
Toward Exposing Timing-Based Probing
Attacks in Web Applications

Jian Mao1,3(B), Yue Chen1, Futian Shi1, Yaoqi Jia2, and Zhenkai Liang2,3

1 School of Electronic and Information Engineering,
BeiHang University, Beijing, China

maojian@buaa.edu.cn
2 School of Computing, National University of Singapore, Singapore, Singapore

3 Department of Computer Science,

George Washington University, Washington, DC, USA

Abstract. Timing attacks in web applications have been known for over
a decade. Recently, new attacks have been reported to exploit timing
techniques to probe sensitive information from web applications. In this
paper, we present a tool to detect timing-based probing attacks in web
applications. The main idea of our approach is to monitor the browser
behaviors and identify anomalous timing behaviors. We prototyped our
approach in the Google Chrome browser, and demonstrated its effective-
ness.

1 Introduction

In web applications, the same origin policy (SOP) [1] prevents a web applica-
tion from directly accessing information belonging to other web applications.
Since the web application share the same browser environment with web appli-
cations under other origins, it may indirectly figure out information from other
web applications through analyzing the shared states in the browser environ-
ment [5,7,9,11,14–16]. For example, attackers can infer whether a website has
been visited by the user via checking the color of a link to the site, as demon-
strated in the browser-history sniffing attack [10]. Using this technique, via
including a list of links pointing to a list of websites, a malicious website can
obtain a user’s browsing history by checking the color of the links1. This example
shows that an attacker can steal users’ information indirectly, i.e., inferring the
information about another site by checking the browser states that are affected
by visiting the website.

Observation. Compared to direct access to users’ private information in the
browser environment, this type of inference attack can only obtain limited infor-
mation in each attempt. For example, the browser history inference is obtained

1 Traditional ways to do this is by calling “getComputedStyle” method, but this
method has already been modified to prevent this kind of misuse. However, there
are still other ways to check the links colors [13,18].

c© Springer International Publishing Switzerland 2016
Q. Yang et al. (Eds.): WASA 2016, LNCS 9798, pp. 499–510, 2016.
DOI: 10.1007/978-3-319-42836-9 44

500 J. Mao et al.

site-by-site. In other words, the “data rate” of information leakage in such attacks
is low. In order to obtain a significant amount of information, attackers have
to repeatedly check and infer information from the other origin. We call them
browser probing attacks, and the repetitive nature of browser probing attacks
forms the basis to detect them.

We focus on timing-based probing attacks [8,12,13,17] in this paper, which
are a popular browser probing attacks. They indirectly access sensitive informa-
tion, such as cryptographic keys and states from other virtual machines [2,4].
They rely on the variations in the time taken by the systems to process different
inputs [8,13]. This type of attacks has been adopted to exploit web applications.
In a timing-based probing attack, a malicious web application check the time
required to perform various tasks that can be affected by other websites.

Our approach. In this paper, we present a tool to detect timing-based probing
attacks in web applications. The main idea of our approach is to monitor a web
application’s runtime behaviors, and identify anomalous timing operations to
detect timing probing attacks. We summarize behavior patterns for timing-based
probing attacks, and our approach detects timing probing attacks by matching
monitored behaviors with such behavior patterns. Our approach alarms users
with the potential risk of the privacy leakage to the website, and shows users
the suspicious behaviors embedded in a malicious web page.

We prototype our approach in the Google Chrome browser. We evaluate the
effectiveness of our approach using malicious probing applications built from
known attacks.

Contributions. Our contribution is as follows.

– New understanding of the timing-based probing attack. We studied common
timing probing attacks and define a general behavior model to describe the
timing probing attacks. Based on the proposed model, we generate behavior
patterns corresponding to different timing probing attacks respectively.

– Light-weight approach to expose and limit the timing-based probing attack.
We propose an extention-based approach that monitors web application’s
behaviors and detect timing probing attacks, based on the repeat rate of
sturctured-probing-behavior patterns. Our approach makes the timing-base
probing attacks more difficult to succeed.

– System prototype and evaluation. We prototyped our approach as an exten-
sion of Google Chrome. Our evaluation demonstrates the effectiveness of our
approach.

2 Overview

In this section, we discuss the threat from timing-based probing attacks and
analyze their core features that can be used as the basis for detecting them.

Toward Exposing Timing-Based Probing Attacks in Web Applications 501

2.1 Background

In this paper, we assume the adversary to be a web attacker. That is, the attacker
controls a website, and is able to run JavaScript in the victim’s browser. But
the attacker cannot run native code in the victim’s system, nor can the attacker
exploit vulnerabilities in the victim’s system or browser. The attacker aims to
infer the victim user’s private information in the browser environment through
timing probing attacks.

Timing-Based Probing Attacks. Felten and Schneider [8] introduces a tim-
ing attack to web applications. This attack measures the time required to load
a web resource. As the time needed to load a web resource is affected by the
resource’s cache status, the attacker can learn the resource’s cache status, and
then infer the user’s browsing history.

From this example, we generalize timing-based probing attacks as follows. The
attacker first retrieves time from the system, which is either to record system
time or to start a timer. We refer to this activity as T1 and the time obtained
as the starting time t1. It then starts a workload W , such as loading resources
or perform a computation. Once W is finished, the attacker immediately takes
another time measurement. We refer to this activity as T2 and the time obtained
as the ending time t2. The time difference t = t2 − t1 is the time spent on W .
If W depends on browser states that cannot be directly accessed by attackers, t
reveals information about such states.

Properties of Timing Probing Attacks. Timing-based probing attacks are
usually invisible to users. Since they are launched to indirectly infer other users’
sensitive data with the presence of strong security mechanisms in browsers, each
probing attempt typically infer only limited information. For example, in the
above attack, every time the attacker can only infer whether a web resource is
cached, among tens of thousands of resources that may reveal users’ privacy.
In other words, the “data rate” of leaked information in such probing attacks
is very low. Due to the limited information accessible through probing, attack-
ers/malicious websites need a large amount of repetitive operations to extract
enough information for inferring a small amount of users’ privacy. For exam-
ple, to probe users’ browsing history, the attacker must prepare a list of URLs,
and check each of them repeatedly (using the behavior sequence (T1,W, T2)). In
addition, the result of a practical timing based probing will differ depending on
the speed of the hardware on which the browser is running. To achieve accurate
time-based measurement results, attackers have to repeat time measurement
operations to achieve the desired calibration.

Challenge. Though timing-based probing attacks do require repetitive behav-
iors of accessing time and carrying out the workload, benign web applications
also have legitimate reasons to frequently access time and perform regular activ-
ities. Simply repeating such behaviors cannot be considered as the distinguished
feature to identify the timing based probing attacks. We need to distinguish
benign repeated timing behaviors from malicious ones.

502 J. Mao et al.

Fig. 1. Architecture of our approach(Color figure online)

2.2 Approach

The overall architecture of our approach is illustrated in Fig. 1. It monitors a
web application’s behaviors for abnormal patterns of timing-related events to
alert the user of potential timing-based probing attacks. Our approach consists
of three kernel components: Behavior Extractor, Probing Behavior Detector, and
Result Analyzer.

In particular, the Behavior Extractor component monitors the web appli-
cation and extracts its runtime execution information; the Probing Behavior
Detector analyzes the runtime states gathered by the Behavior Extractor and
detects suspicious timing-based probing behaviors; According to the knowledge
in Pattern Whitelist, Result Analyzer analyzes the suspicious behaviors detected
by Probing Behavior Detector ; once a malicious behavior is confirmed, it dis-
plays Alert to the browser user. The intercepted behaviors and detection results
are made available to an Offline Analysis component, where analysts identifies
benign repetitive timing behaviors and update the Pattern Whitelist, so that
such benign behaviors will not be flagged as attacks in the future.

Extracting Runtime Behaviors. Behavior extraction is the basis of our
approach. Since most of a web application’s dynamic behaviors are carried by
JavaScript, our tool intercepts JavaScript API calls to represent the behavior of
a web application. The behavior extractor module records the API together with
its parameters. To help understand the behavior and distinguish APIs used under

Toward Exposing Timing-Based Probing Attacks in Web Applications 503

different scenarios, the behavior extractor also extracts the runtime JavaScript
stack of the API.

In order to extract these runtime behaviors without modifying the browser,
we build our tool as a browser extension. Though our focus is mainly on the
timing-related behaviors, the interception mechanism is flexible to allow users to
specify general JavaScript APIs to monitor. It intercepts JavaScript behaviors of
web applications through rewriting JavaScript functions. Our extension preloads
the rewriting JavaScript code before any code in the web application is loaded.
It then takes a list of APIs to be hooked, which is specified by the users, and
interpose the APIs to output them in a log of JavaScript behaviors, which records
the functions’ names, the arguments, and the functions’ call stack information.

While obtaining API call information is straightforward, getting JavaScript
call stack information needs more effort. We take the advantage of an error-
handling feature of JavaScript, which reports the call stack information.

Detecting Probing Behaviors. Timing-related APIs are commonly used in
benign web applications. To distinguish benign usage of timing APIs from prob-
ing attacks, the probing behavior detector adopts a two-level detection mech-
anism to expose probing behaviors. First, it flags suspicious timing behaviors
based on the frequency pattern, i.e., the frequency of timing behaviors and their
distribution over time. It serves as the first-level detector. To further prevent
mistakenly reporting benign timing behaviors as probing attacks, the detector
analyzes the structure of timing behaviors, and performs detection based on
structured timing behavior pattern.

Distribution-based probing behavior pattern. The first-level detection is based on
the distribution of timing-behaviors. We gather statistics on how many times
timing functions are called over a period of time.

At this level, our approach provides light-weight real-time attack detection.
Taking the cache timing attack explained above as example, our approach dis-
plays statistics for monitored JavaScript APIs. The user can pay particular atten-
tion to the getTime API. Once the frequency exceeds a certain threshold, the
user can be alarmed about possible timing attack on the website he is visiting.
To further increase the detection accuracy, we use another level detection via
structure information of web application’s timing behavior.

Structure-based probing behavior pattern. Timing probing attacks always contain
two operations of obtaining system time value T1 and T2, as well as a workload in
the middleW , which is the operation to be timed. So it forms the following pattern:

1. A get-time activity T1 (such as a Date.getTime API call or a set-timer event);
2. One or several workload operations, such as loading an image or drawing a

frame. We refer to the collection of such operations2 as W ;
3. Another get-time operation T2.

2 Note that the behaviors in W might not always be shown as the form of a function
call (e.g. when loading an image, it’s just an assignment to the src attribute of the
image element).

504 J. Mao et al.

Due to the asynchronous nature of the JavaScript language, T1 and T2 often
appear in completely different program locations and contexts. However, in many
timing probing attacks, W is carried out by an asynchronous operation, where
T2 can only be obtained in the callback functions of the asynchronous operation.
When T2 is executed, it is difficult to decide the corresponding T1 and W . More-
over, in actual timing attacks, the (T1,W, T2) pattern may repeat multiple times
consecutively, making T2 of one iteration the T1 of later iterations, making the
following pattern (T1,W, T2,W

′, T ′
2, ...). In this case, we can use the connection

between the last two operations as our pattern for the timing attack, and treat
abnormal amount of repeated pattern as indicator of a timing attack.

Some attacks that have distinguishing features that can be identified inside
the behavior log can be detected automatically. Take the cache timing attack
as an example. This attack always contains two system time acquire opera-
tions (normally by calling Date.getTime function), one before an resource (often
an image) begins to load and another after the resource is loaded (i.e., being
called inside the onload function of the resource). For this attack, the connection
between T2 and W is the Date.getTime function call for T2 is inside an onload
function of an HTMLImageELement for W . This connection, between the sec-
ond system time acquire operation T2 and the image loading operation W , plays
an important role in distinguishing benign behaviors from probing behaviors in
websites in our experiment.

3 Evaluation

We have prototyped our tool as an extension to the Google Chrome browser.
Our prototype is based on the 64-bit Chrome browser. We have evaluated our
approach from the following aspects. We used recent timing probing attacks and
showed that our approach can successfully detect them. We then analyzed the
performance overhead of our approach.

3.1 Timing-Based Probing Attack Detection

To evaluate the effectiveness of our approach, we used recent timing probing
attacks in web applications. We implemented the attacks according to their
technical descriptions. We first introduce the attacks and then describe how
they are exposed by our approach.

Web Caching Based Probing Attack
Attack Mechanism. Web browsers use caching to speed up the access to the
recently visited files/resources. A web-cache-based probing attack may make use
of this functionality by measuring the time required to access a particular file
belongs to another origin. If that file is in the user’s cache, the access must be
faster. According to the time cost for accessing, the attacker may infer whether
the file is in the browser’s cache, and whether the user has accessed the target
origin as well (deducing the users’ browsing history indirectly). We illustrate

Toward Exposing Timing-Based Probing Attacks in Web Applications 505

Fig. 2. Web caching based timing probing Attack(Color figure online)

the basic principle of the cache-based probing attack in Fig. 2. To evaluate the
effectiveness on web caching based attack, we use the attack proposed by Jia
et al. [12] as the test case.

Effectiveness. In Jia’s attack, malicious webpage needs to measure the loading
time of image files, so it is required to call Date.getTime function after image
is loaded. The corresponding behavior pattern is calling Date.getTime function
inside onload function ofHTMLImageElement element. The pattern matching can
be done by searching for lines containing both string Date.getTime and regular
expression HTMLImageElement \ .[̂]*\.onload inside function call stack data.

Fig. 3. Real-time function call and element access chart(Color figure online)

506 J. Mao et al.

Figure 3 illustrates the real-time function call and element access chart (first-
level detection), as well as key behavior log of the web caching based timing
probing attacks (second-level detection).

Pixel-Based Attacks. Kotcher et al. [13] proposed another timing probing
attacks, which allows the attacker to “see” the target website.

The shader inside browsers often takes different time to draw pixels of differ-
ent color. So theoretically by measuring the time taken to draw a pixel, attackers
can know the color of this pixel. And by traversing all pixels inside a target region
of the target website, the attacker can get an image of this region, i.e. “seeing”
this region of the target website.

Then attackers will measure the webpage’s drawing time to infer the color of
the pixels, which can be done by measuring the refreshing rate of the web page.
By consecutively calling requestAnimationFrame function until certain amount of
frames have been drawn, and measuring the time required to draw these frames,
attackers can know the web page’s refreshing rate, which is mostly influenced
by the drawing speed of pixels of different color. By checking the web page’s
refreshing rate, the attackers can know the color of the current targeting pixel.

The attack needs to measure the frame rate of websites, which need to call
Date.getTime function after a frame is drawn. And the function used as reques-
tAnimationFrame function’s argument will be called after a frame is drawn.
so the pattern used to indicate this attack is calling Date.getTime function
inside functions that are used as requestAnimationFrame function’s argument.
The pattern matching can be done by first searching for regular expression ˆ
requestAnimationFrame:function [̂ (]*(inside function call data and get the
argument function’s names, and then searching for lines containing both string
Date.getTime and the argument function’s names, inside function call stack data.

Repainting-Based Attacks. Stone [17] proposed a way to check the visit
status of web links and sniff the browsing history by measuring the web page’s
repainting time.

According to the synchronizing property of the Chrome browser, when the
browser found a link’s target URL has changed, it will check whether this link’s
visit status has change too, i.e., from unvisited to visited or the other way around.
If the visit status has changed, the Chrome browser will repaint this link element,
while doing nothing if the visit status remains the same. The repainting operation
may be inferred by measuring the drawing time of the web page.

This attack needs to measure the frame drawing time of a certain frame,
which needs to call the Date.getTime function after a frame is drawn, the same
as the last attack. Also note that the function used as requestAnimationFrame
function’s argument will be called after a frame is drawn. so the pattern used to
indicate this attack is still calling Date.getTime function inside functions that
are used as requestAnimationFrame function’s argument. The pattern matching
can be done the same way as in the last attack. The pattern distribution is the
same as in that of the last attack, too.

Toward Exposing Timing-Based Probing Attacks in Web Applications 507

3.2 Performance

We evaluate the performance overhead of our tool. We test the average time cost
of baidu.com under different configurations. The result is shown in Table 1.

Table 1. Time cost on different configurations

Performance Test Environment

CPU: Intel R©CoreTMi5-4570

Memory: 4 Gigabyte

Operating system: Linux 12.04.2 (64-bit)

Browser: Chrome, Version 42.0.2311.90 (64-bit)

Enabled Functionalities Time Cost

None 241 ms

Write function name to console 454 ms

Write function call stack to console 1420 ms

Write function name to console 1583 ms

Write function call stack to console

Draw real-time behavior chart 310 ms

Warn attack(white list enabled) 1180 ms

Draw real-time behavior chart 1193 ms

Warn attack(white list enabled)

The first three configurations are for offline behavior analysis. The addi-
tional overhead only affects the speed of evaluating a large amount of websites,
which can be optimized by our automatic website parallel testing method. The
last three configurations are for real-time behavior analysis. Drawing the real-
time behavior chart causes neglectable overhead. And with warning functionality
enabled, the time cost only increases to approximately 1 second. This is only the
starting phase of visiting a website, after the website has been loaded and sta-
bilized, the difference can be neglected too, users will not feel any difference.

4 Related Work

Previous work has discovered several classic browser probing attacks, along with
some detection and prevention methods.

Kotcher et al. [13] discovered two timing probing attacks using CSS default
filters. The first attack can check whether a user has an account with a website
by exploiting the DOM rendering time difference. And the second attack can
sniff user browsing history or read text token by stealing pixels on the user’s
screen. They conducted evaluations of their attacks, and proved the attacks’
feasibility.

508 J. Mao et al.

Felten et al. [8] described a class of timing attacks used to sniff browsing his-
tory too, but their attacks focus on operations whose time consumption depends
on the cache status. They also proposed web cookies, which are a series of tradi-
tional cached files used as one traditional cookie. Using Web Cookies in attacks
can make them harder to be detected. To prevent these attacks, one can turn
off caching or alter the hit or miss performance of the cache, but both will make
caching lack of usefulness.

Weinberg et al. [18] proposed a way to sniff browsing history. The traditional
way to do this is secretly checking the status of the browser environment. But
since browsing history will affect the appearance of the display to the user, the
attacker can trick the user to tell him what the user has seen on the screen,
which can be used to infer the user’s browsing history. The links are disguised as
CAPTCHAs, so that while the user is finishing the CAPTCHAs, he is actually
telling the attacker his browsing history. They also come up with a way to “see”
the user’s screen by monitoring the reflection of the screen using the user’s web
camera. They proved that this is also a practical way to sniff the user’s browsing
history.

Bansal et al. [3] exploited the Web Worker APIs to make the cache prob-
ing operation parallel, which speeds up the traditional cache probing attacks.
They also proposed the idea of canceling resource requests once the attacker can
confirm that the resource being probed is from browser cache. In this way, the
attacker can avoid polluting the cache. They applied their improved cache timing
attack on four scenarios, including attacks on web environment and operating
systems. At the end of their paper, they discussed potential countermeasures,
such as separating cache among different operating system components, and set-
ting no-cache headers to private data. However, their improved attacks doesn’t
reduce the number of probes that the attacker requires, so our approach can still
detect these attacks.

Chen [6] found a vulnerability in four web applications that can leak users
sensitive information. The base of this vulnerability is that, since the applica-
tion needs to provide different contents according to the user’s choices, different
user inputs will result in different network traffic sizes. Furthermore, usually the
possible user input at one application state is very few, making it easy to guess
the user’s input. The authors also use history traffic data to aid the process of
guessing the user’s input. In their opinion, in order to effectively and efficiently
mitigate the impact of this vulnerability, the method has to be application-
specific.

5 Conclusion

In this paper, we studied common browser probing attacks and develop a solution
to detect such attacks based on generalized behavior patterns. We present a
browser-extension-based tool to detect browser probing attacks. Our approach
enables users to be aware of the potential risk of the privacy leakage during their
surfing, and exposes the suspicious behaviors embedded in a malicious web page.

Toward Exposing Timing-Based Probing Attacks in Web Applications 509

Acknowledgment. This work was supported in part by the National Natural Sci-
ence Foundation of China (No. 61402029), the National Key Basic Research Program
(NKBRP) (973 Program) (No. 2012CB315905), the National Natural Science Foun-
dation of China (No. 61370190), Beijing Natural Science Foundation (No4162020),
Singapore Ministry of Education under NUS grant R-252-000-539-112.

References

1. Same-origin policy. http://en.wikipedia.org/wiki/Same-origin policy
2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).

In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)

3. Bansal, C., Preibusch, S., Milic-Frayling, N.: Cache timing attacks revisited: effi-
cient and repeatable browser history, OS and network sniffing. In: Federrath, H.,
Gollmann, D., Chakravarthy, S.R. (eds.) SEC 2015. IFIP AICT, vol. 455, pp. 97–
111. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18467-8 7

4. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. Public Key
Cryptography. Springer, Heidelberg (2002)

5. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: design and detec-
tion. In: Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security (2004)

6. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
A reality today, a challenge tomorrow. In: Proceedings of the IEEE Symposium on
Security and Privacy. IEEE (2010)

7. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: Side-channel atomicity. IEEE Trans. Comput. 53(6), 760–
768 (2004)

8. Felten, E.W. Schneider, M.A.: Timing attacks on web privacy. In: Proceedings of
the 7th ACM Conference on Computer and Communications Security (2000)

9. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$a: A shared cache attack that works
across cores and defies VM sandboxingand its application to AES. In: Proceedings
of the 36th IEEE Symposium on Security and Privacy (2015)

10. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from
web privacy attacks. In: Proceedings of the 15th International Conference on World
Wide Web (2006)

11. Janc, A., Olejnik, L.: Feasibility and real-world implications of web browser history
detection. In: Proceedings of Web 2.0 Security and Privacy Workshopp (2010)

12. Jia, Y., Dong, X., Liang, Z., Saxena, P.: I know where you’ve been: Geo-inference
attacks via the browser cache. Internet Comput. IEEE 19(1), 44–53 (2015)

13. Kotcher, R., Pei, Y., Jumde, P., Jackson, C.: Cross-origin pixel stealing: timing
attacks using CSS filters. In: Proceedings of the ACM Conference on Computer
and Communications Security (2013)

14. Lee, S., Kim, H., Kim, J.: Identifying cross-origin resource status using application
cache (2015)

15. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings of the 36th IEEE Symposium on Security
and Privacy (2015)

16. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: Practical cache attacks in Javascript. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (2015)

http://en.wikipedia.org/wiki/Same-origin_policy
http://dx.doi.org/10.1007/978-3-319-18467-8_7

510 J. Mao et al.

17. Stone, P.: Pixel perfect timing attacks with html5. Context Information Secu-
rity(White Paper) (August 2013)

18. Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C.: I still know what you
visited last summer: Leaking browsing history via user interaction and side channel
attacks. In: Proceedings of the IEEE Symposium on Security and Privacy (2011)

	Toward Exposing Timing-Based Probing Attacks in Web Applications
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Approach

	3 Evaluation
	3.1 Timing-Based Probing Attack Detection
	3.2 Performance

	4 Related Work
	5 Conclusion
	References

