
Chapter 6

Applications of Positive Matrices

We have now accumulated enough material to pause for a while to discuss its
consequences in concrete situations. We have revised linear algebra facts from
a functional analytic perspective and obtained a construction to get functions
of matrices in a coordinate-free manner, without the use of the Jordan normal
form. This was useful when we considered positive matrices, and enabled us to see
important and deep spectral consequences of positivity.

The applications of the developed theory are numerous and we have selected
just a few representing our taste: graph matrices, the Google matrix, and age-
structured population models.

6.1 Motivating Examples Revisited

We start by revisiting our motivating examples from Section 1.1.

Graphs

Let G = (V,E) be a directed graph with n vertices V = {v1, . . . , vn} and a set of
directed edges E. The graph G is called strongly connected if for every vi ∈ V and
every vj ∈ V there is walk in G from vi to vj . This property of the graph can be
read from its adjacency matrix.

Proposition 6.1. A graph G is strongly connected if and only if its adjacency matrix
is irreducible.

Proof. Let A = (aij) be the adjacency matrix of G. By Lemma 5.10, A is reducible
iff we can partition the sets of vertices V = V1 ∪ V2 into two disjoint subsets such
that after relabeling the vertices we obtain a block-triangular form for A,

A =

(
A11 A12

0 A22

)
, (6.1)
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70 Chapter 6. Applications of Positive Matrices

where the block Ak� for each k, � ∈ {1, 2} corresponds to connections from the set
of vertices Vk to the set V�. Note that A21 = 0 is equivalent to the fact that there
are no direct edges from a vertex in V2 to a vertex in V1.

Let vi ∈ V2 and vj ∈ V1 and assume there exists a walk in G from vi to vj .
Then

aii1ai1i2 · · · aisj �= 0

for some i1, . . . , is ∈ {1, . . . , n}. Observe that in this product there must be a
nonzero entry with “mixed” indices, i.e., aiki� �= 0 with vik ∈ V2 and vi� ∈ V1,
which contradicts (6.1). So, if G is strongly connected, A must be irreducible.

For the converse assume that G is not strongly connected. Hence there exist
vertices vi, vj ∈ V such that there is no walk starting in vi and ending in vj . Let V1

be the set of all initial vertices of walks which end in vj , and let V2 = V \V1. The sets
V1 and V2 are disjoint and nonempty. According to the partition V = V1 ∪ V2 the
adjacency matrix has block-triangular form given in (6.1), so A is reducible. �

As a corollary we obtain a combinatorial characterization of positive irre-
ducible matrices. Note that every positive matrix can be seen as the adjacency
matrix of a graph.

Corollary 6.2. A positive n × n matrix A, n ≥ 2, is irreducible if and only if for
every i, j ∈ {1, . . . , n} there exists an s ∈ N such that (As)ij > 0.

We will illustrate another property of the adjacency matrix A in terms of the
structure of the graph G. Recall from Theorem 5.19 that any imprimitive matrix
with index of imprimitivity h can be written in Frobenius form as follows:

PAP−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
. . .

. . .
...

0 0
. . . 0 Ah−1,h

Ah1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6.2)

with square blocks on the main diagonal.

Lemma 6.3. Let A be an imprimitive matrix with index of imprimitivity h and
Frobenius form (6.2). Then A12A23 · · ·Ah1 is a primitive matrix.

Proof. First introduce the matrices

Ã1 := A12A23 · · ·Ah1, Ã2 := A23A34 · · ·A12, . . . Ãh := Ah1A12 · · ·Ah−1,h.

Observe that all of them are positive matrices and their spectra coincide.
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Using the Frobenius form (6.2), one sees that

(
PAP−1

)sh
=

⎛⎜⎜⎜⎝
Ãs

1 0 · · · 0

0 Ãs
2 · · · 0

...
...

. . .
...

0 0 · · · Ãs
h

⎞⎟⎟⎟⎠ for all s ∈ N.

Since A is irreducible, so is PAP−1. Combining Corollary 6.2 and the above block
diagonal form yields the irreducibility of Ã1.

By Theorem 5.19, the boundary spectrum of A equals

σb(A) =
{
r, rω, rω2, . . . , rωh−1

}
,

where r = r(A) and ω = e2πi/h. Hence,

{rh} = σb(A
h) = σb

(
PAhP−1

)
= σb(Ã1),

and the matrix Ã1 is indeed primitive. �

Proposition 6.4. Let G be a strongly connected graph whose adjacency matrix A
is imprimitive with index of imprimitivity h. Then h equals the greatest common
divisor

• di of lengths of all closed walks through a vertex vi in G,

• dW of lengths of all closed walks in G, and

• dC of lengths of all cycles in G.

Proof. Let us first show that dC = dW. Clearly, dW|dC, as every cycle is also a
closed walk. Now observe that every closed walk can be partitioned into cycles
and the length of the closed walk is the sum of the lengths of these cycles, hence
divisible by dC.

Now fix a vertex vi of G. By definition, d := dC = dW divides di. Choose an
arbitrary closed walk C in G. If it contains vi, then its length �(C) is divisible by
di. Otherwise, take a vertex vj ∈ C. Since G is strongly connected, there exist a
walk Wij from vi to vj and a walk Wji from vj to vi. Now WijCWji is a closed
walk in G that contains vi, hence its length

�(WijCWji) = �(Wij) + �(C) + �(Wji)

is divisible by di. But also WijWji is a closed walk in G that contains vi and thus
also �(WijWji) = �(Wij) + �(Wji) is divisible by d. Therefore di divides �(C) and
since W was arbitrary, it divides d. We conclude that di = d.

Again take a vertex vi of G. It remains to show that di = h. The existence
of a closed walk in G of length � through a vertex vi is equivalent to the condition
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(A�)ii > 0, see Proposition 1.1. Therefore (Akdi )ii > 0 for all sufficiently large
k ∈ N and (As)ii = 0 if s is not a multiple of di.

On the other hand, we may assume that A is in Frobenius form (6.2). Then
only powers of Ah can have nonzero diagonal elements. Note that, by Lemma 6.3,
the square diagonal blocks of Ah consist of primitive matrices, hence Amh � 0 for
some m ∈ N, see Proposition 5.21. Therefore (Amh)ii > 0 for all sufficiently large
m ∈ N and (As)ii = 0 if s is not a multiple of h.

Altogether we thus have that h = di = d. �

Remark 6.5. Observe that in the case when A is a primitive matrix the same proof
yields di = dW = dC = 1.

Markov chains

Now let a positive stochastic n×n matrix P = (pij) be the transition matrix of a
discrete finite homogeneous Markov chain with the state space V = {v1, . . . , vn}.
The kth step probability distribution vector p(k) = (p1(k), p2(k), . . . , pn(k))

�
is

defined as a positive stochastic vector, i.e.,

0 ≤ pi(k) ≤ 1,

n∑
i=1

pi(k) = 1,

where pi(k) is the probability of Markov process being in the state vi after k steps.
By the Markov property and Remark 1.2, the kth step distribution is determined
from the initial distribution p(0) by means of the transition matrix:

p(k) = (P k)�p(0), k ∈ N.

Therefore the long-run (or limiting) probability distribution depends on the
behavior of P k for k → ∞. Using our results from Chapters 3 and 5 we can
describe it in terms of spectral properties of P .

Let us first state some spectral properties of P .

Lemma 6.6. For the transition matrix P the following holds.

a) r(P ) = 1 is an eigenvalue of P with corresponding eigenvector

1 = (1, 1, . . . , 1)�.

b) All eigenvalues of P with modulus 1 are simple poles of the resolvent.

Proof. a) Since P is row-stochastic, P k1 = 1 holds for all k ≥ 1. Hence, by
Gelfand’s formula, r(P ) = 1 and 1 is an eigenvalue with eigenvector 1.

b) Since ‖P k‖∞ = 1 for all k ∈ N, the sequence (P k) is bounded, and by
Theorem 3.13, all eigenvalues with modulus 1 are simple poles of the resolvent. �
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As a consequence, P is always Cesàro summable with Cesàro means con-
verging to the spectral projection of P belonging to 1 (cf. Theorem 3.13). The
sequence P k, however, does not converge as k → ∞ unless 1 is radially dominant
(see Theorem 3.7).

The Cesàro means of p(k) have an illustrative interpretation in the con-
text of Markov chains. Pick a state vj and define a sequence of random variables
(Xi)

∞
i=0 by

Xi =

{
1 if the chain is in the state vj after i steps,

0 otherwise.

Then 1
k

∑k−1
i=0 Xi represents the fraction of time that the state vj is visited in k−1

steps. Since the expected value of each Xi is E(Xi) = pj(i), we have

E

(
1

k

k−1∑
i=0

Xi

)
=

(
1

k

k−1∑
i=0

p(i)

)
j

.

This means that the jth component of the Cesàro limit vector represents the
fraction of time that the chain spends in the state vj in the long-run.

Assume now, that the matrix P is irreducible (i.e., all states vi are reachable
from each other in a finite number of steps). In this case we have two possibilities.

• If P is a primitive matrix, then

lim
k→∞

P k = P1 with P1x = 〈x, y〉1 and lim
k→∞

p(k) = y, (6.3)

where y is the stochastic Perron vector for P�, see Proposition 5.21.

• If P is an imprimitive matrix, then the above limits do not exist. However,
for the corresponding Cesàro means,

lim
k→∞

P (k) = P1 with P1x = 〈x, y〉1 and lim
k→∞

1

k

k−1∑
i=0

p(i) = y, (6.4)

where again y is the stochastic Perron vector for P�, see Theorem 3.13.

A Markov chain with an irreducible and imprimitive transition matrix is
called periodic. In such a chain all states are visited periodically, with the period
equal to the index of imprimitivity of P , see Corollary 5.23.

Note that the value of the (Cesàro) limit is independent of the initial dis-
tribution p(0). The vector y in equations (6.3) and (6.4) is called the stationary
distribution vector for the Markov chain. It is the unique stochastic vector satis-
fying P�y = y. Its components represent the long-run fraction of time that the
chain spends in the corresponding state.
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6.2 The Google Matrix

We shall demonstrate now that we encounter positive matrices and their Perron
vectors on an everyday basis. We will look at the mathematics behind Google7,
currently the world biggest web search engine.

Every web search engine must build its web-page repository and index the
pages stored there in the best possible way. For this purpose they use crawler
software that creates virtual robots, called spiders, that constantly travel the web.
The spiders number each page, collect important data from it (such as title, key
words, link names, anchors, etc.) and create an index of all visited pages. Now the
pages have to be ranked according to their importance. When the user does an
internet search it is desired that more relevant pages are placed at the beginning
of the produced list. This is actually the most important and delicate step for
a search engine. It is because of intelligent ranking that Google got ahead its
competitors when it appeared on the market. The core of Google is the ranking
algorithm PageRank, developed in 1998 by Larry Page and Sergey Brin, then PhD
students at Stanford University, California.

PageRank

Assume we have n web pages W = {Wk | k = 1, . . . , n}. For a page Wk we denote
by Ik := {i | Wi → Wk} the set of indices of all inlinks to Wk, by Ok := {j |
Wk → Wj} the set of indices of all outlinks of Wk, and by xk ≥ 0 the rank of the
page Wk. Now the question is, how to define xk properly?

The answer of Page and Brin is: A page is important if it is pointed to by
other important pages. Their formula for the rank is thus recursive and it is not
clear at this point whether it admits a solution:

xk :=
∑
i∈Ik

xi

|Oi|
, k = 1, . . . , n. (6.5)

Here it is assumed that a link from a page to itself does not count.

The internet can be viewed as a huge directed graph with n vertices (= web
pages) whose edges are hyperlinks. Let H be the transposed adjacency matrix of
this graph, called also the hyperlink matrix , with entries

Hij = 1/|Oj | iff Wj → Wi and Hij = 0 otherwise.

We can interpret the values Hij as probabilities of accessing page Wi from page
Wj . Collecting single ranks into a ranking vector x := (x1, . . . , xn)

�, we can now
write the recursive relation (6.5) as a matrix equation

x = Hx. (6.6)

7The name comes from the misspelled number googol = 10100.
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The solution vector, if it exists, is thus the fixed vector of the hyperlink matrix
H . To assure uniqueness, we impose from now on that the ranking vector x is
stochastic, i.e., ‖x‖1 = 1.

Note thatH is a positive matrix, thus by Perron’s theorem (see Theorem 5.6),
its spectral radius r(H) is an eigenvalue of H with positive eigenvector. Matrix
H is also substochastic, i.e.,

∑n
i=1 Hij ≤ 1 for all j, hence r(H) ≤ 1. Having

equation (6.6) in mind, we would like that r(H) = 1. Observe that the sum of
non-zero columns actually equals 1, but H might have some zero columns which
represent the so-called dangling nodes, that is, pages without outlinks. Brin and
Page therefore suggested to adjust the matrix H : replace all zero columns with
(1/n, . . . , 1/n)�. The adjusted matrix becomes stochastic and thus equation (6.6)
with the modified matrix H has a solution. We can also interpret this adjustment.
Imagine a random surfer traveling the web using hyperlinks, which he chooses
randomly. At some point he might find himself at a dangling node. His way out is
to randomly type an url and thus jump to any page with probability 1/n.

In order to assure the uniqueness of the solution to equation (6.6), we would
like H to be irreducible. By Proposition 6.1, H is irreducible if and only if the web
is strongly connected, which is clearly a nonrealistic assumption. However, Brin
and Page overcame also this problem with a new adjustment: they replaced the
matrix H by the Google matrix

G := αH + (1 − α)S, (6.7)

where S = (1/n)n×n and α ∈ [0, 1] is some fixed number. The interpretation of
this adjustment is a continuation of the one above: a random surfer sometimes
decides to jump to some other page directly by typing an url instead of following
some hyperlink, even if he is not at the dangling node. The role of the parameter α
is to balance between the original web structure given by H and a fully connected
web represented by S. We would of course like to weight the original hyperlink
structure heavily and take α close to 1.

For any α ∈ [0, 1), the Google matrix G is positive, irreducible, and column
stochastic, hence Frobenius Theorem 5.13 guarantees that the equation Gx = x
has a unique strictly positive stochastic solution. Thus the desired ranking vector
is nothing but the Perron vector for G!

Computation of the Perron vector

To compute the Perron vector for G we can use a very simple numerical method
called the power method that was already mentioned at the end of Chapter 3. It
is an iterative method defined by

x(k+1) = Gx(k).

From this we infer that x(k+1) = Gkx(0), thus convergence of this process is assured
by Corollary 5.16, independent of the choice of the initial vector x(0) �= 0. Here
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it is important that 1 is a strictly dominant eigenvalue of the positive irreducible
matrix G.

It is well known that the rate of convergence of the power method is governed
by the magnitude of the second eigenvalue |λ2| of the matrix. For the Google
matrix it can be shown that |λ2| ≤ α. This means that the convergence is faster
for smaller α. Since we argued above that α should be close to 1, one has to accept
a compromise here. It is reported that Google uses α = 0.85, the value set already
by Brin and Page in 1998.

6.3 Age-structured Population Models

Plant, animal, and human population models are typical examples for positive
dynamical systems in which the state variables represent biomass, density, or
the number of individuals in the population. Many of these models, in partic-
ular those describing predation, competition, and symbiosis among species, are
nonlinear and therefore deemed to investigation by other means. An important
and still widely used exception is the well-known Leslie model , which describes
the time evolution of a population in which fertility and survival rates of indi-
viduals strongly depend on their age. For this reason, such populations are called
age-structured populations. In the Leslie model, the time is discrete and repre-
sents the reproduction season (typically the year in case of mammals), while the
variables x1(t), x2(t), . . . , xn(t) represent the number of females (or individuals, or
couples) of age 1, 2, . . . , n at the beginning of year t.

In the simplest possible case one can describe the aging process by means of
the equations

xi+1(t+ 1) = sixi(t), i = 1, 2, . . . , n− 1,

where si > 0 is the survival coefficient at age i, that is, the fraction of females of
age i that survive at least for 1 year. The first state equation takes into account
the reproduction process, and is

x1(t+ 1) = s0(f1x1(t) + f2x2(t) + · · ·+ fnxn(t)),

where s0 > 0 is the survival coefficient during the first year of life and fi ≥ 0 is
the fertility rate of females of age i, that is, the mean number of females born
from each female of age i. These equations, originally proposed by Leslie, lead to
a positive linear autonomous model

x(t+ 1) = Ax(t),
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where the matrix A, called the Leslie matrix , is given as

A =

⎛⎜⎜⎜⎜⎜⎝
s0f1 s0f2 . . . s0fn−1 s0fn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
...

...
0 0 . . . sn−1 0

⎞⎟⎟⎟⎟⎟⎠ . (6.8)

Though Leslie models appear to be quite coarse at first sight, they are ex-
tensively used for making demographic projections, i.e., forecasting

x(k) = Akx(0)

given x(0).

Let us comment on the usefulness of these models first. In Leslie models,
survival and fertility rates depend exclusively on age. In reality, this is more or
less true provided the individuals in each age class are not too many. In fact,
as soon as the density of the individuals increases, some phenomena show up,
which may reduce fertility and/or survival rates. For example, finding appropriate
niches for reproduction becomes more difficult if the number of fertile individuals
increases; the spreading of epidemics is favoured by high population densities; the
search for food becomes more and more difficult as a population increases, and so
on. This means that Leslie models are well suited for describing the dynamics of
populations doomed to extinction, that is, characterized by small densities xi(t)
for which we can suppose that survival and fertility rates are constant as time
evolves. Leslie models are also extremely effective yielding short term forecasts in
growing populations.

Investigating the properties of the Leslie matrix, we see that it is positive
and, if fn > 0, it is also irreducible. Looking at the directed weighted graph whose
adjacency matrix is given by equation (6.8) and using Proposition 6.4 one easily
obtains that the index of imprimitivity of the Leslie matrix equals

h = gcd {k ∈ {1, . . . , n} : fk > 0} .

Hence, if there are two consecutive ages with strictly positive fertility age, then
the Leslie matrix is primitive.

The (normalized) Perron eigenvector of the Leslie matrix is called the stable
age structure, which is roughly the asymptotic age distribution as time evolves.
More precisely, we have the following result as a consequence of Proposition 5.21.

Proposition 6.7. Consider the Leslie matrix A given in (6.8) with fn > 0 and
assume that A is a primitive matrix. Denote the Perron eigenvalue by λ1 = r(A)
and the corresponding eigenvector by x1 � 0. Then

λ−k
1 Ak − P1 −→ 0

as k→∞, where P1 is the projection to the one-dimensional subspace spanned by x1.
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Average Low High Average Low High
Reprod./ Reprod./ Reprod./ Annual Annual Annual

Age Class Year Year Year Survival Survival Survival

Cub 0.00 0.00 0.00 0.80 0.41 0.99
1-year-old 0.00 0.00 0.00 0.75 0.41 0.99
2-year-old 0.00 0.00 0.00 0.71 0.41 0.90
3-year-old 0.28 0.00 0.50 0.84 0.69 0.93
Adult 0.58 0.23 0.82 0.84 0.69 0.93

Table 6.1: Input parameters for Leslie Matrix population model (based on females
only) of Virginias hunted black bear populations as estimated between 1994–1999.

Let us note that in many applications it is better to structure the population
not in age groups, but in so-called stage groups. As an example, we consider Vir-
ginias hunted black bear populations. A statistical analysis, the details of which
we omit, leads to the following table, which is only reproduced here to show the
complexity of such problems.

In this case, as we see, it is better to investigate the so-called stage-based
Leslie model. Stage-based models are frequently used for long-lived species because
data on specific ages are not available, demographic variables within age classes
are not different, and individual age classes for a species that lives, for example,
up to 30 years (like black bear), would result in matrices of sizes up to 30 × 30.
Analysis of this table can lead to the following Leslie matrix, where various other
effects have been taken into account, and which was used successfully in analysis
done by biologists:

A =

⎛⎜⎜⎜⎜⎝
0 0 0 0.275 0.575

0.80 0 0 0 0
0 0.75 0 0 0
0 0 0.71 0 0
0 0 0 0.84 0.84

⎞⎟⎟⎟⎟⎠ . (6.9)

Here the last row stands for the whole adult stage, the element in the lower right
corner of the matrix representing the rate of the adult population remaining alive
after the year.

We now consider a second model, which is famous in the literature. The east-
ern wild turkey (Meleagris gallopavo silvestris) inhabits more or less the eastern
part of the United States. Turkey hunting has a substantial economic effect in
many rural communities. It is not only important because of the actual turkey
hunting, but it also takes part in the development of the related industries of
turkey-hunting clothes and equipment. Improvement of the knowledge of turkey
population dynamics is important for formulating hunting regulations and other
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turkey management practices. A Leslie matrix model can be developed for the
population dynamics of eastern wild turkeys in Iowa based on local studies. Here
a three-stage model is chosen in order to simplify the modeling procedure. The
first category is “poults”, aged from 0 to 1, the second category is “yearlings”,
aged from 1 to 2, and the last category is “adults”, aged 2 and older. Reproduc-
tion occurs from yearlings onwards. The time unit is one year. The Leslie matrix
obtained is

A =

⎛⎝ 0 0.880 1.860
0.445 0 0
0 0.616 0.610

⎞⎠ . (6.10)

This grouping makes sense for example if there are regulations allowing only the
adult population to be hunted, see Exercise 6.

6.4 Notes and Remarks

For further reading on search engines and the PageRank algorithm we recommend
the excellent monograph by Langville and Meyer [82]. The modeling and inves-
tigation of age-structured populations was initiated by Leslie in 1945 [87], and
extended to stage structured populations by Lefkovitch [86]. Virginia’s hunted
black bear populations is discussed in the PhD dissertation by Klenzendorf [75].
Much research about the rates of reproduction, mortality, and survival, and the
movement of wild turkeys has been done by Dickson [30].

6.5 Exercises

1. Verify that the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
is irreducible and imprimitive using graph-theoretical interpretations. Com-
pute also its index of imprimitivity.

2. Explain the statements given in (6.3) and (6.4). Why is the limiting distri-
bution independent of p(0)?

3. Find the limiting distribution for the Markov chain given by the transition
matrix

P =

⎛⎝ 0 1/2 1/2
1/3 0 2/3
1/3 2/3 0

⎞⎠ .
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4. Translate the PageRank algorithm into the language of Markov chains.

5. Compute the ranking vector for the web depicted in Figure 6.1. Choose sev-

v1 v2

v3v4

Figure 6.1: The web graph for Exercise 5.

eral values for α and observe how this choice does affect the ranking and the
computation time.

6. Consider the Leslie matrix in (6.10) corresponding to the turkey population
in Iowa. Use an appropriate computer software if necessary.

a) Calculate the Perron eigenvalue and the corresponding stable age struc-
ture. Is the population growing?

b) Assume we can change the survival rate of the adult population. How
should we change the survival rate of the adult population to ensure that
the Perron eigenvalue equals 1, meaning that the population remains
balanced?

c) Using a 1977 survey, the age structure in a region in Iowa was estimated
as x1(0) = 580, x2(0) = 123, x3(0) = 156. How many adults should be
hunted down at the end of the first year to ensure this decrease in the
survival rate of adults?

7. What is the Perron eigenvalue and the corresponding stable age distribution
of the Leslie matrix in (6.9) corresponding to the bear population? Is the
population growing, balanced, or dying out? Use an appropriate computer
software if necessary.

8. To connect two topics of this chapter, google further Leslie matrix models,
for example for the annual bluegrass (poa annua) or the brown rat (rattus
norvegicus) populations.
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