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    Chapter 18   
 Biotechnologically Relevant Yeasts 
from Patagonian Natural Environments                     

     Diego     Libkind     ,     Martin     Moliné    ,     Andrea     Trochine    ,     Nicolas     Bellora    , 
and     Virginia     de     Garcia   

    Abstract     The Patagonia region constitutes a vast geographic area with multiple 
extreme environments having one or more of these stress factors: cold, high UV 
incidence, desiccation, ultra-oligotrophy, acidity, and the presence of heavy met-
als, among others. Yeasts that constantly live under stress conditions evolve adap-
tive mechanisms to minimize or resist their negative effects and thus permit 
survival and reproduction. These specifi c mechanisms are promising sources of 
biotechnologically relevant molecules or genes. Here we summarize numerous 
yeast bioprospection studies performed in the conventional and extreme environ-
ments of the Argentinean Patagonia. More than 1000 yeasts and dimorphic fungi 
were collected and molecularly identifi ed; when possible, relevant secondary 
metabolites were screened, as well as their ability to tolerate several types of stress 
in laboratory conditions. Screened metabolites include carotenoid pigments, 
mycosporines (UV sunscreens), and cold-active enzymes. In some cases, these 
traits could be correlated to habitat characteristics and for those (e.g., mycospo-
rines, carotenoid pigments, heavy metal tolerance) their potential role in the adap-
tive mechanisms to specifi c stress factors was evaluated. Genome sequencing and 
analyses were performed for biotechnologically relevant isolates such as 
 Saccharomyces eubayanus ,  Saccharomyces uvarum , and  Phaffi a rhodozyma  (syn-
onym of  Xanthophyllomyces dendrorhous ). The biotechnological potential of 
selected species is addressed as specifi c study cases. The present work represents 
an overview of our fi ndings related to biotechnologically relevant yeasts from 
Patagonian natural environments.  
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18.1       Introduction 

 The  Patagonian Andes possess   unique physical and environmental characteristics 
(Villarosa et al.  2008 ), and its natural substrates have been poorly studied at the 
microbiological level.  Pristine natural environments   are common in Patagonia, with 
a higher diversity of fauna and fl ora toward the more humid and higher areas of 
 Andean Patagonia. Regions   under very harsh environmental conditions also exist in 
Patagonia and can be considered as extreme environments. These environments 
impose diffi culties for microbial colonization and growth, selecting for microorgan-
isms adapted to such conditions that frequently have evolved special metabolic 
abilities, many of which may be of interest for industrial exploitation.  High ultravio-
let radiation (UVR)  , high altitude, extreme desiccation, very cold or freezing tem-
peratures, freezing and thawing cycles during the day, ultra-oligotrophic conditions, 
and volcanic activity, singly or combined, are among the stress factors that infl uence 
the microbial communities in the Patagonian natural environment, in particular 
Andean Patagonia. Yeasts belonging to either the  Ascomycota   or the  Basidiomycota   
have proven to be able to adapt to multiple types of substrates and environments, 
including those regarded as extreme, and display an amazing diversity of highly 
plastic phenotypes. Several novel species have been obtained and formally described 
from those environments, and their screening for industrially relevant traits has been 
carried out. This chapter summarizes research carried out mainly on the biodiversity 
and biotechnology of Patagonian native yeasts, and how their adaptive characteris-
tics are exploited for industrial applications. 

18.1.1     Yeasts  in Extreme Environments   

 Certain yeast species have evolved metabolic adaptations that allow them to colo-
nize extreme natural habitats such as the deep sea (Nagahama et al.  2001 ; Gadanho 
and Sampaio  2005 ), glacial meltwaters (Vishniac  2005 ; Branda et al.  2010 ), hyper-
saline lakes (Butinar et al.  2005 ), ultra-oligotrophic mountain lakes exposed to 
increased UV radiation (Libkind et al.  2009a ), and natural and anthropic hyper-
acidic (pH <3) aquatic environments (Gadanho et al.  2006 ), among others. Yeasts 
living in these environments are often polyextremophiles, that is, they tolerate many 
different extreme conditions (low pH, high temperatures, osmotic pressures, high 
concentration of heavy metals, chemolithotrophic microbial activity). In this section 
we review the research on yeasts isolated from extreme environments in Patagonia, 
with special emphasis in ultra-oligotrophic mountain lakes with high UVR, highly 
acidic waterbodies of volcanic origin, and very cold environments (glaciers and 
meltwater). Table  18.1  summarizes the principal yeast species recovered from 
Patagonian natural  environments  , including those considered extreme.
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     Table 18.1    Yeast species in Patagonian extreme environments and their biotechnological relevance   

 Habitat  Substrate  Predominant species 
 Novel yeasts 
described 

 Biotechnologically 
relevant species 

 Freshwater 
bodies 

 Lakes, lagoons, 
rivers 

  R. mucilaginosa  a  
  Rh. babjevae  
  Rh. kratochvilovae  
  Sp. salmonicolor  
  Sporobolomyces  b  

  Sp. longiusculus  
  S. patagonicus  
  Cy. lacus-
mascardii  
  Cy. macerans  
  R. meli  

 Pigmented yeasts, 
sources of 
carotenoids, 
mycosporines, 
polyunsaturated 
fatty acids, and 
other lipids  High- altitude lakes 

(>1400 m a.s.l.) 
  R. mucilaginosa  
  Rh. babjevae  

  H. takashimae  

 Oligotrophic lakes   R. mucilaginosa  a  
  Cr. victoriae  

   Dioszegia    sp. 1 c  

 Acidic lakes and 
rivers 

  Cr. agrionensis  
  R. mucilaginosa  
  Rh. toruloides  

  Cr. agrionensis   Acid- and 
metal-tolerant 
yeasts: 
bioremediation of 
heavy metals 

 Glaciers  Meltwater   Cr. spencermartinsiae  
  L. fragarium  

  Cr. spencermartinsiae  
  Cr. frias  
  Cr. tronadorensis  

 Cold-adapted 
yeasts: sources of 
cold-active 
enzymes, antifreeze 
proteins, lipids 

 Ice   D. crocea , 
 new genus c  
  S. ruberrimus  
  D. fristingensis  

  Nothofagus  
forest 

  Cyttaria  spp. 
fungal stromata, 
 sap exudates, 
 bark, 
 leaves 

   Saccharomyces    spp. 
 Hanseniospora  spp. 
  Pichia  spp .  d  

  W. patagonicus  
   S. eubayanus    
  Cys. 
psychroaquaticum  

 Yeasts for 
fermentation 
processes (beer, 
wine) 

 Soil   Cr. podzolicus  
(BS, R, E) 
  Cr. phenolicus , 
  Cr. terreus , 
 and  T. porosum  (BS) 
  Cr. aerius  
 and  C. maritima  (R) 
  Cr. aerius , 
  Cr. phenolicus  
and  H. wattica  (E) 

  La. nothofagi   e  
  Li. rizospherae  

 Yeasts for 
enhancing plant 
growth and 
biocontrol 

 Seeds, 
 fruits 

  A. pullulans  
  Cr. heveanensis  

   A.,    Aureobasidium    ; C., Candida; Cr., Cryptococcus; Cy.,    Cystofi lobasidium    ; Cys., Cystobasidium; 
D.,    Dioszegia    ; H., Holtermanniella; L.,    Leucosporidium    ; La., Lachancea; Li., Lindnera; R., 
Rhodotorula; Rh., Rhodosporidium; S., Sporobolomyces; Sp., Sporidiobolus; T., Trichosporon; 
W., Wickerhamomyces;  BS, bulk soil; E, ectomycorrhizosphere; R, rhizosphere 
  a Frequently associated with anthropically infl uenced lakes or sites 
  b Species of this genus were predominant in lakes with low anthropic infl uence 
  c Formal description in progress 
  d Selective isolation of fermentative species (Ulloa et al.  2009 ) 
  e Strains also found in sap and bark of  Nothofagus  sp. (Mestre et al.  2010 )  
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18.1.1.1       Ultra-oligotrophic Aquatic Environments Under High UVR 

 Yeasts are common inhabitants of aquatic environments, and their density and spe-
cies diversity depend on water type and purity (Hagler and Mendoça-Hagler  1981 ). 
The northern part of Andean Patagonia offers a great variety of pristine, glacially 
formed waterbodies, covering an ultra- to mesotrophic range of small and large 
lakes including small high-elevation lakes or wetlands. These habitats are normally 
exposed to extended daylight (latitude 41–45°) and consequently increased UVR, 
also the result of ozone layer depletion and a clean atmosphere. Many Patagonian 
aquatic environments are still further affected by these environmental factors 
because of their transparency and ultra-oligotrophic character (Villafañe et al. 
 2001 ). Thus, yeast survival in pristine waters in Patagonia is conditioned by low 
temperature, ultra-oligotrophic conditions, and, more signifi cantly, high UVR doses 
(Libkind et al.  2006 ; de Garcia et al.  2014 ). 

 Because of their differential ability to assimilate a larger number of complex car-
bon sources and a better capacity to cope with harsh conditions (Sampaio  2004 ), 
basidiomycetous yeasts  predominate   in the ultra-oligotrophic waterbodies of 
Patagonia (Libkind et al.  2003 ; Brandão et al.  2011 ). The biodiversity of basidiomy-
cetous yeasts in certain lakes in Andean Patagonia (Argentina) was investigated, 
focusing on species producing photoprotective compounds such as carotenoid pig-
ments and UV sunscreens (mycosporines) (Libkind et al.  2003 ,  2005a ,  2009a ; 
Brandao et al.  2011 ), both known strategies for the minimization of UV-induced 
damage in organisms (Roy  2000 ). These secondary metabolites, which are of indus-
trial interest for many reasons, are discussed in Sect.  2  of this chapter. These studies 
indicated UVR as a selective factor that favors the occurrence of more UV-resistant 
yeast species/strains in these kinds of lakes and thus determining their yeast commu-
nity structure (Libkind et al.  2009a ; Moliné et al.  2009 ; Moliné  2010 ). Also, several 
novel species were described, including  Rhodotorula meli ,  Sporidiobolus longiuscu-
lus ,  Sporobolomyces patagonicus , and   Cystofi lobasidium     lacus-mascardii  (Libkind 
et al.  2005b ;  2009b ;  2010 ) (Table  18.1 ). These species are interesting for their ability 
to accumulate carotenoid pigments, and some were regarded as biotechnologically 
relevant (Libkind et al.  2006 ; Libkind and van Broock  2006 ; Moliné et al.  2012 ). 

 Yeast  diversity and distribution     , including the entire cultivable yeast community, 
were evaluated in the pristine water of Nahuel Huapi (NH) Lake, one of the largest 
lakes in Patagonia (Brandão et al.  2011 ). Yeast counts ranged from 22 to 141 cfu l −1 , 
typical of clean lakes (Hagler and Ahearn  1987 ), with the highest values corre-
sponding to the most anthropogenically infl uenced sites. Isolates from NH Lake 
were identifi ed as belonging to 13 genera and 34 species, with 73.8 % being basid-
iomycetous.   Rhodotorula mucilaginosa    and   Cryptococcus victoriae    were the most 
frequently found species. Some yeast species were more represented in anthropo-
genically infl uenced sites (such as   Aureobasidium     pullulans  and  R. mucilaginosa ) 
whereas the most represented species in sites considered less affected by human 
activity were also components of the community of the surrounding  Nothofagus  
phylloplane. The occurrence and distribution of yeasts at the studied sites showed 
peculiar distributional patterns that are probably infl uenced by inputs of allochtho-
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nous organic matter from the borders of the lake and by abiotic factors such as 
UVR. Photoprotective compound-producing yeasts were mainly found in pelagic 
points of the lake, suggesting that both carotenoids and mycosporines production 
capacities are important for yeast survival under high-UVR conditions.  

18.1.1.2     Acidic Environments 

  Acidic environments   can harbor numerous microorganisms, including algae, bacte-
ria, and fungi, with distinctive capacities to survive the acidic conditions and the 
resulting high metal concentrations. The yeast community of a natural acidic envi-
ronment located in Northwestern Patagonia was analyzed (Rio Agrio and Lake 
Caviahue system) (Russo et al.  2008 ). Yeasts were isolated from water sites with 
different pHs, ranging from 1.6 to 6.7. The recovery of putative autochthonous 
yeasts was enhanced when water from the sampling site was used in the formulation 
of the isolation media, compared to use of conventional yeast media. In total, 25 dif-
ferent species were identifi ed, with 99 % of the isolates being Basidiomycetes. 
  Rhodotorula mucilaginosa   ,  Rhodosporidium toruloides,  and two novel  Cryptococcus  
species were the most adapted species. One of the novel species, named   Cryptococcus 
agrionensis    (Russo et al.  2010 ), is highly resistant to heavy metals and belongs to the 
 acid rock drainage (ARD)   ecoclade (Gadanho and Sampaio  2009 ; Libkind et al. 
 2014 ; Russo et al.  2016 ) (Table  18.1 ). The second  Cryptococcus  species (referred to 
as  Cryptococcus  sp. 2) was able to grow in a very narrow pH range (2.5–4.5), with 
an optimum at pH 3, and thus could be regarded as an acidophilic yeast. Both  R. 
mucilaginosa  and  Cr. agrionensis  showed wider pH growth ranges. Ongoing studies 
aim to analyze the molecular basis of such atypical phenotypes. Interestingly, the 
yeast community of the naturally originated Patagonian acidic environment resem-
bled that of acidic aquatic environments resulting from anthropic activities such as 
the São Domingos mines in Portugal and the Rio Tinto in Spain (Gadanho et al. 
 2006 ). The current knowledge of yeast diversity and ecology in acidic aquatic envi-
ronments is scarce and limited. Detailed studies on their metabolic features, includ-
ing assessment of their ability to bioremediate heavy metals, will give further insights 
into their biotechnological potential. In a recent study some of the aforementioned 
yeasts were evaluated for their ability to capture heavy metals (such as Cu 2+ , Ni 2+ , 
and Zn 2+ ) in solution at low pH, with promising  results   (Russo et al.  2016 ).  

18.1.1.3     Cold Environments 

 Andean  Patagonia   in Argentina offers a great variety of glaciers and glacially 
formed waterbodies that are still glacier fed. The latter include small and large oli-
gotrophic to ultra-oligotrophic lakes, including small high-elevation lakes, some-
times surrounded by a dense native forest of trees of  Nothofagus  spp. and 
  Austrocedrus chilensis    trees (Quirós and Drago  1985 ; Díaz et al.  2000 ). In Mount 
Tronador alone, in Nahuel Huapi National Park, there are ten different glaciers 
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(Rabassa et al.  1978 ). Los Glaciares National Park (Argentina) and Patagonian 
Icefi elds (Hielos Patagónicos) are the largest temperate ice masses in the Southern 
Hemisphere, accounting for more than 60 % of the Southern Hemisphere glacial 
area outside Antarctica. Perito Moreno Glacier is located within these icefi elds 
(Stuefer et al.  2007 ). 

 Extensive studies on the occurrence of psychrophilic and psychrotolerant yeasts 
from the cold environments of Patagonia have been carried out since the 1990s in 
aquatic (freshwater, meltwaters, glacial ice, seawater)    and terrestrial habitats (fl ow-
ers, phylloplane, sap exudates, bark, soil, rotten wood, rhizosphere,  Cyttaria  sp. 
stromata) (Brizzio and van Broock  1998 ; Libkind et al.  2003 ;  2004a ,  b ;  2006 ; 
Brizzio et al.  2007 ; de Garcia et al.  2007 ; Libkind et al.  2007 ,  2008a ,  2009a ,  2011a ; 
Mestre et al.  2011 ; de Garcia et al.  2012 ; Fernández et al.  2012 ). Yeasts isolated 
from these cold environments belong to taxa previously described as cold adapted 
whereas yeast species not considered as such were also present and considered tran-
sient components of the microbial community. An almost up-to-date review on 
cold- adapted yeasts from Patagonia was recently published (de Garcia et al.  2014 ). 
Since then a few novel investigations have been published, including the taxonomic 
reorganization of the psychrotolerant yeasts of the genus   Leucosporidium    (de 
Garcia et al.  2015 ). Members of this genus are particularly important as potential 
sources of extracellular enzymes that are active at low temperatures (cold enzymes), 
antifreeze proteins, and have the ability to biodegrade phenol and phenol-related 
compounds (Bergauer et al.  2005 ; Sampaio  2011a ,  b ; de Garcia et al.  2012 ). In 
Patagonia the predominant species is  Leucosporidium creatinivorum , a member of 
the  L. scotti  species complex (de Garcia et al.  2015 ). A considerable percentage 
(25–40 %) of the yeast species recovered from different cold substrates belonged to 
undescribed taxa. The most recently described is  Cystobasidium psychroaquaticum , 
isolated in Patagonia from glacier  meltwater   and from the phylloplane of high-alti-
tude trees (Yurkov et al.  2015 ). Including those previously mentioned, a total of 11 
cold- adapted new yeast species have been formally described from Patagonian envi-
ronments (Libkind et al.  2005b ,  2009b ; de Garcia et al.  2010a ,  b ; Libkind et al. 
 2010 ,  2011a ; de Garcia et al.  2012 ; Yurkov et al.  2015 ). 

 Regarding the number of cultivable yeast cells detected in aquatic cold environ-
ments of Patagonia, average yeast counts of 10 2  to 10 3  cfu l −1  were found in 
 freshwater mountain lakes (Libkind et al.  2003 ,  2009a ; Brandão et al.  2011 ), 1 × 10 2  
to 3 × 10 2  cfu l −1  in meltwater rivers (de Garcia et al.  2007 ), and 1 × 10 3  to 5 × 10 3  cfu l −1  
in continental glacial ice (de Garcia et al.  2012 ). Again, basidiomycetous yeasts are 
the predominant group in these environments. Similar results from different cold 
environments worldwide have been reported (Frisvad  2008 ; Buzzini et al.  2012 ). 
Notably, a relatively higher richness index of taxa among ice and meltwater samples 
was observed (de Garcia et al.  2012 ), compared to the values reported for soil sam-
ples in Patagonian forest (Mestre et al.  2011 ). Brandão et al. ( 2011 ) mentioned simi-
lar richness index values for water samples from  Nahuel Huapi Lake   (coast sites, 
 H  = 2.2, and pelagic sites,  H  = 2.8). 

 The occurrence of cold-adapted yeasts was evaluated in the dominant tree genus 
in Andean Patagonia,  Nothofagus  spp., in different terrestrial substrates including 
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leaves, seeds, bark, rotting wood, sap, soil, rhizosphere, fl owers, and the stromata of 
 Cyttaria  spp. In contrast to the studies of  oligotrophic environments  , the major com-
ponent of the yeast community in terrestrial substrates were ascomycetous fungi. 
  Aureobasidium    was the most frequently isolated genus in the  phylloplane   and other 
substrates (Muñoz et al.  2013 ). Other interesting yeasts of the genera   Saccharomyces    
and   Phaffi a    (synonym   Xanthophyllomyces   ) were also detected in such forests and 
are reviewed in the next section. 

 The diversity, distribution, and physiological properties of yeasts inhabiting dif-
ferent substrates related to   Nothofagus  forests   (seeds, bulk soil, rhizosphere, ecto-
mycorrhizosphere) were recently published (Mestre et al.  2011 ; Fernández et al. 
 2012 ; Mestre et al.  2014 ). For example,  Cryptococcus  species such as  Cr. podzoli-
cus ,  Cr. phenolicus , and  Cr. aerius  were the species most frequently occurring 
in  N. pumilio  (Mestre et al.  2011 ). Recently, some of these psychrotolerant yeasts 
(i.e.,   Aureobasidium     pullulans ,  Holtermaniella takashimae ,  Candida maritima ) 
were shown to possess plant growth-enhancing features, such as production of 
auxin-like compounds and siderophores, and the ability to solubilize inorganic 
phosphate and to reduce the growth of common plant pathogens (Mestre et al.  2016 ).    

18.2      Biotechnologically Relevant Traits in Patagonian 
Native Yeasts 

18.2.1      Carotenoid Pigments  : Biological Function 
and Biotechnological Applications 

 Carotenoids are yellow to red natural pigments formed by a C-40 chain, which is 
considered the backbone of the molecule. This chain has several conjugated double 
bonds (7–15) where the p electrons are highly delocalized, conferring a low-energy 
excited state giving their characteristic yellow to dark red color (Britton  1995 ). 
Furthermore, several modifi cations can occur in this basic skeleton, giving rise to 
more than 700 types of naturally occurring carotenes and xanthophylls (Britton 
 2004 ). Different functions have been attributed to these pigments in fungi, includ-
ing protecting against reactive oxygen species (ROS) and ultraviolet radiation 
(UVR), being precursors of hormones (in Mucorales), being associated with mem-
brane permeability modifi cations, and providing resistance to heat, radiation, and 
oxidation (Lampila et al.  1985 ; Britton  1995 ; Schroeder and Johnson  1995 ; Johnson 
and Schroeder  1996 ; Britton  2008 ). Regardless of their biological function, carot-
enoids are important for their benefi ts to human health, and are known to act as 
provitamin A (Olson  1989 ; Johnson and Schroeder  1996 ), antioxidants (Krinsky 
 1979 ; Sies and Stahl  1995 ), and antimutagens and anticarcinogens (Rao and 
Agarwal  2000 ; Donaldson  2004 ; Rao and Rao  2007 ). For these reasons they are of 
interest to the  pharmaceutical  , chemical, food, and feed industries (Ausich  1997 ; 
Rodríguez-Sáiz et al.  2010 ). 
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 Yeast as well as other fungi can synthesize and accumulate carotenoid com-
pounds. Most of these yeasts are called the “red yeasts,” given the red to salmon- 
pink color of their colonies when grown in the laboratory. Despite the large number 
of possible pigments, red yeasts only synthesize a few carotenoid molecules, and 
three pigments are common for most yeast species; torulene, γ-carotene, and 
β-carotene. These carotenoids can be produced by species of the subphyla 
Agaricomycotina, Pucciniomycotina, Ustilaginomycotina, Taphrinomycotina, and 
Pezizomycotina (Kurtzman et al.  2011 ). The carotenoid pigment torularhodin (a 
xanthophyll product of the oxidation of torulene) is less common and is found asso-
ciated with Pucciniomycotina species (Davoli et al.  2004 ; Buzzini et al.  2007 ; 
Sperstad et al.  2006 ). Torularhodin has been reported to have provitamin A activity 
in vitro, better antioxidant activity against singlet oxygen, and a more potent effect 
on the scavenging of peroxyl radicals than β-carotene (Simpson  1983 ; Sakaki et al. 
 2001 ; Ungureanu and Ferdes  2012 ). Other rare yeast carotenoids, produced by dif-
ferent species, are xanthophylls such as 16-hydroxytorulene, torularhodinaldehyde, 
plectaniaxanthin, and 2-hydroxyplectaniaxanthin, with hitherto unknown applica-
tions. Finally, the  biotechnologically   relevant  astaxanthin   can only be synthesized 
by one yeast species:   Phaffi a rhodozyma   . 

 Among Patagonian yeast mycobiota, species producing carotenoids were found 
in all the environments tested so far (water, soil, phylloplane, glaciers), and 
  Rhodotorula mucilaginosa    was the most common species. In our studies, the fresh-
water environment had the higher proportion (>50 %) of red yeasts. In a survey of 
fi ve high-altitude water bodies located in the Nahuel Huapi National Park, Libkind 
et al. ( 2009b ) revealed that carotenogenic yeasts prevail in lakes with higher trans-
parency. More than 24 yeast species were recovered in this study, and 12 corre-
sponded to red yeasts (classifi ed into seven genera).  Rhodotorula mucilaginosa  was 
the most frequently isolated species (representing more than 50 % of the total iso-
lates), followed by   Rhodosporidium babjevae   . Other less frequent pigmented spe-
cies such as  Sporobolomyces ruberrimus ,  Cystobasidium laryngis ,  Cystibasidium 
minutum  (ex  Rhodotorula minuta ),  Sporobolomyces marcillae ,  Rhodosporidium 
diobovatum , and three   Dioszegia    species have also been isolated from Patagonian 
lakes (Libkind, et al.  2003 ,  2009a ). In another study Brandão et al. ( 2011 ) revealed 
the occurrence of 47–74 % of pigmented yeasts in pelagic sites (more transparent) 
of the  Nahuel Huapi Lake  . In Patagonian glacier meltwater and ice, the number of 
species bearing carotenoids was less representative; however, the isolation of spe-
cies such as   Dioszegia crocea   ,  Dioszegia fristingensis , and  Sporobolomyces ruber-
rimus  was common, reaching more than 30 % of the isolates (de Garcia et al.  2012 ). 
In contrast, pigmented strains are unusual in soil, and only three species, namely, 
  Cystofi lobasidium     infi rmominiatum ,  Cystofi lobasidium capitatum , and  Rhodotorula 
colostri , were reported from this environment (Mestre et al.  2014 ). Given the pho-
toprotective function of carotenoids, our results suggest that the higher abundance 
of carotenogenic yeasts in substrates with a higher exposition to UVR is the result 
of their higher tolerance to this damaging stress factor (Libkind et al.  2006 ,  2009a ; 
Moliné et al.  2011a ). 
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 The proportion and type of  carotenoids   produced by Patagonian yeasts was 
highly variable and depended on the phylogenetic group to which they belonged. 
For example, in   Rhodotorula mucilaginosa    strains, carotenoid content ranged from 
60 to 301 mg g −1  of dry biomass (Libkind and van Broock  2006 ), and torularhodin 
was the most important carotenoid, representing 61–98 % of the total carotenoid 
content (Moliné et al.  2011a ,  2012 ).   Phaffi a rhodozyma    carotenoids ranged from 98 
to 415 mg g −1  of dry biomass, and  astaxanthin   was the principal carotenoid (Libkind 
et al.  2008b ), indicating that quantitative pigment production is a strain-related fea-
ture. Moreover, the origin of the strains seemed to be a relevant aspect when consid-
ering carotenoid accumulation, because the total carotenoid content of Patagonian 
strains (mainly isolated from extreme environments) was in almost all cases higher 
than values observed for type strains of the same or related species (Libkind et al. 
 2004b ;  2009b ; Libkind and van Broock  2006 ; Moliné  2010 ; Moliné et al.  2011a ). 

 Pigment analysis of the Patagonian yeasts revealed that torulene, torularhodin, 
and β-carotene were the most important carotenoids present in the genera  Rhodotorula , 
 Rhodosporidium ,  Sporobolomyces , and  Sporidiobolus  (Libkind and van Broock 
 2006 ; Buzzini et al.  2007 ; Moliné et al.  2011a ) (Fig.  18.1 ). Another carotenoid 
observed only in a few isolates was γ-carotene. Other yeast genera such as 
  Cystofi lobasidium    and   Dioszegia    were also found to synthesize the pigments torulene 
and β-carotene; however, in  Cystofi lobasidium  there are other unknown carotenoids 
representing the major compounds (probably 16′-hydroxytorulene, torularhodinalde-
hyde, and β-apo-2′-carotenal, based on Herz et al. ( 2007 ), and in  Dioszegia  the prin-
cipal carotenoid identifi ed was plectaniaxanthin (Moliné  2010 ). Finally, the most 

  Fig. 18.1    Chemical structure of the principal carotenoids and mycosporines found in yeasts       
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relevant pigment identifi ed in Patagonian yeasts was the xhantophyll  astaxanthin   
produced by   Phaffi a     rhodozyma  (Fig.  18.1 ) .  Evidence has been gathered that demon-
strates  astaxanthin   protects cells from oxidative stress including that caused by pho-
togenerated reactive oxygen species (Schroeder and Johnson  1995 ). Astaxanthin is 
probably the most important yeast carotenoid for its high commercial value in phar-
maceutics, nutraceutics, and cosmetics (Bhosale and Bernstein  2005 ). In addition to 
its antioxidant properties,  astaxanthin   has antiinfl ammatory and neuroprotective 
properties (Naguib  2000 ; Lee et al.  2011 ). Furthermore,  astaxanthin   is also used in 
aquaculture for pigmentation of fi sh and crustaceans, being the most expensive feed 
ingredient (Johnson and Schroeder  1995 ). Therefore, we address further   Phaffi a rho-
dozyma    and its importance in aquaculture in Sect.  3.3  of this chapter and in Chapter 
13, Microorganisms from  Patagonian Aquatic Environments   for Use in Aquaculture.

   Carotenoid  accumulation  , the concentration and relative proportion of each pig-
ment, is also affected by the culture media and by physical and chemical factors. For 
example, in   Phaffi a rhodozyma   , a high carbon:nitrogen (C/N) ratio favors carot-
enoid production (Yamane et al.  1997 ; Flores-Cotera et al.  2001 ), and the same 
occurs for strains isolated from Patagonia (Moliné  2010 ), whereas in   Rhodotorula 
mucilaginosa    strains, the specifi c carotenoid production is not affected by the C/N 
ratio (Libkind et al.  2004a ; Libkind and van Broock  2006 ). Light is one of the most 
important environmental forces triggering the synthesis of carotenoids in yeasts 
(Tada and Shiroishi  1982 ; An and Johnson  1990 ; Sakaki et al.  2001 ; Bhosale  2004 ). 
Exposure to  photosynthetically active radiation (PAR)   and UV-A was found to pro-
duce different responses in the synthesis of carotenoid pigments in yeast, with 
increases from 6 % up to 800 % depending on the species. The increasing effect of 
photostimulation in carotenoid synthesis after exposure to PAR + UV-A was nega-
tively correlated to the basal concentration of carotenoids, suggesting that yeasts 
with high constitutive levels of intracellular carotenoids were less responsive 
(Libkind et al.  2004b ). The reason is probably that they already possess suffi cient 
carotenoids functioning as photoprotective agents to cope with the UVR-damaging 
effects imposed in our experiments. Evidence that one of the roles of carotenoid 
pigments in yeast cells could be photoprotection has been accumulated for decades 
(Maxwell et al.  1966 ; Tsimako et al.  2002 ). Using Patagonian carotenogenic iso-
lates and naturally occurring albino strains, we experimentally compared pigmented 
and albino strains of   Cystofi lobasidium     capitatum  and  Sporobolomyces ruberrimus . 
Albino strains invariably were less tolerant to UV-B exposure than pigmented 
strains, and a direct relationship between carotenoid content and survivorship in  Cy. 
capitatum  was observed (Libkind et al.  2006 ; Moliné et al.  2009 ). Afterward, using 
a set of  R. mucilaginosa  and  P. rhodozyma  strains, we established a signifi cant posi-
tive relationship between intracellular carotenoid concentration and UV-B survival 
(Moliné  2010 ; Moliné et al.  2011a ). Analysis of carotenoid content pointed out that 
torularhodin in  R. mucilaginosa  and  astaxanthin   in  P. rhodozyma  provided effective 
photoprotection, whereas other carotenoids such as β-carotene showed a lack of 
correlation with survival to UV-B. 

 The studies described here show that the environmental niches for the isolation 
of red yeasts were identifi ed, as well as the carotenoid pigments synthesized, and 
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the biological function of such pigments was experimentally confi rmed. In sum-
mary, red yeasts from Patagonia represent an interesting source of carotenoid pig-
ments with biotechnological value, and further studies are needed to determine their 
potential for industrial applications.  

18.2.2     Natural Sunscreens: Mycosporines 

  Mycosporines   are water-soluble compounds composed by a cyclohexenone attached 
to an amino acid (or amino alcohol). There are more than a dozen different myco-
sporines, but in fungi only mycosporine serine, alanine, α-amino alcohol serinol, 
pyroglutamic acid, and the related pairs glutamine–glutaminol and glutamic acid–
glutamicol were described (Young and Patterson  1982 ; Bernillon et al.  1984 ; Leite 
and Nicholson  1992 ; Volkmann et al.  2003 ; Sommaruga et al.  2004 ). Because these 
compounds absorb light in the UV spectrum with a maximum at 310 nm, the pri-
mary function of mycosporines was to act as photoprotective UV fi lters (Shick and 
Dunlap  2002 ; Torres et al.  2004 ). However, other functions were also attributed, 
including antioxidant activity, osmoregulation, resistance to thermal stress, and 
serving as intracellular nitrogen storage (Oren and Gunde-Cimerman  2007 ). Only 
recently was mycosporine synthesis reported for yeasts by our laboratory. Different 
basidiomycetous yeasts, most isolated from Patagonia lakes, were found to synthe-
size a UV-absorbing compound when grown under photosynthetically active radia-
tion (PAR)       (Libkind et al.  2004b ). In basidiomycetous yeasts, mycosporines were 
reported in different species of the subphyla Pucciniomycotina (Libkind et al. 
 2011b ) and Agaricomycotina (Libkind et al.  2005a ,  2011c ). In both groups there are 
taxa with and without the ability to produce mycosporines, suggesting that this trait 
might be plesiomorphic. Yeasts and dimorphic fungi of the  Ascomycota   able to 
produce mycosporines are classifi ed in the orders Dothideales, Capnodiales, and 
Taphrinales (Gunde-Cimerman and Plemenitaš  2006 ; Kogej et al.  2006 ). In most 
yeasts so far tested a main mycosporine was detected, mycosporine-glutaminol- 
glucoside ( MGG  ) (Sommaruga et al.  2004 ), which consists of a cyclohexanone 
attached to a glutaminol and glucose molecule, with a molecular weight of 
464.5 g mol −1  and a characteristic absorbance at 310 nm (Fig.  18.1 ). 

 The biodiversity of basidiomycetous  MGG  -producing yeasts was investigated by 
Libkind et al. ( 2003 ,  2005a ,  2009a ) in certain lakes in Andean Patagonia (Argentina). 
The occurrence of MGG-positive yeast in waterbodies goes through a wide range, 
from 14 % to near 90 % of total cultivable yeast community. MGG synthesis was 
more frequent in yeasts that were not able to accumulate carotenoid pigments, and 
only red yeasts such as  Rhodotorula minuta ,  R. laryngis , and   Dioszegia    spp. were 
positive for MGG. As for red yeasts, the abundance of  mycosporine  -positive spe-
cies was higher in highly transparent lakes or in pelagic zones (Brandão et al.  2011 ). 
In glacier meltwater and ice, yeasts able to synthesize MGG are less frequent, 
including such species as   Dioszegia crocea    and  D. fristingensis  as the most 
important ones (de Garcia et al.  2012 ). 
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 As for carotenoids, the biological role of mycosporines in yeasts was evaluated. 
Libkind et al. ( 2004b ) suggested a photo-protective role, based in the strong response 
of mycosporine production to radiation. Using a set of   Cryptococcus stepposus    and 
  Phaffi a rhodozyma    strains isolated from different Patagonian environments, we 
found a high positive correlation between survival to UV-B and  MGG   concentra-
tion. The fact that MGG accumulation protects yeasts against the effects of UVR 
avoiding the direct damage of DNA was also experimentally demonstrated (Moliné 
 2010 ; Moliné et al.  2011b ). In addition, biochemical characterization of MGG from 
yeast revealed that it possesses high photostability and antioxidant properties 
(Moliné et al.  2011b ). Thus, MGG appears as an interesting compound for multipur-
pose UV sunscreens, and yeasts become a valuable biotechnological source of these 
natural UV protectants. Several patents related to the production and usage of myco-
sporines sensu lato from different types of microorganisms have been published (for 
review, see Colabella et al.  2014 ) among which so far only one covers the use of 
yeasts (van Broock et al.  2009 ). In this patent, MGG from yeasts was purifi ed and 
incorporated into base creams that were tested for UVR sunscreen. The product, 
with MGG concentration between 0.1 % and 5 %, showed a reduction in the UV-B 
fl ux (315 nm) for all the concentrations tested. UVB reduction values for 5 % were 
 comparable   with those obtained for commercial sunscreens with SPF 15 and 30. 

 These results are promising and lead to the investigation of the ability of different 
yeast species and strains from Patagonia to produce  MGG   in laboratory conditions. 
The concentration of MGG produced by Patagonian yeasts was highly variable; 
quantitative studies on MGG accumulation showed that differences in the produc-
tion of this compound occur between different yeast species but also between 
strains. MGG accumulation varied among species, ranging from 2.5 to more than 
50 mg g −1  dry weight. For example, different strains of   Cryptococcus stepposus    
produce from 2.5 to a maximum of 5 mg g −1  whereas other species of the genera 
  Dioszegia    and   Aureobasidium    produce between 35 and more than 50 mg g −1  (Libkind 
et al.  2005a ; Moliné  2010 ; Moliné et al.  2011b ; Muñoz et al.  2013 ). Such production 
yields are larger than those observed for similar compounds (other mycosporines) in 
Cyanobacteria (2–9 mg g −1 ) (Scherer et al.  1988 ; Portwich and Garcia-Pichel  1999 ). 
Using a set of 20 strains of   Phaffi a rhodozyma    obtained either from culture collec-
tions or from Patagonian natural environments, we observed that the MGG produc-
tion from the latter source ranged from 16 to 39 mg g −1  (average, 25 mg g −1 ), whereas 
in the former MGG production ranged from 8 to 26 mg g −1  (average, 18 mg g −1 ) 
(Moliné  2010 ). Thus, certain Patagonian yeasts are interesting sources of natural 
sunscreens for use in human photoprotection products. 

  MGG   production in yeasts depends on illumination conditions and culture media 
composition. Yeast mycosporinogenesis is a phenomenon triggered by photostimu-
lation (Libkind et al.  2004b ;  2011c ; Moliné  2010 ); however, signifi cant constitutive 
synthesis has been found for certain yeast species. In   Cryptococcus stepposus   , 
increase in MGG accumulation after photostimulation (PAR) is 2- to 3 fold (Moliné 
et al.  2011b ), whereas in  P. rhodozyma  increases are 10 fold and in   Cystobasidium 
minutum    (ex  Rhodotorula minuta ) the increases are 20 fold higher. When UVR 
rather than PAR is used, the latter increase goes up to 34 fold, indicating that the 
type and intensity of light modulates the response in MGG production in yeasts 
(Libkind et al.  2006 ). 
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 Active compounds used in commercial sunscreens are, in general, lipophilic 
organic molecules produced by chemistry synthesis. These compounds absorb light 
in the UV-A to UV-C spectrum and are commonly added in concentrations up to 
15 % to sunscreen products for skin protection (Wang et al.  2010 ; Loden et al.  2011 ). 
Because of growing public concern about skin damage by UV light, the demand for 
UV screens is increasing; however, several studies have brought to light the nega-
tive effects of these compounds to the environment and human health. Chemically 
synthesized UV screens are relevant environmental contaminants (Balmer et al. 
 2005 ), and for some active compounds androgenic and estrogenic effects have been 
detected (Krause et al.  2012 ). Further, common active ingredients such as 3-benzo-
phenone of zinc oxide have been shown to produce reactive oxygen species and a 
photoallergenic effect in humans (Brezová et al.  2005 ; Hanson et al.  2006 ; Scheuer 
and Warshaw  2006 ). Consequently, the industry is seeking for more innocuous and 
natural compounds to replace current chemically synthesized and controversial 
ingredients. Today, a few examples of sunscreen products containing mycosporine-
like amino acids are known, such as ‘ Helioguard  ’ and ‘ Helionori  ’ (Colabella et al. 
 2014 ). Although none of these contains  MGG   or any yeast-derived compound, we 
anticipate that natural sunscreen compounds such as yeast MGG represent a new 
and natural alternative to be used in commercial photoprotection products.  

18.2.3     Cool Applications from  Cold-Adapted Yeasts  : 
Extracellular Enzymes 

 Cold-adapted microorganisms, including bacteria, archaea, fi lamentous fungi, 
algae, and yeasts, are being studied as sources for cold-active enzymes. The bio-
technological value of  cold-adapted enzymes   stems from their high catalytic activ-
ity at low to moderate temperatures, their high thermolability at elevated 
temperatures, and their ability to function in organic solvents (Gerday et al.  1997 ). 
Applications include their use in cheese, wine, and juice production (pectinases), 
dough fermentation (xylanases), animal feed (cellulases), pulp bleaching (alpha 
amylases), detergents (lipases, peptidases), molecular biology (DNA, RNA poly-
merases)   , and nutrition (phytases) (Cavicchioli et al.  2011 ). Yeasts are heterotrophic 
organisms with the ability to degrade organic macromolecules by means of extra-
cellular hydrolytic enzymes. Low molecular weight compounds are subsequently 
transported to serve in both catabolic and anabolic reactions. Cold-adapted yeasts 
secrete extracellular enzymes that can catalyze these reactions at low temperatures, 
mainly because of their highly fl exible structures (Gerday et al.  1997 ). Other extra-
cellular proteins function in cell-wall remodeling and anti-freezing, among other 
reactions (Crevel et al.  2002 ). The presence of some of these proteins was evaluated 
in a number of surveys with yeasts isolated from cold environments in Patagonia. In 
a fi rst survey, 78 yeast strains were analyzed for  extracellular enzymatic activities 
(EEA)   (de Garcia et al.  2007 ). The ability of the strains to degrade starch, proteins, 
lipids, pectin, cellulose, and chitin was evaluated. Ninety-fi ve percent of the tested 
strains showed at least one extracellular enzyme activity at either 4 °C or 
20 °C. Lipolysis was the most frequent extracellular enzyme activity whereas none 
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of the strains showed the ability to hydrolyze chitin or cellulose. In a subsequent 
screening, yeasts from glacial and subglacial water (belonging to the genera 
 Cryptococcus ,  Leucosporidiella ,   Dioszegia   ,  Mrakia ,  Rhodotorula ,  Rhodosporidium , 
 Sporobolomyces ,  Sporidiobolus ,   Cystofi lobasidium   , and  Udeniomyces ) were stud-
ied (Brizzio et al.  2007 ). Most of the 91 studied isolates exhibited amilolytic, prote-
ase, and lipase activities that were higher at 4 °C than at 20 °C. In a more recent 
survey, fi ve enzymatic  activities   were analyzed in 212 yeast strains isolated from ice 
and meltwater (de Garcia et al.  2012 ). At least one enzymatic activity was present 
in 85 % of the strains, whereas 18 % showed positive tests for all the fi ve activities 
(degradation of starch, caseine, pectin, carboxymethyl cellulose, and Tween-80). As 
a consequence of these studies, a number of biotechnologically relevant strains have 
emerged. Ongoing studies, including genomic and proteomic analyses of the extra-
cellular proteins, will allow fi nding interesting new cold enzymes. Detailed studies 
of their enzymatic capabilities are also necessary to reveal possible applications.   

18.3     Biotechnologically Relevant Yeasts from  Patagonia  : 
Three Hot Cases from the Cold 

 In this section we review the three most interesting cases of yeasts isolated from 
Patagonian natural environments that clearly have potential for biotechnological 
exploitation: these include the recently described new species of   Saccharomyces   ,   S. 
eubayanus   , the ancestor of the lager brewing hybrid yeast. Also, the discovery of 
novel populations of  S. uvarum  in Patagonia is addressed together with their contri-
bution to the origin of domesticated lineages used for wine and cider production. 
Finally, the fi nding and characterization of the astaxanthinogenic and mycosporino-
genic yeast  P. rhodozyma  from Patagonia are  reviewed  . 

18.3.1     The Discovery of  S. eubayanus , the Ancestor 
of the  Lager Brewing Yeast      

 Beer is the most common fermented beverage in the world and can be classifi ed as 
ale or lager, depending on the fermentation conditions and yeasts used. Lager beer 
is the most common commercially produced beer worldwide (94 % of total beer 
market) and yet, the genetic origin of the yeast strains that brew them has been full 
of mystery and controversy. Compared with conventional ale-style beers, which are 
generally brewed with   Saccharomyces     cerevisiae  (Hornsey  2003 ), lagers are brewed 
at colder temperatures with allopolyploid hybrid yeasts of  Saccharomyces cerevi-
siae  ×   S. eubayanus    (known as  S. pastorianus ).  S. eubayanus  was only recently 
discovered and formally described as a result of yeast biodiversity surveys in 
Patagonian   Nothofagus  forests  , from which two cold-adapted  Saccharomyces  
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species were recovered mainly from bark and soil samples but particularly from the 
stromata of  Cyttaria  fungus (Libkind et al.  2011a ).  S. eubayanus  was the fi rst yeast 
species to be formally described based on a complete genome sequence (Libkind 
et al.  2011a ). The fi rst draft genome of the type strain (PYCC 6148) was obtained 
for comparison with the non- S. cerevisiae  subgenome of the lager yeast (see 
Sect.  4.1 ), revealing the 99.5 % similarity that lead to the conclusion that  S. eubaya-
nus  was the ancestor species. Today, additional isolates have been obtained from 
other parts of the world, generating discussion about the actual origin of the popula-
tion that gave rise to the hybdrid. However, so far none of the new sources of  S. 
eubayanus  showed the high frequency of recovery and the large genetic  diversity      
found in Patagonia (addressed in Sect.  4.1 ). The second species of  Saccharomyces  
found in Andean Patagonia  Nothofagus  forests was  S. uvarum , the sister species of 
 S. eubayanus , which is discussed next. 

 In Patagonia,   S. eubayanus    seems to be partially restricted to certain species of 
 Nothofagus  such as  N. pumilio  and  N. antarctica ; however Rodríguez et al. ( 2014 ) 
found several isolates from a different tree in the north of Patagonia:  Araucaria 
araucana . These tree species are endemic from Patagonia; thus in other parts of the 
world  S. eubayanus  was collected mainly from oak trees, or other types such as 
 Cedrus  sp.,  Pinus taeda , and  Fagus  sp. (Peris et al.  2014 ;  2016 ).  

18.3.2       Saccharomyces uvarum    :  Wine and Cider 

 Thus, in Patagonian habitats   S. eubayanus    and  S. uvarum  (two sister species), exist 
in apparent sympatry in  Nothofagus  (Southern beech) forests, but are isolated genet-
ically through intrinsic postzygotic barriers (Libkind et al.  2011a ). Previously, it 
was shown that sympatric   Saccharomyces    species tend to have different growth 
temperature preferences, as is true for  S. cerevisiae  (thermotolerant) and 
 Saccharomyces kudriavzevii  (psychrotolerant) co-occurring in Mediterranean 
regions, as well as  Saccharomyces paradoxus  (thermotolerant) and  S. uvarum  (psy-
chrotolerant) coinhabiting temperate Europe and North America (Sampaio and 
Gonçalves  2008 ). Another particular  characteristic   of Patagonian environments in 
contrast to North Hemisphere counterparts is the almost complete occupancy of the 
 Nothofagus  niche by psychrotolerant  Saccharomyces  species. Although less than 
50 % of the isolates from bark and soil samples from the North Hemisphere belong 
to  Saccharomyces , in Patagonia these values range from 64 % to 95 % for both  S. 
uvarum  and  S. eubayanus . The substrate of greatest occupancy is  Cyttaria  stromata 
(~95 %), which is in agreement with its high content of simple sugars. 

 Furthermore, a putative ecological isolation through host preference was 
detected, given that   S. eubayanus    was found in association with  N. antarctica  and 
 N. pumilio , whereas  S. uvarum  was associated with  N. dombeyi . This fi nding might 
explain the co-existence of these two hitherto phenotypically undistinguishable 
species.  
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18.3.3      The Colorful Case:   Phaffi a rhodozyma    

   Phaffi a     rhodozyma  (synonym of   Xanthophyllomyces     dendrorhous ) represents an 
exceptional fungal case of the basidiomycota, given that it combines the production 
of orange-colored colonies with the ability to ferment simple sugars. The main 
carotenoid pigment synthesized by  Phaffi a  is  astaxanthin  , another exclusive charac-
teristic of this yeast species (Andrewes et al.  1976 ) and the main reason for which it 
is currently being exploited biotechnologically as a natural source of  astaxanthin   in 
aquaculture feed (Rodríguez-Sáiz et al.  2010 ). The fi rst isolates of  P. rhodozyma  
were found in association with spring sap fl ows of various broad-leaved trees in 
Japan, Alaska, and Russia (Phaff et al.  1972 ; Golubev et al.  1977 ). Later, more 
strains were recovered from beech trees in central Europe (Weber et al.  2006 ) and 
the United States (US) (Fell et al.  2007 ). The range of  P. rhodozyma  was signifi -
cantly expanded when a South American population associated with  Nothofagus  
trees (southern beech), particularly the stromata of its biotrophic fungal parasite 
 Cyttaria  spp., was discovered (Libkind et al.  2007 ,  2008b ,  2011d ). The Patagonian 
isolates were found to be genetically different from the Northern Hemisphere strains 
based on DNA–DNA reassociation experiments, micro/mini-satellite-primed 
(MSP)–polymerase chain reaction (PCR) fi ngerprinting, as well as internal tran-
scribed spacer (ITS) and intergenic spacer (IGS) rRNA gene sequencing (Libkind 
et al.  2007 ,  2011b ). Finally, thes differences were confi rmed using multi- locus 
sequence typing (David-Palma et al.  2014 ) and later using complete genome ana-
lyzes (Bellora et al.,  in press ). However, Patagonian strains appeared to be geneti-
cally uniform (minor differences were found using the L41 gene as marker) and 
could be included into a distinct population, supporting the hypothesis that geo-
graphic isolation and association with different host species has determined geneti-
cally different  P. rhodozyma  populations  worldwide   (David-Palma et al.  2014 ). 
Weber et al. ( 2008 ) described a novel isolate from Chile with marked ITS and LSU 
sequence differences from the other known populations. This single isolate was 
obtained from a leaf of the Tasmanian blue gum tree ( Eucalyptus globulus ) in the 
Mediterranean climate at Concepción, a tree species originally from Australasia. 
David-Palma et al. ( 2014 ) reported the isolation of highly divergent lineages of  P. 
rhodozyma  from   Nothofagus  forests   in Australia and New Zealand, expanding the 
known geographic distribution of this yeast and its genetic diversity. Two of these 
lineages deserve the assignation to distinct species and will be described in the near 
future as novel taxa in the genus  Phaffi a  (unpublished results). 

 It is evident that  P. rhodozyma  possesses a greater genetic variability and geo-
graphic distribution than previously thought, generating the necessity to uncover it 
and assess its potential for the  astaxanthin   and UV sunscreen industry. However, 
diffi culties for the isolation of this yeast hinder extensive environmental surveys. 
Our group developed a new and innovative strategy for improving  P. rhodozyma  
recovery rate and identifi cation from environmental samples (Tognetti et al.  2013 ), 
as well as a new PCR-based method for the rapid  identifi cation   of  P. rhodozyma  
isolates (Colabella and Libkind  2016 ).   
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18.4     Genomic Approaches to the Study of  Patagonian Yeasts      

 As already demonstrated, yeasts from Patagonian natural environments include bio-
technologically useful species and strains relevant to the production of beer, wines, 
antioxidants, photoprotective and cryoprotective compounds, among others. Genome 
assemblies using  next-generation sequencing (NGS)   and comparative genomic anal-
yses were performed for the most interesting species, namely,   Saccharomyces    
 eubayanus  (brewing),  S. uvarum  (wine and cider), and   Phaffi a     rhodozyma  ( astaxan-
thin   and mycosporines) .  The phylogenetic analyses in combination with geographic 
information enlightened the relationships between strains from the Northern and 
Southern Hemispheres and contributed to a better understanding of the origin and 
complexity of domesticated genomes. On the other hand, genome mining allowed 
detecting and characterizing specifi c genes and variants implicated in pathways of 
processes of biotechnological relevance. A remarkable outcome of such studies was 
the discovery of the wild genetic stock of domesticated yeasts currently used in 
major fermented beverages industries such as beer, wine, and cider (Table  18.2 ).

18.4.1         Phylogenomic and Phylogeographic Studies 
of Industrially Relevant Yeasts from Patagonia 

 In recent years, several genomics studies on the phylogeography of biotechnologi-
cal relevant yeasts from Patagonia were conducted, including the two psychrotoler-
ant biologically recognized species of   Saccharomyces   :   S. eubayanus    and  S. uvarum . 

 The draft genome sequence of   S. eubayanus    was reported in 2011 by Libkind and 
colleagues (Libkind et al.  2011a ) from wild Patagonian isolates that showed some 
genetic resemblance to the currently controversial species  S. bayanus . Surprisingly, 
the authors found a 99.5 % of identity of the wild  S. eubayanus  to the non- S. cerevi-
siae  subgenome of the allopolyploid lager brewing yeast:  S. pastorianus.  No 
 evidence of introgression, hybridization, or horizontal gene transfer indicated that 
 S. eubayanus  represented a pure lineage. On the other hand,  S. pastorianus  as well 

   Table 18.2    Available genomes of Patagonian strains that belong to biotechnologically relevant 
yeast species   

 Species 
 Genome 
size (Mb) 

 Genomes available 
for Patagonian strains 
(other strains) 

 Biotechnology 
application  Remarks 

   S. eubayanus     11.6  18 (5)  Brewing  The largest diversity 
is in Patagonia 

  S. uvarum   11.5  16 (38)  Wine, cider  The largest diversity 
is in Patagonia 

  P. rhodozyma   18.9  1 (2)  Asthaxantin, 
mycosporines 

 Unique population 
in Patagonia 

   S.,    Saccharomyces    ; P.,    Phaffi a     
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as  S. bayanus  are not biologically recognized “species” but hybrids, products of the 
artifi cial brewing environment with no occurrence in nature (Libkind et al.  2011a ; 
Baker et al.  2015 ). The genomic complexity of  S. bayanus , a hybrid yeast frequently 
associated with contaminated beer, could be explained by the contribution of mix-
tures of regions from  S. uvarum ,  S. eubayanus , and  S. cerevisiae. S. eubayanus  and 
 S. uvarum  are sister species and form a basal clade distant to  S. cerevisiae  within the 
genus. Their genome-wide divergence is ~7 % and is the lowest between 
  Saccharomyces    species to result in genetic isolation (Libkind et al.  2011a ). The two 
species coexist in Patagonian   Nothofagus  forests  . Later, a higher- quality genome of 
 S. eubayanus  was released together with the fi rst mitochondrial complete sequence 
(Baker et al.  2015 ). In this study,  S. eubayanus  subgenomes of lager brewing yeasts 
were shown to have experienced increased rates of evolution since hybridization, 
and that certain genes involved in metabolism may have been particularly affected 
(see following section). Interestingly, it was demonstrated that the  S. eubayanus  
subgenome underwent an especially strong shift in selection regimes, consistent 
with more extensive domestication of the  S. cerevisiae  parent before hybridization. 
In contrast to recent proposals that lager brewing yeasts were domesticated follow-
ing a single hybridization event (Walther et al.  2014 ; Wendland  2014 ), the radically 
different neutral site divergences between the subgenomes of the two major lager 
yeast lineages strongly favor at least two independent origins for the  S. cerevisiae  × 
 S. eubayanus  hybrids that brew lager beers (Baker et al.  2015 ). The recent isolation 
of newly  S. eubayanus  strains and their genomic characterization fueled the contro-
versy of which population gave rise to the lager hybrid. Peris et al. ( 2016 ), using 
genome sequence data, examined the relationships of a larger set of wild  S. eubaya-
nus  strains to each other and to domesticated lager strains. Results supported the 
existence of a relatively low diversity lineage of   S. eubayanus    whose distribution 
stretches across the Holarctic region and includes wild isolates from Tibet (Bing 
et al.  2014 ), new wild isolates from North America (Peris et al.  2014 ;  2016 ), and the 
 S. eubayanus  parents of lager yeasts. This clade is closely related to a high-diversity 
population that is found primarily in South America but includes some widely dis-
tributed isolates in the US (Peris et al.  2016 ) and New Zealand (Gayevskiy and 
Goddard  2016 ). It was further shown that no single Holarctic isolate was the sole 
closest relative of lager yeasts and that the wild Holarctic population of  S. eubayanus  
is responsible for genetic variation still segregating among modern lager brewing 
hybrids. These observations suggest that lager yeast origins were more complex than 
we thought and stress the need for further investigations in the Northern Hemisphere. 

 Almeida and colleagues studied 54  S. uvarum  domesticated (from wine and cider) 
and wild strains from different geographic areas of the globe based on high- quality 
polymorphic sites and resolved the strains into three main groups (Almeida et al. 
 2014 ): a clade that contained all Holarctic isolates (including the domesticated ones) 
and a few from South America, a second with only South American isolates, and a 
third with a few recently found Australasian strains. Holarctic populations when com-
pared to Patagonian ones were extremely low in genomic diversity. Then, the highest 
diversity of strains of  S. uvarum  was thus detected in Patagonian environments. 
The Australasian lineage instead diverged signifi cantly from the other two groups (by 
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4.4 %), forming a sister group to the two other clades and being closer to  S. uvarum  
than any other   Saccharomyces    species. It yielded similar divergences to those found 
between North American and European populations of  S. paradoxus  (Liti et al.  2006 ), 
so it was considered conspecifi c, although possibly going through a process of allo-
patric speciation. Phylogenomic analyses support the view that a restricted subset of 
one of the two Patagonian  S. uvarum  populations gave rise to the Holarctic popula-
tion, although vectors and mechanisms of this migration into the Northern Hemisphere 
remain to be elucidated (Almeida et al.  2014 ). 

 In a recent study, the genomes of the Patagonian and the type strain of the  astax-
anthin  - and mycosporine-producing yeast  P. rhodozyma  were assembled and com-
pared ( Bellora et al. 2016 ). The Patagonian strain showed 4.4 % of genomic 
divergence toward two sequenced Holarctic strains (0.073 % between them) (CBS 
7918 T and CBS 6938), indicating that an allopatric speciation process might be 
occurring and that the former deserves to be assigned at least to a distinct variety. A 
considerable number of exclusive genes were present in the Patagonian strain but 
not in the European strains. Other interesting observations include a high occur-
rence of introns in  P. rhodozyma  and other Cystofi lobasidiales and new insights into 
fungal homothallism.  

18.4.2     Genes Related to Biotechnologically Relevant Pathways 
and Genomic Footprints of Domestication 

 The study of the effect of domestication in the lager brewing yeast was only possi-
ble once the genome of the parental   S. eubayanus    become available. Genetic 
changes detected in the  S. pastorianus  genome in comparison to the parental strain 
that seem to have been favored by the brewing environment include extra copies of 
 S. cerevisiae IMA1  (isomaltase, cleavage of disaccharide isomaltose), inactivation 
of the  SUL1  gene (encode high-affi nity transporters of sulfate, the metabolic precur-
sor of sulfi te, a known antioxidant and fl avor stabilizer), favoring  SUL2  which 
improves sulfi te production in brewing conditions, and several gene expression 
regulators related to genes that allow alcohol utilization (i.e.,  ADR1 ), glucose- 
repressed genes such as  MAL  genes (i.e.,  REG2 ), among others (Libkind et al. 
 2011a ; Baker et al.  2015 ). Moreover, a similar mtDNA gene arrangement and 
sequence established  S. eubayanus  as the main mitochondrial donor of lager yeast 
of the Frohberg lineage, harboring CDSs with ~98.6 % identity. 

 Almeida et al. ( 2014 ) detected that European  S. uvarum  domesticated strains 
(wine and cider) consistently contained several   S. eubayanus    introgressions. These 
introgressions were absent in the large majority of wild strains, and gene ontology 
analyses indicated that several genes included in the introgressed regions were rel-
evant for wine fermentation. Many of the introgressions were subtelomeric and con-
tained genes such as ASP1, a gene encoding the cytosolic  L -asparaginase used to 
degrade asparagine to be used as nitrogen source, and FZF1, a transcription factor 
that regulates several genes, including Ssu1, that encode an effl ux pump involved in 
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sulfi te resistance (Almeida et al.  2014 ). These results represented the fi rst clear indi-
cation of domestication in the yeast  S. uvarum , used for wine and cider production 
worldwide. Genome mining of  P. rhodozyma  allowed detection and annotation of 
all genes of the  astaxanthin   synthesis as well as previously unknown putative regu-
latory enzymes of the metabolic pathway (Bellora et al.,  in press ). Additionally, 
genes homologous to those reported to be implicated in the synthesis of mycospo-
rines in Cyanobacteria (Balskus and Walsh  2010 ) were detected in a similar cluster 
disposition in the Patagonian strain of  P. rhodozyma . One of the Holarctic strains 
(the type strain of the species) possessed the same cluster arrangement but a second 
European strain (Sharma et al.  2015 ) lacked the complete set of genes. In agreement 
with this fi nding, it was later demonstrated that the former  P. rhodozyma  strain 
(CBS 6938) lacked the ability to synthesize  MGG   (Bellora et al.,  in press ).      
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