
Chapter 6
Zero-Error Secrecy Capacity

Quantum key distribution is one of the most settled techniques nowadays to
perform secure communications over quantum channels [42, p. 586]. Even though
its security proofs are well established [37], in practical scenarios many of these
protocols are not adequate due to noise in the quantum channel. The noise does not
only increase the error rate in the transmission, but can also hinder eavesdropping
detection in a process of security control [34].

Considering the practical difficulties to perform secure communications in noisy
quantum channels, this chapter introduces some recent results regarding the zero-
error secrecy capacity (ZESC), the higher transmission rate that can be achieved
in certain noisy quantum channels that allows information to be sent without errors
and in an unconditionally secure way. This capacity unifies concepts from quantum
zero-error information theory, from quantum secrecy capacity of quantum channels,
and also from decoherence-free subspaces and subsystems.

To present such developments, this chapter is organized as follows. Some
background concepts of decoherence-free subspaces and subsystems are presented
in Sect. 6.1. Section 6.2 discusses the quantum secrecy capacity. The model of
communications and the formalism of concepts and proofs regarding ZESC are
shown in Sect. 6.3. The relation between ZESC and graph theory is elucidated
in Sect. 6.4. After that, the security level that this approach provides is presented
in Sect. 6.5. Detailed examples considering different scenarios for the ZESC are
illustrated in Sect. 6.6. Recent works in literature that have intersections with the
ZESC, and that may point to further work are introduced in Sect. 6.7. Lastly, further
reading is suggested in Sect. 6.8.
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6.1 Decoherence-Free Subspaces and Subsystems

Suppose a closed quantum system composed by a system of interest, denoted by
S and defined in a Hilbert space H, and by the environment, denoted by E. This
system has the following Hamiltonian:

H D HS ˝ 1E C 1S ˝ HE C HSE; (6.1)

where 1 is the identity operator, HS denotes the operator of the system of interest,
HE denotes the operator of the environment, and HSE denotes the operator of the
interaction between system and environment [34].

To a complete absence of errors, the ideal scenario happens when HSE is zero,
indicating that system and environment are completely decoupled and evolved uni-
tary according to their own Hamiltonians HS and HE, respectively [34]. However,
in realistic situations, this ideal scenario does not occur since no system can be
completely free of errors. So, after isolating a system as better as possible, we must
adopt at least one of the following strategies: identify and correct errors when they
occur; avoid error as much as possible; suppress the error of the system [5].

If some symmetries exist in the interaction between system and environment,
it is possible to find a “safe place” in the Hilbert space that is not subject to the
negative effects of decoherence. Let fAi.t/g be a set of operators in the operator-sum
representation (OSR) describing the evolution of a system. We say that a density
matrix �S is invariant under the operators fAi.t/g if

P
i Ai.t/�SA�i .t/ D �S. Taking

this into account, we can define the decoherence-free subspaces and subsystems
(DFS) whose states are invariant despite a non-trivial coupling between system and
environment.

Definition 6.1 (Decoherence-Free Subspaces and Subsystems [1]). A subspace
QH from a Hilbert space H is said to be decoherence-free regarding the coupling

between system and environment if every pure state in this subspace is invariant
under the OSR evolution, despite any environment initial condition, i.e.,

X

i

Ai.t/jQkihQkjA�i .t/ D jQkihQkj;8jQkihQkj 2 QH;8�E.0/: (6.2)

Let the Hamiltonian of the interaction between system and environment be
HSE D P

j Sj ˝ Ej, where Sj and Ej are the operators of the system and the
environment, respectively. We consider that the environment operators Ej are
linearly independent. The symmetries required to the existence of a DFS are
described as follows, whose proof is shown in [34, Sect. 5].

Theorem 6.1 (Conditions for the Existence of Decoherence-Free Subspaces).
A subspace QH is decoherence-free if and only if the system operators Sj act
proportionally to the identity in this subspace, i.e.,

SjjQki D cjjQki 8j; jQki 2 QH: (6.3)
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The notion of a subspace that remains decoherence-free during the system
evolution is not, however, the most general way to decoherence-free encoding
in quantum systems [34]. Knill et al. [32] developed a method to encoding into
subsystems instead of subspaces.

Definition 6.2 (Decoherence-Free Subsystems). Let E W B.H/ ! B.H/ be
a positive trace-preserving superoperator in a Hilbert space H. Suppose H D
.HA ˝ HB/˚ K. We say that HB (dim.HB/ � 1) is a decoherence-free subsystem
if, 8�A 2 B.HA/ and 8�B 2 B.HB/, there is �A 2 B.HA/ such that

E.�A ˝ �B/ D �A ˝ �B: (6.4)

We can also write this definition using the partial trace:

TrA ŒE.�/� D TrA.�/ 8� D �A ˝ �B: (6.5)

When dim.HA/ D 1, we say that HB is a decoherence-free subspace for E .
It is possible to build codes from states of a DFS which are known as quantum

error-avoiding codes (QEAC). Information encoded into DFS is not affected by
the channel’s noise. Therefore, no error-correcting procedure is necessary. Error-
avoiding codes can be contrasted with quantum error-correcting codes (QECC)
regarding some aspects: QECCs are designed to correct errors after they occur,
while QEACs do not have abilities to correct errors, because they avoid it; the
most adopted QECCs are non-degenerated, while QEACs are highly degenerated
codes; QEACs usually require less physical qubits to represent a logical qubit when
compared to QECCs. In particular, if the degenerescence of a QECC reaches the
maximum, then this code is reduced to a QEAC, showing a situation where one
kind of code becomes equivalent to the other [14].

Even though DFS is a way to avoid errors, not all situations attain symmetry
requirements to the existence of such subspaces. Zanardi and Rasetti [58] state that
such conditions occur only if there is collective decoherence which occurs when
several qubits couple in an identical way with the environment while undergoing
both dephasing and dissipation.

Example 6.1 (Collective Dephasing Quantum Channel). Dephasing is a phe-
nomenon in which the relative phase of a qubit is lost. Quantum channels with
collective dephasing act on the input state in the following way:

j0i ! j0i ;
j1i ! e{� j1i ;

where � is the collective dephasing parameter that varies with time. A logic qubit
composed by two physical qubits with anti-parallel parity is immune to collective
dephasing, i.e.,

j0Li D j01i ;
j1Li D j10i :
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A qubit can be, thus, encoded as j Li D ˛ j0Li C ˇ j1Li. As expected, j Li does
not suffer from the collective decoherence due to this channel:

E.j Li/ D E .˛ j0Li C ˇ j1Li/
D ˛e{� j01i C ˇe{� j10i
D e{� .˛ j01i C ˇ j10i/
D e{� j Li
D j Li ;

since the global phase factor e{� acquired during this process has no physical
significance [7]. It means that the states j01i and j10i belong to QH, a decoherence-
free subspace from H in a quantum channel with collective dephasing.

Some practical results already reported in the literature consider the identifica-
tion, implementation, and adoption of several DFS in quantum computation and
communication [2, 17, 29, 31, 33, 35, 41, 51, 57, 59]. For quantum communications,
in particular, DFS are useful for building quantum repeaters. Such devices are
used for quantum key distribution, quantum teleportation schemes and also for
quantum computer networks [13]. The work of Xue [56] shows the characterization
of quantum repeaters with DFS for long distance quantum communications.

6.1.1 Method for Obtaining Decoherence-Free Subspaces and
Subsystem

Despite the ability to preserve the fidelity of quantum states, one of the limitations
regarding the use of DFS relies on the difficulty to identify them [5]. In order to
circumvent this problem, Choi and Kribs [9] proposed a method to identify DFS
when the error model of the quantum channel is known. The main goal of this
section is the characterization of this method that is mainly algebraic.

Let E W B.H/ ! B.H/ be a quantum operation. The error model can be
specified, for example by the operation elements fEag of an OSR, E � fEag. The
noise commutator A0

for E is the set of all operators B.H/ which commute with the
operators Ea and E�a. When considering unital channels (which satisfy E.1/ D 1),
we have that all � 2 A0

satisfy E.�/ D � . As a consequence, A is a �-algebra1

generated by Ea that is called interaction algebra associated with E .

1The formalism of �-algebras, also known as C�-algebras, was developed for its use on quantum
mechanics of observables. A �-algebra is a Banach �-algebra with an additional condition for the
norm: jjA� � Ajj D jjA2jj for all A 2 U , where U is an algebra with complex norm. A complete
tutorial on �-algebras can be found on Davidson [10].
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However, quantum channels are generally non-unital and hence we must explore
a more general formalism. Any operator � that belongs to the noise commutator A0

satisfies E.�/ D �E.1/ D E.1/� . Given a projector P in B.H/, the objective is
to find a subalgebra PB.H/P of B.H/ with algebra B.PH/. To do so, we have the
following theorem.

Theorem 6.2 (Choi and Kribs [9]). Let E D fEag be a quantum operation on
B.H/. Suppose that P is a projection onto H that satisfies

E.P/ D PE.P/P: (6.6)

Then, EaP D PEaP, 8a. Define

A0

P � ˚
� 2 B.PH/ W Œ�;PEaP� D 0 D �

�;PE�aP
��

(6.7)

and

FixP.E/ � f� 2 B.PH/ W E.�/ D �E.P/ D E.P/�;
E.���/ D ��E.P/�; E.�; ��/ D �E.P/��� : (6.8)

Therefore, FixP.E/ is a �-algebra inside B.PH/ that coincides with A0

P, i.e.,

FixP.E/ D A0

P: (6.9)

The proof of this theorem will not be fully discussed; we just highlight some of
the most important aspects. If P satisfies (6.6), then

0 � P?EaPE�aP? � P?E.P/P? D 0 8a: (6.10)

To whatever operators A;B 2 B.H/, A � B ) h j B � A j i � 0, 8 j i 2 H. This
way, P?EaP D 0 or, equivalently, EaP D PEaP, 8a. When considering � 2 A0

P,
then

E.�/ D
X

a

EaP�PE�a

D �
X

a

EaPE�a D
X

a

EaPE�a�

D �E.P/ D E.P/�: (6.11)

Projectors P satisfying (6.6) have some properties. For instance, a quantum
channel E � fEag acts on a quantum state � 2 A0

P projecting it into another state � 0
in the subspace defined by P. To support this statement, we have that
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� 0 D E.�/
D �E.P/
D .P�P/.PE.P/P/
D PŒ�PE.P/�P 2 B.PH/: (6.12)

In this particular case, E.�/ D � only if E.P/ D 1.
The next step is to show how projectors with such characterization can capture

the DFS of a quantum operation E .

Theorem 6.3 (Method for Obtaining DFS [9]). Let E be a quantum operation in
B.H/. Let P be a projector that satisfies (6.6), and let PH D ˚k.HAk ˝ HBk/ be
the decomposition of PH induced by the structure of the �-algebra A0

P D FixP.E/.
Then, the subsystems HBk , with dim.HBk/ > 1, are decoherence-free for E .

We can say that the essence of this method relies on the identification of all
projectors P satisfying (6.6). Thenceforth, the structure of A0

P D FixP.E/ is used to
determine what are the states that belong to the DFS.

One important aspect is the optimality of the proposed method. It means
that it can capture all projectors satisfying (6.6) [9, Theorem 3]. Despite the
characterization of such method, the authors state that no computational procedures
were developed to this purpose yet.

Example 6.2 (Identifying a DFS in a Quantum Channel). Suppose that the quantum
channel E � fE0;E1;E2g acts on a bidimensional space state with the following
Kraus operators:

E0 D ˛.j00i h00j C j11i h11j/C j01i h01j C j10i h10j ;
E1 D ˇ.j00i h00j C j11i h11j C j01i h01j C j10i h10j/;
E2 D ˇ.j00i h00j C j11i h11j � j01i h01j � j10i h10j/;

where q is a scalar, 0 < q < 1; ˛ D p
1 � 2q; ˇ D p

q=2. It is possible to notice
that E.1/ D P2

aD0 EaE�a ¤ 1 and, therefore, this channel is not unital.
In this channel model, there is only one state � such that E.�/ D �. However,

such invariance does not come from the action of E , but from a fixed point.
Despite that, there is a DFS with such dimension when we consider the projector
P D j01i h01j C j10i h10j, i.e., all operators supported by P are invariant under E . It
means that E.� 0/ D � 0 for all � 0 D P�P.

To exemplify this statement, let the density operator of the state j i be

j i h j D j01i h01j C j01i h00j C j00i h01j C j00i h00j
2

:

Applying the projector P onto j i results
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ˇ
ˇ 0˛ ˝ 0ˇˇ D P j i h j P

D .j01i h01j C j10i h10j/
� j01i h01j C j01i h00j C j00i h01j C j00i h00j

2

�

P

D
� j01i h01j C j01i h00j

2

�

.j01i h01j C j10i h10j/

D j01i h01j
2

:

Note that j 0i h 0j does not vary after passing the channel E , despite it does not
belong to the noise commutator A0 for E :

E.ˇˇ 0˛ ˝ 0ˇˇ/ D
2X

aD0
Ea

ˇ
ˇ 0˛ ˝ 0ˇˇE�a

D j01i h01j
2

C ˇ � j01i h01j
2

� ˇ � j01i h01j
2

D j01i h01j
2

:

6.1.2 Relation with the Zero-Error Capacity of Quantum
Channels

The work of Medeiros et al. [39] explores the relation between DFS and zero-error
capacity of quantum channels. This relation is established from the method for
obtaining DFS of Choi and Kribs [9], showed in the previous section. The purpose
of this section is to show this relation.

We know that a quantum channel has zero-error capacity if and only if there
are at least two non-adjacent states at the channel input. Considering an optimum
pair .S;M/ according to Definition 5.3, it is possible to derive a pair .S 0;M0/,
where S 0 � S , M0 D fM1; : : : ;Mk;MkC1g � M, and MkC1 D 1 �Pk

iD1 Mi. The
projectors Mi 2 M0, with 1 � i � k, satisfy

E.Mi/ D MiE.Mi/Mi (6.13)

and

MiMj D ıijMiMj; (6.14)

where ı denotes the Kronecker’s delta. When choosing projectors with such
restrictions, we notice that the elements of S 0 can define a DFS, as established in
the method for obtaining DFS explored in Sect. 6.1.1.
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As a consequence, we have that the set .S 0;M0/ is optimum and the zero-error
capacity C.0/.E/ defined for this set can be bigger than the zero-error capacity
C.0/.E/ defined for .S;P/, it means that C.0/.E/ � C.0/.E/. The proofs of such
consequences make use of graph theory and mappings properties [39].

In summary, the conclusion of those authors regarding the relation of DFS and
zero-error capacity is that if a zero-error quantum channel has a DFS, then the zero-
error capacity must be obtained from the DFS by using projectors that attain certain
properties.

6.2 Quantum Secrecy Capacity

The privacy in quantum systems was initially considered by Schumacher and
Westmoreland [45]. These researchers conceived a model that allows two legitimate
parties, Alice and Bob, to exchange classical messages through a noisy quantum
channel. An eavesdropper (Eve) has total access to the environment of the quantum
channel from which she is able to capture information of the legitimate parties.

Alice sends messages from a set of integers U D f1; 2; : : : ; jU jg mapped on an
ensemble of quantum states f�.u/; pu W u 2 Ug. The states of the ensemble are called
quantum codewords, composed by tensor products of quantum states:

�.u/ D �1.u/˝�2.u/˝ : : :˝�n.u/ u 2 U ; �i.u/ 2 H; i D 1; 2; : : : ; n: (6.15)

The mapping characterizes a quantum block code with block length n and rate
R D 1

n log jU j. A decoding scheme for this quantum code is a decoding function that
associates univocally an output quantum state with a set of integers, i.e., g W H ! U ,
Ou D g.E.�.u/// 2 U . An error occurs when g.E.�.u/// ¤ u.

The quantum privacy between Alice and Bob is limited by the coherent
information among them. The coherent information is an information measure that
quantifies the difference between the von Neumann entropies of two systems: the
system of interest and the environment [45]. When considering this formulation, Cai
et al. [6] and Devetak [11] notice some similarities with classical wiretap channels
proposed by Wyner [54]. Then, they proposed a quantum version of such channels,
presented in Definition 6.3 and illustrated in Fig. 6.1.

Definition 6.3 (Quantum Wiretap Channel). A quantum memoryless wiretap
channel is described by a superoperator E in a complex Hilbert space H D
HBob ˝ HEve. When Alice sends a quantum state � 2 H˝n, Bob receives �Bob D
TrEveŒE˝n.�/� and Eve receives �Eve D TrBobŒE˝n.�/�, where n is the dimension of
input Hilbert space.

When communicating over a quantum wiretap channel, security can be achieved
by using a particular type of quantum block code: the quantum wiretap codes.
Two additional parameters are necessary: �, which represents an upper bound for
the error-probability; and 	, which represents an upper bound for the maximum
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ω(u) EB(ω(u))

BobAlice u

u1

...
u2

u

EE(ω(u))

Eveu

u1

...
u2

u

Main
quantum
channel

Environment

Fig. 6.1 General model of a quantum wiretap channel

accessible information by the eavesdropper Eve. A quantum wiretap code is referred
to as a 4-tuple .n; jU j ; �; 	/. A formal characterization of such codes is given below.

Definition 6.4 (Quantum Wiretap Block Codes). Consider a quantum block
code of length n and rate R D 1

n log jU j, where U D f1; 2; : : : ; jU jg is a set of
classical messages. The set of codewords labeled by the index of the messages is
given as follows:

˝.U/ D f�.u/ W u 2 Ug: (6.16)

We assume that the decoding function is given by the POVM fDu W u 2 Ug, whereP
u Du � 1.
This code is said to be a quantum wiretap block code with parameters (n, jU j, �,

	), or quantum wiretap code for short, if two conditions are attained:

Pe D 1 � 1

jU j
X

u2U
TrEveŒE.�.u//Du� � �; (6.17)

and

1

n

(

S

 
X

u2U
TrBobŒE˝n.�.u//�

!

�
X

u2U

1

jU jS.TrBobŒE˝n.�.u//�/

)

� 	: (6.18)

In the definition of a quantum wiretap code with parameters .n; jU j ; �; 	/, (6.17)
ensures an average probability of decoding errors for Bob lower than �, and (6.18)
limits the information accessible to the eavesdropper, which captures almost nothing
from the message sent by Alice [6].

Lastly, the secrecy capacity of a quantum channel is defined as follows.

Definition 6.5 (Quantum Secrecy Capacity). The secrecy capacity of a quantum
channel E is the largest real number CS.E/, such that for all 
; �; 	 > 0 and n large
enough, there is a quantum wiretap code with parameters .n; jU j ; �; 	/ such that

CS.E/ < 1

n
log jU j C 
: (6.19)
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Only uniformly distributed messages were considered in the previous definitions,
but the following theorem is a more general result for the quantum secrecy capacity
[6, Sect. 5].

Theorem 6.4 (Quantum Secrecy Capacity). Let E be a quantum wiretap channel
as characterized in Definition 6.3. The quantum secrecy capacity of E satisfies

CS.E/ � max
fPg

�
�Bob � �Eve

�
; (6.20)

where the maximum is taken over all probability distributions over U ; and �Bob and
�Eve are Holevo quantities defined as

�Bob D S.�Bob/ �
X

i

piS.�Bob.i//; (6.21)

�Eve D S.�Eve/ �
X

i

piS.�Eve.i//; (6.22)

where �Bob is the state received by Bob after a partial trace over the environment;
and �Eve is Eve’s final state.

The proof of this theorem makes use of the random coding proof technique to
ensure that the information gathered by Eve is negligible. When the information
transmission rate through the channel is smaller than the quantum secrecy capacity,
the protocol guarantees unconditional security [6]. This capacity is equivalent to the
definition of privacy presented by Schumacher and Westmoreland [45].

The quantum secrecy capacity (6.20) is the quantum counterpart of the classical
secrecy capacity proposed by Wyner [54]. We can, therefore, notice some simi-
larities between both definitions: they limit the decoding error probability and the
information accessible to the wiretapper.

A particular characteristic of the quantum secrecy capacity is that it does not have
single letter characterization, i.e., the capacity cannot be directly calculated because
the maximum is taken over all possible input states as well as all possible probability
distributions [6, 11].

Some codes for quantum wiretap channels can be found in the literature. Hamada
[25, 26] proposed classes of codes for both classical and quantum wiretap channels.
In the quantum case, they are based on concatenated conjugate codes that are
equivalent to the Calderbank-Shor-Steane (CSS) codes [42, Sect. 10.4.2]. Another
characteristic of the proposed code is the polynomial-time complexity for encoding
and decoding in terms of channel usage.

Another class of codes for quantum wiretap channels was proposed by Wilde
and Guha [53]. This construction is based on polar codes for degraded wiretap
channels that reach the symmetric secrecy capacity for a quantum wiretap channel
with a classical eavesdropper. Although this class of codes also has a polynomial-
time complexity for encoding and decoding, examples of such codes are strongly
dependent on numerical simulations [16]. Nonetheless, the authors showed that such
codes perform well when used to carry information through amplitude damping,
dephasing, erasure, and cloning quantum channels [16, 53].
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6.3 Zero-Error Secrecy Capacity

Consider a scenario where two legitimate parties, Alice and Bob, want to exchange
classical messages through a quantum channel E in a secret and error-free way.
These messages must be protected from an eavesdropper (Eve), which has complete
and non-restricted access to the environment. This communication model is similar
to the scenario already considered in Fig. 6.1.

The communication model where the eavesdropper has complete access to the
environment follows the formalism proposed by Cai et al. [6] and of Devetak [11]
for the characterization of quantum wiretap channels. In practical scenarios, it is
more common to consider a direct action of the eavesdropper on the main quantum
channel and its implications in the communication and in the non-authorized
information gathering, e.g., in quantum key distribution protocols. The scenario
described in Fig. 6.1, although different from this approach, can also be physically
implemented and is already consolidated in the literature for quantum privacy
purposes [45]. In particular, the channel E has Kraus operators fEag and positive
zero-error capacity. The following characterization presents the quantum channel
under consideration.

Characterization 6.1 (Quantum Channel with Positive Zero-Error Capacity).
Let E be a trace-preserving quantum map with Kraus operators fEag, which
represents a noisy quantum channel E . We consider that E has a strictly positive
zero-error capacity, C.0/.E/ > 0, reached by an optimum pair .S;M/.

If there exists a POVM M0 D fM1; : : : ;Mkg that satisfies (6.13) and (6.14), then

E.Mi/ D MiE.Mi/Mi; (6.23)

MiMj D ıi;jMiMj; (6.24)

for all i; j � k. Furthermore, if we define

S 0 D
n
�i D jsii hsijkiD1 ; �i 2 MiH and Œ�i;MiEaMi� D 0 D �

�i;MiE
�
aMi

�o
;

(6.25)

then the pair .S 0;M0/ is also optimum. Since .S 0;M0/ has been obtained according
to the method described in Sect. 6.1.1, the quantum states �i 2 S 0 characterize
an orthonormal basis set for the decoherence-free subspace QH. For the sake of
simplicity, from now on we will use the notation QH in a reference for the basis states
of this decoherence-free subspace. Therefore, states in S 0 can be used to encode
information that will be immune to an eavesdropper, as shown in the following
lemmas.

Lemma 6.1 (Optimum Pair .S 0;M0/ Defines a QEAC). The optimum pair
.S 0;M0/ is a quantum error avoiding code (vide Sect. 6.2).
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Proof. In order to prove this lemma, we must show that the pair .S 0;M0/ has all the
elements of a QEAC.

Let U D fu1; : : : ; ukg be a set of classical messages; each message in U is
associated with a state in S 0 through a bijection. The set S 0 defines a codebook
QP.U/ D f Q�.ui/ D �ig � S 0 with codewords of length n. The decoding is performed
by a set of positive operators Mi 2 M0, i 2 1; : : : ; jU j, with

PjU j
iD1 Mi � 1. Indeed,

there is a bijective correspondence between the set of POVM operators M0
i and the

set of messages U . Therefore, the pair . QP.U/;M0/, which is equivalent to .S 0;M0/,
defines a quantum error-avoiding code of length n and rate 1

n log jU j.
It is straightforward to see that for each DFS we can construct a quantum error-

avoiding code to the corresponding quantum channel. The channel E is subject
to collective decoherence, being governed by the Hamiltonian (6.1). Thanks to
symmetries existing in collective decoherence, states in the DFS do not suffer the
action of HSE, the Hamiltonian component representing the interaction between
system and environment.

When Alice wants to send a message u to Bob using a quantum error-avoiding
code, she encodes u into a quantum codeword Q�.u/ and sends the corresponding
state through the channel E . We assume that the environment starts in a pure state
j0Ei h0Ej. Due to the decoherence, Bob and Eve will receive the following states,
respectively,

�Bob. Q�.u// D TrEve ŒE. Q�.u/˝ j0Ei h0Ej/� ; (6.26)

�Eve. Q�.u// D TrBob ŒE. Q�.u/˝ j0Ei h0Ej/� : (6.27)

Since Alice uses a QEAC, dynamic symmetries protect the quantum codeword
from interacting with the environment. Therefore, the joint evolution between
system and environment happens in a decoupled way. Thus, the state �Bob. Q�.u//
is given by

�Bob. Q�.u// D TrEve ŒE. Q�.u/˝ j0Ei h0Ej/� (6.28)

D TrEve

"
X

a

Ea . Q�.u/˝ j0Ei h0Ej/E�a

#

D TrEve Œ Q�.u/˝ �E� (6.29)

D Q�.u/; (6.30)

where (6.29) is due to the invariance of a state from a DFS under the OSR operators.
Taking into account the Hamiltonian (6.1) of the quantum system and consid-

ering the fact that system of interest and environment have not interacted, then
it is possible to ensure that the environment suffered only the action of HE,
which indicates a unitary evolution restricted to the environment. It means that
�Eve. Q�.u// D �E (6.27) is a pure state.
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Proceeding with the development, it is possible to state and prove the following
lemma.

Lemma 6.2 (Optimum Pair .S 0;M0/ Defines a Wiretap Code). The pair
.S 0;M0/ defines a quantum wiretap code with parameters .n; jU j ; 0; 0/.
Proof. In Definition 6.4 of a wiretap code as proposed by Cai et al. [6], two
conditions must be satisfied in order to achieve secrecy: (1) the average error
decoding probability must be small; and (2) the accessible information to the
eavesdropper must be arbitrarily small. As we show below, these two requirements
are actually satisfied.

For the first condition, note that the pair .S 0;M0/ is optimal, i.e., the set S 0 attains
the zero-error capacity. If quantum codewords are composed of tensor products
of states in S 0, then the communication is accomplished without decoding errors.
Therefore, � D 0 and the first condition is attained.

In order to verify the second condition, we need to check the accessible
information by Eve, which is given as

S

 
X

u2U

1

jU j TrBob E. Q�.u//
!

�
X

u2U

1

jU jS .TrBob E. Q�.u/// � 	; (6.31)

where 	 is arbitrarily small. Instead of calculating the left side of (6.31), we make
use of an upper bound for the accessible information, the Holevo quantity, defined
by

�Eve D S.�Eve. Q�.u/// �
X

u

puS.�Eve;u Q�.u//: (6.32)

Because quantum codewords are composed by states in S 0 that belongs to a DFS,
there are no interactions between the system and the environment. Therefore, the
initial environment state, j0Ei, evolves only under the Hamiltonian HE, indicating a
unitary evolution restricted to the environment. It means that the final environment
state is pure. This way:

�Eve D S.�Eve. Q�.u/// �
X

u

puS.�Eve;u Q�.u//

D S.�E/ �
X

u

puS.�Eve;u Q�.u//

D 0 �
X

u

puS.�Eve;u Q�.u//: (6.33)

Because �Eve � 0, S.�/ � 0 for any �, and that pu � 0 for all u, then the sum at
the right side of (6.33) is zero. Therefore, �Eve D 0. Since the Holevo quantity is an
upper bound for accessible information, the left side of (6.31) is zero, i.e., 	 D 0.
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Lemmas 6.1 and 6.2 guarantee that unconditionally secure communication can
be performed by using codewords composed by quantum states belonging to a DFS
for corresponding quantum channel [23].

Even though an optimum .S 0;M0/ defines a wiretap code with parameters
(n, jU j,0,0), it is not always possible to extract .S 0;M0/ from an optimum pair
.S;M/. According to Lemma 6.1, the quantum states in S 0 belongs to QH for the
channel E .

However, considering practical scenarios, a DFS may exist in such conditions,
even with smaller cardinality than the set of messages, i.e., with dim. QH/ < jU j.
For such situations, we use a wiretap code with parameters .n; dim. QH/; 0; 0/, which
allows a communication free of errors and without information leakage. Despite
that, in this second situation the communication occurs with a lower rate than when
considered the code obtained according to the conditions previously mentioned.
Taking this into account and also both lemmas proved, we can characterize a new
kind of capacity for quantum channels, whose definition is given as follows.

Definition 6.6 (Zero-Error Secrecy Capacity). Let E be a quantum channel
according to Characterization 6.1. We define the zero-error secrecy capacity of E
as the largest real number C.0/

S .E/ such that, for every 
 > 0 and sufficiently large
n, there is a quantum wiretap code .n; jU j ; 0; 0/ which satisfies

C.0/
S .E/ � 1

n
log jU j C 
: (6.34)

Two main features of this capacity are the absence of decoding errors and of
information leakage to the eavesdropper. It is in contrast with the secrecy capacity
of quantum channels, in which decoding errors among the legitimate parties can
occur.

The following theorem gives a way of quantifying the zero-error secrecy
capacity.

Theorem 6.5 (Zero-Error Secrecy Capacity). Let E be a quantum channel
according to Characterization 6.1. The zero-error secrecy capacity of E is given by

C.0/
S .E/ � min

˚
C.0/.E/;CS.E/

�
(6.35)

� min

(

sup
QH

sup
n

1

n
log dim. QH/n;max

fPg
�Bob

)

; (6.36)

where n is the length of the code; the maximum is taken over all probability
distributions P over U , and �Bob denotes an upper bound for the accessible
information of the receiver (Bob):

�Bob D S

 
X

u

pu�Bob. Q�.u//
!

�
X

u

puS .�Bob. Q�.u/// ; (6.37)

where pu is the a priori probability of the symbol u 2 U .
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Proof. This proof considers some facts about the capacities of a quantum channel E .
Let C1;1.E/ be the ordinary classical capacity of E defined according to the Holevo-
Schumacher-Westmoreland theorem [28, 44]. Let CS.E/ be the secrecy capacity of
E [6, 11]. And, lastly, let C.0/.E/ be the classical zero-error capacity of a quantum
channel E [38]. We have that CS.E/ � C1;1.E/, and that C.0/.E/ � C1;1.E/.

Considering that jU j D dim. QH/, a code with parameters .n; jU j ; 0; 0/ is
simultaneously an error-free code and also a wiretap code. By definition, we know
that the zero-error capacity is related to the maximum amount of messages that
are distinguishable at the channel output. Since each word in the alphabet was
associated with a state of a DFS, according to Lemma 6.1, we have

C.0/.E/ D sup
QH

sup
n

1

n
log dim. QH/n; (6.38)

where n is the length of the code. Since this is a wiretap code having input symbols
belonging to QH, CS.E/ D �Bob � �Eva. As a consequence of Lemma 6.2,

C.0/
S .E/ � max

fPg
�
�Bob � �Eva

�

� max
fPg

�
�Bob � 0�

D max
fPg

�Bob; (6.39)

where the maximum is taken over all a priori probability distributions P of the
symbols u 2 U . The equality follows from the HSW theorem. We have to consider
two situations:

1. There exists an optimum pair .S 0;M0/ derived from .S;M/ according to (6.23)
and (6.24). In this case, jU j D dim. QH/ and C.0/

S .E/ D CS.E/ D C.0/.E/.
2. There exists a DFS QH for the channel that is not directly obtained from the error-

free code. In this situation, CS.E/ < C.0/.E/, i.e., error-free and leakage-free
communication is only possible if C.0/

S .E/ D min
˚
C.0/.E/;CS.E/

�
.

This way, the final expression for the zero-error secrecy capacity can be described
in terms of the relation between the zero-error capacity and the secrecy capacity:

C.0/
S .E/ D min

˚
C.0/.E/;CS.E/

�
; (6.40)

where C.0/.E/ and CS.E/ are the zero-error capacity and the secrecy capacity of E ,
respectively.

When a quantum channel E has C.0/
S .E/ D sup QH supn

1
n log dim. QH/n, then the

zero-error secrecy capacity is straightforwardly obtained from the dimension of the
largest existing DFS for the channel.
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According to Medeiros et al. [40], the zero-error capacity can be achieved using
tensor product of pure states at the channel input. We can see that the same holds
for the zero-error secrecy capacity C.0/

S .E/.
The zero-error secrecy capacity communication protocol has the same level of

security of the protocol established by Schumacher and Westmoreland [45]. Accord-
ing to the authors, the ability of a quantum channel to send private information is at
least as great as its ability to send coherent information. In the zero-error secrecy
capacity scenario, the information can be retrieved completely free of errors at
the channel output. Therefore, the ability to communicate private information is
maximized.

When considering the difficulties to implement quantum channels that enable
communications completely free of errors [34], the zero-error secrecy capacity
allows error-free and secure communications to be performed since the quantum
channel attains some conditions. This is the case of quantum channels with collec-
tive decoherence [13, 30, 55], and the quantum channels with positive zero-error
capacity discussed in [24]. In the latter example, the quantum channel proposed by
Xue [56] can be used for long-distance zero-error quantum communications.

Although the zero-error secrecy capacity was adequately defined, it is zero
for many kinds of quantum channels. We can say, indeed, that this capacity is
different from zero only for quantum channels with positive zero-error capacity and
for channels under the effect of collective-decoherence, allowing the existence of
decoherence-free subspaces. Nevertheless, the definition of the zero-error secrecy
capacity can improve our knowledge regarding the “abilities” of quantum channels,
allowing a more adequate use in certain situations.

6.4 Representation in Graphs

In this section the relation between the ZESC and the graph theory will be depicted.
Unfortunately, this relation is not so general as for the zero-error capacity of
quantum channels, as presented previously in Sect. 5.2. The relation is only useful
to describe quantum channels satisfying the first situation described in the proof of
Theorem 6.5.

If there is a non-empty subset M0 obtained from M according to (6.23)
and (6.24), then it follows from the method of Choi and Kribs shown previously
in Sect. 6.1.1 that .S 0;M0/ characterizes a DFS QH, which is a subspace of the
input Hilbert space H. Supposing the existence of a set S 0, it is possible to build a
characteristic graph for quantum channels with positive zero-error secrecy capacity.
This construction is similar to that made for the zero-error capacity, as presented in
Definition 5.5. However, there are some differences between the two vertex sets in
each case.
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Let E be a quantum channel with positive zero-error secrecy capacity attaining
the first situation of the Theorem 6.5. The characteristic graph of E , denoted by
QG D hV;Ei, is built as follows.

1. The vertex set V is composed by the elements QH, which are referred by the
indexes of the corresponding messages, i.e., V D ˚

1; 2; : : : ; dim. QH/�.
2. The set of edges E connects two vertices if they are non-adjacent at the channel’s

end (see Definition 5.4).

The n-th Shannon product of QG, denoted by QGn, has the vertex set Vn, each vertex
corresponding to an n-tensor product of state belonging to S 0˝n. Two vertices in Vn

are connected if the two corresponding n-tensor product states are adjacent.
Taking under consideration such graph, since the elements of a DFS QH are

pairwise distinguishable at the channel’s end, then the resulting graph is complete.
Thus, the largest number of messages that can be transmitted without error by the
quantum channel E is given by the clique number QGn.

This way, the zero-error secrecy capacity of a quantum channel E that attends the
situation 1 of Theorem 6.5 is

C.0/
S D sup

QH
sup

n

1

n
log!. QGn/: (6.41)

Given a certain integer and a graph, finding a clique in the graph with size equal
to the integer given is an NP-Complete problem. However, some characteristics of
the zero-error and of DFS can be taken into account to obtain C.0/

S .E/. If the graph
built from QH is complete, then the clique number QG is equal to dim. QH/, which takes
us to the known expression (6.38). Such relation between the clique number and the
cardinality of the corresponding set of vertices does not arise in ordinary quantum
zero-error channels. This particularity arises thanks to the DFS.

6.5 Security Analysis

To analyze the security of the proposed scheme, we have to consider that there are
three types of secrecy.

1. Strong Secrecy. It requires that the total amount of information transferred
to the eavesdropper goes to zero in the asymptotic limit of the number of
communications;

2. Weak Secrecy. It requires that the information per symbol transferred to the
eavesdropper go to zero in the asymptotic limit of the number of communications
[50];

3. Perfect Secrecy. It requires that no information is transferred to the eavesdropper
[48].
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According to the communication scheme proposed, when Alice encodes a
message using a quantum wiretap code with parameters .n; jU j ; 0; 0/ and sends it
to Bob, we have that the set of input states belong to a DFS. Thanks to the DFS,
the input states do not interact with the environment. The eavesdropper, in turn,
has access only to the environment whose state is pure along the interaction. As a
consequence, the information accessible to Eve is zero, obtained from �Eva D 0 as
shown in the proof of Lemma 6.2. Eve’s uncertainty regarding the secret messages
does not have changes, even if she observed the state of the environment completely.
We can conclude, therefore, that the scheme under consideration has perfect secrecy.

6.6 Examples

We will now show some examples regarding the zero-error secrecy capacity.

Example 6.3 (Strictly Positive ZESC). Initially, we assume that a quantum channel
E1 has positive quantum zero-error capacity reached by an optimum pair .S1;M1/,
as shown in Fig. 6.2a. By following the procedures described in Sect. 6.3, a pair
.S 0

1;M
0

1/ is obtained, as shown in Fig. 6.2b.
Characteristic graphs for E1 with inputs (S1;M1) and (S 0

1;M
0

1) can be found in
Fig. 6.3a, b, respectively.

As can be seen, the largest clique has size 2 and is obtained by the pair .0; 1/ in
both cases. It leads to a quantum zero-error capacity equal to

C.0/.E1/ D sup
QH1

sup
n

1

n
log dim. QH1/

n

D log 2

D 1 bit per symbol per channel use. (6.42)

Fig. 6.2 Representation of
the transitions performed in
the quantum channel E1 for
input states from optimum
pairs (a) (S1;M1) and (b)
(S 0

1;M
0

1)
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Fig. 6.3 Characteristic
graphs for (a) (S1;M1) and
(b) (S 0

1;M
0

1)
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2 3
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0 1

(b) (S ′
1,M
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Fig. 6.4 Results obtained in
the attempt to
maximize (6.43) over the
pairs .p0; p1/
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The quantum states in the DFS QH1 are those from S 0

1. To obtain the secrecy capacity
of this channel, the software Mathematica R� was adopted in the attempt to obtain a
maximum value for �Bob:

CS.E1/ D �Bob

D max
fPg

S .p0 � �0 C p1 � �1/ : (6.43)

To reach this objective, we used an exhaustive search among 30;000 pairs of
.p0; p1/ respecting the restriction that p0 C p1 D 1. The graphic shown in Fig. 6.4
is a result of such search. As it can be seen, the maximum value for Bob’s Holevo
quantity is 1. This result was already expected since equal probabilities maximize
the von Neumann entropy (6.43).

This way, for the channel E1, the zero-error secrecy capacity is

C.0/
S .E1/ D min

˚
C.0/.E1/;CS.E1/

�

D min f1; 1g
D 1 bits per symbol per channel use.

It is possible to conclude, from this first example, that there are quantum channels
E whose zero-error secrecy capacity is strictly positive, i.e. , C.0/

S .E/ > 0.

Example 6.4 (Non-Trivial ZESC). In this second example, the quantum channel
E2 has positive zero-error capacity reached by an optimum pair .S2;M2/ where
S2 D f�1; : : : ; �6g and M2 D fMi D j�ii h�ijg6iD1. The model of errors for the
channel is shown in Fig. 6.5a. Since we are interested in the adjacency relations, the
probabilities were omitted.

From the pair .S2;M2/ we obtained the pair .S 0

2;M
0

2/ were S 0

2 D f�2; �3; �5g
and M0

2 D fM2;M3;M5g. The relation between input and output states is depicted
in Fig. 6.5b.
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Fig. 6.5 Transitions
performed by the quantum
channel E2 over inputs from
the optimum pairs (a)
(S2;M2) and (b) (S 0

2;M
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Characteristic graphs for E2 with inputs (S2;M2) and (S 0

2;M
0

2) can be found
in Fig. 6.6a, b, respectively. The clique number !. QG.E2// is equal to 3 and can be
obtained from the vertices .2; 3; 5/, .1; 3; 5/, or also .2; 3; 6/ considering the graph
in Fig. 6.6a. On the other hand, the clique of the graph in Fig. 6.6b is also equal to
3, but obtained directly from the vertices .2; 3; 5/.

The quantum zero-error capacity of E2 considering the pair (S 0

2;M
0

2) is

C.0/.E2/ D sup
QH2

sup
n

1

n
log dim. QH2/

n

D log 3

� 1; 5849 bits per symbol per channel use. (6.44)

Aiming at quantifying CS.E2/, Bob’s Holevo quantity (6.45) was obtained with
the software Mathematica R� in the attempt to maximize it over the triple .p1; p2; p3/
under the restriction p1 C p2 C p3 D 1.

CS.E2/ D �Bob D max
fPg

S .p1 � �2 C p2 � �3 C p3 � �5/ : (6.45)

The exhaustive search considered 20;000 valid triples. The results obtained are pre-
sented in Fig. 6.7, which shows the graphic obtained in two different perspectives.
According to the results observed, the highest value observed for �Bob was 1:5849
bits per symbol per channel use.
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Fig. 6.7 Two different perspectives for the graph of Holevo quantity (6.45) with exhaustive search
over the pairs .p1; p2; p3/. (a) Perspective 1 (b) Perspective 2

With these results, we have that the zero-error secrecy capacity of E2 is

C.0/
S .E2/ � min

˚
C.0/.E2/;CS.E2/

�

� min f1:5849; 1:5849g
� 1:5849 bits per symbol per channel use.

From this example, we can conclude that there are quantum channels E whose
zero-error secrecy capacity is non-trivial, i.e., C.0/

S .E/ > 1. We cannot guarantee
that the ZESC of E2 is 1:5849 because we considered the case for n D 1. We do
not have knowledge if there exists other DFS with higher dimensions for different
values of n.

The collective amplitude damping quantum channel [1] has ZESC equal to the
one of E2, characterizing a practical example of the non-triviality of this capacity.

The equality between the zero-error and secrecy capacities verified in the results
of the quantum channel E2 is not a surprise. It happens because it is possible to derive
an optimum pair .S 0

2;M
0

2/ from .S2;M2/. This example illustrates a quantum
channel which is in the first situation of Theorem 6.5.

Example 6.5 (Situation 2 of Theorem 6.5). In the examples shown previously, we
have that C.0/.E/ D CS.E/, emphasizing occurrences of the first situation in the
proof of Theorem 6.5. The third example illustrates the second situation described.

Let E3 be a quantum channel whose model of errors is composed by four
elements: E0 D j0i h0j, E1 D j1i h1j, E2 D 1

2
j2i h2jC 1

2
j3i h2j, and E3 D 1

2
j3i h3jC

1
2

j2i h3j, i.e., E3 � fEig3iD0. We have that S3 D f�i D jii hij ; i D 0; : : : ; 3g. The
mappings of the channel E3 over the inputs from .S3;M3/ are shown in Fig. 6.8a.

Upon considering the channel E3, we can see that its quantum zero-error capacity
is equal to C.0/.E3/ D log 3 bits per symbol per channel use, considering three
classical messages associated with the input states in the following way: 0 7! �0,
1 7! �1, 2 7! �2, and 2 7! �3. However, in the attempt to obtain the quantum
secrecy capacity of E3, it is not possible to obtain a pair .S 0

3;M
0

3/ which is also
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Fig. 6.8 Representation of
the mappings of E3 into the
inputs of the optimum pair (a)
(S3;M3) and of the (b)
existing DFS
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Fig. 6.9 Quantum (a) channel E4 and its (b) characteristic graph

optimum, because the transitions that cause E3.�2/ D �3 and E3.�3/ D �2 result
in an interaction with the environment. Such interaction causes information leakage
which is not adequate for a quantum secrecy scenario. However, this channel has a
DFS with 2 states, �0 and �1, shown in Fig. 6.8b.

This way, the ZESC of E3 is

C.0/
S .E3/ D min

˚
C.0/.E3/;CS.E3/

�

D min flog 3; log 2g
D 1 bits per symbol per channel use.

Example 6.6 (Quantum Channel With No Zero-Error Secrecy Capacity). In the
previous examples we saw that C.0/

S .E/ ¤ 0, but it is important to show that it is not
always true. For the quantum channel E4 in Fig. 6.9a, whose characteristic graph is
shown in Fig. 6.9b, we have that C.0/.E/ is reached by an optimum pair .S4;M4/,
with S4 D f j00i ; j12i ; j24i ; j31i ; j43ig and M4 D fM0;0;M1;2;M2;4;M3;1;M4;3g,
where

P4
M2M4

M � 1.
Finding the zero-error capacity of the classical channel corresponding to E4 was

a problem proposed by Shannon [49] whose solution was presented 20 years later
by Lovász [36]. In the quantum case, the quantum zero-error capacity is reached
after two or more uses of the channel, as shown by Medeiros [38, p. 70]. Such result
was previously shown in Example 5.4.
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The channel E4 is not unital and there is no Mi 2 M that satisfies the condition
E.Mi/ D MiEMi. This way, there is no DFS in the inner structure of the error-free
code associated with the channel. It means that every input performs a transition
which causes an undesired interaction with the environment which can lead to an
information leakage. This way, we have that the quantum secrecy capacity of E4 is

C.0/
S D min

˚
C.0/.E/;CS.E/

�

D min

�
1

2
log 5; 0

�

D 0:

This example illustrates that despite some channels have positive and non-trivial
quantum zero-error capacity obtained from two or more uses of the channel, the
nonexistence of a DFS causes M0 D ¿. It results that no pair .S 0;M0/ can be
used to encode messages without decoding errors and with secrecy. In other words,
C.0/

S .E4/ D 0.

6.7 Related Literature

Until the first articles describing the results presented in Sect. 6.3 [20–23], many
works in the literature explored the use of DFS in communication, but not
considering their capability to send unconditionally secure messages. Among
some works it was possible to see applications of DFS in protocols for quantum
secure direct communication and for quantum deterministic secure communication
[3, 12, 43]. In such protocols there is redundancy and eavesdropping check which
increases significantly the number of messages exchanged in order to perform
the communication with security. By using results previously discussed [23], all
these protocols could be simplified with less message exchanges but with the same
security, as can be seen in more detail in [19].

Regarding quantum wiretap channels, a few codes for this purpose were found,
as presented previously in Sect. 6.2. The codes proposed by Hamada [25, 26] are
based on CSS codes and, according to the author, can be easily used for practical
implementation since they do not demand resources as entanglement. However, the
rate of these codes is below the quantum secrecy capacity of the channel. The work
of Wilde, Guha, and Dutton [16, 53] shows a code for quantum wiretap channels
based on polar codes. The authors discuss that these codes can be restricted to
certain quantum channels. Regarding the proposition of wiretap codes from DFS
and quantum error-avoiding codes, as shown in Sect. 6.3, no similar strategies were
found so far.

Braunstein et al. [4] enlighten the relation between DFS and zero-error sub-
spaces, showing how the last is an instance of the former. Besides, the authors also
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proposed a method to find DFS in zero-error subspaces which has similarities with
the method of Medeiros et al. [39]. In the characterization of the zero-error secrecy
capacity we opted out to use the method of Medeiros et al. because it is guaranteed
optimum and because it helped in showing a more intuitive approach to find a DFS
in a quantum channel with positive zero-error capacity. It is important to emphasize
that the work of Braunstein et al. [4] has other results, such as lower and upper
bounds for the dimension of such subspaces.

Starting from confusability graphs for quantum channels, the work of Chiribella
and Yang [8] aims at searching for connected components to identify, among others,
decoherence-free subspaces. The work of these authors, however, focus on quantum
covariant channels and they did not explore the quantum zero-error capacity of such
channels nor the relation with the confusability graphs considered by Duan et al.
[15].

Regarding capacity, Watanabe [52] characterizes a class of quantum channels
more capable than the environment. In these channels, the quantum capacity and
the secrecy capacity are equal. However, the author shows that the conditions that
make a channel of such kind are, in general, hard to verify.

6.8 Further Reading

This chapter aimed at showing the zero-error secrecy capacity, the highest rate
according to which it is possible to exchange messages through certain noisy and
wiretapped quantum channels without decoding errors nor information leakage.
This capacity puts together concepts of quantum zero-error information theory, of
quantum secrecy capacity, and of decoherence-free subspaces and subsystems. The
results, when possible, were also shown in terms of graph theory and the security
analysis was discussed. Detailed examples illustrated the concepts introduced.
Relations with other works in literature were also presented.

The articles that introduce the concepts to build up the zero-error secrecy capacity
can be found in [20–23]. The thesis in which the concept was fully characterized was
published only in Portuguese [18].

Besides the quantum zero-error information theory, the other building blocks of
ZESC which are the decoherence-free subspaces and quantum wiretap channels,
covered in the sections of this chapter, are very interesting with many applications
and with perspective for many developments. As a suggestion regarding DFS,
we recommend the work of Lidar and Whaley [34] and the thesis of Bacon [1].
Regarding quantum wiretap channels, we recommend the seminal papers of Cai
et al. [6] and Devetak [11]. The book of Hayashi [27, Sect. 9.5] contains a section
regarding this subject in the context of discussing quantum communications over
eavesdropped channels.

Regarding future work with ZESC, Shabani et al. [46, 47] discuss the existence
of “more relaxed” conditions for the existence of DFS. Taking this into account,
could such conditions be considered and implemented in practical scenarios to
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favor the positivity of the zero-error secrecy capacity in a more wide number of
noisy quantum channels? Such answer could favor more practical implementations
of quantum communications which are simultaneously error-free and secure.
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