Chapter 7
Zero-Error Accessible Information
of a Quantum Source

A quantum source is an essential component of quantum communication system
because it corresponds to the set of quantum symbols that will be used to encode
classical messages. In this encoding process, there is a bijective mapping between
messages and quantum states, but each quantum state is associated with a certain
probability. Differently from classical messages that are completely distinguishable,
quantum states may not necessarily be so. A consequence is that the classical
information encoded by the quantum source may not be fully recoverable after a
measurement.

Considering this intrinsic difficulty to recover information from quantum
sources, an information measure, called accessible information, has been proposed
in the literature [12, Sect. 12.1]. It establishes the maximum amount of classical
information that can be retrieved after being encoded by a quantum source. Because
all measurement strategies can be used to retrieve information from the quantum
system, calculating the accessible information is a hard task in general. Fortunately,
there are some useful upper and lower bounds that are easiest to calculate and that
give good estimates for the accessible information [3, 4, 7, 8, 16].

Aiming at avoiding errors in decoding messages from quantum sources, this
chapter presents some recent results regarding an information measure for quantum
sources, called Zero-Error Accessible Information (ZEAI). This quantity represents
the maximum amounts of bits per symbol that can be retrieved from a quantum
source with no decoding errors. The ZEAI of a quantum source unifies concepts
from quantum sources, accessible information, classical zero-error information
theory and also from graph theory.

To introduce these results, this chapter is organized as follows. In Sect.7.1 we
revisit some fundamental concepts such as the formal definition of a memoryless
quantum source, its entropy, accessible information, and the Holevo bound, which
is an upper bound for accessible information. Section 7.2 introduces the ZEAI of
a quantum source and its relation with classical zero-error channels. The relation
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between ZEAI and graph theory is elucidated in Sect. 7.3. After that, some detailed
examples are given in Sect.7.4. The relation of ZEAI and other works in the
literature is described in Sect. 7.5.

7.1 Accessible Information of Quantum Sources

To study accessible information in the quantum information theory domain, we take
into account the canonical communication scheme shown in Fig. 7.1. The quantum
source encodes classical messages in quantum states as described in Definition 7.1.

Definition 7.1 (Memoryless Quantum Source). Let A = {0,...,£} be a set of
classical messages. A memoryless quantum source is a device that prepares quantum
states according to an ensemble {p;,p;}. The set S = {po,...,p¢} is denoted
the source alphabet, commonly composed of pure non-orthogonal quantum states
pi, called quantum letters. The quantum letter p; is associated with the classical
message i. The quantum source outputs a letter p; with probability p;, where
Zf:o pi; = 1. For a given sequence a of classical messages, a = aja, ...a,,a € A",
the corresponding quantum state prepared by the quantum source, called quantum
codeword, is given by the tensor product of the corresponding quantum letters, i.e.,

p(a) = pay ® Pa, @ ... ® pa,- (7.1)

According to Definition 2.7, the ensemble {p;, p;} of a quantum source can also
be represented by the corresponding density operator

14
p =) _pipi (72)
i=0

Taking into account such density operator for a quantum source, we can introduce
the entropy of a quantum source.

| Quantum alphabet: S = {po, p1,...,p¢} : |
! |
| Quantum letters: p.k = 1,...,¢ |
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Fig. 7.1 Canonical communication model in which there is a single sender and a single receiver
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Definition 7.2 (Entropy of a Quantum Source). The entropy of a quantum
source is the von Neumann entropy of the density operator (7.2) that describes the
ensemble {p;, p;}, i.e.,

S(p) = —Trplogp. (7.3)

We assume that Alice has a quantum source with the given description and that
she prepares the quantum state p. Alice gives such quantum state to Bob, who
can adopt a POVM measurement scheme aiming at identifying the corresponding
message sent by Alice. The measurement outputs are arguments for a decoding
function. The decoder must decide which classical message was originally sent by
Alice.

A quantum source is purely classical if the corresponding source alphabet S is
composed of pairwise orthogonal quantum states, since such states are completely
distinguishable at the receiver’s end. If the set S contains nonorthogonal quantum
states, then there is no measurement strategy that can extract all the information
about the quantum source. A third situation considers that the states of the quantum
source are nonorthogonal but with commuting density matrices. In this case we have
a broadcast source in which given two quantum systems that are not a copy of the
source, their partial trace results in the state of the quantum source [2].

We recall the accessible information, presented in Definition 3.18. It is a measure
of how well one can infer the state prepared by the source by measuring its output. In
quantum information theory, there is no general method to calculate the accessible
information of a quantum source. However, several lower and upper bounds for the
accessible information were demonstrated; the most important is the Holevo bound
[12, Chap. 12].

Theorem 7.1 (Holevo Bound [7]). Suppose that Alice has a quantum source F
with ensemble {p;,p;}. She sends Bob some quantum letters emitted by F. Bob
measures the received quantum letters with a POVM {M;}"", and obtains B. The
Holevo bound states that for any measurement scheme used by Bob, we have that

l
Lice(F) < S(0) = Y piS(pw), (7.4)
k=0

where p is the density operator given by (7.2).

The right side of (7.4) is known as the Holevo quantity and it is denoted by .
Taking into account the concavity of the entropy, we have I(A; B) < y < H(A).

Example 7.1 (Holevo Bound). Suppose that Alice has a quantum source F that
emits the states pyp and p; according to a uniform distribution, where |yo) =
[0), [¥1) = cosB]0) + sinf 1), po = [¥o) (Vol, and p1 = [¢1) (Y1]. From
Example 3.17, we know that S(p) = H (% — #). Remember that py and p; are
pure states. Again, consider that A is the index of the state emitted by the source
and B corresponds to the measurement result. The best measurement strategy to
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discriminate between pg and p; is given by the projective measurement M = {E, =
[wo) (wol, E1 = [w1) (w1]}, where

o) = cos (= + 2V 1oy +sin (Z+ 21y (1.5)
472 472

i) = cos (=% + )10y +sin (== + 2\ y. (1.6)
472 472

Notice that (wg|w;) = 0 and that Ey + E; = 1. The conditional probability that
B = b given that A = a, for a, b € {0, 1}, is calculated as

14sinf —
1) = CEs Vb () = sl b = | s e, a7

2

It is possible to see that we can make an analogy with a binary symmetric
channel, where A is the input, B is the output, and the error probability is # (see
Example 3.8). The random variable A is uniformly distributed at the channel input
and the random variable B is also uniformly distributed. Then, H(A) = H(B) = 1.
The mutual information is given by

[(X;Y) = H(Y) — H(Y|X)
- 1—H($). (7.8)

Since the measurement scheme is proven to be optimal [1], we have that I,..(F) =
1-H (#) Figure 7.2 shows plots of accessible information I,..(F) and Holevo
quantity y(F) versus the parameter 6. For any 0 < 6 < 7, we see that I,..(F) <
x(F), with equality when 6 = /2, i.e., when the states py and p; are completely
distinguishable.

Fig. 7.2 Plots of accessible
information and Holevo
bound for a quantum source F'
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In the previous example, the parameter 6 = /2 led the quantum letters to be
orthogonal and the accessible information was maximum. Unfortunately, there are
situations where Bob is not able to infer the state given by Alice.

Example 7.2 (Measurement with Inconclusive Results). Suppose that a quantum
source can produce two quantum states |;) = |0) or [y,) = % with equal
probability. Since (Y| ¥,) # 0, it is not possible to precisely determine what state
was emitted by the source. However, it is possible to perform measurements that
can distinguish these states most of the time. To do this, define a POVM with the
following three elements:

2
E = Tﬁll)(ll,
B, — V2 (|0) = [1)((0] — (1))
T+ V2 2 ’

Ey=1-E, —E.

Suppose that the state |1} was delivered by the quantum source. After perform-
ing a measurement with POVM operators {E}, E;, E3}, the probability of getting 1
is zero, since (V1| E1 |¥1) = 0. Therefore, if measurement outcomes 1, then we can
conclude with certainty that the state emitted by the source was [y/»). In a similar
way, if the measurement result is 2, then we conclude that the source outputted
the state |y;). Certain times, however, the result will be 3 and the measurement
is inconclusive. In summary, every time we get outputs 1 and 2 we can infer the
quantum state emitted by the source without confusion. Otherwise, we can infer
nothing, since p; = p, = 1/2.

7.2 Zero-Error Accessible Information of a Quantum Source

We are going to consider the simplified communication scheme of Fig. 7.1. Alice has
a quantum source that emits quantum letters to be measured by Bob using a POVM.
When Bob attempts to identify the received message, we assume that no decoding
errors can occur. In other words, by using measurements, Bob must be 100 % sure
about the original message sent by Alice. Next, we define the Zero-Error Accessible
Information (ZEAI) of a quantum source.

Definition 7.3 (Zero-Error Accessible Information of a Quantum Source).
Let A be a discrete random variable corresponding to message indexes that are
associated with quantum letters emitted by a memoryless quantum source F. Now
let B be a discrete random variable corresponding to measurement results of
quantum states sent by the source. The zero-error accessible information of such
quantum source, denoted by 1§2§ (F), is the maximum amount of messages of length
n sent by the source such that H(A|B) = 0.
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In the original definition of accessible information, vide Definition 3.18, we have
that the maximum is taken over the mutual information of the random variables A
and B. This turn, in Definition 7.3, we have that the maximum is taken over the set
of messages that makes the conditional entropy of A and B equal to zero.

The equality in H(A|B) = 0 of Definition 7.3 means that the uncertainty of the
random variable A is zero when the random variable B is known, showing the zero-
error behavior in this measure of information.

The next step is to obtain a numerical expression for the ZEAI of a quantum
source.

Theorem 7.2 (Numerical Expression for ZEAI). Let N(n) be the set of quantum
codewords of length n which can be sent by a memoryless quantum source F and that
can be retrieved with no error with a POVM measurement. The zero-error accessible
information of F is given by

19.(F) 2 sup llogN(n). (7.9)

acc
n—>oo N

Proof. To demonstrate the theorem, we consider that both the emission of quantum
letters by the quantum source and the subsequent measurement with no decoding
errors are equivalent to the zero-error capacity of a discrete memoryless quantum
channel.

To do so, we consider that the state produced by the quantum source and the
output of the POVM can be written as a discrete memoryless classical channel W :
A — B with the following stochastic matrix

W(a,b) £ Pr[B = b|A = a] = Tr(pM5), (a,b) € A x B, (7.10)

where p, is the quantum letter emitted by the source; M, is the operation element
of the POVM used for measurement; and A and B are the alphabets of the random
variables A and B, respectively. When the source emits k quantum letters, we have

k
Whd . by =T [ W(ai. b). (7.11)

i=1

Considering this interpretation, the maximum amount of messages per number
of source emissions that can be sent over the channel W with no decoding
errors is corresponding to its zero-error capacity, i.e., IQSQ(F) = C(W) =
SUP,, 00 % log N(n). Thus, we conclude the proof.

Theorem 7.2 shows an interesting aspect: although zero-error accessible informa-
tion is a measure of information that characterizes a quantum device, its computation
depends on the classical zero-error capacity of a corresponding discrete memoryless
channel. This is a counterintuitive result specially because there is no restriction
or requirement regarding the quantum letters emitted by the source nor regarding
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their probabilities. Note that if the quantum source is purely classical, we have
that all quantum letters are distinguishable. In this case, the zero-error accessible
information is log |S|, where S is the alphabet of the quantum source.

The accessible information of a classical source is not a relevant measure of
information, since two classical states can always be distinguished. In contrast,
the ZEAI of a quantum source is not trivial because quantum information cannot
always be distinguished. It is important to emphasize that the definition of ZEAI of
a quantum source imposes one restriction: the absence of errors. As a consequence,
we can verify the following inequalities: 190 (F) < Iie(F) < x(F) for a quantum
source F.

7.3 Representation in Graphs

The zero-error capacity of classical channels has a formulation in terms of graph
theory, as shown previously in Sect.5.2. The problem of finding the zero-error
accessible information of a quantum source is equivalent to the problem of obtaining
the zero-error capacity of a classical channel. Concepts like orthogonality of input
states and characteristic graphs of a quantum channel are straightforwardly defined
for a quantum source.

Definition 7.4 (Orthogonality of Quantum Letters). Given two quantum letters
pi = |¥i) (¥i] and p; = |Wj> (wj| belonging to the alphabet S of a quantum source,
we say that p; and p; are non-adjacent, denoted by p; L p;, if they are orthogonal,

ie.. (Yil ¥) = 0.

Orthogonality of quantum letters can be extended to quantum codewords. Two
quantum codewords p(i) = p; ® p;, ® ... ® p;, and p(j) = p;, ® pj, ® ... R p;, are
said to be orthogonal or non-adjacent if there is at least one k, 1 < k < n, such that
the corresponding quantum letters p;, and p;, are non-adjacent. The characteristic
graph can therefore be defined.

Definition 7.5 (Characteristic Graph of a Quantum Source). Let F be a memo-
ryless quantum source according to Definition 7.1. The characteristic graph of F' is
given by G(F) = (V, E), where the sets of vertices and edges are given as follows.

1. The vertex set V is given by the classical messages associated with quantum
letters of the source alphabet S;

2. There is an edge connecting the vertices (i, j) if the corresponding quantum letters
pi and p;, i # j, are non-adjacent.

The graph G(F) can be generalized for n quantum source outputs. The vertex set
of G"(F) is given by V", and the set of edges is composed by the pairs of vertices
whose corresponding codewords of length # are orthogonal.
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Vertices of the characteristic graph are connected if the corresponding quantum
letters or codewords are fully distinguishable by means of a quantum measurement.
A clique on the characteristic graph corresponds to a subset of quantum letters or
codewords that are pairwise distinguishable. The zero-error accessible information
can be defined in terms of the clique number of the characteristic graph.

Theorem 7.3 (ZEAI in terms of Graph Theory). Let F be a quantum source with
characteristic graph G(F) according to Definition 7.5. The accessible information
of F is given by

acc

19(F) = sup % log w(G"(F)), (7.12)

where w(G"(F)) stands for the clique number of G"(F).

Proof. As proved in Theorem 7.2, there is an equivalence between the zero-error
accessible information of a quantum source F and the zero-error capacity of a
discrete memoryless classical channel W. As we already know, two input letters are
non-adjacent at the source output if the corresponding rows of the stochastic matrix
W (b|a) are orthogonal. It is straightforward to conclude that the characteristic graph
of the quantum source is identical to the characteristic graph of the DMC W, whose
zZero error-capacity is given by the right side of (7.12).

Upon reducing the zero-error accessible information to the problem of identi-
fying the clique number of a graph, we can see that the calculation of the ZEAI
is an N"P-complete problem. The exponential hardness is due to the difficulties of
identifying the best POVM for zero-error measurements as well as in determining
the length n of quantum codewords that maximize the number of non-confusable
codewords per source output.

7.4 Examples

This section shows how to obtain the zero-error accessible information for some
quantum sources by following the procedures shown previously in Sect. 7.2.

Example 7.3 (Quantum Source With ZEAI Equal to Zero). Let F| be a quantum
source that emits two states p; = |0) (0] and p» = |+) (+]| = 1(|0) (0] + |0) (1| +
[1) (0] 411) (1]) according to the uniform distribution. The source ensemble is given
by {pi,pi}, where p; = p, = 0.5. According to Definition 7.4, it is easy to verify
that the quantum letters p; and p, are non-orthogonal, since (0| +) = JLE Thus, we

have that IQBQ(FI) =0.
Example 7.4 (ZEAI of a Purely Classical Quantum Source). Let F, be a quantum

source that emits states belonging to the computational basis of the 8-dimensional
Hilbert space, {po = [0){(0],p1 = |1)(1],...,p7 = |7) (7]}, each one with
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Fig. 7.3 Characteristic graph o p7
of the quantum source F»

P1 P6

P2 Ps

probability 1/8. According to Definition 7.5, the characteristic graph of F, is shown
in Fig. 7.3.

Considering that states emitted by the source are pure and orthogonal, we have
that F, is a purely classical quantum source. A projective measurement scheme with
the POVM {M, ; = [i) (i|}l7=0 is sufficient to perfectly distinguish all the states. This
way, the zero-error accessible information of F, is

1O(F»)

acc

1
sup - log w(G"(F))

1

—log8

it

= 3 bits per symbol.

In this example, it is interesting to notice that individual measurements are
sufficient to reach the zero-error accessible information of this quantum source.
Because G(F) is a complete graph, w(G"(F)) = w(G(F))" = |S|". Therefore,
Llog|S|" = log|S]|.

Example 7.5 (ZEAI of a Quantum Source Corresponding to the Pentagon). Let F3
be a quantum source that emits quantum letters of the alphabet S = {po, ..., ps},
which is composed only of pure states that are not necessarily orthogonal. These
letters are emitted according to the uniform distribution. Figure 7.4 illustrates the
characteristic graph of F3. This is the pentagon graph of the Gs channel of Fig. 4.3,
whose zero-error capacity was calculated by Lovasz and discussed in Sect. 4.3 and
in the Example 5.4.
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Fig. 7.4 Characteristic graph 00
of the quantum source F3

P2 P3

Pa P1

To reach the zero-error accessible information of F3, we consider quantum
codewords of length n = 2 and the POVM M = {Myy, M2, M4, M31, My3}. Then,

1
19(F3) = 3 log 5

acce

~ 1,1609 bits per symbol. (7.13)

This example illustrates how collective measurements can extract more zero-error
information from the quantum source than individual measurements. Moreover, we
need more than one source emission in order to reach the zero-error accessible
information.

7.5 Related Literature

The accessible information is not known for most quantum sources, and indeed,
there is no general method for calculating this quantity. The Holevo bound is the
famous and the most important upper bound of the accessible information [7]. The
Holevo x quantity is fundamental in proving several results in quantum information
theory. Cerf and Adami [3] presented a formal proof for the bound and extended it
to consider sequential measurements based on conditional and mutual entropies.

The first lower bound of the accessible information was conjectured by Wootters
[16] and proved by Jozsa et al. [8]. Other bounds based on Jensen and Schwarz
inequalities and also in purification schemes were also proposed in the literature. A
survey can be found in Fuchs [4, Sect. 3.5].

Several numerical methods to calculate the accessible information were devel-
oped. In general, these methods seek for the best POVM that maximizes the mutual
information /(A; B). Nascimento and de Assis [10, 11] developed a method that is
based on genetic algorithms. The open-source tool SOMIM (Search for Optimal
Measurements by an Iterative Method) also considers this approach and makes use
of an iterative method to find the best measurement scheme [9, 13, 15].

Sasaki et al. [14] addressed the problem of obtaining the accessible information
of a quantum source, but restricted to the case of real and symmetric quantum
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sources. A quantum source is said to be real if the coefficients of the quantum letters
are real numbers. The symmetry is verified when the states of the quantum source
are equally spaced in a plane x — z of the Bloch sphere. To calculate the accessible
information of this kind of quantum source, the authors developed a method based
on group theory to identify the best measurement. The resulting POVM has only
three elements and can be implemented in a real scenario with existing technology,
as discussed by the authors. Unfortunately, the results of Sasaki et al. [14] are
restricted only to a certain class of quantum sources.

7.6 Further Reading

In this chapter we introduced the zero-error accessible information, a measure of
information that gives the maximum amount of information that can be retrieved
from a quantum source without errors. Obtaining the zero-error accessible infor-
mation of a quantum source can be reduced to the problem of finding the
zero-error capacity of an equivalent classical channel. The ZEAI involves concepts
from quantum sources, accessible information, classical and quantum information
theories and also from graph theory. Some examples illustrated the concepts and the
relation with other existing works was discussed.

The zero-error accessible information was first proposed by Guedes and de Assis
[6]. Later, on the thesis of Guedes [5], this concept was fully depicted. As discussed
in Sect. 7.3, the problem of finding the ZEAI of a quantum source is equivalent to
identifying the clique number of a graph, which is A’"P-Complete.

Some authors developed heuristics to obtain the best POVM based on iterative
methods [9, 13, 15]. Other strategies include genetic algorithms [10, 11].
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