
Chapter 13

Assembling the Jigsaw: How Multiple Open
Standards Are Synergistically Combined
in the HALEF Multimodal Dialog System

Vikram Ramanarayanan, David Suendermann-Oeft, Patrick Lange,
Robert Mundkowsky, Alexei V. Ivanov, Zhou Yu, Yao Qian,

and Keelan Evanini

Abstract As dialog systems become increasingly multimodal and distributed in

nature with advances in technology and computing power, they become that much

more complicated to design and implement. However, open industry and W3C

standards provide a silver lining here, allowing the distributed design of different

components that are nonetheless compliant with each other. In this chapter we

examine how an open-source, modular, multimodal dialog system—HALEF—can

be seamlessly assembled, much like a jigsaw puzzle, by putting together multiple

distributed components that are compliant with the W3C recommendations or other

open industry standards. We highlight the specific standards that HALEF currently

uses along with a perspective on other useful standards that could be included in the

future. HALEF has an open codebase to encourage progressive community contri-

bution and a common standard testbed for multimodal dialog system development

and benchmarking.

13.1 Introduction

Dialog systems nowadays are becoming increasingly multimodal. In other words,

dialog applications, which started off mostly based on voice and text [15], have

increasingly started to encompass other input–output (I/O) modalities such as

V. Ramanarayanan (*) • D. Suendermann-Oeft • P. Lange • A.V. Ivanov • Y. Qian

Educational Testing Service (ETS) R&D, San Francisco, CA, USA

e-mail: vramanarayanan@ets.org

R. Mundkowsky • K. Evanini

Educational Testing Service (ETS) R&D, Princeton, NJ, USA

Z. Yu

Carnegie Mellon University, Pittsburgh, PA, USA

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_13

295

mailto:vramanarayanan@ets.org

video [3], gesture [3, 17], electronic ink [10, 11], avatars or virtual agents [6, 25, 26],

and even embodied agents such as robots [7, 29], among others. While the integration

of such technologies provides a more immersive and natural experience for the users

and enables an analysis of their non-verbal behaviors, it also makes the design of such

multimodal dialog systems more complicated. This is because, among other things,

one needs to ensure a seamless user experience without any reduction in quality of

service—this includes issues such as latency, accuracy, and sensitivity—while

transporting data between each of these multimodal (and possibly disparate) I/O

endpoints and the dialog system. In addition, dialog systems consist of multiple

subsystems; for example, automatic speech recognizers (ASRs), spoken language

understanding (SLU) modules, dialog managers (DMs), and speech synthesizers,

among others, interacting synergistically and often in real-time. Each of these sub-

systems is complex and brings with it design challenges and open research questions in

its own right. As a result, development of such multi-component systems that are

capable of handling a large number of calls is typically done by large industrial

companies and a handful of academic research labs since they require individual

maintenance of multiple individual subsystems [5]. In such scenarios, it is essential

to have industry-standard protocols and specification languages that ensure interoper-

ability and compatibility of different services, irrespective of who designed them or

how they were implemented. Designing systems that adhere to such standards also

allow generalization and accessibility of contributions from a large number of devel-

opers across the globe.

The popularity of commercial telephony-based spoken dialog systems—also

known as interactive voice response (IVR) systems—especially in automating

customer service transactions in the late 1990s, drove industry developers to start

working on standards for such systems [18]. As a core component of an IVR, the

voice browser, essentially responsible for interpreting the dialog flow while simul-

taneously orchestrating all the necessary resources such as speech recognition,

synthesis, and telephony, was one of the early components subject to standardiza-

tion resulting in the VoiceXML standard dating back to 19991 (see Sect. 13.4.1.1

for more details on VoiceXML). Since the vast majority of authors responsible for

creating standards such as VoiceXML come from the industry, most

implementations of spoken dialog systems adhering to these standards are com-

mercial, proprietary, and closed-source applications. Examples of voice browser

implementations include

• Voxeo Prophecy2

• TellMe Studio3

• Plum DEV4

1http://www.w3.org/TR/2000/NOTE-voicexml-20000505.
2https://voxeo.com/prophecy/.
3https://studio.tellme.com/.
4http://www.plumvoice.com/products/plum-d-e-v/.

296 V. Ramanarayanan et al.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505
https://voxeo.com/prophecy/
https://studio.tellme.com/
http://www.plumvoice.com/products/plum-d-e-v/

• Cisco Unified Customer Voice Portal5

• Avaya Voice Portal6

In addition to over 20 commercial closed-source voice browsers,7 we are aware

of a single open-source implementation that has been actively developed over the

past few years:

• JVoiceXML.8

We adopted this voice browser for the creation of the multimodal spoken dialog

system HALEF (Help Assistant–Language-Enabled and Free), which serves as an

example of a standards-based architecture in this chapter.

Note that in addition to industrial implementations of spoken and multimodal

dialog systems, there exists an active academic community engaging in research on

such systems. Prominent examples include

• CMU’s Olympus [4]

• Alex,9 by the Charles University in Prague [12]

• InproTK,10 an incremental spoken dialog system

• OpenDial11

• the Virtual Human Toolkit [9]

• Metalogue,12 a multimodal dialog system

• IrisTK,13 a multimodal dialog system

Many of these examples, along with other (multimodal) dialog systems devel-

oped by the academic community, are built around very specific research objec-

tives. For example, Metalogue provides a multimodal agent with metacognitive

capabilities; InproTK was developed mainly for investigating the impact of incre-

mental speech processing on the naturalness of human–machine conversations;

OpenDial allows one to compare the traditional MDP/POMDP14 dialog manage-

ment paradigm with structured probabilistic modelling [14]. Due to their particular

foci, they often use special architectures, interfaces, and languages paying little

attention to existing speech and multimodal standards (e.g., see the discussions

in [2]). For example, none of the above research systems implements VoiceXML,

MRCP, or EMMA (see Sect. 13.4 for more details on these standards).

5http://www.cisco.com/c/en/us/products/customer-collaboration/unified-customer-voice-portal.
6https://support.avaya.com/products/P0979/voice-portal.
7Find a comprehensive list at https://www.w3.org/Voice/voice-implementations.html.
8https://github.com/JVoiceXML/JVoiceXML.
9https://github.com/UFAL-DSG/alex.
10https://bitbucket.org/inpro/inprotk.
11http://www.opendial-toolkit.net.
12http://www.metalogue.eu.
13http://www.iristk.net.
14Partially Observable Markov Decision Processes.

13 Assembling the Jigsaw. . . 297

http://www.cisco.com/c/en/us/products/customer-collaboration/unified-customer-voice-portal
https://support.avaya.com/products/P0979/voice-portal
https://www.w3.org/Voice/voice-implementations.html
https://github.com/JVoiceXML/JVoiceXML
https://github.com/UFAL-DSG/alex
https://bitbucket.org/inpro/inprotk
http://www.opendial-toolkit.net
http://www.metalogue.eu
http://www.iristk.net

In this chapter, we describe a system that was designed to bridge the gap between

the industrial demand for standardization and the openness, community engage-

ment, and extensibility required by the scientific community. This system, HALEF,

is an open-source cloud-based multimodal dialog system that can be used with

different plug-and-play back-end application modules [21, 24, 30]. In the following

sections, we will first describe the overall architecture of HALEF (Sect. 13.2)

including its operational flow explaining how multimodal interactions are carried

out (in Sect. 13.3). We will then review major components of multimodal dialog

systems that have previously been subject to intensive standardization activity by

the international community and discuss to what extent these standards are cur-

rently reflected (or are planned in the future) in the HALEF framework. These

include

• standards for dialog specification describing system prompts, use of speech

recognition and interpretation, telephony functions, routing logic, etc. (primarily

VoiceXML), see Sect. 13.4.1.1 (also see [1]);

• standards controlling properties of the speech recognizer, primarily grammars,

statistical language models, and semantic interpretation (e.g., JSGF, ARPA,

WFST), see Sect. 13.4.1.2;

• standards controlling properties of the speech synthesizer (primarily SSML);

• standards controlling the communication between the components of the mul-

timodal dialog system (SIP, MRCPv2, WebRTC, EMMA), see Sect. 13.4.2;

• standards describing the dialog flow and how modalities interact (SCXML,

EMMA), see Sect. 13.5.

13.2 The HALEF Dialog System

The multimodal HALEF framework [21, 24, 30] is composed of the following

distributed open-source modules (see Fig. 13.1 for a schematic overview):

• Telephony servers—Asterisk [28] and Freeswitch [16]—that are compatible

with SIP (Session Initiation Protocol), PSTN (Public Switched Telephone Net-

work) and WebRTC (Web Real-Time Communications) standards, and include

support for voice and video communication.

• A voice browser—JVoiceXML [22]—that is compatible with VoiceXML 2.1,

can process SIP traffic, via a voice browser interface called Zanzibar [20] and

incorporates support for multiple grammar standards such as JSGF (Java Speech

Grammar Format), ARPA (Advanced Research Projects Agency), and WFST

(Weighted Finite State Transducer), which are described in Sect. 13.4.1.2.

• An MRCPv2 (Media Resource Control Protocol Version 2) speech server—

which allows the voice browser to control media processing resources such as

speech recorders, speech recognizers, or speech synthesizers over the network. It

relies on other protocols such as SIP for session handling, RTP (Real-time

Transport Protocol) for media streaming, and SDP (Session Description

298 V. Ramanarayanan et al.

Protocol) to allow the exchange of other capabilities such as supported codecs

over the network. HALEF supports multiple speech recognizers (Sphinx [13],

Kaldi [19]) and synthesizers (Mary [23], Festival [27]).

• A webserver—Apache Tomcat15 that can host web applications that serve

dynamic VoiceXML pages, web services, as well as media libraries containing

grammars and audio files.

• OpenVXML, a voice application authoring suite that generates dynamic web

applications that can be housed on the web server (also see Sect. 13.4.1.1).

• A MySQL16 database server for storing call log information. All modules in

HALEF connect to the database and write their log messages to it. We then post-

process this information with stored procedures into easily accessible views.

• A custom-developed, open-source Speech Transcription, Annotation and Rating

(STAR) portal that we implemented using PHP and the JavaScript framework

jQuery. The portal allows one to analyze, listen to (or watch) full-call (video)

recordings, transcribe them, rate them on a variety of dimensions such as caller

experience and latency, and perform various semantic annotation tasks required to

train automatic speech recognition and spoken language understanding modules.

STAR (SPEECH
TRANSCRIPTION,
ANNOTATION &

RATING)

PORTAL

MAIN
TELEPHONY
SERVER &

PBX (ASTERISK)

JVoiceXML

Zanzibar

CAIRO
(MRCP server)

SPHINX (ASR)

APACHE

VXML, JSGF, ARPA,
WFST, WAV

SPEECH SERVER WEB SERVER

VOICE BROWSER

FESTIVAL
(TTS)

MARY (TTS)

HTTP
MRCP(v2)

SIP

SIP

SIP

RTP
(audio)

HTTP
KALDI

(ASR)
SERVER

TCP

WebRTC
Verto

LOGGING
DATABASE

(MySQL)

VIDEO
TELEPHONY

SERVER
(FREESWITCH)

SIP

RTP

SPEECHRATER (SPEECH SCORING)
BACK-END
MODULES SPEAKER VERIFICATION

MULTIMODAL ASSESSMENT

SFTP

HTTP

HTTP

Amazon
Elastic

Compute
Cloud
(EC2)

Fig. 13.1 System architecture of the HALEF spoken dialog system depicting the various modular

open-source components as well as W3C standard protocols that are employed

15http://tomcat.apache.org/.
16https://www.mysql.com/.

13 Assembling the Jigsaw. . . 299

http://tomcat.apache.org/
https://www.mysql.com/

• A custom-developed interactive dashboard written in R that allows one to view a

variety of key performance indicators, including completion rate, latency, busy

rate, etc.

We will illustrate the basic architecture and components of the HALEF spoken

dialog system using an example application that is currently deployed in the

educational domain. Finally we will conclude with a discussion of ongoing and

future research and development into the system, including potential support for

additional W3C standards such as EMMA (Extensible Multimodal Annotation),

SSML (Speech Synthesis Markup Language), EmotionML (Emotion Markup Lan-

guage), and SCXML (State Chart XML).

13.3 Operational Flow Schematic

In this section we describe how video and audio data flow to/from the multimodal

HALEF system. In case of regular PSTN telephony, users call into a phone number

which connects them to the telephony server in the cloud where they need to

provide an extension to connect to (different extensions are associated with differ-

ent dialog system instances that in turn have different task content). Alternatively,

users can use softphones (or SIP phones) to connect directly to the IP address of the

cloud-based telephony server using the extension. Even more convenient is the use

of a web application to call directly out of a web browser application on either a

computer, smartphone or tablet device. Here, the only information required by the

user is the URL of the website containing the connection configuration (which

includes the telephony server IP address and the extension). The Media Capture and

Streams API17 enables access to the computer’s audio and video input devices via

the web browser. WebRTC18 is then used via a Javascript implementation to send

video and audio to FreeSWITCH and receive audio back from FreeSWITCH.When

the call comes in from the user, HALEF starts the dialog with an audio prompt that

flows out of the HALEF system via Asterisk over SIP/RTP to FreeSWITCH.

FreeSWITCH then sends the audio to the web browser via WebRTC. The user

then gives a response to the system that flows through WebRTC to FreeSWITCH

and then through SIP/RTP to Asterisk. During the teleconference, the user’s video
and audio interactions are continuously streamed and recorded.

Once the Asterisk server receives the call, it sends a notification to the voice

browser to fetch the VXML code from the web server. The voice browser in turn

identifies the resources that the speech server will need to prepare for this applica-

tion. It then notifies the MRCPv2 server and starts sessions and channels for all

required resources including the provisioning of speech recognition grammars.

17https://www.w3.org/TR/mediacapture-streams.
18http://www.w3.org/TR/webrtc/.

300 V. Ramanarayanan et al.

https://www.w3.org/TR/mediacapture-streams
http://www.w3.org/TR/webrtc/

Finally, the speech server sends a SIP response back to the voice browser and

Asterisk to confirm session initiation. Completion of this process successfully

establishes a communication channel between the user and HALEF’s components.

Once the session is established, Asterisk streams audio via RTP to the speech

server. When the caller starts speaking, the Sphinx engine’s voice activity detector

fires and identifies speech portions; then, the speech is sent to the ASR engine

(HALEF supports both Kaldi and Sphinx) which starts the decoding process. When

the voice activity detector finds that the caller has finished speaking, the recognition

result is sent back to the voice browser, which processes it and sends this answer to

the spoken language understanding module. The output of the natural language

understanding module is subsequently sent to the dialog manager which evaluates

and generates VXML code with the final response to be spoken out by the speech

synthesizer (either Festival or Mary). The voice browser then interprets this VXML

code and sends a synthesis request to the speech server with the response. The

speech synthesizer synthesizes the response and passes the result back via RTP to

Asterisk, which forwards the audio signal to the user. At the same time, Cairo sends

a confirmation signal to the voice browser. After receiving this signal, the voice

browser sends a cleanup request to close all open channels and resources. This ends

the SIP session with Asterisk, which finally triggers Asterisk to send an end-of-call

signal to the user.

There are other endpoints that are supported or likely can be supported by

HALEF. An endpoint is defined as a device at the edge of the network (e.g., a

telephone or a soft phone). Note that HALEF also natively supports audio-only

dialogs with PSTN (public switched telephone network) or soft phone endpoints

(that, for example, can use PSTN/SIP proxies such as ipKall).19 We have success-

fully tested and used SIP clients for this purpose such as Peers20 for PC and 3XC21

for smartphones. We have also used SIP over WebRTC, and SIP/WebRTC clients

such as sipml5,22 jssip,23 etc. to connect to HALEF directly through Asterisk as

well as via webrtc2sip24 to Asterisk.

13.4 Standards Used in HALEF

The following section examines in more detail how different specific industry

standard specifications are synergistically combined within the HALEF multimodal

dialog framework. Since HALEF is primarily a spoken dialog system, we first

19http://www.ipkall.com/.
20http://peers.sourceforge.net/.
21http://www.3cx.com/voip/sip-phone/.
22https://www.doubango.org/sipml5/.
23http://www.jssip.net/.
24http://webrtc2sip.org/.

13 Assembling the Jigsaw. . . 301

http://www.ipkall.com/
http://peers.sourceforge.net/
http://www.3cx.com/voip/sip-phone/
https://www.doubango.org/sipml5/
http://www.jssip.net/
http://webrtc2sip.org/

examine the key voice standards used in its operation. We then describe the various

communication standards used to transport voice and video data across different

components of the dialog system.

13.4.1 Voice Standards

13.4.1.1 VoiceXML

The origins of VoiceXML25 began in 1995 as an XML-based dialog design language

intended to simplify the speech recognition application development process within

anAT&T project called PhoneMarkup Language (PML). VoiceXMLorVXMLwas

designed for creating audio dialogs that feature synthesized speech, digitized audio,

recognition of spoken and DTMF key input, recording of spoken input, telephony,

and mixed initiative conversations. It was conceived to integrate the advantages of

web-based development and content delivery into interactive voice response appli-

cations. The code listing below shows an example VXML page as used by HALEF.

This example VXML page illustrates how various system parameters can be spec-

ified, such as the timeout value of 3 s specified in the timeout variable. Also, this

example shows several of the components required for the interactive conversation,

such as the system prompt (a prerecorded audio file, in this case) specified in the

<prompt> element and the grammar file (see Sect. 13.4.1.2) that controls which user

utterances can be recognized by the ASR system.

<vxml version¼"2.1">
<form id¼"InputRequestForm" scope¼"document">
<field name¼"A_try_peanuts">
<property name¼"bargein" value¼"true"/>
<property name¼"timeout" value¼"3s"/>
<property name¼"confidencelevel" value¼"0.5"/>
<property name¼"sensitivity" value¼"0.5"/>
<property name¼"speedvsaccuracy" value¼"0.5"/>
<property name¼"completetimeout" value¼"3s"/>
<property name¼"incompletetimeout" value¼"3s"/>
<property name¼"maxspeechtimeout" value¼"10s"/>
<property name¼"inputmodes" value¼"voice"/>
<property name¼"com.telera.speechenabled" value¼"true"/>
<prompt bargein¼"true" xml:lang¼"en-US">
<audio

src¼"/7703/-/resources/EPS_Builder_Voice/Default/peanuts_offer.wav"/>
</prompt>
<grammar mode¼"voice" type¼"application/srgs+xml"

src¼"/7703/-/resources/EPS_Builder_Voice/Default/try_peanuts.
gram"/>

<filled>

25http://www.w3.org/TR/voicexml20/.

302 V. Ramanarayanan et al.

http://www.w3.org/TR/voicexml20/

<var name¼"lastresult" expr¼"’<lastresult>’"/>
<submit

next¼"/7703/-/next?Action_216121ee52ce43378ca2e014b92f71b4¼
success.filled"
method¼"post" namelist¼"A_try_peanuts last result"/>

</filled>
<noinput></noinput>
<nomatch></nomatch>
<catch event¼"connection.disconnect.hangup"></catch>
</field>

<catch event¼"externalmessage.cpa.machine"></catch>
<catch event¼"externalmessage.cpa.beep"></catch>
<catch event¼"externalmessage.cpa.machine"></catch>
</form>
<catch event¼"connection.disconnect.hangup"></catch>
</vxml>

However, developers of dialog applications who are not familiar with the VXML

markup language may prefer to define dialog flows using a simpler, flowchart-based

GUI instead of manual coding. Therefore we have integrated the OpenVXML toolkit

into the HALEF framework. OpenVXML is an open-source software package26

written in Java that allows designers to author dialog workflows using an easy-to-use

graphical user interface, and is available as a plugin to the Eclipse IntegratedDeveloper

Environment.27 OpenVXML allows designers to specify the dialog workflow as a

flowchart, including details of specific grammar files to be used by the speech recog-

nizer and text-to-speech prompts that need to be synthesized. In addition, they can

insert “Script” blocks of Javascript code into the workflow that can be used to perform

simple processing steps, such as natural language understanding on the outputs of the

speech recognition. The entire workflow can be exported to a Web Archive (or WAR)

application, which can then be deployed on a web server running Apache Tomcat.

Figure 13.2 shows a simple OpenVXML dialog flow where callers are required to

accept or decline an offer of food in a pragmatically appropriate manner. This example

can be compared to the example VXML page shown in the earlier code listing to

illustrate the differences between designing a dialog directly using VXML or through

the OpenVXML authoring tool. The VXML code therein corresponds to the first block

in Fig. 13.2 in which a system prompt is played (“Would you like some of these

chocolate covered peanuts? . . .”) By double-clicking on this block in the OpenVXML

tool, the designer specifies the prompt that should be played or generated by the TTS

engine (as indicated in the <prompt> element in the VXML page), the grammar that

should be used to recognize the utterance by the ASR system (corresponding to the

<grammar> element in theVXMLpage), aswell as a variety of systemparameters, such

as the timeout variable. This GUI-based representation in OpenVXML is then trans-

lated into VXML pages at run-time so that it can be interpreted by the voice browser.

26https://github.com/OpenMethods/OpenVXML.
27www.eclipse.org.

13 Assembling the Jigsaw. . . 303

https://github.com/OpenMethods/OpenVXML
http://www.eclipse.org

The aforementioned item was designed to measure two primary constructs of

English language proficiency: (1) task comprehension, i.e., correctly understanding

the stimulus material and the questions being asked and (2) pragmatic appropriate-

ness, i.e., the ability to provide a response that is appropriate to the task and the

communicative context. The caller dials into the system and then proceeds to

answer one or more questions, which can either be stored for later analysis (so no

online recognition and natural language understanding is needed) or processed in

the following manner: depending on the semantic class of the callers’ answer to
each question (as determined by the output of the speech recognizer and the natural

language understanding module), they are redirected to the appropriate branch of

the dialog tree and the conversation continues until all such questions are answered.

13.4.1.2 Voice Grammar and Language Model Standards

Grammars are used by speech recognizers to determine what a speech recognizer

should listen for, and so describe the utterances a user may say. This section

describes the standard grammar formats (JGSF, ARPA, WFST, and SRGS) in use

by the spoken dialog community. Note that while currently HALEF only includes

support for the first three, we plan to include support for this in the future.

1. JGSF:
The JSpeech Grammar Format (JSGF28) is a platform- and vendor-independent

textual representation of grammars for use in ASR. It adopts the style and

Contin Continue ontinue

POSITIVE_APPROPRIATE

POSITIVE_INAPPROPRIATE

NEGATIVE_APPROPRIATE

NEGATIVE_INAPPROPRIATE

Continue

Continue

Continue

NO_MATCHContinue

Begin

Would you like
some of these
chocolate covered
peanuts? I always
leave them on the
desk here for
everyone to enjoy.

try_peanuts.script Branch

Return

You're welcome.

Okay.

No problem. If you
change your mind,
feel free to stop by
my desk anytime.

Oh, okay.

I'm sorry, I didn't
catch that. Would
you like some of
these chocolate
covered peanuts?

Fig. 13.2 Example design of a workplace pragmatics-oriented application targeted at non-native

speakers of English where the caller has to accept or decline an offer of food (peanuts, in this case)

in a pragmatically appropriate manner

28JSGF (see http://www.w3.org/TR/jsgf/) is technically not a W3C standard. It is a member

submission and is published as a W3C note.

304 V. Ramanarayanan et al.

http://www.w3.org/TR/jsgf/

conventions of the Java Programming Language in addition to use of traditional

grammar notations. For example, the following JSGF grammar accepts one of

two speech recognition outputs, “yes” or “no.”

#JSGF V1.0;
grammar yesno;
public <yesno> ¼ yes | no;

2. ARPA:
Although not a W3C recommendation, the Advanced Research Projects Agency

(ARPA) format was one of the first popular ones that allowed specification of

statistical grammars (also called language models or LMs) such as finite state

automata (FSA) or statistical n-gram models. The language model is a list of

possible word sequences. Each sequence listed has an associated statistically

estimated language probability tagged to it. The following listing shows an

example of a yes/no ARPA grammar.

This is an example ARPA-format language model file
\data\
ngram 1¼4
ngram 2¼4
ngram 3¼4

\1-grams:
-0.7782 </s> -0.1761
-0.3010 <s> -0.5228
-0.7782 no -0.3978
-0.7782 yes 0.0000

\2-grams:
-0.1761 </s> <s> -0.0791
-0.3978 <s> no 0.1761
-0.3978 <s> yes -0.2217
-0.1761 no </s> 0.1761

\3-grams:
-0.3010 </s> <s> yes
-0.3010 <s> no </s>
-0.3010 <s> yes </s>
-0.3010 no </s> <s>

\end\

3. WFST:
Speech and dialog system developers nowadays are increasingly moving to the

Weighted Finite State Transducer (WFST) representation to write statistical

grammars for their applications owing to its simplicity and power, even though

it is not an official W3C recommendation. WFSTs are automata where each

transition has an input label, an output label, and a weight. The weights can be

used to represent the cost of taking a particular transition. The following shows an

example of aWFST grammar (in text form) that accepts the words “yes” or “no.”

13 Assembling the Jigsaw. . . 305

arc format: src dest ilabel olabel [weight]
final state format: state [weight]
lines may occur in any order except initial state must be first line
#unspecifiedweightsdefaultto0.0(forthelibrary-defaultWeighttype)
0 1 yes yes 0.5
0 1 no no 1.5
1 2.0
EOF

4. SRGS:
The Speech Recognition Grammar Specification (SRGS29) allows the grammar

syntax to be written in one of two forms—an Augmented Backus-Naur Form

(ABNF) or an Extensible Markup Language (XML) form—which are semanti-

cally mappable to allow transformations between themselves. Note that although

the current version of HALEF does not include support for SRGS grammars, we

plan to include this in the future. The following code snippet shows how a yes/no

grammar can be defined in the ABNF format of SRGS.

#ABNF 1.0 UTF-8;
language en-US; //use the American English pronunciation dictionary.
mode voice; //the input for this grammar will be spoken words.
root $yesorno;
$yes ¼ yes;
$no ¼ no;
$yesorno ¼ $yes | $no;

13.4.2 Communication Standards

WebRTC30 or Web Real-Time Communication is a free, open W3C project that

provides browsers and mobile applications with Real-Time Communications

(RTC) capabilities via simple APIs. It defines a set of ECMAScript APIs in

WebIDL to allow media to be sent to and received from another browser or device

implementing the appropriate set of real-time protocols. As explained earlier,

HALEF leverages the Verto protocol implemented in the Freeswitch video tele-

phony server that is WebRTC-based to transmit video and audio data between the

user and the dialog system.

The Media Resource Control Protocol Version 2 (MRCPv2) is a standard

communication protocol for speech resources (such as speech recognition engines,

speech synthesis engines, etc.) across VoIP networks which is designed to allow a

client device to control media processing resources on the network.

29http://www.w3.org/TR/speech-grammar/.
30See http://www.w3.org/TR/webrtc/ and https://webrtc.org/.

306 V. Ramanarayanan et al.

http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/webrtc/
https://webrtc.org/

13.5 Other Useful Standards for Multimodal
Dialog Systems

There are several other useful standards that we are exploring for potential future

integration into the HALEF framework. This section takes a closer look at some of

these standards.

13.5.1 EMMA

The Extensible MultiModal Annotation (EMMA31) markup language is intended

for use by systems that provide semantic interpretations for a variety of inputs,

including but not necessarily limited to speech, natural language text, GUI, and ink

input. The language is focused on annotating single inputs from users, which may

be either from a single mode or a composite input combining information from

multiple modes, as opposed to information that might have been collected over

multiple turns of a dialog. The language provides a set of elements and attributes

that are focused on enabling annotations on user inputs and interpretations of those

inputs. EMMA would be a very useful standard to integrate into the HALEF

framework given the focus on multimodal dialog, and hence this is one standard

we are looking to include support for in HALEF going forward.

13.5.2 EmotionML

Emotion Markup Language or EmotionML,32 as the name suggests, is “intended to

be a standard specification for processing emotions in applications such as: (1) man-

ual annotation of data; (2) automatic recognition of emotion-related states from user

behavior; and (3) generation of emotion-related system behavior.” Given the

importance and ubiquity of emotions in dialog interactions and the subsequent

requirement for automated analysis and processing of emotional state data, devel-

oping systems that are compatible with EmotionML would extend the accessibility

and generalizability of those systems.

31http://www.w3.org/TR/emma.
32https://www.w3.org/TR/emotionml/.

13 Assembling the Jigsaw. . . 307

http://www.w3.org/TR/emma
https://www.w3.org/TR/emotionml/

13.5.3 SCXML

State Chart XML (SCXML33) is, according to the spec, “a general-purpose event-

based state machine language that combines concepts from Call Control eXtensible

Markup Language (CCXML) and Harel State Tables.” CCXML34 is “an event-

based state machine language designed to support call control features in Voice

Applications (including, but not limited to, VXML). The CCXML 1.0 specification

defines both a state machine and event handing syntax and a standardized set of call

control elements.” Harel State Tables are a state machine notation that was devel-

oped by the mathematician David Harel [8]. They offer a clean and well-thought

out semantics for sophisticated constructs such as parallel states. Although we do

not require an additional state machine language as such in the current version of

HALEF for smooth function, including support for SCXML in HALEF would lead

to an expanded and more versatile dialog functionality, allowing one to specify

dialog trees as generic state machines.

13.5.4 SSML

SSML, or Speech Synthesis Markup Language,35 is an XML-based markup lan-

guage that provides users with a standardized method for controlling different

aspects of the speech output generated by a text-to-speech synthesizer. SSML

allows one to alter prosody attributes such as rate, pitch, and volume. It also

includes support for inserting pauses of any length, changing the speaking voice

while reading, and controlling many other aspects of how the text is read by the

synthetic voice.

13.6 Conclusions and Outlook

We have presented the current state of the art of the HALEF system—a fully open-

source, modular, and standards-compliant spoken dialog system that can be

interfaced with a number of potential back-end applications. We have illustrated

the various open and W3C recommendations such as VoiceXML, WebRTC, and

MRCPv2, among others, associated with different parts of the HALEF operational

flow, demonstrating how these help in seamlessly assembling multiple components

into a fully functional multimodal dialog system. The HALEF sourcecode is open-

source and accessible online.36

33https://www.w3.org/TR/scxml/.
34https://www.w3.org/TR/ccxml/.
35https://www.w3.org/TR/speech-synthesis/.
36http://halef.org.

308 V. Ramanarayanan et al.

https://www.w3.org/TR/scxml/
https://www.w3.org/TR/ccxml/
https://www.w3.org/TR/speech-synthesis/
http://halef.org

There remain many exciting directions for future research and development. For

instance, the current HALEF implementation allows for audio and video input from

the user and can synthesize output audio, but does not support full-fledged multi-

modal synthesis. In the future we would like to be able to incorporate support for

video and emotion generation, as well as the control of avatars and simulations.

Additionally, we would like to incorporate W3C recommendations such as EMMA

and EmotionML into the HALEF architecture.

References

1. Baggia, P., Burnett, D., Marchand, R., & Matula, V. (2016, to appear). The role and impor-

tance of speech standards. In Multimodal interaction with W3C standards: Towards natural
user interfaces to everything. Springer.

2. Baumann, T., Buß, O., & Schlangen, D. (2010). Inprotk in action: Open-source software for
building German-speaking incremental spoken dialogue systems. Fachbereich Informatik:

Hamburg.

3. Bohus, D., & Horvitz, E. (2010). Facilitating multiparty dialog with gaze, gesture, and speech.

In International Conference on Multimodal Interfaces and the Workshop onMachine Learning
for Multimodal Interaction (ICMI-MLMI’10), November 8–12, 2010, Beijing, China (p. 5).

ACM.

4. Bohus, D., Raux, A., Harris, T., Eskenazi, M., & Rudnicky, A.: Olympus: An open-source

framework for conversational spoken language interface research. In Proceedings of the
HLT-NAACL, Rochester (2007).

5. Damnati, G., Béchet, F., & De Mori, R. (2007). Experiments on the France telecom 3000 voice

agency corpus: Academic research on an industrial spoken dialog system. In Proceedings of
the Workshop on Bridging the Gap: Academic and Industrial Research in Dialog Technolo-
gies, NAACL-HLT, Rochester, NY, April 2007 (pp. 48–55). Association for Computational

Linguistics.

6. DeMara, R. F., Gonzalez, A. J., Jones, S., Johnson, A., Hung, V., Leon-Barth, C., et al. (2008).

Towards interactive training with an avatar-based human-computer interface. In The Interser-
vice Industry Training, Simulation & Education Conference, ITSEC (December 2008).
Citeseer.

7. Gorostiza, J. F., Barber, R., Khamis, A. M., Pacheco, M., Rivas, R., Corrales, A., et al. (2006).

Multimodal human-robot interaction framework for a personal robot. In The 15th IEEE
International Symposium on Robot and Human Interactive Communication, 2006. ROMAN
2006 (pp. 39–44). Hatfield, UK: IEEE.

8. Harel, D., & Politi, M. (1998). Modeling reactive systems with statecharts: The STATEMATE
approach. New York: McGraw-Hill, Inc.

9. Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A., et al. (2013). All

together now. In Proceedings of the 13th International Conference on Intelligent Virtual
Agents, IVA 2013, Edinburgh, UK, August 29–31, 2013 (pp. 368–381). Berlin/Heidelberg:

Springer.

10. Hastie, H. W., Johnston, M., & Ehlen, P. (2002). Context-sensitive help for multimodal

dialogue. In Proceedings of the 4th IEEE International Conference on Multimodal Interfaces
(p. 93). Washington, DC, USA, IEEE Computer Society.

11. Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., et al. (2002).

Match: An architecture for multimodal dialogue systems. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL), Philadelphia, July 2002

(pp. 376–383).

13 Assembling the Jigsaw. . . 309

12. Jurčı́ček, F., Dušek, O., Plátek, O., & Žilka, L. (2014). Alex: A statistical dialogue systems

framework. In Proceedings of the 17th International Conference on Text, Speech and Dia-
logue, TSD 2014, Brno, Czech Republic, September 8–12, 2014 (pp. 587–594). Switzerland:

Springer.

13. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU

SPHINX-4 speech recognition system. In Proceedings of the ICASSP’03, Hong Kong, China.

14. Lison, P. (2013). Structured probabilistic modelling for dialogue management. Ph.D. thesis,
University of Oslo.

15. López-Cózar, R., Callejas, Z., Griol, D., & Quesada, J. F. (2015). Review of spoken dialogue

systems. Loquens, 1(2), e012.
16. Minessale, A., & Schreiber, D. (2012). FreeSWITCH Cookbook. Packt Publishing Ltd.

17. Neßelrath, R., & Alexandersson, J. (2009). A 3D gesture recognition system for multimodal

dialog systems. In 6th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue
Systems (pp. 46–51).

18. Pieraccini, R., & Huerta, J. (2005). Where do we go from here? Research and commercial

spoken dialog systems. In 6th SIGdial Workshop on Discourse and Dialogue.
19. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al. (2011). The

Kaldi speech recognition toolkit. In Proceedings of the ASRU, HI, USA.
20. Prylipko, D., Schnelle-Walka, D., Lord, S., & Wendemuth, A. (2011). Zanzibar openIVR: An

open-source framework for development of spoken dialog systems. In Proceedings of the TSD,
Pilsen, Czech Republic.

21. Ramanarayanan, V., Suendermann-Oeft, D., Ivanov, A., & Evanini, K. (2015). A distributed

cloud-based dialog system for conversational application development. In 16th Annual
SIGdial Meeting on Discourse and Dialogue (SIGDIAL 2015), Prague, Czech Republic.

22. Schnelle-Walka, D., Radomski, S., & Mühlhäuser, M. (2013). JVoiceXML as a modality

component in the W3C multimodal architecture. Journal on Multimodal User Interfaces 7(3),
183–194.

23. Schr€oder, M., & Trouvain, J. (2003). The German text-to-speech synthesis system MARY:

A tool for research, development and teaching. International Journal of Speech Technology,
6(4), 365–377.

24. Suendermann-Oeft, D., Ramanarayanan, V., Teckenbrock, M., Neutatz, F., & Schmidt,

D. (2015). HALEF: An open-source standard-compliant telephony-based modular spoken

dialog system—A review and an outlook. In Proceedings of the IWSDS Workshop 2015,
Busan, South Korea.

25. Swartout, W., Artstein, R., Forbell, E., Foutz, S., Lane, H.C., Lange, B., et al. (2013). Virtual

humans for learning. AI Magazine, 34(4), 13–30.
26. Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec, P., Bronnenkant, K., et al. (2010).

Ada and grace: Toward realistic and engaging virtual museum guides. In Proceedings of the
10th International Conference on Intelligent Virtual Agents, IVA 2010, Philadelphia, PA,
USA, September 20–22, 2010. Lecture Notes in Computer Science (pp. 286–300).

Berlin/Heidelberg: Springer.

27. Taylor, P., Black, A., & Caley, R. (1998). The architecture of the festival speech synthesis

system. In Proceedings of the ESCA Workshop on Speech Synthesis, Jenolan Caves.

28. van Meggelen, J., Smith, J., & Madsen, L. (2009). Asterisk: The future of telephony. Sebas-
topol: O’Reilly.

29. Yu, Z., Bohus, D., & Horvitz, E. (2015). Incremental coordination: Attention-centric speech

production in a physically situated conversational agent. In 16th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (p. 402).

30. Yu, Z., Ramanarayanan, V., Mundkowsky, R., Lange, P., Ivanov, A., Black, A.W., et al.

(2016). Multimodal HALEF: An open-source modular web-based multimodal dialog frame-

work. In Proceedings of the IWSDS Workshop 2016, Saariselka, Finland.

310 V. Ramanarayanan et al.

	13: Assembling the Jigsaw: How Multiple Open Standards Are Synergistically Combined in the HALEF Multimodal Dialog System
	13.1 Introduction
	13.2 The HALEF Dialog System
	13.3 Operational Flow Schematic
	13.4 Standards Used in HALEF
	13.4.1 Voice Standards
	13.4.1.1 VoiceXML
	13.4.1.2 Voice Grammar and Language Model Standards

	13.4.2 Communication Standards

	13.5 Other Useful Standards for Multimodal Dialog Systems
	13.5.1 EMMA
	13.5.2 EmotionML
	13.5.3 SCXML
	13.5.4 SSML

	13.6 Conclusions and Outlook
	References

