
Chapter 10

Banach Lattices and
Positive Operators

In the remaining chapters we shall try to extend the theory of positive matrices to
infinite-dimensional spaces. One of the first questions is how to generalize concepts
like positivity of vectors, or positivity, irreducibility, and imprimitivity of matrices.
We have tried to have an abstract look at the finite-dimensional case, to motivate
infinite-dimensional concepts. Still, the transition from finite to infinite dimensions
is not easy. This is why we decided to focus in this chapter only on the order
relation and explore basic properties of infinite-dimensional ordered vector spaces,
more precisely, Banach lattices.

We also continue the investigation of positive operators and positive expo-
nential functions on Banach lattices. We shall be guided by the finite-dimensional
situation and there will be many results and proofs which will be essentially reap-
pearances from previous chapters.

10.1 Ordered Function Spaces

Let us first summarize the order structure of Rn. Note that vectors in Rn can be
identified with functions:

Rn ≡ {f : {1, . . . , n} → R} .

Positivity of a vector is thus nothing but pointwise positivity of the representing
function:

f ≥ 0 if and only if f(k) ≥ 0 for all k = 1, . . . , n.

Hence, if we have a vector space of real-valued functions, it is natural to intro-
duce an order relation by pointwise ordering. Let us illustrate this with the most
important example.
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142 Chapter 10. Banach Lattices and Positive Operators

For a compact Hausdorff space K we take the space of continuous functions

X := C(K,R) := {f : K → R : f is continuous} ,

which is a Banach space with the norm

‖f‖ = ‖f‖∞ = max
x∈K

|f(x)|.

The pointwise ordering in this case is

f ≥ g ⇐⇒ f(x) ≥ g(x) for all x ∈ K.

This clearly generalizes the finite-dimensional case with K = {1, . . . , n} ⊂ R and
the usual maximum norm.

It is straightforward from the definition that the ordering is compatible with
the vector space operations in the sense that

f ≤ g implies f + h ≤ g + h for all h ∈ C(K,R)

and
0 ≤ f implies 0 ≤ tf for all t ≥ 0.

We can also define the supremum and infimum of two functions as

(f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)}

for all x ∈ K. The positive part , negative part, and absolute value of a function
can be then given as

f+ := f ∨ 0, f− := (−f) ∨ 0, |f | := f ∨ (−f).

An important property of the positive and negative part of a function is that
they live separate lives: if f+(x) �= 0, then f−(x) = 0 and vice versa. This property
is sometimes called orthogonality or disjointness .

Note that the following properties also follow from the fact that we defined
the order relation pointwise and that the order behaves well on the real numbers:

f = f+ − f−,
|f | = f+ + f−,

f ≤ g ⇐⇒ f+ ≤ g+ and g− ≤ f−, (10.1)

|f − g| = (f ∨ g)− (f ∧ g),

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖.

Recall that for reducibility in Chapter 5 (see Definition 5.8) we needed the
invariance of a subspace of the form

JM :=
{
(ξ1, . . . , ξn)

� : ξi = 0 for i ∈ M
}
⊂ Rn
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x

f(x)

f(x) = sinx

f+(x)

(a) The positive part f+.

x

f(x)

f(x) = sinx

f−(x)

(b) The negative part f−.

x

f(x)

f(x) = sinx

|f |(x) = | sinx|

(c) The absolute value |f |.

x

f(x)

f(x) = sinx
g(x) = cosx

(f ∨ g)(x)

(d) Supremum f ∨ g.

Figure 10.1: Examples of f+, f−, |f |, and f ∨ g.

for some ∅ �= M � {1, . . . , n}. In analogy, we define the following. Suppose that
F ⊂ K is a closed set and set

JF := {f ∈ C(K,R) : f(x) = 0 for all x ∈ F} . (10.2)

Subspaces of the above form are also called ideals . It is important that such ideals
can be characterized by order theoretic concepts.

Proposition 10.1. For a closed subspace I ⊂ C(K,R) the following assertions are
equivalent.

(i) f ∈ I implies |f | ∈ I,

and

0 ≤ g ≤ f ∈ I implies g ∈ I.

(ii) There is a closed set F ⊂ K such that I = JF .

Proof. Since the case I = {0} (where 0 stands here for the constant zero function)
is obvious, we may assume that I �= {0}.

Clearly, if I = JF for a closed subset F , then the properties listed in (i) hold.

For the other direction, define

F := {x ∈ K : f(x) = 0 for all f ∈ I}

and for α ∈ R and f ∈ C(K,R) denote

[f ≥ α] := {x ∈ K : f(x) ≥ α}.

Obviously, I ⊂ JF . Take now a positive nonzero function 0 �= f ∈ JF . Our aim is
to show that f ∈ I.
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For ε > 0 let Bf
ε := [f ≥ ε]. Observe that Bf

ε is a closed set satisfying
Bf

ε ∩F = ∅. Thus, for every x ∈ Bf
ε there is 0 ≤ gx ∈ I such that gx(x) > 0. Since

Bf
ε is compact, there are finitely many x1, . . . , xr ∈ Bf

ε such that

Bf
ε ⊂ [gx1 > 0] ∪ [gx2 > 0] ∪ · · · ∪ [gxr > 0].

We construct now an approximation of f in the set I. First observe that (i)
and (10.1) show that f1, f2 ∈ I implies f1 ∨ f2 ∈ I and f1 ∧ f2 ∈ I. We define

g := gx1 ∨ gx2 ∨ · · · ∨ gxr ∈ I,

and take δ > 0 such that g(x) ≥ δ for all x ∈ Bf
ε . Then the function

h := f ∧
(
‖f‖
δ

g

)
∈ I

satisfies 0 ≤ h ≤ f and h(x) = f(x) for all x ∈ Bf
ε . By the definition of the set

Bf
ε , we see that ‖f − h‖ ≤ ε. Hence, for every f ∈ JF and every ε > 0 we found

h ∈ I such that h approximates f with an error less than ε. By the closedness of
I we obtain the desired conclusion. �

Thus, a closed subspace I of C(K,R) is an ideal if any of the equivalent
conditions in Proposition 10.1 is satisfied. Let us only remark that this is also
equivalent to saying that I is an algebraic ideal of the Banach algebra C(K,R).

An operator T on C(K,R) is called reducible if there exists a nontrivial ideal
which is invariant under T . An operator which is not reducible, is called irreducible.

Another important observation concerning ideals is the following. Taking
f ≥ 0, we build the smallest ideal containing f , and denote it by Ef . It is then
straightforward to check using Proposition 10.1 that

Ef =
⋃
k∈N

[−kf, kf ]

holds, where [f1, f2] := {g : f1 ≤ g ≤ f2} denotes the order interval determined
by f1 and f2, see Figure 10.2. We call Ef the ideal generated by f .

x

f(x)

f2(x) = sinx+ 1

f1(x) = sinx− 1

f ∈ [f1, f2]

Figure 10.2: The order interval.
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In some proofs (like in Corollary 7.4) strictly positive vectors (or the vector
1) played an important role. A natural observation is that the ideal generated
by a strictly positive function is the whole space C(K,R). A function with this
property is sometimes also called an order unit . Unfortunately, as we shall see in
the next section, not all function spaces possess order units. We will be able to
introduce a weaker notion that will be almost as satisfactory for our proofs, see
Example 10.16 and the considerations before that.

Finally, let us note that for statements in spectral theory we need complex
vector spaces. Observe that we can make the identification

C(K,C) ∼= C(K,R)⊕ i · C(K,R),

meaning that for a complex-valued continuous function its real and imaginary
parts are real-valued continuous functions.

10.2 Vector Lattices

Now we take an abstract point of view and try to axiomatize what we have seen
in the previous section. Our main examples, besides the finite-dimensional vector
spaces, are C(K) spaces, Lp(Ω, μ) spaces, and C0(Ω) spaces (see Example 10.6
later on). If you are uncomfortable with abstract terminology, you should pick one
of these spaces and keep it in mind for the rest of this chapter.

We start by ordering. A non empty set M with a relation ≤ is said to be an
ordered set if the following conditions are satisfied:

a) f ≤ f for every f ∈ M ,

b) f ≤ g and g ≤ f imply f = g, and

c) f ≤ g and g ≤ h imply f ≤ h.

First examples of ordered sets are the number sets N, Z, Q, and R.
Having an ordering at hand, we can consider order boundedness. Let F be a

subset of an ordered set M . The element f ∈ M (resp. h ∈ M) is called an upper
bound (resp. lower bound) of F if g ≤ f for all g ∈ F (resp. h ≤ g for all g ∈ F ).
Moreover, if there is an upper bound (resp. lower bound) of F , then F is said to
be bounded from above (resp. bounded from below). If F is bounded from above
and from below, then it is called an order bounded set .

We can introduce the concept of an order interval analogous to the intervals
on the real line. Let f, h ∈ M such that f ≤ h. We denote by

[f, h] := {g ∈ M : f ≤ g ≤ h}

the order interval between f and g. We infer that a subset F is order bounded if
and only if it is contained in some order interval.
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Definition 10.2. A real vector space E which is ordered by some order relation ≤
is called a vector lattice if any two elements f, g ∈ E have a least upper bound,
denoted by f ∨ g = sup(f, g) ∈ E, and a greatest lower bound, denoted by f ∧ g =
inf(f, g) ∈ E, and the following properties are satisfied:

a) if f ≤ g, then f + h ≤ g + h for all f, g, h ∈ E,

b) if 0 ≤ f , then 0 ≤ tf for all f ∈ E and 0 ≤ t ∈ R.

Let E be a vector lattice. We denote by E+ := {f ∈ E : 0 ≤ f} the positive
cone of E. For f ∈ E, we define

f+ := f ∨ 0, f− := (−f) ∨ 0, and |f | := f ∨ (−f)

the positive part , the negative part , and the absolute value of f , respectively. Two
elements f, g ∈ E are called orthogonal (or lattice disjoint) (denoted by f ⊥ g) if
|f | ∧ |g| = 0.

For a vector lattice E we have the following properties, which we will use
frequently.

Proposition 10.3. For all f, g, h ∈ E the following assertions hold true.

a) f + g = (f ∨ g) + (f ∧ g).

b) f ∨ g = −(−f) ∧ (−g).

c) (f ∨ g) + h = (f + h) ∨ (g + h) and (f ∧ g) + h = (f + h) ∧ (g + h).

d) (f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h) and (f ∧ g) ∨ h = (f ∨ h) ∧ (g ∨ h).

e) For all f, g, h ∈ E+ we have (f + g) ∧ h ≤ (f ∧ h) + (g ∧ h).

Proof. We shall only prove a). The proof of the other properties is left to the
reader (see Exercise 1). We have f ∧ g ≤ g =⇒ f ≤ f + g− f ∧ g. In a similar way
we have g ≤ f + g − f ∧ g. Hence, f ∨ g ≤ f + g − f ∧ g, which gives

f ∨ g + f ∧ g ≤ f + g.

For the reverse inequality we note that g ≤ f ∨ g =⇒ f + g − f ∨ g ≤ f , and
similarly f + g − f ∨ g ≤ g. Thus,

f + g − f ∨ g ≤ f ∧ g. �

For the positive part, negative part, and absolute value of f ∈ E we have the
following properties (compare with Properties (10.1) of functions in C(K,R)).

Proposition 10.4. If f, g ∈ E, then

a) f = f+ − f−.
b) |f | = f+ + f−.
c) f+ ⊥ f− and the decomposition of f into the difference of two orthogonal

positive elements is unique.

d) f ≤ g is equivalent to f+ ≤ g+ and g− ≤ f−.
e) |f − g| = (f ∨ g)− (f ∧ g).
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Proof. a) Using Proposition 10.3 a) and b), we obtain

f = f + 0 = f ∨ 0 + f ∧ 0

= f ∨ 0− (−f) ∨ 0 = f+ − f−.

b) Applying Proposition 10.3.c) and a) proved above, we have

|f | = f ∨ (−f) = (2f ∨ 0)− f = 2(f ∨ 0)− f

= 2f+ − f+ + f− = f+ + f−.

c) Let us prove first that f+ ∧ f− = 0. To this purpose we apply Proposition
10.3.c) and deduce

f+ ∧ f− = (f+ − f−) ∧ 0 + f− = (f ∧ 0) + f−

= −[(−f) ∨ 0] + f− = 0.

Let now f = g − h with g ∧ h = 0. By c) and a) of Proposition 10.3, we have

f+ = (g − h) ∨ 0 = g ∨ h− h = (g + h− (g ∧ h))− h = g.

In a similar way we obtain f− = h.

d) Using a), this is straightforward.

e) This can be proved using the identities

f ∨ g =
1

2
(f + g + |f − g|) and f ∧ g =

1

2
(f + g − |f − g|)

(see Exercise 2). �

10.3 Banach Lattices

We finally arrived at the main objects of this chapter and consider Banach spaces
which are ordered and whose norm is compatible with this ordering. First, let us
explain what we mean by compatible.

A norm on a vector lattice E is called a lattice norm if

|f | ≤ |g| implies ‖f‖ ≤ ‖g‖ for f, g ∈ E.

Definition 10.5. A Banach lattice is a real Banach space E endowed with an
ordering ≤ such that (E,≤) is a vector lattice and the norm on E is a lattice
norm.

We will see that this combination of properties of a complete normed vector
space and a compatible ordering leads to many fruitful results.

As already mentioned, apart from finite-dimensional vector spaces (such as
R or Rn), there are many interesting infinite-dimensional examples of Banach
lattices.
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Examples 10.6. The following Banach spaces are Banach lattices for the pointwise
(almost everywhere) ordering.

a) Let (Ω, μ) be a measure space and take Lp(Ω, μ;R), 1 ≤ p ≤ ∞, endowed
with the norm

‖f‖p =

(∫
Ω

|f(x)|p dμ

)1/p

if 1 ≤ p < ∞,

‖f‖∞ = inf{M : |f(x)| ≤ M for μ-a.e. x ∈ Ω} if p = ∞,

and with the order

f ≥ 0 ⇐⇒ f(x) ≥ 0 for μ-a.e. x ∈ Ω.

We furthermore define

(f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)} (10.3)

for μ-a.e. x ∈ Ω, which are both measurable functions. Note that for the absolute
value of f this imposes

|f |(x) = (f ∨ (−f))(x) = max{f(x),−f(x)} = |f(x)| for μ-a.e. x ∈ Ω.

Since

|(f ∨ g)(x)| ≤ |f(x)| + |g(x)| and |(f ∧ g)(x)| ≤ |f(x)|+ |g(x)| (10.4)

for μ-a.e. x ∈ Ω, we see, that

‖f ∨ g‖p ≤ ‖f‖p + ‖g‖p and ‖f ∧ g‖p ≤ ‖f‖p + ‖g‖p,

hence f ∨ g, f ∧ g ∈ Lp(Ω, μ) for every 1 ≤ p ≤ ∞. Clearly, the properties in
Definition 10.2 are fulfilled and the p-norm is a lattice norm.

b) For a locally compact noncompact Hausdorff topological space Ω we take
C0(Ω), the space of all real-valued continuous functions vanishing at infinity, en-
dowed with the supremum norm

‖f‖∞ = sup
x∈Ω

|f(x)|,

and with the natural order

f ≥ 0 ⇐⇒ f(x) ≥ 0 for all x ∈ Ω.

We define f ∨ g, f ∧ g as in (10.3), but now for every x ∈ Ω. We obtain
continuous functions and using inequalities (10.4) we see that f ∨g, f ∧g ∈ C0(Ω).
Again, the properties in Definition 10.2 are fulfilled and the supremum norm is a
lattice norm.

c) The space of real-valued continuous functions C(K) on a compact Haus-
dorff spaceK, endowed with the supremum norm and with the order defined above
was already investigated in Section 10.1.



10.3. Banach Lattices 149

Note that there are many ordered function spaces which are not Banach
lattices. Let us give the following simple example.

Examples 10.7.

a) Consider the Banach space C1([0, 1]) of continuously differentiable func-
tions on [0, 1] with the norm

‖f‖ = max
s∈[0,1]

|f(s)|+ max
s∈[0,1]

|f ′(s)|

and the natural order f ≥ 0 if f(s) ≥ 0 for all s ∈ [0, 1]. Since sup{t, 1 − t} /∈
C1([0, 1]), the space C1([0, 1]) is not a vector lattice. Moreover the above norm is
not compatible with the order. In fact, let f ≡ 1 and g(s) = sin(2s), s ∈ [0, 1].
Then, 0 ≤ g ≤ f and ‖g‖ ≥ |g′(0)| = 2 > 1 = ‖f‖.

s

f(s)

f1(s) = s

f2(s) = 1− s

(f1 ∨ f2)(s) = max{s, 1− s}

Figure 10.3: C1[0, 1] with the norm in Example 10.7.a) is not a lattice.

b) Consider the Sobolev space H1(0, 1). Using similar arguments as in the
previous example, we see that the norm is again not compatible with the order.
As a difference, however, note that H1(0, 1) is a vector lattice, see Exercise 4.

Now we list some further properties of Banach lattices.

Proposition 10.8. For a Banach lattice E the following hold.

a) The lattice operations are continuous.

b) The positive cone E+ is closed.

c) The order intervals are closed and bounded.

Proof. a) Consider (fk), (gk) ⊂ E and f, g ∈ E such that limk→∞ fk = f and
limk→∞ gk = g. Applying Birkhoff’s inequality, see Exercise 2.f), we have

|fk ∧ gk − f ∧ g| ≤ |fk ∧ gk − fk ∧ g|+ |fk ∧ g − f ∧ g|
≤ |gk − g|+ |fk − f |.

Thus,

‖fk ∧ gk − f ∧ g‖ ≤ ‖gk − g‖+ ‖fk − f‖.
This yields the continuity of ∧. Analogously, one obtains the continuity of ∨.
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b) Take (fk) ⊂ E+ such that limk→∞ fk = f ∈ E. Then, by a),

lim
k→∞

fk = lim
k→∞

(fk ∨ 0) = f ∨ 0.

Hence, f = f ∨ 0 ∈ E+.

c) Let f, g, h ∈ E with h ∈ [f, g]. Then, 0 ≤ h − f ≤ g − f . So, using the
triangle inequality from Exercise 2.d), one has

‖h‖ − ‖f‖ ≤ ‖h− f‖ ≤ ‖g − f‖, whence ‖h‖ ≤ ‖f‖+ ‖g − f‖.

Therefore, order intervals are bounded. We prove now that order intervals
are closed. Take (hk) ⊂ E and f, g ∈ E with f ≤ hk ≤ g for all k ∈ N. Since E+

is closed, by b), limk→∞(hk − f) = h − f ≥ 0 and limk→∞(g − hk) = g − h ≥ 0.
Hence, f ≤ h ≤ g, which proves the closedness of [f, g]. �

The following property of Banach lattices is a consequence of the Hahn–
Banach theorem.

Proposition 10.9. In a Banach lattice E every weakly convergent increasing se-
quence (fk) is norm convergent.

Proof. Consider the convex hull of the set {fk},

F :=

{
m∑
i=1

aifi : m ∈ N, ai ≥ 0, a1 + · · ·+ am = 1

}
.

By the Hahn–Banach theorem, Theorem A.27, the norm closure of F coin-
cides with the weak closure. This implies that f ∈ F , where f := weak-limk→∞ fk.
Thus, for ε > 0, there exist g ∈ F , i.e.,

g = a1f1 + · · ·+ amfm, with a1, . . . , am ≥ 0 and a1 + · · ·+ am = 1,

such that ‖g− f‖ < ε. Since g ≤ fk ≤ f , we infer that ‖f − fk‖ ≤ ‖f − g‖ < ε for
all k ≥ m. �

Here we state a result that we shall need later. A Banach lattice E is totally
ordered if for every f ∈ E one has either 0 ≤ f or f ≤ 0.

Lemma 10.10. A totally ordered real Banach lattice E is at most one-dimensional.

Proof. Take e ∈ E+ with e �= 0, and f ∈ E. Consider the closed subsets of R

C+ := {α ∈ R : αe ≥ f} and C− := {α ∈ R : αe ≤ f}.

It is obvious that C+ and C− are non-empty and C+ ∪ C− = R. Since R
is connected, it follows that C+ ∩ C− �= ∅. Hence, there is α ∈ R such that
f = αe. �
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10.4 Sublattices and Ideals

We want to equip a vector subspace of a vector or Banach lattice with some order
structure. Therefore we define two kinds of subspaces (compare with Proposition
10.1).

Definition 10.11. A vector subspace F of a vector lattice E is a vector sublattice
if for all f ∈ F we have |f | ∈ F . A subspace I of a Banach lattice E is called an
ideal if

f ∈ I implies |f | ∈ I and 0 ≤ g ≤ f ∈ I implies g ∈ I.

Consequently, a vector sublattice F is an ideal in E if f ∈ F and 0 ≤ g ≤ f
implies g ∈ F . Note also that if F is a vector sublattice, then f+ ∈ F and f− ∈ F
for all f ∈ F .

Since the notions of sublattice and ideal are invariant under the formation of
arbitrary intersections, there exists, for any subset M of E, a unique smallest sub-
lattice (resp. ideal) of E containing M . This will be called the sublattice (resp. the
ideal) generated by M .

We summarize all properties of sublattices and ideals which we will need in
the sequel.

Proposition 10.12. If E is a Banach lattice, then the following properties hold.

a) The closure of every sublattice of E is a sublattice.

b) The closure of every ideal of E is an ideal.

c) For every f ∈ E+, the ideal generated by {f} is

Ef =
⋃

k∈N
k[−f, f ].

Proof. The first two assertions follow from the continuity of the lattice opera-
tions, see Proposition 10.8. For the last assertion one can see easily that I =⋃

k∈N
k[−f, f ] is an ideal while any ideal included in I and containing f equals I.

This means that I = Ef . �

For examples of closed ideals we again pay a visit to our function spaces and
start by restating Proposition 10.1 in this context.

Proposition 10.13. If E = C(K), where K is a compact Hausdorff space, then a
subspace J of E is a closed ideal if and only if there is a closed subset F ⊂ K such
that

J = {ϕ ∈ E : ϕ(x) = 0 for all x ∈ F}.

The arguments of the proof of Proposition 10.1 can be modified accordingly
to obtain the following characterization.
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Proposition 10.14. If E = C0(Ω), where Ω is a locally compact Hausdorff topolog-
ical space, then a subspace J of E is a closed ideal if and only if there is a closed
subset F of Ω such that

J = {ϕ ∈ E : ϕ(x) = 0 for all x ∈ F}.

Finally, we close this set of examples by characterizing closed ideals of Lp-
spaces.

Proposition 10.15. If E = Lp(Ω, μ), 1 ≤ p < ∞, where (Ω, μ) is a σ-finite measure
space, then a subspace I of E is a closed ideal if and only if there exists a measurable
subset Y of Ω such that

I = {ψ ∈ E : ψ(x) = 0 a.e. x ∈ Y }.

Proof. First we show that for a measurable set Y ⊂ Ω, the set

IY := {ψ ∈ E : ψ(x) = 0 a.e. x ∈ Y }

is a closed ideal. Clearly, IY is a linear subspace and if f ∈ IY , then |f | ∈ IY . The
definition implies directly that if f ∈ IY and 0 ≤ g ≤ f , then g ∈ IY . Hence it
only remains to show the closedness.

Let (fk) ⊂ IY be a sequence such that fk → f ∈ E. Then there is a subse-
quence (fkm) such that fkm(x) → f(x) for a.e. x ∈ Ω. In particular, fkm(x) → f(x)
for a.e. x ∈ Y , hence, f ∈ IY .

Conversely, suppose that {0} �= I ⊂ E is an ideal. We have to show the
existence of a measurable set Y ⊂ Ω such that I = IY . Since (Ω, μ) is a σ-finite
measure space, there is an increasing sequence (Ωk) of sets of finite measure with⋃

k∈N
Ωk = Ω. For each k ∈ N we define

Bk := {M ⊂ Ωk : χM ∈ I}.

Since I is a non-trivial ideal, we infer that there is k ∈ N such that Bk �= ∅. Observe
that if M ⊂ Bk is a finite set, then

sup
M∈M

χM ∈ I.

We also have that

sk := sup
M⊂Bk,M finite

∥∥∥ sup
M∈M

χM

∥∥∥ ≤ μ(Ωk)
1/p < ∞.

Take a sequence Mm ⊂ Bm, where Mm is finite and∥∥∥ sup
M∈Mm

χM

∥∥∥ ≥ sk −
1

m
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holds for every m ∈ N. Observe that for m1 ≤ m2 one has Mm2 ⊆ Mm1 . Now we
define

Ck :=
⋃

m∈N,M∈Mm

M ∈ Bk, C :=
⋃
k∈N

Ck, and Y := Ω \ C.

Clearly, the sets Ck, C, and Y are measurable. Moreover, the sequence(
sup

M∈Mm

χM

)
⊂ I

is bounded and monotone, and since I is closed, the Dominated Convergence
Theorem (see Theorem A.23) implies that its limit χCk

∈ I for all k ∈ N.
Take now f ∈ I and show that f ∈ IY . Since I and IY are both ideals it

suffices to consider positive f only. Assume on the contrary that there is M ⊂ Y
such that μ(M) > 0 and f(x) > 0 for a.e. x ∈ M . Fix k0 such that μ(M∩Ωk0) > 0.
Since f is strictly positive on M ∩ Ωk0 , there exists j ∈ N such that

μ(M ∩ Ωk0 ∩ {f ≥ 1/j}) > 0.

For such j we introduce the function gj := χM∩Ωk0
∩{f≥1/j}. Then, 0 ≤ gj ≤ jf

and hence, gj ∈ I and B̃ := M ∩ Ωk0 ∩ {f ≥ 1/j} ∈ Bk0 . Since B̃ ∩ Ck0 = ∅ for
sufficiently large m ∈ N, we must have∥∥∥χB̃ + sup

M∈Mm

χM

∥∥∥ > sk0 ,

which is a contradiction. Hence, I ⊂ IY .

To show that IY ⊂ I, take 0 ≤ f ∈ IY and fix ε > 0. The sequences (f−χΩk
f)

and (f − χ{f≤k}f) of positive functions converge to zero almost everywhere. The
Dominated Convergence Theorem (see Theorem A.23) implies that there is k0 ∈ N
such that

‖f − χΩk0
f‖ ≤ ε

2
and ‖f − χ{f≤k0}f‖ ≤ ε

2
.

Since k0χCk0
∈ I, we infer that

h := χΩk0
∩{f≤k0}f ∧ k0χCk0

∈ I.

By the choice of k0 and the fact that f = 0 almost everywhere on Y , we have that
‖f − h‖ ≤ ε. The closedness of I now implies that f ∈ I. �

Sometimes a Banach lattice E is generated by a single positive element. If
Ee = E holds for some e ∈ E+ then e is called an order unit . If Ee = E, then
e ∈ E+ is called a quasi-interior point of E+.

It follows that e is an order unit of E if and only if e is an interior point of
E+. Quasi-interior points of the positive cone exist, for example, in every separable
Banach lattice.
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Examples 10.16.

a) If E = C(K), where K is a compact Hausdorff space, then the constant
function 1, 1(x) ≡ 1, is an order unit. In fact, for every f ∈ E, there is
k ∈ N such that ‖f‖∞ ≤ k. Hence, |f(s)| ≤ k1(s) for all s ∈ K. This implies
f ∈ k[−1,1].

b) Let E = Lp(Ω, μ) with a σ-finite measure μ such that μ({x}) = 0 for every
x ∈ Ω and 1 ≤ p < ∞. Then the quasi-interior points of E+ coincide with
the μ-a.e. strictly positive functions, while E+ does not contain any interior
point.

10.5 Complexification of Real Banach Lattices

It is often necessary to consider complex vector spaces (for instance in spectral
theory). Therefore, we introduce the concept of a complex Banach lattice.

The complexification of a real Banach lattice E is the complex Banach space
EC whose elements are pairs (f, g) ∈ E×E, with addition and scalar multiplication
defined by (f0, g0)+(f1, g1) := (f0+f1, g0+g1) and (a+ib)(f, g) := (af −bg, ag+
bf), and norm

‖(f, g)‖ := ‖ |(f, g)| ‖,
where

|(f, g)| := sup
0≤θ≤2π

(f sin θ + g cos θ)

is the natural extension of the modulus | · | in E. Note that the existence of the
above supremum in E is in this generality a nontrivial fact, but we accept it here.
However, in the standard function spaces, which are our main examples, this is a
straightforward fact.

By identifying (f, 0) ∈ EC with f ∈ E, the spaceE is isometrically isomorphic
to a real linear subspace ER of EC. We write 0 ≤ f ∈ EC if and only if f ∈ E+.

A complex Banach lattice is an ordered complex Banach space (EC,≤) that
arises as the complexification of a real Banach lattice E. The underlying real
Banach lattice E is called the real part of EC and is uniquely determined as the
closed linear span of all f ∈ (EC)+.

Instead of the notation (f, g) for elements of EC, we usually write f +ig. The
complex conjugate of an element h = f + ig ∈ EC is the element h = f − ig. We
use also the notation Re(h) := f for h = f + ig ∈ EC. All concepts introduced for
real Banach lattices have a natural extension to complex Banach lattices.
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10.6 Positive Operators

This section is concerned with positive operators on Banach lattices, that is, op-
erators that preserve positive cones.

Definition 10.17. Let E and F be two complex Banach lattices. A linear operator
T : E → F is called positive if TE+ ⊂ F+. Notation: T ≥ 0.

Let us immediately give an alternative characterization of a positive operator
(compare with the matrix case given in Lemma 5.3).

Lemma 10.18. The following assertions for a linear operator T : E → F between
the Banach lattices E and F are equivalent.

(i) T is positive.

(ii) For all f ∈ ER, we have (Tf)+ ≤ Tf+ and (Tf)− ≤ Tf−.
(iii) |Tf | ≤ T |f | for all f ∈ E.

Proof. (i) =⇒ (ii): For f ∈ ER we have Tf = Tf+ − Tf− ≤ Tf+ and (Tf)+ =
Tf ∨ 0, which imply (Tf)+ ≤ Tf+. The second property now follows since

Tf+ − (Tf)+ = Tf− − (Tf)−.

(ii) =⇒ (iii): Using f = f+ + f− for f ∈ ER, and (ii) we obtain

|Tf | = (Tf)+ + (Tf)− ≤ Tf+ + Tf− = T |f |.

For general f ∈ E the assertion follows from the definition of |f |.
(iii) =⇒ (i): Let f ∈ E+. Then T |f | = Tf and by assumption we have

Tf = T |f | ≥ |Tf | ≥ 0. �

We shall need a stronger property than the one given in Lemma 10.18.(iii),
i.e., preserving the absolute value.

Definition 10.19. Let E and F be two complex Banach lattices. A linear operator
T : E → F is called a lattice homomorphism if |Tf | = T |f | for all f ∈ E.

All positive operators are bounded, as the following result shows.

Theorem 10.20. Every positive linear operator T : E → F is continuous.

Proof. Assume by contradiction that T is not bounded. Then there is (fk) ⊂ E
such that ‖fk‖ = 1 and ‖Tfk‖ ≥ kγ for each k ∈ N and some γ > 2. Since

|Tfk| ≤ T |fk|, one can assume that fk ≥ 0 for all k ∈ N. From
∑∞

k=1
‖fk‖
kγ−1 < ∞

we infer that
∑∞

k=1
fk

kγ−1 is norm convergent in E. Set f =
∑∞

k=1
fk

kγ−1 . Then

0 ≤ fk
kγ−1

≤ f for all k ∈ N.
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So

k ≤
∥∥∥∥T (

fk
kγ−1

)∥∥∥∥ ≤ ‖Tf‖ < ∞ for all k ∈ N,

which is a contradiction. Thus T ∈ L(E,F ). �

As a consequence, we obtain the equivalence of Banach lattice norms (recall
also Tikhonov’s theorem, Theorem 1.5).

Corollary 10.21. Let E be a vector lattice and ‖ · ‖1 and ‖ · ‖2 two norms such that
E1 = (E, ‖ · ‖1) and E2 = (E, ‖ · ‖2) are both Banach lattices. Then the norms
‖ · ‖1 and ‖ · ‖2 are equivalent.

Proof. This follows from the positivity of the identity operators I : E1 → E2 and
I : E2 → E1 and Theorem 10.20. �

We denote by L(E,F )+ the set of all positive linear operators from a Banach
lattice E into a Banach lattice F . For positive operators one has

Proposition 10.22. Let T ∈ L(E,F )+. Then the following properties hold.

a) ‖T ‖ = sup{‖Tf‖ : f ∈ E+, ‖f‖ ≤ 1}.
b) If S ∈ L(E,F ) is such that 0 ≤ S ≤ T (this means that 0 ≤ Sf ≤ Tf for all

f ∈ E+), then ‖S‖ ≤ ‖T ‖.

Proof. a) holds by Lemma 10.18 (iii).

b) Since 0 ≤ S ≤ T we have |Sf | ≤ S|f | ≤ T |f | for all f ∈ E. The assertion
now follows by a). �

Another property of positive operators is that they have positive resolvent.
The converse in not always true, see also Proposition 10.29.

Proposition 10.23. Let T ∈ L(E) be a positive operator with spectral radius r(T ).

a) The resolvent R(μ, T ) is positive whenever μ > r(T ).

b) If |μ| > r(T ), then ∣∣R(μ, T )f
∣∣ ≤ R

(
|μ|, T

)
|f |, f ∈ E.

Proof. We use the Neumann series representation

R(μ, T ) =

∞∑
k=0

T k

μk+1

for the resolvent, which is valid for |μ| > r(T ), see Proposition 9.28.c).

a) If T ≥ 0, then T k ≥ 0 for all k, hence for μ > r(T ), we have for every
f ∈ E+ that

R(μ, T )f = lim
N→∞

N∑
k=0

T kf

μk+1
≥ 0,

since the finite sums are positive.
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b) We have for |μ| > r(T ) and f ∈ E that

∣∣R(μ, T )f
∣∣ = ∣∣∣∣ lim

N→∞

N∑
k=0

T kf

μk+1

∣∣∣∣ ≤ lim
N→∞

N∑
k=0

∣∣∣∣ T kf

μk+1

∣∣∣∣
≤ lim

N→∞

N∑
k=0

T k

|μ|k+1
|f | = R

(
|μ|, T

)
|f |. �

The following is an easy version of Perron’s theorem (see Theorem 5.6) for
the infinite-dimensional case.

Theorem 10.24. If T ∈ L(E) is positive, then r(T ) ∈ σ(T ).

Proof. Assertion b) of Proposition 10.23 implies that∥∥R(μ, T )
∥∥ ≤

∥∥R(|μ|, T )
∥∥ for |μ| > r(T ).

Let now λ ∈ σ(T ) such that |λ| = r(T ). Then, Proposition 9.28 implies that
‖R(μ, T )‖ → ∞ whenever μ approaches λ. Putting μ = sλ with s > 1 the above
estimate yields ∥∥R(sr(T ), T )

∥∥ ≥
∥∥R(sλ, T )

∥∥ −→ ∞ as s ↓ 1,

hence, by Corollary 9.30, r(T ) must be in the spectrum of T . �

Combining Proposition 10.23 and Theorem 10.24 we have the following useful
characterization of positivity of the operator R(1, T ) = (I − T )−1.

Lemma 10.25. Let T be a positive linear operator on E. Then

r(T ) < 1 ⇐⇒ 1 ∈ ρ(T ) and R(1, T ) ≥ 0.

Proof. The implication is a consequence of Proposition 10.23. For the converse,
assume that 1 ∈ ρ(T ) and R(1, T ) ≥ 0. For any k ∈ N we have

(I − T )

k∑
j=0

T j = I − T k+1.

Hence,
k∑

j=0

T j = R(1, T )(I − T k+1) ≤ R(1, T ), (10.5)

since T ≥ 0. So, in particular T k ≤ R(1, T ) for all k ∈ N. Now Proposition 10.22
implies that

‖T k‖ ≤ ‖R(1, T )‖, k ∈ N.

Using the above estimate and the definition of r(T ) we obtain r(T ) ≤ 1. If r(T ) =
1, then Theorem 10.24 yields 1 ∈ σ(T ), which contradicts our assumption. �
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Now we define irreducible operators on a Banach lattice.

Definition 10.26. An operator T ∈ L(E) is called reducible if there exists a non-
trivial ideal which is invariant under T . Operators that are not reducible are called
irreducible.

As in the finite-dimensional situation, positive irreducible operators enjoy
some special spectral properties (see, e.g., Theorem A.38). However, we shall not
discuss these properties here. We study them in the case of semigroups of positive
irreducible operators in Section 14.3.

We end this section by reconsidering the Banach lattice of continuous func-
tions on a compact Hausdorff space K.

Lemma 10.27. Suppose that K is a compact Hausdorff topological space and T :
C(K) → C(K) is a linear operator satisfying T1 = 1. Then 0 ≤ T if and only if
‖T ‖ ≤ 1.

Proof. If 0 ≤ T , then

|Tf | ≤ T |f | ≤ T (‖f‖∞1) = ‖f‖∞1.

Hence ‖T ‖ ≤ 1.

To prove the converse, we first observe that

−1 ≤ f ≤ 1 ⇐⇒ ‖f − ir1‖∞ ≤ ρr :=
√
1 + r2 for all r ∈ R. (10.6)

Let 0 ≤ f ∈ C(K). Then there is k ∈ N such that 0 ≤ f ≤ k1. Set g = 2
kf . Then

0 ≤ g ≤ 21, and so −1 ≤ g−1 ≤ 1. By (10.6), ‖g− 1− ir1‖∞ ≤ ρr for all r ∈ R.
Since T1 = 1 and ‖T ‖ ≤ 1, ‖Tg − 1− ir1‖∞ ≤ ρr for all r ∈ R. So by (10.6) we
obtain −1 ≤ Tg − 1 ≤ 1. This implies 0 ≤ Tg ≤ 21 and hence Tf ≥ 0. �

Indeed, operators satisfying T1 = 1 occur quite often and have a special
name. Recall that in the finite-dimensional case we have shown this property for
the transition matrix P of a Markov chain (see Lemma 6.6).

Definition 10.28. Let K and L be compact Hausdorff spaces. A linear operator
T : C(K) → C(L) is called a Markov operator if T1K = 1L.

10.7 Positive Exponential Functions

In the following, let E be a Banach lattice and A ∈ L(E). We investigate the
positivity and asymptotic properties of the exponential function of A, and start
with a characterization through the resolvent of A.

Proposition 10.29. The semigroup T (t) = etA is positive if and only if

R(λ,A) = (λ −A)−1 ≥ 0

for all λ > ω0(T ).
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Proof. When T (·) is a positive semigroup, then R(λ,A) is positive for λ > ω0(T )
by the Laplace transform representation in (9.11).

For the other direction notice that, by Exercise 9.10.2, the Euler formula

lim
k→∞

(
I − t

k
A

)−k

= etA

holds for t ≥ 0. Since (I − t
kA)

−k =
(
k
tR(kt , A)

)k ≥ 0 for k sufficiently large by
assumption, the positivity of the operators T (t) follows. For an alternative proof
where the Euler formula is not needed we refer to Remark 11.3 and Corollary
11.4. �

Recall the notation already used in the case of matrices. For A ∈ L(E) we
define its spectral bound as

s(A) := sup{Reλ : λ ∈ σ(A)}. (10.7)

The following is a fundamental technical result on positive exponential func-
tions. It tells us that the Laplace transform representation in the case of positive
bounded generators holds on an even larger set.

Proposition 10.30. For a positive exponential function T (t) = etA we have

R(λ,A) =

∫ ∞

0

e−λsT (s) ds

for all λ > s(A). Hence, for all λ > s(A) we have 0 ≤ R(λ,A).

Proof. It is clear from the previous considerations that R(λ,A) is positive for
λ > ‖A‖. The Neumann series representation from Proposition 9.28.c) implies
that R(λ,A) ≥ 0 for λ > s(A).

Since we can always consider A − μ instead of A for μ > 0, for simplicity
we restrict our proof to the case where s(A) < 0 and Reλ > 0. The assumption
implies

0 ≤ V (t) =

∫ t

0

T (s) ds = R(0, A)−R(0, A)T (t) ≤ R(0, A),

so ‖V (t)‖ ≤ M for some constant M for all t ≥ 0. Hence the improper integral∫ ∞

0

e−λsV (s) ds

exists for all Re λ > 0. Integration by parts yields∫ t

0

e−λsT (s) ds = e−λtV (t) + λ

∫ t

0

e−λsV (s) ds.
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This last expression converges as t → ∞, hence we infer that

R(λ,A) =

∫ ∞

0

e−λsT (s) ds

holds for all Reλ > 0. �

As a corollary we obtain a version of Perron’s theorem for the positive expo-
nential function.

Corollary 10.31. For a positive exponential function T (t) = etA we have

s(A) ∈ σ(A).

Proof. The positivity of the operators T (t) means that

|T (t)f | ≤ T (t)|f |

for all f ∈ E and t ≥ 0. Therefore,

|R(λ,A)f | ≤
∫ ∞

0

e−ReλsT (s)|f | ds

for all Reλ > s(A) and f ∈ E. Hence,

‖R(λ,A)‖ ≤ ‖R(Reλ,A)‖.

Recall that since A ∈ L(E) is a bounded operator, we have that σ(A) �=
∅. Further, there is λk ∈ ρ(A) such that Reλk → s(A), Reλk > s(A) and
‖R(λk, A)‖ → ∞. This implies ‖R(Reλk, A)‖ → ∞, and hence s(A) ∈ σ(A)
(see Corollary 9.30). �

Compare the following with Corollary 7.4 from Chapter 7.

Corollary 10.32. Let K be a compact Hausdorff topological space and E = C(K).
For a positive exponential function T (t) = etA, A ∈ L(E), the following assertions
are equivalent.

(i) s(A) < 0.

(ii) −A−1 exists and it is positive.

(iii) There exists 0 ≤ f ∈ E such that Af = −1.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Proposition 10.30. Since −A−1 =
R(0, A), (ii) =⇒ (iii) follows by taking f := −A−11.

We close the loop by showing (iii) =⇒ (i). Assume that Af = −1 for some
0 ≤ f ∈ E. Then for λ > max{s(A), 0} we have

0 ≤ R(λ,A)1 = −AR(λ,A)f

= f − λR(λ,A)f ≤ f.
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Hence
sup

λ>max{s(A),0}
‖R(λ,A)‖ ≤ ‖f‖∞.

Since by Corollary 10.31, s(A) ∈ σ(A), it follows from Corollary 9.30 that
s(A) < 0. �

We close this chapter by a minimum principle characterization of positive
exponential functions.

Theorem 10.33. Let Ω be a locally compact Hausdorff space and let A ∈ L(E),
where E = C0(Ω). Then the following are equivalent.

(i) A generates a positive exponential function, i.e., etA ≥ 0 for t ≥ 0.

(ii) For 0 ≤ f ∈ E and x ∈ Ω, f(x) = 0 implies that (Af)(x) ≥ 0.

(iii) A+ ‖A‖I ≥ 0.

Proof. (i) =⇒ (ii): Take 0 ≤ f ∈ E and x ∈ Ω with f(x) = 0. Then

(Af)(x) = lim
t↓0

etAf − f

t
(x) = lim

t↓0
etAf(x)− f(x)

t
= lim

t↓0
etAf(x)

t
≥ 0.

(ii) =⇒ (iii): Consider x ∈ Ω. We have to show that (Af)(x) + ‖A‖f(x) ≥ 0
for all f ∈ E. Define

A∗δx = μ+ cδx,

where μ ∈ M(Ω) is such that μ({x}) = 0, and c ∈ R. We claim that μ ≥ 0. Take
0 ≤ f ∈ E such that f(x) = 0. Then

〈f, μ〉 = 〈f,A∗δx〉 = 〈Af, δx〉 = (Af)(x) ≥ 0.

It can be shown (see Exercise 9) that this implies that 〈g, μ〉 ≥ 0 for all 0 ≤ g ∈ E.
Hence μ ≥ 0.

Moreover,
|c| = ‖cδx‖ ≤ ‖cδx + μ‖ = ‖A∗δx‖ ≤ ‖A‖.

Hence, for 0 ≤ f ∈ E, we have that

(Af)(x) + ‖A‖f(x) = 〈Af + ‖A‖f, δx〉 = 〈f,A∗δx + ‖A‖δx〉
= 〈f, μ+ (c+ ‖A‖)δx〉 ≥ 0.

(iii) =⇒ (i): The same argument as in the proof of Theorem 7.1 applies. We
know that if B := A+ ‖A‖I ∈ L(E) is positive, then

etB =

∞∑
k=0

(tB)k

k!
≥ 0.

Hence,
etA = e−t‖A‖etB ≥ 0. �
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Remark 10.34. The equivalence of (i) and (iii) in Theorem 10.33 is in complete
analogy to Theorem 7.1 in the matrix case. This result is true in general Banach
lattices, but the proofs are more involved. Conditions (ii) and (iii) are nothing but
generalizations of the “positive off-diagonal” property for matrices.

10.8 Notes and Remarks

The investigation of ordered algebraic structures is a classical subject and of great
interest in the literature, we mention here the monograph by Fuchs [50]. Most
results of this chapter can be found for example in the monographs by Schaefer
[126], Meyer-Nieberg [95] or Aliprantis and Burkinshaw [2]. For Proposition 10.12
see [95, Propositions 1.1.5, 1.2.3, and 1.2.5]. For complexification of real Banach
lattices, we refer to Schaefer [126, Section II.11] or Meyer-Nieberg [95, Section 2.2].

For Theorem 10.33 we refer to Nagel (ed.) [101, Theorem B-II.1.3]. For the
generalization to arbitrary Banach lattices, see [101, Theorem C-II.1.11].

10.9 Exercises

1. Prove the properties b)–e) in Proposition 10.3 and d) in Proposition 10.4.

2. Let E be a vector lattice and f, g, h ∈ E.

a) Prove that f ∨ g = 1
2 (f + g + |f − g|) and f ∧ g = 1

2 (f + g − |f − g|).
b) Show that |f | ∨ |g| = 1

2 (|f + g|+ |f − g|) and deduce that

|f | ∧ |g| = 1

2
||f + g| − |f − g|| .

c) Deduce that f ⊥ g is equivalent to |f − g| = |f + g|.
d) Prove this variant of the triangle inequality:

||f | − |g|| ≤ |f + g| ≤ |f |+ |g|.

e) Deduce that f ⊥ g is equivalent to |f | ∨ |g| = |f |+ |g|, and that in this
case

||f | − |g|| = |f + g| = |f |+ |g|.

f) Show Birkhoff’s inequalities:

|f ∨ h− g ∨ h| ≤ |f − g| and |f ∧ h− g ∧ h| ≤ |f − g|.

3. Prove that a subspace I of a Banach lattice is an ideal if and only if

( f ∈ I, |g| ≤ |f | ) =⇒ g ∈ I.
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4. Prove that H1(0, 1) endowed with the natural order, f ≥ 0 if f(s) ≥ 0 for
a.e. s ∈ [0, 1], is a vector lattice.

5. Consider E := C1([0, 1]) equipped with the norm

‖f‖ = max
s∈[0,1]

|f ′(s)|+ |f(0)|

and the order f ≥ 0 whenever f(0) ≥ 0 and f ′ ≥ 0. Show that E is a Banach
lattice.

6. Let E be a Banach lattice. Use the Hahn–Banach theorem to prove that

a) 0 ≤ f is equivalent to 〈f, f∗〉 ≥ 0 for all f∗ ∈ E∗
+;

b) for each f ∈ E there exists f∗ ∈ E∗
+ such that ‖f∗‖ ≤ 1 and 〈f, f∗〉 =

‖f+‖.
7. Consider the Banach lattice C1([0, 1]) as in Exercise 5 and define the operator

(Tf)(t) :=

∫ t

0

g(s)f(s) ds

with a given g ∈ C([0, 1]). Calculate ‖T ‖. For which g is T positive?

8. Let T ∈ L(E,F ), where E and F are two Banach lattices. Show that T is a
lattice homomorphism if and only if one of the following equivalent properties
holds.

(i) T (f ∨ g) = Tf ∨ Tg and T (f ∧ g) = Tf ∧ Tg for all f, g ∈ E.

(ii) Tf+ ∧ Tf− = 0 for all f ∈ E.

9. Let Ω be a locally compact Hausdorff space, x ∈ Ω, and μ a regular bounded
Borel measure on Ω such that μ({x}) = 0. Show that μ ≥ 0 if and only if
〈f, μ〉 ≥ 0 for all f ∈ C0(Ω) satisfying f ≥ 0 and f(x) = 0.
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