
Chapter 10

SCXML on Resource Constrained Devices

Stefan Radomski, Jens Heuschkel, Dirk Schnelle-Walka,

and Max M€uhlhäuser

Abstract Ever since their introduction as a visual formalism by Harel et al. in

1987, state-charts played an important role to formally specify the behavior of

reactive systems. However, various shortcomings in their original formalization

lead to a plethora of formal semantics for their interpretation in the subsequent

years. In 2005, the W3C Voice Browser Working Group started an attempt to

specify SCXML as an XML dialect and corresponding semantic for state-charts and

their interpretation, promoted to W3C recommendation status in 2015. In the

context of multimodal interaction, SCXML derives a special relevance as the

markup language proposed to express dialog models as descriptions of interaction

in the multimodal dialog system specified by the W3C Multimodal Interaction

Working Group. However, corresponding SCXML interpreters are oftentimes

embedded in elaborate host environments, are very simplified or require significant

resources when interpreted. In this chapter, we present a more compact, equivalent

representation for SCXML documents as native data structures with a respective

syntactical transformation and their interpretation by an implementation in ANSI

C. We discuss the characteristics of the approach in terms of binary size, memory

requirements, and processing speed. This will, ultimately, enable us to gain the

insights to transform SCXML state-charts for embedded systems with very limited

processing capabilities and even integrated circuits.
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10.1 Introduction

The State-Chart eXtensible Markup Language (SCXML) is a W3C recommenda-

tion for a specific syntax and semantics of Harel state-charts [4] as a compact visual

formalism for state-transitioning systems. It was finalized in September of 2015 [6]

and is suggested in the W3C Multimodal Architecture and Interfaces recommen-

dation [1] as a possible description of interaction managers to control modality

components in a multimodal user interface. While state-charts, as a visual formal-

ism, were already proposed by Harel in 1987, deficiencies with the initial seman-

tic [5] lead to the development and scientific publication of more than 40 different

semantics in the subsequent years [3, 9].

As such, the endeavor of SCXML to standardize the syntax and semantic via

the W3C is direly needed to reestablish compatibility of the various tools and

platforms available to model and interpret Harel state-charts. However, the syn-

tactical description of SCXML as an XML dialect and several language features

implied by tests in the SCXML Implementation Report Plan (IRP) strongly

suggest an implementation via interpretation at runtime with a full XML document

object model still available. While this overall approach has been spectacularly

successful, e.g., with HTML [2] and enables considerable flexibility to dynami-

cally adapt the XML description via scripting during interpretation, it severely

limits the applicability of SCXML to platforms with sufficient computing power

and memory.

In the following sections, we will describe an approach to preprocess SCXML

documents into more suitable data structures and present an implementation of the

microstep(T) function in ANSI C. This implementation, by a large margin,

outperforms the pseudo-code description of the same algorithm in Appendix D of

the SCXML recommendation. This is relevant as many SCXML interpreters do

indeed align their implementation of this central piece of functionality with the

pseudo-code description. Furthermore, by employing the syntax and semantics of

ANSI C as a formal programming language, we do address one point of critique

with the pseudo-code in Appendix D, that is to provide an actually executable

description for microstep(T).
While the evaluation of the ANSI C algorithm will already show general

applicability for even the smallest off-the-shelf micro-controllers, the last part

of this chapter will describe a first approach for a transformation from SCXML

onto VHDL as a hardware description language. Such a description would

allow to mold SCXML documents into Field Programmable Gate Arrays

(FPGAs) and even Application Specific Integrated Circuits (ASICs), which

we expect to gain elevated relevance in the scope of applications for the

Internet Of Things (IoT).
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10.2 Semantic of SCXML

Before we dive into the actual algorithms, we will need to define some important

sets and relations from the SCXML recommendation that are relevant to retrace the

algorithms’ functionality and convince ourselves of their correctness. This section

does assume a passing familiarity with the SCXML recommendation or, at least,

with Harel state-charts in general.

The interpretation and execution of an SCXML document at runtime can be

conceived as a series of microsteps over a set of transitions (T ) enabled by an

event e. At any point in time, the interpreter is in a given configuration as a set of

proper states that are said to be active. Any change to the configuration of an

interpreter is assumed to be instantaneous (perfect synchronicity hypothesis [9])

and always caused by events that enable transitions. A special non-event ε is

introduced in the SCXML recommendation to extend this notion for spontaneous

transitions. Figure 10.1 summarizes the sequence of activities for an interpreter

within a microstep(T) iteration. Every iteration starts with establishing the

current event as follows:

1. If the previous iteration did not exhaust spontaneous transitions, set the current

event to ε as the non-event (1a) that only enables event-less (spontaneous)

transitions.

2. If there were no more spontaneous transitions enabled by ε in the previous

iteration, dequeue an event from the internal event queue (1b).
3. If there are no events remaining on the internal event queue, attempt to dequeue

from the external queue (1c) or block execution until an event becomes avail-

able. After a series of such micro-steps and before dequeuing an event, the

interpreter is said to have performed a macro-step and reached a new stable

configuration. At this point, a compliant interpreter has to make sure that all

invocations for external systems specified via <invoke> within states of the

active configurations are started and all other such invocations stopped.
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Now, whenever we are about to proceed to the next activity (2), we can assume

an event to be set (be it ε or an actual event). For this given event e, we will have to
establish the optimal transition set. To this effect, the SCXML recommendation

defines a containment hierarchy of transition sets as follows:

• Active Transitions

All <transition> elements contained as direct children of states in the

active configurations are said to be active. They form the superset of all other

transition sets below.

• Matched Transitions

The subset of active transitions, with at least one event descriptor in their event
attribute matching the current event’s name are said to be matching. If the

current event is the ε event, all active transitions with no event attribute

(spontaneous transitions) are matched.

It is allowed for an event descriptor to have a .* suffix for compatibility with

CCXML. Furthermore, it is legal for a transition to specify multiple, space-

separated event descriptors in their event attribute. In this case, an event

matches a transition if one of the transition’s event descriptors matches the

event’s name.

• Enabled Transitions

The set of matching transitions is further reduced by requiring an eventual cond
attribute to evaluate to true on the data-model (usually an embedded scripting

language context). A matched transition with a condition that holds or without a

condition is said to be enabled.
• Optimally Enabled Transitions

For a transition to be optimally enabled, there can be no earlier enabled transition

with the same source state, neither can a transition in a descendant state of our

source be enabled. The first criterion provides an ordering for enabled transitions

within the same state. The second criterion allows to specialize a state-chart’s
behavior in response to events by overriding behavior in a more deeply nested

sub-state of a composite state.

• Optimal Transition Set
Generally, it is not possible for all optimally enabled transitions to be taken in

the same micro-step as they might lead to an invalid subsequent configuration.

Therefore, the optimal transition set is established as the largest set of

non-conflicting, optimally enabled transitions. Here, two transitions are said to

be conflicting, if the intersection of their exit sets is nonempty. For any two such

transitions, the one with the highest priority will be added to the optimal

transition set. The priority of a transition is defined very similar to the prece-

dence with the optimally enabled transition set in such that a transition t1 has a
higher priority than t2 if (1) the source of t1 is a descendant of the source of t2,
(2) or t1 precedes t2 in document order.

The optimal transition set at the end of the above containment hierarchy now

contains all the transitions T that are to be performed in response to an event in the
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current microstep(T) iteration. It is crucial for any performant implementation

of SCXML to be able to identify this optimal transition set efficiently as it is

calculated at least twice for any non-ε event: once as the set of transitions to be

taken for the event itself and, subsequently, at least once for the ε event to exhaust

any spontaneous optimal transitions in the new configuration.

We will see later that the transitions in the optimal transition set already define

the microstep’s exit-set (3a) as the set of active states to be exited within the current
micro-step. For any composite state in this set that contains a<history> pseudo

state as a child we will have to remember its active children or, depending on the

histories type, even all its active descendants (3b) to be reentered when the

<history> pseudo state is in the target-set of a subsequent iteration.

The optimal transition set also already defines an intermediate target-set as the
set of states directly referenced in the transitions’ target attributes. From this

target-set, we can establish the entry-set of the optimal transition set (3c) by

calculating its completion, which defines the set of states to be actually entered

within the current micro-step. The completion of a state in the target-set depends on

its type and we will discuss all of them in more detail when we step through the

actual microstep(T) algorithm below.

After we established the exit-, transition-, and entry-set for a given

event in a state-chart’s configuration, we can perform the actual micro-step as (4a)

exiting states, (4b) transitioning and (4c) entering the new states. This will update

the state-chart’s active configuration and invoke anyexecutable content associated
with these activities.

10.2.1 Scope of the Algorithm

The microstep(T) function outlined above is at the core of every SCXML

interpreter and its description constitutes the bulk of the SCXML recommendation.

There are, however, additional responsibilities for a compliant interpreter that we

do not address in the algorithm we are about to describe below:

• We do not concern ourselves with invocations of external components via the

<invoke> element. Such invocations are to be processed prior to dequeueing

an external event, right before the interpreter is said to have performed a macro-

step. It is perfectly possible to trigger these invocations via our algorithm, but the

transformation onto ANSI C we implemented will, currently, only process a

single state-chart per file and virtually all tests defined for <invoke> in

SCXML assume a nested state-chart to be processed.

• We do not support any I/O processor other than the SCXML I/O processor.

• We have not implemented file operations or any retrieval of content referenced

via a URL.

We do, however, support the transformation of executable content into seman-

tically equivalent control flow constructs in ANSI C for various callbacks into
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user-supplied code as well as various datamodel implementations. Both features are

required to pass any meaningful subset of the SCXML IRP tests and evaluate the

algorithm. The datamodel integration is not part of the actual algorithm but

assumed to be available as a set of respective callback functions that will evaluate

the various expressions.

10.3 Preparing SCXML Data Structures

If we are to target embedded platforms, it seems wasteful not to preprocess the

SCXML documents into a more compact representation. While there are XML

parsers available that compile into binary code as small as 30KB,1 they only offer a

streaming API for XML documents and still require us to establish and maintain a

suitable representation at runtime. As such, we might as well preprocess the

SCXML documents into a native representation and pre-calculate several sets and

relations that will become relevant when we discuss the actual microstep(T)
algorithm below.

10.3.1 States

When we regard the states of an SCXML document, we can encode all the

information required for a semantically equivalent execution of a given state-

chart via the compound data structure given in Listing 10.1. During transformation,

an array of such structures is defined, containing all the states (along with the

pseudo-states and the root state) of an SCXML state-chart. The states in this array

are sorted by document-order, which corresponds to entry-order and reverse exit-

order for the microstep(T) algorithm.

Listing 10.1 Representing a state as a compound data structure

1 struct state {
const char* name;
const uint8_t type;
const uint16_t parent;

5 const exec_content_t on_entry;
const exec_content_t on_exit;
const char children[STATE_BYTES];
const char completion[STATE_BYTES];
const char ancestors[STATE_BYTES];

10 const elem_data* data;
};

1https://dev.yorhel.nl/yxml.
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• The name field contains the eventual identifier of the state or is NULL if the state

does not specify an identifier. This identifier is only needed for the In
(’state’) predicate and is not used during the actual microstep(T)
algorithm below.

• The type field identifies the states type in the original SCXML document and

can be one of {PARALLEL, COMPOUND, ATOMIC, FINAL, INITIAL,
HIST_DEEP, HIST_SHALLOW}. The most significant bit is reserved for the

HAS_HIST flag, which denotes (1) whether there is a <history> child

element for a composite state or (2) whether there is another <history>
element in the descendants of a given history’s parent state. This flag will

become important later when we complete a history element in the target set

onto its entry set.

• The parent field identifies the index of this state’s parent in the array of all

states per document.

• The on_entry and on_exit fields are pointers to static functions where the

respective executable content is generated.

• The next three fields, children, completion, and ancestors are bit

arrays with a width sufficient to model every state from the original SCXML

document as a single bit. The children and ancestors bit arrays are

initialized such that the bit at index N is set if the state at index N is in the

respective relation to the current state. The semantic of the completion bit

array is more ambiguous and depends on the state’s type:

– For <parallel> states, it identifies all the direct, proper child states.

– For compound <state>s, the completion identifies the first child in

document order or the states from the target set identified by the state’s
initial attribute.

– For <final> and atomic <state>s, the completion is empty.

– For <initial> pseudo states, it identifies the states in the target set of a

contained <transition> element.

– For <history> pseudo states, its semantic is rather complicated. Essen-

tially, it identifies all the parent’s descendant states that are covered by the

history, i.e. the parent’s proper child states for shallow histories. For deep
histories, however, it does not necessarily identify all proper descendant

states, but only those that are not already covered by a nested <history>
pseudo state. We will see later that this construction allows us to model all of

the state-chart’s history as a single bit-array with a width corresponding to the
number of states only.

• Finally, the data element contains a pointer to an NULL terminated array of

compound data structures, representing the optional <data> elements for late

initialization upon first activation with a late data binding. For an early data-

binding, all these<data> elements are attached to the state-chart’s<scxml>
root state.
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The memory layout of an individual compound data structure for a state is

depicted in Fig. 10.2 with its actual size depending on the target architectures

bit-width and the total number of states in a state-chart. Figure 10.3 shows the

size of a single state structure as a function of the total number of states when

assuming a 16-bit target architecture. It is noteworthy that the three bit-arrays

(children, completion, and ancestors) are the largest contributors to its

size and will completely dominate the required memory for large number of states.

Figure 10.3 also allows to determine the total amount of memory required to

represent all of a state-chart’s states as an array of these compound data structures

by counting the number of all states in an SCXML document and multiplying it

with the function value at the given point (e.g., to encode 100 states, we would need

round about 100� 60 bytes). This is in addition to the memory required for the

string literals for the states’ identifiers pointed to by the name field. If we were

required to reduce this memory, we have many options to trade runtime for memory

in this data structure, e.g. to

Fig. 10.2 The memory representation of a single state structure depends on the target platform’s
bit-width, the total number of states and any eventual padding
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Fig. 10.3 Aggregated size of a single state structure as a function of the total number of states in

an SCXML document without alignment padding
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• Calculate the children via the parent relation.

• Calculate the ancestors via the reversed children relation.

• Calculate the completion via the state’s type along with its children
relation.

• Calculate the parent as the most significant bit in the ancestors relation.

However, some of these calculations can be quite expensive (most notably the

completion of deep <history> states with nested <history> elements).

10.3.2 Transitions

Similar to the states above, we can establish an array of structures containing all the

relevant information from the <transition> elements in the original SCXML

state-chart. These compound data structures (Listing 10.2) will also already contain

several pre-calculated, important sets and relations that are static with regard to a

given SCXML state-chart and relevant for the execution of microstep(T). The
array is sorted in post-order traversal of all transitions and we will see later why this

is very beneficial.

Listing 10.2 Representing a transition as a compound data structure

1 struct transition {
const uint16_t source;
const char target[STATE_BYTES];
const char exit_set[STATE_BYTES];

5 const char conflicts[TRANS_BYTES];
const uint8_t type;
const char* event;
const char* condition;
const exec_content_t on_transition;

10 };

• The source of a transition identifies its parent state (proper, or otherwise) by

the state’s index in the array of all states.

• The target field is a bit-array in which a given bit is set, if the

<transition> element identified the respective state in its target
attribute.

• The exit_set field is a bit-array identifying the transition’s complete exit set.
The definition of the actual exit-set from the SCXML standard is as follows:

The exit set of a transition in configuration C is the set of states that are exited

when the transition is taken when the state machine is in C. If the transition does

not contain a target, its exit set is empty. Otherwise (i.e., if the transition

contains a target), if its type is external, its exit set consists of all active
states in C that are proper descendants of the Least Common Compound

Ancestor (LCCA) of the source and target states. Otherwise, if the transition
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has type internal, its source state is a compound state, and all its target

states are proper descendants of its source state, the exit set consists of all active

states in C that are proper descendants of its source state.

Unfortunately, the exit-set depends on the state-chart’s configuration C. The
implied assumption is that we can calculate the exit-set for the complete

configuration in which every state is active and establish the actual exit-set at

runtime by intersecting each transition’s complete exit-set with the active

configuration. We do not have a proof for this assumption, but it makes sense

given the definition, the calculation in the pseudo-code from Appendix D in the

SCXML recommendation and, indeed, all relevant IRP tests do pass.

• The conflicts field is a bit-array that identifies other transitions which can, for

whatever reason, never occur in an optimal transition set with the given transi-

tion. If we look at the definition of the optimal transition set in the containment

hierarchy from Sect. 10.2, we can syntactically identify several situations in

which two transitions conflict:

1. For two transitions to be active within the same iteration, their source states

need to be active at the same time. This can only be the case if their least

common ancestor is a <parallel> element.

2. For two transitions to be matched at the same time, there has to be an event

that matches both transitions. This can never be the case for event-less and

eventful transitions or two eventful transitions that have no event descriptor

that matches a common event.

3. We cannot exploit any criteria with regard to the enabled transition set as we,
usually, cannot make any assumption about the evaluation of an eventual

cond attribute at transformation time.

4. For two transitions to be optimally enabled, their source states cannot be

identical or ancestrally related.

5. For two transitions to be in the optimal transition set, their exit-sets may not

overlap.

This results in quite a number of sufficient criteria for two transitions to conflict

and minimizes the amount of transitions to consider when establishing the

optimal transition set per micro-step considerably.

• The type field is interpreted as a bit array that specifies the type of the

transition, it might be one or any of {SPONTANEOUS, TARGETLESS,
INTERNAL, HISTORY, INITIAL}. Not all of these are currently used in

the actual algorithm below, though.

• The event field contains a pointer to the constant string literal with the

transition’s event descriptor list and is required to establish the matched
transition set.

• The cond field contains a pointer to the constant string literal with the transi-

tion’s condition and is required to establish the enabled transition set.

• Finally, the on_trans field is a pointer to a static function with the transition’s
executable content.
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The memory layout of such a transition structure is given in Fig. 10.4 and, again,

its size depends on the bit-width of the target platform and the total number of states

and transitions in a given SCXML document. The size of this structure as a function

of the total number of states and transitions, when assuming equal numbers and a

16-bit architecture is depicted in Fig. 10.5.

The relation of the structure’s size with regard to the complexity of the complete

document shows the exact same development as the one for states in Fig. 10.3,

though, its increase in size is somewhat dampened if there are more transitions than

states as we only need a single bit-array for transitions.

10.3.3 SCXML Context

The states and transitions above represent immutable, constant data for any given

SCXML document and can be generated during transformation. But there is also a

dynamic part for the interpretation of a state-chart, which we will represent as an

SCXML context (see Listing 10.3). This allows us to maintain multiple instances of

Fig. 10.4 The memory representation of a single transition structure also depends on the target

platform’s bit-width, the total number of states and transitions, as well as any eventual padding
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Fig. 10.5 Aggregated size of a single transition structure as a function of the total number of states

plus transitions when assuming equal numbers
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a state-chart at runtime as distinct contexts that share the states and transitions from

above as static data.

Listing 10.3 The context of an SCXML instance at runtime

1 struct ctx {
uint8_t flags;
char config[STATE_BYTES];
char history[STATE_BYTES];

5 char initialized_data[STATE_BYTES];

void* event;
void* user_data;

10 /* miscellaneous user supplied callback functions */
dequeue_internal_t dequeue_internal;
dequeue_external_t dequeue_external;
is_enabled_t is_enabled;
is_true_t is_true;

15 raise_done_event_t raise_done_event;

/* user-supplied callback functions for executable content */
exec_content_log_t exec_content_log;
exec_content_raise_t exec_content_raise;

20 exec_content_send_t exec_content_send;
exec_content_foreach_init_t exec_content_foreach_init;
exec_content_foreach_next_t exec_content_foreach_next;
exec_content_foreach_done_t exec_content_foreach_done;
exec_content_assign_t exec_content_assign;

25 exec_content_init_t exec_content_init;
exec_content_cancel_t exec_content_cancel;

exec_content_script_t exec_content_script;
};

• The flags field is a generic member of the context to remember various boolean

values across invocations of a microstep(T). Currently, it encodes

(1) whether the state-chart’s context is still in pristine condition and some

setup is required (CTX_PRISTINE), (2) whether we already exhausted spon-

taneous transitions (CTX_SPONTANEOUS) and need to dequeue an event, and

(3) whether the state-chart entered a top-level final state and is done

(CTX_TOP_LEVEL_FINAL).
• The config field contains the state-chart’s currently active configuration as a

bit-array, such that the bit at index i is set if the corresponding state in the array

of all states is active.

• The history field is another bit-array that encodes the valuation of all

<history> elements (deep or shallow) from the original state-chart. It is

not obvious how we can encode all of the history in a single bit-array and we will

discuss this point in more detail below.

• The initialized_data field is a bit-array that encodes which states were

already entered. This is only required for SCXML documents with a late data-

binding and allows us to perform the initialization of eventual nested <data>
elements only for the first activation of a state.
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• The event field is an opaque pointer to a memory region containing the current

event. The microstep(T) algorithm will indeed not know any details about

the current event as we will just employ the user-supplied is_enabled
callback to determine whether an event matched and enabled any transition

under consideration.

• The user_data field is another opaque pointer, where user-supplied code can

register any additional data that might be required per SCXML interpreter instance

and has no purpose in the scope of the microstep(T) algorithm below.

• All other fields are callbacks into user-supplied code. Most notably:

– The dequeue_internal and dequeue_external functions will

return an opaque pointer for the current event.

– The is_enabled callback is called with a transition structure and the

opaque event pointer to determine whether the given transition is matched

and enabled by the given event.

– The is_true callback determines whether a given expression evaluates to

true on the data-model.

– The raise_done_event is called with a state structure, and the informa-

tion from an optional <donedata> element to raise the respective done.
state.ID event on the internal queue.

The other callbacks are invoked as part of the executable content in the various,

generated on_entry, on_exit, and on_trans functions referenced from the

respective function callbacks in the state and transition structures above.

The total size of the context structure as a function of the number of states in the

SCXML document is given in Fig. 10.6. For documents with only a few states, the
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Fig. 10.6 Aggregated size of a single context structure as a function of the total number of states
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size is dominated by the memory required to store the addresses of the callback

functions for executable content and other datamodel queries. When the number of

states increases, however, the size of the bit-arrays required to model the history,

the active configuration and already initialized states start to become the major

contribution. Ultimately, another such bit-array for current invocations per

<invoke> would likely have to be added as well.

10.3.4 Other Elements

In order to enable the processing of executable content, we also need to encode

various other SCXML elements into compound data structures. These merely encode

the information contained within the respective elements and, as opposed to the states

and transitions above, there are no special considerations with regard to their repre-

sentation other than to make the information available to user-supplied code.

• The <data> elements, as children of the <datamodel> elements, are

represented as compound data structures with four pointers to string literals for

(1) their id attribute, (2) the src attribute, (3) the location attribute, and

eventual content. If any of those attributes is unspecified, its value will be

initialized as NULL.
All compound data structures for <data> elements are contained within an

array, with NULL entries in between as delimiters. To reference a consecutive set

of data structures, the address of the first member is taken and a macro is

provided to iterate all subsequent members until the next NULL delimiter.

• A similar approach is taken for all <param> elements. These are encoded in

compound data structures, each with pointers to three string literals as (1) their

name attribute, (2) the location attribute, and (3) their expr attribute.

Again, to reference a consecutive set of such elements, the address of the first

member is taken with macros to test for additional structures.

• The <donedata> elements are also just encoded as a compound data struc-

ture with (1) a source field as the index of the containing state, (2) their

content attribute as a pointer to a string literal with the textual value of any

contained <content> element, or (3) an eventual contentexpr attribute

and (4) a pointer to the first <data> element in the array of all data structures.

• The <foreach>, elements within a document are encoded as simple com-

pound data structures with three pointers to string literals for their attributes (1)

array, (2) index and (3) item. Again, if an attribute is not specified with a

<foreach> element, its value is NULL.
• Finally, <send> elements are encoded with all their possible attributes as

compound data structures as well. Eventual <content> children are given

as string literals in their textual representation and <param> elements are

given as a reference to their first entry in the array of all param data structures.
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10.3.5 Executable Content

As part of the transformation from SCXML onto C, we will also transform the

executable content contained as children of the <onexit>, <onentry> and

<transition> elements. This is not strictly required for an implementation of

the microstep(T) algorithm, but it is easily done and extends the domain of the

transformation.

To transform the executable content is to invoke the various callbacks in the

SCXML context (cf. Listing 10.3) in the correct order and under the correct

conditions. Furthermore, we will have to regard the error semantics of the various

blocks. If an error occurs within a block of executable content, a compliant

interpreter is required to raise a respective event and continue processing with the

next block of executable content. To this effect, we encode every individual block

of executable content as a static function that is exited if an error occurs and call

each block sequentially from within a general [ID]_on_entry, [ID]
_on_exit, [ID]_on_trans function. Here, the ID of an element is either

the value of its eventual id attribute or a unique identifier derived from its position

in the SCXML document.

With the callbacks given in the SCXML context and the representation of the

various elements above, it is straightforward to see how we can generate C code to

model the behavior of the executable content. The remaining SCXML elements of

executable content for which we did not define a compound data structure above are

merely passed via their various attributes into the user-supplied callbacks.

10.4 A Compact Algorithm for Interpretation

Now that we have all the data structures and control flow for executable content

from an SCXML document defined, we can present the actual algorithm for

microstep(T). The algorithm is closely aligned with the sequence of activities

from Fig. 10.1 and we will, indeed, describe its workings by presenting each

activity in turn.

10.4.1 Preparations

Currently, the arrays of compound data structures for the transitions, states, and

other SCXML elements are modeled as static global variables accessible through-

out the compilation unit and their identifiers hard-coded into the algorithm. As such,

there is very little preparation required but to allocate memory for a ctx and

register the various callback functions:
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Listing 10.4 Instantiating a state-machine context

1 int main(int argc, char** argv) {
int err;
ctx ctx;
memset(&ctx, 0, sizeof(ctx));

5
/* register callbacks */
ctx.is_enabled ¼ &is_enabled;
ctx.is_true ¼ &is_true;
...

10
/* run interpreter until done */
while(true) {

err ¼ microstep(&ctx);
if (err ¼¼ ERR_DONE)

15 break;
if (err !¼ ERR_OK)

return EXIT_FAILURE;
}
return EXIT_SUCCESS

20 }

The callbacks are not shown, but we did indeed implement them in order to pass

the SCXML IRP tests.

10.4.2 Dequeuing Events

The first thing to do within the microstep function is to transition into the initial

configuration if the state-machine is still pristine or to set the current event

(Listing 10.5).

Listing 10.5 Initialization the state-chart and dequeing events

1 size_t i, j, k;

int err ¼ ERR_OK;
char conflicts[TRANS_BIT_ARRAY] ¼ TRANS_BIT_ARRAY_INIT;
char target_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;

5 char exit_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;
char trans_set[TRANS_BIT_ARRAY] ¼ TRANS_BIT_ARRAY_INIT;
char entry_set[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;
char tmp_states[STATE_BIT_ARRAY] ¼ STATE_BIT_ARRAY_INIT;

10 if (ctx->flags & CTX_TOP_LEVEL_FINAL)
return ERR_DONE;

if (ctx->flags ¼¼ CTX_PRISTINE) {
global_script(ctx, &states[0], NULL);

15 bit_or(target_set, states[0].completion);
ctx->flags |¼ CTX_SPONTANEOUS | CTX_INITIALIZED;
goto ESTABLISH_ENTRY_SET;

}
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20 if (ctx->flags & CTX_SPONTANEOUS) {
ctx->event ¼ NULL;
goto SELECT_TRANSITIONS;

}
if ((ctx->event ¼ ctx->dequeue_internal(ctx)) !¼ NULL) {

25 goto SELECT_TRANSITIONS;
}
if ((ctx->event ¼ ctx->dequeue_external(ctx)) !¼ NULL) {

goto SELECT_TRANSITIONS;
}

Each iteration of a micro-step starts by allocating memory on the stack for all

variables required in the function’s scope as is required in ANSI C. Afterwards, we
check to see whether the state-chart already entered a top-level final state (line 10–

11), which signifies the end of all processing. If this is not given, we check whether

the state-chart is still in pristine condition, in which case we execute any eventual

global script elements and set the target set to the root state’s completion as defined

for compound states in Sect. 10.3.1 before we continue processing with the com-

pletion of the target set as the entry set (line 13–18). Otherwise we establish the

current event (Fig. 10.1 (1a–c)) as NULL if spontaneous transitions were not yet

exhausted per ctx->flags or attempt to dequeue an event and continue to

establish the optimal transitions set (line 20–29).

10.4.3 Selecting Transitions and Establishing the Exit-Set

The next activity is to establish the optimal transition set (Fig. 10.1 (2)). This is a

crucial section of the algorithm as it will be executed at least twice for any non-null

event. The corresponding pseudo-code from Appendix D in the SCXML recom-

mendation is rather obscure and very elaborate. For the ANSI C implementation in

Listing 10.6, a single iteration of all transitions is sufficient with the majority of

iterations skipped very early.

Listing 10.6 Establishing the optimal transition set

1 SELECT_TRANSITIONS:
for (i ¼ 0; i < NUMBER_TRANSITIONS; i++) {

if (transitions[i].type & (TRANS_HIST | TRANS_INITIAL))
continue;

5
if (BIT_HAS(transitions[i].source, ctx->config)) {

if (!BIT_HAS(i, conflicts)) {
if (ctx->is_enabled(ctx, &transitions[i], ctx->event) > 0) {

bit_or(conflicts, transitions[i].conflicts);
10 bit_or(target_set, transitions[i].target);

bit_or(exit_set, transitions[i].exit_set);
BIT_SET_AT(i, trans_set);
ctx->flags |¼ CTX_TRANSITION_FOUND;
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}
15 }

}
}

To understand this piece of the algorithm, it is important to realize that the

transitions in transitions are sorted from a post-order traversal of all

<transition> elements in the original SCXML document. This corresponds

to the priority of a transition from the definition for the optimal transition set in

Sect. 10.2: Transitions with the same source state are given in document order and

transitions within descendant source states precede those in ancestor source states.

This means that the first enabled transitions (t1) is necessarily in the optimal

transition set and its conflicts will exclude all other transitions that cannot form

an optimal transition set with t1 included. By iterating all other transitions, we can

successively establish the optimal transition set by adding enabled transitions that

are not conflicting and skipping those that are.

We start the iteration (line 2) and skip any <transition> elements that

originate in an<initial> or<history> element (line 3–4) as we will handle

them differently when completing the target-set as the entry-set below. For the

remaining transitions, we check whether they are active, non-conflicting, and

enabled (line 6–8). The order of these conditions is arbitrary, though, the check

for the enabled status of a transition is potentially expensive and thus the last

condition.

If all these conditions hold for the current transition, we add its conflicts to the

set of conflicting transitions, its targets to the intermediate target-set and its exit-set

to the complete exit-set (line 9–11). Finally we remember the transition as being

part of the optimal transition set in trans_set (line 12) and the fact that we found

a transition at all as flag in the context (line 13).

Finally, we need to intersect the optimal transition set’s exit set with the active

configuration to arrive at the set of states actually exited (Fig. 10.1 (3a)) and

determine whether we need to perform another round of spontaneous transitions

or dequeue an event in the next round (Listing 10.7).

Listing 10.7 Establishing the actual exit-set and determining whether sponta-

neous transitions are exhausted

1 bit_and(exit_set, ctx->config);
if (ctx->flags & CTX_TRANSITION_FOUND) {

ctx->flags |¼ CTX_SPONTANEOUS;
5 ctx->flags &¼ �CTX_TRANSITION_FOUND;

} else {
ctx->flags &¼ �CTX_SPONTANEOUS;

}

Now we have already established (1) the optimal transition set, (2) the exit set,

and (3) an intermediate target set that we will have to complete below.
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10.4.4 Remembering the History

Before we can establish the missing entry-set as the completion of the target-set, we

will have to process any <history> elements (Fig. 10.1 (3b)) whose parent

states are in the exit-set as they might eventually be entered within the same micro-

step again (Listing 10.8).

Listing 10.8 Remembering the history

1 REMEMBER_HISTORY:
for (i ¼ 0; i < NUMBER_STATES; i++) {
if (STATE_MASK(states[i].type) ¼¼ STATE_HIST_SHALLOW ||

STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP) {
5 if (BIT_HAS(states[i].parent, exit_set)) {

bit_copy(tmp_states, states[i].completion);
bit_and(tmp_states, ctx->config);
bit_and_not(ctx->history, states[i].completion);
bit_or(ctx->history, tmp_states);

10 }
}

}

If control flow reaches the inner-most block, i contains the index of a history

state whose parent is about to be exited within the current micro-step and we have to

remember its history. We defined a history state’s completion as the set of states

that are covered by the history and are not already covered by a nested history (note
that a state can still be covered by more than one history elements with the same

parent state). To remember a histories active states, we set all bits from the histories

completion within the temporary state bit-array (line 6–7). Then, we intersect the

states covered by the history with the active configuration and reset the context’s
history with the new history for the states covered (line 8–10).

Here, the fact that we excluded those states already covered by nested histories

from the histories completion will ensure that no states covered by more deeply

nested history elements are reset. If they are to be reset, we will pass the respective

history element in a later step of the iteration.

10.4.5 Establishing the Entry Set

The next activity to perform is to complete the target-set as the actual entry-set

(Fig. 10.1 (3c)). To this effect we, again, first define the complete entry set and later

intersect it with the non-active states to arrive at the actual entry-set. The first thing

to realize is that if a state (proper or otherwise) is in the target-set, all its ancestors

will necessarily be active in the next configuration. As such, we can just add all

ancestors of states in the target-set (Listing 10.9) and, subsequently complete them.
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Listing 10.9 Extending the target set with all ancestors

1 ESTABLISH_ENTRY_SET:
bit_copy(entry_set, target_set);
for (i ¼ 0; i < NUMBER_STATES; i++) {

if (BIT_HAS(i, entry_set)) {
5 bit_or(entry_set, states[i].ancestors);

}
}

To complete the target-set and its ancestors more efficiently, we have to make

sure that the states in the completion of a given state s always succeed s in document

order. This seems obvious but is actually not necessarily the case if we targeted an

<initial> or<history> pseudo-state as their completion might be siblings.

As such, we have to postulate that for all children of a given parent, all

<initial> elements precede <history> elements precede proper

<state>s. This is merely a syntactic transformation of the SCXML document

that we will have to perform prior to establishing the array with all state structures

above. If this is given, we can iterate the set of all states in document order and

dispatch on their type to add their completion to the entry set (Listing 10.10).

Listing 10.10 Adding the completion of all states into the entry set

1 for (i ¼ 0; i < NUMBER_STATES; i++) {
if (BIT_HAS(i, entry_set)) {

// mask the MSB with the HAS_HIST flag
switch (STATE_MASK(states[i].type)) {

5 ...
}

}
}

The actual completion of a state from the preliminary uncompleted entry-set

depends on its type as follows:

• case STATE_PARALLEL:

1 bit_or(entry_set, states[i].completion);
break;

If a <parallel> element is in the entry set, all of its child states will have to

be in the complete entry set.

• STATE_INITIAL:

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (transitions[j].source ¼¼ i) {

BIT_SET_AT(j, trans_set);
CLEARBIT(i, entry_set);

5 bit_or(entry_set, transitions[j].target);
for (k ¼ i + 1; k < NUMBER_STATES; k++) {
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if (BIT_HAS(k, transitions[j].target)) {
bit_or(entry_set, states[k].ancestors);

}
10 }

}
}

break;

If a transition or the completion of another state targeted an <initial> state,

we search for its default <transition> and add the transition’s target state
and its ancestors to the complete entry-set. We do know that the initial transi-

tion’s target state succeeds the initial state in document order (as we sorted the

array of states accordingly), and can start the search for the target at the state

succeeding the initial state (line 6).

• STATE_COMPOUND:

1 if (!bit_has_and(entry_set, states[i].children) &&
(!bit_has_and(ctx->config, states[i].children) ||
bit_has_and(exit_set, states[i].children)))

{
5 bit_or(entry_set, states[i].completion);

if (!bit_has_and(states[i].completion, states[i].children)) {
for (j ¼ i + 1; j < NUMBER_STATES; j++) {

if (BIT_HAS(j, states[i].completion)) {
bit_or(entry_set, states[j].ancestors);

10 break;
}

}
}

}
15 break;

When we encounter a compound state while completing the target set and its

ancestors, we first have to check whether it is already complete (line 1–3) in

which case we do not do anything. Otherwise, we add its completion and check

(line 6) whether its completion is referencing a state more deeply nested (e.g.,

via an initial attribute into a non-child descendant), in which case we have to add

the completion ancestors as well (line 8–11).

• case STATE_HIST_SHALLOW:
case STATE_HIST_DEEP:

Completing history states is the most complicated case as we have to account for

various situations and take deep nested histories into account. We can differen-

tiate two general cases first:

– The history is empty:

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (transitions[j].source ¼¼ i) {
bit_or(entry_set, transitions[j].target);
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if(STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP &&
5 !bit_has_and(transitions[j].target, states[i].children))

{
for (k ¼ i + 1; k < NUMBER_STATES; k++) {

if (BIT_HAS(k, transitions[j].target)) {
bit_or(entry_set, states[k].ancestors);

10 break;
}

}
}
BIT_SET_AT(j, trans_set);

15 break;
}

}

If we never before exited the history’s parent state, we merely need to add its

default transition to the transition-set (to process its eventual executable

content later) and the default transition’s target to the entry-set. If the history

is deep, its default default history configuration may be a descendant of a

sibling, in which case we have to add its ancestors as well (line 4–13). For

shallow histories, the standard mandates that the target is a sibling of the

history.

– We already remembered states for the history:

1 bit_copy(tmp_states, states[i].completion);
bit_and(tmp_states, ctx->history);
bit_or(entry_set, tmp_states);
if (states[i].type ¼¼ (STATE_HAS_HIST | STATE_HIST_DEEP)) {

5 for (j ¼ i + 1; j < NUMBER_STATES; j++) {
if (BIT_HAS(j, states[i].completion) &&

BIT_HAS(j, entry_set) &&
(states[j].type & STATE_HAS_HIST)) {

for (k ¼ j + 1; k < NUMBER_STATES; k++) {
10 if (BIT_HAS(k, states[j].children) &&

(STATE_MASK(states[k].type) ¼¼ STATE_HIST_DEEP ||
STATE_MASK(states[k].type) ¼¼ STATE_HIST_SHALLOW)) {

BIT_SET_AT(k, entry_set);
}

15 }
}

}
}

In this case, we need to add the states we remembered earlier which are

covered by the history to the entry-set (line 1–4). If the current history

element has nested history elements (line 5) and their parents were added to

the entry-set via our coverage (line 7–9), we need to add them as well, to be

processed likewise in a later iteration (line 11–15). Here, we can again exploit

the fact that they will necessarily succeed the current history element in

document order and start iteration at the state succeeding the current history

pseudo state.
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Now we have all the sets in place to perform the actual transitions and call

executable content in the following sections.

10.4.6 Exiting States

Listing 10.11 Exiting states in reverse document order

1 size_t i ¼ NUMBER_STATES;
while(i-- > 0) {

if (BIT_HAS(i, exit_set) && BIT_HAS(i, ctx->config)) {
if (states[i].on_exit !¼ NULL) {

5 err ¼ states[i].on_exit(ctx, &states[i], ctx->event);
if (err !¼ ERR_OK)
return err;

}
CLEARBIT(i, ctx->config);

10 }
}

To exit states during a microstep (Fig. 10.1 (4a)) is merely to iterate all states from

the complete exit-set (line 1–2) that are active (line 3) in reverse document order,

invoke their on_exit handlers (line 4–8), and remove them from the active

configuration (line 9).

10.4.7 Taking Transitions

Listing 10.12 Taking transitions in document order

1 for (i ¼ 0; i < NUMBER_TRANSITIONS; i++) {
if (BIT_HAS(i, trans_set) &&

(transitions[i].type & (TRANS_HIST | TRANS_INITIAL)) ¼¼ 0) {
if (transitions[i].on_transition !¼ NULL) {

5 err ¼ transitions[i].on_transition(
ctx,
&states[transitions[i].source],
ctx->event);

if (err !¼ ERR_OK)
10 return err;

}
}

}

After we exited all states from the intersection of the complete exit-set with

the currently active configuration, we need to perform any eventual executable

content associated with transitions in the optimal transition set in document order
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(Fig. 10.1 (4b)). We do iterate the array with the transition structures in a post-order

sequence, though, the optimal transition subset of all transitions is implicitly

ordered in document-order. This becomes clear if we consider that for a transition

t1 in the optimal transition set, no other transition t2 in the optimal transition set can

precede t1 in post-order and succeed t2 in document-order as it would never be

optimally enabled with its source state being ancestrally related to the source of t1.
In this step, we will not yet perform executable content associated with transi-

tions whose parent is an <initial> or <history> element (line 3) as these

are to be processed after the <onentry> elements of their parent states.

10.4.8 Entering States

As the last activity within a micro-step, we need to enter all states from the

intersection of the complete entry-set with the negated active configuration

(Fig. 10.1 (4c)). There are, however, quite some additional activities associated

with the entering of states that are outlined in Listing 10.13 and detailed below.

Listing 10.13 Entering states in document order.

1 for (i ¼ 0; i < NUMBER_STATES; i++) {
if (BIT_HAS(i, entry_set) && !BIT_HAS(i, ctx->config)) {

if (STATE_MASK(states[i].type) ¼¼ STATE_HIST_DEEP ||
STATE_MASK(states[i].type) ¼¼ STATE_HIST_SHALLOW ||

5 STATE_MASK(states[i].type) ¼¼ STATE_INITIAL)
continue;

BIT_SET_AT(i, ctx->config);
10 // 1. Initialize data

// 2. Perform executable content for on_entry
// 3. Process history and initial transitions
// 4. Raise done events

15 }
}

1. Initialize Data

After we added the new state to the active configuration, we need to initialize

its associated <data> elements if the document has a late data binding.

We do keep a bit-array of states that were already initialized in the inter-

preter’s context and did transform all <data> elements accordingly.

Listing 10.14 Initializing nested data elements for late data binding

1 if (!BIT_HAS(i, ctx->initialized_data)) {
if (states[i].data !¼ NULL && ctx->exec_content_init !¼ NULL) {

ctx->exec_content_init(ctx, states[i].data);
}

5 BIT_SET_AT(i, ctx->initialized_data);
}
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(2) Perform Executable Content

To perform the executable content is merely to invoke the states on_entry
callback function for the generated code as introduced in Sect. 10.3.5.

Listing 10.15 Calling executable content for the entry of states

1 if (states[i].on_entry !¼ NULL) {
err ¼ states[i].on_entry(ctx, &states[i], ctx->event);
if (err !¼ ERR_OK)
return err;

5 }

(3) Process History and Initial Transitions

When we completed the target-set as the entry-set above, we did remember

all initial and history transitions that would have to be performed, but

ignored them when we performed the transitions’ executable content after

exiting the states from the exit-set above. Their respective bits are still set in

the transition-set and the standard mandates to invoke their executable

content after the parent states on-entry handlers.

Listing 10.16 Calling executable content for history and initial transitions

1 for (j ¼ 0; j < NUMBER_TRANSITIONS; j++) {
if (BIT_HAS(j, trans_set) &&

(transitions[j].type & (TRANS_HIST | TRANS_INITIAL)) &&
states[transitions[j].source].parent ¼¼ i) {

5 if (transitions[j].on_transition !¼ NULL) {
err ¼ transitions[j].on_transition(ctx,

&states[i],
ctx->event));

if (err !¼ ERR_OK)
10 return err;

}
}

}

(4) Raise Done Events

Special considerations have to be given when entering <final> states as

part of a microstep.

1 if (STATE_MASK(states[i].type) ¼¼ STATE_FINAL) {
...

}

If the parent of the final state is the <scxml> element itself, the interpreter is

done and we set the CTX_TOP_LEVEL_FINAL flag in the interpreter’s context
(Listing 10.17).
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Listing 10.17 Top-level final state reached

1 if (states[i].ancestors[0] ¼¼ 0x01) {
ctx->flags |¼ CTX_TOP_LEVEL_FINAL;

}

Otherwise, if the final state is the child of a compound state, we need to raise a

done.state.[ID] event on the interpreter’s internal queue and attach any

eventual <donedata> with the event (Listing 10.18).

Listing 10.18 Final state of a compound state entered

1 else {
const elem_donedata* donedata ¼ &elem_donedatas[0];
while(ELEM_DONEDATA_IS_SET(donedata)) {

if unlikely(donedata->source ¼¼ i)
5 break;

donedata++;
}
ctx->raise_done_event(ctx,

&states[states[i].parent],
10 (ELEM_DONEDATA_IS_SET(donedata) ? donedata : NULL));

}

In this last case, we also need to check whether the current final state is the last

one to finalize all children of a parallel ancestor, in which case we need to raise a

done.state.[PARALLEL_ID] event in addition (Listing 10.19).

Listing 10.19 Raising done events for finalized parallel states

1 for (j ¼ 0; j < NUMBER_STATES; j++) {
if (STATE_MASK(states[j].type) ¼¼ STATE_PARALLEL &&

BIT_HAS(j, states[i].ancestors)) {
bit_and_not(tmp_states, tmp_states);

5 for (k ¼ 0; k < NUMBER_STATES; k++) {
if (BIT_HAS(j, states[k].ancestors) &&

BIT_HAS(k, ctx->config)) {
if (STATE_MASK(states[k].type) ¼¼ STATE_FINAL) {

bit_and_not(tmp_states, states[k].ancestors);
10 } else {

BIT_SET_AT(k, tmp_states);
}

}
}

15 if (!bit_any_set(tmp_states)) {
ctx->raise_done_event(ctx, &states[j], NULL);

}
}

}

We start by iterating all states and search for parallel states which are ancestrally

related to the current final state (line 1–3). If we found such a state, we clear out the

temporary bit array of states to remember any active descendant of the parallel (line
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5–7). If we found an active state in the descendants of the parallel state under

consideration and it is a final state itself, we clear all its ancestors in the temporary

bit-array, if it is anything else, we set its ancestor’s bits. After we processed all

active descendant states of the parallel in this manner and the temporary bit-array is

empty (line 15–17), all of the parallel’s child states have also entered a final state

and we need to raise the done.state.[PARALLEL_ID] event for the parallel

state.

This concludes the description of the microstep(T) algorithm in ANSI C

and we will evaluate its performance and memory consumption in the following

sections.

10.5 Evaluating the ANSI C Implementation

In this section, we will evaluate the ANSI C algorithm presented above with regard

to its runtime, binary size, and memory consumption. As a baseline, we took the

microstep(T) implementation from our uSCXML implementation, which is

relevant as it, rather literally, employs the pseudo-code from Appendix D of the

SCXML recommendation. Though, even with this baseline implementation, we

already employ some caching, e.g. for state look-ups by identifier, the exit- and

target-set of transitions and proper ancestors of two states. As such, it establishes a

lower bound for any implementation that approaches the microstep(T) algo-

rithm as specified in the recommendation. We are aware that it was never the

intention of said pseudo-code to be performant or small, but many SCXML

interpreters do, indeed, implement the microstep(T) algorithm very similarly.

10.5.1 Methodology

For all our measurements, we transformed all SCXML IRP tests for the

ECMAScript datamodel and generated the compound data structures as introduced

above. We wrote the callback functions as required for the SCXML context

connecting to the respective functionality in the uSCXML2 interpreter and explicitly

excluded:

• 37 tests due to missing support for the <invoke> element.

• 17 tests due to missing support for anything but the SCXML I/O processor.

• 4 tests that attempt to retrieve data from a URL.

• 1 test with an XML node in a variable.

• Some more manual tests.

2https://github.com/tklab-tud/uscxml (accessed January 26th, 2015).
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This set of tests forms the basis for all subsequent measurements below. All

measurements are taken on a MacBook 13” (early 2015) with Intel Core i7 CPU @

3.1GHz. While this is not exactly a resource constrained device, the actual values
measured give every reason to assume that the implementation is perfectly suited

for resource constrained devices.

10.5.2 Compliance

The set of SCXML IRP tests that is passed by our implementation for the

ECMAScript data-model is given in Table 10.1. Do note that we pass all tests for

core constructs but the one for invocation order (test422) as we did not imple-

ment <invoke> yet. Even though the tests are merely an enumeration of correct

behavior for a compliant interpreter and no proof of compliance, it is a good

indicator of a largely correct implementation of microstep(T).
We also wrote initially failed and ultimately passed three additional tests for

deep completions via the initial attribute and nested history pseudo-states (deep and

shallow) to account for some border cases we realized when designing the algo-

rithm above.

Table 10.1 Number of tests in the SCXML Implementation and Report Plan with corresponding

section from specification

ClasClass #P#Pasass #T#Totalotal
Core constructs 40 (1)
General 2 2
State 1 1
Final 2 2
OnEntry 2 2
OnExit 2 2
History 4 4
Events 4 4
Transition selection 22 23 (1)

Executable content 13
Raise 1 1
If 3 3
Foreach 7 7
Evaluation 2 2

Event I/O processors 28 (1)
SCXML 10 16
Basic HTTP 0 12 (1)

ClasClass #P#Pasass #T#Totalotal
Data model and manipulation 50 (4)
Data 5 7
Assign 4 4
Donedata 1 1
Content 3 3
Param 3 3
Script 3 4 (1)
Expressions 7 8 (3)
System variables 19 20

External communications 51 (3)
Send 16 19 (1)
Cancel 2 3
Invoke 0 29 (2)

Data models 51
NULL 1 1
ECMAScript 15 20
XPath 0 30

Total 140 233 (9)

Brackets indicate manual tests
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10.5.3 Performance

For the performance measurements, we instrumented the code-base with timers

using mach_absolute_time as the highest precision monotonic clock avail-

able. It is difficult to get any reliable information about its precision, accuracy or

resolution. However, an example in the official technical QA13983 from Apple

does convert its return value into nanoseconds, suggesting a sufficient granularity

for the measurements. Furthermore, all measurements were averaged over 1.000

iterations and the methodology was the same for the baseline. Still, the approach of

measuring the performance of a given piece of code by averaging its runtime is far

from objective as seemingly unrelated changes in the runtime can have a consid-

erable effect on the measurements [7]. As such, the numbers below are to be

interpreted with some reservations.

Using this approach, we were able to measure the performance of 132 individual

tests, with the remaining 8 tests relying on the timeout of an event, which prevented

us from measuring. We did measure the time to completion for a single interpretation

per test excluding and subtracted the time spent in the data-model’s functions.

The difference was divided by the number of iterations for the microstep(T)
algorithm described above.

Figure 10.7 depicts a distribution for the average duration of such an iteration per

SCXML IRP test with 5 us bins. We can see that for the majority of tests, their

microsteps averaged to about 5–15 us, which translates to 650.000 - 2.000.000
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Fig. 10.7 Distribution of the execution speed of a single microstep for the interpreted and

compiled case (averaged per SCXML IRP test)

3https://developer.apple.com/library/mac/qa/qa1398/_index.html (accessed January 26th, 2016).
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iterations per second or, at most, 300.000 - 1.000.000 events per second (when

assuming no spontaneous transitions).

We also did a direct comparison for the average duration of amicrostep iteration per

test and Fig. 10.8 depicts a distribution of the speed-up factor when using the algorithm

described above compared to the baseline. We can see that the proposed algorithm

always outperforms a more literal implementation of the pseudo-code from Appendix

D in the SCXML recommendation and, on occasion, is more than 20 times as fast.

10.5.4 Binary Size and Memory

An important consideration when targeting a resource constrained platform is the

memory available. For example, the ATmega8 from Atmel only features 8KB of

flash memory with 512 Byte SRAM for dynamic data, its more powerful counter-

parts up to 256KB flash memory with 8KB SRAM. As such, a compact represen-

tation for the logic representing the control flow from the SCXML document has a

direct consequence for its applicability in this domain. A major problem in this

regard is the employed data-model: A single instance of the JavaScriptCore

ECMAScript implementation will, regardless of actual usage, allocate 8MB of

memory upon instantiation on top of its already considerable binary size; orders of

magnitude more than what would be available on an ATmega8. One scripting

language explicitly touted for scripting on resource constrained devices is Lua

with a binary size of round about 80KB and very conservative memory usage

and, indeed, the uSCXML platform does support a Lua datamodel.
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Fig. 10.8 Distribution of the speed-up for a single microstep (averaged per SCXML IRP test)
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While the SCXML recommendation does provide a normative specification for

an ECMAScript data model and a supplementary W3C note for an XPath data

model, there is no mandatory requirement for a compliant interpreter to implement

either. This offers considerable flexibility, but comes with the cost of reduced

interoperability.

For our measurements, we explicitly excluded the size of the data-model. If one

were to seriously target a resource constrained platform, ultimately, a data-model

that can syntactically transformed onto ANSI C seems most suited as it can directly

be subjected to the compiler for the respective platform without any requirement for

runtime interpretation. As such, we only measured the size of the compiled control

flow logic with all required static data and executable content functions introduced

above and excluded anything linked from the user-supplied callback functions. The

distribution of binary sizes for the 140 IRP tests from Table 10.1 is given in

Fig. 10.9.

Two distributions for different compiler switches are displayed. When optimiz-

ing for speed (-Ofast), the resulting binaries will be anywhere from 3 to 6KB.

When optimizing for size, the resulting binaries are round about the same size, at

times even somewhat larger. With the possible options for reducing the required

memory by dropping some of the bit-arrays in the static data structures introduced

in Sects. 10.3.2 and 10.3.1, this size is perfectly suited to run on a device with 8–

16KB of memory. However, as it is, the size for compiled binaries grows quadratic

with the size of the input SCXML document as each additional state or transition

will increase each relation modeled in the bit-arrays (cf. Figs. 10.3 and 10.5).
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Fig. 10.9 Distribution of the 16-bit binary size for the compiled SCXML IRP tests (state-

transitioning and executable content calls only, horizontal lines denote base size for empty state-
chart)
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With regard to the dynamic memory requirements at runtime, it is noteworthy

that the algorithm above does, at no point, allocate memory on a heap structure

(malloc) and all allocations are performed on the stack. The sum of memory

required per iteration depends on the number of states and transitions in the original

SCXML document. If we assume an original SCXML document with 50 states and

transitions each, we can calculate its dynamic memory requirements as follows:

Each instance of an interpretation will require round about 90 bytes for its SCXML

context structure (Fig. 10.6) and every iteration of a microstep will instantiate

• 3 unsigned integer variables as indices during iteration for a total of 6 bytes on

a 16-bit architecture.

• 2 bit-arrays for transitions set, namely for the optimal transition set in

trans_set and for conflicting transitions in conflicts, amounting to

2 �ceil(NUMBER_TRANS ∕ 8) bytes.
• 4 bit-arrays for transitions set, namely for the set of states targeted by

transitions in the optimal transition set as target_set, the entry-set in

entry_set and the exit-set in exit_set. One more bit array is allocated as

a general, temporary bit-array tmp_states and used to remember and reenter

history states and when raising the done.state.[PID] event for parallel

states. This amounts to a total of 4 �ceil(NUMBER_STATES ∕ 8) bytes.
• A single additional byte for the return value in err.

If we, again, assume a state-chart with 50 transitions and states, any bit-array

will consist of 7 bytes for a total of 49 bytes allocated on the stack per invocation

(not accounting for alignment padding). The development for the memory require-

ments of static and dynamic memory is depicted in Fig. 10.10, excluding memory

for code and additional elements other than transitions and states.
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memory (context and microstep stack)
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10.6 Transformation for VHDL

While the C implementation of microstep(T) described above will already

allow to address a wide range of off-the-shelf micro-controllers, a single iteration

will still require tens of thousands of cycles. In this section we present a hardware

realization for a subset of SCXML state-charts and discuss its possible perfor-

mance. To this effect, we will not generate C code, but descriptions for hardware

building blocks, expressed in the widely used hardware description language

VHDL. With VHDL, it is possible to program FPGA logic blocks for dynamic

hardware state machines and even to design custom ASICs.

The general description is, again, aligned with the set of steps depicted in

Fig. 10.1 and based on the pre-calculated sets and relations already introduced as

part of the C implementation above. While we already excluded the <invoke>
element, custom I/O processors and some other features for the description of the C

algorithm, the domain of the VHDL transformation will be even more restricted:

• We will not concern ourselves with any data-model, but only describe the

transitioning of active configurations and the corresponding entry-, exit-, and

transition-sets.

• We do not yet address the semantic of the <history> element nor are

<initial> elements supported. The initial attribute is supported though.

• Events are enumerated and expressed as individual lines. Any data attached to an

event would be inaccessible anyway as we do not provide a data-model.

• No executable content other than <raise> and <send> are supported and

these can only address simple events to either the internal or external event

queue.

The general architecture of the hardware realization is depicted in Fig. 10.11 and

consists of a microstepper with an attached event controller. Each microstep is

performed in a single cycle and several outputs are available

Microstepper

Entry Set
Transition 

Set
Exit SetActive 

External 
Queue

Internal 
Queue

Event 
Controller

External 
Event

1a 1b 1c 1d
2

3a 3b

Fig. 10.11 A high level overview of the generated hardware architecture
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• The Active Configuration (1a) provides the valuation of active states in the

current configuration. It’s realized as a parallel bus, where every line signifies

the activation status of one state, indicating an active state with HIGH and an

inactive state with LOW. The bus width equates to the number of proper states in

the SCXML document.

• The Entry Set (1b) pins provide the information, which states were in the

entry-set when the microstepper transitioned to the active configuration by

setting the corresponding pin to signal HIGH. To save some of the rare I/O

pins, we just generate pins for states, that have defined an <onentry> child

element.

• Analogously, the Exit States (1d) pins provide the information, which states

were in the micro-step’s exit-set by setting the corresponding pin to signal

HIGH. Again, we just generate pins for states, that have an <onexit> child

element.

• The Transition Set (1c) pins provide the information, which <transition>
elements with executable content were in the optimal transition set.

• For the Internal Queue (3a) and the External Queue (3b), the microstepper

offers a writing interface, that provides enough pins to differentiate the individ-

ual events specified in the SCXML document.

Since we cannot, in the general case, give an upper-bound for the maximum

length of either event queue at transformation time [8], it is important to take

carenot to overflow them. If an event is about to be enqueued on a full queue, the

microstepper will, for now, just assume an error state readable through an

interface pin.

The event-controller will, depending on the occurrence of <raise> and

<send> elements in executable content, deliver these events in accordance with

the valuation of the entry-, exit-, and transition-set bus. It is also available to,

asynchronously, deliver additional external events not enqueued by the state-chart

itself (2).

Figure 10.12 illustrates the inside architecture of the microstepper component. It

mainly consists of the event queues (3a–b) and an elaborate Moore state machine

(4a–c), to perform the actual micro-steps. The most relevant parts of the state

machine are the transition logic (4a) and the state memory (4b). These are

described more detailed in the following chapter. As the current state configuration

and relevant sets are available as interface busses, the output logic (4c) is just

responsible for setting the completed signal, which indicates that the state-chart

is in a top-level final state.

With the general architecture of the hardware established, we can now

describe its actual implementation to realize the steps from Fig. 10.1 in more

detail.
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10.6.1 Dequeuing Event

The logic depicted in Fig. 10.12 (3a–d) shows how non-null event dequeuing is

implemented: If there is an event enqueued at the internal queue, the int_empty
signal is LOW and the multiplexer (3c) connects the next_event bus to the

internal queue or external queue otherwise. If both the int_empty and

ext_empty signals are HIGH, the event_valid signal goes to LOW to indicate

that no events are available. Both signals along with the spontaneous signal

from the state memory can, subsequently, be used to perform transition selection.

10.6.2 Selecting Transitions

Just as with the C implementation, the next step is to establish the optimal transition

set for the current event (Fig. 10.13). We have already described, in the scope of the

Fig. 10.12 Architecture of the microstepper. (a) Internal and external event queue with bus

selection. (b) Finite-State-Machine Implementation
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C implementation above, how we can employ a post-order traversal of all transi-

tions to have higher priority transitions precede those with a lower priority. Fur-

thermore, we did introduce a conflicts relation of transitions to prevent the selection
of invalid transition sets. Both are also relevant to select the optimal transition sets

with dedicated hardware.

If the last micro-step did not exhaust spontaneous transitions, the spontane-
ous is still set to HIGH in the state memory and the logic in Fig. 10.13a is applied.

For any given spontaneous transition, we will set its in_optimal_
transition_set line to HIGH (5a) if its parent state is active as per configu-

ration in the state memory and no other spontaneous transition with a higher priority

conflicts (5b). Here, we can just connect all in_optimal_transition_set
lines for conflicting transitions with a higher priority as they are known at trans-

formation time. We also included an eventual is_enabled signal, which would

need to be set by some external component that would realize the data-model.

The case for non-spontaneous transitions, selected for a non-null event, is very

similar, but an enumeration of matching events would need to set the

is_matching signal (5c) to HIGH as well. This will give us the valuation of

signals for the external interface bus at (1c) above.

10.6.3 Establishing the Exit-Set

When we identified the set of in_optimal_transition_set signals that are

set to HIGH for transitions in the optimal transition set, we can instantaneously

establish the exit-set of the current micro-step. In the scope of the C implementa-

tion, we argued that we can identify a transition’s complete exit-set as the exit-set

Fig. 10.13 Establishing the optimal transition set. (a) Transition selection for spontaneous

transitions. (b) Transition selection for non-spontaneous transitions
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when assuming the complete configuration. Now, if we intersect the complete exit-

set with the active configuration, we arrive at the micro-step’s actual exit-set

(Fig. 10.14) and can set the respective signals to high on the external interface

bus (1d).

10.6.4 Establishing the Entry-Set

As we do not support <history> elements yet, the next step is to establish the

entry-set of the current micro-step. This is by far the most complicated step, but by

regarding the implementation in C, we can gain some insights that help us to

understand the respective logic.

In the C implementation, there were three general situations for any given proper

state to become part of the complete entry set:

1. The state is targeted directly by a transition in the optimal transition set.

2. The state is added as an ancestor of a targeted state (ancestor completion).

3. The state is added as the completion of a parent state (descendant completion).

If any state is targeted directly, it will set its in_complete_entry_set_up
signal to HIGH, which causes ancestor completion for all its ancestor states

(Fig. 10.15a, b). This signal is received by composite parent states and recursively

passed to their parents causing all targeted states and their ancestors to have the

respective signal set to HIGH. In order to arrive at a valid completion, any

composite states added via ancestor completion will have to be completed as well

(descendant completion). Composite parents of type PARALLEL will, uncondition-

ally, add all their child states to the complete entry set (Fig. 10.15c). Composite

states of type COMPOUND are more complicated: They will only need to be

completed if they are not already complete, that is, if none of their children are

already active and not exited during the current micro-step (Fig. 10.15d) and the

given child state is the default completion per document order or initial
attribute.

This will, recursively, establish the complete entry set which has to be

intersected with the set of states that are active and not in the exit-set (Fig. 10.16)

to arrive at the actual entry set for the external interface bus at (1b).

Fig. 10.14 Establishing the exit-set by intersecting the complete exit-set with the active

configuration
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Fig. 10.15 Completing the target set as the complete entry set. (a) An atomic state added by being

targeted directly. (b) A composite state added by being targeted directly or via ancestor comple-

tion. (c) A state added by its parallel parent state. (d) A state added as the default completion of a

compound parent state

Fig. 10.16 Establishing the entry-set by intersecting the complete entry-set with the subset of the

active configuration that is not exited

250 S. Radomski et al.



10.6.5 Observable Performance

In the C implementation above, the preparations above triggered the actual exiting,

transitioning, and entering of states. For the hardware implementation, these activ-

ities are to be performed by components connected to the external interface bus and

dispatching over the various sets. As such, we just need to set the follow-up

configuration (Fig. 10.17) as the set of states already active and not exited together

with the set of states entered in the state-memory and process the next microstep.

10.6.6 Evaluation

The transformation from SCXML to VHDL is still very raw with only a select few

language features implemented. As such, it is futile to evaluate its compliance with

regard to the SCXML IRP tests. We did, however, write two simple SCXML state-

charts that we successfully simulated to pass.

The first test in Listing 10.20 employs a parallel state with an atomic and a

compound child state, with the compounds child, in turn, an atomic event raising an

event upon entry on the internal queue that matches a transition in the other atomic

state.

Listing 10.20 VHDL test for a parallel state with nested compound state

1 <parallel id¼"p1">
<state id¼"p1.1">

<transition event¼"foo" target¼"pass"/>
</state>

5 <state id¼"p1.2">
<state id¼"p1.2.1">
<onentry>
<raise event¼"foo" />
</onentry>

10 </state>
</state>

<final id¼"pass" />
<final id¼"fail" />

</parallel>

The second test in Listing 10.21 relies on transition preemption of the first

transition by the more deeply nested second transition to pass.

Fig. 10.17 The new active

configuration is the set of

states already active and not

exited together with the set

of states entered

10 SCXML on Resource Constrained Devices 251



Listing 10.21 VHDL test for transition preemption

1 <state id¼"s1">
<transition event¼"foo" target¼"fail"/>
<state id¼"s1.1">

<onentry>
5 <raise event¼"foo" />

</onentry>
<transition event¼"foo" target¼"pass"/>

</state>
<final id¼"pass" />

10 <final id¼"fail" />
</state>

Ultimately, it is definitely desirable to get a more rigorous evaluation of the

VHDL description’s compliance and we are confident that, by aligning the VHDL

description with the C implementation, we will be able to pass a similar subset.

10.6.6.1 Performance

Since all dynamic functions such as transition-, entry-, and exit-set generation or the

calculation of the next configuration are implemented via combinatorial logic, the

hardware performs one microstep per clock cycle. The maximum frequency for

such a hardware component depends on several properties of the original SCXML

state-chart and the hardware employed:

• Critical Path: The critical path is the longest combinatorial path in the design. A

clock cycle has to be long enough, for a signal to pass through this path and

stabilize. In our implementation it highly depends on the interleaving depth of the

state machine and, as such, the complexity of the original SCXML document.

• Hardware Specifics: In particular the signal propagation time, which depends,

among other things, on fabrication node and core voltage, is an important factor

for the pass-through time of the longest path.

We expect, in any case, that the state controller’s speed will not be the limiting

factor for the overall system, external components like sensors and actuators are

orders of magnitude slower and would stall the microstepper most of the time.

10.6.6.2 Hardware Costs

If we are to mold the VHDL description into an ASIC, we need to estimate the chip

area required for the various transistors in our solution. Since this number depends

on many factors we present a worst case estimation, wherein we treat every state in

the SCXML document as an atomic state, which is the default completion of a

COMPOUND state. We will further assume all of these states to have two transitions
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event driven transitions, and to be the target of two transitions each. This hypothet-

ical set of states represents the worst “transistors per transition” relation.

From this assumptions we get

• 04 transistors for the buffer to save the state,

• 16 transistors for the atomic state function,

• 06 transistors for the activation set of the atomic state,

• 12 transistors for the exit set and the exclusive exit line,

• 06 transistors for the additional pins at the parent gates,

• 18 transistors for the transition function,

• 16 transistors for the interface buffers for the sets on the external interface bus,

for a total of 78 transistors per state. For a comparison, an Intel i7 Haswell-E has

around 2.6 billion transistors.

If we are to implement the VHDL on an FPGA we need to estimate the required

logic cells and flip-flop memory cells. Since an FPGA can build logic cells via its

architecture, most vendors give “logic cell equivalent” numbers for their products.

For our assumed worst case scenario above, we get

• 01 flip-flop to save the state,

• 03 gates for the atomic state function,

• 01 gates for the activation set of the atomic state,

• 02 gates for the exit set and the exclusive exit line,

• 03 gates for the additional pins at the parent gates,

• 05 gates for the transition function,

• 05 flip-flops for the interface buffers for the sets on the external interface bus,

for a total of 20 logic cells per state. As a consequence, a Xilinx Spartan 6 SLX9

would hold about 450 states. We choose this FPGA as comparison, because it is the

smallest FPGA which could hold the AX8 as a VHDL description of the AVR

architecture, which would be able to run the C implementation.

10.7 Conclusion

In this chapter we presented two implementation of the microstep(T) algo-

rithm, central to every SCXML interpreter, one in ANSI C, another in VHDL. In the

scope of the ANSI C implementation, we introduced several sets and relations that

can be derived syntactically from a given SCXML document along with a few

important observations:

• Most of the criteria for an optimal transition sets can be derived syntactically and

encoded in a static conflicts(t1,t2)�T�T relation to identify pairs of

transitions that can, for whatever reason, never be part of the same optimal

transition set.
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• The post-order traversal sorting for transitions is equivalent to the priority of a

transition. Together with the conflicts(t1,t2) relation, this allows to iden-

tify the optimal transition set in a single iteration of transitions with most steps

skipped very early.

• The complete exit set of a transition, as a superset of the actual exit set can be

calculated at transformation time. The actual exit set is the intersection of this

complete exit set with the active configuration. This notion extends to sets of

transitions, i.e. the optimal transition set.

• The same is true for the complete entry set and the actual entry set of a

transition set.

• Sorting the states such that the states in a given state’s completion will always

succeed the given state in document order allows to identify the entry set in a

single iteration after we identified the target sets’ ancestors.
• All of a state-chart’s history can be encoded in a single bit per state.

By exploiting these techniques, we were able to improve the performance for a

microstep(T) implementation considerably. Along with a transformation of an

SCXML document onto a set of native data-structures, we managed to provide

semantically equivalent object code with a size suitable to be deployed for even the

smallest of micro-controllers.

The insights gained from the ANSI C implementation were subsequently applied

for a transformation from SCXML onto VHDL to implement SCXML as dedicated

hardware elements, be it by programming FPGAs or even to mold custom ASICs on

a die. Even though the VHDL transformation was not evaluated with the same

scientific rigor as the ANSI C implementation, we are confident that it provides an

excellent starting point to support a larger set of SCXML language features.
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