
Chapter 4

The Matrix Exponential Function

We continue our investigation of the asymptotic behavior of dynamical systems
described by matrices, which was started in last chapter, now moving to the con-
tinuous time case. This means that we investigate the asymptotic properties of
the matrix exponential function.

The importance of the topic should be clear for everyone reading this: the
matrix exponential function always solves a corresponding system of ordinary dif-
ferential equations, hence the asymptotic properties of matrix exponential func-
tions provide information on the long-time behavior of solutions of ODEs. This
subject has more than 100 years of history, with the famous Lyapunov stability
theorem as its starting point.

Topics we cover include boundedness, convergence to zero, convergence, mean
convergence (or Cesàro convergence), periodicity, hyperbolic decomposition, and
are presented in analogy to the results achieved in the previous chapter.

4.1 Main Properties

Let X be a n-dimensional vector space. The exponential function of a complex
matrix A ∈ L(X) is the mapping

exp : R −→ L(X), t �−→ exp(tA) = etA.

Here, as explained in Section 2.2, exp(tA) = etA stands for the matrix ft(A)
with ft(λ) := etλ. Therefore, Theorem 2.11, formula (2.9), says that etA can be
written as

etA =

m∑
i=1

νi−1∑
ν=0

etλitν

ν!
(A− λi)

νPi, (4.1)

where λ1, . . . , λm are the eigenvalues of A with corresponding multiplicities ν1,
. . ., νm (as roots of the minimal polynomial) and spectral projections P1, . . . , Pm.
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44 Chapter 4. The Matrix Exponential Function

Alternatively, according to Corollary 2.14, the matrix etA is represented by the
exponential series

etA =

∞∑
k=0

tkAk

k!
. (4.2)

Formula (4.1) gives an easy access to the following properties of etA. Firstly,
since f0(λ) = 1, we have

f0(A) = e0A = I.

By the multiplicativity of the functional calculus and the fact that

fs+t(λ) = fs(λ) · ft(λ), λ ∈ C,

we infer that
e(s+t)A = esA · etA (4.3)

for s, t ∈ R. Hence, (etA)t∈R is a subgroup of the multiplicative semigroup L(X),
and the mapping t �→ etA is a homomorphism of the additive group (R,+) into
L(X).

Remark 4.1. It is usual to refer to these properties of t �→ etA by saying that
(etA)t∈R is the matrix group generated by A. If we consider only t ≥ 0, we call
(etA)t≥0 the matrix semigroup generated by A

Furthermore, the function t �→ etA has nice analytic properties.

Theorem 4.2. The matrix exponential function t �→ etA is differentiable on R with
derivative

d

dt
etA = AetA = etAA, t ∈ R. (4.4)

Proof. Let f(λ) := λetλ and observe that(
λetλ

)(ν)
(λ) =

(
λtν + νtν−1

)
etλ.

Hence applying Theorem 2.11 for f(λ) = λetλ we obtain

AetA =

m∑
i=1

νi−1∑
ν=0

(
λit

νetλi + νtν−1etλi
) (A− λi)

ν

ν!
Pi

=

m∑
i=1

νi−1∑
ν=0

[
d

dt
(tνetλi)

]
(A− λi)

ν

ν!
Pi

=
d

dt

(
m∑
i=1

νi−1∑
ν=0

tνetλi
(A− λi)

ν

ν!
Pi

)

=
d

dt
etA.

Notice that since λetλ = etλλ, by the properties of the functional calculus we see
that AetA = etAA. �
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The following consequence of formula (4.4) motivates our interest in the
behavior of the function t �→ etA as t → ∞.

Corollary 4.3. Let A = (aij) ∈ L(X). Then for each x = (x1, . . . , xn)
� ∈ Cn the

function
t �−→ etAx =: (x1(t), x2(t), . . . , xn(t))

�

is the unique solution of the system of differential equations

d

dt
x1(t) = a11x1(t) + · · ·+ a1nxn(t)

d

dt
x2(t) = a21x1(t) + · · ·+ a2nxn(t)

...
d

dt
xn(t) = an1x1(t) + · · ·+ annxn(t),

with the initial condition

(x1(0), x2(0), . . . , xn(0)) = (x1, x2, . . . , xn).

Proof. A look at the differential quotient defining the derivative d
dt (e

tAx) and
Theorem 4.2 convinces us that

d

dt
(etAx) =

(
d

dt
etA

)
x = (AetA)x = A(etAx)

for all t ∈ R. Since e0A = I, we infer that etAx is a solution of the above initial
value problem. Now, let x(t) be any solution and define y(t) := e−tAx(t). Then

d

dt
y(t) =

(
d

dt
e−tA

)
x(t) + e−tA d

dt
x(t)

= −Ae−tAx(t) + e−tAAx(t)

= 0.

Therefore, t �→ y(t) = e−tAx(t) is constant. Since for t = 0 we have y(0) = x, we
conclude that x(t) = etAx for all t ∈ R. �
Remark 4.4. In short, Corollary 4.3 tells us that the matrix semigroup generated
by A = (aij) solves the initial value problem{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0,

in the sense that the orbit {etAx0 : t ∈ R} ≥ 0 of the initial value x0 ∈ Cn is
the unique solution of the problem. At present, we note that Theorem 4.2 remains
true if t is allowed to run through C, hence

z �−→ ezA

is a holomorphic function on C.
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4.2 Coordinate Functions

We intend to study the behavior of the function t �→ etA (or of t �→ etAx for a
given x ∈ X), as t → ∞, following the same pattern as in the previous Chapter 3
for the matrix powers. Nevertheless, a few comments seem to be appropriate.

While in Chapter 3 we studied the sequence (T k) and based our considera-
tions on the characterization of convergence of the coordinate sequences given in
Section 3.1, we will now have to deal with a function t �→ etA of the real variable t.
We will formulate, without going into a detailed discussion, the following versions
of the convergence properties discussed in Section 1.2.

If t �→ y(t) is a real function with values in a finite-dimensional vector space
X with a basis {y1, . . . , yn}, then

y(t) =

n∑
i=1

ηi(t)yi

with uniquely determined values of ηi(t) for each t ∈ R. We call the functions
t �→ ηi(t) the coordinate functions of y(t) with respect to {y1, . . . , yn}. Convergence
of y(t) as t → ∞ in X is equivalent to the convergence of all coordinate functions
ηi(t), no matter what basis is employed, the coordinates of the limit being the
limits of the respective coordinate functions.

In order to discuss the function t �→ etA, in analogy to Lemma 2.16, we use
a basis BA of L(X) containing the set

BA :=

{
(A− λi)

ν

ν!
Pi : i = 1, . . . ,m; ν = 0, . . . , νi − 1

}
.

By (4.1), the non-zero coordinate functions with respect to this basis are

gν,λi(t) := tνetλi (4.5)

for i = 1, . . . ,m and ν = 0, . . . , νi − 1. Likewise, if we wish to study etAx for a
given x ∈ X , we use a basis BA,x of X containing the non-zero elements of

BA,x :=

{
(A− λi)

νx

ν!
: i = 1, . . . ,m; ν = 0, . . . , νi − 1

}
.

Again, the coordinate functions of etAx with respect to this basis are among the
functions gν,λi(t) defined in (4.5).

The behavior of a function gν,λ(t) := tνetλ is easy to understand and essen-
tially depends on the real part of λ. The following cases are possible.

• Reλ < 0. Then, for each fixed value of ν, etλtν → 0 as t → ∞, where the
decay is exponential in the following sense:
for any 0 < δ < −Reλ there is Mδ ≥ 1 such that∣∣eλttν∣∣ = tνetReλ ≤ Mδe

−δt for all t ≥ 0.
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• Reλ > 0. Then, for each fixed value of ν,
∣∣etλtν∣∣ → ∞ as t → ∞, but it

remains exponentially bounded in the following sense:
for each w > Reλ > δ > 0 there is Mw ≥ 1 such that∣∣eλttν∣∣ ≤ Mwe

wt for all t ≥ 0.

• Reλ = 0 and ν = 0. Then etλ is constant (for λ = 0) or periodic of period
2πi
λ (for λ �= 0).

• Reλ = 0 and ν ≥ 1. Then
∣∣eλttν ∣∣ = tν → ∞ as t → ∞.

After these preparations, we now look at the behavior of etAx on the spectral
subspaces Xi = imPi of X .

Theorem 4.5. Let A ∈ L(X), let ‖ · ‖ be a norm on X, and fix an i ∈ {1, . . . ,m}.
Then the following assertions hold.

a) For every ρ < Reλi < ω there exist M ≥ 1 and N > 0 such that

Neρt‖x‖ ≤
∥∥etAx∥∥ ≤ Meωt‖x‖

for all t ≥ 0 and all x ∈ Xi.

b) If Reλi = 0, then {
etAx : t ≥ 0

}
is bounded for every x ∈ Xi if and only if λi is a simple pole of R(·, A), i.e.,
if νi = 1. In this case, etAx = etλix for every x ∈ Xi and t ≥ 0.

Proof. a) By formula (4.1), we have for x ∈ Xi that∥∥etAx∥∥ =

∥∥∥∥νi−1∑
ν=0

etλitν
(A− λi)

ν

ν!
x

∥∥∥∥ ≤
νi−1∑
ν=0

∥∥∥∥ (A− λi)
ν

ν!

∥∥∥∥ ∣∣etλitν
∣∣ · ‖x‖

≤ Meωt‖x‖,

for all ω > Reλi and some M ≥ 1.

Now, we apply the above estimate to −A which has −λi as an eigenvalue
with the same spectral projection Pi and spectral subspace Xi as before. Hence,∥∥e−tAy

∥∥ ≤ Me−ρt‖y‖

for all y ∈ Xi, t ≥ 0, and some M ≥ 1. Since e−tAetA = I, we find for every x ∈ Xi

an element y ∈ Xi such that x = e−tAy. This implies∥∥etAx∥∥ = ‖y‖ ≥ 1

M
eρt‖x‖,

for all t ≥ 0.

b) If νi = 1, then etAx = etλix for all x ∈ Xi. On the other hand, if νi ≥ 2,
then ker(A−λi) � Xi, hence there is an x ∈ Xi with (A−λi)x �= 0. The coordinate
function of (A−λi)x with respect to the basis element x ∈ BA,x equals tetλi , which
is unbounded as t → ∞. �
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4.3 The Spectral Bound

Now we introduce the following constant which plays the same role for the expo-
nential function t �→ etA as the spectral radius r(T ) does for the powers k �→ T k

(see Section 3.2).

Definition 4.6. For A ∈ L(X) the number

s(A) := sup{Reλ : λ ∈ σ(A)}

is called the spectral bound of A.

We note that the spectral bound of A can be determined from ‖etA‖ in the
following way (compare with Proposition 3.3).

Proposition 4.7. If ‖ · ‖ is any norm on L(X), then

s(A) = lim
t→∞

1

t
log ‖etA‖. (4.6)

If ‖ · ‖ is an operator norm, then

s(A) = inf
t>0

1

t
log ‖etA‖. (4.7)

Proof. By the equivalence of norms on L(X), the limit

lim
t→∞

1

t
log ‖etA‖,

if it exists, does not depend on the specific norm. Hence, we can use the supremum
norm |||·||| with respect to the basis BA above. Then we have∣∣∣∣∣∣etA∣∣∣∣∣∣ = ∣∣tνetλi

∣∣ = tνetReλi

for some i ∈ {1, . . . ,m} and some 0 ≤ ν ≤ n− 1. Hence,

1

t
log

∣∣∣∣∣∣etA∣∣∣∣∣∣ = ν

t
log t+Reλi

for all t > 0 and i and ν as before. Since the function t �→ ν
t log t tends to zero as

t → ∞, we obtain
ν

t
log t+Reλi −→ Reλi

as t → ∞, yielding Formula (4.6).

Now let ‖ · ‖ be an operator norm. The Spectral Mapping Theorem 2.20 and
Corollary 1.10 imply

log ‖etA‖ ≥ t|λi| ≥ tReλi,

and (4.7) follows. �
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A repeated application of Theorem 4.5 yields the following.

Corollary 4.8. Let A ∈ L(X) and let ‖ · ‖ be any norm on X. Then for every
w > s(A) there is a constant M ≥ 1 such that∥∥etAx∥∥ ≤ Mewt‖x‖

for all t ≥ 0 and x ∈ X. Furthermore,

s(A) = ω0(T )

where

ω0(T ) := inf
{
w ∈ R : ∃M ≥ 1 such that ‖etA‖ ≤ Mewt for t ≥ 0

}
. (4.8)

Remark 4.9. The number ω0(T ) defined in (4.8) is known as the growth bound of
the matrix semigroup T (t) := etA. Note that if X is an infinite-dimensional vector
space, the equality s(A) = ω0(T ) need no longer hold in general.

4.4 Asymptotics

Now we put all the information together to describe the action of etA on all of X .
As in Section 3.3, we first define different types of long-time behavior of etA.

Definition 4.10. For A ∈ L(X) and any norm ‖ ·‖ on X we say that the semigroup
(etA)t≥0 is

• bounded4 if supt≥0 ‖etA‖ < ∞;

• stable if limt→∞ ‖etA‖ = 0;

• exponentially stable if there exist M ≥ 1 and ε > 0 such that
∥∥etA∥∥ ≤ Me−εt

for all t ≥ 0;

• convergent if limt→∞ etA = P for some P ∈ L(X);

• periodic if et0A = I for some t0 > 0; in this case the smallest such t0 is called
the period of etA;

• hyperbolic if there exist A-invariant subspaces Xs and Xu, such that X =
Xs ⊕Xu and ∥∥etAx∥∥ ≤ Me−εt‖x‖ for x ∈ Xs, (4.9)∥∥etAx∥∥ ≥ 1

M
eεt‖x‖ for x ∈ Xu, (4.10)

for all t ≥ 0 and some constants M ≥ 1, ε > 0; Xs and Xu are called the
stable and unstable subspaces, respectively.

4Note that working with ODEs or dynamical systems, a different terminology is also widely
accepted: what we call “bounded” is often called “stable”, what we call “stable” is often called
“asymptotically stable”, and what we call “hyperbolic” is often called “exponential dichotomy”.
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Remarks 4.11.

a) Since pointwise and norm convergence on L(X) coincide, a statement about
the long-time behavior of

∥∥etAx∥∥ for all x ∈ X is equivalent to the same

statement regarding
∥∥etA∥∥ for the appropriate operator norm.

b) Note that stability of a matrix semigroup is equivalent to exponential sta-
bility, see Exercise 3. We will prove this in a more general form later (cf.
Proposition 12.4).

c) Using (4.8), we see that

(etA)t≥0 is (exponentially) stable ⇐⇒ ω0(T ) < 0. (4.11)

We now classify the asymptotic behavior of etA in terms of spectral properties
of the matrix A.

Theorem 4.12. Let A ∈ L(X) and take any norm ‖ · ‖ on X.

a) (etA)t≥0 is (exponentially) stable if and only if s(A) < 0.

b) (etA)t≥0 is bounded if and only if s(A) ≤ 0 and all eigenvalues of A with real
part equal to 0 are simple poles of the resolvent R(·, A).

c) (etA)t≥0 is periodic with period t0 if and only if it is bounded and σ(A) ⊂ 2πi
t0

Z
for some t0 > 0.

d) limt→∞ etA = P1 (P1 denotes the spectral projection of A belonging to the
eigenvalue 0) if and only if s(A) = 0 is a simple pole of the resolvent R(·, A)
and σ(A) ∩ iR = {0}.

e) (etA)t≥0 is hyperbolic if and only if σ(A) ∩ iR = ∅.

Proof. a) This is a consequence of relation (4.11) and Corollary 4.8.

b) (etA)t≥0 is bounded iff the same is true for the coordinate functions in
formula (4.5), which holds iff for each i, either Reλi < 0 or Reλi = 0 and νi = 1,
that is, if and only if s(A) ≤ 0 and every eigenvalue λi with Reλi = 0 is a simple
pole of the resolvent.

c) Again we use coordinate functions and observe that et0A = I for some
t0 > 0 iff λi ∈ 2πi

t0
Z, with νi = 1, which by b) holds iff (etA)t≥0 is bounded and

σ(A) ⊂ 2πi
t0

Z.

d) limt→∞ etA = P1 iff all coordinate functions converge, that is, iff either
Reλi < 0, or λi = 0 and νi = 1. This is true iff s(A) ≤ 0, which is a simple
pole of the resolvent and the only eigenvalue on the imaginary axis. Moreover, the
semigroup converges to the corresponding spectral projection.

e) (etA)t≥0 is hyperbolic iff there exist A-invariant subspaces Xs and Xu such
that X = Xs ⊕Xu and inequality (4.9) holds, that is, iff etA|Xs and e−tA|Xu are
both exponentially stable. By a), this is equivalent to

s (A|Xs) < 0 and s (−A|Xu) < 0 ⇐⇒ σ(A) ∩ iR = ∅. �
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Thus, in complete analogy to the situation in Section 3, convergence of etA

as t → ∞ is restricted to one of the following situations.

• limt→∞ etA = 0: this is the case if and only if s(A) < 0;

• limt→∞ etA = P1, where P1 is the spectral projection belonging to λ1 = 0:
this is the case if and only if s(A) = 0, σ(A) ∩ iR = {0}, and 0 is a simple
pole of the resolvent R(·, A).

Example 4.13. Analyzing the spectral properties of the matrices

A1 =

(
0 1
−1 0

)
, A2 =

(
0 1
1 0

)
, A3 =

(
1 1
−1 −1

)
,

A4 =

(
−1 1
0 0

)
, A5 =

(
−1 0
1 −1

)
,

one obtains that the semigroup
(
etA1

)
t≥0

is periodic with period 2π,
(
etA2

)
t≥0

is hyperbolic,
(
etA3

)
t≥0

is unbounded,
(
etA4

)
t≥0

converges to P1 = ( 0 1
0 1 ), and(

etA5
)
t≥0

is exponentially stable.

Decomposing the space we can study stability concepts more in detail. One
example of this approach is the definition of hyperbolicity of a matrix semigroup.
Let us use this approach to obtain another asymptotic property.

Definition 4.14. For A ∈ L(X) we call the semigroup (etA)t≥0 asymptotically
periodic if there is a direct sum decomposition

X = X0 ⊕X1

into A-invariant subspaces X0 and X1 such that

a) etA|X0 is stable, i.e., limt→∞ etAx = 0 for all x ∈ X0, and

b) etA|X1 is periodic, i.e., there exists t0 > 0 such that et0Ay = y for all y ∈ X1.

Again, this property can be described by spectral properties of A.

Theorem 4.15. For A ∈ L(X) the following assertions are equivalent.

(i) (etA)t≥0 is asymptotically periodic.

(ii) (etA)t≥0 is bounded and σ(A) ∩ iR ⊂ 2πiαZ for some α ∈ R.
(iii) s(A) ≤ 0, the set σ(A) ∩ iR consists of simple poles of the resolvent R(·, A)

and is contained in 2πiαZ for some α ∈ R.

Proof. (i) =⇒ (ii): The boundedness of (etA)t≥0 follows directly. Let X = X0⊕X1

be the corresponding decomposition. Then

σ(A) = σ(A|X0 ) ∪ σ(A|X1 ),

where σ(A|X0 ) ⊂ {λ ∈ C : Reλ < 0} by Theorem 4.12.a) and σ(A|X1 ) ⊂ 2πiαZ
for some α ∈ R by Theorem 4.12.c).
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(ii) =⇒ (iii): This follows by Theorem 4.12.b).

(iii) =⇒ (i): Define

X0 :=
⊕

Reλi<0

Xi and X1 :=
⊕

Reλi=0

Xi

and apply Theorem 4.12.a) and c). �

Finally, we ask under which conditions a subsequence or the Cesàro means of
(etA)t≥0 converge. First recall the concept of a spectral contraction in Definition
3.11.

Theorem 4.16. The following assertions are equivalent for A ∈ L(X).

(i) etA is spectral contraction for one/all t > 0.

(ii) s(A) = 0 and all eigenvalues of A with real part equal to 0 are simple poles
of the resolvent R(λ,A).

(iii) There is an operator norm |||·||| on L(X) such that
∣∣∣∣∣∣ektA∣∣∣∣∣∣ = 1 for all k ∈ N

and one/all t > 0.

(iv) There exists a sequence (tm) of the form tm := tkm, where (km) is a subse-
quence of (k), such that (etmA) converges to some limit P �= 0 for one/all
t > 0.

Proof. The equivalence (i) ⇐⇒ (ii) follows by Theorem 3.10 combined with the
Spectral Mapping Theorem 2.20 and Theorem 2.28, the equivalence (i) ⇐⇒ (iv)
again by Theorem 3.10, while (i) ⇐⇒ (iii) holds by Theorem 3.12. �

Definition 4.17. We say that (etA)t≥0 is a spectral contraction semigroup, if any
of the equivalent assertions of Theorem 4.16 is true.

The following is the continuous-time analogue of the Cesàro means introduced
in Chapter 3.

Definition 4.18. Let A ∈ L(X). The matrices

C(r) :=
1

r

∫ r

0

esA ds, r > 0,

are called the Cesàro means of the semigroup (etA)t≥0. The semigroup (etA)t≥0 is
mean ergodic (or Cesàro summable), if limr→∞ C(r) exists.

Theorem 4.19. For A ∈ L(X) the semigroup (etA)t≥0 is mean ergodic if and only
if either s(A) < 0, or (etA)t≥0 is a spectral contraction semigroup.

In the case 0 ∈ σ(A), the Cesàro means C(r) converge to the spectral pro-
jection of A belonging to 0, in all other cases of mean ergodic semigroups C(r)
converge to 0.
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Proof. First note that the coordinate functions of C(r) with respect to BA are of
the form

g
(r)
ν,λi

:=
1

r

∫ r

0

gν,λi(s) ds =
1

r

∫ r

0

esλisν ds. (4.12)

Following the discussion on page 46–47, we see that g
(r)
ν,λ converges only in two

cases: either for Reλ < 0, or for Reλ = 0 = ν. This proves the first assertion of
the theorem.

Since for Reλ < 0 we have g
(r)
ν,λ → 0 as r → ∞, in the case when s(A) < 0

we obtain C(r) → 0. On the other hand, in the case of a spectral contraction

semigroup, the only nonzero limit of the coordinate functions as r → ∞ is g
(r)
0,0 = 1.

By (4.1), the Cesàro means C(r) then converge towards the spectral projection of
A belonging to λ = 0. �

4.5 Notes and Remarks

There are many ways how to compute the exponential function of a matrix numer-
ically and we refer here to an excellent survey paper by Moler and van Loan [99].

Theorem 4.12.a) is Lyapunov’s Stability Theorem proved in 1892 (see [88]).
The results of this chapter are presented in many books on ordinary differential
equations, like for example Amann [3] or Teschl [139, Ch. 3].

4.6 Exercises

1. Show that if A,B ∈ L(X) commute, then et(A+B) = etAetB. Find an example
to show that the commutativity assumption is necessary.

2. Let B ∈ L(X). Under which conditions is there an A ∈ L(X) such that
ekA = Bk for all k ∈ N?

3. Prove that for A ∈ L(X) the matrix semigroup etA is stable if and only if it
is exponentially stable.

4. Show that {etAx : t ∈ R} is bounded for every x ∈ X if and only if σ(A) ⊂ iR
and all eigenvalues are simple poles of the resolvent R(·, A).

5. Show that the semigroup (etA)t≥0 is hyperbolic if and only if σ
(
etA

)
∩Γ = ∅

for some/all t > 0, where Γ denotes the unit circle in C.

6. Compute the matrix exponential etA for

A =

(
−a b
a −b

)
with a+ b �= 0.

7. For every one of the matrices in Example 4.13 compute the spectrum and
the corresponding semigroup, and then describe its asymptotic behavior.
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