
Chapter 1

Introduction to the Multimodal Architecture
Specification

Jim Barnett

Abstract The W3C’s Multimodal Architecture standard is a high-level design

featuring loosely coupled components. Its goal is to encourage interoperability

and re-use of components, without enforcing any particular approach to building

multimodal applications. This paper offers an overview of the architecture,

outlining its components and the events they use to communicate, as well as giving

basic examples of how it can be applied in practice.

1.1 Overview

Many standards emerge in areas where the technology is stable and industry

participants think that they understand the field well enough to be able to codify

existing best practices. However the consensus within the Multimodal Interaction

Working Group of the W3C was that best practices for multimodal application

development had not yet emerged. The group therefore took it as its task to support

exploration, rather than trying to codify any particular approach to multimodal

applications. The goal of the Multimodal Architecture and Interfaces standard [1] is

to encourage re-use and interoperability while being flexible enough to allow a wide

variety of approaches to application development. The Working Group’s hope is

that this architecture will make it easier for application developers to assemble

existing components to get a base multimodal system, thus freeing them up to

concentrate on building their applications.

As part of the discussions that lead to the Multimodal Architecture, the group

considered existing multimodal languages, in particular SALT [2] and HTML5 [3].

SALT was specifically designed as a multimodal language, and consisted of speech

tags that could be inserted into HTML or similar languages. HTML5 in turn has

multimodal capabilities, such as video, which were absent from earlier versions of

J. Barnett (*)

Department of Architecture Team, Genesys, Daly City, CA, USA

e-mail: jim.barnett@genesys.com

© Springer International Publishing Switzerland 2017

D.A. Dahl (ed.), Multimodal Interaction with W3C Standards,
DOI 10.1007/978-3-319-42816-1_1

3

mailto:jim.barnett@genesys.com


HTML. One problem with this approach is that it is both language- and modality-

specific. For example, neither SALT nor HTML5 supports haptic sensors, nor do

they provide an extension point that would allow them to be integrated in a

straightforward manner. Furthermore, in both cases overall control and coordina-

tion of the modalities is provided by HTML, which was not designed as a control

language. Multimodal application developers using HTML5 are thus locked into a

specific graphical language with limited control capabilities and no easy way to add

new modalities. As a result of these limitations, HTML5 is not a good framework

for multimodal experimentation.

The Multimodal Working Group’s conclusion is that it was too early to commit

to any modality-specific language. For example, VoiceXML [4] has been highly

successful as language for speech applications, particularly over the phone. How-

ever there is no guarantee that it will turn out to be the best language for speech-

enabled multimodal applications. Therefore the Working Group decided to define a

framework which would support a variety of languages, both for individual modal-

ities and for overall coordination and control. The framework should rely on simple,

high-level interfaces that would make it easy to incorporate existing languages such

as VoiceXML as well as new languages that haven’t been defined yet. The Working

Group’s goal was to make as few technology commitments as possible, while still

allowing the development of sophisticated applications from a wide variety of

re-usable components. Of necessity the result of the Group’s work is a high-level

framework rather than the description of a specific system, but the goal of the

abstraction is to let application developers decide how the details should be filled in.

We will first look at the components of the high-level architecture and then at the

events that pass between them.

1.2 The Architecture

The basic design principles of the architecture are as follows:

1. The architecture should make no assumptions about the internal structure of

components.

2. The architecture should allow components to be distributed or co-located.

3. Overall control flow and modality coordination should be separated from user

interaction.

4. The various modalities should be independent of each other. In particular,

adding a new modality should not require changes to any existing ones.

5. The architecture should make no assumptions about how and when modalities

will be combined.

The third and fourth principles motivate the most basic features of the design. In

particular item 3 requires that there be a separate control module that is responsible

for coordination among the modalities. The individual modalities will of course

need their own internal control flow. For example, a VoiceXML-based speech

4 J. Barnett



recognition component has its own internal logic to coordinate prompt playing,

speech recognition, barge-in, and the collection of results. However the speech

recognition component should not be attempting to control what is happening in the

graphics component. Similarly the graphics component should be responsible for

visual input and output, without concern for what is happening in the voice

modality. The fourth point re-enforces this separation of responsibilities. If the

speech component is controlling speech input and output only, while the graphics

component is concerned with the GUI only, then it should be possible to add a

haptic component without modifying either of the existing components.

The core idea of the architecture is thus to factor the system into an Interaction

Manager (IM) and multiple Modality Components (MCs).

The Interaction Manager is responsible for control flow and coordination among

the Modality Components. It does not interact with the user directly or handle

media streams, but controls the user interaction by controlling the various MCs.

If the user is using speech to fill in a graphical form, the IM would be responsible

for starting the speech Modality Component and then taking the speech results from

the speech MC and passing them to the graphics component. The IM is thus

responsible for tracking the overall progress of the application, knowing what

information has been gathered, and deciding what to do next, but it leaves the

details of the interactions in the various modalities up to the MCs. A wide variety of

languages can be used to implement Interaction Managers, but SCXML [5] is well

suited to this task and was defined with this architecture in mind.

The Multimodal Architecture also defines an application-level Data Component

which is logically separate from the Interaction Manager. The Data Component is

intended to store application-level data, and the Interaction Manager is able to

access it and update it. However the architecture does not define the interface

between the Data Component and the IM, so in practice the IM will provide its

own built-in Data Component.

Modality Components are responsible for interacting with the user. There are

few requirements placed on Modality Components beyond this. In particular, the

specification does not define what a “modality” is. A Modality Component may

handle input or output or both. In general, it is possible to have “coarse-grained”

Modality Components that combine multiple media that could be treated as sepa-

rate modalities. For example, a VoiceXML-based Modality Component would

offer both ASR and TTS capabilities, but it would also be possible to have one

MC for ASR and another for TTS. Many Modality Components will have a

scripting interface to allow developers to customize their behavior. VoiceXML is

again a good example of this. However it is also possible to have hard-coded

Modality Components whose behavior cannot be customized.

Note that to the extent that HTML5 is a multimodal language, it acts both as an

Interaction Manager and as a Modality Component. The W3C Multimodal Archi-

tecture tries to provide more flexibility so that an application can use HTML5 as a

graphical MC without being restricted to its limited control flow capabilities.

It is also possible to nest Modality Components. That is, multiple MCs plus an

Interaction Manager can look like single MC to a higher-level Interaction Manager.

1 Introduction to the Multimodal Architecture Specification 5



This design can be useful if some MCs need to be tightly coupled with each other,

while they are more loosely coordinated with others. For example, ASR and TTS

modalities are usually tightly coupled to coordinate prompt playing with recogni-

tion and barge-in. If a system was working directly with individual ASR and TTS

Modality Components, it might want to couple them closely using a separate

Interaction Manager. The resulting complex Modality Component would offer

prompt and recognize capabilities to the larger application, similar to a native

VoiceXML Modality Component.

In addition to the Interaction Manager and Modality Components, the architec-

ture contains a Runtime Framework, which provides the infrastructure necessary to

start and stop components, as well as enabling communication. The Runtime

Framework contains a Transport Layer which must provide reliable, in-order

delivery of events between the IM and the MCs. The Transport Layer might be

HTTP for loosely coupled and distributed components or something proprietary for

co-located and tightly coupled components. Overall, the Multimodal Architecture

and Interfaces specification provides little detail on the Runtime Framework.

However the separate Discovery and Registration specification [6] is filling in

part of this gap.

Security is important for multimodal applications since they will often be

dealing with sensitive information such as credit card numbers. However security

is outside the scope of the Multimodal Architecture and Interfaces specification.

The W3C Multimodal Working Group assumes that developers will consult the

relevant security specifications when building their systems.

A diagram of the W3C Multimodal Architecture, taken from the specification

[1], is given below (Fig. 1.1).

Overall, the W3C’s Multimodal Architecture should look fairly familiar (lack

of originality is considered a good thing in standards group work). One model for

this design is the DARPA Hub Architecture, also known as the Galaxy Communi-

cator [7]. The architecture can also be taken as an instance of the Model/View/

Controller paradigm (especially when the data model is separate). Specifically, the

Modality Components represent the view, while the Interaction Manager is the

Controller.

The goal of this design is to chop the system up into pieces that are likely to

make good re-usable components. For example, there are a number of open source

SCXML interpreters that can be used as Interaction Managers. Similarly, an open

source VoiceXML interpreter can be used as a Modality Component. On the other

hand, the looseness of definition of Modality Components including the lack of a

clear definition of “modality” is designed to allow room for experimentation while

still providing enough structure so that the results of innovation can be re-used.

6 J. Barnett



1.3 The Interfaces

In addition to specifying the overall architecture, the Multimodal Architecture and

Interfaces specification defines a set of events that are exchanged by the compo-

nents. Since the specification does not commit to what the Modality Components

are or to how they are implemented, the event set is high-level and generic, but still

sufficient to build real-world applications. In keeping with the high-level nature of

the event set, the events are defined as an abstract set of “fields,” which any actual

implementation would have to map onto a concrete syntax such as XML or JSON.

The transport for the events is also not defined.

The majority of events are defined in request/response pairs. Certain fields are

common to all events. The “target” field contains the address of the intended

recipient, and allows the underlying messaging infrastructure to deliver the event.

The “source” field gives the address of the sender, and the recipient of an event

should be able to send a response to this address. The “context” field identifies a

particular interaction with a user. For example, most VoiceXML and SCXML

interpreters can handle multiple simultaneous sessions, so the “context” field allows

the interpreters to determine which user session that event belongs to. The speci-

fication does not define the duration of a “context,” but the Interaction Manager and

all the Modality Components that are interacting with the user share the same

“context,” and it is possible for individual Modality Components to join and leave

Interaction
Manager

Data
Component

Transport Layer

Modality
Component

Modality
Component

Runtime Framework

Fig. 1.1 Components of the multimodal architecture

1 Introduction to the Multimodal Architecture Specification 7



the system during the lifetime of a “context.” Finally a “RequestID” field allows

components to match requests and responses, while the “data” field holds arbitrary

data, and can be used to pass application-specific information.

Here is an overview of the event set:

• NewContextRequest/NewContextResponse. The first step in starting a new user

interaction is creating a new context. If a Modality Component detects the

presence of a new user, for example, by a phone call coming into a VoiceXML

interpreter or a new visitor walking up to a multimodal kiosk, it can send the

NewContextRequest event to the Interaction Manager. The IM will then respond

by sending a NewContextResponse to the Modality Component containing a

newly created context identifier. At this point all that has happened is a bit of

book-keeping. The interaction with the user won’t start until the IM sends a

StartRequest (see below) to one or more Modality Components. The

NewContextRequest is used when a Modality Component wants to create a

new user interaction. The Interaction Manager can also create a new interaction

at any point by sending a PrepareRequest or a StartRequest containing a new

context identifier to one or more Modality Components. Thus a new user

interaction may be started either by a Modality Component or by the Interaction

Manager.

• StartRequest/StartResponse. The Interaction Manager starts a user interaction by

sending a StartRequest to one or more Modality Components. The Modality

Components return a StartResponse to acknowledge that they have begun

running. The StartRequest contains two mutually exclusive fields, Content and

ContentURL, that are used to instruct the Modality Component how it should

interact with the user. It is most natural to think of these fields as specifying the

markup that the Modality Component should execute. For a VoiceXML inter-

preter, for example, the Content field would contain an in-line specification of

VoiceXML markup, while the ContentURL field would specify the URL to

download the markup from. However Modality Components need not be con-

trolled by markup. For ones that are not, the Content or ContentURL fields could

contain platform-specific parameters or commands that would modify or control

the behavior of the Modality Component. It is also possible to have a hard-coded

Modality Component that runs the same way no matter what is specified in these

fields.

• PrepareRequest/PrepareResponse. The PrepareRequest event is an optional event

that the Interaction Manager can send before the StartRequest. It contains the

same Content or ContentURL fields as the StartRequest. The purpose of the

PrepareRequest is to allow a Modality Component to get ready to run by, e.g.,

downloading markup, compiling grammars, or any other operations that will allow

it to start immediately upon receipt of the StartRequest. The PrepareRequest is

useful for Modality Components that need to be tightly synchronized, for exam-

ple, a text-to-speech engine that reads out a message while a graphical display

highlights the words as they are spoken. If we simply send StartRequests to both

components, it might take one longer to get going than the other, so coordination

8 J. Barnett



will be smoother if the PrepareRequest allows both to prepare to start with

minimal delay. The PrepareResponse is sent by the Modality Component back

to the Interaction Manager to acknowledge the PrepareRequest.

• DoneNotification. This event is not part of a request/response pair, though it can

be considered to be a delayed response to the Start Request. It is sent by a

Modality Component to the Interaction Manager to indicate that it has finished

its processing. For example, a text-to-speech system would send it when it had

finished playing out the text specified in the StartRequest, or a VoiceXML

interpreter would send a DoneNotification when it had finished executing its

markup. (In this case, the VoiceXML interpreter might include an EMMA [8]

representation of the recognition results in the event.) Not all Modality Compo-

nents have a built-in concept of termination, so the DoneNotification is optional.

For example, a simple graphical component might keep displaying the informa-

tion that it had been told to display indefinitely until it received a new Start

Request telling it to display different information. Such a component would

never send a DoneNotification.

• PauseRequest/PauseResponse. The Interaction Manager may send a

PauseRequest to a Modality Component, asking it to suspend its interactions

with the user. The Modality Component then responds with a PauseResponse

once it has paused. If a Modality Component is unable to pause, it will send a

PauseResponse containing an error code.

• ResumeRequest/ResumeResponse. The Interaction Manager may send a

ResumeRequest to any Modality Component that it has previously paused.

The Modality Component will return a ResumeResponse once it has resumed

processing. It is an error for the Interaction Manager to send a ResumeResponse

to a Modality Component that has not previously been paused.

• CancelRequest/CancelResponse. The Interaction Manager may send a

CancelRequest to any Modality Component telling it to stop running. The

Modality Component will stop collecting user input and return a

CancelResponse.

• ExtensionNotification. This event is intended to carry application- or platform-

specific logic. Either the Interaction Manager or the Modality Components may

send it, and no response is required (though the recipient could reply with

another ExtensionNotification). This event includes a “name” field, which

holds the name of the application- or platform-specific event, as well as an

optional “data” field, which can hold an application- or platform-specific pay-

load. A re-usable component, whether an Interaction Manager or a Modality

Component, should document the set of ExtensionNotifications that it expects to

send and receive, as well as their semantics.

• ClearContextRequest/ClearContextResponse. The Interaction Manager can

send a ClearContextRequest to a Modality Component to indicate that the

particular context/interaction is finished. The Modality Component is not

required to take any specific action in response to this event, but normally it

would free up any resources it has allocated to the interaction (cached grammars,

adapted voice models, etc.) The Modality Component then responds with a

ClearContextResponse.

1 Introduction to the Multimodal Architecture Specification 9



• StatusRequest/StatusResponse. This event may be sent by either the Interaction

Manager or a Modality Component, and is intended to provide keep-alive

functionality. The recipient will reply with the StatusResponse event with a

“status” field containing “alive” or “dead.” (If the recipient doesn’t respond at

all, it is obviously dead.) The “context” field in the StatusRequest event is

optional. If it is present, the recipient will reply with the status of that specific

context/interaction. (A status of “alive” means that the context is still active and

can receive further events.) If the “context” field is absent, the recipient replies

with the status of the underlying server. In this case, a status of “alive” means

that the server is able to process new contexts/interactions.

1.4 Some Examples

As an example of how this event set could be used in practice, consider a simple

application running on a hand-held device consisting of a form that can be filled out

either by speech or by typing in the values of fields in the GUI. This application

would consist of a GUI Modality Component, a Speech Modality Component, and

the Interaction Manager. The Modality Components gather the values of the fields

and return them to the Interaction Manager, which will process then and submit the

form when it is complete.

The event flow for starting the application and filling out a single field by speech

would be as follows:

1. The IM sends a StartRequest event to the GUI MC.

2. The GUI MC displays the form and returns a StartResponse event.

3. The user selects a field by tapping on it. The GUI MC sends an ExtensionNo-

tification with the name of the field to IM.

4. The IM sends a StartRequest to the Speech MC. The selected field will be

specified in-line in the “Content” field or via a URL in the “ContentURL” field.

5. The Speech MC starts listening for speech and sends a Start Response.

6. The user speaks the value of the field. The Speech MC returns a DoneNoti-

fication containing the recognition result.

7. The IM sends an ExtensionNotification to the GUI MC specifying the value of

the field (taken from the DoneNotification). The GUI MC updates its display

with this value (Fig. 1.2).

If it takes the Speech Modality Component an appreciable amount of time to

load and compile its grammars, and response time is a concern, the application

could be modified so that the Interaction Manager would send multiple

PrepareRequests to the Speech MC at start-up time, allowing it to prepare its

grammars before the GUI MC displayed the form. In this case, the Speech MC

would send a separate PrepareResponse for each request, and the IM would wait for

all the responses before sending the StartRequest to the GUI MC. Events 1–7 would

then occur in the same order as shown above.

10 J. Barnett



Now suppose that the user types in the value rather than speaking it. Events 1–5

remain the same, but this time it is the GUI MC that returns the value to the IM. The

resulting event flow is as follows:

1. The IM sends a StartRequest event to the GUI MC.

2. The GUI MC displays the form and returns a StartResponse event.

3. The user selects a field by tapping on it. The GUI MC sends an ExtensionNo-

tification with the name of the field to IM.

4. The IM sends a StartRequest to the Speech MC. The grammar for the selected

field will be specified in-line in the “Content” field or via URL in the

“ContentURL” field.

5. The Speech MC starts listening for speech and sends a Start Response.

6. The user types the value of the field. The GUI MC returns an ExtensionNo-

tifcation containing the value. (Unlike the Speech MC, the GUI MC does not

return values in a DoneNotification because it will keep running—that is,

displaying the form—after it returns the result.)

7. The IM sends a CancelRequest to the Speech MC.

8. The Speech MC stops listening for speech and returns a CancelResponse

(Fig. 1.3).

Since the user is using two modalities, there is a possibility of conflict, for

example, if the user types one value and speaks another for a given field. It is the

Interaction Manager’s job to resolve such problems. It should keep its own Data

Interaction Manager

GUI Modality Component
Speech Modality Component

1 2 3
7

4
5

6

Fig. 1.2 Event sequence for filling a single field by voice

1 Introduction to the Multimodal Architecture Specification 11



Component updated with the current state of the form. If a Modality Component

sends the IM a value for a field that already has a value in the IM’s Data

Component, the IM knows a conflict has arisen. It is up to the application developer

to decide what heuristic to use to resolve such conflicts since the Multimodal

Architecture and Interfaces specification does not attempt to incorporate or enforce

any particular approach to user interface development.

It is possible to modify the application so that the speech recognition doesn’t
follow the GUI field by field. Given a Modality Component that supports

VoiceXML, the Interaction Manager can send it a StartRequest with a VoiceXML

script that can capture the entire form. The VoiceXML Modality Component will

now prompt the user for the various fields and gather input independent of what the

GUI is doing. In fact, the user can speak the value for one field while simulta-

neously typing in the value of another. A sample event flow for such an application

is given below:

1. The IM sends a StartRequest to the GUI MC.

2. The IM sends a StartRequest to the VoiceXML MC, either specifying

the VoiceXML script in-line via the “Content” field, or by URL via the

“ContentURL” field. (This event could also have been sent before the

StartRequest to the GUI MC.)

3. The GUI MC displays the form and returns a StartResponse. (Depending on

the timing of the application, this event could arrive at the IM before it sends the

StartRequest to the VoiceXML MC.)

Interaction Manager

GUI Modality Component
Speech Modality Component

1 2 3
6

4
5

7
8

Fig. 1.3 Event sequence for filling a single field via the GUI

12 J. Barnett



4. The VoiceXML MC loads the VoiceXML script and starts prompting the user

for input. It then sends a StartResponse to the IM.

5. The VoiceXML MC obtains the value of one field and returns it to the IM in an

ExtensionNotification Event.

6. The IM notifies the GUI MC of the field value with an ExtensionNotification

event. The GUI MC updates its display accordingly.

7. The GUI MC obtains the value for a field and notifies the IM of it with an

ExtensionNotification event.

8. The IM sends the field value to the VoiceXML MC in an ExtensionNotification

event. If the VoiceXML MC updates its internal data model with this value, the

Form Interpretation Algorithm [9] will ensure that it does not prompt the user for

the value of this field.

. . ... the user continues filling out the form using both modalities. . ...

9. The VoiceXML MC obtains the value for the final field and returns it to the IM

in a DoneNotification.

10. The IM sends an ExtensionRequest to the GUI MC with the final value. The

GUI MC updates its display (Fig. 1.4).

At the end of the event sequence shown above (i.e., after event ten reaches the

GUI MC), the GUI MC is displaying the completed form, and the VoiceXML MC

has stopped running. It is up to the application developer what happens next. The

Interaction Manager will presumably submit or save the form. If more information

Interaction Manager

GUI Modality Component
VoiceXML Modality Component

1 3 6 7 10

2
5

4

9
8

Fig. 1.4 Event sequence for filling multiple fields with voice and GUI

1 Introduction to the Multimodal Architecture Specification 13



needs to be gathered, the Interaction Manager could send new StartRequests to both

the GUI MC and the VoiceXML MC to continue the interaction with the user. One

subtlety to note is the importance of the ContextID. If the new StartRequests

contain the same ContextID as those in events 1–10, the Modality Components

will view these requests as a continuation of the earlier interaction. Thus both

Modality Components will keep any user adaptation they have performed. For

example, the VoiceXML Modality Component will keep any speaker adaptation it

has done to its voice models, while the GUI Modality Component will keep any

display adjustments or special fonts that the user has selected. On the other hand, if

the Interaction Manager sends ClearContextRequests before the StartRequests or

simply uses a new ContextID in the StartRequests, the Modality Components will

treat the requests as the start of a new interaction, possibly with a new user.

1.5 Adding a New Modality Component

As is clear from these examples, Modality Components do not communicate

directly with each other, but only with the Interaction Manager. The value of this

loose coupling becomes clear when a new Modality Component is introduced.

Suppose the application is extended with a tablet capable of performing handwrit-

ing recognition. This Handwriting Modality Component will also communicate

only with the Interaction Manager, sending it results via ExtensionNotifications.

Neither the GUI nor the Speech Components need to be modified to work with the

Handwriting Modality Component and their communication with the Interaction

Manager will not change. The event flow for the user entering a field value with

handwriting is shown:

1. The user taps on a field to select it. The GUI MC sends an ExtensionNotification

to the IM telling it which field has been selected.

2. The IM sends the StartRequest to the Speech MC.

3. The Speech MC starts recognizing and returns a StartResponse.

4. The user writes out the value of the field using a stylus. The Handwriting MC

sends this result back to the IM in an ExtensionNotification.

5. The IM sends an ExtensionNotification to the GUI MC containing the value for

the field. The GUI updates its display.

6. The IM sends a CancelNotification to the Speech MC.

7. The Speech MC stops listening for speech and sends a CancelReponse. (The IM

could just as easily have cancelled the Speech MC before notifying the GUI

MC.) (Fig. 1.5)

Comparing this example to the first and second ones, it is clear that when the user

enters a value via handwriting, the Speech MC receives the same events as when the

user entered the value via the GUI MC. Similarly, the GUI MC receives the same

event as when the user entered the value with speech. In fact, each Modality

Component knows only that some other component has provided a value for the

14 J. Barnett



field in question. Only the Interaction Manager is aware of the new Modality

Component. It is clear from this that the key to a successful implementation of

the Multimodal Architecture and Interfaces specification is a powerful and flexible

Interaction Manager, particularly one with good event handling capabilities. Given

such an Interaction Manager, the design of the individual Modality Components is

significantly simplified.

One important feature of the examples is the prevalence of ExtensionNoti-

fication events. The Multimodal Working Group felt that it was too early to define

specific interfaces to modalities, with the result that ExtensionNotification carries a

lot of the modality-specific logic. A Modality Component that supports this archi-

tecture will likely specify a lot of its interface in terms of ExtensionNotifications.

For example, the GUI Modality Component’s API specification might say that it

will update the value of a field upon receipt of an ExtensionNotification event with

name¼“fieldValue” and data¼“fieldname¼value.” One reason SCXML is a good

candidate for an Interaction Manager language is that it has the ability to send and

receive events with a variety of payloads, so that an SCXML interpreter can work

with different Modality Components without requiring additional coding or inte-

gration work, particularly if the Modality Components support HTTP as an event

transport.

Interaction Manager

GUI Modality
Component

Handwriting Modality
Component

Speech Modality
Component

1
5

26 34
7

Fig. 1.5 Event sequence with handwriting component added

1 Introduction to the Multimodal Architecture Specification 15



1.6 Conclusion

The W3C’s Multimodal Architecture is far from the last word on the subject. It is

intended as an initial framework to allow cooperation and experimentation. As

developers gain experience with this framework, the W3C Multimodal Working

can modify it, extend it, or replace it altogether if a superior alternative emerges.

The event set is quite high-level and will undoubtedly need to be refined if it

becomes widely used. One obvious step would be to require support for a specific

event syntax and transport protocol (for example, XML over HTTP). This would

obviously facilitate interoperability and the only reason the Multimodal Working

Group did not include such a requirement in the specification was the lack of

consensus on what the syntax and transport protocol should be.

As another possibility for refinement, notice how often ExtensionNotifications

are used in the examples given above to tell a Modality Component to update its

internal data model. Perhaps an UpdateData event would prove useful. A further

possibility would be to add modality-specific events. For example, if consensus

emerges on how to manage a speech recognition system in a multimodal context,

then a speech-specific event set could be defined.

Similarly, the multimodal architecture is quite high-level and will need to be

articulated further. One possibility would be to add an Input Fusion component to

the Interaction Manager. Consider the case of a user who says “I want to go here”

and clicks on map. The utterance “I want to go here” will be returned by the speech

Modality Component while the click will be captured by a graphical Modality

Component. To understand the utterance, the system must combine the input from

the two modalities and resolve “here” to the location on the map that the user

clicked on. Right now this sort of combination is one of the many responsibilities of

the Interaction Manager, but it might make sense to have a component that

specialized in this task. Such a component would also be responsible for resolving

conflicts between the voice and graphics Modality Components that were noted in

the examples above, namely when the user types and speaks a value for the same

field at the same time. See [10] in this volume for a more detailed discussion of how

such a component might work. The Multimodal Working Group considered adding

an Input Fusion component to the architecture, but decided that it didn’t make sense

to try to standardize the interface to such a component when there was not good

enough agreement at the time about how it should work.

Finally, it is clear that many existing languages aren’t easy to use as Modality

Components because they don’t allow fine-grained control. Both HTML and

VoiceXML are designed to be complete stand-alone interfaces and it is not easy

for an external component like an Interaction Manager to instruct a web browser

what part of a page to display, or to tell a running VoiceXML interpreter to pause

jump to another part of a form. Modality Component languages will fit into the

W3C multimodal architecture much more easily if they are designed to accept

asynchronous updates to both their data models and their flow of control.

16 J. Barnett



References

1. Barnett, J., Bodell, M., Dahl, D., Kliche, I., Larson, J., Porter, B., et al. (2012). Multimodal

architecture and interfaces. W3C Recommendation. http://www.w3.org/TR/mmi-arch/.

2. SALT Forum (2002). Speech Application Language Tags. http://xml.coverpages.org/SALT-

FinalSpecificationV10.zip.

3. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navarra, E., O’Connor, E., et al. (2014).
HTML5. W3C Recommendation. https://www.w3.org/TR/html5/.

4. Oshry, M., Auburn, R., Baggia, P., Bodell, M., Burke, D., Burnett, D., et al. (2007). Voice

Extensible Markup Language (VoiceXML) 2.1. W3C Recommendation. https://www.w3.org/

TR/2007/REC-voicexml21-20070619/.

5. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D., Carter, J., et al. (2015). State

Chart XML (SCXML) State Machine Notation for Control Abstraction. W3C Recommenda-

tion. https://www.w3.org/TR/scxml/.

6. Rodriguez, B. H., Barnett, J., Dahl, D., Tumuluri, R., Kharidi, N., & Ashimura, K. (2015).

Discovery and registration of multimodal modality components: State handling. W3C Work-

ing Draft. https://www.w3.org/TR/mmi-mc-discovery/.

7. Galaxy Communicator (2003). http://communicator.sourceforge.net/sites/MITRE/distribu

tions/GalaxyCommunicator/docs/manual/.

8. Johnston, M., Baggia, P., Burnett, D., Carter, J., Dahl, D., McCobb, G., et al. (2009). EMMA:

Extensible MultiModal Annotation markup language. W3C Recommendation. http://www.

w3.org/TR/2009/REC-emma-20090210/.

9. McGlashan, S., Burnett, D., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., et al. (2004). Voice

Extensible Markup Language (VXML) Version 2.0. Appendix C. W3C Recommendation.

https://www.w3.org/TR/voicexml20/#dmlAFIA.

10. Schnelle-Walka, D., Duarte, C., & Radomski, S. (2016). Multimodal fusion and fission within

the MMI architectural pattern. In D. Dahl (Ed.),Multimodal Interaction with W3C Standards:
Toward Natural User Interfaces to Everything. New York, NY: Springer.

1 Introduction to the Multimodal Architecture Specification 17

http://www.w3.org/TR/mmi-arch/
http://xml.coverpages.org/SALT-FinalSpecificationV10.zip
http://xml.coverpages.org/SALT-FinalSpecificationV10.zip
https://www.w3.org/TR/html5/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
https://www.w3.org/TR/2007/REC-voicexml21-20070619/
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/mmi-mc-discovery/
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/
http://communicator.sourceforge.net/sites/MITRE/distributions/GalaxyCommunicator/docs/manual/
http://www.w3.org/TR/2009/REC-emma-20090210/
http://www.w3.org/TR/2009/REC-emma-20090210/
https://www.w3.org/TR/voicexml20/#dmlAFIA

	Chapter 1: Introduction to the Multimodal Architecture Specification
	1.1 Overview
	1.2 The Architecture
	1.3 The Interfaces
	1.4 Some Examples
	1.5 Adding a New Modality Component
	1.6 Conclusion
	References


