global pool and then redistributed to the workers. Nodes with an upper

114 6 Branch-and-Bound Based on Decision Diagrams

bound that is no more than the best found lower bound at the time are pruned from
the pool, as these can never provide a solution better than one already found.

In order to select which nodes to send to workers first, the global pool is
implemented here using a data structure that mixes a priority queue and a stack.
Initially, the global pool gives priority to nodes that have a larger upper bound,
which intuitively are nodes with higher potential to yield better solutions. However,
this search strategy simulates a best-first search and may result in an exponential
number of nodes in the global queue that still need to be explored. To remedy this,
the global pool switches to a last-in, first-out node selection strategy when its size
reaches a particular value (denoted maxPQueuelength), adjusted according to the
available memory on the machine where the master runs. This strategy resembles a
stack-based depth-first search and limits the total amount of memory necessary to
perform search.

Besides the global pool, workers also keep a local pool of nodes. The subprob-
lems represented by the nodes are usually small, making it advantageous for workers
to keep their own pool so as to reduce the overall communication to the master. The
local pool is represented by a priority queue, selecting nodes with a larger upper
bound first. After a relaxed BDD is created, a certain fraction of the nodes (with
preference for those with a larger upper bound) in the exact cut are sent to the master,
while the remaining fraction (denoted fracToKeep) of nodes are added to the local
pool. The local pool size is also limited; when the pool reaches this maximum size
(denoted maxLocalPoolSize), we stop adding more nodes to the local queue and start
sending any newly created nodes directly to the master. When a worker’s local pool
becomes empty, it notifies the master that it is ready to receive new nodes.

6.6.4 Load Balancing

The global queue starts off with a single node corresponding to the root state /. The
root assigned to an arbitrary worker, which then applies a cut to produce more states
and sends a fraction of them, as discussed above, back to the global queue. The
size of the global pool thus starts to grow rapidly, and one must choose how many
nodes to send subsequently to other workers. Sending one node (the one with the
highest priority) to a worker at a time would mimic the sequential case most closely.
However, it would also result in the most number of communications between the

master and the workers, which often results in a prohibitively large system overhead.

6.6 Parallel Branch-and-Bound 115

On the other hand, sending too many nodes at once to a single worker runs the risk
of starvation, i.e., the global queue becoming empty and other workers sitting idle
waiting to receive new work.

Based on experimentation with representative instances, we propose the follow-
ing parameterized scheme to dynamically decide how many nodes the master should
send to a worker at any time. Here, we use the notation [x]} as a shorthand for
min{u, max{¢,x}}, that is, x capped to lie in the interval [¢,u].

nNodesToSend, ; o+ (s,q,w) = {min {ES,C* 1 H m, (6.3)
' wlle

where s is a decaying running average of the number of nodes added to the global
pool by workers after processing a node,' ¢ is the current size of the global pool, w
is the number of workers, and ¢, c, and ¢* are parametrization constants.

The intuition behind this choice is as follows: ¢ is a flat lower limit (a relatively
small number) on how many nodes are sent at a time irrespective of other factors.
The inner minimum expression upper bounds the number of nodes to send to be no
more than both (a constant times) the number of nodes the worker is in turn expected
to return to the global queue upon processing each node and (a constant times) an
even division of all current nodes in the queue into the number of workers. The
first influences how fast the global queue grows, while the second relates to fairness
among workers and the possibility of starvation. Larger values of ¢, ¢, and ¢* reduce
the number of times communication occurs between the master and workers, at the
expense of moving further away from mimicking the sequential case.

Load balancing also involves appropriately setting the fracToKeep value dis-

cussed earlier. We use the following scheme, parameterized by d and d*:
fracToKeep, 4+ (t) = [t/d*]cli7 (6.4)

where ¢ is the number of states received by the worker. In other words, the fraction
of nodes to keep for the local queue is 1/d* times the number of states received by
the worker, capped to lie in the range [d, 1].

! When a cut C is applied upon processing a node, the value of s is updated as spew = #So1q + (1 —
r)|C|, with » = 0.5 in the current implementation.

116 6 Branch-and-Bound Based on Decision Diagrams

6.6.5 DDX10: Implementing Parallelization Using X10

As mentioned earlier, X10 is a high-level parallel programming and execution
framework. It supports parallelism natively, and applications built with it can be
compiled to run on various operating systems and communication hardware.

Similar to SatX10 [34], we capitalize on the fact that X10 can incorporate
existing libraries written in C++ or Java. We start off with the sequential version
of the BDD code base for MISP used in Section 6.5 and integrate it in X10, using
the C++ backend. The integration involves adding hooks to the BDD class so that
(a) the master can communicate a set of starting nodes to build approximate BDDs,
(b) each worker can communicate nodes (and corresponding upper bounds) of an
exact cut back to the master, and (c) each worker can send updated lower bounds
immediately to all other workers and the master so as to enable pruning.

The global pool for the master is implemented natively in X10 using a sim-
ple combination of a priority queue and a stack. The DDX10 framework itself
(consisting mainly of the main DDSolver class in DDX10.x10 and the pool in
StatePool.x10) is generic and not tied to MISP in any way. It can, in principle,
work with any maximization or minimization problem for which states for a BDD

(or even an MDD) can be appropriately defined.

6.6.6 Computational Study

The MISP problem can be formulated and solved using several existing general-
purpose discrete optimization techniques. A MIP formulation is considered to be
very effective and has been used previously to evaluate the sequential BDD approach
in Section 6.5. Given the availability of parallel MIP solvers as a comparison point,
we present two sets of experiments on the MISP problem: (1) we compare DDX10
with a MIP formulation solved using IBM ILOG CPLEX 12.5.1 on up to 32 cores,
and (2) we show how DDX10 scales when going beyond 32 cores and employing up
to 256 cores distributed across a cluster. We borrow the MIP encoding from Section
6.5 and employ the built-in parallel branch-and-bound MIP search mechanism of
CPLEX. The comparison with CPLEX is limited to 32 cores because this is the
largest number of cores we have available on a single machine (note that CPLEX

12.5.1 does not support distributed execution). Since the current version of DDX10

6.6 Parallel Branch-and-Bound 117

is not deterministic, we run CPLEX also in its nondeterministic (“opportunistic’)
mode.

DDX10 is implemented using X10 2.3.1 [158] and compiled using the C++ back-
end with g++4.4.5. 2 For all experiments with DDX10, we used the following values
of the parameters of the parallelization scheme: maxPQueueLength = 5.5 x 10°
(determined based on the available memory on the machine storing the global
queue), maxLocalPoolSize = 1000,c = 10,c = 1.0,¢* =2.0,d = 0.1, and d* = 100.
The maximum width W for the BDD generated at each subproblem was set to be
the number of free variables (i.e., the number of active vertices) in the state of the
BDD node that generated the subproblem. The type of exact cut used in the branch-
and-bound algorithm for the experiments was the frontier cut [22]. These values
and parameters were chosen based on experimentation on our cluster with a few
representative instances, keeping in mind their overall impact on load balancing and
pruning as discussed earlier.

DDX10 Versus Parallel MIP

The comparison between DDX10 and IBM ILOG CPLEX 12.5.1 was conducted on
2.3 GHz AMD Opteron 6134 machines with 32 cores, 64 GB RAM, 512 KB L2
cache, and 12 MB L3 cache.

To draw meaningful conclusions about the scaling behavior of CPLEX vs.
DDX10 as the number w of workers is increased, we start by selecting problem
instances where both approaches exhibit comparable performance in the sequential
setting. To this end, we report an empirical evaluation on random instances with 170
vertices and six graph densities p = 0.19,0.21,0.23,0.25,0.27, and 0.29. For each
p, we generated five random graphs, obtaining a total of 30 problem instances. For
each pair (p,w) with w being the number of workers, we aggregate the runtime over
the five random graphs using the geometric mean.

Figure 6.9 summarizes the result of this comparison for w = 1,2,4,16, and
32. As we see, CPLEX and DDX10 display comparable performance for w = 1
(the leftmost data points). While the performance of CPLEX varies relatively little
as a function of the graph density p, that of DDX10 varies more widely. As
observed earlier in this section for the sequential case, BDD-based branch-and-

bound performs better on higher-density graphs than sparse graphs. Nevertheless,

2 The current version of DDX10 may be downloaded from http://www.andrew.cmu.edu/
user/vanhoeve/mdd.

118 6 Branch-and-Bound Based on Decision Diagrams

D19 —+—
T ——
1000 - D25 & |
~
[72]
ke
100 i
Q
Q
Q
w
N
o
E
= 10 1
1 L L L L L L L
1 2 4 8 16 32
Number of Cores
1000 | 1
~~
)
ke
100 i
5]
Q
[
1) -
b - - ; . >
£ s . © "
=o10f . 1
- Trme
o
1 L 4

1 2 16 32

4 8
Number of Cores

Fig. 6.9 Performance of CPLEX (above) and DDX10 (below), with one curve for each graph
density p shown in the legend as a percentage. Both runtime (y-axis) and number of cores (x-axis)
are on logarithmic scale.

the performance of the two approaches when w = 1 is in a comparable range for
the observation we want to make, which is the following: DDXI0 scales more
consistently than CPLEX when invoked in parallel and also retains its advantage
on higher-density graphs. For p > 0.23, DDX10 is clearly exploiting parallelism
better than CPLEX. For example, for p = 0.29 and w = 1, DDX10 takes about 80
seconds to solve the instances while CPLEX needs about 100 seconds—a modest
performance ratio of 1.25. This same performance ratio increases to 5.5 when both

methods use w = 32 workers.

6.6 Parallel Branch-and-Bound 119

Table 6.2 Runtime (seconds) of DDX10 on DIMACS instances. Timeout = 1,800.

Instance n Density 1 core 4cores 16cores 64 cores 256 cores
hamming8-4.clq 256 0.36 25.24 7.08 2.33 1.32 0.68
brock200 4.clq 200 0.34 3343 9.04 2.84 1.45 1.03
san400 0.7 1.clq 400 0.30 33.96 9.43 4.63 1.77 0.80
p hat300-2.clq 300 0.51 34.36 9.17 2.74 1.69 0.79
san1000.clq 1000 0.50 40.02 12.06 7.15 2.15 9.09
p hat1000-1.clq 1000 0.76 4335 12.10 4.47 2.84 1.66
sanr400 0.5.clq 400 0.50 77.30 18.10 5.61 2.18 2.16
san200 0.9 2.clq 200 0.10 93.40 23.72 7.68 3.64 1.65
sanr200 0.7.clq 200 030 117.66 30.21 8.26 2.52 2.08
san400 0.7 2.clq 400 030 23454 59.34 16.03 6.05 4.28
p hat1500-1.clq 1500 0.75 379.63 100.3 29.09 10.62 25.18
brock200 1.clq 200 0.25 586.26 150.3 39.95 12.74 6.55
hamming8-2.clq 256 0.03 663.88 166.49 41.80 23.18 14.38
gen200 p0.9 55.clq 200 0.10 717.64 143.90 43.83 12.30 6.13
C125.9.clq 125 0.10 1,100.91 277.07 70.74 19.53 8.07
san400 0.7 3.clq 400 0.30 — 709.03 184.84 54.62 136.47
p hat500-2.clq 500 0.50 — 73639 193.55 62.06 23.81
p hat300-3.clq 300 0.26 - - 1,158.18 349.75 172.34
san400 0.9 1.clq 400 0.10 - - 1,386.42 345.66 125.27
san200 0.9 3.clq 200 0.10 - - - 487.11 170.08
gen200 p0.9 44.clq 200 0.10 - - - 1,713.76 682.28
sanr400 0.7.clq 400 0.30 - - - - 1,366.98
p hat700-2.clq 700 0.50 - - - - 1,405.46

Parallel Versus Sequential Decision Diagrams

The two experiments reported in this section were conducted on a larger cluster,
with 13 of 3.8 GHz Power7 machines (CHRP IBM 9125-F2C) with 32 cores (4-way
SMT for 128 hardware threads) and 128 GB of RAM. The machines are connected
via a network that supports the PAMI message passing interface [106], although
DDX10 can also be easily compiled to run using the usual network communication
with TCP sockets. We used 24 workers on each machine, using as many machines

as necessary to operate w workers in parallel.

Random Instances

The first experiment reuses the random MISP instances introduced in the previous
section, with the addition of similar but harder instances on graphs with 190 vertices,

resulting in 60 instances in total.

120 6 Branch-and-Bound Based on Decision Diagrams

1000 1

Time (seconds)

16
Number of Cores

1000

100

Time (seconds)

16 64 256
Number of Cores

Fig. 6.10 Scaling behavior of DDX10 on MISP instances with 170 (above) and 190 (below)
vertices, with one curve for each graph density p shown in the legend as a percentage. Both runtime
(y-axis) and number of cores (x-axis) are on logarithmic scale.

As Fig. 6.10 shows, DDX10 scales near-linearly up to 64 cores and still very well
up to 256 cores. The slight degradation in performance when going to 256 cores is
more apparent for the higher-density instances (lower curves in the plots), which do
not have much room left for linear speedups as they need only a couple of seconds
to be solved with 64 cores. For the harder instances (upper curves), the scaling is
still satisfactory even if not linear. As noted earlier, coming anywhere close to near-
linear speedups for complex combinatorial search and optimization methods has
been remarkably hard for SAT and MIP. These results show that parallelization of
BDD based branch-and-bound can be much more effective.

6.6 Parallel Branch-and-Bound 121

Table 6.3 Number of nodes in multiples of 1,000 processed (#No) and pruned (#Pr) by DDX10
as a function of the number of cores. Same setup as in Table 6.2.

1 core 4 cores 16 cores 64 cores 256 cores
Instance #No #Pr #No #Pr #No #Pr #No #Pr #No #Pr
hamming8-4.clq 43 0 42 0 40 0 32 0 41 0
brock200 4.clq 110 42 112 45 100 37 83 30 71 25
san400 0.7 1.clq 7 1 8 1 6 0 10 1 14 1
p hat300-2.clq 80 31 74 27 45 11 46 7 65 12
san1000.clq 29 16 50 37 18 4 13 6 28 6
p hat1000-1.clq 225 8 209 0 154 1 163 1 206 1
sanr400 0.5.clq 451 153 252 5 354 83 187 7 206 5
san200 0.9 2.clq 22 0 20 0 19 0 18 1 25 0
sanr200 0.7.clq 260 3 259 5 271 17 218 4 193 6
san400 0.7 2.clq 98 2 99 5 112 21 147 67 101 35

p hat1500-1.clq 1,586 380 1,587 392 1,511 402 962 224 1,028 13
brock200 1.clq 1,378 384 1,389 393 1,396 403 1,321 393 998 249

hamming8-2.clq 45 0 49 0 49 0 47 0 80 0
gen200 p0.9 55.clq 287 88 180 6 286 90 213 58 217 71
C125.9.clq 1,066 2 1,068 0 1,104 38 1,052 13 959 19
san400 0.7 3.clq - = 2975 913 2969 916 2,789 779 1,761 42
p hat500-2.clq - — 2,806 710 3,011 861 3,635 1,442 2,243 342
p hat300-3.clq - - - 18,032 4,190 17,638 3,867 15,852 2,881
san400 0.9 1.clq - - - - 2,288 238 2,218 207 2,338 422
san200 0.9 3.clq - - - - - - 9,796 390 10,302 872
gen200 p0.9 44.clq - - - - - — 43,898 5,148 45,761 7,446
sanr400 0.7.clq - - - - - - - — 135,029 247
p hat700-2.clq - - - - - - - — 89,845 8,054

DIMACS Instances

The second experiment is on the DIMACS instances used by [22], where it was
demonstrated that sequential BDD-based branch-and-bound has complementary
strengths compared with sequential CPLEX and outperforms the latter on several
instances, often the ones with higher graph density p. We consider here the subset
of instances that take at least 10 seconds (on our machines) to solve using sequential
BDDs and omit any that cannot be solved within the time limit of 1800 seconds
(even with 256 cores). The performance of DDX10 with w = 1,4,16,64, and 256 is
reported in Table 6.2, with rows sorted by hardness of instances.

These instances represent a wide range of graph size, density, and structure. As
we see from the table, DDX10 is able to scale very well to 256 cores. Except for
three instances, it is significantly faster on 256 cores than on 64 cores, despite the
substantially larger communication overhead for workload distribution and bound

sharing.

122 6 Branch-and-Bound Based on Decision Diagrams

Table 6.3 reports the total number of nodes processed through the global queue,
as well as the number of nodes pruned due to bounds communicated by the work-
ers.> Somewhat surprisingly, the number of nodes processed does not increase by
much compared with the sequential case, despite the fact that hundreds of workers
start processing nodes in parallel without waiting for potentially improved bounds
which might have been obtained by processing nodes sequentially. Furthermore,
the number of pruned nodes also stays steady as w grows, indicating that bound
communication is working effectively. This provides insight into the amiable scaling
behavior of DDX10 and shows that it is able to retain sufficient global knowledge

even when executed in a distributed fashion.

3 Here we do not take into account the number of nodes added to local pools, which is usually a
small fraction of the number of nodes processed by the global pool.

Chapter 7
Variable Ordering

Abstract One of the most important parameters that determines the size of a
decision diagram is the variable ordering. In this chapter we formally study the
impact of variable ordering on the size of exact decision diagrams for the maximum
independent set problem. We provide worst-case bounds on the size of the exact
decision diagram for particular classes of graphs. For general graphs, we show that
the size is bounded by the Fibonacci numbers. Lastly, we demonstrate experimen-
tally that variable orderings that produce small exact decision diagrams also produce

better bounds from relaxed decision diagrams.

7.1 Introduction

The ordering of the vertices plays an important role in not only the size of exact
decision diagrams, but also in the bound obtained by DD-based relaxations and
restrictions. It is well known that finding orderings that minimize the size of DDs
(or even improving on a given ordering) is NP-hard [58, 35]. We found that the
ordering of the vertices is the single most important parameter in creating small-
width exact DDs and in proving tight bounds via relaxed DDs.

In this chapter we analyze how the combinatorial structure of a problem can be
exploited to develop variable orderings that bound the size of the DD representing its
solution space. We will particularly focus on the maximum independent set problem
(MISP) for our analysis, first described in Section 3.5. Given a graph G = (V,E)
with a vertex set V/, an independent set / is a subset / C ¥ such that no two vertices

in [are connected by an edge in E, i.e., (u,v) ¢ E for any distinct u,v € I. If we

© Springer International Publishing Switzerland 2016 123
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_7

124 7 Variable Ordering

associate weights with each vertex j € V, the MISP asks for a maximum-weight
independent set of G. Since variables are binaries, the resulting diagram is a binary
decision diagram (BDD).

Different orderings can yield exact BDDs with dramatically different widths. For
example, Fig. 7.1 shows a path on six vertices with two different orderings given
by x1,...,x¢ and y1,...,y6. In Fig. 7.2(a) we see that the vertex ordering x1,...,x
yields an exact BDD with width 1, while in Fig. 7.2(b) the vertex ordering yy, ..., Vs
yields an exact BDD with width 4. This last example can be extended to a path
with 2n vertices, yielding a BDD with a width of 2!, while ordering the vertices
according to the order in which they lie on the paths yields a BDD of width 1.

X1 X2 X3 X4 X5 X6
0 ———O——O— 0
by Y4 Y2 Vs Y3 Yo

Fig. 7.1 Path graph.

X1 ! Y1

X2 : Y2

X3 : Y3

X4 ! ya

X5 : Vs

X6 : Y6
(a)

Fig. 7.2 (a) Variable order that results in a small reduced BDD. (b) Variable order that results in a
larger reduced BDD.

Our study focuses on studying variable orderings for the layers of a BDD
representing the set of feasible solutions to a MISP instance. For particular classes of
graphs, variable orderings are given that can be used to provide worst-case bounds
on the width of exact BDDs [24, 89]. This is followed by the description of a family
of variable orderings for which the exact BDD is bounded by the Fibonacci numbers.
Based on this analysis, various heuristic orderings for relaxed BDDs are suggested,

7.2 Exact BDD Orderings 125

which operate on the assumption that an ordering that results in a small-width exact
reduced BDD also results in a relaxed BDD with a strong optimization bound.

Even though these orderings are specific to the maximum independent set prob-
lem, they indicate novel look-ahead ordering heuristics that are applicable to any
combinatorial optimization problem. Recent work has also extended the results
to more general independent systems [89], relating the size of a BDD with the
bandwidth of the constraint matrix.

7.2 Exact BDD Orderings

Let E(u) be the state associated with a node u, and let S(L;) be the set of states on
nodesin L;, S(L;) = Uyer,; E (u). To bound the width of a given layer j, we need only
count the number of states that may arise from independent sets on {vi,...,v;_}.
This is because each layer will have one and only one node for each possible state,
and so there is a one-to-one correspondence between the number of states and the
size of a layer.

It is assumed for the remainder of this chapter that the form of the decision
diagram used is not a zero-compressed decision diagram, as is shown in the figures
above. The bounds can be slightly improved should zero-compressed decision
diagrams be employed, but for ease of exposition and clarity the use of BDDs is

assumed.

Theorem 7.1. Let G = (V,E) be a clique. Then, for any ordering of the vertices, the
width of the exact reduced BDD will be 2.

Proof. Consider any layer j. The only possible independent sets on {vi,...,v;11}
are 0 or {v;},i=1,...,j— 1. For the former, E(0 | {v;,...,v,}) = {v),...,v,} and
for the latter, £({v;} | {v},...,vn}) = 0, establishing the bound. O

Theorem 7.2. Let G = (V,E) be a path. Then, there exists an ordering of the vertices
for which the width of the exact reduced BDD will be 2.

Proof. Let the ordering of the vertices be given by the positions in which they
appear in the path. Consider any layer j. Of the remaining vertices in G, namely
{vj,...,va}, the only vertex with any adjacencies to {vy,...,v;_} is v;. Therefore,
for any independent set 7 C {vi,...,v;_1}, E(I | V;_1) will be either {v;,...,v,}

126 7 Variable Ordering

(when v;_y ¢ I) or {vj41,...,vs} (When v;_; € I). Therefore there can be at most

two states in any given layer. 0O

Theorem 7.3. Let G = (V,E) be a cycle — a graph isomorphic, for some n, to
the graph with V.= {v,...,va} and E = {{v;,v;s1} 1 j=1,...,n =1} U{vi,v,}.
There exist orderings of the vertices for which the width of the exact reduced BDD
will be 4.

Proof. Using the ordering defined by V" above, let u be any node in B in layer j and

I the independent set it corresponds to. Four cases are possible and will define E (),

implying the width of 4:
{Visvists-- v} vi,vi—1 ¢ 1
E(u) = {Viviets- vt} vielvi_1¢1
{Vigt,--,vn} vi¢lviyel
{Vj+1,Vj+1,...,Vn,1} VI, Vj-1 el 0O

Theorem 7.4. Let G = (V,E) be a complete bipartite graph — a graph for which

the vertex set V can be partitioned into two sets Vy, V> so that
EC {{V17VQ} v eEV,m € Vz}

There exist orderings of the vertices for which the width of the exact reduced BDD
will be 2.

Proof. Let Vy,V, be the two partitions of V' providing the necessary conditions for
the graph being bipartite, and let the variables be ordered so that ¥} = {vy,..., vy, |}
and V2 = {Vjy;|+1,---,Va}. Let B be the exact reduced BDD in this ordering, u any
node in B, and 7 the independent set induced by u.

Let j be the layer of u. If I does not contain any vertex in ¥V then E(u) =
{vj,...,va}. Otherwise, I contains only vertices in the first shore. Therefore, if
J < INLE) = {vj,...,v,} and if j > V1], E(u) = 0. As these are the only

possibilities, the width of any of these layers is at most2. 0O

The above also implies, for example, that star graphs have the same width of 2.

We now consider interval graphs, that is, graphs that are isomorphic to the
intersection graph of a multiset of intervals on the real line. Such graphs have
vertex orderings vi,...v, for which each vertex v; is adjacent to the set of vertices

7.2 Exact BDD Orderings 127

Vai, Va1, -+ - Vi—1,Vis1,- .-, Vp, for some a;, b;. We call such an ordering an interval
ordering for G. Note that paths and cliques, for example, are contained in this class
of graphs. In addition, note that determining whether or not an interval ordering

exists (and finding such an ordering) can be done in linear time in 7.

Theorem 7.5. For any interval graph, any interval ordering vi,...,v, yields an
exact reduced BDD for which the width will be no larger than n, the number of

vertices in G.

Proof. Let T, = {vy,...,vu}. It is shown here that, for any u in the exact BDD
created using any interval ordering, £ (u) = T} for some k.

Each node u corresponds to some independent set in G. Fix u and let V'’ contained
in {vi,...,%_1} be the independent set in G that it corresponds to. Let b be the
maximum right limit of the intervals corresponding to the vertices in ’. Let @ be the
minimum left limit of the intervals corresponding to the variables in {v,...,vt_1},
which is larger than b, and &’ the index of the graph vertex with this limit (i.e.,
for which ap = @). E(u) = Vj, and since u was arbitrary, the theorem follows, and
o(B)<n. 0O

Theorem 7.6. Let G = (V,E) be a tree. Then, there exists an ordering of the vertices
for which the width of the exact reduced BDD will be no larger than n, the number

of vertices in G.

Proof. We proceed by induction on n. For the base case, a tree with 2 vertices is a

path, which we already know has width 2. Now let T be a tree on n vertices. Any

tree on n vertices contains a vertex v for which the connected components Cy,...,Cy

created upon deleting v from 7 have sizes |C;| < 7 [103]. Each of these connected
n

components are trees with fewer than 7 vertices, so by induction, there exists an
ordering of the vertices on each component C; for which the resulting BDD B; will

have width @(B;) < . For component C;, let Vi, VTCiI be an ordering achieving
this width.
Let the final ordering of the vertices in T be v% . ,v‘lc1 E v%, . 7Vfck\ ,v, which we

use to create BDD B for the set of independent sets in 7. Consider layer £ <n —1
of B corresponding to vertex v; We claim that the only possible states in S(¢)
are sUCi 1 U---UC and sUCi1 U---UC U {v}, for s € S'(j), where S'(j) is
the set of states in BDD B; in layer j. Take any independent set on the vertices
1C ... 7vllcll,v%, ... ,v;fl}. All vertices in 7 are independent of the vertices in
Cit1,---,C, and so E(I | {VZJ‘"'“VTC,-\}UCI‘M U---UCk) 2 Cipg U---UCy. Now,

128 7 Variable Ordering

consider /; = INGC;. I; is an independent set in the tree induced on the variables
in C; and so it will correspond to some path in B; from the root of that BDD to
layer j, ending at some node u. The state s of node u contains all of the vertices
{v?, ce vfcil} that are independent of all vertices in /;. As v’i yeens V;—l are the only
vertices in the ordering up to layer ¢ in B that have adjacencies to any vertices in
Ci, we see that the set of vertices in the state of / from component C; are exactly
s. Therefore, E (I | {Vj'v"""fci\} UG U--UGC) D sUCi U+ UCy. The only
remaining vertex that may be in the state is v, finishing the claim. Therefore, as the
only possible states on layer £ are sUC; U---UC and sUCyy U---UCr U {v}, for
s € 8'(j), we see that @y < % -2 = n, as desired. The layer remaining to bound is L,

which contains {v} and 0. O

Theorem 7.7. Let G = (V,E) be any graph. There exists an ordering of the vertices
Sfor which ®; < Fj 1, where Fy is the K" Fibonacci number:

Theorem 7.7 provides a bound on the width of the exact BDD for any graph.
The importance of this theorem goes further than the actual bound provided on
the width of the exact BDD for any graph. First, it illuminates another connection
between the Fibonacci numbers and the family of independent sets of a graph, as
investigated throughout the literature graph theory (see, for example, [38, 67, 57,
159]). In addition to this theoretical consideration, the underlying principles in the
proof provide insight into what heuristic ordering for the vertices in a graph could
lead to BDDs with small width. The ordering inspired by the underlying principle

in the proof yields strong relaxation BDDs.

Proof (Proof of Theorem 7.7). Let P=P',... Pk, P' = {v:,...,v}k} be a maximal
path decomposition of the vertices of G, where by a maximal path decomposition
we mean a set of paths that partition V' satisfying that v/ and vfk are not adjacent

k
j=i+]
be appended to the path) in the graph induced by the vertices not in the paths,
P Pl

Let the ordering of the vertices be given by v%,...,v}],v%,...,vfk, in which,

ordered by the paths and by the order they appear on the paths. Let the vertices

to any vertices in U P/. Hence, P! is a maximal path (in that no vertices can

also be labeled, in this order, by y1,..., .

We proceed by induction, showing that, if layers L; and L have widths ®; and
®j 1, respectively, then the width of layer L ;3 is bounded by w; +2 - @; 1, thereby
proving that each layer L; is bounded by F | for every layer j =1,...,n+ 1, since
Fip3=Fj+2-Fipy

7.2 Exact BDD Orderings 129

First we show that L, has width bounded by F5 = 5. We can assume that G is
connected and has at least 4 vertices, so that P, has at least 3 vertices. w; = 1. Also,
@, = 2, with layer L, having nodes u?,u3 arising from the partial solutions / = 0
and I = {w) }, respectively. The corresponding states will be E(u}) = V'\{y,} and
E(u3) =V\({»}UN()). Now, consider layer L3. The partial solution ending at
node £ (ug) cannot have y, added to the independent set because y, does not appear
in E(u3) since y, € N(w;). Therefore, there will be exactly three outgoing arcs
from the nodes in L,. If no nodes are combined on the third layer, there will be 3
nodes u?,i = 1,2,3 with states E(u3) = V\{y1,02}, E(@3) = V\({»1,02} UN(»2)),
and E(u3) = V\({y1,52} UN(y1)). Finally, as P! has length at least 3, vertex ys
is adjacent to ;. Therefore, we cannot add y; under node 3, so layer 4 will have
width at most 5, finishing the base case.

Now let the layers of the partially constructed BDD be given by Ly,...,L;,L;11
with corresponding widths w;,i = 1,...,j+ 1. We break down into cases based on

where y; | appears in the path that it belongs to in P, as follows:

Case 1: y; is the last vertex in the path that it belongs to. Take any node
u € Ljyy and its associated state £(u). Including or not including y;; results in
state £ (u)\{yj+1} since y;,1 is independent of all vertices y;,i > j + 2. Therefore,
;2 < ;4 since each arc directed out of u will be directed at the same node, even
if the zero-arc and the one-arc are present. And, since in any BDD w; <2 - w1,
wehave ;13 <2 w12 <2 W11 < W;+2- W) 1.

Case 2: y; 1 is the first vertex in the path that it belongs to. In this case, y; must
be the last vertex in the path that it belongs to. By the reasoning in case 1, it follows
that @;, 1 < ;. In addition, we can assume thaty ;| is not the last vertex in the path
that it belongs to because then we are in case 1. Therefore, y; 5 is in the same path
asy;41 in P. Consider L ;. In the worst case, eachnode in L; 1 has ;| in its state
so that w;; = 2- ;1. But, any node arising from a one-arc will not have y;,, in
its state. Therefore, there are at most ;| nodes in L, with y; > in their states and
at most ;1 nodes in L ;5 without y;» in their states. For the set of nodes without
¥j+2 in their states, we cannot make a one-arc, showing that ®; 3 < @2 + ®;41.
Therefore, we have w43 < @11+ @42 <3 -0 < 0;+2- W) 1.

Case 3: y;, | is not first or last in the path that it belongs to. As in case 2,
i1 <2 wj, with at most @; nodes on layer L ;1 with w;,5 in its corresponding
state label. Therefore, L;,, will have at most @; more nodes in it than layer L; .

130 7 Variable Ordering

As the same holds for layer L; 3, in that it will have at most ®;; more nodes in it
than layer L; >, we have @13 < @12+ @j11 S 0j11 +0j+0j11 = 0; +2- 011,
as desired, finishing the proof. 0O

We note here that, using instance C2000 . 9 from the DIMACS benchmark set,'
a maximal path decomposition ordering of the vertices yields widths approximately

equal to the Fibonacci numbers, as seen in Table 7.1.

Table 7.1 Widths of exact BDD for C.2000.9

56 78 9 10 11 12 13 14 15

2 3 4
2 3 5 8 13213152 65 117 182299 481 624 ---
2 3 5 8 13213455 89 144 233 377 610 987 ---

i1
w1
Fib(j+1) 1

7.3 Relaxed BDD Orderings

In this section we provide heuristic orderings for the vertices to be used during the
top-down compilation of relaxation BDDs. The orderings are suggested based on the
theorems proved in the previous sections, with the idea that, by examining simple
structured problems, we can gain intuition as to what is controlling the width of the
exact BDD for general graphs, hopefully yielding tighter upper bounds.

Maximal Path Decomposition (MPD). As show in Theorem 7.7, such an ordering
yields an exact BDD with width bounded by the Fibonacci numbers, yielding a
theoretical worst-case bound on the width for any instance. This ordering can be
precomputed in worst-case time complexity O(|V| + |E|). We note that different

maximal path decompositions may yield different sized BDDs.

Minimum Number of States (MIN). In this ordering, we select the next vertex in
the BDD as the vertex which appears in the fewest states of the layer we are
currently building. The driving force behind the proof of Theorem 7.7 is that when
constructing a layer, if a vertex does not belong to the state of a node on a previous
layer, we cannot include this vertex, i.e., we cannot add a one-arc, only the zero-arc.

This suggests that selecting a variable appearing the fewest number of times in the

1 http://dimacs.rutgers.edu/Challenges/

7.4 Experimental Results 131

states on a layer will yield a small-width BDD. The worst-case time complexity to
perform this selection is O(W|V|) per layer.

k-Look Ahead Ordering (kLA). This ordering can be employed for any binary
optimization. In /LA, after selecting the first j vertices and constructing the top
j+ 1 layers, the next chosen vertex is the one that yields the smallest width for layer
j+2 if it were selected next. This procedure can be generalized for arbitrary k < n
by considering subsets of yet to be selected vertices. The worst-case running time
for selecting a vertex can be shown to be O((}) - W|V|*log|W|) per layer.

For general k we can proceed as follows. Let X = {x,...,x,}. We begin by
selecting every possible set of k£ variables for X. For each set S, we build the
exact BDD using any ordering of the variables in S, yielding an exact BDD up
to layer £+ 1. We note that it suffices to just consider sets of variables as opposed
to permutations of variables because constructing a partial exact BDD using any
ordering in S would yield the same number of states (and hence the same width) for
layer £+ 1. We then select the set which yields the fewest number of nodes in the
resulting partially constructed BDD, using the variable in S that yields the smallest
width of layer 2 as the first variable in the final ordering.

Continuing in this fashion, for j > 2, we select every set of the unselected
variables of size k = mink,n — j and construct the exact BDD if these were the next
selected vertices. For the set S that achieves the minimum width of layer L; 441,
we choose the variable in S that minimizes the width if it were to be selected as the
next vertex, and continue until all layers are built. The worst case running time for

selecting a vertex can be shown to be O ((}) - W |V [*log|W|) per layer.

7.4 Experimental Results

Our experiments focus on the complement graphs of the well-known DIMACS
problem set for the maximum clique problem, which can be obtained by accessing
http://dimacs.rutgers.edu/Challenges/. The experiments ran on an
Intel Xeon E5345 with 8 GB RAM. The BDD was implemented in C++.

132 7 Variable Ordering

7.4.1 Exact BDDs for Trees

The purpose of the first set of experiments is to demonstrate empirically that variable
orderings potentially play a key role in the width of exact BDDs representing com-
binatorial optimization problems. To this end, we have selected a particular graph
structure, namely trees, for which we can define an ordering yielding a polynomial
bound on its width (Theorem 7.6). We then compare the ordering that provides this
bound with a set of randomly generated orderings. We also compare with the MPD
heuristic, which has a known bound for general graphs according to Theorem 7.7.
The trees were generated from the benchmark problems C125.9, keller4,

c-fat100-1, p hat300-1, brock200 1, and san200 0.7 1 by select-
ing 5 random trees each on 50 vertices from these graphs. The tree-specific ordering
discussed in Theorem 7.6 is referred to as the CV (due to the computation of
cut-vertices in the corresponding proof). We generated exact BDDs using 100
uniform-random orderings for each instance, and report the minimum, average, and
maximum obtained widths.

The results are shown in Table 7.2. In all cases, none of the 100 random orderings
yielded exact BDDs with width smaller than the ones generated from the CV
or MPD orderings. Moreover, the average was consistently more than an order
of magnitude worse than either of the structured orderings. This confirms that
investigating variable orderings can have a substantial effect on the width of the
exact BDDs produced for independent set problems. In addition, we see that also
across all instances, the CV ordering, which is specific to trees, outperforms the
MPD ordering that can be applied to general graphs, suggesting that investigating
orderings specific to particular classes of instances can also have a positive impact
on the width of exact BDDs.

7.4.2 Exact BDD Width Versus Relaxation BDD Bound

The second set of experiments aims at providing empirical evidence to the hypoth-
esis that a problem instance with a smaller exact BDD results in a relaxation BDD
that yields a tighter bound. The instances in this test were generated as follows:
We first selected five instances from the DIMACS benchmark: brock200 1,
gen200 p.0.9 55, keller4, p hat300-2, and san200 0.7 1. Then, we
uniformly at random extracted 5 connected induced subgraphs with 50 vertices for

7.4 Experimental Results 133

Table 7.2 Random trees

Instance Min Avg Max CV MPD Instance Min Avg Max CV MPD

brock200 1.t-1 2336 22105.1 116736 16 160 C125.9.t-1 768 7530.72 24576 12 228
brock200 1.t-2 672 8532.92 86016 16 312 C125.9.t-2 1600 19070 131072 12 528
brock200 1.t-3 672 7977.92 28608 8 120 C125.9.t-3 1024 8348.04 30720 12 288
brock200 1.t-4 2880 17292.9 67200 16 132 C125.9.t-4 736 4279.62 16704 16 312
brock200 1.t-5 1200 12795.2 55680 8 54 C125.9.t-5 480 18449.3 221184 16 120

c-fat200-1.t-1 896 17764.3 221184 8 112 keller4.t-1 952 9558.76 115200 8 248
c-fat200-1.t-2 1152 10950.9 55040 16 144 keller4.t-2 768 8774.12 71680 12 444
c-fat200-1.t-3 2048 23722.6 150528 10 72 keller4.t-3 2688 16942.1 74240 10 40
c-fat200-1.t-4 624 5883.96 46656 12 180 kellerd.t-4 2048 14297.8 77440 16 368
c-fat200-1.t-5 864 7509.66 27648 10 480 keller4.t-5 720 11401.8 73728 8 288

p hat300-1.t-1 792 15149.3 54720 10 200 san200 0.7 1.t-1 1920 22771.2 139776 10 28
p hat300-1.t-2 1280 14618.5 86016 16 192 san200 0.7 1.t-2 1024 7841.42 44160 12 92
p hat300-1.t-3 624 11126.6 69120 12 138 san200 0.7 1.t-3 768 8767.76 36864 8 88
p hat300-1.t-4 1152 138229 73984 16 74 san200 0.7 1.t-4 960 9981.28 43008 16 84
p hat300-1.t-5 1536 16152 82944 14 160 san200 0.7 1.t-5 1536 9301.92 43008 12 288

each instance, which is approximately the largest graph size for which the exact
BDD can be built within our memory limits.

The tests are described next. For each instance and all orderings MPD, MIN,
random, and 1LA, we collected the width of the exact BDD and the bound obtained
by a relaxation BDD with a maximum width of 10 (the average over 100 orderings
for the random procedure). This corresponds to sampling different exact BDD
widths and analyzing their respective bounds, since distinct variable orderings may
yield BDDs with very different exact widths.

Figure 7.3 presents a scatter plot of the derived upper bound as a function of
the exact widths in log-scale, also separated by the problem class from which the
instance was generated. Analyzing each class separately, we observe that the bounds
and width increase proportionally, reinforcing our hypothesis. In particular, this
proportion tends to be somewhat constant, that is, the points tend to a linear curve for
each class. We notice that this shape has different slopes according to the problem
class, hence indicating that the effect of the width might be more significant for
certain instances.

In Fig. 7.4 we plot the bound as a function of the exact width for a single
random instance extracted from san200 0.7 1. In this particular case, we applied
a procedure that generated 1000 exact BDDs with a large range of widths: the
minimum observed BDD width was 151 and the maximum was 27,684, and the
widths were approximately uniformly distributed in this interval. We then computed
the corresponding upper bounds for a relaxed BDD, constructed using the orderings
described above, with width 10. The width is given in a log-scale. The figure also
shows a strong correlation between the width and the obtained bound, analogous to

134

180
160
140
120
100

80

60

Upper-bound - width = 10

40

20

Variable Ordering

S brock200-1

¥ gen200-p.0.9-55
keller4

x X p-hat300-2
san200-0.7-1

+
+

B
O
LS

WX D>+

Il
10 100

Exact BDD width

Fig. 7.3 Bound of relaxation BDD vs. exact BDD width.

38

36

34

32

30

Upper-bound - width = 10

24

28 -

26

22

10

Fig. 7.4 Bound of relaxation BDD vs. exact BDD width for san200 0.7 1.

100 1000 10000
Exact BDD width

100000

the previous set of experiments. A similar behavior is obtained if the same chart is

plotted for other instances.

7.4.3 Relaxation Bounds

We now report the upper bound provided by the relaxation BDD for the original

benchmark set, considering all heuristic orderings suggested for maximum widths

100, 500, and 1000. In addition, we generate 100 random orderings generated

7.4 Experimental Results 135

uniformly at random, denoted here by RAND, and the bound reported is obtained
by taking the average over the 100 generated orderings. The average compilation
time for maximum width 100, 500, and 1000 was 0.21, 1.49, and 3.01 seconds,
respectively, for the MIN ordering (which was similar to RAND and MPD), while
the average time for maximum width 100, 500, and 1000 was 65.01, 318.68, and
659.02, respectively, for the 1LA ordering. For comparison purposes, we have also
included the upper bound obtained by considering the IP formulation of the MISP,
since this corresponds to a well-known bounding technique for general domains. We
ran these instances with CPLEX 12.2 with default settings and took the resulting
bound obtained after the root node was computed. We impose a time limit of 60
seconds so that the results were comparable to the MIN ordering with width 1000
since the longest time to create any relaxation BDD with these parameters was for
C.4000.5, which took 50.42 seconds.

The results are presented in Table 7.3. We report for each instance the optimal
or the best known feasible solution and the bounds, where CPLEX is the bound
obtained by the root node relaxation using CPLEX (the notation 1.00E+75 indicates
that a bound was not obtained in the 60-second time limit). By first comparing the
results obtained between orderings, we see that the MIN ordering and the general-
purpose 1LA heuristic provide the best bounds for most instances. We highlight here
that MIN and 1LA were the heuristics that provided the smallest BDD widths for
the instances tested in Section 7.4.2. We note that MIN generates BDDs an average
of an order of magnitude faster than 1LA.

To compare the obtained bounds with CPLEX, we consider the relative bound
measure, which is given by (upper bound/optimum). The average relative bound
for CPLEX (omitting the instances for which CPLEX was unable to provide a
bound) is given by 3.85, while for MIN and 1LA it is given by 2.34 and 2.32,
respectively, for a width of 100, and 1.92 and 1.90, respectively, for a width of
1000 (the averages are not significantly different at the 5% level between MIN
and 1LA). The average relative ordering for RAND was 5.51 and 4.25 for widths
of 100 and 1000, respectively. This indicates that variable orderings are crucial to
obtain tighter and relevant bounds, being particularly significant for larger instances
when comparing with CPLEX, explaining the smaller average relative bound. We
further observe that, since times were very small for the structured heuristics, the
bounds obtained here can be improved using the general-purpose bound-improving
procedures in [28].

136 7 Variable Ordering

Table 7.3 Benchmark problems relaxations

Maximum Width: 100 500 1000 1000
Instance OPT MIN MAX RAND I1LA MIN MAX RAND ILA MIN MAX RAND ILA CPLEX(I min.) MIN
€1000.9.clq 68 261 419 58542 259 244 394 52825 241 240 384 506.63 238 221.78 240
C125.9.clq 34 46 55 7168 44 45 52 6451 42 43 50 6178 4l 41.2846 43
€2000.5.clq 16 153 353 36834 152 121 249 25227 120 110 218 218 110 1.O0E+75 110
€2000.9.clq 77480 829 117091 479 447 788 105526 447 436 767 10124 433 L.O0E+75 436
€250.9.clq 44 80 107 14484 78 74 99 13046 73 72 98 12521 72 70.9322 72
€4000.5.clq 18 281 708 73631 280 223 497 50446 223 202 429 43531 203 LOOE+75 202
€500.9.clq 57 142 215 29148 142 134 203 26257 133 132 198 2518 131 123956 132
2en200 p0.9 44clg 44 62 84 11569 62 61 79 10398 359 59 78 9978 56 44 59
2en200 p0.9 S5.clg 55 67 88 11639 65 63 84 10488 62 61 81 10057 59 55 61
gend00 p0.9 S5.clg 55 100 168 23315 100 99 161 21021 96 94 156 201.84 94 55 94
gend00 p0.9 65.clg 65 112 168 23363 110 105 161 210.55 105 103 159 202.11 101 65 103
gend00 p0.9 75.clg 75 118 170 23423 118 109 164 2112 109 108 158 20273 105 75 108
brock200 T.clg 21 42 64 7202 41 36 54 5861 36 34 50 5401 35 389817 34
brock200 2.clq 12 22 35 356 22 17 24 2468 18 16 22 2169 16 223764 16
brock200 3.clq 1S 28 48 4887 29 24 36 3622 25 23 33 3239 23 28.3765 23
brock200 4clq 17 32 53 5661 32 29 42 4332 27 26 37 3902 25 31.5437 26
brock400 I.elg 27 72 127 14581 71 63 108 11875 63 60 102 109.32 61 67.2201 60
brock400 2.clq 29 75 128 14735 72 63 107 11947 61 61 101 11016 60 67.9351 61
brock400 3.clg 31 72 127 14619 73 64 109 11863 64 60 102 10912 60 67.4939 60
brock400 4.clg 33 70 129 14643 71 63 110 11954 63 63 106 10959 61 67.3132 63
brock800 T.clg 23 99 204 22201 100 85 160 16839 8 79 145 15121 78 136.103 79
brock800 2.clg 24 101 201 22438 100 86 162 170.65 85 79 145 15329 79 136538 79
brock800 3.clg 25 101 203 22261 100 84 164 169.05 84 81 149 15131 79 130.832 81
brock800 4.clg 26 101 205 22341 100 84 161 169.81 84 80 145 15266 78 132.696 80
cfa200-1clg 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
c-fat200-2.clg 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
c-fat200-5clg 58 58 58 58 58 58 58 58 58 58 58 58 58 61.6953 58
cfat500-1clg 14 14 15 1662 14 14 14 14 14 14 14 14 14 230.513 14
c-fat300-10clq 126 126 126 126 126 126 126 126 126 126 126 126 126 246 126
cfat500-2.clg 26 26 26 26 26 26 26 26 26 26 26 26 26 240 26
cfat500-5.clg 64 64 64 64 64 64 64 64 64 64 64 64 64 2445 64
hammingl0-2.clq 512 512 512 89269 515 512 512 87168 512 512 512 86299 512 512 512
hammingl0-4.clg 40 106 91 45663 105 96 76 38513 93 79 72 359.76 79 206.047 79
hamming6-2clq 32 32 32 3701 32 32 32 3403 32 32 32 3328 32 32 32
hamming6-4clq 4 4 4 598 4 4 4 4 4 4 4 4 4 533333 4
hamming8-2.clq 128 128 128 19442 128 128 128 18451 128 128 128 18071 128 128 128
hamming8-4clq 16 20 21 6223 19 18 18 4566 18 17 17 4056 17 16 17
johnsonl6-2-4clg 8 11 11 3875 11 9 9 2924 9 8 8§ 2564 8 8 8
johnson32-2-4.clg 16 40 35 25007 42 38 29 21506 39 35 25 20236 40 16 35
johnson8-2-4.cly 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
johnson8-4-4.clg 14 14 15 2457 14 14 14 1982 14 14 14 1854 14 14 14
keller4.clq 119 22 4338 18 16 17 3124 16 15 16 2754 15 1475 15
kellers.clg 27 58 98 28074 59 56 77 22575 55 48 72 20708 49 32.875 48
keller6.clg 50 171 417 150326 174 142 332 1277.98 144 123 307 119776 125 1O0E+75 123
MANN a27.clg 126 142 138 3272 135 140 137 31893 137 139 137 31525 136 133.331 139
MANN ad5.clq 345 371 365 95451 366 368 362 94245 363 368 362 937.06 365 357162 368
MANN a8l.clq 1100 1154 1143 318621 1141 1150 1143 3166.06 1143 1148 1143 315878 1141 13182 1148
MANNa9clq 16 18 18 2721 17 16 16 239 16 16 16 2288 16 17 16
p hatl000-l.clq 10 47 86 8873 48 35 52 5271 36 31 43 4337 31 4135 31
p hatl000-2clqg 46 130 210 22557 129 116 171 178.1 112 112 159 16347 108 3765 12
p hatl000-3.clg 68 202 324 38376 197 187 286 322.62 179 179 272 30207 175 245674 179
phat1500-l.clg 12 68 136 139.02 68 51 83 8308 51 46 69 6833 45 LOOE+75 46
p hat1500-2clg 65 199 344 35701 193 176 285 286.03 174 168 267 26395 163 1OOE+75 168
p hat1500-3.clg 94 298 511 59404 296 277 452 50222 270 272 433 47091 266 LO0E+75 272
phat300-lclg 8 17 27 2605 18 14 16 1580 14 12 13 1339 12 18.2278 12
p hat300-2.clg 25 48 64 6646 45 42 S 5229 40 40 48 4783 39 35.2878 40
phat300-3.clg 36 70 99 11466 67 65 89 9593 61 62 84 8986 60 552598 62
phats00-lclg 9 28 45 4533 27 21 28 273 21 18 23 227 19 158 18
phats00-2.clg 36 77 112 11655 72 69 92 928 64 66 84 8554 63 160.25 66
p hats00-3.clg 50 111 172 19567 109 106 155 16535 102 104 147 15488 99 90.7331 104
phat700-lclg 11 36 62 6327 36 27 39 3783 27 24 31 3133 24 2725 24
p hat700-2.clg 44 101 155 163.03 99 90 128 13039 88 85 118 12019 83 2725 85
p hat700-3.clg 62 153 234 272.83 147 142 208 230.14 141 137 198 21593 134 160333 137
san1000.clq 15 28 184 20202 26 21 101 10409 19 19 78 7984 19 462.5 19
san200 0.7 lelg 30 32 66 7367 31 30 57 603 30 30 52 5537 30 30 30
san200 0.7 2.clg 18 23 58 7176 21 20 48 562 20 19 46 5023 18 18 19
san200 09 lelg 70 71 86 11889 70 70 8 10856 70 70 81 10513 70 70 70
san200 09 2.clg 60 68 86 11648 64 64 8 10539 60 60 81 10105 60 60 60
san200 09 3.clg 44 57 84 115 54 55 78 10323 53 51 77 99 52 44 51
sand00 05 lelg 13 17 66 69.02 18 14 35 356 14 13 28 2831 13 13 13
sand00 0.7 Lelg 40 50 142 16035 51 46 127 13608 43 42 119 12686 41 40 42
sand00 0.7 2.clg 30 44 129 14755 45 38 108 11996 39 37 103 109.84 35 30 37
sand00 0.7 3.clg 22 36 118 13772 38 29 98 10829 31 29 91 9798 29 2 29
san400 09 T.clg 100 117 175 23622 118 109 169 21405 108 108 164 20573 108 100 108
sanr200 0.7.clg 18 34 58 63 36 31 46 4956 32 30 44 4518 29 34.5339 30
sanr200 0.9.clg 42 67 86 11478 66 63 83 10325 60 61 80 9889 6l 59.5252 61
sanr400 0.5.clg 13 40 70 7332 39 33 50 505 31 29 45 4373 29 43.1544 29

sanr400 0.7.clq 21 64 115 12844 64 55 96 101.06 54 52 89 91.69 52 62.078 52

Chapter 8

Recursive Modeling

Abstract This chapter focuses on the type of recursive modeling that is required
for solution by decision diagrams. It presents a formal development that highlights
how solution by decision diagrams differs from traditional enumeration of the state
space. It illustrates the versatility of recursive modeling with examples: single-
facility scheduling, scheduling with sequence-dependent setup times, and minimum
bandwidth problems. It shows how to represent state-dependent costs with canonical
arc costs in a decision diagram, a technique that can sometimes greatly simplify the
recursion, as illustrated by a textbook inventory management problem. It concludes

with an extension to nonserial recursive modeling and nonserial decision diagrams.

8.1 Introduction

The optimization and constraint solving communities have developed two primary
modeling styles, one based on constraints and one on recursive formulations.
Constraint-based modeling is the norm in mathematical programming, where con-
straints almost invariably take the form of inequalities or equations, as well as
in constraint programming, which draws from a collection of high-level global
constraints. Recursive modeling, on the other hand, characterizes dynamic program-
ming and Markov decision processes.

Both modeling paradigms have seen countless successful applications, but it
is hard to deny that constraint-based modeling is the dominant one. Recursive
modeling is hampered by two perennial weaknesses: it frequently results in state

spaces that grow exponentially (the “curse of dimensionality”), and there are no

© Springer International Publishing Switzerland 2016 137
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_8

138 8 Recursive Modeling

general-purpose solvers for recursive models, as there are for mathematical pro-
gramming and constraint programming models. An extensive literature shows how
to overcome the curse of dimensionality in many applications, using state space
relaxation, approximate dynamic programming, and the like. Yet these require
highly tailored solution algorithms, and many other recursive formulations remain
intractable. As a result, the major inherent advantage of recursive modeling too often
goes unexploited: its ability to model a vast range of feasible sets and objective
functions, with no need for linear, convex, or closed-form expressions.

Solution methods based on decision diagrams can accommodate both types of
modeling, as illustrated throughout this book. However, decision diagrams have
a special affinity to recursive modeling due to their close relationship with state
transition graphs in deterministic dynamic programming. Furthermore, they offer
the prospect of addressing the two weaknesses of recursive modeling in a novel
fashion. The use of relaxed decision diagrams allows recursive models to be solved
by branch-and-bound methods rather than by enumerating the state space, as de-
scribed in Chapter 6. This, in turn, may allow the development of general-purpose
branch-and-bound solvers that are analogous to mixed integer programming solvers.
Decision diagrams may therefore help to unlock the unrealized potential of recursive
modeling.

Recursive modeling may seem restrictive at first, because it requires that the
entire problem be formulated in a sequential, Markovian fashion. Each stage of the
recursion can depend only on the previous stage. This contrasts with a constraint-
based formulation, in which constraints can be added at will, with no need for a
particular overall structure. The only requirement is that the individual constraints
be in recognizable form, as for example linear inequalities.

However, once an overall recursive structure is identified, recursive modeling
provides enormous flexibility. Any objective function or feasible set that can be
expressed in terms of the current state and control can be modeled, either in closed
form or by subroutine call. A wide range of problems naturally have this structure,
and these frequently have no convenient mathematical programming formulation.
Many other problems can, with a little ingenuity, be put in the required form.

A particular strength of recursive models is that any possible objective function
over finite domains can be modeled with state-dependent costs, which correspond to
arc costs on the corresponding decision diagram. In fact, a single objective function
can be realized with several different sets of arc costs, one of which can be described
as canonical. A straightforward conversion of arc costs to canonical costs can result

8.2 General Form of a Recursive Model 139

in a smaller reduced diagram. The perspective afforded by decision diagrams can
therefore lead to a simpler and more easily solved recursive model. This is illustrated
below with an elementary inventory management problem.

Finally, recursive models can be further extended to nonserial dynamic program-
ming models, in which the linear layout of a conventional dynamic programming
model becomes a directed acyclic graph. Decision diagrams can be similarly ex-
tended to nonserial decision diagrams.

8.2 General Form of a Recursive Model

We first recall the general form of a recursive model for decision diagrams that was
set out in Chapters 3 and 4. The model consists of an exact formulation and a node
merger rule for creating a relaxed decision diagram.

The exact formulation consists of control variables (or controls, for short), a state
space, and transition functions. The controls are x1,...,x, and have finite domains
D(xy),...,D(x,), respectively. The state space S is the union of sets Si,...,S,+1
corresponding to stages of the recursion. The initial set S| contains only an initial
state 7, and the final set S, | contains one or more terminal states. In addition, each
S; contains an infeasible state 0. For each stage i = 1,...,n there is a state transition
function ; : S; x D(x;) — Si11, where ;(s', x;) specifies the result of applying control
x; in state s'. The infeasible state always transitions to itself, so that #(0,x;) = 0
for all x; € D(x;). There are also immediate cost functions 4; : S; X D(x;) — R for
i=1,...,n, where h;(s',x;) is the immediate cost of applying control x; in state s'.
The optimization problem is to identify controls that minimize

n

F(xy,...,xy) = Zhi(si,xi) (8.1)
i=1
subject to
slA+1 =t(s",x;), x; € D(x;), i=1,...,m, 8.2)
steS;, i=1,....n+1.
The summation in the objective function (8.1) can be replaced by another operator,

such as a product, maximum, or minimum.

140 8 Recursive Modeling

The problem is classically solved by backward induction:

gi(s') = min {hi(siaxi)+gi+1(ti(si7xi))}7 alls' €8, i=1,...,n (8.3)
x;€D(x;)

with boundary condition

0 ifs"les, \{0}

o ifs"t =0

g1 (s = { ;
where g;(s?) is the cost-to-go at state s'. The optimal value is g (#). The sum in (8.3)
can again be replaced by another operator. Backward induction requires, of course,
that the elements of the state space S be enumerated, frequently a task of exponential
complexity. Optimal solutions are recovered in a forward pass by letting X;(s') be
the set of controls x; € D(x;) that achieve the minimum in (8.3) for state s’. Then
an optimal solution is any sequence of controls (xi,...,x,) such that x; € X;(s') for
i=1,...,n,s'=¢and s =4(s",x;) fori=1,....n— 1.

The state transition graph for a recursive model is defined recursively. The initial
state 7 corresponds to a node of the graph, and for every state s’ that corresponds
to a node of the graph and every x; € D(x;), there is an arc from that node to a
node corresponding to state #;(s’, x;). The arc has length equal to the immediate cost
hi(s',x;), and a shortest path from 7 to a terminal state corresponds to an optimal
solution.

The state transition graph can be regarded as a decision diagram, after some
minor adjustments: remove nodes corresponding to the infeasible state, and add an
arc from each terminal state to a terminal node. The result is a decision diagram in
which each layer (except the terminal layer) corresponds to a stage of the recursion.

A relaxed decision diagram is created by a relaxation scheme (,I") that merges
states associated with nodes of the original decision diagram. The operator & maps
a set M of states corresponding to nodes on layer i to a single state ®(M). The
function I" maps the immediate cost v = /z,~,1(si’1 ,xi—1) of any control x;_; that
leads to state s' € M to a possibly altered cost I};(s’,v). This results in modified
transition and cost functions #/_,, 4}_, that are identical to the original functions

except that they reflect the redirected arcs and altered costs:

oy (8 xinr) = (M)

A : A whenever 4, 1 (s" ', x; 1) €M
;,1(5171,)51'71) — FM(S’717lj7](S1717Xi,])) } i s AL 5

8.3 Examples 141

The relaxation scheme is valid if every feasible solution of the original recursion is
feasible in the modified recursion and has no greater cost. For this it suffices that

ti(s',x;) 0 = t(®(M),x;) #0, foralls’ € M, x; € D(x;),
Ty(s=1v) <v, foralls~' €S, |, veR.

It is frequently convenient to modify the exact recursion somewhat to make it

amenable to state merger. This is illustrated in the next section.

8.3 Examples

Problems with a natural recursive structure frequently have no convenient constraint-
based formulation. Sequencing and minimum bandwidth problems provide good

examples.

8.3.1 Single-Machine Scheduling

In a simple single-machine scheduling problem, each job j has processing time p;
and deadline d;. A typical objective is to minimize total tardiness.

At least six integer programming models have been proposed for the problem,
surveyed by [12]. However, there is a natural recursive model for single-machine
scheduling. The model also accommodates a variety of side constraints that have no
practical integer programming formulation. The control x; is the i-th job processed.
The state s' = (J;, f;) at stage i consists of the set J; of jobs so far processed and the
finish time f; of the last job processed. The initial state is (0,0). Because the next
job to be processed cannot be in J;, selecting control x; = j effects the transition

1 rJ1)s ()7]fj E.]l .

The immediate cost 4;(J;,) is the tardiness (f; + p; —d;)" of job j, where the
notation o indicates max{0,a}. A simple relaxation scheme merges a subset M
of states to obtain

s =(N min {£}),

Unfem ITIEM

142 8 Recursive Modeling

where f; is now interpreted as the earliest possible finish time of the most recent job.
The immediate costs are unchanged.

This recursive model readily accommodates any side constraint or objective
function that can be defined in terms of (J;, f;) and x;. For example, release times 7;
for the jobs are accommodated by the slightly different transition function

JU . 7max ri, fi + s lf . J
WU g) = § VOUb maxtg S), i

0 if j € J;
and immediate cost /;((J;, f;),j) = (max{r;, f;} + p; —d;)*. One can shut down the

machine for maintenance in the interval [a,b] by using the transition function

(SO}, fi+pj+b—a), ifj¢Jiandf;€la—p;,b)
0, ifjeJi

and immediate cost

(fi+pj+b—a—d;)", iffi€la—p;b)

hi((Jiafi)vj) = { (f: +P‘,‘*dj)+7 otherwise.

In addition, processing job j may require that certain components have already been
fabricated in the processing of previous jobs. We simply set #;(.J;, /) = 0 when the
jobs in J; do not yield the necessary components. Such side constraints actually
make the problem easier by simplifying the decision diagram.

A wide variety of objective functions are also possible. For example, the cost of
processing job j may depend on which jobs have already been processed, perhaps
again due to common components. We can let the cost associated with control x; = j
be any desired function c;(J;), perhaps evaluated by a table lookup. Or the cost could
be an arbitrary function c;((f; + p; —d;)") of tardiness, such as a step function, or
a function of both J; and f;.

8.3.2 Sequence-Dependent Setup Times

The single-machine model can be modified to allow for sequence-dependent setup
times. The transition time from job £ to job j is now py;. An exact recursive model
can be formulated by introducing a third state variable ¢; to indicate the last job

8.3 Examples 143

processed. This yields the transition function

(i, 0y fi),J) =< 4 ! . 8.4
i((Jis i i),) {0’ ifj e, (8.4)
with immediate cost 4;((J;, i, /1), J) = (fi +pe,j—d)) ™.

To create a relaxation scheme, we must allow for the possibility that states with
different values of ¢; will be merged. The pair (¢;, f;) of state variables therefore
becomes a set L; of pairs, any one of which could represent the last job processed.

The transition function is now

t((Ji Li), j) = A(JiU{j}’{(j’wi%réLQ{ﬁ +p’g""})})’ e (8.5)

0, ifjeJ;

with immediate cost

+
hi((Ji, L), j) = (min {fi+ pe.; —d-) :
(i, Li), J) (Z,-.,fi)eLi{fl Pl,j} J
Note that the finish time of job j is based on the previous job ¢; that results in the
earliest finish time for job j. This ensures a valid relaxation. States are merged by
taking the intersection of the sets J;, as before, and the union of the sets Z;:

(M) = (N4 U Li)- (8.6)

(iLi)eM (Ji,L;)eM

As in the previous section, the model accommodates any side constraint that can be
defined in terms of the current state and control.

The famous traveling salesman problem results when deadlines are removed and
the objective is to minimize total travel time. The transition function (8.4) for the

exact recursion simplifies to

W) = { V)). 18 &

0, ifjeJ;
with immediate cost /;((J;, £;), j) = pe,j. This is the classical dynamic programming
model for the problem, which is generally impractical to solve by backward induc-
tion because of the exponential state space. However, the relaxation scheme given
above allows a recursive model to be solved by branch and bound. The set L; of

144 8 Recursive Modeling

pairs (¢;, f;) becomes a set of jobs ¢; that could be the last job processed, and the
transition function (8.5) simplifies to

(i Li), j) = {éJiU{J}, b ij ij

with immediate cost
hl((Jl7Ll)7]) = Zlelz{p[,j}

The node merger rule (8.6) is unchanged.

A wide variety of integer programming models have been proposed for the
traveling salesman problem (see [121] for a survey). The only model that has
proved useful in practice relies on subtour elimination constraints. Because there
are exponentially many such constraints, this model is not actually used to formulate
the problem for a solver. Rather, specialized solvers are built that generate subtour
elimination constraints and other valid inequalities as needed. By contrast, there is
a compact and natural recursive model for the problem, described above, that can
serve as input to a branch-and-bound solver based on decision diagrams. One can
also add side constraints that are difficult to formulate in an integer programming
framework. Chapter 11 discusses the use of decision diagrams in the context of

single-machine scheduling in more detail.

8.3.3 Minimum Bandwidth

Another modeling illustration is provided by the minimum bandwidth and linear
arrangement problems, both of which are defined on an undirected graph G = (V,E)

of n vertices. The minimum bandwidth problem assigns a distinct vertex x; € V' to

each positioni = 1,...,n so as to minimize
max {|i—J
(x,-,x,)gE{' Jl}s
where |i — j| is the length of edge (x;,x;) in the ordering xi,...,x,. The linear

arrangement problem differs only in its objective function, which is to minimize

> li—Jl.

(xixj)€E

8.3 Examples 145

It is not obvious how to write integer programming models for these problems, and
[40] observes that no useful integer programming models are known.

A recursive model, however, can be formulated as follows. A state at stage i is
atuple s’ = (s%,...,s%), where s2 is interpreted as the vertex assigned to position £.
This is a brute-force model in the sense that there is only one feasible path from the
root to each state, namely the path that sets (x1,...,x;) = (s,...,s!). However, the

model will become more interesting when relaxed. The state transition function is

ti(si,j): Eslia"'7si:7j)a]fjg{slhﬂsi}
0, otherwise.

Since vertex j is placed in position i + 1, the immediate cost is

hi(s', j) = max {i+1—-k}
=1,...,i

(si.J)EE

for the minimum bandwidth problem and

hi(s',j) = 2 (i+1-sp)
k=1,....0
(si/)EE
for the linear arrangement problem.

To formulate a relaxation, one can modify the recursion so that the state is a
tuple §" = (S%,...,S%), where S/ is interpreted as the set of values that have been
assigned to x; along paths to the state S’. To state the transition function, one must
determine what values x; | can take, consistent with the current state. This can be
determined by maintaining domain consistency for ALLDIFFERENT(x1,...,X;,X;1])
given domains x; € S for £ =1,...,i and x;41 € {1,...,n}. I SF, | is the filtered
domain for x;; 1 that results, then the transition function is

t;(Sl,j): (Sll77S;3{J})7 lf‘]ESl*+1
0, otherwise.
To compute the immediate cost, we let the lower-bound length LBjk(S’A) of an edge
(j,k) be the minimum length of (j,k) over all positions that can be assigned to
vertex k given the current state S'. Thus the lower-bound length of (j, k) is

! The concepts of domain filtering and domain consistency in constraint programming are dis-
cussed in Chapter 9.

146 8 Recursive Modeling

LBJi(S') = min{[i + 1 —]}
kesi

The immediate cost for the minimum bandwidth problem is now the maximum

lower-bound length of edges incident to vertex j and a vertex in S§ U--- U S:

hi(S',j) = max {LBu(S")}.
keSiU--US!

The immediate cost for the linear arrangement problem is similar:

hi(S'j) = Y, LB(S).
keSiU--US!

The state merger rule takes a componentwise union of the states:

@(M):(Usi, .., Us;i).

SieM SieM

8.4 State-Dependent Costs

One advantage of recursive modeling is its ability to accommodate state-dependent
costs in the objective function (8.1). That is, the cost incurred in each state is a
function of the current state as well as the control. This not only provides great
flexibility in modeling the objective function, but in problems with finite variable
domains (as we are considering), it allows one to model every possible objective
function.

This insight and others become evident when one takes a perspective based on
decision diagrams. State-dependent costs allow one to put a different cost on every
arc of the corresponding decision diagram. This not only makes it possible to model
every possible objective function, but there are multiple ways to assign costs to arcs
so as to formulate any given objective function.

It is convenient to refer to a decision diagram with costs assigned to its arcs as
a weighted decision diagram. Different weighted diagrams can represent the same
optimization problem, just as different unweighted diagrams can represent the same
feasible set. Furthermore, just as there is a unique reduced unweighted diagram for
a given feasibility problem (for a fixed variable ordering), there is a unique reduced
weighted diagram for a given optimization problem, provided the costs are assigned

8.4 State-Dependent Costs 147

Table 8.1 (a) A small set covering problem. The dots indicate which elements belong to each set
i. (b) A nonseparable cost function for the problem. Values are shown only for feasible x.

(a) (b)
Set i x Fx)
123 4 0,1,01) 6
A e e 0,1,1,00 7
B o . (0,1,1,1) 8
C 1,0,1,1) 5
D . (1,1,0,0) 6
(1,1,0,1) 8
(1,1,1,0) 7
1,1,y 9

to arcs in a certain canonical fashion. In fact, a canonical cost assignment may allow
one to simplify the diagram substantially, resulting in a simpler recursive model
that can be solved more rapidly. This will be illustrated for a textbook inventory

management problem.

8.4.1 Canonical Arc Costs

The properties of state-dependent costs can be illustrated by an example, taken from
[97]. Consider the small set covering problem of Table 8.1(a). The goal is to choose
a subcollection of the four sets whose union contains elements A, B, C, and D. In
a natural recursive formulation of the problem, binary control variable x; takes the
value 1 when set i is included in the subcollection, and the state is the set S; of sets
so far included. The transition function is

SU{l), ifx=1
(Simr) = {S v =0
1y 1

A reduced decision diagram for the problem appears in Fig. 8.1(a).

The simplest type of objective function is a separable one, meaning that the
objective function (8.1) has the form F(x) = Y, A;(x;). For example, one might
assign weight w; to each vertex i and seek a minimum weight set cover, in which
case the objective function sets A;(1) = w; and %;(0) = 0. A separable objective
function results in a separable weighted diagram, meaning that, in any given layer,
the arc cost associated with a given control is always the same. Figure 8.1(b) shows

the separable decision diagram that results from weights (wy,...,ws) = (3,5,4,6).

148 8 Recursive Modeling

While separable cost functions are the easiest to model, a weighted decision
diagram (and by implication, a recursive model) can accommodate an arbitrary
objective function, separable or nonseparable. Consider, for example, the nonsep-
arable cost function shown in Table 8.1(b). This and any other cost function can be
represented in a branching tree by placing the cost of every solution on the arc that
leads to the corresponding leaf node, and a cost of zero on all other arcs, as shown
in Fig. 8.2.

This search tree becomes a weighted decision diagram if the leaf nodes are
superimposed to form a terminal node. Furthermore, the decision diagram can be
reduced. The reduction proceeds as for an unweighted decision diagram, namely
by superimposing isomorphic subdiagrams rooted at nodes in the same layer. A
subdiagram rooted at a given node is the portion of the diagram that contains all
paths between that node and the terminal node. In a weighted decision diagram,
subdiagrams are isomorphic only when corresponding arcs reflect the same cost as
well as the same control. This limits the amount of reduction that is possible.

However, it is frequently possible to achieve greater reduction when the arc costs
are canonical. An assignment of arc costs to a tree or decision diagram is canonical

if, for every layer L; > 2, and for every node on that layer, the smallest arc cost

T

Tg

T3

Ty

(@) (b)

Fig. 8.1 (a) Decision diagram for the set covering problem in Table 8.1(a). Dashed arcs correspond
to setting x; = 0, and solid arcs to setting x; = 1. (b) Decision diagram showing arc costs for a
separable objective function. Unlabeled arcs have zero cost.

8.4 State-Dependent Costs 149

X1

T2

T3 /

Fig. 8.2 Branching tree for the set covering problem in Table 8.1(a). Only feasible leaf nodes are
shown.

X1

L2

T3

4

Fig. 8.3 Branching tree with canonical arc costs. Unlabeled arcs have zero cost.

leaving that node is a predefined value ¢;. In the simplest case ¢ = 0, but in some
applications it is convenient to allow other values.

A simple algorithm converts any set of arc costs to canonical costs. For each layer
Li,i=n,n—1,...,2, do the following: for each node u in layer L;, add o — cpin to
the cost on each arc leaving u, where cpiy, is the minimum cost on arcs leaving u, and
add cpin — @ to each arc entering u. For example, the costs on the tree of Fig. 8.2
become the canonical costs shown in Fig. 8.3 if each o; = 0. This tree can, in turn,
be reduced to the decision diagram in Fig. 8.4(a). Note that this reduced diagram is
slightly larger than the reduced unweighted diagram in Fig. 8.1(a), which is to be
expected since costs must be matched before subdiagrams are superimposed.

The arc costs of Fig. 8.4(a) represent a state-dependent objective function (8.1).
For example, the state at the leftmost node in layer 4 is Ss = {2,3}, and the

150 8 Recursive Modeling

(2) (b)

T

T

3

Ty

1 1

Fig. 8.4 (a) Weighted decision diagram with canonical arc costs for a nonseparable objective
function. (b) Canonical arc costs for a separable objective function. Unlabeled arcs have zero cost.

immediate costs for this state are the costs on the arcs leaving the node, namely
h4(S4,1) =1 and h4(S4,0) = 0. In general, any possible objective function can be
represented by state-dependent costs because it can be represented by a weighted
decision diagram.

Furthermore, two uniqueness results can be proved [97]. There is a unique
canonical assignment of arc costs representing a given objective function, once
the offsets o; are fixed. In addition, the classical uniqueness theorem for reduced,
ordered diagrams [37] can be extended to weighted diagrams.

Theorem 8.1. Any discrete optimization problem (8.1)—(8.2) is represented by a
unique reduced weighted decision diagram with canonical arc costs, for a given

variable ordering and fixed offsets o, i =2,...,n.

Interestingly, conversion of costs on a separable diagram to canonical costs can
result in a nonseparable diagram. For example, the separable costs of Fig. 8.1(b)
result in the nonseparable diagram of Fig. 8.4 when converted to canonical costs.
Nonetheless, it is shown in [97] that converting a separable diagram to canonical
arc costs has no effect on the size or shape of the reduced diagram. So there is never
a penalty for converting separable costs to canonical costs.

Theorem 8.2. A weighted decision diagram that is reduced when costs are ignored

remains reduced when its arc costs are converted to canonical costs.

8.4 State-Dependent Costs 151

8.4.2 Example: Inventory Management

A textbook example in inventory management illustrates how converting costs to
canonical costs can lead to substantial reduction of the weighted decision diagram.
This simplifies the recursion and allows faster solution.

The objective is to adjust production quantities and inventory levels to meet
demand over n periods while minimizing production and holding costs. The control
is the production quantity x; in period #, and the state is the stock on hand s; at the
beginning of period i. Costs include a unit production cost ¢; and unit holding cost
of 4; in period i. The demand in period i is d;, and the warehouse has capacity m in

each period. The state transition function is

A

sitx;i—d;, if0<s;i+x;—di<m
gilsi,xi) = .
0, otherwise

with immediate cost A;(s;,x;) = cix; + h;s;. To simplify exposition, it is assumed
that the production level x; can be negative, and that this corresponds to selling off
inventory at a price equal to the current production cost.

The decision diagram has the form shown in Fig. 8.5(a). Note that the set of
arcs leaving any node is essentially identical to the set of arcs leaving any other
node in the same stage. The controls x; and the costs are different, but the controls
can be equalized by a simple change of variable, and the costs can be equalized
by transforming them to canonical costs. This will allow the diagram to be reduced
substantially.

To equalize the controls, let the control x; be the stock level at the beginning
of the next stage, so that x§ = 5; +x; — d;. Then the controls leaving any node are

x;=0,...,m. The transition function becomes simply

A

/ . /
X, ifo<xi<m
gi(S,‘,x;) = d 'l :
0, otherwise
with immediate cost

hi(si,x;) = ci(x; — si+ d;) + hisi

To transform the costs to canonical costs, subtract 4;s; + (m — s;)c; from the cost
on each arc (s;,s;+1), and add this amount to each arc coming into s;. Then for any
period i, the arcs leaving any given node s; have the same set of costs. Specifically,

realizing that x/ represents s; 1, arc (s;,s;;1) has cost

152 8 Recursive Modeling
X1 €1
T2 T2
T3 T3

(@) (b)

Fig. 8.5 (a) State transition graph for a production and inventory management problem. (b)
Reduced state transition graph after converting costs to canonical costs.

¢i(siv1) = (di+ i1 —m)ci+siprhir + (m —sip1)civ
and so depends only on the next state s;, 1. These costs are canonical for the offsets

o = min {Ei(si+1)}, i=1,...,n
si+1€40,...,m}

In any layer, the subdiagrams rooted at the nodes are isomorphic, and the decision
diagram can be reduced as in Fig. 8.5(b). There is now one state in each period

rather than m. If we call this state 1, the transition function is

1, ifo<xi<m
gi(l ,Xi») =93 A .l
0, otherwise.

The immediate cost is
hi(1,x7) = ci(di+ X —m) + hi1x; +cip1 (m —x7),
which can be rearranged to reveal the dependence on x/:

hi(l,x;) = (Ci Jrh,url — Ci+l)x§' +cid; + (Ci+l — ci)m. (8.7)

8.5 Nonserial Recursive Modeling 153

Ifx},...,x], are the optimal controls, the resulting stock levels are given by s, 1 =X}
and the production levels by x; = X, —s; + di.

The decision diagram is therefore reduced in size by a factor of m, and solution
of the problem becomes trivial. The optimal control x; is the one that minimizes the
immediate cost (8.7), which is

.xl':

, 0 ifci+hip >ciq
m otherwise.

The optimal solution is therefore a “bang-bang” inventory policy that either empties

or fills the warehouse in the next period. The optimal production schedule is

v di —s; ifci+hi1 2 cip
' m-+d;—s; otherwise.

This result relies on the fact that the unit production and holding costs are
linear, and excess inventory can be sold (x; < 0). If excess inventory cannot be
sold (or if the salvage value is unequal to the production cost), some reduction
of the decision diagram is still possible, because subdiagrams rooted at states
corresponding to lower inventory levels will be identical. If production and holding

costs are nonlinear, the decision diagram does not simplify in general.

8.5 Nonserial Recursive Modeling

Up to this point, only serial recursive models have been considered. That is, the
stages form a directed path in which each stage depends on the previous stage in a
Markovian fashion. Nonserial recursions can allow one to formulate a wider variety
of problems in recursive form, or to formulate a given problem using simpler states.
In a nonserial recursion, the “stages” form a tree rather than a path.

Nonserial dynamic programming was introduced into operations research more
than 40 years ago [29], even if it seems to have been largely forgotten in the field.
Essentially the same idea has surfaced in other contexts, including Bayesian net-
works [109], belief logics [142, 145], pseudo-Boolean optimization [52], location
theory [46], k-trees [8, 9], and bucket elimination [54].

The idea is best explained by example. Figure 8.6(a) shows a small set parti-

tioning problem. The goal is to select a minimum subcollection of the six sets that

154 8 Recursive Modeling

Set i
1 2 3 456 -3
A e -7
B °
C o o .
D . ° s
(@)

Fig. 8.6 (a) A small set partitioning problem. The dots indicate which elements belong to each
set i. (b) Dependency graph for the problem. The dashed edge is an induced edge.

partitions the set { A, B, C,D}, where the ith set is S;. The control is a binary variable
x; that indicates whether S; is selected. The feasible solutions are (x,...,x5) =
(0,0,0,1,1,1),(0,1,1,0,0,0),(1,0,0,0,0,1), where the last two solutions are opti-
mal.

A nonserial recursion can be constructed by reference to the dependency graph
for the problem, shown in Fig. 8.6(b). The graph connects two variables with an
edge when the corresponding sets have an element in common. For example, x; and
X, are connected because S| and S, have element C in common. Arbitrarily adopting
a variable ordering x1,...,X¢, vertices are removed from the graph in reverse order.
Each time a vertex is removed, the vertices adjacent to it are connected, if they are
not already connected. Edges added in this way are induced edges. For example,
removing x in the figure induces the edge (x2,x3).

The feasible values of x; depend on the set of variables to which x; was adjacent
when removed. Thus x5 depends on (x;,x3), and similarly for the other control
variables. Let S;(x;) be S; if x; = 1 and the empty set otherwise. The state s> on
which x5 depends can be regarded as the multiset that results from taking the union
S1(x1) US3(x3). Thus if (xj,x3) = (1,1), the state is {A,A,B,C}. Note that A is
repeated because it occurs in both S and S3. A state is feasible if and only if it
contains no repeated elements.

The “stages” of a nonserial recursion correspond to the control variables as in
a serial recursion. However, applying a control can result in a transition to states
in multiple stages. The transition function is therefore written as g (s’,x;), which
indicates the state in stage k that results from applying control x; in state s’. There
is also a terminal stage, which can be denoted stage T and allows two states, the
infeasible state 0 and a feasible state 1. Only one state is possible in stage 1, namely

s' = 0. The transition functions for the example are

8.5 Nonserial Recursive Modeling 155

©p) Topy Ao

{AC}

{BD)

Fig. 8.7 Nonserial state transition graph for a set partitioning problem. Only nodes and arcs that
are part of feasible solutions are shown. Each feasible solution corresponds to a tree incident to
the root and the three terminal states, which are not encircled. The boldface tree corresponds to
optimal solution (xi,...,xs) = (0,1,1,0,0,0).

812(0,x1) = S1(x1)
23(s%,x2) = g24(5%,%2) = 5> U Sy (x2)
g35(s37x3) =g 36 s X3) =g US3()

gic(sh,x;) =s'USi(x;), i=4,5,6

with immediate cost A (s*,x;) = x;.

The state transition graph for the example appears in Fig. 8.7. Only feasible states
are shown. States within an oval belong to the same “stage,” which is labeled by the
corresponding control variable x;. The three states that are not encircled are terminal
states. Arcs corresponding to a given control may run from from a state to several
other stages. For example, applying control x3 = 1 in state {C,D} creates arcs to
state {A,B,C,D} in both stages 5 and 6.

Feasible solutions correspond to trees that are incident to the initial state and the
three terminal states. This contrasts with serial decision diagrams, in which solutions
are paths incident to the initial state and terminal state. The tree shown in bold is
one of the two optimal solutions. Note that its cost is 2 even though it contains four
solid arcs, because solid arcs leaving a state s’ correspond to the same choice x; = 1.

156 8 Recursive Modeling

The state transition graph of Fig. 8.7 can be regarded as a nonserial decision
diagram. The ovals correspond to “layers,” and the three terminal states belong to
the terminal layer. In general, the concepts of reduction and canonical costs can be

carried over from serial to nonserial decision diagrams.

Chapter 9
MDD-Based Constraint Programming

Abstract This is the first of three chapters that apply decision diagrams in the
context of constraint programming. This chapter starts by providing a background of
the solving process of constraint programming, focusing on consistency notions and
constraint propagation. We then extend this methodology to MDD-consistency and
MDD-based constraint propagation. We present MDD propagation algorithms for
specific constraint types, including linear inequalities, ALLDIFFERENT, AMONG,
and ELEMENT constraints, and experimentally demonstrate how MDD propagation

can improve conventional domain propagation.

9.1 Introduction

The previous chapters have focused on developing decision diagrams for optimiza-
tion. For example, in Chapter 6 we saw how decision diagrams can form the basis for
a stand-alone solver for discrete optimization problems. In the following chapters
we take a different perspective, and integrate decision diagrams within a constraint
programming framework. In particular, we will discuss how multivalued decision
diagrams (MDDs) can be used to improve constraint propagation, which is the

central inference process of constraint programming.

© Springer International Publishing Switzerland 2016 157
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_9

158 9 MDD-Based Constraint Programming

9.2 Constraint Programming Preliminaries

Constraint programming (CP) provides a modeling and solving environment for
continuous and discrete optimization problems [137]. Perhaps the most distinctive
feature of CP, compared with similar frameworks such as integer linear program-
ming (ILP) and Boolean satisfiability (SAT), is its versatile modeling language. For
example, variables are not restricted to take a value from a numeric interval (as in
ILP) or from a Boolean domain (as in SAT), but can be assigned an element from any
finite set. Moreover, whereas problems must be represented via linear constraints in
ILP or Boolean clauses in SAT, CP allows constraints to be any relation over a
finite set of variables. These constraints can be algebraic or logical expressions, be
expressed as an explicit list of allowed tuples, and may even take a symbolic form
such as ALLDIFFERENT(x,X3,...,X,) which specifies that variables xj,x,...,x,
take distinct values. Such symbolic constraints are referred to as global constraints
in the CP literature [151, 133].

As a consequence of the rich modeling language of CP systems, the solving
process cannot exploit the uniform semantics of the representation, like linear
programming relaxations in ILP. Instead, CP solvers combine a systematic search
process with dedicated inference techniques for each constraint type. That is, the
solver associates with each constraint in the model a so-called propagation algo-
rithm, whose role is to remove provably inconsistent values from the domain of
possible values for each variable in the scope of the constraint [32]. This is also
referred to as domain filtering in the literature. The constraint propagation process
then considers each of the constraints in turn until no more domain filtering takes
place. A CP solver typically applies constraint propagation at each search state, and
as a result of the domain filtering the search space can be drastically reduced. We
first illustrate this process in Example 9.1, and then provide a formal description.

Example 9.1. Consider the following CP model:

x| > X2 (c1)
X1 +X2=Xx3 (c2)
ALLDIFFERENT (X1 ,X2,X3,X4) (c3)

X1 € {1,2},)62 S {0, 1,2,3},X3 S {2,3},)64 S {0, 1}

This model is a constraint satisfaction problem (CSP) as it does not have an objective
function to be optimized. We apply constraint propagation by considering each

9.2 Constraint Programming Preliminaries 159

constraint in turn. From constraint (¢) we deduce thatx; € {0, 1}. Then we consider
constraint (c;), but find that each domain value for each variable participates in a
solution to the constraint. When we consider constraint (c3), we can realize that the
values {0, 1} will be assigned (in any order) to variables x, and x4, and hence we
reduce the domain of x| to {2}, and consequently x3 € {3}. We continue revisiting
the constraints whose variables have updated domains. Constraint (¢;) does not
reduce any more domains, but by constraint (¢;) we deduce x, € {1}. Constraint
(c3) then updates x4 € {0}. No additional domain filtering is possible, and we
finish the constraint propagation process. In this case, we arrive at a solution to
the problem, (x1,x2,x3,x4) = (2,1,3,0).

Domain Consistency

It is useful to characterize the outcome of the constraint propagation process. Let
C(x1,x2,...,x,) be a constraint, and let each variable x; have an associated domain
of possible values D(x;), for i = 1,...,n. A solution to C is a tuple (vi,v2,...,vy)
such that v; € D(x;) and that satisfies C. If for all x; and all v; € D(x;) there exists a
solution to C in whichx; =v; (i = 1,...,n), we say that C is domain consistent. We
say that a set of constraints {C}(X;),Cy(X2),...,Cu(Xn)} with respective scopes
X1, X5,...,X, is domain consistent if all individual constraints are.! Observe that
domain consistency is defined relative to the domains of the variables in the scope
of the constraint. In the remainder, we will assume that a variable x implicitly defines
its associated domain D(x), unless otherwise noted.

We can establish domain consistency for a constraint C(X) by determining for

each variable—value pair whether it belongs to a solution to C(X), as follows:

1: DOMAINCONSISTENCY(C(X))
2: forx € X do
for v € D(x) do

(98

4 if C has no solution with x = v then
5 D(x) := D(x)\ {v}

6: if D(x) = @ then

7 return false

8

. return true

! Note that, even if a set of constraints is domain consistent, the conjunction of the constraints in
the set may not be domain consistent.

160 9 MDD-Based Constraint Programming

This function will return ‘true’ if the constraint is domain consistent, and returns
‘false’ otherwise. In the latter case one of the domains is empty, hence no solution
exists, and the CP solver can backtrack from the current search state. The time
complexity of algorithm DOMAINCONSISTENCY is polynomial in the number of
variables and the size of the variable domains, but relies on the time complexity for
determining whether a solution exists to the constraint. For some constraints this
can be done in polynomial or even constant time, while for others the check for

feasibility is an NP-complete problem itself (see Example 9.4).

Example 9.2. A classical way of representing CSPs is by means of so-called table
constraints, which provide an explicit list of allowed tuples for a set of variables. A
special case is a binary table constraint, which is defined on two variables (whose
domains can be any finite set). We can adapt algorithm DOMAINCONSISTENCY to
establish domain consistency on a binary constraint C(x,x,) as follows:

1: DOMAINCONSISTENCYBINARYTABLE(C(x1,x2))

2: Let by (v) := false for all v € D(x1)

3: Let by(v) := false for all v € D(x,)

4: for (vi,v2) € C(x,x2) do

5: bi(v1) :=true, by(vp) := true

6: D(x1) :=D(x1)\{v|v € D(x1),b;(v) = false}
7: if D(x|) = & then

8: return false

9: D(x3) :=D(x2) \ {v|v € D(x2),b2(v) = false}
10: if D(x;) = @ then

11 return false

12: return true

Here, the Boolean parameters b;(v) and by(v) represent whether a domain
value v in D(x]), resp. D(x2), participates in a solution to C or not. Algorithm
DOMAINCONSISTENCYBINARYTABLE considers all tuples in C and therefore runs
in time and space O(|C(x1,x2)|).

We note that much more refined variants of this algorithm exist in the literature;

see for example [132].

The generic algorithm DOMAINCONSISTENCY can be made more efficient by
considering the semantics of the constraint it is applied to; in some cases it is
not necessary to consider all variable—value pairs, as illustrated in the following

example:

9.2 Constraint Programming Preliminaries 161

Example 9.3. Consider a linear inequality constraint of the form

n
Z WiX; S U
i=1
for numeric variables x;, nonnegative constants w; (i = 1,...,n), and a constant right-
hand side U. This constraint can be made domain consistent in polynomial time by
updating each variable domain D(x;), i = 1,...,n, according to the following rule:

D(xi) = D(x,‘) \ (U — ZW, minD(xj))/wi,maxD(xi)
J#i
In practice, this rule can be implemented by updating the maximum value in D(x;),
which may be done in constant time with the appropriate data structure for storing

the domains.

The following example illustrates that establishing domain consistency can be

NP-hard for certain constraint types:

Example 9.4. The UNARYRESOURCE constraint was introduced in CP systems to
represent the problem of scheduling a set A of activities on a single, unit-capacity
machine (non-preemptively). Each activity a € 4 has a given release time r,,
deadline d,, and processing time p,. We introduce a set of variables S = {s, | a € A},
where s, represents the start time of activity a. Then the constraint

UNARYRESOURCE(S,r,d,p)

is feasible if and only if the start times in S correspond to a feasible schedule.
Since this constraint represents an NP-complete problem [71], there is no known
polynomial-time algorithm to determine whether there exists a solution, let alone

establish domain consistency.

Bounds Consistency

Domain consistency is one of the stronger notions of consistency one can apply
to an individual constraint. However, as mentioned above, for some constraints
establishing domain consistency may be NP-hard. For others, domain consistency

may be too time-consuming to establish, relative to the associated domain reduction.

162 9 MDD-Based Constraint Programming

Therefore, other consistency notions have been introduced that are weaker, but
are more efficient to establish. The most important alternative is that of bounds
consistency.

Let C(x1,x2,...,x,) be a constraint, and let each variable x; have an associated
domain D(x;) that is a subset of a totally ordered universe U. We say that C is
bounds consistent if for all x; and v; € {minD(x;),max D(x;)}, there exists a solution
(Vi,v2,...,vs) such that v; € [minD(x;),maxD(x;)], j # i. In other words, we
consider a convex relaxation of the variable domains, and require that all bounds
participate in a solution to C.

Similar to domain consistency, bounds consistency can be established via a
generic algorithm, by adapting algorithm DOMAINCONSISTENCY to consider do-
main bounds. But oftentimes, more efficient algorithms exist for specific constraint

types.

Example 9.5. Consider again the linear inequality constraint from Example 9.3. For
this constraint, establishing bounds consistency is equivalent to establishing domain

consistency.

Constraint Propagation Cycle

We mentioned before that a set of constraints is domain consistent if all individ-
ual constraints are. We can establish domain consistency on a set of constraints

{C1(X1),C2(X2), ... ,Cn(Xm)} using a constraint propagation process, as follows:

1: CONSTRAINTPROPAGATION({C (X1),C2(X2),...,Cu(Xim)})
1 0:={CX),G(X),...,Cn(Xn)}
: while Q is not empty do
Let C(X) be an element from Q, and delete it from Q
if DOMAINCONSISTENCY (C(X)) = false then

for x € X such that D(x) has been updated do
0:= QU{C,(X,) |J: l,...,m,C,‘ #CJE)(J}

2

3

4

5

6: return false
7

8

9: return true

Algorithm CONSTRAINTPROPAGATION maintains a set (or queue) O, which is
initialized by the set of constraints {C},...,C,,}. It iteratively considers an element
from Q (line 4), and makes it domain consistent (line 5). If any variable domain

9.2 Constraint Programming Preliminaries 163

D(x) is updated by this process, each constraint that has variable x in its scope is
added again to Q, to be revisited (lines 7-8). If algorithm DOMAINCONSISTENCY
detects an empty domain, it returns ‘false’, as will CONSTRAINTPROPAGATION
(lines 5-6). Otherwise, CONSTRAINTPROPAGATION returns ‘true’ (line 9). Practi-
cal implementations of CONSTRAINTPROPAGATION can be made more efficient,
for example by choosing the order in which constraints are processed. We already
saw this algorithm in action in Example 9.1, where we repeatedly established
domain consistency on the individual constraints until no more domain reductions
were possible.

The constraint propagation process can be adapted to include bounds consistency
algorithms instead of domain consistency algorithms for specific constraints. Re-
gardless, when the variables have finite domains, the propagation cycle is guaranteed
to terminate and reach a fixed point. Moreover, under certain conditions of the
propagators, one can show that the fixed point is unique, irrespective of the order in

which the propagators are applied [7].

Systematic Search

The systematic search process is an important element of CP solvers, and many CP
systems allow user-specified search strategies. Some systems, such as Objective-
CP [149], have a modeling language with dedicated syntax to ‘model’ the search
process, while other systems, such as IBM ILOG CPO, have a more restricted user
interaction and rely on automated search heuristics [155].

Modern finite-domain CP solvers implement a depth-first search strategy. A
classical search strategy is to enumerate variable—value assignments, and apply
constraint propagation at each search state to detect infeasible subproblems that can
be discarded. Such enumeration procedures require a variable selection heuristic,
and a value selection heuristic. The associated heuristic scoring functions are often
dynamically computed during the search. Search decisions can also be made based
on constraints; for example, we can partition the search space via x <y orx >y
for two variables x,y. Regardless of the search strategy, CP solvers apply constraint
propagation at each search state, usually until a fixed point is reached. A detailed
description of classical CP search strategies can be found in [148]. An overview of
results with respect to learning during search can be found in [131].

In the context of optimization problems, the default behavior of CP systems is
to regard the objective as a constraint. For example, if the goal is to minimize an

164 9 MDD-Based Constraint Programming

objective z, we impose the constraint z < U for an upper bound U, which is updated
each time we encounter a better solution during search. The CP literature contains
many examples of much stronger optimization approaches, however [150].

9.3 MDD-Based Constraint Programming

During the constraint propagation process information is communicated between
constraints through the variable domains. That is, all inference that takes place
within a constraint must first be projected onto the variable domains before it can
be passed to other constraints. This form of constraint propagation is said to rely on
the domain store representation. A weakness of the domain store is that it accounts
for no interaction between variables, and any solution in the Cartesian product of
the variable domains is consistent with it. The following example illustrates this
weakness, and also suggests that stronger inference may be worthwhile to pursue.

Example 9.6. Consider the following CSP:

ALLDIFFERENT(x1,x2,X3,%4) (cy)
x1+x2+x32>9 (c2)
x€{1,2,3,4},i=1,....4

Both constraints are domain consistent. However, if we were able to communicate
from (cy) to (cy) that variables x;,x5,x3 must take distinct values, we would be able
to deduce that these three variables cannnot take value 1, i.e., xj,x2,x3 € {2,3,4},

and similarly x4 € {1}.

A brute-force approach to deducing the inference in Example 9.6 is to introduce
a new constraint type to the CP system that represents the conjunction of linear
inequalities and ALLDIFFERENT constraints. This idea can be extended to conjunc-
tions of arbitrary sets of constraints, which will however quickly lead to scalability
issues. After all, the philosophy behind constraint programming is that constraints
(or combinatorial substructures) are processed individually. We therefore follow a
different approach, which is to improve the communication between constraints by
passing more structural information than the domain store, in the form of limited-
width MDDs [4]. In other words, we replace (or augment) the domain store with an
MDD store.

9.3 MDD-Based Constraint Programming 165

X1

X2

X3 ‘
4 3
X4 1
O O
(a) Exact MDD for ALLDIFFERENT. (b) MDD after propagation.

Fig. 9.1 MDD propagation for Example 9.7.

Example 9.7. We continue Example 9.6. In the ideal case, we would create an exact
MDD to represent constraint (c;), as in Fig. 9.1(a). We then communicate the MDD,
which represents relationships between the variables, to constraint (c;). We can
inspect that all paths in the MDD that use an arc with label 1 for x;,x;,x3 do not
satisfy constraint (¢;), and hence these arcs can be removed. We can also remove
nodes that are no longer connected to either the root or the terminal. The resulting
MDD is depicted in Fig. 9.1(b). If we project this information to the variable
domains, we obtain xj,x,x3 € {2,3,4} and x4 € {1}, which can be communicated
to the domain store.

Observe that in Example 9.7 the exact MDD for the ALLDIFFERENT constraint
has exponential size. In practice one therefore needs to use relaxed MDDs, of
limited width, to make this approach scalable.

In the remainder of this chapter, we will assume that the MDD defined on a set
of variables {x,x3,...,x,} will follow the lexicographic ordering of the variables,
unless noted otherwise. Also, we assume that the MDDs do not contain long arcs in
this chapter.

166 9 MDD-Based Constraint Programming

9.3.1 MDD Propagation

In principle, the MDD store can replace the domain store completely, and we could
have one single MDD representing the entire problem. This may not be efficient in
practice, however, as the resulting relaxed MDD may not be sufficiently strong.
Instead we recommend to maintain both the domain store and an MDD store,
where the MDD store represents a suitable substructure and not necessarily all
aspects of the problem. Moreover, we may choose to introduce multiple MDDs,
each representing a substructure or group of constraints that will be processed
on it. Consider for example a workforce scheduling problem in which we need
to meet given workforce levels over time, while meeting individual employee
workshift rules. We may choose to introduce one MDD per employee, representing
the employee’s work schedule over time, while the workforce-level constraints are
enforced using a conventional CP model with domain propagation.

The purpose of the MDD store is to represent a more refined relationship among
a set of variables than the domain store’s Cartesian product of variable domains.
This is accomplished by MDD filtering and refinement. MDD filtering generalizes
the concept of domain filtering to removing infeasible arcs from an MDD, while
the refinement attempts to strengthen the MDD representation by splitting nodes,
within the allowed maximum width. We note that a principled approach to node
refinement in MDDs was introduced by Hadzic et al. [84]. A generic top-down
filtering and refinement compilation scheme for a given set of constraints was
presented in Section 4.7, as Algorithm 4. This is precisely the procedure we will
apply in the context of MDD-based constraint programming. Note that we can adjust
the strength of the MDD store by setting the maximum allowed MDD width from
one (the domain store) to infinity (exact MDD).

Example 9.8. Consider a CSP with variables x; € {0,1},x2 € {0,1,2},x3 € {1,2},
and constraints x| # x», Xp # x3, X| # x3. All domain values are domain consistent
(even if we were to apply the ALLDIFFERENT propagator on the conjunction of
the constraints), and the coventional domain store defines the relaxation {0,1} x
{0,1,2} x {1,2}, which includes infeasible solutions such as (1,1, 1).

The MDD-based approach starts with the MDD of width one in Fig. 9.2(a), in
which parallel arcs are represented by a set of corresponding domain values for
clarity. We refine and propagate each constraint separately. Starting with x; # x»,
we refine the MDD by splitting the node at layer 2, resulting in Fig. 9.2(b). This
allows us to delete two domain values, based on x| # x5, as indicated in the figure. In

9.3 MDD-Based Constraint Programming 167

o)
x {01}

N
O
@ ®)

Fig. 9.2 Refining and propagating an MDD of width one (a) for x; # x5 (b), x2 # x3 (¢), and
x1 # x3 (d), yielding the MDD in (e). Dashed lines mark removed inconsistent values.

Fig. 9.2(c) and (d) we refine and propagate the MDD for the constraints x; # x3 and
X1 # x3, respectively, until we reach the MDD in Fig. 9.2(e). This MDD represents
all three solutions to the problem, and provides a much tighter relaxation than the
Cartesian product of variable domains.

We can integrate MDD propagation within a CP system by adjusting the prop-
agation algorithms for constraints of our choice to operate on MDDs. That is,
instead of variable domains, these constraints now receive an arbitrary MDD, to
be filtered and refined. For each constraint type the MDD propagation algorithm
will be a tailored version of Algorithm 4, which can directly be inserted in the
CONSTRAINTPROPAGATION procedure.

9.3.2 MDD Consistency

We will next discuss how the outcome of MDD propagation can be characterized.
Let C(X) be a constraint with variables X as its scope, and let MDD M be defined
on a set of variables X’ D X. A path with arc labels vy, ...,v, from the root r to the
terminal t in M is feasible for C if setting x; = v; for all x; € X satisfies C. Following
[4], we say that C is MDD consistent with respect to M if every arc in M belongs to
a path that is feasible for C.

Note that domain consistency is equivalent to MDD consistency on an MDD of
width one, in which the nodes of subsequent layers L; and L;, | are connected with
parallel arcs with labels D(x;).

As seen in Section 4.7, the feasibility of an MDD arc a = (u,v) in layer L; with
respect to constraint C can be determined by the transition function tjc(s(u), d(a)).

168 9 MDD-Based Constraint Programming

Recall that s(u) represents the (top-down) state information of node u and d(a)
represents the label of a. Note that parallel arcs are distinguished uniquely by
their labels. In addition, MDD propagation algorithms may utilize bottom-up state
information, as we have seen in Section 4.7.1. For clarity, we will describe the
MDD propagation rules for an arc @ = (u,v) in terms of s*(u), s'(v), and d(a),
where s*(-) and s'(-) represent the state information computed from the root r and
terminal t, respectively. For each constraint type, the MDD propagator is based on
an appropriate definition of state information, and a recursive procedure to compute
this information during the top-down and bottom-up pass.

For some constraints we can establish MDD consistency, with respect to a given
MDD, in polynomial time. We will list some of these constraints in later sections.
In general, if we can determine in polynomial time whether any particular variable—
value assignment is consistent with the MDD and a constraint C, then we can
achieve MDD consistency in polynomial time due to the following theorem:

Theorem 9.1. Suppose that the feasibility of x; = v for a given constraint C on a
given MDD M can be determined in O(f(M)) time and space for any variable x;
in the scope C and any v € D(x;). Then we can achieve MDD consistency for C in
time and space at most O(poly(M) f(M)).

Proof. The proof'is based on a shaving argument. For each arc a of M we consider
the MDD M, that consists of all the r—to—t paths in M containing a. Then a can be
removed from M if and only if x; = d(a) is inconsistent with C and M,,, where j is
the layer from which a originates. This can be determined in time and space at most
O(f(My,)) < O(f(M)). By repeating this operation for each arc of M we obtain the

theorem. O

To establish MDD consistency in practice, the goal is to efficiently compute state
information that is strong enough to apply Theorem 9.1. In the sequel, we will see
that this can be done for inequality constraints and AMONG constraints in poly-
nomial time, and in pseudo-polynomial time for two-sided inequality constraints.

Furthermore, we have the following result:

Corollary 9.1. For binary table constraints, MDD consistency can be established
in polynomial time (in the size of the constraint and the MDD).

Proof. Let C(x;,x;) be a binary table constraint, where i < j without loss of
generality. We let state sl(u) contain all the values assigned to x; in some path from

9.3 MDD-Based Constraint Programming 169

r to u, and s'(u) contain all the values assigned to x ; in some path from u to t. We
initialize s*(r) = @, and recursively compute

) = { De=tment) d(d') ifue L
Ua/=(uv)ein(v () otherwise

for all nodes v in layers L, ..., L, . Similarly, we initialize s*(t) = @, and recur-
sively compute
ST(u) _ Ua’Eout(u) d(a’) X ifue LJ
Ua’:(u,v)eout(u) K (V) otherwise

for all nodes u in layers L,,L,_1,...,L;. Then we can delete arc a = (u,v) from M
if and only if

(a) u € L; and tuple (d(a),w) does not satisfy C for any w € s (v), or
(b) v € Ljand tuple (w,d(a)) does not satisfy C for any w € s*(u).

The top-down and bottom-up passes to compute the states and perform the checks
for feasibility require time that is polynomial in the size of M. The corollary then
follows from Theorem 9.1. O

9.3.3 MDD Propagation by Intersection

In the CP literature exact MDDs have been used to represent the solution set for
specific constraints. In fact, there is a close relationship between MDDs, table
constraints, and the so-called REGULAR constraint that represents fixed-length
strings that belong to a regular language [126, 20]. Namely, they provide different
data structures for storing explicit lists of tuples that satisfy the constraint; see [43]
for a computational comparison, and [123, 124] for efficient domain consistency
algorithms based on MDDs. In such cases, we want to establish MDD consistency
of one MDD with respect to another. We will next see that this can be done in a
generic fashion. Moreover, it will provide us with another tool to test whether MDD
consistency can be established in polynomial time for certain constraint types.
Formally, our goal in this section is to establish MDD consistency on a given
MDD M with respect to another MDD M’ on the same set of variables. That is, M
is MDD consistent with respect to M’ if every arc in M belongs to a path (solution)

170 9 MDD-Based Constraint Programming

Algorithm 7 Intersection(M,M")

Input: MDD M with root », MDD M’ with root #. M and M’ are defined on the
same ordered sequence of n variables.

Output: MDD 7 with layers L{,...,L! . | and arc set A’. Each node u in I has an
associated state s(u).

1: create node 7/ with state s(r!) := (r,7/)

2: L{ = {r’}

3: fori=1tondo

4: Lz(+l = {}

5. forall u e L! withs(u) = (v,»') do

6: for all a = (v,¥) € Mand d’ = (V/,V) € M’ such that d(a) = d(a’) do
7: create node @ with state s(i) := (v,V)

8: if 3w e Ll withs(W) = s(a) then 7 :=Ww

9: else LI, | +=1 end if
10: add arc (u, i) with label d(a) to arc set A
11: remove all arcs and nodes from / that are not on a path from #/ to ¢/ € L/ 41
12: return /

Algorithm 8 MDD-Consistency(M,M")

Input: MDD M with root », MDD M’ with root . M and M’ are defined on the
same ordered sequence of n variables.
Output: M that is MDD consistent with respect to M’
1: create [:= Intersection(M,M")
2: fori=1tondo
3: create array Support[u,/] := 0 for all u € LM and arcs out of u with label /
4: for all arcs a = (v,9) in A’ with s(v) = (u,u’) such that v € L! do
5 Support[u,d(a)] ;=1
6: for all arcs a = (u,#) in M such that u € LY do
7 if Support[u,d(a)] = 0 then remove a from M end if
8: remove all arcs and nodes from M that are not on a path from r to ¢ € Lﬁl
9: return M

of M that also exists in M’. For our purposes, we assume that M and M’ follow the
same variable ordering.

We can achieve MDD consistency by first taking the intersection of M and M’,
and then removing all arcs from M that are not compatible with the intersection.
Computing the intersection of two MDDs is well studied, and we present a top-down
intersection algorithm that follows our definitions in Algorithm 7. This description
is adapted from the ‘melding’ procedure in [104].

The intersection MDD, denoted by /, represents all possible paths (solutions)
that are present in both M and M’. Each partial path in I from the root 7/ to a node

9.3 MDD-Based Constraint Programming 171

u thus will exist in M and M’, with respective endpoints v,V/. This information is
captured by associating with each node u in I a state s(u) = (v,V/) representing
those nodes v € M and v/ € M. The root of [is initialized as 7/ with s(+/) := (r,#),
where r and 7’ are the respective roots of M and M’ (lines 1-2). The algorithm then,
in a top-down traversal, considers a layer L in /, and augments a node u € L! with
s(u) = (v,v') with an arc only if both M and M’ have an arc with the same label out
of vand v/, respectively (lines 5-7). If the next layer already contains a node # with
the same state, we reuse that node. Otherwise we add a new node i to L/, | and add
the arc (u,) to 1. Note that the last layer of 7 contains a single terminal ¢/ with state
s(¢') = (t,¢"), provided that I is not empty. In the last step (line 14) we clean up 7 by
removing all arcs and nodes that do not belong to a feasible path. This can be done
in a bottom-up traversal of /. Observe that this algorithm does not necessarily create
a reduced MDD.

Algorithm 8 presents an algorithm to establish MDD consistency on M with
respect to M’. We first compute the intersection 7 of M and M’ (line 1). We then
traverse M in a top-down fashion, and for each layer LY we identify and remove
infeasible arcs. For this, we define a Boolean array Support[u, /] (initialized to 0)
that represents whether an arc out of node u € M with label / has support in / (line
3). In line 4, we consider all arcs out of layer L! in . If an arc a = (v,) exists in L/
with label / and s(v) = (u,u’), we mark the associated arc out of u as supported by
setting Support[u,/] := 1 (lines 4-6). We then remove all arcs out of LY that have
no support (lines 7-9). Lastly, we again clean up M by removing all arcs and nodes
that do not belong to a feasible path (line 11).

Theorem 9.2. Algorithm 8 establishes MDD consistency on M with respect to M’ in
O(|M|- w(M")) time and space, where |M| is the number of nodes in M and o(M’)
is the width of M.

Proof. The correctness of Algorithm 7 follows by induction on the number of
layers. To prove that Algorithm 8 establishes MDD consistency, consider an arc
a = (u,fi) in M after applying the algorithm. There exists a node v € I with
s(v) = (u,u’) such that solutions represented by the paths from r to u in M and
from 7/ to u' in M’ are equivalent. There also exists an arc a’ = (v,%) € 47 with
the same label as a. Consider s(¥) = (w,w'). Since M and I are decision diagrams,
a label appears at most once on an arc out of a node. Therefore, w = ii. Since a’
belongs to 7, there exist paths from w (or @) to ¢ in M and from w' to ¢ in M’ that are

equivalent. Hence, a belongs to a feasible path in M (from 7 to u, then along a into

172 9 MDD-Based Constraint Programming

i and terminating in ¢) for which an equivalent path exists in M’ (from #’ to «/, then
into W' and terminating in ¢').

Regarding the time complexity for computing the intersection, a coarse upper
bound multiplies 7 (line 3), @(M) - (M) (line 5), and d2,, (line 6), where diax
represents the maximum degree out of a node, or max,cy |D(x)|. We can amortize
these steps since the for-loops in lines 3 and 6 consider each arc in M once for
comparison with arcs in M’. Each arc is compared with at most @(M’) arcs (line
6); here we assume that we can check in constant time whether a node has an
outgoing arc with a given label (using an arc-label list). This gives a total time
complexity of O(|M|- w(M")). The memory requirements are bounded by the size
of the intersection, which is at most O(n- @(M) - ®(M') - dmax) = O(|M| - @(M')).
This dominates the complexity of Algorithm 8, since lines 2—12 can be performed
in linear time and space (in the size of M). O

Observe that Algorithm 8 no longer ensures that each solution in M is represented
by some path in M’, as is the case for the intersection. MDD consistency merely
establishes that each arc in M belongs to some solution that is also in M’. Although
MDD intersections are stronger than MDD consistency, their limitation is that the
width of the intersection MDD may be as large as the product of the widths of M
and M’. Therefore intersecting M with multiple MDDs will, in general, increase the
size of the resulting MDD exponentially.

Theorem 9.2 can also be applied to obtain the tractability of establishing MDD
consistency on certain constraints. Namely, if we can represent a constraint C(X)
using an exact MDD M’ of polynomial size, by Theorem 9.2 we can establish MDD
consistency with respect to a given MDD M in polynomial time (provided that M
and M’ follow the same variable ordering).

The converse of Theorem 9.2 does not hold: there exist constraints for which
MDD consistency can be achieved in polynomial time on any given MDD, while a
minimal reduced exact MDD has exponential size. As a specific example, consider
linear inequality constraints of the form Y.} | a;x; > b, where x; is an integer variable,
a; is a constant, for i = 1,...,n, and b is a constant. MDD consistency can be
achieved for such constraints in linear time, for any given MDD, by computing
for each arc the longest r-t path (relative to the coefficients a;) that uses that
arc ([4]; see also Section 9.4.2 below). However, the following linear inequality
corresponds to a reduced exact MDD that grows exponentially: For £ even and
n = k%, consider Si<i j<kijXij > k(2% —1)/2, where x;j is a binary variable, and
a;; =271 4271 for 1 <i,j < k. Itis shown in [98] that, for any variable order,

9.4 Specialized Propagators 173

the size of the reduced ordered BDD for this inequality is bounded from below by
Q2Vn/2),

9.4 Specialized Propagators

We next present MDD propagation algorithms for several constraint types. In some
cases, the propagation may not be as strong as for the conventional domain store,
in the sense that, when specialized to an MDD of width one, it may not remove as
many values as a conventional propagator would. However, a ‘weak’ propagation
algorithm can be very effective when applied to the richer information content of
the MDD store.

If one prefers not to design a propagator specifically for MDDs, there is also the
option of using a conventional domain store propagator by adapting it to MDDs.
This can be done in a generic fashion, as will be explained in Section 9.4.7.

Lastly, our description will mainly focus on MDD filtering. The refinement

process can be based on the same state information as is used for filtering.

9.4.1 Equality and Not-Equal Constraints

We first illustrate MDD propagation of the constraints x; = x; and x; # x;. Because
these are binary constraints (i.e., defined on two variables), we could represent
them as table constraints and apply Corollary 9.1 to establish MDD consistency.
By taking into account the semantics of the constraints, however, there is no need to
use explicit tables. Namely, using the states s*(u) and s'(u) as defined in the proof
of Corollary 9.1, we can achieve MDD consistency for x; = x; by deleting an arc
a = (u,v) wheneveru € L; and d(a) ¢ s' (v), and v € L; and d(a) ¢ s*(u). Likewise,
we can achieve MDD consistency for x; # x; by deleting an arc a = (u,v) whenever
ueL;ands'(v)={d(a)},andv € L; and s*(u) = {d(a)}.

Observe that this procedure generalizes directly to propagating f;(x;) = f;(x;)
and f;(x;) # fj(x;) for functions f; and f;. The scheme can also be applied to
constraints x; < x;. However, in this case we only need to maintain bound infor-
mation instead of sets of domain values, which leads to an even more efficient

implementation.

174 9 MDD-Based Constraint Programming

9.4.2 Linear Inequalities

We next focus on the propagation algorithm for general inequalities, as proposed
in [4]. That is, we want to propagate an inequality over a separable function of the

form
2 fix) < b. ©.1)
jeJ
We can propagate such a constraint on an MDD by performing shortest-path
computations.
The length of an arc @ = (u,v) with u € L; is defined as [, := fj(d(a)) if j € J,
and /, := 0 otherwise. Thus the length of an r—to—t path is the left-hand side of (9.1).
For a node u in the MDD, let spi and spl be the shortest path from r to u and
from t to u, respectively, with respect to the lengths /,. That is,

! 0, ifu=r,
spY =
Pu min{l, +spt : a = (v,u) € in(u)}, otherwise

and

. o, ifu=t,
S =
Pu min{l, +spl : a = (u,v) € out(u)}, otherwise.

This state information can be computed in linear time (in the size of the given
MDD).

Then we delete an arc @ = (u,v) with u € L; and j € J whenever every path
through a is longer than b; that is,

spﬁ + fi(d(a)) +spI > b.

This inequality propagator achieves MDD consistency as an arc e is always removed
unless there exists a feasible solution to the inequality that supports it [4].

9.4.3 Two-Sided Inequality Constraints

The inequality propagator of Section 9.4.2 can be extended to equalities [84] and
two-sided inequalities [94], by storing all path lengths instead of only the shortest
and/or longest paths.

9.4 Specialized Propagators 175

Suppose we are given an inequality constraint L <3¢, fj(x;) < U, where L and
U are numbers such that Z < U. For a node u in a given MDD M, let s*(u) be the
set of all path lengths from r to u, and s (u) the set of all path lengths from u to t.

We define s*(r) = @ and recursively compute

si(v) _ Ua’:(u,v)ein(v) {d(al) +w | we Si(”)} ifue L.f andj €J,
Ua’:(u,v)ein(v) si(u) otherwise.

We delete an arc a = (u,v) if
wtd(a)+w ¢ [L,U], forallwe s (u),w €s'(v). (9.2)

Because rule (9.2) for deleting an arc is both a necessary and sufficient condition
for the arc to be supported by a feasible solution, one top-down and bottom-up pass
suffices to achieve MDD consistency. Observing that the states can be computed in
pseudo-polynomial time, by Theorem 9.1 this algorithm runs in pseudo-polynomial
time (see also [84]).

9.4.4 ALLDIFFERENT Constraint

The constraint ALLDIFFERENT({x; | j € J) requires that the variables x; for j € J
take distinct values. This constraint was introduced before, and in Section 4.7.1
we presented a filtering procedure to propagate this constraint, based on the states
Alli, Somei, Al/z, and Somez (see Lemma 4.2 and Lemma 4.3). The filtering rules
presented in those lemmas are not sufficient to establish MDD consistency, however,

as illustrated in the following example:

Example 9.9. Consider the constraint ALLDIFFERENT(x|,x7,X3,%4) with variable
domains x| € {a,b}, x, € {a,b,c,d}, x3 € {a,b,c,d}, x4 € {a,b}, together with an
MDD of width one (ordered x1,x7,x3,x4) with parallel arcs labeled D(x;) between
layers L; and L;1 for i = 1,2,3,4. Arcs labeled a and b for x, and x3 do not
participate in a feasible solution, but the rules in Lemma 4.2 and 4.3 do not detect
this.

In fact, we have the following result:

Theorem 9.3 ([4]). Establishing MDD consistency for the ALLDIFFERENT con-
straint is NP-hard.

176 9 MDD-Based Constraint Programming

Proof. We reduce the Hamiltonian path problem to enforcing MDD consistency
on a particular MDD. Consider a walk of length » (i.e., a path in which vertex
repetition is allowed) in a given graph G = (V,E) with n vertices. Let variable
x; represent the i-th vertex visited in the walk. Observe that xj,x3,...,x, is a
Hamiltonian path if and only if x; and x;;| are adjacent, for i = 1,...,n — 1 and
ALLDIFFERENT(X],X2,...,X,) is satisfied.

We construct a polynomial-sized MDD M, following the variable ordering x, x>,
..., Xy, as follows: We define L; =r, L; = {v;1,vi2,...,vin} fori=2,...,n and
L, = t. From r we define arcs (r,v, ;) with label j for all j € V. For layers L;
(i=2,...,n), we define arcs (v; j,vi11) with label k for all edges (j,k) € E. The
MDD thus constructed represents all walks of length # in G.

A Hamiltonian path (if one exists) can now be found iteratively as follows:

1. fori=1,...,ndo

2: Establish MDD consistency for ALLDIFFERENT on M

3: LetLi | = {viy1,} for some arc out of L; with label j
Since MDD consistency guarantees that all arcs in M belong to a solution to
ALLDIFFERENT, this procedure greedily constructs a single r—t path which is
Hamiltonian in G. O

9.4.5 AMONG Constraint

The AMONG constraint counts the number of variables that are assigned to a value
in a given set S, and ensures that this number is between a given lower and upper
bound [21]:

Definition 9.1. Let X be a set of variables, let L,U be integer numbers such that
0<L<UZ<XIX|, and let S C UyexD(x) be a subset of domain values. Then we
define AMONG(X,S,L,U) as

L< Z(xGS)SU.

xeX

Note that the expression (x € S) is evaluated as a binary value, i.e., resulting in 1
ifx € Sand0ifx ¢ S. The AMONG constraint finds application in scheduling and

9.4 Specialized Propagators 177

sequencing problems, for example to indicate that an employee must be assigned a
number of workshifts S between a given minimum L and maximum U every week.
We can reduce propagating AMONG(X,S,L,U) to propagating a two-sided sep-

arable inequality constraint,

L< Y filx) <U,

xieX

where
1, ifves,

fitv) = {0, otherwise.

Because each fi(-) € {0,1}, the number of distinct path lengths is bounded by
U—-L+ 1, and we can compute all states in polynomial time. Therefore, by
Theorem 9.1, MDD consistency can be achieved in polynomial time for AMONG
constraints. Observe that tractability also follows from Theorem 9.2, since the size
of an exact MDD for AMONG can be bounded by O(n(U — L+ 1)).

To improve the efficiency of this propagator in practice, one may choose to only
propagate bounds information. That is, we can use the inequality propagator for the
pair of inequalities separately, and reason on the shortest and longest path lengths,
as in Section 9.4.2.

9.4.6 ELEMENT Constraint

A powerful modeling feature of CP is that variables can be used as subscripts for
arrays. That is, for a given array of parameters ci,...,c,, we can define y = ¢y,
where variable y has domain {cj,...,c,} and variable x has domain {1,...,m}.
The constraint specifies that y is assigned the x-th element in the array. In the CP
literature, this relationship is denoted as the constraint ELEMENT(x, (¢, ...,¢m),»).

Because this is a binary constraint, we can achieve MDD consistency in poly-
nomial time by defining s*(u),s"(u) for all nodes u in the MDD, as in the proof of
Corollary 9.1. Let variable x correspond to layer L; and variable y to L;. Assuming
that i < j, we delete an arc @ = (u,v) when (a) u € L; and there exists no k € s*(u)
such that d(a) = ¢y, or (b) u € L; and ¢4 (o) ¢ sT(v).

178 9 MDD-Based Constraint Programming

9.4.7 Using Conventional Domain Propagators

It is possible to adapt domain propagators to the context of MDD propagation, as
proposed by [4]. We first define the induced domain relaxation D* (M) of an MDD
M as a tuple of domains (D} (M),...,D, (M)) where each D; (M) contains the

values corresponding to layer ;. That is,
D (M) ={d(a) | a= (u,v),u € Li}.

As before, we denote by M|, the subgraph of M defined by all r—t paths through u.
We then apply, for node u € L;, a conventional domain propagator to the domains

DY (Ml,),...,.Dj (M|,),{d(a) | a € out(u)},D; | (Ml,),....D; (Ml],). (9.3)

We remove values only from the domain of x;, that is from {d(a) | a € out(u)}, and
delete the corresponding arcs from M. This can be done for each node in layer Z;
and for each layer in turn. Note that the induced domain relaxation D* (M|,) can be
computed recursively for all nodes « of a given MDD M in polynomial time (in the
size of the MDD).

We can strengthen the propagation by recording which values can be deleted
from the domains D; (M|,) for j # i when (9.3) is propagated [4]. If v can be
deleted from D (M|,), we place the ‘nogood’ x; # v on each arc in out(u). Then
we recursively move the nogoods on level i toward level j. If j > i, for example,
we propagate (9.3) for each node on level i and then note which nodes on level
i+ 1 have the property that all incoming arcs have the nogood x; # v. These nodes
propagate the nogood to all their outgoing arcs in turn, and so forth until level j is
reached, where all arcs with nogood x; # v and label v are deleted.

9.5 Experimental Results

We next provide detailed experimental evidence to support the claim that MDD-
based constraint programming can be a viable alternative to constraint programming
based on the domain store. The results in this section are obtained with the MDD-
based CP solver described in [93], which is implemented in C++. The solver does

not propagate the constraints until a fixed point is reached. Instead, by default we

9.5 Experimental Results 179

allocate one bottom-up and top-down pass to each constraint. The bottom-up pass
is used to compute the state information s'. The top-down pass processes the MDD
a layer at a time, in which we first compute s, then refine the nodes in the layer,
and finally apply the propagator conditions based on s' and s*. Our outer search
procedure is implemented using a priority queue, in which the search nodes are
inserted with a specific weight. This allows us to easily encode depth-first search or
best-first search procedures. Each search tree node contains a copy of the MDD of
its parent, together with the associated branching decision.

All the experiments are performed using a 2.33 GHz Intel Xeon machine with
8 GB memory. For comparison reasons, the solver applies a depth-first search, using
a static lexicographic-first variable selection heuristic, and a minimum-value-first
value selection heuristic. We vary the maximum width of the MDD, while keeping
all other settings the same.

Multiple AMONG Constraints

We first present experiments on problems consisting of multiple AMONG con-
straints. Each instance contains 50 (binary) variables, and each AMONG constraint
consists of 5 variables chosen at random, from a normal distribution with a uniform-
random mean (from [1..50]) and standard deviation o = 2.5, modulo 50. As a result,
for these AMONG constraints the variable indices are near-consecutive, a pattern
encountered in many practical situations. Each AMONG has a fixed lower bound
of 2 and upper bound of 3, specifying the number of variables that can take value
1. In our experiments we vary the number of AMONG constraints (from 5 to 200,
by steps of 5) in each instance, and we generate 100 instances for each number.
We note that these instances exhibit a sharp feasibility phase transition, with a
corresponding computational hardness peak, as the number of constraints increases.
We have experimented with several other parameter settings, and we note that the
reported results are representative for the other parameter settings; see [93] for more
details.

In Fig. 9.3, we provide a scatter plot of the running times for width 1 versus
width 4, 8, and 16, for all instances. Note that this is a log—log plot. Points on the
diagonal represent instances for which the running times, respectively number of
backtracks, are equal. For points below the diagonal, width 4, 8, or 16 has a smaller
search tree, respectively is faster, than width 1, and the opposite holds for points
above the diagonal.

180 9 MDD-Based Constraint Programming

backtracks time
10 10*
10° 10
5
1073 10° 2 T
2 T < +
10* z S p &
b=l +
0 g +++1 10 5 Lt
2 Fe 00 | & - L
I3 + = &8 +
10° p 2 f% + + % A *
e 1 it
1 T A 107 BE R e +
10 I + TR Ha e
ﬁjﬁ—ﬁ@ Her S # T T +
100 Fi + o+ + 10_2 Rnasi
10 100 102 100 10t 100 10® 107 107 107! 10° 10! 10° 10° 10*
backtracks width 1 time width 1 (s)
10 10*
10° 10
5
10° | = —
= 10°}2
412 o
10t 2 . b= N
S8 + 1002 Lo+
107 ¢ £ o e
el 100 FE M#* i
102 | & N = s i A N
+ T
. + o+ | +£L } +o, +*
10 10 i I WJ' A I
. ¥ ++
100 0 1 2 3 4 5 6 7 10-2 -2 -1 0 1 2 3 4
10/ 10 1010 10 10 10 10 10 10 10 10 10 10 10
backtracks width 1 time width 1 (s)
10 10*
10° 10
5 [©
10° |2 =
= 10° 2
412 ©
10" & t=
9 10' |3
103 g H +¢+ . + +
2 ¥ 10° E S
10._ E = 4 #;‘H* +
* 1 *% tf Wy L +
1 + 107 o+ e T
10 : i AT e
T +
100 0 1 2 3 4 5 6 7 10-2 -2 -1 0 1 2 3 4
10/ 10 1010 10 10 10 10 10 10 10 10 10 10 10
backtracks width 1 time width 1 (s)

Fig. 9.3 Scatter plots comparing width 1 versus width 4, 8, and 16 (from top to bottom) in terms
of backtracks (left) and computation time in seconds (right) on multiple AMONG problems.

We can observe that width 4 already consistently outperforms the domain prop-
agation, in some cases by up to six orders of magnitude in terms of search tree size
(backtracks), and up to four orders of magnitude in terms of computation time. For
width 8, this behavior is even more consistent, and for width 16, all instances can
be solved in under 10 seconds, while the domain propagation needs hundreds or
thousands of seconds for several of these instances.

9.5 Experimental Results 181

Table 9.1 The effect of the MDD width on time in seconds (CPU) and backtracks (BT) when
finding one feasible solution on nurse rostering instances.

Instance Width 1 Width 2 Width 4 Width 8 Width 16~ Width 32 Width 64
size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 61,225 55.63 22,443 28.67 8,138 12.64 1,596 3.84 6 0.07 3 009 2 0.10
50 62,700 88.42 20,992 48.82 3271 12.04 345 276 4 008 3 013 3 0.16
60 111,024 196.94 38,512 117.66 3,621 1992 610 6.89 12 024 8 029 5 034
70 174,417 37570 64,410 243.75 5,182 37.05 889 12.44 43 0.80 13 0.59 14 0.90
80 175,175 44229 64,969 298.74 5,025 44.63 893 1570 46 1.17 11 0.72 12 1.01

C-II 40 179,743 173.45 60,121 79.44 17,923 32.59 3,287 7.27 4 007 4 007 5 0.11
50 179,743 253.55 73,942 166.99 9,663 3825 2,556 18.72 4 009 3 012 3 0.18
60 179,743 329.72 74,332 223.13 8,761 49.66 1,572 16.82 3 013 3018 2 024
70 179,743 391.29 74,332 279.63 8,746 64.80 1,569 22.35 4 018 2024 2 034
80 179,743 459.01 74,331 339.57 8,747 80.62 1,577 28.13 3024 2032 2045
C-IIT 40 91,141 84.43 29,781 38.41 5,148 9.11 4491 926 680 123 7 0.18 6 0.13
50 95,484 136.36 32,471 75.59 2,260 9.51 452 3.86 19 043 7 024 3 020
60 95,509 173.08 32,963 10230 2,226 1332 467 5.47 16 050 6 028 3 024
70 856,470 1,986.15 420,296 1,382.86 37,564 186.94 5,978 58.12 1,826 20.00 &7 3.12 38 2.29
80 882,640 2,391.01 423,053 1,752.07 33,379 235.17 4,236 65.05 680 14.97 55 3.27 32 2.77

Nurse Rostering Instances

We next conduct experiments on a set of instances inspired by nurse rostering prob-
lems, taken from [153]. The instances are of three different classes, and combine
constraints on the minimum and maximum number of working days for sequences
of consecutive days of given lengths. That is, class C-I demands to work at most 6
out of each 8 consecutive days (max6/8) and at least 22 out of every 30 consecutive
days (min22/30). For class C-II these numbers are max6/9 and min20/30, and for
class C-III these numbers are max7/9 and min22/30. In addition, all classes require
to work between 4 and 5 days per calendar week. The planning horizon ranges from
40 to 80 days.

The results are presented in Table 9.1. We report the total number of backtracks
upon failure (BT) and computation time in seconds (CPU) needed by our MDD
solver for finding a first feasible solution, using widths 1, 2, 4, 8, 16, 32, and
64. Again, the MDD of width 1 corresponds to variable domains. For all problem
classes we observe a nearly monotonically decreasing sequence of backtracks and
solution time as we increase the width up to 64. Furthermore, the rate of decrease
appears to be exponential in many cases, and again higher widths can yield savings
of several orders of magnitude. A typical result (the instance C-III on 60 days) shows
that, where an MDD of width 1 requires 95,509 backtracks and 173.08 seconds of
computation time, an MDD of width 32 only requires 6 backtracks and 0.28 seconds
of computation time to find a first feasible solution.

Chapter 10
MDD Propagation for SEQUENCE Constraints

Abstract In this chapter we present a detailed study of MDD propagation for the
SEQUENCE constraint. This constraint can be applied to combinatorial problems
such as employee rostering and car manufacturing. It will serve to illustrate the main
challenges when studying MDD propagation for a new constraint type: Tractability,
design of the propagation algorithm, and practical efficiency. In particular, we show
in this chapter that establishing MDD consistency for SEQUENCE is NP-hard, but
fixed-parameter tractable. Furthermore, we present an MDD propagation algorithm
that may not establish MDD consistency, but is highly effective in practice when

compared to conventional domain propagation.

10.1 Introduction

In the previous chapter we discussed how constraint programming systems can be
extended to operate on MDD relaxations. In particular, we saw how the constraint
propagation process can be improved if we use an MDD store instead of the conven-
tional domain store. For certain constraint types, however, it is not straightforward
to develop effective MDD propagation algorithms. We consider one such constraint
type in detail in this chapter, the SEQUENCE constraint.

In order to define the SEQUENCE constraint, we first recall the definition of the
AMONG constraint from Section 9.4.5. For a set of variables X, a set of domain
values S, and integers 0 < L < U < |X|, the constraint AMONG(X, S, L,U) specifies
that between L and U variables in X are assigned an element from the set S. The

© Springer International Publishing Switzerland 2016 183
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_10

184 10 MDD Propagation for SEQUENCE Constraints

Table 10.1 Nurse rostering problem specification. Variable set X represents the shifts to be
assigned over a sequence of days. The possible shifts are day (D), evening (E), night (N), and
day off (O).

Requirement SEQUENCE(X, S,q,L,U)

At least 20 work shifts every 28 days: SEQUENCE(X, {D,E,N},28,20,28)
At least 4 off-days every 14 days: SEQUENCE(X, {0}, 14,4, 14)
Between 1 and 4 night shifts every 14 days: SEQUENCE(X,{N}, 14,1,4)

Between 4 and 8 evening shifts every 14 days: SEQUENCE
Night shifts cannot appear on consecutive days: SEQUENCE
Between 2 and 4 evening/night shifts every 7 days: SEQUENCE
At most 6 work shifts every 7 days: SEQUENCE

X,{E},14,4,8)
X,{N},2,0,1)
X,{E,N},7,2,4)
X,{D,E,N},7,0,6)

T~~~

SEQUENCE constraint is the conjunction of a given AMONG constraint applied to

every subsequence of length ¢ over a sequence of # variables [21]:

Definition 10.1. Let X be an ordered set of n variables, g, L, U integer numbers such
that 0 < g <n,0 <L <U < ¢, and S C UyexD(x) a subset of domain values. Then

n—q+1
SEQUENCE(X,S,¢q,L,U)= [\ AMONG(s;,S,L,U),
i=1

where s; represents the subsequence x;, ..., X1 4-1.

The SEQUENCE constraint can be applied in several practical combinatorial prob-
lems such as car manufacturing and employee rostering. An illustration is given in

the following example:

Example 10.1. Consider a rostering problem in which we need to design a schedule
for a nurse over a given horizon of n days. On each day, a nurse can either work a
day shift (D), evening shift (E), night shift (N), or have a day off (O). We introduce a
variable x; for each day i = 1, ..., n, with domain D(x;) = {O,D,E,N} representing
the shift on that day. The schedule needs to obey certain requirements, which can
all be modeled using SEQUENCE constraints, as listed in Table 10.1.

When modeling a given problem, we have the choice of using separate AMONG
constraints or single SEQUENCE constraints. It can be shown that achieving do-
main consistency on the SEQUENCE constraint is stronger than achieving domain
consistency on the decomposition into AMONG constraints. For many practical
applications the additional strength from the SEQUENCE constraint is crucial to find

10.1 Introduction 185

a solution in reasonable time [134, 153]. It is known that conventional domain con-
sistency can be achieved for SEQUENCE in polynomial time [152, 153, 36, 113, 55].
We also know from Section 9.4.5 that MDD consistency can be achieved for
the AMONG constraint in polynomial time [94]. The question we address in this
chapter is how we can handle SEQUENCE constraints in the context of MDD-based
constraint programming.

We first show that establishing MDD consistency on the SEQUENCE constraint is
NP-hard. This is an interesting result from the perspective of MDD-based constraint
programming. Namely, of all global constraints, the SEQUENCE constraint has
perhaps the most suitable combinatorial structure for an MDD approach; it has a
prescribed variable ordering, it combines subconstraints on contiguous variables,
and existing approaches can handle this constraint fully by using bounds reasoning
only.

We then show that establishing MDD consistency on the SEQUENCE constraint
is fixed parameter tractable with respect to the lengths of the subsequences (the
AMONG constraints), provided that the MDD follows the order of the SEQUENCE
constraint. The proof is constructive, and follows from the generic intersection-
based algorithm to filter one MDD with another.

The third contribution is a partial MDD propagation algorithm for SEQUENCE,
that does not necessarily establish MDD consistency. It relies on the decomposition
of SEQUENCE into ‘cumulative sums’, and an extension of MDD filtering to the
information that is stored at its nodes.

Lastly, we provide an experimental evaluation of our partial MDD propagation
algorithm. We evaluate the strength of the algorithm for MDDs of various maxi-
mum widths, and compare the performance with existing domain propagators for
SEQUENCE. We also compare our algorithm with the known MDD approach that
uses the natural decomposition of SEQUENCE into AMONG constraints [94]. Our
experiments demonstrate that MDD propagation can outperform domain propaga-
tion for SEQUENCE by reducing the search tree size, and solving time, by several
orders of magnitude. Similar results are observed with respect to MDD propagation
of AMONG constraints. These results thus provide further evidence for the power of
MDD propagation in the context of constraint programming.

186 10 MDD Propagation for SEQUENCE Constraints

10.2 MDD Consistency for SEQUENCE Is NP-Hard

A challenge in determining whether a global constraint can be made MDD con-
sistent in polynomial time is that this must be guaranteed for any given MDD.
That is, in addition to the combinatorics of the global constraint itself, the shape
of the MDD adds another layer of complexity to establishing MDD consistency. For
proving NP-hardness, a particular difficulty is making sure that, in the reduction, the
MDD remains of polynomial size. One example was given in Section 9.4.4, where
we discussed that establishing MDD consistency for the ALLDIFFERENT constraint
is NP-hard. We next consider this question for the SEQUENCE constraint, and prove

the following result:

Theorem 10.1. Establishing MDD consistency for SEQUENCE on an arbitrary
MDD is NP-hard even if the MDD follows the variable ordering of the SEQUENCE

constraint.

Proof. The proof is by reduction from 3-SAT, a classical NP-complete problem
[71]. We will show that an instance of 3-SAT is satisfied if and only if a particular
SEQUENCE constraint on a particular MDD M of polynomial size has a solution.
Therefore, establishing MDD consistency for SEQUENCE on an arbitrary MDD is
at least as hard as 3-SAT. In this proof, we will use £(u) to indicate the layer index
ofanodeuin M, ie., u € Ly,).

Consider a 3-SAT instance on n variables xi,...,x;,, consisting of m clauses
Cl,...,Cm. We first construct an MDD that represents the basic structure of the
3-SAT formula (see Example 10.2 after this proof for an illustration). We introduce
binary variables y;; and y; ; representing the literals x; and x; per clause ¢;, for
i=1,...,mand j=1,...,n (x; and x; may or may not exist in ¢;). We order these
variables as a sequence Y, first by the index of the clauses, then by the index of
the variables, and then by y; ;,y; ; for clause ¢; and variable x;. That is, we have
Y = Y1121 Y12:V1 20 - ViV -+ os YmsYm s -+ Vmn:Ympn- We construct an
MDD M as a layered graph, where the k-th layer corresponds to the k-th variable in
the sequence Y.

A clause ¢; is represented by 2n consecutive layers corresponding to y; 1. - -, ¥j -
In such part of the MDD, we identify precisely those paths that lead to a solution
satisfying the clause. The basis for this is a ‘diamond’ structure for each pair of
literals (y; ;,; ;), that assigns either (0,1) or (1,0) to this pair. If a variable does
not appear in a clause, we represent it using such a diamond in the part of the MDD

10.2 MDD Consistency for SEQUENCE Is NP-Hard 187

representing that clause, thus ensuring that the variable can take any assignment
with respect to this clause. For the variables that do appear in the clause, we will
explicitly list out all allowed combinations.

More precisely, for clause ¢;, we first define a local root node r; representing
layer ¢(y;1), and we set tag(r;) = ‘unsat’. For each node u in layer /(y; ;) (for
J=1,...,n), we do the following: If variable x; does not appear in ¢;, or if tag(u)
is ‘sat’, we create two nodes v,V in E(yw-), one single node w in £(y; j41), and arcs
(u,v) with label 1, (u,v) with label 0, (v,w) with label 0, and (v/,w) with label
1. This corresponds to the ‘diamond’ structure. We set tag(w) = tag(u). Otherwise
(i.e., tag(u) is ‘unsat’ and y; ; appears in ¢;), we create two nodes v,V in E(yi,j),
two nodes w,w’ in £(y; j;+1), and arcs (u,v) with label 1, (u,V') with label 0, (v,w)
with label 0, and (v/,w') with label 1. If ¢; contains as literal y; ;, we set tag(w) =
‘sat’ and tag(w’) = ‘unsat’. Otherwise (c; contains y; ;), we set tag(w) = ‘unsat’ and
tag(w') = ‘sat’.

This procedure will be initialized by a single root node r representing £(y;). We
iteratively append the MDDs of two consecutive clauses ¢; and ¢;1| by merging the
nodes in the last layer of ¢; that are marked ‘sat’ into a single node, and let this
node be the local root for ¢;; ;. We finalize the procedure by merging all nodes in
the last layer that are marked ‘sat’ into the single terminal node ¢. By construction,
we ensure that only one of y;; and y;; can be set to 1. Furthermore, the variable
assignment corresponding to each path between layers ¢(y; 1) and £(yi+1,1) will
satisfy clause c;, and exactly # literals are chosen accordingly on each such path.

We next need to ensure that, for a feasible path in the MDD, each variable x; will
correspond to the same literal y; ; or y; ; in each clause ¢;. To this end, we impose
the constraint

SEQUENCE(Y,S = {1}, =2n,L =n,U =n) (10.1)

on the MDD M described above. If the subsequence of length 2n starts from a
positive literal y; ;, by definition there are exactly »n variables that take value 1. If
the subsequence starts from a negative literal y; ; instead, the last variable in the
sequence corresponds to the value x; in the next clause c;(, i.e., yi1,;. Observe
that all variables except for the first and the last in this sequence will take value
1 already n — 1 times. Therefore, of the first and the last variable in the sequence
(which represent x; and its complement x; in any order), only one can take the value
1. That is, x; must take the same value in clause ¢; and c; . Since this holds for all

subsequences, all variables x; must take the same value in all clauses.

188 10 MDD Propagation for SEQUENCE Constraints

r

SR
1| Y1

t

Fig. 10.1 The MDD corresponding to Example 10.2.

The MDD M contains 2mn + 1 layers, while each layer contains at most six
nodes. Therefore, it is of polynomial size (in the size of the 3-SAT instance), and

the overall construction needs polynomial time. a

Example 10.2. Consider the 3-SAT instance on four Boolean variables x1,x7,x3,x4
with clauses ¢; = (x; Vx3 Vx4) and ¢, = (x2 VX3V x4). The corresponding MDD
used in the reduction is given in Fig. 10.1.

10.3 MDD Consistency for SEQUENCE Is Fixed Parameter Tractable 189

X1

X2

X3

X4

X5

X6

Fig. 10.2 The exact MDD for the SEQUENCE constraint of Example 10.3.

10.3 MDD Consistency for SEQUENCE Is Fixed Parameter
Tractable

In this section we show that establishing MDD consistency for SEQUENCE on
an arbitrary MDD is fixed parameter tractable, with respect to the length ¢ of
the subsequences. It was already shown in [152, 153] that an exact MDD for the
SEQUENCE constraint exists with O(n27) nodes (i.e., the ‘unfolded’ automaton of
the REGULAR constraint), as illustrated in the next example.

Example 10.3. Consider the constraint SEQUENCE(X,S={1},q=3,L=1,U =2)
where X = {x,x2,...,x¢} is an ordered set of binary variables. The corresponding
exact MDD, following the order of X, is presented in Fig. 10.2. For convenience,
each node in the MDD is labeled with the last ¢ — 1 labels that represent the
subsequence up to that node (starting ¢ — 1 layers up). For example, the second
node in the third layer represents decisions x; = 0 and x; = 1, corresponding to

190 10 MDD Propagation for SEQUENCE Constraints

subsequence 01. To construct the next layer, we append either a 0 or a 1 to this
subsequence (and remove the first symbol), leading to nodes labeled 10 and 11,
respectively. Note that from nodes labeled 00 we must take an arc with label 1,
because L = 1. Similarly for nodes labeled 11 we must take an arc with label
0, because U = 2. After ¢ layers, all possible subsequences have been created
(maximally O(2¢~ 1)), which thus defines the width of the subsequent layers.

In Section 9.3.3 we presented a generic MDD propagation algorithm that estab-
lishes MDD consistency of one MDD with respect to another by taking the intersec-
tion (Algorithm 8). We can apply that algorithm, and the associated Theorem 9.2,
to the SEQUENCE constraint to obtain the following result:

Corollary 10.1. Let C = SEQUENCE(X,S,q,L,U) be a sequence constraint, where
X is an ordered sequence of variables, and let M be an arbitrary MDD following the
variable ordering of X. Establishing MDD consistency for C on M is fixed parameter

tractable with respect to parameter q.

Proof. We know from [152, 153] that there exists an exact MDD M’ of size
O(n277") that represents C. Applying Theorem 9.2 gives an MDD-consistency
algorithm with time and space complexity O(|M|2971), and the result follows. O

10.4 Partial MDD Filtering for SEQUENCE

In many practical situations the value of ¢ will lead to prohibitively large exact
MDDs for establishing MDD consistency, which limits the applicability of Corol-
lary 10.1. Therefore we next explore a more practical partial filtering algorithm that
is polynomial also in g.

One immediate approach is to propagate the SEQUENCE constraint in MDDs
through its natural decomposition into AMONG constraints, and apply the MDD
filtering algorithms for AMONG proposed by [94]. However, it is well known that,
for classical constraint propagation based on variable domains, the AMONG decom-
position can be substantially improved by a dedicated domain filtering algorithm
for SEQUENCE [152, 153, 36, 113]. Therefore, our goal in this section is to provide
MDD filtering for SEQUENCE that can be stronger in practice than MDD filtering
for the AMONG decomposition, and stronger than domain filtering for SEQUENCE.
In what follows, we assume that the MDD at hand respects the ordering of the
variables in the SEQUENCE constraint.

10.4 Partial MDD Filtering for SEQUENCE 191

10.4.1 Cumulative Sums Encoding

Our proposed algorithm extends the original domain consistency filtering algorithm
for SEQUENCE by [152] to MDDs, following the ‘cumulative sums’ encoding as
proposed by [36]. This representation takes the following form: For a sequence
of variables X = x,x,...,x,, and a constraint SEQUENCE(X,S,q,L,U), we first
introduce variables yg,y1,...,Vs, With respective initial domains D(y;) = [0,i] for
i=1,...,n. These variables represent the cumulative sums of X, i.e., y; represents
23‘:1 (xj€S8) for i =1,...,n. We now rewrite the SEQUENCE constraint as the
following system of constraints:

yi:yl?l“i»SS(xi) VIE{La”}a (102)
yiJrq_inl Vl€{07an_q}7 (103)
Yitg—Yi<u vie{0,...,n—q}, (10.4)

where 85 : X — {0, 1} is the indicator function for the set S, i.e., s(x) =1 ifx € S
and dg(x) = 0 if x ¢ S. [36] show that establishing singleton bounds consistency
on this system suffices to establish domain consistency for the original SEQUENCE
constraint.

In order to apply similar reasoning in the context of MDDs, the crucial obser-
vation is that the domains of the variables yy, ..., y, can be naturally represented at
the nodes of the MDD. In other words, a node v in layer L; represents the domain
of y;_1, restricted to the solution space formed by all r—t paths containing v. Let us
denote this information for each node v explicitly as the interval [Ib(v),ub(v)], and
we will refer to it as the ‘node domain’ of v. Following the approach of [94], we can
compute this information in linear time by one top-down pass, by using equation
(10.2), as follows:

lb() mln (u,v)€in(v) {]b() + 6S (d(u,v))},
ub() max (u,v)€in(v) {ub() + 6S (d(mv))},

(10.5)

for all nodes v # r, while [Ib(r),ub(r)] = [0,0].

As the individual AMONG constraints are now posted as y;r, —y; > [and
Yirq — i < u, we also need to compute for a node v in layer L;;; all its ancestors
from layer L;. This can be done by maintaining a vector .2, of length ¢ + 1 for each
node v, where ,[i] represents the set of ancestor nodes of v at the i-th layer above

192 10 MDD Propagation for SEQUENCE Constraints

v, fori=0,...,q. We initialize <7 = [{r},0,...,0], and apply the recursion

Al = Ui @li—1] fori=1,2,....q,
A10] = {}.

The resulting top-down pass itself takes linear time (in the size of the MDD), while
a direct implementation of the recursive step for each node takes O(q - (0(M))?)
operations for an MDD M. Now, the relevant ancestor nodes for a node v in layer
Liy4 are stored in .27, [q], a subset of layer L;. We similarly compute all descendant
nodes of v in a vector %, of length ¢ + 1, such that 2,[i] contains all descendants of
v in the i-th layer below v, for i =0, 1,...,q. We initialize 9, = [{¢},0,...,0].
However, for our purposes we only need to maintain the minimum and maximum
value of the union of the domains of <7, resp. 2, because constraints (10.3) and
(10.4) are inequalities; see the application of <7, and %, in rules (10.8) below. This
makes the recursive step more efficient, now taking O(gw(M)) operations per node.
Alternatively, we can approximate this information by only maintaining a mini-
mum and maximum node domain value for each layer, instead of a list of ancestor
layers. This will compromise the filtering, but may be more efficient in practice, as

it only requires to maintain two integers per layer.

10.4.2 Processing the Constraints

We next process each of the constraints (10.2), (10.3), and (10.4) in turn to remove
provably inconsistent arcs, while at the same time we filter the node information.

Starting with the ternary constraints of type (10.2), we remove an arc (u,v) if
1b(u) + 6s(d(u,v)) > ub(v). Updating [Ib(v),ub(v)] for a node v is done similarly to
the rules (10.5) above:

Ib(v) :max{lb(v)7min<uv Yein(v {lb u) + 8s(d(u,v) }} (10.6)
ub(v) = min {ub(mln (u,v)€in(v) {ub)+ 53 } } .

In fact, the resulting algorithm is a special case of the MDD consistency equality
propagator of [84], and we thus inherit the MDD consistency for our ternary

constraints.

10.4 Partial MDD Filtering for SEQUENCE 193

Next, we process the constraints (10.3) and (10.4) for a node v in layer L;i;
(i=0,...,n). Recall that the relevant ancestors from L;,|_, are <7g], while its
relevant descendants from L1, are 2,[q]. The variable corresponding to node v

is y;, and it participates in four constraints:

Vi l+yig,

YiLu+Yyig,
’ o (10.7)
Vi <Yirg—1,

Vi 2 Yitq — U

Note that we can apply these constraints to filter only the node domain [Ib(v), ub(v)]
corresponding to y;. Namely, the node domains corresponding to the other variables
Yi—q and y;1, may find support from nodes in layer L;;; other than v. We update
Ib(v) and ub(v) according to equations (10.7):

Ib(v) = max{ Ib(v), /+ min Ib(x), min lb(w)—u },

ue g wEZq] (10.8)
ub(v) = min{ ub(v), u+ max ub(u), max ub(w)—1}.
ucstq| wEDylq]

The resulting algorithm is a specific instance of the generic MDD-consistent
binary constraint propagator presented by [94], and again we inherit the MDD
consistency for these constraints. We can process the constraints in linear time (in
the size of the MDD) by a top-down and bottom-up pass through the MDD.

Example 10.4. Consider the constraint SEQUENCE(X,S={1},q=3,L=1,U =2)
with the ordered sequence of binary variables X = {x},x2,x3,X4,X5}. Assume we
are given the MDD in Fig. 10.3(a). In Fig. 10.3(b) we show the node domains that
result from processing rules (10.5). Figure 10.3(c) shows the resulting MDD after
processing the constraints via the rules (10.6) and (10.8). For example, consider the
middle node in the fourth layer, corresponding to variable y3. Let this node be v. It
has initial domain [0,2], and % [g] only contains the root node, which has domain
[0,0]. Since / = 1, we can reduce the domain of v to [1,2]. We can next consider the
arcs into v, and conclude that value 1 in its domain is not supported. This further
reduces the domain of v to [2,2], and allows us to eliminate one incoming arc (from
the first node of the previous layer).

The resulting MDD in Fig. 10.3(c) reflects all possible deductions that can be
made by our partial algorithm. We have not established MDD consistency however,
as witnessed by the infeasible path (1,1,0,0,0).

194 10 MDD Propagation for SEQUENCE Constraints

[0,0] [0,0]

[0,5]

(a) Initial MDD (b) Node domains (c) MDD after filtering

Fig. 10.3 MDD propagation for the constraint SEQUENCE(X,S = {1},¢ = 3,L = 1,U =2) of
Example 10.4.

The authors in [153] defined the generalized SEQUENCE constraint, which ex-
tends the SEQUENCE constraint by allowing the AMONG constraints to be specified
with different lower and upper bounds, and subsequence lengths:

Definition 10.2. Let X be an ordered set of n variables, k a natural number, s, 1, u
vectors of length k& such that s; is a subsequence of X, /;,u; € N, 0 < [; <wu; <n for
i=1,2,... .,k and § C UyexD(x) a subset of domain values. Then

k
GEN-SEQUENCE(X, S,s,1,u) = A\ AMONG(s;, S, li,u;).
i=1
Observe that our proposed algorithm can be applied immediately to the GEN-
SEQUENCE constraint. The cumulative sums encoding can be adjusted in a straight-

forward manner to represent these different values.

10.4.3 Formal Analysis

We next investigate the strength of our partial MDD filtering algorithm with respect
to other consistency notions for the SEQUENCE constraint. In particular, we formally
compare the outcome of our partial MDD filtering algorithm with MDD propagation
for the AMONG encoding and with domain propagation for SEQUENCE. We say

10.4 Partial MDD Filtering for SEQUENCE 195

that two notions of consistency for a given constraint are incomparable if one is not
always at least as strong as the other.
First, we recall Theorem 4 from [36].

Theorem 10.2. [36] Bounds consistency on the cumulative sums encoding is incom-

parable to bounds consistency on the AMONG encoding of SEQUENCE.

Note that, since all variable domains in the AMONG and cumulative sums
encoding are ranges (intervals of integer values), bounds consistency is equivalent

to domain consistency for these encodings.

Corollary 10.2. MDD consistency on the cumulative sums encoding is incompara-
ble to MDD consistency on the AMONG encoding of SEQUENCE.

Proof. We apply the examples from the proof of Theorem 4 in [36]. Consider the
constraint SEQUENCE(X,S = {1},g =2,L = 1,U = 2) with the ordered sequence
of binary variables X = {x1,x2,x3,x4} and domains D(x;) = {0,1} for i = 1,2,4,
and D(x3) = {0}. We apply the ‘trivial’ MDD of width 1 representing the Cartesian
product of the variable domains. Establishing MDD consistency on the cumulative
sums encoding yields

Yo € [0a0]7y1 € [07 l]ayZ S [lvz]ay3 € [1a2]7y4 € [2a3]7
x1 €4{0,1},x, €{0,1},x3 € {0},x4 €{0,1}.

Establishing MDD consistency on the AMONG encoding, however, yields
x1 €{0,1},x3 € {1},x3 € {0},x4 € {1}.

Consider the constraint SEQUENCE(X,S = {1},q = 3,L = 1,U = 1) with the
ordered sequence of binary variables X = {x;,x2,x3,x4} and domains D(x;) = {0, 1}
fori=2,3,4,and D(x;) = {0}. Again, we apply the MDD of width 1 representing
the Cartesian product of the variable domains. Establishing MDD consistency on

the cumulative sums encoding yields

Yo € [0a0]7y1 € [Ovo]ayZ S [07 l]ay3 € [1a 1]7)/4 € [1a 1]7
X € {0},)62 S {0, l},x3 S {0, l},X4 € {0},

while establishing MDD consistency on the AMONG encoding does not prune any
value. O

196 10 MDD Propagation for SEQUENCE Constraints

As an additional illustration of Corollary 10.2, consider again Example 10.4 and
Fig. 10.3. MDD propagation for the AMONG encoding will eliminate the value
x4 =0 from the infeasible path (1,1,0,0,0), whereas our example showed that

MDD propagation for cumulative sums does not detect this.

Theorem 10.3. MDD consistency on the cumulative sums encoding of SEQUENCE

is incomparable to domain consistency on SEQUENCE.

Proof. The first example in the proof of Corollary 10.2 also shows that domain con-
sistency on SEQUENCE can be stronger than MDD consistency on the cumulative
sums encoding.

To show the opposite, consider a constraint SEQUENCE(X,S = {1},q,L,U) with
a set of binary variables of arbitrary size, arbitrary values ¢,L, and U = |X]| — 1.
Let M be the MDD defined over X consisting of two disjoint paths from » to t:
the arcs on one path all have label 0, while the arcs on the other all have value 1.
Since the projection onto the variable domains gives x € {0, 1} for all x € X, domain
consistency will not deduce infeasibility. However, establishing MDD consistency

with respect to M on the cumulative sums encoding will detect this. O

Even though formally our MDD propagation based on cumulative sums is incom-
parable to domain propagation of SEQUENCE and MDD propagation of AMONG
constraints, in the next section we will show that in practice our algorithm can

reduce the search space by orders of magnitude compared with these other methods.

10.5 Computational Results

The purpose of our computational results is to evaluate empirically the strength of
the partial MDD propagator described in Section 10.4. We perform three main com-
parisons. First, we want to assess the impact of increasing the maximum width of
the MDD on the filtering. Second, we want to compare the MDD propagation with
the classical domain propagation for SEQUENCE. In particular, we wish to evaluate
the computational overhead of MDD propagation relative to domain propagation,
and to what extent MDD propagation can outperform domain propagation. Third,
we compare the filtering strength of our MDD propagator for SEQUENCE with the
filtering strength of the MDD propagators for the individual AMONG constraints,
the latter being the best MDD approach for SEQUENCE so far [94].

10.5 Computational Results 197

We have implemented our MDD propagator for SEQUENCE as a custom global
constraint in IBM ILOG CPLEX CP Optimizer 12.4, using the C++ interface. Recall
from Section 10.4 that for applying rules (10.8) we can either maintain a minimum
and maximum value for the ¢ previous ancestors and descendants of each node, or
approximate this by maintaining these values simply for each layer. We evaluated
both strategies and found that the latter did reduce the amount of filtering, but
nonetheless resulted in much more efficient performance (about twice as fast on
average). Hence, the reported results use that implementation.

For the MDD propagator for AMONG, we apply the code of [94]. For the domain
propagation, we applied three models. The first uses the domain-consistent propaga-
tor for SEQUENCE from [153], running in O(n?) time. The second uses the domain-
consistent propagator for SEQUENCE based on a network flow representation by
[113], which runs in O(n?) time.! As a third model, we applied the decomposition
into cumulative sums, which uses no explicit global constraint for SEQUENCE.
Propagating this decomposition also takes O(n?) in the worst case, as it considers
O(n) variables and constraints while the variable domains contain up to n elements.
We note that, for almost all test instances, the cumulative sums encoding established
domain consistency. As an additional advantage, the cumulative sums encoding
permits a more insightful comparison with our MDD propagator, since both are

based on the cumulative sums decomposition.

We note that [36] introduce the ‘multiple-SEQUENCE’ constraint that represents
the conjunction of multiple SEQUENCE constraints on the same set of ordered
variables (as in our experimental setup). [119] shows that establishing bounds
consistency on such a system is already NP-hard, and presents a domain-consistent
propagator that encodes the system as an automaton for the REGULAR constraint.
The algorithm runs in O(nm?) time, where n represents the number of variables, m
the number of SEQUENCE constraints, and ¢ the length of the largest subsequence.

In order to compare our algorithms with the multiple-SEQUENCE constraint, we
conducted experiments to identify a suitable testbed. We found that instances for
which the multiple-SEQUENCE constraint would not run out of memory could be
solved instantly by using any domain propagator for the individual SEQUENCE
constraints, while creating the multiple-SEQUENCE constraint took substantially
more time on average. For instances that were more challenging (as described in

the next sections), the multiple-SEQUENCE constraint could not be applied due to

! The implementation was shared by Nina Narodytska.

198 10 MDD Propagation for SEQUENCE Constraints

memory issues. We therefore excluded this algorithm from the comparisons in the

sections below.

Because single SEQUENCE constraints can be solved in polynomial time, we
consider instances with multiple SEQUENCE constraints in our experiments. We
assume that these are defined on the same ordered set of variables. To measure
the impact of the different propagation methods correctly, all approaches apply the
same fixed search strategy, i.e., following the given ordering of the variables, with
a lexicographic value ordering heuristic. For each method, we measure the number
of backtracks from a failed search state as well as the solving time. All experiments

are performed using a 2.33 GHz Intel Xeon machine.

10.5.1 Systems of SEQUENCE Constraints

We first consider systems of multiple SEQUENCE constraints that are defined on
the same set of variables. We generate instances with n = 50 variables each having
domain {0,1,...,10}, and five SEQUENCE constraints. For each SEQUENCE con-
straint, we set the length of subsequence uniform randomly between [5,7/2) as

g = (rand () %((n/2)—5))+5.

Here, rand() refers to the standard C++ random number generator, i.e., rand()%k
selects a number in the range [0,k — 1]. Without the minimum length of 5, many
of the instances would be very easy to solve by either method. We next define the

difference between / and u as A := (rand () %gq), and set

[:=(rand () %(qg —A)),
u:=I14+A.

Lastly, we define the set of values S by defining its cardinality as (rand()%11) + 1,
and then selecting that many values uniformly at random from {0,1,...,10}. We
generated 250 such instances in total.”

We solve each instance using the domain consistency propagator for SEQUENCE,
the cumulative sums encoding (domain propagation), and the MDD propagator with
maximum widths 2, 4, 8, 16, 32, 64, 128. Each method is given a maximum time

limit of 1,800 seconds per instance.

2 All instances are available at http://www.andrew.cmu.edu/user/vanhoeve/mdd/.

10.5 Computational Results 199

o
0 - —A—A—D—D—-D—-A-
N A’A"A_ f_ %- A- A- A- g.—ﬁ
A- A-A-A-A- 24 .pg--0
; . g.-o-0 o g V¥
,Dunn~ﬂ Y_y—?(;o,,o
o _g- DI
o g8 ! ._VV,_,,,V_X Lo-0 -9
g 1 o - ’o“o
o _gn X fo-0
4 v v R S
= v o7
[} B
* : / A/A
2 8 i afa
o - DA
s (=
2 i
£ I A
5 84 °.
s = /
el '
e '
S '
z ° B —&— MDD Width 128
0 B --4- MDD Width 32
' 8- MDD Width 2
-v-- Domain (Cumulative Sums)
—+- Domain (Sequence - HPRS)
o 4 A—A—A --¢--- Domain (Sequence - Flow)
T T T T T T T
1072 107 10° 10' 10° 10°

Time(s)

Fig. 10.4 Performance comparison of domain and MDD propagators for the SEQUENCE con-
straint. Each data point reflects the total number of instances that are solved by a particular method

within the corresponding time limit.

We compare the performance of domain propagation and MDD propagation in
Fig. 10.4. In this figure, we report for each given time point how many instances
could be solved within that time by a specific method. The three domain propagation
methods are represented by ‘Cumulative Sums’ (the cumulative sums decomposi-
tion), ‘Sequence - HPRS’ (the SEQUENCE propagator by [152, 153]), and ‘Sequence
- Flow’ (the flow-based propagator by [113]). Observe that the cumulative sums
domain propagation, although not guaranteed to establish domain consistency, out-
performs both domain-consistent SEQUENCE propagators. Also, MDD propagation
with maximum width 2 can already substantially outperform domain propagation.
We can further observe that larger maximum widths require more time for the
MDDs to be processed, but in the end it does allow us to solve more instances:
maximum MDD width 128 permits to solve all 250 instances within the given time
limit, whereas domain propagation can respectively solve 220 (Sequence - Flow),
230 (Sequence - HPRS), and 232 (Cumulative Sums) instances.

To illustrate the difference between domain and MDD propagation in more

detail, Fig. 10.5 presents scatter plots comparing domain propagation (cumulative

200 10 MDD Propagation for SEQUENCE Constraints

o | =
ER ¥
B R =
S)
£ €
g = in N x
! S x
— X o
i) % 2 - | x
§v « :
S x x = x
: E
S x T B
% x g xx x
s 3 xx x *
e e x | R S
Q % a o X x x x
=] s -
x x x
= x % x x/x *xx %% x x X% x x
o x X x x x))((x x § o x X WX XXX xx x x
‘9 - XX XXM MX X 2K X XX XX = x o x x
T T T T T T T T T T T
10° 10 10* 10° TO 102 107" 10° 10 10 10°T0
Domain Propagator (Cumulative Sums) — Backtracks Domain Propagator (Cumulative Sums) - Time (s)
(a) Number of backtracks. (b) Solving time.

Fig. 10.5 Comparing domain and MDD propagation for SEQUENCE constraints. Each data point
reflects the number of backtracks (a) resp. solving time in seconds (b) for a specific instance, when
solved with the best domain propagator (cumulative sums encoding) and the MDD propagator with
maximum width 32. Instances for which either method needed 0 backtracks (a) or less than 0.01
seconds (b) are excluded. Here, TO stands for ‘timeout’ and represents that the specific instance
could not be solved within 1,800 s (b). In (a), these instances are labeled separately by TO (at tick-
mark 10%); note that the reported number of backtracks after 1,800 seconds may be much less than
108 for these instances. All reported instances with fewer than 10® backtracks were solved within
the time limit.

sums) with MDD propagation (maximum width 32). This comparison is particularly
meaningful because both propagation methods rely on the cumulative sums repre-
sentation. For each instance, Fig. 10.5(a) depicts the number of backtracks while
Fig. 10.5(b) depicts the solving time of both methods. The instances that were not
solved within the time limit are collected under ‘TO’ (time out) for that method.
Figure 10.5(a) demonstrates that MDD propagation can lead to dramatic search tree
reductions, by several orders of magnitude. Naturally, the MDD propagation comes
with a computational cost, but Fig. 10.5(b) shows that, for almost all instances
(especially the harder ones), the search tree reductions correspond to faster solving
times, again often by several orders of magnitude.

We next evaluate the impact of increasing maximum widths of the MDD propa-
gator. In Fig. 10.6, we present for each method the ‘survival function’ with respect
to the number of backtracks (a) and solving time (b). Formally, when applied
to combinatorial backtrack search algorithms, the survival function represents the
probability of a run taking more than x backtracks [75]. In our case, we approximate
this function by taking the proportion of instances that need at least x backtracks

10.5 Computational Results 201

o | —— Domain Consistency o
- -G- MDD Width 2 -
MDD Width 4
| - MDD Width 8 |
° MDD Width 16 °
MDD Width 32
MDD Width 64
- MDD Width 128
c c
S o~ S
S - | Ttol N S <
S o AN . S o
= v =
g g | v g 8
g © o g ©
3 —x o o \
* * —e— Domain Consistency RN y
-@- MDD Width 2 \ 0\ i
< MDD Width 4 K o—o—0
-G~ MDD Width 8 ‘A N \0
S S | |-+ MDD Width 16 \
S N v S o MDD Width 32 *
0 0 —6— MDD Width 64
S 4 S -+ |-#- MDD Width 128
S a--a S PN
T T T T T T T T T T T T T T
10° 10" 102 10®° 10* 10° 10° 107 102 107" 10° 10" 102 10°
Fails Time
(a) Survival function with respect to backtracks b) Survival function with respect to time

Fig. 10.6 Evaluating the impact of increased width for MDD propagation via survival function
plots with respect to search backtracks (a) and solving time (b). Both plots are in log—log scale.
Each data point reflects the percentage of instances that require at least that many backtracks (a)
resp. seconds (b) to be solved by a particular method.

(Fig. 10.6(a)), respectively seconds (Fig. 10.6(b)). Observe that these are log-log
plots. With respect to the search tree size, Fig. 10.6(a) clearly shows the strengthen-
ing of the MDD propagation when the maximum width is increased. In particular,
the domain propagation reflects the linear behavior over several orders of magnitude
that is typical for heavy-tailed runtime distributions. Naturally, similar behavior
is present for the MDD propagation, but in a much weaker form for increasing
maximum MDD widths. The associated solving times are presented in Fig. 10.6(b).
It reflects similar behavior, but also takes into account the initial computational
overhead of MDD propagation.

10.5.2 Nurse Rostering Instances

We next consider the nurse rostering problem defined in Example 10.1, which
represents a more structured problem class. That is, we define a constraint satis-
faction problem on variables x; (i = 1,...,n), with domains D(x;) = {O,D,E,N}
representing the shift for the nurse. We impose the eight SEQUENCE constraints
modeling the requirements listed in Table 10.1. By the combinatorial nature of this

problem, the size of the CP search tree turns out to be largely independent of the

202 10 MDD Propagation for SEQUENCE Constraints

Table 10.2 Comparing domain propagation and the MDD propagation for SEQUENCE on nurse
rostering instances. Here, n stands for the number of variables, BT for the number of backtracks,
and CPU for solving time in seconds.

Domain Domain MDD MDD MDD MDD
Sequence Cumul. Sums Width 1 Width 2 Width 4 Width 8
n BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

40 438,059 43.83 438,059 3226 438,059 54.27 52,443 1292 439 0.44 0 0.02
60 438,059 78.26 438,059 53.40 438,059 80.36 52,443 18.36 439 0.68 0 0.04
80 438,059 124.81 438,059 71.33 438,059 106.81 52,443 28.58 439 094 0 0.06
100 438,059 157.75 438,059 96.27 438,059 13537 52,443 37.76 439 1.22 0 0.10

length of the time horizon, when a lexicographic search (by increasing day i) is
applied. We however do consider instances with various time horizons (n = 40, 60,
80, 100), to address potential scaling issues.

The results are presented in Table 10.2. The columns for ‘Domain Sequence’
show the total number of backtracks (BT) and solving time in seconds (CPU) for
the domain-consistent SEQUENCE propagator. Similarly, the columns for ‘Domain
Cumul. Sums’ show this information for the cumulative sums domain propagation.
The subsequent columns show these numbers for the MDD propagator, for MDDs
of maximum width 1, 2, 4, and 8. Note that propagating an MDD of width 1 corre-
sponds to domain propagation, and indeed the associated number of backtracks is
equivalent to the domain propagator of the cumulative sums. As a first observation,
a maximum width of 2 already reduces the number of backtracks by a factor of 8.3.
For maximum width of 8 the MDD propagation even allows to solve the problem
without search. The computation times are correspondingly reduced, e.g., from
157s (resp. 96s) for the domain propagators to 0.10s for the MDD propagator
(width 8) for the instance with » = 100. Lastly, we can observe that in this case
MDD propagation does not suffer from scaling issues when compared with domain
propagation.

As afinal remark, we also attempted to solve these nurse rostering instances using
the SEQUENCE domain propagator of CP Optimizer (I1loSequence). It was able
to solve the instance with n = 40 in 1,150 seconds, but none of the other instances
were solved within the time limit of 1,800 seconds.

10.5 Computational Results 203

o
0 - - A-A-AD-D0-40- A=
N A—A'AA____,_..-
o-0-0—0—g-g=8=8=8=2 5-678
_f--0--0-70°7 P
p--8--0) 0—0-°—0°
1 -0~ kA
o _o-9=0-° ‘:—""
8 B // 09 ° lﬂ.‘.r
3 o7 & K /if’
= I / A
[*} / G "
7} / _ o
0 Q °© g o0 a-4
Q WO O) [e
e - o < , Al
o ! 2
= .__.,—A—n—n“
“ o = H
© o4 1 h
5 - ;
o ' -
IS ' -4&- Sequence - Width 128
S B —— Sequence - Width 32
z o ' -8+ Sequence — Width 8
0 7 f -©- Sequence - Width 2
K -4A-- Among - Width 128
o ' + Among - Width 32
! -m- Among - Width 8
o A- A- A —e— Among - Width 2
T T T T T T 1
1072 107" 10° 10’ 10? 10°
Time(s)

Fig. 10.7 Performance comparison of MDD propagation for SEQUENCE and AMONG for various
maximum widths. Each data point reflects the total number of instances that are solved by a

particular method within the corresponding time limit.

10.5.3 Comparing MDD Filtering for SEQUENCE and AMONG

In our last experiment, we compare our SEQUENCE MDD propagator with the
MDD propagator for AMONG constraints by [94]. Our main goal is to determine
whether a large MDD is by itself sufficient to solve these problem (irrespective
of propagating AMONG or a cumulative sums decomposition), or whether the
additional information obtained by our SEQUENCE propagator makes the difference.

We apply both methods, i.e., MDD propagation for SEQUENCE and MDD
propagation for AMONG, to the dataset of Section 10.5.1 containing 250 instances.
The time limit is again 1,800 seconds, and we run the propagators with maximum
MDD widths 2, 8, 32, and 128.

We first compare the performance of the MDD propagators for AMONG and
SEQUENCE in Fig. 10.7. The figure depicts the number of instances that can be
solved within a given time limit for the various methods. The plot indicates that
the AMONG propagators are much weaker than the SEQUENCE propagator, and
moreover that larger maximum widths alone do not suffice: using the SEQUENCE

204

10 MDD Propagation for SEQUENCE Constraints

o R
o Width 2 8 S | o width2 g
o Width 8] - o Width 8 °
2 o | & Width 32 5 —_ < Width 32 B
g - A Width 128 ° i < A Width 128 °
g §
2 8 g s ooa
3 8 E - °
o o 1 | o A
o =
! . . § . 5 o .
s 4 g - °
T O o B oD O o oA
g | o : g "
g EERS 8 < a £
<4 o Aaa
o °s ® e =) Y 4l . AA
o o o o L) o
=) N s s a o a £, a
a ° o s - P Y
= o ° o o © o 3 .
o O o [<J¢) o A s *
g " o > % K . 5] A oogm"‘o 20 . ®
5] 9 o Cl a 3 7 A A A @, A
L o oo O ® 4 ' ot s o8 ‘s
3 . % o s IR o0 F0 0
¢ AL g ° 3 o ® ®m® 0o o °
o a8 LY VN . K N o &6 meo owoamm e o o om0 o
‘9 — 4 ok A AL 4 A A ~ b = * * COUO CLATMIO O @m0 =)
T T T T T - T T T T T T
10° 10? 10* 10° 1O 102 107" 10° 10" 10? 10° TO

Among MDD Propagator — Backtracks Among MDD Propagator - Time (s)

(a) Number of backtracks. (b) Solving time.

Fig. 10.8 Evaluating MDD propagation for SEQUENCE and AMONG for various maximum widths
via scatter plots with respect to search backtracks (a) and solving time (b). Both plots are in log—log
scale and follow the same format as Fig. 10.5.

propagator with maximum width 2 outperforms the AMONG propagators for all
maximum widths up to 128.

The scatter plot in Fig. 10.8 compares the MDD propagators for AMONG and
SEQUENCE in more detail, for widths 2, 8, 32, and 128 (instances that take 0
backtracks, resp. less than 0.01 seconds, for either method are discarded from
Fig. 10.8(a), resp. 10.8(b)). For smaller widths, there are several instances that the
AMONG propagator can solve faster, but the relative strength of the SEQUENCE
propagator increases with larger widths. For width 128, the SEQUENCE propagator
can achieve orders of magnitude smaller search trees and solving time than the
AMONG propagators, which again demonstrates the advantage of MDD propagation
for SEQUENCE when compared with the AMONG decomposition.

Chapter 11
Sequencing and Single-Machine Scheduling

Abstract In this chapter we provide an in-depth study of representing and handling
single-machine scheduling and sequencing problems with decision diagrams. We
provide exact and relaxed MDD representations, together with MDD filtering algo-
rithms for various side constraints, including time windows, precedence constraints,
and sequence-dependent setup times. We extend a constraint-based scheduling
solver with these techniques, and provide an experimental evaluation for a wide
range of problems, including the traveling salesman problem with time windows,
the sequential ordering problem, and minimum-tardiness sequencing problems. The
results demonstrate that MDD propagation can improve a state-of-the-art constraint-
based scheduler by orders of magnitude in terms of solving time.

11.1 Introduction

Sequencing problems are among the most widely studied problems in operations re-
search. Specific variations of sequencing problems include single-machine schedul-
ing, the traveling salesman problem with time windows, and precedence-constrained
machine scheduling. Sequencing problems are those where the best order for per-
forming a set of tasks must be determined, which in many cases leads to an NP-hard
problem [71, Section AS]. Sequencing problems are prevalent in manufacturing and
routing applications, including production plants where jobs should be processed
one at a time on an assembly line, and in mail services where packages must
be scheduled for delivery on a vehicle. Industrial problems that involve multiple

facilities may also be viewed as sequencing problems in certain scenarios, e.g., when

© Springer International Publishing Switzerland 2016 205
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_11

206 11 Sequencing and Single-Machine Scheduling

a machine is the bottleneck of a manufacturing plant [128]. Existing methods for
sequencing problems either follow a dedicated heuristic for a specific problem class
or utilize a generic solving methodology such as integer programming or constraint
programming.

In this chapter we present a new approach for solving sequencing problems,
based on MDDs. We argue that relaxed MDDs can be particularly useful as a
discrete relaxation of the feasible set of sequencing problems. We focus on a broad
class of sequencing problems where jobs should be scheduled on a single machine
and are subject to precedence and time window constraints, and in which setup times
can be present. It generalizes a number of single-machine scheduling problems and
variations of the traveling salesman problem (TSP). The relaxation provided by
the MDD, however, is suitable for any problem where the solution is defined by a
permutation of a fixed number of tasks, and it does not directly depend on particular
constraints or on the objective function.

The structure of this chapter is as follows: We first introduce a representation of
the feasible set of a sequencing problem as an MDD, and show how we can obtain
a relaxed MDD. We then show how the relaxed MDD can be used to compute
bounds on typical objective functions in scheduling, such as the makespan and
total tardiness. Moreover, we describe how to derive more structured sequencing
information from the relaxed MDD, in particular a valid set of precedence relations
that must hold in any feasible solution.

We also propose a number of techniques for strengthening the MDD relax-
ation, which take into account the precedence and time window constraints. We
demonstrate that these generic techniques can be used to derive a polynomial-
time algorithm for a particular TSP variant introduced by [14] by showing that the
associated MDD has polynomial size.

To demonstrate the use of relaxed MDDs in practice, we apply our techniques to
constraint-based scheduling [17]. Constraint-based scheduling plays a central role
as a general-purpose methodology in complex and large-scale scheduling problems.
Examples of commercial applications that apply this methodology include yard
planning of the Singapore port and gate allocation of the Hong Kong airport [68],
Brazilian oil-pipeline scheduling [112], and home healthcare scheduling [136]. We
show that, by using the relaxed MDD techniques described here, we can improve
the performance of the state-of-the-art constraint-based schedulers by orders of

magnitude on single-machine problems without losing the generality of the method.

11.2 Problem Definition 207

11.2 Problem Definition

As mentioned above, we focus on generic sequencing problems, presented here in
terms of “unary machine’ scheduling. Note that a machine may refer to any resource
capable of handling at most one activity at a time.

Let # = {ji,...,jn} be a set of n jobs to be processed on a machine that can
perform at most one job at a time. Each job j € _# has an associated processing
time p;, which is the number of time units the job requires from the machine, and a
release date r, the time from which job j is available to be processed. For each pair
of distinct jobs j, /' € _# a setup time t; i 1s defined, which indicates the minimum
time that must elapse between the end of j and the beginning of ;" if j/ is the first job
processed after j finishes. We assume that jobs are non-preemptive, i.e., we cannot
interrupt a job while it is being processed on the machine.

We are interested in assigning a start time s; > r; for each job j € _# such that
job processing intervals do not overlap, the resulting schedule observes a number
of constraints, and an objective function f is minimized. Two types of constraints
are considered in this chapter: precedence constraints, requiring that s; <, for
certain pairs of jobs (j,j') € # x _#, which we equivalently write j < j’; and
time window constraints, where the completion time c; = s; + p; of each job
J € _# mustbe such that c; < d; for some deadline d;. Furthermore, we study three
representative objective functions in scheduling: the makespan, where we minimize
the completion time of the schedule, or max ;e y ¢;; the fotal tardiness, where we
minimize ¥ ;c ,(max{0, ¢; — 6;}) for given due dates &;; and the sum of setup
times, where we minimize the value obtained by accumulating the setup times ¢;
for all consecutive jobs j, /' in a schedule. Note that for these objective functions
we can assume that jobs should always be processed as early as possible (i.e., idle
times do not decrease the value of the objective function).

Since jobs are processed one at a time, any solution to such scheduling problem
can be equivalently represented by a total ordering 7 = (71, m,...,7m,) of Z.
The start time of job j implied by 7 is given by s; = r; if j = m|, and 5; =
max{r;, Sz, , +pr,_, +1tx_,;} if j = m; for some i € {2,...,n}. We say that an
ordering 7 of ¢ is feasible if the implied job times observe the precedence and

time window constraints, and optimal if it is feasible and minimizes f.

208 11 Sequencing and Single-Machine Scheduling

Job parameters
Job Release (r;) Deadline (d;) Processing (p;)
) ! , 71'1
i 2 20 3 7 ’
J2 0 14 4
7 1 14 2
J 3)2 1 ™
Setup times @
Ji J2 J3
J1 - 3 2 J3 Ji J2 T
J2 3 - 1
J3 1 2 - (t)
(a) Instance data. (b) MDD.

Fig. 11.1 Example of an MDD for a sequencing problem.

11.3 MDD Representation

We have already seen examples of single-machine scheduling in Section 3.8 and
Section 8.3, and we will follow a similar MDD representation in this chapter. That
is, we define an MDD .# whose paths represent the feasible orderings of _#.
The set of nodes of .# are partitioned into n+ 1 layers Ly,...,L,1|, where layer
L; corresponds to the i-th position 7; of the feasible orderings encoded by .Z,
fori=1,...,n. Layers L and L, are singletons representing the root r and the
terminal t, respectively. In this chapter, an arc a = (u,v) of .# is always directed
from a source node u in some layer L; to a target node v in the subsequent layer L;y |,
i€{l,...,n}. We write ¢(a) to indicate the layer of the source node u of the arc a
(e, u € Lyg))-

With each arc a of .# we associate a label d(a) € _# that represents the
assignment of the job d(a) to the ¢(a)-th position of the orderings identified by the
paths traversing a. Hence, an arc-specified path (ay,...,a,) from r to t identifies the
ordering @ = (my,...,7,), where m; = d(a;) fori = 1,...,n. Every feasible ordering
is identified by some path from r to t in .#, and conversely every path from r to t

identifies a feasible ordering.

Example 11.1. We provide an MDD representation for a sequencing problem with
three jobs ji, j», and j3. The instance data are presented in Fig. 11.1(a), and the
associated MDD .7 is depicted in Fig. 11.1(b). No precedence constraints are
considered. There are four feasible orderings in total, each identified by a path from

r to t in .#. In particular, the path traversing nodes r, u», us, and t represents a

11.3 MDD Representation 209

solution where jobs j3, j», and j; are performed in this order. The completion times
for this solution are ¢;, =15, ¢;, =9, and ¢, = 3. Note that we can never have a
solution where j; is first on the machine, otherwise either the deadline of j, or j3

would be violated. Hence, there is no arc a with d(a) = j; directed out of r.

We next show how to compute the orderings that yield the optimal makespan and
the optimal sum of setup times in polynomial time in the size of .# . For the case of
total tardiness and other similar objective functions, we are able to provide a lower
bound on its optimal value also in polynomial time in ..

e Makespan. For each arc a in .4 , define the earliest completion time of a, or ect,,
as the minimum completion time of the job d(a) among all orderings that are
identified by the paths in .# containing a. If the arc « is directed out of r, then a
assigns the first job that is processed in such orderings, thus ectq = ry(4) + Pa(a)-
For the remaining arcs, recall that the completion time ¢z, of a job m; depends
only on the completion time of the previous job m;_i, the setup time #;, | »,, and
on the specific job parameters; namely, ¢z, = max{ry, ¢z, +tz |z} + pr. It
follows that the earliest completion time of an arc a = (u,v) can be computed by

the relation
ecty, = max{rd<a), min{ectaz () d(a) - a e m(u)}} + Da(a)- (11.1)

The minimum makespan is given by min,e;, () ectq, as the arcs directed to t
assign the last job in all orderings represented by .#. An optimal ordering can
be obtained by recursively retrieving the minimizer arc a’ € in(u) in the “min” of
(11.1).

o Sum of Setup Times. The minimum sum of setup times is computed analogously:
For an arc a = (u,v), let st, represent the minimum sum of setup times up to job
d(a) among all orderings that are represented by the paths in .# containing a. If
a is directed out of r, we have st, = 0; otherwise,

Sty = min{sty +ly() a(a) 1 @ € in(u)}. (11.2)

The minimum sum of setup times is given by min,c;y(¢) Sta-

o Total Tardiness. The tardiness of a job j is defined by max{0, c; — §;} for some
due date §;. Unlike the previous two cases, the tardiness value that a job attains
in an optimal solution depends on the sequence of all activities, not only on its
individual contribution or the value of its immediate predecessor. Nonetheless, as

210 11 Sequencing and Single-Machine Scheduling

the tardiness function for a job is nondecreasing in its completion time, we can
utilize the earliest completion time as follows: For any arc a = (u,v), the value
max{0, ect, — 8;(4)} yields a lower bound on the tardiness of the job d(a) among
all orderings that are represented by the paths in .# containing a. Hence, a lower
bound on the total tardiness is given by the length of the shortest path from r to
t, where the length of an arc a is set to max{0, ect, — 04(4)}. Observe that this
bound is tight if the MDD is composed by a single path.

We remark that valid bounds for many other types of objective in the scheduling
literature can be computed in an analogous way as above. For example, suppose the
objective is to minimize ¥;c » fj(c;), where f; is a function defined for each job j
and which is nondecreasing in the completion time c;. Then, as in total tardiness, the
value fy(,)(ect,) for an arc a = (u,v) yields a lower bound on the minimum value
of f4(a)(a(a)) among all orderings that are identified by the paths in .# containing
a. Using such bounds as arc lengths, the shortest path from r to t represents a lower
bound on ¥ ;c » fj(c;). This bound is tight if f;(c;) = ¢;, or if .4 is composed by
a single path. Examples of such objectives include weighted total tardiness, total
square tardiness, sum of (weighted) completion times, and number of late jobs.

Example 11.2. In the instance depicted in Fig. 11.1, we can apply the recurrence re-
lation (11.1) to obtain ecty ,,, =4, ectyry, =3, ecty, uy = 10, ecty, u, =7, ecty, u, =9,
ectyy us = 7, ecty, = 14, ecty, v = 11, and ect,; ¢ = 14. The optimal makespan is
min{ect,, t,ecty, t,ectys ¢} = ecty, ¢ = 11; it corresponds to the path (r,ui,us,t),
which identifies the optimal ordering (2, /3, /1). The same ordering also yields the
optimal sum of setup times with a value of 2.

Suppose now that we are given due dates §;, = 13, §;, = 8, and ;, = 3. The
length of an arc a is given by /, = max{0, ect, — 8d<a)}, as described earlier. We

have Iy, u, =4, liyuy = 1, Ly = 11, and [, ¢ = 6; all remaining arcs a are such

2,U4
that /, = 0. The shortest path in this case is (r,u,u4,t) and has a value of 1. The
minimum tardiness, even though it is given by the ordering identified by this same
path, (j3, 2, /1), has a value of 3.

The reason for this gap is that the ordering with minimum tardiness does not
necessarily coincide with the schedule corresponding to the earliest completion
time. Namely, we computed /,, ¢ = 0 considering ect,, ¢ = 11, since the completion
time of the job d(ua,t) = j; is 11 in (j2,/3,/1). However, in the optimal ordering
(J3,j2,J1) for total tardiness, the completion time of j; would be 15; this solution
yields a better cost than (3, j3, /1) due to the reduction in the tardiness of j3.

11.4 Relaxed MDDs 211

T il ke J3 al A
j3 V(%) %1\
J3 3 J3 J2
J1

© O]

(a) 1-width relaxation. (b) 2-width relaxation.

-

m o Ji| 2 J2 |

/%) Jil 72

)y):)

Fig. 11.2 Two relaxed MDDs for the sequencing problem in Fig. 11.1.

11.4 Relaxed MDDs

We next consider the compilation of relaxed MDDs for sequencing problems, which
represent a superset of the feasible orderings of _#. As an illustration, Fig. 11.2(a)
and 11.2(b) present two examples of a relaxed MDD with maximum width W = 1
and W = 2, respectively, for the problem depicted in Fig. 11.1. In particular, the
MDD in Fig. 11.2(a) encodes all the orderings represented by permutations of ¢
with repetition, hence it trivially contains the feasible orderings of any sequencing
problem. It can be generally constructed as follows: We create one node u; for each
layer L; and connect the pair of nodes u; and u; 1, i = 1,...,n, with arcs ay,...,a,
such that d(a;) = ji for each job jj.

It can also be verified that the MDD in Fig. 11.2(b) contains all the feasible
orderings of the instance in Fig. 11.1. However, the rightmost path going through
nodes r, uy, us, and t identifies an ordering & = (3, j1, /1), which is infeasible as
job ji is assigned twice in 7.

The procedures in Section 11.3 for computing the optimal makespan and the
optimal sum of setup times now yield a lower bound on such values when applied
to a relaxed MDD, since all feasible orderings of ¢ are encoded in the diagram.
Moreover, the lower bounding technique for total tardiness remains valid.

Considering that a relaxed MDD .# can be easily constructed for any sequenc-
ing problem (e.g., the 1-width relaxation of Fig. 11.2(a)), we can now apply the
techniques presented in Section 4.7 and Chapter 9 to incrementally modify .# in
order to strengthen the relaxation it provides, while observing the maximum width

212 11 Sequencing and Single-Machine Scheduling

W. Under certain conditions, we obtain the reduced MDD representing exactly the
feasible orderings of ¢, provided that ¥ is sufficiently large.

Recall that we modify a relaxed MDD .# by applying the operations of filtering
and refinement, which aim at approximating .# to an exact MDD, i.e., one that
exactly represents the feasible orderings of _#. We revisit these concepts below,
and describe them in the context of sequencing problems:

e Filtering. Anarc a in ./ is infeasible if all the paths in .# containing a represent
orderings that are not feasible. Filtering consists of identifying infeasible arcs
and removing them from .#, which would hence eliminate one or more infea-
sible orderings that are encoded in .#. We will provide details on the filtering
operation in Section 11.5.

o Refinement. A relaxed MDD can be intuitively perceived as a diagram obtained
by merging nonequivalent nodes of an exact MDD for the problem. Refinement
consists of identifying these nodes in .# that are encompassing multiple equiv-
alence classes, and splitting them into two or more new nodes to represent such
classes more accurately (as long as the maximum width W is not violated). In
particular, a node u in layer L; can be split if there exist two partial orderings 7;,
) identified by paths from r to u such that, for some 7* = (m;,..., m,), (7], 7*) is
a feasible ordering while (75, £*) is not. If this is the case, then the partial paths in
M representing such orderings must end in different nodes of the MDD, which
will be necessarily nonequivalent by definition. We will provide details on the

refinement operation in Section 11.7.

Observe that, if a relaxed MDD .#Z does not have any infeasible arcs and
no nodes require splitting, then by definition .# is exact. However, it may not
necessarily be reduced.

As mentioned in Chapter 9, filtering and refinement are independent operations
that can be applied to .# in any order that is suitable for the problem at hand. In
this chapter we assume a top-down approach: We traverse layers L,,...,L, ;| one
at a time in this order. At each layer L;, we first apply filtering to remove infeasible
arcs that are directed to the nodes in L;. After the filtering is complete, we perform
refinement to split the nodes in layer L; as necessary, while observing the maximum
width .

Example 11.3. Figure 11.3 illustrates the top-down application of filtering and re-
finement for layers L, and L3;. Assume a scheduling problem with three jobs
7 ={J1, j2, j3} and subject to a single precedence constraint stating that job j»

11.4 Relaxed MDDs 213

L1 r
T a2)i J2 J3 J2 J3
L u .
2 7
m A2 |3 J2 Ji J3 J2
L3 v jl
m N2)53 Jil 2| J3
LW ©
(a) Initial relaxation. (b) After processing L. (c) After processing L3.

Fig. 11.3 Example of filtering and refinement. The scheduling problem is such that job j, must
precede j; in all feasible orderings. Shaded arrows represent infeasible arcs detected by the
filtering.

must precede job j;. The initial relaxed MDD is a 1-width relaxation, depicted in
Fig. 11.3(a). Our maximum width is set to W = 2.

We start by processing the incoming arcs at layer L,. The filtering operation
detects that the arc a € in(u) with d(a) = j; is infeasible, otherwise we will have
an ordering starting with job j;, violating the precedence relation. Refinement will
split node u into nodes u; and u;, since for any feasible ordering starting with job
Ja, i.e., (j2, @) for some 7', the ordering (j3,7’) is infeasible as it will necessarily
assign job j3 twice. The resulting MDD is depicted in Fig. 11.3(b). Note that, when
a node is split, we replicate its outgoing arcs to each of the new nodes.

We now process the incoming arcs at layer L3. The filtering operation detects that
the arc with label j, directed out of ©; and the arc with label j; directed out of u;
are infeasible, since the corresponding paths from r to v would yield orderings that
assign some job twice. The arc with label j; leaving node u; is also infeasible, since
we cannot have any ordering with prefix (3, j|). Finally, refinement will split node v
into nodes v; and v,; note in particular that the feasible orderings prefixed by (2, j3)
and (J3,j») have the same completions, namely (), therefore the corresponding
paths end at the same node v;. The resulting MDD is depicted in Fig. 11.3(c). We
can next process the incoming arcs at layer L4, and remove arcs with labels j; and

j2 out of vy, and arcs with labels j, and j3 out of v;.

214 11 Sequencing and Single-Machine Scheduling

11.5 Filtering

We next apply the methodology developed in Chapter 9 to sequencing problems.
That is, for each constraint type of our problem, we identify necessary conditions
for the infeasibility of an arc in .. To this end, for each constraint type %', we equip
the nodes and arcs of ./ with state information that is specific to %'.

We take care that the conditions for infeasibility can be tested in polynomial time
in the size of the relaxed MDD .. Namely, we restrict our state definitions to have
size O(|_#) and to be Markovian, in that they only depend on the states of the nodes
and arcs in the adjacent layers. Thus, the states can be computed simultaneously
with the filtering and refinement operations during the top-down approach described
in Section 11.4. We also utilize additional state information that is obtained through
an extra bottom-up traversal of the MDD and that, when combined with the top-

down states, leads to stronger tests.

11.5.1 Filtering Invalid Permutations

The feasible orderings of any sequencing problem are permutations of _# without
repetition, which can be enforced with the constraint ALLDIFFERENT(7y, ..., ;).
Hence, we can directly use the filtering conditions for this constraint described in
Section 4.7.1, based on the states All}, C 7 and Somei C 7 for each node u of
A . Recall that the state Alli is the set of arc labels that appear in all paths from the
root node r to u, while the state Some;, is the set of arc labels that appear in some
path from the root node r to u. As presented in Section 4.7.1, an arc a = (u,v) is
infeasible if either d(a) € AIl (condition 4.6) or [Some}| = £(a) and d(a) € Some},
(condition 4.7).

We also equip the nodes with additional states that can be derived from a bottom-
up perspective of the MDD. Namely, we define two new states Alll C #Z and
Some], C _# for each node u of .#. They are similar to the states A/, and Some},,
but now they are computed with respect to the paths from t to u instead of the paths
from r to u, and analogously computed recursively.

It follows from Section 4.7.1 that an arc a = (u,v) is infeasible if we have either
d(a) € Alll (condition 4.10), |Some]| = n—{(a) and d(a) € Some] (condition4.11),
or [Some}, U{d(a)} USome]| < n (condition 4.12).

11.5 Filtering 215

11.5.2 Filtering Precedence Constraints

We next consider filtering a given set of precedence constraints, where we write
j < j'if a job j should precede job ;' in any feasible ordering. We assume the
precedence relations are not trivially infeasible, i.e., there are no cycles of the form
J<K 1 K- K jm < j. We can apply the same states defined for the ALLDIFF-
ERENT constraint in Section 11.5.1 for this particular case.

Lemma 11.1. An arc a = (u,v) with label d(a) is infeasible if either of the following

conditions hold:

3j€ (7 \Some)) st j<d(a), (11.3)
3je (7 \Some)) s.t. d(a) < j. (11.4)

Proof. Let 1’ be any partial ordering identified by a path from r to u, and consider
(11.3). By definition of Somei, we have that any job j in the set ¢ \Somei is not
assigned to any position in 7. Thus, if any such job j must precede d(a), then all
orderings prefixed by (7’,d(a)) will violate this precedence constraint, and the arc

is infeasible. The condition (11.4) is the symmetrical version of (11.3). a

11.5.3 Filtering Time Window Constraints

Consider now that a deadline d; is imposed for each job j € _#. With each arc a we
associate the state ect, as defined in Section 11.3: It corresponds to the minimum
completion time of the job in the ¢(a)-th position among all orderings that are
identified by paths in . containing the arc a. As in relation (11.1), the state ect,

for an arc a = (u,v) is given by the recurrence

Td(a) T Pd(a) ifa € out(r),

ecla =\ max{ry(), min{ecty +ty()a(a) : @ € in(u),d(a) # d(@')}} + paga)
otherwise.

Here we added the trivial condition d(a) # d(a’) to strengthen the bound on ect,
in the relaxed MDD .#. We could also include the condition d(a) &« d(da’) if

precedence constraints are imposed over d(a).

216 11 Sequencing and Single-Machine Scheduling

We next consider a symmetrical version of ect, to derive a necessary infeasibility
condition for time window constraints. Namely, with each arc a we associate the
state [st,, which represents the latest start time of a: For all orderings that are
identified by paths in .# containing the arc a, the value Isz, corresponds to an
upper bound on the maximum start time of the job in the £(«a)-th position so that
no deadlines are violated in such orderings. The state Is¢, for an arc a = (u,v) is
given by the following recurrence, which can be computed through a single bottom-

up traversal of .Z:

dd(a) — Dd(a) ifa e il’l(t)7
Isty = min{dyq), max{lsty —tyq) a(@) : @ € out(v),d(a) #d(@')}} — paa)
otherwise.

We combine ect, and Ist, to derive the following rule:

Lemma 11.2. An arc a = (u,v) is infeasible if
ecty > Ista + pa(a)- (11.5)

Proof. The value Ist; + pg(,) represents an upper bound on the maximum time
the job d(a) can be completed so that no deadlines are violated in the orderings
identified by paths in .# containing a. Since ect, is the minimum time that job d(a)
will be completed among all such orderings, no feasible ordering identified by a
path traversing a exists if rule (11.5) holds. a

11.5.4 Filtering Objective Function Bounds

As described in Section 9.2, in constraint programming systems the objective
function is treated as a constraint z < z*, where z represents the objective function,
and z* is an upper bound of the objective function value. The upper bound typically
corresponds to the best feasible solution found during the search for an optimal
solution.

Below we describe filtering procedures for the ‘objective constraint’ for sequenc-
ing problems. Given z*, an arc a is infeasible with respect to the objective if all paths
in ./ that contain a have objective value greater than z*. However, the associated
filtering method depends on the form of the objective function. We consider here

11.5 Filtering 217

three types of objectives: minimize makespan, minimize the sum of setup times,

and minimize total (weighted) tardiness.

Minimize Makespan

If the objective is to minimize makespan, we can replace the deadline d; by
d§ = min{d;,z*} for all jobs j and apply the same infeasibility condition as in
Lemma 11.2.

Minimize Sum of Setup Times

If z* represents an upper bound on the sum of setup times, we proceed as follows:
For each arc a = (u,v) in A, let st} be the minimum possible sum of setup times
incurred by the partial orderings represented by paths from r to v that contain a. We

recursively compute

n 0, ifa € out(r),
S =
min{z;(d(a) —&—stﬁ, :d €in(u),d(a) #d(d')}, otherwise.

Now, for each arc a = (u,v) let st} be the minimum possible sum of setup times
incurred by the partial orderings represented by paths from u to t that contain a.
The state stl can be recursively computed through a bottom-up traversal of .Z, as
follows:

i 0, ifa € in(t),
St =
| min{ty) aw) + 5t @ € out(v),d(a) # d(d')}, otherwise.

Lemma 11.3. An arc a is infeasible if
sth4sth > 2. (11.6)

Proof. 1t follows directly from the definitions of sti and stg . O

218 11 Sequencing and Single-Machine Scheduling

Minimize Total Tardiness

To impose an upper bound z* on the total tardiness, assume ect, is computed for
each arc a. We define the length of an arc a as [, = max{0, ect, — 6d<a)}. For anode
u, let spi and spI, be the shortest path from r to u and from t to u, respectively, with
respect to the lengths /,. That is,

0, ifu=r,
sPi = . 1 .
min{l, +spy : a = (v,u) € in(u)}, otherwise

and
0, ifu=t,
SPZ = . 1 .
min{l, +spy : a = (u,v) € out(u)}, otherwise.
Lemma 11.4. 4 node u should be removed from 4 if

spy4-sph > 2" (11.7)

Proof. Length I, represents a lower bound on the tardiness of job d(a) with respect
to solutions identified by r—t paths that contain a. Thus, spi and spI, are a lower
bound on the total tardiness for the partial orderings identified by paths from r to u
and t to u, respectively, since the tardiness of a job is nondecreasing in its completion
time. O

11.6 Inferring Precedence Relations from Relaxed MDDs

Given a set of precedence relations for a problem (e.g., that were possibly derived
from other relaxations), we can use the filtering rules (11.3) and (11.4) from
Section 11.5.2 to strengthen a relaxed MDD. In this section, we show that a converse
relation is also possible. Namely, given a relaxed MDD .#, we can deduce all
precedence relations that are satisfied by the partial orderings represented by .#
in polynomial time in the size of .#. To this end, assume that the states Allﬁ, Allz,
Some!, and Some! as described in Section 11.5.1 are computed for all nodes u in

A . We have the following results:

Theorem 11.1. Let .# be an MDD that exactly identifies all the feasible orderings
of #. A job j must precede job j' in any feasible ordering if and only if either
J' ¢ Al or j & Al for all nodes u in A .

11.7 Refinement 219

Proof. Suppose there exists a node u in layer L;, i € {1,...,n+ 1}, such that j/ € AILY
and j € Alll. By definition, there exists a path (r,...,u,...,t) that identifies an
ordering where job j’ starts before job j. This is true if and only if job j does not

precede ;' in any feasible ordering. O

Corollary 11.1. The set of all precedence relations that must hold in any feasible
ordering can be extracted from . in O(n* |4).

Proof. Construct a digraph G* = (_# ,E*) by adding an arc (j, ;') to E* if and only
if there exists a node u in .# such that ;' € Alli and j € Al/z. Checking this condition
for all pairs of jobs takes O(n?) for each node in .#, and hence the time complexity
to construct G* is O(n?|.#|). According to Theorem 11.1 and the definition of G*,
the complement graph of G* contains an edge (/, ;) if and only if j < /. O

As we are mainly interested in relaxed MDDs, we derive an additional corollary
of Theorem 11.1.

Corollary 11.2. Given a relaxed MDD .#, an activity j must precede activity j' in
any feasible solution if (j' ¢ Some},) or (j & Some]) for all nodes u in M .

Proof. 1t follows from the state definitions that Alli C Some}; and Al/ﬁ C Some].
Hence, if the conditions for the relation j < j' from Theorem 11.1 are satisfied by
Some} and Some), they must be also satisfied by any MDD which only identifies
feasible orderings. O

By Corollary 11.2, the precedence relations implied by the solutions of a relaxed
MDD .# can be extracted by applying the algorithm in Corollary 11.1 to the states
Some} and Some). Since .# has at most O(n) nodes and O(nW?) arcs, the time
to extract the precedences has a worst-case complexity of O(n*#?) by the presented
algorithm. These precedences can then be used for guiding search or communicated

to other methods or relaxations that may benefit from them.

11.7 Refinement

As in Section 4.7.1.2, we will develop a refinement procedure based on the per-
mutation structure of the jobs, represented by the ALLDIFFERENT constraint. The
goal of our heuristic refinement is to be as precise as possible with respect to the
equivalence classes that refer to jobs with a higher priority, where the priority of a

220 11 Sequencing and Single-Machine Scheduling

job follows from the problem data. More specifically, we will develop a heuristic for
refinement that, when combined with the infeasibility conditions for the permutation
structure described in Section 11.5.1, yields a relaxed MDD where the jobs with a
high priority are represented exactly with respect to that structure; that is, these jobs
are assigned to exactly one position in all orderings encoded by the relaxed MDD.
We also take care that a given maximum width ¥ is observed when creating new
nodes in a layer.

Thus, if higher priority is given to jobs that play a greater role in the feasibility
or optimality of the sequencing problem at hand, the relaxed MDD may represent
more accurately the feasible orderings of the problem, providing, e.g., better bounds
on the objective function value. For example, suppose we wish to minimize the
makespan on an instance where certain jobs have very large release dates and
processing times in comparison with other jobs. If we construct a relaxed MDD
where these longer jobs are assigned exactly once in all orderings encoded by the
MDD, the bound on the makespan would be potentially tighter with respect to the
ones obtained from other possible relaxed MDDs for this same instance. Examples
of job priorities for other objective functions are presented in Section 11.9. Recall
from Section 4.7.1.2 that the refinement heuristic requires a ranking of jobs #* =
{J1,.--.Jh}, where jobs with smaller index in _#* have higher priority.

We note that the refinement heuristic also yields a reduced MDD .# for certain
structured problems, given a sufficiently large width. The following corollary, stated
without proof, is directly derived from Lemma 4.4 and Theorem 4.3.

Corollary 11.3. Assume W = +oo. For a sequencing problem having only prece-
dence constraints, the relaxed MDD ./ that results from the constructive proof of
Theorem 4.3 is a reduced MDD that exactly represents the feasible orderings of this
problem.

Lastly, recall that equivalence classes corresponding to constraints other than the
permutation structure may also be taken into account during refinement. Therefore,
if the maximum width W is not met in the refinement procedure above, we assume
that we will further split nodes by arbitrarily partitioning their incoming arcs. Even
though this may yield false equivalence classes, the resulting .# is still a valid

relaxation and may provide a stronger representation.

11.8 Encoding Size for Structured Precedence Relations 221

11.8 Encoding Size for Structured Precedence Relations

The actual constraints that define a problem instance greatly impact the size of an
MDD. If these constraints carry a particular structure, we may be able to compactly
represent that structure in an MDD, perhaps enabling us to bound its width.

In this section we present one such case for a problem class introduced by [14], in
which jobs are subject to discrepancy precedence constraints: For a fixed parameter
ke {1,...,n}, the relation j, < j, must be satisfied for any two jobs j,,j, € 7
if ¢ > p + k. This precedence structure was motivated by a real-world application
in steel rolling mill scheduling. The work by [15] also demonstrates how solution
methods to this class of problems can serve as auxiliary techniques in other cases,
for example, as heuristics for the TSP and vehicle routing with time windows.

We stated in Corollary 11.3 that we are able to construct the reduced MDD
when only precedence constraints are imposed and a sufficiently large W is
given. We have the following results for .# if the precedence relations satisfy the

discrepancy structure for a given k:

Lemma 11.5. We have AIl; C {jy,... s Jmin{m+k—1,n} } JOr any given node v € Ly,

m=1,...,n.

Proof. If m+k—1 > n we obtain the redundant condition A/} C F , therefore
assume m 4k — 1 < n. Suppose there exists j; € All} for some v € L,,,| such that
I >m+k—1. Then, forany i =1,...,m, we have | —i > m+k—i>m+k—
m = k. This implies {ji,...,jm} C Alli, since job j; belongs to a partial ordering
7 only if all jobs j; for which / —i > k are already accounted for in 7. But then
|AIIY| > m+ 1, which is a contradiction since v € L, implies that |4/[}| = m, as

any partial ordering identified by a path from r to v must contain m distinct jobs. O
Theorem 11.2. The width of A is 2571,

Proof. Letus first assume n > k+ 2 and restrict our attention to layer L,, | for some
me {k,...,n—k+1}. Also, let F := {AIl\ : u € L, }. It can be shown that, if ./#Z
is reduced, no two nodes u,v € L, are such that AIl}, = All}. Thus, |.Z| = |Ly1|.
We derive the cardinality of .# as follows: Take All‘l, € ¥ for some v € Ly .
Since |4II}| = m, there exists at least one job j; € AIl% such that i > m. According
to Lemma 11.5, the maximum index of a job in Al is m 4k — 1. So consider the
jobs indexedby m+k—1—1for/=0,...,k—1; at least one of them is necessarily
contained in Allﬁ. Due to the discrepancy precedence constraints, j,,1r—1—; € All‘l,
implies that any j; with i <m —[—1 is also contained in All& (ifm—-1-1>0).

222 11 Sequencing and Single-Machine Scheduling

Now, consider the sets in . which contain a job with index m +k—1—1,
but do not contain any job with index greater than m +k — 1 —[. Any such set
Alli contains the jobs ji,...,j,_;_1 according to Lemma 11.5. Hence, the remain-
ing m—(m—1I1—1)—1=1 job indices can be freely chosen from the sequence
m—1,...,m+k—1—2. Notice there are no imposed precedences on these remain-
ingm-+k—1—2—(m—1I)+1=k— 1 elements; thus, there exist (kjl) such subsets.
But these sets define a partition of .% . Therefore

k2l k—1 k—1 k—1
= Lm = = = kil.

We can use an analogous argument for the layers L, such that m < k or
m>n—k+1, or when k = n— 1. The main technical difference is that we have
fewer than k£ — 1 possibilities for the new combinations, and so the maximum number
of nodes is strictly less than 2~ for these cases. Thus the width of .7 is 2¢~1. O

According to Theorem 11.2, .# has O(n2%~1) nodes as it contains n + 1 layers.
Since arcs only connect nodes in adjacent layers, the MDD contains 0(n22k’2)
arcs (assuming a worst-case scenario where all nodes in a layer are adjacent to all

= 22k=2 arcs directed out of a

nodes in the next layer, yielding at most 26~ 1. 241
layer). Using the recursive relation (11.2) in Section 11.3, we can compute, e.g.,
the minimum sum of setup times in worst-case time complexity of O(n?2%~2).
The work by [14] provides an algorithm that minimizes this same function in

O(nk?2%=2), but that is restricted to this particular objective.

11.9 Application to Constraint-Based Scheduling

We next describe how the techniques of the previous sections can be added to IBM
ILOG CP Optimizer (CPO), a state-of-the-art general-purpose constraint program-
ming solver. In particular, it contains dedicated syntax and associated propagation
algorithms for sequencing and scheduling problems. Given a sequencing problem as
considered in this chapter, CPO applies a depth-first branch-and-bound search where
jobs are recursively appended to the end of a partial ordering until no jobs are left
unsequenced. At each node of the branching tree, a number of sophisticated propa-
gation algorithms are used to reduce the possible candidate jobs to be appended to

11.9 Application to Constraint-Based Scheduling 223

the ordering. Examples of such propagators include edge-finding, not-first/not-last
rules, and deductible precedences; details can be found in [17] and [154].

We have implemented our techniques by introducing a new user-defined con-
straint type to the CPO system, representing a generic sequencing problem. We
maintain a relaxed MDD for this constraint type, and we implemented the filtering
and refinement techniques in the associated propagation algorithm. The constraint
participates in the constraint propagation cycle of CPO; each time it is activated
it runs one round of top-down filtering and refinement. In particular, the filtering
operation takes into account the search decisions up to that point (i.e., the jobs
that are already fixed in the partial ordering) and possible precedence constraints
that are deduced by CPO. At the end of a round, we use the relaxed MDD to
reduce the number of candidate successor jobs (by analyzing the arc labels in the
appropriate layers) and to communicate new precedence constraints as described in
Section 11.6, which may trigger additional propagation by CPO. Our implementa-
tion follows the guidelines from [101].

In this section we present computational results for different variations of single-
machine sequencing problems using the MDD-based propagator. Our goal is twofold.
First, we want to analyze the sensitivity of the relaxed MDD with respect to the
width and refinement strategy. Second, we wish to provide experimental evidence
that combining a relaxed MDD with existing techniques for sequencing problems

can improve the performance of constraint-based solvers.

11.9.1 Experimental Setup

Three formulations were considered for each problem: a CPO model with its
default propagators, denoted by CPO; a CPO model containing only the MDD-based
propagator, denoted by MDD; and a CPO model with the default and MDD-based
propagators combined, denoted by CPO+MDD. The experiments mainly focus on the
comparison between CPO and CPO+MDD, as these indicate whether incorporating
the MDD-based propagator can enhance existing methods.

We have considered two heuristic strategies for selecting the next job to be
appended to a partial schedule. The first, denoted by lex search, is a static method
that always tries to first sequence the job with the smallest index, where the index of
a job is fixed per instance and defined by the order in which it appears in the input.

This allows for a more accurate comparison between two propagation methods,

224 11 Sequencing and Single-Machine Scheduling

since the branching tree is fixed. In the second strategy, denoted by dynamic search,
the CPO engine automatically selects the next job according to its own state-of-the-
art scheduling heuristics. The purpose of the experiments that use this search is to
verify how the MDD-based propagator is influenced by strategies that are known to
be effective for constraint-based solvers. The dynamic search is only applicable to
CPO and CPO+MDD.

We measure two performance indicators: the total solving time and the number
of fails. The number of fails corresponds to the number of times during search that a
partial ordering was detected to be infeasible, i.e., either some constraint is violated
or the objective function is greater than a known upper bound. The number of fails
is proportional to the size of the branching tree and, hence, to the total solving time
of a particular technique.

The techniques presented here do not explore any additional problem structure
that was not described in this chapter, such as specific search heuristics, problem
relaxations, or dominance criteria (except only if such structure is already explored
by CPO). More specifically, we used the same MDD-based propagator for all
problems, which dynamically determines what node state and refinement strategy
to use according to the input constraints and the objective function.

The experiments were performed on a computer equipped with an Intel Xeon
E5345 at 2.33 GHz with 8 GB RAM. The MDD code was implemented in C++ using
the CPO callable library from ILOG CPLEX Academic Studio V.12.4.01. We set
the following additional CPO parameters for all experiments: Workers=1, to use a
single computer core; Defaul tInferenceLevel=Extended,to use the max-

imum possible propagation available in CPO; and SearchType=DepthFirst.

11.9.2 Impact of the MDD Parameters

We first investigate the impact of the maximum width and refinement on the number
of fails and total solving time for the MDD approaches. As a representative test
case, we consider the traveling salesman problem with time windows (TSPTW).
The TSPTW is the problem of finding a minimum-cost tour in a weighted digraph
starting from a selected vertex (the depot), visiting each vertex within a given time
window, and returning to the original vertex. In our case, each vertex is a job, the

release dates and deadlines are defined according to the vertex time windows, and

11.9 Application to Constraint-Based Scheduling 225

1e+06
500
L

1e+05
L
50 100 200

Number of Fails
1e+03 1e+04
| |
Time (s)
10 20

5
L

1e+02
L
2
L

T T T T T T T T T T T T T T T T T T
4 8 16 32 64 128 256 512 1024 4 8 16 32 64 128 256 512 1024

MDD Width MDD Width
(a) Number of fails. (b) Time.

Fig. 11.4 Impact of the MDD width on the number of fails and total time for the TSPTW instance
n20w200.001 from the Gendreau class. The axes are in logarithmic scale.

travel distances are perceived as setup times. The objective function is to minimize
the sum of setup times.

We selected the instance n20w200 . 001 from the well-known Gendreau bench-
mark proposed by [72], as it represents the typical behavior of an MDD. It consists
of a 20-vertex graph with an average time window width of 200 units. The tested
approach was the MDD model with lex search. We used the following job ranking
for the refinement strategy described in Section 11.7: The first job in the ranking,
Ji» was set as the first job of the input. The i-th job in the ranking, j7, is the
one that maximizes the sum of the setup times to the jobs already ranked, i.e.,
Ji = argmaxp,c g\ jltl}{zﬁc;ll L py for the setup times #. The intuition is that
we want jobs with largest travel distances to be exactly represented in . .

The number of fails and total time to find the optimal solution for different
MDD widths are presented in Fig. 11.4. Due to the properties of the refinement
technique in Theorem 4.3, we consider only powers of 2 as widths. We note from
Fig. 11.4(a) that the number of fails is decreasing rapidly as the width increases, up
to a point where it becomes close to constant (from 512 to 1024). This indicates that,
at a certain point, the relaxed MDD is very close to an actual exact representation
of the problem, and hence no benefit is gained from any increment of the width.
The number of fails has a direct impact on the total solving time, as observed in
Fig. 11.4(b). Namely, the times decrease accordingly as the width increases. At

226 11 Sequencing and Single-Machine Scheduling

500
L
1
500
L

Num. of Fails Random / Num. of Fails Structured
10 20
L L
1
Time Random / Time Structured
10 20
L L

HHHQ

50 100
50 100

5
L

ik
f
f
1

2
i

i
1 2
f-oe

- b= - Eé
—_—————————— ——————————
4 8 16 32 64 128 256 512 1024 4 8 16 32 64 128 256 512 1024
MDD Width MDD Width
(a) Number of fails ratio. (b) Time ratio.

Fig. 11.5 Performance comparison between random and structured refinement strategies for the
TSPTW instance n20w200.001. The axes are in logarithm scale.

the point where the relaxed MDD is close to exact, larger widths only introduce
additional overhead, thus increasing the solving time.

To analyze the impact of the refinement, we generated 50 job rankings uniformly
at random for the refinement strategy described in Section 11.7. These rankings were
compared with the structured one for setup times used in the previous experiment.
To make this comparison, we solved the MDD model with lex search for each of
the 51 refinement orderings, considering widths from 4 to 1024. For each random
order, we divided the resulting number of fails and time by the ones obtained
with the structured refinement for the same width. Thus, this ratio represents how
much better the structured refinement is over the random strategies. The results are
presented in the box-and-whisker plots of Fig. 11.5. For each width the horizontal
lines represent, from top to bottom, the maximum observed ratio, the upper quartile,
the median ratio, the lower quartile, and the minimum ratio.

We interpret Fig. 11.5 as follows: An MDD with very small width captures
little of the jobs that play a more important role in the optimality or feasibility
of the problem, in view of Theorem 4.3. Thus, distinct refinement strategies are
not expected to differ much on average, as shown, e.g., in the width-4 case of
Fig. 11.5(a). As the width increases, there is a higher chance that these crucial jobs
are better represented by the MDD, leading to a good relaxation, but also a higher
chance that little of their structure is captured by a random strategy, leading in turn

to a weak relaxation. This yields a larger variance in the refinement performance.

11.9 Application to Constraint-Based Scheduling 227

Finally, for sufficiently large widths, we end up with an almost exact representation
of the problem and the propagation is independent of the refinement order (e.g.,
widths 512 and 1024 of Fig. 11.5(a)). Another aspect we observe in Fig. 11.5(b)
is that, even for relatively small widths, the structured refinement can be orders of
magnitude better than a random one. This emphasizes the importance of applying
an appropriate refinement strategy for the problem at hand.

11.9.3 Traveling Salesman Problem with Time Windows

We first evaluate the relative performance of CPO and CPO+MDD on sequencing
problems with time window constraints, and where the objective is to minimize
the sum of setup times. We considered a set of well-known TSPTW instances
defined by the Gendreau, Dumas, and Ascheuer benchmark classes, which were
proposed by [72], [56], and [10], respectively. We selected all instances with up to
100 jobs, yielding 388 test cases in total. The CPO and the CPO+MDD models were
initially solved with lex search, considering a maximum width of 16. A time limit of
1,800 seconds was imposed for all methods, and we used the structured job ranking
described in Section 11.9.2.

The CPO approach was able to solve 26 instances to optimality, while the
CPO+MDD approach solved 105 instances to optimality. The number of fails and
solution times are presented in the scatter plots of Fig. 11.6, where we only
considered instances solved by both methods. The plots provide a strong indication
that the MDD-based propagator can greatly enhance the CPO inference mechanism.
For example, CPO+MDD can reduce the number of fails from over 10 million (CPO)
to less than 100 for some instances.

In our next experiment we compared CPO and CPO+MDD considering a maxi-
mum width of 1024 and applying instead a dynamic search, so as to verify if we
could still obtain additional gains with the general-purpose scheduling heuristics
provided by CPO. A time limit of 1,800 seconds was imposed for all approaches.

With the above configuration, the CPO approach solved to optimality 184 out of
the 388 instances, while the CPO+MDD approach solved to optimality 311 instances.
Figure 11.7(a) compares the times for instances solved by both methods, while
Fig. 11.7(b) depicts the performance plot. In particular, the overhead introduced
by the MDD is only considerable for small instances (up to 20 jobs). In the majority
of the cases, CPO+MDD is capable of proving optimality much quicker.

228 11 Sequencing and Single-Machine Scheduling

«©
o @
T S
o T 4
- 2
)
£ o -
5 S 4 28|
g 2 g e
£ [
5]
z © _
L3 :3
2 3 32
g ” :
2 o
= g 5
3] x X% T %
s I X x % ox g 2 X x
S 2 Xoex o X5 % [}
a x x x * %
G X Rt % x x
x X x S x x|
o X% T x X XX x
=) <2 x X x X x x
x’ 1 T alla x\ T T T T x T x * T x * T * T
1e+00 1e+02 1e+04 1e+06 1e+08 1e-01 1e+00 1e+01 1e+02 1e+03
CPO - Number of Fails CPO - Time (s)
(a) Number of fails. (b) Time.

Fig. 11.6 Performance comparison between CPO and CPO+MDD for minimizing sum of setup
times on Dumas, Gendreau, and Ascheuer TSPTW classes with lex search. The vertical and
horizontal axes are in logarithmic scale.

°
2 &1
e
84 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
o ° a
2 8 B g d
E El
g & = &
1 %]
& P
= §A X x kst
5@ " 2
=2 v = o
= X x yxxx"z}:ﬁx 5 B P P RXREEEEL
x® X: x ° = et
g 5 x e AT RARR 2
s S x % {‘8 o™ € g .t
5 o] Rl x S e
" | *x x’ﬁg’& % z
S § %
o
- 3
? _ —— CPO
o 4~ CPOMDD - Width 1024
o - A
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1e-01 1e+00 1e+01 1e+02 1e+03 0 300 600 900 1200 1500 1800
CPO - Time (s) Time(s)
(a) Scatter plot. (b) Performance plot.

Fig. 11.7 Performance comparison between CPO and CPO+MDD for minimizing sum of setup
times on Dumas, Gendreau, and Ascheuer TSPTW classes using default depth-first CPO search.
The horizontal and vertical axes in (a) are in logarithmic scale.

11.9.4 Asymmetric Traveling Salesman Problem with Precedence

Constraints

We next evaluate the performance of CPO and CPO+MDD on sequencing problems

with precedence constraints, while the objective is again to minimize the sum of

11.9 Application to Constraint-Based Scheduling 229

setup times. As benchmark problem, we consider the asymmetric traveling salesman
problem with precedence constraints (ATSPP), also known as the sequential order-
ing problem. The ATSPP is a variation of the asymmetric TSP where precedence
constraints must be observed. Namely, given a weighted digraph D = (V,4) and a
set of pairs P =V x V, the ATSPP is the problem of finding a minimum-weight
Hamiltonian tour 7' such that vertex v precedes u in T if (v,u) € P.

The ATSPP has been shown to be extremely challenging for exact methods. In
particular, a number of instances with fewer than 70 vertices from the well-known
[147] benchmark, proposed initially by [11], are still open. We refer to the work
of [6] for a more detailed literature review of exact and heuristic methods for the
ATSPP.

We applied the CPO and CPO+MDD models with dynamic search and a maximum
width of 2048 for 16 instances of the ATSPP from the TSPLIB benchmark. A
time limit of 1,800 seconds was imposed, and we used the structured job ranking
described in Section 11.9.2. The results are reported in Table 11.1. For each instance
we report the size (number of vertices) and the current best lower and upper bound
from the literature.! The column ‘Best’ corresponds to the best solution found by a
method, and the column ‘Time’ corresponds to the computation time in which the
solution was proved optimal. A value TL indicates that the time limit was reached.

We were able to close three of the unsolved instances with our generic approach,
namely p43.2, p43.3, and ry48p.4. In addition, instance p43.4 was solved before
with more than 22 hours of CPU time by [92] (for a computer approximately 10
times slower than ours), and by more than 4 hours by [76] (for an unspecified
machine), while we could solve it in less than 90 seconds. The presence of more
precedence constraints (indicated for these instances by a larger suffix number)
is more advantageous to our MDD approach, as shown in Table 11.1. On the
other hand, less constrained instances are better suited to approaches based on
mixed integer linear programming; instances p43.1 and ry48p.1 are solved by a
few seconds in [11].

As a final observation, we note that the bounds for the p43.1-4 instances reported
in the TSPLIB are inconsistent. They do not match any of the bounds from existing
works we are aware of or the ones provided by [11], where these problems were
proposed. This includes the instance p43.1 which was solved in that work.

! Since the TSPLIB results are not updated on the TSPLIB website, we report updated bounds
obtained from [92], [76], and [6].

230 11 Sequencing and Single-Machine Scheduling

Table 11.1 Results on ATSPP instances. Values in bold represent instances solved for the first
time. TL represents that the time limit (1,800 s) was reached.

CPO CPO+MDD

width 2048
Instance Vertices Bounds Best Time (s) Best Time (s)
br17.10 17 55 55 0.01 55 4.98
brl7.12 17 55 55 0.01 55 4.56
ESC07 7 2125 2125 0.01 2125 0.07
ESC25 25 1681 1681 TL 1681 48.42
p43.1 43 28140 28205 TL 28140 287.57

p43.2 43 [28175, 28480] 28545 TL 28480 279.18
p43.3 43 [28366, 28835] 28930 TL 28835 177.29

p43.4 43 83005 83615 TL 83005 88.45
ry48p.1 48 [15220, 15805] 18209 TL 16561 TL
ry48p.2 48 [15524, 16666] 18649 TL 17680 TL
ry48p.3 48 [18156, 19894] 23268 TL 22311 TL
ry48p.4 48 [29967, 31446] 34502 TL 31446 96.91
ft53.1 53 [7438, 7531] 9716 TL 9216 TL
ft53.2 53 [7630, 8026] 11669 TL 11484 TL
ft53.3 53 [9473, 10262] 12343 TL 11937 TL
ft53.4 53 14425 16018 TL 14425 120.79

11.9.5 Makespan Problems

Constraint-based solvers are known to be particularly effective when the objective
is to minimize makespan, which is largely due to specialized domain propagation
techniques that can be used in such cases; see, e.g., [17].

In this section we evaluate the performance of CPO and CPO+MDD on sequencing
problems with time window constraints and where the objective is to minimize
makespan. Our goal is to test the performance of such procedures on makespan
problems, and verify the influence of setup times on the relative performance.
In particular, we will empirically show that the MDD-based propagator makes
schedulers more robust for makespan problems, especially when setup times are
present.

To compare the impact of setup times between methods, we performed the
following experiment: Using the scheme from [41], we first generated three random
instances with 15 jobs. The processing times p; are selected uniformly at random
from the set {1,100}, and release dates are selected uniformly at random from the
set {0,...,0Y; p;} for a € {0.25,0.5,0.75}. No deadlines are considered. For each
of the three instances above, we generated additional random instances where we

add a setup time for all pairs of jobs i and j selected uniformly at random from the set

11.9 Application to Constraint-Based Scheduling 231

100
I
5.00
I

50
I

2.00
Il
:
:
'kn/.
<.
e 4q ‘EI

1.00
L

-q\ .
< L

CPO - Time / CPO+MDD Width 16 - Time
0.50
I
o

CPO - Num. of Fails / CPO+MDD Width 16 - Num. of Fails
10
I
0.10
I

0.05
I
o

0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

Importance of Setup Times (B) Importance of Setup Times (B)
(a) Number of fails ratio. (b) Time ratio.

Fig. 11.8 Comparison between CPO and CPO+MDD for minimizing makespan on three instances
with randomly generated setup times. The vertical axes are in logarithmic scale.

{0,...,(50.5)B}, where 8 € {0,0.5,1,...,4}. Intotal, 10 instances are generated for
each 3. We computed the number of fails and total time to minimize the makespan
using CPO and CPO+MDD models with a maximum width of 16, applying a lex
search in both cases. We then divided the CPO results by the CPO+MDD results,
and computed the average ratio for each value of 3. The job ranking for refinement
is done by sorting the jobs in decreasing order according to the value obtained by
summing their release dates with their processing times. This forces jobs with larger
completion times to have higher priority in the refinement.

The results are presented in Fig. 11.8. For each value of o, we plot the ratio
of CPO and CPO+MDD in terms of the number of fails (Fig. 11.8(a)) and time
(Fig. 11.8(b)). The plot in Fig. 11.8(a) indicates that the CPO+MDD inference
becomes more dominant in comparison with CPO for larger values of 3, that is,
when setup times become more important. The MDD introduces a computational
overhead in comparison with the CPO times (around 20 times slower for this
particular problem size). This is compensated as 3 increases, since the number of
fails for the CPO+MDD model becomes orders of magnitude smaller in comparison
with CPO. The same behavior was observed on average for other base instances
generated under the same scheme.

To evaluate this on structured instances, we consider the TSPTW instances
defined by the Gendreau and Dumas benchmark classes, where we changed the

objective function to minimize makespan instead of the sum of setup times. We

232 11 Sequencing and Single-Machine Scheduling

«©
<
b 8
< T 4
ks
)
= R N
5 8 2y
Lo o % 4
s - E © x
€ = x x x
5]
z © x
o< < = x
=} £ <9 X x xx x
e F x x x 2 § 1R x * il
g - & x N 2 ‘xx « x %
= x X x. a % ¥ % X x X x <
Q x x X xx X x = 8 x % * *
sg R T 5Tk T
S5 2 e ¥ o "% * x S x x
a x X x x
o K XX Xy x x o X
247
[=3 o x
o ~ x x
. x % o x
- T T T T T T T T T
1e+00 1e+02 1e+04 1e+06 1e+08 1e-01 1e+00 1e+01 1e+02 1e+03
CPO - Number of Fails CPO - Time (s)
(a) Number of fails. (b) Time.

Fig. 11.9 Performance comparison between CPO and CPO+MDD for minimizing makespan on
Dumas and Gendreau TSPTW classes. The vertical and horizontal axes are in logarithmic scale.

selected all instances with up to 100 jobs, yielding 240 test cases in total. We solved
the CPO and the CPO+MDD models with lex search, so as to compare the inference
strength for these problems. A maximum width of 16 was set for CPO+MDD, and a
time limit of 1,800 seconds was imposed for both cases. The job ranking is the same
as in the previous experiment.

The CPO approach was able to solve 211 instances to optimality, while the
CPO+MDD approach solved 227 instances to optimality (including all the instances
solved by CPO). The number of fails and solving time are presented in Fig. 11.9,
where we only depict instances solved by both methods. In general, for easy
instances (up to 40 jobs or with a small time window width), the reduction of
the number of fails induced by CPO+MDD was not significant, and thus did not
compensate the computational overhead introduced by the MDD. However, we note
that the MDD presented better performance for harder instances; the lower diagonal
of Fig. 11.9(b) is mostly composed by instances from the Gendreau class with
larger time windows, for which the number of fails was reduced by five and six
orders of magnitude. We also note that the result for the makespan objective is less

pronounced than for the sum of setup times presented in Section 11.9.3.

11.9 Application to Constraint-Based Scheduling 233

11.9.6 Total Tardiness

Constraint-based schedulers are usually equipped with specific filtering techniques
for minimizing total tardiness, which are based on the propagation of a piecewise-
linear function as described by [17]. For problems without any constraints, however,
the existing schedulers are only capable of solving small instances, and heuristics
end up being more appropriate as the propagators are not sufficiently strong to
deduce good bounds.

In this section we evaluate the performance of CPO and CPO+MDD on sequencing
problems where the objective is to minimize the total tardiness. Since we are
interested in evaluating the inference strength of the objective function bounding
mechanism, we do not take into account any additional side constraints and we
limit our problem size to 15 jobs. Moreover, jobs are only subject to a release date,
and no setup time is considered.

We have tested the total tardiness objective using random instances, again gen-
erated with the scheme of [41]. The processing times p; are selected uniformly at
random from the set {1, 10}, the release dates r; are selected uniformly at random
from the set {0,...,>; p;}, and the due dates are selected uniformly at random
from the set {r;+ p;,...,ri+ pi+ BY; pi}. To generate a good diversity of instances,
we considered a € {0,0.5,1.0,1.5} and B € {0.05,0.25,0.5}. For each random
instance generated, we create a new one with the same parameters but where we
assign tardiness weights selected uniformly at random from the set {1,...,10}. We
generated 5 instances for each configuration, hence 120 instances in total. A time
limit of 1,800 seconds was imposed for all methods. The ranking procedure for
refinement is based on sorting the jobs in decreasing order of their due dates.

We compared the CPO and the CPO+MDD models for different maximum widths,
and lex search was applied to solve the models. The results for unweighted total tar-
diness are presented in Fig. 11.10(a), and the results for the weighted total tardiness
instances are presented in Fig. 11.10(b). We observe that, even for relatively small
widths, the CPO+MDD approach was more robust than CPO for unweighted total
tardiness; more instances were solved in less time even for a width of 16, which
is a reflection of a great reduction of the number of fails. On the other hand, for
weighted total tardiness CPO+MDD required larger maximum widths to provide a
more significant benefit with respect to CPO. We believe that this behavior may be
due to a weaker refinement for the weighted case, which may require larger widths
to capture the set of activities that play a bigger role in the final solution cost.

234 11 Sequencing and Single-Machine Scheduling
84 ok kg g Kootk 84
3 r O e B - 8 Py PR Ei o
- - - -0:--:-0
* - v v - -
. ! Lo — - *-—¥ ra—'D’ ormee LZE Sl SEEN 4
® S v ® | o g VY Y/
! v ---0 [v — _--o
5 [5 e - ! . . [
2 [. o0 2 A e—8 " p---0--0
& 84 ° v o-o 88 i T
8 [F— 8 Pt e
e i ..o c
s o | v o- o £ o | .o
2 ® I e e—e— 2 ®
£ | o e £
5 I - 5
5 [e— 5
g g ke S 5 g
5 el 5
z e z
i ! —— cPo —— cPo
S & CPO+MDD Width 16 o | & CPO+MDD Width 16
- I ¥+ CPO+MDD Width 32 - ¥~ CPO+MDD Width 32
i -0+ CPO+MDD Width 64 -0+ CPO+MDD Width 64
|7 % CPo-iDD Wit 128 % CPo-uiDD Wt 128
o (=
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 300 600 900 1200 1500 1800 0 300 600 900 1200 1500 1800
Time(s) Time(s)
(a) Total tardiness. (b) Weighted total tardiness.

Fig. 11.10 Performance comparison between CPO and CPO+MDD for minimizing total tardiness
on randomly generated instances with 15 jobs.

In all cases, a minimum width of 128 would suffice for the MDD propagation to

provide enough inference to solve all the considered problems.

References

(1]

[2]

(3]

[3]

[7]

(8]

[9]

[10]

(11]

[12]

E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, New York, 1997.

H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa. The time dependent
traveling salesman problem: polyhedra and algorithm. Mathematical Pro-
gramming Computation, 5(1):27-55,2013.

S. B. Akers. Binary decision diagrams. [EEE Transactions on Computers,
C-27:509-516, 1978.

H. R. Andersen, T. Hadzi¢, J. N. Hooker, and P. Tiedemann. A constraint
store based on multivalued decision diagrams. In Principles and Practice of
Constraint Programming (CP 2007), volume 4741 of LNCS, pages 118—132.
Springer, 2007.

H. R. Andersen, T. Hadzi¢, and D. Pisinger. Interactive cost configuration
over decision diagrams. Journal of Artificial Intelligence Research, 37:99—
139, 2010.

D. Anghinolfi, R. Montemanni, M. Paolucci, and L. M. Gambardella. A
hybrid particle swarm optimization approach for the sequential ordering
problem. Computers & Operations Research, 38(7):1076—1085,2011.

K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic and Discrete Mathematics,
8:277-284,1987.

S. Arnborg and A. Proskurowski. Characterization and recognition of partial
k-trees. SIAM Journal on Algebraic and Discrete Mathematics, 7:305-314,
1986.

N. Ascheuer. Hamiltonian Path Problems in the On-line Optimization of
Flexible Manufacturing Systems. PhD thesis, Technische Universitét Berlin,
Germany, 1995.

N. Ascheuer, M. Jiinger, and G. Reinelt. A branch and cut algorithm for
the asymmetric traveling salesman problem with precedence constraints.
Computational Optimization and Applications, 17:61-84, 2000.

K. R. Baker and B. Keller. Solving the single-machine sequencing problem
using integer programming. Computers and Industrial Engineering, 59:730—
735, 2010.

© Springer International Publishing Switzerland 2016 235
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9

236 References

[13] E. Balas. A linear characterization of permutation vectors. Management
science research report 364, Carnegie Mellon University, 1975.

[14] E. Balas. New classes of efficiently solvable generalized traveling salesman
problems. Annals of Operations Research, 86:529-558, 1999.

[15] E.Balas and N. Simonetti. Linear time dynamic-programming algorithms for
new classes of restricted TSPs: A computational study. INFORMS Journal
on Computing, 13:56—75, December 2000.

[16] B. Balasundaram, S. Butenko, and 1. V. Hicks. Clique relaxations in social
network analysis: The maximum k-plex problem. Operations Research,
59(1):133-142, January 2011.

[17] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. Kluwer, 2001.

[18] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDs in a branch
and cut framework. In S. Nikoletseas, editor, Proceedings, International
Workshop on Efficient and Experimental Algorithms (WEA), volume 3503
of LNCS, pages 452—463. Springer, 2005.

[19] M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis,
Max Planck Institute for Computer Science, 2007.

[20] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from
constraint checkers. In Principles and Practice of Constraint Programming
(CP 2004), volume 3258 of LNCS, pages 107—122. Springer, 2004.

[21] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP.
Journal of Mathematical and Computer Modelling, 20(12):97-123, 1994.

[22] D. Bergman. New Techniques for Discrete Optimization. PhD thesis, Tepper
School of Business, Carnegie Mellon University, 2013.

[23] D. Bergman, A. Ciré, W.-J. van Hoeve, and J. N. Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing,
26(2):253-268,2014.

[24] D.Bergman, A. A. Ciré, W.-J. van Hoeve, and J. N. Hooker. Variable ordering
for the application of BDDs to the maximum independent set problem. In
CPAIOR Proceedings, volume 7298 of LNCS, pages 34-49. Springer, 2012.

[25] D. Bergman, A. A. Ciré, W.-J. van Hoeve, and J. N. Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing,
26:253-268,2013.

References 237

[26] D. Bergman, A. A. Ciré, W.-J. van Hoeve, and J. N. Hooker. Discrete opti-
mization with binary decision diagrams. INFORMS Journal on Computing,
28:47-66,2016.

[27] D. Bergman, A. A. Ciré, W.-J. van Hoeve, and T. Yunes. BDD-based
heuristics for binary optimization. Journal of Heuristics, 20(2):211-234,
2014.

[28] D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD
relaxations for combinatorial optimization. In T. Achterberg and C. Beck,
editors, CPAIOR Proceedings, volume 6697 of LNCS. Springer, 2011.

[29] U. Bertele and F. Brioschi. Nomnserial Dynamic Programming. Academic
Press, New York, 1972.

[30] T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis,
Zuse Institute Berlin, 2006.

[31] D. Bertsimas, D. A. lancu, and D. Katz. A new local search algorithm
for binary optimization. INFORMS Journal on Computing, 25(2):208-221,
2013.

[32] C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh,
editors, Handbook of Constraint Programming, pages 29—-83. Elsevier, 2006.

[33] R. E. Bixby. A brief history of linear and mixed-integer programming
computation. Documenta Mathematica. Extra Volume: Optimization Stories,
pages 107-121, 2012.

[34] B. Bloom, D. Grove, B. Herta, A. Sabharwal, H. Samulowitz, and
V. Saraswat. SatX10: A scalable plug & play parallel SAT framework. In
SAT Proceedings, volume 7317 of LNCS, pages 463—468. Springer, 2012.

[35] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. /EEE Transactions on Computers, 45:993—-1002, 1996.

[36] S. Brand, N. Narodytska, C.G. Quimper, P. Stuckey, and T. Walsh. Encod-
ings of the sequence constraint. In Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of LNCS, pages 210-224. Springer,
2007.

[37] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677-691, 1986.

[38] N. J. Calkin and H. S. Wilf. The number of independent sets in a grid graph.
SIAM Journal on Discrete Mathematics, 11(1):54—60, 1998.

[39] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the set covering
problem. Annals of Operations Research, 98:2000, 1998.

238 References

[40] A. Caprara, A. N. Letchford, and J-J. Salazar-Gonzalez. Decorous lower
bounds for minimum linear arrangement. INFORMS Journal on Computing,
23:26-40,2011.

[41] S. Chang, Q. Lu, G. Tang, and W. Yu. On decomposition of the total tardiness
problem. Operations Research Letters, 17(5):221 — 229, 1995.

[42] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An object-oriented approach to non-
uniform cluster computing. In Proceedings, Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA), pages 519-538, San Diego,
2005.

[43] K. C. K. Cheng, W. Xia, and R. H. C. Yap. Space-time tradeoffs for the
regular constraint. In Principles and Practice of Constraint Programming
(CP 2012), volume 7514 of LNCS, pages 223-237. Springer, 2012.

[44] K. C. K. Cheng and R. H. C. Yap. Maintaining generalized arc consistency
on ad-hoc n-ary Boolean constraints. In G. Brewka et al., editor, Proceedings
of ECAI, pages 78-82. 10S Press, 2006.

[45] K. C. K. Cheng and R. H. C. Yap. Maintaining generalized arc consistency on
ad hoc r-ary constraints. In Principles and Practice of Constraint Program-
ming (CP 2008), volume 5202 of LNCS, pages 509-523. Springer, 2008.

[46] D. Chhajed and T. J. Lowe. Solving structured multifacility location problems
efficiently. Transportation Science, 28:104—115, 1994.

[47] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures
for the computation of bounds to routing problems. Networks, 11(2):145—
164, 1981.

[48] G. Chu, C. Schulte, and P. J. Stuckey. Confidence-based work stealing in
parallel constraint programming. In Principles and Practice of Constraint
Programming (CP 2009), volume 5732 of LNCS, pages 226-241, 2009.

[49] A. A. Ciré and W.-J. van Hoeve. Multivalued decision diagrams for sequenc-
ing problems. Operations Research, 61(6):1411-1428,2013.

[50] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
2000.

[51] G. M. Del Corso and G. Manzini. Finding exact solutions to the bandwidth
minimization problem. Computing, 62(3):189-203, 1999.

[52] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudoboolean
programming revisited. Discrete Applied Mathematics, 29:171-185, 1990.

References 239

[53] J. Cussens. Bayesian network learning by compiling to weighted MAX-SAT.
In Proceedings, Uncertainty in Artificial Intelligence (UAI), pages 105-112,
Helsinki, 2008.

[54] R. Dechter. Bucket elimination: A unifying framework for several prob-
abilistic inference algorithms. In Proceedings, Uncertainty in Artificial
Intelligence (UAI), pages 211-219, Portland, OR, 1996.

[55] N. Downing, T. Feydy, and P. Stuckey. Explaining flow-based propagation.
In CPAIOR Proceedings, volume 7298 of LNCS, pages 146—162. Springer,
2012.

[56] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal
algorithm for the traveling salesman problem with time windows. Operations
Research, 43(2):367-371, 1995.

[57] M. E. Dyer, A. M. Frieze, and M. Jerrum. On counting independent sets in
sparse graphs. SIAM Journal on Computing, 31(5):1527-1541,2002.

[58] R. Ebendt, W. Gunther, and R. Drechsler. An improved branch and bound
algorithm for exact BDD minimization. [EEE Transactions on CAD of
Integrated Circuits and Systems, 22(12):1657—-1663, 2003.

[59] J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A. Langston. The maximum
clique enumeration problem: Algorithms, applications and implementations.
In Proceedings, International Symposium on Bioinformatics Research and
Applications (ISBRA), pages 306-319. Springer, 2011.

[60] J. Eckstein and M. Nediak. Pivot, cut, and dive: A heuristic for 0—1 mixed
integer programming. Journal of Heuristics, 13(5):471-503,2007.

[61] J. Edachery, A. Sen, and F. J. Brandenburg. Graph clustering using distance-
k cliques. In Proceedings of Graph Drawing, volume 1731 of LNCS, pages
98-106. Springer, 1999.

[62] U. Feige. Approximating the bandwidth via volume respecting embeddings.
Journal of Computer Systems Science, 60(3):510-539, 2000.

[63] Z. Feng, E. A. Hansen, and S. Zilberstein. Symbolic generalization for
on-line planning. In Proceedings, Conference on Uncertainty in Artificial
Intelligence (UAI), pages 109—116. Morgan Kaufmann, 2003.

[64] P. Festa, P. M. Pardalos, M. G. C. Resende, and C. C. Ribeiro. Randomized
heuristics for the max-cut problem. Optimization Methods and Software,
7:1033-1058, 2002.

[65] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs.

semidefinite extended formulations: Exponential separation and strong lower

240 References

bounds. In Proceedings, ACM Symposium on Theory of Computing (STOC),
pages 95-106, New York, 2012. ACM.

[66] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91-104, 2005.

[67] F. Forbes and B. Ycart. Counting stable sets on Cartesian products of graphs.
Discrete Mathematics, 186(1-3):105—-116, 1998.

[68] G.Freuderand M. Wallace. Constraint technology and the commercial world.
Intelligent Systems and their Applications, IEEE, 15(1):20-23, 2000.

[69] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835-855, 1965.

[70] G. Gange, V. Lagoon, and P. J. Stuckey. Fast set bounds propagation using
BDDs. In M. Ghallab et al., editor, Proceedings, European Conference on
Artificial Intelligence (ECAI), pages 505-509. IOS Press, 2008.

[711 M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[72] M. Gendreau, A. Hertz G., Laporte, and M. Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations
Research, 46(3):330-335, March 1998.

[73] F. Glover and M. Laguna. General purpose heuristics for integer program-
ming — Part 1. Journal of Heuristics, 2(4):343-358, 1997.

[74] F. Glover and M. Laguna. General purpose heuristics for integer program-
ming — Part II. Journal of Heuristics, 3(2):161-179, 1997.

[75] C. P. Gomes, C. Fernandez, B. Selman, and C. Bessiére. Statistical regimes
across constrainedness regions. Constraints, 10(4):317-337,2005.

[76] L. Gouveia and P. Pesneau. On extended formulations for the precedence
constrained asymmetric traveling salesman problem. Networks, 48(2):77-89,
2006.

[77] A. Grosso, M. Locatelli, and W. Pullan. Simple ingredients leading to very
efficient heuristics for the maximum clique problem. Journal of Heuristics,
14(6):587-612,2008.

[78] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2. Springer, 1993.

[79] Z. Gu. Gurobi optimization—Gurobi compute server, distributed tun-
ing tool and distributed concurrent MIP solver. In INFORMS Annual
Meeting, 2013. See also http://www.gurobi.com/products/gurobi-compute-
server/distributed-optimization.

References 241

[80]

[81]

[83]

(86]

[88]

[89]

[90]

E. M. Gurari and I. H. Sudborough. Improved dynamic programming
algorithms for bandwidth minimization and the mincut linear arrangement
problem. Journal of Algorithms, 5:531-546, 1984.

G. D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in
0-1 networks. Formal Methods in System Design, 10(2-3):207-219, April
1997.

T. Hadzi¢ and J. N. Hooker. Discrete global optimization with binary decision
diagrams. In Workshop on Global Optimization: Integrating Convexity,
Optimization, Logic Programming, and Computational Algebraic Geometry
(GICOLAG), Vienna, 2006.

T. Hadzi¢ and J. N. Hooker. Cost-bounded binary decision diagrams for 0—1
programming. In E. Loute and L. Wolsey, editors, CPAIOR Proceedings,
volume 4510 of LNCS, pages 84-98. Springer, 2007.

T. Hadzi¢, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate
compilation of constraints into multivalued decision diagrams. In Principles
and Practice of Constraint Programming (CP 2008), volume 5202 of LNCS,
pages 448—-462. Springer, 2008.

T. Hadzié, J. N. Hooker, and P. Tiedemann. Propagating separable equalities
in an MDD store. In L. Perron and M. A. Trick, editors, CPAIOR Proceed-
ings, volume 5015 of LNCS, pages 318-322. Springer, 2008.

T. Hadzi¢ and J.N. Hooker. Postoptimality analysis for integer programming
using binary decision diagrams. Technical report, Carnegie Mellon Univer-
sity, 2006.

T. Hadzi¢, E. O’Mahony, B. O’Sullivan, and M. Sellmann. Enhanced infer-
ence for the market split problem. In Proceedings, International Conference
on Tools for AI (ICTAI), pages 716—723. IEEE, 2009.

W. W. Hager and Y. Krylyuk. Graph partitioning and continuous quadratic
programming. SIAM Journal on Discrete Mathematics, 12(4):500-523,
1999.

U.-U. Haus and C. Michini. Representations of all solutions of Boolean
programming problems. In Proceedings, International Symposium on Al and
Mathematics (ISAIM), 2014.

P. Hawkins, V. Lagoon, and P.J. Stuckey. Solving set constraint satisfac-
tion problems using ROBDDs. Journal of Artificial Intelligence Research,
24(1):109-156, 2005.

242 References

[91] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite
programming. SIAM Journal on Optimization, 10:673—696, 1997.

[92] I. T. Hernadvolgyi. Solving the sequential ordering problem with automat-
ically generated lower bounds. In Operations Research Proceedings, pages
355-362. Springer, 2003.

[93] S. Hoda. Essays on Equilibrium Computation, MDD-based Constraint Pro-
gramming and Scheduling. PhD thesis, Carnegie Mellon University, 2010.

[94] S.Hoda, W.-J. van Hoeve, and J. N. Hooker. A systematic approach to MDD-
based constraint programming. In Principles and Practice of Constraint
Programming (CP 2010), volume 6308 of LNCS, pages 266-280. Springer,
2010.

[95] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In Proceedings, Conference on Uncertainty in
Artificial Intelligence (UAI), pages 279-288. Morgan Kaufmann, 1999.

[96] J. N. Hooker. Integrated Methods for Optimization. Springer, 2nd edition,
2012.

[97] J. N. Hooker. Decision diagrams and dynamic programming. In C. Gomes
and M. Sellmann, editors, CPAIOR Proceedings, volume 7874 of LNCS,
pages 94—110. Springer, 2013.

[98] K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima. Size of ordered binary
decision diagrams representing threshold functions. Theoretical Computer
Science, 180:47-60, 1997.

[99] A. J. Hu. Techniques for Efficient Formal Verification Using Binary Deci-
sion Diagrams. PhD thesis, Stanford University, Department of Computer
Science, 1995.

[100] A. Ignatiev, A. Morgado, V. Manquinho, I. Lynce, and J. Marques-Silva.
Progression in maximum satisfiability. In Proceedings, European Conference
on Artificial Intelligence (ECAI), 10S Press Frontiers in Artificial Intelligence
and Applications, 2014.

[101] ILOG. CPLEX Optimization Studio V12.4 Manual, 2012.

[102] M. Jérvisalo, D. Le Berre, O. Roussel, and L. Simon. The international
SAT solver competitions. Artificial Intelligence Magazine (Al Magazine),
1(33):89-94,2012.

[103] C. Jordan. Sur les assemblages de lignes. Journal fiir die reine und
angewandte Mathematik, 70:185-190, 1869.

References 243

[104] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1:
Bitwise Tricks & Techniques, Binary Decision Diagrams. Addison-Wesley
Professional, 2009.

[105] M. Koshimura, H. Nabeshima, H. Fujita, and R. Hasegawa. Solving open
job-shop scheduling problems by SAT encoding. [EICE Transactions on
Information and Systems, 93:2316-2318,2010.

[106] S. Kumar, A. R. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and
B. Steinmacher-Burrow. PAMI: A parallel active message interface for the
Blue Gene/Q supercomputer. In IEEE International Parallel & Distributed
Processing Symposium (IPDPS), pages 763—773,2012.

[107] V. Lagoon and P. J. Stuckey. Set domain propagation using ROBDDs. In
M. Wallace, editor, Principles and Practice of Constraint Programming (CP
2004), volume 3258 of LNCS, pages 347-361, 2004.

[108] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. EVBDD-based algorithms for
integer linear programming, spectral transformation, and function decompo-
sition. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 13:959-975, 1994.

[109] S.L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society B, 50:157-224, 1988.

[110] C.Y. Lee. Representation of switching circuits by binary-decision programs.
Bell Systems Technical Journal, 38:985-999, 1959.

[111] M. Lobbing and I. Wegener. The number of knight’s tours equals 13, 267,
364, 410, 532 — Counting with binary decision diagrams. The Electronic
Journal of Combinatorics, 3, 1996.

[112] T. Lopes, A. A. Ciré, C. de Souza, and A. Moura. A hybrid model for
a multiproduct pipeline planning and scheduling problem. Constraints,
15:151-189, 2010.

[113] M. Mabher, N. Narodytska, C.-G. Quimper, and T. Walsh. Flow-based prop-
agators for the SEQUENCE and related global constraints. In Principles
and Practice of Constraint Programming (CP 2008), volume 5202 of LNCS,
pages 159—174. Springer, 2008.

[114] R. Marti, V. Campos, and E. Pifiana. A branch and bound algorithm for the
matrix bandwidth minimization. European Journal of Operational Research,
186(2):513-528,2008.

244 References

[115] R. Marti, M. Laguna, F. Glover, and V. Campos. Reducing the bandwidth of
a sparse matrix with tabu search. European Journal of Operational Research,
135(2):450-459,2001.

[116] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings, Conference on Design Automation, pages 272—
277.1EEE, 1993.

[117] S.-I. Minato. nDD: A new decision diagram for efficient problem solving
in permutation space. In K. A. Sakallah and L. Simon, editors, Theory and
Applications of Satisfiability Testing (SAT), volume 6695 of LNCS, pages 90—
104. Springer, 2011.

[118] T. Moisan, J. Gaudreault, and C.-G. Quimper. Parallel discrepancy-based
search. In Principles and Practice of Constraint Programming (CP 2013),
volume 8124 of LNCS, pages 30—46. Springer, 2013.

[119] N. Narodytska. Reformulation of Global Constraints. PhD thesis, University
of New South Wales, 2011.

[120] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy
clause generation. Constraints, 14(3):357-391, 2009.

[121] A.J. Orman and H. P. Williams. A survey of different integer programming
formulations of the travelling salesman problem. In E. J. Kontoghiorghes
and C. Gatu, editors, Optimisation, Economics and Financial Analysis, pages
933-106. Springer, 2006.

[122] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, 1982.

[123] G. Perez and J.-C. Régin. Improving GAC-4 for table and MDD constraints.
In Principles and Practice of Constraint Programming (CP 2014), pages
606-621,2014.

[124] G. Perez and J.-C. Régin. Efficient operations on MDDs for building con-
straint programming models. In Proceedings, International Joint Conference
on Artificial Intelligence (IJCAI), pages 374-380, 2015.

[125] L. Perron. Search procedures and parallelism in constraint programming. In
Principles and Practice of Constraint Programming (CP 1999), volume 1713
of LNCS, pages 346—360. Springer, 1999.

[126] G. Pesant. A regular language membership constraint for finite sequences of
variables. In Principles and Practice of Constraint Programming (CP 2004),
volume 3258 of LNCS, pages 482—-495. Springer, 2004.

References 245

[127] E. Pifiana, I. Plana, V. Campos, and R. Marti. GRASP and path relinking
for the matrix bandwidth minimization. European Journal of Operational
Research, 153(1):200-210, 2004.

[128] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 3rd
edition, 2008.

[129] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of
Dimensionality. Wiley, 2nd edition, 2011.

[130] W. Pullan, F. Mascia, and M. Brunato. Cooperating local search for the
maximum clique problem. Journal of Heuristics, 17(2):181-199, 2011.

[131] P. Refalo. Learning in search. In P. Van Hentenryck and M. Milano, editors,
Hybrid Optimization: The Ten Years of CPAIOR, pages 337-356. Springer,
2011.

[132] J.-C. Régin. AC-*: A configurable, generic and adaptive arc consistency
algorithm. In Proceedings of CP, volume 3709 of LNCS, pages 505-519.
Springer, 2005.

[133] J.-C. Régin. Global constraints: A survey. In P. Van Hentenryck and
M. Milano, editors, Hybrid Optimization: The Ten Years of CPAIOR, pages
63—134. Springer, 2011.

[134] J.-C. Régin and J.-F. Puget. A filtering algorithm for global sequencing
constraints. In Principles and Practice of Constraint Programming (CP
1997), volume 1330 of LNCS, pages 32—46. Springer, 1997.

[135] J.-C. Régin, M. Rezgui, and A. Malapert. Embarrassingly parallel search. In
Principles and Practice of Constraint Programming (CP 2013, volume 8124
of LNCS, pages 596-610, 2013.

[136] A. Rendl, M. Prandtstetter, G. Hiermann, J. Puchinger, and G. Raidl. Hybrid
heuristics for multimodal homecare scheduling. In CPAIOR Proceedings,
volume 7298 of LNCS, pages 339-355. Springer, 2012.

[137] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[138] S. Sanner and D. McAllester. Affine algebraic decision diagrams (AADDs)
and their application to structured probabilistic inference. In Proceedings, In-
ternational Joint Conference on Artificial Intelligence (IJCAI), pages 1384—
1390, 2005.

[139] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. Report on
the experimental language, X10. Technical report, IBM Research, 2011.

246 References

[140] J. Saxe. Dynamic programming algorithms for recognizing small-bandwidth
graphs in polynomial time. SIAM Journal on Algebraic and Discrete Meth-
ods, 1:363-369, 1980.

[141] A.S. Schulz. The permutahedron of series-parallel posets. Discrete Applied
Mathematics, 57(1):85—90, 1995.

[142] G. Shafer, P. P. Shenoy, and K. Mellouli. Propagating belief functions in
qualitative Markov trees. International Journal of Approximate Reasoning,
1:349-400, 1987.

[143] G. Shani, P. Poupart, R. I. Brafman, and S. E. Shimony. Efficient ADD oper-
ations for point-based algorithms. In Proceedings, International Conference
on Automated Planning and Scheduling (ICAPS), pages 330-337, 2008.

[144] C.E. Shannon. A symbolic analysis of relay and switching circuits. Master’s
thesis, Massachusetts Institute of Technology, 1937.

[145] P. P. Shenoy and G. Shafer. Propagating belief functions with local computa-
tion. /[EEE Expert, 1:43-52,1986.

[146] R. St-Aubin, J. Hoey, and C. Boutilier. APRICODD: Approximate policy
construction using decision diagrams. In Proceedings of Conference on
Neural Information Processing Systems, pages 1089—-1095, 2000.

[147] TSPLIB. Retrieved at http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/ on December 10, 2012,
2012.

[148] P. van Beek. Backtracking search algorithms. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, pages 85—134.
Elsevier, 2006.

[149] P. Van Hentenryck and L. Michel. The Objective-CP optimization system.
In Principles and Practice of Constraint Programming (CP 2013), volume
8124 of LNCS, pages 8-29, 2013.

[150] P. Van Hentenryck and M. Milano, editors. Hybrid Optimization: The Ten
Years of CPAIOR. Springer, 2011.

[151] W.-J. van Hoeve and I. Katriel. Global constraints. In P. Rossi, F. van Beek
and T. Walsh, editors, Handbook of Constraint Programming, pages 205—
244, Elsevier, 2006.

[152] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. Revisiting
the sequence constraint. In Principles and Practice of Constraint Program-
ming (CP 2006), volume 4204 of LNCS, pages 620—-634. Springer, 2006.

References 247

[153] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. New filtering
algorithms for combinations of among constraints. Constraints, 14:273-292,
2009.

[154] P.Vilim. O(nlogn) filtering algorithms for unary resource constraint. In J.-C.
Régin and M. Rueher, editors, CPAIOR Proceedings, volume 3011 of LNCS,
pages 335-347. Springer, 2004.

[155] P. Vilim, P. Laborie, and P. Shaw. Failure-directed search for constraint-based
scheduling. In CPAIOR Proceedings, volume 9075 of LNCS, pages 437-453.
Springer, 2015.

[156] A. von Arnim, R. Schrader, and Y. Wang. The permutahedron of N-sparse
posets. Mathematical Programming, 75(1):1-18, 1996.

[157] 1. Wegener. Branching Programs and Binary Decision Diagrams: Theory
and Applications. Society for Industrial and Applied Mathematics, 2000.

[158] X10 programming language web site. http://x10-lang.org/, January 2010.

[159] Y. Zhao. The number of independent sets in a regular graph. Combinatorics,
Probability & Computing, 19(2):315-320, 2010.

Index

0/1 programming, 15, 16

abstraction, 21
affine algebraic decision diagram, 20
algebraic decision diagram, 21
ALLDIFFERENT, 19, 76, 79

filtering, 77, 78, 214

MDD consistency, 175
AMONG, 176, 179, 183

bounds consistency, 195

MDD consistency, 176, 195
approximate dynamic programming, 21

bandwidth, 87

Bayesian network, 153

BDD, 26

belief logic, 153

binary decision diagram, 13, 26
ordered, 14
reduced ordered, 14

binary-decision program, 12

bound, 98
from relaxed decision diagram, 19, 56
from restricted decision diagram, 84
versus maximum width, 66

bounds consistency, 162, 161-162
AMONG, 195
linear inequality, 162
SEQUENCE, 195

branch and bound, 3, 20, 138

algorithm, 98

based on decision diagrams, 95-122
MAX-2SAT, 108

maximum cut problem, 104

maximum independent set problem, 101

parallel, 109-122
variable ordering, 101
branch and cut, 15
branching, 3
in relaxed decision diagram, 3, 20, 96

canonical reduced decision diagram, 27

canonical weighted decision diagram, 20, 139,

147, 148
clique cover, 102
compilation
by separation, 4650, 74-81
top-down, 19, 30-32, 57-58, 85-86
conjoining, 50
consecutive ones property, 88
consistency
bounds, see bounds consistency
domain, see domain consistency
MDD, see MDD consistency
constraint
ALLDIFFERENT, 19, 76, 79, 175, 214
AMONG, 176, 179, 183
ELEMENT, 177
equality, 173
GEN-SEQUENCE, 194

© Springer International Publishing Switzerland 2016
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence:
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9

250

global, 3, 17, 19, 158
linear inequality, 161, 174
not-equal, 173
precedence, 207, 215, 218, 228
REGULAR, 169
SEQUENCE, 183-204
table, 18, 160, 168, 169
time window, 207, 215, 227
two-sided inequality, 174
UNARYRESOURCE, 161
constraint programming, 3, 17, 19, 158,
157-164
constraint propagation, 158, 162
MDD-based, 164
search, 163
constraint propagation, 3, 18, 19, 158, 162-163
MDD-based, 166
constraint separation, 46
constraint-based modeling, 137
constraint-based scheduling, 206, 222-223
control variable, 28, 139
curse of dimensionality, 4, 137
cutset, see exact cutset

cutting plane, 16, 19

DD, see decision diagram
DDXI10, 111, 116
decision diagram, 5, 25
affine algebraic, 20
algebraic, 21
basic concepts, 25-27
binary, see binary decision diagram
canonical reduced, 27
canonical weighted, 139, 147, 148
exact, 26
multivalued, see multivalued decision
diagram
nonserial, 156
ordered, 14
polytope, 16
reduced, 27
reduced ordered, 14
relaxed, 2, 6, 18, 55, 55-81, 140
restricted, 3, 84, 83-94

Index

sound, 17
top-down compilation, 30-32
variable ordering, 15, 123-135
weighted, 20, 26, 146
width, 25

dependency graph, 154

domain consistency, 159, 159-161
linear inequality, 161
UNARYRESOURCE, 161

domain filtering, 158

domain propagation, 18

domain store, 18, 164

DP, see dynamic programming

dynamic programming, 20, 28-29, 138, 139
approximate, 21
nonserial, 139, 153
stochastic, 21, 22

dynamic programming model
MAX-2SAT, 4546, 52
maximum cut problem, 42-44, 50
maximum independent set problem, 33-34
proof of correctness, 50-54
set covering problem, 35-37
set packing problem, 37-39
single-machine scheduling, 4042

ELEMENT, 177
equality constraint, 173
exact cutset, 97-98
frontier cutset, 100
last exact layer, 100
traditional branching, 100
exact decision diagram, 26
compilation by separation, 46—50

top-down compilation, 30-32

feasibility pump, 84

Fibonacci number, 128

filtering, 18, 74, 166, 173
ALLDIFFERENT, 77, 78, 214
makespan, 217
precedence constraint, 215
SEQUENCE, 190-196

Index

single-machine scheduling, 77-78, 212,
214-218

sum of setup times, 217

time window constraint, 215

total tardiness, 218

frontier cutset, 100

GEN-SEQUENCE, 194
global constraint, 3, 17, 19, 158, see also
constraint

graph coloring problem, 19

incremental refinement, 47, 57, 74, 75
independent set, 32
independent set problem, see maximum
independent set problem
integer programming, 4, 46, 84, 86, 96, 141,
144
MAX-2SAT, 108

maximum cut problem, 105

maximum independent set problem, 32, 102

set covering, 34
set packing, 37
intersection of MDDs, 169-173

inventory management problem, 20, 151
k-tree, 153

last exact layer, 100

linear arrangement problem, 144
linear programming relaxation, 67
load balancing, 114

location theory, 153

logic circuit, 14

long arc, 27

makespan, 39, 76, 207, 209

market split problem, 18

Markov decision process, 21

Markovian, 29

MAX-2SAT, 20, 44
branch and bound, 108
dynamic programming model, 4546, 52
integer programming model, 108

251

relaxed decision diagram, 63—64
maximal path decomposition, 128, 130
maximum 2-satisfiability problem, see

MAX-2SAT
maximum cut problem, 20, 42

branch and bound, 104

dynamic programming model, 42-44, 50

integer programming model, 105

relaxed decision diagram, 60—63
maximum flow problem, 16
maximum independent set problem, 19, 20, 32,

123

bipartite graph, 126

branch and bound, 101

clique, 125

clique cover, 102

cycle, 126

dynamic programming model, 33-34

Fibonacci number, 128

integer programming model, 32, 102

interval graph, 127

linear programming relaxation, 67

parallel branch and bound, 116

path, 125

relaxed decision diagram, 59-60

tree, 127, 132
MCP, see maximum cut problem
MDD, 26
MDD consistency, 167, 167-169

ALLDIFFERENT, 175

AMONG, 176, 195

ELEMENT, 177

equality constraint, 173

linear inequality, 174

not-equal constraint, 173

SEQUENCE, 186-190, 195

table constraint, 168

two-sided inequality, 174

via MDD intersection, 171
MDD filtering, see filtering
MDD propagation, 166-167

via domain propagators, 178

via MDD intersection, 169-173

252

MDD store, 164, 166
merging heuristic, 6465
minimum longest path, 65
minimum state size, 65
random, 65
minimum bandwidth problem, 87, 144
MISP, see maximum independent set problem
mixed-integer programming, 3
modeling
constraint-based, 137
for decision diagrams, 4, 139
in constraint programming, 4, 158
in mixed-integer programming, 4
recursive, 4, 138, 139

multivalued decision diagram, 26

node refinement, 19

nonseparable cost function, 148

nonserial decision diagram, 156

nonserial dynamic programming, 139, 153
not-equal constraint, 173

nurse rostering, 181, 184, 201
ordered decision diagram, 14

parallel branch and bound, 109-122
maximum independent set problem, 116
parallelization, 3, 109
centralized strategy, 112
DDX10, 111, 116
global pool, 113
load balancing, 114
local pool, 114
SATX10, 116
X10, 111
postoptimality analysis, 17
precedence constraint, 207, 215, 218, 228
primal heuristic, 3, 19, 83
product configuration, 15
propagation, see constraint propagation

propagation algorithm, 158

recursive modeling, 4, 138, 139
reduced decision diagram, 14, 27

Index

refinement, 19, 74, 166
incremental, 47
single-machine scheduling, 79-81, 212,
219-220
REGULAR, 169
relaxed decision diagram, 2, 6, 18, 55, 55-81,
98, 140
bound, 56
compilation by separation, 74-81
incremental refinement, 75
MAX-2SAT, 63-64
maximum cut problem, 60—-63
maximum independent set problem, 59-60
merging heuristic, 6465
top-down compilation, 57-58
variable ordering, 65
width versus bound, 66
restricted decision diagram, 3, 84, 83-94, 98
bound, 84
set covering problem, 86
set packing problem, 86
top-down compilation, 85-86
RO-BDD, see reduced ordered decision
diagram
root state, 28
root value, 29

SATX10, 116
SCP, see set covering problem
search
branch-and-bound, 3, 20, 96, 138
branch-and-cut, 15
branching, 3
constraint programming, 163
separable cost function, 147
SEQUENCE, 183-204
bounds consistency, 195
filtering, 190-196
MDD consistency, 186, 195
width, 190
sequence-dependent setup times, 142, 207
sequencing, see single-machine scheduling
sequential ordering problem, 229
set covering problem, 19, 20, 34, 147

Index

dynamic programming model, 35-37
integer programming model, 34
restricted decision diagram, 86

set packing problem, 20, 37
dynamic programming model, 37-39
integer programming model, 37
restricted decision diagram, 86

set variables, 18

single-machine scheduling, 39, 76-81, 141,

142, 207

ALLDIFFERENT, 214
dynamic programming model, 4042
filtering, 77-78, 212, 214-218
makespan, 39, 207, 209, 217
MDD representation, 208-210
precedence constraint, 207, 215, 218-219
refinement, 79-81, 212, 219-220
relaxed MDD, 211-214
sum of setup times, 207, 209, 217
time window constraint, 207, 215
total tardiness, 141, 207, 209, 218, 233-234
width, 79, 221

solution counting, 15

sound decision diagram, 17

SPP, see set packing problem

stable set problem, 19, 20

state space, 29, 139
MAX-2SAT, 45
maximum cut problem, 43
maximum independent set problem, 34
set covering problem, 35
set packing problem, 37
single-machine scheduling, 40

state space relaxation, 20

state transition graph, 27, 138, 140

state variable, 28

state-dependent cost, 20, 138, 146

state-graph, 31

stochastic dynamic programming, 21, 22

switching circuit, 12

table constraint, 18, 160, 168, 169
terminal state, 28
threshold decision diagram, 16

253

time window constraint, 207, 215, 227
top-down compilation, 19
exact decision diagram, 30-32
relaxed decision diagram, 57-58
restricted decision diagram, 85-86
transition cost function, 29
MAX-2SAT, 46
maximum cut problem, 43
maximum independent set problem, 34
set covering problem, 36
set packing problem, 38
single-machine scheduling, 41
transition function, 29, 139
MAX-2SAT, 45
maximum cut problem, 43
maximum independent set problem, 34
set covering problem, 35
set packing problem, 38
single-machine scheduling, 41
traveling salesman problem, 143
makespan objective, 230232
precedence constraints, 228-229
time windows, 224, 227, 230-232

unary machine scheduling, see single-machine

scheduling

variable ordering, 15, 123-135
in branch and bound, 101
k-look ahead, 131
maximal path decomposition, 130
maximum independent set problem
bipartite graph, 126
clique, 125
cycle, 126
Fibonacci number, 128
interval graph, 127
path, 125
tree, 127, 132
minimum number of states, 130
relaxation bound, 134
relaxed, 130-131
relaxed decision diagram, 65
width versus relaxation bound, 132

254

weighted decision diagram, 20, 26, 146
width, 25, 124
bound from decision diagram, 66
maximum independent set problem
bipartite graph, 126
clique, 125
cycle, 126

Fibonacci number, 128
interval graph, 127
path, 125
tree, 127
SEQUENCE, 190
single-machine scheduling, 79, 221

X10, 111

Index

	Contents
	Foreword
	1
Introduction
	1.1 Motivation for the Book
	1.2 A New Solution Technology
	1.3 An Example
	1.4 Plan of the Book

	2
Historical Overview
	2.1 Introduction
	2.2 Origins of Decision Diagrams
	2.3 Decision Diagrams in Optimization
	2.3.1 Early Applications
	2.3.2 A Discrete Optimization
Method
	2.3.3 Decision Diagrams in Constraint Programming
	2.3.4 Relaxed Decision Diagrams
	2.3.5 A General-Purpose Solver
	2.3.6 Markov Decision Processes

	3
Exact Decision Diagrams
	3.1 Introduction
	3.2 Basic Definitions
	3.3 Basic Concepts of Decision Diagrams
	3.4 Compiling Exact Decision Diagrams
	3.4.1 Dynamic Programming
	3.4.2 Top-Down Compilation

	3.5 Maximum Independent Set Problem
	3.6 Set Covering Problem
	3.7 Set Packing Problem
	3.8 Single-Machine Makespan Minimization
	3.9 Maximum Cut Problem
	3.10 Maximum 2-Satisfiability Problem
	3.11 Compiling Decision Diagrams by Separation
	3.12 Correctness of the DP Formulations

	4
Relaxed Decision Diagrams
	4.1 Introduction
	4.2 Top-Down Compilation of Relaxed DDs
	4.3 Maximum Independent Set
	4.4 Maximum Cut Problem
	4.5 Maximum 2-Satisfiability Problem
	4.6 Computational Study
	4.6.1 Merging Heuristics
	4.6.2 Variable Ordering Heuristic
	4.6.3 Bounds vs. Maximum BDD Width
	4.6.4 Comparison with LP Relaxation

	4.7 Compiling Relaxed Diagrams by Separation
	4.7.1 Single-Machine Makespan Minimization

	5
Restricted Decision Diagrams
	5.1 Introduction
	5.2 Top-Down Compilation of Restricted DDs
	5.3 Computational Study
	5.3.1 Problem Generation
	5.3.2 Solution Quality and Maximum BDD Width
	5.3.3 Set Covering
	5.3.4 Set Packing

	6
Branch-and-Bound Based on Decision Diagrams
	6.1 Introduction
	6.2 Sequential Branch-and-Bound
	6.3 Exact Cutsets
	6.4 Enumeration of Subproblems
	6.4.1 Exact Cutset Selection

	6.5 Computational Study
	6.5.1 Results for the MISP
	6.5.2 Results for the MCP
	6.5.3 Results for MAX-2SAT

	6.6 Parallel Branch-and-Bound
	6.6.1 A Centralized Parallelization Scheme
	6.6.2 The Challenge of Effective Parallelization
	6.6.3 Global and Local Pools
	6.6.4 Load Balancing
	6.6.5 DDX10: Implementing Parallelization Using X10
	6.6.6 Computational Study

	7
 Variable Ordering
	7.1 Introduction
	7.2 Exact BDD Orderings
	7.3 Relaxed BDD Orderings
	7.4 Experimental Results
	7.4.1 Exact BDDs for Trees
	7.4.2 Exact BDD Width Versus Relaxation BDD Bound
	7.4.3 Relaxation Bounds

	8
Recursive Modeling
	8.1 Introduction
	8.2 General Form of a Recursive Model
	8.3 Examples
	8.3.1 Single-Machine Scheduling
	8.3.2 Sequence-Dependent Setup Times
	8.3.3 Minimum Bandwidth

	8.4 State-Dependent Costs
	8.4.1 Canonical Arc Costs
	8.4.2 Example: Inventory Management

	8.5 Nonserial Recursive Modeling

	9
MDD-Based Constraint Programming
	9.1 Introduction
	9.2 Constraint Programming Preliminaries
	9.3 MDD-Based Constraint Programming
	9.3.1 MDD Propagation
	9.3.2 MDD Consistency
	9.3.3 MDD Propagation by Intersection

	9.4 Specialized Propagators
	9.4.1 Equality and Not-Equal Constraints
	9.4.2 Linear Inequalities
	9.4.3 Two-Sided Inequality Constraints
	9.4.4 ALLDIFFERENT Constraint

	9.4.5 AMONG Constraint
	9.4.6 ELEMENT Constraint

	9.5 Experimental Results

	10
MDD Propagation for SEQUENCE Constraints
	10.1 Introduction
	10.2 MDD Consistency for SEQUENCE Is NP-Hard
	10.3 MDD Consistency for SEQUENCE Is Fixed Parameter Tractable
	10.4 Partial MDD Filtering for SEQUENCE
	10.4.1 Cumulative Sums Encoding
	10.4.2 Processing the Constraints
	10.4.3 Formal Analysis

	10.5 Computational Results
	10.5.1 Systems of SEQUENCE Constraints

	10.5.2 Nurse Rostering Instances
	10.5.3 Comparing MDD Filtering for SEQUENCE and AMONG

	11
Sequencing and Single-Machine Scheduling
	11.1 Introduction
	11.2 Problem Definition
	11.3 MDD Representation
	11.4 Relaxed MDDs
	11.5 Filtering
	11.5.1 Filtering Invalid Permutations
	11.5.2 Filtering Precedence Constraints
	11.5.3 Filtering Time Window Constraints
	11.5.4 Filtering Objective Function Bounds
	11.6 Inferring Precedence Relations from Relaxed MDDs
	11.7 Refinement
	11.8 Encoding Size for Structured Precedence Relations
	11.9 Application to Constraint-Based Scheduling
	11.9.1 Experimental Setup
	11.9.2 Impact of the MDD Parameters
	11.9.3 Traveling Salesman Problem with Time Windows
	11.9.4 Asymmetric Traveling Salesman Problem with Precedence Constraints
	11.9.5 Makespan Problems
	11.9.6 Total Tardiness

	References
	Index

