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Abstract. In this paper, we propose an extended recursive Cramér-Rao
lower bound (ER-CRLB) method as a fundamental tool to analyze the
performance of wireless indoor localization systems. According to the
non-parametric estimation method, the Fisher information matrix of the
ER-CRLB is divided into two parts: the state matrix and the auxiliary
matrix, which builds a general framework to consider all the possible
factors that may influence the estimation performance. Based on this
idea, ER-CRLB can fully model the estimation process in the compli-
cated indoor environment, e.g., the sequential position state propagation,
target-anchor geometry effect, the NLOS identification, and the related
prior information, which are demonstrated in the comprehensive simula-
tions.

Keywords: Indoor localization · Cramér-Rao lower bound · Bayesian
estimation · Non-line-of-sight

1 Introduction

The main purpose of the indoor localization system is the position estimation accu-
racy for a better location based service [2,5]. Cramér-Rao lower bound (CRLB)
as the optimal performance indicator for unbiased estimator is widely applied in
the localization and positioning systems. Zuo et al. proposed a conditional CRLB
which considered the posterior probability is conditioned on the prior probability
[12]. For range-based wireless localization system, many researches have provided
CRLB results for different scenarios. Qi et al. proposed a generalized CRLB (G-
CRLB) of the wireless system for NLOS environment [6]. The hybrid LOS/NLOS
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environment is analyzed and Qi indicated that with a prior knowledge of wireless
transmission channel, the estimation performance can be improved [6]. Shen et al.
defined an equivalent CRLB (E-CRLB) to a general framework of the wideband
wireless network [7]. The multi-path and NLOS effect are both considered and the
CRLB with or without prior information are compared in the E-CRLB [7]. A linear
CRLB (L-CRLB) is proposed which consider the linearized effect and provided the
lower bound for such estimator [9].

Although the above mentioned CRLBs try to provide the general funda-
mental limits of the localization systems, these CRLBs still cannot analyze the
indoor environment precisely since the indoor environment is complicated and
influenced by many unknown factors. In this paper, we propose a general analy-
sis method for the complicated indoor localization systems, which is named
extended recursive CRLB (ER-CRLB). Instead of other works which employ a
specific wireless model, the derivation of the ER-CRLB is based on the proposed
abstract function of all the wireless localization system models. The first con-
tribution is that we construct a recursive form of the Fisher information matrix
(FIM) according to θ, and we illustrate the calculation rule for the ER-CRLB.
The major advantage using the analysis of ER-CRLB is that it is suitable for the
complicated and dynamic environment and fully considers the prior information,
hybrid unknown factors and the recursive feature of the tracking algorithms.

The second contribution is that we employ the ER-CRLB to analyze the
robotic indoor localization system as a case study. The trace-driven simulation is
constructed with gathered wireless measurement data from a robotic range-based
test-bed. We consider all the possible factors, e.g., the target-anchor geometry
effect, the building layout, the relative height differences between the target and
anchors, the NLOS transmission channel, the related prior information and the
recursive feature of the tracking algorithm. In general, the results demonstrate
that ER-CRLB is suitable to exploit all the available information to analyze
the performance of the indoor localization systems, and it is not restrict to any
specific techniques.

2 Fisher Information Matrix Formulation

The mobile device with unknown position is called target, such as mobile sensor
node, smartphone and robot. The position state of the target is denoted as
xt = [pX

t pY
t ]T , where pX

t and pY
t are the coordinates in the two-dimensional

positioning system, and T is the transpose operator. The wireless devices with
known positions, which measure the ranges (or distances) to the target are called
anchors. For each anchor, the position is denoted as aj = [aX

j aY
j ]T , where aX

j

and aY
j are the coordinates. According to the Bayesian estimation framework,

the relationship between the estimated state xt and the measurement zt follows:

xt = ft(xt−1) + qt (1)

zt = ht(d(xt,k), l) + vt (2)
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where (1) is the prediction function and (2) is the abstract measurement func-
tion. In (1), the target’s movement is based on the transition function ft(),
and qt is the prediction noise, which follows normal distribution N (0,Qt).
In (2), zt = [z1t . . . zj

t . . . zN
t ]T is the measurement vector, and N denotes the

number of anchors; ht() = [h1
t () . . . hj

t () . . . hN
t ()]T is the nonlinear observation

function, which relates to the received waveforms at the target from anchors;
vt = [v1

t . . . vj
t . . . vN

t ]T is the ranging noise, which is assume as independent
noise; d() = [d1() . . . dj() . . . dN ()]T represents the distance vector between the
target and anchors. According to the Bayesian theorem, the posterior probability
of xt is expressed as p(xt|zt,xt−1) = p(xt|xt−1)p(zt|xt), where t − 1 indicates
the previous, p(xt|xt−1) is the prior probability [1].

Our analysis fully considers all the possible unknown random factors that may
influence the position estimation, hence the parameter vector includes: the current
state xt, the previous state xt−1, and auxiliary parameter vectors k and l. Thus, θ
is expressed as:

θ �
[
xT

t xT
t−1 kT lT

]T
(3)

If p(θ, zt) denotes the joint probability density function (PDF) of observa-
tions zt and the state θ, then the FIM, J(θ), is defined as:

J(θ) � E

{
∇θ ln p(θ, zt) [∇θ ln p(θ, zt)]

T
}

, (4)

where E {·} indicates the expectation operator, ∇θ =
[

∂
∂θ1

, . . . , ∂
∂θN

]T

is the
operator of first order partial derivatives. And CRLB is just the inverse of FIM,
and the estimation covariance can not be lower than it:

Covθ(θ̃) � {J(θ)}−1 (5)

where “A � B” should be interpreted as matrix A − B is non-negative define.
Since p(θ, zt) = p(zt|θ)p(θ) based on Bayesian theorem, it is easily seen that

J(θ) can be decomposed into two parts:

J(θ) = JD(θ) + JP(θ) (6)

where JD(θ) represents the information obtained from measurement data, and
JP(θ) represents the prior information.

Firstly, we use the notations h = ht(d(xt,k), l), hj = hj
t (d(xt,k), l), and

decompose JD using the chain rule as:

JD(θ) = H · Jh · HT (7)

where H = [∇θh] and Jh is the FIM conditioned on h:

Jh = E

{
∇h ln p(zt|θ) [∇h ln p(zt|θ)]T

}
(8)

The matrix H is further decomposed into four components:

H = [Ht Ht−1 K L]T (9)
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where Ht = [∇xt
h]2×N , Ht−1 = [∇xt−1h]2×N , K = [∇kh]Nk×N and L =

[∇lh]Nl×N . Since d is independent to the previous state xt−1, Ht−1 = 0.
For Jh, we can use diagonal matrices of order N to represent it: Jh = Λ =
diag(λ1, . . . , λj , . . . , λN ), where the diagonal term λj depends on hj

t (). Then,
JD is written as:

JD =

⎡

⎢
⎢
⎣

D11 0 D13 D14

0 0 0 0
DT

13 0 D33 D34

DT
14 0 DT

34 D44

⎤

⎥
⎥
⎦ (10)

where
D11 = HtΛHT

t ; D33 = KΛKT ;
D13 = HtΛKT ; D34 = KΛLT ;
D14 = HtΛLT ; D44 = LΛLT .

(11)

The prior probability for θ is extended as p(θ) = p(xt|xt−1)p(k)p(l), then
the prior information is written as:

ln p(θ) = [ln p(xt|xt−1)] + ln p(k) + ln p(l) (12)

where p(k) and p(l) are independent prior information to xt and xt−1. If we
decompose θ into two sub-vectors: the state vector [xt xt−1]T and the auxiliary
vector [k l]T . Then, JP can be formulated as:

JP = E

{
∇θ ln p(θ) [∇θ ln p(θ)]T

}

=
[
JP11 JP12

JT
P12

JP22

] (13)

where JP11 is the recursive form of xt and xt−1, which is formulated by
Tichavsky et al. [8]:

JP11 =
[
M11 M12

MT
12 M22 + J(xt−1)

]
(14)

where
M11 = Q−1

t

M12 = ∇xt−1ft(xt−1)Q−1
t

M22 = ∇xt−1ft(xt−1)Q−1
t

[∇xt−1ft(xt−1)
]T

(15)

where J(xt−1) is the previous FIM of xt−1. And JP12 are 0 matrixes since p(k)
and p(l) are independent to xt and xt−1. The prior distribution p(xt|xt−1) is
also independent to l and k, thus JP21 = JT

P12
= 0. Finally, the last element

JP22 is expressed as:

JP22 =
[
JK 0
0 JL

]
(16)

where JK and JL are the FIMs conditioned on k and l respectively:

JK = E

{
∇k ln p(k) [∇k ln p(k)]T

}

JL = E

{
∇l ln p(l) [∇l ln p(l)]T

} (17)
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Then, substitute (10) and (13) into (6) and use the form of the Schur complement
of the sub-matrix [4], the ER-FIM is attained:

J(xt) = JS − JA (18)

where:
JS = M11 + D11 − M12 (M22 + J(xt−1))

−1 MT
12

JA = [D13 D14]
[
D33 + JK D34

DT
34 D44 + JL

]−1

[D13 D14]
T (19)

And the formulation of each element can be found in (11), (15) and (17).
Equation (18) only holds when all the elements in θ are to be estimated and

the prior information for the whole θ is available. In the real analysis, not all
the elements are necessary for θ, and some vectors are absent sometimes. For
instance, for the non-recursive scenario, the system does not consider xt−1. In
addition, when the system has deterministic value of the assisted vectors, k and l
are not estimated and useless for J(xt). Thus, the calculation principle for ER-
CRLB is that: when any vector in θ is absent, the related matrix in (18) turns
to 0 and we will treat the such 0 matrix as the empty matrix, then we mitigate
the empty matrix for calculation.

3 Time-of-Arrival Localization System

Let τ j
t be the time delay of the received signal from anchor j at time t:

τ j
t =

1
c

[
||xt − aj || + ljt

]
(20)

where c = 3 × 108m/s is the propagation speed of the signal, and || · || denotes
the distance between two positions, ljt ≥ 0 is the range drift. The range drift
ljt = 0 for LOS propagation, whereas ljt > 0 for NLOS propagation. For many
indoor systems, the TOA ranging measurement is obtained through the packet
transmission time based on the network protocol:

zj
t = cτ j

t + vj
t (21)

where the measurement function hj
t ((d(xt,k) + ljt )) = cτ j

t , and vj
t is the mea-

surement noise for anchor j.

3.1 Relative Height

It is assumed that the anchors and targets are on the same plane in many real
indoor applications. The goal is to calculate 2D positions, X − Y coordinates
of the target. In this case, the height difference between anchor and target is
ignored. However, actually, the height difference is involved in the position esti-
mation and has impact on the accuracy. Here, we define the height difference
between anchor and target as relative height kt. If the relative height is 0 or
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assumed to be 0 in the simulation, we define the range measurement as 2D-
ranging. If the relative height between anchor and target is not 0, which is
always applicable in the real case, the measurement depends on 3D coordinates,
we define the range measurement as 3D-ranging. The 3D-ranging for each
anchor is formulated as:

dj(xt, kt) =
√

(pXt − aX
j )2 + (pYt − aY

j )2 + k2
t (22)

The problems of 3D-ranging can be referred in [11]. Then, K = [∇kd(xt, k)]1×N

is expressed as [11]:

K =
[

∂d1
t (xt,kt)

kt
. . .

∂dj
t(xt,kt)

k . . .
∂dN

t (xt,kt)
kt

]
(23)

where
∂dj

t (xt, kt)
kt

=
k

√
(pX

t − aX
j )2 + (pY

t − aY
j )2 + k2

t

(24)

For the prior information of kt, the relative height is always nonnegative
no matter of the places of the anchors. Thus, we apply the Gamma distribu-
tion to indicate the potential distribution of kt, where kt ∼ G(αk, βk)(kt) =
(βk)

αk

Γ (αk)
kαk−1

t exp(−βkkt), and αk is the shape parameter and βk is the rate
parameter. For Gamma distribution, Jk is complicated. To obtain an analyt-
ical expression, we assume αk > 2 for simplicity. Then, the Gamma function is

Γ (αk) =
∫ +∞
0

exp(−x)xαk−1dx. Thus, Jk = E

(
∂

∂kt
G(αk, βk)(kt)

)2

is derived as:

Jk =β2
k − 2(αk − 1)βk

Γ (αk)

∫ +∞

0

βαk

k kαk−2
t exp(−βkkt)dkt

+
(αk − 1)2

Γ (αk)

∫ +∞

0

βαk

k kαk−3
t exp(−βkkt)dkt

(25)

Use the property Γ (αk) = αkΓ (αk − 1) and substitute it into (25), we obtain:

Jk =
β2

k

αk − 2
(26)

3.2 NLOS

The vector l can be used as NLOS indicator for TOA ranging. We assume
there are Nl ≤ N NLOS measurements and the drift for each measurement
is independent to others, then L = [∇lh]Nl×N is formulated as:

L =
(
INl

0
)

(27)

where INl
is the identity matrix of order Nl, and the rest part is a Nl × (N −Nl)

zero matrix due to the independent condition to the LOS measurement. Since the
range drift for the NLOS is also nonnegative, we still use Gamma distribution as
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the prior information lm ∼ G(am, bm)(lm) = (bm)am

Γ (am) lam−1
m exp(−bmlm), where

am ≥ 2 is the shape parameter, bm is the rate parameter, and m is the mth
NLOS measurement. Similar to (26), we obtain JL:

JL = diag(
b21

a1 − 2
, . . . ,

b2m
am − 2

, . . . ,
b2Nl

aNl
− 2

) (28)

4 Simulation

We set up several trace-driven TOA-based indoor localization simulations to
evaluate the analytical performance using the ER-CRLB. The simulation envi-
ronment is constructed according to the data gathered from a robotic test-bed
[10]. The parameters in the simulations are obtained from the statistical distri-
bution results of these data. In each simulation, the ER-CRLB considers several
different factors, e.g., the recursive process during the target tracking, estima-
tions with and without considering l and kt. To make the results clear, we mark
the CRLBs for different situations by adding superscripts and subscripts, which
can be depicted as CRLB...

.... The subscripts indicate the considered vectors,
including the state vector and the auxiliary vector. The superscripts indicate the
available prior information of the considered vectors. For instance, if we want
to simulate the estimation with NLOS range drift, the results of the ER-CRLB
is marked by CRLBxt,l. And if the prior information of xt is attained in the
simulation, the results are marked by CRLBxt

xt,l. For the recursive estimation,

we use the notation CRLBxt−1,xt,l
xt−1,xt,l

.

4.1 Spatial Position Error Distribution

In the first simulation, a 100 × 100m2 playing field. There are four big rooms
located at four corners of the playing field. The area for each room is 40×40m2.
The rest parts of the playing field are the hallways. The anchors are the access
points of the WiFi network. We set the relative height as the constant value
1.5m. The range error for each anchor follows zero-mean Gaussian distribution
vj

t ∼ N (0, Rj
t ), where Rj

t is 52. The range drift for the NLOS measurements is
set 2m. For the prior information, the relative height kt ∼ G(2.5, 2)(kt). The
prior information of the NLOS range drift lm is lm ∼ G(3.5, 1.8)(lm). For the
position state prior information, we assume the prediction function is linear static
identity matrix with the zero-mean Gaussian prediction noise qt ∼ N (0,Qt),
where Qt = diag(σ2

x, σ2
y) is the covariance of qt and σx = σy = 2m. The LOS

measurements can only be obtained in one room with four associate anchors,
and others measurements are NLOS. For the positions in the hallways, all the
measurements are NLOS ranging.

We apply the ER-CRLB to indicate the optimal squared error, which is√
tr(J−1(xt)). To illustrate the geometrical performance for the 2D localiza-

tion system in the playing field, we employ
√

tr(J−1(xt)) to depict the spatial
position error distribution (SPED) which is defined as the distribution of the
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position error for every target position [3]. It illustrates how the performance
changes from position to position in the playing field. The SPED results are
depicted in Fig. 1:

Fig. 1. The simulation of a building layout (Color figure online)

For numerical comparison, the RMSE in Fig. 1(b) is higher than Fig. 1(c) and
(d), which is more than 3.39 m in the central area. And the error become higher
and higher when the position is approaching to the corner, which is more than
8m. Due to the lack of prior information, the geometric shape does not have spe-
cial characters which are related to rooms or corridors. The contours are almost
like rectangles located in the center of the playing field. When the prior infor-
mation of kt and l is introduced, the accuracy is significantly improved, which is
reduced to 2.55m in average. The geometric shapes of the contours are different
in the rooms and hallways. It indicates that the localization algorithms using the
prior knowledge of NLOS conditions based on the building layout information
and the NLOS identification and mitigation methods can reasonably improve
the estimation performance. Thus, the layout information in the building map is
an important information source for localizations. When the prior information of
xt is introduced in the estimation as indicated in Fig. 1(d), the RMSE is further
reduced, which is 1.235 m in almost all the playing field where the target-anchor
geometry effect is reduced effectively.
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4.2 Bayesian-Based Target Tracking Estimation

In this simulation, we evaluate the performance of the recursive Bayesian estima-
tion for target tracking. We run 1000 Monte-Carlo simulations, and the target
moves a separate random path in each simulation. In addition, the target can also
be static. Since xt−1 can also be estimated in the static scenario and be used for
recursive estimation, the analysis results are the same to the dynamic target track-
ing scenarios. The estimation results are averaged and represented by the RMSE in
Fig. 2. There are three solid parallel straight lines which indicate the estimations
without prior information: CRLBxt,kt,l, CRLBxt,kt

and CRLBxt,l. The three
otherdash curves illustrate the recursive estimations according to time steps,which
are CRLBxt−1,kt,l

xt,kt,l
, CRLBxt−1,kt

xt,kt
and CRLBxt−1,l

xt,l
.

Fig. 2. Sequential estimation lower bound

The Bayesian recursive estimation manner with related prior information
effectively reduced the estimation as indicated in Fig. 2. The RMSEs of the three
curves gradually converge to low values according to time steps. The impacts
of the relative heights and the NLOS drifts still degrade the estimation per-
formance. Even with the recursive estimation, the estimation error can not be
further reduced, where the CRLBxt−1,kt,l

xt,kt,l
is 0.5 m larger than CRLBxt−1,kt

xt,kt

when t = 20.

5 Conclusion

In this paper, we propose a new fundamental analyzing method for the indoor
localization system, named ER-CRLB. We draw several conclusions according to
the analytical results: (1) the SPED shape of the optimal estimation depends not
only on the target-anchors relative positions, but also depends on the building
layout and the prior information of the NLOS measurements and the state. (2)
Comparing with kt, l decreases the estimation accuracy more significantly. The
prior information of l improves the estimation more effectively than the prior
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information of kt. (3) The prior distribution of xt plays the most important
role for the estimation. Such distribution can be attained through the recur-
sive estimation. In general, ER-CRLB is a suitable tool to indicate the optimal
estimation bound of the indoor localization systems.
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