
Chapter 14

Advanced Spectral Theory
and Asymptotics

In this chapter we continue our investigation of spectral properties of positive C0-
semigroups on Banach lattices and show how the Perron–Frobenius theory can be
generalized to the infinite-dimensional setting. We also list some important prop-
erties of irreducible semigroups. We will see that many results valid for positive
matrix semigroups continue to hold also in infinite dimensions.

Our main goal is to describe the asymptotic behavior of a semigroup (such as
asymptotic periodicity or balanced exponential growth) via the spectral properties
of its generator.

14.1 Spectral Decomposition

First we define and discuss spectral projections and spectral decompositions for an
unbounded closed operator. Recall that in finite dimensions we have constructed
a functional calculus using spectral projections corresponding to the eigenvalues
(cf. Theorem 2.11). As already mentioned in Section 2.4, these projections can be
obtained by Dunford’s integral representation. We now start with such a repre-
sentation in the case of bounded operators.

Let T ∈ L(X), where X is a Banach space. For a function f holomorphic
on a neighborhood of W for some open neighborhood W of σ(T ) with a smooth,
positively oriented boundary ∂W+, we define

f(T ) :=
1

2πi

∫
∂W+

f(λ)R(λ, T ) dλ.

As in the finite-dimensional situation, the map f �→ f(T ) is linear and multiplica-
tive, and for g(z) := zk, k ∈ N, one obtains g(T ) = T k.

Assume now that the spectrum σ(T ) can be decomposed as

σ(T ) = σ1 ∪ σ2, (14.1)
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where σ1, σ2 are closed and disjoint sets. The spectral projection Pi of T belonging
to σi is defined to be χi(T ), where χi is the characteristic function of a neigh-
borhood Wi of σi such that Wi ∩ σ(T ) = σi (compare with relation (2.5) in the
finite-dimensional case). Hence, Pi can be written as

Pi :=
1

2πi

∫
γi

R(λ, T ) dλ, (14.2)

where γi is a smooth curve in ρ(T ) enclosing σi. These projections commute with
T and yield the spectral decomposition

X = X1 ⊕X2

with the T -invariant spaces X1 := imP1 = kerP2, X2 := imP2 = kerP1. The
restrictions Ti ∈ L(Xi) of T to Xi satisfy

σ(Ti) = σi, i = 1, 2,

a property that characterizes the above decomposition of X and T (again recall
corresponding results in finite dimensions, e.g., Theorem 2.9).

For an unbounded operator A and an arbitrary decomposition of the spec-
trum σ(A) into disjoint closed sets, it is not always possible to find an associated
spectral decomposition. However, the spectral mapping theorem for the resolvent
allows us to construct such decompositions if one of the subsets is compact.

Proposition 14.1. Let A : D(A) ⊂ X → X be a closed operator such that its
spectrum σ(A) can be decomposed into the disjoint union of two closed subsets σc

and σu, i.e.,

σ(A) = σc ∪ σu.

If σc is compact, then there exists a spectral decomposition X = Xc ⊕Xu for A
in the following sense.

a) The restriction Ac := A|Xc is bounded on the Banach space Xc.

b) D(A) = Xc ⊕ D(Au), where Au is the part of A in Xu, i.e., Au := A|Xu ,
Auf := Af for f ∈ D(Au) := {g ∈ Xu ∩D(A) : Ag ∈ Xu}.

c) The operator A decomposes as A = Ac ⊕Au.

d) σ(Ac) = σc and σ(Au) = σu.

Proof. Supposing that A is unbounded and taking λ0 ∈ ρ(A), we see that 0 ∈
σ(R(λ0, A)) and, by Proposition 9.29, we obtain

σ
(
R(λ0, A)

)
=

{
1

λ0 − μ
: μ ∈ σc

}
︸ ︷︷ ︸

τc

∪
{

1

λ0 − μ
: μ ∈ σu

}
∪ {0}︸ ︷︷ ︸

τu

, (14.3)
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where τc, τu are compact and disjoint subsets of C. (If σc is not compact, 0 is in
the closure of τc.) Let now P be the spectral projection for R(λ0, A) associated to
the decomposition in (14.3) and put Xc := imP and Xu := kerP . Since R(λ0, A)
and P commute, we have R(λ0, A)Xc ⊆ Xc, hence

λ0 ∈ ρ(Ac) and R(λ0, Ac) = R(λ0, A)|Xc . (14.4)

Moreover, we know that σ(R(λ0, Ac)) = τc �� 0. Therefore, Ac = λ0 −R(λ0, Ac)
−1

is bounded on Xc, and we obtain a).

To verify b), observe that by similar arguments as above we obtain

λ0 ∈ ρ(Au) and R(λ0, Au) = R(λ0, A)|Xu . (14.5)

Combining this with (14.4) yields

Xc +D(Au) = R(λ0, Ac)Xc +R(λ0, Au)Xu

⊆ D(A) = R(λ0, A)(Xc +Xu)

⊆ R(λ0, Ac)Xc +R(λ0, Au)Xu

= Xc +D(Au),

implying that D(A) = Xc+D(Au). This proves b), while c) follows from a) and b).

Finally, d) is a consequence of Proposition 9.29 and (14.3), (14.4), and (14.5).
�

A particularly important case of the above decomposition occurs when σc =
{μ} consists of a single point. This means that μ is isolated in σ(A) and therefore
the holomorphic function ρ(A) � λ �→ R(λ,A) ∈ L(X) can be expanded in a
Laurent series

R(λ,A) =

∞∑
k=−∞

(λ− μ)kUk

for 0 < |λ − μ| < δ and some sufficiently small δ > 0. The coefficients Uk of this
series are bounded operators given by the formulas

Uk =
1

2πi

∫
γ

R(λ,A)

(λ− μ)k+1
dλ, k ∈ Z, (14.6)

where γ is, for example, the positively oriented boundary of the disc with radius
δ
2 centered at μ. The coefficient U−1 is called the residue of R(·, A) at μ. From
formula (14.6) one deduces

Uk+1 = (A− μ)kU−1 (14.7)

and the identity
U−(k+1) · U−(�+1) = U−(k+�+1) (14.8)
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for k, � ≥ 0. Indeed,

1

2πi

∫
γ

(λ− μ)k(λ− μ)�R(λ,A) dλ

=

(
1

2πi

∫
γ

(λ− μ)kR(λ,A) dλ

)
·
(

1

2πi

∫
γ

(λ − μ)�R(λ,A) dλ

)
can be proved as in the case of a bounded operator A since the proof only uses
the resolvent equation and the residue theorem.

If there exists k > 0 such that U−k �= 0, while U−� = 0 for all � > k, then the
spectral value μ is called a pole of R(·, A) of order k (compare with Remark 2.17).
In view of (14.8), this is true if and only if U−k �= 0 and U−(k+1) = 0. Moreover,
we obtain U−k as

U−k = lim
λ→μ

(λ− μ)kR(λ,A). (14.9)

The dimension of the spectral subspace imP is called the algebraic multi-
plicity ma of μ, while mg := dim ker(μ−A) is its geometric multiplicity. One can
show that the following relation holds:

mg + k − 1 ≤ ma ≤ mg · k. (14.10)

In the case ma = 1, we call μ an algebraically simple pole. We also denote by

Pol(A) := {μ ∈ C : μ is a pole of R(·, A)}. (14.11)

The following result shows that, as in the case of a bounded operator, the
spectral projection of A belonging to an isolated point μ ∈ σ(A) is the residue of
R(·, A) at μ.
Proposition 14.2. Let A be a closed linear operator having nonempty resolvent set
ρ(A) and take some λ0 ∈ ρ(A). Then μ ∈ C is an isolated point of σ(A) if and
only if (λ0 − μ)−1 is isolated in σ(R(λ0, A)). In this case, the residues and the
orders of the poles of R(·, A) at μ and of R(·, R(λ0, A)) at (λ0 − μ)−1 coincide.

Proof. The first claim follows easily from Proposition 9.29 and the fact that the
map z �→ (λ0 − z)−1 is homeomorphic between C \ {λ0} and C \ {0}.

In order to prove the assertion concerning the residues, we choose a positively
oriented circle γ ⊂ ρ(A) with center μ such that λ0 lies in the exterior of γ. Then
the residue P of R(·, A) at μ is given by

P =
1

2πi

∫
γ

R(λ,A) dλ

=
1

2πi

∫
γ

R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

dλ− 1

2πi

∫
γ

dλ

(λ0 − λ)

=
1

2πi

∫
γ

R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

dλ,
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where we used the identity

R(λ,A) =
R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

− 1

(λ0 − λ)

and Cauchy’s integral theorem. The substitution z := (λ0 − λ)−1 then yields a
path γ̃ around (λ0 − μ)−1, and we obtain

P =
1

2πi

∫
γ̃

R
(
z,R(λ0, A)

)
dz,

which is the residue of R(·, R(λ0, A)) at (λ0 − μ)−1.

The final assertion concerning the pole orders is obtained as follows. By the
same calculations as above we see that for k ∈ N

1

2πi

∫
γ

(λ − μ)k−1R(λ,A) dλ =
1

2πi

∫
γ̃

(
λ0 − μ− 1

z

)k−1

R
(
z,R(λ0, A)

)
dz.

Since λ0 − μ − 1
z =

(
λ0−μ

z

)(
z − 1

λ0−μ

)
, by the multiplicativity of the functional

calculus for R(λ0, A) the last integral can be interpreted as(
(λ0 − μ)(λ0 −A)

)k−1
V−k,

where V−k denotes the −kth coefficient in the Laurent expansion of R(·, R(λ0, A))
at (λ0 − μ)−1. Hence, we obtain for the coefficients U−k of the Laurent expansion
of R(·, A) at μ

U−k =
(
(λ0 − μ)(λ0 −A)

)k−1
V−k, k ∈ N,

and therefore

V−k =
(
(λ0 − μ)−1R(λ0, A)

)k−1
U−k, k ∈ N,

which proves the assertion. �

We continue by further refining the spectral decomposition. First recall that
the essential spectrum of a bounded operator T ∈ L(X) is the spectrum of T +
K(X) in the Calkin algebra C(X) := L(X)/K(X), where K(X) denotes the ideal
of compact operators. Accordingly, the essential spectral radius is

ress(S) := r(S +K(X)),

see also Appendix A.9.

Analogously, we define the essential growth bound ωess(T ) of a C0-semigroup
(T (t))t≥0 as the growth bound of the quotient semigroup (T (t) + K(X))t≥0 on
C(X), i.e.,

ωess(T ) := inf{ω ∈ R : ∃M > 0 such that ‖T (t)‖ess ≤ Meωt for all t ≥ 0},
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where ‖ · ‖ess is the quotient norm in C(X). Then, as in Proposition 12.1, one can
see that

ωess(T ) =
log ress(T (t0))

t0
= lim

t→∞
log ‖T (t)‖ess

t
(14.12)

holds for all t0 > 0. The following result gives the relationship between ωess(T )
and ω0(T ).

Proposition 14.3. Let (T (t))t≥0 be a C0-semigroup with generator A on a Banach
space X. Then

ω0(T ) = max{s(A), ωess(T )}.

Proof. If ωess(T ) < ω0(T ), then ress(T (1)) < r(T (1)). Let λ ∈ σ(T (1)) such that
|λ| = r(T (1)). Then by Proposition A.34, λ is an eigenvalue of T (1) and by the
spectral mapping theorem for the point spectrum, Theorem A.33, there is a λ1 ∈
σp(A) with eλ1 = λ. Therefore, Reλ1 = ω0(T ), and thus ω0(T ) = s(A). �

We are finally able to give an infinite-dimensional analogue of the formula
for the matrix exponential function given in (2.9). As in finite dimensions, this
will be an important tool to study the asymptotic behavior of the semigroup.

Theorem 14.4. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Banach
space X such that ωess(T ) < 0. Then the following assertions hold.

a) The set σ+ := {λ ∈ σ(A) : Reλ ≥ 0} is finite (or empty) and consists of
poles of R(·, A) of finite algebraic multiplicity.

b) Let σ+ := {λ1, . . . , λm} where λj is a pole of order kj with the corresponding
spectral projection Pj, j = 1, . . . ,m. Then T (t) = T1(t) + · · ·+ Tm(t) +R(t),
where

Tj(t) := eλj t

kj−1∑
k=0

tk

k!
(A− λj)

kPj , j = 1, . . . ,m, and t ≥ 0,

and

‖R(t)‖ ≤ Me−εt, for some ε > 0, M ≥ 1, and all t ≥ 0.

Proof. a) Let t0 > 0. Since ωess(T ) < 0, (14.12) shows that ress(T (t0)) < 1. So, by
Proposition A.34, every λ ∈ σ(T (t0)) with |λ| ≥ 1 is an isolated point. The set

σc := σ(T (t0)) ∩ {z ∈ C : |z| ≥ 1}

is thus finite and consists of the points {λ1, . . . , λm}.
Set σu := σ(T (t0)) \ σc. Then σ(T (t0)) is the disjoint union of the closed

sets σc and σu with σc compact, and we can apply Proposition 14.1, yielding the
spectral decomposition

X = imPc ⊕ kerPc =: Xc ⊕Xu



14.2. Periodic Semigroups 219

with the associated spectral projection Pc. Since σc is finite and any of its ele-
ments is a pole of R(·, T (t0)), we deduce that Xc is finite-dimensional. To this
decomposition we associate semigroups Tc(·) := T (·)|Xc and Tu(·) := T (·)|Xu , and
the corresponding generators are, respectively, Ac := A|Xc ∈ L(Xc) and Au the
part of A in Xu. Moreover, σ(Ac) = σc and σ(Au) = σu.

Since Xc is finite-dimensional, σ(Ac) is finite and A = Ac ⊕ Au. Moreover,
every element of σc is a pole of R(·, A) = R(·, Ac) ⊕ R(·, Au). Thus, the spectral
mapping theorem (see Theorems 2.20 and 2.28) yields

σ(Ac) = {λ1, . . . , λm} and σ(Tc(t)) = {eλ1t, . . . , eλmt}.

In particular,
σc = σ(Tc(t0)) ⊂ {z ∈ C : |z| ≥ 1},

and hence Reλj ≥ 0 for all j = 1, . . . ,m.

Next, we show that (Tu(t))t≥0 is uniformly exponentially stable. By the spec-
tral decomposition, we know that σ(Tu(t0)) = σu ⊂ {z ∈ C : |z| < 1}. So,
r(Tu(t0)) < 1 and by Proposition 12.1 we obtain ω0(Tu) < 0, which also implies
s(Au) < 0. This proves a).

b) In order to verify this, we define the spectral projection P :=
∑m

j=1 Pj

of A corresponding to the spectral set {λ1, . . . , λm}, i.e., P = Pc. We decompose
now the semigroup (T (t))t≥0 as

T (t) = T (t)P1 + · · ·+ T (t)Pm + T (t)(I − P ),

where each restricted semigroup T (·)Pj has generator A|imPj . Since imPj is finite-
dimensional and (A− λj)

kjPj = 0, we can use Theorem 2.11 and get

Tj(t) := T (t)Pj = eλjt

kj−1∑
k=0

tk

k!
(A− λj)

kPj , t ≥ 0.

To show the last assertion, it suffices to note that

R(t) = T (t)(I − P ) = Tu(t)(I − Pc) = Tu(t)

and ω0(Tu) < 0. This ends the proof of the theorem. �

Semigroups satisfying ωess(T ) < 0 are also called quasi-compact semigroups
(for an explanation of this name see Exercise 1). They include uniformly exponen-
tially stable semigroups and eventually compact semigroups.

14.2 Periodic Semigroups

In this section we characterize periodic semigroups in terms of their spectrum. As
we shall see later in this chapter, this class of semigroups plays an important role
for the asymptotics of general semigroups.



220 Chapter 14. Advanced Spectral Theory and Asymptotics

Definition 14.5. A C0-semigroup (T (t))t≥0 on a Banach space X is called periodic
if there is t0 > 0 such that T (t0) = I. In this case its period is defined as the
smallest τ > 0 such that T (τ) = I.

Since, for every k ∈ N and 0 ≤ t ≤ kτ , T (t)T (kτ − t) = I, we readily see that
a periodic semigroup always extends to a group.

As in finite dimensions, we can characterize periodic semigroups in terms of
their spectrum, compare with Theorem 4.12.c) in the finite-dimensional situation.

Theorem 14.6. For a C0-semigroup (T (t))t≥0 with generator A on a Banach space
X the following assertions are equivalent.

(i) (T (t))t≥0 is a periodic semigroup.

(ii) σ(A) = σp(A) ⊂ 2πiαZ for some α > 0 and the corresponding eigenvectors
span a dense subspace of X.

Proof. (ii) =⇒ (i): First observe that for any λ ∈ σp(A) and a corresponding
eigenvector f ∈ D(A), Corollary 9.32 yields

T (t)f = eλtf, t ≥ 0. (14.13)

Thus, taking λ = 2πikα ∈ σp(A) we deduce that T (t)f = e2πikαtf for all t ≥ 0.
Since these eigenvectors span a dense subspace of X , we obtain that (T (t))t≥0 is
periodic with period τ ≤ 1

α .

(i) =⇒ (ii): Let τ be the period of (T (t))t≥0 and λ �= 2πki
τ , k ∈ Z. From

Lemma 9.31 we infer that λ ∈ ρ(A) and

R(λ,A) =
1

1− e−λτ

∫ τ

0

e−λsT (s) ds. (14.14)

So the resolvent is a meromorphic function having poles only at (some) μk =
2πki
τ , k ∈ Z, of order less than or equal to one. Using formula (14.14) and the

residue theorem one obtains the residues in μk as

Pk =
1

τ

∫ τ

0

e−μksT (s) ds, k ∈ Z. (14.15)

Now we prove that span
⋃

k∈Z
PkX = X . More precisely, we prove that

f =

+∞∑
k=−∞

Pkf for all f ∈ D(A), (14.16)

which clearly implies the assertion, since D(A) is dense in X .
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Setting g = Af , we have Pkg = PkAf = 2πki
τ Pkf . This implies Pkf =

τ
2πkiPkg. Hence, by applying the Cauchy–Schwarz inequality (A.3), we obtain∣∣∣∣∣∑

k∈F

〈Pkf, f
∗〉
∣∣∣∣∣ =

∣∣∣∣∣∑
k∈F

τ

2πki
〈Pkg, f

∗〉
∣∣∣∣∣

≤ τ

2π

(∑
k∈F

1

k2

)1/2 (∑
k∈F

|〈Pkg, f
∗〉|2

)1/2

≤ τ

2π

(∑
k∈F

1

k2

)1/2 (
1

τ

∫ τ

0

|〈T (s)g, f∗〉|2 ds

)1/2

≤ τ

2π

(∑
k∈F

1

k2

)1/2

‖f∗‖
(
1

τ

∫ τ

0

‖T (s)g‖2 ds
)1/2

︸ ︷︷ ︸
C

=
Cτ

2π

(∑
k∈F

1

k2

)1/2

‖f∗‖

for any finite subset F ⊂ Z. Thus,∥∥∥∥∥∑
k∈F

Pkf

∥∥∥∥∥ ≤ Cτ

2π

(∑
k∈F

1

k2

)1/2

for any finite subset F ⊂ Z. This gives the convergence of
∑

k∈Z
Pkf for all f ∈

D(A).

On the other hand, using the relation (14.13) with λ = μm and the corre-
sponding eigenvector Pmf , we obtain

PkPmf =
1

τ

∫ τ

0

e−μksT (s)Pmf ds =
1

τ

∫ τ

0

e(μm−μk)sPmf ds = 0,

if k �= m. From this we see that, for any f∗ ∈ X∗, the Fourier coefficients of the
functions s �→ 〈T (s)(

∑
k∈Z

Pkf), f
∗〉 and s �→ 〈T (s)f, f∗〉 coincide. So, the two

functions are equal and, in particular,〈∑
k∈Z

Pkf, f
∗
〉

=

〈
T (0)

(∑
k∈Z

Pkf

)
, f∗

〉
= 〈T (0)f, f∗〉 = 〈f, f∗〉 .

This proves that f =
∑

k∈Z
Pkf . �

The calculations in the proof above yield the following expansion formula for
a periodic semigroup and its generator.
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Corollary 14.7. Let (T (t))t≥0 be a periodic C0-semigroup with period τ and gen-
erator A on a Banach space X. Then

T (t)f =
+∞∑
−∞

eμktPkf for f ∈ D(A) and

Af =
+∞∑
−∞

μkPkf for f ∈ D(A2),

where Pk are the residues of R(·, A) at μk := 2πik
τ given in (14.15).

Proof. One has to apply expansion (14.16) to T (t)f and Af instead of f , respec-
tively, and use the identities APk = μkPk and T (t)Pk = eμktPk, see (14.13). �
Example 14.8. Let Γ := {z ∈ C : |z| = 1} denote the unit circle and τ > 0. On
X := Lp(Γ), 1 ≤ p < ∞, we define

Rτ (t)f(z) := f
(
ze(2πi/τ)t

)
, z ∈ Γ, t ∈ R.

Then Rτ (·) defines a periodic C0-group with period τ . Moreover, one can prove
that its generator is given by

D(A) = {f ∈ X : f absolutely continuous , f ′ ∈ X}

Af(z) =
2πi

τ
zf ′(z), f ∈ D(A),

with

σ(A) =
2πi

τ
Z and Pkf(z) =

zk

2πi

∫
Γ

f(u)u−(k+1) du.

14.3 Irreducible Semigroups

We now return to positive semigroups. The concept of irreducibility of bounded
operators on a Banach lattice was already introduced in Definition 10.26. Let us
restate it for operators forming a C0-semigroup.

Definition 14.9. A positive C0-semigroup (T (t))t≥0 on a Banach lattice E is called
irreducible if {0} and E are the only closed ideals that are invariant under all the
operators T (t), t ≥ 0.

The following result gives two properties equivalent to irreducibility that are
sometimes easier to verify.

Proposition 14.10. Let (T (t))t≥0 be a positive C0-semigroup on a Banach lattice
E with generator A. The following assertions are equivalent.

(i) (T (t))t≥0 is irreducible.
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(ii) For some (and then for every) λ > s(A), there is no R(λ,A)-invariant closed
ideal except {0} and E.

(iii) For some (and then for every) μ > s(A) and for every f > 0, R(μ,A)f is a
quasi-interior point of E+.

Proof. We prove first that if for some μ > s(A) there is no R(μ,A)-invariant closed
ideal except {0} and E, then this holds for every λ > s(A). Let I be a closed ideal
of E such that R(μ,A)I ⊂ I for μ > s(A). The inequality

0 ≤ R(λ,A) ≤ R(μ,A),

holding for all λ ≥ μ, and the definition of ideals imply that R(λ,A)I ⊂ I.

On the other hand, for μ− 1
r(R(μ,A)) < λ < μ, we have R(λ,A)I ⊂ I, since

R(λ,A) = R(μ,A)
∞∑
k=0

((μ− λ)R(μ,A))k

(see (9.10)) and R(μ,A)I ⊂ I.

Iteration of the argument establishes that R(λ,A)I ⊂ I for every λ > s(A).
This proves the above claim.

(i) =⇒ (ii): Let I �= {0} be a closed ideal of E such that R(λ,A)I ⊂ I for
some (and then for every) λ > s(A). By the approximation formula (see the proof
of Theorem 11.1),

T (t)f = lim
k→∞

etAkf, f ∈ E,

where Ak = kAR(k,A) ∈ L(E) are the Yosida approximants, we obtain that
T (t)I ⊂ I for all t > 0, hence I = E.

(ii) =⇒ (i): This follows from Theorem 12.7.

(ii) =⇒ (iii): Let λ > s(A), 0 �= f ∈ E+ and consider the ideal generated by
R(λ,A)f , i.e.,

ER(λ,A)f :=
⋃
k∈N

[−kR(λ,A)f, kR(λ,A)f ].

We infer from the resolvent equation that for g ∈ ER(λ,A)f ,

|R(μ,A)g| ≤ R(μ,A)|g| ≤ kR(μ,A)R(λ,A)f ≤ k

μ− λ
R(λ,A)f

for μ > λ. Hence, R(μ,A)g ∈ ER(λ,A)f for any g ∈ ER(λ,A)f and μ > λ. Thus, we

see that ER(λ,A)f is a nontrivial R(μ,A)-invariant closed ideal and hence equals
E. This means that R(λ,A)f is a quasi-interior point of E+.

(iii) =⇒ (ii): Let I �= {0} be an R(μ,A)-invariant closed ideal for some
μ > s(A), and let 0 �= f ∈ E+ ∩ I. It follows that for any g ∈ ER(μ,A)f we have
|g| ≤ nR(μ,A)f for some n ∈ N and hence g ∈ I. This implies that ER(μ,A)f ⊂ I

and, furthermore, E = ER(μ,A)f = I. �
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Example 14.11. From the characterization of closed ideals given in Propositions
10.13, 10.14, and 10.15 (see also Examples 10.16) we obtain the following charac-
terization of irreducible semigroups in certain function spaces.

a) Let E := Lp(Ω, μ), 1 ≤ p < ∞, and let (T (t))t≥0 be a positive C0-semigroup
on E with generator A. Then, (T (t))t≥0 is irreducible if and only if

0 � f ∈ E =⇒ (R(λ,A)f)(s) > 0 for a.e. s ∈ Ωand someλ > s(A).

b) Let E :=C0(Ω), where Ω is locally compact Hausdorff space, and let (T (t))t≥0

be a positive C0-semigroup on E with generator A. Then (T (t))t≥0 is irre-
ducible if and only if

0 � f ∈ E =⇒ (R(λ,A)f)(s) > 0 for all s ∈ Ωand someλ > s(A).

We collect here some properties of irreducible C0-semigroups. Many of them
resemble properties already observed in finite dimensions. The most import one
is a generalization of the Perron–Frobenius theorem, Theorem 5.13 (see also the
same result for matrix semigroups given in Theorem 7.6).

Proposition 14.12. Assume that A is the generator of an irreducible C0-semigroup
(T (t))t≥0 on a Banach lattice E. Then the following assertions hold.

a) Every positive eigenvector of A is a quasi-interior point.

b) Every positive eigenvector of A∗ is strictly positive.

c) If ker(s(A)−A∗) contains a positive element, then dimker(s(A) −A) ≤ 1.

d) If s(A) is a pole of the resolvent, then it has algebraic (and geometric) mul-
tiplicity equal to 1. The corresponding residue has the form

Ps(A) = u∗ ⊗ f,

where f ∈ E is a strictly positive eigenvector of A, u∗ ∈ E∗ is a strictly
positive eigenvector of A∗, and 〈f, u∗〉 = 1.

Proof. a) Let f be a positive eigenvector of A and λ its corresponding eigenvalue.
Since λf = Af = limt→0+

1
t (T (t)f − f), we have λ ∈ R. We also have

f = (μ− λ)R(μ,A)f for μ > s(A) > λ.

Thus a) follows from Proposition 14.10.

b) Let f∗ be a positive eigenvector of A∗ and λ its corresponding eigenvalue.
By the same argument as above, λ ∈ R and, by Corollary 9.32, T (t)∗f∗ = eλtf∗

for t ≥ 0. Hence,

〈|T (t)u|, f∗〉 ≤ 〈T (t)|u|, f∗〉 = 〈|u|, eλtf∗〉, u ∈ E, t ≥ 0.
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Thus I := {u ∈ E : 〈|u|, f∗〉 = 0} is a (T (t))t≥0 invariant closed ideal. Since
f∗ �= 0, we have I � E, and so by irreducibility we obtain I = {0}. Therefore
f∗ > 0.

c) For 0 � f∗ ∈ ker(s(A) − A∗) we see from b) that f∗ is strictly positive.
Assume that ker(s(A)−A) �= {0} and define the rescaled positive semigroup as

T−s(A)(t)g := e−s(A)tT (t)g,

see also Exercise 9.10.4. Then for f ∈ ker(s(A) − A) we have by Corollary 9.32
that T−s(A)(t)f = f and hence, by Lemma 10.18,

|f | = |T−s(A)(t)f | ≤ T−s(A)(t)|f |, t ≥ 0.

Thus, for t ≥ 0,

〈|f |, f∗〉 ≤ 〈T−s(A)(t)|f |, f∗〉
= 〈|f |, f∗〉.

This implies that 〈T−s(A)(t)|f | − |f |, f∗〉 = 0, and since f∗ > 0, we obtain
T−s(A)(t)|f | = |f | for t ≥ 0. Therefore,

|f | ∈ ker(s(A)−A).

By Lemma 10.18, we also have (T−s(A)(t)f)
+ ≤ T−s(A)(t)f

+ and (T−s(A)(t)f)
− ≤

T−s(A)(t)f
−. By the same arguments as above, we obtain f+ ∈ ker(s(A)−A) and

f− ∈ ker(s(A)−A). This implies that F := ER ∩ker(s(A)−A) is a real sublattice
of E. For f ∈ F we consider the ideal Ef+ (resp. Ef−) generated by f+ (resp.
f−). Then Ef+ and Ef− are T−s(A)(t)-invariant for all t ≥ 0. Since Ef+ and Ef−

are orthogonal, see Proposition 10.4, the irreducibility of (T−s(A)(t))t≥0 implies
that either f+ = 0 or f− = 0. Consequently, F is totally ordered and, by Lemma
10.10, we have

dimF = dimker(s(A)−A) = 1.

d) We claim first that, if s(A) is a pole of the resolvent, then there is an
eigenvector 0 � f ∈ E of A corresponding to s(A). Indeed, let k be the pole order
of s(A) and

U−k = lim
λ→s(A)+

(λ− s(A))kR(λ,A),

see (14.9). Then U−k �= 0 and U−(k+1) = 0. Moreover, by Corollary 12.10, we
have U−k ≥ 0. Hence, there is 0 ≤ g ∈ E with f := U−kg � 0. By the relation
U−(k+1) = (A− s(A))U−k = 0, we obtain (A− s(A))f = 0. This proves the claim.

We can now use a) to obtain Ef = E. By taking the adjoint U∗
−(k+1) of

U−(k+1) and by the same computation as before, one deduces that there is 0 �
f∗ ∈ ker(s(A)−A∗). So by c) we have dimker(s(A)−A) = 1.
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Assume now that k ≥ 2. Then we have

〈f, f∗〉 = 〈U−kg, f
∗〉

= 〈g, U∗
−kf

∗〉
= 〈g, U∗

−(k−1)(A
∗ − s(A))f∗〉 = 0.

Since Ef = E, we infer that 〈g, f∗〉 = 0 for all g ∈ E+. This contradicts the
assertion b), hence k = 1. From the inequality mg + k − 1 ≤ ma ≤ mgk, see
(14.10), we further obtain

ma = mg = dimPs(A)E = dimker(s(A)−A) = 1,

and
Ps(A)E = ker(s(A) −A),

where we recall that Ps(A) = U−1.

We now show the last part of assertion d). To this end, let

0 � f ∈ ker(s(A)−A).

Without loss of generality we suppose that ‖f‖ = 1. Then Ps(A)E = span{f}, i.e.,
for every g ∈ E there is a λ ∈ C such that Ps(A)g = λf . By the Hahn–Banach
theorem (see Exercise 10.9.6), there exists

0 ≤ g∗ ∈ (ker(s(A)−A))∗ with ‖g∗‖ = 1 and 〈f, g∗〉 = ‖f‖ = 1.

Hence,
〈Ps(A)g, g

∗〉 = λ = 〈g, P ∗
s(A)g

∗〉.
Putting u∗ := P ∗

s(A)g
∗ ≥ 0, we obtain Ps(A) = u∗ ⊗ f and 〈f, u∗〉 = 〈Ps(A)f, g

∗〉 =
〈f, g∗〉 = 1. Moreover, 0 � u∗ ∈ P ∗

s(A)E
∗ ⊆ ker(s(A) −A∗), so u∗ > 0 by b).

In the proof of c) we have seen that for every g ∈ ker(s(A) − A) we have
either g+ = 0, or g− = 0. So, we may assume that our eigenvector f is strictly
positive. This ends the proof of the proposition. �

Now we study the boundary spectrum of irreducible semigroups on Banach
lattices. The results resemble the properties of imprimitive matrices obtained in
Chapter 5.

Before going on, we need some auxiliary results on the structure of Banach
lattices and their quasi-interior points. The following result, due to Kakutani,
shows that for every e ∈ E+ the generated ideal satisfies Ee

∼= C(K) for some
compact Hausdorff space K. Here, Ee is equipped with the norm

‖f‖e := inf{λ > 0 : f ∈ λ[−e, e]}, f ∈ Ee.

We recall that T ∈ L(E,F ) is called a lattice homomorphism if |Tf | = T |f |
for every f ∈ E, where F is a complex Banach lattice (see Definition 10.19).



14.3. Irreducible Semigroups 227

Theorem 14.13 (Kakutani). Let e ∈ E+ and let Ee be the ideal generated by {e}.
Further, take B := {f∗ ∈ (Ee)

∗
+ : 〈e, f∗〉 = 1} and denote by K the set of all

extreme points of B. Then K is σ(E∗, E)-compact and the mapping

Ue : Ee � f �−→ ϕf ∈ C(K), ϕf (f
∗) = 〈f, f∗〉, f∗ ∈ K,

is an isometric lattice isomorphism.

Now, if |h| is a quasi-interior point of E+, then E|h| is a dense subspace of E,
isomorphic to a space of continuous functions C(K) on some K. Let U|h| be the

lattice isomorphism obtained from Kakutani’s theorem and let h̃ := U|h|h. Then
|h̃| = U|h||h| = 1. Consider the operator

S̃0 : C(K) −→ C(K), f �−→ (sign h̃)f :=
h̃

|h̃|
f = h̃f, (14.17)

and put Sh := U−1
|h| S̃0U|h|. Then Sh is a linear mapping from E|h| into itself

satisfying

a) Shh = |h|, where h = Reh− i Imh,

b) |Shf | ≤ |f | for every f ∈ E|h|.

Since b) implies the continuity of Sh for the norm induced by E and |h| is
a quasi-interior point of E+, Sh can be uniquely extended to E. This extension is
also denoted by Sh and is called the signum operator with respect to h.

In the following we generalize Wielandt’s lemma (see Lemma 5.18) and its
consequences to irreducible semigroups on Banach lattices.

Lemma 14.14. Let E be a Banach lattice and |h| a quasi-interior point of E+.
Suppose that for T,R ∈ L(E) we have Rh = h, T |h| = |h|, and |Rg| ≤ T |g| for all
g ∈ E. Then T = S−1

h RSh, where Sh is the signum operator.

Proof. First observe that for g ∈ E+ we have

Tg = T |g| ≥ |Rg| ≥ 0,

so T is a positive operator. Since T |h| = |h|, the ideal E|h| is T -and R-invariant.

Consider the operators T̃ := U|h|TU
−1
|h| and R̃ := U|h|RU−1

|h| , and put h̃ := U|h|h.
We then have

R̃h̃ = h̃, T̃1 = 1, and |R̃f | ≤ T̃ |f | for all f ∈ C(K). (14.18)

Define T1 := S̃−1
0 R̃S̃0, where S̃0 is the multiplication operator by h̃ on C(K)

defined in (14.17). By (14.18), we have

T11 = 1 and

|T1f | = |S̃−1
0 R̃S̃0f | = |R̃S̃0f | ≤ T̃ |S̃0f | = T̃ |f |

(14.19)
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for all f ∈ C(K). Hence, ‖T1‖ ≤ ‖T̃‖ = ‖T̃1‖∞ = 1. So by Lemma 10.27, T1 is a

positive operator and (14.19) implies that 0 ≤ T1 ≤ T̃ . Therefore,

‖T̃ − T1‖ = ‖(T̃ − T1)1‖∞ = 0,

thus T1 = T̃ and hence T = S−1
h RSh. �

The following result describes the eigenvalues of an irreducible semigroup
which are contained in the boundary spectrum σb(A) = {λ ∈ σ(A) : Reλ = s(A)},
where A is the corresponding generator. Compare this with Theorem 5.19 for finite
imprimitive matrices.

Proposition 14.15. Let (T (t))t≥0 be an irreducible C0-semigroup with generator A
on a Banach lattice E. Assume that s(A) = 0 and there is 0 � f∗ ∈ D(A∗) with
A∗f∗ = 0. If σp(A) ∩ iR �= ∅, then the following assertions hold.

a) For 0 �= h ∈ D(A) and α ∈ R with Ah = iαh, |h| ∈ kerA is a quasi-interior
point,

Sh(D(A)) = D(A), and S−1
h ASh = A+ iα,

where Sh is the signum operator defined above.

b) dim ker(λ−A) = 1 for every λ ∈ σp(A) ∩ iR.
c) σp(A) ∩ iR is an additive subgroup of iR.
d) 0 is the only eigenvalue of A admitting a positive eigenvector.

Proof. We first remark that by Proposition 14.12.b) we have f∗ > 0, and by
Corollary 9.32, f∗ = T (t)∗f∗ for all t ≥ 0.

a) Assume that Ah = iαh for some 0 �= h ∈ D(A) and α ∈ R. Then, by
Corollary 9.32, T (t)h = eiαth and hence |h| = |T (t)h| ≤ T (t)|h|. This implies that

T (t)|h| − |h| ≥ 0

for every t ≥ 0. On the other hand,

〈T (t)|h| − |h|, f∗〉 = 〈|h|, T (t)∗f∗〉 − 〈|h|, f∗〉 = 0

for all t ≥ 0. Since f∗ > 0, we obtain T (t)|h| = |h| for every t ≥ 0, which implies
that A|h| = 0. So, by Proposition 14.12.a), the vector |h| is a quasi-interior point.
If we set

Tα(t) := e−iαtT (t)

for t ≥ 0, then T (t) and Tα(t) satisfy the assumptions of Lemma 14.14 and hence

T (t) = S−1
h Tα(t)Sh, t ≥ 0.

Therefore, Sh(D(A)) = D(A) and A = S−1
h (A− iα)Sh.

b) The calculations in the proof of a) imply that kerA �= {0} and dimker(iα−
A) = dimkerA, so Proposition 14.12.c) yields the claim.
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c) Let α, β ∈ R be such that Ah = iαh and Ag = iβg for some 0 �= h, g ∈
D(A). By a), we have

S−1
h ASh = A+ iα and S−1

g ASg = A+ iβ.

Thus

A+ i(α + β) = Sh(A+ iβ)S−1
h = ShS

−1
g ASgS

−1
h ,

which implies that

ker(A+ i(α+ β)) = ShS
−1
g kerA �= {0}.

Therefore i(α+ β) ∈ σp(A) ∩ iR.

d) If Af = λf , where 0 � f ∈ D(A), then

λ〈f, f∗〉 = 〈Af, f∗〉 = 〈f,A∗f∗〉 = 0.

Since f∗ > 0, we see that 〈f, f∗〉 > 0. Hence, λ = 0. �

The following result, which we recall without proof, states that the boundary
spectrum of the generator A of an irreducible C0-semigroup (T (t))t≥0 on a Banach
lattice E is always contained in the point spectrum σp(A) if s(A) is a pole of
R(·, A).

Lemma 14.16. Let A be the generator of an irreducible C0-semigroup (T (t))t≥0 on
a Banach lattice E. If s(A) is a pole of R(·, A), then σb(A) ⊂ σp(A).

As a consequence, we obtain the following description of the boundary spec-
trum of irreducible semigroups.

Theorem 14.17. Let (T (t))t≥0 be an irreducible C0-semigroup with generator A on
a Banach lattice E and assume that s(A) is a pole of the resolvent. Then there is
α ≥ 0 such that

σb(A) = s(A) + iαZ.

Moreover, σb(A) consists of simple poles.

Proof. Without loss of generality we may suppose that s(A) = 0. It can be shown
that σb(A) ⊆ σp(A), see Lemma 14.16. Hence

σb(A) = σp(A) ∩ iR.

Proposition 14.12.d) yields the existence of a positive eigenvector f∗ ∈ D(A∗)
corresponding to the eigenvalue s(A) = 0. Proposition 14.15.c) implies that σb(A)
is a subgroup of (iR,+). Since σb(A) is closed and s(A) = 0 is an isolated point,
we have

σb(A) = iαZ
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for some α ≥ 0. Proposition 14.12.d) implies that 0 is a simple pole and by
Proposition 14.15.a) we have, for λ ∈ ρ(A),

R(λ+ ikα,A) = Sk
hR(λ,A)S−k

h

for all k ∈ Z. Therefore, ikα is a simple pole for each k ∈ Z. This ends the proof
of the theorem. �

14.4 Asymptotic Behavior

In many concrete examples one can observe some regularity in the long-term be-
havior of the orbits of a semigroup. We will encounter two types of such behavior
that are interesting for applications: balanced exponential growth, and asymptotic
periodicity.

Let us start with the first kind of behavior. We say that a semigroup (T (t))t≥0

with a generator A possesses a balanced exponential growth if there are a rank-one
projection P and constants ε > 0 and M ≥ 1 such that

‖e−s(A)tT (t)− P‖ ≤ Me−εt for all t ≥ 0.

We will present an example of such a semigroup in Chapter 17, see also Exer-
cise 2. Using our spectral results, we can prove such behavior for certain class of
irreducible semigroups.

Theorem 14.18. Let (T (t))t≥0 be an irreducible C0-semigroup with the generator
A on a Banach lattice E. If ωess(T ) < ω0(T ), then there exist a quasi-interior
point 0 ≤ f ∈ E and 0 < f∗ ∈ E∗ with 〈f, f∗〉 = 1 such that

‖e−s(A)tT (t)− f∗ ⊗ f‖ ≤ Me−εt for all t ≥ 0

and appropriate constants M ≥ 1 and ε > 0.

Proof. Since ωess(T ) < ω0(T ), Proposition 14.3 implies that s(A) = ω0(T ). On
the other hand, ωess(T ) < ω0(T ) implies that ress(T (1)) < r(T (1)). Hence, by
Proposition A.34, r(T (1)) is a pole of the resolvent of T (1) and thus ω0(T ) = s(A)
is a pole of R(·, A).

Now, by Theorem 14.17, there exists α ≥ 0 such that σb(A) = s(A)+iαZ and
therefore σb(A − ω0(T )) = iαZ, where A− ω0(T ) is the generator of the rescaled
semigroup

T−ω0(T )(t) := e−ω0(T )tT (t), t ≥ 0.

Since

ωess

(
T−ω0(T )

)
= ωess(T )− ω0(T ) < 0 and ω0

(
T−ω0(T )

)
= 0,

we have, by Theorem 14.4, that the set

{λ ∈ σ(A− ω0(T )) : Reλ ≥ 0} = {λ ∈ σ(A−ω0(T )) : Reλ = 0} = σb(A−ω0(T ))
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is finite. Therefore, σb(A−ω0(T )) = {0}. The theorem is now proved by applying
Theorem 14.4 and Proposition 14.12 to the rescaled semigroup (T−ω0(T )(t))t≥0.

�

Without the quasi-compactness assumption for the rescaled semigroup, i.e.,
ωess(T ) < ω0(T ), one obtains that the semigroup (T (t))t≥0 behaves in the long
run like a rotation group. Here we assume s(A) > −∞. So, by considering the
rescaled semigroup (e−s(A)tT (t))t≥0 instead of (T (t))t≥0, one may without loss of
generality assume s(A) = 0. Compare the following theorem with Definition 4.14
and Theorem 4.15 for the finite-dimensional case.

Theorem 14.19. Let (T (t))t≥0 be a bounded and irreducible C0-semigroup with the
generator A on a Banach lattice E := Lp(Ω, μ), 1 ≤ p < ∞. If s(A) = 0 is a
pole of R(·, A) and there is ξ ∈ R such that iξ ∈ σ(A), then there exists a positive
projection P commuting with (T (t))t≥0 such that the following holds.

a) We have

E = imP ⊕ kerP, T (t) = Tr(t)⊕ Ts(t), t ≥ 0, and A = Ar ⊕As,

corresponding to the decomposition σ(A) = σr ∪ σs, where σr = iαZ and
σs = σ(A) \ σr for some α > 0.

b) The subspace imP is a closed sublattice of E and (Tr(t))t≥0 is a periodic and
irreducible C0-semigroup on imP .

c) For every f ∈ E we have

lim
t→∞ ‖T (t)f − Tr(t)f‖ = 0.

Proof. First observe that by Theorem 14.17 we have

σb(A) = σ(A) ∩ iR = iαZ for some α > 0. (14.20)

Next, from Proposition 14.15.a) and its proof, we see that there is a quasi-
interior point h ∈ E+ which is also a fixed point of T (t). Hence, |T (t)f | ≤ T (t)h =
h for all f ∈ [−h, h]. Since h is a quasi-interior point and order intervals in E
are weakly compact, (T (t))t≥0 is relatively weakly compact. Thus, by the Jacobs–
de Leeuw–Glicksberg splitting theorem, see Theorem A.39, there is a projection
P ∈ L(E) commuting with T (t) such that E = imP ⊕ kerP . Moreover,

imP = span{f ∈ D(A) : ∃k ∈ Z such that Af = iαkf}

and

kerP = {f ∈ E : 0 belongs to the weak closure of {T (t)f : t ≥ 0}}.

Furthermore, from (14.20) and Proposition A.40, it follows that

kerP = {f ∈ E : lim
t→∞ ‖T (t)f‖ = 0}. (14.21)
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Since P commutes with each T (t), it splits (T (t))t≥0 into (Tr(t))t≥0 on imP
and (Ts(t))t≥0 on kerP . Moreover, by Corollary 9.32, T

(
2π
α

)
f = f for all f ∈

D(A) such that Af = iαkf for some k ∈ Z. Hence, Tr

(
2π
α

)
= I and Tr(·) is a

periodic C0-semigroup on imP .

Theorem A.39 tells us that P belongs to the weak closure of (T (t))t≥0. Since
(T (t))t≥0 is irreducible, we see that Pf � 0 whenever f � 0. So, by Lemma A.41,
imP is a closed sublattice of E. This and the irreducibility of (T (t))t≥0 imply that
(Tr(t))t≥0 is a periodic and irreducible C0-semigroup on imP . Denote its generator
by Ar. Then, by Theorem 14.6 and equation (14.14), we have σ(Ar) = iαZ.

The family Ts(t) := T (t)|kerP , t ≥ 0, defines a C0-semigroup on kerP . We
denote its generator by As. Then, by the spectral decomposition, we have σ(As) =
σ(A) \ iαZ. This ends the proof of assertions a) and b). Assertion c) follows from
(14.21). �

Remark 14.20.

a) Denote by G the closure of the set {Tr(t) : t ≥ 0} in the weak operator topol-
ogy. Using abstract results from harmonic analysis and Theorem 14.19, one
can prove that imP is lattice isomorphic to an (Rτ (t))t∈R-invariant Banach
function space C on G satisfying C(G) ⊂ C ⊂ L1(G,m) such that (Tr(t))t∈R

is similar to the group induced by (Rτ (t))t∈R on C. Here m is the Haar mea-
sure on G and (Rτ (t))t∈R is the rotation group defined in Example 14.8 with
period τ = 2π

α . Moreover, if E = L1(Ω, μ), then C can be identified with
L1(G).

b) It can be seen that Theorem 14.19 holds if E is any Banach lattice with
order continuous norm, see Remark 13.12 for the definition. In fact, it holds
that a Banach lattice E has order continuous norm if and only if every order
interval in E is weakly compact. This gives the weak compactness needed in
the proof above.

c) One obtains from the proof above that s(As) < 0.

An example of a C0-semigroup that behaves asymptotically periodic will be
presented in Chapter 18.

14.5 Notes and Remarks

For the general spectral theory of operators we refer to monographs by Kato [73] or
by Gohberg, Goldberg and Kaashoek [53]. More on spectral theory of irreducible
semigroups can be found in the monograph edited by Nagel [101, Section B-III.3].

Kakutani’s theorem, Theorem 14.13, originates from Kakutani [70]. We cited
it from Meyer-Nieberg [95, Theorem 2.1.3], where you can also find a proof.

Concerning Lemma 14.14 and signum operators we refer to Nagel (ed.) [101,
Chapter B-III]. For the proof of Lemma 14.16 see [101, p. 315].
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Remark 14.20.a) is connected to abstract Halmos–von Neumann type the-
orems. We refer to Schaefer [126, Section III.10] for the corresponding abstract
results. See also Keicher and Nagel [74]. For Remark 14.20.b) see Meyer-Nieberg
[95, Theorem 2.4.2].

14.6 Exercises

1. Let (T (t))t≥0 be a C0-semigroup on a Banach space X . Prove that the fol-
lowing assertions are equivalent.

(i) ωess(T ) < 0.

(ii) ‖T (t0)−K‖ < 1 for some t0 > 0 and K ∈ L(X) compact.

2. On the Banach space C(K) with K = [−∞, 0] consider the operator

Af = f ′ +mf

D(A) = {f ∈ C(K) : f is differentiable, f ′ ∈ C(K) and f ′(0) = Lf},
where m ∈ C(K) is real-valued and L : C(K) → R a continuous linear form.

a) Show that A generates a C0-semigroup (T (t))t≥0 on C(K).

b) Prove that (T (t))t≥0 is given by

T (t)f(s) = e
∫ 0
s
m(ν)dν

(
e(s+t)m(0)f(0) +

∫ t+s

0

eτm(0)LT (s+ t− τ)fdτ

)
for s+ t > 0 and

T (t)f(s) = e
∫ t+s
s

m(τ)dτf(t+ s)

for s+ t ≤ 0.

c) Using Exercise 1, prove that ωess(T ) < 0 provided that m(−∞) < 0.

d) Describe the asymptotic behavior of (T (t))t≥0.

3. Consider the transport operator

D(A) =

{
f ∈ L1(I × V ) : v

∂f

∂x
∈ L1(I × V ) and

{
f(0, v) = 0 if v > 0,
f(1, v) = 0 if v < 0,

}
,

(Af)(x, v) = −v
∂f

∂x
(x, v),

where I = [0, 1] and V = {v ∈ R : 1 ≤ |v| ≤ 2}. Prove that A generates a
reducible C0-semigroup on L1(I × V ).

4. On the Banach lattice C ([0, 1]) consider the Laplace operator with Neumann
boundary conditions:

(Af)(x) = f ′′(x), x ∈ [0, 1],

f ∈ D(A) = {f ∈ C2 ([0, 1]) : f ′(0) = f ′(1) = 0}.

Prove that A generates an irreducible C0-semigroup on C[0, 1].
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5. On E = L1 ([−1, 0]) and for 0 ≤ g ∈ L∞[−1, 0] define the operator

Af := f ′, D(A) =

{
f ∈ E : f ′ ∈ E and f(0) =

∫ 0

−1

f(s)g(s) ds

}
.

a) Show that A generates a positive C0-semigroup (T (t))t≥0 on E.

b) Prove that (T (t))t≥0 is reducible if and only if there exists ε > 0 such
that g vanishes a.e. on [−1,−1 + ε].
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