
Chapter 11

Standard Portals for Intelligent Services

Deborah A. Dahl

Abstract Some multimodal interpretation services natively support W3C multi-

modal standards, but most still use their own proprietary formats and protocols.

This makes it much more difficult for developers to use different systems because

they have to learn and program to a new API for each vendor. This paper describes

how standards-based servers can wrap proprietary systems in the W3C MMI

Architecture and EMMA 2.0 to allow developers to interact with modality inter-

pretation services in a standard way, even if the service that they are using does not

natively support the standards.

11.1 Introduction

Multimodal technology that supports forms of input (modalities) such as natural

language processing, speech recognition, handwriting recognition, and object rec-

ognition from images is becoming increasingly powerful and is being employed in a

wide variety of useful applications. However, it is currently typical for each vendor

to have its own proprietary application programming interface (API). Because of

this, developing multimodal applications requires mastering a different API for

each vendor. Furthermore, these API’s differ for different vendors’ versions of each
modality. The result is that developing multimodal applications becomes unnec-

essarily complex and difficult. Developers require extensive expertise and experi-

ence in order to master all of these API’s. Acquiring this expertise is especially

difficult for developers at small companies. This situation slows down the rate at

which multimodal applications can be implemented and makes them more expen-

sive than they would be if API’s were uniform.

Standards such as theW3CMultimodal Architecture and Interfaces specification

(MMI Architecture) [1–3] define a generic modality API, but the adoption of this

standard across many vendors and modalities will take time. In the interim, an

D.A. Dahl (*)

Conversational Technologies, Plymouth Meeting, PA, USA

e-mail: dahl@conversational-technologies.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_11

257

mailto:dahl@conversational-technologies.com

alternative approach for developers who would like to take advantage of the

standards would be to use portals that reformat proprietary results in standard

formats.

By providing a standard, generic, modality, and vendor independent API in the

form of the MMI Architecture, standard portals greatly simplify the learning

process for developers. This approach is also much more extensible to new modal-

ities than proprietary approaches. Furthermore, it makes it easier to change modal-

ity vendors if another vendor offers a superior product.

11.2 Overview of a Portal

As stated above, multimodal technology that supports such capabilities as natural

language processing, speech recognition, handwriting recognition, and object rec-

ognition from images is becoming increasingly powerful and is being used in

many applications. There are many products available in this space. Just looking

at natural language processing offerings alone, some examples are wit.ai

(Facebook) [4], api.ai [5], Microsoft LUIS (Language Understanding Intelligent

System) [6], and Amazon Alexa Skills Kit [7], to name just a few of the systems

available in 2016. Similarly, there are a number of API’s for emotion recognition,

including affectiva [8], EmoVu [9], Microsoft Emotion Recognition [10], Kairos [11],

and nViso [12].

However, currently all of these systems have their own proprietary API’s.
Because of this, developing multimodal applications requires mastering a different

API for each modality, and each vendor or even multiple API’s for one modality, if

the application supports multiple modality services.

This problem can be addressed through a standard multimodal web service

portal. A standard portal can provide access to many types of modalities through

a standard API; specifically, the W3C Multimodal Architecture and Interfaces

(MMI Architecture) specification [1–3], as shown in Fig. 11.1. A standard portal

serves as a layer of middleware between client applications and modalities. Devel-

opers of client applications only need to code to the standard MMI Architecture and

the multimodal web service portal will provide the interface to the vendor-specific

API, shielding developers from the details of the proprietary API and simplifying

development. The standard portal is in fact an MMI Architecture Modality Com-

ponent, communicating with clients using MMI Architecture Life Cycle events. A

Client Portal Modality serviceProprietary APIStandard API

Modality Component

Interaction Manager

Fig. 11.1 Portal wrapping a standard API around a proprietary API

258 D.A. Dahl

uniform API also makes it significantly easier to integrate, or fuse, inputs from

multiple components. For example, it would be very useful to integrate speech and

geolocation inputs in order to respond to user questions such as “where is the

nearest Chinese restaurant” or “How far am I from home?” It is easy to see that as

mobile devices add capabilities the problem of integrating multiple API’s becomes

very complex very quickly. While the problem of integrating inputs from multiple

device capabilities is to some extent addressed by standard device API’s such as the
Media Capture and Streams API [13] these API’s are still modality-specific, so that

cross-modality integration of inputs is still up to the developer.

11.3 The Standard API

11.3.1 MMI Architecture

The standard API discussed in this paper consists of two components:

1. The MMI Architecture Life Cycle events for communication between an Inter-

action Manager (IM) and the Modality Components (MC’s) that support the
application.

2. Extensible Multimodal Annotation markup (EMMA 2.0) [14–16] for

representing user input and system output.

TheMMI Architecture includes both components and events. The components are

(1) the Interaction Manager (IM), which coordinates the interaction, and (2) Modality

Components (MC’s). MC’s both interpret multimodal inputs (from users as well as

sensors) and create multimodal outputs. Modality Components communicate only

with the Interaction Manager, they do not communicate directly with each other.

In addition to the components, the MMI Architecture also includes a set of high

level Life Cycle events for communication between the IM and the MC’s. Life
Cycle events focused on controlling components include StartRequest,

PauseRequest, ResumeRequest, and CancelRequest. These are messages sent

from the IM to MC’s. MC’s, upon receiving one of these messages, respond with

Response events, such as StartResponse and PauseResponse, for acknowledging

receipt of the Request events and reporting errors. In addition, MC’s can send a

DoneNotification event when the requested processing is completed. Either the IM

or an MC can also send an ExtensionNotification event at any time.

ExtensionNotification events can contain arbitrary, application-specific data. No

specific syntax is required for Life Cycle events, but XML is used in the examples

in the specification, and will be used in this chapter.

Every Life Cycle event can optionally contain a Data field with additional

information about the event. In the cases where the event pertains to user input or

system output, the Data field contains Extensible Multimodal Annotation (EMMA)

[14–16] data, which represents the user input and/or system output.

11 Standard Portals for Intelligent Services 259

11.3.2 EMMA

EMMA is an XML language that is especially appropriate for representing seman-

tically complex information. The semantics of the information itself is contained in

the <emma:interpretation> element for user input or the <emma:
output> element for system output. In addition to the actual semantics of the

information, EMMA is also able to represent a rich set of metadata related to the

context of the input or output. EMMA metadata includes, for example, processor

confidence, timestamps, alternatives (nbest), medium and mode, the process that

produced the EMMA result, tokens of input and pointers to the original signal (such

as an audio file or image), among many other types of metadata.

In effect, the standard API referred to in this chapter consists of MMI Life Cycle

events containing EMMA to represent interpreted inputs from users or sensors and

system outputs.

11.4 Details of Multimodal Interaction with the Portal

An example architecture of a standard multimodal portal is shown in Fig. 11.2.

Interaction is initiated in the client-side components (1) by the user. Interaction

modalities may include, for example, speech, typing, or mouse input, but may

potentially include many other forms of input. The client-side components include

application logic (2) implemented, for example, in HTML and JavaScript in

5 MMI Architecture
Life Cycle Events + other markup, e.g.
EmotionML , InkML, EMMA

9 Third Party
Web Service

6 Portal Server
MMI Architecture
Modality Components

10 Local
Service

4 Transport -- HTTP,
Web Sockets 12 Handwriting recognition

13 Biometrics

11 Natural Language processing

14 Speech recognition

Examples of Modality Component Services

2 Client application code
(web browser, mobile app,
desktop application,
server process)

3 MMI Architecture
Interaction Manager

Standard Multimodal Web Service Portal

8 Third Party
API’s

7 Logging and archiving

Other modality web
services

1 Client-side components
(browser or smartphone app)

Fig. 11.2 Architecture of an MMI portal

260 D.A. Dahl

browser-based implementations. The MMI Architecture Interaction Manager

(3) sends over a transport mechanism such as HTTP (4) an MMI Architecture

compliant Life Cycle event (5).

The Life Cycle event instructs the Portal Server (6) to process the user’s input as
required by the nature of the input (natural language understanding for language

input, for example). (7) Logging and archiving of Life Cycle events may optionally

occur at any point in processing.

Most critically, once the Portal Server has determined which third party services

(if any) are required to process the event, it creates an API call (8) to that service (9).

Although these API calls themselves may be proprietary, knowledge of any pro-

prietary details is restricted to the Portal Server and is therefore isolated from the

application developer, who only has to be concerned with sending and receiving

standard MMI Architecture Life Cycle events. Within this architecture, it is also

possible for services to be provided locally, within the portal (10).

Examples of possible (remote or local) modality services include but are not

limited to natural language processing (11), handwriting recognition (12), biometric

processing (13), and speech recognition (14). Once the appropriate service is

contacted, its result is transmitted back to the Portal Server (6), reformulated into

standard Life Cycle events (5), and sent back to the client-side components (1),

specifically to the client Interaction Manager (3). Finally, application-specific code in

the client (2) executes the appropriate action as determined by the processing result.

11.5 Implementing a Portal

Developing a standard portal requires developing several components. Going back

to Fig. 11.2, the first component (2) is an application using client-side code (running

in a web browser or as native code) which captures user input in modalities that are

appropriate to the application. For example, a hand-held translation system requires

speech to be captured for speech to speech translation, or keystrokes to be captured

for translation from typing.

In addition, the client-side code will include functionality that controls the

components with standard MMI Architecture Life Cycle events (that is, it will

include an Interaction Manager (3)). The Interaction Manager can be implemented

as a reusable library (for example, a Javascript library for browser clients) that can

be used in many applications. SCXML [17, 18] is a suggested choice for Interaction

Managers in the MMI Architecture. SCXML as a choice for Interaction Managers is

especially efficient because the SCXML interpreter itself need only be implemented

once for each platform, with the Interaction Managers for specific applications

being implemented in SCMXL markup.

The Portal Server, which processes the Life Cycle events receives events using a

standard transport such as HTTP [19] or Web Sockets [20, 21] (see Fig. 11.3 for an

example of an actual HTTP POST message). The Portal Server is the key to the

portal, because it serves to isolate proprietary API’s (8) from the developer and

enables the developer to access modality component services (11–14) entirely

11 Standard Portals for Intelligent Services 261

through standard mechanisms. Implementing the Portal Server requires developing

code that can (1) interpret MMI Life Cycle events, (2) determine what services are

being requested, (3) translate the user’s request to the native API used by the

service, (4) call the required services, and (5) reformat the results back into standard

MMI Life Cycle events. In addition, a Portal Server can optionally perform other

useful functions such as logging and archiving the event traffic, providing infor-

mation as to what services are available, acting as a security gateway, format

conversions, and managing user credentials.

The Interaction Manager (3) and the Portal Server (6) are essential parts of the

portal. The Interaction Manager creates the Life Cycle events from the user’s input
and interprets the Life Cycle events sent back from the Portal Server. A transport

mechanism (4) is required for the portal, but it is not necessary for the developer to

implement the transport mechanism because a number of standard transport mech-

anisms are already available and are appropriate for use in this architecture,

including HTTP or WebSockets. The Portal Server can be used on its own, without

the ability to access third party components (8, 9, 11–14), just using local services

(10); however, the portal is far more useful if translation from standard Life Cycle

events to third party API’s (8) is implemented for accessing existing third party

services. In addition, logging and archiving services (7), while not necessary, are

extremely useful in production systems for monitoring usage and debugging prob-

lems. Another aspect of a portal that would be very useful, although not required, is

a way for clients to query the Portal Server in order to discover available services.

Discovery and Registration functionality of this kind could be implemented using

the W3C Discovery and Registration approach discussed in [22–24].

POST https://proloquia-nlservice.rhcloud.com/rest/processmessage HTTP/1.1
Host: proloquia-nlservice.rhcloud.com
Connection: keep-alive
Content-Length: 725
Origin: https://proloquia-nlservice.rhcloud.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/47.0.2526.106 Safari/537.36
Content-Type: text/xml
Accept: */*
Referer: https://proloquia-nlservice.rhcloud.com/understanding.html
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8

<mmi:StartRequest xmlns:mmi="http://www.w3.org/2008/04/mmi-arch" mmi:Context="nlClient0395"
mmi:RequestID="requestID0249" mmi:Source="ctNLClient"
mmi:Target="ctNLServer"><mmi:Data><function>understanding</function><emma:emma
xmlns:emma="http://www.w3.org/2003/04/emma" version="1.1"><emma:interpretation id="initial1"
emma:function="understanding" emma:tokens="put a couple cans of tomato soup on the
shopping list" emma:medium="tactile" emma:mode="keys" emma:verbal="true" emma:device-
type="keyboard" emma:end="1452629301869" emma:lang="en-US" emma:expressed-
through="text"><emma:literal>put a couple cans of tomato soup on the shopping
list</emma:literal></emma:interpretation></emma:emma></mmi:Data></mmi:StartRequest>

Fig. 11.3 HTTP POST request with MMI StartRequest event for “put a couple cans of tomato

soup on the shopping list”

262 D.A. Dahl

11.6 An Example: Home Control

The Internet of Things (IoT) has enormous potential for adding convenience,

comfort, safety, and efficiency to everyday life as well as for supporting larger

scale enterprise applications. However, there will soon be too many items in the IoT

to realistically expect conventional graphical interfaces to support all the ways in

which users might want to interact with them. For this reason, natural language

using a standard API will become very important for these types of interactions.

This section discusses an IoT example in the area of home control.

Home control is a common use case for the IoT. Home control includes control

of lighting, appliances, heating and air conditioning, entertainment and security,

among many other possibilities. Even limiting consideration to items that users will

want to interact with in the home still leaves the possibility of interaction with

hundreds of devices. If each device, or even each vendor of a connected home

system, has its own API, this will quickly become unmanageable for developers

who wish to integrate many devices into an application. Here we will describe an

MMI Architecture approach for controlling lighting with a standard portal.

Figure 11.4 shows a web page with a user interface for natural language control

of lighting. The user can click “Start Recognition” to start recognition and speak, or

the user can type the request into a text box. In this case the user has typed “It’s dark
in here.” The web page Javascript wraps the input in EMMA and the StartRequest

LifeCycle event to produce the event shown in Fig. 11.5. Application-specific

information is contained in “<mmi:Data>”. In this example there is an

application-specific field “function” which determines which function the data

pertains to, in this case “lightControl”. The user input itself, expressed in

EMMA, is also contained in the “<mmi:Data>” field.

Fig. 11.4 Web page for home control

11 Standard Portals for Intelligent Services 263

The StartRequest event is sent to the portal via HTTP POST and the portal is

polled using AJAX [25] for information returned in response to the StartRequest.

The first event returned from the portal is a StartResponse which simply acknowl-

edges that the StartRequest was received. The portal then creates an API request to

a wit.ai [4] natural language processing endpoint which has been trained to under-

stand home control requests. It then sends the native request to the wit.ai service

endpoint. Wit.ai interprets “it’s dark in here” to mean that the user wants to turn on

the light. The wit.ai endpoint returns natural language understanding results in a its

own proprietary JSON format, as shown in Fig. 11.6. However, since the web client

Interaction Manager expects MMI Architecture Life Cycle events, the portal will

reformat the proprietary result into standard EMMA, and place the EMMA into the

Data field of a Life Cycle event. The resultingDoneNotification event which is sent

back to the client is shown in Fig. 11.7, with the actual interpretation boxed and in

bold (see [14, 16] for details of the EMMA XML format).

Comparing the native API result in Fig. 11.6 with the MMI Architecture/EMMA

result in Fig. 11.7, we can note that the semantic information contained in the result

is the same—“it’s dark in here” is interpreted as “turn the light on.” Both formats

also include confidence information. The EMMA result contains additional meta-

data, including timestamps, the language of the input, the process that produced the

result, and information about the modality of the input (emma:mode¼”keys”).
While some of this information is optional in EMMA, including the richer metadata

can become very important for debugging and tuning large-scale, enterprise

<mmi:StartRequest xmlns:mmi="http://www.w3.org/2008/04/mmi-arch"
mmi:Context="nlClient0515"
mmi:RequestID="requestID1841"
mmi:Source="ctNLClient"
mmi:Target="ctNLServer">

<mmi:Data>
<function>lightControl</function>
<emma:emma xmlns:emma="http://www.w3.org/2003/04/emma" version="2.0">

<emma:interpretation
id="initial2"
emma:function="lightControl"
emma:tokens="It's dark in here"
emma:medium="acoustic"
emma:mode="voice"
emma:verbal="true"
emma:device-type="microphone"
emma:end="1451946835723"
emma:lang="en-US"
emma:expressed-through="text">
<emma:literal>It's dark in here</emma:literal>

</emma:interpretation>
</emma:emma>

</mmi:Data>
</mmi:StartRequest>

Fig. 11.5 StartRequest Life Cycle event for “it’s dark in here”

264 D.A. Dahl

applications. It is also possible to retain the complete EMMA data on the server

(where it can be used in debugging and tuning) while sending only the minimum

amount of data to a client (for use in interactive dialogs), using mechanisms that

have been newly introduced in EMMA 2.0 [16]. While in this case the native format

of wit.ai is JSON and the MMI/EMMA format is in XML, there are many software

tools available for converting between these formats.

11.7 Existing Portals

A very experimental MMI Architecture client and portal has been implemented by

the author. Please contact the author for access to the portal. This portal includes

demos of emotion recognition from language, natural language understanding, and

part of speech tagging, among others. The portal accepts MMI Architecture Life

Cycle events over HTTP with user inputs represented in EMMA. The examples in

this chapter were produced by this portal.

For emotion recognition, an EmotionML wrapper for the Microsoft Project

Oxford Emotion Recognizer is also available [26]. While not a full MMI Architec-

ture portal, it does wrap a proprietary API with a standard, EmotionML [27, 28],

which is very much in the spirit of providing standard API’s to otherwise

proprietary services.

{
"msg_id": "a81ffcef-4606-4a93-8f63-0ccf9d8a5b05",
"_text": "it's dark in here",
"outcomes": [

{
"_text": "it's dark in here",
"confidence": 0.782,
"intent": "changeState",
"entities": {

"thingType": [
{
"type": "value",
"value": "light"

}
],
"on_off": [

{
"value": "on"

}
]

}
}

]
}

Fig. 11.6 Native wit.ai JSON output

11 Standard Portals for Intelligent Services 265

11.8 Integrating Portals with Other MMI-Standards
Compliant Components

As the standards become more widely integrated into modality services, there will

be increasing native support for EMMA and the MMI Architecture. This develop-

ment will be completely compatible with the portal model. Components supporting

the standards natively will be fully interoperable with a standard portal. For

example, an application for emotion recognition might fuse results from language

Fig. 11.7 DoneNotification event for the interpretation of “it’s dark in here” as “turn the light on”

266 D.A. Dahl

and facial expressions to improve the accuracy of the emotion recognition result.

The language recognition could come from a service provided by a portal, while the

facial expression analysis could come from a service that supports the MMI

Architecture natively. Integration of information from different modalities (fusion)

would be provided by a fusion component, as shown in Fig. 11.8. Of course,

systems can include more than one standard portal, where each portal provides

different modality services.

11.9 Developing Standard Modality Components
and Portals

Given an existing modality processor (for example, handwriting recognition,

speech recognition, object recognition, or emotion recognition) developing a stan-

dard component is straightforward. Following the requirements and documentation

guidelines in [29], the developer provides access to the native capabilities of the

component through MMI Life Cycle events. Thus, the user of the component will

use a standard API call such as the one shown in Fig. 11.5, rather than the

corresponding native call, the HTTP GET message https://api.wit.ai/message?

v¼20141022&q¼it%27s%20dark%20in%20here.

Clearly, the native call is less verbose, but much of the detailed information in

the standard API call is optional. In addition, the additional standard information, if

used, can provide a great deal of detail that is valuable for logging, archiving, and

tuning applications. This kind of information is especially important in large scale

commercial applications.

Multiple modality components can be aggregated into a portal by providing a

single REST endpoint and including information in the mmi:Data field to indicate

which modality component is being requested.

client portal

Proprietary
component for
emotion
recognition from
language

Native MMI
component for
emotion
recognition from
facial
expressions

Multimodal fusion of
speech and image
results

EMMA: emma:tokens=“I
feel very angry today”

EMMA: emma:signal=“(imageURL)”

native API

EMMA/EmotionML:
category=“happy”

EMMA/EmotionML
category=“angry”

System: “I’m not sure if
you’re happy or angry. You
say you’re angry but you
look happy”

user

User: I feel
very angry
today”

Fig. 11.8 Mixing portals with MMI native components

11 Standard Portals for Intelligent Services 267

https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here
https://api.wit.ai/message?v=20141022&q=it%27s%20dark%20in%20here

11.10 Conclusions

In summary, standards-based multimodal portals can provide standard interfaces to

otherwise proprietary services, providing a way for developers to use standards

with proprietary systems.

In doing so, they provide the following advantages over proprietary approaches:

1. They reduce the need for developers to learn proprietary API’s.
2. They can foster the adoption of standards by supporting a phased implementa-

tion approach.

3. They increase vendor-independence.

4. They can simplify logging and analysis of inputs for debugging and tuning

because processing results from different vendors’ services will be in the same

format.

5. They simplify adding new modalities to an existing application because inputs

from different modalities will be in the same format.

6. They simplify integration of inputs from components using the MMI Architec-

ture API’s natively with information produced by proprietary systems.

References

1. Barnett, J., Bodell, M., Dahl, D. A., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

architecture and interfaces. World Wide Web Consortium. http://www.w3.org/TR/mmi-arch/.

Accessed 20 Nov 2012.

2. Dahl, D. A. (2013). The W3C multimodal architecture and interfaces standard. Journal on
Multimodal User Interfaces, 1–12 (2013). doi:10.1007/s12193-013-0120-5.

3. Barnett, J. (2016). Introduction to the multimodal architecture. In D. Dahl (Ed.), Multimodal
interaction with W3C standards: Towards natural user interfaces to everything. New York,

NY: Springer.

4. wit.ai (2015). wit.ai. https://wit.ai/. Accessed 17 Mar 2015.

5. api.ai (2015). api.ai. http://api.ai/. Accessed 17 Mar 2015.

6. Microsoft (2015). Language Understanding Intelligent Service (LUIS). Microsoft. http://www.

projectoxford.ai/luis. Accessed 5 June 2015.

7. Amazon (2016). Alexa Skills Kit. Amazon. https://developer.amazon.com/public/solutions/

alexa/alexa-skills-kit. Accessed 6 Jan 2016.

8. affectiva (2016). Affdex emotion sensing and analytics. affectiva. http://www.affectiva.com/

solutions/apis-sdks/. Accessed 11 Jan 2016.

9. EmoVu (2016). EmoVu Cloud API. Eyeris. http://emovu.com/e/developers/api/. Accessed

12 Jan 2016.

10. Microsoft (2016). Project oxford emotion recognition. Microsoft. https://www.projectoxford.

ai/demo/emotion. Accessed 12 Jan 2016.

11. Kairos (2016). Emotion analysis API. Kairos. https://www.kairos.com/emotion-analysis-api.

Accessed 11 Jan 2016.

12. nViso (2016). nViso emotion recognition. nViso. http://www.nviso.ch/index.html. Accessed

11 Jan 2016.

13. Burnett, D., Bergkvist, A., Jennings, C., & Narayanan, A. (2015). Media capture and streams
(14th ed.). Boston, MA: World Wide Web Consortium.

268 D.A. Dahl

http://www.w3.org/TR/mmi-arch/
http://dx.doi.org/10.1007/s12193-013-0120-5
https://wit.ai/
http://api.ai/
http://www.projectoxford.ai/luis
http://www.projectoxford.ai/luis
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit
http://www.affectiva.com/solutions/apis-sdks/
http://www.affectiva.com/solutions/apis-sdks/
http://emovu.com/e/developers/api/
https://www.projectoxford.ai/demo/emotion
https://www.projectoxford.ai/demo/emotion
https://www.kairos.com/emotion-analysis-api
http://www.nviso.ch/index.html

14. Johnston, M. (2016). Extensible multimodal annotation for intelligent interactive systems.

In D. Dahl (Ed.),Multimodal interaction with W3C standards: Towards natural user interfaces
to everything. New York, NY: Springer.

15. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D. A., McCobb, G., et al. (2009).

EMMA: Extensible MultiModal Annotation markup language. W3C. http://www.w3.org/TR/

emma/. Accessed 9 Nov 2012.

16. Johnston, M., Dahl, D. A., Denny, T., & Kharidi, N. (2015). EMMA: Extensible MultiModal

Annotation markup language Version 2.0. World Wide Web Consortium. http://www.w3.org/

TR/emma20/. Accessed 16 Dec 2015.

17. Barnett, J. (2016). Introduction to SCXML. In D. Dahl (Ed.),Multimodal interaction with W3C
standards: Toward natural user interfaces to everything. New York, NY: Springer.

18. Barnett, J., Akolkar, R., Auburn, R. J., Bodell, M., Burnett, D. C., Carter, J., et al. (2015). State

Chart XML (SCXML): State machine notation for control abstraction. World Wide Web

Consortium. http://www.w3.org/TR/scxml/. Accessed 20 Feb 2016.

19. Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (1999). RFC

2616 hypertext transfer protocol—HTTP/1.1. Internet Engineering Task Force (IETF). https://

tools.ietf.org/html/rfc2616. Accessed 12 Jan 2016.

20. Fette, I., & Melnikov, A. (2011). RFC 6455 The WebSocket Protocol. Internet Engineering

Task Force (IETF). https://tools.ietf.org/html/rfc6455. Accessed 12 Jan 2016.

21. Hickson, I. (2012). The WebSocket API. The World Wide Web Consortium. http://www.w3.

org/TR/websockets/. Accessed 20 Nov 2012.

22. Rodrı́guez, B. H., Barnett, J., Dahl, D., Tumuluri, R., Kharidi, N., & Ashimura, K. (2015).

Discovery and registration of multimodal modality components: State handling. World Wide

Web Consortium. https://www.w3.org/TR/mmi-mc-discovery/.

23. Rodriguez, B. H., & Moissinac, J.-C. (2016). Discovery and registration—finding and inte-

grating components into dynamic systems. In D. A. Dahl (Ed.), Multimodal interaction with
W3C standards: Toward natural user interfaces to everything. New York, NY: Springer.

24. Rodriguez, B. H., Wiechno, P., Dahl, D. A., Ashimura, K., & Tumuluri, R. (2012). Registra-

tion & discovery of multimodal modality components in multimodal systems: Use cases and

requirements. World Wide Web Consortium. http://www.w3.org/TR/mmi-discovery/.

Accessed 26 Nov 2012.

25. Garrett, J. J. (2005). Ajax: A new approach to web applications. Adaptive Path. https://web.

archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/

000385.php. Accessed 14 Jan 2016.

26. Hilton, A. (2015). EmotionAPI 0.2.0. Coolfire solutions. https://github.com/Felsig/Emotion-

API. Accessed 11 Jan 2016.

27. Schr€oder, M., Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., & Zovato, E. (2014).

Emotion Markup Language (EmotionML) 1.0 World Wide Web Consortium. http://www.

w3.org/TR/emotionml/.

28. Burkhardt, F., Pelachaud, C., & Schuller, B. (2016). Emotion markup language. In D. Dahl

(Ed.), Multimodal interaction with W3C standards: Toward natural user interfaces to every-
thing. New York, NY: Springer.

29. Kliche, I., Dahl, D. A., Larson, J. A., Rodriguez, B. H., & Selvaraj, M. (2011). Best practices

for creating MMI modality components. World Wide Web Consortium. http://www.w3.org/

TR/2011/NOTE-mmi-mcbp-20110301/. Accessed 20 Nov 2012.

11 Standard Portals for Intelligent Services 269

http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/emma20/
http://www.w3.org/TR/scxml/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
https://www.w3.org/TR/mmi-mc-discovery/
http://www.w3.org/TR/mmi-discovery/
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://github.com/Felsig/Emotion-API
https://github.com/Felsig/Emotion-API
http://www.w3.org/TR/emotionml/
http://www.w3.org/TR/emotionml/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/

	Chapter 11: Standard Portals for Intelligent Services
	11.1 Introduction
	11.2 Overview of a Portal
	11.3 The Standard API
	11.3.1 MMI Architecture
	11.3.2 EMMA

	11.4 Details of Multimodal Interaction with the Portal
	11.5 Implementing a Portal
	11.6 An Example: Home Control
	11.7 Existing Portals
	11.8 Integrating Portals with Other MMI-Standards Compliant Components
	11.9 Developing Standard Modality Components and Portals
	11.10 Conclusions
	References

