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Foreword

Oscar Perron’s theorem from 1907 on strictly positive matrices allows the following
interpretation in terms of matrix exponentials: If a real n×nmatrixA with spectral
bound 0 generates a semigroup

(
etA
)
t≥0

consisting entirely of positive matrices,

and if for some t > 0 the matrix etA is even strictly positive, then etA converges,
for t → ∞, to a positive projection P of rank one onto the kernel of A.

One does not need much phantasy to imagine that in infinite dimensions
similar convergence results hold for positive semigroups acting on, say, Banach
lattices. Actually, Einar Hille, in the Foreword to the first edition of his treatise
Semigroups and Functional Analysis, explicitly expressed the need to develop an
adequate theory of transformation semigroups acting on partially ordered spaces,
announcing however to leave this task to “more competent hands”. The subtle
irony in this remark – who would dare, in 1948, to call him/herself more competent
than E. Hille in matters concerning semigroups – may have discouraged potential
candidates. Be this as it may, for a while the rapidly developing theory of operators
on Banach lattices steered clear of the semigroup approach to, e.g., linear partial
differential equations.

The first major attempt to systematically connect the theory of positive op-
erators to the theory of strongly continuous semigroups resulted in the publication,
in 1986, of Springer Lecture Notes in Mathematics 118, by nine brave people who
combined their competence to meet Hille’s constraint. The plan to extend this
publication into a manuscript covering both theory and applications was never re-
alized. Instead, to make a new start, we (R.N. and U.S.) organized, in 2000/01, an
Internet Seminar on Evolution Equations (ISem) with a reading course containing
the finite-dimensional situation. Again, the plan to extend this to a comprehensive
book manuscript was given up.

Finally, the authors of the present book organized, in 2013/14, another ISem
using parts of the one of 2000/01 and including serious applications to partial
differentential equations. Subsequently this was extended to yield the present
manuscript. We are very happy that, in the end, our intentions have been realized.

Tübingen, May 2016 Rainer Nagel, Ulf Schlotterbeck
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Preface

This book is devoted to positive linear dynamical systems appearing frequently in
mathematical models of various real-life problems. Here we present an operator
theoretic approach and treat these systems using the theory of one-parameter semi-
groups. We study quantitative and qualitative properties of positive semigroups
both in finite and infinite dimensions.

Our starting point is the initial value problem (or Cauchy problem)

u′(t) = Au(t), t ≥ 0,

u(0) = u0 ∈ D(A),

where A generates a C0-semigroup (T (t))t≥0 on a Banach lattice E, u0 is a positive
initial value, and the solution to this problem is given by u(t) = T (t)u0.

An important special case is when E = Rn and A = (aij) is a real constant
n × n matrix. Then the solution to the initial value problem above is given by
u(t) = etAu0. It is well known that the matrix exponential etA is positive for all
t ≥ 0 if and only if A − diag(A) ≥ 0, that is, aij ≥ 0 for i �= j. O. Perron (1907)
and F.G. Frobenius (1909) discovered remarkable spectral properties of positive
matrices with striking consequences on the asymptotic behavior of the solutions to
the Cauchy problem. This theory has found many and sophisticated applications.

In infinite dimensions, W. Feller (1952) and R.S. Phillips (1962) first obtained
results characterizing the generators of positive semigroups. Based on the theory
of positive operators on ordered Banach spaces developed in the 60s and 70s,
many applications of positive semigroups to concrete evolution equations from
transport theory, mathematical biology, and physics have been made available.
Most of what was known around 1985 about this subject can be found in the
monograph R. Nagel (ed.) [101], written by the functional analysis group from
Tübingen. This led to further progress during the last decades.

What is in this book?

Our aim is to present these developments in a streamlined and unified way. Though
our ultimate goal is the infinite-dimensional situation, we feel that it is helpful to
focus first on the finite-dimensional case without the need of functional analytic

xv



xvi Preface

technicalities. This is why we spend quite some time in the realm of linear algebra.
We develop the Perron–Frobenius theory in great detail and supply several recent
applications, dealing, for example, with the Google matrix and the Leslie matrix.

The main body of this book is Part II where we give a detailed introduction
to positive operator semigroups. Since we do not want to assume too many pre-
requisites, we start with a crash-course on operator semigroups and on positive
operators on Banach lattices. After that, generation theorems, spectral theory and
perturbation theory for positive semigroups are treated in detail.

In Part III some more advanced topics reflecting our research interests are
presented.We treat advanced topics from spectral theory, investigate positive delay
equations, Koopman and Perron–Frobenius semigroups, linear Boltzmann equa-
tions, flows on networks, and age structured population equations. The last chapter
also gives an outlook on related research topics.

Each chapter has a set of references at the end, and a large stack of exercises,
which should help the reader to obtain a fuller understanding of the topics treated.

What is not in this book?

Our presentation concentrates on those parts of the general theory of operator
semigroups which are relevant for positivity. Other aspects, like for example the
Lumer–Phillips theorem, are not covered. The monographs by Engel and Nagel
[43, 44] are our main references.

Because of length constraints, we could not cover analytic semigroups, ap-
proximation problems or functional calculi. The monograph by Haase [62] is an
excellent reference. The Beurling–Deny theory of Dirichlet forms and the corre-
sponding rich theory is also missing. Here we refer to Ouhabaz [108].

Positivity plays an important role in the treatment of semilinear parabolic
partial differential equations as well, and the interested reader is referred to Caze-
nave and Haraux [22].

Scope

In the first, finite-dimensional part we use the material of an introductory linear
algebra course and make scattered references to topics usually presented in vector
calculus and in an introductory ODE course. The typical reader we have in mind
should have completed an introductory course on functional analysis, which is
needed for the second part. In the examples and applications occasional references
to basic facts from probability theory, graph theory, and measure theory are made.
In the last part we use some more advanced results from functional analysis to be
able to present striking applications.

The majority of the material covered in the first 8 chapters can be used after
an introductory linear algebra course. We feel that this is a good opportunity to
introduce the viewpoint of functional analysis and order theory to undergraduates.
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The second part of our book addresses more advanced students assuming an
introductory functional analysis course. Topics from the third part may be used
in a follow-up seminar or in an advanced special course.

The material was used as lecture notes for the 17th Internet Seminar on
Evolution Equations during the academic year 2013–2014, and for several years
also in our own classes.

Budapest and Feldkirch,
Ljubljana,
Salerno,

May 2016

András Bátkai
Marjeta Kramar Fijavž

Abdelaziz Rhandi
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Notations

For the convenience of our readers, we collect here some of our notations.

N The set of natural numbers, N = {1, 2, 3, . . .}
N0 The set N ∪ {0}.
(xk) The sequence with elements x1, x2, x3, . . .

L(X) The set of bounded (continuous) linear operators on the normed space X .

1 The vector with all coordinates equal to one, 1 = (1, . . . , 1), or constant
one function.

χS The characteristic function of the set S.

uk The k-th canonical basis vector in Rn, uk = (0, 0, . . . , 1, 0, . . . , 0).

(x|y) The inner product of two vectors in Hilbert space.

〈·, ·〉 The duality pairing, 〈f, g∗〉 = g∗(f).

Let us make a point in our terminology. The matrices called “positive” in
this book were first called “matrices with non-negative entries”, which is a rather
long name. As it turned out that they were important, the name got shortened
to “non-negative matrices”. Since they induce positive operators on the ordered
vector space Rn, we will not use this terminology but call them positive matrices
to make the presentation consistent with the infinite-dimensional theory.



Part I

Finite Dimensions



Chapter 1

An Invitation to Positive Matrices

In this chapter we set the stage for our story. We fix our notation and summarize
the linear algebraic background that will be needed for the first part of the book.
We present some motivating examples of positive matrices at the very beginning
and shall return to these examples later on.

1.1 Motivating Examples

Let us start with three different situations where positive matrices make an ap-
pearance. We will see that relevant properties can be described by the behavior of
such matrices.

The Fibonacci Sequence

Consider the following, well-known sequence

f0 = 0, f1 = 1, fk+1 = fk + fk−1 for k ≥ 1.

Introducing the new sequence gk := fk−1, we obtain the system

fk+1 = fk + gk, gk+1 = fk, with f1 = 1 and g1 = 0.

Hence, using vectorial notation and the well-established connection between sys-
tems of linear equations and matrices, we can rewrite the system above as(

fk+1

gk+1

)
=

(
1 1
1 0

)(
fk
gk

)
for k ∈ N. Repeating the above argument, we see that(

fk+1

gk+1

)
=

(
1 1
1 0

)(
fk
gk

)
=

(
1 1
1 0

)2 (
fk−1

gk−1

)
= · · · =

(
1 1
1 0

)k (
f1
g1

)
. (1.1)

Hence, the properties of the numerical sequence1 (fk) are related to the
properties of a matrix sequence (Ak) with A = ( 1 1

1 0 ).

1We consider sequences as functions and write (ak) instead of (ak)k∈N

© Springer International Publishing AG 2017
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Graphs and Markov chains

A graph G = (V,E) models connections between objects. The set of objects is rep-
resented by the set of vertices V , while every edge e ∈ E corresponds to a pairwise
connection between two vertices u, v ∈ V : e = (u, v). If the set of connections is
symmetric we call the graph undirected and write e = {u, v} instead. Otherwise
the graph is called directed . For an edge (u, v) ∈ E we call u its head and v its
tail .

The simplest way to represent a graph is by drawing a picture, see Figures
1.1, 1.2, and 1.3.

To study properties of a graph or even a dynamical process on it, it is useful
to encode it in terms of matrices. A positive n × n matrix A = (aij) encodes a
graph G = (V,E) if its set of edges satisfies

E = {(vi, vj) : aij > 0},
where V = {v1, . . . , vn} is the set of vertices of G. We call A an adjacency matrix
of the graph G. If the nonzero elements of A all equal 1, we say that G is an
unweighted graph, otherwise G is weighted with weights aij corresponding to the
edges (vi, vj). Note that the adjacency matrix of an undirected graph is always
symmetric. As examples see adjacency matrices of three graphs depicted in Figures
1.1, 1.2, and 1.3.

v1 v2

v3v4

A =

⎛⎜⎜⎝
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎞⎟⎟⎠

Figure 1.1: An undirected graph and its adjacency matrix.

v1 v2

v3v4

A =

⎛⎜⎜⎝
0 1 0 0
0 0 1 1
0 0 0 1
1 0 1 0

⎞⎟⎟⎠

Figure 1.2: A directed graph and its adjacency matrix.

Let u, v ∈ V . A walk from u to v in G is an alternating sequence of vertices
and edges,

W := vi0ei0vi1ei1vi2 · · · vk−1
eik−1

vik ,
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v1 v2

v3v4

1

0.5 0.5

1

0.3

0.7

A =

⎛⎜⎜⎝
0 1 0 0
0 0 0.5 0.5
0 0 0 1
0.3 0 0.7 0

⎞⎟⎟⎠

Figure 1.3: A weighted directed graph and its adjacency matrix.

where u = vi0 , v = vik , and for every � = 0, . . . , k−1 the edge ei� = (vi� , vi�+1
) ∈ E.

The length of a walk is the number of edges in the sequence. The weight of a walk
is the product of all weights ai�i�+1

corresponding to the edges in the walk. A walk
is closed if vi0 = vik and a closed walk is a cycle if the vertices vi� , � = 0, . . . , k−1,
are all different.

An interesting property of the adjacency matrix of an unweighted graph is
that its powers count the number of different walks between vertices.

Proposition 1.1. Let A be an n × n adjacency matrix of an unweighted graph.
Then

(
Ak
)
ij

is the number of walks of length k ∈ N from vertex vi to vertex vj,

i, j ∈ {1, . . . , n}.

Proof. We prove the statement by induction. The base case k = 1 follows imme-
diately since aij counts the edges (= walks of length 1) from vi to vj .

Now assume that the statement holds for some k > 1. For every walk from
vi to vj of length k+1, there is a vertex v� reached one step before vj . This means
that a�j = 1, and since the number of walks from vi to v� of length k equals

(
Ak
)
i�

by the induction hypothesis, we can count the number of walks from vi to vj of
length k + 1 as

n∑
�=1

(Ak)i�a�j = (Ak+1)ij

by the matrix multiplication rule. �

Remark 1.2. Observe that in the case of a weighted graph
(
Ak
)
ij

is the sum of

the weights of all the walks of length k ∈ N from vertex vi to vertex vj .

Consider now a discrete, finite, homogeneous Markov chain with state space
V and transition matrix P = (pij). Its entries pij ∈ [0, 1] represent transition
probabilities to move from state vi to vj in one step. The matrix P is positive and
row stochastic, that is,

∑n
j=1 pij = 1 for all i = 1, . . . , n.

Actually, P is an adjacency matrix of a directed weighted graph G = (V,E).
Note that G might have loops, i.e., edges where head and tail coincide (corre-
sponding to the probability pii of remaining in the state vi). According to Remark
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1.2, (P k)ij yields the probability of reaching state vj from state vi in k steps.
Moreover, various long-term properties of a Markov process, such as periodicity,
ergodicity, the existence of a stationary distribution, etc., can be seen from the
entries of P k as k → ∞. We shall discuss this in Chapter 6.

The Competitive Market Model

Suppose n similar commodities are competing for the consumer’s money. Excess
demand (that is, demand minus supply) for commodity i will be denoted by fi,
and it is assumed to be approximately a linear function of prices pj less equilibrium
prices p0j for all j = 1, . . . , n. In formula, this means that

fi ≈
n∑

j=1

aij(pj − p0j).

Since higher prices for one commodity will increase excess demand for the others,
aij ≥ 0 for i �= j and aii < 0.

Once equilibrium is disturbed, the rate of price readjustment must be pro-
portional to excess demand, leading to the differential equation

ṗ(t) = KA(p(t)− p0), (1.2)

where K = diag(k1, . . . , kn) is a diagonal matrix of positive adjustment speeds.
Here we introduced the shorthand notations A = (aij) and p = (pj). Thus future
prices are given by

p(t) = p0 + etKAc, (1.3)

where c = p(0)− p0.

If we start with a (non-equilibrium) price p(0), will prices eventually return
to the equilibrium p0 or will (some) prices stay away from p0, oscillate, or become
unbounded? We will see that the answers to these questions depend on the spectral
properties of the matrix KA.

One of our main topics will be the behavior of matrix sequences of the form
(Ak) as k → +∞, or the behavior of matrix exponentials of the form “etA” as
t → +∞. Special attention will be paid to positive matrices. We will apply the
results to various biological, economical, and mathematical problems.

1.2 Convergence

Since the behavior of Ak as k → ∞ and of etA as t → ∞ is one of our central
topics, we need to understand the concept of convergence in X = Cn and in
L(X) = Mn(C).
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The most natural convergence in Cn is coordinatewise convergence, or con-
vergence in every coordinate, a notion which explains itself. However, the question
immediately arises if a change of coordinates affects this sort of convergence. More-
over, sequences of n× n matrices, a formally different kind of convergence seems
natural, namely, pointwise convergence on Cn. This means for a sequence (Ak) in
L(X) the convergence of (Akx) for every x ∈ Cn.

The following proposition tells that these concepts all amount to the same
thing, and are related to convergence with respect to a norm. For basic defini-
tions and examples of norms, see Appendix A.1. Before stating and proving the
proposition, we need an elementary lemma.

Lemma 1.3. For any n× n matrix A = (aij) ∈ L(X), the inequalities

‖A‖max ≤ ‖A‖1 ≤ n · ‖A‖max

hold.

Proof. First observe that

‖A‖max = |ai0j0 | ≤
n∑

i=1

|aij0 | ≤ max
1≤j≤n

n∑
i=1

|aij | = ‖A‖1.

On the other hand, for every j ∈ {1, . . . , n} we have

n∑
i=1

|aij | ≤ n · max
1≤i≤n

|aij | ≤ n · ‖A‖max,

hence ‖A‖1 ≤ n · ‖A‖max. �

Here is the previously announced proposition.

Proposition 1.4. Let Ak :=
(
a
(k)
ij

)
, k ∈ N, be a matrix sequence in L(X) and

A0 =
(
a
(0)
ij

)
∈ L(X) a given matrix. Then the following statements are equivalent.

(i) Akx → A0x coordinatewise, as k → ∞, for every x ∈ X = Cn.

(ii) a
(k)
ij → a

(0)
ij as k → ∞, for all 1 ≤ i, j ≤ n.

(iii) ‖Ak −A0‖max → 0 as k → ∞.

(iv) ‖Ak −A0‖1 → 0 as k → ∞.

Proof. The implications (ii) =⇒ (i) and (ii) =⇒ (iii) are straightforward, while
the equivalence (iii) ⇐⇒ (iv) holds by Lemma 1.3.

(i) =⇒ (ii): Choose arbitrary 1 ≤ i, j ≤ n. Now taking x = uj , the canonical
unit basis vector of X , in (i) yields (ii).
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(iii) =⇒ (i): Take any x ∈ X and use the triangle inequality for the absolute
value and the maximum norm ‖x‖∞ := max1≤i≤n |xi| to obtain

|(Akx)i − (A0x)i| =
∣∣∣∣ n∑
j=1

(
a
(k)
ij − a

(0)
ij

)
xj

∣∣∣∣
≤ ‖x‖∞

n∑
j=1

∣∣∣a(k)ij − a
(0)
ij

∣∣∣
≤ ‖x‖∞ · n · ‖Ak −A0‖max.

Therefore Akx → A0x coordinatewise as k → ∞. �

There are many possibilities to define norms, hence, there exists a large vari-
ety of potentially different notions of convergence. Proposition 1.4, however, indi-
cates that the latter might always coincide. This is actually true (at least in finite-
dimensional vector spaces) by the following result, due to A. Tikhonov, which
will allow us to define convergence without specific reference to coordinates (or
entries).

Theorem 1.5 (Tikhonov). Let X be a finite-dimensional (complex) vector space,
and let ‖ · ‖ and |||·||| be norms on X. Then there exist constants m,M > 0 such
that

m |||x||| ≤ ‖x‖ ≤ M |||x||| (1.4)

for all x ∈ X.

We call two norms ‖ ·‖ and |||·||| equivalent if (1.4) holds for suitable constants
m,M > 0.

Proof. Clearly, it is enough to prove the statement of the theorem in the case
where X = Cn and |||x||| = ‖x‖∞ = max1≤i≤n |xi|. We will make use of the fact
that X is complete in the ‖ · ‖∞-norm and that the Weierstrass extreme value
theorem holds, meaning that continuous functions defined on compact sets are
bounded.

Let us introduce the constant

C := max
1≤i≤n

‖ui‖,

where ui are the canonical unit basis vectors of X . We obtain one side of the
required inequality immediately from the estimate

‖x‖ = ‖x1u1 + x2u2 + · · ·+ xnun‖ ≤ C (|x1|+ |x2|+ · · ·+ |xn|) ≤ Cn‖x‖∞.

Consider the closed and bounded set

K := {x ∈ X : ‖x‖∞ = 1} ,
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and the function
f : K −→ R, f(x) = ‖x‖.

Then f is Lipschitz continuous since, using the estimate above, we obtain that

|f(x) − f(y)| = | ‖x‖ − ‖y‖| ≤ ‖x− y‖ ≤ Cn‖x− y‖∞.

Hence there are vectors z, w ∈ K such that for all x ∈ K,

‖z‖ = f(z) ≤ f(x) = ‖x‖ ≤ f(w) = ‖w‖.
Finally, to conclude our proof, take x ∈ X such that x �= 0. Then x = ‖x‖∞x′

with x′ = x
‖x‖∞ ∈ K. By the previous inequality, and using the notation m := ‖z‖,

M := ‖w‖, we obtain
m ≤ ‖x′‖ ≤ M.

Multiplying this inequality by ‖x‖∞, we obtain the desired statement. �

Note, however, that Tikhonov’s theorem does not hold in spaces of infinite
dimension.

Equivalent norms possess the same convergent sequences and the same
Cauchy sequences. Therefore, in finite dimensions, Theorem 1.5 allows us to define
convergence as follows.

Definition 1.6. LetX be a vector space of finite dimension and (xk) a sequence inX.

a) We say that (xk) is a Cauchy sequence if (xk) is a Cauchy sequence for one,
and hence for every norm on X .

b) We say that (xk) converges, as k → ∞, to an element x0 ∈ X , if ‖xk−x0‖ → 0
as k → ∞ for one, and hence for every norm on X .

We will now give a more specific description of convergence, which will be
the clue to our subsequent discussions. To this end, let (xk) be a sequence in

X . If {z1, . . . , zn} is a basis for X , there exist uniquely determined scalars ξ
(k)
i ,

1 ≤ i ≤ n, such that

xk =

n∑
i=1

ξ
(k)
i zi.

We call the sequences
(
ξ
(k)
1

)
, . . . ,
(
ξ
(k)
n

)
, the coordinate sequences of (xk) with

respect to the basis {z1, . . . , zn}.
Theorem 1.7. For a sequence (xk) in X, the following are equivalent.

(i) (xk) is a Cauchy sequence.

(ii) (xk) converges, as k → ∞, to an element x0 ∈ X.

(iii) For every basis {z1, . . . , zn} of X, the coordinate sequences of (xk) with re-
spect to {z1, . . . , zn} converge, as k → ∞.

In this case, the element x0 in item (ii) is uniquely determined and the coordi-
nates of x0 with respect to {z1, . . . , zn} are the limits of the respective coordinate
sequences.
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Proof. The statement is an immediate consequence of the fact that for each basis
{z1, . . . , zn} of X ,

X � x �−→ max
1≤i≤n

{
|ξi| : x =

n∑
i=1

ξizi

}
is a norm. �

We introduce yet another notion related to norms. Again, X is a vector space
of finite dimension.

Definition 1.8. A subset Ω ⊂ X is called bounded if for one, hence for every norm
‖ · ‖ on X ,

sup
x∈Ω

‖x‖ < ∞.

It is clear that boundedness of a sequence (xk) in X is equivalent to bounded-
ness of all coordinate sequences of (xk) with respect to one, hence all, bases of X .

Although there appears to be no need to discriminate between different norms
on a finite-dimensional vector space, the equivalence of all norms on such a space
gives us the possibility to discuss convergence of a specific sequence by using a
particular favorable norm. This was the key point in the proof of the previous
theorem. Apart from that, we will occasionally have to distinguish, even on the
finite-dimensional vector space L(X), between norms in general and norms that
come from the underlying vector space X .

Definition 1.9. Let A ∈ L(X) and let ‖ · ‖ be a norm on X . The corresponding
operator norm on L(X), again denoted by ‖ · ‖, is defined as

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} = max{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}.

Alternative descriptions of the operator norm coming from a norm ‖ · ‖ on
X are the following:

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}

= sup

{
‖Ax‖
‖x‖ : x �= 0

}
= min{M : ‖Ax‖ ≤ M‖x‖ for all x ∈ X}.

The relation

‖Ax‖ ≤ ‖A‖‖x‖, x ∈ X,

is a reformulation of the last two expressions above. In particular, for A,B ∈ L(X),

‖ABx‖ = ‖A(Bx)‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖
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for all x ∈ X . Hence, ‖AB‖ ≤ ‖A‖ ‖B‖ whenever ‖ · ‖ is an operator norm. We
note in particular that for any operator norm ‖·‖ on L(X), the identity must have
norm 1. Thus, if ‖ · ‖ is an operator norm, the norm

A �−→ μ‖A‖, μ > 0,

cannot be an operator norm unless μ = 1.

Another interesting feature of operator norms is that |λ| ≤ ‖A‖ holds for
every eigenvalue λ. This is obvious since for any eigenvector x belonging to λ we
have ‖Ax‖ = |λ| ‖x‖. For later reference, we record this as a corollary.

Corollary 1.10. Let ‖ · ‖ be an operator norm on L(X), A ∈ L(X), and λ an
eigenvalue of A. Then ‖A‖ ≥ |λ|.

We give two important examples where the operator norm can be calculated
explicitly. Recall that for 1 ≤ p < ∞ and x ∈ X = Cn,

‖x‖p :=

(
n∑

i=1

|xi|p
)1/p

is called the p-norm on X , while the ∞-norm is defined as

‖x‖∞ := max
1≤i≤n

|xi|.

Example 1.11.

a) The operator norm of a matrix A = (aij) ∈ L(X) corresponding to the
∞-norm on Cn is the row norm

‖A‖∞ := max{‖Ax‖∞ : x ∈ Cn, ‖x‖∞ ≤ 1} = max
1≤i≤

n∑
j=1

|aij |.

b) The operator norm on L(X) corresponding to the 1-norm on Cn is the column
norm

‖A‖1 := max{‖Ax‖1 : x ∈ Cn, ‖x‖1 ≤ 1} = max
1≤j≤n

n∑
i=1

|aij |.

Proposition 1.12. For a matrix sequence (Ak) ⊂ L(X) the following assertions are
equivalent.

(i) (Akx) converges in X for all x ∈ X.

(ii) (Ak) converges in L(X).

(iii) For any basis of X and the corresponding matrix representation Ak =
(
a
(k)
ij

)
the entries a

(k)
ij converge in C for every pair (i, j) as k → ∞.
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Proof. By Theorem 1.5, it is enough to prove the statement for the case where
‖x‖ = ‖x‖∞. Since (iii) =⇒ (ii) follows by Proposition 1.4 and (ii) =⇒ (i) by the
estimate ‖Akx −Amx‖ ≤ ‖Ak −Am‖ ‖x‖, it remains to show the implication (i)
=⇒ (iii).

Let {u1, . . . , un} be any basis of X and denote by a
(k)
ij the entries of the

matrix of Ak in this basis. Then∣∣∣a(k)ij − a
(m)
ij

∣∣∣ ≤ max
1≤p≤n

n∑
q=1

∣∣∣(a(k)pq − a(m)
pq

)
(uj)q

∣∣∣ = ‖(Ak −Am)uj‖∞ ,

hence the convergence follows by (i). �

1.3 Notes and Remarks

We recall some necessary results and notations from linear algebra in the Ap-
pendix. Tikhonov’s theorem (Theorem 1.5) was proved in [142]. For more notions
and results from graph theory we refer to Bondy and Murty [19], Godsil and
Royle [52], or West [154], and for Markov chains to Norris [107] or Seneta [129].
The competitive market model is taken from MacCluer [90, p.492].

1.4 Exercises

1. Determine the eigenvalues and eigenvectors of the matrix A = ( 1 1
1 0 ), corre-

sponding to the Fibonacci sequence (fk) (see Section 1.1). Using this, find a
formula for Ak and fk.

2. An undirected graph G is depicted in Figure 1.4.

v1 v2

v3v4

Figure 1.4: Graph G for Exercise 2.

a) Write the adjacency matrix A of G and compute A2 and A3.

b) Verify that (Ak)ij gives the number of walks of length k from vertex vi
to vertex vj .

c) Choose directions of the edges ofG to obtain a directed graph G̃. Repeat

a) and b) for G̃ instead of G.
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3. Let A be the adjacency matrix of a simple undirected graph G (by simple
we mean unweighted, without loops or multiple edges). Show the following
spectral properties of A.

a) The sum of all eigenvalues of A equals 0.

b) The sum of all squares of eigenvalues of A equals 2m, where m is the
number of edges in G.

c) The sum of all cubes of eigenvalues of A equals 6t, where t is the number
of triangles in G.

4. a) Verify the following relations among the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞:

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

b) Show that limp→∞ ‖x‖p = ‖x‖∞.

5. Verify the equivalence of the alternative descriptions of the operator norm in
Definition 1.9 and prove the statements of Example 1.11.

6. Consider the following matrices:

P1 :=

(
1 0
0 0

)
and P2 :=

1

3

(
−1 2
−2 4

)
.

Show that P 2
i = Pi (i = 1, 2), that is, they are projections. Can you find

imPi and kerPi (i = 1, 2)? Can you give a geometric interpretation of the
action of the matrices Pi?



Chapter 2

Functional Calculus

Our second chapter develops an abstract functional calculus for matrices. It seems
of great advantage to have this abstract tool at hand even if we will not need the
full power of this calculus later. This will take us to known statements of linear
algebra using a coordinate-free approach, allowing to introduce some ideas which
will be rather beneficial when we treat infinite-dimensional problems.

2.1 Polynomials

In this section we propose a method of constructing functions of a linear operator
A ∈ L(X), where X is a finite-dimensional vector space. Of special interest are,
in view of reducing subspaces (see Appendix A.2), projections commuting with
A. We will look for such projections among the polynomials in A, i.e., the lin-
ear combinations of powers of A. Indeed, if such a projection is a polynomial, it
automatically commutes with A and hence its range is a reducing subspace.

We denote the set of all polynomials in A by PA, i.e.,

PA :=

{
m∑
i=0

αiA
i : αi ∈ C,m ∈ N0

}
⊂ L(X), (2.1)

and if p(x) =
∑m

i=0 αix
i is a polynomial, we write

p(A) :=

m∑
i=0

αiA
i

and say that the operator p(A) is obtained by evaluating p at A, or just by plugging
A into p. From this definition it is clear that the mapping

ΦA : C[x] −→ PA, p �−→ p(A),

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_2
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is a homomorphism from the algebra C[x] of all polynomials onto PA. For those
readers who are acquainted with the notion of the factor map, we remark that

Φ̂A : C[x]
/
kerΦA → PA (2.2)

becomes an algebra isomorphism.

Example 2.1. For the matrix A :=

(
0 1
0 0

)
, we have dimPA = 2.

In order to find polynomials such that p(A) = (p(A))2 = p2(A), i.e., p(A) is
a projection, we have a closer look at the algebraic structure of kerΦA.

Proposition 2.2. There exists a unique polynomial mA ∈ C[x] of degree ≥ 1 and
with leading coefficient 1 such that the following holds:

A polynomial p ∈ C[x] belongs to kerΦA, i.e., p(A) = 0, if and only if
p = mA · q for some q ∈ C[x].

Proof. Take a nonzero polynomial m ∈ kerΦA with minimal degree and leading
coefficient 1. If p = m · q for some q ∈ C[x], then p(A) = m(A) · q(A) = 0, hence
p ∈ kerΦA.

On the other hand, if p ∈ C[x] is any polynomial with p(A) = 0, then the
division of p by m gives

p = m · q + r

for polynomials q and r satisfying deg r < degm.

Thus

0 = p(A) = m(A) · q(A) + r(A) = r(A)

and r ∈ kerΦA. Since m has minimal degree in kerΦA, we conclude that r = 0.
This shows that mA := m is the desired polynomial.

Uniqueness follows since the leading coefficient was supposed to be 1. �

We call this polynomial mA generating the kernel of ΦA the minimal poly-
nomial of A. For polynomials p, q, r ∈ C[X ] we use the notation

p ≡ q mod r ⇐⇒ p− q = s · r for some s ∈ C[x].

The following is an immediate consequence of Proposition 2.2.

Corollary 2.3. For p, q ∈ C[x], we have p(A) = q(A) if and only if

p ≡ q mod mA.

In particular, p(A) is a projection if and only if p2 ≡ p mod mA.
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Denote by

λ1, . . . , λm

the zeros of the minimal polynomial mA, and by

ν1, . . . , νm

their respective multiplicities (as zeros of mA). Then mA decomposes as

mA(z) = (z − λ1)
ν1(z − λ2)

ν2 · · · (z − λm)νm . (2.3)

Lemma 2.4. For p, q ∈ C[x], we have

p ≡ q mod mA ⇐⇒ p(ν)(λi) = q(ν)(λi) (2.4)

for i = 1, . . . ,m and ν = 0, . . . , νi − 1.

Proof. This follows directly from Lemma A.12. �

We use this characterization of the equality p(A) = q(A) to extend the do-
main of ΦA, and hence to be able to define more general functions of A. Before
proceeding, let us make the following observation.

Remark 2.5. For the exponential function

f(x) = ex =

∞∑
k=0

xk

k!

it seems to be natural to define the exponential function of a matrix A by the
formula

eA :=

∞∑
k=0

Ak

k!
.

This is completely legitimate and we will justify this formula later on (see
Corollary 2.14). However, since L(X) is an n2-dimensional vector space (where
n = dimX), in the above infinite series there are at most n2 linearly independent
terms. Hence, eA is actually a polynomial in A, of course with rather compli-
cated coefficients. This observation justifies our procedure to look for the operator
f(A) = eA among the polynomials of A.

Before going on with the abstract argument, let us illustrate our last point on
three examples of simple 2× 2 matrices where we are able to calculate the power
series.
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Examples 2.6.

a) Let A :=

(
0 1
0 0

)
. Then, using the above formula and the fact that A2 = 0,

we see that

etA = I + tA =

(
1 t
0 1

)
.

This is clearly a polynomial in A.

b) Let A :=

(
1 0
0 2

)
. Then, using the above formula and the fact that

(tA)k =

(
tk 0
0 (2t)k

)
,

we see that

etA =

(
et 0
0 e2t

)
= et
(
1 0
0 0

)
+ e2t

(
0 0
0 1

)
= et(2I −A) + e2t(A− I).

This is again a polynomial in A.

c) Let A =

(
0 1
−1 0

)
. Then we see from

A0 = I, A1 = A, A2 = −I, A3 = −A, A4 = I, . . . ,

that the powers of A alternate periodically. Hence,

etA =

∞∑
i=0

(tA)i

i!
=

∞∑
k=0

(tA)2k

(2k)!
+

∞∑
k=0

(tA)2k+1

(2k + 1)!

= I
∞∑
k=0

(−1)k
t2k

(2k)!
+A

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!
= cos t · I + sin t ·A,

which is a polynomial in A.

2.2 Smooth Functions

Let A ∈ L(X) be an operator on the finite-dimensional vector space X with
minimal polynomial mA. As before, λ1, . . . , λm are the roots of the minimal poly-
nomial with corresponding multiplicities ν1, . . . , νm. We denote the set of func-
tions that are defined and are infinitely differentiable on an open neighborhood of
{λ1, . . . , λm} by

C∞
A := {f : D(f) → C : ∃U ⊂ D(f) open, {λ1, . . . , λm} ⊂ U, f |U ∈ C∞} .

Here D(f) ⊂ C denotes the domain of f . We consider C∞
A as the set of functions

for which we would like to define the functional calculus.
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Definition 2.7 (Functional Calculus). Let f ∈ C∞
A . We then set

f(A) := ΦA(pf ) = pf (A),

where pf is an interpolation polynomial2 for f in the sense that the derivatives of
f satisfy

f (ν)(λi) = p
(ν)
f (λi)

for i = 1, . . . ,m and ν = 0, . . . , νi − 1.

We say that f(A) is the result of plugging A into the function f . In this way

we extended our function ΦA, defined on C[x], to the function Φ̃A on C∞
A by the

formula
Φ̃A(f) := ΦA(pf ) = pf (A).

Now we collect useful properties of Φ̃A that follow directly from Definition
2.7, Corollary 2.3, and Lemma 2.4.

Lemma 2.8. With the above notation the following holds.

a) The definition of Φ̃A(f) does not depend on the particular choice of the in-
terpolation polynomial pf .

b) The map Φ̃A is an extension of ΦA.

c) The map Φ̃A is an algebra homomorphism in the sense that

Φ̃A(λf + μg) = λΦ̃A(f) + μΦ̃A(g),

Φ̃A(f · g) = Φ̃A(f) · Φ̃A(g)

for λ, μ ∈ C and functions f, g ∈ C∞
A .

At first glance, not much seems to be gained since the range of Φ̃A is still PA.
However, the domain of Φ̃A is now much larger and contains many more functions.
For example, any characteristic function χU of an open set U ⊂ C such that none
of the points λ1, . . . , λm lies on the boundary of U is an idempotent and belongs to
the domain of Φ̃A. As a consequence of Corollary 2.3, χU (A) must be a projection
contained in PA, hence commuting with A.

Now we pick a particular set of such projections. Let U1, . . . , Um be open
subsets of C satisfying

a) λi ∈ Ui for i = 1, . . . ,m, and

b) Ui ∩ Uj = ∅ for i �= j.

Writing χi for the characteristic function of Ui, we obtain projections

Pi := χi(A) ∈ PA for i = 1, . . . ,m, (2.5)

2For more information on interpolation polynomials see Appendix A, Section A.3.
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whose ranges will be denoted by

Xi := imPi. (2.6)

We remark that Pi is independent of the specific choice of Ui, and Pi �= 0 for all i.

The following is now the fundamental structure theorem for linear operators
on finite-dimensional vector spaces.

Theorem 2.9. Let X be a finite-dimensional vector space and consider A ∈ L(X)
with minimal polynomial mA having zeros λ1, . . . , λm with respective multiplicities
ν1, . . . , νm. If we take Pi and Xi as in (2.5) and (2.6), respectively, then

X = X1 ⊕ · · · ⊕Xm

is a direct sum decomposition into A-invariant subspaces such that the restriction
of λi −A to Xi is nilpotent of order νi for i = 1, . . . ,m.

Proof. Since χi(
∑

j 
=i χj) = 0 for any i, Pi(
∑

j 
=i Pj) = 0 and hence

Xi ∩
[⊕
j 
=i

Xj

]
= {0}.

Moreover, since {λ1, . . . , λm} ⊂
⋃m

i=1 Ui =: U , we conclude that

m∑
i=1

Pi = Φ̃A

(
m∑
i=1

χi

)
= Φ̃A(χU ) = I,

hence X1 ⊕ · · · ⊕Xm = X.

We recall that a matrix B is called nilpotent of order k if Bk = 0, but
Bk−1 �= 0. Observe now that, for any fixed i, gi(λ) = (λi − λ)νiχi(λ) is a function

in the domain of Φ̃A that coincides in each of the points λ1, . . . , λm with the zero
function O, including all relevant derivatives. By the properties of Φ̃A stated in
Lemma 2.8 we must have

(λi −A)νiPi =
(
(λi − λ)νiχi

)
(A) = O(A) = 0

for i = 1, . . . ,m and λ ∈ C. On the other hand, the function

fi(λ) := (λi − λ)νi−1χi(λ), λ ∈ C,

does not satisfy

f
(νi−1)
i (λi) = 0,

hence
(λi −A)νi−1Pi = fi(A) �= 0,

proving that λi −A is nilpotent of order νi on Xi. �
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The zeros λ1, . . . , λm of the minimal polynomial mA can now be identified
with the eigenvalues of A, i.e., with those λ ∈ C for which (λ−A)x = 0 for some
0 �= x ∈ X .

Corollary 2.10. Under the above assumptions the points λ1, . . . , λm are exactly
those λ ∈ C for which λ−A is not invertible.

Proof. Every λi is an eigenvalue of A with an eigenvector contained in Xi. Other-
wise, λi−A would be bijective (see Proposition A.11), hence could not be nilpotent
on Xi (which is �= {0} since Pi �= 0).

There are no other eigenvalues of A since for any μ ∈ C distinct from all
λ1, . . . , λm, the function f(λ) := 1

μ−λ is the inverse of f−1(λ) := μ − λ, thus the

operator f(A) is the inverse of f−1(A) = μ−A, and hence μ−A is invertible. �

After these preparations we are now able to express the operator f(A) by
the action of A− λi on the subspaces Xi and by the values of (the derivatives of)
f in λi.

Theorem 2.11. Let us consider A ∈ L(X) with eigenvalues λ1, . . . , λm and respec-
tive multiplicities ν1, . . . , νm, and define the projections Pi as in (2.5). For every
function f ∈ C∞

A one has

f(A) =

m∑
i=1

νi−1∑
ν=0

f (ν)(λi)

ν!
(A− λi)

νPi. (2.7)

In particular, the following representations hold:

R(μ,A) : = (μ−A)−1 =

m∑
i=1

νi−1∑
ν=0

(A− λi)
ν

(μ− λi)ν+1
Pi for μ /∈ {λ1, . . . , λm}. (2.8)

etA =

m∑
i=1

νi−1∑
ν=0

etλitν

ν!
(A− λi)

νPi for t ∈ R. (2.9)

Ak =
m∑
i=1

min{νi−1,k}∑
ν=0

(
k

ν

)
λk−ν
i (A− λi)

νPi for k ∈ N. (2.10)

Proof. The function

g(λ) :=
m∑
i=1

νi−1∑
ν=0

f (ν)(λi)

ν!
(λ− λi)

νχi(λ), λ ∈ C,

coincides with f , including all relevant derivatives, on all of the points λ1, . . . , λm.
By Lemma 2.8 we therefore obtain f(A) = g(A).

The special cases in formulas (2.8), (2.9), and (2.10) follow by taking f(λ)
as (μ− λ)−1, etλ, and λk, respectively. �



22 Chapter 2. Functional Calculus

Recall that the characteristic polynomial of a matrix A ∈ L(X) is defined as

pA(λ) := det(λ−A).

By Corollary 2.10, the zeros of pA are exactly the eigenvalues λ1, . . . , λm and,
by definition, the minimal polynomial mA divides pA. By using formula (2.7) for
pA we immediately obtain the following well-known property.

Corollary 2.12 (Cayley–Hamilton). If pA is the characteristic polynomial of A,
then pA(A) = 0.

The following result tells us that our functional calculus is in accordance
with questions of convergence. It will lead us to alternatives to formulas (2.9) and
(2.10) in Theorem 2.11 involving infinite series.

Proposition 2.13. Let A ∈ L(X) and let (fk) be a sequence of functions in C∞
A

that converges pointwise, including the relevant derivatives, at each of the eigen-
values λ1, . . . , λm, to a function f ∈ C∞

A . Then the operators fk(A) converge to
f(A) in L(X).

Proof. By hypothesis, we have

f
(ν)
k (λi) −→ f (ν)(λi) as k → ∞

for all 1 ≤ i ≤ m and 0 ≤ ν ≤ νi − 1.

Let ‖ · ‖ be a norm on L(X). Then, by equation (2.7),

‖fk(A)− f(A)‖ =

∥∥∥∥∥
m∑
i=1

νi−1∑
ν=0

(
f
(ν)
k (λi)− f (ν)(λi)

) (A− λi)
ν

ν!
Pi

∥∥∥∥∥
≤

⎛⎜⎝ sup
0≤ν≤νi−1
1≤i≤m

∣∣∣f (ν)
k (λi)− f (ν)(λi)

∣∣∣
⎞⎟⎠ m∑

i=1

νi−1∑
ν=0

∥∥∥∥ (A− λi)
ν

ν!
Pi

∥∥∥∥ .
Since (fk) converges, including the relevant derivatives, at each of the points λi

to a function f , the right-hand side tends to 0 as k → ∞. �

Using this proposition, we can see that our construction of the functional
calculus yields the same result as the power series for the exponential function.

Corollary 2.14. Let A ∈ L(X) and t ∈ R. Then

etA =

∞∑
i=0

tiAi

i!
= lim

k→∞

k∑
i=0

tiAi

i!
.

Proof. Put fk(λ) :=
∑k

i=0
tiλi

i! , λ ∈ C. Since fk converges, as k → ∞, together with
all its derivatives, to eλt =: f(λ), the assertion follows from Proposition 2.13. �
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For later reference, let us introduce the number r(A) := max1≤i≤m |λi| and
call it the spectral radius of the operator A.

Corollary 2.15. Let A ∈ L(X) and |λ| > max1≤i≤m |λi| = r(A). Then

R(λ,A) =

∞∑
k=0

Ak

λk+1
. (2.11)

Proof. Under the hypothesis on λ, we have

1

λ− z
=

1

λ

∞∑
i=0

( z
λ

)i
=

∞∑
i=0

zi

λi+1

for |z| < |λ|. Let fk(z) :=
∑k

i=0
zi

λi+1 and note that fk(z) → 1/(λ − z) pointwise
as k → ∞ together with all its derivatives, hence the result follows again by
Proposition 2.13. �

The above expression (2.11) is called the Neumann series for R(λ,A).

Later on, we will frequently use the following observations helping to read
the formulas of Theorem 2.11.

Lemma 2.16.

a) Take i ∈ {1, . . . ,m} and 0 �= z ∈ Xi. Then the set{
(A− λi)

νz : ν = 0, . . . , νi − 1
}
\ {0}

is linearly independent in Xi.

b) The set

BA :=
{
(A− λi)

νPi : i = 1, . . . ,m; ν = 0, . . . , νi − 1
}

is linearly independent in L(X).

Proof. a) Since A−λi is nilpotent of order νi in Xi, there exists, for every 0 �= z ∈
Xi, an exponent ν0 ≤ νi with (A − λi)

ν0−1z �= 0 and (A − λi)
νz = 0 for ν ≥ ν0.

An equation of the form

0 =

ν0−1∑
ν=0

αν(A− λi)
νz

leads, after multiplication by (A − λi)
ν0−1, to α0 = 0. Subsequent multiplication

by decreasing powers of A− λi shows that the other coefficients αν must also be
zero.

b) As in the proof of a), one shows that the set

B
(i)
A :=

{
(A− λi)

νPi : ν = 0, . . . , νi − 1
}
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is linearly independent in L(X) for each 1 ≤ i ≤ m. If

m∑
i=1

νi−1∑
ν=0

α(i)
ν (A− λi)

νPi = 0,

then for fixed 1 ≤ i ≤ m multiplication by Pi shows that the partial sum

νi−1∑
ν=0

α(i)
ν (A− λi)

νPi = 0

must vanish, thus α
(i)
ν = 0 for ν = 0, . . . , νi− 1 by the linear independence of B

(i)
A .
�

2.3 Spectral Theory

Now we introduce the usual terminology in connection with the symbols appearing
in Theorem 2.11. Let λi be an eigenvalue of the matrix A. We call ker(λi −A) an
eigenspace, each 0 �= x ∈ ker(λi −A) an eigenvector, the projection Pi defined in
(2.5) the spectral projection, and Xi := PiX the spectral subspace corresponding
to the eigenvalue λi.

The set {λ1, . . . , λm} of all eigenvalues of A is denoted by σ(A) and called
the spectrum of A. Its complement is the resolvent set ρ(A) := C\σ(A), and the
resolvent of A is the map

ρ(A) � λ �−→ R(λ,A),

where we use the notation R(λ,A) = (λ−A)−1 introduced in equation (2.8).

Remark 2.17. For those readers who are familiar with elementary complex function
theory, we mention that formula (2.8) shows that the resolvent is a meromorphic
function with poles of order νi in λi for i = 1, . . . ,m. Since the principal part of
the Laurent expansion of R(λ,A) around λi is

νi−1∑
ν=0

(A− λi)
ν

(λ − λi)ν+1
Pi,

we infer that Pi is just the residue of the resolvent R(·, A) at λi. This interpreta-
tion of relation (2.8) is not essential in our discussion now. However, it will become
important in the infinite-dimensional situation. Therefore we will adopt the cor-
responding terminology right away and henceforth speak of νi as the order of the
pole λi of R(·, A).

The following is a useful characterization of Xi by means of A.
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Lemma 2.18. The spectral subspace of A corresponding to the eigenvalue λi is

Xi = ker(λi −A)νi ,

where νi is the order of the pole λi of R(·, A).

Proof. The inclusion Xi ⊂ ker(λi −A)νi follows since λi −A is nilpotent of order
νi on Xi by Theorem 2.9.

Suppose now that the inclusion is strict, that is, there exists a nonzero x ∈
ker(λi − A)νi \ Xi. Note that for some j �= i there is a nonzero y := Pjx ∈
Xj ∩ ker(λi −A)νi . Take the largest p ∈ N such that

z := (λi −A)py �= 0.

Then z ∈ Xj and Az = λiz, thus

(A− λj)
νj z = (λi − λj)

νj z �= 0,

which is a contradiction. �

We formulate two special cases explicitly.

Corollary 2.19.

a) If νi = 1, then A|Xi = λiIXi .

b) If all νi = 1, then A is diagonalisable.

Now we are going to find out more about A and f(A) with the help of
Theorems 2.9 and 2.11. To that purpose, we will frequently use the following
result.

Theorem 2.20 (Spectral Mapping Theorem). Let A ∈ L(X) and f ∈ C∞
A . Then

σ
(
f(A)
)
= f
(
σ(A)
)
:=
{
f(λ) : λ ∈ σ(A)

}
.

Proof. If μ /∈ f(σ(A)), then 1
μ−f(λ) =: u(λ) ∈ C∞

A with u · (μ − f) = 1 on a

neighborhood of σ(A). Hence, plugging A into u · (μ− f) gives

u(A)
(
μ− f(A)

)
=
(
μ− f(A)

)
u(A) = I,

meaning that μ− f(A) is invertible and μ /∈ σ(f(A)).

On the other hand, if xi is an eigenvector of A belonging to λi for some
1 ≤ i ≤ m, then Pjxi = 0 for all j �= i by Theorem 2.9. Now Theorem 2.11 gives

f(A)xi = f(λi)xi,

hence f(λi) ∈ σ(f(A)). �

The following is a consequence of Lemma 2.18 and Theorem 2.20.
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Corollary 2.21. The matrix A ∈ L(X) is nilpotent (i.e., Ak = 0 for a suitable
k ∈ N) if and only if σ(A) = {0}.

Proof. If Ak = 0, then {0} = σ(Ak) = [σ(A)]k , hence σ(A) = {0}. If, on the
other hand, σ(A) = {0}, then the spectral projection corresponding to the only
eigenvalue 0 must be equal to the identity and A = A − 0 is nilpotent on the
corresponding spectral subspace, which is equal to X . �

Corollary 2.22.

a) The map λi −A is bijective on
⊕

j 
=i Xj.

b) For the restriction A|Xi
the identities

σ (A|Xi ) = {λi} and σ
(
A|⊕

j �=i Xj

)
= σ(A)\{λi}

hold.

Proof. a) By Corollary 2.21, the spectrum of A − λi restricted to Xi is zero.
Hence, σ (A|Xi) = {λi} by the spectral mapping theorem, Theorem 2.20. Since

all eigenvectors belonging to λi are contained in Xi, we have λi /∈ σ
(
A|⊕

j �=i Xj

)
.

Again by Theorem 2.20, we obtain 0 /∈ σ
(
(A− λi)|⊕

j �=i Xj

)
. This means that

A− λi is bijective on
⊕

j 
=i Xj .

b) By the considerations above, we already have that σ (A|Xi) = {λi} and

σ
(
A|⊕

j �=i Xj

)
⊆ σ(A)\{λi}.

Since λk ∈ σ
(
A|⊕

j �=i Xj

)
for k �= i, the proof is complete. �

The argument used in the second part of the proof of the Spectral Mapping
Theorem 2.20 gives the following.

Corollary 2.23. The eigenspace of f(A) belonging to f(λi) contains all eigenvectors
of A that belong to the eigenvalues λj with f(λj) = f(λi).

It should be noted, however, that the eigenspace of f(A) belonging to the
eigenvalue f(λi) need not be generated by eigenvectors of A, as the following
simple example shows.

Example 2.24. The matrix A = ( 0 0
1 0 ) has spectrum σ(A) = {0}, the corresponding

eigenspace has dimension 1. By contrast, since A2 = 0, the eigenspace of A2

belonging to 0 is two-dimensional.

The situation is much simpler for the spectral projections. First we need an
auxiliary result.
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Lemma 2.25. For g ∈ C∞
f(A) one has g ◦ f ∈ C∞

A and

(g ◦ f)(A) = g(f(A)).

Proof. The hypothesis means that g is a smooth function defined on a neighbor-
hood of σ(f(A)) = f(σ(A)), hence g ◦f is defined on a neighborhood of σ(A). The
rest is straightforward since we can now assume that f and g are polynomials. �
Theorem 2.26. The spectral projection of f(A) belonging to f(λi) for some i ∈
{1, . . . ,m} is the sum of the spectral projections Pj of A with f(λj) = f(λi).

Proof. Let us denote by P f
i = χVi(f(A)) the spectral projection of f(A) belonging

to f(λi), where Vi ⊂ C is an open set such that f(λi) ∈ Vi. Using this notation,
what we need to prove is that

P f
i =

⊕
f(λj)=f(λi)

Pj .

By Lemma 2.25, P f
i = (χVi ◦ f) (A), so the statement follows since χVi ◦ f is a

characteristic function of a neighborhood of exactly those eigenvalues λj for which
f(λj) = f(λi). �

The question arises whether there are simple and general relations between
the pole orders of R(·, A) at λi and R(·, f(A)) at f(λi). However, the following
examples show that both an increase or a decrease can occur.

Examples 2.27.

a) Let us consider A = ( 0 0
1 0 ), f(λ) = λ2. Then 0 is a pole of order 2 of R(·, A),

but 0 = f(0) is a simple pole of R(·, f(A)) = R(·, 0).
b) Considering

A =

⎛⎝2πi 0 0
0 0 0
0 1 0

⎞⎠ , with f(λ) = eλ,

we see that 2πi is a pole of order 1 of R(·, A), but 1 = f(2πi) is a pole of

order 2 of R(·, f(A)) since f(A) = eA =
(

1 0 0
0 1 0
0 1 1

)
.

We close this section with a result that clarifies the relation between eigen-
vectors or pole orders with respect to A and f(A) for the functions ft(λ) = etλ,
t ∈ R.

Theorem 2.28. Let us define etA as in Theorem 2.11, formula (2.9) for t �= 0.

a) The eigenspace of etA belonging to etλi is the sum of those eigenspaces of A
that belong to eigenvalues λj with etλj = etλi .

b) The pole order of etλi with respect to R(·, etA) dominates the pole order of λi

with respect to R(·, A).
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c) If all λj with etλj = etλi are first-order poles of R(·, A), then etλi is a pole of
order 1 of R(·, etA).

Proof. a) Let x be an eigenvector of etA for etλi and some fixed i. Then by Theorem
2.26 we have x ∈

⊕
etλj=etλi

Xj . Let us denote by i1, . . . , ir those j with etλj =
etλi , so

x =

r∑
s=1

ys with ys ∈ Xis .

We will show that actually ys ∈ ker(A − λis) for all s. We first observe that each
Xis is invariant under etA, hence

r∑
s=1

etλiys = etλix = etAx =
r∑

s=1

etAys

implies etλiys = etAys for s = 1, . . . , r. Now, for each fixed s, if νis = 1, then we
are done. Assume νis ≥ 2 and write

0 = etAys − etλiys =

νis−1∑
ν=1

etλis tν

ν!
(A− λis)

νys.

If (A − λis)ys �= 0, the right-hand side must be also nonzero by Lemma 2.16, a
contradiction.

b) Generally speaking, for any operator B and any λ0 ∈ σ(B), the pole order
of λ0 with respect to R(·, B) is the order of nilpotency of B−λ0 on X0, the spectral
subspace of B belonging to λ0. Hence, for z ∈ X0, this pole order is the maximal
length of any chain

z, (B − λ0)z, . . . , (B − λ0)
νz �= 0.

Going now back to A, suppose νi ≥ 2 and take z ∈ Xi with (A − λi)
νi−1z �= 0.

Then (
etA − etλi

)
z =

νi−1∑
ν=1

etλitν

ν!
(A− λi)

νz =: z1 �= 0,

hence the pole order of etλi with respect to R(·, etA) is at least 2. If νi ≥ 3, we can
apply (A− λi)

νi−2 to z1 and obtain a vector �= 0. Moreover,

(
etA − etλi

)
z1 =

νi−2∑
ν=1

etλitν

ν!
(A− λi)

νz1 �= 0,

hence the pole order of etλi is ≥ 3. If this argument is repeated νi − 1 times, the
conclusion follows.

c) This follows easily from Theorem 2.11, formula (2.9), and Theorem 2.26.
�
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2.4 Notes and Remarks

There are many ways to define a functional calculus for matrices. The first one
applies the Jordan canonical form usually taught in a first linear algebra course.
We have already mentioned the approach based on the power series representation
(see Remark 2.5 and Corollary 2.14), which has the drawback that it only works
nicely for entire functions f , making the analysis of spectral projections difficult.
Using the Cauchy formula we can also show that our definition of f(A) agrees
with the Dunford’s integral representation, meaning that for every A ∈ L(X) and
f ∈ C∞

A there is an open set W ⊃ σ(A) such that

a) W is contained in the domain of f .

b) ∂W consists of a finite number of smooth closed curves oriented in the positive
direction.

c) f(A) =
1

2πi

∫
∂W

f(λ)R(λ,A) dλ.

For a comprehensive survey on the functional calculus we refer to Gohberg, Gold-
berg, and Kaashoek [53, Section I.3].

2.5 Exercises

1. Find polynomials p with the following properties.

a) p(1) = 1, p(2) = 1.

b) p(1) = 1, p′(1) = 2.

c) p(1) = 1, p′(1) = 3, p(−1) = −1.

d) p(1) = 1, p′(1) = 3, p(−1) = −1, p′(−1) = 3.

e) p(1) = 1, p′(1) = 3, p(−1) = −1, p′(−1) = 2.

f) p(1) = 1, p′(1) = 2, p′′(1) = 3.

Discuss properties of p(A) for some matrices A ∈ L(X).

2. Let A be a n×n diagonalisable matrix withm distinct eigenvalues λ1, . . . , λm.
Prove that in this case its spectral projections are of the form

Pi =
∏
j 
=i

A− λj

λi − λj
, i = 1, . . . ,m.

3. a) Determine the eigenvalues λi and the corresponding multiplicities νi for
the matrices

A =

(
0 0
0 1

)
and B =

⎛⎝1 0 0
0 1 0
0 1 1

⎞⎠ .

b) Discuss further matrices you find interesting.
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4. Calculate etA, An, and sin(tA) for A =

(
6 −1
3 2

)
. Discuss further matrices

you find interesting.

5. Show that if B = S−1AS, where S is an invertible matrix, and if f ∈ C∞
A ,

then f ∈ C∞
B and f(B) = S−1f(A)S.

6. a) Show that Theorem 2.9 does not hold in the case of real scalars (i.e., in
the situation of X = Rn, L(X) = Mn(R), and R[x]).

b) Which one of the arguments leading to Theorem 2.9 does not hold in
the real case?

7. Let C ∈ L(X) with ‖C‖ < 1. Show that

(I − C)−1 =

∞∑
k=0

Ck. (2.12)

8. Using the result of the previous exercise, show the Neumann series represen-
tation in (2.11) for |λ| > ‖A‖.

9. Show, using the definition, the so-called resolvent equations

AR(λ,A) = λR(λ,A)− I (2.13)

for λ ∈ ρ(A), and

R(λ,A)−R(μ,A) = (μ− λ)R(λ,A)R(μ,A) (2.14)

for λ, μ ∈ ρ(A).

10. Using the results of the previous two exercises, show that for |λ − μ| <
1

‖R(μ,A)‖ , we have

R(λ,A) =

∞∑
k=0

(μ− λ)kR(μ,A)k+1. (2.15)

11. Give an alternative proof of Theorem 2.28.b) using the formula

R(μ, etA) =

m∑
i=1

νi−1∑
ν=0

g
(ν)
μ (λi)

ν!
(A− λi)

νPi

with gμ(λ) = (μ− etλ)−1 (μ /∈ etσ(A)). Can you determine the pole order in
question?

12. Find conditions on f such that the assertions of Theorem 2.28 hold for f(A)
instead of etA.



Chapter 3

Powers of Matrices

In the previous chapter we presented known facts from the spectral theory of
matrices in a coordinate-free way. We are, however, interested not simply in linear
algebra, but mainly in the asymptotic behavior of dynamical systems, a central
theme in this text.

We apply the knowledge we gained on the structure of linear operators on
finite-dimensional vector spaces to investigate what happens to the sequence con-
sisting of the powers of a matrix. Topics we cover include boundedness, convergence
to zero, convergence, mean convergence (or Cesàro convergence), periodicity, and
hyperbolic decomposition.

3.1 The Coordinate Sequences

Let X be a vector space with dimX = n < ∞. We will employ the formulas
obtained in Chapter 2 to study the asymptotic behavior of the powers of a given
operator acting on X . In order to be consistent with the exponential function
later on, we denote here the given operator by T ∈ L(X). We retain, however, the
notation of Theorem 2.11 concerning the eigenvalues λ1, . . . , λm, the multiplicities
ν1, . . . , νm (as zeroes of the minimal polynomial of T ), and the spectral projections
P1, . . . , Pm.

Thus, by Theorem 2.11, formula (2.10), we have

T k =

m∑
i=1

min{νi−1,k}∑
ν=0

(
k

ν

)
λk−ν
i (T − λi)

νPi for k ∈ N. (3.1)

Example 3.1. Let (fk) be the Fibonacci sequence considered as the motivating
example in Section 1.1. We have seen that(

fk+1

fk

)
= Ak

(
1
0

)
for A =

(
1 1
1 0

)
, k ∈ N0.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_3

31© Springer International Publishing AG 2017
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It is not difficult to compute the eigenvalues of A,

λ1 =
1 +

√
5

2
and λ2 =

1−
√
5

2
,

and the corresponding spectral projections

P1 =

√
5

5

(
1+

√
5

2 1

1 −1+
√
5

2

)
and P2 =

√
5

5

(
−1+

√
5

2 −1

−1 1+
√
5

2

)
.

By formula (3.1) we obtain

Ak = λk
1P1 + λk

2P2

=
√
5
5

⎛⎜⎝
(

1+
√
5

2

)k+1

−
(

1−√
5

2

)k+1 (
1+

√
5

2

)k
−
(

1−√
5

2

)k(
1+

√
5

2

)k
−
(

1−√
5

2

)k (
1−√

5
2

)k (
1+

√
5

2

)
−
(

1+
√
5

2

)k (
1−√

5
2

)
⎞⎟⎠ ,

and thus the explicit formula for the entries of the Fibonacci sequence is

fk =

√
5

5

⎛⎝(1 +
√
5

2

)k

−
(
1−

√
5

2

)k
⎞⎠ , k ∈ N0.

Our main interest, however, lies in the asymptotic behavior. In order to
understand what happens with T k as k → ∞, we use the linear independence of
the set

BT := {(T − λi)
νPi : i = 1, . . . ,m; ν = 0, . . . , νi − 1}

in the vector space L(X) (cf. Lemma 2.16). If we extend this set to a basis BT of
L(X), then (3.1) means that the (non-zero) coordinates of T k with respect to BT

are {(
k

ν

)
λk−ν
i : i = 1, . . . ,m; ν = 0, . . . , νi − 1

}
(since from now on we consider k → ∞, we allow ourselves to simplify the upper
bound of ν from min{νi − 1, k} to νi − 1). Likewise, if we are interested in the
“orbit” {T kx : k ∈ N} of a single element x ∈ X under the powers T k of T , we
may use a basis of X containing the set

{(T − λi)
νPix : i = 1, . . . ,m; ν = 0, . . . , νi − 1}\{0}.

Again, the corresponding coordinate sequences are among the ones obtained
above. Thus, since convergence in a finite-dimensional vector space is convergence
in every coordinate, no matter what basis is employed, the behavior of T k (or of
T kx for x ∈ X) as k → ∞ is reflected by the behavior of the sequences

zλ,ν(k) :=

(
k

ν

)
λk−ν (3.2)
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for λ ∈ σ(T ), ν = 0, . . . , n − 1 (observe that νi ≤ n for every i). In case all
these sequences converge, (T k) (or T kx for a given x ∈ X) converges and the
coordinates of the limit are obtained as the limits of the corresponding sequences
of coordinates.

The advantage of this approach is that the behavior of functions in (3.2) is
easily understood and essentially depends on the modulus of λ.

• If |λ| < 1, then zλ,ν(k) → 0 as k → ∞ for all ν, since limk→∞ kνλk = 0.

• If |λ| > 1, then |zλ,ν(k)| → ∞ as k → ∞ for all ν.

• If |λ| = 1 and ν = 0, then zλ,0(k) = λk.

• If |λ| = 1 and ν ≥ 1, then |zλ,ν(k)| → ∞ as k → ∞.

Using these facts, we are able to describe the asymptotics of T kx for x ∈ Xi =
imPi, depending on λi and νi.

3.2 The Spectral Radius

We begin our investigations with estimates for ‖T k‖ related to the spectral radius

r(T ) := max {|λ| : λ ∈ σ(T )} . (3.3)

Lemma 3.2. Let ‖ · ‖ be a norm on L(X), T ∈ L(X), and μ > r(T ). Then there
exist constants N > 0 and M ≥ 1 such that for all k ∈ N,

N · r(T )k ≤ ‖T k‖ ≤ M · μk.

If ‖ · ‖ is an operator norm, we can choose N = 1.

Proof. By the Spectral Mapping Theorem 2.20,

r(T k) = r(T )k,

hence the last part of the assertion is clear for any operator norm on L(X) by
Corollary 1.10. Then the lower estimate

N · r(T )k ≤ ‖T k‖

(with suitableN > 0) follows by equivalence of norms for finite-dimensional spaces.

Turning to the upper estimate in the assertion, we note that the coordinates
of T k with respect to a basis of L(X) containing BT are

zλ,ν(k) :=

(
k

ν

)
λk−ν ,

where 1 ≤ i ≤ m and 0 ≤ ν ≤ νi. Since(
k

ν

)
≤ kν ,
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and since for |λ| < 1
kνλk−ν −→ 0

as k → ∞, for all ν ∈ N, the coordinate sequences of 1
μkT

k remain bounded as
k → ∞. Thus,

‖T k‖∞ ≤ Cμk, k ∈ N,

for a suitable constant C, where ‖ · ‖∞ denotes the usual maximum norm with re-
spect to coordinates belonging to BT . The desired estimate for ‖T k‖ again follows
by the equivalence of norms. �

It is extremely important that the spectral radius of T can be determined
through the sequence (‖T k‖), regardless of the norm ‖ · ‖.
Proposition 3.3 (Gelfand’s formula). For an operator T ∈ L(X) the following
holds.

a) r(T ) = limk→∞ ‖T k‖1/k for any norm ‖ · ‖ on L(X).

b) If ‖ · ‖ is an operator norm on L(X), then r(T ) = infk>0 ‖T k‖1/k.

Proof. The proof is an immediate consequence of the previous Lemma 3.2, which
yields the estimate

N1/kr(T ) ≤ ‖T k‖1/k ≤ M1/kμ

whenever μ > r(T ) for suitable constants N, M . If ‖ · ‖ is an operator norm, then
the (admissible) choiceN = 1 in these estimates forces r(T ) = infk>0 ‖T k‖1/k. �

Let us now turn our attention back to estimates for ‖T kx‖ and suppose again
that the same ‖·‖ denotes the corresponding operator norm. The special case when
x ∈ Xi for some spectral subspace Xi = imPi can be treated analogously to our
previous considerations.

Proposition 3.4. Let us consider T ∈ L(X) and a norm ‖ · ‖ on X. Then for every
μ > |λi| (1 ≤ i ≤ m) there exists a number M ≥ 1 such that

‖T kx‖ ≤ Mμk‖x‖

for all k ∈ N and x ∈ Xi. Further, if λi �= 0, then for every 0 < ρ < |λi| there
exists N > 0 such that

Nρk‖x‖ ≤ ‖T kx‖ ≤ Mμk‖x‖

for all k ∈ N and x ∈ Xi.

Proof. Since ‖T kx‖ ≤ ‖T k‖ · ‖x‖, and since σ(T |Xi) = {λi}, we obtain from
Lemma 3.2 the existence of a constant M for every μ > |λi| such that

‖T kx‖ ≤ Mμk‖x‖

for all k ∈ N and x ∈ Xi.
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On the other hand, if λi �= 0, then T |Xi has an inverse S with σ(S) = {λ−1
i }.

So for every 0 < ρ < |λi|, there exists C ≥ 1 such that for all z ∈ Xi, we have that

‖Skz‖ ≤ Cρ−k‖z‖.

Choosing z := T kx for k ∈ N we have Skz = x and hence ‖x‖ ≤ Cρ−k‖z‖, that is

‖T kx‖ = ‖z‖ ≥ 1

C
ρk‖x‖

yielding the desired inequality. �

3.3 Asymptotics

After this intermezzo on the spectral radius r(T ), we now describe the long-time
behavior of the sequence (T k). We will consider various types of asymptotic be-
havior.

Definition 3.5. For T ∈ L(X) and any norm ‖·‖ on L(X) we say that the sequence
(T k) is

• bounded3 if supk∈N ‖T k‖ < ∞;

• stable3 if limk→∞ ‖T k‖ = 0;

• convergent if limk→∞ T k = P for some P ∈ L(X);

• periodic with period p if T is periodic with period p, i.e., T p = I;

• Cesàro summable (or T is mean-ergodic) if the limit limk→∞ 1
k

∑k−1
l=0 T l ex-

ists.

Remarks 3.6.

a) Note that boundedness of the sequence (T k) is equivalent to boundedness of
all coordinate sequences zλ,ν(k) with respect to BT defined in (3.2).

b) If the sequence (T k) converges to P , then

TP = T lim
k→∞

T k = lim
k→∞

T k+1 = P = PT = lim
k→∞

T 2k = P 2,

i.e., P is a projection commuting with T .

c) If (αk) is a sequence in a vector space, then α(k) := 1
k

∑k−1
l=0 αl is called the

corresponding sequence of Cesàro means . Analogously, we call

T (k) :=
1

k

k−1∑
l=0

T l, k ∈ N,

appearing in the definition above, the Cesàro means of T .

3Note that working with ODEs or dynamical systems, a different terminology is also widely
accepted: what we call “bounded” is often called “stable”, and what we call “stable” is often
called “asymptotically stable”.



36 Chapter 3. Powers of Matrices

The asymptotic behavior of (T k) will depend essentially on the size of r(T )
compared to 1. By Γ we denote the unit circle in C and by

Γq := {e2kπi/q : k = 0, . . . , q − 1}

the set of all qth roots of unity in C. We call λ0 > 0 a radially dominant eigenvalue
if λ0 ∈ σ(T ) and |λ| < λ0 for all λ ∈ σ(T )\{λ0}.

Theorem 3.7. For T ∈ L(X) the following assertions hold.

a) (T k) is stable if and only if r(T ) < 1.

b) (T k) is bounded if and only if r(T ) ≤ 1 and all eigenvalues of modulus 1 are
simple poles of R(·, T ).

c) (T k) is periodic with period p if and only if it is bounded and σ(T ) ⊆ Γp.

d) 1 ∈ σ(T ) and limk→∞ T k = P1 here (P1 denotes the spectral projection of T
belonging to 1) if and only if 1 is a radially dominant eigenvalue of T which
is a simple pole of the resolvent R(·, T ).

e) σ(T )∩Γ = ∅ if and only if there exist T -invariant subspaces Xs and Xu such
that X = Xs ⊕Xu and

lim
k→∞

‖T kx‖ = 0 for x ∈ Xs and lim
k→∞

‖T kx‖ = ∞ for x ∈ Xu.

Proof. a) This is a direct consequence of Lemma 3.2.

b) Assume that (T k) is bounded. Lemma 3.2 again yields r(T ) ≤ 1. If an
eigenvalue λ ∈ σ(T ) with |λ| = 1 would have multiplicity ν > 1, then the corre-
sponding coordinate sequence zλ,ν−1(k) of T k with respect to BT would not be
bounded, a contradiction.

On the other hand, if r(T ) ≤ 1 and all eigenvalues of modulus 1 are simple
poles of the resolvent, then all the coordinate sequences of T k with respect to BT

are bounded.

c) Let (T k) be bounded and σ(T ) ⊆ Γp. By b), all nonzero eigenvalues have
multiplicity 1, thus formula (3.1) is simplified as

T k =

m∑
i=1

λk
i Pi for k ∈ N.

Since λp
i = 1 for all i = 1, . . . ,m, we have T p = I.

If (T k) is periodic, i.e., T p = I for some p ∈ N, it is bounded and for every
λ ∈ σ(T ) we have λp = 1.

d) Let limk→∞ T k = P1. From a) and b) we infer that in this case r(T ) = 1.
If there exists an eigenvalue λ �= 1 with |λ| = 1, then the corresponding coordinate
sequence of T k with respect to BT contains zλ,0(k) = λk, which does not converge
as k → ∞. Also, if 1 is not a simple pole, then T k has coordinate zλ,1(k) = k,
which again does not converge as k → ∞.
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Conversely, if 1 is a radially dominant eigenvalue and a simple pole of the
resolvent, then all coordinate sequences zλ,0(k) with respect to BT converge. Since
by a) the coordinate sequences belonging to eigenvalues with |λ| < 1 converge to
0, T k → P1 as k → ∞.

e) Let

Xs :=
⊕

|λi|<1

Xi and Xu :=
⊕

|λi|>1

Xi,

and define the operators Ts := T |Xs and Tu := T |Xu . Since σ(T ) = σ(Ts) ∪ σ(Tu),
the assertion follows using a) and b) for the operators Ts and Tu. �

Summing up, we have seen that the limit limk→∞ T k exists only in one of
the following two situations:

• if r(T ) < 1, then T k → 0 as k → ∞;

• if r(T ) = 1 = λ1 is a radially dominant eigenvalue with multiplicity ν1 = 1,
then T k → P1 as k → ∞.

Example 3.8. As simple examples of different types of asymptotical behaviour
consider the matrices

T1 =

(
1 0
1 1

)
, T2 =

1

2

(
1 0
1 1

)
, T3 =

1

2

(
1 1
1 1

)
,

T4 =

(
0 1
1 0

)
, T5 =

(
1 1
1 1

)
.

The spectra of these matrices are easy to compute and the considerations
above yield that the sequences (T k

1 ) and (T k
5 ) are unbounded, the sequence (T k

2 )
is stable, the sequence (T k

3 ) converges to the spectral projection P1, while the
sequence (T k

4 ) is periodic with period 2.

Let us take a closer look at two of the non-convergent sequences above. The
eigenvalues of T5 are λ1 = 0 and λ2 = 2, with corresponding spectral projections
P1 and P2. Hence, we can decompose the space X = C2 into stable and unstable
part as

X = P1X ⊕ P2X = Xs ⊕Xu

such that T5|Xs is stable and T5|Xu is unbounded.

In contrast to the above, the sequence (T k
4 ) is bounded. Moreover it is alter-

nating, i.e., T 2l−1
4 = T4 and T 2l

4 = I, l ∈ N. So, it has convergent subsequences.

Cesàro Summability

In the remainder of this chapter we will discuss situations where a suitable subse-
quence of (T k) converges, or where the Cesàro means of T converge.

First we show an auxiliary result.
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Lemma 3.9 (Kronecker). Let λ1, . . . , λr ∈ Γ. There exists a sequence (sk) ⊂ N,
such that

lim
k→∞

λsk
i = 1

for all 1 ≤ i ≤ r.

Proof. We give the proof for the case r = 2. The general case can be obtained in
the same manner.

On the torus Γ× Γ =
{
(eiϕ1 , eiϕ2) : 0 ≤ ϕ1,2 < 2π

}
, we define a metric d by

d
(
(eiϕ1 , eiϕ2), (eiζ1 , eiζ2)

)
:= max {|ϕ1 − ζ1|(mod 2π), |ϕ2 − ζ2|(mod 2π)} .

Let (λ1, λ2) ∈ Γ × Γ. If there exists a p ∈ N such that λp
1 = 1 = λp

2, then taking
sk := p · k for all k ∈ N we obtain

(λ1, λ2)
sk := (λsk

1 , λsk
2 ) = (1, 1),

and the assertion of the lemma holds.

Now assume that λ1 = eiα with α
2π ∈ R \Q. In this case all powers (λ1, λ2)

p,
p ∈ N, are pairwise distinct. Let ξk := 2π

k and consider all “boxes” of the form

Γ̂j × Γ̂l, where the sector Γ̂j is defined as

Γ̂j :=
{
eiξ : (j − 1)ξk ≤ ξ ≤ jξk

}
.

For 1 ≤ j, l ≤ n there are n2 boxes of the form Γ̂j × Γ̂l. Thus by Dirichlet’s
pigeonhole principle two of the n2 +1 powers (λ1, λ2)

p with 0 ≤ p ≤ n2 are in the
same box. If p and q are the exponents with 0 ≤ p < q ≤ n2 such that (λ1, λ2)

p

and (λ1, λ2)
q are in the same box, then

d ((λ1, λ2)
p, (λ1, λ2)

q) < ξk.

Observe that multiplication by a non-zero element of Γ × Γ is well defined
and is an isometry for the metric d. Therefore,

d
(
(1, 1), (λ1, λ2)

q−p
)
< ξk.

The statement of the lemma now follows upon letting k → ∞. �

Similar arguments as before together with Lemma 3.9 yield the following
result on the convergence of a subsequence of (T k).

Theorem 3.10. Let T ∈ L(X). Then the following assertions are equivalent.

(i) There exists a subsequence of (T k) which converges, as k → ∞, to some limit
P �= 0.

(ii) r(T ) = 1 and all eigenvalues of modulus 1 are simple poles of the resolvent.

If this is the case, the limit in question must be of the form P =
∑

|λi|=1 Pi, where
Pi are the spectral projections belonging to the eigenvalues of modulus 1.



3.3. Asymptotics 39

Proof. (i) =⇒ (ii): This follows by the same reasoning as the proof of assertion b)
of Theorem 3.7.

(ii) =⇒ (i): Let {λ1, . . . , λr} be the (non-empty) set of eigenvalues of T of
modulus 1. By Kronecker’s Lemma 3.9, there exists a sequence (sk) ⊂ N, such
that

lim
k→∞

λsk
i = 1 for all i = 1, . . . , r.

For the subsequence (T sk) we use formula (3.1) and the fact that all λi are simple
poles of the resolvent, hence

lim
k→∞

T sk =

r∑
i=1

λsk
i Pi =

r∑
i=1

Pi �= 0,

which proves (i) as well as the additional statement. �

Definition 3.11. We call T ∈ L(X) a spectral contraction if the conditions in
Theorem 3.10 are satisfied.

A simple example of a spectral contraction is the matrix T4 = ( 0 1
1 0 ) con-

sidered in Example 3.8. The following is an alternative characterization of the
spectral contraction that explains its name.

Theorem 3.12. Let T ∈ L(X). Then the following assertions are equivalent.

(i) T is a spectral contraction.

(ii) There exists a norm ‖·‖ on X, such that for the corresponding operator norm
on L(X), we have ‖T k‖ = 1 for all k ∈ N.

(iii) r(T ) = 1 and the sequence
(
T k
)
is bounded.

Proof. (i) =⇒ (ii): Let |||·||| be a norm on Cn. If (i) holds, then
∣∣∣∣∣∣T k
∣∣∣∣∣∣ ≤ M,k ∈ N,

for some M < ∞. Put

‖x‖ := sup
k∈N0

∣∣∣∣∣∣T kx
∣∣∣∣∣∣ .

Then ‖·‖ is a norm on Cn such that for the corresponding operator norm ‖T k‖ = 1
for all k ∈ N.

(ii) =⇒ (iii): If (ii) holds, then r(T ) = 1 and, by the equivalence of norms,(
‖T k‖
)
is bounded for any norm ‖ · ‖ on L(X).

(iii) =⇒ (i): Assuming (iii), Theorem 3.7.b) yields (ii) of Theorem 3.10 and
the implication loop is closed. �

Finally, we consider the convergence of Cesàro means T (k) = 1
k

∑k−1
ν=0 T

ν. We
will see that the sequence (T k) is Cesàro summable iff it is bounded, that is, if
r(T ) < 1 or if T is a spectral contraction.
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Theorem 3.13. For T ∈ L(X) the following assertions are equivalent.

(i) (T k) is Cesàro summable.

(ii) limk→∞
(
k−1T k

)
= 0.

(iii) (T k) is bounded.

(iv) r(T ) ≤ 1 and each eigenvalue of modulus 1 is a simple pole of the resolvent.

In any of these equivalent cases the sequence
(
T (k)
)
of Cesàro means of T converges

to 0 if 1 /∈ σ(T ), and to the spectral projection P1 belonging to 1 if 1 ∈ σ(T ).

Proof. (i) =⇒ (ii) follows since we can write T k = kT (k) − (k − 1)T (k−1). Impli-
cation (ii) =⇒ (iii) is clear and (iii) =⇒ (iv) holds by Theorem 3.7.b). It remains
to show (iv) =⇒ (i) and the assertion on the limit of the Cesàro means.

The sequence
(
T (k)
)
has, as coordinate sequences with respect to BT , the

Cesàro means of the coordinate sequences of (T k):

z
(k)
λ,ν :=

1

k

k−1∑
l=0

zλ,ν(l) =
1

k

k−1∑
l=0

(
l

ν

)
λl−ν .

These sequences clearly converge to 0 if |λ| < 1 and diverge if |λ| > 1 (see the

computation below). Furthermore, for |λ| = 1 the sequence z
(k)
λ,ν is bounded only

in the case ν = 0, i.e., when λ is a simple pole of the resolvent.

If λ �= 1, then compute

z
(k)
λ,0 =

1

k

k−1∑
l=0

(
l

0

)
λl =

1

k

λk − 1

λ− 1
,

which tends to zero as k → ∞, if |λ| ≤ 1, λ �= 1. On the other hand, for λ = 1 we

have z
(k)
1,0 = 1 for every k ∈ N, and thus in this case T (k) → P1 as k → ∞. �

This means that if the sequence (T k) converges, its limit is the same as the
Cesàro limit. On the other hand, there are Cesàro summable sequences which are
not convergent, see the sequence (T k

4 ) in Example 3.8.

3.4 Notes and Remarks

The question of convergence of (T k) is extremely important for numerical methods.
We just briefly mention a very simple method for computing a dominant eigenpair
(λ1, v1) of a diagonalisable matrix T ∈ Mn(R) with eigenvalues

|λ1| > |λ2| ≥ · · · ≥ |λn|.

We know by Theorem 3.7 that

lim
k→∞
(
λ−1
1 T
)k

= P1,
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where P1 is the spectral projection of λ−1
1 T corresponding to 1, and consequently

lim
k→∞
(
λ−1
1 T
)k

x0 = P1x0

for any x0 ∈ Rn. Therefore, for P1x0 �= 0 the sequence ‖T kx0‖−1T kx0 converges
to an eigenvector associated with λ1. The iterative algorithm basing on these
considerations is called power method :

xk+1 =
Txk

‖Txk‖
. (3.4)

More information on this method as well as on other topics of this chapter
can be found in the monograph by Meyer [94].

3.5 Exercises

1. For matrices A = (aij) and B = (bij) we write A ≤ B if aij ≤ bij for all
i, j, and we denote |A| := (|aij |). Prove that if |A| ≤ B, then the following
inequalities concerning spectral radii hold:

r(A) ≤ r(|A|) ≤ r(B).

2. Show that if there exists an operator norm ‖ · ‖ on L(X) such that ‖T ‖ < 1,
then the sequence (T k) is stable.

3. For the following matrices compute powers T k and evaluate limk→∞ T k if it
exists.

a) T =

(
1 −1
0 1

)
, b) T =

1

2

(
−1 1
1 1

)
, c) T =

1

4

(
2 2
1 3

)
.

4. Describe the asymptotic behavior of the sequence (T k) for the following spe-
cial classes of matrices T ∈ Mn(R).

a) T is idempotent (or involutary), i.e., T 2 = I.

b) T is nilpotent, i.e., T q = 0 for some q ∈ N.

c) T is unipotent, i.e., T − I is nilpotent.

d) T is orthogonal, i.e., T�T = TT� = I.

5. a) Prove that if (ak) converges in X , so does the sequence of Cesàro means(
a(k)
)
in X and the limits coincide.

b) Find an example of a non-convergent sequence whose associated se-
quence of Cesàro means converges.
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6. For each of the following matrices determine whether its powers are conver-
gent or Cesàro summable. Evaluate the limit of each convergent matrix and
the Cesàro limit of each summable matrix.

A1 =

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ , A2 =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ , A3 =
1

2

⎛⎝−1 1 −1
2 0 −1
2 −2 1

⎞⎠ .



Chapter 4

The Matrix Exponential Function

We continue our investigation of the asymptotic behavior of dynamical systems
described by matrices, which was started in last chapter, now moving to the con-
tinuous time case. This means that we investigate the asymptotic properties of
the matrix exponential function.

The importance of the topic should be clear for everyone reading this: the
matrix exponential function always solves a corresponding system of ordinary dif-
ferential equations, hence the asymptotic properties of matrix exponential func-
tions provide information on the long-time behavior of solutions of ODEs. This
subject has more than 100 years of history, with the famous Lyapunov stability
theorem as its starting point.

Topics we cover include boundedness, convergence to zero, convergence, mean
convergence (or Cesàro convergence), periodicity, hyperbolic decomposition, and
are presented in analogy to the results achieved in the previous chapter.

4.1 Main Properties

Let X be a n-dimensional vector space. The exponential function of a complex
matrix A ∈ L(X) is the mapping

exp : R −→ L(X), t �−→ exp(tA) = etA.

Here, as explained in Section 2.2, exp(tA) = etA stands for the matrix ft(A)
with ft(λ) := etλ. Therefore, Theorem 2.11, formula (2.9), says that etA can be
written as

etA =

m∑
i=1

νi−1∑
ν=0

etλitν

ν!
(A− λi)

νPi, (4.1)

where λ1, . . . , λm are the eigenvalues of A with corresponding multiplicities ν1,
. . ., νm (as roots of the minimal polynomial) and spectral projections P1, . . . , Pm.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_4

43© Springer International Publishing AG 2017



44 Chapter 4. The Matrix Exponential Function

Alternatively, according to Corollary 2.14, the matrix etA is represented by the
exponential series

etA =

∞∑
k=0

tkAk

k!
. (4.2)

Formula (4.1) gives an easy access to the following properties of etA. Firstly,
since f0(λ) = 1, we have

f0(A) = e0A = I.

By the multiplicativity of the functional calculus and the fact that

fs+t(λ) = fs(λ) · ft(λ), λ ∈ C,

we infer that
e(s+t)A = esA · etA (4.3)

for s, t ∈ R. Hence, (etA)t∈R is a subgroup of the multiplicative semigroup L(X),
and the mapping t �→ etA is a homomorphism of the additive group (R,+) into
L(X).

Remark 4.1. It is usual to refer to these properties of t �→ etA by saying that
(etA)t∈R is the matrix group generated by A. If we consider only t ≥ 0, we call
(etA)t≥0 the matrix semigroup generated by A

Furthermore, the function t �→ etA has nice analytic properties.

Theorem 4.2. The matrix exponential function t �→ etA is differentiable on R with
derivative

d

dt
etA = AetA = etAA, t ∈ R. (4.4)

Proof. Let f(λ) := λetλ and observe that(
λetλ
)(ν)

(λ) =
(
λtν + νtν−1

)
etλ.

Hence applying Theorem 2.11 for f(λ) = λetλ we obtain

AetA =

m∑
i=1

νi−1∑
ν=0

(
λit

νetλi + νtν−1etλi
) (A− λi)

ν

ν!
Pi

=

m∑
i=1

νi−1∑
ν=0

[
d

dt
(tνetλi)

]
(A− λi)

ν

ν!
Pi

=
d

dt

(
m∑
i=1

νi−1∑
ν=0

tνetλi
(A− λi)

ν

ν!
Pi

)

=
d

dt
etA.

Notice that since λetλ = etλλ, by the properties of the functional calculus we see
that AetA = etAA. �
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The following consequence of formula (4.4) motivates our interest in the
behavior of the function t �→ etA as t → ∞.

Corollary 4.3. Let A = (aij) ∈ L(X). Then for each x = (x1, . . . , xn)
� ∈ Cn the

function
t �−→ etAx =: (x1(t), x2(t), . . . , xn(t))

�

is the unique solution of the system of differential equations

d

dt
x1(t) = a11x1(t) + · · ·+ a1nxn(t)

d

dt
x2(t) = a21x1(t) + · · ·+ a2nxn(t)

...
d

dt
xn(t) = an1x1(t) + · · ·+ annxn(t),

with the initial condition

(x1(0), x2(0), . . . , xn(0)) = (x1, x2, . . . , xn).

Proof. A look at the differential quotient defining the derivative d
dt (e

tAx) and
Theorem 4.2 convinces us that

d

dt
(etAx) =

(
d

dt
etA
)
x = (AetA)x = A(etAx)

for all t ∈ R. Since e0A = I, we infer that etAx is a solution of the above initial
value problem. Now, let x(t) be any solution and define y(t) := e−tAx(t). Then

d

dt
y(t) =

(
d

dt
e−tA

)
x(t) + e−tA d

dt
x(t)

= −Ae−tAx(t) + e−tAAx(t)

= 0.

Therefore, t �→ y(t) = e−tAx(t) is constant. Since for t = 0 we have y(0) = x, we
conclude that x(t) = etAx for all t ∈ R. �
Remark 4.4. In short, Corollary 4.3 tells us that the matrix semigroup generated
by A = (aij) solves the initial value problem{

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0,

in the sense that the orbit {etAx0 : t ∈ R} ≥ 0 of the initial value x0 ∈ Cn is
the unique solution of the problem. At present, we note that Theorem 4.2 remains
true if t is allowed to run through C, hence

z �−→ ezA

is a holomorphic function on C.
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4.2 Coordinate Functions

We intend to study the behavior of the function t �→ etA (or of t �→ etAx for a
given x ∈ X), as t → ∞, following the same pattern as in the previous Chapter 3
for the matrix powers. Nevertheless, a few comments seem to be appropriate.

While in Chapter 3 we studied the sequence (T k) and based our considera-
tions on the characterization of convergence of the coordinate sequences given in
Section 3.1, we will now have to deal with a function t �→ etA of the real variable t.
We will formulate, without going into a detailed discussion, the following versions
of the convergence properties discussed in Section 1.2.

If t �→ y(t) is a real function with values in a finite-dimensional vector space
X with a basis {y1, . . . , yn}, then

y(t) =

n∑
i=1

ηi(t)yi

with uniquely determined values of ηi(t) for each t ∈ R. We call the functions
t �→ ηi(t) the coordinate functions of y(t) with respect to {y1, . . . , yn}. Convergence
of y(t) as t → ∞ in X is equivalent to the convergence of all coordinate functions
ηi(t), no matter what basis is employed, the coordinates of the limit being the
limits of the respective coordinate functions.

In order to discuss the function t �→ etA, in analogy to Lemma 2.16, we use
a basis BA of L(X) containing the set

BA :=

{
(A− λi)

ν

ν!
Pi : i = 1, . . . ,m; ν = 0, . . . , νi − 1

}
.

By (4.1), the non-zero coordinate functions with respect to this basis are

gν,λi(t) := tνetλi (4.5)

for i = 1, . . . ,m and ν = 0, . . . , νi − 1. Likewise, if we wish to study etAx for a
given x ∈ X , we use a basis BA,x of X containing the non-zero elements of

BA,x :=

{
(A− λi)

νx

ν!
: i = 1, . . . ,m; ν = 0, . . . , νi − 1

}
.

Again, the coordinate functions of etAx with respect to this basis are among the
functions gν,λi(t) defined in (4.5).

The behavior of a function gν,λ(t) := tνetλ is easy to understand and essen-
tially depends on the real part of λ. The following cases are possible.

• Reλ < 0. Then, for each fixed value of ν, etλtν → 0 as t → ∞, where the
decay is exponential in the following sense:
for any 0 < δ < −Reλ there is Mδ ≥ 1 such that∣∣eλttν∣∣ = tνetReλ ≤ Mδe

−δt for all t ≥ 0.
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• Reλ > 0. Then, for each fixed value of ν,
∣∣etλtν∣∣ → ∞ as t → ∞, but it

remains exponentially bounded in the following sense:
for each w > Reλ > δ > 0 there is Mw ≥ 1 such that∣∣eλttν∣∣ ≤ Mwe

wt for all t ≥ 0.

• Reλ = 0 and ν = 0. Then etλ is constant (for λ = 0) or periodic of period
2πi
λ (for λ �= 0).

• Reλ = 0 and ν ≥ 1. Then
∣∣eλttν ∣∣ = tν → ∞ as t → ∞.

After these preparations, we now look at the behavior of etAx on the spectral
subspaces Xi = imPi of X .

Theorem 4.5. Let A ∈ L(X), let ‖ · ‖ be a norm on X, and fix an i ∈ {1, . . . ,m}.
Then the following assertions hold.

a) For every ρ < Reλi < ω there exist M ≥ 1 and N > 0 such that

Neρt‖x‖ ≤
∥∥etAx∥∥ ≤ Meωt‖x‖

for all t ≥ 0 and all x ∈ Xi.

b) If Reλi = 0, then {
etAx : t ≥ 0

}
is bounded for every x ∈ Xi if and only if λi is a simple pole of R(·, A), i.e.,
if νi = 1. In this case, etAx = etλix for every x ∈ Xi and t ≥ 0.

Proof. a) By formula (4.1), we have for x ∈ Xi that∥∥etAx∥∥ = ∥∥∥∥νi−1∑
ν=0

etλitν
(A− λi)

ν

ν!
x

∥∥∥∥ ≤ νi−1∑
ν=0

∥∥∥∥ (A− λi)
ν

ν!

∥∥∥∥ ∣∣etλitν
∣∣ · ‖x‖

≤ Meωt‖x‖,

for all ω > Reλi and some M ≥ 1.

Now, we apply the above estimate to −A which has −λi as an eigenvalue
with the same spectral projection Pi and spectral subspace Xi as before. Hence,∥∥e−tAy

∥∥ ≤ Me−ρt‖y‖

for all y ∈ Xi, t ≥ 0, and some M ≥ 1. Since e−tAetA = I, we find for every x ∈ Xi

an element y ∈ Xi such that x = e−tAy. This implies∥∥etAx∥∥ = ‖y‖ ≥ 1

M
eρt‖x‖,

for all t ≥ 0.

b) If νi = 1, then etAx = etλix for all x ∈ Xi. On the other hand, if νi ≥ 2,
then ker(A−λi) � Xi, hence there is an x ∈ Xi with (A−λi)x �= 0. The coordinate
function of (A−λi)x with respect to the basis element x ∈ BA,x equals tetλi , which
is unbounded as t → ∞. �
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4.3 The Spectral Bound

Now we introduce the following constant which plays the same role for the expo-
nential function t �→ etA as the spectral radius r(T ) does for the powers k �→ T k

(see Section 3.2).

Definition 4.6. For A ∈ L(X) the number

s(A) := sup{Reλ : λ ∈ σ(A)}

is called the spectral bound of A.

We note that the spectral bound of A can be determined from ‖etA‖ in the
following way (compare with Proposition 3.3).

Proposition 4.7. If ‖ · ‖ is any norm on L(X), then

s(A) = lim
t→∞

1

t
log ‖etA‖. (4.6)

If ‖ · ‖ is an operator norm, then

s(A) = inf
t>0

1

t
log ‖etA‖. (4.7)

Proof. By the equivalence of norms on L(X), the limit

lim
t→∞

1

t
log ‖etA‖,

if it exists, does not depend on the specific norm. Hence, we can use the supremum
norm |||·||| with respect to the basis BA above. Then we have∣∣∣∣∣∣etA∣∣∣∣∣∣ = ∣∣tνetλi

∣∣ = tνetReλi

for some i ∈ {1, . . . ,m} and some 0 ≤ ν ≤ n− 1. Hence,

1

t
log
∣∣∣∣∣∣etA∣∣∣∣∣∣ = ν

t
log t+Reλi

for all t > 0 and i and ν as before. Since the function t �→ ν
t log t tends to zero as

t → ∞, we obtain
ν

t
log t+Reλi −→ Reλi

as t → ∞, yielding Formula (4.6).

Now let ‖ · ‖ be an operator norm. The Spectral Mapping Theorem 2.20 and
Corollary 1.10 imply

log ‖etA‖ ≥ t|λi| ≥ tReλi,

and (4.7) follows. �
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A repeated application of Theorem 4.5 yields the following.

Corollary 4.8. Let A ∈ L(X) and let ‖ · ‖ be any norm on X. Then for every
w > s(A) there is a constant M ≥ 1 such that∥∥etAx∥∥ ≤ Mewt‖x‖

for all t ≥ 0 and x ∈ X. Furthermore,

s(A) = ω0(T )

where

ω0(T ) := inf
{
w ∈ R : ∃M ≥ 1 such that ‖etA‖ ≤ Mewt for t ≥ 0

}
. (4.8)

Remark 4.9. The number ω0(T ) defined in (4.8) is known as the growth bound of
the matrix semigroup T (t) := etA. Note that if X is an infinite-dimensional vector
space, the equality s(A) = ω0(T ) need no longer hold in general.

4.4 Asymptotics

Now we put all the information together to describe the action of etA on all of X .
As in Section 3.3, we first define different types of long-time behavior of etA.

Definition 4.10. For A ∈ L(X) and any norm ‖ ·‖ on X we say that the semigroup
(etA)t≥0 is

• bounded4 if supt≥0 ‖etA‖ < ∞;

• stable if limt→∞ ‖etA‖ = 0;

• exponentially stable if there exist M ≥ 1 and ε > 0 such that
∥∥etA∥∥ ≤ Me−εt

for all t ≥ 0;

• convergent if limt→∞ etA = P for some P ∈ L(X);

• periodic if et0A = I for some t0 > 0; in this case the smallest such t0 is called
the period of etA;

• hyperbolic if there exist A-invariant subspaces Xs and Xu, such that X =
Xs ⊕Xu and ∥∥etAx∥∥ ≤ Me−εt‖x‖ for x ∈ Xs, (4.9)∥∥etAx∥∥ ≥ 1

M
eεt‖x‖ for x ∈ Xu, (4.10)

for all t ≥ 0 and some constants M ≥ 1, ε > 0; Xs and Xu are called the
stable and unstable subspaces, respectively.

4Note that working with ODEs or dynamical systems, a different terminology is also widely
accepted: what we call “bounded” is often called “stable”, what we call “stable” is often called
“asymptotically stable”, and what we call “hyperbolic” is often called “exponential dichotomy”.
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Remarks 4.11.

a) Since pointwise and norm convergence on L(X) coincide, a statement about
the long-time behavior of

∥∥etAx∥∥ for all x ∈ X is equivalent to the same

statement regarding
∥∥etA∥∥ for the appropriate operator norm.

b) Note that stability of a matrix semigroup is equivalent to exponential sta-
bility, see Exercise 3. We will prove this in a more general form later (cf.
Proposition 12.4).

c) Using (4.8), we see that

(etA)t≥0 is (exponentially) stable ⇐⇒ ω0(T ) < 0. (4.11)

We now classify the asymptotic behavior of etA in terms of spectral properties
of the matrix A.

Theorem 4.12. Let A ∈ L(X) and take any norm ‖ · ‖ on X.

a) (etA)t≥0 is (exponentially) stable if and only if s(A) < 0.

b) (etA)t≥0 is bounded if and only if s(A) ≤ 0 and all eigenvalues of A with real
part equal to 0 are simple poles of the resolvent R(·, A).

c) (etA)t≥0 is periodic with period t0 if and only if it is bounded and σ(A) ⊂ 2πi
t0

Z
for some t0 > 0.

d) limt→∞ etA = P1 (P1 denotes the spectral projection of A belonging to the
eigenvalue 0) if and only if s(A) = 0 is a simple pole of the resolvent R(·, A)
and σ(A) ∩ iR = {0}.

e) (etA)t≥0 is hyperbolic if and only if σ(A) ∩ iR = ∅.

Proof. a) This is a consequence of relation (4.11) and Corollary 4.8.

b) (etA)t≥0 is bounded iff the same is true for the coordinate functions in
formula (4.5), which holds iff for each i, either Reλi < 0 or Reλi = 0 and νi = 1,
that is, if and only if s(A) ≤ 0 and every eigenvalue λi with Reλi = 0 is a simple
pole of the resolvent.

c) Again we use coordinate functions and observe that et0A = I for some
t0 > 0 iff λi ∈ 2πi

t0
Z, with νi = 1, which by b) holds iff (etA)t≥0 is bounded and

σ(A) ⊂ 2πi
t0

Z.

d) limt→∞ etA = P1 iff all coordinate functions converge, that is, iff either
Reλi < 0, or λi = 0 and νi = 1. This is true iff s(A) ≤ 0, which is a simple
pole of the resolvent and the only eigenvalue on the imaginary axis. Moreover, the
semigroup converges to the corresponding spectral projection.

e) (etA)t≥0 is hyperbolic iff there exist A-invariant subspaces Xs and Xu such
that X = Xs ⊕Xu and inequality (4.9) holds, that is, iff etA|Xs and e−tA|Xu are
both exponentially stable. By a), this is equivalent to

s (A|Xs) < 0 and s (−A|Xu) < 0 ⇐⇒ σ(A) ∩ iR = ∅. �
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Thus, in complete analogy to the situation in Section 3, convergence of etA

as t → ∞ is restricted to one of the following situations.

• limt→∞ etA = 0: this is the case if and only if s(A) < 0;

• limt→∞ etA = P1, where P1 is the spectral projection belonging to λ1 = 0:
this is the case if and only if s(A) = 0, σ(A) ∩ iR = {0}, and 0 is a simple
pole of the resolvent R(·, A).

Example 4.13. Analyzing the spectral properties of the matrices

A1 =

(
0 1
−1 0

)
, A2 =

(
0 1
1 0

)
, A3 =

(
1 1
−1 −1

)
,

A4 =

(
−1 1
0 0

)
, A5 =

(
−1 0
1 −1

)
,

one obtains that the semigroup
(
etA1
)
t≥0

is periodic with period 2π,
(
etA2
)
t≥0

is hyperbolic,
(
etA3
)
t≥0

is unbounded,
(
etA4
)
t≥0

converges to P1 = ( 0 1
0 1 ), and(

etA5
)
t≥0

is exponentially stable.

Decomposing the space we can study stability concepts more in detail. One
example of this approach is the definition of hyperbolicity of a matrix semigroup.
Let us use this approach to obtain another asymptotic property.

Definition 4.14. For A ∈ L(X) we call the semigroup (etA)t≥0 asymptotically
periodic if there is a direct sum decomposition

X = X0 ⊕X1

into A-invariant subspaces X0 and X1 such that

a) etA|X0 is stable, i.e., limt→∞ etAx = 0 for all x ∈ X0, and

b) etA|X1 is periodic, i.e., there exists t0 > 0 such that et0Ay = y for all y ∈ X1.

Again, this property can be described by spectral properties of A.

Theorem 4.15. For A ∈ L(X) the following assertions are equivalent.

(i) (etA)t≥0 is asymptotically periodic.

(ii) (etA)t≥0 is bounded and σ(A) ∩ iR ⊂ 2πiαZ for some α ∈ R.
(iii) s(A) ≤ 0, the set σ(A) ∩ iR consists of simple poles of the resolvent R(·, A)

and is contained in 2πiαZ for some α ∈ R.

Proof. (i) =⇒ (ii): The boundedness of (etA)t≥0 follows directly. Let X = X0⊕X1

be the corresponding decomposition. Then

σ(A) = σ(A|X0 ) ∪ σ(A|X1 ),

where σ(A|X0 ) ⊂ {λ ∈ C : Reλ < 0} by Theorem 4.12.a) and σ(A|X1 ) ⊂ 2πiαZ
for some α ∈ R by Theorem 4.12.c).
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(ii) =⇒ (iii): This follows by Theorem 4.12.b).

(iii) =⇒ (i): Define

X0 :=
⊕

Reλi<0

Xi and X1 :=
⊕

Reλi=0

Xi

and apply Theorem 4.12.a) and c). �

Finally, we ask under which conditions a subsequence or the Cesàro means of
(etA)t≥0 converge. First recall the concept of a spectral contraction in Definition
3.11.

Theorem 4.16. The following assertions are equivalent for A ∈ L(X).

(i) etA is spectral contraction for one/all t > 0.

(ii) s(A) = 0 and all eigenvalues of A with real part equal to 0 are simple poles
of the resolvent R(λ,A).

(iii) There is an operator norm |||·||| on L(X) such that
∣∣∣∣∣∣ektA∣∣∣∣∣∣ = 1 for all k ∈ N

and one/all t > 0.

(iv) There exists a sequence (tm) of the form tm := tkm, where (km) is a subse-
quence of (k), such that (etmA) converges to some limit P �= 0 for one/all
t > 0.

Proof. The equivalence (i) ⇐⇒ (ii) follows by Theorem 3.10 combined with the
Spectral Mapping Theorem 2.20 and Theorem 2.28, the equivalence (i) ⇐⇒ (iv)
again by Theorem 3.10, while (i) ⇐⇒ (iii) holds by Theorem 3.12. �

Definition 4.17. We say that (etA)t≥0 is a spectral contraction semigroup, if any
of the equivalent assertions of Theorem 4.16 is true.

The following is the continuous-time analogue of the Cesàro means introduced
in Chapter 3.

Definition 4.18. Let A ∈ L(X). The matrices

C(r) :=
1

r

∫ r

0

esA ds, r > 0,

are called the Cesàro means of the semigroup (etA)t≥0. The semigroup (etA)t≥0 is
mean ergodic (or Cesàro summable), if limr→∞ C(r) exists.

Theorem 4.19. For A ∈ L(X) the semigroup (etA)t≥0 is mean ergodic if and only
if either s(A) < 0, or (etA)t≥0 is a spectral contraction semigroup.

In the case 0 ∈ σ(A), the Cesàro means C(r) converge to the spectral pro-
jection of A belonging to 0, in all other cases of mean ergodic semigroups C(r)
converge to 0.
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Proof. First note that the coordinate functions of C(r) with respect to BA are of
the form

g
(r)
ν,λi

:=
1

r

∫ r

0

gν,λi(s) ds =
1

r

∫ r

0

esλisν ds. (4.12)

Following the discussion on page 46–47, we see that g
(r)
ν,λ converges only in two

cases: either for Reλ < 0, or for Reλ = 0 = ν. This proves the first assertion of
the theorem.

Since for Reλ < 0 we have g
(r)
ν,λ → 0 as r → ∞, in the case when s(A) < 0

we obtain C(r) → 0. On the other hand, in the case of a spectral contraction

semigroup, the only nonzero limit of the coordinate functions as r → ∞ is g
(r)
0,0 = 1.

By (4.1), the Cesàro means C(r) then converge towards the spectral projection of
A belonging to λ = 0. �

4.5 Notes and Remarks

There are many ways how to compute the exponential function of a matrix numer-
ically and we refer here to an excellent survey paper by Moler and van Loan [99].

Theorem 4.12.a) is Lyapunov’s Stability Theorem proved in 1892 (see [88]).
The results of this chapter are presented in many books on ordinary differential
equations, like for example Amann [3] or Teschl [139, Ch. 3].

4.6 Exercises

1. Show that if A,B ∈ L(X) commute, then et(A+B) = etAetB. Find an example
to show that the commutativity assumption is necessary.

2. Let B ∈ L(X). Under which conditions is there an A ∈ L(X) such that
ekA = Bk for all k ∈ N?

3. Prove that for A ∈ L(X) the matrix semigroup etA is stable if and only if it
is exponentially stable.

4. Show that {etAx : t ∈ R} is bounded for every x ∈ X if and only if σ(A) ⊂ iR
and all eigenvalues are simple poles of the resolvent R(·, A).

5. Show that the semigroup (etA)t≥0 is hyperbolic if and only if σ
(
etA
)
∩Γ = ∅

for some/all t > 0, where Γ denotes the unit circle in C.

6. Compute the matrix exponential etA for

A =

(
−a b
a −b

)
with a+ b �= 0.

7. For every one of the matrices in Example 4.13 compute the spectrum and
the corresponding semigroup, and then describe its asymptotic behavior.



Chapter 5

Positive Matrices

We call a real matrix positive if its entries are greater or equal to zero. Positivity
naturally occurs in many applications and it turns out to have deep consequences
on the spectral properties of the matrix. In this chapter we discuss spectral prop-
erties of positive matrices, incorporating seminal work by Perron, Frobenius, and
Wielandt.

5.1 Positivity

Let x = (ξ1, . . . , ξn), y = (η1, . . . , ηn) ∈ Rn. We say that

x ≤ y if ξi ≤ ηi for all 1 ≤ i ≤ n.

Similarly, for real n× n matrices T = (τij) and S = (σij) we say that

T ≤ S if τij ≤ σij for all 1 ≤ i, j ≤ n.

The symbol x < y (T < S) means that ξi ≤ ηi for all i, j and there are
indeces i, j such that ξj < ηj .

Definition 5.1. A vector x = (ξ1, . . . , ξn) (a matrix T = (τij)) is called positive, if
ξi ≥ 0 for all i (τij ≥ 0 for all i, j). In this case we write x ≥ 0 (T ≥ 0). Next, x > 0
(T > 0) if x ≥ 0 (T ≥ 0) and there is at least one nonzero coordinate (entry).

We point out that, in our terminology, a positive vector need not to have all
coordinates larger than zero and a positive matrix need not have all entries larger
than zero. Likewise, a vector x > 0 (matrix T > 0) may have many coordinates
(entries) equal to zero, but at least one coordinate (entry) must be larger than
zero.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_5
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Definition 5.2. A vector x = (ξ1, . . . , ξn) (a matrix T = (τij)) is called strictly
positive5, if ξi > 0 for all its coordinates (τij > 0 for all its entries). In this case,
we write x � 0 (T � 0).

By the absolute value of a vector x = (ξ1, . . . , ξn) ∈ X = Cn we mean the
vector

|x| :=
(
|ξ1|, . . . , |ξn|

)
.

Similarly, for a matrix T = (τij) ∈ L(X) we call

|T | :=
(
|τij |
)

the absolute value of T .

We start with some basic observations.

Lemma 5.3. Let S, T ∈ L(X). Then the following properties hold.

a) T ≥ 0 if and only if Tx ≥ 0 for all x ≥ 0.

b) T ≤ S if and only if Tx ≤ Sx for all x ≥ 0.

c) |Tx| ≤ |T | |x|, hence |Tx| ≤ T |x| if T ≥ 0.

Proof. a) For positive T and x, the product Tx is obviously positive. Conversely, if
Tx ≥ 0 for every standard basis vector x = uj , j = 1, . . . , n, then all the columns
of T are positive, and so is T .

b) Since T ≤ S iff T − S ≥ 0, this is a consequence of a).

c) This follows by the triangle inequality, since for every coordinate we have

(|Tx|)i =
∣∣∣∣ n∑
j=1

τijxj

∣∣∣∣ ≤ n∑
j=1

|τij ||xj | = (|T ||x|)i , i = 1, . . . , n. �

In the following, we will always use the maximum norm on X = Cn,

‖x‖ := ‖x‖∞ = max
1≤i≤n

|ξi|,

while on L(X) we will use the corresponding operator norm (see Example 1.11),
given by

‖T ‖ := ‖T ‖∞ = max
‖x‖≤1

‖Tx‖ = max
1≤i≤n

n∑
j=1

|τij |.

The reason for this special choice becomes clear from the following lemma.

5There is a different terminology that has its followers, calling vectors or matrices that are
positive in our sense non-negative and reserving the term positive for what we call strictly
positive. This may of course lead to misunderstandings and confusion, but the coexistence of
both terminologies is a fact.
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Lemma 5.4. For x, y ∈ X and S, T ∈ L(X) the following assertions hold.

a) The inequality |x| ≤ |y| implies ‖x‖ ≤ ‖y‖, in particular ‖ |x| ‖ = ‖x‖
for all x.

b) The inequality |S| ≤ |T | implies ‖S‖ ≤ ‖T ‖. In particular,

‖ |T | ‖ = ‖T ‖

for all T , and |S| ≤ T implies ‖S‖ ≤ ‖T ‖.
c) If |S| ≤ T , then r(S) ≤ r(|S|) ≤ r(T ).

d) If T ≥ 0, then
‖T ‖ = ‖T1‖,

where 1 := (1, . . . , 1)�.

Proof. a) For x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn), inequality |x| ≤ |y| implies,
for every i, that

|ξi| ≤ |ηi| ≤ max
j

|ηj | ≤ ‖y‖,

and taking maximum also on the left side one obtains ‖x‖ ≤ ‖y‖.
b) This follows in the same way as above.

c) From |S| ≤ T follows |Sk| ≤ |S|k ≤ T k for every k ∈ N. Now assertion b)
and Gelfand’s formula for the spectral radius imply the desired inequality.

d) Observe that (T1)i =
∑n

j=1 |τij | for all i and use the definition of the
maximum norm and the corresponding operator norm. �

The following observation on the resolvent has remarkable consequences.

Proposition 5.5. Let T be a positive matrix with spectral radius r(T ) and μ ∈ ρ(T ).

a) The resolvent R(μ, T ) is positive whenever μ > r(T ).

b) If |μ| > r(T ), then ∣∣R(μ, T )
∣∣ ≤ R

(
|μ|, T

)
.

Proof. We use the Neumann series representation

R(μ, T ) =

∞∑
k=0

T k

μk+1
(5.1)

for the resolvent, which is valid for |μ| > r(T ) by Corollary 2.15.

a) If T ≥ 0, then T k ≥ 0 for all k, hence for μ > r(T ), we have

R(μ, T ) = lim
N→∞

N∑
k=0

T k

μk+1
≥ 0

since the finite sums are positive and convergence holds in every entry.
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b) We have for |μ| > r(T ) that

∣∣R(μ, T )
∣∣ = ∣∣∣∣∣ limN→∞

N∑
k=0

T k

μk+1

∣∣∣∣∣ ≤ lim
N→∞

N∑
k=0

∣∣∣∣ T k

μk+1

∣∣∣∣
= lim

N→∞

N∑
k=0

T k

|μ|k+1
= R (|μ|, T ) . �

The following result, a fundamental property of positive matrices, was dis-
covered by O. Perron in 1907 and can be considered as the first major result in
the theory of positive matrices.

Theorem 5.6 (Perron). If T is a positive matrix, then r(T ) is an eigenvalue of T
with positive eigenvector.

Proof. Assertion b) of Proposition 5.5 and Lemma 5.4 imply∥∥R(μ, T )
∥∥ ≤ ∥∥R(|μ|, T )

∥∥ for |μ| > r(T ).

Recall the formula for the resolvent proved in Theorem 2.11:

R(μ, T ) = (μ− T )−1 =

m∑
i=1

νi−1∑
ν=0

(T − λi)
ν

(μ− λi)ν+1
Pi for μ /∈ {λ1, . . . , λm}. (5.2)

Here λi are the eigenvalues of T with respective multiplicities of the minimal
polynomial νi and spectral projections Pi, i = 1, . . . ,m.

Let now λj ∈ σ(T ) such that |λj | = r(T ). Then ‖R(μ, T )‖ → ∞ whenever
μ approaches λj . This is obtained immediately from (5.2) by looking at the sup-
norm on L(X) with respect to a basis containing the set BT in the sense of Lemma
2.16.b). Putting μ = sλj with s > 1 the above estimate yields∥∥R(sr(T ), T )

∥∥ ≥ ∥∥R(sλj , T )
∥∥→ ∞ as s ↓ 1,

hence r(T ) must be an eigenvalue of T .

Finally, again by (5.2),

lim
μ↓r(T )

R(μ, T )
(
μ− r(T )

)ν1
=
(
T − r(T )

)ν1−1
P1,

where P1 denotes the spectral projection corresponding to λ1 = r(T ) and ν1 is the
pole order of R(·, T ) at r(T ). Hence (T − r(T ))ν1−1P1 ≥ 0 by Proposition 5.5.a).
Since (T − r(T ))ν1−1P1 �= 0, there necessarily exists a positive vector y1 with

x1 := (T − λ1)
ν1−1P1 y1 �= 0.

Any such x1 is a positive eigenvector of T belonging to r(T ). �
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Before continuing, let us state here an immediate corollary of Perron’s result.

Corollary 5.7. Let T ≥ 0 and μ ∈ ρ(T ). Then R(μ, T ) ≥ 0 implies μ > r(T ).

Proof. Let x ≥ 0 be a positive eigenvector of T belonging to the eigenvalue r(T ).
Then R(μ, T )x = (μ− r(T ))−1x ≥ 0 and we are done. �

Originally, Perron studied strictly positive matrices and thus obtained
stronger results. Under the assumption of strict positivity of T he proved that
r = r(T ) > 0, it is a first-order pole of the resolvent R(·, T ), and is the only
eigenvalue of T of modulus r. The corresponding eigenspace is one-dimensional
and spanned by a strictly positive vector.

However, as already Frobenius noticed, it is not the non-existence of zero
entries in a given matrix, but the positions of them, that implies all these nice
spectral properties. Frobenius defined the term irreducibility of a matrix, which
we discuss in the next section.

5.2 Irreducibility

We now turn to the question under which conditions on a positive matrix T (other
than strict positivity) the spectral radius r(T ) is a first-order pole of the resolvent,
a property with important consequences for the behavior of the powers T k as
k → ∞. The main consequences we have in mind will, however, be discussed in
the next chapter and concern the situation where T = etA.

The following property of T , again relatively easy to recognize from the ma-
trix entries, will turn out to be sufficient.

Definition 5.8. A matrix T ∈ L(X) is called reducible if there exists a subspace

JM :=
{
(ξ1, . . . , ξn)

� : ξi = 0 for i ∈ M
}
⊂ X (5.3)

for some ∅ �= M � {1, . . . , n} which is invariant under T . If T is not reducible, it
is called irreducible.

Remark 5.9. According to the definition, for n = 1, i.e., X = R, any 1× 1 matrix
(a) is irreducible, including the case a = 0.

It is important to note that arbitrary coordinate transformations may de-
stroy or produce irreducibility of a given matrix. However, a permutation of the
canonical basis vectors of X does not affect it. So, T is reducible if and only if,
after a reordering of the canonical basis vectors of X , there is 1 ≤ k < n such that

JMk
:=
{
(ξ1, . . . , ξn)

� : ξk+1 = · · · = ξn = 0
}

(5.4)

is invariant under T . This leads to the following characterization, which can be
applied easily to concrete matrices.
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Lemma 5.10. A matrix T ∈ L(X) is reducible if and only if there exists a permu-
tation matrix P such that

S := PTP−1

has block-triangular form

S =

(
A B
0 C

)
,

with square matrices A and C.

We will apply the notion of irreducibility mainly to positive matrices and list
now two most important examples.

Examples 5.11.

a) A matrix T = (τij) with all off-diagonal entries τij > 0 (i �= j) is irreducible,
since obviously there is no permutation matrix P for which PTP−1 would
be block triangular with square diagonal blocks.

b) If T ≥ 0 is irreducible and T ≤ S, then S is irreducible. Indeed, if S would
be reducible, then there would exist an appropriate S-invariant subspace
JM defined as in (5.3) which would also be T -invariant, since for every
(ξ1, . . . , ξn)

� ∈ JM we have Tξi ≤ Sξi = 0 for i ∈ M : we reached a con-
tradiction.

The following result shows that every matrix can, in a certain way, be de-
composed into irreducible blocks.

Proposition 5.12. For every matrix T ∈ L(X) there exists a permutation matrix
P such that S := PTP−1 has block-triangular form⎛⎜⎜⎜⎜⎝

T11 ∗ . . . ∗

T22
. . .

...
. . . ∗0

Tmm

⎞⎟⎟⎟⎟⎠ ,

where the (square) diagonal blocks Tii are all irreducible.

Proof. We prove the result by induction on n. The case n = 1 is clear. Let n > 1
and suppose that the result holds for matrices of size ≤ n− 1. If T is irreducible,
there is nothing to prove. If T is reducible, a reordering of the canonical basis
produces the form (

T11 T12

0 T22

)
,

where T11 is a k × k block for suitable 1 ≤ k < n. Since k < n, we can, by
assumption, rearrange the first k basis vectors in such a way that T11 has block
triangular form with irreducible diagonal blocks. Since T22 can be treated in the
same way, we obtain the assertion. �
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The following is our main result on irreducible positive matrices. It was proved
by F.G. Frobenius in 1912.

Theorem 5.13 (Perron–Frobenius). Let T ∈ L(X) be an irreducible and positive
matrix. If n = dimX > 1, then the spectral radius r := r(T ) satisfies r > 0,
and r is a first-order pole of the resolvent R(·, T ). The corresponding eigenspace is
one-dimensional and spanned by a strictly positive vector z = (ζ1, . . . , ζn)

�, i.e.,
with ζi > 0 for all i.

Proof. Suppose that n = dimX > 1. By Theorem 5.6, there exists 0 < z =
(ζ1, . . . , ζn)

� such that Tz = rz. Suppose now that z is not strictly positive. After
a reordering of the coordinates we may assume ζi > 0 for i = 1, . . . , k and ζi = 0
for i = k + 1, . . . , n. Note that 0 ≤ k < n, hence JMk

�= {0}, X (see (5.4)). Now
for every y ∈ JMk

there is a c > 0 such that |y| ≤ c · z holds. Thus

|Ty| ≤ T |y| ≤ c T z = cr · z,

which shows that Ty ∈ JMk
, i.e., JMk

is T -invariant. Since T was supposed to be
irreducible, this is impossible. Therefore, z must be strictly positive.

For the next step assume r = 0, hence Tz = 0 for a strictly positive vector
z. As before, we conclude that

|Ty| = 0

for all y ∈ X . Thus T = 0, which is not irreducible since n = dimX > 1.

Now we show that the eigenspace belonging to r is one-dimensional. Let

Ty = ry

for some 0 �= y ∈ X , y �= dz for d ∈ R. Since T is a positive, hence a real matrix,
we infer that the real and imaginary parts of y are eigenvectors belonging to r.
Therefore, we can assume 0 �= y ∈ Rn. Since the eigenvector z found above is
strictly positive, there exists a c ∈ R such that

x := z − cy

is positive, but not strictly positive. The identity Tx = rx implies that the sub-
space JM corresponding to the zero coordinates of x is invariant under T , hence
must be {0}. This implies z = cy.

Finally, we determine the pole order of r. Since r > 0, we may, after rescaling,
take r = 1, hence

Tz = z

for some strictly positive z = (ζ1, . . . , ζn)
�. Define Dz := diag(ζ1, . . . , ζn) and

S := D−1
z TDz.
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Then S ≥ 0 and S1 = 1 = (1, . . . , 1)�, hence ‖S‖ = 1 by Lemma 5.4.d). This
implies ‖Sk‖ ≤ 1 and∥∥T k

∥∥ = ∥∥DzS
kD−1

z

∥∥ ≤ ‖Dz‖ ·
∥∥D−1

z

∥∥
for all k ∈ N, hence (T k) is bounded. By Theorem 3.7.b), the number 1 is a simple
pole of the resolvent. �
Example 5.14. For the positive irreducible matrix

T =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠
one has r(T ) = 2 ∈ σ(A) = {−1, 2} and the corresponding strictly positive eigen-
vector is 1.

The strictly positive vector z appearing in Theorem 5.13 is called the Perron
vector for T and is unique up to multiplication by positive scalars (assuming
‖z‖ = 1 for a norm ‖ · ‖ on X , we have uniqueness).

If T is irreducible, then so is its transpose, and consequently T� has a strictly
positive eigenvector w that spans the one-dimensional eigenspace corresponding
to r = r(T ) = r(T�),

T�w = rw or, equivalently, w�T = rw�.

Using this we immediately obtain the following result.

Lemma 5.15. Suppose that T is a positive irreducible matrix with r = r(T ) and
rx ≤ Tx for some nonzero x ≥ 0. Then Tx = rx and x � 0.

Proof. Assume Tx − rx > 0. Taking the Perron vector w � 0 for T� we have
w�(Tx− rx) = (w�T − rw�)x > 0, which is not possible. Hence Tx = rx and by
the Perron–Frobenius Theorem, x is strictly positive. �

Let us now use the obtained result to describe the long-term behavior of the
powers of a positive irreducible matrix.

Corollary 5.16. Let T be a positive irreducible matrix with r(T ) = 1 radially dom-
inant6. Then

lim
k→∞

T k = P1 � 0,

where P1 denotes the spectral projection belonging to the eigenvalue 1. Moreover,
P1 is of the form

P1x = 〈x, y〉 z, x ∈ X,

where z � 0 and y � 0, and 〈z, y〉 = 1.

6For the definition of a radially dominant eigenvalue, see page 36.
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Proof. The convergence of the powers T k to the spectral projection P1 is an im-
mediate consequence of Theorems 3.7 and 5.13.

Now let z � 0 and w � 0 be the respective Perron vectors for T and T�.
Put y = w

〈z,w〉 and define Px := 〈x, y〉 z for all x ∈ X . It is clear that P 2 = P � 0

and imP = ker(T − I) is one-dimensional. Since

〈Tx− x, y〉 z = 〈x, T�y〉z − 〈x, y〉 z = 0, x ∈ X,

we have im(T − I) ⊆ kerP . By the above, the dimensions of both subspaces equal
n− 1, hence they are equal. This means that P is a projection on ker(T − I) along
im(T − I), therefore P = P1. �

We showed almost the same properties for irreducible positive matrices as
Perron has obtained for strictly positive matrices. However, we were not able to
show that r = r(T ) is the only eigenvalue of modulus r.

5.3 Imprimitivity

The number of eigenvalues on the spectral circle has interesting impact on the
asymptotic behavior of T k for a positive irreducible matrix T .

Definition 5.17. The boundary spectrum of a matrix T with spectral radius r =
r(T ) is the set

σb(T ) := {λ ∈ C : |λ| = r} ∩ σ(T ).

A positive irreducible matrix T with σb(T ) = {r} is called a primitive matrix .
If a positive irreducible matrix has exactly h > 1 eigenvalues in the set σb(T ), it
is called imprimitive and h is referred to as the index of imprimitivity.

The next result was proved by H. Wielandt in 1950.

Lemma 5.18 (Wielandt). Let S be any complex matrix and T a positive irreducible
matrix such that |S| ≤ T . Let r = r(T ). Then for any λ ∈ σ(S) we have |λ| ≤ r.
Moreover,

|λ| = r if and only if S = eiϕDTD−1,

where eiϕ = λ/r and D is a diagonal matrix with |D| = I. If we set d11 = 1, the
matrix D = diag(dii) is uniquely determined.

Proof. From Lemma 5.4.c) we know that r(S) ≤ r(T ).

Assume that |λ| = r and let x be an eigenvector of S corresponding to the
eigenvalue λ, i.e., Sx = λx. Then

r|x| = |λ||x| = |λx| = |Sx| ≤ |S||x| ≤ T |x|.

By Lemma 5.15, we have T |x| = r|x|, |x| � 0, and as we have seen also |S||x| =
r|x|, therefore (T −|S|)|x| = 0. Since T −|S| ≥ 0 and |x| � 0, we see that T = |S|.
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Let now λ = |λ|eiϕ = reiϕ and xk = |xk|eiθk for some ϕ, θ1, . . . , θn ∈ R and
define D := diag(eiθ1 . . . , eiθn). Then x = D|x| and taking V := e−iϕD−1SD we
have

V |x| = r|x| = T |x|.
Since |V | = |S| = T , we obtain (V − |V |)|x| = 0. Taking only the real part of this
equation and noting that |V | ≥ Re(V ) and |x| � 0, we see that Re(V ) = |V |,
which further implies V = Re(V ) = |V | = T , i.e., S = eiϕDTD−1.

The converse implication is obvious. �

Using Wielandt’s lemma we see that the eigenvalues on the spectral boundary
of an imprimitive matrix are exactly the hth roots of the spectral radius. The
following can be regarded as a continuation of the Perron–Frobenius Theorem
5.13.

Theorem 5.19. Let T be an imprimitive matrix with index of imprimitivity h and
spectral radius r = r(T ). Then the following holds.

a) All eigenvalues of T of modulus r are simple poles of the resolvent and the
corresponding eigenspaces are one-dimensional.

b) σb(T ) =
{
r, rω, rω2, . . . , rωh−1

}
, where ω = e2πi/h.

c) The whole spectrum σ(T ) is invariant under rotation about the origin through
an angle 2π/h, but not through any other positive smaller angle.

d) There exists a permutation matrix P such that

PTP−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 T12 0 . . . 0
0 0 T23 . . . 0
...

...
. . .

. . .
...

0 0
. . . 0 Th−1,h

Th1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.5)

where the blocks on the main diagonal are square.

Proof. a) Let σb(T ) = {λ1, . . . , λh} where λk = reiϕk , k = 1, . . . , h. Wielandt’s
lemma (Lemma 5.18) with S = T and λ = λk yields

T = eiϕkDkTD
−1
k , k = 1, . . . , h, (5.6)

showing that T and eiϕkT are similar. Let Tz = rz, where z � 0 is the Perron
vector for T . Then for zk := Dkz we have Tzk = λkzk and zk is an eigenvector
corresponding to the simple eigenvalue λk, which is unique up to multiplication
by scalars. This proves a).

b) By relation (5.6) we also have

T = eiϕk1Dk1TD
−1
k1

= eiϕk1Dk1

(
eiϕk2Dk2TD

−1
k2

)
D−1

k1

= ei(ϕk1
+ϕk2

) (Dk1Dk2)T (Dk1Dk2)
−1

.
(5.7)
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Consequently, ei(ϕk1
+ϕk2

) ∈ σb(T ) for any pair k1, k2 ∈ {1, . . . , h}. Thus σb(T ) is
a multiplicative abelian group of order h, yielding b).

c) Now let σ(T ) = {λ1, . . . , λn} and note that multiplying by ω = e2πi/h we
have

σ(ωT ) = {ωλ1, . . . , ωλn} .
As above we obtain that ωT and T are similar, hence σ(ωT ) = σ(T ). On the other
hand no rotation by less than 2π/h keeps σb(T ) invariant, therefore the same holds
for the whole spectrum σ(T ).

d) By b), the eigenvalues on the boundary are of the form λk = rωk, k =
0, . . . , h−1. For the matricesDk from (5.6) and the Perron eigenvector z of T , from
(5.7) it follows thatDk1Dk2z is an eigenvector of T corresponding to the eigenvalue
rωk1+k2 . We may assume that the upper left entry of each diagonal matrix Dk

is 1 and is therefore uniquely determined. Hence also the diagonal matrices Dk

form a multiplicative abelian group of order h. In particular, Dh
1 = In, so its main

diagonal consists of hth roots of unity.

Let P be a permutation matrix such that

PD1P
−1 = diag(ωm1In1 , ω

m2In2 , . . . , ω
msIns),

where Inj are identity matrices of size nj × nj ,
∑s

j=1 nj = n and 0 = m1 < m2 <
· · · < ms ≤ h − 1. Using the same permutation matrix P we obtain the block
matrix

PTP−1 =

⎛⎜⎜⎜⎝
T11 T12 . . . T1s

T21 T22 . . . T2s

...
...

. . .
...

Ts1 Ts2 . . . Tss

⎞⎟⎟⎟⎠ ,

where each block Tpq is of size np × nq. Now, equating the (p, q)-blocks on both
sides of the matrix equation

PTP−1ω(PD1P
−1)(PTP−1)(PD−1

1 P−1)

we obtain a system of s2 equations

Tpq = ω1+mp−mqTpq, p, q = 1, . . . , s.

Therefore, Tpq �= 0 if and only if

mq = mp + 1 mod h. (5.8)

T is an irreducible matrix, hence for every p there is a q such that mq = mp + 1
mod h. Since mi, i = 1, . . . , s, are strictly ordered numbers from the set {0, . . . , h−
1}, the only possibility is that s = h and mk = k − 1, k = 1, . . . , h. So, the block
matrix PTP−1 has exactly h nonzero blocks: Tpq �= 0 iff q = p+ 1 mod h. �

Let us verify all these properties on a given matrix.
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Example 5.20. The matrix

T =

⎛⎜⎜⎝
0 2 0 0
1 0 1 0
0 1 0 1
0 0 2 0

⎞⎟⎟⎠
is positive and irreducible (there is no permutation matrix P such that P−1TP
is block triangular with square diagonal blocks). Computing the spectrum we
obtain σ(T ) = {±1,±2}, so, σb(T ) = {±2} and T is imprimitive with index of
imprimitivity h = 2, σ(T ) is invariant under rotation through the angle π, and

PTP−1 =

⎛⎜⎜⎝
0 0 2 0
0 0 1 1
1 1 0 0
0 2 0 0

⎞⎟⎟⎠ for P =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ .

We give some alternative characterizations of primitivity.

Proposition 5.21. For a positive irreducible matrix T �= 0 with spectral radius
r = r(T ) the following assertions are equivalent.

(i) T is primitive.

(ii) limk→∞(T/r)k = P1, where P1 � 0 denotes the spectral projection belonging
to the eigenvalue r.

(iii) Tm � 0 for some m enough large.

(iv) T k is irreducible for all k ≥ 1.

Moreover, if any of the above assertions holds, then

P1x = 〈x, y〉 z, x ∈ X,

where z � 0 and y � 0 are Perron vectors for T and T�, respectively, normalized
to satisfy 〈z, y〉 = 1.

Proof. (i) =⇒ (ii): Observe that T is primitive if and only if T/r is primitive,
which is true if and only if 1 = r(T/r) is radially dominant. Now the implication
as well as the additional assertion follow by Corollary 5.16.

(ii) =⇒ (iii): Since limk→∞(T/r)k = P1 � 0, one has that T k � 0 for k
sufficiently large.

(iii) =⇒ (iv): If T k would be reducible for some k ≥ 0, then so would be T kl

for all l ∈ N, which conflicts with Tm � 0 for large m.

(iv) =⇒ (i): Suppose T has index of imprimitivity h > 1. Then there exists
an eigenvalue rα ∈ σb(T ) with |α| = 1 and α �= 1. By Theorem 5.19, αh = 1.
Therefore, T h must have at least two independent eigenvectors corresponding to
r = r(T ) which, by the Perron–Frobenius theorem, contradicts the irreducibility
of T . �
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We have seen that the powers of a primitive matrix converge to a strictly
positive projection. We conclude the description of the asymptotic behavior of
imprimitive matrices.

Definition 5.22. For T ∈ L(X) we call sequence (T k) asymptotically periodic with
period p if there is a direct sum decomposition

X = Xs ⊕Xu

into T -invariant subspaces Xs and Xu such that

a) T |Xs is stable, i.e., limk→∞ ‖T kx‖ = 0 for all x ∈ Xs, and

b) T|Xu is periodic with period p, i.e., T py = y for all y ∈ Xu and p ∈ N is the
smallest natural number with this property.

We close with a consequence of Proposition 5.19.

Corollary 5.23. Let T be an imprimitive matrix with index of imprimitivity h and
spectral radius r = r(T ). Then the sequence

(
(T/r)k

)
is asymptotically periodic

with period h.

Proof. Let

Xs :=
⊕

|λi|<r

Xi and Xu :=
⊕

|λi|=r

Xi

and use Theorems 3.7 and 5.19 for the matrix T/r restricted to its invariant
subspaces Xs and Xu. �

5.4 Notes and Remarks

Theorem 5.6 can be found in the paper by O. Perron [111], which was the be-
ginning of the general theory of positive matrices. Theorem 5.13 goes back to
F.G. Frobenius [48]. Almost 40 years later, H. Wielandt [155] proved Theorem
5.18. The form of an imprimitive matrix presented in Theorem 5.19 was originally
found by Frobenius [48] and is known as the Frobenius Form.

The literature on Perron–Frobenius theory is vast. We refer to some classical
monographs by Berman and Plemmons [18], Ding and Zhou [32], Meyer [94], Minc
[96], and Schaefer [126].

Let us make a few remarks on terminology because we have witnessed bitter
disputes between communities about it. These matrices were first called “matrices
with non-negative entries”, which is a rather long name, and was shortened to
“non-negative matrices”, as it turned out they were important and the term was
used frequently. Independently, starting with the work of F. Riesz and L. Kan-
torovich, the theory of positive operators on ordered Banach spaces was developed.
We decided to accept the terminology of Riesz spaces and Banach lattices to make
our presentation consistent with the infinite-dimensional part following later on,
and hope that nobody gets confused by this.
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5.5 Exercises

1. For the matrix T =

(
1− a b
a 1− b

)
, where a, b > 0 and a + b = 1, verify

that r(T ) is an eigenvalue of T , and find the appropriate eigenvector.

2. For T ≥ 0, prove the existence of a positive eigenvector x0 belonging to the
eigenvalue r := r(T ) through the following steps.

a) There exists y ≥ 0 such that
∥∥R(r + 1

k , T )y
∥∥→ ∞ as k → ∞.

b) The sequence

yk :=
R(r + 1

k , T )y∥∥R(r + 1
k , T )y

∥∥
has a convergent subsequence (ykl

).

c) The sequence (r − T )ykl
→ 0 as l → ∞.

d) The limit x0 := limk→∞ ykl
is a positive eigenvector of T belonging to r.

3. Show that, if a1, . . . , an ∈ C are all non-zero, then⎛⎜⎜⎜⎜⎜⎜⎝

0 a1 0 . . . 0
0 0 a2 . . . 0
...

...
. . .

. . .
...

0 0
. . . 0 an−1

an 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
is irreducible.

4. Prove that for a positive matrix T the following conditions are equivalent.

(i) T is irreducible.

(ii) R(μ, T )x � 0 for some μ > r(T ) and all x > 0.

(iii) R(μ, T )x � 0 for all μ > r(T ) and all x > 0.

5. Show that 0 �= T ≥ 0 is irreducible if and only if the eigenspaces of T and of
T� belonging to r(T ) = r(T�) are one-dimensional and spanned by a strictly
positive vector.

6. If 0 ≤ T < S and T is irreducible, then r(T ) < r(S). In other words: The spec-
tral radius is a strictly monotone function on the set of irreducible positive
matrices.

7. Let T be a positive irreducible matrix. Prove that, if the trace tr T > 0, then
T is primitive.

8. Verify irreducibility and imprimitivity of the matrices Ti, i = 1, 2, below and

discuss the asymptotic behavior of the sequence
(
(Ti/r(Ti))

k
)
.

T1 =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ , T2 =

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ .



Chapter 6

Applications of Positive Matrices

We have now accumulated enough material to pause for a while to discuss its
consequences in concrete situations. We have revised linear algebra facts from
a functional analytic perspective and obtained a construction to get functions
of matrices in a coordinate-free manner, without the use of the Jordan normal
form. This was useful when we considered positive matrices, and enabled us to see
important and deep spectral consequences of positivity.

The applications of the developed theory are numerous and we have selected
just a few representing our taste: graph matrices, the Google matrix, and age-
structured population models.

6.1 Motivating Examples Revisited

We start by revisiting our motivating examples from Section 1.1.

Graphs

Let G = (V,E) be a directed graph with n vertices V = {v1, . . . , vn} and a set of
directed edges E. The graph G is called strongly connected if for every vi ∈ V and
every vj ∈ V there is walk in G from vi to vj . This property of the graph can be
read from its adjacency matrix.

Proposition 6.1. A graph G is strongly connected if and only if its adjacency matrix
is irreducible.

Proof. Let A = (aij) be the adjacency matrix of G. By Lemma 5.10, A is reducible
iff we can partition the sets of vertices V = V1 ∪ V2 into two disjoint subsets such
that after relabeling the vertices we obtain a block-triangular form for A,

A =

(
A11 A12

0 A22

)
, (6.1)

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_6

69© Springer International Publishing AG 2017
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where the block Ak� for each k, � ∈ {1, 2} corresponds to connections from the set
of vertices Vk to the set V�. Note that A21 = 0 is equivalent to the fact that there
are no direct edges from a vertex in V2 to a vertex in V1.

Let vi ∈ V2 and vj ∈ V1 and assume there exists a walk in G from vi to vj .
Then

aii1ai1i2 · · · aisj �= 0

for some i1, . . . , is ∈ {1, . . . , n}. Observe that in this product there must be a
nonzero entry with “mixed” indices, i.e., aiki� �= 0 with vik ∈ V2 and vi� ∈ V1,
which contradicts (6.1). So, if G is strongly connected, A must be irreducible.

For the converse assume that G is not strongly connected. Hence there exist
vertices vi, vj ∈ V such that there is no walk starting in vi and ending in vj . Let V1

be the set of all initial vertices of walks which end in vj , and let V2 = V \V1. The sets
V1 and V2 are disjoint and nonempty. According to the partition V = V1 ∪ V2 the
adjacency matrix has block-triangular form given in (6.1), so A is reducible. �

As a corollary we obtain a combinatorial characterization of positive irre-
ducible matrices. Note that every positive matrix can be seen as the adjacency
matrix of a graph.

Corollary 6.2. A positive n × n matrix A, n ≥ 2, is irreducible if and only if for
every i, j ∈ {1, . . . , n} there exists an s ∈ N such that (As)ij > 0.

We will illustrate another property of the adjacency matrix A in terms of the
structure of the graph G. Recall from Theorem 5.19 that any imprimitive matrix
with index of imprimitivity h can be written in Frobenius form as follows:

PAP−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
. . .

. . .
...

0 0
. . . 0 Ah−1,h

Ah1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6.2)

with square blocks on the main diagonal.

Lemma 6.3. Let A be an imprimitive matrix with index of imprimitivity h and
Frobenius form (6.2). Then A12A23 · · ·Ah1 is a primitive matrix.

Proof. First introduce the matrices

Ã1 := A12A23 · · ·Ah1, Ã2 := A23A34 · · ·A12, . . . Ãh := Ah1A12 · · ·Ah−1,h.

Observe that all of them are positive matrices and their spectra coincide.
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Using the Frobenius form (6.2), one sees that

(
PAP−1

)sh
=

⎛⎜⎜⎜⎝
Ãs

1 0 · · · 0

0 Ãs
2 · · · 0

...
...

. . .
...

0 0 · · · Ãs
h

⎞⎟⎟⎟⎠ for all s ∈ N.

Since A is irreducible, so is PAP−1. Combining Corollary 6.2 and the above block
diagonal form yields the irreducibility of Ã1.

By Theorem 5.19, the boundary spectrum of A equals

σb(A) =
{
r, rω, rω2, . . . , rωh−1

}
,

where r = r(A) and ω = e2πi/h. Hence,

{rh} = σb(A
h) = σb

(
PAhP−1

)
= σb(Ã1),

and the matrix Ã1 is indeed primitive. �

Proposition 6.4. Let G be a strongly connected graph whose adjacency matrix A
is imprimitive with index of imprimitivity h. Then h equals the greatest common
divisor

• di of lengths of all closed walks through a vertex vi in G,

• dW of lengths of all closed walks in G, and

• dC of lengths of all cycles in G.

Proof. Let us first show that dC = dW. Clearly, dW|dC, as every cycle is also a
closed walk. Now observe that every closed walk can be partitioned into cycles
and the length of the closed walk is the sum of the lengths of these cycles, hence
divisible by dC.

Now fix a vertex vi of G. By definition, d := dC = dW divides di. Choose an
arbitrary closed walk C in G. If it contains vi, then its length �(C) is divisible by
di. Otherwise, take a vertex vj ∈ C. Since G is strongly connected, there exist a
walk Wij from vi to vj and a walk Wji from vj to vi. Now WijCWji is a closed
walk in G that contains vi, hence its length

�(WijCWji) = �(Wij) + �(C) + �(Wji)

is divisible by di. But also WijWji is a closed walk in G that contains vi and thus
also �(WijWji) = �(Wij) + �(Wji) is divisible by d. Therefore di divides �(C) and
since W was arbitrary, it divides d. We conclude that di = d.

Again take a vertex vi of G. It remains to show that di = h. The existence
of a closed walk in G of length � through a vertex vi is equivalent to the condition
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(A�)ii > 0, see Proposition 1.1. Therefore (Akdi )ii > 0 for all sufficiently large
k ∈ N and (As)ii = 0 if s is not a multiple of di.

On the other hand, we may assume that A is in Frobenius form (6.2). Then
only powers of Ah can have nonzero diagonal elements. Note that, by Lemma 6.3,
the square diagonal blocks of Ah consist of primitive matrices, hence Amh � 0 for
some m ∈ N, see Proposition 5.21. Therefore (Amh)ii > 0 for all sufficiently large
m ∈ N and (As)ii = 0 if s is not a multiple of h.

Altogether we thus have that h = di = d. �

Remark 6.5. Observe that in the case when A is a primitive matrix the same proof
yields di = dW = dC = 1.

Markov chains

Now let a positive stochastic n×n matrix P = (pij) be the transition matrix of a
discrete finite homogeneous Markov chain with the state space V = {v1, . . . , vn}.
The kth step probability distribution vector p(k) = (p1(k), p2(k), . . . , pn(k))

�
is

defined as a positive stochastic vector, i.e.,

0 ≤ pi(k) ≤ 1,

n∑
i=1

pi(k) = 1,

where pi(k) is the probability of Markov process being in the state vi after k steps.
By the Markov property and Remark 1.2, the kth step distribution is determined
from the initial distribution p(0) by means of the transition matrix:

p(k) = (P k)�p(0), k ∈ N.

Therefore the long-run (or limiting) probability distribution depends on the
behavior of P k for k → ∞. Using our results from Chapters 3 and 5 we can
describe it in terms of spectral properties of P .

Let us first state some spectral properties of P .

Lemma 6.6. For the transition matrix P the following holds.

a) r(P ) = 1 is an eigenvalue of P with corresponding eigenvector

1 = (1, 1, . . . , 1)�.

b) All eigenvalues of P with modulus 1 are simple poles of the resolvent.

Proof. a) Since P is row-stochastic, P k1 = 1 holds for all k ≥ 1. Hence, by
Gelfand’s formula, r(P ) = 1 and 1 is an eigenvalue with eigenvector 1.

b) Since ‖P k‖∞ = 1 for all k ∈ N, the sequence (P k) is bounded, and by
Theorem 3.13, all eigenvalues with modulus 1 are simple poles of the resolvent. �
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As a consequence, P is always Cesàro summable with Cesàro means con-
verging to the spectral projection of P belonging to 1 (cf. Theorem 3.13). The
sequence P k, however, does not converge as k → ∞ unless 1 is radially dominant
(see Theorem 3.7).

The Cesàro means of p(k) have an illustrative interpretation in the con-
text of Markov chains. Pick a state vj and define a sequence of random variables
(Xi)

∞
i=0 by

Xi =

{
1 if the chain is in the state vj after i steps,

0 otherwise.

Then 1
k

∑k−1
i=0 Xi represents the fraction of time that the state vj is visited in k−1

steps. Since the expected value of each Xi is E(Xi) = pj(i), we have

E

(
1

k

k−1∑
i=0

Xi

)
=

(
1

k

k−1∑
i=0

p(i)

)
j

.

This means that the jth component of the Cesàro limit vector represents the
fraction of time that the chain spends in the state vj in the long-run.

Assume now, that the matrix P is irreducible (i.e., all states vi are reachable
from each other in a finite number of steps). In this case we have two possibilities.

• If P is a primitive matrix, then

lim
k→∞

P k = P1 with P1x = 〈x, y〉1 and lim
k→∞

p(k) = y, (6.3)

where y is the stochastic Perron vector for P�, see Proposition 5.21.

• If P is an imprimitive matrix, then the above limits do not exist. However,
for the corresponding Cesàro means,

lim
k→∞

P (k) = P1 with P1x = 〈x, y〉1 and lim
k→∞

1

k

k−1∑
i=0

p(i) = y, (6.4)

where again y is the stochastic Perron vector for P�, see Theorem 3.13.

A Markov chain with an irreducible and imprimitive transition matrix is
called periodic. In such a chain all states are visited periodically, with the period
equal to the index of imprimitivity of P , see Corollary 5.23.

Note that the value of the (Cesàro) limit is independent of the initial dis-
tribution p(0). The vector y in equations (6.3) and (6.4) is called the stationary
distribution vector for the Markov chain. It is the unique stochastic vector satis-
fying P�y = y. Its components represent the long-run fraction of time that the
chain spends in the corresponding state.
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6.2 The Google Matrix

We shall demonstrate now that we encounter positive matrices and their Perron
vectors on an everyday basis. We will look at the mathematics behind Google7,
currently the world biggest web search engine.

Every web search engine must build its web-page repository and index the
pages stored there in the best possible way. For this purpose they use crawler
software that creates virtual robots, called spiders, that constantly travel the web.
The spiders number each page, collect important data from it (such as title, key
words, link names, anchors, etc.) and create an index of all visited pages. Now the
pages have to be ranked according to their importance. When the user does an
internet search it is desired that more relevant pages are placed at the beginning
of the produced list. This is actually the most important and delicate step for
a search engine. It is because of intelligent ranking that Google got ahead its
competitors when it appeared on the market. The core of Google is the ranking
algorithm PageRank, developed in 1998 by Larry Page and Sergey Brin, then PhD
students at Stanford University, California.

PageRank

Assume we have n web pages W = {Wk | k = 1, . . . , n}. For a page Wk we denote
by Ik := {i | Wi → Wk} the set of indices of all inlinks to Wk, by Ok := {j |
Wk → Wj} the set of indices of all outlinks of Wk, and by xk ≥ 0 the rank of the
page Wk. Now the question is, how to define xk properly?

The answer of Page and Brin is: A page is important if it is pointed to by
other important pages. Their formula for the rank is thus recursive and it is not
clear at this point whether it admits a solution:

xk :=
∑
i∈Ik

xi

|Oi|
, k = 1, . . . , n. (6.5)

Here it is assumed that a link from a page to itself does not count.

The internet can be viewed as a huge directed graph with n vertices (= web
pages) whose edges are hyperlinks. Let H be the transposed adjacency matrix of
this graph, called also the hyperlink matrix , with entries

Hij = 1/|Oj | iff Wj → Wi and Hij = 0 otherwise.

We can interpret the values Hij as probabilities of accessing page Wi from page
Wj . Collecting single ranks into a ranking vector x := (x1, . . . , xn)

�, we can now
write the recursive relation (6.5) as a matrix equation

x = Hx. (6.6)

7The name comes from the misspelled number googol = 10100.
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The solution vector, if it exists, is thus the fixed vector of the hyperlink matrix
H . To assure uniqueness, we impose from now on that the ranking vector x is
stochastic, i.e., ‖x‖1 = 1.

Note thatH is a positive matrix, thus by Perron’s theorem (see Theorem 5.6),
its spectral radius r(H) is an eigenvalue of H with positive eigenvector. Matrix
H is also substochastic, i.e.,

∑n
i=1 Hij ≤ 1 for all j, hence r(H) ≤ 1. Having

equation (6.6) in mind, we would like that r(H) = 1. Observe that the sum of
non-zero columns actually equals 1, but H might have some zero columns which
represent the so-called dangling nodes, that is, pages without outlinks. Brin and
Page therefore suggested to adjust the matrix H : replace all zero columns with
(1/n, . . . , 1/n)�. The adjusted matrix becomes stochastic and thus equation (6.6)
with the modified matrix H has a solution. We can also interpret this adjustment.
Imagine a random surfer traveling the web using hyperlinks, which he chooses
randomly. At some point he might find himself at a dangling node. His way out is
to randomly type an url and thus jump to any page with probability 1/n.

In order to assure the uniqueness of the solution to equation (6.6), we would
like H to be irreducible. By Proposition 6.1, H is irreducible if and only if the web
is strongly connected, which is clearly a nonrealistic assumption. However, Brin
and Page overcame also this problem with a new adjustment: they replaced the
matrix H by the Google matrix

G := αH + (1 − α)S, (6.7)

where S = (1/n)n×n and α ∈ [0, 1] is some fixed number. The interpretation of
this adjustment is a continuation of the one above: a random surfer sometimes
decides to jump to some other page directly by typing an url instead of following
some hyperlink, even if he is not at the dangling node. The role of the parameter α
is to balance between the original web structure given by H and a fully connected
web represented by S. We would of course like to weight the original hyperlink
structure heavily and take α close to 1.

For any α ∈ [0, 1), the Google matrix G is positive, irreducible, and column
stochastic, hence Frobenius Theorem 5.13 guarantees that the equation Gx = x
has a unique strictly positive stochastic solution. Thus the desired ranking vector
is nothing but the Perron vector for G!

Computation of the Perron vector

To compute the Perron vector for G we can use a very simple numerical method
called the power method that was already mentioned at the end of Chapter 3. It
is an iterative method defined by

x(k+1) = Gx(k).

From this we infer that x(k+1) = Gkx(0), thus convergence of this process is assured
by Corollary 5.16, independent of the choice of the initial vector x(0) �= 0. Here
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it is important that 1 is a strictly dominant eigenvalue of the positive irreducible
matrix G.

It is well known that the rate of convergence of the power method is governed
by the magnitude of the second eigenvalue |λ2| of the matrix. For the Google
matrix it can be shown that |λ2| ≤ α. This means that the convergence is faster
for smaller α. Since we argued above that α should be close to 1, one has to accept
a compromise here. It is reported that Google uses α = 0.85, the value set already
by Brin and Page in 1998.

6.3 Age-structured Population Models

Plant, animal, and human population models are typical examples for positive
dynamical systems in which the state variables represent biomass, density, or
the number of individuals in the population. Many of these models, in partic-
ular those describing predation, competition, and symbiosis among species, are
nonlinear and therefore deemed to investigation by other means. An important
and still widely used exception is the well-known Leslie model , which describes
the time evolution of a population in which fertility and survival rates of indi-
viduals strongly depend on their age. For this reason, such populations are called
age-structured populations. In the Leslie model, the time is discrete and repre-
sents the reproduction season (typically the year in case of mammals), while the
variables x1(t), x2(t), . . . , xn(t) represent the number of females (or individuals, or
couples) of age 1, 2, . . . , n at the beginning of year t.

In the simplest possible case one can describe the aging process by means of
the equations

xi+1(t+ 1) = sixi(t), i = 1, 2, . . . , n− 1,

where si > 0 is the survival coefficient at age i, that is, the fraction of females of
age i that survive at least for 1 year. The first state equation takes into account
the reproduction process, and is

x1(t+ 1) = s0(f1x1(t) + f2x2(t) + · · ·+ fnxn(t)),

where s0 > 0 is the survival coefficient during the first year of life and fi ≥ 0 is
the fertility rate of females of age i, that is, the mean number of females born
from each female of age i. These equations, originally proposed by Leslie, lead to
a positive linear autonomous model

x(t+ 1) = Ax(t),
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where the matrix A, called the Leslie matrix , is given as

A =

⎛⎜⎜⎜⎜⎜⎝
s0f1 s0f2 . . . s0fn−1 s0fn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
...

...
0 0 . . . sn−1 0

⎞⎟⎟⎟⎟⎟⎠ . (6.8)

Though Leslie models appear to be quite coarse at first sight, they are ex-
tensively used for making demographic projections, i.e., forecasting

x(k) = Akx(0)

given x(0).

Let us comment on the usefulness of these models first. In Leslie models,
survival and fertility rates depend exclusively on age. In reality, this is more or
less true provided the individuals in each age class are not too many. In fact,
as soon as the density of the individuals increases, some phenomena show up,
which may reduce fertility and/or survival rates. For example, finding appropriate
niches for reproduction becomes more difficult if the number of fertile individuals
increases; the spreading of epidemics is favoured by high population densities; the
search for food becomes more and more difficult as a population increases, and so
on. This means that Leslie models are well suited for describing the dynamics of
populations doomed to extinction, that is, characterized by small densities xi(t)
for which we can suppose that survival and fertility rates are constant as time
evolves. Leslie models are also extremely effective yielding short term forecasts in
growing populations.

Investigating the properties of the Leslie matrix, we see that it is positive
and, if fn > 0, it is also irreducible. Looking at the directed weighted graph whose
adjacency matrix is given by equation (6.8) and using Proposition 6.4 one easily
obtains that the index of imprimitivity of the Leslie matrix equals

h = gcd {k ∈ {1, . . . , n} : fk > 0} .

Hence, if there are two consecutive ages with strictly positive fertility age, then
the Leslie matrix is primitive.

The (normalized) Perron eigenvector of the Leslie matrix is called the stable
age structure, which is roughly the asymptotic age distribution as time evolves.
More precisely, we have the following result as a consequence of Proposition 5.21.

Proposition 6.7. Consider the Leslie matrix A given in (6.8) with fn > 0 and
assume that A is a primitive matrix. Denote the Perron eigenvalue by λ1 = r(A)
and the corresponding eigenvector by x1 � 0. Then

λ−k
1 Ak − P1 −→ 0

as k→∞, where P1 is the projection to the one-dimensional subspace spanned by x1.



78 Chapter 6. Applications of Positive Matrices

Average Low High Average Low High
Reprod./ Reprod./ Reprod./ Annual Annual Annual

Age Class Year Year Year Survival Survival Survival

Cub 0.00 0.00 0.00 0.80 0.41 0.99
1-year-old 0.00 0.00 0.00 0.75 0.41 0.99
2-year-old 0.00 0.00 0.00 0.71 0.41 0.90
3-year-old 0.28 0.00 0.50 0.84 0.69 0.93
Adult 0.58 0.23 0.82 0.84 0.69 0.93

Table 6.1: Input parameters for Leslie Matrix population model (based on females
only) of Virginias hunted black bear populations as estimated between 1994–1999.

Let us note that in many applications it is better to structure the population
not in age groups, but in so-called stage groups. As an example, we consider Vir-
ginias hunted black bear populations. A statistical analysis, the details of which
we omit, leads to the following table, which is only reproduced here to show the
complexity of such problems.

In this case, as we see, it is better to investigate the so-called stage-based
Leslie model. Stage-based models are frequently used for long-lived species because
data on specific ages are not available, demographic variables within age classes
are not different, and individual age classes for a species that lives, for example,
up to 30 years (like black bear), would result in matrices of sizes up to 30 × 30.
Analysis of this table can lead to the following Leslie matrix, where various other
effects have been taken into account, and which was used successfully in analysis
done by biologists:

A =

⎛⎜⎜⎜⎜⎝
0 0 0 0.275 0.575

0.80 0 0 0 0
0 0.75 0 0 0
0 0 0.71 0 0
0 0 0 0.84 0.84

⎞⎟⎟⎟⎟⎠ . (6.9)

Here the last row stands for the whole adult stage, the element in the lower right
corner of the matrix representing the rate of the adult population remaining alive
after the year.

We now consider a second model, which is famous in the literature. The east-
ern wild turkey (Meleagris gallopavo silvestris) inhabits more or less the eastern
part of the United States. Turkey hunting has a substantial economic effect in
many rural communities. It is not only important because of the actual turkey
hunting, but it also takes part in the development of the related industries of
turkey-hunting clothes and equipment. Improvement of the knowledge of turkey
population dynamics is important for formulating hunting regulations and other
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turkey management practices. A Leslie matrix model can be developed for the
population dynamics of eastern wild turkeys in Iowa based on local studies. Here
a three-stage model is chosen in order to simplify the modeling procedure. The
first category is “poults”, aged from 0 to 1, the second category is “yearlings”,
aged from 1 to 2, and the last category is “adults”, aged 2 and older. Reproduc-
tion occurs from yearlings onwards. The time unit is one year. The Leslie matrix
obtained is

A =

⎛⎝ 0 0.880 1.860
0.445 0 0
0 0.616 0.610

⎞⎠ . (6.10)

This grouping makes sense for example if there are regulations allowing only the
adult population to be hunted, see Exercise 6.

6.4 Notes and Remarks

For further reading on search engines and the PageRank algorithm we recommend
the excellent monograph by Langville and Meyer [82]. The modeling and inves-
tigation of age-structured populations was initiated by Leslie in 1945 [87], and
extended to stage structured populations by Lefkovitch [86]. Virginia’s hunted
black bear populations is discussed in the PhD dissertation by Klenzendorf [75].
Much research about the rates of reproduction, mortality, and survival, and the
movement of wild turkeys has been done by Dickson [30].

6.5 Exercises

1. Verify that the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
is irreducible and imprimitive using graph-theoretical interpretations. Com-
pute also its index of imprimitivity.

2. Explain the statements given in (6.3) and (6.4). Why is the limiting distri-
bution independent of p(0)?

3. Find the limiting distribution for the Markov chain given by the transition
matrix

P =

⎛⎝ 0 1/2 1/2
1/3 0 2/3
1/3 2/3 0

⎞⎠ .
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4. Translate the PageRank algorithm into the language of Markov chains.

5. Compute the ranking vector for the web depicted in Figure 6.1. Choose sev-

v1 v2

v3v4

Figure 6.1: The web graph for Exercise 5.

eral values for α and observe how this choice does affect the ranking and the
computation time.

6. Consider the Leslie matrix in (6.10) corresponding to the turkey population
in Iowa. Use an appropriate computer software if necessary.

a) Calculate the Perron eigenvalue and the corresponding stable age struc-
ture. Is the population growing?

b) Assume we can change the survival rate of the adult population. How
should we change the survival rate of the adult population to ensure that
the Perron eigenvalue equals 1, meaning that the population remains
balanced?

c) Using a 1977 survey, the age structure in a region in Iowa was estimated
as x1(0) = 580, x2(0) = 123, x3(0) = 156. How many adults should be
hunted down at the end of the first year to ensure this decrease in the
survival rate of adults?

7. What is the Perron eigenvalue and the corresponding stable age distribution
of the Leslie matrix in (6.9) corresponding to the bear population? Is the
population growing, balanced, or dying out? Use an appropriate computer
software if necessary.

8. To connect two topics of this chapter, google further Leslie matrix models,
for example for the annual bluegrass (poa annua) or the brown rat (rattus
norvegicus) populations.



Chapter 7

Positive Matrix Semigroups
and Applications

Now we investigate positive one-parameter matrix semigroups, or, using a more
common name, positive matrix exponentials. As expected, positivity and irre-
ducibility in this case also lead to remarkable spectral and asymptotic properties.

Some applications of the theory are also presented to emphasize the impor-
tance of the subject.

7.1 Positive Semigroups

In this section we combine the matrix exponential from Chapter 4 with the pos-
itivity from Chapter 5. More precisely, we consider positive matrix semigroups
(etA)t≥0, i.e., we assume that each etA, t ≥ 0, is a positive matrix. As a first
step, we characterize this property by the entries of A. In particular, we show that
positivity of A is sufficient, but not necessary for this.

Let A = (αij) be given. By Theorem 4.2,

A = lim
t↓0

etA − I

t
,

which can be rewritten coordinatewise as

αij = lim
t↓0

〈
etAuj − uj

t
, ui

〉
, (7.1)

for i, j = 1, . . . , n and ui the ith standard unit vector in Cn. If we denote the
(i, j)th entry of etA by τij(t), then (7.1) implies that

αij =

{
limt↓0

τij(t)
t for i �= j,

limt↓0
τii(t)−1

t for i = j.
(7.2)

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_7

81© Springer International Publishing AG 2017
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If (etA)t≥0 is positive, i.e., τij(t) ≥ 0 for all t, i and j, then

αij ≥ 0 for i �= j, and

αii ∈ R for i = j.

We call such matrices positive off-diagonal. Thus, we have shown the necessity
part of the following characterization.

Theorem 7.1. The matrix A = (αij) ∈ L(X) generates a positive semigroup if and
only if it is real and positive off-diagonal.

Proof. It remains to show the sufficiency of the condition.

Since A is real and positive off-diagonal, we can find ρ ∈ R such that

Bρ := A+ ρI ≥ 0 (7.3)

(e.g., take ρ := max1≤i≤n |αii|). Note that also etBρ ≥ 0 for all t ≥ 0. Applying
the functional calculus introduced in Section 2.2 to the function f(λ) := etλ−tρ,
we obtain

etA = e[t(A+ρI)−tρI]

= f(Bρ)

= e−tρ · etBρ ≥ 0

for all t ≥ 0. �

Let us mention another terminology here. A real and positive off-diagonal
matrix A is also called a Metzler matrix and −A is called a Z-matrix .

Since etA ≥ 0 does not imply A ≥ 0, Perron’s theorem (see Theorem 5.6) is
not directly applicable and r(A) may not be an eigenvalue of A. However, consid-
ering the positive matrix Bρ defined in (7.3) we obtain an important property of
the spectral bound s(A) of A.

Theorem 7.2. If A generates a positive semigroup (etA)t≥0, then s(A) is a strictly
dominant eigenvalue in the lateral sense, i.e., s(A) ∈ σ(A) and

Reλ < s(A)

for all other eigenvalues λ of A.

Proof. As already noticed in the proof of Theorem 7.1, Bρ := A + ρI ≥ 0 for
ρ := max1≤i≤n |αii|. Perron’s theorem (see Theorem 5.6) yields r(Bρ) ∈ σ(Bρ).
Evidently, r(Bρ) = s(Bρ), which is strictly dominant in σ(Bρ). Since

σ(Bρ) = σ(A+ ρI) = σ(A) + ρ,

and thus s(Bρ) = s(A+ ρI) = s(A)+ ρ, we obtain that s(A) ∈ σ(A) and is strictly
dominant. �
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We state here another auxiliary result.

Lemma 7.3. Supppose A generates a positive semigroup (etA)t≥0 and μ ∈ ρ(A).
Then

R(μ,A) ≥ 0 ⇐⇒ μ > s(A).

Proof. Again take ρ ≥ 0 such that Bρ := A + ρI ≥ 0. By Perron’s theorem (see
Theorem 5.6), r(Bρ) = s(Bρ), and as in the proof of Theorem 7.2 we see that
s(Bρ) = s(A) + ρ. By Proposition 5.5 and Corollary 5.7 we also know that

R(λ,Bρ) ≥ 0 ⇐⇒ λ > r(Bρ) = s(A) + ρ,

which, by taking μ := λ− ρ, yields R(μ,A) ≥ 0 ⇐⇒ μ > s(A). �

As we have seen in Theorem 4.12, s(A) determines the asymptotic behavior
of etA as t → ∞. The case s(A) < 0, yielding stability of the semigroup, is of
particular importance. In the case of positive semigroups, we thus obtain the
following characterization of stability.

Corollary 7.4. If A generates a positive semigroup (etA)t≥0, then the following
assertions are equivalent.

(i) s(A) < 0.

(ii) The characteristic polynomial of A has no real root ≥ 0.

(iii) The matrix −A−1 exists and is positive.

(iv) There exists x ≥ 0 such that Ax = −1.

(v) The semigroup (etA)t≥0 is exponentially stable.

Proof. The equivalence of (v) and (i) follows directly from Theorem 4.12 and the
equivalence (i) ⇐⇒ (ii) from Theorem 7.2. Since −A−1 = R(0, A), we have by
Lemma 7.3 the equivalence (iii) ⇐⇒ (i). Next, (iii) =⇒ (iv) follows by taking
x := −A−11.

We close the implications loop by showing (iv) =⇒ (i). If Ax = −1, then

x ≥ x− etAx = −A

∫ t

0

esAx ds =

∫ t

0

esA1 ds for all t > 0.

Since etA is positive for all t ≥ 0, we infer that the function t �→ (
∫ t
0 e

sA1 ds) is
increasing and satisfies

0 ≤
∫ t

0

esA1 ds ≤ x.

Hence,
∫∞
0

esA1 ds exists and since

A

∫ t

0

esA1 ds = etA1− 1,
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we obtain the existence of limt→+∞ etA1. This implies r(etA) ≤ 1, since ‖etA‖∞ =
‖etA1‖∞. Thus s(A) ≤ 0. Take now ε > 0. Then, by Lemma 7.3,

0 ≤ R(ε, A)1 = −R(ε, A)Ax

= x− εR(ε, A)x ≤ x.

So, we have the existence of limε→0 R(ε, A)1 since the function ε → R(ε, A) is
decreasing. Therefore,

lim
ε→0

‖R(ε, A)‖∞

exists, and hence s(A) < 0. �

If −A has the above properties, A is also called a nonsingular M -matrix .

In the case s(A) = 0 the following is a consequence of Theorem 4.12.

Corollary 7.5. Let A generate a positive semigroup (etA)t≥0 and assume s(A) = 0.
Then limt→∞ etA exists if and only if 0 is a first-order pole of the resolvent R(·, A).
In this case, limt→∞ etA is the spectral projection of A belonging to 0, and its range
is the kernel of A.

Again, it is important to assure that s(A) is a simple pole. As shown in
Theorem 5.13, irreducibility can help for this purpose.

Theorem 7.6. Let A generate a positive semigroup (etA)t≥0. Then any of the fol-
lowing conditions implies

lim
t→∞ etA = P1

for P1 a projection of the form

P1x = 〈x, y〉 z, x ∈ Cn,

with strictly positive vectors y � 0 and z � 0 such that 〈z, y〉 = 1.

a) A is irreducible with s(A) = 0.

b) A is irreducible, (etA)t≥0 is bounded, and 0 ∈ σ(A).

c) et0A is irreducible for some t0 > 0 and s(A) = 0.

d) et0A is irreducible for some t0 > 0, (etA)t≥0 is bounded, and 0 ∈ σ(A).

Proof. First note that by formula (2.9), the invariant subspaces of A and etA

coincide. Hence, irreducibility of A is equivalent to irreducibility of etA for some/all
t > 0.

Next, if A is irreducible, then Bρ = A + ρI given by (7.3) is positive and
irreducible, hence by Theorem 5.13 its spectral radius r(Bρ) is a first-order pole
of the resolvent R(·, Bρ). Therefore, also s(A) is a first-order pole of the resolvent
R(·, A).

All assertions now follow by Corollary 7.5 and Theorem 4.12.b). The formula
for P1x can be verified as in the proof of Corollary 5.16. �
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7.2 The Competitive Market Model

As a first application let us revise the competitive market model presented in
Chapter 1. Recall that the dynamics of the prices p(t) in this model is given by

p(t) = p0 + etKAc, t ≥ 0, where c = p(0)− p0. (7.4)

Here p0 are equilibrium prices, p(0) initial prices, K = diag(k1, . . . , kn) a diagonal
matrix of positive adjustment speeds. The coefficients of the matrix A = (aij)
satisfy

aij ≥ 0 for i �= j and aii < 0.

Using the theory we developed so far we are able to study the behavior of the
prices depending on spectral properties of the matrix KA.

Let us first determine in which case the prices eventually return to the equi-
librium p0. Assuming p(0) �= p0, by Theorem 4.12 this happens if and only if
s(KA) < 0. Moreover, since KA is real and positive off-diagonal, it generates a
positive semigroup and s(KA) is the largest real eigenvalue of KA (cf. Theorems
7.1 and 7.2). Furthermore, by Corollary 7.4 we have

s(KA) < 0 ⇐⇒ (KA)−1 ≤ 0

⇐⇒ A−1 ≤ 0

⇐⇒ s(A) < 0

⇐⇒ there exists x ≥ 0 such that Ax = −1.

Hence automatic return to the equilibrium p0 can be checked by determining A−1

(if it exists; one positive entry in A−1 implies s(KA) ≥ 0), or by solving the
equation Ax = −1.

If s(A) > 0, the prices will unboundedly rise. For s(A) = 0 we have two pos-
sibilities: the prices may either converge to a new equilibrium or rise unboundedly.

Let us consider the case when A is strictly positive off-diagonal and s(A) = 0.
By Theorem 7.6 (see also Exercise 5.5.3) in this case etKA converges to a projection
of the form P = u ⊗ v with u, v � 0. Hence p(t) converges, as t → ∞, to p0 + d
where

d = lim
t→∞ etKAc = 〈c, u〉 v.

This produces the strange effect that for 〈c, u〉 > 0 a new equilibrium p̃0 = p0 + d
develops with d � 0. On the other hand, 〈c, u〉 < 0 produces a new equilibrium
with d � 0.

7.3 Queueing Models

Systems, in which an operation on some objects or individuals is performed, are
frequently encountered in applications. Such systems are generally composed of
two parts, the queue line and the service:
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line service
arrivals departures

Figure 7.1: Structure of a queueing system

An airport with a queue of airplanes waiting for landing, an office where
the papers for driving licence renewal are processed, or the waiting room of a
service center (telephone, gas, electricity, etc.) are typical examples characterized
by a waiting time followed by a service. Such systems can be modeled when the
statistics of the arrivals, the rule for selecting the next user, and the statistics of
the service times are specified.

We will assume that the arrivals and the departures are random processes
characterized by the property that the probability of one arrival or departure
during a small time Δt is proportional to Δt itself, meaning that they are Pois-
son processes. The proportionality coefficients, denoted by η and μ, respectively,
depend on the total number of people in the system.

To build the equations governing the system, we make the following assump-
tion. At time t+Δt there are no users in the system if one of the following happens:
either there are no users in the system at time t and no user arrives during this
time interval, or there is one user in the system at time t, which leaves the system,
and no other user arrives. We can derive the equations

y0(t+Δt) = y0(t)(1 − η0Δt) + y1(t)μ1Δt(1− η1Δt),

where y0(t) is the probability that no user is in the system at time t, and y1(t) is
the probability that exactly one user is in the system at time t.

Taking the limit as Δt → 0, we arrive at the equation

ẏ0 = −η0y0(t) + μ1y1(t), (7.5)

which is the first state equation of the system. With a similar reasoning, we obtain
for i > 0 that

ẏi(t) = ηi−1yi−1(t)− (ηi + μi)yi(t) + μi+1yi+1(t), (7.6)

where yi(t) is the probability that i users are in the system at time t. This means
that there are four possibilities for the system to change into the state i:

• there were i− 1 users and someone arrived;

• there were i users and someone arrived;

• there were i users and someone left;

• there were i+ 1 users and someone left.
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Such problems are naturally modeled by infinite-dimensional systems. In
many applications, however, we have a natural bound on the number of possi-
ble users entering the system on the whole, hence we have a finite-dimensional
system, and this is the case we are investigating now. Assuming that all the pro-
portionality constants ηj and μj are non-zero, this leads to a system of differential
equations

ẏ(t) = Ay(t), (7.7)

where y = (y0, y1, . . . , yn)
� ∈ Rn+1 and

A =

⎛⎜⎜⎜⎜⎜⎝
−η0 μ1 0 0 . . . 0 0
η0 −η1 − μ1 μ2 0 . . . 0 0
0 η1 −η2 − μ2 μ3 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . ηn−1 −μn

⎞⎟⎟⎟⎟⎟⎠ . (7.8)

The matrix A is a so-called band matrix, has negative elements on the di-
agonal, positive elements below and above the diagonal, and zeros elsewhere. We
infer that the matrix is irreducible and hence the positive and irreducible matrix
Bρ = A + ρI defined in (7.3) has a unique normalized strictly positive Perron
eigenvector xP. Note that xP is also an eigenvector of A with the corresponding
strictly dominant eigenvalue λ1 ∈ R. Moreover, since all the columns of A have
a zero sum, λ1 = 0. Since all the eigenvalues of A, except λ1, have negative real
part, Theorem 7.6 yields

etA −→ P1 as t −→ ∞.

Hence, the system will always converge to a stationary probability distribution
given by the Perron eigenvector xP, and the expected value of the clients in the
queue (and the expected waiting time) can be estimated using this on the long run.
This asymptotic distribution can be easily evaluated because A is a tridiagonal
matrix. In fact, we can see that

x̄i+1 =
ηi

μi+1
x̄i,

where xP = (x̄0, x̄1, . . . , x̄n)
�. Hence,

x̄i = ϕix̄0,

where
ϕi =

η0η1 · · · ηi−1

μ1μ2 · · ·μi
.

Since we normalize xP to represent a probability distribution, its coordinates
sum up to 1, hence

x̄0 =
1

1 +
∑n

i=1 ϕi
.
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We also assume that there are s servers and that c people can get in the
queue, i.e., n = c+ s. Then the average number of people in the system is

n̄ =

n∑
i=0

ix̄i,

and we have

c̄ =
n∑

i=s+1

(i− s)x̄i

persons waiting in the queue.

7.4 Disease Transition Models

The spread and persistence of infectious diseases is a result of the complex interac-
tion between individual epidemiological units (e.g., individual, city, county, etc.),
disease characteristics, and various control programs that are aimed at halting dis-
ease transmission or bringing infection prevalence to a level as low as possible. The
aim of many models is to gain insight into how diseases transmit and to identify
the most effective strategies for prevention and control. The early work by Ker-
mack and McKendrick from 1927 provides the basis of differential-equation-based
models which lie at the heart of modern quantitative epidemiology. Traditionally,
mathematical epidemiology is based on differential equation models and these op-
erate on the basis of some strong simplifying assumptions about the behaviour of
the individuals and the biology of the disease. A key component in any disease
transmission model is the population contact structure, and in most cases, this is
highly heterogeneous with strong correlations and nontrivial large scale structure.

We consider here a really elementary, so-called “SIS” model, where individ-
uals can have two possible states: susceptible (but healthy), or infected. Infected
individuals can infect susceptible ones at a certain rate, and infected individuals
recover at a certain rate, and can be infected afterwards again. Usually there are
natural time delays (like incubation) and non-linear dependencies in the model,
or other stages (like immunized individuals), but we consider here a rather simple
case.

Assume that there are n individuals in the model, and that there is a graph
describing the connections between them where the infection can spread. Usually
the graph is huge and some random graph models have to be used, but let us
restrict ourselves to the case where we have a rather small group of individuals
with a clear social network. Specifically, the assumptions on the model are the
following.

Suppose the individuals are connected by a weighted undirected graph, with
adjacency matrix G = (wij), where the weights 0 ≤ wij ≤ 1 describe the strength
of the connection. Each individual can recover at a rate μ and infect a connected
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person at a rate η. Denoting with yi(t) the probability of the ith individual to be
infected, a simple model for the change of this probability after a small time Δt is

yi(t+Δt) = (1− μΔt)yi(t) + ηΔt

n∑
j=1

wijyj(t).

This leads to the differential equation

ẏ(t) = (ηG− μI)y(t). (7.9)

It is usual to assume that the graph is connected and has no loops. Hence,
the matrix A := ηG− μI is irreducible. Theorem 7.6 is applicable if μ = ηs(G).

Convergence to zero here is implied by the condition s(G) < μ
η , and means

that everyone recovers from the illness eventually, and convergence to a projection
means that there is a stationary distribution of probabilities and the system tries
to achieve it.

7.5 Discrete Maximum Principles

Maximum principles play an important part in many mathematical subdisciplines
and it is known that there is a deep connection between maximum principles
and positive semigroups. Discrete maximum principles are particularly useful in
numerical analysis: when you discretize a differential operator, you not only want
to obtain some good approximation result, but it is also important to preserve
some qualitative properties of the underlying differential equation. Hence, if you
discretize an elliptic problem, it is good to know whether the discretization also
satisfies some kind of a maximum principle. The literature is vast even in the
matrix case and we only mention here one illustrative example.

Let A = (aij) be a real n × n matrix and for a vector y = (y1, . . . , yn)
� let

us use the notation N+(y) = {i ∈ {1, . . . , n} : yi > 0}. We say that the matrix A
satisfies the discrete maximum principle (DMP) if

−Ax = y (7.10)

with y ≥ 0 implies x ≥ 0 and

max
1≤i≤n

xi = max
i∈N+(y)

xi. (7.11)

We present a simple sufficient condition to ensure the discrete maximum
principle.

Theorem 7.7. Suppose that A generates an exponentially stable positive semigroup
and that A1 � 0, where 1 = (1, . . . , 1)�. Then the discrete maximum principle
holds.
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Proof. Let y > 0 and −Ax = y. Then x = −A−1y > 0 since −A−1 exists and
is positive by Corollary 7.4. Let xk = max1≤i≤n xi. By assumption, we have∑n

l=1 akl = (A1)k < 0 and using Theorem 7.1 we obtain

yk = −
n∑

l=1

aklxl = −akkxk −
∑
l 
=k

aklxl ≥ −xk

(
akk +

∑
l 
=k

akl

)
≥ 0, (7.12)

hence k ∈ N+(y). �

7.6 Notes and Remarks

For nonsingular M-matrices we refer to the monograph by Berman and Plem-
mons [18]. For queueing systems see the excellent exposition in Feller [46, Section
XVII.7]. For population equations see the monograph by Diekmann and Heester-
beek [31], where many of the problems we omitted here are discussed.

The investigation of discrete maximum principles was initiated in the late
sixties and early seventies, see Varga [146] and Ciarlet [24]. We follow here Stoyan
[134], where a much more general statement is formulated. In the infinite-dimen-
sional setting, we shall discuss the connection between analogous minimum prin-
ciples and generation of positive semigroups. Here we recommend the paper by
Kalauch [71] for a direct generalization to Banach lattices.

7.7 Exercises

1. Let A ∈ L(X). If Reλ > s(A), then

R(λ,A) =

∫ ∞

0

e−λtetA dt.

2. Let A ∈ L(X) generate a positive semigroup. Show that the following are
equivalent.

(i) A is irreducible.

(ii) et0A is irreducible for some/all t0 > 0.

(iii) etA � 0 for all t > 0.

3. Let A be positive off-diagonal and irreducible, s(A) = 0. Show that etA

converges to a projection P of the form

P = u⊗ v

with u, v � 0, u ∈ kerA�, v ∈ kerA.

4. a) Characterize those matrices A ∈ L(X) for which etA is positive for all
t ∈ R.
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b) Find all positive periodic semigroups, and all positive, periodic, and
irreducible semigroups.

5. Consider the Competitive Market Model given by equation (7.4).

a) List the conditions for the matrix A under which the prices will behave
in a periodic manner.

b) The price average at time T > 0 can be expressed by the Cesàro mean

C(T ) :=
1

T

∫ T

0

etKA dt.

What can we say about the long-time behavior of the price averages
depending on the properties of matrix A?

6. Consider the queuing system and give formulas for the average frequency of
arrivals, the fraction of time during which the system is not used, and the
probability that a user cannot be served on arrival.

7. Consider a telephone system of a large company where calls are accepted if at
least one line is free and rejected otherwise. Thus, the frequency of arrivals
η is independent of the number of busy lines if at least one is free. Each
accepted call engages the line for an average time 1/μ. Hence, c = 0, s = n,
ηi = η for i = 0, 1, . . . , n− 1, ηn = 0, and μi = iμ for i = 1, 2, . . . , n. Develop
formulas for this system. Discuss some concrete examples.

8. Assume that we have a group of individuals who are arranged in the vertices
of a graph and the disease can spread along the edges. Each individual can
recover from the illness with a rate of μ = 1/4. Discuss the role of the
parameter η if the graph is

a) a complete graph with 4 vertices,

b) a cycle of length 5 (regular pentagon),

c) a cube (8 vertices),

d) the graph from Exercise 1.4.2.

9. It is also possible to speak about maximum principles in connection with
difference equations and boundary value problems. Let ai, bi > 0 and ci ≥
ai + bi for i = 0, 1, . . . , n+ 1. Define the difference operator

Lyi = aiyi−1 − ciyi + biyi+1 for i = 1, . . . , n.

Let α, β ≥ 0 and consider the vector 0 ≤ f ∈ Rn. Let y ∈ Rn+2 be such that

Lyi = fi for i = 1, . . . , n, y0 = α, yn+1 = β

holds, which we call a non-homogeneous boundary value problem. Show that

max
i=0,...,n+1

yi = max{α, β}.



Chapter 8

Positive Linear Systems

We present one important large field of applications to the theory developed so
far: control theory. More specifically, we present an elementary introduction to
positive linear systems.

We cover some very special aspects of linear time-invariant systems, like
controllability or stabilizability. Many of these problems can be naturally posed
with additional positivity assumptions: we have a positive system, we would like
to apply positive controls, or we would like to steer our system into positive states.

We discuss only continuous-time systems, but the definitions and most results
can be modified for the discrete-time case in a straightforward way.

8.1 Externally and Internally Positive Systems

First, we set the stage and present the relevant notation and terminology. For the
sake of simplicity, we only refer to the case of time-invariant, finite-dimensional
input-output systems, which are described by state equations of the form⎧⎪⎨⎪⎩

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0,

y(t) = Cx(t),

(8.1)

where the objects involved are the following:

• X = Cn is the state space, Y = Cq is the observability space, and U = Cp is
the control space.

• The function x : R+ → X is the state vector, the operator A ∈ L(X) is the
state (or system) operator .

• The function u : R+ → U is the control , the operator B ∈ L(U,X) is the
input (or control) operator .

• The function y : R+ → Y is the output (or observation), the operator C ∈
L(X,Y ) is the output (or observation) operator .

• The vector x0 ∈ X is the initial value.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_8

93© Springer International Publishing AG 2017
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System (8.1) is often referred to as Σ(A,B,C). The interpretation of this set
of equations is the following. There is a system described by a set of n equations
and governed by the operator A. This is also referred to as the “free system”,
the system without intervention. The function u is the control we apply from the
outside, and the operator B represents the action of u on the system. Finally, the
function y is the set of parameters we are able to measure, and the measurement
process is described by the observation operator C.

u(t) x(t) y(t)
B C

A

K

Figure 8.1: An input-output system (with feedback).

If we need to stress the dependence of the solution x on the initial value x0,
then we shall write x(t) = x(t;x0).

Before turning our attention to controllability concepts, let us make the fol-
lowing crucial observation and present a representation formula. Suppose that the
control u is locally integrable and set

z(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds.

Then, ż(t) = Az(t) + Bu(t) and z(0) = x0. Since x is the solution of Σ(A,B,C)
in (8.1), we infer that ż(t)− ẋ(t) = A(z(t)− x(t)) and z(0)− x(0) = 0. Hence, by
uniqueness,

x(t) = z(t) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds. (8.2)

This yields the formula

y(t) = CetAx0 +

∫ t

0

Ce(t−s)ABu(s) ds. (8.3)

The function h(t) = CetAB is sometimes called the impulse response.

Often the control u is designed depending on the observation, and such sys-
tems are called feedback systems . If u(t) = Ky(t), then the operator K ∈ L(Y, U)
is called the feedback operator. Note that in this case we have the representation
formula

x(t) = et(A+BKC)x0. (8.4)
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We list now a few properties that a time-invariant linear system can have,
and which are important in view of applications.

Definition 8.1. The linear system Σ(A,B,C) in (8.1) is said to be externally pos-
itive, if the output corresponding to the zero initial state is positive for every
positive input function. In other words, u(t) ≥ 0 implies y(t) ≥ 0 if x0 = 0.

In the following we characterize externally positive linear systems.

Proposition 8.2. A linear system is externally positive if and only if its impulse
response is positive.

Proof. By the representation formula (8.3), the sufficiency is clear. Suppose now
that there is t0 > 0 such that h(t0) = Cet0AB is not positive. Then, by continuity,
at least one entry of h(t) would be negative on a whole nondegenerate interval
[t1, t2]. Thus, the appropriate entry of the output would be negative for every
input function which is strictly positive in [t− t2, t− t1] and zero elsewhere. Hence,
the system cannot be externally positive. �

Let us give a simple example of an externally positive linear system.

Example 8.3. Here we suppose that U = Y = C and X = C2. Let us consider

A =

(
−a −a
1 −1

)
, B =

(
a
0

)
, C =

(
0 1
)
,

for a parameter a > 0. For which values of a will the system Σ(A,B,C) in (8.1)
be externally positive?

Using the above proposition one has to check for which values of a the corre-
sponding impulse response h(t) = CetAB is positive. The special forms of B and
C imply that h(t) = a(etA)2,1, where (etA)2,1 is the (2, 1)th entry of etA.
The eigenvalues λi, i = 1, 2, of A are the roots of λ2 + (a + 1)λ + 2a. So, the
following holds:

λ1,2 =

⎧⎪⎨⎪⎩
−1−a±√

a2−6a+1
2 if 0 < a < 3− 2

√
2 or a > 3 + 2

√
2,

− 1+a
2 =: λ0 if a = 3− 2

√
2 or a = 3 + 2

√
2,

∈ C \ R if 3− 2
√
2 < a < 3 + 2

√
2.

We have to investigate only the first two cases, since the third one corresponds
to an oscillating etA, which can have negative values. From the Theorem 2.11 one
has etA = α0I + α1A, where α0 and α1 satisfy the system of equations

etλ1 = α0 + α1λ1,

etλ2 = α0 + α1λ2

in the first case above, and

etλ0 = α0 + α1λ0,

tetλ0 = α1
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in the second one. Thus, by a simple computation, we obtain

h(t) =

{
a√

a2−6a+1
etλ2

(
e2t

√
a2−6a+1 − 1

)
if 0 < a < 3− 2

√
2 or a > 3 + 2

√
2,

atetλ0 if a = 3− 2
√
2 or a = 3 + 2

√
2.

Therefore, for a > 0, the system Σ(A,B,C) is externally positive, iff 0 < a ≤
3− 2

√
2 or a ≥ 3 + 2

√
2.

The concept of (internal) positivity and irreducibility is defined as follows.

Definition 8.4. The linear system Σ(A,B,C) in (8.1) is said to be positive (or
internally positive), if the state and the output corresponding to a positive initial
state are positive for every positive input function. In other words, u(t) ≥ 0 and
x0 ≥ 0 implies x(t) ≥ 0 and y(t) ≥ 0. The system is said to be reducible, if the
matrix A is reducible, and irreducible otherwise.

The positivity of linear systems can be characterized in terms of the positivity
of B, C, and etA.

Proposition 8.5. The linear system Σ(A,B,C) is positive if and only if B ≥ 0,
C ≥ 0, and A generates a positive matrix semigroup.

Proof. Assume that the system is positive. Then, letting x0 = 0 and u(t) = u, a
nonnegative constant, we see that

0 ≤ x(t)

t
=

1

t

∫ t

0

e(t−s)ABu ds =

(
1

t

∫ t

0

esA ds

)
Bu.

So, by letting t → 0, we obtain the positivity of B.

Since Cx0 = Cx(0) = y(0) ≥ 0 for every x0 ≥ 0, the operator C has to be
positive too. Finally, applying the zero control, we see that x(t) = etAx0 ≥ 0 for
every x0 ≥ 0.

To prove the converse implication, suppose that B ≥ 0, C ≥ 0, and that A
generates a positive matrix semigroup. Taking x0 ≥ 0 and u ≥ 0, we see that

etAx0 ≥ 0

and that Bu(s) ≥ 0 for each s ∈ [0, t], hence e(t−s)ABu(s) ≥ 0, implying∫ t

0

e(t−s)ABu(s) ds ≥ 0,

which in view of (8.2) and (8.3) proves the statement. �

Let us define now excitable positive linear systems.

Definition 8.6. A positive system is said to be excitable, if each state variable can
be made strictly positive by applying an appropriate positive input to the system
initially at rest. In other words, for each i = 1, 2, . . . , n there are a control ui ≥ 0
and a time ti such that xi(ti) > 0 if x0 = 0.
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Excitable systems enjoy some remarkable properties. To be able to present
some of them, we introduce some new concepts. To keep the presentation as simple
as possible, we restrict ourselves for the rest of this section to the case Y = U = C,
i.e., we only consider one-dimensional control and observation spaces.

The influence graph of the system Σ(A,B,C) in (8.1) is a directed graph
G = (V,E) with n+2 vertices V = {v0, v1, . . . , vn+1}. Vertex v0 is associated with
the input u and vertex vn+1 with the output y. The remaining vertices v1, . . . , vn,
correspond to the state variables x1, . . . , xn. The edges represent the influence
relations among the variables and are constructed as follows.

• (v0, vj) ∈ E if and only if bj �= 0, j = 1, . . . , n;

• for i, j = 1, . . . , n, i �= j, (vi, vj) ∈ E if and only if aji �= 0;

• (vi, vn+1) ∈ E if and only if ci �= 0, i = 1, . . . , n.

No other edges are present in the graph.

v1v0

v2 v3

Figure 8.2: The influence graph of the system in Example 8.3.

The corresponding graph matrices are constructed as follows: Â = (âij),
where âij = 1 if and only if i �= j and aji �= 0, otherwise âij = 0. The row- and

column- matrix B̂ and Ĉ, respectively, are constructed in a similar manner. The
following (n+ 2)× (n+ 2) matrix

A :=

⎛⎝0 B̂ 0

0 Â Ĉ
0 0 0

⎞⎠ . (8.5)

is thus the 0− 1 adjacency matrix of the unweighted influence graph.

Many properties of a positive linear system can be described in terms of its
influence graph. Observe, for example, that by Proposition 6.1 the following holds.

Corollary 8.7. A system is irreducible if and only if the subgraph of its influence
graph, consisting only of vertices v1, . . . , vn and edges between them, is strongly
connected.

We can also express excitability of the system in terms of the above graph
matrices.
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Proposition 8.8. The positive linear system Σ(A,B,C) in (8.1) is excitable if and
only if there exists at least one walk from the input vertex v0 to each vertex vi,
i = 1, . . . , n, in the influence graph G, or, equivalently, if and only if

B̂ + B̂Â+ · · ·+ B̂Ân−1 � 0.

Proof. Excitability means that each state variable xi can be influenced by the
input u. This implies that there has to be at least one walk from the vertex v0 to
the vertex vi in the influence graph G.

Note that the powers of the adjacency matrix A in (8.5) have the same block
form:

Ak =

⎛⎝0 B̂Âk−1 B̂Âk−2Ĉ

0 Âk Âk−1Ĉ
0 0 0

⎞⎠ , k ∈ N.

Recall from Proposition 1.1 that the ith component of the row vector B̂Âk−1

represents the number of walks of length k from vertex v0 to vertex vi, i = 1, . . . , n.
Hence, there is a walk to every vertex, if and only if

B̂ + B̂Â+ · · ·+ B̂Ân−1 � 0.

Assume that the positive system Σ(A,B,C) is not excitable. Then, there
exists i ∈ {1, . . . , n} such for all t and all controls u ≥ 0,

xi(t) =

(∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

By taking u(t) = 1, we obtain

bi = lim
t→0

(
1

t

∫ t

0

esA dsB

)
i

= 0.

On the other hand,

ẋi(t) =

(
Bu(t) +A

∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

This implies that (
A

∫ t

0

e(t−s)ABu(s) ds

)
i

= 0.

As above, by taking u(t) = 1, we obtain (AB)i =
∑n

j=1 aijbj = 0. Using the
positivity, we deduce that aijbj = 0 for all j (note that, as we have seen above,

bi = 0, so also aiibi = 0). Hence for the graph matrices we have (B̂Â)i = 0. By
repeating the same arguments we obtain (B̂Âk)i = 0 for all k = 0, . . . , n− 1, and
this ends the proof of the proposition. �
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We consider now rather special constant inputs, u(t) = ū > 0.

Theorem 8.9. An excitable and asymptotically stable positive linear system has a
strictly positive equilibrium state.

Proof. Since by asymptotic stability all the eigenvalues of A have negative real
part, A is invertible and x̄ := −A−1Bū is the unique equilibrium of the system,
which is asymptotically stable. We only have to show that it is strictly positive.

Suppose that there are indices i such that x̄i = 0, and collect these indices
in the set I := {i ∈ {1, . . . , n} : x̄i = 0}. Then, since

Ax̄+Bū = 0,

we see that ∑
j /∈I

aij x̄j + biū = 0 for i ∈ I.

This implies that bi = 0 and that aij = 0 for i ∈ I and j /∈ I, since the system is
positive. Hence, there is no walk from the input vertex 0 to vertices i ∈ I and the
system is not excitable. �

8.2 Controllability

For simplicity, we consider here systems without observation, i.e., where Y = X
and C = I. We denote by Σ(A,B) the system (8.1) simplified this way.

Definition 8.10. The system Σ(A,B) is called controllable in time τ if for every
initial value x0 ∈ X and every state x1 ∈ X there is a control u such that for the
solution x we have x(τ ;x0) = x1.

We will briefly call a system controllable, if there exists a τ > 0 such that it
is controllable in time τ .

Lemma 8.11. The system Σ(A,B) is controllable in time τ if and only if every
state x1 ∈ X can be reached from x0 = 0 in time τ .

Proof. We only have to prove the converse. Let us take x1 ∈ X and set x2 =
x1 − eτAx0. Then, by assumption, there is a control u such that x2 = x(τ ; 0).
Then

x(τ ; 0) =

∫ τ

0

e(τ−s)ABu(s) ds = x2,

hence

x(τ ;x0) = eτAx0 +

∫ τ

0

e(τ−s)ABu(s) ds = eτAx0 + x2 = x1,

and we are done. �
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To investigate the possible reachable states, we take a functional analytic
point of view and introduce an operator which maps control functions to states
which are reached from the origin by using this control.

Definition 8.12. Fix τ > 0. The controllability operator Bτ : L1([0, τ ], U) → X is
defined by

Bτ (u) :=

∫ τ

0

e(τ−s)ABu(s) ds.

Hence, the system is controllable in time τ if and only if Bτ is surjective.

Let us begin with the following simple properties. The proof is left to the
reader.

Lemma 8.13. The operator Bτ has the following properties.

a) The operator Bτ is linear.

b) The operator Bτ : L1([0, τ ], U) → X is bounded, i.e.,

sup
‖u‖≤1

‖Bτ(u)‖ < ∞.

Fortunately, there is an important characterization of the range of Bτ .

Theorem 8.14. For every τ > 0 we have

im(Bτ ) = span
{
x, Ax, A2x, . . . , An−1x : x ∈ im(B)

}
.

Proof. Let us introduce first some shorthand notation for this proof and introduce

X1 := span
{
x, Ax, A2x, . . . , An−1x : x ∈ im(B)

}
,

as well as two further spaces,

Xτ
2 := span

{
etAy : 0 ≤ t ≤ τ, y ∈ im(B)

}
,

Xτ
3 := span

{∫ t

0

esAy ds : 0 ≤ t ≤ τ, y ∈ im(B)

}
.

Since step functions are dense in L1, and since in X every subspace is auto-
matically closed, we conclude by the continuity of Bτ that

im(Bτ ) = Xτ
3 .

Observe also, using Corollary 2.14 and Theorem 2.12, that etA is a polynomial
in A of degree at most n− 1, and thus, Xτ

2 = X1.

Now let us take y ∈ im(B). Then x(t) =
∫ t
0
esAy ds ∈ Xτ

3 for t ≤ τ . Clearly,
all the derivatives of x lie in Xτ

3 , hence

x(0) = 0 ∈ Xτ
3 ,

ẋ(0) = y ∈ Xτ
3 ,

ẍ(0) = Ay ∈ Xτ
3 ,

etc.
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Thus, X1 ⊂ Xτ
3 . On the other hand, if y ∈ im(B), then esAy ∈ X1, implying that∫ t

0

esAy ds ∈ X1,

i.e., Xτ
3 ⊂ X1. �

Corollary 8.15 (Kàlmàn criterion). For a control system Σ(A,B) the following are
equivalent.

(i) The system is controllable in time τ for all τ > 0.

(ii) The controllability operator Bτ is surjective for every τ > 0.

(iii) The rank condition rank(B,AB,A2B, . . . , An−1B) = n is satisfied.

(iv) The system is controllable.

In many applications it is natural to consider only positive initial values,
positive controls, and expect the states of the system to remain positive for all
times. Hence, we restrict our investigations here to this case.

By X+ := {x ∈ X : x ≥ 0} we denote the positive cone of X . The reachability
set Xτ,+ of a positive system Σ(A,B) is defined as the set of points that can be
reached from the origin in time τ by applying a positive control. In other words,

Xτ,+ :=

{∫ τ

0

e(τ−s)ABu(s) ds : u ≥ 0

}
.

By linearity and positivity of the operators, the set Xτ,+ ⊆ X+ is a convex
cone (i.e., for every x, y ∈ Xτ,+ and α, β ≥ 0, αx + βy ∈ Xτ,+). Actually, much
more can be said.

Theorem 8.16. The set Xτ,+ is a convex cone which is non-degenerate (i.e., it
contains an open ball) if and only if the positive system Σ(A,B) is controllable,
i.e., the Kàlmàn rank condition is satisfied.

Proof. It can be shown directly that Xτ,+ is a convex cone. Assume now that the
Kàlmàn rank is less than n. This means that there exists a nonzero y ∈ X such
that y�AiB = 0 for i = 0, . . . , n. Hence, y�etAB = 0 for all t ≥ 0, since the degree
of the minimal polynomial of A is less than n. So, for all x ∈ Xτ,+ we have

(y |x) =
(
y

∣∣∣∣ ∫ τ

0

eA(τ−s)Bu(s)

)
ds

=

∫ τ

0

(
(eA(τ−s)B)�y

∣∣∣∣ u(s)) ds

= 0.

Therefore, Xτ,+ lies in an (n − 1)-dimensional subspace of X , which means that
Xτ,+ is degenerate.
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Conversely, if Xτ,+ is degenerate, it lies in an (n− 1)-dimensional subspace
of X , since Xτ,+ is convex. Thus, there exists y ∈ X such that (y|x) = 0 for all
x ∈ Xτ,+ and so ∫ τ

0

(
(eA(τ−s)B)�y

∣∣∣ u(s)) ds = 0

for all u ≥ 0 (and hence for all u ∈ L1
loc(R+, U)). Taking now a constant function

u(s) = v ∈ U and differentiate the above equation with respect to τ , one obtains(
B�y
∣∣ v) = 0,∫ τ

0

(
(AeA(τ−s)B)�y

∣∣∣ v) ds = 0

for all v ∈ U . Thus, y�B = 0. Differentiating again the above equation with
respect to τ one has (

(AB)�y
∣∣ v) = 0,∫ τ

0

(
(A2eA(τ−s)B)�y

∣∣∣ v) ds = 0

for all v ∈ U . Repeating the above process (n− 1)-times one gets y�BAi = 0 for
i = 0, 1, . . . , n− 1, which implies that the Kàlmàn rank is less than n. �

An important case is when Xτ,+ is actually the whole positive cone X+, i.e.,
when each positive state can be reached by applying a positive control from the
origin.

Definition 8.17. A positive system Σ(A,B) is called

(i) (exactly) positive controllable in time τ , if

Xτ,+ = X+

(ii) (exactly) positive controllable, if⋃
τ≥0

Xτ,+ = X+,

(iii) approximately positive controllable in time τ , if

Xτ,+ = X+.

(iv) approximately positive controllable, if⋃
τ≥0

Xτ,+ = X+.
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Positive controllability is a much more delicate question then usual control-
lability and the different notions in the definition above do not coincide (as is the
case with the usual controllability). In the proof of Theorem 8.14, the range of
the controllability operator, that is, the reachability set for the usual case, was
characterized via three linear subspaces. Unfortunately Xτ,+ is in general not a
closed linear subspace and we can only show the following characterization.

By coM we denote he smallest convex set containing M and by cocone M
the smallest convex cone containing M and 0.

Proposition 8.18. Let u1, . . . , up be the standard basis vectors in U = Cp. For a
positive system Σ(A,B),

Xτ,+ = co
{
etABu : 0 ≤ t ≤ τ, u ∈ U+

}
= cocone

{
etABuj : 0 ≤ t ≤ τ, 1 ≤ j ≤ p

}
.

Proof. By the definition of the integral,

Xτ,+ ⊆ co
{
etABu : 0 ≤ t ≤ τ, u ∈ U+

}
.

Now choose any u ∈ U+. Since the equations are autonomous, it is enough to show
that etABu ∈ Xt,+ for all 0 ≤ t ≤ τ . To this aim take

um(s) :=

{
mu, for 0 ≤ s ≤ 1

m ,

0, for 1
m < s ≤ τ,

and compute∥∥∥∥∫ t

0

e(t−s)ABum(s) ds− etABu

∥∥∥∥ ≤ m

∫ 1/m

0

∥∥∥e(t−s)ABu− etABu
∥∥∥ ds

which converges to 0 as m → ∞. Hence, the first equality is proved. The second
one now also follows, since BU+ = cocone{Bu1, . . . , Bup}. �

8.3 Stabilization

We restrict ourselves again to systems without observation and where the control
is given by a suitable feedback K.

Definition 8.19. A system Σ(A,B) is called stabilizable if there is a feedback K
such that the state converges to zero for every initial value, i.e.,

lim
t→∞x(t) = lim

t→∞ et(A+BK)x0 = 0 (8.6)

for every x0 ∈ X .

Note that by Theorem 4.12 we have the following characterization of stabi-
lizable systems.
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Corollary 8.20. System Σ(A,B) is stabilizable if and only if there is a feedback K
such that s(A+BK) < 0.

A positive system Σ(A,B) is called positively stabilizable, if there is a positive
feedback operator K such that (8.6) holds for every x0 ≥ 0.

Proposition 8.21. A positive system is positively stabilizable if and only if it is
stabilizable with a positive feedback.

Proof. Note that for every element in X its real part and imaginary part can be
represented as the difference of two positive elements in the positive cone of X .
Since

lim
t→∞ et(A+BK)x0 = 0

for every x0 is equivalent to

lim
t→∞ et(A+BK)(x1 − x2) = 0

for every x1, x2 ≥ 0, the statement follows. �

8.4 Notes and Remarks

There are many excellent introductions to systems and control theory. We based
our presentation on the monograph by Jacob and Zwart [69], on the work by
Mehrmann [93], and on the monograph by Zabczyk [158].

Positivity aspects of control problems are discussed by Schanbacher in [127]
and in the monograph by Farina and Rinaldi [45]. Many further interesting topics
could be studied here, and in case we succeeded to make you curious, you can look
them up in the above-mentioned sources.

8.5 Exercises

1. Prove the basic properties of the controllability operator Bτ as stated in
Lemma 8.13.

2. Show that a system Σ(A,B) is controllable if and only if for every eigenvector
v of A� we have vB �= 0.

3. Show that a system Σ(A,B) is controllable if and only if rank(λ−A,B) = n
for all λ ∈ C.

4. Let U = C and X = C2, and consider

A =

(
−1 0
1 −a

)
and B =

(
1
0

)
with a > 0. What can you say about the reachability set Xτ,+ of this positive
linear system? In other words, which states can be reached from the origin
by applying a positive control u in time τ?
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5. Let U = C and X = C2, and consider

A =

(
1 0
0 2

)
and B =

(
1
1

)
.

Show that Σ(A,B) is controllable, but not approximately positive control-
lable.

6. Let U = C and X = C2, and consider

A =

(
0 1
0 0

)
and B =

(
0
a

)
,

with a > 0. Is the system Σ(A,B) stabilizable? Is it positively stabilizable?
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Chapter 9

A Crash Course on
Operator Semigroups

After studying matrix exponential functions, it is natural to ask whether similar
properties can be proved in infinite-dimensional spaces. Indeed, we will see shortly
that if we have a semigroup which is continuous (in the usual operator norm),
then it is the exponential function of a bounded linear operator.

It turns out, however, that in many applications we encounter semigroups
which are not continuous. Nevertheless, these examples will still posses a weaker
continuity property, what is called in a potentially confusing terminology “strong
continuity”. Our aim is to motivate this concept with examples and analyze ba-
sic properties of such semigroups. One important point will be to show that a
semigroup can be considered as the exponential function of an operator, which,
however, is no longer bounded.

We analyze in some detail a few fundamental exceptional examples, where the
semigroup can be given explicitly: the shift semigroup, multiplication semigroups,
and the heat semigroup. We proceed in the canonical way: we collect important
properties a semigroup generator must have and provide necessary conditions on
an operator to be a semigroup generator.

In contrast to previous chapters, we have to assume some basic knowledge of
functional analysis. Nevertheless, we try to keep the prerequisites at a minimum.

9.1 Exponential Functions

In this section we review some basic facts about exponential functions of bounded
linear operators. Many results are analogous to the matrix case, and it is actually
possible to prove them by using the same functional calculus argument. However,
since building up the functional calculus would need some more effort, we leave
that line aside.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_9

109© Springer International Publishing AG 2017



110 Chapter 9. A Crash Course on Operator Semigroups

Definition 9.1. For a Banach space X and A ∈ L(X) we define

etA :=

∞∑
k=0

tkAk

k!

for each t ≥ 0.

Observe that we have

‖etA‖ ≤
∞∑
k=0

tk‖A‖k
k!

= et‖A‖ (9.1)

for all t ≥ 0. Therefore, the series
∑∞

k=0
tkAk

k! is absolutely convergent, and since
we are in a Banach space, it is convergent. Operator etA is thus well defined and
bounded. For yet another definition of etA, see Exercise 2.

Proposition 9.2. For A ∈ L(X), the following properties hold for its exponential
function T (t) := etA.

a) The functional equation

T (0) = I, T (t+ s) = T (t)T (s) (9.2)

is valid for all t, s ≥ 0.

b) The function R+ � t �→ T (t) is continuous.

c) The function R+ � t �→ T (t) is differentiable and satisfies the differential
equation

Ṫ (t) = AT (t),

T (0) = I.

Proof. Essentially, all the statements follow as in the scalar case, once we justify
the appropriate operations for the operators.

a) By the Cauchy formula for the product of infinite series we have

∞∑
k=0

tkAk

k!
·

∞∑
k=0

skAk

k!
=

∞∑
m=0

m∑
k=0

tm−kAm−k

(m− k)!
· s

kAk

k!

=

∞∑
m=0

Am

m!

m∑
k=0

m!

(m− k)!k!
tm−ksk =

∞∑
m=0

(t+ s)mAm

m!
.

b) Since equation (9.2) implies

e(t+h)A − etA = etA(ehA − I),
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it suffices to prove continuity at 0, which follows from

‖ehA − I‖ =

∥∥∥∥∥
∞∑
k=1

hkAk

k!

∥∥∥∥∥ ≤
∞∑
k=1

|h|k · ‖A‖k
k!

= e|h|·‖A‖ − 1.

c) By a similar argument as above it suffices to see that∥∥∥∥ehA − I

h
−A

∥∥∥∥ =
∥∥∥∥∥

∞∑
k=2

hk−1Ak

k!

∥∥∥∥∥ ≤
∞∑
k=2

|h|k−1 · ‖A‖k
k!

=
e|h|·‖A‖ − 1

|h| − ‖A‖ −→ 0

as h → 0. �

The functional equation (9.2) plays a crucial role, hence we give it a name.

Definition 9.3. A map R+ � t �→ T (t) ∈ L(X) is called a one-parameter operator
semigroup (or an operator semigroup, or just a semigroup for short), if

T (0) = I and T (t+ s) = T (t)T (s) for all t, s ≥ 0.

The most important property of continuous semigroups is that they are noth-
ing but exponential functions.

Proposition 9.4. Let (T (t))t≥0 be a semigroup which is continuous. Then there is
an operator A ∈ L(X) such that T (t) = etA.

Proof. Since the function t �→ T (t) is continuous and T (0) = I, we see that∥∥∥∥I − 1

t0

∫ t0

0

T (s) ds

∥∥∥∥ < 1

for sufficiently small8 t0 > 0. So, by the Neumann series (see formula (A.4)), the

operator 1
t0

∫ t0
0 T (s) ds is invertible, and hence

V (t0) :=

∫ t0

0

T (s) ds

is invertible, too. It follows that

T (t) = V (t0)
−1V (t0)T (t) = V (t0)

−1

∫ t0

0

T (t+ s) ds = V (t0)
−1

∫ t+t0

t

T (s) ds

= V (t0)
−1(V (t+ t0)− V (t))

holds for all t ≥ 0.

8For properties of vector-valued Riemann integrals of continuous functions see the Appendix
A.7, especially Proposition A.26.
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Since V is the integral of a continuous function, it is differentiable and so is
the function t �→ T (t). Let us introduce the notation Ṫ (0) =: A. Then A ∈ L(X)
and the functional equation implies that

Ṫ (t) = lim
h→0

T (t+ h)− T (t)

h
= lim

h→0

T (h)− I

h
T (t) = AT (t)

for all t ≥ 0. Hence, T satisfies a linear differential equation of the form

Ṫ (t) = AT (t)

with T (0) = I. But S(t) = etA also satisfies the same differential equation. Fix
t > 0 and consider the function [0, t] � s �→ T (s)S(t− s) =: u(s). Then u is differ-
entiable and its derivative is given by the product rule, see Appendix, Theorem
A.18,

d

ds
u(s) =

(
d

ds
T (t− s)

)
S(s) + T (t− s)

d

ds
(S(s))

= −AT (t− s)S(s) + T (t− s)AS(s) = 0,

and so we obtain the equality T (t) = u(t) = u(0) = S(t). �

9.2 Motivation for Generalizations

First we recall from the previous section that if (T (t))t≥0 is a continuous semi-
group, then there is an operator A ∈ L(X) such that T (t) = etA, and u(t) = T (t)f
solves the differential equation{

u̇(t) = Au(t), t ≥ 0,

u(0) = f.
(9.3)

for all f ∈ X .

It turns out, however, that there are important semigroups which do not
satisfy this continuity property, but a weaker one. We will also see that there
are important differential equations of the form (9.3), where the operator A is no
longer bounded. As a motivation, we work out an important example, the shift
(semi)group.

Example 9.5. Let us consider

X = Cub(R) :=
{
f : R → R : f is bounded and uniformly continuous

}
,

which becomes a Banach space with the supremum norm

‖f‖∞ := sup
s∈R

|f(s)|.
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The additive semigroup structure of R naturally induces a semigroup on this Ba-
nach space by defining

(T (t)f)(s) := f(t+ s), for f ∈ X , s ∈ R, t ≥ 0.

It follows directly from the definition that T (t) is a bounded linear operator on X ,
actually a linear isometry. The semigroup property also follows from the additive

s

f(s)

f(s) = sin s

(T (1)f)(s) = sin(s+ 1)

Figure 9.1: The shift semigroup.

semigroup structure of R. The uniform continuity of f ∈ X implies that the
mapping

t �−→ T (t)f

is continuous on X = Cub(R) for every f ∈ X . We will say that (T (t))t≥0 is a
“strongly continuous semigroup” called the left-shift semigroup. Note that T (·) is
not continuous in the operator norm, because if

‖T (t)− I‖ = sup
‖f‖≤1

‖T (t)f − f‖ = sup
‖f‖≤1

sup
s∈R

|f(s+ t)− f(s)|

would converge to zero as t → 0, then the unit ball of Cub(R) would be uniformly
equicontinuous, which is impossible (and, as a side remark, which would imply by
the Arzelà–Ascoli Theorem that the unit ball of Cub(R) would be compact).

Let us investigate whether this semigroup (T (t))t≥0 solves an initial value
problem such as (9.3). The heuristics of matrix exponential functions helps us
here. Given etA for a matrix A ∈ L(Rn), we can calculate A by differentiating this
exponential function at 0:

A =
d

dt
etA
∣∣∣
t=0

.

Let us see if we can use this idea in the case of the shift semigroup (T (t))t≥0.
Note that the semigroup (T (t))t≥0 is not even continuous for the operator norm,
hence we cannot use this idea directly. So let us look at differentiability of the orbit
maps t �→ T (t)f for some f ∈ X , which is referred to as strong differentiability of
the mapping T (·). The limit

lim
h→0

1

h
(T (h)f − f) = lim

h→0

f(h+ ·)− f(·)
h
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must exist in the supremum norm ofX . Since the limit must exist pointwise onR, it
cannot be anything else but f ′. Hence, the function f must be at least differentiable
so that the limit exists. Let f be differentiable with f ′ being uniformly continuous.
Then

sup
s∈R

∣∣∣∣f(s+ h)− f(s)

h
− f ′(s)

∣∣∣∣ = sup
s∈R

∣∣∣∣∣ 1h
∫ s+h

s

(
f ′(r) − f ′(s)

)
dr

∣∣∣∣∣ ≤ ε,

for all h with |h| ≤ δ, where δ > 0 is sufficiently small, chosen for ε > 0 from the
uniform continuity of f ′. This shows that if f, f ′ ∈ X , then we have

lim
h→0

∥∥∥∥f(·+ h)− f(·)
h

− f ′(·)
∥∥∥∥
∞

= lim
h→0

sup
s∈R

∣∣∣∣f(s+ h)− f(s)

h
− f ′(s)

∣∣∣∣ = 0.

Note that for the derivative of T (t)f at arbitrary t ∈ R we obtain by the
same argument

d

dt
(T (t)f) = T (t)f ′.

This means that for f, f ′ ∈ X the orbit function u(t) = T (t)f solves the differential
equation {

u̇(t) = Au(t), t ∈ R,

u(0) = f ∈ D(A),

where (Af)(s) = f ′(s) is defined with domain

D(A) :=
{
f : f, f ′ ∈ Cub(R)

}
.

Clearly, A is not everywhere defined and cannot be extended to a bounded oper-
ator.

Our example motivates the following definition.

Definition 9.6. Let T : [0,∞) → L(X) be a function.

a) We say that (T (t))t≥0 has the semigroup property if for all t, s ∈ [0,∞)

T (t+ s) = T (t)T (s) and

T (0) = I (i.e., the identity operator on X).

b) Suppose Y ⊆ X is a linear subspace and for all f ∈ Y the mapping

t �−→ T (t)f ∈ X

is continuous. Then (T (t))t≥0 is said to be strongly continuous on Y . If Y =
X , we just say strongly continuous9.

9Here the word strong refers to the so-called strong operator topology on L(X), which char-
acterizes the pointwise convergence of operators (in contrast to the norm, which is responsible
for uniform convergence), see Appendix A.5.
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c) If a strongly continuous mapping T possesses the semigroup property, then
we call (T (t))t≥0 a strongly continuous one-parameter semigroup of bounded
linear operators on the Banach space X . Often we shall abbreviate this ter-
minology to C0-semigroup10.

9.3 Basic Properties

Let us record some elementary consequences of the semigroup property and the
strong continuity. The first result we mention here reflects again the exponential
function: Semigroups can grow at most exponentially.

Proposition 9.7. Let (T (t))t≥0 be a C0-semigroup. Then there are M ≥ 1 and
ω ∈ R such that

‖T (t)‖ ≤ Meωt for all t ≥ 0.

We call the semigroup (T (t))t≥0 of type (M,ω) if it satisfies the exponential
estimate above with particular constants M and ω. Note already here that the
type of a semigroup may change if we pass to an equivalent norm on X .

Proof. For a fixed f ∈ X , the function s �→ T (s)f is continuous on [0,∞), hence
bounded on compact intervals [0, t], i.e.,

sup
s∈[0,t]

‖T (s)f‖ < ∞.

The uniform boundedness principle, see Appendix, Theorem A.15, implies that

M := sup
s∈[0,1]

‖T (s)‖ < ∞.

Taking an arbitrary t ≥ 0 we write t = n+ r with n ∈ N and r ∈ [0, 1). From this
representation and the semigroup property we infer that

‖T (t)‖ = ‖T (r)T (1)n‖ ≤ M‖T (1)n‖
≤ M‖T (1)‖n ≤ M(‖T (1)‖+ 1)n

≤ M(‖T (1)‖+ 1)t = Meωt

with ω = log(‖T (1)‖+ 1). �

Hence, orbits of C0-semigroups are exponentially bounded. The greatest lower
bound of these exponential bounds plays a special role in the theory and will be
our guide in later chapters.

10The symbol C0 or (C, 0) stands for Cesàro summable of order zero, which means the con-
tinuity property limt→0 T (t)f = f for all f ∈ X.
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Definition 9.8. For a C0-semigroup (T (t))t≥0 its growth bound is defined by

ω0(T ) := inf
{
ω ∈ R : there is M = Mω ≥ 1 with ‖T (t)‖ ≤ Meωt for all t ≥ 0

}
.

Remark 9.9.

a) For X = Cn and a matrix A ∈ L(X), we define T (t) = etA. This semigroup
(T (t))t≥0 is of type (1, ‖A‖), as the direct norm estimate

‖etA‖ ≤ et‖A‖

shows. In contrast to this, in the infinite-dimensional situation it can happen
that a semigroup is not of type (1, ω) for any ω, even though ω0(T ) = −∞.
This is an extremely important fact, which causes major difficulties in many
arguments. See Example 9.12 below for a simple demonstration.

b) A C0-semigroup (T (t))t≥0 is of type (M,ω) for all ω > ω0(T ) and for some
M = Mω. In general, however, it is not of type (M,ω0(T )) for any M . A
simple example is the following. Let X = C2 and let the matrix semigroup
given by

T (t) =

(
1 t
0 1

)
.

Here ω0(T ) = 0, but clearly T is not bounded, i.e., not of type (M, 0) for
any M .

The definition of a C0-semigroup combines the analytic property of strong
continuity and the algebraic semigroup property. We show next that these two
properties combine well, and we provide some powerful tools for verifying strong
continuity.

Proposition 9.10.

a) Let T : [0,∞) → L(X) be a locally bounded mapping with the semigroup
property, and let f ∈ X. If the mapping T (·)f is right continuous at 0, i.e.,
T (h)f → f for h ↓ 0, then it is continuous everywhere.

b) A mapping T with the semigroup property is strongly continuous on X if and
only if it is locally bounded and there is a dense subset D ⊆ X on which T
is strongly continuous.

Proof. a) Fix f ∈ X and t > 0, and set Mt := sup[0,t] ‖T (s)‖. Then

T (t+ h)f − T (t)f = T (t)(T (h)f − f) if 0 < h,

T (t+ h)f − T (t)f = T (t+ h)(f − T (−h)f) if −t < h < 0.

Summarizing, for |h| ≤ t we obtain

‖T (t+ h)f − T (t)f‖ ≤ Mt‖f − T (|h|)f‖,

which converges to 0 for |h| → 0 by assumption.
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b) In view of Proposition 9.7 one implication is straightforward. So we turn
to the other, and suppose T to be locally bounded and strongly continuous on
a dense subspace D. Take an arbitrary f ∈ X and fk ∈ D such that fk →
f . Then, by local boundedness, for fixed t0 > 0 we obtain that the functions
T (·)fk converge uniformly to the function T (·)f on [0, t0]. Since uniform limits of
continuous functions are continuous, the statement follows. �
Example 9.11. For f ∈ Lp(R) we define

(T (t)f)(s) := f(t+ s) for a.e. s ∈ R, t ≥ 0.

Then T (t) is a linear isometry on Lp(R). Moreover, the function T has the semi-
group property. We call (T (t))t≥0 the left-shift semigroup on Lp(R). We show that
for p ∈ [1,∞) the left-shift semigroup (T (t))t≥0 is strongly continuous on Lp(R).

Recall first that the shift semigroup is strongly continuous on the space of
bounded uniformly continuous functions, and that the set of continuous functions
with compact support is dense in Lp(R). Taking f ∈ Cc(R) and α, β ∈ R such
that supp f ⊂ [α, β], we see that

‖f(·)− f(·+ h)‖pp =

∫
R

|f(s)− f(s+ h)|p ds ≤ (β − α) sup
s∈[α,β]

|f(s)− f(s+ h)|p,

which goes to zero as h → 0 by the uniform continuity of f , where the pth norm of

f ∈ Lp(R) is ‖f‖p :=
(∫

R
|f(s)|p ds

)1/p
. Since ‖T (t)‖ ≤ 1, the statement follows

by Proposition 9.10.

We have seen in Proposition 9.7 that a semigroup (T (t))t≥0 is always expo-
nentially bounded, meaning that an estimate of the type

‖T (t)‖ ≤ Meωt

holds. Let us give here an example to show that in the infinite-dimensional case it
is quite possible to have M > 1. The example will be a slight modification of the
shift semigroup.

Example 9.12. [A bounded semigroup which is not a contraction]

Let us consider the Hilbert space L2((0, 1), μ), where μ denotes the measure
defined by

μ(Ω) := 2λ(Ω ∩ (0, 1
2 )) + λ(Ω ∩ (12 , 1))

for all Lebesgue measurable sets Ω ⊂ (0, 1), where λ is the Lebesgue measure.
Furthermore, let (T (t))t≥0 be the nilpotent left-shift semigroup, defined by

(T (t)f)(s) :=

{
f(s+ t) for s+ t ≤ 1,

0 for s+ t > 1.

Obviously, (T (t))t≥0 satisfies the semigroup property, and since the norm ‖·‖μ
is equivalent to the norm ‖ · ‖λ, the semigroup (T (t))t≥0 is strongly continuous by
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similar arguments as in the previous example. Clearly, ‖T (t)‖ ≤ 2. In addition we
see that T (t) = 0 for all t > 1.

Finally, consider the function

ft =

(
1√
t

)
χ( 1

2 ,
1
2+t)

for t ∈ (0, 1
2 ), which satisfies ‖ft‖μ = 1 and

‖T (t)ft‖μ = 2.

Hence, ‖T (t)‖ = 2 for t ∈ (0, 1
2 ). This means that an estimate of the type

‖T (t)‖ ≤ Meωt

cannot hold for M < 2 independently of the value of ω ∈ R.

9.4 The Infinitesimal Generator

One message what we would like to deliver is that if we have a semigroup, then
there is a differential equation so that the semigroup provides its solutions. Look-
ing for the equation, we now consider the differentiability of orbit maps as in
Example 9.5.

Lemma 9.13. Take a semigroup (T (t))t≥0 and an element f ∈ X. For the orbit
map u : t �→ T (t)f , the following properties are equivalent:

(i) u is differentiable on [0,∞);

(ii) u is right differentiable at 0.

If u is differentiable, then
u̇(t) = T (t)u̇(0).

Proof. Since (ii) is clearly a special case of (i), we only have to show that (ii)
implies (i). We proceed analogously to the proof of Proposition 9.10. First, we
have

lim
h↓0

1

h
(u(t+ h)− u(t)) = lim

h↓0
1

h
(T (t+ h)f − T (t)f) = T (t) lim

h↓0
1

h
(T (h)f − f)

= T (t) lim
h↓0

1

h
(u(h)− u(0)) = T (t) u̇(0),

by the continuity of T (t). Hence, u is right differentiable on [0,∞).

On the other hand, for −t ≤ h < 0, we write

1

h
(T (t+ h)f − T (t)f)− T (t)u̇(0)

= T (t+ h)

(
1

h
(f − T (−h)f)− u̇(0)

)
+ T (t+ h)u̇(0)− T (t)u̇(0).

As h ↑ 0, the first term on the right-hand side converges to zero by the first part
and by the boundedness of ‖T (t + h)‖ for h ∈ [−t, t]. The other term converges
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to zero by the strong continuity of T . Hence, u is also left differentiable at t > 0,
and its derivative is

u̇(t) = T (t) u̇(0)

for all t ≥ 0. �

We thus see that the derivative u̇(0) of the orbit map u(t) = T (t)f at t = 0
determines the derivative at each point t ∈ [0,∞). For later reference, we give a
name to the operator which maps f into the derivative of the map t �→ T (t)f at
t = 0.

Definition 9.14. The infinitesimal generator , or simply the generator, A of
a strongly continuous semigroup (T (t))t≥0 is defined as follows. Its domain is
given by

D(A) := {f ∈ X : the function t �→ T (t)f is differentiable on [0,∞)}

and for f ∈ D(A) we set

Af :=
d

dt
T (t)f

∣∣∣
t=0

= lim
t↓0

1
t (T (t)f − f) .

It is probably not a great surprise now that a semigroup yields solutions to
some linear initial value problem in a Banach space X .

Proposition 9.15. The generator A of a C0-semigroup (T (t))t≥0 has the following
properties.

a) A : D(A) ⊆ X → X is linear.

b) If f ∈ D(A), then T (t)f ∈ D(A) for t > 0, and Ṫ (t)f = T (t)Af = AT (t)f
for all t ≥ 0.

c) For a given f ∈ D(A), the semigroup (T (t))t≥0 provides a solution to the
initial value problem {

u̇(t) = Au(t), t ≥ 0,

u(0) = f,

via u(t) := T (t)f .

Proof. a) Linearity follows directly from the definition, because we take a limit of
linear objects as h ↓ 0.

b) Take f ∈ D(A) and t ≥ 0. We have to show that T (·)T (t)f is right
differentiable at 0, with derivative T (t)Af . From the strong continuity of T (t) we
obtain

T (t)Af = T (t) lim
h↓0

T (h)f − f

h
= lim

h↓0
T (h)T (t)f − T (t)f

h
.

By the definition of A, this further equals AT (t)f .

c) This is just a reformulation of b) in the language of differential equations.
�
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We investigate now infinitesimal generators further and establish a general-
ization of the Newton–Leibniz formula.

Proposition 9.16. The generator A of a C0-semigroup (T (t))t≥0 has the following
properties.

a) For all t ≥ 0 and f ∈ X, one has∫ t

0

T (s)fds ∈ D(A),

where the integral has to be understood as the Riemann integral of the con-
tinuous function s �→ T (s)f , see Appendix A.7.

b) For all t ≥ 0, one has

T (t)f − f = A

∫ t

0

T (s)fds if f ∈ X,

=

∫ t

0

T (s)Afds if f ∈ D(A).

Proof. a) For g :=
∫ t
0 T (s)fds we calculate the difference quotient:

T (h)g − g

h
=

1

h

(
T (h)

∫ t

0

T (s)fds−
∫ t

0

T (s)fds

)
=

1

h

(∫ t

0

T (h+ s)fds−
∫ t

0

T (s)fds

)
=

1

h

(∫ t+h

h

T (s)fds−
∫ t

0

T (s)fds

)

=
1

h

(∫ t+h

t

T (s)fds−
∫ h

0

T (s)fds

)

=
1

h

∫ t+h

t

T (s)fds− 1

h

∫ h

0

T (s)fds.

Since the integrands here are continuous, we can take limits as h ↓ 0 and obtain

lim
h↓0

T (h)g − g

h
= T (t)f − f.

This yields g ∈ D(A) and Ag = T (t)f − f .

b) Taking f ∈ D(A), by Proposition 9.15.b) we see that the identity
AT (t)f = T (t)Af holds, hence v(t) := AT (t)f defines a continuous function.
For h > 0 define the continuous functions vh(t) :=

1
h (T (t+h)f −T (t)f). Then we

have the estimate

‖vh(t)− v(t)‖ ≤ ‖T (t)‖
∥∥∥1
h
(T (h)f − f)−Af

∥∥∥.
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From this and the definition of A we conclude (by using the exponential bound-
edness of T ) that vh converges to v uniformly on every compact interval. This
yields ∫ t

0

vh(s)ds −→
∫ t

0

v(s)ds as h ↓ 0.

In part a) of this proof we have calculated the limit of the left-hand side and
seen that it equals T (t)f − f . Hence,

T (t)f − f =

∫ t

0

AT (s)fds,

which completes the proof. �

Before turning our attention to the most fundamental result of this section,
let us introduce a new notation and define what a closed operator is. For a linear
operator A defined on a linear subspace D(A) of a Banach space X , we define the
graph norm of A by

‖f‖A := ‖f‖+ ‖Af‖ for f ∈ D(A).

Then, indeed, ‖ · ‖A is a norm11 on D(A). The operator A is called closed if D(A)
is complete with respect to this graph norm, i.e., if D(A) is a Banach space with
this graph norm ‖ · ‖A.

The following lemma yields simple, yet useful reformulations of the closedness
of a linear operator.

Lemma 9.17. Let A be a linear operator with domain D(A) in X. The following
assertions are equivalent.

(i) A is a closed operator.

(ii) For every sequence (fk) ⊆ D(A) with fk → f and Afk → g in X for some
f, g ∈ X, one has f ∈ D(A) and Af = g.

If A is injective, the properties above are further equivalent to the following:

(iii) A−1 (defined on the range of A) is a closed operator.

Proof. (i) =⇒ (ii): Assume A is a closed operator. Let fk → f and Afk → g in X .
Then

‖fk − f�‖A = ‖fk − f�‖+ ‖A(fk − f�)‖
≤ ‖fk − f�‖+ ‖Afk − g‖+ ‖g −Af�‖

11If X is a Hilbert space, it is customary to define the graph norm as ‖f‖2A := ‖f‖2 + ‖Af‖2,
which makes D(A) a pre-Hilbert space. Clearly, the two definitions yield equivalent norms.
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shows that (fk) is a Cauchy sequence in D(A), and thus for some h ∈ D(A) we
have fk → h in (D(A), ‖ · ‖A), since this space is complete. Note that

‖fk − h‖ ≤ ‖fk − h‖+ ‖A(fk − h)‖ = ‖fk − h‖A.

Thus fk → h in (X, ‖ · ‖) as well, which means, by uniqueness of the limit, that
h = f . Then fk → f in (D(A), ‖ · ‖), and so

‖Afk − Af‖ ≤ ‖Afk −Af‖+ ‖fk − f‖ = ‖fk − f‖A −→ 0.

Therefore Afk → Af in X , and so Af = g, by uniqueness of the limit.

(ii) =⇒ (i): We wish to show that A is a closed operator, i.e.,D(A) is complete
with respect to ‖ · ‖A. Let (fk) be a Cauchy sequence in D(A). Then

‖fk − f�‖ ≤ ‖fk − f�‖+ ‖Afk −Af�‖ = ‖fk − f�‖A
and

‖Afk −Af�‖ ≤ ‖fk − f�‖+ ‖Afk −Af�‖ = ‖fk − f�‖A

and so (fk) and (Afk) are Cauchy sequences in X . Since X is complete, we see
that fk → f and Afk → g in X for some f, g ∈ X . Consequently, using the
assumptions in (ii), fk → f with f ∈ D(A) and Af = g. Thus D(A) is complete
with respect to ‖ · ‖A.

(ii) =⇒ (iii): Note that the linearity of A implies the linearity ofA−1. Let A be
a closed operator. We need to show (D(A−1), ‖·‖A−1) is complete. Therefore, take
an arbitrary Cauchy sequence (gk) in D(A−1) and show its limit g exists. Using
the fact that D(A−1) = imA and hence there exist fk, f�, such that Afk = gk,
Af� = g�, we obtain the relations

‖gk − g�‖A−1 = ‖gk − g�‖+ ‖A−1gk −A−1g�‖
= ‖Afk −Af�‖+ ‖fk − f�‖.

Thus (Afk) and (fk) are Cauchy sequences in X , which is complete, and so fk → f
and Afk → g. Then g = Af by (ii) and so

‖gk − g‖A−1 = ‖Afk −Af‖+ ‖fk − f‖ −→ 0.

Thus, gk converges to g in D(A−1).

(iii) =⇒ (i): The above argument shows that A = (A−1)−1 is closed whenever
A−1 is closed. �

The main result of this section summarizes the basic properties of the gen-
erator.

Theorem 9.18. The generator of a C0-semigroup is a closed and densely defined
linear operator that determines the semigroup uniquely.
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Proof. To show the closedness of A, let (fk) ⊂ D(A) be a sequence and f, g ∈ X
such that

fk −→ f and Afk −→ g.

We have to show that f ∈ D(A) and Af = g.

For t > 0 we have

T (t)fk − fk =

∫ t

0

T (s)Afkds,

thanks to Proposition 9.16. If we set uk(s) := T (s)Afk and u(s) := T (s)g, then
uk → u uniformly on [0, t] because the semigroup (T (t))t≥0 is locally bounded. So
we can pass to the limit in the identity above, and obtain

T (t)f − f =

∫ t

0

T (s)gds.

From this we deduce that the function t �→ T (t)f is differentiable at 0 with deriva-
tive u(0) = g. This means precisely that f ∈ D(A) and Af = g, which implies
that A is a closed operator.

We now show that D(A) is dense in X . Let f ∈ X be arbitrary and define

v(t) :=
1

t

∫ t

0

T (s)fds, t > 0.

By Proposition 9.16, we obtain that v(t) ∈ D(A). Since the function s �→ T (s)f
is continuous, we have v(t) → T (0)f = f for t ↓ 0.

Suppose (S(t))t≥0 is a C0-semigroup with the same generator A as (T (t))t≥0.
Let f ∈ D(A) and t > 0 be fixed, and consider the function u : [0, t] → X given
by u(s) := T (t − s)S(s)f . Then u is differentiable and its derivative is given by
the product rule, see Appendix, Theorem A.18:

d

ds
u(s) =

(
d

ds
T (t− s)

)
S(s)f + T (t− s)

d

ds
(S(s)f)

= −AT (t− s)S(s)f + T (t− s)AS(s)f.

Recalling that the semigroup and its generator commute on D(A), see Proposition
9.15.b), we obtain that the right-hand term is 0, so umust be constant. This implies
that

S(t)f = u(t) = u(0) = T (t)f,

i.e., the bounded linear operators S(t) and T (t) coincide on the dense subspace
D(A), hence they must be equal everywhere. �

We conclude the section with the most important property of the generator
from the point of view of applications. The abstract Cauchy problem{

u̇(t) = Au(t), t ≥ 0,

u(0) = f,
(9.4)
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is well posed , if the domain D(A) is dense and for each f ∈ D(A) there exists a
unique classical solution u = u(·, f) depending continuously on the initial value f .
More precisely, u(·, f) : R+ → X is continuously differentiable, u(t, f) ∈ D(A) for
all t ≥ 0, it satisfies equation (9.4), and for every sequence (fk) ⊂ D(A) converging
to 0 one has limk→∞ u(t, fk) = 0 uniformly for t on compact intervals of R+.

Theorem 9.19. A closed linear operator A on a Banach space X generates a C0-
semigroup (T (t))t≥0 if and only if the abstract Cauchy problem (9.4) is well posed.

Proof. If A is a generator, then the well-posedness of the abstract Cauchy problem
follows from Theorem 9.18 and Proposition 9.15.

Conversely, let the abstract Cauchy problem (9.4) be well posed. Using the
unique classical solution u = u(·, f), where f ∈ D(A), for every t ≥ 0 we can
define

T (t)f := u(t, f).

Observe that all T (t) are bounded operators on X . Their linearity is a con-
sequence of the linearity of A and the uniqueness of u. Since T (0)f = u(0, f) = f
and by the uniqueness of the solutions, we also have

T (t+ s)f = u(t+ s, f)

= u (t, u(s, f)) = T (t)T (s)f

for every f ∈ D(A) and t, s ≥ 0. Thus the semigroup property holds.

Furthermore, ‖T (t)‖ is uniformly bounded on every compact interval [0, τ ].
Otherwise, there would exist a sequence (tk) ⊂ [0, τ ] with ‖T (tk)‖ → ∞ as k → ∞
and we could choose (fk) ∈ D(A) converging to 0 such that

‖u(tk, fk)‖ = ‖T (tk)fk‖ ≥ 1,

which contradicts the assumptions on u.

Since the mapping t �→ T (t)f is continuous for every f in the dense set D(A),
Proposition 9.10.b) now implies that (T (t))t≥0 is a C0-semigroup on X . Denote
its generator by B. The operators A and B are both closed, have dense domains,
and coincide on the T (t)-invariant dense set D(A), hence they are equal. �

9.5 Multiplication Semigroups

As an example, we consider now semigroups generated by multiplication operators
in X = �p for p ∈ [1,∞). Let the sequence (an) ⊂ C be given and define the
multiplication operator by (an) as

M(an)(xn) := A(xn) := (anxn), (9.5)

with D(A) := {(xn) ∈ �p : (anxn) ∈ �p}.
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Proposition 9.20. The operator A = M(an) defined in (9.5) has the following prop-
erties:

a) A ∈ L(X) if and only if (an) ∈ �∞.

b) D(A) is dense.

c) A is closed.

Proof. a) Note first that A is clearly linear. If (an) ∈ �∞, then

‖A(xn)‖p ≤ ‖(an)‖∞‖(xn)‖p,

therefore A is bounded.

Suppose now that (an) �∈ �∞. Then ‖A‖ ≥ ‖Auk‖ = |ak|, where uk is the
standard basis vector with 1 in the kth component and 0’s everywhere else. Hence,
in this case A is not bounded.

b) Take an arbitrary element of (yn) ∈ X = �p. Then the sequence⎛⎜⎜⎜⎜⎜⎝
y1
0
0
0
...

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
y1
y2
0
0
...

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
y1
y2
y3
0
...

⎞⎟⎟⎟⎟⎟⎠ , . . .

converges to (yn) and belongs to D(A).

c) Let ϕk =
(
f
(k)
n

)
∈ D(A) such that ϕk → ϕ = (fn) and Aϕk → ψ = (gn)

in X . Then coordinatewise, for each n ∈ N, we have f
(k)
n → fn as k → ∞, and

anf
(k)
n → gn. Thus, anfn = gn. Since ψ ∈ �p, this gives f ∈ D(A) and Af = g. �

From the previous proof we immediately obtain the identity

‖A‖ = ‖(an)‖∞

for (an) ∈ �∞. Let us characterize now when a multiplication operator is a semi-
group generator.

Proposition 9.21. Suppose that there is ω ∈ R such that Re an ≤ ω for all n ∈ N.
Then A = M(an) defined by rule (9.5) generates a C0-semigroup (T (t))t≥0 given by

T (t)(xn) =
(
etanxn

)
.

Proof. Assume Re an ≤ ω and let us check the desired properties. Clearly,

‖T (t)‖ =
∥∥(etan)

∥∥
∞ = sup

n∈N

etRe an ≤ etω

holds and hence T (t) ∈ L(X). Showing the semigroup property is straightforward.
By Proposition 9.10, it suffices to show strong continuity at zero and on a dense
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subset, say c00, which contains all sequences that have only finitely many nonzero
terms. Also note that for the standard basis vectors un we have

‖T (t)un − un‖ =
∥∥((etan − 1)un)

∥∥ = ∣∣etan − 1
∣∣ −→ 0

as t → 0. Then by linearity,∥∥∥∥∥(T (t)− I)

(
N∑

n=1

xnun

)∥∥∥∥∥ ≤
N∑

n=1

‖xn‖ ‖(T (t)− I)un‖ −→ 0

as t → 0. Thus we have a strong convergence on c00 and therefore on �p.

Let B be the generator of (T (t))t≥0. We have to show that B = A. If x =
(xn) ∈ D(B), then

lim
t→0

T (t)x− x

t
= lim

t→0

(
etan − 1

t
xn

)
=

(
lim
t→0

etan − 1

t
xn

)
exists in �p. Then by elementary calculus, for each n it holds that(

etan − 1

t

)
xn −→ anxn for t ↓ 0,

which implies that x ∈ D(A) and Bx = Ax. Therefore, B ⊆ A.

Let us take now x = (xn) ∈ D(A). Then for each n ∈ N, we define

yn := lim
t→0

(
etan − 1

t

)
xn = anxn,

and by assumption we have y = (yn) ∈ �p. Moreover, for each n ∈ N we see that∣∣∣∣etan − 1

tan

∣∣∣∣ = ∣∣∣∣1t
∫ t

0

esands

∣∣∣∣ ≤ etmax{ω,0}

since Re an ≤ ω holds. This implies that∣∣∣∣(T (t)x− x

t

)
n

∣∣∣∣ ≤ |anxn|etmax{ω,0} = |yn|etmax{ω,0}.

Recall that (yn) ∈ �p. Hence, 1
t (T (t)x− x) converges in �p as t → 0, which means

that x ∈ D(B). �
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9.6 Gaussian Semigroup

In this section we analyse another fundamental example where one can determine
the semigroup explicitly.

Let us consider the heat equation on the entire line R:{
∂tw(t, x) = ∂xxw(t, x), t ≥ 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,
(9.6)

where w(t, x) can be interpreted as the heat density and w0 is a function on R
providing the initial heat profile. We look for the solution to this problem as
an orbit map of some C0-semigroup. To find a candidate for this semigroup, we
first make some calculations by using the Fourier transform, which is given for
f ∈ L1(R) by the Fourier integral

f̂(ξ) := F(f)(ξ) :=
1√
2π

∫ ∞

−∞
e−iξxf(x)dx. (9.7)

Let us recall here the important fact that the operator F maps differentiation to
multiplication by the Fourier variable iξ, that is,

F (f ′) (ξ) = iξF(f)(ξ).

If we take the Fourier transform of equation (9.6) with respect to x and
interchange the actions of F and ∂t, we obtain{

∂tŵ(t, ξ) = −ξ2ŵ(t, ξ), t ≥ 0, ξ ∈ R,

ŵ(0, ξ) = ŵ0(ξ), ξ ∈ R.

This is an ordinary differential equation for ŵ in each point ξ, which can be solved
directly:

ŵ(t, ξ) = e−t|ξ|2ŵ0(ξ).

To get back our unknown function w, we take the inverse Fourier transform
of this solution:

w(t, ·) = F−1 (ŵ(t, ·)) = 1√
2π

F−1
(
e−t|·|2

)
∗ F−1(ŵ0),

where we used that F−1 maps products to convolutions. Let us recall that

F−1
(
e−t|·|2

)
(x) =

1√
2t
e−

|x|2
4t .

Setting

gt(x) :=
1√
4πt

e−
|x|2
4t , t > 0,
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we see that the solution w to equation (9.6) is of the form

w(t) = gt ∗ w0 for t > 0.

Let us pause here and collect some fundamental properties of the function gt.

Remark 9.22.

a) The standard Gaussian function

g(x) :=
1√
4π

e−
x2

4

satisfies g ≥ 0, ‖g‖1 = 1 and the function g belongs to Lp(R) for all p ∈ [1,∞].

b) We have gt(x) =
1√
t
g
(

x√
t

)
, hence gt ≥ 0, ‖gt‖1 = 1 and

lim
t↓0

∫
|x|>r

gt(s) ds = 0 for all r > 0 fixed.

The function

G(t, x, y) := gt(x− y), t > 0, x ∈ R, y ∈ R,

is called the Gaussian kernel on R and gives a rise to a semigroup, called the
Gaussian semigroup.

Proposition 9.23. Let p ∈ [1,∞). For f ∈ Lp(R) and t > 0 define

(T (t)f)(x) := (gt ∗ f)(x) =
1√
4πt

∫
R

f(y)e−
(x−y)2

4t dy =

∫
R

f(y)G(t, x, y)dy

and set T (0)f := f. Then T (t) is a linear operator on Lp(R), satisfies the norm
estimate ‖T (t)‖ ≤ 1, and (T (t))t≥0 is a C0-semigroup. Its generator A is given by

D(A) := {f ∈ Lp(R) : f ′′ ∈ Lp(R)},
Af := f ′′,

where f ′′ is the second derivative of f ∈ Lp(R) in the sense of distributions (see
A.11).

Proof. Let f ∈ Lp(R). By Young’s inequality (see Lemma A.14) and since gt ∈
L1(R), we obtain that the convolution gt ∗ f exists and

‖gt ∗ f‖p ≤ ‖gt‖1 · ‖f‖p = ‖f‖p.

In particular, gt ∗ f belongs to Lp(R). Since linearity of f �→ gt ∗ f follows imme-
diately from the definition, we obtain that T (t) is a linear contraction.
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To prove the semigroup property, fix f ∈ L1(R) ∩ Lp(R). Taking the Fourier
transform of gt ∗ (gs ∗ f) we obtain

F(gt ∗ (gs ∗ f)) =
√
2πF(gt) · F(gs ∗ f) = (2π)F(gt) · F(gs) · F(f).

Recall that

F(gt)(ξ) =
1√
2π

e−tξ2 ,

which implies

F(gt)(ξ) · F(gs)(ξ) =
1

2π
e−(t+s)ξ2 =

1√
2π

F(gt+s)(ξ).

This yields

F(gt ∗ (gs ∗ f)) =
√
2πF(gt+s) · F(f) = F(gt+s ∗ f),

hence gt ∗ (gs ∗ f) = gt+s ∗ f by the injectivity of the Fourier transform. Therefore,
the equality T (t)T (s)f = T (t+ s)f holds for f ∈ L1(R) ∩ Lp(R). By the uniform
boundedness of the semigroup operators and by the denseness of this subspace in
Lp(R), we obtain the equality everywhere.

From the properties of the function gt listed in Remark 9.22.b), it is possible
to prove that gt ∗ f → f in Lp(R) if t ↓ 0 for every step function f . Since step
functions are dense in Lp(R), and ‖T (t)‖ ≤ 1, we see that the semigroup (T (t))t≥0

is strongly continuous.

Now we identify the generator of (T (t))t≥0. Denote by B the operator de-
fined by

D(B) := {f ∈ Lp(R) : f ′′ ∈ Lp(R)},
Bf := f ′′.

It is easy to see that B is a closed linear operator on Lp(R). On the other
hand, by Proposition A.47, we deduce that D(B) = W2,p(R). Let now f ∈ D(B).
By the denseness of C∞

c (R) in W2,p(R), there is (fk) ⊂ C∞
c (R) such that fk → f

and Bfk → Bf as k → ∞. If we denote by a(x) := −x2, then

F
(

d2

dx2
T (t)fk

)
= aF(T (t)fk) = F(gt)aF(fk)

= F(gt)F(f ′′
k ) = F(T (t)f ′′

k ).

So, BT (t)fk = T (t)Bfk, and by the closedness of B, we have T (t)f ∈ D(B) and

BT (t)f = T (t)Bf, t ≥ 0. (9.8)

Take now the Schwartz space S(R) of rapidly decreasing functions, defined
in (A.7), and recall that for all ϕ ∈ S(R)∗ and f ∈ S(R) the identity

F(f ∗ ϕ) =
√
2πF(f) · F(ϕ)
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holds. For any ϕ ∈ S(R), we thus have

F
(∫ t

0

T (s)ϕ′′ds
)
(x) =

∫ t

0

F(T (s)ϕ′′)(x)ds

=

∫ t

0

e−sx2

a(x)F(ϕ)(x)ds

= (e−tx2 − 1)F(ϕ)(x)

= F(T (t)ϕ− ϕ)(x).

Hence, ∫ t

0

T (s)ϕ′′ds = T (t)ϕ− ϕ, ϕ ∈ S(R), t ≥ 0. (9.9)

So, using Fubini’s theorem (see Theorem A.24) and relation (9.9) we deduce that〈
ϕ,B

∫ t

0

T (s)fds

〉
=

〈
ϕ, ∂xx

∫ t

0

T (s)fds

〉
=

〈
ϕ′′,
∫ t

0

T (s)fds

〉
=

∫ t

0

〈ϕ′′, T (s)f〉ds =
∫ t

0

〈T (s)ϕ′′, f〉ds

= 〈T (t)ϕ− ϕ, f〉 = 〈ϕ, T (t)f − f〉

for any ϕ ∈ S(R), f ∈ Lp(R), and t ≥ 0. This proves that
∫ t
0
T (s)fds ∈ D(B) for

any f ∈ Lp(R) and

B

∫ t

0

T (s)fds = T (t)f − f, f ∈ Lp(R), t ≥ 0.

This together with (9.8) proves that A = B. �
Remark 9.24. More generally, one can see, using the same arguments, that the
rule

(T (t)f)(x) := (4πt)−N/2

∫
RN

f(y)e−
|x−y|2

4t dy =:

∫
RN

f(y)G(t, x, y)dy, t > 0,

T (0)f := f,

defines a C0-semigroup on Lp(RN ), 1 ≤ p < ∞. Its generator can be identified
with the Laplacian Δ with the maximal domain

D(Δ) = {f ∈ Lp(RN ) : Δf ∈ Lp(RN )}.

We remark that, using deep results from harmonic analysis, it is possible to
show for 1 < p < ∞ that

D(Δ) = W2,p(RN ).



9.7. Resolvent of a Generator 131

9.7 Resolvent of a Generator

We have seen in Part I that spectral analysis of matrices, more precisely, the deter-
mination of eigenvalues and eigenvectors, led to a construction of the semigroup
generated by them. We investigate now some basic spectral properties of semi-
group generators. Let us begin with the following fundamental spectral theoretic
notions.

Definition 9.25. Let A be a linear operator defined on a linear subspace D(A) of
a Banach space X .

a) The spectrum of A is the set

σ(A) :=
{
λ ∈ C : λ−A : D(A) → X is not bijective

or its inverse is not continuous
}
.

Its subset
σp(A) := {λ ∈ C : λ−A is not injective }

is called the point spectrum of A and consists of eigenvalues .

b) The resolvent set of A is ρ(A) := C \ σ(A), i.e.,
ρ(A) :=

{
λ ∈ C : λ−A : D(A) → X is bijective with a continuous inverse

}
.

c) If λ ∈ ρ(A), then λ−A is bijective, hence has an algebraic inverse (λ−A)−1.
We call this operator the resolvent of A at the point λ and denote it by

(λ−A)−1 =: R(λ,A) ∈ L(X).

It is important to note that if A is closed and if λ is such that λ−A : D(A) → X
is bijective, then its algebraic inverse

(λ−A)−1 : X −→ D(A)

is defined on the entire X . Since A is closed, so are λ − A and its inverse. As
a consequence of the closed graph theorem, see Theorem A.21, we immediately
obtain that the operator (λ−A)−1 is bounded. Then the following holds.

Proposition 9.26. For a closed linear operator A one has

ρ(A) :=
{
λ ∈ C : λ−A : D(A) → X is bijective

}
.

Remark 9.27. A linear operator A on a Banach spaceX with a nonempty resolvent
set is always closed. To see this, let λ ∈ ρ(A) and consider a sequence (fk) ⊂ D(A)
and f, g ∈ X such that limk→∞ fk = f and limk→∞ Afk = g. Then,

lim
k→∞

R(λ,A)Afk = lim
k→∞

λR(λ,A)fk − fk

= λR(λ,A)f − f

= R(λ,A)g.

Hence, f ∈ D(A) and Af = g.
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Here we summarize some fundamental properties of spectrum and resolvent.

Proposition 9.28. Let X be a Banach space and let A be a linear operator with
domain D(A) ⊆ X. Then the following assertions are true.

a) The resolvent set ρ(A) is open, hence its complement, the spectrum σ(A), is
closed.

b) The mapping
ρ(A) � λ �−→ R(λ,A) ∈ L(X)

is complex differentiable. Moreover, for k ∈ N we have

dk

dλk
R(λ,A) = (−1)kk!R(λ,A)k+1.

c) If A ∈ L(X), then for every λ ∈ C with |λ| > r(A) we have λ ∈ ρ(A) and the
Neumann series representation of the resolvent holds:

R(λ,A) =

∞∑
k=0

Ak

λk+1
.

d) Let λk ∈ ρ(A) with limk→∞ λk = λ0. Then λ0 ∈ σ(A) if and only if

lim
k→∞

‖R(λk, A)‖ = ∞.

Proof. a) follows from the Neumann series representation of the resolvent: For
μ ∈ ρ(A) we have

λ−A = (I − (μ− λ)R(μ,A))(μ −A).

Hence, for |λ− μ| < 1
‖R(μ,A)‖ we obtain, by (A.4),

R(λ,A) =

∞∑
k=0

(λ − μ)kR(μ,A)k+1. (9.10)

b) follows from the power series representation in a) and from the fact that
a power series is always a Taylor series.

c) follows by similar Neumann series arguments as in the proof of a) since

(λ−A) = λ

(
I − A

λ

)
formally yields the series, which converges if |λ| > lim sup ‖Ak‖1/k =: r(A).

d) Suppose that λ0 ∈ ρ(A). The resolvent map is continuous and remains
bounded on the compact set {λk : k ≥ 0}, which contradicts the assertion on the
limit of ‖R(λk, A)‖, hence λ0 ∈ σ(A). For the converse implication observe that
our considerations at the beginning of the proof yield ‖R(μ,A)‖ ≥ 1

dist(μ,σ(A)) for

all μ ∈ ρ(A) (see also Corollary 9.30). �
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The following result is also known as the spectral mapping theorem for the
resolvent .

Proposition 9.29. Let A be a linear operator with ρ(A) �= ∅. Then for any λ ∈ ρ(A)
the identity

σ(R(λ,A)) \ {0} =

{
1

λ− μ
: μ ∈ σ(A)

}
holds.

Proof. For 0 �= α ∈ C and λ ∈ ρ(A), we have

(α−R(λ,A))f = α
[(
λ− 1

α

)
−A
]
R(λ,A)f for all f ∈ X,

= αR(λ,A)
[(
λ− 1

α

)
−A
]
f for all f ∈ D(A).

Thus, α ∈ σ(R(λ,A)) if and only if λ− 1
α ∈ σ(A). �

As a corollary one determines the spectral radius of R(λ,A).

Corollary 9.30. For λ ∈ ρ(A) one has

dist(λ, σ(A)) =
1

r(R(λ,A))
≥ 1

‖R(λ,A)‖ .

Proof. Let λ ∈ ρ(A). Then, by Proposition 9.29,

dist(λ, σ(A)) = inf{|λ− μ| : μ ∈ σ(A)}

=

(
sup

{∣∣∣∣ 1

λ− μ

∣∣∣∣ : μ ∈ σ(A)

})−1

= (max{|α| : α ∈ σ(R(λ,A))})−1

=
1

r(R(λ,A))
≥ 1

‖R(λ,A)‖
which proves the assertion. �

Having revealed some properties of the resolvent of a general closed linear
operator, we now focus on generators of strongly continuous semigroups. Our aim
is to prove that the resolvent set of a generator A is non-empty and to relate the
resolvent of A to the semigroup (T (t))t≥0. The first step is provided by the next
lemma.

Lemma 9.31. Let (T (t))t≥0 be a C0-semigroup with generator A. Then for all
λ ∈ C and t > 0 the identities

e−λtT (t)f − f = (A− λ)

∫ t

0

e−λsT (s)f ds if f ∈ X,

=

∫ t

0

e−λsT (s)(A− λ)f ds if f ∈ D(A)

hold.
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Proof. Observe that S(t) = e−λtT (t) is also a C0-semigroup with generator B =
A−λ, see Exercise 4. Applying Proposition 9.16.b) to S(t), the result follows. �

As a consequence of the second identity, we obtain a very useful spectral
inclusion property for the point spectra.

Corollary 9.32. Let A be the generator of a C0-semigroup (T (t))t≥0. If λ is an
eigenvalue of A with a corresponding eigenvector f ∈ D(A), then for all t ≥ 0 eλt

is an eigenvalue of T (t) with corresponding eigenvector f .

With the help of Lemma 9.31 we also obtain the following important relations
between the resolvent of the generator and the semigroup.

Proposition 9.33. Let (T (t))t≥0 be a C0-semigroup of type (M,ω) with generator
A. Then the following assertions are true.

a) For all f ∈ X and λ ∈ C with Reλ > ω,

R(λ,A)f =

∫ ∞

0

e−λsT (s)fds = lim
N→∞

∫ N

0

e−λsT (s)fds. (9.11)

b) For all f ∈ X, λ ∈ C with Reλ > ω and k ∈ N,

R(λ,A)kf =
1

(k − 1)!

∫ ∞

0

sk−1e−λsT (s)fds.

c) For all λ ∈ C with Reλ > ω and k ∈ N,

‖R(λ,A)k‖ ≤ M

(Re λ− ω)k
. (9.12)

Proof. a) By Lemma 9.31, the closedness of A (see Lemma 9.17), and by taking
the limit as t → ∞, we conclude that for Reλ > ω we have

−f = (A− λ)

∫ ∞

0

e−λsT (s)f ds if f ∈ X,

=

∫ ∞

0

e−λsT (s)(A− λ)f ds if f ∈ D(A).

Since this expression gives a bounded operator, a) is proved.

b) Notice that

R(λ,A)kf =
(−1)k−1

(k − 1)!

dk−1

dλk−1
R(λ,A)f =

1

(k − 1)!

∫ ∞

0

sk−1e−λsT (s)fds.

c) By a simple norm estimate we obtain

‖R(λ,A)kf‖ ≤ 1

(k − 1)!

∫ ∞

0

sk−1e−ReλsMeωs‖f‖ds

≤ M‖f‖
(k − 1)!

∫ ∞

0

sk−1e(ω−Reλ)sds =
M

(Reλ− ω)k
‖f‖,

which finishes the proof. �
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Let us summarize the above as follows.

If A is the generator of an operator semigroup (T (t))t≥0, then it is closed,
densely defined, and a suitable right half-plane belongs to its resolvent set, where
the estimate (9.12) holds. Using (9.11), we see that the resolvent operators are
given by the Laplace transform of the semigroup, also called the integral represen-
tation of the resolvent .

9.8 Adjoint Semigroups

There are many ways to construct a new C0-semigroup from a given one. Some
examples can be found in Exercise 4. Here we briefly discuss another construction
we shall need later. Recall the definitions of a dual space and of an adjoint operator
in Appendix, Section A.8.

Definition 9.34. Let (T (t))t≥0 be a C0-semigroup on a Banach spaceX . The adjoint
semigroup (T (t)∗)t≥0 consists of all adjoint operators T (t)∗ on the dual space X∗.

Since
〈f, T (t)∗f∗〉 = 〈T (t)f, f∗〉

holds for every f ∈ X , f∗ ∈ X∗, and t ≥ 0, the adjoint of a C0-semigroup is
always weak∗-continuous. However, it is in general not strongly continuous, as the
following example shows.

Example 9.35. Take the left-shift semigroup (T (t))t≥0 from Example 9.11 on the
space L1(R). Then for g ∈ L∞(R) one has that

〈T (t)f, g〉 =
∫
R

f(t+ s)g(s) ds =

∫
R

f(s)g(s− t) ds.

Hence, the adjoint semigroup of the left shift is the right-shift semigroup on L∞(R).
It follows from the discussion in Example 9.5 that t �→ T (t)f is continuous in the
supremum norm only if f is uniformly continuous. Hence, the right-shift semigroup
is not strongly continuous on L∞(R).

To overcome this problem, we restrict the adjoint semigroup to an appropri-
ate subspace of the dual space.

Definition 9.36. The semigroup dual space or sun dual of a C0-semigroup (T (t))t≥0

on a Banach space X is defined as

X� :=

{
f∗ ∈ X∗ : lim

t↓0
‖T (t)∗f∗ − f∗‖ = 0

}
.

This is a closed and T (t)∗-invariant subspace of X∗, hence the sun semigroup
is the semigroup of the adjoint operators restricted to this space,

T (t)� := T (t)∗|X� .
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Since ‖T (t)∗‖ = ‖T (t)‖, by Proposition 9.10 the sun dual X� ⊂ X∗ is a
closed subspace and (T (t)�)t≥0 a C0-semigroup on it. We show that the space X�

is big enough.

Lemma 9.37. We have D(A∗) ⊂ X�.

Proof. Without loss of generality we may assume that ‖T (t)‖ ≤ M for all t ≥ 0.
For any g∗ ∈ D(A∗) we have by Proposition 9.16 that

|〈f, T (t)∗g∗ − g∗〉| = |〈T (t)f − f, g∗〉|

=

∣∣∣∣〈A∫ t

0

T (s)f ds, g∗
〉∣∣∣∣

≤ tM‖f‖‖A∗g∗‖

for all f ∈ X . This converges uniformly to zero as t → 0 for ‖f‖ ≤ 1, hence

lim
t↓0

‖T (t)∗g∗ − g∗‖ = 0

and g∗ ∈ X�. �

Denote by A� the generator of the sun semigroup (T (t)�)t≥0. There is a nice
relation between this operator and the adjoint A∗ of the generator of (T (t))t≥0.

Proposition 9.38. For a C0-semigroup (T (t))t≥0 on X with generator A the fol-
lowing holds.

a) The generator A� is the part of A∗ in X�, i.e.,

A�f∗ = A∗f∗ for f∗ ∈ D(A�) = {f∗ ∈ D(A∗) : A∗f∗ ∈ X�}.

b) X� = D(A∗).

Proof. a) Let f∗ ∈ D(A�). Then〈
f,

1

t
(T (t)�f∗ − f∗)

〉
=

〈
f,

1

t
(T (t)∗f∗ − f∗)

〉
=

〈
1

t
(T (t)f − f), f∗

〉
.

So, letting t → 0+, we obtain

〈Af, f∗〉 = 〈f,A�f∗〉 for all f ∈ D(A).

Hence, from the definition of A∗, see Appendix A.8, we have f∗ ∈ D(A∗) and
A�f∗ = A∗f∗.

b) Since the domain of the generator D(A�) ⊂ D(A∗) is dense in X�, this
follows by Lemma 9.37. �

To obtain the sun semigroup it thus suffices to restrict the adjoint semigroup
to the closure of the domain of the adjoint A∗ of the original generator A.
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Example 9.39. Let us continue Example 9.35 and take again the left-shift semi-
group on X = L1(R). Since the largest subspace of L∞(R) on which the right-shift
operators form a C0-semigroup is the space Cub(R) of bounded uniformly contin-
uous functions, we have X� = Cub(R). For the generator Af = f ′ we have

D(A) = {f ∈ L1(R) : f absolutely continuous and f ′ ∈ L1(R)},
D(A∗) = {f ∈ L∞(R) : f absolutely continuous and f ′ ∈ L∞(R)},
D(A�) = {f ∈ Cub(R) : f ∈ C1(R) and f ′ ∈ Cub(R)}.

Also the spectra of the operators A, A∗, and A� coincide, which is a very
useful property.

Proposition 9.40. For a C0-semigroup (T (t))t≥0 on X with generator A we have
the following equalities.

a) σ(A) = σ(A∗) = σ(A�).
b) s(A) = s(A∗) = s(A�).

Proof. a) Since the first equality holds by Proposition A.32, it suffices to show
that ρ(A∗) = ρ(A�). First notice that

D(A�) ⊂ D(A∗) ⊂ X� ⊂ X∗.

For any λ ∈ ρ(A∗) we have

R(λ,A∗)X� ⊂ R(λ,A∗)X∗ = D(A∗) ⊂ X�

and the part of R(λ,A∗) in X� equals R(λ,A�). Hence, we have ρ(A∗) ⊂ ρ(A�).
For the converse inclusion, observe that the part A1 of A∗ in D(A∗) coincides

with the part of A� in D(A∗). By the same argument as above, one obtains
ρ(A�) ⊂ ρ(A1), and since ρ(A1) = ρ(A∗), we have the desired equality.

b) This is a consequence of a). �

9.9 Notes and Remarks

Operator semigroups have been widely studied during the last decades and there
are many monographs dealing with them. We mention here the excellent graduate
texts by Engel and Nagel [43, 44], which motivated many parts of this manuscript.
The first milestone in the theory was the opus of Hille and Phillips [66]. An im-
portant later reference is the book of Pazy [110], which was written from a PDE
perspective, and Goldstein [54], which contains lots of other applications as well.

For the Fourier transform used in Section 9.6 we suggest the monograph by
Stein and Weiss [132]. Distributions and the Schwartz space, used in the proof
of Proposition 9.23, are briefly recalled in Section A.11 of the Appendix. For the
domain of the Laplacian in higher dimensions as mentioned at the end of Section
9.6 we refer to Stein [131, Theorem VI.4.4].
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9.10 Exercises

1. Let A ∈ L(X). Show that the Cauchy problem

Ḟ (t) = AF (t),

F (0) = B ∈ L(X),

has a unique solution F : R+ → L(X).

2. For A ∈ L(X) prove Euler’s formulas

lim
k→∞

(
I +

t

k
A

)k

= etA and lim
k→∞

(
I − t

k
A

)−k

= etA

for t ≥ 0.

3. Let X = C0(R) and q ∈ C(R). Consider the operator (Af)(s) := q(s)f(s)
with D(A) := {f ∈ X : qf ∈ X} and make analogous statements as in
Section 9.5. Prove these statements.

4. Consider a C0-semigroup (T (t))t≥0 of type (M,ω) with generator A on a
Banach space X . For each (S(t))t≥0 defined below, prove that it is a C0-
semigroup, and determine its type and its generator.

a) S(t) := R−1T (t)R for a boundedly invertible transformation R ∈ L(X).

b) S(t) := etzT (t) for some z ∈ C.

c) S(t) := T (αt) for some α ≥ 0.

5. Consider the closed subspace

C0([0, 1)) :=
{
f ∈ C([0, 1]) : f(1) = 0

}
of the Banach space C([0, 1]) of continuous functions on [0, 1]. Define the
nilpotent left-shift semigroup on it and determine its generator.

6. Let Fb(R) denote the linear space of all bounded functions R → R. Define

(T (t)f)(s) := f(t+ s) for f ∈ Fb(R), s ∈ R, t ≥ 0.

Prove that each of the following spaces is a Banach space with the supremum
norm ‖·‖∞ and invariant under T (t) for all t ≥ 0. Is (T (t))t≥0 a C0-semigroup
on these spaces?

a) Fb(R).

b) Cb(R) = the space bounded and continuous functions.

c) C0(R) = the space bounded and continuous functions vanishing at in-
finity.

7. Determine the set of those f ∈ Cub(R) for which the orbit of the left-shift
semigroup is differentiable.
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8. Determine whether the following operators are closed or not.

a) X := C[0, 1], Af(s) := 1
s(1−s)f(s), D(A) := {f ∈ X : Af ∈ X}

b) X := C[0, 1], Bf(s) := f ′(s), D(B) := {f ∈ C1[0, 1] : f ′(1) = 0}
c) X := C[0, 1], Cf(s) := f ′(s), D(C) := {f ∈ C1[0, 1] : f(0) = f(1)}
d) X := C[0, 1], Df(s) := f ′′(s), D(D) := C2[0, 1]

e) X := C[0, 1],Ef(s) := f ′′(s),D(E) :=
{
f ∈ C2[0, 1] : f(0) = f(1) = 0

}
f) X := C[0, 1], Ff(s) := f ′′(s), D(F ) :=

{
f ∈ C2[0, 1] : f ′′(0) = 0

}
9. Calculate the spectrum and the point spectrum of the following operators on

the Banach space X := C[0, 1].

a) Af(s) := f ′(s), D(A) := {f ∈ C1[0, 1] : f ′(0) = f ′(1)}.
b) Bf(s) := f ′′(s), D(B) := C2[0, 1].

c) Cf(s) := f ′′(s), D(C) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}.
10. Let X = C0(R), q ∈ Cb(R), and

T (t)f(s) := e
∫ t
s−t

q(τ)dτ · f(s− t).

Show that (T (t))t≥0 is a C0-semigroup and the identity operator its genera-
tor.

11. Let (T (t))t≥0 be a semigroup on the Banach spaceX with generator A. Prove
that for all f ∈ D(A2) we have the Taylor formula

T (t)f = f + tAf +

∫ t

0

(t− s)T (s)A2fds.

Find a general Taylor formula for f ∈ D(An).

12. Let (T (t))t≥0 be a contraction semigroup on the Banach space X with gen-
erator A. Prove that

‖Af‖2 ≤ 4‖A2f‖ · ‖f‖

holds for all f ∈ D(A2).

13. Let X := Lp[1,∞), 1 ≤ p < ∞ and (T (t)f)(s) := f(set). Show that (T (t))t≥0

is a C0-semigroup and that ω0(T ) = − 1
p . Can you identify its generator?

14. Consider some examples of semigroups appearing in this chapter and write
down the corresponding abstract initial value problems. Can you associate
partial differential equations to these initial value problems?



Chapter 10

Banach Lattices and
Positive Operators

In the remaining chapters we shall try to extend the theory of positive matrices to
infinite-dimensional spaces. One of the first questions is how to generalize concepts
like positivity of vectors, or positivity, irreducibility, and imprimitivity of matrices.
We have tried to have an abstract look at the finite-dimensional case, to motivate
infinite-dimensional concepts. Still, the transition from finite to infinite dimensions
is not easy. This is why we decided to focus in this chapter only on the order
relation and explore basic properties of infinite-dimensional ordered vector spaces,
more precisely, Banach lattices.

We also continue the investigation of positive operators and positive expo-
nential functions on Banach lattices. We shall be guided by the finite-dimensional
situation and there will be many results and proofs which will be essentially reap-
pearances from previous chapters.

10.1 Ordered Function Spaces

Let us first summarize the order structure of Rn. Note that vectors in Rn can be
identified with functions:

Rn ≡ {f : {1, . . . , n} → R} .

Positivity of a vector is thus nothing but pointwise positivity of the representing
function:

f ≥ 0 if and only if f(k) ≥ 0 for all k = 1, . . . , n.

Hence, if we have a vector space of real-valued functions, it is natural to intro-
duce an order relation by pointwise ordering. Let us illustrate this with the most
important example.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_10
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For a compact Hausdorff space K we take the space of continuous functions

X := C(K,R) := {f : K → R : f is continuous} ,

which is a Banach space with the norm

‖f‖ = ‖f‖∞ = max
x∈K

|f(x)|.

The pointwise ordering in this case is

f ≥ g ⇐⇒ f(x) ≥ g(x) for all x ∈ K.

This clearly generalizes the finite-dimensional case with K = {1, . . . , n} ⊂ R and
the usual maximum norm.

It is straightforward from the definition that the ordering is compatible with
the vector space operations in the sense that

f ≤ g implies f + h ≤ g + h for all h ∈ C(K,R)

and
0 ≤ f implies 0 ≤ tf for all t ≥ 0.

We can also define the supremum and infimum of two functions as

(f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)}

for all x ∈ K. The positive part , negative part, and absolute value of a function
can be then given as

f+ := f ∨ 0, f− := (−f) ∨ 0, |f | := f ∨ (−f).

An important property of the positive and negative part of a function is that
they live separate lives: if f+(x) �= 0, then f−(x) = 0 and vice versa. This property
is sometimes called orthogonality or disjointness .

Note that the following properties also follow from the fact that we defined
the order relation pointwise and that the order behaves well on the real numbers:

f = f+ − f−,
|f | = f+ + f−,

f ≤ g ⇐⇒ f+ ≤ g+ and g− ≤ f−, (10.1)

|f − g| = (f ∨ g)− (f ∧ g),

|f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖.

Recall that for reducibility in Chapter 5 (see Definition 5.8) we needed the
invariance of a subspace of the form

JM :=
{
(ξ1, . . . , ξn)

� : ξi = 0 for i ∈ M
}
⊂ Rn
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x

f(x)

f(x) = sinx

f+(x)

(a) The positive part f+.

x

f(x)

f(x) = sinx

f−(x)

(b) The negative part f−.

x

f(x)

f(x) = sinx

|f |(x) = | sinx|

(c) The absolute value |f |.

x

f(x)

f(x) = sinx
g(x) = cosx

(f ∨ g)(x)

(d) Supremum f ∨ g.

Figure 10.1: Examples of f+, f−, |f |, and f ∨ g.

for some ∅ �= M � {1, . . . , n}. In analogy, we define the following. Suppose that
F ⊂ K is a closed set and set

JF := {f ∈ C(K,R) : f(x) = 0 for all x ∈ F} . (10.2)

Subspaces of the above form are also called ideals . It is important that such ideals
can be characterized by order theoretic concepts.

Proposition 10.1. For a closed subspace I ⊂ C(K,R) the following assertions are
equivalent.

(i) f ∈ I implies |f | ∈ I,

and

0 ≤ g ≤ f ∈ I implies g ∈ I.

(ii) There is a closed set F ⊂ K such that I = JF .

Proof. Since the case I = {0} (where 0 stands here for the constant zero function)
is obvious, we may assume that I �= {0}.

Clearly, if I = JF for a closed subset F , then the properties listed in (i) hold.

For the other direction, define

F := {x ∈ K : f(x) = 0 for all f ∈ I}

and for α ∈ R and f ∈ C(K,R) denote

[f ≥ α] := {x ∈ K : f(x) ≥ α}.

Obviously, I ⊂ JF . Take now a positive nonzero function 0 �= f ∈ JF . Our aim is
to show that f ∈ I.
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For ε > 0 let Bf
ε := [f ≥ ε]. Observe that Bf

ε is a closed set satisfying
Bf

ε ∩F = ∅. Thus, for every x ∈ Bf
ε there is 0 ≤ gx ∈ I such that gx(x) > 0. Since

Bf
ε is compact, there are finitely many x1, . . . , xr ∈ Bf

ε such that

Bf
ε ⊂ [gx1 > 0] ∪ [gx2 > 0] ∪ · · · ∪ [gxr > 0].

We construct now an approximation of f in the set I. First observe that (i)
and (10.1) show that f1, f2 ∈ I implies f1 ∨ f2 ∈ I and f1 ∧ f2 ∈ I. We define

g := gx1 ∨ gx2 ∨ · · · ∨ gxr ∈ I,

and take δ > 0 such that g(x) ≥ δ for all x ∈ Bf
ε . Then the function

h := f ∧
(
‖f‖
δ

g

)
∈ I

satisfies 0 ≤ h ≤ f and h(x) = f(x) for all x ∈ Bf
ε . By the definition of the set

Bf
ε , we see that ‖f − h‖ ≤ ε. Hence, for every f ∈ JF and every ε > 0 we found

h ∈ I such that h approximates f with an error less than ε. By the closedness of
I we obtain the desired conclusion. �

Thus, a closed subspace I of C(K,R) is an ideal if any of the equivalent
conditions in Proposition 10.1 is satisfied. Let us only remark that this is also
equivalent to saying that I is an algebraic ideal of the Banach algebra C(K,R).

An operator T on C(K,R) is called reducible if there exists a nontrivial ideal
which is invariant under T . An operator which is not reducible, is called irreducible.

Another important observation concerning ideals is the following. Taking
f ≥ 0, we build the smallest ideal containing f , and denote it by Ef . It is then
straightforward to check using Proposition 10.1 that

Ef =
⋃
k∈N

[−kf, kf ]

holds, where [f1, f2] := {g : f1 ≤ g ≤ f2} denotes the order interval determined
by f1 and f2, see Figure 10.2. We call Ef the ideal generated by f .

x

f(x)

f2(x) = sinx+ 1

f1(x) = sinx− 1

f ∈ [f1, f2]

Figure 10.2: The order interval.
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In some proofs (like in Corollary 7.4) strictly positive vectors (or the vector
1) played an important role. A natural observation is that the ideal generated
by a strictly positive function is the whole space C(K,R). A function with this
property is sometimes also called an order unit . Unfortunately, as we shall see in
the next section, not all function spaces possess order units. We will be able to
introduce a weaker notion that will be almost as satisfactory for our proofs, see
Example 10.16 and the considerations before that.

Finally, let us note that for statements in spectral theory we need complex
vector spaces. Observe that we can make the identification

C(K,C) ∼= C(K,R)⊕ i · C(K,R),

meaning that for a complex-valued continuous function its real and imaginary
parts are real-valued continuous functions.

10.2 Vector Lattices

Now we take an abstract point of view and try to axiomatize what we have seen
in the previous section. Our main examples, besides the finite-dimensional vector
spaces, are C(K) spaces, Lp(Ω, μ) spaces, and C0(Ω) spaces (see Example 10.6
later on). If you are uncomfortable with abstract terminology, you should pick one
of these spaces and keep it in mind for the rest of this chapter.

We start by ordering. A non empty set M with a relation ≤ is said to be an
ordered set if the following conditions are satisfied:

a) f ≤ f for every f ∈ M ,

b) f ≤ g and g ≤ f imply f = g, and

c) f ≤ g and g ≤ h imply f ≤ h.

First examples of ordered sets are the number sets N, Z, Q, and R.
Having an ordering at hand, we can consider order boundedness. Let F be a

subset of an ordered set M . The element f ∈ M (resp. h ∈ M) is called an upper
bound (resp. lower bound) of F if g ≤ f for all g ∈ F (resp. h ≤ g for all g ∈ F ).
Moreover, if there is an upper bound (resp. lower bound) of F , then F is said to
be bounded from above (resp. bounded from below). If F is bounded from above
and from below, then it is called an order bounded set .

We can introduce the concept of an order interval analogous to the intervals
on the real line. Let f, h ∈ M such that f ≤ h. We denote by

[f, h] := {g ∈ M : f ≤ g ≤ h}

the order interval between f and g. We infer that a subset F is order bounded if
and only if it is contained in some order interval.



146 Chapter 10. Banach Lattices and Positive Operators

Definition 10.2. A real vector space E which is ordered by some order relation ≤
is called a vector lattice if any two elements f, g ∈ E have a least upper bound,
denoted by f ∨ g = sup(f, g) ∈ E, and a greatest lower bound, denoted by f ∧ g =
inf(f, g) ∈ E, and the following properties are satisfied:

a) if f ≤ g, then f + h ≤ g + h for all f, g, h ∈ E,

b) if 0 ≤ f , then 0 ≤ tf for all f ∈ E and 0 ≤ t ∈ R.

Let E be a vector lattice. We denote by E+ := {f ∈ E : 0 ≤ f} the positive
cone of E. For f ∈ E, we define

f+ := f ∨ 0, f− := (−f) ∨ 0, and |f | := f ∨ (−f)

the positive part , the negative part , and the absolute value of f , respectively. Two
elements f, g ∈ E are called orthogonal (or lattice disjoint) (denoted by f ⊥ g) if
|f | ∧ |g| = 0.

For a vector lattice E we have the following properties, which we will use
frequently.

Proposition 10.3. For all f, g, h ∈ E the following assertions hold true.

a) f + g = (f ∨ g) + (f ∧ g).

b) f ∨ g = −(−f) ∧ (−g).

c) (f ∨ g) + h = (f + h) ∨ (g + h) and (f ∧ g) + h = (f + h) ∧ (g + h).

d) (f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h) and (f ∧ g) ∨ h = (f ∨ h) ∧ (g ∨ h).

e) For all f, g, h ∈ E+ we have (f + g) ∧ h ≤ (f ∧ h) + (g ∧ h).

Proof. We shall only prove a). The proof of the other properties is left to the
reader (see Exercise 1). We have f ∧ g ≤ g =⇒ f ≤ f + g− f ∧ g. In a similar way
we have g ≤ f + g − f ∧ g. Hence, f ∨ g ≤ f + g − f ∧ g, which gives

f ∨ g + f ∧ g ≤ f + g.

For the reverse inequality we note that g ≤ f ∨ g =⇒ f + g − f ∨ g ≤ f , and
similarly f + g − f ∨ g ≤ g. Thus,

f + g − f ∨ g ≤ f ∧ g. �

For the positive part, negative part, and absolute value of f ∈ E we have the
following properties (compare with Properties (10.1) of functions in C(K,R)).

Proposition 10.4. If f, g ∈ E, then

a) f = f+ − f−.
b) |f | = f+ + f−.
c) f+ ⊥ f− and the decomposition of f into the difference of two orthogonal

positive elements is unique.

d) f ≤ g is equivalent to f+ ≤ g+ and g− ≤ f−.
e) |f − g| = (f ∨ g)− (f ∧ g).
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Proof. a) Using Proposition 10.3 a) and b), we obtain

f = f + 0 = f ∨ 0 + f ∧ 0

= f ∨ 0− (−f) ∨ 0 = f+ − f−.

b) Applying Proposition 10.3.c) and a) proved above, we have

|f | = f ∨ (−f) = (2f ∨ 0)− f = 2(f ∨ 0)− f

= 2f+ − f+ + f− = f+ + f−.

c) Let us prove first that f+ ∧ f− = 0. To this purpose we apply Proposition
10.3.c) and deduce

f+ ∧ f− = (f+ − f−) ∧ 0 + f− = (f ∧ 0) + f−

= −[(−f) ∨ 0] + f− = 0.

Let now f = g − h with g ∧ h = 0. By c) and a) of Proposition 10.3, we have

f+ = (g − h) ∨ 0 = g ∨ h− h = (g + h− (g ∧ h))− h = g.

In a similar way we obtain f− = h.

d) Using a), this is straightforward.

e) This can be proved using the identities

f ∨ g =
1

2
(f + g + |f − g|) and f ∧ g =

1

2
(f + g − |f − g|)

(see Exercise 2). �

10.3 Banach Lattices

We finally arrived at the main objects of this chapter and consider Banach spaces
which are ordered and whose norm is compatible with this ordering. First, let us
explain what we mean by compatible.

A norm on a vector lattice E is called a lattice norm if

|f | ≤ |g| implies ‖f‖ ≤ ‖g‖ for f, g ∈ E.

Definition 10.5. A Banach lattice is a real Banach space E endowed with an
ordering ≤ such that (E,≤) is a vector lattice and the norm on E is a lattice
norm.

We will see that this combination of properties of a complete normed vector
space and a compatible ordering leads to many fruitful results.

As already mentioned, apart from finite-dimensional vector spaces (such as
R or Rn), there are many interesting infinite-dimensional examples of Banach
lattices.
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Examples 10.6. The following Banach spaces are Banach lattices for the pointwise
(almost everywhere) ordering.

a) Let (Ω, μ) be a measure space and take Lp(Ω, μ;R), 1 ≤ p ≤ ∞, endowed
with the norm

‖f‖p =

(∫
Ω

|f(x)|p dμ

)1/p

if 1 ≤ p < ∞,

‖f‖∞ = inf{M : |f(x)| ≤ M for μ-a.e. x ∈ Ω} if p = ∞,

and with the order

f ≥ 0 ⇐⇒ f(x) ≥ 0 for μ-a.e. x ∈ Ω.

We furthermore define

(f ∨ g)(x) := max{f(x), g(x)} and (f ∧ g)(x) := min{f(x), g(x)} (10.3)

for μ-a.e. x ∈ Ω, which are both measurable functions. Note that for the absolute
value of f this imposes

|f |(x) = (f ∨ (−f))(x) = max{f(x),−f(x)} = |f(x)| for μ-a.e. x ∈ Ω.

Since

|(f ∨ g)(x)| ≤ |f(x)| + |g(x)| and |(f ∧ g)(x)| ≤ |f(x)|+ |g(x)| (10.4)

for μ-a.e. x ∈ Ω, we see, that

‖f ∨ g‖p ≤ ‖f‖p + ‖g‖p and ‖f ∧ g‖p ≤ ‖f‖p + ‖g‖p,

hence f ∨ g, f ∧ g ∈ Lp(Ω, μ) for every 1 ≤ p ≤ ∞. Clearly, the properties in
Definition 10.2 are fulfilled and the p-norm is a lattice norm.

b) For a locally compact noncompact Hausdorff topological space Ω we take
C0(Ω), the space of all real-valued continuous functions vanishing at infinity, en-
dowed with the supremum norm

‖f‖∞ = sup
x∈Ω

|f(x)|,

and with the natural order

f ≥ 0 ⇐⇒ f(x) ≥ 0 for all x ∈ Ω.

We define f ∨ g, f ∧ g as in (10.3), but now for every x ∈ Ω. We obtain
continuous functions and using inequalities (10.4) we see that f ∨g, f ∧g ∈ C0(Ω).
Again, the properties in Definition 10.2 are fulfilled and the supremum norm is a
lattice norm.

c) The space of real-valued continuous functions C(K) on a compact Haus-
dorff spaceK, endowed with the supremum norm and with the order defined above
was already investigated in Section 10.1.
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Note that there are many ordered function spaces which are not Banach
lattices. Let us give the following simple example.

Examples 10.7.

a) Consider the Banach space C1([0, 1]) of continuously differentiable func-
tions on [0, 1] with the norm

‖f‖ = max
s∈[0,1]

|f(s)|+ max
s∈[0,1]

|f ′(s)|

and the natural order f ≥ 0 if f(s) ≥ 0 for all s ∈ [0, 1]. Since sup{t, 1 − t} /∈
C1([0, 1]), the space C1([0, 1]) is not a vector lattice. Moreover the above norm is
not compatible with the order. In fact, let f ≡ 1 and g(s) = sin(2s), s ∈ [0, 1].
Then, 0 ≤ g ≤ f and ‖g‖ ≥ |g′(0)| = 2 > 1 = ‖f‖.

s

f(s)

f1(s) = s

f2(s) = 1− s

(f1 ∨ f2)(s) = max{s, 1− s}

Figure 10.3: C1[0, 1] with the norm in Example 10.7.a) is not a lattice.

b) Consider the Sobolev space H1(0, 1). Using similar arguments as in the
previous example, we see that the norm is again not compatible with the order.
As a difference, however, note that H1(0, 1) is a vector lattice, see Exercise 4.

Now we list some further properties of Banach lattices.

Proposition 10.8. For a Banach lattice E the following hold.

a) The lattice operations are continuous.

b) The positive cone E+ is closed.

c) The order intervals are closed and bounded.

Proof. a) Consider (fk), (gk) ⊂ E and f, g ∈ E such that limk→∞ fk = f and
limk→∞ gk = g. Applying Birkhoff’s inequality, see Exercise 2.f), we have

|fk ∧ gk − f ∧ g| ≤ |fk ∧ gk − fk ∧ g|+ |fk ∧ g − f ∧ g|
≤ |gk − g|+ |fk − f |.

Thus,

‖fk ∧ gk − f ∧ g‖ ≤ ‖gk − g‖+ ‖fk − f‖.
This yields the continuity of ∧. Analogously, one obtains the continuity of ∨.
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b) Take (fk) ⊂ E+ such that limk→∞ fk = f ∈ E. Then, by a),

lim
k→∞

fk = lim
k→∞

(fk ∨ 0) = f ∨ 0.

Hence, f = f ∨ 0 ∈ E+.

c) Let f, g, h ∈ E with h ∈ [f, g]. Then, 0 ≤ h − f ≤ g − f . So, using the
triangle inequality from Exercise 2.d), one has

‖h‖ − ‖f‖ ≤ ‖h− f‖ ≤ ‖g − f‖, whence ‖h‖ ≤ ‖f‖+ ‖g − f‖.

Therefore, order intervals are bounded. We prove now that order intervals
are closed. Take (hk) ⊂ E and f, g ∈ E with f ≤ hk ≤ g for all k ∈ N. Since E+

is closed, by b), limk→∞(hk − f) = h − f ≥ 0 and limk→∞(g − hk) = g − h ≥ 0.
Hence, f ≤ h ≤ g, which proves the closedness of [f, g]. �

The following property of Banach lattices is a consequence of the Hahn–
Banach theorem.

Proposition 10.9. In a Banach lattice E every weakly convergent increasing se-
quence (fk) is norm convergent.

Proof. Consider the convex hull of the set {fk},

F :=

{
m∑
i=1

aifi : m ∈ N, ai ≥ 0, a1 + · · ·+ am = 1

}
.

By the Hahn–Banach theorem, Theorem A.27, the norm closure of F coin-
cides with the weak closure. This implies that f ∈ F , where f := weak-limk→∞ fk.
Thus, for ε > 0, there exist g ∈ F , i.e.,

g = a1f1 + · · ·+ amfm, with a1, . . . , am ≥ 0 and a1 + · · ·+ am = 1,

such that ‖g− f‖ < ε. Since g ≤ fk ≤ f , we infer that ‖f − fk‖ ≤ ‖f − g‖ < ε for
all k ≥ m. �

Here we state a result that we shall need later. A Banach lattice E is totally
ordered if for every f ∈ E one has either 0 ≤ f or f ≤ 0.

Lemma 10.10. A totally ordered real Banach lattice E is at most one-dimensional.

Proof. Take e ∈ E+ with e �= 0, and f ∈ E. Consider the closed subsets of R

C+ := {α ∈ R : αe ≥ f} and C− := {α ∈ R : αe ≤ f}.

It is obvious that C+ and C− are non-empty and C+ ∪ C− = R. Since R
is connected, it follows that C+ ∩ C− �= ∅. Hence, there is α ∈ R such that
f = αe. �
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10.4 Sublattices and Ideals

We want to equip a vector subspace of a vector or Banach lattice with some order
structure. Therefore we define two kinds of subspaces (compare with Proposition
10.1).

Definition 10.11. A vector subspace F of a vector lattice E is a vector sublattice
if for all f ∈ F we have |f | ∈ F . A subspace I of a Banach lattice E is called an
ideal if

f ∈ I implies |f | ∈ I and 0 ≤ g ≤ f ∈ I implies g ∈ I.

Consequently, a vector sublattice F is an ideal in E if f ∈ F and 0 ≤ g ≤ f
implies g ∈ F . Note also that if F is a vector sublattice, then f+ ∈ F and f− ∈ F
for all f ∈ F .

Since the notions of sublattice and ideal are invariant under the formation of
arbitrary intersections, there exists, for any subset M of E, a unique smallest sub-
lattice (resp. ideal) of E containing M . This will be called the sublattice (resp. the
ideal) generated by M .

We summarize all properties of sublattices and ideals which we will need in
the sequel.

Proposition 10.12. If E is a Banach lattice, then the following properties hold.

a) The closure of every sublattice of E is a sublattice.

b) The closure of every ideal of E is an ideal.

c) For every f ∈ E+, the ideal generated by {f} is

Ef =
⋃

k∈N
k[−f, f ].

Proof. The first two assertions follow from the continuity of the lattice opera-
tions, see Proposition 10.8. For the last assertion one can see easily that I =⋃

k∈N
k[−f, f ] is an ideal while any ideal included in I and containing f equals I.

This means that I = Ef . �

For examples of closed ideals we again pay a visit to our function spaces and
start by restating Proposition 10.1 in this context.

Proposition 10.13. If E = C(K), where K is a compact Hausdorff space, then a
subspace J of E is a closed ideal if and only if there is a closed subset F ⊂ K such
that

J = {ϕ ∈ E : ϕ(x) = 0 for all x ∈ F}.

The arguments of the proof of Proposition 10.1 can be modified accordingly
to obtain the following characterization.
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Proposition 10.14. If E = C0(Ω), where Ω is a locally compact Hausdorff topolog-
ical space, then a subspace J of E is a closed ideal if and only if there is a closed
subset F of Ω such that

J = {ϕ ∈ E : ϕ(x) = 0 for all x ∈ F}.

Finally, we close this set of examples by characterizing closed ideals of Lp-
spaces.

Proposition 10.15. If E = Lp(Ω, μ), 1 ≤ p < ∞, where (Ω, μ) is a σ-finite measure
space, then a subspace I of E is a closed ideal if and only if there exists a measurable
subset Y of Ω such that

I = {ψ ∈ E : ψ(x) = 0 a.e. x ∈ Y }.

Proof. First we show that for a measurable set Y ⊂ Ω, the set

IY := {ψ ∈ E : ψ(x) = 0 a.e. x ∈ Y }

is a closed ideal. Clearly, IY is a linear subspace and if f ∈ IY , then |f | ∈ IY . The
definition implies directly that if f ∈ IY and 0 ≤ g ≤ f , then g ∈ IY . Hence it
only remains to show the closedness.

Let (fk) ⊂ IY be a sequence such that fk → f ∈ E. Then there is a subse-
quence (fkm) such that fkm(x) → f(x) for a.e. x ∈ Ω. In particular, fkm(x) → f(x)
for a.e. x ∈ Y , hence, f ∈ IY .

Conversely, suppose that {0} �= I ⊂ E is an ideal. We have to show the
existence of a measurable set Y ⊂ Ω such that I = IY . Since (Ω, μ) is a σ-finite
measure space, there is an increasing sequence (Ωk) of sets of finite measure with⋃

k∈N
Ωk = Ω. For each k ∈ N we define

Bk := {M ⊂ Ωk : χM ∈ I}.

Since I is a non-trivial ideal, we infer that there is k ∈ N such that Bk �= ∅. Observe
that if M ⊂ Bk is a finite set, then

sup
M∈M

χM ∈ I.

We also have that

sk := sup
M⊂Bk,M finite

∥∥∥ sup
M∈M

χM

∥∥∥ ≤ μ(Ωk)
1/p < ∞.

Take a sequence Mm ⊂ Bm, where Mm is finite and∥∥∥ sup
M∈Mm

χM

∥∥∥ ≥ sk −
1

m
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holds for every m ∈ N. Observe that for m1 ≤ m2 one has Mm2 ⊆ Mm1 . Now we
define

Ck :=
⋃

m∈N,M∈Mm

M ∈ Bk, C :=
⋃
k∈N

Ck, and Y := Ω \ C.

Clearly, the sets Ck, C, and Y are measurable. Moreover, the sequence(
sup

M∈Mm

χM

)
⊂ I

is bounded and monotone, and since I is closed, the Dominated Convergence
Theorem (see Theorem A.23) implies that its limit χCk

∈ I for all k ∈ N.
Take now f ∈ I and show that f ∈ IY . Since I and IY are both ideals it

suffices to consider positive f only. Assume on the contrary that there is M ⊂ Y
such that μ(M) > 0 and f(x) > 0 for a.e. x ∈ M . Fix k0 such that μ(M∩Ωk0) > 0.
Since f is strictly positive on M ∩ Ωk0 , there exists j ∈ N such that

μ(M ∩ Ωk0 ∩ {f ≥ 1/j}) > 0.

For such j we introduce the function gj := χM∩Ωk0
∩{f≥1/j}. Then, 0 ≤ gj ≤ jf

and hence, gj ∈ I and B̃ := M ∩ Ωk0 ∩ {f ≥ 1/j} ∈ Bk0 . Since B̃ ∩ Ck0 = ∅ for
sufficiently large m ∈ N, we must have∥∥∥χB̃ + sup

M∈Mm

χM

∥∥∥ > sk0 ,

which is a contradiction. Hence, I ⊂ IY .

To show that IY ⊂ I, take 0 ≤ f ∈ IY and fix ε > 0. The sequences (f−χΩk
f)

and (f − χ{f≤k}f) of positive functions converge to zero almost everywhere. The
Dominated Convergence Theorem (see Theorem A.23) implies that there is k0 ∈ N
such that

‖f − χΩk0
f‖ ≤ ε

2
and ‖f − χ{f≤k0}f‖ ≤ ε

2
.

Since k0χCk0
∈ I, we infer that

h := χΩk0
∩{f≤k0}f ∧ k0χCk0

∈ I.

By the choice of k0 and the fact that f = 0 almost everywhere on Y , we have that
‖f − h‖ ≤ ε. The closedness of I now implies that f ∈ I. �

Sometimes a Banach lattice E is generated by a single positive element. If
Ee = E holds for some e ∈ E+ then e is called an order unit . If Ee = E, then
e ∈ E+ is called a quasi-interior point of E+.

It follows that e is an order unit of E if and only if e is an interior point of
E+. Quasi-interior points of the positive cone exist, for example, in every separable
Banach lattice.
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Examples 10.16.

a) If E = C(K), where K is a compact Hausdorff space, then the constant
function 1, 1(x) ≡ 1, is an order unit. In fact, for every f ∈ E, there is
k ∈ N such that ‖f‖∞ ≤ k. Hence, |f(s)| ≤ k1(s) for all s ∈ K. This implies
f ∈ k[−1,1].

b) Let E = Lp(Ω, μ) with a σ-finite measure μ such that μ({x}) = 0 for every
x ∈ Ω and 1 ≤ p < ∞. Then the quasi-interior points of E+ coincide with
the μ-a.e. strictly positive functions, while E+ does not contain any interior
point.

10.5 Complexification of Real Banach Lattices

It is often necessary to consider complex vector spaces (for instance in spectral
theory). Therefore, we introduce the concept of a complex Banach lattice.

The complexification of a real Banach lattice E is the complex Banach space
EC whose elements are pairs (f, g) ∈ E×E, with addition and scalar multiplication
defined by (f0, g0)+(f1, g1) := (f0+f1, g0+g1) and (a+ib)(f, g) := (af −bg, ag+
bf), and norm

‖(f, g)‖ := ‖ |(f, g)| ‖,
where

|(f, g)| := sup
0≤θ≤2π

(f sin θ + g cos θ)

is the natural extension of the modulus | · | in E. Note that the existence of the
above supremum in E is in this generality a nontrivial fact, but we accept it here.
However, in the standard function spaces, which are our main examples, this is a
straightforward fact.

By identifying (f, 0) ∈ EC with f ∈ E, the spaceE is isometrically isomorphic
to a real linear subspace ER of EC. We write 0 ≤ f ∈ EC if and only if f ∈ E+.

A complex Banach lattice is an ordered complex Banach space (EC,≤) that
arises as the complexification of a real Banach lattice E. The underlying real
Banach lattice E is called the real part of EC and is uniquely determined as the
closed linear span of all f ∈ (EC)+.

Instead of the notation (f, g) for elements of EC, we usually write f +ig. The
complex conjugate of an element h = f + ig ∈ EC is the element h = f − ig. We
use also the notation Re(h) := f for h = f + ig ∈ EC. All concepts introduced for
real Banach lattices have a natural extension to complex Banach lattices.
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10.6 Positive Operators

This section is concerned with positive operators on Banach lattices, that is, op-
erators that preserve positive cones.

Definition 10.17. Let E and F be two complex Banach lattices. A linear operator
T : E → F is called positive if TE+ ⊂ F+. Notation: T ≥ 0.

Let us immediately give an alternative characterization of a positive operator
(compare with the matrix case given in Lemma 5.3).

Lemma 10.18. The following assertions for a linear operator T : E → F between
the Banach lattices E and F are equivalent.

(i) T is positive.

(ii) For all f ∈ ER, we have (Tf)+ ≤ Tf+ and (Tf)− ≤ Tf−.
(iii) |Tf | ≤ T |f | for all f ∈ E.

Proof. (i) =⇒ (ii): For f ∈ ER we have Tf = Tf+ − Tf− ≤ Tf+ and (Tf)+ =
Tf ∨ 0, which imply (Tf)+ ≤ Tf+. The second property now follows since

Tf+ − (Tf)+ = Tf− − (Tf)−.

(ii) =⇒ (iii): Using f = f+ + f− for f ∈ ER, and (ii) we obtain

|Tf | = (Tf)+ + (Tf)− ≤ Tf+ + Tf− = T |f |.

For general f ∈ E the assertion follows from the definition of |f |.
(iii) =⇒ (i): Let f ∈ E+. Then T |f | = Tf and by assumption we have

Tf = T |f | ≥ |Tf | ≥ 0. �

We shall need a stronger property than the one given in Lemma 10.18.(iii),
i.e., preserving the absolute value.

Definition 10.19. Let E and F be two complex Banach lattices. A linear operator
T : E → F is called a lattice homomorphism if |Tf | = T |f | for all f ∈ E.

All positive operators are bounded, as the following result shows.

Theorem 10.20. Every positive linear operator T : E → F is continuous.

Proof. Assume by contradiction that T is not bounded. Then there is (fk) ⊂ E
such that ‖fk‖ = 1 and ‖Tfk‖ ≥ kγ for each k ∈ N and some γ > 2. Since

|Tfk| ≤ T |fk|, one can assume that fk ≥ 0 for all k ∈ N. From
∑∞

k=1
‖fk‖
kγ−1 < ∞

we infer that
∑∞

k=1
fk

kγ−1 is norm convergent in E. Set f =
∑∞

k=1
fk

kγ−1 . Then

0 ≤ fk
kγ−1

≤ f for all k ∈ N.
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So

k ≤
∥∥∥∥T ( fk

kγ−1

)∥∥∥∥ ≤ ‖Tf‖ < ∞ for all k ∈ N,

which is a contradiction. Thus T ∈ L(E,F ). �

As a consequence, we obtain the equivalence of Banach lattice norms (recall
also Tikhonov’s theorem, Theorem 1.5).

Corollary 10.21. Let E be a vector lattice and ‖ · ‖1 and ‖ · ‖2 two norms such that
E1 = (E, ‖ · ‖1) and E2 = (E, ‖ · ‖2) are both Banach lattices. Then the norms
‖ · ‖1 and ‖ · ‖2 are equivalent.

Proof. This follows from the positivity of the identity operators I : E1 → E2 and
I : E2 → E1 and Theorem 10.20. �

We denote by L(E,F )+ the set of all positive linear operators from a Banach
lattice E into a Banach lattice F . For positive operators one has

Proposition 10.22. Let T ∈ L(E,F )+. Then the following properties hold.

a) ‖T ‖ = sup{‖Tf‖ : f ∈ E+, ‖f‖ ≤ 1}.
b) If S ∈ L(E,F ) is such that 0 ≤ S ≤ T (this means that 0 ≤ Sf ≤ Tf for all

f ∈ E+), then ‖S‖ ≤ ‖T ‖.

Proof. a) holds by Lemma 10.18 (iii).

b) Since 0 ≤ S ≤ T we have |Sf | ≤ S|f | ≤ T |f | for all f ∈ E. The assertion
now follows by a). �

Another property of positive operators is that they have positive resolvent.
The converse in not always true, see also Proposition 10.29.

Proposition 10.23. Let T ∈ L(E) be a positive operator with spectral radius r(T ).

a) The resolvent R(μ, T ) is positive whenever μ > r(T ).

b) If |μ| > r(T ), then ∣∣R(μ, T )f
∣∣ ≤ R

(
|μ|, T

)
|f |, f ∈ E.

Proof. We use the Neumann series representation

R(μ, T ) =

∞∑
k=0

T k

μk+1

for the resolvent, which is valid for |μ| > r(T ), see Proposition 9.28.c).

a) If T ≥ 0, then T k ≥ 0 for all k, hence for μ > r(T ), we have for every
f ∈ E+ that

R(μ, T )f = lim
N→∞

N∑
k=0

T kf

μk+1
≥ 0,

since the finite sums are positive.
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b) We have for |μ| > r(T ) and f ∈ E that

∣∣R(μ, T )f
∣∣ = ∣∣∣∣ limN→∞

N∑
k=0

T kf

μk+1

∣∣∣∣ ≤ lim
N→∞

N∑
k=0

∣∣∣∣ T kf

μk+1

∣∣∣∣
≤ lim

N→∞

N∑
k=0

T k

|μ|k+1
|f | = R

(
|μ|, T

)
|f |. �

The following is an easy version of Perron’s theorem (see Theorem 5.6) for
the infinite-dimensional case.

Theorem 10.24. If T ∈ L(E) is positive, then r(T ) ∈ σ(T ).

Proof. Assertion b) of Proposition 10.23 implies that∥∥R(μ, T )
∥∥ ≤ ∥∥R(|μ|, T )

∥∥ for |μ| > r(T ).

Let now λ ∈ σ(T ) such that |λ| = r(T ). Then, Proposition 9.28 implies that
‖R(μ, T )‖ → ∞ whenever μ approaches λ. Putting μ = sλ with s > 1 the above
estimate yields ∥∥R(sr(T ), T )

∥∥ ≥ ∥∥R(sλ, T )
∥∥ −→ ∞ as s ↓ 1,

hence, by Corollary 9.30, r(T ) must be in the spectrum of T . �

Combining Proposition 10.23 and Theorem 10.24 we have the following useful
characterization of positivity of the operator R(1, T ) = (I − T )−1.

Lemma 10.25. Let T be a positive linear operator on E. Then

r(T ) < 1 ⇐⇒ 1 ∈ ρ(T ) and R(1, T ) ≥ 0.

Proof. The implication is a consequence of Proposition 10.23. For the converse,
assume that 1 ∈ ρ(T ) and R(1, T ) ≥ 0. For any k ∈ N we have

(I − T )

k∑
j=0

T j = I − T k+1.

Hence,
k∑

j=0

T j = R(1, T )(I − T k+1) ≤ R(1, T ), (10.5)

since T ≥ 0. So, in particular T k ≤ R(1, T ) for all k ∈ N. Now Proposition 10.22
implies that

‖T k‖ ≤ ‖R(1, T )‖, k ∈ N.

Using the above estimate and the definition of r(T ) we obtain r(T ) ≤ 1. If r(T ) =
1, then Theorem 10.24 yields 1 ∈ σ(T ), which contradicts our assumption. �
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Now we define irreducible operators on a Banach lattice.

Definition 10.26. An operator T ∈ L(E) is called reducible if there exists a non-
trivial ideal which is invariant under T . Operators that are not reducible are called
irreducible.

As in the finite-dimensional situation, positive irreducible operators enjoy
some special spectral properties (see, e.g., Theorem A.38). However, we shall not
discuss these properties here. We study them in the case of semigroups of positive
irreducible operators in Section 14.3.

We end this section by reconsidering the Banach lattice of continuous func-
tions on a compact Hausdorff space K.

Lemma 10.27. Suppose that K is a compact Hausdorff topological space and T :
C(K) → C(K) is a linear operator satisfying T1 = 1. Then 0 ≤ T if and only if
‖T ‖ ≤ 1.

Proof. If 0 ≤ T , then

|Tf | ≤ T |f | ≤ T (‖f‖∞1) = ‖f‖∞1.

Hence ‖T ‖ ≤ 1.

To prove the converse, we first observe that

−1 ≤ f ≤ 1 ⇐⇒ ‖f − ir1‖∞ ≤ ρr :=
√
1 + r2 for all r ∈ R. (10.6)

Let 0 ≤ f ∈ C(K). Then there is k ∈ N such that 0 ≤ f ≤ k1. Set g = 2
kf . Then

0 ≤ g ≤ 21, and so −1 ≤ g−1 ≤ 1. By (10.6), ‖g− 1− ir1‖∞ ≤ ρr for all r ∈ R.
Since T1 = 1 and ‖T ‖ ≤ 1, ‖Tg − 1− ir1‖∞ ≤ ρr for all r ∈ R. So by (10.6) we
obtain −1 ≤ Tg − 1 ≤ 1. This implies 0 ≤ Tg ≤ 21 and hence Tf ≥ 0. �

Indeed, operators satisfying T1 = 1 occur quite often and have a special
name. Recall that in the finite-dimensional case we have shown this property for
the transition matrix P of a Markov chain (see Lemma 6.6).

Definition 10.28. Let K and L be compact Hausdorff spaces. A linear operator
T : C(K) → C(L) is called a Markov operator if T1K = 1L.

10.7 Positive Exponential Functions

In the following, let E be a Banach lattice and A ∈ L(E). We investigate the
positivity and asymptotic properties of the exponential function of A, and start
with a characterization through the resolvent of A.

Proposition 10.29. The semigroup T (t) = etA is positive if and only if

R(λ,A) = (λ −A)−1 ≥ 0

for all λ > ω0(T ).
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Proof. When T (·) is a positive semigroup, then R(λ,A) is positive for λ > ω0(T )
by the Laplace transform representation in (9.11).

For the other direction notice that, by Exercise 9.10.2, the Euler formula

lim
k→∞

(
I − t

k
A

)−k

= etA

holds for t ≥ 0. Since (I − t
kA)

−k =
(
k
tR(kt , A)

)k ≥ 0 for k sufficiently large by
assumption, the positivity of the operators T (t) follows. For an alternative proof
where the Euler formula is not needed we refer to Remark 11.3 and Corollary
11.4. �

Recall the notation already used in the case of matrices. For A ∈ L(E) we
define its spectral bound as

s(A) := sup{Reλ : λ ∈ σ(A)}. (10.7)

The following is a fundamental technical result on positive exponential func-
tions. It tells us that the Laplace transform representation in the case of positive
bounded generators holds on an even larger set.

Proposition 10.30. For a positive exponential function T (t) = etA we have

R(λ,A) =

∫ ∞

0

e−λsT (s) ds

for all λ > s(A). Hence, for all λ > s(A) we have 0 ≤ R(λ,A).

Proof. It is clear from the previous considerations that R(λ,A) is positive for
λ > ‖A‖. The Neumann series representation from Proposition 9.28.c) implies
that R(λ,A) ≥ 0 for λ > s(A).

Since we can always consider A − μ instead of A for μ > 0, for simplicity
we restrict our proof to the case where s(A) < 0 and Reλ > 0. The assumption
implies

0 ≤ V (t) =

∫ t

0

T (s) ds = R(0, A)−R(0, A)T (t) ≤ R(0, A),

so ‖V (t)‖ ≤ M for some constant M for all t ≥ 0. Hence the improper integral∫ ∞

0

e−λsV (s) ds

exists for all Re λ > 0. Integration by parts yields∫ t

0

e−λsT (s) ds = e−λtV (t) + λ

∫ t

0

e−λsV (s) ds.
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This last expression converges as t → ∞, hence we infer that

R(λ,A) =

∫ ∞

0

e−λsT (s) ds

holds for all Reλ > 0. �

As a corollary we obtain a version of Perron’s theorem for the positive expo-
nential function.

Corollary 10.31. For a positive exponential function T (t) = etA we have

s(A) ∈ σ(A).

Proof. The positivity of the operators T (t) means that

|T (t)f | ≤ T (t)|f |

for all f ∈ E and t ≥ 0. Therefore,

|R(λ,A)f | ≤
∫ ∞

0

e−ReλsT (s)|f | ds

for all Reλ > s(A) and f ∈ E. Hence,

‖R(λ,A)‖ ≤ ‖R(Reλ,A)‖.

Recall that since A ∈ L(E) is a bounded operator, we have that σ(A) �=
∅. Further, there is λk ∈ ρ(A) such that Reλk → s(A), Reλk > s(A) and
‖R(λk, A)‖ → ∞. This implies ‖R(Reλk, A)‖ → ∞, and hence s(A) ∈ σ(A)
(see Corollary 9.30). �

Compare the following with Corollary 7.4 from Chapter 7.

Corollary 10.32. Let K be a compact Hausdorff topological space and E = C(K).
For a positive exponential function T (t) = etA, A ∈ L(E), the following assertions
are equivalent.

(i) s(A) < 0.

(ii) −A−1 exists and it is positive.

(iii) There exists 0 ≤ f ∈ E such that Af = −1.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Proposition 10.30. Since −A−1 =
R(0, A), (ii) =⇒ (iii) follows by taking f := −A−11.

We close the loop by showing (iii) =⇒ (i). Assume that Af = −1 for some
0 ≤ f ∈ E. Then for λ > max{s(A), 0} we have

0 ≤ R(λ,A)1 = −AR(λ,A)f

= f − λR(λ,A)f ≤ f.
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Hence
sup

λ>max{s(A),0}
‖R(λ,A)‖ ≤ ‖f‖∞.

Since by Corollary 10.31, s(A) ∈ σ(A), it follows from Corollary 9.30 that
s(A) < 0. �

We close this chapter by a minimum principle characterization of positive
exponential functions.

Theorem 10.33. Let Ω be a locally compact Hausdorff space and let A ∈ L(E),
where E = C0(Ω). Then the following are equivalent.

(i) A generates a positive exponential function, i.e., etA ≥ 0 for t ≥ 0.

(ii) For 0 ≤ f ∈ E and x ∈ Ω, f(x) = 0 implies that (Af)(x) ≥ 0.

(iii) A+ ‖A‖I ≥ 0.

Proof. (i) =⇒ (ii): Take 0 ≤ f ∈ E and x ∈ Ω with f(x) = 0. Then

(Af)(x) = lim
t↓0

etAf − f

t
(x) = lim

t↓0
etAf(x)− f(x)

t
= lim

t↓0
etAf(x)

t
≥ 0.

(ii) =⇒ (iii): Consider x ∈ Ω. We have to show that (Af)(x) + ‖A‖f(x) ≥ 0
for all f ∈ E. Define

A∗δx = μ+ cδx,

where μ ∈ M(Ω) is such that μ({x}) = 0, and c ∈ R. We claim that μ ≥ 0. Take
0 ≤ f ∈ E such that f(x) = 0. Then

〈f, μ〉 = 〈f,A∗δx〉 = 〈Af, δx〉 = (Af)(x) ≥ 0.

It can be shown (see Exercise 9) that this implies that 〈g, μ〉 ≥ 0 for all 0 ≤ g ∈ E.
Hence μ ≥ 0.

Moreover,
|c| = ‖cδx‖ ≤ ‖cδx + μ‖ = ‖A∗δx‖ ≤ ‖A‖.

Hence, for 0 ≤ f ∈ E, we have that

(Af)(x) + ‖A‖f(x) = 〈Af + ‖A‖f, δx〉 = 〈f,A∗δx + ‖A‖δx〉
= 〈f, μ+ (c+ ‖A‖)δx〉 ≥ 0.

(iii) =⇒ (i): The same argument as in the proof of Theorem 7.1 applies. We
know that if B := A+ ‖A‖I ∈ L(E) is positive, then

etB =

∞∑
k=0

(tB)k

k!
≥ 0.

Hence,
etA = e−t‖A‖etB ≥ 0. �
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Remark 10.34. The equivalence of (i) and (iii) in Theorem 10.33 is in complete
analogy to Theorem 7.1 in the matrix case. This result is true in general Banach
lattices, but the proofs are more involved. Conditions (ii) and (iii) are nothing but
generalizations of the “positive off-diagonal” property for matrices.

10.8 Notes and Remarks

The investigation of ordered algebraic structures is a classical subject and of great
interest in the literature, we mention here the monograph by Fuchs [50]. Most
results of this chapter can be found for example in the monographs by Schaefer
[126], Meyer-Nieberg [95] or Aliprantis and Burkinshaw [2]. For Proposition 10.12
see [95, Propositions 1.1.5, 1.2.3, and 1.2.5]. For complexification of real Banach
lattices, we refer to Schaefer [126, Section II.11] or Meyer-Nieberg [95, Section 2.2].

For Theorem 10.33 we refer to Nagel (ed.) [101, Theorem B-II.1.3]. For the
generalization to arbitrary Banach lattices, see [101, Theorem C-II.1.11].

10.9 Exercises

1. Prove the properties b)–e) in Proposition 10.3 and d) in Proposition 10.4.

2. Let E be a vector lattice and f, g, h ∈ E.

a) Prove that f ∨ g = 1
2 (f + g + |f − g|) and f ∧ g = 1

2 (f + g − |f − g|).
b) Show that |f | ∨ |g| = 1

2 (|f + g|+ |f − g|) and deduce that

|f | ∧ |g| = 1

2
||f + g| − |f − g|| .

c) Deduce that f ⊥ g is equivalent to |f − g| = |f + g|.
d) Prove this variant of the triangle inequality:

||f | − |g|| ≤ |f + g| ≤ |f |+ |g|.

e) Deduce that f ⊥ g is equivalent to |f | ∨ |g| = |f |+ |g|, and that in this
case

||f | − |g|| = |f + g| = |f |+ |g|.

f) Show Birkhoff’s inequalities:

|f ∨ h− g ∨ h| ≤ |f − g| and |f ∧ h− g ∧ h| ≤ |f − g|.

3. Prove that a subspace I of a Banach lattice is an ideal if and only if

( f ∈ I, |g| ≤ |f | ) =⇒ g ∈ I.
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4. Prove that H1(0, 1) endowed with the natural order, f ≥ 0 if f(s) ≥ 0 for
a.e. s ∈ [0, 1], is a vector lattice.

5. Consider E := C1([0, 1]) equipped with the norm

‖f‖ = max
s∈[0,1]

|f ′(s)|+ |f(0)|

and the order f ≥ 0 whenever f(0) ≥ 0 and f ′ ≥ 0. Show that E is a Banach
lattice.

6. Let E be a Banach lattice. Use the Hahn–Banach theorem to prove that

a) 0 ≤ f is equivalent to 〈f, f∗〉 ≥ 0 for all f∗ ∈ E∗
+;

b) for each f ∈ E there exists f∗ ∈ E∗
+ such that ‖f∗‖ ≤ 1 and 〈f, f∗〉 =

‖f+‖.
7. Consider the Banach lattice C1([0, 1]) as in Exercise 5 and define the operator

(Tf)(t) :=

∫ t

0

g(s)f(s) ds

with a given g ∈ C([0, 1]). Calculate ‖T ‖. For which g is T positive?

8. Let T ∈ L(E,F ), where E and F are two Banach lattices. Show that T is a
lattice homomorphism if and only if one of the following equivalent properties
holds.

(i) T (f ∨ g) = Tf ∨ Tg and T (f ∧ g) = Tf ∧ Tg for all f, g ∈ E.

(ii) Tf+ ∧ Tf− = 0 for all f ∈ E.

9. Let Ω be a locally compact Hausdorff space, x ∈ Ω, and μ a regular bounded
Borel measure on Ω such that μ({x}) = 0. Show that μ ≥ 0 if and only if
〈f, μ〉 ≥ 0 for all f ∈ C0(Ω) satisfying f ≥ 0 and f(x) = 0.



Chapter 11

Generation Properties

In this chapter we continue to study the connection between semigroups and their
generators. We characterize generators by the properties of their resolvents. As
an important byproduct, we derive a characterization of positive semigroups by
the positivity of the resolvent. This is a fundamental result and will be frequently
used in the sequel.

As a first application of the characterization theorem we show a simple per-
turbation result. We give also the explicit form of the perturbed semigroup.

Then we focus on generators of positive contraction semigroups on Banach
lattices and characterize them using an important property called dispersivity.
We present some examples and conclude with a simple positive minimum prin-
ciple. These are all technical tools needed to investigate properties of positive
semigroups, which will be the topic of the following chapters.

11.1 The Hille–Yosida Generation Theorem

In Chapter 9 some properties of semigroup generators and their resolvents were
collected. It turns out that some of these properties actually characterize semi-
group generators. The following theorem was proved independently by E. Hille
and K. Yosida in 1948.

Theorem 11.1 (Hille–Yosida). Let A be a linear operator on a Banach space X.
Then the following properties are equivalent.

(i) A generates a C0-semigroup (T (t))t≥0 of type (M,ω).

(ii) A is closed, densely defined, and there exist M ≥ 1 and ω ∈ R such that for
every λ ∈ C with Reλ > ω one has λ ∈ ρ(A) and

∥∥R(λ,A)k
∥∥ ≤ M

(Reλ− ω)k
for all k ∈ N. (11.1)

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
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We will not prove this theorem here in its full generality, but only follow
through the main idea of its proof. Let us note that, by replacing A by A − ω,
one can take ω = 0 in (11.1). As a first step we need the following approximation
result.

Lemma 11.2. Let A be a closed, densely defined operator. Assume that there exists
M ≥ 1 such that for all λ > 0, we have λ ∈ ρ(A) and ‖λR(λ,A)‖ ≤ M . Then

a) λR(λ,A)g → g for all g ∈ X as λ → ∞, and

b) λAR(λ,A)f → Af for all f ∈ D(A) as λ → ∞.

Proof. Taking g ∈ D(A), we see that λR(λ,A)g = R(λ,A)Ag+ g. By assumption,

‖R(λ,A)Ag‖ ≤ M

λ
‖Ag‖,

and hence λR(λ,A)g → g as λ → ∞. By the denseness of D(A) and the bounded-
ness of R(λ,A), the convergence follows for all g ∈ X . Assertion b) is an immediate
consequence of a), inserting g = Af and using the fact that A and R(λ,A) com-
mute. �

The operators λAR(λ,A), λ > 0, are called Yosida approximants.

Proof of Theorem 11.1. Since every generator is closed and densely defined, the
implication (i) =⇒ (ii) follows by Proposition 9.33.c).

The core of the proof of the implication (ii) =⇒ (i) is the case M = 1, ω = 0.
As mentioned above, one may assume, without loss of generality, that ω = 0. The
general situation can be reduced to this case by considering the equivalent norm

|||f ||| := sup
μ>0

‖f‖μ , (11.2)

where ‖f‖μ := supk≥0

∥∥μkR(μ,A)kf
∥∥, see Exercises 4 and 5.

Let
Ak := kAR(nk,A) = k2R(k,A)− kI,

which are bounded operators for each k ∈ N commuting with each other. By
Lemma 11.2, the sequence Ak converges to A pointwise on D(A). Consider the
uniformly continuous, mutually commuting semigroups given by

Tk(t) := etAk , t ≥ 0.

First of all, each Tk(·) is a contraction semigroup, since

‖Tk(t)‖ ≤ e−kte‖k
2R(k,A)‖t ≤ e−ktekt = 1 for t ≥ 0.

By Theorem A.17 it thus suffices to prove convergence of (Tk(t)f) for f ∈ D(A)
only. Using the vector-valued version of the fundamental theorem of calculus ap-
plied to the functions

s �−→ Tm(t− s)Tn(s)f, s ∈ [0, t],
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for some f ∈ D(A), m,n ∈ N, we see that

Tn(t)f − Tm(t)f =

∫ t

0

d

ds
(Tm(t− s)Tn(s)f) ds

=

∫ t

0

Tm(t− s)Tn(s)(Anf −Amf) ds.

By the contractivity of all Tk(t) it thus follows that

‖Tn(t)f − Tm(t)f‖ ≤ t ‖Anf −Amf‖.

Since by Lemma 11.2 (Akf) is a Cauchy sequence for each f ∈ D(A), the sequence
(Tk(t)f) converges uniformly on finite intervals [0, τ ] for every f ∈ D(A), and
therefore converges for every f ∈ X .

By the above, the limit T (t)f := limk→∞ Tk(t)f exists for every f ∈ X ,
satisfies the semigroup property, and consists of contractions. Furthermore, for
each f ∈ D(A), the corresponding orbit map t �→ T (t)f , 0 ≤ t ≤ τ , is continuous,
hence by Proposition 9.10, the semigroup (T (t))t≥0 is strongly continuous.

Now denote by B the generator of (T (t))t≥0. We show that B = A. Fix
f ∈ D(A) and define

ξk(t) := Tk(t)f and ξ(t) := T (t)f.

On each compact interval [0, τ ] the functions ξk converge uniformly to ξ and
ξ̇k(t) = Tk(t)Akf converge uniformly to η(t) := T (t)Af. Hence, the function ξ is
differentiable with ξ̇(t) = η(t) and

Af = η(0) = ξ̇(0) = Bf for f ∈ D(A).

On the other hand, for every λ > 0, we have λ ∈ ρ(A) by assumption, as
well as λ ∈ ρ(B), because B generates a contraction semigroup. By the above,
λ−A ⊂ λ−B, where the first operator is a bijection from D(A) onto X , and the
second a bijection from D(B) onto X . This is only possible if D(A) = D(B) and
A = B. �
Remark 11.3. For a C0-semigroup (T (t))t≥0 with generator A on a Banach space
X we have

T (t)f = lim
k→∞

etAkf

in the norm of X for each f ∈ X . To see this, we assume without loss of generality
that ‖T (t)‖ ≤ M for all t ≥ 0, and endow X with the norm |||·|||, defined in (11.2).
Then, |||T (t)||| ≤ 1 (see Exercises 4 and 5). So, from the above proof we have that

lim
k→∞
∣∣∣∣∣∣T (t)f − etAkf

∣∣∣∣∣∣ = 0,

and the claim follows thanks to the equivalence of the norms ‖ · ‖ and |||·|||.
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From this remark we immediately obtain a characterization of the generators
of positive semigroups.

Corollary 11.4. Let E be a Banach lattice. A C0-semigroup (T (t))t≥0 with gener-
ator A is positive if and only if R(λ,A) ≥ 0 for each λ sufficiently large.

Proof. If (T (t))t≥0 is a positive C0-semigroup, then by the Laplace transform in
relation (9.11) also R(λ,A) ≥ 0 for all λ > ω0(T ).

Conversely, if for k sufficiently large, R(k,A) ≥ 0, then since

Ak := kAR(k,A) = k2R(k,A)− kI,

we see that
etAk = e−ktetk

2R(k,A) ≥ 0.

The statement then follows from Remark 11.3. �

11.2 Bounded Perturbations

As an application of the generation theorem, we mention some basic perturbation
results. The idea is always the same: We start with a generator A, assume that
the operator B is “nice enough”, and want to conclude that A + B generates a
semigroup.

Let us start with the simplest and most used perturbation result, in which
the perturbation is bounded. Some further perturbations will be considered in
Chapter 13.

Theorem 11.5. If A generates a semigroup (T (t))t≥0 of type (M,ω) and B ∈ L(X),
then A + B with D(A + B) = D(A) generates a semigroup (S(t))t≥0 of type
(M,ω +M‖B‖).

Proof. First we change the operator to A−ω and then use the renorming procedure
(11.2) mentioned in the proof of the Hille–Yosida theorem. So, we only need to
consider the case when A generates a semigroup of type (1, 0), i.e., a contraction
semigroup.

As a next step, we show that the operator A+B has a non-empty resolvent
set. More precisely, if λ > 0, we can use the identity

λ−A−B = (I −BR(λ,A)) (λ−A), (11.3)

yielding that if ‖BR(λ,A)‖ < 1, then λ ∈ ρ(A+B) and

R(λ,A+B) = R(λ,A)

∞∑
k=0

(BR(λ,A))
k
. (11.4)

By assumption, A is the generator of a contraction semigroup, so λ‖R(λ,A)‖ ≤ 1.
Thus, if λ > ‖B‖, then λ ∈ ρ(A+B) and relation (11.4) holds.
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For the norm of the resolvent we see by estimating the series term-by-term
that

‖R(λ,A+B)‖ ≤ 1

λ

∞∑
k=0

(
‖B‖
λ

)k

=
1

λ
· 1

1− ‖B‖
λ

=
1

λ− ‖B‖ . (11.5)

By the Hille–Yosida theorem, this means that the operator A + B generates a
semigroup (S(t))t≥0 of type (1, ‖B‖), which proves the statement. �

We know from Theorem 11.5 that A+B with domain D(A) generates a C0-
semigroup (S(t))t≥0 on a Banach space X whenever A generates a C0-semigroup
(T (t))t≥0 and B ∈ L(X). The perturbed semigroup (S(t))t≥0 can be given by a
series called Dyson–Phillips expansion, as the following result shows.

Proposition 11.6. Let A with domain D(A) be the generator of a C0-semigroup
(T (t))t≥0 on a Banach space X and let B ∈ L(X). Then the semigroup (S(t))t≥0

generated by A+B with domain D(A) is given by the Dyson–Phillips series

S(t) =

∞∑
k=0

Uk(t), t ≥ 0, (11.6)

where

U0(t) = T (t) and Uk+1(t) =

∫ t

0

Uk(t− s)BT (s) ds, t ≥ 0, k ∈ N.

Moreover, the following variation of constant formulas hold:

S(t)f = T (t)f +

∫ t

0

S(t− s)BT (s)f ds (11.7)

= T (t)f +

∫ t

0

T (t− s)BS(s)f ds, f ∈ X, t ≥ 0. (11.8)

Proof. Since U0(t) = T (t), we have ‖U0(t)‖ ≤ Meωt for t ≥ 0 and some constants
M ≥ 1 and ω ∈ R. Thus,

‖U1(t)‖ ≤ Meωt

∫ t

0

e−ωs‖BT (s)‖ ds ≤ M2‖B‖teωt for all t ≥ 0.

By induction one can verify that

‖Uk(t)‖ ≤ M
(M‖B‖t)k

k!
eωt for all t ≥ 0.

Therefore the series
∑∞

k=0 Uk(t) converges in L(X) uniformly on compact intervals
of R+. Moreover, ∥∥∥∥ ∞∑

k=0

Uk(t)

∥∥∥∥ ≤ Me(ω+M‖B‖)t for all t ≥ 0.
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Set U(t) :=
∑∞

k=0 Uk(t) for t ≥ 0. Since t �→ Uk(t)f is continuous and the
convergence is uniform on compact subsets of R+, we deduce that the function
t �→ U(t)f is continuous for any f ∈ X .

Let us prove now that (U(t))t≥0 is a C0-semigroup which coincides with the
perturbed semigroup (S(t))t≥0. For this purpose we let f ∈ X , t, s ≥ 0, and first
verify that

k∑
j=0

Uj(s)Uk−j(t)f = Uk(t+ s)f. (11.9)

This is obviously true for k = 0. Assuming (11.9) holds for some k ∈ N, we
compute

k+1∑
j=0

Uj(s)Uk+1−j(t)f

=
k∑

j=0

Uj(s)

∫ t

0

Uk−j(t− r)BT (r)f dr +

∫ s

0

Uk(s− r)BT (r + t)f dr

=

∫ t

0

Uk(s+ t− r)BT (r)f dr +

∫ t+s

t

Uk(s+ t− r)BT (r)f dr

=

∫ t+s

0

Uk(s+ t− r)BT (r)f dr = Uk+1(t+ s)f, t, s ≥ 0, f ∈ X.

Hence,

U(t)U(s)f =

∞∑
i=0

Ui(t)

∞∑
j=0

Uj(s)f =

∞∑
m=0

m∑
k=0

Uk(t)Um−k(s)f

=

∞∑
m=0

Um(t+ s)f = U(t+ s)f, t, s ≥ 0, f ∈ X.

Therefore, (U(t))t≥0 is a C0-semigroup on X . Let us denote its generator by
C with domain D(C). Using the definition of U(t) we obtain

U(t) = T (t) +

∞∑
k=0

Uk+1(t)

= T (t) +

∞∑
k=0

∫ t

0

Uk(t− s)BT (s) ds

= T (t) +

∫ t

0

( ∞∑
k=0

Uk(t− s)BT (s)

)
ds

= T (t) +

∫ t

0

U(t− s)BT (s) ds for all t ≥ 0. (11.10)
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Observe now that proving

lim
t→0

1

t

∫ t

0

U(t− s)BT (s)f ds = Bf

for every f yields that D(C) = D(A) and Cf = Af +Bf for f ∈ D(A), and thus
the semigroups (U(t))t≥0 and (S(t))t≥0 coincide.

To finish the proof, let us take f ∈ D(A) and compute

lim
t→0

(
1

t

∫ t

0

U(t− s)BT (s)f ds−Bf

)
= lim

t→0

(
1

t

∫ t

0

U(t− s)B(T (s)f − f) ds+
1

t

∫ t

0

(U(t− s)Bf −Bf) ds

)
= lim

t→0

(
1

t

∫ t

0

U(t− s)B

∫ s

0

T (r)Af dr ds+
1

t

∫ t

0

(U(s)Bf −Bf) ds

)
= 0.

where we used (11.10) and Proposition 9.16.b).

By (11.10), also the variation of constants formula (11.7) holds. To show the
second formula, take f ∈ D(A) and define

ξ(s) := T (t− s)S(s)f, s ∈ [0, t].

Note that the function ξ is continuously differentiable, with

d

ds
ξ(s) = T (t− s)CS(s)f − T (t− s)AS(s)f = T (t− s)BS(s)f.

Thus, by taking the integral, we see that∫ t

0

T (t− s)BS(s)f ds = ξ(t)− ξ(0) = S(t)f − T (t)f.

Since D(A) is dense, this holds for every f ∈ X . �

Using either the above Dyson–Phillips series, or the resolvent series in (11.4),
we obtain the following positivity result.

Corollary 11.7. If A generates a positive C0-semigroup on a Banach lattice E and
B ∈ L(E) is a positive operator, then the semigroup generated by A+B is positive.

11.3 Positive Contraction Semigroups

Let us now focus our attention on the case when our operators act on a real Banach
lattice E. We would like to characterize when the operator A generates a positive
contraction semigroup.
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To motivate what follows, let us first note that, by Theorem 19.5 and Corol-
lary 11.4, A generates a positive contraction semigroup if and only if R(λ,A) ≥ 0
and

‖λR(λ,A)‖ ≤ 1

holds for all λ > 0.

Lemma 11.8. A bounded linear operator T on a real Banach lattice E is a positive
contraction if and only if

‖(Tf)+‖ ≤ ‖f+‖ (11.11)

for all f ∈ E.

Proof. Assume first that T is a positive contraction. Using Lemma 10.18 we see
that ∥∥(Tf)+∥∥ ≤ ∥∥Tf+

∥∥ ≤ ‖f+‖.

Conversely, let (11.11) hold for a bounded operator T . Then, ‖(T (−f))+‖ ≤
‖(−f)+‖ for all f ∈ E. Since (T (−f))+ = (−Tf)+ = (Tf)− and (−f)+ = f−, we
obtain

‖(Tf)−‖ ≤ ‖f−‖, f ∈ E.

Take now f ∈ E+. Since f
− = 0, from the above estimate we infer that (Tf)− = 0

and thus Tf ∈ E+. So, T is a positive operator.

Now, take any f ∈ E. By Lemma 10.18, the positivity of T , and inequality
(11.11), respectively, we have that

‖Tf‖ ≤ ‖T |f |‖ = ‖(T |f |)+‖ ≤ ‖|f |+‖ = ‖f‖. �

This motivates introducing the following property.

Definition 11.9. A linear operator A on E is called dispersive if for every f ∈ D(A)
and λ > 0, we have that

‖(λf −Af)+‖ ≥ λ‖f+‖.

The main result in this section was first proved by Ralph Phillips in 1962.

Theorem 11.10. Let A be a densely defined linear operator on a real Banach lattice
E. Then the following assertions are equivalent.

(i) A generates a positive contraction C0-semigroup.

(ii) A is dispersive and im(λ−A) = E for some (and then for all) λ > 0.

Proof. (i) =⇒ (ii) It suffices to prove that A is dispersive. Since λR(λ,A) is a
positive contraction, Lemma 11.8 implies that

‖(λR(λ,A)g)+‖ ≤ ‖g+‖
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for all λ > 0 and g ∈ E. Hence, Taking f ∈ D(A) and defining g := (λ −A)f , we
obtain that

λ‖f+‖ ≤ ‖(λf −Af)+‖
for all f ∈ D(A) and λ > 0.

(ii) =⇒ (i) Let λ0 > 0 such that im(λ0 −A) = E. Since A is dispersive,

‖(λ0f −Af)+‖ ≥ λ0‖f+‖ and ‖(Af − λ0f)
+‖ ≥ λ0‖(−f)+‖

for all f ∈ D(A). This implies that λ0 −A is injective, and hence

‖(λ0R(λ0, A)f)
+‖ ≤ ‖f+‖

for all f ∈ E. By Lemma 11.8, we obtain λ0 ∈ ρ(A) and ‖λ0R(λ0, A)‖ ≤ 1. We
will show that (0,∞) ⊂ ρ(A) and ‖R(λ,A)‖ ≤ 1

λ for all λ > 0.

Let λ ∈ (0, 2λ0). Then,

(λ−A) = (λ0 −A)− (λ0 − λ)

= (I − (λ0 − λ)R(λ0, A))(λ0 −A)

and ‖(λ0 − λ)R(λ0, A)‖ ≤ |λ0−λ|
λ0

< 1 since 0 < λ < 2λ0. Thus,

R(λ,A) = R(λ0, A)(I − (λ0 − λ)R(λ0, A))
−1 ∈ L(X)

and from the dispersivity of A one obtains that

‖λR(λ,A)‖ ≤ 1 and R(λ,A) ≥ 0

for all λ ∈ (0, 2λ0). Taking now μ ∈ [λ0, 2λ0) and arguing as before, we see that

(0, 2μ) ⊂ ρ(A) and ‖λR(λ,A)‖ ≤ 1, and R(λ,A) ≥ 0

for all λ ∈ (0, 2μ).

Repeating the same process we obtain

(0,∞) ⊂ ρ(A) and ‖λR(λ,A)‖ ≤ 1 for all λ > 0.

Further, R(λ,A) ≥ 0. So, the claim follows by the Hille–Yosida theorem (see
Theorem 11.1) and Corollary 11.4. �

As it turns out, dispersivity can be characterized in a very elegant way which
is useful for many applications. For this, note that the Hahn–Banach theorem
implies that the set

I+(f) := {f∗ ∈ E∗
+ : ‖f∗‖ ≤ 1, 〈f, f∗〉 = ‖f+‖}

is non-empty (see Exercise 10.9.6).

Let us first list some examples for I+(f).
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Example 11.11.

a) Let E := C0(Ω), with Ω a locally compact Hausdorff space. Given 0 �=
f ∈ E+, there exists x0 ∈ Ω such that f(x0) = ‖f+‖∞. One can see that
δx0 ∈ I+(f). If f ∈ E−, then we choose f∗ = 0.

b) Let E := Lp(Ω, μ), 1 < p < ∞, where (Ω,Σ, μ) is a σ-finite measure space,
and let f ∈ E with f+ �= 0. Set ϕ := ‖f+‖−p/q(f+)p−1, where 1

p + 1
q = 1.

Then it can be seen that ϕ ∈ I+(f). We remark that it is known that in
Lp-spaces with 1 < p < ∞, the sets I+(f) are singletons. Hence,

I+(f) = {ϕ}.

c) In the case E := L1(Ω, μ), where (Ω,Σ, μ) is a σ-finite measure space, the
function ϕ := χ[f>0] belongs to I+(f) for any f ∈ E.

Proposition 11.12. An operator A on the real Banach lattice E is dispersive if and
only if for every f ∈ D(A), there is f∗ ∈ I+(f) such that

〈Af, f∗〉 ≤ 0. (11.12)

Proof. We start by proving that (11.12) implies dispersivity. If (11.12) holds, then
for any λ > 0 and f ∈ D(A), we have

λ‖f+‖ = 〈λf, f∗〉 = 〈λf −Af +Af, f∗〉
≤ 〈λf −Af, f∗〉
≤ 〈(λf −Af)+, f∗〉
≤ ‖(λf −Af)+‖,

showing that A is dispersive.

For the converse, let f ∈ D(A), λ > 0, and take f∗
λ ∈ I+(λf − Af). Since

‖f∗
λ‖ ≤ 1, by Theorem A.31, the set {f∗

λ} has a weak∗-accumulation point f∗ ∈ E∗

as λ → ∞. So, ‖f∗‖ ≤ 1. Moreover, we have

〈f, f∗
λ〉 −

1

λ
〈Af, f∗

λ〉 =
∥∥∥∥∥
(
f − 1

λ
Af

)+
∥∥∥∥∥ .

Letting λ → ∞ yields 〈f, f∗〉 = ‖f+‖. So, f∗ ∈ I+(f).

On the other hand, by assumption,

λ‖f+‖ ≤ ‖(λf −Af)+‖
= 〈λf −Af, f∗

λ〉
≤ λ〈f+, f∗

λ〉 − 〈Af, f∗
λ〉

≤ λ‖f+‖ − 〈Af, f∗
λ〉.

Thus, 〈Af, f∗
λ〉 ≤ 0 for all λ > 0, hence, 〈Af, f∗〉 ≤ 0. �
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Remark 11.13. On a (real) Hilbert lattice H the Riesz–Fréchet representation
theorem, see Theorem A.28, shows that I+(f) = {f+/‖f+‖} for every f ∈ H . As
a consequence, a linear operator A on a Hilbert lattice is dispersive if and only if
(Af |f+) ≤ 0 for every f ∈ D(A).

We conclude this section by providing two interesting examples of dispersive
operators.

Example 11.14.

a) First we consider a simple delay equation on the space E = C([−1, 0],R),
where we define the operator

Af = f ′ with D(A) = {f ∈ C1[−1, 0] : f ′(0) = Lf}

for a positive linear operator L : C[−1, 0] → R. The domain D(A) can also be
written as the kernel of a linear form

D(A) = kerϕ, where ϕ : C1[−1, 0] → R, ϕ(f) = f ′(0)− Lf.

This linear form is unbounded, hence kerϕ is dense in X , see Proposition A.30.

We now show that A− ‖L‖ is a dispersive operator. To see this, take f ∈ E
and τ0 ∈ [−1, 0] such that f(τ0) = ‖f+‖∞. Then, δτ0 ∈ I+(f), see Example
11.11.a). Thus, showing that A− ‖L‖ is dispersive is the same as showing that

〈Af − ‖L‖f, δτ0〉 = f ′(τ0)− ‖L‖f(τ0) ≤ 0 for f ∈ D(A). (11.13)

Assume that τ0 ∈ (−1, 0). Then f ′(τ0) = 0, and so (11.13) holds.

If now τ0 = −1, then f ′(−1) ≤ 0, and so (11.13) holds if τ0 ∈ [−1, 0). If
τ0 = 0, the positivity of L yields

〈Af − ‖L‖f, δτ0〉 = f ′(0)− ‖L‖f(0)
= Lf − ‖L‖‖f+‖∞
≤ Lf+ − ‖L‖‖f+‖∞ ≤ 0.

This proves the dispersiveness of A− ‖L‖.
Further, let us prove that λ−A is surjective for all λ > ‖L‖. To see this, take

any g ∈ X . We have to find f ∈ D(A) such that λf − f ′ = g. It is not difficult to
verify that such a function is given by

f(τ) =
g(0) + Lh

λ− Lελ
ελ(τ) + h(τ),

where

h(τ) =

∫ 0

τ

eλ(τ−s)g(s) ds and ελ(τ) = eλτ

for τ ∈ [−1, 0].
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Hence, by Theorem 11.10, the operator A−‖L‖ generates a positive contrac-
tion semigroup on E and, by Corollary 11.7, the operator A generates a positive
C0-semigroup (T (t))t≥0 such that

‖T (t)‖ ≤ e‖L‖t, t ≥ 0.

One can show that the obtained semigroup (T (t))t≥0 satisfies the translation
property, i.e., for f ∈ X

(T (t)f)(τ) =

{
f(t+ τ) if t+ τ ≤ 0,

(T (t+ τ)f)(0) otherwise.

Moreover, for any f ∈ D(A) the function u : [−1,∞) → C defined by

u(t) =

{
f(t) if t ∈ [−1, 0],

(T (t)f)(0) if t > 0,

is the unique classical solution of the delay equation{
u̇(t) = Lut, t ≥ 0,

u0 = f,

where ut(s) = u(t + s), s ∈ [−1, 0] is the history function. A more thorough
treatment of delay equations follows in Chapter 15.

b) This example deals with uniformly elliptic second-order operators on L2-
spaces. Let Ω ⊆ Rn be an open set. On L2(Ω) we denote the standard inner
product by

(f |g) =
∫
Ω

fg dx, f, g ∈ L2(Ω).

We consider functions aij ∈ L∞(Ω) with aij = aji and assume the uniform ellip-
ticity condition: there is η > 0 such that

n∑
i=1

n∑
j=1

aij(x)ξiξj ≥ η|ξ|2, x ∈ Rn, ξ ∈ Cn. (11.14)

Define the second-order elliptic differential operator A : D(A) → L2(Ω) by

Af :=

n∑
i,j=1

Di(aijDjf), with

D(A) :=

{
f ∈ H1

0(Ω) :

n∑
i,j=1

Di(aijDjf) ∈ L2(Ω)

}
.
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Here Djf denotes the partial distributional derivative of f ∈ L1
loc(Ω) with

respect to the variable xj , see Appendix A.11. The space

H1(Ω) :=
{
f ∈ L2(Ω) : Djf ∈ L2(Ω) for all j = 1, . . . , n

}
,

endowed with the inner product

(f |g)H1 :=

∫
Ω

fg dx+

n∑
j=1

∫
Ω

DjfDjg dx, f, g ∈ H1(Ω),

is a Hilbert space. The space H1
0(Ω) is the closure of the space of test functions

C∞
c (Ω) in H1(Ω).

For f ∈ D(A), the ellipticity condition in (11.14) and Proposition A.48 yield

(Af |f+) = −
n∑

i,j=1

∫
Ω

aijDjfDifχ[f≥0] dx ≤ −η

∫
Ω

|∇f+|2 dx ≤ 0.

Thus, by Remark 11.13, A is a dispersive operator and, by Theorem 11.10,
it generates a positive C0-semigroup of contractions on L2(Ω) if and only if the
range condition is satisfied.

To show this range condition, we use that thanks to (11.14) and since aij ∈
L∞(Ω), the space H1

0(Ω) can be seen as a Hilbert space endowed with the inner
product

(g|f)a :=

n∑
i,j=1

∫
Ω

aijDigDjf dx +

∫
Ω

fg dx, f, g ∈ H1
0(Ω).

The norms ‖ · ‖a and ‖ · ‖, where ‖ · ‖a denotes the norm associated to (·|·)a,
are equivalent. From now on we consider H1

0(Ω) with the inner product (·|·)a. Let
us take f ∈ L2(Ω) and define the mapping

ϕ(g) :=

∫
Ω

fg dx for g ∈ H1
0(Ω).

Then, ϕ ∈ (H1
0(Ω))

∗. So, by the Riesz–Fréchet theorem, Theorem A.28, there
exists a unique h ∈ H1

0(Ω) such that ϕ(g) = (g|h)a for all g ∈ H1
0(Ω). In particular,

this holds for all g ∈ C∞
c (Ω). Thus, h−Ah = f holds (in the sense of distributions).

Hence, h ∈ D(A) and h−Ah = f . The denseness ofD(A) in L2(Ω) is obvious. Thus,
by Theorem 11.10 the operator A generates a positive contraction C0-semigroup.
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11.4 Positive Minimum Principle

We investigate further the question how to decide whether a semigroup generator
actually generates a positive semigroup. In this section we concentrate on the
space of continuous functions, where a special behaviour can be observed. To this
end, in this section we suppose that K is a compact Hausdorff space, and E is the
real Banach lattice E = C(K). The following is a straightforward generalization
of Theorem 10.33.

Theorem 11.15. Suppose that E = C(K) and let A generate a strongly continuous
semigroup (T (t))t≥0 on E. Then the semigroup (T (t))t≥0 is positive if and only if
the following positive minimum principle holds:{

for all f ∈ D(A) with f ≥ 0, the condition

f(y) = 0 for some y ∈ K implies Af(y) ≥ 0.
(11.15)

Proof. Assume first that (T (t))t≥0 is positive and take f ∈ D(A) with f ≥ 0. If
f(y) = 0 for some y ∈ K, then

(Af)(y) =

(
lim
h↓0

T (h)f − f

h

)
(y) = lim

h↓0
(T (h)f)(y)

h
≥ 0.

For the other direction, suppose that (11.15) holds. By Corollary 11.4, we
have to show that R(λ,A) ≥ 0 for large real λ. Since every positive function can be
approximated by strictly positive ones, it suffices to show this for f � 0. Introduce
the numbers

ω := inf{λ ∈ R : [λ,∞) ⊂ ρ(A)}

and

λf := inf{λ > ω : R(μ,A)f � 0 for all μ ∈ (λ,∞)}.

Since μR(μ,A)f → f as μ → ∞, we clearly have ω ≤ λf < ∞. We show that
λf = ω for all f ∈ E with f � 0.

Assume, by contradiction, that for f ∈ E with f � 0 we have λf > ω. Then
[λf ,∞) ⊂ ρ(A) and R(λf , A)f ≥ 0, but R(λf , A)f � 0 does not hold (otherwise,
this would contradict the definition of λf ). This means that there is y ∈ K such
that R(λf , A)f(y) = 0. The positive minimum principle in (11.15) then implies
that

AR(λf , A)f(y) ≥ 0.

Therefore,

0 < f(y) = λfR(λf , A)f(y)−AR(λf , A)f(y) = −AR(λf , A)f(y) ≤ 0,

a contradiction. Hence, R(λ,A)f � 0 for all λ > ω and for all f � 0. �
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Example 11.16. We consider E = C[0, 1] and Af = f ′′ with Neumann boundary
conditions, i.e., D(A) = {f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0}. We show that the
positive minimum principle is satisfied.

To this end, take f ∈ D(A), f ≥ 0, and x ∈ [0, 1] with f(x) = 0. We have
two cases. If x ∈ (0, 1), then, because it is a minimum of the function f , we have
that f ′′ ≥ 0, which means exactly (Af)(x) ≥ 0.

If x is on the boundary of the domain, for example if x = 1, then suppose
by contradiction that (Af)(1) = f ′′(1) < 0. Then, by continuity, there is ε > 0
such that f ′ is strictly monotonically decreasing on (1 − ε, 1]. Since f ′(1) = 0,
this means that f ′(y) > 0 for y ∈ (1 − ε, 1). Hence, f is strictly monotonically
growing on this interval, which means that f(y) < 0 = f(1) for y ∈ (1 − ε, 1),
which contradicts to our assumption that f ≥ 0. The other boundary point can
be treated similarly.

11.5 Notes and Remarks

For most parts of this chapter we refer to the texts by Engel and Nagel [43, 44],
Pazy [110], and Goldstein [54].

Theorem 11.1 was originally proved by Hille [65] and Yosida [156]. The
Dyson–Phillips expansion in (11.6) was discovered by Dyson [37] studying quan-
tum electrodynamics and rediscovered by Phillips in his pioneering work [112] on
perturbation theory for operator semigroups.

Dispersive operators and Theorem 11.10 originate from Phillips [113]. For
the fact, mentioned in Example 11.11, that in Lp-spaces with 1 < p < ∞, the sets
I+(f) are singletons, we refer to Megginson [92, Example 5.1.4, Corollary 5.1.16].

The positivity minimum principle, Theorem 11.15 is due to W. Arendt and
is taken from Nagel (ed.) [101, Theorem B-II.1.6].

11.6 Exercises

1. Consider the operators from Exercise 9.10.8. Which of them are generators?

2. Let X = C0(R) and let the operator A be given as

(Af)(x) := g(x)f(x),

where g ∈ C(R) is a given function and with

D(A) := {f ∈ C0(R) : gf ∈ C0(R)} .
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Show that
σ(A) = {f(x) : x ∈ R}.

For which functions g is A a generator?

3. Prove that the generator of the Gaussian semigroup defined in Section 9.6 is
given by

Af = f ′′, f ∈ D(A) = {f ∈ Lp(R) : f ′′ ∈ Lp(R)},

where f ′′ is defined in the distributional sense.

4. Let A be an operator satisfying the estimates (11.1). Without loss of gener-
ality (by considering A − ω instead of A) one can take ω = 0 in (11.1). For
every μ > 0, define a new norm on X by

‖f‖μ := sup
k≥0

∥∥μkR(μ,A)kf
∥∥.

Show that:

a) ‖f‖ ≤ ‖f‖μ ≤ M ‖f‖, i.e., these new norms are all equivalent to ‖·‖.
b) ‖μR(μ,A)‖μ ≤ 1.

c) ‖λR(λ,A)‖μ ≤ 1 for all 0 < λ ≤ μ.

d)
∥∥λkR(λ,A)kf

∥∥ ≤ ∥∥λkR(λ,A)kf
∥∥
μ
≤ ‖f‖μ for all 0 < λ ≤ μ and k ∈ N.

e) ‖f‖λ ≤ ‖f‖μ for 0 < λ ≤ μ.

5. Using the notation of the previous exercise, show that for the norm

|||f ||| := sup
μ>0

‖f‖μ

we have

a) ‖f‖ ≤ |||f ||| ≤ M ‖f‖.
b) |||λR(λ,A)||| ≤ 1 for all λ > 0.

6. Let X = C[0, 1] and consider the operator Af = f ′′ with domain

D(A) = {f ∈ C2[0, 1] : f ′(0) + αf(0) = f ′(1) + βf(1) = 0},

for some α, β ∈ R. Show that A generates a positive semigroup.

7. Let A generate the C0-semigroup (T (t))t≥0 and A + B the C0-semigroup
(S(t))t≥0 for B ∈ L(X). Show that there is K > 0 such that

‖T (t)− S(t)‖ ≤ Kt

for t ∈ [0, 1].



Chapter 12

Spectral Theory for
Positive Semigroups

We have discovered in the finite-dimensional case that exponential functions enjoy
some rather special spectral properties. Such properties are, for example, that the
spectrum of a semigroup operator is determined by the spectrum of its generator,
or, that the stability of a semigroup is guaranteed whenever the spectrum of its
generator lies in the left half-plane.

Unfortunately, since strongly continuous semigroups are not exactly expo-
nential functions, these properties fail to hold in general. However, we will see
that positivity has significant impact on the spectrum of the semigroup. We will
show, for example, that the spectral bound is always an element of the spectrum
of the generator of a positive semigroup and we will be able to make some more
results analogous to the finite-dimensional case.

Throughout this chapter we suppose that E is a complex Banach lattice and
X is a Banach space.

12.1 Asymptotic Stability of Semigroups

We are interested in the asymptotic behavior of the solution of the abstract Cauchy
problem {

u̇(t) = Au(t), t ≥ 0,

u(0) = f ∈ X,

where A is the generator of a C0-semigroup (T (t))t≥0 on X . Recall from Propo-
sition 9.15 that the solution to this Cauchy problem is given by u(t) = T (t)f .
In Chapter 9 we have also already defined the growth bound of the semigroup
(T (t))t≥0 as

ω0(T ) := inf{ω ∈ R : there is M = Mω ≥ 1 with ‖T (t)‖ ≤ Meωt for all t ≥ 0}.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_12
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There is an important connection between the growth bound and the spectral
radius of semigroup operators.

Proposition 12.1. Let (T (t))t≥0 be a C0-semigroup on X.

a) We have that

ω0(T ) = lim
t→∞

log ‖T (t)‖
t

= inf
t>0

log ‖T (t)‖
t

. (12.1)

b) For every t ≥ 0, the spectral radius r(T (t)) of the operator T (t) satisfies

r(T (t)) = etω0(T ).

Proof. a) By Exercise 1,

lim
t→∞

log ‖T (t)‖
t

= inf
t>0

log ‖T (t)‖
t

.

Setting

η := inf
t>0

log ‖T (t)‖
t

= lim
t→∞

log ‖T (t)‖
t

,

we obtain eηt ≤ ‖T (t)‖ for all t ≥ 0. So, by the definition of ω0(T ), we infer that
η ≤ ω0(T ). Take now ω > η. Then there is a τ > 0 such that

log ‖T (t)‖
t

≤ ω, for all t ≥ τ.

Hence, ‖T (t)‖ ≤ eωt for all t ≥ τ . Since the function t �→ T (t) is bounded on
[0, τ ], we see that ‖T (t)‖ ≤ Meωt for all t ≥ 0 and some constant M ≥ 1. This
implies that ω0(T ) ≤ η and therefore ω0(T ) = η.

b) Since
r(T (t)) = lim

k→∞
‖T (kt)‖1/k,

we obtain for t > 0 that

r(T (t)) = lim
k→∞

et(kt)
−1 log ‖T (kt)‖ = etω0(T ). �

As in finite dimensions (compare with Definition 4.6) we define the spectral
bound of A by

s(A) := sup{Reλ : λ ∈ σ(A)}.

Motivated by the finite-dimensional case, see Corollary 4.8, one may ask
whether for a generatorA of a C0-semigroup (T (t))t≥0 onX we have ω0(T ) = s(A).
We will, however, see later that this equality is in general not even true for positive
C0-semigroups on a Banach lattice E.

We introduce now different stability concepts.
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Definition 12.2. A C0-semigroup (T (t))t≥0 on X is called

a) uniformly exponentially stable if ω0(T ) < 0,

b) strongly stable if limt→∞ ‖T (t)f‖ = 0 for every f ∈ X .

It is clear that a) implies b). The converse does not hold in general, as the
following example shows.

Example 12.3. Let us consider the shift semigroup on Lp(R+), 1 ≤ p < ∞, de-
fined by

(T (t)f)(s) := f(t+ s), t ≥ 0, a.e. s ∈ R+.

Then (T (t))t≥0 is a C0-semigroup of contraction operators on Lp(R+) satisfying
limt→∞ T (t)f = 0 for any f ∈ Lp(R+) since

‖T (t)f‖pp =

∫ ∞

t

|f(s)|p ds, t ≥ 0, f ∈ Lp(R+).

On the other hand, by considering the function

ft(s) = χ(t,t+1)(s) =

{
1 if s ∈ (t, t+ 1),

0 otherwise,

we have ‖T (t)ft‖p = 1. So, since (T (t))t≥0 is a semigroup of contractions, we
deduce that ‖T (t)‖ = 1.

The definition of the growth bound and Proposition 12.1 yield the following
characterization of uniform exponential stability. Compare with Theorem 4.12 in
the finite-dimensional case.

Proposition 12.4. For a C0-semigroup (T (t))t≥0 on X, the following assertions
are equivalent.

(i) ω0(T ) < 0, i.e., (T (t))t≥0 is uniformly exponentially stable.

(ii) limt→∞ ‖T (t)‖ = 0.

(iii) ‖T (t0)‖ < 1 for some t0 > 0.

(iv) r(T (t1)) < 1 for some t1 > 0.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are straightforward, while
(iv) =⇒ (i) is an immediate consequence of Proposition 12.1.b). �

It is clear that if ω0(T ) < 0, then there are constants ε > 0 and M ≥ 1 such
that

‖T (t)‖ ≤ Me−εt, t ≥ 0.

Hence, for every p ∈ [1,∞),
∫∞
0 ‖T (t)f‖p dt < ∞ for all f ∈ X . The following

result due to Datko shows that the converse is also true.
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Theorem 12.5 (Datko). A C0-semigroup (T (t))t≥0 on X is uniformly exponentially
stable if and only if for some (and hence for every) p ∈ [1,∞)∫ ∞

0

‖T (t)f‖p dt < ∞

for all f ∈ X.

Proof. We only have to prove the sufficiency. By Proposition 12.4, it suffices to
prove that limt→∞ ‖T (t)‖ = 0. We note first that the set

{Tkf : k ∈ N} ⊂ Lp(R+, X)

is bounded for each f ∈ X , where Tkf := χ[0,k](·)T (·)f . The uniform boundedness
principle (see Theorem A.15) implies the existence of C > 0 such that∫ t

0

‖T (s)f‖p ds ≤ Cp‖f‖p

holds for all f ∈ X , p ∈ [1,∞) and t ≥ 0. Since there are constants M,ω ∈ R+

with ‖T (t)‖ ≤ Meωt, t ≥ 0, we obtain

1− e−pωt

pω
‖T (t)f‖p =

∫ t

0

e−pωs‖T (s)T (t− s)f‖p ds

≤ Mp

∫ t

0

‖T (t− s)f‖p ds

≤ MpCp‖f‖p

for all f ∈ X and t ≥ 0. Hence,

‖T (t)f‖p ≤ pω

1− e−pω
MpCp‖f‖p

for all f ∈ X and t ≥ 1. Thus, there exists a constant L > 0 with ‖T (t)‖ ≤ L for
all t ≥ 0, therefore

t‖T (t)f‖p =

∫ t

0

‖T (t− s)T (s)f‖p ds

≤ Lp

∫ t

0

‖T (s)f‖p ds

≤ LpCp‖f‖p

for all f ∈ X and t ≥ 0. Thus

‖T (t)‖ ≤ LCt−
1
p

for t > 0, which implies limt→∞ ‖T (t)‖ = 0. �
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12.2 The Spectral Bound for Positive Semigroups

In this section we characterize the spectral bound s(A) of the generator A of a
positive C0-semigroup (T (t))t≥0 on a complex Banach lattice E. We will see that
s(A) is always contained in σ(A) provided that σ(A) �= ∅. Compare this result
with Perron’s theorem (see Theorem 5.6) for positive matrices.

To this end we first improve the integral representation formula for the re-
solvent in the case of positive semigroups (see Proposition 9.33). This requires the
following auxiliary result.

Lemma 12.6. If for some λ ∈ C, Rλf := limt→∞
∫ t
0 e

−λsT (s)f ds exists for all
f ∈ E, then λ ∈ ρ(A) and Rλf = R(λ,A)f for all f ∈ E.

Proof. For f ∈ E and t > 0 we have

1

t
(T (t)− I)Rλf =

1

t

∫ ∞

0

e−λs(T (t+ s)− T (s))f ds

=
1

t

(
(eλt − 1)

∫ ∞

0

e−λsT (s)f ds− eλt
∫ t

0

e−λsT (s)f ds

)
.

Taking the limit t → 0+ we obtain Rλf ∈ D(A) and

ARλf = λRλf − f,

i.e.,
(λ −A)Rλf = f.

On the other hand, for f ∈ D(A), by the closedness of A, we obtain

Rλ(λ −A)f = lim
t→∞

∫ t

0

e−λsT (s)(λ−A)f ds

= lim
t→∞(λ−A)

∫ t

0

e−λsT (s)f ds

= (λ −A)Rλf = f.

So, Rλ defines a two-sided inverse of λ−A, and hence Rλ is closed. Thus, by the
closed graph theorem, Rλ ∈ L(E). Therefore, λ ∈ ρ(A) and Rλ = R(λ,A). �
Theorem 12.7. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on E.
For λ with Reλ > s(A) we have

R(λ,A)f = lim
t→∞

∫ t

0

e−λsT (s)f ds, f ∈ E.

Moreover,
∫ t
0 e

−λsT (s) ds converges to R(λ,A) with respect to the operator norm
as t → ∞.
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Proof. Let λ0 > ω0(T ) be fixed. We recall from Proposition 9.33 that

R(λ0, A)f =

∫ ∞

0

e−λ0tT (t)f dt

and that

R(λ0, A)
k+1f =

1

k!

∫ ∞

0

tke−λ0tT (t)f dt

holds for k ∈ N and f ∈ E. Let μ ∈ (s(A), λ0), f ∈ E+, and f∗ ∈ E∗
+. By Corollary

9.30, 1
λ0−μ > r(R(λ0, A)) and hence,

〈R(μ,A)f, f∗〉 =
∞∑
k=0

(λ0 − μ)k〈R(λ0, A)
k+1f, f∗〉

=

∞∑
k=0

∫ ∞

0

1

k!
[(λ0 − μ)s]ke−λ0s〈T (s)f, f∗〉 ds

=

∫ ∞

0

( ∞∑
k=0

1

k!
[(λ0 − μ)s]k

)
e−λ0s〈T (s)f, f∗〉 ds

=

∫ ∞

0

e(λ0−μ)se−λ0s〈T (s)f, f∗〉 ds

=

∫ ∞

0

e−μs〈T (s)f, f∗〉 ds

= lim
t→∞

〈∫ t

0

e−μsT (s)f ds, f∗
〉
.

The equality above remains valid for all f∗ ∈ E∗ since any f∗ ∈ E∗ can
be decomposed into real and imaginary components and these in turn into their
positive and negative parts. Hence, for f ∈ E+,

( ∫ t
0 e−μsT (s)f ds

)
t≥0

converges

weakly to R(μ,A)f as t → ∞. Since f ∈ E+, the positivity of the semigroup

(T (t))t≥0 implies that
( ∫ t

0 e
−μsT (s)f ds

)
t≥0

is monotone increasing and so, by

Proposition 10.9, we have strong convergence. Thus

lim
t→∞

∫ t

0

e−μsT (s)f ds = R(μ,A)f

for all f ∈ E+ and hence for all f ∈ E. If λ = μ+ iν with μ, ν ∈ R and μ > s(A),
then for any 0 ≤ r < t, f ∈ E and f∗ ∈ E∗, we have∣∣∣∣〈∫ t

r

e−λsT (s)f ds, f∗
〉∣∣∣∣ ≤ ∫ t

r

e−μs〈T (s)|f |, |f∗|〉 ds,

since 〈|f |, |f∗|〉 = sup|g|≤|f | |〈g, |f∗|〉|. Hence,∥∥∥∥ ∫ t

r

e−λsT (s)f ds

∥∥∥∥ ≤ ∥∥∥∥ ∫ t

r

e−μsT (s)|f | ds
∥∥∥∥,
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which implies that

lim
t→∞

∫ t

0

e−λsT (s)f ds exists for all f ∈ E.

Then, using Lemma 12.6, we obtain λ ∈ ρ(A) and

R(λ,A)f =

∫ ∞

0

e−λtT (t)f dt

for all f ∈ E. It remains to prove that
( ∫ t

0 e−λsT (s) ds
)
converges in the operator

norm as t → ∞. We fix μ ∈ (s(A),Re λ). As we have seen above, the function

ψf,f∗ : s �−→ e−μs〈T (s)f, f∗〉

belongs to L1(R+) for all f ∈ E and f∗ ∈ E∗. The closed graph theorem implies
that the bilinear form

b : E × E∗ −→ L1(R+), (f, f∗) �−→ ψf,f∗

is separately continuous and hence continuous. Thus, there exists a constantM ≥ 0
such that ∫ ∞

0

e−μs|〈T (s)f, f∗〉| ds ≤ M‖f‖‖f∗‖, f ∈ E, f∗ ∈ E∗.

For 0 ≤ t < r and ε := Reλ− μ we have∣∣∣∣ ∫ r

t

e−λs〈T (s)f, f∗〉 ds
∣∣∣∣ ≤ ∫ r

t

e−(Reλ−μ)se−μs|〈T (s)f, f∗〉| ds

≤ e−εt

∫ r

t

e−μs|〈T (s)f, f∗〉| ds

≤ e−εtM‖f‖‖f∗‖.

Hence,
∥∥ ∫ r

t e−λsT (s) ds
∥∥ ≤ Me−εt and this implies that the function

t �−→
∫ t

0

e−λsT (s) ds

satisfies the Cauchy convergence criterion in L(E) as t → ∞.

Thus,
( ∫∞

0
e−λsT (s) ds

)
converges in the operator norm. �

As an immediate consequence we obtain the following

Corollary 12.8. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on E.
If Reλ > s(A), then

|R(λ,A)f | ≤ R(Reλ,A)|f | for all f ∈ E.
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Another important corollary is the following, previously announced result.

Corollary 12.9. If A is the generator of a positive C0-semigroup (T (t))t≥0 on E
and s(A) > −∞, then s(A) ∈ σ(A).

Proof. Assume that s(A) ∈ ρ(A). First we show that

M := sup
μ>s(A)

‖R(μ,A)‖ < ∞.

Applying Corollary 12.8, we have

|R(λ,A)f | ≤ R(Reλ,A)|f | for all Reλ > s(A), f ∈ E.

Thus

‖R(λ,A)‖ ≤ M for all Reλ > s(A).

Since

‖R(λ,A)‖ ≥ 1

dist(λ, σ(A))

for λ ∈ ρ(A) (see Corollary 9.30), we infer that

{λ ∈ C : Reλ = s(A)} ⊆ ρ(A)

and

‖R(λ,A)‖ ≤ M for all λ with Reλ = s(A).

Thus, since ρ(A) is open,

{λ ∈ C : |Reλ− s(A)| < M−1} ⊆ ρ(A).

This contradicts the definition of s(A). �

We also obtain a relation between s(A) and the positivity of the resolvent.

Corollary 12.10. Suppose that A generates a positive C0-semigroup (T (t))t≥0 on
E and λ0 ∈ ρ(A). Then the following assertions hold.

a) R(λ0, A) is positive if and only if λ0 > s(A).

b) If λ > s(A), then r(R(λ,A)) = 1
λ−s(A) .

Proof. a) Assume first that R(λ0, A) ≥ 0. So, one has

R(λ0, A)ER ⊂ ER,

where

ER := {Re f : f ∈ E}.
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Let f ∈ ER \ {0}. Then g = R(λ0, A)f ∈ ER and so Ag ∈ ER. So, it follows
from λ0g−Ag = f that λ0g ∈ ER and hence λ0 ∈ R. On the other hand, Theorem
12.7 implies that R(λ,A) ≥ 0 for all λ > max(λ0, s(A)), and hence

R(λ0, A) = R(λ,A) + (λ− λ0)R(λ,A)R(λ0, A)

≥ R(λ,A) ≥ 0

for all λ > max(λ0, s(A)). Therefore,

(λ− s(A))−1 = r(R(λ,A)) ≤ ‖R(λ,A)‖ ≤ ‖R(λ0, A)‖

for all λ > max(λ0, s(A)). But this is only true if λ0 > s(A).

The converse follows from Theorem 12.7.

b) This is a simple consequence of Corollary 12.9 and Proposition 9.29. �

We give now a statement on the spectral properties of positive perturbations
of semigroups.

Proposition 12.11. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on
the Banach lattice E and let B ∈ L(E) be positive. Then the following assertions
hold.

a) A+B generates a positive C0-semigroup (S(t))t≥0 with 0 ≤ T (t) ≤ S(t).

b) We have s(A) ≤ s(A+B) and R(λ,A) ≤ R(λ,A+B) for λ > s(A+B).

Proof. a) Recall from Theorem 11.5 that A + B generates a C0-semigroup
(S(t))t≥0, which is positive by Corollary 11.7. Moreover, the Dyson–Phillips ex-
pansion formula (11.6) yields S(t) ≥ T (t) ≥ 0.

b) Applying now Theorem 12.7 we see that

R(λ,A+B) ≥ R(λ,A)

for λ > max{s(A), s(A+B)}. Hence, for such λ we also have

‖R(λ,A)‖ ≤ ‖R(λ,A+B)‖.

But by Corollary 12.9 we have s(A) ∈ σ(A), and so

lim
λ↓s(A)

‖R(λ,A)‖ = ∞.

We conclude that s(A+B) ≥ s(A). �

We say that A is a resolvent positive operator if there is μ ∈ R such that
(μ,∞) ⊂ ρ(A) and R(λ,A) ≥ 0 for all λ > μ. Recall that, if A generates a
positive C0-semigroup, then A is a resolvent positive operator, see Corollary 11.4.
There are, however, resolvent positive operators that are not generators of a C0-
semigroup. For a nontrivial example see Example 13.17.
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Remark 12.12.

a) It can be proved that the statement in Corollary 12.9 remains valid if one
assumes only that A is a resolvent positive operator, see Exercise 4. Therefore,
if R(λ0, A) ≥ 0 for some λ0 ∈ ρ(A), then λ0 ∈ R and λ0 > s(A), whenever A
is a resolvent positive operator.

b) As an immediate consequence of Corollary 12.10 we obtain that

s(A) = inf{λ ∈ ρ(A) : R(λ,A) ≥ 0}

for the generator A of a positive C0-semigroup on a Banach lattice E.

c) If E = C(K), where K is a compact Hausdorff space, then s(A) > −∞.
In fact, we know from Lemma 11.2 that limλ→∞ λR(λ,A)f = f for all f ∈ E.
In particular, we can find λ0 ∈ R sufficiently large such that

λ0R(λ0, A)1 ≥ 1

2
1.

Since R(λ0, A) ≥ 0, we infer that

R(λ0, A)
k1 ≥

(
1

2λ0

)k

1 for all k ∈ N.

Thus,

r(R(λ0, A)) = lim
k→∞

‖R(λ0, A)
k‖1/k ≥ 1

2λ0
> 0,

and hence σ(A) �= ∅.

The spectrum of a generator of a positive C0-semigroup can in general be
empty, as the following examples show.

Example 12.13.

a) On E := C0[0, 1] := {f ∈ C[0, 1) : f(1) = 0} we consider the nilpotent
C0-semigroup (T (t))t≥0 given by

(T (t)f)(x) =

{
f(x+ t) if x+ t < 1,

0 otherwise,

for t ≥ 0, x ∈ [0, 1] and f ∈ E. Then, T (t) = 0 for t ≥ 1 and hence
σ(T (t)) = {0}. So by the spectral inclusion theorem (see Corollary 9.32),
σ(A) = ∅.

b) Let E := C0(0,∞) := {f ∈ C(R+) : limx→∞ f(x) = 0}. On E we define the
C0-semigroup (T (t))t≥0 by

(T (t)f)(x) := e−
t2

2 −xtf(x+ t), x, t ≥ 0 and f ∈ E.
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Then the generator A of (T (t))t≥0 on E is given by

(Af)(x) = f ′(x)− xf(x), x ≥ 0, and

f ∈ D(A) = {f ∈ E : f ∈ C1(R+) and Af ∈ E}.
One proves that σ(A) = ∅, see Exercise 2.

However, for generators of positive C0-groups the spectrum is always non-
empty.

Corollary 12.14. If A generates a positive C0-group on a Banach lattice E, then

σ(A) �= ∅.
Proof. Assume that σ(A) = ∅. By Theorem 12.7, R(λ,A) ≥ 0 for all λ ∈ R. Again,
one can apply the same theorem to −A and obtain R(λ,−A) ≥ 0 for all λ ∈ R.
But R(λ,−A) = −R(−λ,A) ≤ 0 for all λ ∈ R, and hence R(λ,−A) = 0 for all
λ ∈ R. This contradicts the fact that E �= {0}. �

We end this section by proving the existence of a positive eigenfunction. We
will see in Chapter 14 that such an eigenfunction is unique (up to a scalar factor)
if A generates an irreducible positive C0-semigroup. Compare this to Theorem 5.6
in the finite-dimensional case.

Theorem 12.15 (Krein–Rutman). Let A be a resolvent positive operator on E with
compact resolvent such that s(A) > −∞. Then there exists 0 � u ∈ D(A) such
that Au = s(A)u.

Proof. Replacing A with A− s(A), one can assume without loss of generality that
s(A) = 0. Since, by Exercise 4,

s(A) ∈ σ(A),

Corollary 9.30 implies that ‖R(λk, A)‖ → ∞ as k → ∞ for every λk > 0 with
limk→∞ λk = s(A) = 0. By the uniform boundedness principle (see Theorem
A.15), there is f ∈ E such that

lim
k→∞

‖R(λk, A)f‖ = ∞.

Since |R(λk, A)f | ≤ R(λk, A)|f |, one can assume that f � 0. Take

uk =
R(λk, A)f

‖R(λk, A)f‖
.

Then 0 ≤ uk ∈ D(A) with ‖uk‖ = 1 and

lim
k→∞

(λkuk −Auk) = lim
k→∞

‖R(λk, A)f‖−1f = 0.

Thus, (uk) is bounded in the graph norm. Using the compactness of the resolvent
ofA we have that the embeddingD(A) ↪→ E is compact and so we can assume that
limk→∞ uk = u exists in E, taking an appropriate subsequence if necessary. Then
‖u‖ = 1, u ≥ 0, and by the closedness of A we obtain u ∈ D(A) and Au = 0. �
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12.3 The Identity ω0(T ) = s(A) for

Positive Semigroups

As we have seen, for operator semigroups the spectral bound is not always equal
to the growth bound. It turns out, however, that for positive semigroups on some
special Banach lattices like the space of continuous functions or Lebesgue spaces,
the spectral bound equals the growth bound. These are wonderful results where
the special geometry of the spaces comes into play.

We proved in the finite-dimensional setting that s(A) = ω0(T ), see Corollary
4.8. On the other hand, Proposition 9.33 implies that s(A) ≤ ω0(T ) holds, when-
ever A generates a C0-semigroup (T (t))t≥0 on a Banach space X . Let us show
that in the infinite-dimensional case in general s(A) �= ω0(T ), even for positive
C0-semigroups.

Example 12.16. Consider the Banach lattice E := C0(R+)∩L1(R+, e
s ds) endowed

with the norm

‖f‖ := sup
s≥0

|f(s)|+
∫ ∞

0

|f(s)|es ds =: ‖f‖∞ + ‖f‖1.

On E we define the translation semigroup

(T (t)f)(s) = f(s+ t), t, s ≥ 0.

Then (T (t))t≥0 is a positive C0-semigroup. Its generator is given by

Af = f ′ for f ∈ D(A) = {f ∈ E : f ∈ C1(R+) and f ′ ∈ E}.

Note that ‖T (t)‖ = 1 for all t ≥ 0, hence ω0(T ) = 0.

On the other hand, the function ελ(s) := eλs is an eigenfunction for A asso-
ciated with λ provided that Reλ < −1. Hence,

{λ ∈ C : Reλ ≤ −1} ⊆ σ(A).

Moreover, for λ ∈ C with Reλ > −1 one sees that

‖ · ‖1 − lim
N→∞

∫ N

0

e−λsT (s)f ds and ‖ · ‖∞ − lim
N→∞

∫ N

0

e−λsT (s)f ds

exist, because ‖T (s)f‖1 ≤ e−s‖f‖1 for all s ≥ 0 and
∫∞
0

es|f(s)| ds < ∞. There-

fore,
∫∞
0 e−λsT (s)f ds exists in E for all f ∈ E. Thus, by Lemma 12.6, λ ∈ ρ(A).

It follows that

σ(A) = {λ ∈ C : Reλ ≤ −1}, whence s(A) = −1.

Another example of such a situation is given in Exercise 3.

We now look for sufficient conditions implying the equality ω0(T ) = s(A)
when A generates a positive C0-semigroup (T (t))t≥0 on E.
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Theorem 12.17. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on a
Banach lattice E. Then ω0(T ) = s(A) holds in the following cases.

a) The space E is an AL-space, i.e., the norm satisfies ‖f + g‖ = ‖f‖+ ‖g‖ for
all f, g ∈ E+.

b) The space E is C0(Ω), where Ω is a locally compact Hausdorff space.

Proof. a) For λ > s(A) and f ∈ E+ we obtain from Theorem 12.7 that

‖R(λ,A)f‖ =

∥∥∥∥ ∫ ∞

0

e−λsT (s)f ds

∥∥∥∥ = ∫ ∞

0

e−λs‖T (s)f‖ ds,

where the second equality follows from the fact that the norm is additive on the
positive cone. Hence, ∫ ∞

0

‖(e−λsT (s))f‖ ds < ∞

for all f ∈ E. So, by Theorem 12.5, we have ω0(T )− λ < 0, and thus

ω0(T ) ≤ s(A).

b) Is follows immediately that ‖f ∨ g‖ = ‖f‖ ∨ ‖g‖ for all f, g ∈ E+. Then,
for γ, ν ∈ E∗

+, we have

〈f, γ〉+ 〈g, ν〉 ≤ 〈f ∨ g, γ + ν〉|
≤ ‖γ + ν‖‖f ∨ g‖
= ‖γ + ν‖(‖f‖ ∨ ‖g‖), f, g ∈ E+.

Hence, 〈f, γ〉+ 〈g, ν〉 ≤ ‖γ + ν‖ for all f, g ∈ E+ with ‖f‖ = ‖g‖ = 1. Proposition
10.22.a) implies that ‖γ‖+ ‖ν‖ ≤ ‖γ + ν‖ and so

‖γ‖+ ‖ν‖ = ‖γ + ν‖, γ, ν ∈ E∗
+.

This implies that E∗ is an AL-space. If we set F := D(A∗), then it follows
from Exercise 5 that F is a closed ideal and hence also an AL-space. On F we
consider the positive C0-semigroup (S(t))t≥0 given by

S(t) := T (t)∗|F for t ≥ 0,

and we denote by B its generator. Then, by Proposition 9.38, B is the part of A∗

in F , i.e.,

D(B) = {ν ∈ D(A∗) : A∗ν ∈ F} and Bν = A∗ν for ν ∈ D(B).

Moreover, one can show that

σ(B) = σ(A∗) = σ(A),

see Proposition 9.40.
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Consequently, s(B) = s(A) holds. Since B is the generator of the positive
C0-semigroup (S(t))t≥0 on the AL-space F , it follows from a) that s(B) = ω0(S).
Now, it suffices to prove that

ω0(S) = ω0(T ).

The inequality ω0(S) ≤ ω0(T ) is straightforward from the definition of
(S(t))t≥0. Let ω > ω0(S), f ∈ E, and ν ∈ F . Then we have

|〈T (t)f, ν〉| = |〈f, S(t)ν〉| ≤ M‖f‖eωt‖ν‖

for t ≥ 0 and some constant M ≥ 1. On the other hand, since the Yosida approx-
imations yield f = limλ→∞ λR(λ,A)f for all f ∈ E, we have

c := lim sup
λ→∞

λ‖R(λ,A)‖ < ∞.

Therefore

|〈T (t)f, γ〉| = lim
λ→∞

|〈λR(λ,A)T (t)f, γ〉|

= lim
λ→∞

|〈T (t)f, λR(λ,A∗)γ〉|

≤ M‖f‖eωt lim sup
λ→∞

λ‖R(λ,A)∗γ‖

≤ Mceωt‖f‖‖γ‖, γ ∈ E∗.

Consequently, ‖T (t)‖ ≤ Mceωt for all t ≥ 0, and hence ω0(T ) ≤ ω for all ω >
ω0(S). Thus, we have shown that

ω0(S) = ω0(T ). �

Remark 12.18. We will present another result of this type in the case when E is
also a Hilbert space in Corollary 15.11.

12.4 Notes and Remarks

The spectral and stability theory of semigroups is a broad subject and well docu-
mented in the literature. We refer to the monographs by Engel and Nagel [43, 44],
van Neerven [103], or Arendt et al. [6]. Datko’s theorem originates from Datko
[28]. Theorem 12.15 is a variation of the famous Krein–Rutman theorem, see [77].

The content of Theorem 12.17 is due to Derndinger [29]. It remains true also
in Lp-spaces due to a result by Weis [153]. For an elegant proof of Weis’ Theorem,
see Arendt et al. [6, Theorem 5.3.6].
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12.5 Exercises

1. Let the mapping ζ : [0,∞) → R be bounded on compact intervals and
subadditive, i.e., ζ(t+ s) ≤ ζ(t) + ζ(s) for all t, s ≥ 0. Prove that

inf
t>0

ζ(t)

t
= lim

t→∞
ζ(t)

t
.

2. On E := C0([0,∞)) consider the family of operators

(T (t)f)(x) := e−
t2

2 −xtf(x+ t), x, t ≥ 0 and f ∈ E.

a) Show that (T (t))t≥0 is a positive C0-semigroup on E.

b) Prove that its generator is given by

(Af)(x) = f ′(x) − xf(x), x ≥ 0, for

f ∈ D(A) = {f ∈ E : f ∈ C1(R+) and Af ∈ E}.

c) Prove that σ(A) = ∅.
3. Let 1 < p < q < ∞ and E := Lp[1,∞)∩Lq[1,∞) the Banach lattice endowed

with the norm
‖f‖ := ‖f‖p + ‖f‖q, f ∈ E.

Consider the family of operators

T (t)f(s) = f(set) s ≥ 1, t ≥ 0.

a) Show that (T (t))t≥0 is a positive C0-semigroup on E with generator

(Af)(s) = sf ′(s), s ≥ 1, for

f ∈ D(A) = {f ∈ E : f absolutely continuous and Af ∈ E}.

b) Prove that s(A) = − 1
p < − 1

q = ω0(T ).

4. Let A be a resolvent positive operator on a Banach lattice E with s(A) > −∞.
Show that s(A) ∈ σ(A).

5. Let A be a resolvent positive operator on a Banach lattice with order con-
tinuous norm E. Prove that D(A) is an ideal in E.



Chapter 13

Unbounded Positive Perturbations

For two unbounded linear operators A and B on a Banach space X it is not always
evident how to define in a reasonable way their sum A+B. In order to avoid such
a discussion we will present some standard perturbation results in the situation
where the operator A generates a C0-semigroup on a Banach space X and the
perturbing operator B satisfies D(A) ⊆ D(B). In this case the sum A+B will be
defined on the dense set D(A).

The simplest case where B is bounded was already considered in Section
11.2. Here we consider unbounded operators B and focus on results where the
positivity of the semigroup and the perturbation plays an important role.

13.1 Unbounded Dispersive Perturbations

We start with dispersive and A-bounded perturbations of the generator A of a
positive contraction C0-semigroup on a Banach lattice.

First we state the definition of A-boundedness.

Definition 13.1. Let A be a closed operator on a Banach spaceX . A linear operator
B with domain D(B) is called A-bounded if D(A) ⊆ D(B) and there exist a, b ≥ 0
such that for all f ∈ D(A) the inequality

‖Bf‖ ≤ a‖Af‖+ b‖f‖ (13.1)

holds. The A-bound of B is defined by

a0 := inf{a ≥ 0 : there exists b ≥ 0 such that inequality (13.1) holds }.

The following is not difficult to prove and we leave it as an exercise.

Lemma 13.2. Let A be a closed operator with ρ(A) �= ∅. Then the operator B is
A-bounded if and only if BR(λ,A) ∈ L(X) for some/all λ ∈ ρ(A).

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_13
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Now we can state a fundamental perturbation result for positive contraction
semigroups.

Theorem 13.3. Let A be the generator of a positive contraction C0-semigroup on a
Banach lattice E and B a dispersive and A-bounded operator with A-bound a0 < 1.
Then A+B, defined on D(A), generates a positive contraction C0-semigroup on E.

Proof. Since B is dispersive, by Proposition 11.12, for every f ∈ D(A) there is an
f∗ ∈ I+(f) such that Re〈Bf, f∗〉 ≤ 0. By Exercise 4, Re〈Af +Bf, f∗〉 ≤ 0, which
means that A+B is a dispersive operator.

a) Assume first that a0 < 1
2 . By Theorem 11.10, it suffices to prove that for

some λ0 > 0 we have im(λ0 −A−B) = E. Now, for any λ > 0 we infer that

‖BR(λ,A)f‖ ≤ a‖AR(λ,A)f‖+ b‖R(λ,A)f‖

≤ a‖λR(λ,A)f − f‖+ b

λ
‖f‖

≤
(
2a+

b

λ

)
‖f‖ for all f ∈ E and some a, b > 0.

Since a0 < 1
2 , one has

‖BR(λ,A)‖ ≤ 2a+
b

λ
,

with a < 1
2 . Thus, for λ > b

1−2a one obtains ‖BR(λ,A)‖ < 1 and so λ ∈ ρ(A+B)

and R(λ,A+B) = R(λ,A)(I −BR(λ,A))−1 by Neumann’s series.

b) Consider now the general case when a0 < 1. For any α ∈ [0, 1] we define
operators

Cα = A+ αB with D(Cα) = D(A).

Then for x ∈ D(A) we obtain

‖Bf‖ ≤ a‖Af‖+ b‖f‖
≤ a (‖Cαf‖+ α‖Bf‖) + b‖f‖
≤ a (‖Cαf‖+ ‖Bf‖) + b‖f‖.

Hence,

‖Bf‖ ≤ a

1− a
‖Cαf‖+

b

1− a
‖f‖ for all α ∈ [0, 1].

Let k ∈ N such that a
k(1−a) <

1
2 . Then for any α ∈ [0, 1], 1

kB is a Cα-bounded

operator with Cα-bound a0 < 1
2 . From the calculations above we have that

Cα +
1

k
B = A+

(
α+

1

k

)
B
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generates a positive contraction C0-semigroup on E provided that Cα generates a
positive contraction C0-semigroup. This is the case for A + 1

kB. So, we have the
generation result for A+ 2

kB. Iterating the process, we finally obtain that(
A+

k − 1

k
B

)
+

1

k
B = A+B

generates a positive contraction C0-semigroup on E. �

A simple application of the perturbation theorem above is given in the fol-
lowing example.

Example 13.4. On L2 ([0, 1]) we consider the one-dimensional second-order elliptic
operator with Dirichlet boundary conditions

D(A) := {f ∈ H2 ([0, 1]) : f(0) = f(1) = 0}
Af := f ′′, f ∈ D(A).

Here H2 ([0, 1]) is the Sobolev space

H2 ([0, 1]) =
{
f ∈ H1 ([0, 1]) : f ′ ∈ H1 ([0, 1])

}
,

where the derivatives are in sense of distributions and H1 is defined in Appendix
A.11. It is known that f ∈ H1

0 ([0, 1]) if and only if f(0) = f(1) = 0 and f ∈
H1 ([0, 1]), see Theorem A.46. Hence,

D(A) =
{
f ∈ H1

0 ([0, 1]) : f
′′ ∈ L2([0, 1])

}
.

By Example 11.14.b) we know that A generates a positive contraction C0-
semigroup on L2([0, 1]).

Now let Bf := f ′ for f ∈ D(B) := H1 ([0, 1]). Then, D(A) ⊂ D(B) and for
any ε > 0 there is a constant C(ε) > 0 such that

‖f ′‖2 ≤ ε‖f ′′‖2 + C(ε)‖f‖2 for all f ∈ H2 ([0, 1]) ,

see Proposition A.47. Hence, B is A-bounded with A-bound equal to 0. We show
that B is also dispersive. Using A.48, we compute

(Bf |f+) =

∫ 1

0

f ′(s)f+(s) ds =

∫ 1

0

(f+)′(s)f+(s) ds

=
1

2

∫ 1

0

(
f2
)′
(s) ds =

1

2

(
f2(1)− f2(0)

)
= 0

for all f ∈ D(B). By Remark 11.13, this implies that B is dispersive. By Theorem
13.3, we deduce that the operator

Af +Bf = f ′′ + f ′, f ∈ D(A),

generates a positive contraction C0-semigroup on L2 ([0, 1]).
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13.2 Miyadera Perturbations

Next we introduce the so-called Miyadera perturbations. We will see that such
perturbations are useful for positive perturbations of positive semigroups on L1-
spaces, or for delay equations, to mention a few of the many applications. Through-
out this section we suppose that A generates a C0-semigroup (T (t))t≥0 on a Banach
space X satisfying ‖T (t)‖ ≤ Meωt for all t ≥ 0 and some constants M ≥ 1 and
ω ∈ R.

Definition 13.5. A linear operator B is called a Miyadera perturbation of A if B
is A-bounded and there are α ∈ (0,∞) and γ ∈ [0, 1) such that∫ α

0

‖BT (t)f‖ dt ≤ γ‖f‖ for all f ∈ D(A). (13.2)

For the Miyadera perturbations we can prove a perturbation result analogous
to the one for bounded perturbations, cf. Proposition 11.6.

Theorem 13.6. If B is a Miyadera perturbation of A, then A+B with domain D(A)
generates a C0-semigroup (S(t))t≥0 on X. Moreover, the semigroup (S(t))t≥0 is
given by the Dyson–Phillips series

S(t) =

∞∑
k=1

Sk(t),

where the operators Sk(t) ∈ L(X) satisfy

S0(t) := T (t) and Sk+1(t)f :=

∫ t

0

Sk(t− s)BT (s)f ds (13.3)

for t ≥ 0, f ∈ D(A), and for all k ∈ N. Further, the semigroup S(t) satisfies
Duhamel’s equation

S(t)f = T (t)f +

∫ t

0

S(t− s)BT (s)f ds, t ≥ 0, f ∈ D(A). (13.4)

Proof. First we assume that

‖T (t)‖ ≤ Me−ηt

for all t ≥ 0 and some η > 0. Indeed, if B is a Miyadera perturbation of A, then
B is a Miyadera perturbation of A− λ for any λ ≥ 0. We define

S1(t)f :=

∫ t

0

T (t− s)BT (s)f ds, f ∈ D(A).
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Using the notation [t/α] for the integer part of t/α for any t ≥ α, we obtain

∫ t

0

‖BT (s)f‖ ds ≤
[t/α]∑
k=0

∫ (k+1)α

kα

‖BT (s)f‖ ds

=

[t/α]∑
k=0

∫ α

0

‖BT (s)T (kα)f‖ ds

=

∫ α

0

‖BT (s)f‖ ds+

[t/α]∑
k=1

∫ α

0

‖BT (s)T (kα)f‖ ds

≤ γ‖f‖+ γ‖f‖
∞∑
k=1

‖T (kα)‖

≤ γ

(
1 +

Me−ηα

1− e−ηα

)
‖f‖ (13.5)

for any f ∈ D(A) and t > α. The estimate (13.5) holds also for t ∈ [0, α] since B
is a Miyadera perturbation of A and γ < γ̃, where

γ̃ = γ

(
1 +

Me−ηα

1− e−ηα

)
.

Then

‖S1(t)f‖ ≤ M

∫ t

0

‖BT (s)f‖ ds ≤ Mγ̃‖f‖

for all t ≥ 0 and f ∈ D(A). So, by the denseness of D(A) in X , S1(t) can be
extended uniquely to a bounded linear operator on X and satisfies

‖S1(t)‖ ≤ Mγ̃, t ≥ 0.

By induction we see that each of the operators Sk(t) defined in (13.3) can be
extended uniquely to a bounded linear operator on X satisfying

‖Sk(t)‖ ≤ Mγ̃k, k ∈ N, t ≥ 0. (13.6)

Since γ < 1, we can assume that γ̃ < 1 by choosing η sufficiently large. Thus the
series

S(t) :=

∞∑
k=0

Sk(t), t ≥ 0,

converges in L(X) uniformly on [0,∞) and satisfies

‖S(t)‖ ≤ M

1− γ̃
, t ≥ 0.
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The semigroup property S(t+ s) = S(t)S(s), t, s ≥ 0, can be obtained in the
same way as in the proof of Proposition 11.6.

To obtain the strong continuity of the function t �→ S(t) we first note that
for each f ∈ D(A), the mapping s �→ BT (s)f is continuous, and thus the local
boundedness of the function t �→ T (t) implies that t �→ S1(t)f is continuous. So,
by (13.6) and the denseness of D(A), we have the strong continuity of t �→ S1(t).
Using (13.6) again we deduce by induction that t �→ Sk(t) is strongly continuous for
all k ∈ N. Thus, because the series

∑∞
k=0 Sk(t) converges uniformly for t ∈ [0,∞),

the function t �→ S(t) is strongly continuous and hence a C0-semigroup on X .

Moreover, the definition of Sk(t) implies that S(t) satisfies Duhamel’s equa-
tion (13.4).

Let us denote by G the generator of the semigroup (S(t))t≥0. Using equa-
tion (13.4), Fubini’s theorem (see Theorem A.24), and a change of variables, we
compute∫ ∞

0

e−λtS(t)f dt =

∫ ∞

0

e−λtT (t)f dt+

∫ ∞

0

e−λt

∫ t

0

S(t− s)BT (s)f ds dt

=

∫ ∞

0

e−λtT (t)f dt+

∫ ∞

0

e−λs

∫ ∞

0

e−λtS(t)BT (s)f dt ds

for λ > 0 and f ∈ D(A). The A-boundedness of B yields

R(λ,G)f = R(λ,A)f +R(λ,G)B

∫ ∞

0

e−λsT (s)f ds

= R(λ,A)f +R(λ,G)BR(λ,A)f

for f ∈ D(A). Thus, using the denseness of D(A), we see that

R(λ,G)(I − BR(λ,A)) = R(λ,A).

But we know from (13.5) and the A-boundedness of B that

‖BR(λ,A)f‖ =

∥∥∥∥∫ ∞

0

e−λtBT (t)f dt

∥∥∥∥
≤
∫ ∞

0

‖BT (t)f‖ dt ≤ γ̃‖f‖

for all f ∈ D(A). Hence
‖BR(λ,A)‖ < γ̃ < 1

yielding λ ∈ ρ(A+B) and

R(λ,G) = R(λ,A)(I −BR(λ,A))−1 = R(λ,A+B).

This proves that G = A+B. �
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13.3 Positive Perturbations in L1

In this section we consider positive semigroups perturbed by positive unbounded
operators. In the L1-setting we deduce from Miyadera’s theorem very interesting
perturbation results with elegant proofs.

Throughout the section we assume that (Ω, μ) is a σ-finite measure space and
that the operator A is the generator of a positive C0-semigroup on E := L1(Ω, μ).
We begin our investigations by showing that in this setting there is a large class
of Miyadera perturbations.

Proposition 13.7. Let A be the generator of a positive C0-semigroup (T (t))t≥0

on E := L1(Ω, μ), B : D(A) → E a positive operator, and C : D(A) → E a
linear operator satisfying |Cf | ≤ Bf for any f ∈ D(A)+. If there exists λ > s(A)
such that ‖BR(λ,A)‖ < 1, then ‖CR(λ,A)‖ < 1, the operator A+ C generates a
C0-semigroup, and A+B generates a positive C0-semigroup on E.

Proof. First note that for any f ∈ E we have

|CR(λ,A)f | = |CR(λ,A)(f+ − f−)|
= |CR(λ,A)f+ − CR(λ,A)f−|
≤ |CR(λ,A)f+|+ |CR(λ,A)f−|
≤ BR(λ,A)(f+ + f−) = BR(λ,A)|f |.

Note that BR(λ,A) : E → E is a positive operator and hence, by Theorem
10.20, also bounded. Therefore, we have

‖CR(λ,A)‖ ≤ ‖BR(λ,A)‖. (13.7)

So, the operators B and C are both A-bounded, and ‖CR(λ,A)‖ < 1 whenever
the inequality ‖BR(λ,A)‖ < 1 holds. Since the norm is additive on the positive
cone, we obtain∫ α

0

‖Ce−λtT (t)f‖1 dt ≤
∫ α

0

‖Be−λtT (t)f‖1 dt

=

∥∥∥∥B ∫ α

0

e−λtT (t)f dt

∥∥∥∥
1

≤
∥∥∥∥B ∫ ∞

0

e−λtT (t)f dt

∥∥∥∥
1

= ‖BR(λ,A)f‖1
≤ ‖BR(λ,A)‖‖f‖1 =: γ‖f‖1

for all f ∈ D(A)+ and any α > 0. For f ∈ D(A) and k ∈ N sufficiently large, we
put f±

k := kR(k,A)f±. Then

lim
k→∞

‖A(f+
k − f−

k )−Af‖1 = 0 and lim
k→∞

‖f±
k − f±‖1 = 0.
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This implies that∫ α

0

‖Ce−λtT (t)(f+
k − f−

k )‖1 dt ≤ γ
(
‖f+

k ‖1 + ‖f−
k ‖1
)

and ∫ α

0

‖Ce−λtT (t)f‖1 dt ≤ γ
(
‖f+‖1 + ‖f−‖1

)
= γ‖f‖1.

Finally, since γ = ‖BR(λ,A)‖ < 1, we see that C is a Miyadera perturbation
of A − λ. So, by Theorem 13.6, the operator A + C − λ, and hence also A + C,
generates a C0-semigroup on E.

Finally, observe that, since both (T (t))t≥0 and B are positive, the positivity
of the semigroup (S(t))t≥0 generated by A +B follows from the positivity of the
terms Sk(·) in the Dyson–Phillips series given in Theorem 13.6. �

In the following example we present an application of this result to Schrö-
dinger operators on L1(Rn).

Example 13.8. On L1(Rn) we consider the Laplacian Δ with domain

D(Δ) = {f ∈ L1(Rn) : Δf ∈ L1(Rn)}.

By Remark 9.24 we know that the corresponding semigroup is given by

T (t)f(x) =

∫
Rn

f(y)Gt(x− y)dy, x ∈ Rn, t > 0,

where

Gt(x− y) := (4πt)−n/2e−
|x−y|2

4t , x, y ∈ Rn, t > 0.

Let V ∈ Lr(Rn) with r > max{1, n/2}. For f ∈ L1(Rn) and λ > 0, we
have by Fubini’s theorem (see Theorem A.24) and Hölder’s inequality (cf. Lemma
A.13),

‖V R(λ,Δ)f‖1 =

∥∥∥∥V ∫ ∞

0

e−λtT (t)f dt

∥∥∥∥
1

≤
∫
Rn

|V (x)|
∫ ∞

0

e−λt

∫
Rn

Gt(x− y)|f(y)|dy dt dx

=

∫
Rn

|f(y)|
∫ ∞

0

e−λt

∫
Rn

Gt(x− y)|V (x)| dx dtdy

≤ ‖f‖1‖V ‖r
∫ ∞

0

e−λt‖Gt‖r′ dt,

with 1
r +

1
r′ = 1. One can verify easily that ‖Gt‖r′ = ct−n/2r, hence D(Δ) ⊂ D(V )

and

‖V R(λ,Δ)‖ ≤ c‖V ‖r
∫ ∞

0

e−λtt−n/2r dt = c‖V ‖rλ(n/2r)−1

∫ ∞

0

e−ss−n/2rds.
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Thus, the inequality n
2r − 1 < 0 implies that

‖V R(λ,Δ)‖ < 1

for λ > 0 large enough. By Proposition 13.7, Δ + V generates a C0-semigroup on
L1(Rn).

Motivated by the following lemma we may ask if the condition ‖BR(λ,A)‖ <
1 in Proposition 13.7 can be replaced by r(BR(λ,A)) < 1.

Lemma 13.9. Let Λ be a positive operator on E := L1(Ω, μ) with r(Λ) < 1. Then
there exists an equivalent norm ‖ · ‖Λ, which is additive on the positive cone of E,
such that ‖Λ‖Λ < 1.

Proof. Since r(Λ) < 1, there exist m0 ∈ N and ν ∈ (0, 1) such that ‖Λm‖ ≤ νm

for all m ≥ m0. By taking ν < κ < 1 we define

‖f‖Λ :=

∞∑
m=0

‖Λmf‖1
κm

, f ∈ E.

Then, by the positivity of Λ, one can see that ‖ · ‖Λ is a norm on E which is
additive on the positive cone of E and, obviously, ‖f‖1 ≤ ‖f‖Λ for any f ∈ E. On
the other hand,

‖f‖Λ =

∞∑
m=0

‖Λmf‖1
κm

=

m0∑
m=0

‖Λmf‖1
κm

+

∞∑
m=m0+1

‖Λmf‖1
κm

≤
(

m0∑
m=0

‖Λm‖
κm

+

∞∑
m=m0+1

(ν
κ

)m)
‖f‖1 = M‖f‖1

for any f ∈ E. Moreover, for any f ∈ E, we have

‖Λf‖Λ =

∞∑
m=0

‖Λm+1f‖1
κm

= κ

∞∑
m=0

‖Λm+1f‖1
κm+1

≤ κ

∞∑
m=0

‖Λmf‖1
κm

.

Thus
‖Λf‖Λ ≤ κ‖f‖Λ, f ∈ E. �

Remark 13.10. It follows directly that if Λ satisfies |Λf | = Λ|f | for any f ∈ E,
then (E, ‖ · ‖Λ) is Banach lattice. The condition above is satisfied, for example,
when Λ is a positive multiplication operator.

Furthermore, the condition r(BR(λ,A)) < 1 is equivalent to positivity of the
resolvent of the operator A+B.
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Proposition 13.11. Let A be the generator of a positive C0-semigroup on E, λ >
s(A), and B : D(A) → E a positive linear operator. Then the following assertions
are equivalent.

(i) λ ∈ ρ(A+B) and R(λ,A+B) ≥ 0.

(ii) r(BR(λ,A)) < 1.

Proof. Let us first note that, by Corollary 12.10, we have R(λ,A) ≥ 0. So, the op-
erator BR(λ,A) : E → E is positive, and hence, by Theorem 10.20, also bounded.

Take λ > s(A) such that λ ∈ ρ(A+B) and R(λ,A+B) ≥ 0. Since

λ−A−B = (I −BR(λ,A))(λ −A), (13.8)

we deduce that 1 ∈ ρ(BR(λ,A)) and

(I −BR(λ,A))−1 = (λ −A)R(λ,A+B) = I +BR(λ,A+B) ≥ 0.

By Lemma 10.25, we obtain r(BR(λ,A)) < 1.

The converse follows from relation (13.8) and the Neumann series (see (A.4)),

(I −BR(λ,A))−1 =
∞∑
k=0

(BR(λ,A))k ≥ 0. �

Remark 13.12. One can see that Proposition 13.11 remains true for a general
Banach lattice with order continuous norm. We mention here that a Banach lat-
tice E has order continuous norm if every monotone order bounded net of E is
convergent.

We end this section by the following perturbation result due to W. Desch
which generalizes Proposition 13.7.

Theorem 13.13. Let A be the generator of a positive C0-semigroup on the Banach
lattice E := L1(Ω, μ), B : D(A) → E a positive linear operator, and C : D(A) → E
a linear operator with |Cf | ≤ Bf for any f ∈ D(A)+. If for some λ > s(A) the
resolvent R(λ,A+B) is positive, then A+ C generates a C0-semigroup on E.

Proof. We prove first that A+B generates a positive C0-semigroup. Proposition
13.11 implies that r(BR(λ,A)) < 1 and

R(λ,A+B) = R(λ,A)

∞∑
k=0

(BR(λ,A))k .

On the other hand, BR(λ,A+B) : E → E is positive and hence a bounded
operator on E, by Theorem 10.20. So, there is an m ∈ N such that

‖BR(λ,A+B)‖ < m.
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From

0 ≤ BR(λ,A) ≤ BR

(
λ,A+

j

m
B

)
≤ BR(λ,A+B)

we obtain for any j = 0, . . . ,m− 1, that∥∥∥∥ 1mBR

(
λ,A+

j

m
B

)∥∥∥∥ < 1.

Applying Proposition 13.7 to A and m−1B we obtain that A+m−1B gener-
ates a positive C0-semigroup. Taking A+m−1B instead of A and applying Proposi-
tion 13.7 again, one sees that A+m−1B+m−1B = A+2m−1B generates a positive
C0-semigroup. Repeating this process we obtain that A+ m−1

m B + 1
mB = A+ B

generates a positive C0-semigroup on E.

We need to prove that A+C is a generator. To this end take μ > max{s(A),
s(A+B)}. Then, as in the proof of Proposition 13.7, we have

|CR(μ,A)f | ≤ BR(μ,A)|f |, f ∈ E,

and by iteration we see that

|(CR(μ,A))kf | ≤ (BR(μ,A))k|f |, f ∈ E, k ∈ N. (13.9)

Since μ > s(A+B), by Corollary 12.10 and Proposition 13.11, we have that
r(BR(μ,A)) < 1. Hence, using inequality (13.9) we obtain that r(CR(μ,A)) < 1
and for any f ∈ E

|R(μ,A+ C)f | =
∣∣∣∣∣R(μ,A)

∞∑
k=0

(CR(μ,A))kf

∣∣∣∣∣
≤ R(μ,A)

∞∑
k=0

(BR(μ,A))k|f |

= R(μ,A+ B)|f |.

Iterating this one obtains

|R(μ,A+ C)kf | ≤ R(μ,A+B)k|f |, f ∈ E, k ∈ N. (13.10)

Since, by the Hille–Yosida theorem (see Theorem 11.1), there is an ω ∈ R
such that

sup
μ>ω,k∈N

‖[(μ− ω)R(μ,A+B)]k‖ < ∞,

Inequality (13.10) implies that

sup
μ>ω,k∈N

‖[(μ− ω)R(μ,A+ C)]k‖ < ∞.

So, again by the Hille–Yosida theorem, A+ C generates a C0-semigroup. �
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Remark 13.14. Denote by (S(t))t≥0 and (U(t))t≥0 the semigroups from Theorem
13.13 generated by A + B and A + C, respectively. Setting μ = k

t for t > 0
and taking k ∈ N sufficiently large yields the following relation between the two
semigroups.

|U(t)f | = lim
k→∞

|(I − (t/k)(A+ C))−kf |

≤ lim
k→∞

(I − (t/k)(A+B))−k|f |

= S(t)|f |, f ∈ E.

As a consequence we obtain the following domination result for Schrödinger
semigroups on L1(Rn).

Example 13.15. Denote by (SV (t))t≥0 the semigroup generated by Δ+V on L1(Rn)
discussed in Example 13.8, where V ∈ Lr(Rn) with r > max{1, n/2}. Then,

|SV (t)f | ≤ S|V |(t)|f |, f ∈ L1(Rn), t ≥ 0.

Remark 13.16. Looking at the proof of Theorem 13.13 we see that the perturba-
tion result remains valid in any Banach lattice E if we consider perturbations of
finite rank. Specifically, a linear operator C : D(A) → E is called a finite-rank
perturbation if there exist ϕi ∈ spanD(A)∗+, gi ∈ E, i = 1, . . . , k such that

Cf =

k∑
i=1

ϕi(f)gi, f ∈ D(A). (13.11)

To see this, take for simplicity Bf = ϕ(f)g, f ∈ D(A) for some ϕ ∈ D(A)∗+
and g ∈ E+. Then the claim follows from the estimate∫ α

0

‖Be−λtT (t)f‖ dt =

∫ α

0

e−λtϕ(T (t)f) dt‖g‖

≤ ϕ(R(λ,A)f)‖g‖
= ‖BR(λ,A)f‖

for any f ∈ D(A)+ and λ > s(A).

We conclude with an example showing that Theorem 13.13 is, however, not
true in general when the state space is not an L1-space.

Example 13.17. Let X := C0(0, 1] := {f ∈ C ([0, 1]) : f(0) = 0} and Lf = −f ′ for
f ∈ D(L), where

D(L) =
{
f ∈ C1 ([0, 1]) : f ′(0) = f(0) = 0

}
.

By Exercise 3, L generates a positive contraction C0-semigroup on X with
spectral bound s(L) = −∞. Let C : D(L) → X be given by

Cf(s) =

{
1
sf(s) if s ∈ (0, 1],

0 if s = 0.
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Then A+B is resolvent positive, but does not generate a C0-semigroup on E :=
X ×X , where

A :=

(
L 0
0 L

)
and B :=

(
0 0
C 0

)
.

To see this we compute the resolvent of A+B as

R(λ,A+B) =

(
R(λ, L) 0

R(λ, L)CR(λ, L) R(λ, L)

)
for λ ∈ R, where R(λ, L)f(s) = e−λs

∫ s
0
eλrf(r) dr. So A+B is resolvent positive.

For f ∈ X we compute

R(λ, L)CR(λ, L)f(s) = e−λs

∫ s

0

eλrCR(λ, L)f(r) dr

= e−λs

∫ s

0

eλr
1

r
e−λr

∫ r

0

eλyf(y) dy dr

= e−λs

∫ s

0

eλyf(y)

∫ s

y

1

r
dr dy

=

∫ s

0

e−λ(s−y)f(y) log(s/y) dy

=

∫ s

0

e−λtW (t)f(s) dt,

where

W (t)f(s) :=

{
log(s/(s− t))f(s− t) if s > t,

0 otherwise.
(13.12)

If A + B is the generator of a C0-semigroup (S(t))t≥0 on E, then, by the
uniqueness of the Laplace transform, the semigroup is the form

S(t)(f, g) =

(
T (t)f 0
W (t)f T (t)g

)
, (f, g) ∈ E.

But this is not possible because the operator defined in (13.12) is not bounded on
C0 ((0, 1]).

13.4 Notes and Remarks

The study of unbounded perturbations of C0-semigroups started first in Hilbert
spaces. For this we refer to the monographs by Kato [73] and by Reed and Simon
[119, Sec. X.2].

Our Theorem 13.3 is a dispersive version of a result due to Gustafson [61].
Theorem 13.6 is taken from Voigt [148], where it is shown that the perturbed
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semigroup is given by a Dyson–Phillips series for small times. The convergence of
the Dyson–Phillips expansion for all times is due to Rhandi [120]. Lemma 13.9
originates in Mokhtar–Kharroubi [97, Lemma 8.3] and Proposition 13.11 is due to
Voigt [152]. Theorem 13.13 was originally proved by Desch, but the proof using
Miyadera’s perturbation theorem is taken from Voigt [152]. Extension to finite-
rank perturbations can be found in Arendt and Rhandi [7]. Another important
application of the Miyadera perturbation theorem is for the delay semigroup, see
Chapter 15.

13.5 Exercises

1. Show that if ρ(A) �= ∅, then B is A-bounded if and only if BR(λ,A) ∈ L(X)
for some/all λ ∈ ρ(A).

2. Prove that every AL-space has an order continuous norm, see Remark 13.12.

3. Show that the operator L defined in Example 13.17 generates a positive
contraction C0-semigroup on C0(0, 1] and s(L) = −∞.

4. Prove that if A generates a positive contraction C0-semigroup on a Banach
lattice E, then for every f ∈ D(A) and for every f∗ ∈ I+(f),

Re〈Af, f∗〉 ≤ 0.

5. Let A be the generator of a positive C0-semigroup on a Banach lattice E.
Define B : D(A) → E as Bf = ϕ(f)g for a given ϕ ∈ D(A)∗+ and g ∈ E.

a) Verify that r(BR(λ,A)) ≤ |ϕ(R(λ,A)g)| for any λ > s(A).

b) Prove that A+B generates a C0-semigroup on E.

c) Let E = Lp(0, 1), 1 ≤ p < ∞, and let Af = −f ′ with

D(A) = {f ∈ W1,p(0, 1) : f(0) = 0}.

Let μ be a bounded positive measure on [0, 1], 0 ≤ g ∈ E and define

Bf =

(∫ 1

0

f(s) dμ(s)

)
g,

for f ∈ E. Show that A and A + B generate positive C0-semigroups
on E.

6. Finish the proof of Theorem 13.13 for finite-rank perturbations of the type as
in (13.11) in arbitrary Banach lattices. This was sketched in Remark 13.16.
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Chapter 14

Advanced Spectral Theory
and Asymptotics

In this chapter we continue our investigation of spectral properties of positive C0-
semigroups on Banach lattices and show how the Perron–Frobenius theory can be
generalized to the infinite-dimensional setting. We also list some important prop-
erties of irreducible semigroups. We will see that many results valid for positive
matrix semigroups continue to hold also in infinite dimensions.

Our main goal is to describe the asymptotic behavior of a semigroup (such as
asymptotic periodicity or balanced exponential growth) via the spectral properties
of its generator.

14.1 Spectral Decomposition

First we define and discuss spectral projections and spectral decompositions for an
unbounded closed operator. Recall that in finite dimensions we have constructed
a functional calculus using spectral projections corresponding to the eigenvalues
(cf. Theorem 2.11). As already mentioned in Section 2.4, these projections can be
obtained by Dunford’s integral representation. We now start with such a repre-
sentation in the case of bounded operators.

Let T ∈ L(X), where X is a Banach space. For a function f holomorphic
on a neighborhood of W for some open neighborhood W of σ(T ) with a smooth,
positively oriented boundary ∂W+, we define

f(T ) :=
1

2πi

∫
∂W+

f(λ)R(λ, T ) dλ.

As in the finite-dimensional situation, the map f �→ f(T ) is linear and multiplica-
tive, and for g(z) := zk, k ∈ N, one obtains g(T ) = T k.

Assume now that the spectrum σ(T ) can be decomposed as

σ(T ) = σ1 ∪ σ2, (14.1)
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where σ1, σ2 are closed and disjoint sets. The spectral projection Pi of T belonging
to σi is defined to be χi(T ), where χi is the characteristic function of a neigh-
borhood Wi of σi such that Wi ∩ σ(T ) = σi (compare with relation (2.5) in the
finite-dimensional case). Hence, Pi can be written as

Pi :=
1

2πi

∫
γi

R(λ, T ) dλ, (14.2)

where γi is a smooth curve in ρ(T ) enclosing σi. These projections commute with
T and yield the spectral decomposition

X = X1 ⊕X2

with the T -invariant spaces X1 := imP1 = kerP2, X2 := imP2 = kerP1. The
restrictions Ti ∈ L(Xi) of T to Xi satisfy

σ(Ti) = σi, i = 1, 2,

a property that characterizes the above decomposition of X and T (again recall
corresponding results in finite dimensions, e.g., Theorem 2.9).

For an unbounded operator A and an arbitrary decomposition of the spec-
trum σ(A) into disjoint closed sets, it is not always possible to find an associated
spectral decomposition. However, the spectral mapping theorem for the resolvent
allows us to construct such decompositions if one of the subsets is compact.

Proposition 14.1. Let A : D(A) ⊂ X → X be a closed operator such that its
spectrum σ(A) can be decomposed into the disjoint union of two closed subsets σc

and σu, i.e.,

σ(A) = σc ∪ σu.

If σc is compact, then there exists a spectral decomposition X = Xc ⊕Xu for A
in the following sense.

a) The restriction Ac := A|Xc is bounded on the Banach space Xc.

b) D(A) = Xc ⊕ D(Au), where Au is the part of A in Xu, i.e., Au := A|Xu ,
Auf := Af for f ∈ D(Au) := {g ∈ Xu ∩D(A) : Ag ∈ Xu}.

c) The operator A decomposes as A = Ac ⊕Au.

d) σ(Ac) = σc and σ(Au) = σu.

Proof. Supposing that A is unbounded and taking λ0 ∈ ρ(A), we see that 0 ∈
σ(R(λ0, A)) and, by Proposition 9.29, we obtain

σ
(
R(λ0, A)

)
=

{
1

λ0 − μ
: μ ∈ σc

}
︸ ︷︷ ︸

τc

∪
{

1

λ0 − μ
: μ ∈ σu

}
∪ {0}︸ ︷︷ ︸

τu

, (14.3)
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where τc, τu are compact and disjoint subsets of C. (If σc is not compact, 0 is in
the closure of τc.) Let now P be the spectral projection for R(λ0, A) associated to
the decomposition in (14.3) and put Xc := imP and Xu := kerP . Since R(λ0, A)
and P commute, we have R(λ0, A)Xc ⊆ Xc, hence

λ0 ∈ ρ(Ac) and R(λ0, Ac) = R(λ0, A)|Xc . (14.4)

Moreover, we know that σ(R(λ0, Ac)) = τc �� 0. Therefore, Ac = λ0 −R(λ0, Ac)
−1

is bounded on Xc, and we obtain a).

To verify b), observe that by similar arguments as above we obtain

λ0 ∈ ρ(Au) and R(λ0, Au) = R(λ0, A)|Xu . (14.5)

Combining this with (14.4) yields

Xc +D(Au) = R(λ0, Ac)Xc +R(λ0, Au)Xu

⊆ D(A) = R(λ0, A)(Xc +Xu)

⊆ R(λ0, Ac)Xc +R(λ0, Au)Xu

= Xc +D(Au),

implying that D(A) = Xc+D(Au). This proves b), while c) follows from a) and b).

Finally, d) is a consequence of Proposition 9.29 and (14.3), (14.4), and (14.5).
�

A particularly important case of the above decomposition occurs when σc =
{μ} consists of a single point. This means that μ is isolated in σ(A) and therefore
the holomorphic function ρ(A) � λ �→ R(λ,A) ∈ L(X) can be expanded in a
Laurent series

R(λ,A) =

∞∑
k=−∞

(λ− μ)kUk

for 0 < |λ − μ| < δ and some sufficiently small δ > 0. The coefficients Uk of this
series are bounded operators given by the formulas

Uk =
1

2πi

∫
γ

R(λ,A)

(λ− μ)k+1
dλ, k ∈ Z, (14.6)

where γ is, for example, the positively oriented boundary of the disc with radius
δ
2 centered at μ. The coefficient U−1 is called the residue of R(·, A) at μ. From
formula (14.6) one deduces

Uk+1 = (A− μ)kU−1 (14.7)

and the identity
U−(k+1) · U−(�+1) = U−(k+�+1) (14.8)
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for k, � ≥ 0. Indeed,

1

2πi

∫
γ

(λ− μ)k(λ− μ)�R(λ,A) dλ

=

(
1

2πi

∫
γ

(λ− μ)kR(λ,A) dλ

)
·
(

1

2πi

∫
γ

(λ − μ)�R(λ,A) dλ

)
can be proved as in the case of a bounded operator A since the proof only uses
the resolvent equation and the residue theorem.

If there exists k > 0 such that U−k �= 0, while U−� = 0 for all � > k, then the
spectral value μ is called a pole of R(·, A) of order k (compare with Remark 2.17).
In view of (14.8), this is true if and only if U−k �= 0 and U−(k+1) = 0. Moreover,
we obtain U−k as

U−k = lim
λ→μ

(λ− μ)kR(λ,A). (14.9)

The dimension of the spectral subspace imP is called the algebraic multi-
plicity ma of μ, while mg := dim ker(μ−A) is its geometric multiplicity. One can
show that the following relation holds:

mg + k − 1 ≤ ma ≤ mg · k. (14.10)

In the case ma = 1, we call μ an algebraically simple pole. We also denote by

Pol(A) := {μ ∈ C : μ is a pole of R(·, A)}. (14.11)

The following result shows that, as in the case of a bounded operator, the
spectral projection of A belonging to an isolated point μ ∈ σ(A) is the residue of
R(·, A) at μ.
Proposition 14.2. Let A be a closed linear operator having nonempty resolvent set
ρ(A) and take some λ0 ∈ ρ(A). Then μ ∈ C is an isolated point of σ(A) if and
only if (λ0 − μ)−1 is isolated in σ(R(λ0, A)). In this case, the residues and the
orders of the poles of R(·, A) at μ and of R(·, R(λ0, A)) at (λ0 − μ)−1 coincide.

Proof. The first claim follows easily from Proposition 9.29 and the fact that the
map z �→ (λ0 − z)−1 is homeomorphic between C \ {λ0} and C \ {0}.

In order to prove the assertion concerning the residues, we choose a positively
oriented circle γ ⊂ ρ(A) with center μ such that λ0 lies in the exterior of γ. Then
the residue P of R(·, A) at μ is given by

P =
1

2πi

∫
γ

R(λ,A) dλ

=
1

2πi

∫
γ

R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

dλ− 1

2πi

∫
γ

dλ

(λ0 − λ)

=
1

2πi

∫
γ

R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

dλ,
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where we used the identity

R(λ,A) =
R
(
(λ0 − λ)−1, R(λ0, A)

)
(λ0 − λ)2

− 1

(λ0 − λ)

and Cauchy’s integral theorem. The substitution z := (λ0 − λ)−1 then yields a
path γ̃ around (λ0 − μ)−1, and we obtain

P =
1

2πi

∫
γ̃

R
(
z,R(λ0, A)

)
dz,

which is the residue of R(·, R(λ0, A)) at (λ0 − μ)−1.

The final assertion concerning the pole orders is obtained as follows. By the
same calculations as above we see that for k ∈ N

1

2πi

∫
γ

(λ − μ)k−1R(λ,A) dλ =
1

2πi

∫
γ̃

(
λ0 − μ− 1

z

)k−1

R
(
z,R(λ0, A)

)
dz.

Since λ0 − μ − 1
z =
(
λ0−μ

z

)(
z − 1

λ0−μ

)
, by the multiplicativity of the functional

calculus for R(λ0, A) the last integral can be interpreted as(
(λ0 − μ)(λ0 −A)

)k−1
V−k,

where V−k denotes the −kth coefficient in the Laurent expansion of R(·, R(λ0, A))
at (λ0 − μ)−1. Hence, we obtain for the coefficients U−k of the Laurent expansion
of R(·, A) at μ

U−k =
(
(λ0 − μ)(λ0 −A)

)k−1
V−k, k ∈ N,

and therefore

V−k =
(
(λ0 − μ)−1R(λ0, A)

)k−1
U−k, k ∈ N,

which proves the assertion. �

We continue by further refining the spectral decomposition. First recall that
the essential spectrum of a bounded operator T ∈ L(X) is the spectrum of T +
K(X) in the Calkin algebra C(X) := L(X)/K(X), where K(X) denotes the ideal
of compact operators. Accordingly, the essential spectral radius is

ress(S) := r(S +K(X)),

see also Appendix A.9.

Analogously, we define the essential growth bound ωess(T ) of a C0-semigroup
(T (t))t≥0 as the growth bound of the quotient semigroup (T (t) + K(X))t≥0 on
C(X), i.e.,

ωess(T ) := inf{ω ∈ R : ∃M > 0 such that ‖T (t)‖ess ≤ Meωt for all t ≥ 0},
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where ‖ · ‖ess is the quotient norm in C(X). Then, as in Proposition 12.1, one can
see that

ωess(T ) =
log ress(T (t0))

t0
= lim

t→∞
log ‖T (t)‖ess

t
(14.12)

holds for all t0 > 0. The following result gives the relationship between ωess(T )
and ω0(T ).

Proposition 14.3. Let (T (t))t≥0 be a C0-semigroup with generator A on a Banach
space X. Then

ω0(T ) = max{s(A), ωess(T )}.

Proof. If ωess(T ) < ω0(T ), then ress(T (1)) < r(T (1)). Let λ ∈ σ(T (1)) such that
|λ| = r(T (1)). Then by Proposition A.34, λ is an eigenvalue of T (1) and by the
spectral mapping theorem for the point spectrum, Theorem A.33, there is a λ1 ∈
σp(A) with eλ1 = λ. Therefore, Reλ1 = ω0(T ), and thus ω0(T ) = s(A). �

We are finally able to give an infinite-dimensional analogue of the formula
for the matrix exponential function given in (2.9). As in finite dimensions, this
will be an important tool to study the asymptotic behavior of the semigroup.

Theorem 14.4. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Banach
space X such that ωess(T ) < 0. Then the following assertions hold.

a) The set σ+ := {λ ∈ σ(A) : Reλ ≥ 0} is finite (or empty) and consists of
poles of R(·, A) of finite algebraic multiplicity.

b) Let σ+ := {λ1, . . . , λm} where λj is a pole of order kj with the corresponding
spectral projection Pj, j = 1, . . . ,m. Then T (t) = T1(t) + · · ·+ Tm(t) +R(t),
where

Tj(t) := eλj t

kj−1∑
k=0

tk

k!
(A− λj)

kPj , j = 1, . . . ,m, and t ≥ 0,

and

‖R(t)‖ ≤ Me−εt, for some ε > 0, M ≥ 1, and all t ≥ 0.

Proof. a) Let t0 > 0. Since ωess(T ) < 0, (14.12) shows that ress(T (t0)) < 1. So, by
Proposition A.34, every λ ∈ σ(T (t0)) with |λ| ≥ 1 is an isolated point. The set

σc := σ(T (t0)) ∩ {z ∈ C : |z| ≥ 1}

is thus finite and consists of the points {λ1, . . . , λm}.
Set σu := σ(T (t0)) \ σc. Then σ(T (t0)) is the disjoint union of the closed

sets σc and σu with σc compact, and we can apply Proposition 14.1, yielding the
spectral decomposition

X = imPc ⊕ kerPc =: Xc ⊕Xu
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with the associated spectral projection Pc. Since σc is finite and any of its ele-
ments is a pole of R(·, T (t0)), we deduce that Xc is finite-dimensional. To this
decomposition we associate semigroups Tc(·) := T (·)|Xc and Tu(·) := T (·)|Xu , and
the corresponding generators are, respectively, Ac := A|Xc ∈ L(Xc) and Au the
part of A in Xu. Moreover, σ(Ac) = σc and σ(Au) = σu.

Since Xc is finite-dimensional, σ(Ac) is finite and A = Ac ⊕ Au. Moreover,
every element of σc is a pole of R(·, A) = R(·, Ac) ⊕ R(·, Au). Thus, the spectral
mapping theorem (see Theorems 2.20 and 2.28) yields

σ(Ac) = {λ1, . . . , λm} and σ(Tc(t)) = {eλ1t, . . . , eλmt}.

In particular,
σc = σ(Tc(t0)) ⊂ {z ∈ C : |z| ≥ 1},

and hence Reλj ≥ 0 for all j = 1, . . . ,m.

Next, we show that (Tu(t))t≥0 is uniformly exponentially stable. By the spec-
tral decomposition, we know that σ(Tu(t0)) = σu ⊂ {z ∈ C : |z| < 1}. So,
r(Tu(t0)) < 1 and by Proposition 12.1 we obtain ω0(Tu) < 0, which also implies
s(Au) < 0. This proves a).

b) In order to verify this, we define the spectral projection P :=
∑m

j=1 Pj

of A corresponding to the spectral set {λ1, . . . , λm}, i.e., P = Pc. We decompose
now the semigroup (T (t))t≥0 as

T (t) = T (t)P1 + · · ·+ T (t)Pm + T (t)(I − P ),

where each restricted semigroup T (·)Pj has generator A|imPj . Since imPj is finite-
dimensional and (A− λj)

kjPj = 0, we can use Theorem 2.11 and get

Tj(t) := T (t)Pj = eλjt

kj−1∑
k=0

tk

k!
(A− λj)

kPj , t ≥ 0.

To show the last assertion, it suffices to note that

R(t) = T (t)(I − P ) = Tu(t)(I − Pc) = Tu(t)

and ω0(Tu) < 0. This ends the proof of the theorem. �

Semigroups satisfying ωess(T ) < 0 are also called quasi-compact semigroups
(for an explanation of this name see Exercise 1). They include uniformly exponen-
tially stable semigroups and eventually compact semigroups.

14.2 Periodic Semigroups

In this section we characterize periodic semigroups in terms of their spectrum. As
we shall see later in this chapter, this class of semigroups plays an important role
for the asymptotics of general semigroups.
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Definition 14.5. A C0-semigroup (T (t))t≥0 on a Banach space X is called periodic
if there is t0 > 0 such that T (t0) = I. In this case its period is defined as the
smallest τ > 0 such that T (τ) = I.

Since, for every k ∈ N and 0 ≤ t ≤ kτ , T (t)T (kτ − t) = I, we readily see that
a periodic semigroup always extends to a group.

As in finite dimensions, we can characterize periodic semigroups in terms of
their spectrum, compare with Theorem 4.12.c) in the finite-dimensional situation.

Theorem 14.6. For a C0-semigroup (T (t))t≥0 with generator A on a Banach space
X the following assertions are equivalent.

(i) (T (t))t≥0 is a periodic semigroup.

(ii) σ(A) = σp(A) ⊂ 2πiαZ for some α > 0 and the corresponding eigenvectors
span a dense subspace of X.

Proof. (ii) =⇒ (i): First observe that for any λ ∈ σp(A) and a corresponding
eigenvector f ∈ D(A), Corollary 9.32 yields

T (t)f = eλtf, t ≥ 0. (14.13)

Thus, taking λ = 2πikα ∈ σp(A) we deduce that T (t)f = e2πikαtf for all t ≥ 0.
Since these eigenvectors span a dense subspace of X , we obtain that (T (t))t≥0 is
periodic with period τ ≤ 1

α .

(i) =⇒ (ii): Let τ be the period of (T (t))t≥0 and λ �= 2πki
τ , k ∈ Z. From

Lemma 9.31 we infer that λ ∈ ρ(A) and

R(λ,A) =
1

1− e−λτ

∫ τ

0

e−λsT (s) ds. (14.14)

So the resolvent is a meromorphic function having poles only at (some) μk =
2πki
τ , k ∈ Z, of order less than or equal to one. Using formula (14.14) and the

residue theorem one obtains the residues in μk as

Pk =
1

τ

∫ τ

0

e−μksT (s) ds, k ∈ Z. (14.15)

Now we prove that span
⋃

k∈Z
PkX = X . More precisely, we prove that

f =

+∞∑
k=−∞

Pkf for all f ∈ D(A), (14.16)

which clearly implies the assertion, since D(A) is dense in X .
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Setting g = Af , we have Pkg = PkAf = 2πki
τ Pkf . This implies Pkf =

τ
2πkiPkg. Hence, by applying the Cauchy–Schwarz inequality (A.3), we obtain∣∣∣∣∣∑

k∈F

〈Pkf, f
∗〉
∣∣∣∣∣ =
∣∣∣∣∣∑
k∈F

τ

2πki
〈Pkg, f

∗〉
∣∣∣∣∣

≤ τ

2π

(∑
k∈F

1

k2

)1/2(∑
k∈F

|〈Pkg, f
∗〉|2
)1/2

≤ τ

2π

(∑
k∈F

1

k2

)1/2 (
1

τ

∫ τ

0

|〈T (s)g, f∗〉|2 ds

)1/2

≤ τ

2π

(∑
k∈F

1

k2

)1/2

‖f∗‖
(
1

τ

∫ τ

0

‖T (s)g‖2 ds
)1/2

︸ ︷︷ ︸
C

=
Cτ

2π

(∑
k∈F

1

k2

)1/2

‖f∗‖

for any finite subset F ⊂ Z. Thus,∥∥∥∥∥∑
k∈F

Pkf

∥∥∥∥∥ ≤ Cτ

2π

(∑
k∈F

1

k2

)1/2

for any finite subset F ⊂ Z. This gives the convergence of
∑

k∈Z
Pkf for all f ∈

D(A).

On the other hand, using the relation (14.13) with λ = μm and the corre-
sponding eigenvector Pmf , we obtain

PkPmf =
1

τ

∫ τ

0

e−μksT (s)Pmf ds =
1

τ

∫ τ

0

e(μm−μk)sPmf ds = 0,

if k �= m. From this we see that, for any f∗ ∈ X∗, the Fourier coefficients of the
functions s �→ 〈T (s)(

∑
k∈Z

Pkf), f
∗〉 and s �→ 〈T (s)f, f∗〉 coincide. So, the two

functions are equal and, in particular,〈∑
k∈Z

Pkf, f
∗
〉

=

〈
T (0)

(∑
k∈Z

Pkf

)
, f∗
〉

= 〈T (0)f, f∗〉 = 〈f, f∗〉 .

This proves that f =
∑

k∈Z
Pkf . �

The calculations in the proof above yield the following expansion formula for
a periodic semigroup and its generator.
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Corollary 14.7. Let (T (t))t≥0 be a periodic C0-semigroup with period τ and gen-
erator A on a Banach space X. Then

T (t)f =
+∞∑
−∞

eμktPkf for f ∈ D(A) and

Af =
+∞∑
−∞

μkPkf for f ∈ D(A2),

where Pk are the residues of R(·, A) at μk := 2πik
τ given in (14.15).

Proof. One has to apply expansion (14.16) to T (t)f and Af instead of f , respec-
tively, and use the identities APk = μkPk and T (t)Pk = eμktPk, see (14.13). �
Example 14.8. Let Γ := {z ∈ C : |z| = 1} denote the unit circle and τ > 0. On
X := Lp(Γ), 1 ≤ p < ∞, we define

Rτ (t)f(z) := f
(
ze(2πi/τ)t

)
, z ∈ Γ, t ∈ R.

Then Rτ (·) defines a periodic C0-group with period τ . Moreover, one can prove
that its generator is given by

D(A) = {f ∈ X : f absolutely continuous , f ′ ∈ X}

Af(z) =
2πi

τ
zf ′(z), f ∈ D(A),

with

σ(A) =
2πi

τ
Z and Pkf(z) =

zk

2πi

∫
Γ

f(u)u−(k+1) du.

14.3 Irreducible Semigroups

We now return to positive semigroups. The concept of irreducibility of bounded
operators on a Banach lattice was already introduced in Definition 10.26. Let us
restate it for operators forming a C0-semigroup.

Definition 14.9. A positive C0-semigroup (T (t))t≥0 on a Banach lattice E is called
irreducible if {0} and E are the only closed ideals that are invariant under all the
operators T (t), t ≥ 0.

The following result gives two properties equivalent to irreducibility that are
sometimes easier to verify.

Proposition 14.10. Let (T (t))t≥0 be a positive C0-semigroup on a Banach lattice
E with generator A. The following assertions are equivalent.

(i) (T (t))t≥0 is irreducible.
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(ii) For some (and then for every) λ > s(A), there is no R(λ,A)-invariant closed
ideal except {0} and E.

(iii) For some (and then for every) μ > s(A) and for every f > 0, R(μ,A)f is a
quasi-interior point of E+.

Proof. We prove first that if for some μ > s(A) there is no R(μ,A)-invariant closed
ideal except {0} and E, then this holds for every λ > s(A). Let I be a closed ideal
of E such that R(μ,A)I ⊂ I for μ > s(A). The inequality

0 ≤ R(λ,A) ≤ R(μ,A),

holding for all λ ≥ μ, and the definition of ideals imply that R(λ,A)I ⊂ I.

On the other hand, for μ− 1
r(R(μ,A)) < λ < μ, we have R(λ,A)I ⊂ I, since

R(λ,A) = R(μ,A)
∞∑
k=0

((μ− λ)R(μ,A))k

(see (9.10)) and R(μ,A)I ⊂ I.

Iteration of the argument establishes that R(λ,A)I ⊂ I for every λ > s(A).
This proves the above claim.

(i) =⇒ (ii): Let I �= {0} be a closed ideal of E such that R(λ,A)I ⊂ I for
some (and then for every) λ > s(A). By the approximation formula (see the proof
of Theorem 11.1),

T (t)f = lim
k→∞

etAkf, f ∈ E,

where Ak = kAR(k,A) ∈ L(E) are the Yosida approximants, we obtain that
T (t)I ⊂ I for all t > 0, hence I = E.

(ii) =⇒ (i): This follows from Theorem 12.7.

(ii) =⇒ (iii): Let λ > s(A), 0 �= f ∈ E+ and consider the ideal generated by
R(λ,A)f , i.e.,

ER(λ,A)f :=
⋃
k∈N

[−kR(λ,A)f, kR(λ,A)f ].

We infer from the resolvent equation that for g ∈ ER(λ,A)f ,

|R(μ,A)g| ≤ R(μ,A)|g| ≤ kR(μ,A)R(λ,A)f ≤ k

μ− λ
R(λ,A)f

for μ > λ. Hence, R(μ,A)g ∈ ER(λ,A)f for any g ∈ ER(λ,A)f and μ > λ. Thus, we

see that ER(λ,A)f is a nontrivial R(μ,A)-invariant closed ideal and hence equals
E. This means that R(λ,A)f is a quasi-interior point of E+.

(iii) =⇒ (ii): Let I �= {0} be an R(μ,A)-invariant closed ideal for some
μ > s(A), and let 0 �= f ∈ E+ ∩ I. It follows that for any g ∈ ER(μ,A)f we have
|g| ≤ nR(μ,A)f for some n ∈ N and hence g ∈ I. This implies that ER(μ,A)f ⊂ I

and, furthermore, E = ER(μ,A)f = I. �
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Example 14.11. From the characterization of closed ideals given in Propositions
10.13, 10.14, and 10.15 (see also Examples 10.16) we obtain the following charac-
terization of irreducible semigroups in certain function spaces.

a) Let E := Lp(Ω, μ), 1 ≤ p < ∞, and let (T (t))t≥0 be a positive C0-semigroup
on E with generator A. Then, (T (t))t≥0 is irreducible if and only if

0 � f ∈ E =⇒ (R(λ,A)f)(s) > 0 for a.e. s ∈ Ωand someλ > s(A).

b) Let E :=C0(Ω), where Ω is locally compact Hausdorff space, and let (T (t))t≥0

be a positive C0-semigroup on E with generator A. Then (T (t))t≥0 is irre-
ducible if and only if

0 � f ∈ E =⇒ (R(λ,A)f)(s) > 0 for all s ∈ Ωand someλ > s(A).

We collect here some properties of irreducible C0-semigroups. Many of them
resemble properties already observed in finite dimensions. The most import one
is a generalization of the Perron–Frobenius theorem, Theorem 5.13 (see also the
same result for matrix semigroups given in Theorem 7.6).

Proposition 14.12. Assume that A is the generator of an irreducible C0-semigroup
(T (t))t≥0 on a Banach lattice E. Then the following assertions hold.

a) Every positive eigenvector of A is a quasi-interior point.

b) Every positive eigenvector of A∗ is strictly positive.

c) If ker(s(A)−A∗) contains a positive element, then dimker(s(A) −A) ≤ 1.

d) If s(A) is a pole of the resolvent, then it has algebraic (and geometric) mul-
tiplicity equal to 1. The corresponding residue has the form

Ps(A) = u∗ ⊗ f,

where f ∈ E is a strictly positive eigenvector of A, u∗ ∈ E∗ is a strictly
positive eigenvector of A∗, and 〈f, u∗〉 = 1.

Proof. a) Let f be a positive eigenvector of A and λ its corresponding eigenvalue.
Since λf = Af = limt→0+

1
t (T (t)f − f), we have λ ∈ R. We also have

f = (μ− λ)R(μ,A)f for μ > s(A) > λ.

Thus a) follows from Proposition 14.10.

b) Let f∗ be a positive eigenvector of A∗ and λ its corresponding eigenvalue.
By the same argument as above, λ ∈ R and, by Corollary 9.32, T (t)∗f∗ = eλtf∗

for t ≥ 0. Hence,

〈|T (t)u|, f∗〉 ≤ 〈T (t)|u|, f∗〉 = 〈|u|, eλtf∗〉, u ∈ E, t ≥ 0.
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Thus I := {u ∈ E : 〈|u|, f∗〉 = 0} is a (T (t))t≥0 invariant closed ideal. Since
f∗ �= 0, we have I � E, and so by irreducibility we obtain I = {0}. Therefore
f∗ > 0.

c) For 0 � f∗ ∈ ker(s(A) − A∗) we see from b) that f∗ is strictly positive.
Assume that ker(s(A)−A) �= {0} and define the rescaled positive semigroup as

T−s(A)(t)g := e−s(A)tT (t)g,

see also Exercise 9.10.4. Then for f ∈ ker(s(A) − A) we have by Corollary 9.32
that T−s(A)(t)f = f and hence, by Lemma 10.18,

|f | = |T−s(A)(t)f | ≤ T−s(A)(t)|f |, t ≥ 0.

Thus, for t ≥ 0,

〈|f |, f∗〉 ≤ 〈T−s(A)(t)|f |, f∗〉
= 〈|f |, f∗〉.

This implies that 〈T−s(A)(t)|f | − |f |, f∗〉 = 0, and since f∗ > 0, we obtain
T−s(A)(t)|f | = |f | for t ≥ 0. Therefore,

|f | ∈ ker(s(A)−A).

By Lemma 10.18, we also have (T−s(A)(t)f)
+ ≤ T−s(A)(t)f

+ and (T−s(A)(t)f)
− ≤

T−s(A)(t)f
−. By the same arguments as above, we obtain f+ ∈ ker(s(A)−A) and

f− ∈ ker(s(A)−A). This implies that F := ER ∩ker(s(A)−A) is a real sublattice
of E. For f ∈ F we consider the ideal Ef+ (resp. Ef−) generated by f+ (resp.
f−). Then Ef+ and Ef− are T−s(A)(t)-invariant for all t ≥ 0. Since Ef+ and Ef−

are orthogonal, see Proposition 10.4, the irreducibility of (T−s(A)(t))t≥0 implies
that either f+ = 0 or f− = 0. Consequently, F is totally ordered and, by Lemma
10.10, we have

dimF = dimker(s(A)−A) = 1.

d) We claim first that, if s(A) is a pole of the resolvent, then there is an
eigenvector 0 � f ∈ E of A corresponding to s(A). Indeed, let k be the pole order
of s(A) and

U−k = lim
λ→s(A)+

(λ− s(A))kR(λ,A),

see (14.9). Then U−k �= 0 and U−(k+1) = 0. Moreover, by Corollary 12.10, we
have U−k ≥ 0. Hence, there is 0 ≤ g ∈ E with f := U−kg � 0. By the relation
U−(k+1) = (A− s(A))U−k = 0, we obtain (A− s(A))f = 0. This proves the claim.

We can now use a) to obtain Ef = E. By taking the adjoint U∗
−(k+1) of

U−(k+1) and by the same computation as before, one deduces that there is 0 �
f∗ ∈ ker(s(A)−A∗). So by c) we have dimker(s(A)−A) = 1.
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Assume now that k ≥ 2. Then we have

〈f, f∗〉 = 〈U−kg, f
∗〉

= 〈g, U∗
−kf

∗〉
= 〈g, U∗

−(k−1)(A
∗ − s(A))f∗〉 = 0.

Since Ef = E, we infer that 〈g, f∗〉 = 0 for all g ∈ E+. This contradicts the
assertion b), hence k = 1. From the inequality mg + k − 1 ≤ ma ≤ mgk, see
(14.10), we further obtain

ma = mg = dimPs(A)E = dimker(s(A)−A) = 1,

and
Ps(A)E = ker(s(A) −A),

where we recall that Ps(A) = U−1.

We now show the last part of assertion d). To this end, let

0 � f ∈ ker(s(A)−A).

Without loss of generality we suppose that ‖f‖ = 1. Then Ps(A)E = span{f}, i.e.,
for every g ∈ E there is a λ ∈ C such that Ps(A)g = λf . By the Hahn–Banach
theorem (see Exercise 10.9.6), there exists

0 ≤ g∗ ∈ (ker(s(A)−A))∗ with ‖g∗‖ = 1 and 〈f, g∗〉 = ‖f‖ = 1.

Hence,
〈Ps(A)g, g

∗〉 = λ = 〈g, P ∗
s(A)g

∗〉.
Putting u∗ := P ∗

s(A)g
∗ ≥ 0, we obtain Ps(A) = u∗ ⊗ f and 〈f, u∗〉 = 〈Ps(A)f, g

∗〉 =
〈f, g∗〉 = 1. Moreover, 0 � u∗ ∈ P ∗

s(A)E
∗ ⊆ ker(s(A) −A∗), so u∗ > 0 by b).

In the proof of c) we have seen that for every g ∈ ker(s(A) − A) we have
either g+ = 0, or g− = 0. So, we may assume that our eigenvector f is strictly
positive. This ends the proof of the proposition. �

Now we study the boundary spectrum of irreducible semigroups on Banach
lattices. The results resemble the properties of imprimitive matrices obtained in
Chapter 5.

Before going on, we need some auxiliary results on the structure of Banach
lattices and their quasi-interior points. The following result, due to Kakutani,
shows that for every e ∈ E+ the generated ideal satisfies Ee

∼= C(K) for some
compact Hausdorff space K. Here, Ee is equipped with the norm

‖f‖e := inf{λ > 0 : f ∈ λ[−e, e]}, f ∈ Ee.

We recall that T ∈ L(E,F ) is called a lattice homomorphism if |Tf | = T |f |
for every f ∈ E, where F is a complex Banach lattice (see Definition 10.19).
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Theorem 14.13 (Kakutani). Let e ∈ E+ and let Ee be the ideal generated by {e}.
Further, take B := {f∗ ∈ (Ee)

∗
+ : 〈e, f∗〉 = 1} and denote by K the set of all

extreme points of B. Then K is σ(E∗, E)-compact and the mapping

Ue : Ee � f �−→ ϕf ∈ C(K), ϕf (f
∗) = 〈f, f∗〉, f∗ ∈ K,

is an isometric lattice isomorphism.

Now, if |h| is a quasi-interior point of E+, then E|h| is a dense subspace of E,
isomorphic to a space of continuous functions C(K) on some K. Let U|h| be the

lattice isomorphism obtained from Kakutani’s theorem and let h̃ := U|h|h. Then
|h̃| = U|h||h| = 1. Consider the operator

S̃0 : C(K) −→ C(K), f �−→ (sign h̃)f :=
h̃

|h̃|
f = h̃f, (14.17)

and put Sh := U−1
|h| S̃0U|h|. Then Sh is a linear mapping from E|h| into itself

satisfying

a) Shh = |h|, where h = Reh− i Imh,

b) |Shf | ≤ |f | for every f ∈ E|h|.

Since b) implies the continuity of Sh for the norm induced by E and |h| is
a quasi-interior point of E+, Sh can be uniquely extended to E. This extension is
also denoted by Sh and is called the signum operator with respect to h.

In the following we generalize Wielandt’s lemma (see Lemma 5.18) and its
consequences to irreducible semigroups on Banach lattices.

Lemma 14.14. Let E be a Banach lattice and |h| a quasi-interior point of E+.
Suppose that for T,R ∈ L(E) we have Rh = h, T |h| = |h|, and |Rg| ≤ T |g| for all
g ∈ E. Then T = S−1

h RSh, where Sh is the signum operator.

Proof. First observe that for g ∈ E+ we have

Tg = T |g| ≥ |Rg| ≥ 0,

so T is a positive operator. Since T |h| = |h|, the ideal E|h| is T -and R-invariant.

Consider the operators T̃ := U|h|TU
−1
|h| and R̃ := U|h|RU−1

|h| , and put h̃ := U|h|h.
We then have

R̃h̃ = h̃, T̃1 = 1, and |R̃f | ≤ T̃ |f | for all f ∈ C(K). (14.18)

Define T1 := S̃−1
0 R̃S̃0, where S̃0 is the multiplication operator by h̃ on C(K)

defined in (14.17). By (14.18), we have

T11 = 1 and

|T1f | = |S̃−1
0 R̃S̃0f | = |R̃S̃0f | ≤ T̃ |S̃0f | = T̃ |f |

(14.19)
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for all f ∈ C(K). Hence, ‖T1‖ ≤ ‖T̃‖ = ‖T̃1‖∞ = 1. So by Lemma 10.27, T1 is a

positive operator and (14.19) implies that 0 ≤ T1 ≤ T̃ . Therefore,

‖T̃ − T1‖ = ‖(T̃ − T1)1‖∞ = 0,

thus T1 = T̃ and hence T = S−1
h RSh. �

The following result describes the eigenvalues of an irreducible semigroup
which are contained in the boundary spectrum σb(A) = {λ ∈ σ(A) : Reλ = s(A)},
where A is the corresponding generator. Compare this with Theorem 5.19 for finite
imprimitive matrices.

Proposition 14.15. Let (T (t))t≥0 be an irreducible C0-semigroup with generator A
on a Banach lattice E. Assume that s(A) = 0 and there is 0 � f∗ ∈ D(A∗) with
A∗f∗ = 0. If σp(A) ∩ iR �= ∅, then the following assertions hold.

a) For 0 �= h ∈ D(A) and α ∈ R with Ah = iαh, |h| ∈ kerA is a quasi-interior
point,

Sh(D(A)) = D(A), and S−1
h ASh = A+ iα,

where Sh is the signum operator defined above.

b) dim ker(λ−A) = 1 for every λ ∈ σp(A) ∩ iR.
c) σp(A) ∩ iR is an additive subgroup of iR.
d) 0 is the only eigenvalue of A admitting a positive eigenvector.

Proof. We first remark that by Proposition 14.12.b) we have f∗ > 0, and by
Corollary 9.32, f∗ = T (t)∗f∗ for all t ≥ 0.

a) Assume that Ah = iαh for some 0 �= h ∈ D(A) and α ∈ R. Then, by
Corollary 9.32, T (t)h = eiαth and hence |h| = |T (t)h| ≤ T (t)|h|. This implies that

T (t)|h| − |h| ≥ 0

for every t ≥ 0. On the other hand,

〈T (t)|h| − |h|, f∗〉 = 〈|h|, T (t)∗f∗〉 − 〈|h|, f∗〉 = 0

for all t ≥ 0. Since f∗ > 0, we obtain T (t)|h| = |h| for every t ≥ 0, which implies
that A|h| = 0. So, by Proposition 14.12.a), the vector |h| is a quasi-interior point.
If we set

Tα(t) := e−iαtT (t)

for t ≥ 0, then T (t) and Tα(t) satisfy the assumptions of Lemma 14.14 and hence

T (t) = S−1
h Tα(t)Sh, t ≥ 0.

Therefore, Sh(D(A)) = D(A) and A = S−1
h (A− iα)Sh.

b) The calculations in the proof of a) imply that kerA �= {0} and dimker(iα−
A) = dimkerA, so Proposition 14.12.c) yields the claim.
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c) Let α, β ∈ R be such that Ah = iαh and Ag = iβg for some 0 �= h, g ∈
D(A). By a), we have

S−1
h ASh = A+ iα and S−1

g ASg = A+ iβ.

Thus

A+ i(α + β) = Sh(A+ iβ)S−1
h = ShS

−1
g ASgS

−1
h ,

which implies that

ker(A+ i(α+ β)) = ShS
−1
g kerA �= {0}.

Therefore i(α+ β) ∈ σp(A) ∩ iR.

d) If Af = λf , where 0 � f ∈ D(A), then

λ〈f, f∗〉 = 〈Af, f∗〉 = 〈f,A∗f∗〉 = 0.

Since f∗ > 0, we see that 〈f, f∗〉 > 0. Hence, λ = 0. �

The following result, which we recall without proof, states that the boundary
spectrum of the generator A of an irreducible C0-semigroup (T (t))t≥0 on a Banach
lattice E is always contained in the point spectrum σp(A) if s(A) is a pole of
R(·, A).

Lemma 14.16. Let A be the generator of an irreducible C0-semigroup (T (t))t≥0 on
a Banach lattice E. If s(A) is a pole of R(·, A), then σb(A) ⊂ σp(A).

As a consequence, we obtain the following description of the boundary spec-
trum of irreducible semigroups.

Theorem 14.17. Let (T (t))t≥0 be an irreducible C0-semigroup with generator A on
a Banach lattice E and assume that s(A) is a pole of the resolvent. Then there is
α ≥ 0 such that

σb(A) = s(A) + iαZ.

Moreover, σb(A) consists of simple poles.

Proof. Without loss of generality we may suppose that s(A) = 0. It can be shown
that σb(A) ⊆ σp(A), see Lemma 14.16. Hence

σb(A) = σp(A) ∩ iR.

Proposition 14.12.d) yields the existence of a positive eigenvector f∗ ∈ D(A∗)
corresponding to the eigenvalue s(A) = 0. Proposition 14.15.c) implies that σb(A)
is a subgroup of (iR,+). Since σb(A) is closed and s(A) = 0 is an isolated point,
we have

σb(A) = iαZ



230 Chapter 14. Advanced Spectral Theory and Asymptotics

for some α ≥ 0. Proposition 14.12.d) implies that 0 is a simple pole and by
Proposition 14.15.a) we have, for λ ∈ ρ(A),

R(λ+ ikα,A) = Sk
hR(λ,A)S−k

h

for all k ∈ Z. Therefore, ikα is a simple pole for each k ∈ Z. This ends the proof
of the theorem. �

14.4 Asymptotic Behavior

In many concrete examples one can observe some regularity in the long-term be-
havior of the orbits of a semigroup. We will encounter two types of such behavior
that are interesting for applications: balanced exponential growth, and asymptotic
periodicity.

Let us start with the first kind of behavior. We say that a semigroup (T (t))t≥0

with a generator A possesses a balanced exponential growth if there are a rank-one
projection P and constants ε > 0 and M ≥ 1 such that

‖e−s(A)tT (t)− P‖ ≤ Me−εt for all t ≥ 0.

We will present an example of such a semigroup in Chapter 17, see also Exer-
cise 2. Using our spectral results, we can prove such behavior for certain class of
irreducible semigroups.

Theorem 14.18. Let (T (t))t≥0 be an irreducible C0-semigroup with the generator
A on a Banach lattice E. If ωess(T ) < ω0(T ), then there exist a quasi-interior
point 0 ≤ f ∈ E and 0 < f∗ ∈ E∗ with 〈f, f∗〉 = 1 such that

‖e−s(A)tT (t)− f∗ ⊗ f‖ ≤ Me−εt for all t ≥ 0

and appropriate constants M ≥ 1 and ε > 0.

Proof. Since ωess(T ) < ω0(T ), Proposition 14.3 implies that s(A) = ω0(T ). On
the other hand, ωess(T ) < ω0(T ) implies that ress(T (1)) < r(T (1)). Hence, by
Proposition A.34, r(T (1)) is a pole of the resolvent of T (1) and thus ω0(T ) = s(A)
is a pole of R(·, A).

Now, by Theorem 14.17, there exists α ≥ 0 such that σb(A) = s(A)+iαZ and
therefore σb(A − ω0(T )) = iαZ, where A− ω0(T ) is the generator of the rescaled
semigroup

T−ω0(T )(t) := e−ω0(T )tT (t), t ≥ 0.

Since

ωess

(
T−ω0(T )

)
= ωess(T )− ω0(T ) < 0 and ω0

(
T−ω0(T )

)
= 0,

we have, by Theorem 14.4, that the set

{λ ∈ σ(A− ω0(T )) : Reλ ≥ 0} = {λ ∈ σ(A−ω0(T )) : Reλ = 0} = σb(A−ω0(T ))
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is finite. Therefore, σb(A−ω0(T )) = {0}. The theorem is now proved by applying
Theorem 14.4 and Proposition 14.12 to the rescaled semigroup (T−ω0(T )(t))t≥0.

�

Without the quasi-compactness assumption for the rescaled semigroup, i.e.,
ωess(T ) < ω0(T ), one obtains that the semigroup (T (t))t≥0 behaves in the long
run like a rotation group. Here we assume s(A) > −∞. So, by considering the
rescaled semigroup (e−s(A)tT (t))t≥0 instead of (T (t))t≥0, one may without loss of
generality assume s(A) = 0. Compare the following theorem with Definition 4.14
and Theorem 4.15 for the finite-dimensional case.

Theorem 14.19. Let (T (t))t≥0 be a bounded and irreducible C0-semigroup with the
generator A on a Banach lattice E := Lp(Ω, μ), 1 ≤ p < ∞. If s(A) = 0 is a
pole of R(·, A) and there is ξ ∈ R such that iξ ∈ σ(A), then there exists a positive
projection P commuting with (T (t))t≥0 such that the following holds.

a) We have

E = imP ⊕ kerP, T (t) = Tr(t)⊕ Ts(t), t ≥ 0, and A = Ar ⊕As,

corresponding to the decomposition σ(A) = σr ∪ σs, where σr = iαZ and
σs = σ(A) \ σr for some α > 0.

b) The subspace imP is a closed sublattice of E and (Tr(t))t≥0 is a periodic and
irreducible C0-semigroup on imP .

c) For every f ∈ E we have

lim
t→∞ ‖T (t)f − Tr(t)f‖ = 0.

Proof. First observe that by Theorem 14.17 we have

σb(A) = σ(A) ∩ iR = iαZ for some α > 0. (14.20)

Next, from Proposition 14.15.a) and its proof, we see that there is a quasi-
interior point h ∈ E+ which is also a fixed point of T (t). Hence, |T (t)f | ≤ T (t)h =
h for all f ∈ [−h, h]. Since h is a quasi-interior point and order intervals in E
are weakly compact, (T (t))t≥0 is relatively weakly compact. Thus, by the Jacobs–
de Leeuw–Glicksberg splitting theorem, see Theorem A.39, there is a projection
P ∈ L(E) commuting with T (t) such that E = imP ⊕ kerP . Moreover,

imP = span{f ∈ D(A) : ∃k ∈ Z such that Af = iαkf}

and

kerP = {f ∈ E : 0 belongs to the weak closure of {T (t)f : t ≥ 0}}.

Furthermore, from (14.20) and Proposition A.40, it follows that

kerP = {f ∈ E : lim
t→∞ ‖T (t)f‖ = 0}. (14.21)



232 Chapter 14. Advanced Spectral Theory and Asymptotics

Since P commutes with each T (t), it splits (T (t))t≥0 into (Tr(t))t≥0 on imP
and (Ts(t))t≥0 on kerP . Moreover, by Corollary 9.32, T

(
2π
α

)
f = f for all f ∈

D(A) such that Af = iαkf for some k ∈ Z. Hence, Tr

(
2π
α

)
= I and Tr(·) is a

periodic C0-semigroup on imP .

Theorem A.39 tells us that P belongs to the weak closure of (T (t))t≥0. Since
(T (t))t≥0 is irreducible, we see that Pf � 0 whenever f � 0. So, by Lemma A.41,
imP is a closed sublattice of E. This and the irreducibility of (T (t))t≥0 imply that
(Tr(t))t≥0 is a periodic and irreducible C0-semigroup on imP . Denote its generator
by Ar. Then, by Theorem 14.6 and equation (14.14), we have σ(Ar) = iαZ.

The family Ts(t) := T (t)|kerP , t ≥ 0, defines a C0-semigroup on kerP . We
denote its generator by As. Then, by the spectral decomposition, we have σ(As) =
σ(A) \ iαZ. This ends the proof of assertions a) and b). Assertion c) follows from
(14.21). �

Remark 14.20.

a) Denote by G the closure of the set {Tr(t) : t ≥ 0} in the weak operator topol-
ogy. Using abstract results from harmonic analysis and Theorem 14.19, one
can prove that imP is lattice isomorphic to an (Rτ (t))t∈R-invariant Banach
function space C on G satisfying C(G) ⊂ C ⊂ L1(G,m) such that (Tr(t))t∈R

is similar to the group induced by (Rτ (t))t∈R on C. Here m is the Haar mea-
sure on G and (Rτ (t))t∈R is the rotation group defined in Example 14.8 with
period τ = 2π

α . Moreover, if E = L1(Ω, μ), then C can be identified with
L1(G).

b) It can be seen that Theorem 14.19 holds if E is any Banach lattice with
order continuous norm, see Remark 13.12 for the definition. In fact, it holds
that a Banach lattice E has order continuous norm if and only if every order
interval in E is weakly compact. This gives the weak compactness needed in
the proof above.

c) One obtains from the proof above that s(As) < 0.

An example of a C0-semigroup that behaves asymptotically periodic will be
presented in Chapter 18.

14.5 Notes and Remarks

For the general spectral theory of operators we refer to monographs by Kato [73] or
by Gohberg, Goldberg and Kaashoek [53]. More on spectral theory of irreducible
semigroups can be found in the monograph edited by Nagel [101, Section B-III.3].

Kakutani’s theorem, Theorem 14.13, originates from Kakutani [70]. We cited
it from Meyer-Nieberg [95, Theorem 2.1.3], where you can also find a proof.

Concerning Lemma 14.14 and signum operators we refer to Nagel (ed.) [101,
Chapter B-III]. For the proof of Lemma 14.16 see [101, p. 315].
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Remark 14.20.a) is connected to abstract Halmos–von Neumann type the-
orems. We refer to Schaefer [126, Section III.10] for the corresponding abstract
results. See also Keicher and Nagel [74]. For Remark 14.20.b) see Meyer-Nieberg
[95, Theorem 2.4.2].

14.6 Exercises

1. Let (T (t))t≥0 be a C0-semigroup on a Banach space X . Prove that the fol-
lowing assertions are equivalent.

(i) ωess(T ) < 0.

(ii) ‖T (t0)−K‖ < 1 for some t0 > 0 and K ∈ L(X) compact.

2. On the Banach space C(K) with K = [−∞, 0] consider the operator

Af = f ′ +mf

D(A) = {f ∈ C(K) : f is differentiable, f ′ ∈ C(K) and f ′(0) = Lf},
where m ∈ C(K) is real-valued and L : C(K) → R a continuous linear form.

a) Show that A generates a C0-semigroup (T (t))t≥0 on C(K).

b) Prove that (T (t))t≥0 is given by

T (t)f(s) = e
∫ 0
s
m(ν)dν

(
e(s+t)m(0)f(0) +

∫ t+s

0

eτm(0)LT (s+ t− τ)fdτ

)
for s+ t > 0 and

T (t)f(s) = e
∫ t+s
s

m(τ)dτf(t+ s)

for s+ t ≤ 0.

c) Using Exercise 1, prove that ωess(T ) < 0 provided that m(−∞) < 0.

d) Describe the asymptotic behavior of (T (t))t≥0.

3. Consider the transport operator

D(A) =

{
f ∈ L1(I × V ) : v

∂f

∂x
∈ L1(I × V ) and

{
f(0, v) = 0 if v > 0,
f(1, v) = 0 if v < 0,

}
,

(Af)(x, v) = −v
∂f

∂x
(x, v),

where I = [0, 1] and V = {v ∈ R : 1 ≤ |v| ≤ 2}. Prove that A generates a
reducible C0-semigroup on L1(I × V ).

4. On the Banach lattice C ([0, 1]) consider the Laplace operator with Neumann
boundary conditions:

(Af)(x) = f ′′(x), x ∈ [0, 1],

f ∈ D(A) = {f ∈ C2 ([0, 1]) : f ′(0) = f ′(1) = 0}.

Prove that A generates an irreducible C0-semigroup on C[0, 1].
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5. On E = L1 ([−1, 0]) and for 0 ≤ g ∈ L∞[−1, 0] define the operator

Af := f ′, D(A) =

{
f ∈ E : f ′ ∈ E and f(0) =

∫ 0

−1

f(s)g(s) ds

}
.

a) Show that A generates a positive C0-semigroup (T (t))t≥0 on E.

b) Prove that (T (t))t≥0 is reducible if and only if there exists ε > 0 such
that g vanishes a.e. on [−1,−1 + ε].



Chapter 15

Positivity and Delay Equations

We have seen that, in general, the growth bound ω0(T ) of a C0-semigroup (T (t))t≥0

and the spectral bound s(A) of its generator A do not coincide, even if positivity
is assumed. It turns out that in Hilbert spaces a deeper analysis is possible using
the boundedness of the resolvent. This has the consequence that for a positive
semigroup (T (t))t≥0 on a Hilbert space the equality s(A) = ω0(T ) holds. This is
the most important result of Section 15.2.

We start with an abstract approach to delay equations and apply the above-
mentioned result to positive delay equations in Hilbert spaces. This yields a nice
characterization of stability.

Throughout this chapter, we assume the reader to be familiar with the basics
of measure theory, vector-valued integrals, and the vector-valued Fourier trans-
form. We collected the needed results in Appendix A.10.

15.1 Abstract Delay Equations

Let X be a Banach space and let B generate a strongly continuous semigroup
(T (t))t≥0 on X . Suppose that we are given an operator-valued function of bounded
variation

η : [−1, 0] −→ L(X).

We consider the abstract delay equation of the form12⎧⎪⎨⎪⎩ u̇(t) = Bu(t) +

∫ 0

−1

dη(s)u(t+ s), s ≥ 0,

u(s) = ϕ(s), s ∈ [−1, 0],

(15.1)

where ϕ : [−1, 0] → X is some given function.

For a simple situation see Example 11.14.

12Note that η(s) is an operator for every s, and we write operators to the left when acting on
vectors. This is the reason for the unusual form of the integral in equation (15.1).

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_15
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Remark 15.1. For simplicity we assume that the delay takes place on the interval
[−1, 0]. All what follows remains valid if we consider other finite delay intervals.

To write (15.1) as an abstract Cauchy problem, we have to choose a function
space. As usual, the initial value function guides us to choose this space. A common
choice is to suppose that ϕ ∈ C([−1, 0], X). This, however, is not practical for
applications to partial differential equations with delay. Hence, we choose13 ϕ ∈
Lp([−1, 0], X) for some 1 ≤ p < ∞.

Example 15.2. If we take C ∈ L(X) and consider

η(s) =

{
C if s = −1,

0 if s ∈ (−1, 0],

then we obtain ∫ 0

−1

dη(s)u(t+ s) = Cu(t− 1),

which leads us to the standard delay equation

u̇(t) = Bu(t) + Cu(t− 1). (15.2)

Consider now the special case B = 0. Suppose that the function ϕ ∈ Lp([−1, 0], X)
is even continuous. Then the formula

u(t) = ϕ(0) +

∫ t

0

Cϕ(s − 1) ds

gives us the solution for t ∈ (0, 1]. This shows that in order to obtain a solution,
it does not suffice to specify ϕ ∈ Lp([−1, 0], X) (which is an equivalence class of
functions). We also need the value ϕ(0).

t

s

u(t)

tt−1

ut(s)

−1 0

Figure 15.1: The history function ut(·).

Now we can indeed rewrite the delay equation (15.1) as an abstract Cauchy
problem. To do so, we first introduce the history function

ut : [−1, 0] −→ X, ut(s) := u(t+ s),

13Bochner integrals are needed to define the spaces Lp([−1, 0], X). The necessary ingredients
are collected in Appendix A.10.
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see Figure 15.1, and the delay operator

Φϕ :=

∫ 0

−1

dη(s)ϕ(s).

For ϕ = ut this yields ∫ 0

−1

dη(s)u(t+ s) = Φut.

The abstract delay equation (15.1) thus takes the form⎧⎪⎨⎪⎩
u̇(t) = Bu(t) + Φut, t ≥ 0,

u(0) = f ∈ X,

u0 = ϕ ∈ Lp([−1, 0], X).

(15.3)

Next we introduce the product space Mp = X ×Lp([−1, 0], X) and the func-
tion

U : t �−→
(
u(t)
ut

)
∈ Mp.

Further, on Mp we define the operator

A :=

(
B Φ
0 D

)
with domain

D(A) :=

{(
f

ϕ

)
∈ D(B)×W1,p([−1, 0], X) : ϕ(0) = f

}
.

Here D denotes the operators of weak differentiation on Lp([−1, 0], X). With all
these spaces and operators we transform (15.1) into the abstract Cauchy problem⎧⎪⎨⎪⎩

U̇(t) = AU(t), t ≥ 0,

U(0) =
(
f

ϕ

)
(15.4)

on Mp. It is not to difficult to show that equation (15.4) is equivalent to the
original Cauchy problem, see also Example 11.14. We accept this fact here and go
on analysing the operator A.

To prove that this operator matrix generates a C0-semigroup, we split it as

A :=

(
B Φ
0 D

)
=

(
B 0
0 D

)
+

(
0 Φ
0 0

)
=: A0 +A1 (15.5)

and apply a perturbation argument. To this end we need the following.
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Proposition 15.3. Let B generate the C0-semigroup (T (t))t≥0 on X. Then the op-
erator A0 defined in (15.5) with domain D(A0) := D(A) generates a C0-semigroup
given by the formula

T0(t) :=
(
T (t) 0
Tt L(t)

)
, (15.6)

where (L(t))t≥0 is the nilpotent left-shift semigroup14 on Lp([−1, 0], X) with gen-
erator D0, and Tt : X → Lp([−1, 0], X) is defined by

(Tt f)(τ) :=

{
T (t+ τ)f if − t < τ ≤ 0,

0 if − 1 ≤ τ ≤ −t.

Proof. First we show that (T0(t))t≥0 is a strongly continuous semigroup on Mp.
To do so, it suffices to show the strong continuity of the map t �→ Tt. Fix f ∈ X
and 0 ≤ s ≤ t, and consider the limit

lim
t→s

‖Ttf − Tsf‖pLp = lim
t→s

∫ 0

−1

‖(Ttf)(σ)− (Tsf)(σ)‖pdσ

= lim
t→s

∫ 0

−s

‖T (t+ σ) f − T (s+ σ) f‖pdσ

+ lim
t→s

∫ −s

−t

‖T (t+ σ) f‖pdσ,

which is equal to 0 by Lebesgue’s dominated convergence theorem (see Theorem
A.23). Hence, the map t �→ Tt is strongly right continuous, and analogously one
can show that it is also strongly left continuous.

Next we show the semigroup property, and compute first the product(
T (t) 0
Tt L(t)

)(
T (s) 0
Ts L(s)

)
=

(
T (t)T (s) 0

TtT (s) + L(t)Ts L(t)L(s)

)
for s, t ≥ 0. By the definition of the operators Tt, we obtain the identity

(TtT (s) f)(τ) =

{
T (t+ τ)T (s)f if t+ τ > 0,

0 if t+ τ ≤ 0.

Similarly,

(L(t)Ts f)(τ) =

{
(Tsf)(t+ τ) if t+ τ ≤ 0,

0 if t+ τ > 0,

=

⎧⎪⎨⎪⎩
T (s+ t+ τ)f if t+ τ ≤ 0 and s+ t+ τ > 0,

0 if t+ τ ≤ 0 and s+ t+ τ ≤ 0,

0 if t+ τ > 0.

14See Example 12.13
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Combining these expressions yields

(TtT (s) + L(t)Ts)f(τ) =

⎧⎪⎨⎪⎩
T (s+ t+ τ)f if t+ τ > 0,

T (s+ t+ τ)f if t+ τ ≤ 0 and s+ t+ τ > 0,

0 if s+ t+ τ ≤ 0,

= (Ts+tf)(τ)

for each τ ∈ [−1, 0]. Hence, (T0(t))t≥0 is a strongly continuous semigroup on the
product space Mp.

Let us denote its generator by A2 and show that A2 = A0. First we compute
the resolvent of A2 using Laplace transforms and obtain

R(λ,A2)

(
f

ϕ

)
=

∫ ∞

0

e−λsT0(s)
(
f
ϕ

)
ds

=

∫ ∞

0

e−λs

(
T (s) f

Ts f + L(s)ϕ

)
ds

=

⎛⎜⎜⎝
∫ ∞

0

e−λsT (s) f ds∫ ∞

0

e−λsTs f ds+

∫ ∞

0

e−λsL(s)ϕ ds

⎞⎟⎟⎠

=

⎛⎜⎝ R(λ,B)f∫ ∞

0

e−λsTs f ds+R(λ,D0)ϕ

⎞⎟⎠ .

Here, based on (9.11), we used the identities∫ ∞

0

e−λsT (s) f ds = R(λ,B)f

and ∫ ∞

0

e−λsL(s)ϕ ds = R(λ,D0)ϕ.

Observe that (∫ ∞

0

e−λsTs f ds

)
(σ) =

∫ ∞

0

e−λs(Ts f)(σ) ds

=

∫ ∞

−σ

e−λsT (s+ σ)f ds

=

∫ ∞

0

e−λs+λσT (s)f ds

= eλσ R(λ,B) f.
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Hence, for Reλ > max{ω0(T ), 0}, we obtain

R(λ,A2)

(
f

ϕ

)
=

(
R(λ,B)f

eλ(·) R(λ,B) f +R(λ,D0)ϕ

)
.

We show now that this expression for R(λ,A2)
(
f
ϕ

)
equals the action of the

resolvent of A0. To do this, consider(
g

ψ

)
:=

(
R(λ,B)f

eλ(·) R(λ,B) f +R(λ,D0)ϕ

)
.

This implies that ψ ∈ W1,p([−1, 0], X). Using that R(λ,D0)ϕ ∈ D(D0), we obtain
R(λ,D0)ϕ(0) = 0, hence, ψ(0) = g. Applying (λ − A0) to this expression, we see
that

(λ−A0)

(
g

ψ

)
=

(
(λ−B)R(λ,B)f

(λ−D)eλ(·) R(λ,B) f + (λ−D)R(λ,D0)ϕ

)
=

(
f

ϕ

)
since the differentiation D is an extension of D0 and (λ − D)eλ(·) R(λ,B) f = 0.
Hence, this expression is a right inverse of λ − A0. In an analogous way one can
prove that the operator is a left inverse of λ − A0, and is hence the inverse of
λ−A0. Thus, the operator A0 is the generator of (T0(t))t≥0. �

Applying the Miyadera perturbation theorem, Theorem 13.6, to the splitting
(15.5) we obtain the generation result for our operator A.

Theorem 15.4. If B generates a C0-semigroup on X, then A = A0 +A1 generates
a C0-semigroup on Mp.

Proof. We estimate∫ α

0

∥∥∥∥A1 T0(r)
(
f

ϕ

)∥∥∥∥ dr =

∫ α

0

∥∥∥∥(0 Φ
0 0

) (
T (r) 0
Tr L(r)

) (
f
ϕ

)∥∥∥∥ dr

=

∫ α

0

‖Φ(Trf + L(r)ϕ)‖ dr .

Then fix a constant c > max{|η|([−1, 0]), 1}, where |η| is the positive Borel measure
on [−1, 0] defined by the total variation of η. Consider the equivalent norm∥∥∥∥(fϕ

)∥∥∥∥
c

:= ‖f‖+ c‖ϕ‖p,
(
f
ϕ

)
∈ Mp.

To apply the Miyadera theorem we have to show that there exist constants
α > 0 and 0 < γ < 1 such that∫ α

0

‖Φ(Tr f + L(r)ϕ)‖ dr ≤ γ
∥∥∥(fϕ)∥∥∥

c
(15.7)
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holds for all
(
f
ϕ

)
∈ D(A). For 0 < α < 1 we compute∫ α

0

‖Φ(Tr f + L(r)ϕ)‖ dr

=

∫ α

0

∥∥∥∥∫ −r

−1

dη(σ)ϕ(r + σ) +

∫ 0

−r

dη(σ)T (r + σ)f

∥∥∥∥ dr

≤
∫ α

0

∫ −r

−1

‖ϕ(r + σ)‖d|η|(σ) dr +
∫ α

0

∫ 0

−r

‖T (r + σ)f‖d|η|(σ) dr

≤
∫ 0

−α

∫ 0

σ

‖ϕ(s)‖ dsd|η|(σ) +
∫ −α

−1

∫ α+σ

σ

‖ϕ(s)‖ dsd|η|(σ)

+

∫ α

0

M‖f‖|η|([−1, 0]) dr

≤ c‖ϕ‖p(c−1|η|([−1, 0])) + αM‖f‖|η|([−1, 0])

≤ max{c−1|η|([−1, 0]), αM |η|([−1, 0])}
∥∥∥∥(fϕ
)∥∥∥∥

c

where M := supr∈[0,1] ‖T (r)‖. Hence, if we choose α > 0 small enough and since

c−1|η|([−1, 0]) < 1, we find γ ∈ (0, 1) such that (15.7) holds. �

Assume now that E is a Banach lattice. Applying Proposition 13.7 we also
establish the positivity of the delay semigroup generated by A.

Corollary 15.5. If B generates a positive semigroup on a Banach lattice E and
η ∈ BV([−1, 0],L(E)+), then the delay semigroup is positive. Hence, for all f ≥ 0
and ϕ ≥ 0 the solutions of delay equation (15.3) remain positive.

15.2 Gearhart’s Theorem

We start with a reformulation of Datko’s theorem (Theorem 12.5). To this aim we
recall the convolution

(T ∗ ϕ) (t) :=
∫ t

0

T (t− s)ϕ(s)ds,

when (T (t))t≥0 is a strongly continuous semigroup and ϕ ∈ Lp(R+, X) for some
1 ≤ p < ∞.

Proposition 15.6. Let A generate a strongly continuous semigroup (T (t))t≥0 on X
and fix 1 ≤ p < ∞. Then

ω0(T ) < 0 ⇐⇒ T ∗ ϕ ∈ Lp(R+, X) for all ϕ ∈ Lp(R+, X).

Proof. Assume first that ω0(T ) < 0. Take ϕ ∈ Lp(R+, X) and define its extension
to the whole line as

ϕ̃(t) :=

{
ϕ(t) if t ≥ 0,

0 if t < 0.
(15.8)
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Similarly, let

T̃ (t) :=

{
T (t) if t ≥ 0,

0 if t < 0.

By assumption, we have T̃ (·)f ∈ L1(R, X) for all f ∈ X . Hence, the Haus-
dorff–Young inequality (A.6) implies that T̃ ∗ ϕ̃ ∈ Lp(R, X). Therefore,(

T̃ ∗ ϕ̃
)
|R+ = T ∗ ϕ ∈ Lp(R+, X).

To prove the converse implication, take w > max{0, ω0(T )}, f ∈ X , and
t ≥ 0. Then ∫ t

0

T (t− s)e−wsT (s)fds =
1

w

(
1− e−wt

)
T (t)f.

Defining ψ(s) := e−wsT (s)f and choosing M ≥ 1 and ω0(T ) < δ < w such that
‖T (t)‖ ≤ Meδt, we see that

‖ψ(s)‖ ≤ Mes(δ−w),

and hence ψ ∈ Lp(R+, X) because of the choice of the numbers δ and w. We thus
have

T ∗ ψ =
1

w

(
1− e−w(·)

)
T (·)f ∈ Lp(R+, X),

which implies
T (·)f ∈ Lp(R+, X).

So, the conditions of Datko’s theorem, Theorem 12.5, are satisfied and we obtain
ω0(T ) < 0. �

For the following recall the definition of the Fourier transform F from Ap-
pendix A.10. We also need the notion of a bounded Fourier multiplier.

Definition 15.7. A function m : R → L(X) such that for all f ∈ X the mapping
t �→ m(t)f belongs to L∞(R, X)15, is called an Lp(R, X)-Fourier multiplier , if

F−1(mFϕ) = F−1(m) ∗ ϕ

is well defined for all ϕ ∈ Lp(R, X) ∩ L1(R, X) and extends to a bounded linear
operator on Lp(R, X).

We denote the set of Lp(R, X)-Fourier multipliers by ML(X)
p and the corre-

sponding operator norm by ‖m‖ML(X)
p

.

We now characterize the growth bound of a strongly continuous semigroup
in terms of Fourier multipliers.

15We denote this fact by the notation m ∈ L∞(R,L(X)).
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Theorem 15.8. Let A generate the strongly continuous semigroup (T (t))t≥0 on the
Banach space X and fix 1 ≤ p < ∞. Then

ω0(T ) = inf

{
μ > s(A) : sup

α≥μ
‖R(α+ i·, A)‖ML(X)

p
< ∞
}
.

Proof. Denote the quantity in the right-hand side of the last equality by r0(A).

First, assume by contradiction that ω0(T ) < r0(A) and take ω0(T ) < α <
r0(A). Using the notation Tα(t) := e−αtT (t) and

T̃α(t) :=

{
Tα(t) if t ≥ 0,

0 if t < 0,

we see that T̃α(·)f ∈ L1(R, X) for all f ∈ X . As in the proof before, take ϕ ∈
Lp(R+, X) and define by (15.8) its extension to the whole line ϕ̃ ∈ Lp(R, X). The
Hausdorff–Young inequality (A.6) again implies that T̃α ∗ ϕ̃ ∈ Lp(R, X). Taking
Fourier transforms we see that

F(T̃α)(·) =
∫ ∞

0

eit·Tα(t)dt = R(i·, A− α) = R(α+ i·, A) ∈ ML(X)
p .

Take numbers ω0(T ) < ω < α and M ≥ 1 such that ‖T (t)‖ ≤ Meωt holds.
Then

‖R(α+ i·, A)‖ML(X)
p

≤
∥∥F−1(R(α+ i·, A))

∥∥
L1(R,L(X))

=
∥∥∥T̃α(·)

∥∥∥
L1(R,L(X))

=

∫ ∞

0

‖e−αtT (t)‖dt ≤ M

∫ ∞

0

e(ω−α)tdt =
M

α− ω
,

which shows that R(α + i·, A) is a bounded Fourier multiplier. This contradicts
the choice of α and shows that ω0(T ) ≥ r0(A).

To show equality, we use a contradiction argument again and assume that
r0(A) < ω0(T ). This means that

sup
α≥ω0(T )

‖R(α+ i·, A‖ML(X)
p

=: N < ∞.

We choose numbers ω0(T ) < ω1 < ω2 and see by the resolvent equality that

R(ω1 + is, A) = R(ω2 + is, A) + (ω2 − ω1)R(ω1 + is, A)R(ω2 + is, A)

for s ∈ R. Taking Fourier multiplier norms, we obtain

‖R(ω1 + i·, A)‖ML(X)
p

≤ (1 +M(ω2 − ω1))‖R(ω2 + i·, A)‖ML(X)
p

.

Looking at the limit as ω1 → ω0(T ), we see that

‖R(ω0(T ) + i·, A)‖ML(X)
p

≤ (1 +M(ω2 − ω0(T )))‖R(ω2 + i·, A)‖ML(X)
p

< ∞.
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This means that Tω0(T ) ∗ ϕ ∈ Lp(R+, X) for all ϕ ∈ Lp(R+, X), where we again
used the notation

Tω0(T )(t) := e−ω0(A)tT (t).

By Proposition 15.6, this implies ω0(Tω0(T )) < 0, which contradicts the definition
of ω0(T ). �

While the previous result looks rather technical, it turns out that in Hilbert
spaces uniform exponential stability of a semigroup can be characterized in terms
of its generator. Plancherel’s theorem, Theorem A.42, immediately implies that
on a Hilbert space H one has

ML(H)
2 = L∞(R,L(H)).

Thus, Theorem 15.8 yields the following.

Theorem 15.9 (Gearhart). Let (T (t))t≥0 be a C0-semigroup on a Hilbert space H
with generator A. Then (T (t))t≥0 is uniformly exponentially stable if and only if

{λ ∈ C : Reλ > 0} ⊆ ρ(A) and M := sup
Reλ>0

‖R(λ,A)‖ < ∞.

Remark 15.10. Consider a strongly continuous semigroup (T (t))t≥0 with generator
A in the Banach space X . We define the abscissa of uniform boundedness of the
resolvent as

s0(A) := inf

{
μ > s(A) : sup

α≥μ
‖R(α+ i·, A)‖ < ∞

}
.

Clearly, s(A) ≤ s0(A). Proposition 9.33 implies that s0(A) ≤ ω0(T ). By a rescal-
ing argument, Gearhart’s theorem can be reformulated as follows: For a strongly
continuous semigroup (T (t))t≥0 with generator A on the Hilbert space H we have

s0(A) = ω0(T ).

As an immediate consequence we obtain for positive semigroups the following
extension of Theorem 12.17.

Corollary 15.11. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on
a Hilbert lattice H. Then ω0(T ) = s(A) holds.

Proof. Fix μ > s(A). Corollary 12.8 implies that

Λ := {λ ∈ C : Reλ > 0} ⊆ ρ(A− μ)

and
‖R(λ,A− μ)‖ ≤ ‖R(Reλ,A− μ)‖ ≤ ‖R(μ,A)‖

for all λ ∈ Λ. So, by Theorem 15.9, we have ω0(T )− μ < 0 and hence

ω0(T ) ≤ s(A). �
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15.3 Stability of Delay Equations

We return to the delay equations as introduced in Section 15.1. Suppose that
H is a Hilbert lattice and B generates a positive strongly continuous semigroup
(T (t))t≥0 on it. Further, let

η : [−1, 0] −→ L(H)+

be a positive operator-valued function of bounded variation. We refer to this fact
by saying that the delay operator Φ, defined by

Φϕ :=

∫ 0

−1

dη(s)ϕ(s),

is positive.

We consider the abstract delay equation⎧⎪⎨⎪⎩ u̇(t) = Bu(t) +

∫ 0

−1

dη(s)u(t+ s), s ≥ 0,

u(s) = ϕ(s), s ∈ [−1, 0],

(15.9)

where ϕ : [−1, 0] → H is some given function.

Recall from Section 15.1 that we can associate to equation (15.9) an operator
matrix

A :=

(
B Φ
0 D

)
with domain

D(A) :=

{(
f

ϕ

)
∈ D(B)×H1([−1, 0], H) : ϕ(0) = f

}
,

where D denotes the weak operator of differentiation.

Theorem 15.4 states that A generates a positive strongly continuous semi-
group (T (t))t≥0 on M2 = H × L2([−1, 0], H). Since M2 can be considered as a
Hilbert space, we immediately infer from Corollary 15.11 the following.

Corollary 15.12. With the notations and assumptions introduced above in this sec-
tion, the delay operator A satisfies

ω0(T ) = s(A).

Hence, to obtain stability it suffices to look at the spectral bound of A. As a
first step, we characterize the spectrum and the resolvent operator of A using the
notation

Φλf := Φ
(
eλ(·)f

)
=

∫ 0

−1

dη(s)eλsf ds (15.10)
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and
ελ(s) := eλs

for s ∈ [−1, 0].

Proposition 15.13. For λ ∈ C and for all 1 ≤ p < ∞, we have

λ ∈ ρ(A) if and only if λ ∈ ρ(B +Φλ).

Moreover, for λ ∈ ρ(A) the resolvent R(λ,A) is given by(
R(λ,B +Φλ) R(λ,B +Φλ)ΦR(λ,D0)

ελ R(λ,B +Φλ) [ελ R(λ,B +Φλ)Φ + I]R(λ,D0)

)
. (15.11)

Proof. For λ ∈ ρ(B + Φλ) the matrix (15.11) is a bounded operator from M2 to
D(A) defining the inverse of λ−A.

To see this, we show as a first step that the range of the matrix (15.11) is
contained in D(A). Take

( g
ψ

)
∈ M2 and consider(

f
ϕ

)
:=

(
R(λ,B +Φλ)g +R(λ,B +Φλ)ΦR(λ,D0)ψ

ελ R(λ,B +Φλ)g + ελ R(λ,B +Φλ)ΦR(λ,D0)ψ +R(λ,D0)ψ

)
.

Since R(λ,B + Φλ) maps into D(B), we know that f ∈ D(B). For the second
component, note that the function ελ is smooth, and the range of R(λ,D0) is
contained in H1([−1, 0], H). Hence, ϕ ∈ H1([−1, 0], H). Since D0 was the first
derivative with Dirichlet boundary conditions, we see that R(λ,D0)ψ(0) = 0.
From (ελ f)(0) = f we obtain that ϕ(0) = f , so we finally have

(
f
ϕ

)
∈ D(A).

Denoting Rλ := R(λ,B +Φλ), we compute the matrix product

(λ−A)

(
Rλ RλΦR(λ,D0)

ελRλ [ελRλΦ + I]R(λ,D0)

)
=

(
(λ−B)Rλ − ΦελRλ (λ−B)RλΦR(λ,D0)− Φ[ελRλΦ+ I]R(λ,D0)

(λ−D) ελRλ (λ−D) [ελRλΦ+ I]R(λ,D0)

)
.

The identities

(λ−B)Rλ − Φ(ελ Rλ) = (λ −B − Φλ)Rλ = I

and

(λ−B)RλΦR(λ,D0)− Φ[ελ RλΦ+ I]R(λ,D0)

= (λ−B − Φλ)RλΦR(λ,D0)− ΦR(λ,D0) = 0

hold. Moreover, we have (λ−D) (ελ Rλ) = 0. Using this identity we also obtain

(λ−D) [ελ RλΦ + I]R(λ,D0) = (λ−D)R(λ,D0) = I.
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So the operator in (15.11) is a right inverse of λ − A. In an analogous way, we
can prove that the operator in (15.11) is also a left inverse of λ −A, hence is the
inverse of λ−A.

Conversely, if λ ∈ ρ(A), then for every
( g
ψ

)
∈ M2 there exists a unique(

f
ϕ

)
∈ D(A) such that

(λ−A)

(
f

ϕ

)
=

(
(λ−B)f − Φϕ

λϕ− ϕ′

)
=

(
g
ψ

)
. (15.12)

We integrate the second row of equation (15.12) and, using the variation of
parameters formula, we obtain

ϕ = ελ ϕ(0) + R(λ,D0)ψ, (15.13)

where R(λ,D0) is the resolvent of D0. Note that, since D0 generates the nilpotent
shift semigroup, its spectrum is σ(D0) = ∅ and R(λ,D0) exists for all λ ∈ C. Since
ϕ(0) = f , we can rewrite equation (15.13) as

ϕ = ελ f +R(λ,D0)ψ.

Taking into account also the first row of equation (15.12), we see that f has
to satisfy the equation

(λ−B − Φλ)f = ΦR(λ,D0)ψ + g.

In particular, for ψ = 0 and for every g ∈ H there exists a unique f ∈ D(B) such
that

(λ−B − Φλ)f = g.

This means that λ−B − Φλ is invertible, i.e., λ ∈ ρ(B +Φλ). �

For the analysis of the spectral bound of the operator A, we have to carry
out a series of preliminary calculations. First we study the operator-valued map
R : ρ ⊂ C2 → L(H) defined by

(λ, μ) �−→ R(λ, μ) := R(λ,B +Φμ) = (λ−B − Φμ)
−1 for

(λ, μ) ∈ ρ :=
{
(r, s) ∈ C2 : r ∈ ρ(B +Φs)

}
.

(15.14)

Lemma 15.14. The set ρ ⊂ C2 is open and the mapping R(·, ·) is analytic.

Proof. Let (λ0, μ0) ∈ ρ and (λ, μ) ∈ C2. Then

(λ −B − Φμ)− (λ0 −B − Φμ0) = (λ− λ0)− (Φμ − Φμ0) =: Δλ,μ.

Note that (Φμ − Φμ0)f = Φ((εμ − εμ0)f). Since lim(λ,μ)→(λ0,μ0) ‖Δλ,μ‖ = 0 and

λ−B − Φμ = (I +Δλ,μR(λ0, μ0))(λ0 −B − Φμ0), (15.15)
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we see that λ−B−Φμ is invertible for ‖(λ, μ)−(λ0, μ0)‖ sufficiently small, meaning
that the set ρ is open. It also follows from relation (15.15) that for ‖(λ, μ)−(λ0, μ0)‖
sufficiently small, one has

R(λ, μ) = R(λ0, μ0)

∞∑
k=0

[Δλ,μR(λ0, μ0)]
k
.

Since this series converges uniformly on small balls around (λ0, μ0) and the
map C2 � (λ, μ) �→ Δλ,μ ∈ L(H) is analytic, one obtains the analyticity of R(·, ·)
as well. �

With the help of this lemma we can now derive important properties of the
spectral bound function, s : R → R ∪ {−∞} defined by

s(λ) := s(B +Φλ). (15.16)

Proposition 15.15. Let B generate a positive semigroup on a Hilbert lattice H and
assume that Φ is positive. Then the spectral bound function s(·) defined in (15.16)
is decreasing and continuous from the left on R. If, in addition, the point s(μ0) is
isolated in σ(B +Φμ0) ∩ R, then s(·) is even continuous in μ0 ∈ R.

Proof. Observe first that the definition of Φλ in formula (15.10) implies that for
μ0 ≤ μ1 we have Φμ1 ≤ Φμ0 . Therefore, also s(B + Φμ1) ≤ s(B + Φμ0), see
Proposition 12.11. This shows that the function s(·) is decreasing. By Corollary
12.9, we also have s(μ) ∈ σ(B +Φμ).

To show that the function s(·) is left-continuous, assume by contradiction
that

s(μ0) < s− := lim
ε↓0

s(μ0 − ε)

for some μ0 ∈ R. Then s− ∈ ρ(B+Φμ0) and therefore (s−, μ0) ∈ ρ. This contradicts
the fact that ρ ∈ C2 is open, since by Corollary 12.9 we have

s(μ0 − ε) ∈ σ(B +Φμ0−ε),

implying that (s(μ0−ε), μ0−ε) /∈ ρ for all ε > 0, while (s(μ0−ε), μ0−ε) → (s−, μ0)
when ε → 0.

Assume now that s(μ0) is isolated in σ(B +Φμ0) ∩ R. In order to show that
s(·) is right-continuous, we proceed again a contradiction and assume that

s+ := lim
ε↓0

s(μ0 + ε) < s(μ0).

Then, by assumption, there exists λ ∈ ρ(B +Φμ0) ∩ R satisfying

s+ < λ < s(μ0).
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In particular, (λ, μ0) ∈ ρ and we conclude from Lemma 15.14 that

R(λ, μ0) = lim
ε↓0

R(λ, μ0 + ε) ≥ 0.

This contradicts Corollary 12.10, and so the function λ �→ s(λ) is continuous. �

Remark 15.16. We mention that the spectral bound function is continuous at a
point λ0 ∈ R if B has compact resolvent or Φλ0 is compact.

Now we justify our notation for the spectral bound function. It yields the
following estimates for the spectral bound of the generator A.

Proposition 15.17. Let B generate a positive semigroup on the Hilbert lattice H
and suppose that Φ is positive. Then the following assertions hold.

a) If s(B +Φλ) < λ, then s(A) < λ.

b) If s(B +Φλ) = λ, then s(A) = λ.

Proof. a) Let λ > s(λ). From the monotonicity of the function λ �→ s(λ) one
obtains that

μ ≥ λ > s(λ) ≥ s(μ)

for all μ ≥ λ. This implies μ ∈ ρ(B + Φμ), and therefore μ ∈ ρ(A) for all μ ≥ λ,
by Proposition 15.13. On the other hand, by Corollary 12.9, one has s(A) ∈ σ(A),
hence λ > s(A), as claimed.

b) If λ = s(λ), then, again by Corollary 12.9, one has λ ∈ σ(B + Φλ) and
hence λ ∈ σ(A). On the other hand, one can show as in a) that μ ∈ ρ(A) for all
μ > λ, which implies λ = s(A). �

The spectral bound of the operator A defined on M2 = H × L2([−1, 0], H)
can be completely characterized by the spectral bound of the operator B + Φλ

defined on H .

Lemma 15.18. Let B generate a positive semigroup on H and assume that Φ is
positive. If σ(B +Φλ) �= ∅ for some λ ∈ R, then

s(A) = sup{λ ∈ R : s(B +Φλ) ≥ λ}. (15.17)

In the other case, one has s(A) = −∞.

Proof. If σ(B + Φλ) = ∅ for all λ ∈ R, then s(A) = −∞, since by Proposition
15.13 also σ(A) = ∅.

We now assume that σ(B + Φλ) �= ∅ and denote

μ := sup{λ ∈ R : s(λ) ≥ λ}.

Then it follows from the left-continuity of the function λ �→ s(λ) that s(μ) ≥ μ.
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Now, if s(μ) = μ, then s(A) = μ by Proposition 15.17.b) and the assertion
follows. If, on the other hand, s(μ) > μ, then we proceed in two steps. First, we
show that the inclusion

(μ, s(B +Φμ)] ⊂ σ(B +Φμ) (15.18)

holds. To do so, assume, by contradiction, that there exists

r ∈ (μ, s(B +Φμ)] ∩ ρ(B +Φμ).

Then (r, μ) ∈ ρ, where the set ρ is defined in (15.14), and by the definition of μ
one obtains

r + ε > μ+ ε > s(B +Φμ+ε)

for all ε > 0. Hence

R(r, μ) = R(r, B +Φμ) = lim
ε↓0

R(r + ε,B +Φμ+ε) ≥ 0,

which contradicts the fact that r ≤ s(B+Φμ) by Corollary 12.10. Hence, inclusion
(15.18) is proved, and from the closedness of the spectrum we deduce that μ ∈
σ(B+Φμ). Applying Proposition 15.13 we get that μ ∈ σ(A) and hence s(A) ≥ μ.

As a second step, we assume by contradiction that s(A) > μ. Then from the
definition of μ it immediately follows that

s(B +Φs(A)) < s(A),

and hence s(A) ∈ ρ(B + Φs(A)). The spectral characterization from Proposition
15.13 now implies s(A) ∈ ρ(A), contradicting Corollary 12.9. �

In concrete cases it could be quite difficult to solve the equation in (15.17).
However, in order to show that the spectral bound s(A) of A is negative, we
incorporate Gearhart’s theorem, Theorem 15.9, in this result.

Theorem 15.19. Suppose that B generates a positive semigroup on a Hilbert lattice
H and that Φ is a positive delay operator. Then

ω0(T ) < 0 ⇐⇒ s(B +Φ0) < 0.

Proof. By Corollary 15.12, ω0(T ) = s(A). We can assume that there exists λ ∈ R
such that σ(B + Φλ) �= ∅, since otherwise s(A) = s(B + Φλ) = −∞ by Lemma
15.18.

Suppose first that s(A) < 0. Then s(B + Φ0) < 0, since otherwise s(A) ≥ 0
by Lemma 15.18. This proves the implication from the left to the right. The
other implication follows immediately from Proposition 15.17.a), hence the proof
is complete. �
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Example 15.20. As an illustration we present the following equation modeling
delayed heat conduction in a rod whose endpoints are kept at a constant temper-
ature: ⎧⎪⎨⎪⎩

∂tu(x, t) = ∂2
xxu(x, t) + bu(x, t− 1), x ∈ [0, �], t ≥ 0,

u(0, t) = u(�, t) = 0, t ≥ 0,

u(x, t) = f(x, t), x ∈ [0, �], t ∈ [−1, 0],

where � > 0 is the length of the rod and b > 0 the delay coefficient. To treat this
as an abstract delay equation, we introduce the following spaces and operators:

• the Hilbert space H := L2 ((0, �));

• the operator B := Δ with Dirichlet boundary conditions, i.e., D(B) :=
H1

0 ((0, �)) ∩ H2 ((0, �));

• the functions R+ � t �→ u(t) = u(·, t) ∈ L2 ((0, �)) and ut : [−1, 0] →
L2 ((0, �)), ut(s) := u(t+ s);

• the operator Φ defined as Φϕ := bδ−1ϕ = bϕ(−1).

In order to apply Theorem 15.19, recall that

σ(B) =

{
−n2π2

�2
: n ∈ N

}
.

Hence, using that Φλf = be−λf , we arrive at

s(B +Φ0) = b− π2

�
.

So, the solutions of the delayed heat equation converge to zero exponentially if

b <
π2

�
.

Note that this condition is independent of the size of the delay.

15.4 Notes and Remarks

Gearhart’s theorem goes back to Gearhart [51], where he proved it for contraction
semigroups. Later it was generalized by Prüß [114] and others. We refer to the
monograph by van Neerven [103] for detailed references and for other generaliza-
tions to Banach spaces. This result has many applications to partial differential
equations. As an example, we mention applications to nonlinear Schrödinger equa-
tions as surveyed in Cramer and Latushkin [27], and to dissipative systems as in
Liu and Zheng [89].

The generalization of Gearhart’s theorem through Fourier multipliers orig-
inates from Clark et al. [25], and our proof follows Hieber [64]. In Proposition
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15.6 we follow van Neerven [103, Theorem 3.3.1]. The consequences of Gearhart’s
theorem for positive semigroups, stated in Theorem 15.11, were first realized by
Greiner and Nagel [56].

Abstract delay equations were treated extensively in Bátkai and Piazzera
[13], and the presentation here follows the exposition in Section 2.4 of that book.
Closely related results appeared already in Nagel (ed.) [101, Section B-IV.3].

15.5 Exercises

1. Show for the generator A of a positive semigroup in a Banach lattice E that
the equality s(A) = s0(A) holds.

2. Give an example for a positive strongly continuous semigroup (T (t))t≥0 with
generator A on a Banach lattice such that s0(A) �= ω0(T ).

3. Suppose that A generates an exponentially stable semigroup on the Hilbert
space H , and that for B ∈ L(H) we have sups∈R ‖BR(is, A)‖ < 1. Show that
the semigroup generated by A+B is also exponentially stable.

4. Consider the scalar delay differential equation

u̇(t) = −au(t) + bu(t− 1)

with a, b ∈ R, and analyse the stability of the solutions if

a) a = 0;

b) a = 2, b = 1;

c) a = 1, b = 1.

5. Show the decomposition

λ−A =

(
I −ΦR(λ,D0)
0 I

)(
λ−B − Φλ 0

0 λ−D0

)(
I 0

−ελ ⊗ I I

)
for the delay operator A.

6. Deduce from the previous exercise the spectral characterizations

λ ∈ σp(A) ⇐⇒ λ ∈ σp(B +Φλ),

λ ∈ σess(A) ⇐⇒ λ ∈ σess(B +Φλ).



Chapter 16

Koopman Semigroups

We present here a class of positive operator semigroups that arise in studying
dynamical systems. The main idea is to linearize a given (nonlinear) system by
considering another state space. The linear operator which acts on this new space
is called the Koopman operator. It is named after B. O. Koopman, who used
this in the 1930s together with G. D. Birkhoff and J. von Neumann to prove the
so-called ergodic theorems.

We start with a nonlinear system of ordinary differential equations, associate
a semiflow to it, and then derive the corresponding Koopman semigroup. Subse-
quently we present the main properties of this semigroup and its generator. At
the end we show some properties of the semiflow that can be deduced from the
appropriate properties of the associated Koopman semigroup or its generator.

In this chapter we assume some general knowledge of measure theory.

16.1 Ordinary Differential Equations and Semiflows

Consider the ordinary differential equation{
ẋ(t) = F (x(t)), t ≥ 0,

x(0) = x0 ∈ Ω,
(16.1)

where Ω ⊂ Rn is an open set. We make the following standing assumptions.

Assumptions 16.1.

a) F : Rn → Rn is continuously differentiable.

b) Equation (16.1) has global solutions for all x0 ∈ Ω.

c) Ω ⊂ Rn is positively invariant for the solution of equation (16.1), i.e.,

x0 ∈ Ω =⇒ x(t) ∈ Ω for t ≥ 0.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_16

253© Springer International Publishing AG 2017
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We comment on these assumptions based on standard theorems from ordi-
nary differential equations. First recall that Assumption 16.1.a) implies the exis-
tence and uniqueness of local solutions to equation (16.1). Assumption 16.1.b) is
satisfied whenever F grows at most linearly, i.e., if there are constants c, d > 0
such that

‖F (x)‖ ≤ c‖x‖+ d.

Finally, the set Ω̄ is positively invariant if the subtangent condition

lim inf
h↓0

1

h
d(x+ hF (x),Ω) = lim inf

h↓0
1

h
inf
z∈Ω

‖x+ hF (x)− z‖ = 0

holds for every x ∈ ∂Ω. If Ω is convex, then this is equivalent to the angle condition

(F (x)|y) ≤ 0

for x ∈ ∂Ω and y being an outer normal vector to Ω at x (see Figure 16.1).

y

F (x)

Ω

x

Figure 16.1: The angle condition �(y, F (x)) ≥ π
2 .

The assumptions imply that there exists a continuous mapping solving the
differential equation in (16.1). More precisely, there exists a function ϕ : R+×Ω →
Ω, which is continuously differentiable in its first variable, satisfying

ϕ(0, x) = x for all x ∈ Ω and

ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all t, s ≥ 0, x ∈ Ω,
(16.2)
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such that the solutions of equation (16.1) are given by

x(t) = ϕ(t, x0).

Such a mapping ϕ is called a continuous semiflow .

It was the fundamental observation of Koopman and von Neumann that
such nonlinear dynamical systems give rise to linear ones. One motivation for this
construction is that in many situations we do not see the state space Ω and the
dynamics on it, but we only observe some quantity (heat, concentration, density,
etc.). Hence, an observable is simply a (scalar) function defined on Ω. The nonlinear
action of ϕ induces a linear action on observables.

To make these considerations precise, we suppose that Ω is a bounded open
set, choose the Banach function space E = C(Ω), and define the operators

T (t)f(x) := f(ϕ(t, x)) (16.3)

for f ∈ E, t ≥ 0 and x ∈ Ω. Recall that the linear operator T on the Banach
lattice E is called a lattice homomorphism if |Tf | = T |f | for every f ∈ E (see
Definition 10.19).

Proposition 16.2. The family (T (t))t≥0, defined by formula (16.3), is a C0-semi-
group of positive contractions on the Banach lattice E. Its generator A is given as
the closure of the operator

(A0f)(x) = (∇f(x)|F (x))

with f ∈ D(A0) = C1(Ω) and x ∈ Ω. Further, T (t) is a lattice homomorphism for
each t ≥ 0.

Here

C1(Ω) :=
{
f ∈ C(Ω) : ∃U open, Ω ⊂ U, and g ∈ C1(U) such that f = g|Ω

}
.

The operator semigroup (T (t))t≥0 from Proposition 16.2 is usually called the
Koopman semigroup associated to the semiflow ϕ.

Proof. Clearly, each operator T (t) is linear, positive, even a lattice homomorphism,
and T (t)1 = 1 holds. By Lemma 10.27, the operators T (t) are all contractions.
For t, s ≥ 0 and x ∈ Ω we see that, by (16.2),

(T (t)T (s)f)(x) = (T (t)f)(ϕ(s, x)) = f(ϕ(t, ϕ(s, x)))

= f(ϕ(t+ s, x)) = (T (t+ s)f)(x),

hence the semigroup property holds. To show strong continuity of the map T (·),
note that ϕ : [0, 1]×Ω → Ω is uniformly Lipschitz continuous in its first variable.
We will denote its Lipschitz constant by L. Take f ∈ E = C(Ω). Then for each
ε > 0 there is δ > 0 such that for all x, y ∈ Ω with ‖x− y‖ < δ we have

‖f(x)− f(y)‖ < ε.
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The Lipschitz continuity of the semiflow implies that if 0 ≤ t < δ/L holds,
then ‖ϕ(t, x)− x‖ < δ. Hence, for 0 ≤ t < δ/L we have

‖T (t)f − f‖ = sup
x∈Ω

‖f(ϕ(t, x)) − f(x)‖ ≤ ε.

Now we turn our attention to the characterization of the generator A of
(T (t))t≥0. Taking f ∈ D(A0), x ∈ Ω, we note that the function t �→ (T (t)f)(x) =
f(ϕ(t, x)) is also continuously differentiable, hence T (t)D(A0) ⊂ D(A0). Since
D(A0) is dense in E, we see that it is a core for the generator16. It only remains
to show that for f ∈ D(A0) we have Af = A0f . To verify this, take f ∈ C1(Ω)
and consider

I :=

∥∥∥∥T (t)f − f

t
−A0f

∥∥∥∥ = sup
x∈Ω

∣∣∣∣(T (t)f)(x)− f(x)

t
− (∇f(x)|F (x))

∣∣∣∣
= sup

x∈Ω

∣∣∣∣f(ϕ(t, x))− f(ϕ(0, x))

t
− (∇f(ϕ(0, x))|F (ϕ(0, x))

∣∣∣∣ .
By the mean value theorem, for every t > 0 and x ∈ Ω, there is 0 < ξ = ξ(t, x) < t
such that

I = sup
x∈Ω

|(∇f(ϕ(ξ(t, x), x))|F (ϕ(ξ(t, x), x))) − (∇f(ϕ(0, x))|F (ϕ(0, x))| .

If t ↓ 0, then ξ(t, x) → 0 uniformly in x. Since f ∈ C1(Ω), and ϕ and F are also
continuously differentiable in their first variable, it follows that I → 0 as t ↓ 0.
This shows that f ∈ D(A) and A0f = Af . �
Remark 16.3. If Ω is not invariant, then we have to require boundary conditions
on the domain of the generator A of the Koopman semigroup. Typical here are the
so-calledWentzell boundary conditions . As an illustration, we present the simplest
situation without a proof.

Suppose that Ω is a convex domain with C1-boundary. In this case we have
at each boundary point x ∈ ∂Ω a unique outer normal vector ν(x). Our main
assumption is now that

(F (x)|ν(x)) > 0

for all x ∈ ∂Ω. We consider the operator A0f := (∇f |F ) with domain

D(A0) = {f ∈ C1(Ω) : A0f(x) = 0 for x ∈ ∂Ω}.

Then the closure of this operator generates a positive semigroup of lattice homo-
morphisms.

16A subspace D ⊂ D(A) is called a core of A if it is dense in the graph norm of A. This
implies that if we know the generator on a core, the we can determine it uniquely. An important
result in semigroup theory states that if a dense set D ⊂ A is invariant under the semigroup,
then it is a core.
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16.2 Koopman Semigroups

In this section we collect some properties characterizing Koopman semigroups and
their generators. We start with some technical lemmata.

Lemma 16.4. Let K be a compact Hausdorff space and f∗ ∈ C(K)∗ a continuous
linear functional. Then the following statements are equivalent.

(i) f∗ is a lattice homomorphism.

(ii) There are a c ≥ 0 and x ∈ K such that f∗ = cδx, i.e., f
∗(f) = 〈f, f∗〉 = cf(x)

holds for all f ∈ C(K).

Proof. The implication (ii) =⇒ (i) is straightforward, hence we only treat the other
one. Let f∗ ∈ C(K)∗ be a lattice homomorphism. By the Riesz representation
theorem (see Theorem A.29), there is a Borel measure μ such that

〈f, f∗〉 =
∫
K

f dμ

for all f ∈ C(K).

Assume by contradiction that x, y ∈ K are two distinct points in the support
of μ, and take two disjoint open sets U, V ⊂ K such that x ∈ U and y ∈ V .
Applying Urysohn’s lemma (see Lemma A.19) to these sets, we obtain functions
f, g ∈ C(K) such that

f(x) = 1 and f(s) = 0 for s ∈ K \ U,
g(y) = 1 and g(s) = 0 for s ∈ K \ V.

Then f ∧ g = 0 holds, but 〈f, f∗〉 ∧ 〈g, f∗〉 > 0, a contradiction. �

This allows us to characterize lattice homomorphisms between C(K) spaces.

Lemma 16.5. Let K,L be compact Hausdorff spaces and consider T : C(K) →
C(L). Then the following are equivalent.

(i) T is a lattice homomorphism.

(ii) There exist a unique positive function g ∈ C(L) and a unique function ψ :
L → K which is continuous on the set {y ∈ L : g(y) > 0}, such that

(Tf)(s) = g(s)f(ψ(s))

holds for all f ∈ C(K), s ∈ L.
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Proof. Again, as in the proof of the previous lemma, we only have to prove the
implication (i) =⇒ (ii). Suppose that T is a lattice homomorphism, and let y ∈ L.
Since

(Tf)(y) = δy(Tf) = (δy ◦ T )(f),

we see that δy ◦T ∈ C(L)∗ is a lattice homomorphism. By Lemma 16.4, there exist
a scalar g(y) ≥ 0 and a point ψ(y) ∈ K satisfying

(Tf)(y) = g(y)f(ψ(y)).

Clearly, g = T1K ∈ C(L). It remains to show that ψ is continuous. To this end,
take a net (yα) ⊂ L such that yα → y in L, g(y) > 0 and g(yα) > 0 for all α. Then
g(yα) → g(y), and for all f ∈ C(K) we have

g(yα)f(ψ(yα)) = (Tf)(yα) −→ (Tf)(y) = g(y)f(ψ(y)).

Since g(yα), g(y) �= 0, this implies that

f(ψ(yα)) −→ f(ψ(y))

for all f ∈ C(K). This establishes the continuity of ψ. �

Recall that a positive linear operator T : C(K) → C(L) is called a Markov
operator , if the identity T1K = 1L holds, see Definition 10.28. Further, a semiflow
on K is defined analogously to the previous section: it is a continuous mapping
ϕ : R+ ×K → K satisfying

ϕ(0, x) = x for all x ∈ K, and

ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all t, s ≥ 0, x ∈ K.
(16.4)

This leads to the following characterization of Koopman semigroups on C(K)
spaces.

Theorem 16.6. Let K be a compact Hausdorff space, E = C(K), and (T (t))t≥0 a
strongly continuous semigroup on E. Then the following are equivalent.

(i) Each T (t), t ≥ 0, is a Markov lattice homomorphism.

(ii) (T (t))t≥0 is induced by a continuous semiflow ϕ : R+ ×K → K, i.e.,

(T (t)f)(x) = f(ϕ(t, x)), f ∈ E, x ∈ K, t ≥ 0.

Proof. (ii) =⇒ (i): This implication was the content of Proposition 16.2.

(i) =⇒ (ii): From the proof of Lemma 16.5 we see that if the operator T is
Markov, then we have g(s) = 1 for each s ∈ L. Hence, Lemma 16.5 implies the
existence of a function ϕ : R+ ×K → K such that (T (t)f)(x) = f(ϕ(t, x)). The
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semiflow property defined in (16.4) follows directly from the semigroup property
of the operators T (t), since

f(ϕ(t+ s, x)) = (T (t+ s)f)(x) = (T (t)T (s)f)(x)

= (T (t)(f(ϕ(s, x))) = f(ϕ(t, ϕ(s, x)))

holds for each f ∈ C(K), implying that ϕ(t+ s, x) = ϕ(t, ϕ(s, x)). It thus remains
to show that ϕ is continuous in t. Take a sequence (tn) ⊂ R+ such that tn → t.
Then, by the strong continuity of the semigroup,

f(ϕ(tn, x)) = (T (tn)f)(x) −→ (T (t)f)(x) = f(ϕ(t, x))

for all f ∈ C(K) and x ∈ K. Hence, ϕ(tn, x) → ϕ(t, x), implying continuity of ϕ
in t. �
Remark 16.7. Note that C(K) is not only a Banach lattice, but also a C∗-algebra.
If the conditions of Lemma 16.5 are satisfied, then T is also a C∗-algebra ho-
momorphism. This leads us to the following additional equivalences in Theorem
16.6.

(iii) Each operator T (t) is a C∗-algebra homomorphism.

(iv) The generator A is a derivation, i.e., the domain D(A) is a ∗-subalgebra and
the identities A(f ·g) = f ·Ag+Af ·g and Af = Af̄ hold for all f, g ∈ D(A).

It seems desirable to have not only an algebraic, but also an order theoretic
characterization of generators of Koopman semigroups. Before deriving one such
characterization, let us make the following informal comment. If (T (t))t≥0 is a
semigroup of lattice homomorphisms, then

T (t)|f | = |T (t)f |

for each f ∈ E. Accepting that the real function abs(s) = |s| has derivative
abs′(s) = sgn s, we obtain formally that

A|f | = d

dt
T (t)|f |

∣∣∣
t=0

=
d

dt
|T (t)f |

∣∣∣
t=0

= (sgn f)Af.

To give this calculation a meaning and to see how to interpret it correctly, we need
the following preparations.

Definition 16.8. Let X be a Banach space, η : X → X a mapping, f, u ∈ X . The
mapping η is called right Gâteaux differentiable in f in direction u, if

∂uη(f) := lim
t↓0

η(f + tu)− η(f)

t
(16.5)

exists. The function η is called right Gâteaux differentiable in f if ∂uη(f) exists
for all directions u ∈ X .
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Example 16.9. Let X = C and consider the function η(z) = |z|. Using the nota-
tion sgn z = z

|z| for z �= 0 and sgn 0 = 0, we can show that η is right Gâteaux

differentiable and

∂uη(z) =

{
Re((sgn z̄)u) if z �= 0,

|u| if z = 0.

This can be obtained by direct calculations which are left as Exercise 3.

We shall use the following chain rule for the right Gâteaux derivative.

Lemma 16.10. Let ψ : R → X be right differentiable at a ∈ R with the right
derivative ψ′(a), and suppose that η : E → E is Lipschitz continuous. If η is right
Gâteaux differentiable at the point ψ(a) in the direction ψ′(a), then η ◦ ψ is right
differentiable at a and its right derivative in a equals

(η ◦ ψ)′(a) = ∂ψ′(a)η(ψ(a)).

Proof. Take L > 0 such that ‖η(f) − η(g)‖ ≤ L‖f − g‖ holds for all f, g ∈ X .
Then

lim
t↓0

∥∥∥∥1t (η(ψ(a+ t))− η(ψ(a))
)
− ∂ψ′(a)η(ψ(a))

∥∥∥∥
≤ lim sup

t↓0

∥∥∥∥1t (η(ψ(a+ t))− η(ψ(a) + tψ′(a))
)∥∥∥∥

+ lim sup
t↓0

∥∥∥∥1t (η(ψ(a) + tψ′(a))− η(ψ(a))
)
− ∂ψ′(a)η(ψ(a))

∥∥∥∥
≤ L lim sup

t↓0

∥∥∥∥1t (ψ(a+ t)− ψ(a))− ψ′(a)
∥∥∥∥+ 0 = 0,

by the right Gâteaux differentiability of η at ψ(a) in the direction of ψ′(a) and by
the right differentiability of ψ at a ∈ R. �

Let us introduce some further notation. For f, g ∈ C(K) we write17

((sgn f)(g)) (x) := (sgn f(x)) · g(x)

and

((ŝgnf)(g)) (x) :=

{
(sgn f)(g)(x) if f(x) �= 0,

|g(x)| if f(x) = 0.

Note that, though this may not be a continuous map, we can extend the
duality map to it by the following straightforward construction. For μ ∈ C(K)∗

we define

〈(ŝgnf)(g), μ〉 =
∫
K

(ŝgnf)(g)dμ.

17Compare with (14.17).
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Lemma 16.11. Let (T (t))t≥0 be a strongly continuous semigroup on E = C(K)
with generator A. Then for every f ∈ D(A) and μ ∈ E∗ we have

d

dt
〈|T (t)f |, μ〉

∣∣∣
t=0

= 〈Re((ŝgnf̄)(Af)), μ〉.

Proof. For f ∈ D(A) and x ∈ K, define the function

η(t) = (T (t)f)(x).

It is right differentiable in 0 with η′(0) = (Af)(x). The chain rule, Lemma 16.10,
and Example 16.9 imply that

|η(0)|′ = Re((ŝgnf̄)(Af))(x).

Moreover,
1

t

∣∣|T (t)f | − |f |
∣∣ ≤ 1

t
|T (t)f − f |

implies that

sup
0<t≤1

1

t
‖|T (t)f | − |f |‖ < ∞.

Hence, the functions

kt(x) =
1

t
(|T (t)f(x)| − |f(x)|)

are uniformly bounded on K. Lebesgue’s dominated convergence theorem (see
Theorem A.23) then implies that

d

dt
〈|T (t)f |, μ〉

∣∣∣
t=0

= lim
t↓0

〈kt, μ〉 = 〈Re((ŝgnf̄)(Af)), μ〉. �

We are now able to characterize a Koopman semigroup by its generator in
the following way.

Theorem 16.12. A strongly continuous semigroup (T (t))t≥0 with the generator A
on the Banach lattice E = C(K) is a semigroup of lattice homomorphisms if and
only if the Kato equality〈

Re
(
(ŝgnf̄)(Af)

)
, μ
〉
= 〈|f |, A∗μ〉 (16.6)

holds for all f ∈ D(A) and μ ∈ D(A∗).

Proof. Suppose that (T (t))t≥0 is a semigroup of lattice homomorphisms and let
f ∈ D(A) and μ ∈ D(A∗). Lemma 16.11 implies that

〈Re((ŝgnf̄)(Af)), μ〉 = d

dt
〈|T (t)f |, μ〉

∣∣∣
t=0

=
d

dt
〈T (t)|f |, μ〉

∣∣∣
t=0

= 〈|f |, A∗μ〉.
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Conversely, suppose that (16.6) holds. We have to show that

T (t)|f | = |T (t)f |

holds for all t > 0 and f ∈ E. Since D(A) is dense, it is sufficient to show this
equality for f ∈ D(A). Moreover, it suffices to show

〈|T (t)f |, μ〉 = 〈T (t)|f |, μ〉 (16.7)

for all μ ∈ D(A∗).
Let μ ∈ D(A∗), t > 0, and define the function

ξ(s) = 〈T (t− s)|T (s)f |, μ〉

for s ∈ [0, t]. If we show that ξ is constant, then ξ(0) = ξ(t), which is exactly
relation (16.7).

Since μ ∈ D(A∗),

lim
h↓0

1

h
〈g, (T (t− (s+ h))− T (t− s))∗μ〉 = −〈g,A∗T (t− s)∗μ〉

holds for all g ∈ E. Consequently, by the Uniform Boundedness Principle (see
Theorem A.15), we see that

lim sup
h↓0

1

h
‖(T (t− (s+ h))− T (t− s))∗μ‖ < ∞.

Hence,

lim
h↓0

1

h
〈|T (s+ h)f |, (T (t− (s+ h))− T (t− s))∗μ〉 = −〈|T (s)f |, A∗T (t− s)∗μ〉.

Using this equality, we obtain

lim
h↓0

1

h
(ξ(s + h)− ξ(s))

= lim
h↓0

1

h
(〈T (t− (s+ h))|T (s+ h)f |, μ〉 − 〈T (t− s)|T (s+ h)f |, μ〉

+〈T (t− s)|T (s+ h)f | − T (t− s)|T (s)f |, μ〉)

= −〈|T (s)f |, A∗T (t− s)∗μ〉+ lim
h↓0

1

h
〈T (t− s)|T (s+ h)f | − T (t− s)|T (s)f |, μ〉.

By Lemma 16.11,

lim
h↓0

1

h
(ξ(s+ h)− ξ(s))

= −〈|T (s)f |, A∗T (t− s)∗μ〉+ 〈Re((ŝgnT (s)f)(AT (s)f)), T (t− s)∗μ〉.

By the Kato Equality (16.6), this last expression equals zero, proving that ξ is
constant. �
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16.3 Applications of Koopman Semigroups

We show by some simple examples how one can translate properties of the semiflow
into appropriate properties of the Koopman semigroup. As before, let K be a
compact Hausdorff space, ϕ : R+ × K → K a continuous semiflow on it, and
(T (t))t≥0 the associated Koopman semigroup.

Lemma 16.13. A closed subset L ⊂ K is invariant under ϕ if and only if the ideal
JL generated by L is invariant under the Koopman semigroup (T (t))t≥0.

Proof. Recall from Proposition 10.13 the characterization of closed ideals in C(K).
Suppose now that L is invariant under ϕ, that is, ϕ(t, L) ⊂ L. Then, by definition,
taking a function f ∈ JL, we see that f ◦ ϕ(t, ·) ∈ JL, showing that

T (t)JL ⊂ JL.

For the other direction, let us assume that T (t)JL ⊂ JL and x ∈ K \ L. By
Urysohn’s lemma (see Lemma A.19), there is f ∈ JL such that f(x) = 1. On the
other hand, since T (t)JL ⊂ JL, we see that

f(ϕ(t, y)) = 0 for all y ∈ L.

This implies that x /∈ ϕ(t, L). Since x ∈ K \ L was arbitrary, the invariance
ϕ(t, L) ⊂ L follows. �

We need some standard notions from topological dynamical systems.

A semiflow is called minimal if it has no nontrivial closed invariant sets. In
view of the characterization of ideals in C(K) in Proposition 10.13, the following
is a straightforward consequence of Lemma 16.13.

Corollary 16.14. The semiflow ϕ is minimal if and only if the Koopman semigroup
(T (t))t≥0 is irreducible.

The semiflow is called topologically (forward) transitive if there is a point
x ∈ K such that its orbit orb (x) := {ϕ(t, x) : t ≥ 0} is dense in K.

Proposition 16.15. If the semiflow is topologically transitive, then the generator A
of the Koopman semigroup satisfies

dimker(A) = 1.

Proof. If f ∈ C(K) is a constant function, then T (t)f = f , hence f ∈ ker(A),
meaning that dim ker(A) ≥ 1 is true for every Koopman semigroup.

Further, if T (t)f = f holds for f ∈ C(K), then f(ϕ(t, x)) = T (t)f(x) = f(x)
implies that f is constant along orbits. Hence, if there is a point x ∈ K with dense
orbit, then f has to be constant, implying that ker(A) consists of the constant
functions. �
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Definition 16.16. We say that a positive measure μ ∈ C(K)∗ is an invariant Borel
measure for the semiflow ϕ if

μ(ϕ−1(t,H)) = μ(H)

holds for each t ≥ 0 and for each Borel measurable set H ⊂ K.

Interesting and important is the connection between invariant measures and
the adjoint of the Koopman semigroup.

Lemma 16.17. A measure μ ∈ C(K)∗ is an invariant probability measure for the
continuous semiflow ϕ if and only if it is an eigenvector associated to the eigenvalue
1 for the adjoint of the corresponding Koopman semigroup, i.e., if and only if

T ∗(t)μ = μ

holds for all t ≥ 0.

Proof. Note that, by the definition of the Koopman semigroup, a measure μ is
invariant if and only if

〈f, T ∗(t)μ〉 = 〈T (t)f, μ〉 =
∫
K

f(ϕ(t, x))dμ(x)

=

∫
K

f(x)dμ(ϕ−1(t, x)) =

∫
K

f(x)dμ(x) = 〈f, μ〉

holds for all f ∈ C(K) and t ≥ 0, and hence

T ∗(t)μ = μ

for all t ≥ 0. �

It turns out that continuous flows always have an invariant measure.

Theorem 16.18 (Krylov–Bogoliubov). Let K be a compact Hausdorff space and
ϕ : R+ × K → K a continuous semiflow. Then there is at least one invariant
probability measure for the semiflow ϕ.

Proof. Fix y ∈ K and let μ0 := δy be the Dirac measure supported at y. Define
the probability measures μt for which∫

K

f(x)dμt(x) =
1

t

∫ t

0

∫
K

T (t)f(x)dμ0(x)dt

holds for all f ∈ C(K). This means that

μt =
1

t

∫ t

0

T ∗(t)μ0dt,
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where the integral is defined in the weak∗-topology. By the Banach–Alaoglu theo-
rem, Theorem A.31, there is a weak∗-accumulation point μ of μt as t → ∞. Since
μt are positive probability measures, so is μ. By Exercise 5, this measure satisfies

T ∗(t)μ = μ,

hence it is an invariant measure. �

We can apply the theory of irreducible semigroups here.

Proposition 16.19. If the semiflow ϕ is minimal, then all invariant probability
measures are strictly positive.

Proof. This is a straightforward consequence of Proposition 14.12. �

Suppose again that K is a compact Hausdorff space and ϕ : R+ ×K → K a
continuous semiflow, and let μ be an invariant measure for ϕ.

For each t > 0 and f ∈ L1(K,μ), we define the measure

νt(H) :=

∫
ϕ−1(t,H)

fdμ.

Notice that if for B ⊂ K we have μ(B) = 0, then νt(B) = 0. Hence, by the
Radon–Nikodým theorem (see Theorem A.25), there is a unique P (t)f ∈ L1(K,μ)
such that ∫

H

P (t)fdμ =

∫
ϕ−1(t,H)

fdμ.

Definition 16.20. The operator family (P (t))t≥0 defined above is called the Perron–
Frobenius semigroup associated with the semiflow ϕ.

We summarize the main properties of the Perron–Frobenius semigroup.

Proposition 16.21. The Perron–Frobenius semigroup is a strongly continuous posi-
tive contraction semigroup on L1(K,μ). It can be identified with the restriction of
the adjoint of the Koopman semigroup when L1(K,μ) is identified with the set of
absolutely continuous measures with respect to μ.

Note that, since the Perron–Frobenius semigroup is a restriction of the ad-
joint of the Koopman semigroup to an invariant subspace, the only thing to prove
is its strong continuity. Then one shows directly that the Perron–Frobenius semi-
group is weakly continuous. The proof is finished by applying the fact that weakly
continuous semigroups are already strongly continuous.
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16.4 Notes and Remarks

A standard reference for ordinary differential equations is Amann [3]. The gen-
erator A is sometimes referred to as the “Lie generator” of the semiflow ϕ, see
for example Neuberger [104]. The contents of Proposition 16.2 and the boundary
conditions appearing in Remark 16.3 are due to Ulmet [144]. For the fact that a
dense and invariant subset of the domain of the generator is a core in the proof of
Proposition 16.2, see Engel and Nagel [43, Proposition II.1.7].

The operator theoretic characterization of Koopman semigroups as Markov
lattice homomorphism and the Kato equality are due to Nagel, Arendt, and the
research group in Tübingen, and is documented in Nagel (ed.) [101, Sections B-
II.2,3]. Relation (16.6) has its origins in Kato’s investigations on the positivity of
Schrödinger semigroups in L2, see [72].

For the proof of Proposition 16.21 the main technical tool is the fact that
weakly continuous semigroups are already strongly continuous, see Engel and
Nagel, [43, Theorem I.5.8] and Exercise 6.

Basic properties of Perron-Frobenius and Koopman semigroups can be also
found in the book by Lasota and Mackey [83]. A characterization of generators of
Koopman semigroups in Lp spaces can be found in Edeko and Kühner [38].

Applications of Koopman semigroups to ergodic theory are numerous. The
connection of nonlinear dynamical systems and their “linearization” using the
Koopman operator has a long history, and in these notes here we only scratched
the surface. For a comprehensive treatment of the time discrete case we refer to
the monograph by Eisner, Farkas, Haase and Nagel [40].

16.5 Exercises

1. Let F : R → R be continuously differentiable with supx∈R |F ′(x)| < ∞.
Define the flow ϕ : R× R → R as the solution of the nonlinear ODE{

ẏ(t) = F (y(t)),

y(0) = s,

i.e., ϕ(t, s) := y(t). Take E := C0(R) and define(
T (t)f

)
(s) := f

(
ϕ(t, s)

)
for t ≥ 0, s ∈ R.

a) Show that (T (t))t≥0 is a positive contraction semigroup (i.e., of type
(1, 0)) and identify its generator.

b) What is the corresponding abstract Cauchy problem? Which partial
differential equation can we associate with it? Relate the semigroup
(T (t))t≥0 to the method of characteristics.
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2. Consider the ordinary differential equation{
ẏ(t) = y(t)(y(t)− 1),

y(0) = s ∈ (0, 1),

Write down the explicit formula for the corresponding Koopman semigroup
and its generator. Identify all invariant ideals of this semigroup.

3. Show that z �→ |z| is right Gâteaux differentiable as stated in Example 16.9.

4. Let Ω ⊂ Rn be an open set, ϕ a continuous semiflow on it, and define the
Koopman semigroup on L2(Ω) by the rule (16.3).

a) Show that it consists of unitary operators.

b) Show that it is strongly continuous. [Hint: Use that it is continuous for
f ∈ C0(Ω).]

5. Consider the adjoint (T ∗(t))t≥0 of the Koopman semigroup (T (t))t≥0 and
show that

(I − T ∗(t))
1

r

∫ r

0

T ∗(s)νds = (I − T ∗(r))
1

r

∫ t

0

T ∗(s)νds

for r > t. Use this identity to show that each weak∗-accumulation point of
the Cesàro-means in the proof of Theorem 16.18 is a fixed point of the adjoint
semigroup.

6. Show that the Perron–Frobenius semigroup is weakly continuous.



Chapter 17

Linear Boltzmann Transport
Equations with Scattering

In this chapter we give an application of positive semigroup theory to linear trans-
port equations. This is a wonderful piece of mathematics modeling neutron trans-
port in a reactor which uses much of the theory we developed in this text.

17.1 The Reactor Problem

We want to model the time evolution of the motion of neutrons in an absorbing
and scattering homogeneous medium. This problem is known as the reactor prob-
lem. We use the linearized Boltzmann transport equation which was originally
developed in 1872 by L. Boltzmann when studying the kinetic theory of gases and
is given by the integro-differential equation

∂tu(t, x, v) = −
3∑

j=1

vj∂xju(t, x, v)− σ(x, v)u(t, x, v) +

∫
V

ζ(x, v, v′)u(t, x, v′)dv′.

(17.1)

Here, u(t, x, v) represents the density distribution of the neutrons at time
t depending on the space variable x ∈ D ⊆ R3 and on the velocity v. By D
we denote the interior of the vessel in which neutron transport takes place and
which is filled by some background material surrounded by a total absorber. The
neutrons migrate in D and are scattered by the inner or absorbed by the outer
material. We suppose that neutrons do not interact with each other.

The term −
∑3

j=1 vj∂xju in equation (17.1) is called the free streaming term
and is responsible for the motion of particles between collisions. The second term
on the right in equation (17.1) corresponds to collisions causing absorption, while
the third term describes scattering of neutrons: particles at the position x with
the incoming velocity v′ go into particles at x with the outgoing velocity v. This
transition is governed by a scattering kernel ζ(x, v, v′).

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
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The fact that u(t, ·, ·) should describe a density suggests to require that
u(t, ·, ·) is an element of L1(D × V ) for all t ≥ 0. Following this line and in-
troducing the vector-valued function u(t) := u(t, ·, ·), equation (17.1) is equivalent
to the abstract equation

u̇(t) = (A+Kζ)u(t) := (A0 −Mσ)u(t) +Kζu(t), t ≥ 0,

where u(t) ∈ L1(D × V ), A0 := −
∑3

j=1 vjDj denotes the free streaming operator
on a suitable domain, Mσ is the multiplication operator induced by σ and called
the absorption operator, while the scattering operator Kζ is defined by

(Kζf)(x, v) :=

∫
V

ζ(x, v, v′)f(x, v′)dv′, (x, v) ∈ D × V, f ∈ L1(D × V ).

We take an appropriate domain D(A+Kζ) to show that the operator A+Kζ

generates a positive C0-semigroup on L1(D × V ) and to describe the qualitative
properties of the solution.

17.2 The One-dimensional Reactor Problem

In order to simplify our exposition we study here only the one-dimensional case.
The one-dimensional reactor problem is given by the following transport equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu(t, x, v) = −v∂xu(t, x, v)− σ(x, v)u(t, x, v) +

∫
V

ζ(x, v, v′)u(t, x, v′)dv′,

t ≥ 0, (x, v) ∈ D × V,

u(t, 0, v) = 0 if v > 0 and u(t, 1, v) = 0 if v < 0, t ≥ 0,

u(0, x, v) = f(x, v), (x, v) ∈ D × V,
(17.2)

where 0 ≤ σ ∈ L∞(D × V ), 0 ≤ ζ ∈ L∞(D × V × V ), D := [0, 1], and V := {v ∈
R : vmin ≤ |v| ≤ vmax} for given constants 0 < vmin < vmax < ∞. Here ∂x denotes
the partial derivative with respect to x in the sense of distributions, see Appendix
A.11 for the definition.

We rewrite problem (17.2) as an abstract Cauchy problem on the Banach
lattice L1(D × V ). To do so we define the free streaming operator A0 by

(A0f)(x, v) := −v∂xf(x, v), with

D(A0) :=

{
f ∈ L1(D × V ) : v∂xf ∈ L1(D × V ),

f(0, v) = 0 if v > 0
f(1, v) = 0 if v < 0

}
,

the absorption operator Mσ by

(Mσf)(x, v) := σ(x, v)f(x, v), (x, v) ∈ D × V, f ∈ L1(D × V ),
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and the scattering operator Kζ as above by

(Kζf)(x, v) :=

∫
V

ζ(x, v, v′)f(x, v′)dv′, (x, v) ∈ D × V, f ∈ L1(D × V ).

We note that Mσ and Kζ are both in L(L1(D × V )), since σ ∈ L∞(D × V )
and ζ ∈ L∞(D×V ×V ). Moreover, if f ∈ D(A0), then for a.e. v ∈ V , the function
f(·, v) belongs to W1,1(D) = AC(D), the set of absolutely continuous functions
on D, see Exercise 1. Hence, it can be extended to a continuous function on D,
and so f(0, v) and f(1, v) make sense for a.e. fixed v ∈ V .

We first study the free streaming operator A0. By a direct computation one
can see that (0,∞) ⊆ ρ(A0) and

(R(λ,A0)f) (x, v) =

⎧⎪⎪⎨⎪⎪⎩
1

v

∫ x

0

e−
λ
v (x−x′)f(x′, v) dx′ if v > 0,

−1

v

∫ 1

x

e−
λ
v (x−x′)f(x′, v) dx′ if v < 0,

(17.3)

for (x, v) ∈ D × V and f ∈ L1(D × V ). Hence,

‖R(λ,A0)‖ ≤ 1

λ
for all λ > 0.

Therefore, by Theorem 11.1, A0 with domain D(A0) generates a C0-semigroup
(T0(t))t≥0 of contractions on L1(D × V ). Moreover, (T0(t))t≥0 is positive since
R(λ,A0) ≥ 0 for all λ > 0, see Corollary 11.4. On the other hand, formula (17.3)
implies that

(R(λ,A0)f)(x, v) =

∫ ∞

0

e−λtχD(x − vt)f(x− vt, v) dt

for (x, v) ∈ D×V , f ∈ L1(D×V ). So, by the uniqueness of the Laplace transform,
we obtain

(T0(t)f)(x, v) = χD(x− tv)f(x− tv, v), (x, v) ∈ D× V, f ∈ L1(D× V ). (17.4)

Moreover, since the absorption operator Mσ is bounded, it follows that

A := A0 −Mσ with D(A) = D(A0)

generates a C0-semigroup. It is not difficult to see that this semigroup is given by
the formula

(T (t)f)(x, v) = e−
∫

t
0
σ(x−τv,v)dτ(T0(t)f)(x, v) (17.5)

for (x, v) ∈ D × V , f ∈ L1(D × V ) and is also positive. It is called the streaming
semigroup.
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We now suppose that the scattering kernel ζ satisfies

ζ(x, v, v′) > 0 for all (x, v, v′) ∈ D × V × V. (17.6)

Then the scattering operator Kζ is positive. Therefore, by Corollary 11.7 and
Proposition 11.6, the transport operator A+Kζ with domain D(A0) generates the
positive C0-semigroup (S(t))t≥0 given by the Dyson–Phillips expansion

S(t) =

∞∑
k=0

Uk(t), where U0(t) = T (t) and

Uk+1(t)f =

∫ t

0

Uk(t− s)KζT (s)f ds, f ∈ L1(D × V ), t ≥ 0, k ∈ N.

(17.7)

This semigroup is called the transport semigroup and enjoys the following
properties.

Proposition 17.1. For the streaming semigroup (T (t))t≥0 and the transport semi-
group (S(t))t≥0 we have

0 ≤ T (t) ≤ S(t) for all t ≥ 0 and ω0(S) = s(A+Kζ). (17.8)

Proof. The first assertion follows from the positivity of Kζ and the Dyson–Phillips
expansion (17.7). The second is a consequence of Theorem 12.17. �

We shall see that under our assumptions the transport semigroup (S(t))t≥0

is even irreducible. First we show the following.

Lemma 17.2. If a closed ideal I in L1(D×V ) is S(·)-invariant, then it is invariant
under both T0(·) and Kζ.

Proof. Assume that I is S(·)-invariant. Since 0 ≤ T (t) ≤ S(t) for all t ≥ 0,
we deduce that I is T (·)-invariant. Thus, formula (17.5) implies that I is T0(·)-
invariant. By Proposition 11.6, we have

lim
t↓0

1

t
(S(t)f − T (t)f) = lim

t↓0
1

t

∫ t

0

T (t− s)KζS(s)f ds = Kζf

for f ∈ L1(D × V ). Since I is closed and invariant under both S(t) and T (t), we
conclude that I is also Kζ-invariant. �
Lemma 17.3. For the transport semigroup (S(t))t≥0 defined in (17.7) the following
holds.

a) The remainder R2(t) :=
∑∞

k=2 Uk(t), t ≥ 0, of the Dyson–Phillips expansion
(17.7) is a weakly compact operator on L1(D × V ).

b) If the scattering kernel ζ satisfies condition (17.6), then the transport semi-
group (S(t))t≥0 is irreducible.
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Proof. a) By equation (17.5), T (t) ≤ T0(t) for t ≥ 0. For 0 ≤ f ∈ L1(D × V ) and
the positive operator Kζ we have

(KζT (t)Kζf)(x, v) ≤ (KζT0(t)Kζf)(x, v)

≤ ‖ζ‖2∞
∫
V

∫
D

χD(x− tv′′)f(x− tv′′, v′)dv′′dv′

≤ t−1‖ζ‖2∞
∫
V

∫
D

f(x′, v′) dx′dv′ for t > 0.

Hence

KζT (t)Kζ ≤ ‖ζ‖2∞
t

Ξ, (17.9)

where Ξ is the bounded linear operator on L1(D × V ) defined by

Ξf :=

(∫
V

∫
D

f(x, v) dx dv

)
χD×V , f ∈ L1(D × V ).

By the definition of the terms Uk(t) in the Dyson–Phillips series in (17.7)
one can see that

Rm+1(t) :=

∞∑
k=m+1

Uk(t) =

∫ t

0

T (t− s)KζRm(s) ds, t ≥ 0, m ∈ N. (17.10)

In particular,

R2(t) =

∫ t

0

∫ t−s2

0

T (s1)KζT (s2)KζS(t− s1 − s2) ds1 ds2 for t ≥ 0.

Taking t > ε > 0 and considering

R2,ε(t) :=

∫ t

ε

∫ t−s2

0

T (s1)KζT (s2)KζS(t− s1 − s2) ds1 ds2,

it can be verified that

lim
ε→0

‖R2,ε(t)−R2(t)‖ = 0 for all t > 0.

On the other hand, inequality (17.9) implies that

R2,ε(t) ≤ ‖ζ‖2∞
∫ t

ε

∫ t−s2

0

1

s2
T (s1)ΞS(t− s1 − s2) ds1 ds2.

From the definition of (T0(t))t≥0 and since 0 ≤ T (t) ≤ T0(t), we see that

T (t)Ξ ≤ Ξ
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for the order in L(L1(D × V )). Now, for 0 ≤ f ∈ L1(D × V ) and s1 + s2 ≤ t, we
obtain

ΞS(t− s1 − s2)f =

(∫
V

∫
D

(S(t− s1 − s2)f)(x, v) dx dv

)
χD×V

≤ Meω(t−s1−s2)

(∫
V

∫
D

f(x, v) dx dv

)
χD×V = Meω(t−s1−s2)Ξf,

where M ≥ 1 and ω ∈ R are such that ‖S(t)‖ ≤ Meωt for all t ≥ 0. Consequently,

R2,ε(t) ≤ M‖ζ‖2∞
(∫ t

ε

1

s2

∫ t−s2

0

eω(t−s1−s2) ds1 ds2

)
Ξ

=
M‖ζ‖2∞

ω

(∫ t

ε

eω(t−s2) − 1

s2
ds2

)
Ξ

holds for all t ≥ 0. This implies that R2,ε(t) is dominated by a one-dimensional
operator. So, by Proposition A.37.b), we obtain that R2,ε(t) is weakly compact.
Since R2,ε(t) converges in the operator norm to R2(t), Proposition A.37.a) implies
that R2(t) is weakly compact for all t ≥ 0. This proves the first assertion.

b) We recall from Proposition 10.15 that every closed ideal in L1(D×V ) has
the form

I = {f ∈ L1(D × V ) : f vanishes a.e. on Ω}
for some measurable subset Ω ⊆ D × V . We assume that I is S(t)-invariant for
all t ≥ 0. Then, by Lemma 17.2, I is Kζ-invariant. Assume that Ω �= ∅. Since
χD×V \Ω ∈ I, we obtain

(KζχD×V \Ω)(x, v) =
∫
V

ζ(x, v, v′)χD×V \Ω(x, v′)dv′

=

∫
V \Ωx

ζ(x, v, v′)dv′ = 0

for (x, v) ∈ Ω and Ωx := {v ∈ V : (x, v) ∈ Ω}. Since ζ is strictly positive, we infer
that λ(V \ Ωx) = 0, where λ is the Lebesgue measure on V . Hence χΩ = χY×V

for some measurable subset Y of D.

On the other hand, again by Lemma 17.2, the set I is T0(t)-invariant for all
t ≥ 0. Thus, it is also R(λ,A0)-invariant for all λ > 0. Hence,

(R(λ,A0)χD×V \Ω)(x, v) = 0

for a.e. (x, v) ∈ Ω. So, by using (17.3), one can see that∫ x

0

χD\Y (s) ds = 0 and

∫ 1

x

χD\Y (s) ds = 0.

Therefore,
∫ 1
0 χD\Y (s) ds = 0, and this implies that χD\Y = 0. Consequently,

I = {0} or I = L1(D × V ), and b) is proved. �
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We can now apply Theorem 14.18 to describe the asymptotic behaviour of
the transport semigroup.

Theorem 17.4. Suppose that ζ satisfies the positivity assumption (17.6). Then the
transport semigroup (S(t))t≥0 has balanced exponential growth. More precisely,
there are strictly positive functions ϕ ∈ L1(D×V ) and ψ ∈ L∞(D×V ) satisfying∫∫

D×V

ϕ(x, v)ψ(x, v)dv dx = 1

such that
‖e−s(A+Kζ)tS(t)− ψ ⊗ ϕ‖ ≤ Me−εt

for all t ≥ 0 and some constants M ≥ 0 and ε > 0.

Proof. Since vmin > 0, it follows that (T (t))t≥0 is a nilpotent semigroup, i.e., there
is t0 > 0 such that

T (t) = 0 for all t ≥ t0. (17.11)

Here one can take t0 = 1
vmin

. Hence, r(T (t)) = ress(T (t)) = 0 for all t > 0. So, by
Lemma 17.3.a) and Theorem A.35, we have

ωess(S) = −∞.

On the other hand, equation (17.11) implies that

U1(t) =

∫ t

0

T (s)KζT (t− s) ds = 0

for all t ≥ 2t0, and therefore
R2(t) = S(t)

for all t ≥ 2t0. So, by Lemma 17.3.b) we see that R2(t) is irreducible for all
t ≥ 2t0. Now, one can apply Lemma 17.3.a), Proposition A.36 and Theorem A.38,
to conclude that r(S(t)) = r(R2(t)) > 0 for all t ≥ 2t0. Therefore,

−∞ = ωess(S) < ω0(S).

Applying Theorem 14.18 to the transport semigroup (S(t))t≥0, we finally obtain
the assertions. �

17.3 Notes and Remarks

The transport equation has been studied by many authors. Our presentation is
based on the approach used in the papers by Greiner [55], Vidav [147], and Voigt
[150, 151]. For more information see the monographs by Belleni-Morante [16],
Belleni-Morante and McBride [17], Mokhtar–Kharroubi [97], [98], Engel and Nagel
[43, Section IV.2], and Banasiak and Arlotti [11].
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17.4 Exercises

1. Let I := (a, b) be an open interval in R. A function f is called absolutely
continuous on I if for any ε > 0 there is δ > 0 such that for every finite
sequence of disjoint intervals (ak, bk) ⊂ I with

∑
k(bk − ak) < δ we have∑

k |f(bk) − f(ak)| < ε. Prove that the Sobolev space W1,1(I) is equal to
AC(I), the set of absolutely continuous functions on I. For the definition of
Sobolev spaces, see Appendix A.11.

2. Let (T (t))t≥0 be a C0-semigroup with generator A such that the mapping
t �→ T (t) is norm continuous for t ≥ t0 and some t0 ≥ 0 and that R(λ,A)T (t0)
is compact for some (and hence all) λ ∈ ρ(A). Prove that the operators T (t)
are compact for all t ≥ t0.

3. For the problem studied in Section 17.2 verify the following:

a) the expressions for the resolvent R(λ,A0) in (17.3),

b) the formula for the semigroup (T (t))t≥0 in (17.5),

c) the formula for the remainder Rm+1(t) :=
∑∞

k=m+1 Uk(t) in (17.10).

4. Consider the operator defined on L1(R+) by

Af := −f ′ − μf,

D(A) :=

{
f ∈ L1(R+) : f

′ ∈ L1(R+) and f(0) =

∫ ∞

0

β(a)f(a)da

}
,

where μ, β ∈ L∞(R+) are two nonnegative functions.

a) Prove that A generates a positive C0-semigroup (T (t))t≥0.

b) Show that (T (t))t≥0 is irreducible if and only if there is no τ ≥ 0 such
that β|(τ,∞) = 0 almost everywhere.

5. On E := L1[α/2, 1] consider the operators defined by

A0f = −f ′ − (μ+ b)f,

with

D(A0) = {f ∈ E : f ′ ∈ E, f(α/2) = 0},

Bf(s) =

{
4b(2s)f(2s) if α/2 ≤ s ≤ 1/2,

0 if 1/2 ≤ s ≤ 1,

for f ∈ E, where 0 ≤ μ ∈ C[α/2, 1] and b is continuous and such that b(s) > 0
for s ∈ (α, 1) and b(s) = 0 otherwise.

a) Prove that A0 generates a positive semigroup (T (t))t≥0, given by

T (t)f(s) =

{
e−

∫
s
s−t

(μ(r)+b(r)) drf(s− t) if s− t > α/2,

0 otherwise.
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b) Deduce that A := A0 + B with domain D(A) = D(A0) generates a
positive C0-semigroup (S(t))t≥0 on E.

c) Prove that S(t) is compact for all t > 1− α/2 (use Exercise 2).

d) Prove that (S(t))t≥0 is irreducible on E.

e) Deduce that (S(t))t≥0 possesses asynchronous exponential growth. (Use
Theorem A.38 and Theorem 14.18.)



Chapter 18

Transport Problems in Networks

Consider a closed network of pipes or wires in which some material (water, elec-
trons, information packets, goods, etc.) is flowing at constant speed on each edge,
with no friction or loss. In the nodes of the network the material is redistributed
into the pipes according to Kirchhoff’s laws. Simplifying the physical laws and
concentrating on the structure of the network, this situation can be described by
a system of linear transport equations on the edges of a graph.

Such problems can be solved by positive semigroups and the theory we de-
veloped in the previous chapters. We are able to describe the asymptotic behavior
of the solutions in terms of the properties of the underlying graph. It is a nice in-
terplay of finite- and infinite-dimensional results on positive matrices and positive
semigroups.

18.1 The Model and the Associated
Abstract Cauchy Problem

The network is given by a simple, directed graph G = (V,E) with vertices V =
{v1, . . . , vn} and directed edges E = {e1, . . . , em}. We assume that G is connected,
not necessarily strongly connected (recall the definitions in Section 6.1), but with-
out sinks, that is, every vertex has an outgoing edge. We describe the transport
process by the mass distribution on the edges and use the following basic assump-
tions.

• On every edge ei the particles are flowing in only one direction with constant
velocity ci > 0.

• No mass is gained or lost during the process. In particular, no absorption
takes place along the edges, and in every node a Kirchhoff lawholds, i.e.,∑

incoming material =
∑

outgoing material.

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
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• In every vertex vi the incoming material is distributed into the outgoing edges
ej according to weights wij ≥ 0 satisfying∑

j:vi→ej

wij = 1 for each i = 1, . . . , n. (18.1)

The graph structure is described by the following n×m matrices:

• the outgoing incidence matrix Φ− =
(
Φ−

ij

)
, with

Φ−
ij :=

{
1 if vi

ej−→,

0 otherwise,

• incoming incidence matrix Φ+ =
(
Φ+

ij

)
, with

Φ+
ij :=

{
1 if

ej−→ vi,

0 otherwise,

• the weighted outgoing incidence matrix Φ−
w = (Φw,ij), with

Φ−
w,ij :=

{
wij if vi

ej−→,

0 otherwise.

The matrix Φ = Φ+ − Φ− is the incidence matrix of the directed graph G.

Incidence matrices describe the structure of the network completely and we
obtain the n× n transposed adjacency matrix of the weighted graph G defined in
Chapter 1 as

A := Φ+
(
Φ−

w

)�
. (18.2)

This means that the nonzero entries of A correspond exactly to the edges of the
graph, keeping track also of the appropriate weights:

Aij =

{
wjk if vj

ek−→ vi,

0 otherwise.

Analogously, the m×m matrix

B :=
(
Φ−

w

)�
Φ+ (18.3)

is the transposed adjacency matrix of the line graph of G, which is roughly the
graph obtained from G by exchanging the roles of the vertices and edges (main-
taining the directions and the weights). Calculating its entries, one obtains

Bij =

{
wki if

ej−→ vk
ei−→,

0 otherwise.
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The following relations hold:

AΦ+ = Φ+B,
(
Φ−

w

)�
A = B

(
Φ−

w

)�
and Φ− (Φ−

w

)�
= ICn . (18.4)

We shall also need the matrix

BC := C−1BC for C = diag (cj). (18.5)

By condition (18.1), the matrices A and B as well as their powers are column
stochastic, and by Gelfand’s formula for the spectral radius we have

r(A) = lim
k→∞

‖Ak‖1/k = 1 = r(B). (18.6)

In particular, 1 is an eigenvalue of both matrices, with A�1 = 1 and B�1 = 1.
Moreover, from definition of these matrices in (18.2), (18.3), and (18.5) we infer
that

σ(A) \ {0} = σ(B) \ {0} = σ(BC) \ {0}. (18.7)

Example 18.1. Let us write the corresponding graph matrices for the graph pre-
sented in Figure 18.1. We obtain the entries of the adjacency matrix directly from
the left picture:

A =

⎛⎜⎜⎝
0 0 0 1

1− w 0 0 0
w 0 0 0
0 1 1 0

⎞⎟⎟⎠ .

v1 v2

v3 v4

1− w

w 1

1

1

v1 v2

v3 v4

e1

e2 e3

e4

e5

Figure 18.1: A weighted directed graph, left with weights, right with edge labels.

The entries in Φ−
w , Φ

+, and B depend on the labelling of edges, and for the labelling
indicated in Figure 18.1 we have

Φ−
w =

⎛⎜⎜⎝
1− w w 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎠ , Φ+ =

⎛⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

⎞⎟⎟⎠ ,
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B =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1− w
0 0 0 0 w
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎠ .

We can also compute the spectra of the adjacency matrices

σ(A) =
{
0, e2πi/3, e4πi/3, 1

}
= σ(B).

We now identify the edges as ej ≡ [0, 1], where we choose the parametrization
contrary to the direction of the flow, i.e., the material flows from 1 to 0. The
distribution of the material along an edge ej at time t ≥ 0 is described by the
functions xj (s, t) for s ∈ (0, 1).

The transport in the network can now be described by the following system
of equations:

∂txj (s, t) = cj∂sxj (s, t) , s ∈ (0, 1), t ≥ 0, (18.8)

xj (s, 0) = fj (s) , s ∈ (0, 1), (18.9)

Φ−
ijcjxj (1, t) = wij

m∑
k=1

Φ+
ikckxk (0, t) , t ≥ 0, (18.10)

for i = 1, . . . , n, and j = 1, . . . ,m.

Equation (18.8) describes transport on every edge and (18.9) is the initial
condition, where we denote by fj(s) the distribution of the mass on the edge ej
at time t = 0. The boundary conditions in (18.10) together with relations (18.1)
imply the Kirchhoff law in the vertices:

m∑
j=1

Φ−
ijcjxj (1, t) =

m∑
j=1

Φ+
ijcjxj (0, t) , i = 1, . . . , n, (18.11)

i.e., in each vertex the total outgoing flow per time unit is equal to the total
incoming flow per time unit.

Our next step is to transform the problem into an equivalent abstract Cauchy
problem. To this aim we take the Banach lattice

X := L1 ([0, 1],Cm) ,

on which we define the operator

A =

⎛⎜⎝c1
d
ds 0

. . .

0 cm
d
ds

⎞⎟⎠ (18.12)
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with domain

D(A) =
{
g ∈ W1,1 ([0, 1],Cm) : g(1) = BCg(0)

}
. (18.13)

If we can show that this abstract Cauchy problem corresponds to our original
transport problem, we can study it by means of semigroup theory. We use the
notation x(t, ·) ≡ x(t) ∈ X .

Proposition 18.2. The abstract Cauchy problem on X{
ẋ(t) = Ax(t), t ≥ 0,

x(0) = (fj),
(18.14)

is equivalent to the transport problem in (18.8)–(18.10).

Proof. We only need to show that the condition (18.13) in the domain is equivalent
to the boundary conditions in (18.10). First choose g ∈ D(A). Taking its jth
component we obtain

cjgj(1) = BjCg(0) =
(
Φ−

w

)�
j
Φ+Cg(0).

Note that the jth row of (Φ−
w)

�
corresponds to the edge ej and has exactly

one nonzero element, say wij , corresponding to the starting vertex vi for this edge
(i.e., Φ−

ij = 1). Therefore

Φ−
ijcjgj(1) = wij

m∑
k=1

Φ+
ikckgk(0).

To prove the converse, we compute the jth component

(BCg(0))j = c−1
j

(
Φ−

w

)�
j
Φ+Cg(0)

= c−1
j wij

m∑
k=1

Φ+
ikckgk(0)

= c−1
j Φ−

ijcjgj(1) = gj(1),

where in the last row we applied the boundary condition from (18.10) and used
again that Φ−

ij = 1. �
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18.2 The Simple Case cj = 1

Let us study first the simpler case when the velocities of the flow on all edges
coincide. We may assume in this case that cj = 1 for all j = 1, . . . ,m.

The operator A is

A := diag

(
d

ds

)
, with domain

D(A) :=
{
g ∈ W1,1 ([0, 1],Cm) : g(1) = Bg(0)

}
.

(18.15)

We start by computing the resolvent of this operator.

Proposition 18.3. For Reλ > 0 the resolvent R(λ,A) of the operator A is given by

(R(λ,A)f) (s) =

∞∑
k=0

e−λk

∫ 1

0

e−λ(t+1−s)Bk+1f(t) dt+

∫ 1

s

eλ(s−t)f(t) dt,

for any f ∈ X and s ∈ [0, 1]

Proof. Let f ∈ X and g ∈ D(A) such that

(λ −A)g = f, i.e., λg − g′ = f.

Using the variation of constants formula we obtain

g(s) = eλs · d+
∫ 1

s

eλ(s−t)f(t) dt, s ∈ [0, 1] (18.16)

for some d ∈ Cm. Since g ∈ D(A), we have g(1) = Bg(0), that is,

d · eλ = Bd+ B
∫ 1

0

e−λtf(t) dt,

which is further equivalent to

(
I − e−λB

)
d = B

∫ 1

0

e−λ(t+1)f(t) dt. (18.17)

By (18.6) we see that r
(
e−λB

)
< 1 for Reλ > 0, therefore we may use the

Neumann series for the resolvent R
(
1, e−λB

)
(see Corollary 2.15) and obtain d as

d =

∞∑
k=1

(
e−λB

)k
B
∫ 1

0

e−λ(t+1)f(t) dt.

Plugging this into (18.16) yields the desired formula. �

As a corollary we also obtain a so-called characteristic equation for the spec-
trum of A in terms of the eigenvalues of the adjacency matrices.
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Corollary 18.4. For λ ∈ C the following equivalences hold.

λ ∈ σ(A) ⇐⇒ eλ ∈ σ(B) ⇐⇒ eλ ∈ σ(A).

Proof. The first equivalence follows from relation (18.17), while for the second
recall that the nonzero spectra of B and A coincide, see (18.7). �
Example 18.5. For the graph presented in Example 18.1 we obtain

λ ∈ σ(A) ⇐⇒ λ =
2kπi

3
, k ∈ Z.

Formula (18.6) yields the spectral bound of the generator A.

Corollary 18.6. The spectral bound of the operator A given by (18.15) satisfies

s(A) = 0 ∈ σ(A)

and is a pole of the resolvent R(λ,A).

As we will see in the following proposition, the operator A is the generator
of the strongly continuous semigroup given explicitly as

T (t)f(s) = Bkf(t+ s− k), (18.18)

for k ∈ N0, k ≤ t + s < k + 1, and f ∈ X . It acts as a left shift with a “jump”
caused by the matrix B.

Proposition 18.7. The operators (T (t))t≥0 defined by (18.18) form a positive C0-
semigroup of contractions on X with generator A given by (18.15).

Proof. The semigroup law, the strong continuity, and the contraction property are
straightforward, while the positivity follows from the fact that B is positive. Hence
we only need to prove that A defined in (18.15) is indeed the generator of this
semigroup.

Denote by B the generator of (T (t))t≥0. We can compute its resolvent for
any Reλ > 0 using the integral representation formula in (9.11) and obtain, for
f ∈ D(A) and s ∈ [0, 1],

(R(λ,B)f) (s) =

∫ ∞

0

e−λt (T (t)f) (s) dt

=

∫ 1−s

0

e−λtf(t+ s) dt+
∞∑
k=1

∫ k−s+1

k−s

e−λtBkf(t+ s− k) dt.

Here we note that, by the Rellich–Sobolev embedding theorem (see Theorem
A.45), every f ∈ D(A) is continuous, and hence the computations above make
sense for any s ∈ [0, 1].

Substituting τ := s+t in the first and τ := s+t−k in other terms and taking
k′ := k− 1, we obtain (R(λ,A)f) (s) given in Proposition 18.3. Since R(λ,A) and
R(λ,B) coincide on the dense set D(A), we conclude that A = B. �
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As a consequence we obtained the well-posedness of our problem.

Corollary 18.8. The abstract Cauchy problem (18.14), with cj = 1 for all j =
1, . . . ,m, is well posed.

We now proceed to study the qualitative behavior of the solutions x(t) =
T (t)f to the problem (18.8)–(18.10).

We have seen already in Chapter 6 that strong connectedness of a graph
yields the irreducibility of its adjacency matrix. Amazingly, the same holds for
the semigroup (T (t))t≥0 (recall equivalent characterizations of irreducibility of a
semigroup from Proposition 14.10).

Proposition 18.9. The following properties of a graph G, its adjacency matrices A
and B, and the corresponding semigroup (T (t))t≥0 defined in (18.18) are equiva-
lent.

(i) G is strongly connected.

(ii) A and/or B are irreducible.

(iii) (T (t))t≥0 is irreducible.

Proof. (i) ⇐⇒ (ii): Since a graph is strongly connected if and only if its line graph
is strongly connected, this equivalence follows by Proposition 6.1.

(ii) =⇒ (iii): We use the representation of the resolvent given in Proposition
18.3 and the fact that, by Corollary 6.2, the powers of B are eventually strictly
positive. Therefore, we obtain that R(λ,A)f is a.e. strictly positive for λ > 0 and
f � 0. Hence the semigroup (T (t))t≥0 is irreducible (see also Example 14.11.a)).

(iii) =⇒ (ii): Let the semigroup (T (t))t≥0 be irreducible and take f(s) = xj

(s ∈ [0, 1]), the jth unit basis vector, for any j ∈ {1, . . . ,m}. Then R(λ,A)f must
be strictly positive, which means that the vector

∑∞
k=0 e

−λkBk+1xj � 0. Hence,
for each i ∈ {1, . . . ,m} there must exist an N such that

(
BN
)
ij
> 0. Since j was

arbitrary, B is irreducible by Corollary 6.2. �

Having shown these properties of the semigroup (T (t))t≥0, we can now de-
scribe the asymptotic behavior of the solutions to our transport problem.

Theorem 18.10. Let G be a strongly connected graph. Then the semigroup (T (t))t≥0

is asymptotically periodic, that is, the space X can be decomposed as

X = Xr ⊕Xs,

where Xr and Xs are closed, T (·)-invariant subspaces such that the following prop-
erties are fulfilled.

a) Ts(·) := T (·)|Xs is uniformly exponentially stable on the space Xs.

b) Tr(·) := T (·)|Xr is a periodic group on the space Xr with the period equal to
the greatest common divisor of the lengths of all cycles in the graph G.
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Proof. Using formula (18.18), we only need to examine the behavior of
(
Bk
)
. By

Corollary 5.23, the sequence
(
Bk
)
is asymptotically periodic with period h equal

to the index of imprimitivity of the matrix B. By Definition 5.22, this means that
we can decompose

Cm = Yr ⊕ Ys

so that B is strongly stable on Ys and periodic with period h on Yr. Moreover, Yr

consists of the spectral subspaces of B that correspond to the eigenvalues in the
boundary spectrum, and Ys of the spectral spaces corresponding to the inner part
of the spectrum of B (see the proof of Corollary 5.23).

Let P be the projection that belongs to this decomposition, i.e., Ys = kerP
and Yr = imP. Further, let P be the projection on X induced by P,

(Pf) (s) := Pf(s) for a.e. s ∈ [0, 1].

This projection commutes with every T (t) and yields a decomposition

X = imP ⊕ kerP := Xr ⊕Xs

and

T (·) = Tr(·)⊕ Ts(·),

where Tr(t) := T (t)|Xr and Ts(t) := T (t)|Xs . Note that f ∈ Xr (f ∈ Xs) iff
f(s) ∈ Ys (f(s) ∈ Yr) for a.e. s ∈ [0, 1]. Therefore, we have a spectral decomposition
for T (·).

By the irreducibility of (T (t))t≥0, the boundary spectrum of its generator con-
sist of eigenvalues (see Lemma 14.16). By Corollary 18.4 and the spectral mapping
theorem for the point spectrum (Theorem A.33), we obtain

eλ ∈ σb(B) ⇐⇒ etλ ∈ σb (Tr(t)) , t ≥ 0.

Hence periodicity of B on Yr implies that the semigroup (Tr(t))t≥0 is periodic
on Xr with the same period h. By Proposition 6.4, the number h is the greatest
common divisor of all cycle lengths in graph G.

Note that also the spectra of T (1) and B coincide, hence r (Ts(1)) < 1, and
by Proposition 12.4, the semigroup (Ts(t))t≥0 is uniformly exponentially stable
on Xs. �

Observe that the period does not depend on the weights on the edges.

Example 18.11. For the graph in Figure 18.1, the period of the periodic group is
3, while for the one in Figure 18.2 it is 1.
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18.3 The General Case

In the previous section we have explicitly constructed the semigroup generated by
A by using the adjacency matrix B. Many properties of this semigroup were caused
by the positive irreducible column stochastic matrix B. Since, in the general case,
we are not able to write down the semigroup explicitly, we shall use the theory
of positive semigroups in infinite dimensions to obtain results on the qualitative
behavior. Again, the graph structure and appropriate positive matrices play an
important role.

Let us first compute the resolvent of A. The formula in this case is more
complicated and we need some notation. Define matrices

Eλ(s) := diag
(
e(λ/ck)s

)
, s ∈ [0, 1], (18.19)

and yet another (transposed) weighted adjacency matrix of the graph G and its
line graph,

Aλ := Φ+Eλ(−1)
(
Φ−

w

)�
and BC,λ := Eλ(−1)BC .

For the adjacency matrices notice that A0 = A and BC,0 = BC , while

r(Aλ) ≤ ‖Aλ‖ < 1 and r(BC,λ) ≤ ‖BC,λ‖ < 1 for Reλ > 0. (18.20)

Furthermore, the symbol δ0 denotes the point evaluation at 0, and

(Rλf)(s) :=

∫ 1

s

Eλ (s− t)C−1f(t) dt, s ∈ [0, 1] , f ∈ X.

Proposition 18.12. For Reλ > 0 the resolvent R(λ,A) of A is given by

R(λ,A) =
(
IX + Eλ(· − 1)C−1

(
Φ−

w

)�
(1− Aλ)

−1
Φ+C ⊗ δ0

)
Rλ (18.21)

=
(
IX + Eλ(·) (1− BC,λ)

−1 BC,λ ⊗ δ0

)
Rλ. (18.22)

Proof. We proceed as in the proof of Proposition 18.3. Let f ∈ X and g ∈ D(A)
be such that

(λ−A)g = f.

The variation of constants formula yields

g(s) = Eλ(s)d +

∫ 1

s

Eλ(s− t)C−1f(t) dt, s ∈ [0, 1], (18.23)

for some d ∈ Cm. Since g ∈ D(A), we have g(1) = BCg(0), that is,

Eλ(1)d = BCd+ BC

∫ 1

0

Eλ(−t)C−1f(t) dt.
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Multiplying this relation by Eλ(−1) and reorganizing it, we obtain

(I − BC,λ) d = BC,λ (Rλf) (0).

By inequalities (18.20), the resolvent (I − BC,λ)
−1

exists for Re λ > 0, and

d = (I − BC,λ)
−1 BC,λ (Rλf) (0).

Plugging this into relation (18.23) yields formula (18.22).

To obtain relation (18.21) first observe that by (18.20) we may use the Neu-
mann series for both resolvents R (1,BC,λ) and R (1,Aλ). Taking also the relations
between the graph matrices in (18.2), (18.3), (18.4), and (18.5) into account, we
finally obtain

(I − BC,λ)
−1

=

∞∑
k=0

(BC,λ)
k

= Eλ(−1)C−1
(
Φ−

w

)� ∞∑
k=0

(Aλ)
k Φ+C

= Eλ(−1)C−1
(
Φ−

w

)�
(1− Aλ)

−1
Φ+C. �

Notice that R(λ,A) is a compact and positive operator. Moreover, we have
the following equation characterizing the spectrum of A in terms of the adjacency
matrices.

Corollary 18.13. For every λ ∈ C we have

λ ∈ σ (A) ⇐⇒ det (1− Aλ) = 0 ⇐⇒ det (1− BC,λ) = 0.

In particular, λ ∈ ρ(A) for Reλ > 0, and the spectral bound satisfies

s (A) = 0 ∈ σ (A)

and is a pole of the resolvent R(λ,A).

Now we prove that A generates a positive contractive C0-semigroup.

Lemma 18.14. The operator A defined in (18.12)–(18.13) is dispersive on the Ba-
nach lattice X.

Proof. Let g ∈ D (A). Define χ :=
(
χ{g>0}

)
and observe that χ ∈ L∞ ([0, 1],Cm)

satisfies χ ∈ I+(g). So, by Proposition 11.12, it suffices to prove that 〈Ag, χ〉 ≤ 0.

From the definition of A and χ we have

〈Ag, χ〉 =
m∑

k=1

∫ 1

0

ckg
′
k(s)χ{gk>0}ds

=
〈
[Cg(1)]

+ − [Cg(0)]
+
,1
〉
Rm

≤
〈
[BCg(0)]

+ − [g(0)]+ , C1
〉
Rm

,
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where 1 denotes the constant 1 vector in Rm and we use the positivity and sym-
metry of C as well as the condition g(1) = BCg(0) for g ∈ D(A). Continuing the
above estimate and using the positivity of BC and the equality B�

CC1 = C1, we
finally obtain

〈Ag, χ〉 ≤
〈
BC [g(0)]

+ − [g(0)]
+
, C1
〉
Rm

=
〈
[g(0)]

+
, (B�

C − I)C1
〉
Rm

= 0. �

Since D(A) is dense in X , the dispersivity shown above, Proposition 18.12,
and Theorem 11.10 yield the generation result.

Corollary 18.15. The operator A defined in (18.12)–(18.13) generates a positive
contractive C0-semigroup (T (t))t≥0. Hence, the abstract Cauchy problem (18.14)
is well posed.

By using the Jacobs–de Leeuw–Glicksberg splitting theorem, see Theorem
A.39, and Proposition A.40, we already obtain a projection that decomposes the
space X into a pair of T (·)-invariant subspaces such that the semigroup splits
into a reversible part and a stable part. More can be deduced for irreducible
semigroups. As before, the irreducibility of the semigroup is equivalent to the
strong connectedness of the underlying graph (compare with Proposition 18.9).

Proposition 18.16. The following properties for a graph G, its adjacency matrices
Aλ and BC,λ, and the semigroup (T (t))t≥0 corresponding to the operator A defined
in (18.12)–(18.13) are equivalent.

(i) G is strongly connected.

(ii) A and/or B are irreducible.

(iii) Aλ and/or BC,λ are irreducible.

(iv) (T (t))t≥0 is irreducible.

Proof. The equivalence (i) ⇐⇒ (ii) holds by Proposition 18.9 and (ii) ⇐⇒ (iii) is
clear from the definition of Aλ and BC,λ.

(iii) =⇒ (iv): It suffices to show that for λ > 0 and f � 0 the function
R(λ,A)f is strictly positive a.e. We use formula (18.22) and first observe that
Rλf ∈ X is strictly positive everywhere except on the largest interval (1− ε, 1] for
which f |(1−ε,1] = 0. Applying BC,λ⊗δ0 to Rλf , we obtain a strictly positive vector.
Since the matrix BC,λ is positive, irreducible, and (18.20) holds for Reλ > 0, its
resolvent (1 − BC,λ)

−1 is strictly positive (see Exercise 5.4). Observe also that
applying Eλ yields a strictly positive vector, and we obtain R(λ,A)f � 0 a.e.

(iv) =⇒ (iii): If R(λ,A)f � 0 a.e. for λ > 0 and f > 0, we use the Neumman

series for (1−BC,λ)
−1 =

∑∞
k=0 (BC,λ)

k
and proceed as in the proof of Proposition

18.9 concluding that BC,λ is irreducible. �
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Combining all the properties obtained so far and using Theorem 14.19, we
shall be able to describe the asymptotic behavior as soon as we determine the
boundary spectrum of the generator. By Theorem 14.17, there is α0 ≥ 0 such that

σb(A) = iα0Z

and σb(A) contains only simple poles. Moreover, by Corollary 18.13, σb(A) can be
characterized as

iα ∈ σb(A) ⇐⇒ 1 ∈ σ (BC,iα)

for some α ∈ R. The following lemma relates this property of the adjacency matrix
to a property of the corresponding weighted directed graph.

Lemma 18.17. Let G be a strongly connected graph. For any α ∈ R, the following
properties are equivalent.

(i) 1 ∈ σ (BC,iα) ,

(ii) e−iατ(j1,...,jk) = 1 for all cycles ej1 , . . . , ejk in G, where

τ(j1, . . . , jk) :=
1

cj1
+ · · ·+ 1

cjk
. (18.24)

Proof. Since BC,iα = C−1BI,iαC, there is no loss of generality to study only the
simpler matrix

BI,iα = diag
(
e
− iα

ck

)
B. (18.25)

(i) =⇒ (ii): Assume first that 1 ∈ σ (BI,iα) and BI,iαy = y. Since B is a
positive irreducible matrix with r(B) = 1 and |BI,iα| ≤ B, by Wielandt’s lemma
(see Lemma 5.18) we have

BI,iα = DBD−1, (18.26)

where D is a diagonal matrix with |D| = I. From the proof of this lemma it is
also clear that |y| � 0 and we can take for the diagonal entries Dkk of D the
coordinates of y: Dkk = yk, k = 1, . . . ,m. For every two connected edges es and
er such that the head of es coincides with the tail of er, we have Brs �= 0, hence
(18.26) implies

e−
iα
cr =

yr
ys

.

If a cycle in G consists of the edges ej1 , . . . , ejk , then

e−iατ(j1,...,jk) =

k∏
l=1

e
− iα

cjl =

k∏
l=1

yjl+1

yjl
=

yjk+1

yj1
.

Since the eigenvector y is determined only up to a scalar multiple, we may take
yjk+1

= yj1 , and we are done.
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(ii) ⇐= (i): Recall the definition of the determinant of a m×m matrix B as

detB =
∑

π∈Sm

(−1)sign(π)b1,π(1) · · · bm,π(m),

where Sm is the set of all permutations of order m. Remember also that any
permutation can be expressed as a product of cycles. Now plug B = I − BI,iα in
the above expression and note that the nonzero products of the entries correspond
to closed walks in G. Assuming (ii) and using (18.25) we thus have

det (I − BI,iα) = det (I − B) = 0, i.e., 1 ∈ σ (BI,iα) . �

As a consequence, a kind of linear dependency condition for the velocities
over Q plays a crucial role:

There is 0 < d ∈ R such that d · τ(j1, . . . , jk) ∈ N

for all cycles ej1 , . . . , ejk in G.
(18.27)

Note that this condition was trivially fulfilled in the simple case of Sec-
tion 18.2.

Proposition 18.18. Let G be a strongly connected graph. The boundary spectrum
of the generator A defined in (18.12)–(18.13) equals

σb(A) =

{
2πi
τ Z if (18.27) is satisfied,

{0} otherwise,

where

τ :=
1

d
gcd {d · τ(j1, . . . , jk) : ej1 , . . . , ejk is a cycle in G} , (18.28)

with τ(j1, . . . , jk) defined in (18.24).

Proof. By Theorem 14.17 and Corollary 18.13, 0 ∈ σb(A). Moreover, any nonzero
element in σb(A) is of the form iα for some α �= 0 and in this case 1 ∈ σ (BC,iα).
We now use Lemma 18.17. If condition (18.27) holds, there exists d > 0 such that
for every cycle ej1 , . . . , ejk in G one has

ατ(j1, . . . , jk) ∈ 2πZ ⇐⇒ α

d
dτ(j1, . . . , jk) ∈ 2πZ

⇐⇒ α

d
dτ ∈ 2πZ ⇐⇒ iα ∈ 2πi

τ
Z,

with τ given in (18.28). Further, if there is a nonzero element iα ∈ σb(A), Lemma
18.17 guarantees that α

2π τ(j1, . . . , jk) ∈ Z for every cycle ej1 , . . . , ejk in G, which
imposes condition (18.27). �
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This two different forms of the boundary spectrum are reflected by the two
different asymptotical behaviors of the solution semigroup, which is either asymp-
totically periodic or converges towards an equilibrium.

Theorem 18.19. Suppose that the graph G is strongly connected. Then the space
X and the semigroup T (·) can be decomposed as

X = Xr ⊕Xs and T (·) = Tr(·)⊕ Ts(·)

such that the following holds.

a) Ts(·) is strongly stable on Xs.

b) In the case when condition (18.27) is fulfilled, Tr(·) is a periodic irreducible
group on

Xr = span

{
f ∈ D(A) : ∃k ∈ Z such that Af =

2kπi

τ

}
with period τ given in (18.28).

c) If condition (18.27) is not fulfilled, then Tr(·) converges strongly towards a
projection onto the one-dimensional subspace

Xr = fixT (·) = ker A,

which is spanned by a strictly positive eigenvector of A.

Proof. By Proposition 18.18 and Corollary 18.13, we may apply Theorem 14.19
and obtain the desired decomposition with Xr = imP and Xs = kerP . The
restricted semigroup (Ts(t))t≥0 on Xs is strongly stable. Moreover, Xr is a closed
sublattice of X and (Tr(t))t≥0 is an irreducible periodic semigroup on Xr.

Now, if condition (18.27) holds, the spectral inclusion property for eigenval-
ues, see Corollary 9.32, implies Tr(τ) = I for τ defined in (18.28), and it also
follows that τ is the period of the periodic semigroup (Tr(t))t≥0 on Xr.

If, on the other hand, condition (18.27) is not fulfilled, Xr = ker A is one-
dimensional and by Proposition 14.12, the corresponding projection P has the
form P = f∗ ⊗ f , where f and f∗ are a strictly positive eigenvectors of A and A∗,
respectively. �

Remark 18.20. In the case when condition (18.27) holds one can prove an even
stronger result. Using a variant of the spectral mapping theorem, one obtains that
Ts(·) is uniformly exponentially stable on Xs. Furthermore, according to Remark
14.20, it can be shown that the subspace Xr is isomorphic to L1 (Γ) , where Γ is
the unit circle, and the group Tr(·) is isomorphic to the rotation group on L1 (Γ)
with period τ .
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18.4 Vertex Control in Networks

Here we return to the simple case of equal velocities (cj = 1) studied in Section
18.2. We would like to control the flow in our network by adding or subtracting
material in a chosen vertex. We can surely not reach all desired states in such a
way, as the following simple example shows.

Example 18.21. Consider the network in Figure 18.2, where the weights w and
1−w represent the proportions of the mass leaving vertex v1 into edges leading to
v2 and v3, respectively. Observe that the mass distributions on the outgoing edges
from v1 will always satisfy the ratio w

1−w . Therefore, not every mass distribution
on the edges can be attained. Taking this observation into account, we shall see
that all other distributions can be achieved if we control in the vertices v2 or v3,
but not by controlling in v1 or v4 (see Example 18.30).

v4 v1

v2v3

1

w 1− w

1

1

Figure 18.2: Weighted directed graph from Example 18.21.

Based on the observations in the previous example, we ask: Which states
(i.e., mass distributions) in the network can be reached by controlling the flow in
a single vertex?

To tackle this question, we shall use control theory. Recall the notions from
the theory of positive control systems in finite dimensions introduced in Chapter 8.
However, the state space X := L1([0, 1],Cm) is now an infinite-dimensional Banach
space. We consider systems without observation (i.e., Y = X and C = 1), and
assume the control takes place only on a small subset of X . So, besides the control
space U := C, we also use a boundary space ∂X := Cn, both finite-dimensional.

We “split” the system operator A defined in Chapter 8 into two operators:
a closed, densely defined system operator Am : D(Am) ⊆ X → X and a boundary
operator Q ∈ L([D(Am)], ∂X). The control operator B now goes from the control
space U into the boundary space ∂X .

We define these operators for transport in networks. Observe that, using the
relations between graph matrices in (18.3) and (18.4), the domain of A defined by
(18.15) can be written as

D(A) =
{
g ∈ W1,1([0, 1],Cm) : g(1) ∈ im(Φ−

w)
� and Φ−g(1) = Φ+g(0)

}
.
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Define the system operator as

Am := diag

(
d

ds

)
, with

D(Am) :=
{
g ∈ W1,1([0, 1],Cm) : g(1) ∈ im(Φ−

w)
�} (18.29)

and the boundary operator as

Q := Φ−δ1 − Φ+δ0 ∈ L([D(Am)], ∂X), (18.30)

where δ1 and δ0 are the point evaluations at 1 and 0, respectively. Then the
abstract Cauchy problem (18.14) takes on the form⎧⎪⎨⎪⎩

ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = 0, t ≥ 0,

x(0) = f.

We now impose control in the vertex v = vi ∈ V for some fixed i ∈ {1, . . . , n}.
In the following we identify this vertex with a vector of the canonical basis of Cn.
Let B be any (bounded) linear operator acting on the control space U = C as

B : C −→ span{v} ⊂ ∂X = Cn.

With these notations we arrive at an abstract Cauchy problem with boundary con-
trol written as an abstract boundary control system (compare with (8.1)):⎧⎪⎨⎪⎩

ẋ(t) = Amx(t), t ≥ 0,

Qx(t) = Bu(t), t ≥ 0,

x(0) = f.

(18.31)

A function x(·) = x(·, f, u) ∈ C1(R+, X) with x(t) ∈ D(Am) for all t ≥
0 solving problem (18.31) is called a classical solution of the boundary control
problem. In order to describe the states a given system can possibly attain one
defines the following space.

Definition 18.22. The approximate reachability space associated to problem
(18.31) is

RBC := cl
{
y ∈ X : ∃t > 0 and u(·) ∈ L1([0, t], U) such that y = x(t, 0, u)

}
.

(18.32)
The boundary control system (18.31) is called approximately boundary controllable
if RBC = X .

To describe this space in terms of the operators Am, Q, and B, we define for
λ ∈ ρ(A)

Bλ :=
(
Q|ker(λ−Am)

)−1
B ∈ L (U, ker(λ−Am)) . (18.33)

This operator is well defined under our assumptions and yields the following.
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Theorem 18.23. The approximate reachability space RBC of system (18.31) coin-
cides with

a) the smallest closed, T (·)-invariant subspace of X containing im(Bμ) for all
μ sufficiently large;

b) the smallest closed, R(μ,A)-invariant, subspace of X containing im(Bμ) for
all μ > ω0(T ) sufficiently large;

c) span
( ⋃

λ>ω im(Bλ)
)
for some ω > ω0(T ).

On the other hand we define another type of reachability space, which is
independent of the boundary and control operators.

Definition 18.24. The maximal reachability space associated to system (18.31) is

RBC
max := span

( ⋃
λ>ω0(T )

ker(λ −Am)

)
. (18.34)

The system (18.31) is called maximally controllable if RBC = RBC
max.

To justify the name of this space, note that the operators Bλ map onto
ker(λ − Am). So, by Theorem 18.23.c), RBC ⊂

⋃
λ>ω im(Bλ) for ω large enough.

Hence, RBC
max ⊇ RBC is indeed the largest possible space of states that can be

approximately reached by applying some boundary control B.

Since the eigenvectors of Am have to satisfy the boundary conditions in the
vertices (see the domain in (18.29)), we see that the space RBC

max can be a proper
subspace of the state space X = L1([0, 1],Cm). This phenomena was already
noticed in Example 18.21. The relevant question for the controllability of our
network problem is whetherRBC = RBC

max can be achieved, i.e., whether the system
is maximally controllable. For this purpose we describe explicitly both reachability
spaces in terms of the graph matrices.

Lemma 18.25. The maximal reachability space RBC
max is

RBC
max = L1 ([0, 1],C)⊗ im(Φ−

w)
� (18.35)

= span
{
(α1g, . . . , αmg) : g ∈ L1 ([0, 1],C) and (α1, . . . , αm) ∈ im(Φ−

w)
�} .

Proof. Observe that for every λ ∈ σp(Am), the eigenspace ker(λ−Am) is spanned
by the functions

g(s) = eλ(s−1)(α1, . . . , αm)

satisfying
g(1) = (α1, . . . , αm) = (Φ−

w)
�d for some d ∈ Cn,

that is by functions of the form g(s) = eλ(s−1)(Φ−
w)

�d. By the Stone–Weierstrass
theorem (see Theorem A.20), the span of

{
eλ(·−1) : λ > ω0(T )

}
is dense in the

space C([0, 1],C) for the sup-norm and thus also in L1([0, 1],C), hence we are
done. �
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In order to compute RBC using Theorem 18.23, we need the form of the op-
erators Bλ for λ large enough. We start by computing the inverse of the boundary
operator restricted to the eigenspace ker(λ−Am).

Lemma 18.26. For λ > 0 = ω0(T ) we have(
Q|ker(λ−Am)

)−1
= eλ(·)(Φ−

w)
�(eλ − A)−1.

Proof. Remember first that Q = Φ−δ1 − Φ+δ0. Then compute

Qeλ(·)(Φ−
w)

� (eλ − A
)−1

=
(
eλΦ−(Φ−

w)
� − Φ+(Φ−

w)
�) (eλ − A

)−1

=
(
eλ − A

) (
eλ − A

)−1
= ICn ,

where we used the relations between the graph matrices in (18.4).

As in the proof of Lemma 18.25, we have for any g ∈ ker(λ−Am) that

g(s) = eλ(s−1)(Φ−
w)

�d for some d ∈ Cn.

Applying Q to this function we obtain, using again the relations in (18.4),

Qg = Φ−g(1)− Φ+g(0) = Φ−(Φ−
w)

�d− e−λΦ+(Φ−
w)

�d = e−λ(eλ − A)d,

and therefore

eλ(·)(Φ−
w)

� (eλ − A
)−1

Qg = eλ(·−1)(Φ−
w)

�d = g.

This concludes the proof. �

Theorem 18.23.c) now yields the following characterization of the approxi-
mate reachability space.

Corollary 18.27. Let the standard basis vector vi ∈ Cn correspond to the vertex in
G in which the control takes place. There exists ω > 0 such that

RBC = span
⋃
λ>ω

{
eλ(·)(Φ−

w)
� (eλ − A

)−1
vi

}
(18.36)

= L1 ([0, 1],C)⊗ (Φ−
w)

� (span{vi,Avi, . . . ,An−1vi
})

. (18.37)

Proof. The first equality is a consequence of Theorem 18.23.c) and Lemma 18.26.
We only have to prove the second equality. Using formula (18.18) and relations
(18.4), we have

T (1)
(
eλ(·)(Φ−

w)
� (eλ − A

)−1
vi

)
= eλ(·)B(Φ−

w)
� (eλ − A

)−1
vi

= eλ(·)(Φ−
w)

� (eλ − A
)−1

Avi ∈ RBC,
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where the last inclusion follows by the invariance of RBC under the semigroup,
see Theorem 18.23.a). Applying T (1) to this vector again yields

T (1)
(
eλ(·)(Φ−

w)
� (eλ − A

)−1
Avi
)
= eλ(·)(Φ−

w)
� (eλ − A

)−1
A2vi ∈ RBC.

Continuing this procedure, we obtain that

eλ(·)(Φ−
w)

� (eλ − A
)−1

Akvi ∈ RBC, k ∈ N0.

Since RBC is a linear subspace, we also have that

eλ · eλ(·)(Φ−
w)

� (eλ − A
)−1

Akvi − eλ(·)(Φ−
w)

� (eλ − A
)−1

Ak+1vi

= eλ(·)(Φ−
w)

�Akvi ∈ RBC, k = 0, 1, . . . , n− 1.

Using the Stone–Weierstrass theorem, the Neumann series expansion of the

resolvent
(
eλ − A

)−1
, and the Cayley–Hamilton theorem (see Corollary 2.12), we

finally obtain the result. �

We are now able to characterize the vertices of our graph in which the control
operator can achieve the maximal control.

Theorem 18.28. The following assertions are equivalent for a vertex vi of the
graph G.

(i) RBC = RBC
max, i.e., the flow is maximally controllable in the vertex vi.

(ii) span
{
vi,Avi, . . . ,An−1vi

}
= Cn.

Proof. Using equations (18.35) and (18.37), (i) is equivalent to

RBC
max = L1 ([0, 1],C)⊗ (Φ−

w)
�Cn

= L1 ([0, 1],C)⊗ (Φ−
w)

� (span{vi,Avi, . . . ,An−1vi
})

= RBC.

This holds if and only if span
{
vi,Avi, . . . ,An−1vi

}
= Cn since (Φ−

w)
� is injective,

hence left invertible. �
Remark 18.29.

a) The assertion (ii) in Theorem 18.28 is a Kàlmàn-type condition, similar to
the one met in Chapter 8 (see, e.g., Corollary 8.15). In our situation, it
guarantees that by controlling in the vertex vi the largest possible space of
mass distributions in the network can be (approximately) reached.

b) In Section 8.2 we have introduced positive controllability for finite-dimen-
sional systems. In our network example it is also reasonable to consider the
positive control problem. However, the treatment of such systems is much
more complicated. Using different techniques one can prove that the flow is
maximally positive controllable in the vertex vi if and only if

co{vi,Avi,A2vi, . . . } = Rn
+. (18.38)
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Example 18.30. We again consider the network in Figure 18.2. Using appropriate
graph matrices and Lemma 18.25, we see that the maximal reachability space
RBC

max is

span

{
(α1g, . . . , α5g) : g ∈ L1 ([0, 1],C) , (α1, . . . , α5) ∈ C5, α3 =

1− w

w
α1

}
.

Moreover, verifying the Kàlmàn condition from Theorem 18.28 one obtains that

RBC
max = RBC ⇐⇒ vi = v2 or vi = v3.

18.5 Notes and Remarks

Dynamical processes taking place in networks are of enormous interest in recent
years, modeling various real life phenomena. Methods from the theory of operator
semigroups to treat such processes were first used by Kramar and Sikolya [76] for
the transport equation on a finite network. These methods were further applied
to generalizations of this problem in finite networks by Sikolya [130], Mátrai and
Sikolya [91], Kunszenti–Kovács [79], and Banasiak and Namayanja [12]. The linear
Boltzmann equation with scattering, as introduced in Chapter 17, was considered
on a network by Radl [116]. Engel et al. [42, 41], and Boulite et al. [20] studied
some related control problems, Bayazit, Dorn, and Rhandi [15] a delay problem,
and Bayazit, Dorn, and Kramar Fijavž [14] a non-autonomous problem for flows
in networks. A transport problem in infinite networks was considered by Dorn
[33], Dorn, Keicher, and Sikolya [34], and Kunszenti–Kovács [78]. See also Dorn
et al. [35] for a survey of the semigroup theory approach to transport processes in
networks.

The context of the first and third sections relies on the above-cited works
[76, 91] with some adaptations to the physically correct Kirchhoff laws mentioned
in [12]. The second section uses results from [33] adapted to finite networks while
the results of the last section originate in [42, 41]. Specifically, for the proof of
Theorem 18.23 see Engel et al. [41, Theorem 2.12]. Positive controllability was
studied in Boulite at al. [20], where condition (18.38) appears.

For the semigroup approach to many other dynamical processes in networks
we refer to the recent monograph by Mugnolo [100].

18.6 Exercises

1. In Example 18.1 the appropriate graph matrices are given for the graph in
Figure 18.1.

a) Verify the relations (18.2), (18.3), and (18.4) for these matrices.
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b) Choose a labelling of the edges different from the one on the right-hand
picture in Figure 18.1. Verify that your specific choice of labels does not
affect the relations above.

2. Take the graph in Figure 18.2 and the associated operator A defined by
(18.12)–(18.13). Compute the spectrum of A and describe the asymptotic
behavior of the solutions for the following cases:

a) cj = 1 for all j = 1, . . . ,m;

b) cj are not all equal, but condition (18.27) is fulfilled;

c) cj are not all equal and condition (18.27) is not fulfilled.

In each of the last two cases choose appropriate values of cj and use them in
your computations.

3. Show that the following holds for the control flow problem considered on the
graph in Figure 18.3.

v4

v5 v3v2

v1

1

β 1− β − γ

γ

1
1

α
1− α

Figure 18.3: Weighted directed graph from Exercise 3.

a) The flow is maximally controllable in any of the vertices v2 and v3,
independently of the particular choice of the weights.

b) The flow is not maximally controllable in any of the vertices v4 and v5,
independently of the particular choice of the weights.

c) The problem is maximally controllable in v1 if and only if

α− β − α · γ �= 0.

4. Suppose that we control the flow in network G in the vertices vi1 , . . . , vik .
Show that in this case one can characterize maximal controllability by the
following modification of the Kàlmàn condition given in Theorem 18.28:

span
{
vi1 ,Avi1 , . . . ,A

n−1vi1 , . . . , vik ,Avik , . . . ,A
n−1vik

}
= Cn.
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5. Find examples of weighted directed graphs in which the flow is

a) maximally controllable in every vertex;

b) not controllable in any of its vertices.

6. Consider a generalized transport model from Section 1 in which we allow
some absorption along the edges, so equation (18.8) now takes the form

∂txj (s, t) = cj∂sxj(s, t) + qjxj(s, t), s ∈ (0, 1), t ≥ 0,

for some absorption coefficients qj , j = 1, . . . ,m.

a) Write down the appropriate operator A and show well-posedness using
a bounded perturbation.

b) What can you say about the asymptotic behavior of the solutions in
this case?



Chapter 19

Population Equations with Diffusion

Many applications of positive semigroups occur in mathematical biology or chem-
istry. In the finite-dimensional part of our text we have already discussed a very
simple discrete-time population model, called the Leslie model (see Section 6.3). In
this chapter we present a time-continuous age-structured population model with
spatial diffusion. We present a rather advanced model in order to show the reader
some generalizations and applications.

After presenting our model, we describe the appropriate abstract framework.
In Sections 19.2 and 19.3 we introduce Hille–Yosida operators, extrapolation spaces
and extrapolated semigroups. Since we are dealing with a non-autonomous prob-
lem in Section 19.4, we also introduce evolution families. The results are then
applied to our population model in Section 19.5.

Although the presented theory is quite demanding, one can still recognize
the thread we are following throughout our text. Since this chapter is meant as an
outlook, its style differs from the rest of the book by not giving full proofs.

19.1 The Mathematical Model

Let us start by describing our McKendrick type model with age- and space-
dependent spatial diffusion. Consider the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(t, a, x) + ∂au(t, a, x) = κ(a)Δu(t, a, x)− μ(a, x)u(t, a, x),

t ≥ 0, a ∈ I, x ∈ Ω,

∂νu(t, a, x) = 0, t ≥ 0, a ∈ I, x ∈ Γ1,

u(t, a, x) = 0, t ≥ 0, a ∈ I, x ∈ Γ2,

u(t, 0, x) =

∫
I

β(a, x)u(t, a, x) da, t ≥ 0, x ∈ Ω,

u(0, a, x) = f(a, x), a ∈ I, x ∈ Ω.

(19.1)

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
Advances and Applications 257, DOI 10.1007/978-3-319-42813-0_19

303© Springer International Publishing AG 2017
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Here, u(t, a, x) is the population density at time t, age a ∈ I, and position
x ∈ Ω, a bounded domain in ess with smooth boundary ∂Ω = Γ1 ∪ Γ2. We take
I := [0, am] if am < ∞ and I = R+ if am = ∞, where am is the maximal life
expectancy of the species. By ∂νu we denote the normal derivative of u. The
coefficient κ(a) is an age-dependent diffusion coefficient. Here, for simplicity, we
assume that the mortality rate 0 ≤ μ ∈ L∞(I×Ω). One can allow μ to be singular
with respect to x and a, see Remark 19.27. Nonintegrability of μ at a = am
ensures that no individual reaches maximal age, and a singularity of x �→ μ(a, x)
may represent a very hostile part of the domain. Finally, the birth or fertility rate
β ≥ 0 is supposed to be uniformly continuous with respect to a and bounded with
respect to x.

We shall show existence and uniqueness of positive (generalized) solution
of problem (19.1) and discuss spectral and asymptotic properties of the solution
operator in E := L1(I × Ω). This is the natural state space for such equations,
because ‖u(t)‖ gives the size of the population at time t.

Let us briefly describe our approach. Consider the realization A1(a) in X :=
L1(Ω) of the diffusion operatorA(a, x,D) := κ(a)Δ subject to the mixed boundary
conditions given in the second and third equation of problem (19.1). The operator
Lf = −f ′ + A(·)f(·) defined on a suitable domain of E ∼= L1(I,X) has a closure
G in E. It is important for our analysis that the restriction G0 of G to functions
with f(0) = 0 generates the so-called evolution semigroup

(T0(t)f)(a) := χI(a− t)TΔ1

(∫ a

a−t

κ(s) ds

)
f(a− t), t ≥ 0, a ∈ I, f ∈ L1(I,X),

where TΔ1(·) is the semigroup generated by the Laplace operator subject the
boundary conditions given in the second and third identity of problem (19.1) on
L1(Ω). Using the perturbation theory of Miyadera type developed in Chapter 13,
we show that D(G) is contained in the domain of the multiplication operator V
induced by μ on E and that the operator GV on X × E defined by

(0, f) �−→ (−f(0), (G− V )f) for f ∈ D(G)

is a Hille–Yosida operator, see Section 19.2. The birth law in (19.1), given by

Bf :=

∫
I

β(a, ·)f(a, ·)da,

can be expressed as a bounded perturbation of GV in L1(Ω) × L1
(
I,L1(Ω)

)
of

the form (0, f) �→ (Bf, 0). In this way we obtain the existence of a positive C0-
semigroup (S0(t))t≥0 on E solving problem (19.1). For the spectral and asymptotic
properties of (S0(t))t≥0 we use a perturbation theorem for the essential spectral
radius, see Theorem 19.5. In particular, if β is strictly positive, then (after rescal-
ing) the solution semigroup (S0(t))t≥0 converges exponentially to the projection
on the unique positive stationary solution.
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19.2 Hille–Yosida Operators and
Extrapolated Semigroups

For the following we need the notion of Hille–Yosida operators and their corre-
sponding extrapolated semigroups. We collect all important definitions and rele-
vant properties.

A linear operator A on a Banach space X is called a Hille–Yosida operator if
it satisfies the resolvent estimate in the Hille–Yosida theorem (see Theorem 11.1),
i.e., there exist M ≥ 1 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup{(λ− ω)k‖(λ−A)−k‖ : k ∈ N, λ > ω} ≤ M. (19.2)

In this section we assume that A with domainD(A) is a Hille–Yosida operator
on a Banach space X . Let A0 be the part of A in X0 := D(A), defined as

D(A0) = {x ∈ D(A) : Ax ∈ D(A)},
A0x = Ax for x ∈ D(A0).

(19.3)

We quote the following result from Engel and Nagel [43, Corollary II.3.21
and Lemma IV.1.15].

Lemma 19.1. The operator A0 defined by the rule (19.3) generates a C0-semigroup
(T0(t))t≥0 on X0 with ‖T0(t)‖ ≤ Meωt for t ≥ 0. Moreover, ρ(A) ⊂ ρ(A0) and

R(λ,A0) = R(λ,A)
∣∣
X0

for λ ∈ ρ(A), where R(λ,A)
∣∣
X0

is the restriction of R(λ,A) to X0.

For a fixed λ0 ∈ ρ(A), we introduce the norm

‖x‖−1 := ‖R(λ0, A0)x‖ for x ∈ X0.

The completion X−1 of (X0, ‖ · ‖−1) is called the extrapolation space of X
associated with the operator A. The notation ‖ · ‖−1 is independent of the choice
of λ0 ∈ ρ(A), since the norms ‖R(λ0, A0)x‖−1 and ‖R(λ,A0)x‖ are equivalent for
any λ, λ0 ∈ ρ(A).

The operator T0(t) has a unique bounded linear extension T−1(t) to the
Banach space X−1 and (T−1(t))t≥0 is a C0-semigroup on X−1, which is called the
extrapolated semigroup of (T0(t))t≥0. We denote by (A−1, D(A−1)) the generator
of (T−1(t))t≥0 on the space X−1.

We summarize the most important facts about this semigroup from Engel
and Nagel [43, Section II.5.a].

Lemma 19.2. The following properties hold.

a) ‖T−1(t)‖L(X−1) = ‖T0(t)‖L(X0).

b) D(A−1) = X0.
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c) A−1 : X0 → X−1 is the unique continuous extension of the operator A0 :
D(A0) ⊆ (X0, ‖ · ‖) → (X−1, ‖ · ‖−1) and λ0 − A−1 is an isometry from
(X0, ‖ · ‖) to (X−1, ‖ · ‖−1).

d) ρ(A) ⊆ ρ(A−1). In particular, R(λ,A−1)
∣∣
X0

= R(λ,A0) for any λ ∈ ρ(A).

e) The space X0 = D(A) is dense in (X−1, ‖ · ‖−1). Hence, the extrapolation
space X−1 is also the completion of (X, ‖ · ‖−1) and we have X ↪→ X−1.

f) The operator A−1 is an extension of the operator A. In particular, if λ ∈
ρ(A), then R(λ,A−1)

∣∣
X

= R(λ,A).

We state here another fundamental lemma, which is useful for perturbations
of Hille–Yosida operators, see Nagel and Sinestrari [102].

Lemma 19.3. For f ∈ L1
loc(R+, X), we define

(T−1 ∗ f)(t) :=
∫ t

0

T−1(t− s)f(s)ds for t ≥ 0.

Then

a) (T−1 ∗ f)(t) ∈ X0, for all t ≥ 0;

b) ‖(T−1 ∗ f)(t)‖ ≤ Meωt
∫ t
0
e−ωs‖f(s)‖ ds, where M is a constant independent

of f ;

c) limt↓0 ‖(T−1 ∗ f)(t)‖ = 0.

The following perturbation theorem can be proved using Lemma 19.3 and
the same arguments as in the proof of Theorem 11.5 and Proposition 11.6.

Theorem 19.4. Let A with domain D(A) be a Hille–Yosida operator on a Banach
space X. Let (T0(t))t≥0 be the C0-semigroup generated by the part A0 of A in

X0 = D(A) and let B ∈ L(X0, X). Then the part of A + B in X0 generates a
C0-semigroup on X0 given by the Dyson–Phillips expansion

S0(t) =

∞∑
k=0

Uk(t), t ≥ 0,

where

U0(t) = T0(t) and Uk+1(t) =

∫ t

0

T−1(t− s)BUk(s) ds, t ≥ 0, k ∈ N.

Moreover, the following variation of constant formula holds:

S0(t)x = T0(t)x+

∫ t

0

T−1(t− s)BS(s)x ds, x ∈ X, t ≥ 0.
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Denote by

Rm(t) :=

∞∑
k=m

Uk(t)

the mth remainder of the above expansion. The following spectral result is a
generalization of Voigt’s theorem, see Theorem A.35. Recall that a bounded linear
operator B is called strictly power compact if there is k ∈ N such that (BT )k is
compact for every bounded linear operator T .

Theorem 19.5. Let A be a Hille–Yosida operator on a Banach space X and B a
bounded linear operator from X0 := D(A) to X. Let (T0(t))t≥0 and (S0(t))t≥0 be
the C0-semigroups on X0 generated by the parts of A and A+B in X0, respectively.
Assume that there exist m ∈ N and a sequence (tk) ⊂ R+, tk → ∞, such that the
remainders Rm(tk) at tk are strictly power compact for all k ∈ N. Then,

ωess(S0) ≤ ω0(T0).

Proof. Assume that ω0(T0) > −∞. Set ωε = ω0(T0) + ε and ω′
ε = ω0(T0) +

ε
2 .

Then, by Lemma 19.3, we have

‖Uj(t)‖ ≤ M j+1
ε ‖B‖L(E0,E)

tj

j!
eω

′
εt, t ≥ 0, j ∈ N.

Hence, in particular, there is τε > 0 such that∥∥∥∥m−1∑
j=0

Uj(t)

∥∥∥∥ ≤ eωεt for t ≥ τε. (19.4)

Since Rm(tk) is strictly power compact, Theorem A.35 implies that

ress(S0(tk)) = ress

(m−1∑
j=0

Uj(tk)

)
≤ eωεt for tk ≥ τε.

Thus, ωess(S0) ≤ ωε. This proves the result by letting ε → 0 if ω0(T0) > −∞. In the
case where ω0(T0) = −∞, ωε in inequality (19.4) is taken so that limε→0 ωε = −∞.
Hence, ωess(S0) = −∞. �

19.3 Spectral Properties of Perturbed
Hille–Yosida Operators

We assume that E is a Banach lattice with order continuous norm and A a Hille–
Yosida operator on E. As before, we denote by (T0(t))t≥0 the C0-semigroup gen-

erated by the part A0 of A in E0 := D(A), see Lemma 19.1.
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Assumptions 19.6. We make the following hypotheses.

a) A is a resolvent positive operator on E, and the perturbation 0 ≤ B ∈
L(E0, E) is such that the mapping t �→ BT0(t) ∈ L(E0, E) is continuous for
t > 0 (for the operator norm).

b) For all ε > 0, there is a positive and compact operator Kε : E0 → E such
that 0 ≤ BT0(t) ≤ Kε for t ≥ 0 and the mapping t �→ KεT0(t) ∈ L(E0, E) is
continuous for t > 0.

Remark 19.7. Let A be a resolvent positive operator on E. By Exercise 12.5.5,
E0 = D(A) is an ideal and hence a sublattice of E. So, A0 is resolvent positive
and Corollary 11.4 implies that (T0(t))t≥0 is positive.

We need the following auxiliary results of Arendt [5, Theorem 5.7].

Lemma 19.8. Let A with domain D(A) be a resolvent positive operator on a Banach
lattice E with order continuous norm. Then there is a unique strongly continuous
family (S(t))t≥0 of operators on E satisfying

0 = S(0) ≤ S(r) ≤ S(t), 0 ≤ r ≤ t, and

R(λ,A) =

∫ ∞

0

λe−λtS(t)dt, λ > max{0, s(A)}.

Connections between domination and compactness were characterized by
Aliprantis and Burkinshaw [2, Theorem 5.15].

Lemma 19.9. Let E, F and G be Banach lattices and T1 ∈ L(E,F ), T2 ∈ L(F,G).
If G has order continuous norm and each Ti is dominated by a compact operator,
then T2T1 is a compact operator.

We also quote the following technical result from Schaefer [126, Theorem
IV.1.5].

Lemma 19.10. If E is an L1- Banach lattice, then for every T ∈ L(E) there exist
positive operators T1, T2 ∈ L(E) such that T = T1 − T2.

The following lemma will be useful in the proof of the main results. We denote
by (T−1(t))t≥0 the extrapolated semigroup of (T0(t))t≥0 defined in Section 19.2.

Lemma 19.11. Let A be a Hille–Yosida and resolvent positive operator on a Banach
lattice E with order continuous norm. Then

0 ≤
∫ t

0

T−1(t− s)ϕ(s) ds for 0 ≤ ϕ ∈ L1
loc(R+, E), t ≥ 0.

Proof. We recall that (see Lemma 19.2)

R(λ,A)f = R(λ,A−1)f =

∫ ∞

0

e−λtT−1(t)f dt

=

∫ ∞

0

λe−λt

(∫ t

0

T−1(s)f ds

)
dt

(19.5)
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for large λ and f ∈ E. On the other hand, by Lemma 19.8, there is a unique
increasing strongly continuous family (S(t))t≥0 of bounded linear operators on E
such that S(0) = 0 and

R(λ,A)f =

∫ ∞

0

λe−λtS(t)f dt

for large λ and f ∈ E. So, by relation (19.5) and the uniqueness of the Laplace
transform, we have

S(t)f =

∫ t

0

T−1(s)f ds, f ∈ E, t ≥ 0.

Thus ∫ t

0

T−1(t− s)ϕ(s) ds =

∫ t

0

ϕ(t− s) dS(s) ≥ 0, t ≥ 0. �

Throughout the remainder of this section, we enforce a) from Assumptions
19.6 and denote by (S0(t))t≥0 the C0-semigroup generated by the part of A + B

in E0 := D(A). This semigroup is given by the Dyson–Phillips expansion

S0(t) =

∞∑
k=0

Uk(t), t ≥ 0,

where U0(t) := T0(t) and Uk+1(t) :=
∫ t
0
T−1(t − s)BUk(s) ds for t ≥ 0 and

k ∈ N, see Theorem 19.4. Let Rm(t) :=
∑∞

k=m Uk(t) be the mth remainder of the
expansion for S0(t). The formula

Rm+1(t)f =

∫ t

0

T−1(t− s)BRn(m)f ds, f ∈ E0, t ≥ 0,

can be derived the same way as the one in (17.10). In the following lemma we use
the approximation R2,ε(t) of R2(t) defined by

R2,ε(t) :=

∫ t−ε

ε

T−1(t− s)B

∫ s−ε

0

T−1(s− τ)BS0(τ)dτ ds

for t ≥ 2ε.

Lemma 19.12. Assumption 19.6.a) implies that BR2,ε(t) → BR2(t) in L(E0, E)
as ε ↓ 0, uniformly for t in compact subsets of R+. Moreover, the mapping t �→
BR2(t) ∈ L(E0, E) is continuous for t ≥ 0.
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Proof. We have

R2(t)f −R2,ε(t)f =

∫ t

t−ε

T−1(t− s)B

∫ s

0

T−1(s− τ)BS0(τ)fdτ ds

+ T0(t− ε)

∫ ε

0

T−1(ε− s)B

∫ s

0

T−1(s− τ)BS0(τ)fdτ ds

+ T0(ε)

∫ t−ε

ε

T−1(t− ε− s)B

∫ s

s−ε

T−1(s− τ)BS0(τ)fdτ ds

=: I1 + I2 + I3

for 2ε ≤ t ≤ L, f ∈ E0 and any L > 0. Now Lemma 19.3 implies that

‖I1‖ ≤ M1
L

∫ t

t−ε

∥∥∥∥∫ s

0

T−1(s− τ)BS0(τ)fdτ

∥∥∥∥ ds

≤ M1
L‖f‖

∫ t

t−ε

s ds,

‖I2‖ ≤ M2
L

∫ ε

0

∥∥∥∥∫ s

0

T−1(s− τ)BS0(τ)fdτ

∥∥∥∥ ds

≤ M2
L‖f‖

∫ ε

0

s ds,

‖I3‖ ≤ M3
L

∫ t−ε

ε

∥∥∥∥∫ s

s−ε

T−1(s− τ)BS0(τ)fdτ

∥∥∥∥ ds

≤ M3
L‖f‖tε,

where M i
L, i = 1, 2, 3, are positive constants depending on L. This proves the first

claim. The continuity property can be shown by similar arguments. �

As a consequence we obtain the following result which has an impact on the
longterm behavior of the perturbed semigroup.

Proposition 19.13. Assumptions 19.6 imply that

ωess(S0) ≤ ω0(T0).

Proof. We apply Theorem 19.5. For this purpose we need to prove that R3(t) is
compact for all t ≥ 0.

Let us first show that BR2,ε(t) is compact. Fix ε > 0 and t ≥ 2ε. Then

BR2,ε(t)f = BT0(ε)

∫ t−2ε

0

T−1(s)BT0(ε)

×
∫ t−s−2ε

0

T−1(τ)BS0(t− s− τ − 2ε)fdτ ds

=: BT0(ε)L1(ε, t) (BT0(ε)L2(ε, t)f)

(19.6)
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for f ∈ E0, where Lk(ε, t), k = 1, 2, are given by

L1(ε, t) : L
1 ([0, t], E) −→ E0, ϕ �−→

∫ t−2ε

0

T−1(s)ϕ(t− s− 2ε) ds

L2(ε, t) : E0 −→ L1 ([0, t], E0) , (L2(ε, t)f)(s) :=

∫ s

0

T−1(τ)BS0(s− τ)fdτ.

Using Lemma 19.11 one sees that L1(ε, t) and L2(ε, t) are bounded and pos-
itive operators, and b) from Assumptions 19.6 implies

0 ≤ BT0(ε)L1(ε, t)ϕ ≤ KεL1(ε, t)ϕ and

0 ≤ BT0(ε) (L2(ε, t)f) (s) ≤ Kε (L2(ε, t)f) (s)
(19.7)

for 0 ≤ ϕ ∈ L1([0, t], E), 0 ≤ f ∈ E0, and s ∈ [0, t]. Since Kε is a compact
operator, we infer that KεL1(ε, t) : L

1([0, t], E) → E is compact as well.

Let us prove now that the operator KεL2(ε, t) : E0 → L1([0, t], E) is also
compact. Take (fk) ⊆ E0 with ‖fk‖ ≤ 1 and set ϕk := L2(ε, t)fk. Then, by
Lemma 19.3,

‖ϕk(s)‖ =

∥∥∥∥∫ s

0

T−1(s− τ)BS0(τ)dτ

∥∥∥∥ ≤ Mts. (19.8)

Since Kε ∈ L(E0, E) is compact, one can choose for each rational s ∈ [0, t] a
subsequence �s(k) such that limk→∞ Kεϕ�s(k) = ϕ(s) ∈ E. By taking the diagonal
sequence �(k) we have

Kεϕ�(k)(s) = Kε

∫ s

0

T−1(s− τ)BS0(τ)f�(k)dτ −→ ϕ(s) as k −→ ∞ (19.9)

for s ∈ Q ∩ [0, t]. Moreover, for t ≥ s ≥ s′ ≥ 2ε, one obtains∥∥∥∥Kε

∫ s−2ε

0

T−1(s− τ)BS0(τ)fkdτ −Kε

∫ s′−2ε

0

T−1(s
′ − τ)BS0(τ)fkdτ

∥∥∥∥
≤ ‖Kε‖

∥∥∥∥∫ s−2ε

s′−2ε

T−1((s− τ)BS0(τ)fkdτ

∥∥∥∥
+ ‖Kε(T0(s− s′ + 2ε)− T0(ε))‖

∥∥∥∥∫ s′−2ε

0

T−1(s
′ − 2ε− τ)BS0(τ)fkdτ

∥∥∥∥
≤ Mt

(
‖Kε‖(s− s′) + ‖Kε(T0(s− s′ + 2ε)− T0(ε))‖

)
.

Thus, the mapping [0, t] � s �→ Kεϕk(s) is continuous uniformly in k by
Assumptions 19.6.b) and (19.8). So, by (19.9), one can find ϕ(s) ∈ E such that

Kεϕ�(k)(s) −→ ϕ(s), as k −→ ∞, for all s ∈ [0, t].
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Hence, by (19.8) and the Lebesgue dominated convergence theorem (see The-
orem A.23), we have that

lim
k→∞

Kεϕ�(k) = ϕ in L1([0, t], E).

That is,KεL2(ε, t) is compact. Thus, due to (19.6), (19.7), and the order continuity
of E, one can apply Lemma 19.9 to deduce that BR2,ε(t) is compact. Finally,
Lemma 19.12 implies that BR2(t) is compact for t ≥ 0.

Recall that

R3(t)f =

∫ t

0

T−1(t− s)BR2(s)f ds, f ∈ E0, t ≥ 0.

Take (fk) ⊆ E0 with ‖fk‖ ≤ 1 and set ϕk(s) := BR2(s)fk for s ∈ [0, t]. As
above, one can find a subsequence so that ϕki(s) converges in E for rational s. From
Lemma 19.12 we know that the mapping [0, t] � s �→ ϕk(s) is continuous uniformly
in k. So, ϕki(s) converges for all s ∈ [0, t]. Therefore, by Lebesgue’s theorem, (ϕki )
converges in L1([0, t], E). Finally, applying Lemma 19.3, one obtains that R3(t)fki

converges in E0. This means that R3(t) is compact. �

19.4 Evolution Equations with Boundary Perturbations

In this section we study a Cauchy problem with age-dependent perturbation as an
abstract version of problem (19.1). Due to the presence of the operators A(a) :=
κ(a)Δ − μ(a, ·), a ∈ I, in (19.1), we need the notion of evolution families. A
family (U(a, b))(a,b)∈D of bounded linear operators on a Banach space X is called
a strongly continuous evolution family if

a) U(a, c)U(c, b) = U(a, b) and U(a, a) = I for a, b, c ∈ I with a ≥ c ≥ b, and

b) D � (a, b) �→ U(a, b) is strongly continuous, where D := {(a, b) ∈ I2 : a ≥ b}.

An evolution family (U(a, b))(a,b)∈D is called exponentially bounded if its exponen-
tial growth bound

ω(U) := inf{ω ∈ R : ∃Mω ≥ 1 with ‖U(a, b)‖ ≤ Mωe
ω(a−b) for (a, b) ∈ D}

satisfies ω(U) < ∞. A simple example of an exponentially bounded evolution
family is the following.

Example 19.14. If A generates a C0-semigroup (T (t))t≥0 on a Banach space X
and 0 ≤ ξ ∈ Cb(I), then

U(a, b) := T

(∫ a

b

ξ(τ)dτ

)
, (a, b) ∈ D,

defines an exponentially bounded evolution family on X .
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Example 19.15. Consider the diffusion operator

A(a, x,D) := κ(a)Δ

on X := L1(Ω), with the boundary conditions given by the second and third
relations in (19.1), i.e.,

D(A1(a)) =
{
ϕ ∈ L1(Ω) : ϕ ∈ W1,q(Ω) for 1 ≤ q < d

d−1 ; A(a, x,D)ϕ ∈ L1(Ω);

〈A(a, x,D)ϕ, ψ〉 = 〈ϕ,A(a, x,D)ψ〉 for all ψ ∈ D(Δp), 1 < p < ∞
}

= D(Δ1),

A1(a)ϕ = A(a, x,D)ϕ, ϕ ∈ D(A1(a)),

where

D(Δp) =

{
ϕ ∈ W2,p(Ω) : ϕ = 0 on Γ2,

∂ϕ

∂ν
= 0 on Γ1

}
,

see also Tanabe [135, Section 5.4]. Then,

U(a, b) := TΔ1

(∫ a

b

κ(τ)dτ

)
, (a, b) ∈ D,

defines an exponentially bounded evolution family on X , where TΔ1(·) is the posi-
tive C0-semigroup generated by Δ1, the L

1-realization of the Laplacian subject to
boundary conditions given by the second and third relations in (19.1). It follows
directly that for ϕ ∈ D(Δ1), the function U(·, b)ϕ ∈ C1(I∩[b,∞), X) is the unique
solution to the Cauchy problem

u′(a) = A1(a)u(a), a ≥ b, u(b) = ϕ.

Let (U(a, b))(a,b)∈D be an exponentially bounded evolution family on X .
Then for ω > ω(U) there exists Mω ≥ 1 such that

‖U(a, b)‖ ≤ Mωe
ω(a−b) for (a, b) ∈ D.

Note that ω(U) = −∞ if I is compact. On E = L1(I,X) we now define

(T0(t)f)(a) := χI(a− t)U(a, a− t)f(a− t), t ≥ 0, a ∈ I.

It is not difficult to see that (T0(t))t≥0 is a C0-semigroup on E and ω(T0) =
ω(U), cf. Schnaubelt [128] or Räbiger et al. [115]. Let us denote its generator by
G0. The following representation of G0 exhibits a relation between G0 and the
operator

Lf := − f ′ +A(·)f, with domain

D(L) :=
{
f ∈ E : f ∈ W1,1(I,X), f(0) = 0,

f(a) ∈ D(A(a)) for a.e. a ∈ I, A(·)f(·) ∈ E} .
(19.10)

For a proof we refer to Latushkin, Montgomery-Smith, and Randolph [84,
Proposition 2.9].
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Lemma 19.16. Let (U(a, b))(a,b)∈D be an exponentially bounded evolution family
on X. Assume that the function U(·, b)ϕ solves the problem

u′(a) = A(a)u(a), u(b) = ϕ ∈ Yb ⊆ D(A(b)),

where A(a) a linear operator with domain D(A(a)) ⊂ X, and Yb is dense in X.
Denote by D00 the linear span of functions of the form α(·)U(·, b)ϕ for b ∈ I, α ∈
C1(I) with compact support contained in (b,∞)∩I, and ϕ ∈ Yb. Then D00 ⊂ D(L),
D00 is dense in E, and T0(t)D00 ⊂ D00. Moreover, G0 is the closure of the operator
L defined in (19.10) with domain D00.

Now let V (·) ∈ L∞(I,L(X)). Applying Theorem 11.5 and Proposition 11.6
we obtain that

GV := G0 − V with D(GV ) = D(G0) (19.11)

generates a C0-semigroup (TV (t))t≥0 on E given by

(TV (t)f)(a) := χI(a− t)UV (a, a− t)f(a− t), t ≥ 0, a ∈ I,

where (V f)(a) := V (a)f(a), a ∈ I and (UV (a, b))(a,b)∈D is the exponentially
bounded evolution family satisfying

UV (a, b)ϕ = U(a, b)ϕ−
∫ a

b

U(a, s)V (s)UV (s, b)ϕ ds

= U(a, b)ϕ−
∫ a

b

UV (a, s)V (s)U(s, b)ϕ ds

(19.12)

for (a, b) ∈ D and ϕ ∈ X . Since the resolvent of G0 equals

R(λ,G0)f(a) =

∫ ∞

0

χI(a− t)e−λtU(a, a− t)f(a− t) dt

=

∫ a

0

e−λ(a−t)U(a, t)f(t) dt

for λ > ω(U), a ∈ I, and f ∈ E, we see thatD(G0) consists of continuous functions
vanishing at a = 0. In order to consider functions f with f(0) �= 0, we introduce
an extension G of G0 defined by

Gf := G0f0 + ωeω(·)ϕ, with domain

D(G) := {f = f0 + eω(·)ϕ : f0 ∈ D(G0), ϕ ∈ X},
(19.13)

where

eω(a)ϕ := e−ωaU(a, 0)ϕ

for ϕ ∈ X and ω > max{ω(U), ω(UV )} =: ω1. We will further need the following
auxiliary result.
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Lemma 19.17. The following holds for the operators G and GV defined in (19.11)
and (19.13).

a) eλϕ ∈ D(G) and Geλϕ = λeλϕ for Reλ > ω(U) and ϕ ∈ X;

b) eVλ := e−λ·UV (·, 0) = eλ −R(λ,GV )V eλ for Reλ > ω1;

c) ker(λ − (G− V )) = {eVλ ϕ : ϕ ∈ X} for Reλ > ω1.

Proof. Let f := eλ(·)ϕ − eμ(·)ϕ and ξ(a) := e−λa − e−μa for Reλ, Reμ > ω(U)
and ϕ ∈ X . We have

T0(t)f(a)− f(a) = (χI(a− t)ξ(a − t)− ξ(a))U(a, 0)ϕ, a ∈ I, t ≥ 0.

Hence, f ∈ D(G0) and G0(eλ(·)ϕ − eμ(·)ϕ) = λeλ(·)ϕ − μeμ(·)ϕ. So, considering
eλ = eλ − eμ + eμ we obtain a).

Assertion b) follows from relations (19.12) and

R(λ,GV )f(a) =

∫ a

0

e−λ(a−t)UV (a, t)f(t) dt.

Further, a) and b) imply that

(G− V )eVλ = (G− V )(eλ −R(λ,GV )V eλ)

= λeλ − V eλ −GV R(λ,GV )V eλ

= λ(eλ −R(λ,GV )V eλ) = λeVλ

for Reλ > ω1. Conversely, let f ∈ ker(λ− (G− V )). Using a) and b) we obtain

f − eVλ f(0) = (f − eωf(0)) + (eωf(0)− eλf(0)) + (eλf(0)− eVλ f(0)) ∈ D(G0).

Therefore, 0 = (λ − GV )(f − eVλ f(0)). This implies that f = eVλ f(0), since λ ∈
ρ(GV ). �

We define now the concept of solutions of the following Cauchy problem with
boundary perturbation: ⎧⎪⎨⎪⎩

u′(t) = (G− V )u(t),

u(0) = f ∈ E,

u(t, 0) = Bu(t) ∈ X, t ≥ 0,

(19.14)

where E = L1(I,X), B ∈ L(E,X), and G and V are as before. A classical solution
of problem (19.14) is a function u ∈ C1(R+, E) such that u(t) ∈ D(G) and (19.14)
holds for all t ≥ 0. To prove the existence of classical solutions, we consider the
product space E := X × E with the maximum norm. On E we define the matrix
operators

B :=

(
0 B
0 0

)
and GV :=

(
0 −δ0
0 G− V

)
,

where D(GV ) := {0}×D(G). Let us show that GV is a Hille–Yosida operator on E .
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Lemma 19.18. The operator GV with domain {0}×D(G) is a Hille–Yosida operator
on E. Moreover,

R(λ,GV ) =

(
0 0
eVλ R(λ,GV )

)
, Reλ > ω1.

Proof. For Reλ > ω1 we set

R(λ) :=

(
0 0
eVλ R(λ,GV )

)
.

It follows directly that R(λ) ∈ L(E). Moreover, by Lemma 19.17, R(λ)E ⊆
D(GV ), and (λ − GV )R(λ) = I. Hence, λ − GV is surjective. On the other hand,
from (19.11) and (19.13) it follows, upon applying Lemma 19.17.b), that

R(ω)(ω − GV )

(
0
f

)
=

(
0 0
eVω R(ω,GV )

)(
f(0)

(ω −GV )f0 + V eωf(0)

)
=

(
0
f

)
for f = f0 + eωf(0) ∈ D(G). Hence, R(ω) = R(ω,GV ) and GV is closed. On
the other hand, we see that R(λ)(λ − GV )

(
0
f0

)
=
(

0
f0

)
for f0 ∈ D(G0). If (λ −

GV )
(
0
f

)
= 0 for some f ∈ D(G), then f(0) = 0, and so f = 0. Thus, λ − GV is

injective for Reλ > ω1. Therefore, R(λ) = R(λ,GV ) for Reλ > ω1.

Finally, we obtain

R(λ,GV )
k =

(
0 0

R(λ,GV )
k−1eVλ R(λ,GV )

k

)
,

and since GV is a generator, we infer that

‖R(λ,GV )
k−1eVλ (·)x‖ ≤ M

(λ− ω)k−1
‖eVλ (·)x‖ ≤ M2

(λ− ω)k
‖x‖

for λ > ω > ω1, x ∈ X . Thus, GV is a Hille–Yosida operator on E . �
Remark 19.19. As a consequence, we obtain that the part GV,0 in E0 := {0}×E =

D(GV ) generates a C0-semigroup TV,0(·) in E0. In particular, we have

GV,0

(
0
f

)
=

(
0

GV f

)
, with domain

D(GV,0) =

{(
0
f

)
∈ E0 : f ∈ D(G0)

}
.

So, since E0 ∼= E, we can identify GV,0 and TV,0(·) with GV and TV (·), respectively.
Moreover, there exists the extrapolated semigroup TV,−1(·) on E−1 with generator
GV,−1 with domain D(GV,−1) = E , see Section 19.2.

We are now ready to state the main result of this section.
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Theorem 19.20. Suppose that (U(a, b))(a,b)∈D is an exponentially bounded evolu-
tion family on a Banach space X, V ∈ L∞(I,L(X)), and B ∈ L(E,X). Let G be
the operator on E = L1(I,X) defined in (19.13). Then the operator

GV Bf = (G− V )f with D(GV B) = {f ∈ D(G) : f(0) = Bf} (19.15)

generates a C0-semigroup (S0(t))t≥0 on E satisfying

S0(t)f = TV (t)f + (λ−GV )

∫ t

0

TV (t− s)eVλ BS0(s)f ds (19.16)

for f ∈ E, t ≥ 0 and λ > ω1.

Proof. By Lemma 19.18 and Theorem 19.4, the part GV B of the operator GV,−1+B
in E0 generates a C0-semigroup (S0(t))t≥0 on E0 satisfying

S0(t)

(
0
f

)
= TV,0(t)

(
0
f

)
+

∫ t

0

TV,−1(t− s)BS0(s)

(
0
f

)
ds, f ∈ E.

Identifying (S0(t))t≥0 with a C0-semigroup (S0(t))t≥0 on E, we deduce that(
0

S0(t)f

)
=

(
0

TV (t)f

)
+

∫ t

0

TV,−1(t− s)

(
BS0(s)f

0

)
ds. (19.17)

Now, by Lemma 19.18, we have∫ t

0

TV,−1(t− s)

(
BS0(s)f

0

)
ds =

∫ t

0

TV,−1(t− s)(λ − GV )R(λ,GV )

(
BS0(s)f

0

)
ds

= (λ− GV,−1)

∫ t

0

TV,−1(t− s)

(
0

eVλ BS0(s)f

)
ds

= (λ− GV,−1)

(
0∫ t

0
TV (t− s)eVλ BS0(s)f ds

)
=: (λ− GV,−1)

(
0
g

)
for λ > ω1. On the other hand, from (19.17) we see that (λ−GV,−1)

(
0
g

)
∈ E0 and

thus, since GV,0 is the part of GV,−1 in E0, we also have
(
0
g

)
∈ D(GV,0), so identity

(19.16) follows.

It remains to show (19.15). For
(
0
f

)
∈ D(GV B), we have

GV,−1

(
0
f

)
+

(
Bf
0

)
∈ E0, and hence GV,−1

(
0
f

)
∈ E .

Since GV is the part of GV,−1 in E , we deduce that f ∈ D(G) and

GV B

(
0
f

)
=

(
−f(0) +Bf
(G− V )f

)
∈ E0.

This establishes (19.15) by identifying GV B with GV B. �
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19.5 Back to the Population Equation

Let us now return to our population model problem (19.1) and apply the ab-
stract results developed in the previous sections. For convenience we repeat these
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(t, a, x) + ∂au(t, a, x) = κ(a)Δu(t, a, x)− μ(a, x)u(t, a, x),

t ≥ 0, a ∈ I, x ∈ Ω,

∂νu(t, a, x) = 0, t ≥ 0, a ∈ I, x ∈ Γ1,

u(t, a, x) = 0, t ≥ 0, a ∈ I, x ∈ Γ2,

u(t, 0, x) =

∫
I

β(a, x)u(t, a, x) da, t ≥ 0, x ∈ Ω,

u(0, a, x) = f(a, x), a ∈ I, x ∈ Ω.

(19.18)

Assumptions 19.21. We introduce the following hypotheses.

a) Ω ⊂ Rn is a bounded domain with C2-boundary ∂Ω = Γ1 ∪ Γ2, where Γi are
open and closed in ∂Ω with Γ1 ∩ Γ2 = ∅.

b) k ∈ Cb(I) and κ(a) ≥ δ > 0 for all a ∈ I and some constant δ.

c) 0 ≤ μ ∈ L∞(I × Ω).

d) 0 ≤ β ∈ Cub(I,L
∞(Ω)).

Let X := L1(Ω) and consider the evolution family

U(a, b) = TΔ1

(∫ a

b

κ(τ)dτ

)
, (a, b) ∈ D := {(a, b) ∈ I2 : a ≥ b},

given in Example 19.15. The associated positive C0-semigroup on E := L1(I×Ω) ∼=
L1(I,X) with generator G0 is given by

(T0(t)f)(a) := χI(a− t)U(a, a− t)f(a− t), t ≥ 0, a ∈ I. (19.19)

We define the positive (bounded) multiplication operator

(V f)(a) := μ(a, ·)f(a), f ∈ E.

Then, GV := G0 − V with D(GV ) = D(G0) generates a positive C0-semigroup
given by

(TV (t)f)(a) := χI(a− t)UV (a, a− t)f(a− t), t ≥ 0, a ∈ I.

Relation (19.12) yields

UV (a, b)ϕ = TΔ1

(∫ a

b

κ(τ)dτ

)
ϕ−
∫ a

b

TΔ1

(∫ a

s

κ(τ)dτ

)
μ(s, ·)UV (s, b)ϕ ds

(19.20)
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for (a, b) ∈ D and ϕ ∈ X . Since (TV (t))t≥0 is positive, we see that (UV (a, b))(a,b)∈D

is positive as well and by relation (19.20) we have

0 ≤ UV (a, b) ≤ TΔ1

(∫ a

b

κ(τ)dτ

)
, (a, b) ∈ D. (19.21)

Finally, we define the boundary operator

Bf :=

∫
I

β(a, ·)f(a)da, f ∈ E.

Assumption 19.21.d) implies that 0 ≤ B ∈ L(E,X). With these spaces and
operators we now consider the abstract Cauchy problem in (19.14). We say that
problem (19.18) admits a generalized solution u if u ∈ C(R+, E) and solves prob-
lem (19.14).

The positivity of (UV (a, b))(a,b)∈D and Theorem 19.20 yield existence and
uniqueness of generalized solutions to problem (19.18).

Corollary 19.22. Let Assumptions 19.21 be satisfied. Then the operator

GV Bf := (G− V )f with D(GV B) :=

{
f ∈ D(G) : f(0) =

∫
I

β(a, ·)f(a)da
}

generates a positive C0-semigroup (S0(t))t≥0 on E satisfying the relation (19.16),
where G is the operator given by (19.13).

In order to understand our notion of generalized solutions to problem (19.18)
we have to determine the operator G. To give a partial answer we introduce the
spaces

D := {f ∈ E : f ∈ W1,1(I,X), f(a) ∈ D(Δ1) for a.e. a ∈ I, A1(·)f(·) ∈ E},
D0 := {f ∈ D : f(0) = 0},
D1 := {f ∈ D : f(0) ∈ D(Δ1)},

and the operator Lf := −f ′ +A1(·)f ∈ E with domain D, where

A1(a) := κ(a)Δ1f(a), a ∈ I.

Proposition 19.23. Let Assumptions 19.21.a)–c) be satisfied. Then G0 is the closure
in E of the operator L with domain D0, and D1 is dense in D(G) endowed with
the graph norm. In particular, G is the closure of L with domain D1.

Proof. Let us fix λ0 > 0. Lemma 9.31 implies that∥∥∥∥(e−λ0tTΔ1

(∫ a

a−t

κ(τ)dτ

)
− I

)
(A1(a− t)− λ0)

−1

∥∥∥∥ ≤ Mteωt (19.22)
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for (a, a− t) ∈ D, t ≥ 0 and some constants M, ω ∈ R. Moreover, we have

lim
t→0

1

t

(
e−λ0tTΔ1

(∫ a

a−t

κ(τ)dτ

)
− I

)
(A1(a− t)− λ0)

−1ϕ = ϕ (19.23)

for (a, a− t) ∈ D, t > 0 and ϕ ∈ X . For a− t ≥ 0 and f ∈ D0 use relation (19.19)
and deduce that

T0(t)f(a)− f(a) = eλ0t

(
e−λ0tTΔ1

(∫ a

a−t

κ(τ)dτ

)
− I

)
× (A1(a− t)− λ0)

−1(A1(a− t)− λ0)f(a− t)

+ eλ0t(f(a− t)− f(a)) + (eλ0t − 1)f(a).

Using (19.22), (19.23), and the Dominated Convergence Theorem (see The-
orem A.23) we obtain that limt→0

1
t (T0(t)f − f) = Lf in E and so D0 ⊂ D(G0)

and G0f = Lf for any f ∈ D0. Since D00 ⊂ D0, it follows from Lemma 19.16,
that G0 is the closure of L with domain D0.

On the other hand, let f ∈ D1. By writing f = (f − eω(·)f(0)) + eω(·)f(0)
and noting that eω(·)f(0) ∈ D, since f(0) ∈ D(Δ1), we have from (19.13) that
f ∈ D(G) and

Gf = L(f − eω(·)f(0)) + ωeω(·)f(0) = Lf.

Thus, G is an extension of L with domain D1. Let now f = f0 + eω(·)f(0) ∈
D(G). Since G0 is the closure of L with domain D0, we infer that there is f0,k ∈ D0

such that f0,k → f0 and Lf0,k → G0f0 in E as k → ∞. Moreover, there is ϕk ∈
D(Δ1) such that limk→∞ ϕk = f(0) in X . As above, since Leω(·)ϕk = ωeω(·)ϕk,
we see that fk := f0,k + eω(·)ϕk ∈ D1 converges to f in the graph norm of G.
Thus, G is the closure of L with domain D1. �

We end this chapter by studying the asymptotic behavior of generalized
solutions to problem (19.18). For this purpose we first observe the following.

Lemma 19.24. Let Assumptions 19.21.a)–c) be satisfied. Then ω(UV ) = ω(U) =
−∞ for am < ∞, while ω(UV ) ≤ ω(U) < 0 for am = ∞ and Γ1 = ∅.

Proof. The first assertion is clear from the definition of ω(U) and the fact that
I = [0, am] is a compact interval. The second assertion follows from inequality
(19.21) and the fact that Δ1 with Dirichlet boundary conditions generates an
exponentially stable semigroup on L1(Ω). �

In order to verify the conditions from Assumptions 19.6, we need the following
regularity result.

Lemma 19.25. Let Assumptions 19.21.a)–c) be satisfied and let am = ∞. Then,
for any t0 > 0, the following holds:

lim
t→t0

sup
a∈I

‖UV (a+ t, a)− UV (a+ t0, a)‖ = 0.
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Proof. Let t0 + 1 ≥ t ≥ t0 > 0, a ≥ 0 and ϕ ∈ X . By (19.20), we have

UV (a+ t, a)ϕ− UV (a+ t0, a)ϕ

= TΔ1

(∫ a+t

a

κ(τ)dτ

)
ϕ− TΔ1

(∫ a+t0

a

κ(τ)dτ

)
ϕ

−
∫ a+t

a+t0

TΔ1

(∫ a+t

s

κ(τ)dτ

)
μ(s, ·)UV (s, a)ϕ ds

−
∫ a+t0

a

(
TΔ1

(∫ a+t

s

κ(τ)dτ

)
− TΔ1

(∫ a+t0

s

κ(τ)dτ

))
× μ(s, ·)UV (s, a)ϕ ds

=: I1 + I2 + I3.

To estimate I1, we recall that TΔ1(·) can be extended to an analytic semi-
group on X , which is equivalent to TΔ1(t)X ⊂ D(Δ1) and ‖Δ1TΔ1(t)‖ ≤ M

t e
ωt

for all t > 0 and some constants M, ω ∈ R+. So, by Proposition 9.16, we obtain

‖TΔ1(τ1)ϕ− TΔ1(τ0)ϕ‖ =

∥∥∥∥∫ τ1

τ0

Δ1TΔ1(s)ϕ ds

∥∥∥∥
≤ M

∫ τ1

τ0

eωs

s
ds‖ϕ‖

≤ Meω(τ0+1) log

(
τ1
τ0

)
‖ϕ‖

for 0 < τ0 ≤ τ1 ≤ τ0 + 1 and ϕ ∈ X . Consequently,

‖I1‖ ≤ Meω(‖κ‖∞t0+1) log

( ∫ a+t

a κ(τ)dτ∫ a+t0
a κ(τ)dτ

)
‖ϕ‖

≤ Meω(‖κ‖∞t0+1) log

(
1 +

∫ a+t

a+t0
κ(τ)dτ∫ a+t0

a
κ(τ)dτ

)
‖ϕ‖

≤ Meω(‖κ‖∞t0+1) log

(
1 +

‖κ‖∞(t− t0)

δt0

)
‖ϕ‖,

where δ is the constant from Assumptions 19.21.b). Moreover, using the above
estimate for ‖I1‖ we also obtain

‖I3‖ ≤ M‖μ‖∞t0e
ω(‖κ‖∞t0+t0+1) log

(
1 +

‖κ‖∞(t− t0)

δt0

)
‖ϕ‖.

By the exponential boundedness of U(·, ·) and (19.21), we finally have

‖I2‖ ≤ M2‖μ‖∞eω2(t0+1)(t− t0)‖ϕ‖

for some constants M2 ≥ 1 and ω2 ∈ R. The case t0 ≥ t > ε > 0 can be treated in
the same way. �
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From now on we assume that the Assumptions 19.21 are satisfied. We apply
the results of the previous sections to the operators

B :=

(
0 B
0 0

)
and GV :=

(
0 −δ0
0 G− V

)
on E = X × E, where D(GV ) := {0} × D(G). By Lemma 19.18, GV is a Hille–
Yosida operator and, by our assumptions, it is resolvent positive on E . Moreover,
0 ≤ B ∈ L(E0, E), where E0 = {0} × E ∼= E. Combining this with the spectral
decomposition developed in Chapter 14, we can describe the asymptotic behavior
of the generalized solution to problem (19.18) given by the positive C0-semigroup
(S0(t))t≥0 on E generated by GV , see Corollary 19.22.

Theorem 19.26. Let Assumptions 19.21 be satisfied. If am < ∞, or am = ∞ and
Γ1 = ∅, then ωess(S0) < 0. Therefore, the set {λ ∈ σ(GV B) : Reλ ≥ 0} is finite
(or empty) and consists of poles of R(·, GV B) of finite algebraic multiplicity. If
λ1, . . . , λm are these poles with the corresponding spectral projections P1, . . . , Pm

and orders k1, . . . , km, then∥∥∥∥S0(t)−
m∑
j=1

eλjt

kj−1∑
k=0

tk

k!
(GV B − λj)

kPj

∥∥∥∥ ≤ Me−εt, t ≥ 0

for some constants M ≥ 1 and ε > 0.

Proof. We only need to show that ωess(S0) < 0, the rest then follows by Theorem
14.4. We shall proceed in two steps.

We start with the case when am = ∞. By Lemma 19.24 and Proposition
19.13, the assertion is proved as soon as we verify Assumptions 19.6.a) and b) for
the operators B and GV . We already know that GV is a resolvent positive operator
on E and 0 ≤ B ∈ L(E0, E). For the mapping t �→ BTV,0(t) ∈ L(E0, E) we have∥∥∥∥(BTV,0(t)− BTV,0(t0))

(
0
f

)∥∥∥∥
= ‖BTV (t)f −BTV (t0)f‖X

=

∥∥∥∥∫ ∞

t

β(a, ·)UV (a, a− t)f(a− t)da−
∫ ∞

t0

β(a, ·)UV (a, a− t0)f(a− t0)da

∥∥∥∥
X

≤
∫ ∞

0

‖β(a+ t, ·)− β(a+ t0, ·)‖∞‖UV (a+ t, a)f(a)‖da (19.24)

+

∫ ∞

0

‖β(a+ t0, ·)‖∞‖UV (a+ t, a)− UV (a+ t0, a)‖‖f(a)‖da

≤ ‖f‖ sup
a≥0

(
Meωt‖β(a+ t, ·)− β(a+ t0, ·)‖∞ + ‖β‖

× ‖UV (a+ t, a)− UV (a+ t0, a)‖
)
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for t ≥ t0 > 0 and f ∈ E, where ‖β‖ = ‖β‖∞ is the supremum norm. By
Assumptions 19.21 and Lemma 19.25, hypothesis 19.6.a) is verified. To verify
19.6.b), we use (19.21), which yields

0 ≤ BTV,0(ε)
(
0
f

)
=

(∫∞
0

β(a+ ε, ·)UV (a+ ε, a)f(a)da
0

)
≤
(∫∞

0
β(a+ ε, ·)TΔ1

(∫ a+ε

a
κ(τ)dτ

)
f(a)da

0

)

≤
(
‖β‖∞TΔ1(δε)Lεf

0

)
=: Kε

(
0
f

)
,

where

Lεf :=

∫ ∞

0

TΔ1

(∫ a+ε

a

(κ(τ) − δ)dτ

)
f(a)da, f ∈ E.

By Example 19.15, D(Δ1) ⊂ W1,1(Ω), which by Rellich’s theorem (see Theo-
rem A.45) is compactly embedded in L1(Ω), hence TΔ1(δε) is compact. Therefore,
Lε ∈ L(E,X) implies that Kε ∈ L(E0, E) is a compact operator. Finally, the con-
tinuity of the mapping t �→ KεTV,0(t) ∈ L(E0, E) for t > 0 can be shown as in
(19.24), which proves Assumption 19.6.b).

In the second step we consider am < ∞. In this case we extend A1(·), V (·),
and β by setting A1(a) := A(am), V (a) := −2a, and β(a, ·) := β(am, ·) for a > am.
This extension yields the evolution family (U∞

V (a, b))a≥b≥0 on X , where

U∞
V (a+ t, a) := e−t2−2atTΔ1(κ(am)t)

for a > am and t ≥ 0. Then, (U∞
V (a, b))a≥b≥0 satisfies the conclusion of Lemma

19.25, and by Lemma 19.24, ω(U∞
V ) = −∞. Denote by

T∞
V (t)f(a) := χR+(a− t)U∞

V (a, a− t)f(a− t), t ≥ 0, a ≥ 0 a.e.,

the corresponding C0-semigroup on L1(R+, X) with generator G∞
V . Setting

Pf := χIf ∈ L1([0, am], X) for f ∈ L1(R+, X),

Jf(a) :=

{
f(a) if a ∈ [0, am],

0 if a ∈ R+ \ [0, am],
for f ∈ L1([0, am], X),

we have PT∞
V (t) = TV (t)P and PG∞

V = GV P . Further, we perturb the corre-
sponding Hille–Yosida operator G∞

V on X × L1(R+, X) by the matrix operators

B∞ :=

(
0 B∞

0 0

)
and B̃ :=

(
0 B̃
0 0

)
,

respectively, where

B∞f =

∫ am

0

β(a, ·)da and B̃f =

∫ ∞

0

β(a, ·)da, f ∈ L1(R+, X).
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This gives two C0-semigroups (S∞
0 (t))t≥0 and (S̃0(t))t≥0 on L1(R+, X), see

Corollary 19.22. From the uniqueness of the solutions we have S0(t) = PS∞
0 (t)J ,

and thus

S0(t) =
∞∑
k=0

PU∞
k (t)J, (19.25)

where U∞
k (t) are the coefficients of the Dyson–Phillips expansion of S∞

0 (t). On the

other hand, we know from the first part of the proof that the remainder R̃3(t) of

S̃0(t) is compact for t ≥ 0 (see also the proof of Proposition 19.13). Using Lemma

19.11, we deduce that 0 ≤ R∞
3 (t) ≤ R̃3(t), and hence

0 ≤ R∞
3 (t)S ≤ R̃3(t)S, t ≥ 0,

for any 0 ≤ S ∈ L(L1(R+, X)). Since, by Lemma 19.10, any bounded linear
operator on L1(R+ × Ω) can be written as a linear combination of positive op-
erators, Lemma 19.9 implies that (R∞

3 (t)S)2 is compact for t ≥ 0 and any S ∈
L(L1(R+, X)). Thus, the remainder PR∞

3 (t)J of the expansion in (19.25) is strictly
power compact in L1([0, am], X). The assertion now follows from Theorem 19.5 and
Lemma 19.24. �

We end this chapter by a further generalization.

Remark 19.27. Using the theory of Miyadera perturbations one can see that all
the results obtained in this section remain true if, instead of the boundedness of
μ, one assumes the following

0 ≤ μ ∈ Lq
loc,u(I,L

p(Ω)) for p >
d

2
and q >

(
1− d

2p

)−1

,

where Lq
loc,u(I) is the space of uniformly locally q-integrable functions on I en-

dowed with the norm ‖ϕ‖Lq
loc,u

:= sups,s+1∈I ‖χ[s.s+1]ϕ‖q.

19.6 Notes and Remarks

The study of age-structured population models with diffusion was stimulated by
the works of Gurtin and MacCamy [57, 58, 59, 60] and by Aronson [8]. For a
survey, we refer to Anita [4] and the references therein.

The results of this chapter can be found in Rhandi [121]. The same study was
conducted for more general diffusion with fertility rate β depending also on time,
see Rhandi and Schnaubelt [122]. We refer also to Thieme [141, 140] for similar
results. Problem (19.1) was solved in L2(I ×Ω) by using the semigroup approach,
see Chan and Guo [23], and Huyer [68].

A simpler model of the age-dependent population equation was already con-
sidered in an abstract form in Exercise 17.4.5. For a detailed study of this model
we refer to Engel and Nagel [44, Sec. VI.4] and the references therein.



Appendix

Background Material from Linear

Algebra and Functional Analysis

We collect here the necessary notation and results needed in different parts of
the book. The book is written in a functional-analytic spirit, but for Part I only
some knowledge of linear algebra and complex analysis is required, see Sections
A.1–A.3.

Our main objects in Part II are operators on Banach spaces and we use
many results and techniques from functional analysis and operator theory. There
are many excellent sources and we refer to textbooks like Conway [26], Dunford
and Schwartz [36], Lang [81], Reed and Simon [118], Rudin [125], Taylor and Lay
[138], or Yosida [157]. However, for the convenience of the reader we introduce our
notation and list important theorems in Sections A.4–A.8. Section 9.6 also uses
notions from Section A.11.

For Part III already considerable knowledge of operator theory is assumed.
We recall some definitions and facts in Sections A.9–A.11 and give references for
the rest.

Some general knowledge of measure theory is assumed in Parts II and III.
We refer to textbooks like Tao [137, 136], and Brezis [21].

A.1 Basic Linear Algebra

The set of n× n complex matrices is denoted by Mn(C). We denote by X := Cn

the usual Euclidean vector space and use the identification Mn(C) ∼= L(X). Here
L(X) denotes the set of (continuous) linear transformations from X to X . Hence,
we consider matrices as linear transformations or operators. We can therefore talk
about the action of a matrix, or the kernel or image of a matrix. The latter will
be denoted by kerA and imA, respectively, for a matrix A ∈ L(X).

To be able to define convergence of vectors, there is a need for the notion of
the length of a vector. A natural way to define the length of a vector in Rn is to

A. Bátkai et al., Positive Operator Semigroups, Operator Theory:  
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use geometric intuition and define the length of x = (x1, x2, . . . , xn) as

‖x‖2 =
√
x2
1 + x2

2 + · · ·+ x2
n,

the Euclidean length of a vector. However, it turns out that for different math-
ematical purposes different notions are more useful. This is crystallized in the
abstract notion of the norm of a vector.

Definition A.1. A norm on X is a function ‖ · ‖ : X → R with the following
properties.

a) For every x ∈ X we have ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;

b) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ C;

c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .

Here we list some norms on the space X = Cn.

Example A.2. For x = (x1, x2, . . . , xn) ∈ Cn the following formulas define norms
on Cn:

a) ‖x‖2 :=
√
|x1|2 + |x2|2 + · · ·+ |xn|2 (the Euclidean or 2-norm);

b) ‖x‖1 := |x1|+ |x2|+ · · ·+ |xn| (the taxicab or 1-norm);

c) ‖x‖∞ := max{|x1|, |x2|, . . . , |xn|} (the maximum or ∞-norm);

d) ‖x‖p := (|x1|p + |x2|p + · · ·+ |xn|p)1/p for p ∈ R, p ≥ 1 (the p-norm).

The p-norm is obviously a generalization of the Euclidean and taxicab norms.
It is also not difficult to show that limp→∞ ‖x‖p = ‖x‖∞.

The Euclidean norm is induced by the scalar product:

‖x‖2 =
√
(x | x).

Here (· | ·) denotes the usual scalar product on Cn, i.e., for x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) we have

(x | y) := x1y1 + x2y2 + · · ·+ xnyn.

Hölder’s inequality regarding the scalar product and the p-norm is very useful. For
the case p = q = 2 it is actually the well-known Cauchy–Schwarz inequality .

Lemma A.3 (Hölder’s Inequality). Let either 1
p + 1

q = 1 or p = 1, q = ∞ hold.
Then

|(x | y)| ≤ ‖x‖p‖y‖q
for all x, y ∈ Cn.

Any norm defines a metric d‖·‖(x, y) := ‖x− y‖ on a vector space and hence
the notions of convergence, continuity, etc., can be defined accordingly.

There are also many matrix norms on L(X). We recall some of them.
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Example A.4. For an n×n matrix A = (αij) ∈ L(X) the following formulas define
norms on L(X):

a) ‖A‖1 := max1≤j≤n

∑n
i=1 |αij | (the column norm);

b) ‖A‖∞ := max1≤i≤n

∑n
j=1 |αij | (the row norm);

c) ‖A‖max := max1≤i,j≤n |αij | (the max norm).

A.2 Reducing Subspaces and Projections

We recall here some important geometric notions. Taking A ∈ L(X), a subspace
Y ⊂ X is called invariant under A, if

AY := {Ay : y ∈ Y } ⊂ Y.

A subspace Y ⊂ X is called reducing if there is a subspace Z ⊂ X such
that X = Y ⊕ Z and both Y and Z are invariant under A. Here the symbol “⊕”
denotes the direct sum of two subspaces, meaning that for every x ∈ X there
exists exactly one y ∈ Y and one z ∈ Z such that x = y + z. In this case we also
say that Z complements Y . It is important to note that, if the subspace Y reduces
A, there will, in general, be infinitely many subspaces complementing Y which
are not invariant under A. So some care is needed when choosing the subspace
Z. It readily follows from the definition that if a subspace Y reduces A, then the
corresponding complementing subspace reduces A as well.

Let us illustrate the notion of a reducing subspace on two examples.

Examples A.5.

a) Consider X := C2 and the matrix A :=

(
1 0
0 2

)
. It is easily seen that the

subspaces

Y :=

{(
t
0

)
: t ∈ C

}
,

Z :=

{(
0
t

)
: t ∈ C

}
are invariant and that X = Y ⊕ Z. Hence, these subspaces reduce the ma-
trix A.

b) Consider X := C2 and the matrix A :=

(
1 1
0 1

)
. Then the subspace

Y :=

{(
t
0

)
: t ∈ C

}
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is invariant. However, there is no other one-dimensional invariant subspace
for A. Hence, Y is not a reducing subspace.

The existence of reducing subspaces is really convenient because it allows us
to investigate the matrix on smaller subspaces. This is due to the fact that the
matrix acts independently on each of its reducing subspaces. Reducing subspaces
are of course closely related to projections.

Definition A.6. An operator P ∈ L(X) is called a projection if P 2 = P .

Proposition A.7. An operator P ∈ L(X) is a projection if and only if X = kerP ⊕
imP and P |imP = I.

Proof. First note that P |imP = I implies P (Px) = Px, i.e., P 2 = P .

Conversely, let x ∈ X be given. Take y ∈ imP such that y := Px and let
z := x− y. Then x = y+ z, y ∈ imP and Pz = Px−Py = Px−P 2x = 0. Hence
z ∈ kerP . We can also deduce that if y ∈ imP , then Py = y.

Finally, we only have to show that the obtained decomposition is unique. But
if x = y′+z′ with y′ ∈ imP and z′ ∈ kerP , it follows that Px = Py′+Pz′ = y′ = y.
Hence y′ = y and z′ = z. �
Proposition A.8. If P ∈ L(X) is a projection, then Q := I−P is also a projection.
Further, kerP = imQ and imP = kerQ.

Proof. Clearly, using that P is a projection, we see that Q2 = (I − P )(I − P ) =
I − 2P + P 2 = I − P = Q. Hence, Q is also a projection. We also see that

PQ = P (I − P ) = P − P 2 = 0,

QP = (I − P )P = P − P 2 = 0.

Hence imQ ⊂ kerP and imP ⊂ kerQ. To show that here actually equality takes
place, take z ∈ kerP . Then Qz = z − Pz = z, which implies z ∈ imQ. Similarly,
if y ∈ kerQ, then Py = y −Qy = y, implying y ∈ imP . �

It is important to know that for every direct sum decomposition there is a
corresponding projection.

Proposition A.9. Assume that Y, Z ⊂ X are subspaces such that X = Y ⊕Z. Then
there is a unique projection P ∈ L(X) such that imP = Y and kerP = Z.

Proof. Let us start from the decomposition X = Y ⊕ Z. We define, in the spirit
of Proposition A.7, Px := y, where x = y + z is the unique decomposition with
the property y ∈ Y and z ∈ Z. Then for y ∈ Y , we obtain Py = y and for z ∈ Z
we see that Pz = 0. Hence, P 2x = Py = y = Px, meaning that P is indeed a
projection. �

Finally, we close this summary with a connection between reducing subspaces
and operators.
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Proposition A.10. Let A ∈ L(X) be given. The following are equivalent.

(i) A subspace Y ⊂ X reduces A with complementing reducing subspace Z ⊂ X.

(ii) The projection P ∈ L(X) with Y = imP , Z = kerP commutes with A, i.e.,
PA = AP .

Proof. (i) =⇒ (ii): If X = Y ⊕ Z with A-invariant subspaces Y and Z, then the
projection P with range Y and kernel Z commutes with A. In fact, if x ∈ X and
x = y + z is the unique decomposition of x into components y ∈ Y and z ∈ Z,
then

APx = Ay = PAy = PAy + PAz = PAx.

Here we used that for y ∈ Y , Ay ∈ Y and hence PAy = Ay. Further, we also used
that for z ∈ Z, Az ∈ Z and hence PAz = 0.

(ii) =⇒ (i): If PA = AP and imP = PX =: Y , then

AY = APX = PAX ⊂ PX = Y

and
A(I − P )X = (I − P )AX ⊂ (I − P )X = kerP. �

Let us recall also a basic property of linear mappings on finite-dimensional
spaces.

Proposition A.11. For an operator A ∈ L(X), where dimX < ∞, the following
are equivalent:

A is injective ⇐⇒ A is surjective ⇐⇒ A is bijective.

A.3 Interpolation Polynomials

We recall some basic facts on the derivatives of polynomials with complex coeffi-
cients.

If two complex functions f, g are at least m-times differentiable at a point
z0 ∈ C, then fg is also m-times differentiable, and

(fg)(m)(z0) =

m∑
i=0

(
m
i

)
f (m−i)(z0)g

(i)(z0), (A.1)

where f (j) denotes the jth derivative of the function f and

(
m
i

)
=

m!

i!(m− i)!
.

Lemma A.12. Let z1 ∈ C be fixed. A polynomial p has the form p(z) = (z−z1)
mq(z)

for some m ∈ N and q ∈ C[x] if and only if

p(i)(z1) = 0 for i = 0, 1, . . . ,m− 1.
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Proof. We proceed by induction. For m = 1, the statement is well known from
elementary algebra. Assume now that the desired identity holds up to somem = k.
By this induction assumption, p(z) = (z − z1)

kq1(z) for some q1 ∈ C[x]. Formula
(A.1) yields the identity

p(k)(z) =

k∑
i=0

(
k
i

)
k!

i!
(z − z1)

iq
(i)
1 (z) = (z − z1)p1(z) + k!q1(z), (A.2)

where p1 is a suitable chosen polynomial, more precisely,

p1(z) =
k∑

i=1

(
k
i

)
k!

i!
(z − z1)

i−1q
(i)
1 (z).

Relation (A.2) shows that p(k)(z1) = 0 if and only if q1(z1) = 0. Hence, using again
the well-known fact from elementary algebra, we infer that this last equation is
equivalent to the fact that

q1(z) = (z − z1)q(z)

for some polynomial q ∈ C[x], proving the assertion. �

We collect some information on interpolation polynomials . Given m dis-
tinct complex numbers z1, . . . , zm and another collection of complex numbers
w1, . . . , wm, one can easily find a polynomial p of degree m − 1 with p(zi) = wi,
i = 1, . . . ,m,

p(z) :=

m∑
k=1

wk

∏
1≤j≤m
j 
=k

z − zj
zk − zj

,

which is known as the Langrange polynomial . The problem becomes more difficult
if we would also like to prescribe the values of the derivatives of p at points
z1, . . . , zm. We obviously need higher-order polynomials to fulfill this task. If for
any zi the values of p and of its first νi−1 derivatives are given, i = 1, . . . ,m, then
the minimal degree of the appropriate interpolation polynomial is ν1+ · · ·+νm−1
and can be achieved using Hermite interpolation. For more information we refer
to the monographs by Lancaster [80, Section 5.2] and Meyer [94, Example 7.9.4].

A.4 Function Spaces

We list here some classical sequence and function spaces. In the following, J is a
real interval, K denotes R or C, and Ω, depending on the context, is a domain in
Rn, a locally compact Hausdorff space, or a set endowed with a σ-algebra and a
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measure. This should be clear from the context. The symbol X always stands for
a Banach space. The canonical sequence spaces are:

�∞(N, X) :=
{
(xk) ⊂ X : sup ‖xk‖ < ∞

}
, ‖(xk)‖∞ := sup

k∈N

‖xk‖,

c(N, X) :=

{
(xk) ⊂ X : lim

k→∞
xk exists

}
⊂ �∞(N, X) =: �∞(X),

c0(N, X) :=

{
(xk) ⊂ X : lim

k→∞
xk = 0

}
⊂ c(N, X) =: c(X),

�∞ := �∞(N,C),

c := c(N,C),

c0 := c0(N,C),

�p := �p(N,C) :=
{
(xk) ⊂ C :

∑
k∈N

|xk|p < ∞
}
,

‖(xk)‖p :=

(∑
k∈N

|xk|p
)1/p

, p ∈ [1,∞).

The space �2 is a Hilbert space with the scalar product

((xk), (yk)) :=

(∑
k∈N

xkyk

)1/2

.

Recall the Cauchy–Schwarz inequality (compare with Lemma A.3):

‖(xkyk)‖1 ≤ ‖(xk)‖2‖(yk)‖2 (A.3)

for all (xk), (yk) ∈ �2.

Further, here are some spaces of continuous functions:

C(Ω) := {f : Ω → K : f is continuous}
if Ω = K is compact: ‖f‖∞ := sup

s∈K
|f(s)|,

C0(Ω) := {f ∈ C(Ω) : f vanishes at infinity},
Cb(Ω) := {f ∈ C(Ω) : f is bounded},
Cc(Ω) := {f ∈ C(Ω) : f has compact support},

BUC(Ω) := {f ∈ C(Ω) : f is bounded and uniformly continuous},
AC(J) := {f : J → K : f is absolutely continuous},
Ck(J) := {f ∈ C(J) : f is k-times continuously differentiable},
C∞(J) := {f ∈ C(J) : f is infinitely many times differentiable}.
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The usual spaces of integrable functions are:

Lp(Ω, μ) := {f : Ω → K : f is p-integrable on Ω},

‖f‖p :=
(∫

Ω

|f |p(s) dμ(s)
) 1

p
, p ∈ [1,∞),

L∞(Ω, μ) := {f : Ω → K : f is measurable and μ-essentially bounded},
‖f‖∞ := essup|f |,

L1
loc(Ω, μ) := {f : Ω → K : f measurable, f |K ∈ L1(K,μ) for compact K ⊂ Ω},

where μ is a positive measure defined on the σ-algebra of all Borel sets of Ω.

The following inequality regarding Lp-norms is very useful (compare with
Lemma A.3).

Lemma A.13 (Hölder’s Inequality). Let either 1
p + 1

q = 1 or p = 1, q = ∞ hold.

Then for every f ∈ Lp(Ω, μ) and g ∈ Lq(Ω, μ), fg ∈ L1(Ω, μ) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

We state here a similar inequality for convolutions.

Lemma A.14 (Young’s Inequality). Let 1 ≤ p, q, r ≤ ∞ such that 1
r = 1

p + 1
q − 1.

Then for every f ∈ Lp(Ω, μ) and g ∈ Lq(Ω, μ), f ∗ g ∈ Lr(Ω, μ) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

A.5 The Strong Operator Topology

We will not give the definition of the strong operator topology, but just point out
what convergence and boundedness mean in this setting.

Let X,Y be Banach spaces and let (Tk) ⊂ L(X,Y ) be a sequence of bounded
linear operators between X and Y . We say that the sequence (Tk) converges
strongly to T ∈ L(X,Y ) if

Tkx −→ Tx holds in Y as k −→ ∞, for all x ∈ X .

Thus strong convergence of a sequence of operators is pointwise convergence on
the domain.

A subset K ⊂ L(X,Y ) is called strongly bounded (or bounded pointwise) if for all
x ∈ X we have

sup
{
‖Tx‖ : T ∈ K

}
< ∞.

Next, we list some classical results relating these two notions.
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Theorem A.15 (Uniform Boundedness Principle). Let X,Y be Banach spaces and
suppose K ⊂ L(X,Y ) is strongly bounded, i.e., for all x ∈ X we have

sup
{
‖Tx‖ : T ∈ K

}
< ∞.

Then K is uniformly bounded, that is

sup
{
‖T ‖ : T ∈ K

}
< ∞.

This theorem has the following important consequence.

Theorem A.16. Let X,Y be Banach spaces, and let (Tk) ⊂ L(X,Y ) be a sequence
such that (Tkx) converges in Y for all x ∈ X. Then

Tx := lim
k→∞

Tkx

defines a bounded linear operator on X.

Theorem A.17. Let X,Y be Banach spaces, T ∈ L(X,Y ) and (Tk) ⊂ L(X,Y ) be
a norm bounded sequence. Then the following assertions are equivalent.

(i) For every x ∈ X we have Tkx → Tx in X.

(ii) There is a dense subspace D ⊂ X such that for all x ∈ D we have Tkx → Tx
in X.

(iii) For every compact set K ⊂ X we have Tkx → Tx in X, uniformly for x ∈ K.

By adapting the classical proof of the product rule of differentiation and
using the theorem above one can prove the next result.

Theorem A.18 (Product rule). Let u : [a, b] → X be differentiable, and let F :
[a, b] → L(X,Y ) be strongly continuous such that for every t ∈ [a, b] the mapping

Fu : s �−→ F (s)u(t) ∈ Y

is differentiable. Then s �→ F (s)u(s) ∈ Y is differentiable and

(Fu)′(t) = F ′(t) · u(t) + F (t) · u′(t).

A.6 Some Classical Theorems

Here we collect some classical results we refer to in the text. Their proofs can be
found in all standard textbooks. We start by a fundamental result from topology
due to P. Urysohn [145]. Note that both assertions stated in this lemma hold for
any compact Hausdorff space Ω.
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Lemma A.19 (Urysohn). For a topological space Ω the following assertions are
equivalent.

(i) For every pair of disjoint closed sets A,B ⊂ Ω there are open neighbourhoods
U ⊃ A and V ⊃ B that are also disjoint.

(ii) For every pair of nonempty disjoint closed sets A,B ⊂ Ω there is a continuous
map f : Ω → [0, 1] such that f(A) = 0 and f(B) = 1.

We continue with some results from functional analysis. The first one is in
its present form due to M.H. Stone [133].

Theorem A.20 (Stone–Weierstrass). Let Ω be a compact Hausdorff space, and let
A be a unital sub-algebra of C(Ω) which is closed under the conjugation operation
and separates points (i.e., for every distinct x1, x2 ∈ Ω, there exists at least one
f ∈ A such that f(x1) �= f(x2)). Then A is dense in C(Ω).

Next we recall that an operator with dense domain and closed graph is
bounded if and only if it is everywhere defined. This was shown by S. Banach
[10, page 41].

Theorem A.21 (Closed Graph Theorem). Let X be a Banach space and let A :
X → Y be a linear operator with dense domain D(A) in X and such that its graph
is a closed subspace of X × Y . Then A is bounded if and only if D(A) = X.

The following result is a generalization of geometric series and is named after
C. Neumann [105].

Theorem A.22 (Neumann Series). Let X be a Banach space and let A ∈ L(X)
with ‖A‖ < 1. Then the series

∑∞
k=0 A

k converges in the operator norm and

∞∑
k=0

Ak = (I −A)−1. (A.4)

We also state a couple of results from measure theory. The first one is a
famous result due to H. Lebesgue [85].

Theorem A.23 (Lebesgue Dominated Convergence Theorem). Let (Ω, μ) be a mea-
surable space and (fk) ⊂ L1(Ω, μ) a sequence such that

a) limk→∞ fk(x) = f(x) a.e. on Ω for some measurable function f ,

b) there exists g ∈ L1(Ω, μ) such that |fk(x)| ≤ g(x) a.e. on Ω for all k ∈ N.

Then f ∈ L1(Ω, μ) and

lim
k→∞

∫
Ω

fkdμ =

∫
Ω

fdμ.

Next we recall a result allowing to change the order of the integration pro-
vided that the function is nice enough, which originates in the works of G. Fubini
[49] and L. Tonelli [143].
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Theorem A.24 (Fubini). Let (Ω1, μ1) and (Ω2, μ2) be σ-finite measurable spaces
and f : Ω1 × Ω1 → R a measurable function. If any of the three integrals∫

Ω1

(∫
Ω2

|f | dμ2

)
dμ1,

∫
Ω2

(∫
Ω1

|f | dμ1

)
dμ2,

∫∫
Ω1×Ω2

|f | d(μ1 × μ2),

is finite, then all of them are finite and∫
Ω1

(∫
Ω2

f dμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

f dμ1

)
dμ2 =

∫∫
Ω1×Ω2

f d(μ1 × μ2).

Let μ and ν be two σ-finite measures on Ω. We call the measure ν absolutely
continuous with respect to μ if μ(H) = 0 implies ν(H) = 0 for all measurable sets
H . Every absolutely continuous measure can be represented by an integral, as the
following result by O. Nikodym [106] shows.

Theorem A.25 (Radon–Nikodým). If a σ-finite measure ν is absolutely continuous
with respect to a σ-finite measure μ, then there exists f ∈ L1(Ω, μ) such that

ν(H) =

∫
H

fdμ

for all measurable sets H ⊂ Ω.

A.7 Riemann Integral

Denote by C([a, b];X) the space of continuous X-valued functions on [a, b], which
becomes a Banach space when endowed with the supremum norm. For a continuous
function u ∈ C([a, b];X) we define its Riemann integral via approximation by
means of Riemann sums. Let us briefly sketch how to do this. For Pk := {a = t1 <
t2 < · · · < tk = b} ⊂ [a, b] we set

δ(Pk) := max
{
tj+1 − tj : j = 1, . . . , k − 1

}
,

and call Pk a partition of [a, b] and δ(Pk) the mesh of Pk. We define the Riemann
sum of u corresponding to the partition Pk by

S(Pk, u) :=

k−1∑
j=1

u(tj)(tj+1 − tj),

where k is the number of elements in Pk. From the uniform continuity of u on
the compact interval [a, b] it follows that there exists x0 ∈ X such that S(Pk, u)
converges to x0 if δ(Pk) → 0. More precisely, for all ε > 0 there is δ > 0 such that

‖S(Pk, u)− x0‖ < ε
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whenever δ(Pk) < δ. We call this x0 ∈ X the Riemann integral of u and denote
it by ∫ b

a

u(s) ds.

The Riemann integral enjoys all the usual properties known for scalar-valued
functions. Some of them are collected in the next proposition.

Proposition A.26. For a continuous function u : [a, b] → X the following hold.

a) For every sequence of partitions Pk with δ(Pk) → 0, the Riemann sums
S(Pk, u) converge to the Riemann integral of u.

b) The Riemann integral is a bounded linear operator on the space C([a, b];X)
with values in X.

c) If T ∈ L(X,Y ), then

T

∫ b

a

u(s) ds =

∫ b

a

Tu(s) ds.

d) The function

v(t) :=

∫ t

a

u(s) ds

is differentiable with derivative u.

e) If u : [a, b] → X is continuously differentiable, then

u(b)− u(a) =

∫ b

a

u′(s) ds

holds.

For the proof of these assertions one can take the standard route valid for
scalar-valued functions.

A.8 Dual Spaces and Adjoint Operators

LetX be a Banach space. A linear mapping ϕ : X → C is called a linear functional
or a linear form. We shall use the notation ϕ(f) = 〈f, ϕ〉. A linear functional
ϕ : X → C is bounded if there is a constant M ≥ 0 such that

‖ϕ(f)‖ ≤ M‖f‖ for all f ∈ X.

The set

X∗ :=
{
ϕ : ϕ is a bounded linear functional on X

}



A.8. Dual Spaces and Adjoint Operators 337

is a linear space and becomes a Banach space with the functional norm

‖ϕ‖ := sup
f∈X
‖f‖≤1

|ϕ(f)| = sup
f∈X
‖f‖≤1

|〈f, ϕ〉|.

If ϕ ∈ X∗, then
|〈f, ϕ〉| ≤ ‖ϕ‖ · ‖f‖

holds for all f ∈ X . The space X∗ is called the dual space of X . That X∗ is large
enough is actually the content of the Hahn–Banach theorem (see Hahn [63] and
Banach [9]).

Theorem A.27 (Hahn–Banach). Let X be a Banach space, and let X∗ be its dual
space. Then the following assertions are true.

a) For f ∈ X, f �= 0, there is a ϕ ∈ X∗ with ϕ(f) = ‖f‖ and ‖ϕ‖ = 1. Or, which
is the same, for every 0 �= f ∈ X there is a ϕ ∈ X∗ with ϕ(f) = ‖f‖2 = ‖ϕ‖2.

b) For f, g ∈ X one has f = g if and only if 〈f, ϕ〉 = 〈g, ϕ〉 for all ϕ ∈ X∗.
c) A subspace Y is dense in X if and only if the zero functional is the only

bounded linear functional that vanishes on Y .

Note however that in many examples the dual space can be determined, and
this fundamental theorem is not needed.

We use another important result that holds in Hilbert spaces and is due to
F. Riesz [123] and Fréchet [47].

Theorem A.28 (Riesz–Fréchet). Let H be a Hilbert space with scalar product (·|·)
and H∗ be its dual. For any f ∈ H∗ there exists a unique x ∈ H such that
f(y) = (y|x) for all y ∈ H. Moreover, ‖f‖H∗ = ‖x‖H .

Every positive linear functional on the space of continuous functions on a
compact space can be represented by a measure. The original version of this result
was first obtained by F. Riesz [124].

Theorem A.29 (Riesz Representation Theorem). Let K be a compact Hausdorff
topological space and X = C(K). For every positive linear functional f∗ ∈ X∗

there exists a unique regular Borel measure μ such that

〈f, f∗〉 =
∫
K

fdμ for all f ∈ X.

Unbounded linear forms have always dense kernels as the following proposi-
tion shows.

Proposition A.30. The kernel of any unbounded linear form on a Banach space X
is dense in X.
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Let ϕk, ϕ ∈ X∗. We call ϕk weak∗-convergent to ϕ if for all f ∈ X

〈f, ϕk − ϕ〉 −→ 0 as k −→ ∞.

The functional ϕ is called the weak∗-limit of the sequence, which, if exists,
is unique. We call ϕ a weak∗-accumulation point of the sequence (ϕk) if for all
f ∈ X and ε > 0 there is a subsequence (ϕk�

) with

|〈f, ϕk�
− ϕ〉| ≤ ε for all � ∈ N.

Obviously, if (ϕk) has a subsequence weak∗-converging to ϕ, then ϕ is an
accumulation point of the sequence. The converse implication is in general not
true. The next rather weak formulation of a central result from functional analysis
(see Alaoglu [1]) suffices for our purposes.

Theorem A.31 (Banach–Alaoglu). Let X be a Banach space and consider its dual
space X∗. Let

B∗ :=
{
ϕ ∈ X∗ : ‖ϕ‖ ≤ 1

}
be the unit ball in X∗. Then every sequence (ϕk) ⊂ B∗ has a weak∗-accumulation
point in B∗. If X is reflexive or separable, then every sequence (ϕk) ⊂ B∗ has a
weak∗-convergent subsequence with limit in B∗.

We define the adjoint operator A∗ of a densely defined linear operator A on
a Banach space X by

D(A∗) = {x ∈ X∗ : there is y∗ ∈ X∗ such that

〈Ax, x∗〉 = 〈x, y∗〉 for all x ∈ D(A)},
A∗x∗ = y∗, x∗ ∈ D(A∗).

We note that A∗ is well defined since D(A) is dense in X .

From the following we see that the spectra of the operator and its adjoint
coincide, as long the operator is nice enough.

Proposition A.32. For a closed, densely defined linear operator A and λ ∈ C one
has

λ ∈ ρ(A) ⇐⇒ λ ∈ ρ(A∗),

and in this case R(λ,A)∗ = R(λ,A∗).

A.9 Spectrum, Essential Spectrum, and
Compact Operators

Some general notions and basic results concerning the spectrum of a linear operator
on a Banach space were already collected in Section 9.7.

We recall here just a version of the spectral mapping theorem (see Engel and
Nagel [43, Theorem IV.3.7]).
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Theorem A.33 (Spectral Mapping Theorem for the Point Spectra). Let (T (t))t≥0

be a C0-semigroup with generator A on Banach space X. Then

σp(T (t)) \ {0} = etσp(A), t ≥ 0.

A bounded operator S ∈ L(X) is called a Fredholm operator if there is
T ∈ L(X) such that both operators I−TS and I−ST are compact. We denote by

σess(S) := C \ ρF(S)

the essential spectrum of S, where

ρF(S) := {λ ∈ C : (λ− S) is a Fredholm operator}.

Let K(X) denote the set of all compact operators on X . The Calkin algebra
C(X) := L(X)/K(X) equipped with the quotient norm

‖S‖ess := ‖S +K(X)‖ = dist(S,K(X)) = inf{‖S −K‖ : K ∈ K(X)}

is a Banach algebra with unit. The essential spectrum of S ∈ L(X) can also be
defined as the spectrum of S + K(X) in this Banach algebra. This implies that,
for S ∈ L(X), σess(S) is non-empty and compact.

For S ∈ L(X) we define the essential spectral radius by

ress(S) := r(S +K(X)) = max{|λ| : λ ∈ σess(S)}.

Since (S + K(X))k = Sk + K(X) for k ∈ N, we have ress(S) = limk→∞ ‖Sk‖1/kess ,
and consequently

ress(S +K) = ress(S) for every K ∈ K(X).

Denote by

Pol(S) := {λ ∈ C : λ is a pole of finite algebraic multiplicity of R(·, S)}.

One can prove that Pol(S) ⊂ ρF(S) and that an element of the unbounded con-
nected component of ρF(S) is either in ρ(S) or is a pole of finite algebraic multi-
plicity. For details concerning the essential spectrum we refer to Kato [73, IV.5.6]
and to Gohberg, Goldberg, and Kaashoek [53, Chap. XVII].

We now give a characterization of the essential spectral radius.

Proposition A.34. For S ∈ L(X) the essential spectral radius is

ress(S) = inf{r > 0 : λ ∈ σ(S), |λ| > r and λ ∈ Pol(S)}.
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Proof. If we set

a := inf{r > 0 : λ ∈ σ(S), |λ| > r and λ ∈ Pol(S)},

then for all ε > 0 there is an rε > 0 such that

{λ ∈ σ(S) : |λ| > rε} ⊂ Pol(S)

and rε − ε ≤ a. On the other hand, there is a λ0 ∈ σess(S) with ress(S) = |λ0|.
Supposing that ress(S) > rε, we have λ0 ∈ Pol(S). This implies that λ0 ∈ ρF(S),
which is a contradiction. Hence ress(S) ≤ rε ≤ a+ ε and ress(S) ≤ a.

To show the other inequality, note that

{λ ∈ σ(S) : |λ| > ress(S)} ⊂ ρF(S).

Therefore,

{λ ∈ σ(S) : |λ| > ress(S)} ⊂ Pol(S).

Consequently a ≤ ress(S) and the proposition in proved. �

There are many notions generalizing compactness of an operator. An operator
B ∈ L(X) is called strictly power compact if there is a k ∈ N such that (BT )k is
compact for all T ∈ L(X).

The following theorem gives the relationship between the essential spectra of
the perturbed and the unperturbed semigroups (see Voigt [149, Corollary 1.4 and
Theorem 2.2]).

Theorem A.35. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Banach
space X and B ∈ L(X). Let (S(t))t≥0 the C0-semigroup generated by A + B.
Assume that there exists m ∈ N and a sequence (tk) ⊂ R+, tk → ∞, such that the
remainder Rm(tk) :=

∑∞
j=m Uj(tk) of the Dyson–Phillips expansion in (11.6) at

tk is strictly power compact for all k ∈ N. Then

ress(S(tk)) = ress

(m−1∑
j=0

Uj(tk)

)
, and hence ωess(S) ≤ ω0(T ).

An operator T ∈ L(X) is said to be weakly compact if for every norm bounded
sequence (fk) in X the sequence (Tfk) has a weakly convergent subsequence in X .
Every weakly compact operator is strictly power compact. Moreover, the following
holds (see Dunford and Schwartz [36, Corollary VI.8.13]).

Proposition A.36. If X is an L1-space, then the product of any two weakly compact
operators on X is compact. In particular, every weakly compact operator on X is
strictly power compact.

For the following result we refer to Aliprantis and Burkinshaw [2, Theorem
5.25 and Theorem 5.31].
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Proposition A.37. Let (Ω, μ) be a σ-finite, positive measure space and S, T be two
bounded linear operators on L1(Ω, μ). The following assertions hold.

a) The set of all weakly compact operators is a norm-closed subset of L(L1(Ω, μ)).

b) If T is weakly compact and 0 ≤ S ≤ T , then S is also weakly compact.

De Pagter [109] proved the following fundamental result on the spectral ra-
dius of positive irreducible compact operators.

Theorem A.38. Let E be a Banach lattice. If 0 ≤ T ∈ L(E) is an irreducible
compact operator, then r(T ) > 0.

We also state here a version of the Jacobs–de Leeuw–Glicksberg splitting
theorem, referring for the proof and related results to the monographs Eisner,
Farkas, Haase, and Nagel [40, Chapter 16] or Eisner [39, Section I.6]. Recall that
a semigroup (T (t))t≥0 on a Banach space X is called relatively (weakly) compact
if for each x ∈ X the set {T (t)x : t ≥ 0} is relatively (weakly) compact in X .

Theorem A.39 (Jacobs–de Leeuw–Glicksberg ). Let (T (t))t≥0 be a C0-semigroup
with generator A on a Banach space X. Assume that (T (t))t≥0 is relatively weakly
compact. Then there is a projection P ∈ L(X) commuting with T (t) such that
X = imP ⊕ kerP and

a) imP = span{x ∈ D(A) : ∃α ∈ R such that Ax = iαx},
b) kerP = {x ∈ X : 0 belongs to the weak closure of {T (t)x : t ≥ 0}}.

Moreover, P belongs to the weak operator closure of {T (t) : t ≥ 0}.

A more precise description of kerP is given by the following result in the
case where σ(A) ∩ iR is countable.

Proposition A.40. Let (T (t))t≥0 be a uniformly bounded C0-semigroup with gen-
erator A on a Banach space X. If σ(A) ∩ iR is countable. Then the following
assertions are equivalent.

(i) (T (t))t≥0 is relatively weakly compact.

(ii) (T (t))t≥0 is relatively compact.

In this case the projection P from Theorem A.39 satisfies

kerP = {x ∈ X : lim
t→∞ ‖T (t)x‖ = 0}

holds.

Assuming also positivity, the following technical lemma reveals some more
information on imP , see Schaefer [126, Proposition III.11.5].

Lemma A.41. Let E be a Banach lattice and P ∈ L(E) a strictly positive projec-
tion. Then imP is a sublattice of E.
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A.10 Bochner Integral, Laplace and Fourier Transforms

A general reference for the following facts is the monograph by Arendt et al. [6].

Let X be a (complex) Banach space and I ⊂ R an interval. A function
F : I → X is called a step function if there are m ∈ N, and Lebesgue measurable
sets Ii ⊂ I, and xi ∈ X for all i = 1, . . . , n, such that

F (t) =

m∑
i=1

xiχIi . (A.5)

A function F : I → X is called measurable if there is a sequence Fk : I → X of
step functions such that

F (t) = lim
k→∞

Fk(t)

for almost every t ∈ I. Here “almost every” is to be understood in the sense of
the Lebesgue measure on I.

We say that F ∈ Lp(I,X) if F : I → X is measurable and ‖F (·)‖ ∈ Lp(I,R)
for p ∈ [1,∞) and define its norm by

‖F‖p :=

(∫
I

‖F (t)‖p dt

)1/p

.

Using more or less straightforward arguments one can show that Lp(I,X) enjoys
properties similar to the scalar-valued Lebesgue spaces. In particular, if H is a
Hilbert space, then L2(I,H) becomes a Hilbert space with the scalar product

(F |G) :=

∫
I

(F (t)|G(t)) dt.

The integral of a step function F given by (A.5) is defined as∫
I

F :=

m∑
i=0

xiλ(Ii),

where λ is the Lebesgue measure. A function F : I → X is said to be Bochner
integrable if there is a sequence of step functions Fk : I → X such that∫

I

‖F (t)− Fk(t)‖ dt −→ 0 as k −→ ∞.

The integral of a Bochner integrable function can then be defined as∫
I

F := lim
k→∞

∫
I

Fk.
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It can be shown that this integral is well defined and that if F is Bochner integrable,
then F ∈ L1(I,X) and ∥∥∥∥∫

I

F

∥∥∥∥ ≤ ∫ ‖F (t)‖ dt.

The Fourier transform of a function F ∈ L1(R, X) is

FF (s) :=

∫ ∞

−∞
e−istF (t) dt for s ∈ R,

and the inverse Fourier transform of a function G ∈ L1(R, X) is

F−1G(t) :=

∫ ∞

−∞
eistG(s) ds for t ∈ R.

It can be shown (for example, by taking scalar products and reducing to the
scalar case) that if H is a Hilbert space, then for F ∈ L1(R, H) ∩ L2(R, H), we
have ∫

R

‖F(F )(t)‖2 dt = 2π

∫
R

‖F (t)‖2 dt,

yielding the vector-valued version of Plancherel’s theorem.

Theorem A.42. The Fourier transform extends uniquely to a bounded linear oper-
ator on L2(R, H), and the operator 1√

2π
F is unitary.

As in the scalar case, we can define convolution (see also Lemma A.14).

Theorem A.43 (Hausdorff–Young). Suppose K : R → L(X) satisfies K(·)x ∈
L1(R, X) for every x ∈ X, and take ϕ ∈ Lp(R, X) for some 1 ≤ p < ∞. Defining

(K ∗ ϕ) (t) :=
∫ t

0

K(t− s)ϕ(s)ds,

we see that K ∗ ϕ ∈ Lp(R, X) and

‖K ∗ ϕ‖Lp ≤ ‖K‖L1 · ‖ϕ‖Lp . (A.6)

If F : R+ → X is measurable and exponentially bounded (meaning that
there are M ≥ 0 and ω ∈ R such that |F (t)| ≤ Meωt), then we can define its
Laplace transform analogously to the scalar case as

L(F )(λ) :=

∫ ∞

0

e−λtF (t) dt

for Reλ > ω.

If (T (t))t≥0 is a C0-semigroup of type (M,ω) with generator A, then

R(λ,A)f = L(T (·)f)(λ)

for Reλ > ω, see Proposition 9.33.
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A.11 Distributions and Sobolev Spaces

In this last part of the Appendix we briefly collect some basic facts on distribu-
tions and Sobolev spaces. They are needed for applications of semigroup theory
to elliptic and parabolic problems. As a reference, we suggest Brezis [21, Chapters
7 and 8].

Let α = (α1, . . . , αn) ∈ Nn be a multi-index with |α| :=
∑n

j=1 αj . We denote
by Dj the first derivative with respect to xj and we write Dα := Dα1

1 · · ·Dαn
n . For

f ∈ C(Ω) the set

supp f := {x ∈ Ω : f(x) �= 0}

is called the support of f . For the test functions we take C∞
c (Ω), i.e., the space of

all complex-valued C∞-functions on Ω having compact support, where Ω ⊆ Rn is
an arbitrary domain (open set). We say that a sequence (ϕm) ⊂ C∞

c (Ω) converges
in C∞

c (Ω) to ϕ ∈ C∞
c (Ω) if there is a compact set K ⊂ Ω such that suppϕm ⊂ K

for all m ∈ N and

lim
m→∞ sup

x∈K
|Dαϕm(x) −Dαϕ(x)| = 0 for all α ∈ Nn.

We denote by C∞
c (Ω)∗ the space of all distributions , i.e., all linear forms

T : C∞
c (Ω) � ϕ �→ T (ϕ) ∈ C such that limm→∞ T (ϕm) = T (ϕ) whenever ϕm

converges in C∞
c (Ω) to ϕ ∈ C∞

c (Ω).

Any f ∈ L1
loc(Ω) can be identified with a distribution via

〈ϕ, f〉 :=
∫
Ω

ϕ(x)f(x) dx, ϕ ∈ C∞
c (Ω).

Let us now define the distributional derivative of a locally integrable function.
Take α ∈ Nn and f, g ∈ L1

loc(Ω) such that∫
Ω

ϕg dx = (−1)|α|
∫
Ω

fDαϕ dx

for all ϕ ∈ C∞
c (Ω). Then we call the function g the Dα derivative of f in the sense

of distributions and write g := Dαf .

For 1 ≤ p ≤ ∞ and m ∈ N we define the Sobolev space

Wm,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), 0 ≤ |α| ≤ m}.

Equipped with the norm

‖f‖Wm,p :=

⎧⎨⎩
(∑

0≤|α|≤m ‖Dαf‖pLp

)1/p
if 1 ≤ p < ∞,

max0≤|α|≤m ‖Dαf‖L∞ if p = ∞,
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the space Wm,p(Ω) is a Banach space. Here we simply write Lp(Ω) when the
underlying measure is the Lebesgue measure. Further, we set

Wm,p
0 (Ω) := the closure of C∞

c (Ω) in Wm,p(Ω).

Usually we write Hm(Ω) := Wm,2(Ω) and Hm
0 (Ω) := Wm,2

0 (Ω).

Definition A.44. A bounded domain Ω ⊂ Rn is called of class Ck (k ∈ N or k = ∞)
if the following conditions are satisfied.

a) There is a finite open cover

∂Ω ⊂
N⋃
j=1

Uj

of the boundary ∂Ω such that the intersection Ω∩Uj can be described as the
graph of a function gj ∈ Ck(Q), whereQ is a cube {|xi| < a, i = 1, . . . , n−1}.
More precisely, if x = (x1, . . . , xn) ∈ Ω∩Uj , then xn = gj(x1, . . . , xn−1) with
a suitable change of coordinates.

b) There is η > 0 such that

{x : gj(x
′)− η < xn < gj(x

′), x′ ∈ Q} ⊂ Rn \ Ω

and
{x : gj(x

′) < xn < gj(x
′) + η, x′ ∈ Q} ⊂ Ω.

We recall the Rellich–Sobolev embedding theorem.

Theorem A.45. Suppose that Ω ⊂ Rn is a bounded domain of class C1. Then we
have the following compact injections:

W1,p(Ω) ⊂

⎧⎪⎨⎪⎩
Lq(Ω) for all q ∈ [1, p∗), where 1

p∗ = 1
p − 1

n if p < n,

Lq(Ω) for all q ∈ [1,∞) if p = n,

C(Ω) if p > n.

In particular, W1,p(Ω) ⊂ Lp(Ω) with compact injective embedding for all p ∈
[1,∞).

For smooth domains the Sobolev space W1,p
0 (Ω) coincides with the set of all

functions in W1,p(Ω) vanishing on the boundary of Ω.

Theorem A.46. Let Ω ⊂ Rn be a bounded domain of class C1. If f ∈ W1,p(Ω) ∩
C(Ω), 1 ≤ p < ∞, then the following assertions are equivalent.

(i) f = 0 on ∂Ω.

(ii) f ∈ W1,p
0 (Ω).

The following interpolation inequality is in fact valid for any domain Ω ⊂ Rn.
Here we present only the case when Ω is an interval in R.
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Proposition A.47. Let I ⊂ R be an open interval and f ∈ W2,p
0 (I). Then for any

ε > 0 there is a constant C(ε) > 0 such that

‖f ′‖p ≤ ε‖f ′′‖p + C(ε)‖f‖p.

We mention also the following order theoretic property of W1,p(Ω) for p ∈
[1,∞].

Proposition A.48. If f ∈ W1,p(Ω) for p ∈ [1,+∞], then the functions f+, f−, and
|f | belong to W1,p(Ω) and

Df+ =

{
Df if f > 0,

0 if f ≤ 0,

Df− =

{
Df if f < 0,

0 if f ≥ 0,

D|f |, =

⎧⎪⎨⎪⎩
Df if f > 0,

0 if f = 0,

−Df if f < 0.

To conclude, we recall the Schwartz space of rapidly decreasing functions

S(Rn) :=
{
f ∈ C∞(Rn) : sup

x∈Rn

∣∣xαDβf(x)
∣∣ < ∞ for all multi-indices α, β ∈ Nn

}
.

(A.7)

By using the Schwartz space S(Rn) as test functions instead of the space
C∞

c (Ω) and proceeding as above, one obtains the subspace S(Rn)∗ ⊂ C∞
c (Ω)∗ of

tempered distributions. These distributions are useful when applying the (scalar-
valued) Fourier transform, see (9.7). The Fourier transform maps S(Rn) into itself
and is an algebra homomorphism. Moreover, the Fourier transform F is also an
isomorphism from S(Rn)∗ onto S(Rn)∗. We refer to the books by Hörmander [67]
and Rauch [117] for more information.
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Acad. Sci., Paris 144, 1414–1416 (1907)
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[54] Goldstein, J.: Semigroups of Operators and Applications. Oxford University
Press (1985)

[55] Greiner, G.: Spectral properties and asymptotic behavior of the linear trans-
port equation. Math. Z. 185, 167–177 (1984)

[56] Greiner, G., Nagel, R.: On the stability of strongly continuous semigroups
of positive operators on L2(μ). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10,
257–262 (1983)

[57] Gurtin, M.: A system of equations for age-dependent population diffusion.
J. Theor. Bioi. 40, 389–392 (1973)

[58] Gurtin, M., MacCamy, R.: On the diffusion of biological population. Math.
Biosci. 38, 35–49 (1977)

[59] Gurtin, M., MacCamy, R.: Diffusion models for age structured populations.
Math. Biosci. 54, 49–59 (1981)

[60] Gurtin, M., MacCamy, R.: Product solutions and asymptotic behaviour in
age-dependent population diffusion. Math. Biosci. 62, 157–167 (1982)

[61] Gustafson, K.: A perturbation lemma. Bull. Amer. Math. Soc. 72, 334–338
(1966)

[62] Haase, M.: The Functional Calculus for Sectorial Operators, Operator The-
ory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)
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[145] Urysohn, P.: Über die Mächtigkeit der zusammenhängenden Mengen. Math.
Ann. 94, 262–295 (1925).



Bibliography 355

[146] Varga, R.S.: On a discrete maximum principle. SIAM J. Numer. Anal. 3,
355–359 (1966)

[147] Vidav, I.: Spectra of perturbed semigroups with applications to transport
theory. J. Math. Anal. Appl. 30, 264–279 (1970)

[148] Voigt, J.: On the perturbation theory for strongly continuous semigroups.
Math. Ann. 229, 163–171 (1977)

[149] Voigt, J.: A perturbation theorem for the essential spectral radius of strongly
continuous semigroups. Monatsh. Math. 90, 153–161 (1980)

[150] Voigt, J.: Positivity in time-dependent linear transport theory. Acta Appl.
Math. 2, 311–331 (1984)

[151] Voigt, J.: Spectral properties of the neutron transport equation. J. Math.
Anal. Appl. 106, 140–153 (1985)

[152] Voigt, J.: On resolvent positive operators and positive strongly continuous
semigroups on AL-spaces. Semigroup Forum 38, 263–266 (1989)

[153] Weis, L.: The stability of positive semigroups on Lp-spaces. Proc. Amer.
Math. Soc. 123, 3089–3094 (1995)

[154] West, D.: Introduction to Graph Theory. Prentice-Hall (2001)

[155] Wielandt, H.: Unzerlegbare, nicht-negative Matrizen. Math. Z. 52, 642–648
(1950)

[156] Yosida, K.: On the differentiability and the representation of one-parameter
semigroups of linear operators. J. Math. Soc. Japan 1, 15–21 (1948)

[157] Yosida, K.: Functional Analysis, Grundlehren Math. Wiss., vol. 123. Sprin-
ger-Verlag (1965)

[158] Zabczyk, J.: Mathematical Control Theory. Systems & Control: Foundations
& Applications. Birkhäuser Verlag (1992)
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ŝgn, 260
r(A), 23, 33
ress, 217, 339

sign, 227

f(A), 19, 21, 29

f(T ), 213

f ∨ g, 142

f ∧ g, 142

f+, 142, 146

f−, 142, 146
mA, 16

ma, 216

mg, 216

ut, 236

x < y, 55

x ≤ y, 55

zλ,ν(k), 32

cocone, 103

co, 103

L∞(R,L(X)), 242

(DMP), 89

abscissa, uniform boundedness, 244

absolute value, 142, 146

of a vector, 56

of a matrix, 56

abstract Cauchy problem, 123

adjacency

matrix, 280

adjacency matrix, 4

adjoint operator, 338

AL-space, 193, 210

asymptotically periodic

matrix semigroup, 51

matrix sequence, 67

semigroup, 286

asynchronous exponential growth, 277

balanced exponential growth, 230, 275

Banach lattice, 147

Birkhoff, G.D., 253

Bochner integral, 342

Boltzmann, L., 269

bound

A-, 197

growth, 116, 312

lower, 145

upper, 145

boundary operator, 294

bounded

A-, 210

from above, 145

from below, 145

matrix semigroup, 49

pointwise, 332

sequence (T k), 35

strongly, 332

uniformly, 333

bounded set, 10

Calkin algebra, 217, 339

Cauchy sequence, 9

Cesàro mean, 35

of operator, 35

matrix semigroup, 52
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