
Chapter 8

Positive Linear Systems

We present one important large field of applications to the theory developed so
far: control theory. More specifically, we present an elementary introduction to
positive linear systems.

We cover some very special aspects of linear time-invariant systems, like
controllability or stabilizability. Many of these problems can be naturally posed
with additional positivity assumptions: we have a positive system, we would like
to apply positive controls, or we would like to steer our system into positive states.

We discuss only continuous-time systems, but the definitions and most results
can be modified for the discrete-time case in a straightforward way.

8.1 Externally and Internally Positive Systems

First, we set the stage and present the relevant notation and terminology. For the
sake of simplicity, we only refer to the case of time-invariant, finite-dimensional
input-output systems, which are described by state equations of the form⎧⎪⎨⎪⎩

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0,

y(t) = Cx(t),

(8.1)

where the objects involved are the following:

• X = Cn is the state space, Y = Cq is the observability space, and U = Cp is
the control space.

• The function x : R+ → X is the state vector, the operator A ∈ L(X) is the
state (or system) operator .

• The function u : R+ → U is the control , the operator B ∈ L(U,X) is the
input (or control) operator .

• The function y : R+ → Y is the output (or observation), the operator C ∈
L(X,Y ) is the output (or observation) operator .

• The vector x0 ∈ X is the initial value.
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94 Chapter 8. Positive Linear Systems

System (8.1) is often referred to as Σ(A,B,C). The interpretation of this set
of equations is the following. There is a system described by a set of n equations
and governed by the operator A. This is also referred to as the “free system”,
the system without intervention. The function u is the control we apply from the
outside, and the operator B represents the action of u on the system. Finally, the
function y is the set of parameters we are able to measure, and the measurement
process is described by the observation operator C.

u(t) x(t) y(t)
B C

A

K

Figure 8.1: An input-output system (with feedback).

If we need to stress the dependence of the solution x on the initial value x0,
then we shall write x(t) = x(t;x0).

Before turning our attention to controllability concepts, let us make the fol-
lowing crucial observation and present a representation formula. Suppose that the
control u is locally integrable and set

z(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds.

Then, ż(t) = Az(t) + Bu(t) and z(0) = x0. Since x is the solution of Σ(A,B,C)
in (8.1), we infer that ż(t)− ẋ(t) = A(z(t)− x(t)) and z(0)− x(0) = 0. Hence, by
uniqueness,

x(t) = z(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds. (8.2)

This yields the formula

y(t) = CetAx0 +

∫ t

0

Ce(t−s)ABu(s) ds. (8.3)

The function h(t) = CetAB is sometimes called the impulse response.

Often the control u is designed depending on the observation, and such sys-
tems are called feedback systems . If u(t) = Ky(t), then the operator K ∈ L(Y, U)
is called the feedback operator. Note that in this case we have the representation
formula

x(t) = et(A+BKC)x0. (8.4)
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We list now a few properties that a time-invariant linear system can have,
and which are important in view of applications.

Definition 8.1. The linear system Σ(A,B,C) in (8.1) is said to be externally pos-
itive, if the output corresponding to the zero initial state is positive for every
positive input function. In other words, u(t) ≥ 0 implies y(t) ≥ 0 if x0 = 0.

In the following we characterize externally positive linear systems.

Proposition 8.2. A linear system is externally positive if and only if its impulse
response is positive.

Proof. By the representation formula (8.3), the sufficiency is clear. Suppose now
that there is t0 > 0 such that h(t0) = Cet0AB is not positive. Then, by continuity,
at least one entry of h(t) would be negative on a whole nondegenerate interval
[t1, t2]. Thus, the appropriate entry of the output would be negative for every
input function which is strictly positive in [t− t2, t− t1] and zero elsewhere. Hence,
the system cannot be externally positive. �

Let us give a simple example of an externally positive linear system.

Example 8.3. Here we suppose that U = Y = C and X = C2. Let us consider

A =

(
−a −a
1 −1

)
, B =

(
a
0

)
, C =

(
0 1

)
,

for a parameter a > 0. For which values of a will the system Σ(A,B,C) in (8.1)
be externally positive?

Using the above proposition one has to check for which values of a the corre-
sponding impulse response h(t) = CetAB is positive. The special forms of B and
C imply that h(t) = a(etA)2,1, where (etA)2,1 is the (2, 1)th entry of etA.
The eigenvalues λi, i = 1, 2, of A are the roots of λ2 + (a + 1)λ + 2a. So, the
following holds:

λ1,2 =

⎧⎪⎨⎪⎩
−1−a±√

a2−6a+1
2 if 0 < a < 3− 2

√
2 or a > 3 + 2

√
2,

− 1+a
2 =: λ0 if a = 3− 2

√
2 or a = 3 + 2

√
2,

∈ C \ R if 3− 2
√
2 < a < 3 + 2

√
2.

We have to investigate only the first two cases, since the third one corresponds
to an oscillating etA, which can have negative values. From the Theorem 2.11 one
has etA = α0I + α1A, where α0 and α1 satisfy the system of equations

etλ1 = α0 + α1λ1,

etλ2 = α0 + α1λ2

in the first case above, and

etλ0 = α0 + α1λ0,

tetλ0 = α1
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in the second one. Thus, by a simple computation, we obtain

h(t) =

{
a√

a2−6a+1
etλ2

(
e2t

√
a2−6a+1 − 1

)
if 0 < a < 3− 2

√
2 or a > 3 + 2

√
2,

atetλ0 if a = 3− 2
√
2 or a = 3 + 2

√
2.

Therefore, for a > 0, the system Σ(A,B,C) is externally positive, iff 0 < a ≤
3− 2

√
2 or a ≥ 3 + 2

√
2.

The concept of (internal) positivity and irreducibility is defined as follows.

Definition 8.4. The linear system Σ(A,B,C) in (8.1) is said to be positive (or
internally positive), if the state and the output corresponding to a positive initial
state are positive for every positive input function. In other words, u(t) ≥ 0 and
x0 ≥ 0 implies x(t) ≥ 0 and y(t) ≥ 0. The system is said to be reducible, if the
matrix A is reducible, and irreducible otherwise.

The positivity of linear systems can be characterized in terms of the positivity
of B, C, and etA.

Proposition 8.5. The linear system Σ(A,B,C) is positive if and only if B ≥ 0,
C ≥ 0, and A generates a positive matrix semigroup.

Proof. Assume that the system is positive. Then, letting x0 = 0 and u(t) = u, a
nonnegative constant, we see that

0 ≤ x(t)

t
=

1

t

∫ t

0

e(t−s)ABu ds =

(
1

t

∫ t

0

esA ds

)
Bu.

So, by letting t → 0, we obtain the positivity of B.

Since Cx0 = Cx(0) = y(0) ≥ 0 for every x0 ≥ 0, the operator C has to be
positive too. Finally, applying the zero control, we see that x(t) = etAx0 ≥ 0 for
every x0 ≥ 0.

To prove the converse implication, suppose that B ≥ 0, C ≥ 0, and that A
generates a positive matrix semigroup. Taking x0 ≥ 0 and u ≥ 0, we see that

etAx0 ≥ 0

and that Bu(s) ≥ 0 for each s ∈ [0, t], hence e(t−s)ABu(s) ≥ 0, implying∫ t

0

e(t−s)ABu(s) ds ≥ 0,

which in view of (8.2) and (8.3) proves the statement. �

Let us define now excitable positive linear systems.

Definition 8.6. A positive system is said to be excitable, if each state variable can
be made strictly positive by applying an appropriate positive input to the system
initially at rest. In other words, for each i = 1, 2, . . . , n there are a control ui ≥ 0
and a time ti such that xi(ti) > 0 if x0 = 0.



8.1. Externally and Internally Positive Systems 97

Excitable systems enjoy some remarkable properties. To be able to present
some of them, we introduce some new concepts. To keep the presentation as simple
as possible, we restrict ourselves for the rest of this section to the case Y = U = C,
i.e., we only consider one-dimensional control and observation spaces.

The influence graph of the system Σ(A,B,C) in (8.1) is a directed graph
G = (V,E) with n+2 vertices V = {v0, v1, . . . , vn+1}. Vertex v0 is associated with
the input u and vertex vn+1 with the output y. The remaining vertices v1, . . . , vn,
correspond to the state variables x1, . . . , xn. The edges represent the influence
relations among the variables and are constructed as follows.

• (v0, vj) ∈ E if and only if bj �= 0, j = 1, . . . , n;

• for i, j = 1, . . . , n, i �= j, (vi, vj) ∈ E if and only if aji �= 0;

• (vi, vn+1) ∈ E if and only if ci �= 0, i = 1, . . . , n.

No other edges are present in the graph.

v1v0

v2 v3

Figure 8.2: The influence graph of the system in Example 8.3.

The corresponding graph matrices are constructed as follows: Â = (âij),
where âij = 1 if and only if i �= j and aji �= 0, otherwise âij = 0. The row- and

column- matrix B̂ and Ĉ, respectively, are constructed in a similar manner. The
following (n+ 2)× (n+ 2) matrix

A :=

⎛⎝0 B̂ 0

0 Â Ĉ
0 0 0

⎞⎠ . (8.5)

is thus the 0− 1 adjacency matrix of the unweighted influence graph.

Many properties of a positive linear system can be described in terms of its
influence graph. Observe, for example, that by Proposition 6.1 the following holds.

Corollary 8.7. A system is irreducible if and only if the subgraph of its influence
graph, consisting only of vertices v1, . . . , vn and edges between them, is strongly
connected.

We can also express excitability of the system in terms of the above graph
matrices.
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Proposition 8.8. The positive linear system Σ(A,B,C) in (8.1) is excitable if and
only if there exists at least one walk from the input vertex v0 to each vertex vi,
i = 1, . . . , n, in the influence graph G, or, equivalently, if and only if

B̂ + B̂Â+ · · ·+ B̂Ân−1 � 0.

Proof. Excitability means that each state variable xi can be influenced by the
input u. This implies that there has to be at least one walk from the vertex v0 to
the vertex vi in the influence graph G.

Note that the powers of the adjacency matrix A in (8.5) have the same block
form:

Ak =

⎛⎝0 B̂Âk−1 B̂Âk−2Ĉ

0 Âk Âk−1Ĉ
0 0 0

⎞⎠ , k ∈ N.

Recall from Proposition 1.1 that the ith component of the row vector B̂Âk−1

represents the number of walks of length k from vertex v0 to vertex vi, i = 1, . . . , n.
Hence, there is a walk to every vertex, if and only if

B̂ + B̂Â+ · · ·+ B̂Ân−1 � 0.

Assume that the positive system Σ(A,B,C) is not excitable. Then, there
exists i ∈ {1, . . . , n} such for all t and all controls u ≥ 0,

xi(t) =

(∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

By taking u(t) = 1, we obtain

bi = lim
t→0

(
1

t

∫ t

0

esA dsB

)
i

= 0.

On the other hand,

ẋi(t) =

(
Bu(t) +A

∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

This implies that (
A

∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

As above, by taking u(t) = 1, we obtain (AB)i =
∑n

j=1 aijbj = 0. Using the
positivity, we deduce that aijbj = 0 for all j (note that, as we have seen above,

bi = 0, so also aiibi = 0). Hence for the graph matrices we have (B̂Â)i = 0. By
repeating the same arguments we obtain (B̂Âk)i = 0 for all k = 0, . . . , n− 1, and
this ends the proof of the proposition. �
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We consider now rather special constant inputs, u(t) = ū > 0.

Theorem 8.9. An excitable and asymptotically stable positive linear system has a
strictly positive equilibrium state.

Proof. Since by asymptotic stability all the eigenvalues of A have negative real
part, A is invertible and x̄ := −A−1Bū is the unique equilibrium of the system,
which is asymptotically stable. We only have to show that it is strictly positive.

Suppose that there are indices i such that x̄i = 0, and collect these indices
in the set I := {i ∈ {1, . . . , n} : x̄i = 0}. Then, since

Ax̄+Bū = 0,

we see that ∑
j /∈I

aij x̄j + biū = 0 for i ∈ I.

This implies that bi = 0 and that aij = 0 for i ∈ I and j /∈ I, since the system is
positive. Hence, there is no walk from the input vertex 0 to vertices i ∈ I and the
system is not excitable. �

8.2 Controllability

For simplicity, we consider here systems without observation, i.e., where Y = X
and C = I. We denote by Σ(A,B) the system (8.1) simplified this way.

Definition 8.10. The system Σ(A,B) is called controllable in time τ if for every
initial value x0 ∈ X and every state x1 ∈ X there is a control u such that for the
solution x we have x(τ ;x0) = x1.

We will briefly call a system controllable, if there exists a τ > 0 such that it
is controllable in time τ .

Lemma 8.11. The system Σ(A,B) is controllable in time τ if and only if every
state x1 ∈ X can be reached from x0 = 0 in time τ .

Proof. We only have to prove the converse. Let us take x1 ∈ X and set x2 =
x1 − eτAx0. Then, by assumption, there is a control u such that x2 = x(τ ; 0).
Then

x(τ ; 0) =

∫ τ

0

e(τ−s)ABu(s) ds = x2,

hence

x(τ ;x0) = eτAx0 +

∫ τ

0

e(τ−s)ABu(s) ds = eτAx0 + x2 = x1,

and we are done. �
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To investigate the possible reachable states, we take a functional analytic
point of view and introduce an operator which maps control functions to states
which are reached from the origin by using this control.

Definition 8.12. Fix τ > 0. The controllability operator Bτ : L1([0, τ ], U) → X is
defined by

Bτ (u) :=

∫ τ

0

e(τ−s)ABu(s) ds.

Hence, the system is controllable in time τ if and only if Bτ is surjective.

Let us begin with the following simple properties. The proof is left to the
reader.

Lemma 8.13. The operator Bτ has the following properties.

a) The operator Bτ is linear.

b) The operator Bτ : L1([0, τ ], U) → X is bounded, i.e.,

sup
‖u‖≤1

‖Bτ(u)‖ < ∞.

Fortunately, there is an important characterization of the range of Bτ .

Theorem 8.14. For every τ > 0 we have

im(Bτ ) = span
{
x, Ax, A2x, . . . , An−1x : x ∈ im(B)

}
.

Proof. Let us introduce first some shorthand notation for this proof and introduce

X1 := span
{
x, Ax, A2x, . . . , An−1x : x ∈ im(B)

}
,

as well as two further spaces,

Xτ
2 := span

{
etAy : 0 ≤ t ≤ τ, y ∈ im(B)

}
,

Xτ
3 := span

{∫ t

0

esAy ds : 0 ≤ t ≤ τ, y ∈ im(B)

}
.

Since step functions are dense in L1, and since in X every subspace is auto-
matically closed, we conclude by the continuity of Bτ that

im(Bτ ) = Xτ
3 .

Observe also, using Corollary 2.14 and Theorem 2.12, that etA is a polynomial
in A of degree at most n− 1, and thus, Xτ

2 = X1.

Now let us take y ∈ im(B). Then x(t) =
∫ t

0
esAy ds ∈ Xτ

3 for t ≤ τ . Clearly,
all the derivatives of x lie in Xτ

3 , hence

x(0) = 0 ∈ Xτ
3 ,

ẋ(0) = y ∈ Xτ
3 ,

ẍ(0) = Ay ∈ Xτ
3 ,

etc.
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Thus, X1 ⊂ Xτ
3 . On the other hand, if y ∈ im(B), then esAy ∈ X1, implying that∫ t

0

esAy ds ∈ X1,

i.e., Xτ
3 ⊂ X1. �

Corollary 8.15 (Kàlmàn criterion). For a control system Σ(A,B) the following are
equivalent.

(i) The system is controllable in time τ for all τ > 0.

(ii) The controllability operator Bτ is surjective for every τ > 0.

(iii) The rank condition rank(B,AB,A2B, . . . , An−1B) = n is satisfied.

(iv) The system is controllable.

In many applications it is natural to consider only positive initial values,
positive controls, and expect the states of the system to remain positive for all
times. Hence, we restrict our investigations here to this case.

By X+ := {x ∈ X : x ≥ 0} we denote the positive cone of X . The reachability
set Xτ,+ of a positive system Σ(A,B) is defined as the set of points that can be
reached from the origin in time τ by applying a positive control. In other words,

Xτ,+ :=

{∫ τ

0

e(τ−s)ABu(s) ds : u ≥ 0

}
.

By linearity and positivity of the operators, the set Xτ,+ ⊆ X+ is a convex
cone (i.e., for every x, y ∈ Xτ,+ and α, β ≥ 0, αx + βy ∈ Xτ,+). Actually, much
more can be said.

Theorem 8.16. The set Xτ,+ is a convex cone which is non-degenerate (i.e., it
contains an open ball) if and only if the positive system Σ(A,B) is controllable,
i.e., the Kàlmàn rank condition is satisfied.

Proof. It can be shown directly that Xτ,+ is a convex cone. Assume now that the
Kàlmàn rank is less than n. This means that there exists a nonzero y ∈ X such
that y�AiB = 0 for i = 0, . . . , n. Hence, y�etAB = 0 for all t ≥ 0, since the degree
of the minimal polynomial of A is less than n. So, for all x ∈ Xτ,+ we have

(y |x) =
(
y

∣∣∣∣ ∫ τ

0

eA(τ−s)Bu(s)

)
ds

=

∫ τ

0

(
(eA(τ−s)B)�y

∣∣∣∣ u(s)) ds

= 0.

Therefore, Xτ,+ lies in an (n − 1)-dimensional subspace of X , which means that
Xτ,+ is degenerate.
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Conversely, if Xτ,+ is degenerate, it lies in an (n− 1)-dimensional subspace
of X , since Xτ,+ is convex. Thus, there exists y ∈ X such that (y|x) = 0 for all
x ∈ Xτ,+ and so ∫ τ

0

(
(eA(τ−s)B)�y

∣∣∣ u(s)) ds = 0

for all u ≥ 0 (and hence for all u ∈ L1
loc(R+, U)). Taking now a constant function

u(s) = v ∈ U and differentiate the above equation with respect to τ , one obtains(
B�y

∣∣ v) = 0,∫ τ

0

(
(AeA(τ−s)B)�y

∣∣∣ v) ds = 0

for all v ∈ U . Thus, y�B = 0. Differentiating again the above equation with
respect to τ one has (

(AB)�y
∣∣ v) = 0,∫ τ

0

(
(A2eA(τ−s)B)�y

∣∣∣ v) ds = 0

for all v ∈ U . Repeating the above process (n− 1)-times one gets y�BAi = 0 for
i = 0, 1, . . . , n− 1, which implies that the Kàlmàn rank is less than n. �

An important case is when Xτ,+ is actually the whole positive cone X+, i.e.,
when each positive state can be reached by applying a positive control from the
origin.

Definition 8.17. A positive system Σ(A,B) is called

(i) (exactly) positive controllable in time τ , if

Xτ,+ = X+

(ii) (exactly) positive controllable, if⋃
τ≥0

Xτ,+ = X+,

(iii) approximately positive controllable in time τ , if

Xτ,+ = X+.

(iv) approximately positive controllable, if⋃
τ≥0

Xτ,+ = X+.
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Positive controllability is a much more delicate question then usual control-
lability and the different notions in the definition above do not coincide (as is the
case with the usual controllability). In the proof of Theorem 8.14, the range of
the controllability operator, that is, the reachability set for the usual case, was
characterized via three linear subspaces. Unfortunately Xτ,+ is in general not a
closed linear subspace and we can only show the following characterization.

By coM we denote he smallest convex set containing M and by cocone M
the smallest convex cone containing M and 0.

Proposition 8.18. Let u1, . . . , up be the standard basis vectors in U = Cp. For a
positive system Σ(A,B),

Xτ,+ = co
{
etABu : 0 ≤ t ≤ τ, u ∈ U+

}
= cocone

{
etABuj : 0 ≤ t ≤ τ, 1 ≤ j ≤ p

}
.

Proof. By the definition of the integral,

Xτ,+ ⊆ co
{
etABu : 0 ≤ t ≤ τ, u ∈ U+

}
.

Now choose any u ∈ U+. Since the equations are autonomous, it is enough to show
that etABu ∈ Xt,+ for all 0 ≤ t ≤ τ . To this aim take

um(s) :=

{
mu, for 0 ≤ s ≤ 1

m ,

0, for 1
m < s ≤ τ,

and compute∥∥∥∥∫ t

0

e(t−s)ABum(s) ds− etABu

∥∥∥∥ ≤ m

∫ 1/m

0

∥∥∥e(t−s)ABu− etABu
∥∥∥ ds

which converges to 0 as m → ∞. Hence, the first equality is proved. The second
one now also follows, since BU+ = cocone{Bu1, . . . , Bup}. �

8.3 Stabilization

We restrict ourselves again to systems without observation and where the control
is given by a suitable feedback K.

Definition 8.19. A system Σ(A,B) is called stabilizable if there is a feedback K
such that the state converges to zero for every initial value, i.e.,

lim
t→∞x(t) = lim

t→∞ et(A+BK)x0 = 0 (8.6)

for every x0 ∈ X .

Note that by Theorem 4.12 we have the following characterization of stabi-
lizable systems.
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Corollary 8.20. System Σ(A,B) is stabilizable if and only if there is a feedback K
such that s(A+BK) < 0.

A positive system Σ(A,B) is called positively stabilizable, if there is a positive
feedback operator K such that (8.6) holds for every x0 ≥ 0.

Proposition 8.21. A positive system is positively stabilizable if and only if it is
stabilizable with a positive feedback.

Proof. Note that for every element in X its real part and imaginary part can be
represented as the difference of two positive elements in the positive cone of X .
Since

lim
t→∞ et(A+BK)x0 = 0

for every x0 is equivalent to

lim
t→∞ et(A+BK)(x1 − x2) = 0

for every x1, x2 ≥ 0, the statement follows. �

8.4 Notes and Remarks

There are many excellent introductions to systems and control theory. We based
our presentation on the monograph by Jacob and Zwart [69], on the work by
Mehrmann [93], and on the monograph by Zabczyk [158].

Positivity aspects of control problems are discussed by Schanbacher in [127]
and in the monograph by Farina and Rinaldi [45]. Many further interesting topics
could be studied here, and in case we succeeded to make you curious, you can look
them up in the above-mentioned sources.

8.5 Exercises

1. Prove the basic properties of the controllability operator Bτ as stated in
Lemma 8.13.

2. Show that a system Σ(A,B) is controllable if and only if for every eigenvector
v of A� we have vB �= 0.

3. Show that a system Σ(A,B) is controllable if and only if rank(λ−A,B) = n
for all λ ∈ C.

4. Let U = C and X = C2, and consider

A =

(
−1 0
1 −a

)
and B =

(
1
0

)
with a > 0. What can you say about the reachability set Xτ,+ of this positive
linear system? In other words, which states can be reached from the origin
by applying a positive control u in time τ?
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5. Let U = C and X = C2, and consider

A =

(
1 0
0 2

)
and B =

(
1
1

)
.

Show that Σ(A,B) is controllable, but not approximately positive control-
lable.

6. Let U = C and X = C2, and consider

A =

(
0 1
0 0

)
and B =

(
0
a

)
,

with a > 0. Is the system Σ(A,B) stabilizable? Is it positively stabilizable?
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