
Chapter 5
Zero-Error Capacity of Quantum Channels

Quantum zero-error information theory deals with techniques, protocols and ana-
lyzes methods to allow communication of classical or quantum information through
quantum noisy channels, with the main requirement that no errors can be tolerated.
This new research field aims to generalize and extend the classical zero-error theory
proposed by Shannon and outlined in Chap. 4.

Because quantum mechanics has many features not present in the classical
world, e.g. entanglement, one may expect that developments in this area should
not only generalize definitions and results from classical theory but they must go
beyond. This is exactly what has been happening! As we already know, a classical
channel has an asymptotically positive zero-error capacity if and only if the one-
shot capacity is positive, i.e., N.1/ > 1. One of the most impressive results in
quantum zero-error information theory is that there exist quantum channels such
that no information can be perfectly transmitted with a single use, whereas the
communication is possible with two channel uses. This phenomenon is known as
superactivation of the quantum zero-error capacity.

In this chapter we present the classical zero-error capacity of quantum channels,
which is a generalization of the zero-error capacity of discrete memoryless channels.
Section 5.1 deals with main concepts and definitions. In Sect. 5.2, an equivalent
definition for the quantum zero-error capacity is given in terms of graphs. Some
properties of quantum states reaching the channel capacity are investigated in
Sect. 5.3. Section 5.4 presents an upper bound for the quantum zero-error capacity
in terms of the Holevo-Schumacher-Westmoreland capacity and, finally, Sect. 5.5
discusses the superactivation of the zero-error capacity of quantum channels.
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5.1 Classical Zero-Error Capacity of Quantum Channels

In quantum information theory, the Holevo-Schumacher-Westmoreland (HSW)
capacity can be understood as a quantum version of the ordinary capacity of
classical channels originally defined by Shannon. Fundamentally, the parallel is due
to the communication protocol used by the HSW capacity: quantum codewords are
composed by tensor product of quantum states and collective measurements can be
made at the channel output.

The first zero-error capacity of quantum channels was defined taking into account
the HSW communication protocol, with the restriction that the probability of
decoding errors should be zero. In this sense, the classical zero-error capacity
(CZEC) of a quantum channel can be viewed as the “error-free” version of the HSW
capacity, as well as the quantum generalization of the zero-error capacity of classical
channels.

Given an arbitrary quantum channel, we ask for the maximum amount of
classical information per channel use that can be transmitted with zero probability of
error. For this purpose, we consider a d-dimensional quantum channel E � fEag as
a completely positive tracing preserving map. Let S be a subset of quantum states
belonging to a d-dimensional Hilbert space H. States �i 2 S will be called input
states.

Initially, a sender Alice chooses a message from a set f1; : : : ;mg containing m
classical messages. The encoder maps this message into an n-tensor product of
quantum states of S . The resulting state is called quantum codeword, which is
sent through the noisy quantum channel E . The receiver Bob performs a collective
measurement with a POVM on the received state. The measurement output becomes
argument of the decoding function. The decoder has to decide which message
was sent by Alice considering that errors are not allowed. The sketch of the
communication protocol is shown in Fig. 5.1.

The error-free communication protocol can be summarized as follows.

• The source alphabet is the set S D f�1; : : : ; �`g, where S � H;
• In order to be transmitted through the quantum channel, classical messages are

mapped into tensor products of quantum states in S;

E(·)Quantum
Encoder

POVM
y ∈ {1, . . . ,k}

i ∈ {1, . . . ,m}

S = {ρ1, . . . ,ρl}
{Mi}ki=1

Decoder

ĩ ∈ {1, . . . ,m}

Fig. 5.1 Quantum zero-error communication system



5.1 Classical Zero-Error Capacity of Quantum Channels 81

• At the channel output, the decoder performs collective measurements in order to
estimate the message that was sent.

Taking this into account, we can now define error-free quantum codes.

Definition 5.1 (.m; n/ Error-Free Quantum Code). An .m; n/ error-free quantum
code for a quantum channel E is composed of:

1. a set of indexes f1; : : : ;mg, each one associated with a classical message;
2. an encoding function

fn W f1; : : : ;mg ! S˝n (5.1)

leading to codewords fn.1/ D �1; : : : ; fn.m/ D �m, �i 2 S˝n;
3. a decoding function

g W f1; : : : ; kg ! f1; : : : ;mg (5.2)

that deterministically associates each of the possible measurement results per-
formed by a POVM M D fMigk

iD1 with a message. The decoding function has
the following property:

PrŒg.E.fn.i/// ¤ i� D 0 8i 2 f1; : : : ;mg : (5.3)

Clearly, the rate of this code is Rn D 1
n log m bits per channel use.

With these codes we can now define the classical zero-error capacity (CZEC) of
a quantum channel .

Definition 5.2 (Quantum Zero-Error Capacity [11]). Let E.�/ be a TPCP map
that represents a quantum noisy channel. The quantum zero-error capacity of E ,
denoted by C.0/.E/, is the highest superior limit of achievable rates with zero-error
decoding probability, i.e,

C.0/.E/ D sup
S

sup
n

1

n
log˛n.E/; (5.4)

where ˛n.E/ D m is the maximum number of classical messages that can be
transmitted without errors when an .m; n/ error-free quantum code is used with input
alphabet S .

For a given .m; n/ error-free quantum code attaining the quantum zero-error
capacity of E , we define an optimum pair .S;M/.

Definition 5.3 (Optimum Pair .S;M/ [15]). An optimum pair .S;M/ is com-
posed by a set of input states S and a POVM M for which the quantum zero-error
capacity is reached.
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We are interested in scenarios where the classical zero-error capacity of a
quantum channel is non-zero. This is only possible when at least two input states
are non-adjacent. Definition 5.4 synthesizes this idea.

Definition 5.4 (Adjacency of Quantum States). Let E be a quantum channel and
�i; �j 2 S two quantum states, i ¤ j, from the input alphabet of the channel. We
say that �i and �j are non-adjacent (orthogonal or distinguishable) in the output of
E if the Hilbert subspaces spanned by the supports of �i and �j are orthogonal. We
denote it by �i ?E �j.

Adjacency of quantum states can be generalized to tensor product, as illustrated
in Fig. 5.2. Let O�i and O�j be two input tensor products O�i D �i;1 ˝ : : : ˝ �i;n and
O�j D �j;1 ˝ : : :˝ �j;n. If there is at least one �i;k ?E �j;k, then O�i ?E O�j.

Taking adjacency into account, a quantum channel E has positive zero-error
capacity if and only if the set S contains at least two non-adjacent states.

Example 5.1 (Quantum Channel with a Vanishing Zero-Error Capacity). Suppose
that a depolarizing quantum channel can transmit an input state � intact with
probability 1 � p or exchange it by a complete mixed state with probability p, as
discussed in Example 3.15. Let d be the dimension of the input Hilbert state H and
let 1d be the identity matrix of dimension d. This channel is shown in Fig. 5.3.

Recall that the formal representation of this channel is given by

E.�/ D .1 � p/�C p
1

d
1d; (5.5)

where 0 < p < 1. To check if this channel has positive zero-error capacity, we
verify if there exist at least two different states, �i and �j, which are distinguishable
at the channel output, i.e.,

TrŒE.�i/E.�j/� D Tr

��
.1 � p/�i C p

1

d
1d

��
.1 � p/�j C p

1

d
1d

��

Fig. 5.2 Two quantum states
O�i e O�j are distinguishable if
there is at least one
�i;k ?E �j;k, 1 � k � n

E(ρ̂i) = E(ρi1) ⊗·· ·⊗ E(ρik) ⊗·· ·⊗E(ρin)

E(ρ̂ j) = E(ρ j1)⊗·· ·⊗ E(ρ jk) ⊗·· ·⊗E(ρ jn)

Fig. 5.3 Quantum
depolarizing channel

1
d d

ρρ 1− p
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Fig. 5.4 Diagrams representing the transitions performed by the channel " over the input. (a) A
discrete memoryless channel. (b) A subset of non-adjacent states at the channel output

D Tr

�
.1 � p/2 TrŒ�i�j�C p.1 � p/

d
TrŒ�i C �j�C p2

d2
1d

�

> 0;

for any 0 < p < 1. This way, the zero-error capacity of the depolarizing quantum
channel E is zero, i.e., C.0/.E/ D 0.

Example 5.2 (Quantum Channel with Positive Zero-Error Capacity). Suppose a
quantum channel E in an 8-dimensional Hilbert space. Consider a set of classical
messages f0; 1; : : : ; 7g associated with a set of pure quantum input states S D
f�0 D j0i h0j ; �1 D j1i h1j ; : : : ; �7 D j7i h7jg, in which 0 7! �0; 1 7! �1; : : : ; 7 7!
�7. Let M be a POVM specified by M D fMi D jii hijg7iD0. Notice that

P7
iD0 Mi D

1. We consider that the quantum channel acts on the input as shown in Fig. 5.4a.
This channel has positive zero-error capacity because it is possible to identify

a subset of non-adjacent states at the channel output, as shown in Fig. 5.4b. This
subset is composed by f�0; �1; �3; �5; �7g and it is maximal. We have that

C.0/.E/ � 1

1
log2 5

� 2:321 bits per symbol per channel use.

It is important to emphasize that it is not possible to state that the zero-error
capacity of this quantum channel is equal to 2:321 bits per channel use, since the
supremum (5.4) should be taken over all sets S and over all zero-error quantum
codes of length n.
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5.2 Representation in Graphs

The zero-error capacity of quantum channels allows for a representation in terms
of graphs [11, 14], as does the zero-error capacity of classical channels. Given a
quantum channel and a set S of input states, we can construct a characteristic graph
as follows.

Definition 5.5 (Characteristic Graph). Let E be a quantum channel. For a given
set of input states S D f�1; �2; : : : ; �`g, we can build a characteristic graph G with
vertices and edges given by

1. V.G/ D f1; 2; : : : ; `g, where each vertex is associated with an input state in S;
2. E.G/ D ˚

.i; j/j�i ?E �jI �i; �j 2 SI i ¤ j
�
.

This notion of characteristic graph can be extended to the n-tensor product of
states in S , S˝n, giving rise to the graph Gn, where V.Gn/ D V.G/n and two vertices
in V.Gn/ are connected if and only if the corresponding n-tensor input states are
non-adjacent at the channel output, i.e.,

1. V.Gn/ D f1; 2; : : : ; `gn,
2. E.Gn/ D ˚

.i1 : : : in; j1 : : : jn/j�ik ?E �jk

�
for at least one k, 1 � k � n; �ik ; �jk 2

S .

With this representation we can verify that vertices connected by an edge in the
graph Gn correspond to mutually non-adjacent product states at the channel output.
Therefore, the maximum amount of messages that can be transmitted by an .m; n/
error-free quantum code with input alphabet S is given by the clique number of
Gn, denoted by !.Gn/, i.e., !.Gn/ D ˛n.E/. Moreover, we can give an alternative,
equivalent definition of the zero-error capacity of quantum channels in terms of
graph theory.

Definition 5.6 (Classical Zero-Error Capacity of a Quantum Channel). The
zero-error capacity of a quantum channel E is given by

C.0/.E/ D sup
S

sup
n

1

n
log!.Gn/; (5.6)

where the supremum is taken over all input sets S and over all codes of length n.

Example 5.3 (Zero-Error Capacity from a Graph). Let’s return to the channel E of
Example 5.2 and illustrated in Fig. 5.4a. The characteristic graph associated with
the subset S is shown in Fig. 5.5. The clique number of this characteristic graph is
5, corresponding to the pairs f.0; 1/; .1; 3/; .3; 5/; .5; 7/; .7; 0/g. The clique of the
characteristic graph of E is shown in Fig. 5.5 with dotted edges.
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Fig. 5.5 Characteristic
Graph of E from Example 5.2
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5.3 Quantum States Attaining the Zero-Error Capacity

We turn our attention to the subset S D f�1; : : : ; �lg that reaches the supre-
mum (5.6). Note that states �i 2 S can be either pure or mixed states. It turns
out that the zero-error capacity of a quantum channel can always be reached by a
set of quantum pure states.

Proposition 5.1. The zero-error capacity of quantum channels can be achieved by
a set S composed only of pure quantum states, i.e., S D f�i D jviihvijg.

To prove the proposition, consider a quantum channel with Kraus operators E �
fEag, and assume that the capacity is reached by a subset S that contains mixed
states. Then, we show that it is always possible to write a new subset S 0 composed
only of pure states that also achieves the channel capacity.

Initially, note that two quantum states � and � have orthogonal supports if and
only if Tr .��/ D 0. We can write

Tr
�E.�i/E.�j/

� D Tr

 X
a

X
r

�ir Eajvir ihvir jE�a
X

b

X
s

�js Ebjvjsihvjs jE�b
!

D Tr

 X
a

X
r

X
b

X
s

�ir�js Eajvir ihvir jE�aEbjvjsihvjs jE�b
!

D
X

a;r;b;s

�ir�js jjhvir jE�aEbjvjsijj2; (5.7)

where �i D P
s �is jvisihvis j. Suppose that �i?E�j, then hvir jE�aEbjvjsi D 0 for

all indexes r and s. Now, without loss of generality, define a new set S 0 D
fjv11i; : : : ; jvl1ig, where jvi1i 2 supp �i is a pure state in the support of �i. It is
clear that if �i and �j are non-adjacent, then

Tr
�E.jvi1i/E.jvj1i/

� D Tr

 X
a

Eajvi1ihvi1 jE�a
X

b

Ebjvj1ihvj1 jE�b
!
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D Tr

 X
a

X
b

Eajvi1ihvi1 jE�aEbjvj1ihvj1 jE�b
!

D
X
a;b

jjhvi1 jE�aEbjvj1ijj2

D 0: (5.8)

Note that all non-adjacency relationships in S are at least preserved when using the
subset S 0. In terms of graphs, the characteristic graph G0 due to S 0 can be obtained
from G, the characteristic graph due to S , by probably adding a number of edges
but never deleting edges. Because adding new vertices never decreases the clique
number of a graph, we can conclude that the subset S 0 also attains the quantum
zero-error capacity.

Now the relationship between orthogonality at the channel input and non-
adjacency at the channel output is investigated. It is straightforward to see that
two non-adjacent quantum states are necessarily orthogonal at the channel input.
At a first glance, we can think that maximizing the number of pairwise non-adjacent
quantum states requires pairwise orthogonal states at the channel input. Surprisingly,
it turns out that there exist quantum channels such that we can do better by choosing
a subset S where not all states are pairwise orthogonal.

To illustrate this feature, we present a mathematically motivated example of a
quantum channel for which the capacity is attained by a set of non-orthogonal
input states. In addition, the channel gives rise to the pentagon graph for the subset
reaching the capacity.

Example 5.4. Let e be a quantum channel with operation elements fE1;E2;E3g
given by

E1 D

2
666664

0:5 0 0 0
p
49902
620

0:5 �0:5 0 0 0

0 0:5 �0:5 0 0

0 0 0:5 �
p
457
50

p
457
50

0 0 0 �0:62 � 289
1550

3
777775
; E2 D

2
666664

0:5 0 0 0 �
p
49902
620

0:5 0:5 0 0 0

0 0:5 0:5 0 0

0 0 0:5
p
457
50

�
p
457
50

0 0 0 0:5 0:5

3
777775
;

E3 D 0:3j4ih4j;

where ˇ D fj0i; : : : ; j4ig is the computational basis for the Hilbert space of
dimension five. Consider the following set S of input states for E :

S D
	

jv1i D j0i; jv2i D j1i; jv3i D j2i; jv4i D j3i; jv5i D j3i C j4ip
2



: (5.9)

In order to construct the characteristic graph G, we need to explicit all adjacency
relations between states in S . If the channel outputs E.jvii/ are calculated for every
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(b)(a)

|v1 |〉 0〉

|v2〉 |v5〉

|2〉|3〉

|1〉 |4〉

|v4〉 |v3〉

Fig. 5.6 (a) Characteristic graph G for the subset S containing non-adjacent input states. (b)
Characteristic graph for a subset S0 of mutually orthogonal input states. In this case, the
transmission rate is less than C.0/.pentagon/ for any zero-error quantum code with alphabet S0

jvii 2 S , one can verify that

jv1i?E jv3i; jv1i?E jv4i; jv2i?E jv4i;
jv2i?E jv5i; and jv3i?E jv5i:

These relations give rise to the pentagon as characteristic graph, as it is illustrated
in Fig. 5.6a.

It is important to note that if we replace the state jv5i D j3iCj4ip
2

with the state

j4i, then the subset S becomes the (orthonormal) basis ˇ. For the subset ˇ, the
characteristic graph is shown in Fig. 5.6b. The zero-error capacity of the former
graph is C0 D 1

2
log 5 bits/use, whereas the latter has zero-error capacity C0 D

1 bit/use. Because there is no other subset of input states giving rise to a graph with
C0 � 1, the zero-error capacity of E is

C.0/.E/ D 1

2
log 5 bits/use:

5.4 Relation with Holevo-Schumacher-Westmoreland
Capacity

Quantum channels have different kinds of capacity, depending mainly on if the
information to be sent is either classical or quantum and on the communication
protocol [17]. When classical messages are mapped into tensor products at the
channel input and collective measurements are performed at the channel output, the
capacity of the quantum channel to convey classical information with a negligible
error probability after many channel uses, denoted by C1;1, is given by the Holevo-
Schumacher-Westmoreland (HSW) theorem [10, 20].

As we already mentioned, the HSW capacity can be understood as a generaliza-
tion of the ordinary capacity of classical channels. According to the HSW theorem,
this capacity is given by

C1;1.E/ � max
pi;�i

�pi;�i ; (5.10)
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where

�pi;�i D S

 
E
 X

i

pi�i

!!
�
X

i

piS .E.�i// : (5.11)

The term S.�/ in (5.11) stands for the von Neumann entropy; the maximum (5.10)
takes into account all possible input ensembles f�i; pig for the quantum channel E ;
�pi;�i is known as the Holevo quantity.

Theorem 5.1 (Bound on the Quantum Zero-Error Capacity). The zero-error
capacity of a quantum channel E is upper bounded by the HSW capacity, i.e.,

C.0/.E/ � C1;1.E/ � max
pi;�i

�pi;�i : (5.12)

To prove the theorem, we assume that Alice sends to Bob a message chosen
uniformly from the set f1; : : : ; 2nRg. If we define a random variable X representing
indexes of classical messages, then

H.X/ D nR; (5.13)

where H stands for the classical Shannon entropy [1]. Let Y be a random variable
representing POVM outputs. Using the definition of mutual information, we get

nR D H.X/ D H.XjY/C I.X;Y/: (5.14)

Because the quantum code is error-free, H.XjY/ D 0. Suppose that Alice encodes
the message i as �i D �i1 ˝ � � � ˝ �in . Applying the Holevo bound we get

nR D I.X;Y/

� S

0
@ 2nRX

iD1

1

2nR
E.�i/

1
A �

2nRX
iD1

1

2nR
S.E.�i//: (5.15)

Remember that E.�i/ D E.�i1 /˝� � �˝E.�in/. Hence, we can apply the subadditivity
of the von Neumann entropy, S.A;B/ � S.A/C S.B/:

nR �
nX

jD1
S

0
@ 2nRX

iD1

1

2nR
E.�ij/

1
A �

2nRX
iD1

1

2nR

nX
jD1

S.E.�ij//

D
nX

jD1

2
4S

0
@ 2nRX

iD1

1

2nR
E.�ij/

1
A �

2nRX
iD1

1

2nR
S.E.�ij//

3
5 : (5.16)
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Because the capacity (5.10) is calculated by taking the ensemble that gives the
maximum, we can conclude that each term on the right side of (5.16) is less than or
equal to C1;1.E/. Then,

nR � nC1;1.E/ (5.17)

and the inequality follows for all zero-error quantum block codes of length n and
rate R. This is an intuitive result, since one would expect to increase the information
transmission rate whenever a small probability of error is allowed.

Example 5.5. Consider the quantum channel of the Example 5.4 and the set S of
non-orthogonal states giving rise to the pentagon as characteristic graph. Obviously,
we do not know if S attains the supremum (5.10). However, S does attain the zero-
error capacity of E , which is C0.G5/ D 1

2
log 5 bits per use. In this case, a simple

calculation shows that the � quantity for the family fS; pi D 1=5g is greater than
C0.G5/, i.e.,

�fS;1=5g D 1

5

"
S

 
E
 

5X
iD1

jviihvij
!!

�
5X

iD1
S.E.jviihvij//

#

D 1:53

� C0.G5/

D 1:16: (5.18)

5.5 Superactivation of Zero-Error Capacity

A well-known result in classical zero-error communication asserts that a discrete
memoryless channel has positive zero-error capacity if and only if N.1/ > 1.
Therefore, if one use of the channel cannot transmit zero-error information, then
many uses cannot either. Thanks to entanglement, the capacity of quantum channels
to carry classical or quantum information behaves significantly different from
the corresponding classical capacity. Concerning the zero-error capacity, there are
quantum channels such that the use of entangled input states allows for a positive
zero-error capacity even when the one-shot capacity is zero.1 This phenomenon is
known as superactivation of zero-error capacity of quantum channels.

The activation of zero-error capacity was first demonstrated by Duan and Shi [8]
in a scenario of a multipartite communication system, where m senders want to
send classical messages to n receivers using a noisy multipartite quantum channel.

1By one-shot capacity we mean the transmission rate for a single channel use.
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Em,n(ρk)
Em,n
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C
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...

|0〉Sender S1

|0〉Sender Sm

estimated k
...message k

...

Receiver Rn

Receiver R1

LO
C

C
encoding

Fig. 5.7 An .m; n/ multipartite quantum channel. When the senders want to transmit the message
k, they start with the state j0i ˝ � � � ˝ j0i. Then, LOCC is used to encode j0i˝m into a quantum
stated �k, which is transmitted through the channel Em;n. At the channel output, receivers make use
of LOCC to decode Em;n.�k/ and get an estimation of the original message k

Afterwards, superactivation was found on several classes of one sender/one receiver
quantum channels.

5.5.1 Activation of Zero-Error Capacity on Multipartite
Quantum Channels

Consider a scenario where n senders, S1; : : : ; Sn, want to communicate with m
receivers, R1; : : : ;Rm, using a multipartite quantum communication channel, E .
Figure 5.7 illustrates the general setup of this system. As a reasonable assumption,
Duan and Shi considered that the senders can use LOCC (local operations and
classical communication) in order to prepare and code the quantum state to be
transmitted [8]. At the channel output, the receivers can also use LOCC to decode
the output message.

Let E be an .m; n/multipartite quantum channel defined as the following positive
trace-preserving map:

Em;n W B.HS/ �! B.HR/;

where HS D HS1 ˝ � � � ˝ HSm and HR D HR1 ˝ � � � ˝ HRn are the state spaces of
senders and receivers, respectively. In order to transmit a message, the senders start
with a state j0i ˝ � � � ˝ j0i and prepare the input quantum codeword � 2 HS using
LOCC. At the channel output, the receivers make use of LOCC to decode the output
state Em;n.�/. The communication scheme is illustrated in Fig. 5.8.

As an example, define �0 D jˇ00ihˇ00j and �1 D 1
3
.1 � �0/, where jˇ00i D

j00iCj11ip
2

stands for the Bell state. Consider the following one sender (Charlie) two
receivers (Alice an Bob) quantum channel

E1;2.�/ D h0j�j0i�0 C h1j�j1i�1; (5.19)
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Fig. 5.8 Example of a E1;2 channel whose zero-error capacity can be activated. Although no
perfect transmission can be archived with a single use, a sender can transmit one bit of information
by using the channel twice. The zero-error capacity of this channel is at least 0:5 bits per channel
use

which takes a qubit � into two qubits—one qubit for each receiver. It is straight-
forward to see that there exists just one pair of adjacent input states for this
channel, corresponding to the qubits j0i and j1i, since E1;2.j0ih0j/ D �0 and
E1;2.j1ih1j/ D �1. Although �0 and �1 are orthogonal quantum states, Alice and Bob
are not able to distinguish them after a single use of the channel. This arises from the
fact that no quantum communication is allowed between the receivers. Because the
one-shot zero-error capacity of this channel is zero, one may think that no zero-error
information can be transmitted, even after many channel uses. Shannon proved that
this assertion is always true for classical channels. Thanks to entanglement, quantum
channels behave drastically different from classical channels. Now suppose that the
Charlie uses the channel E1;2.�/ twice to transmit �˝2 D j00i or �˝2 D j01i. The
corresponding received states are

E˝2
1;2 .j00ih00j/ D �0 ˝ �0; (5.20)

E˝2
1;2 .j01ih01j/ D �0 ˝ �1: (5.21)

No matter what are the messages transmitted by Charlie, j00i or j01i, Alice and Bob
always will share the Bell state �0 D jˇ00i. In order to complete the communication,
Alice and Bob make use of the shared state jˇ00i to teleport the second qubit, e.g.,
Alice teleports his part of the entangled state �0 or �1 to Bob. Finally, Bob performs
a projective measurement in order to distinguish between �0 or �1. Because we are
able to transmit two messages without confusion using the channel twice, the zero-
error capacity is, at least,

C.0/.E1;2/ � 1

2
log 2 D 0:5 bits per channel use:
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This is an amazing result with no counterpart in classical zero-error information
theory. A single use of E1;2 cannot transmit error-free messages, whereas two uses
can! This phenomenon is called activation of the zero-error capacity.

Considering that senders and receivers agree on the LOCC protocol above, Duan
and Shi proved the following theorem:

Theorem 5.2 (Activation of the Zero-Error Capacity on Multipartite Quantum
Channels). For any m > 1 or n > 1, there exist .m; n/ multipartite quantum chan-
nels for which one use of channel cannot transmit zero-error classical information,
whereas two or more uses can.

To prove the theorem, it is sufficient to explicit two multipartite quantum chan-
nels, E1;2 and E2;1, for which the zero-error capacity can be activated. That is because
any .m; n/ multipartite quantum channels can be extended to an .m C m0; n C n0/
channel, m0 and n0 positive integers, by ignoring the input from the additional m0
senders and setting to j0i the output to all the additional n0 receivers.

Consider a .2; 1/ multipartite quantum channel E2;1 from two senders, Alice and
Bob, to one receiver, Charlie,

E2;1 W B.HS/ �! B.HR/; (5.22)

where HS D HSA ˝ HSB and HR D HRC . The state spaces of Alice and Bob, HSA

and HSB , are four dimensional spaces. The output state space HRC is a qubit. The
quantum channel E2;1 is defined as follows:

E2;1.�/ D Tr .P0�/ j0ih0j C Tr .P1�/ j1ih1j; (5.23)

where P0 is a projector onto the state space S0 � HS spanned by the (unnormalized)
vectors

j 1i D j00i � j11i;
j 2i D j22i � j33i;
j 3i D j20i � j31i;
j 4i D j02i C j13i; (5.24)

j 5i D j30i � j03i;
j 6i D j10i � p

2j21i C j32i;
j 7i D j01i C p

2j12i C j23i;
j 8i D j10i � j32i � j01i C j23i;

and P1 is the projector onto S1, which is the orthogonal complement of S0, i.e.,
S1 D S?

0 . The vectors j ii were carefully chosen in order to span a completely
entangled state subspace. Consequently, S0 has no product state, which means that
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S0 does not have any state j�i such that j�i D j�Ai ˝ j�Bi, j�Ai 2 HSA and
j�Bi 2 HSB . Because any quantum codeword � prepared by Alice and Bob using
LOCC is necessarily a product state, it turns out that Tr .P0�/ > 0 as well as
Tr .P1�/ > 0. As a consequence, the corresponding outputs of the channel (5.23) are
always non-orthogonal mixed states. Therefore, there are no pairs of adjacent states
at the channel input and the one-shot zero-error capacity is zero, i.e., no classical
information can be transmitted with a single use of the E2;1 channel. However, the
use of entanglement between two uses of channel enables the transmission of a
classical bit with a zero probability of error.

Let j˚i be the following bipartite quantum state:

j˚i D 1

2
.j00i C j11i C j22i C j33i/: (5.25)

Because j˚i 2 HS ˝ HS, we denote by j˚iAA0 the multipartite state j˚i prepared
by Alice, where A and A0 denote the first and the second component of j˚i,
respectively. The same holds for the state j˚iBB0 prepared by Bob. Define Ui D
j0ih0j � j1ih1j C j2ih2j � j3ih3j as an operator that acts on the component i of j˚i,
where i 2 fA;A0;B;B0g. In order to activate the zero-error capacity of the channel,
the senders use the quantum channel twice in the following way:

1. Alice locally prepares the state j˚i, denoted by j˚iAA0 . Bob does the same,
getting j˚iBB0 ;

2. Using LOCC, Alice and Bob agree on who will transmit the message (one bit)
to Charlie. Without loss of generality, suppose that Alice sends the message (the
bit “0”) to Charlie;

3. Alice and Bob transmit the first components of their bipartite state, i.e., the
components A and B of j˚iAA0 and j˚iBB0 , respectively. This is the first use of
the channel;

4. The second components of each state j˚Ai and j˚iBB0 are sent;
5. After the second round, Charlie performs a joint projective measurement in order

to estimate the message sent by Alice and Bob. As will be explained below, the
received state is given by

E˝2
2;1 .j˚iAA0 ˝ j˚iBB0/ D j00ih00j C j11ih11j

2
: (5.26)

6. Instead, if Alice chooses to send the bit “1,” then she applies the operator Ui to
one of the components A or A0 of j˚iAA0 . As will be demonstrated next, the whole
received state by Charlie is

E˝2
2;1 .UA or A0 j˚iAA0 ˝ j˚iBB0/ D j01ih01j C j10ih10j

2
: (5.27)
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Charlie

1st use of E2,1 2nd use of E2,1

|Φ〉BB′

Alice
|Φ〉AA′

Bob

|00〉〈00|+|11〉〈11|
2

Fig. 5.9 Example of a E2;1 channel whose one-shot zero-error capacity is equal to zero. Figure
illustrates how Alice and Bob can use the channel twice in order to transmit one bit to Charlie
without confusion. The zero-error capacity of this channel is at least 0:5 bits/use

It is straightforward to see that the two possible output quantum states (5.26)
and (5.27) are orthogonal, i.e., they can be fully distinguished by Charlie using a
projective measurement. Figure 5.9 illustrates the communication protocol.

By linearity, the output of the quantum channel (5.23) after two channel uses can
be written as

E˝2
2;1 .�/ D Tr ..P0 ˝ P0/�/j00ih00j C Tr ..P0 ˝ P1/�/j01ih01j

CTr ..P1 ˝ P0/�/j10ih10j C Tr ..P1 ˝ P1/�/j11ih11j: (5.28)

Before the first transmission and supposing that Alice wishes to send the message
“0,” the global system state at the channel input is given by

j˚iAA0 ˝ j˚iBB0 D 1=4.j0000i C j0011i C j0022i C j0033i
Cj1100i C j1111i C j1122i C j1133i
Cj2200i C j2211i C j2222i C j2233i
Cj3300i C j3311i C j3322i C j3333i/: (5.29)

Unfortunately, we cannot directly apply the above state to the composite chan-
nel (5.28) in order to get the output state after the second channel use. To see
this, first note that we have written in bold the components of the global input
state (5.29) that belongs to Bob. However, the expression of E˝2

2;1 .�/ presumes
that the components of � must be organized in an order compatible with the
original transmission protocol. For example, the second trace operator in (5.28),
Tr ..P0 ˝ P1/�/, means that we must apply P0 to the components A and B of
j˚iAA0 and j˚iBB0 , respectively. Analogously, the projector P1 must be applied to
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the parts A0 and B0 of the corresponding quantum systems. For instance, we can
manipulate (5.29) to fulfill this requirement. We call � D j˚0ih˚0j the state of the
system corresponding to the message “0,” where

j˚0i D j˚ABA0B0i
D 1=4.j0000i C j0101i C j0202i C j0303i

Cj1010i C j1111i C j1212i C j1313i
Cj2020i C j2121i C j2222i C j2323i
Cj3030i C j3131i C j3232i C j3333i/: (5.30)

Now supposing that Alice wants to transmit the message “1” and that she applies
the operator Ui to any of the components of j˚iAA0 , we have

Uij˚iAA0 D .j0ih0j � j1ih1j C j2ih2j � j3ih3j/1
2
.j00i C j11i C j22i C j33i/

D 1

2
.j00i � j11i C j22i � j33i/:

The whole state of the system before the transmission is

Uij˚iAA0 ˝ j˚iBB0 D 1=4.j0000i C j0011i C j0022i C j0033i
�j1100i � j1111i � j1122i � j1133i
Cj2200i C j2211i C j2222i C j2233i
Cj3300i � j3311i � j3322i � j3333i/: (5.31)

In the same way, we can manipulate the above state in order to apply the channel
E2;1.�/ twice:

j˚1i D j˚ABA0B0i
D 1=4.j0000i C j0101i C j0202i C j0303i

�j1010i � j1111i � j1212i � j1313i
Cj2020i C j2121i C j2222i C j2323i
�j3030i � j3131i � j3232i � j3333i/: (5.32)

Finally, the reader can verify that

E˝2
2;1 .j˚0ih˚0j/ D j00ih00j C j11ih11j

2
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and

E˝2
2;1 .j˚1ih˚1j/ D j01ih01j C j10ih10j

2

are orthonormal quantum states. In summary, one use of the quantum channel
always leads to non-orthogonal mixed states and, therefore, the channel one-shot
zero-error capacity vanishes. In contrast, using the channel twice, Alice and Bob
can agree on a LOCC protocol in order to send one message to Charlie without
confusion. Therefore, the asymptotical zero-error capacity of this channel is

C.0/.E2;1/ � 1

2
log 2 D 0:5 bits per channel use:

Besides its amazing feature of having the zero-error capacity activated, the
channel E2;1.�/ has another interesting property. Alice and Bob can use the channel
twice to send one bit of information to Charlie without leaking any information
about the transmitted message to the other sender.

For instance, the activation of the zero-error capacity was shown in a context of
a multiuser quantum channel, where senders and receivers share a classical channel
to run a LOCC protocol. A natural question is whether there exist one-sender one-
receiver quantum channels such that the zero-error capacity can be activated, i.e.,
quantum channels that a single sender cannot perfectly transmit a message to a
single receiver just using the channel once, whereas such transmission is possible
using the channel twice. Surprisingly, these quantum channels exist; this feature
was discovered simultaneously by Duan [7] and by Cubitt et al. [5]. The so-called
superactivation of the zero-error capacity is explained in the next section.

5.5.2 Superactivation of the Classical Zero-Error Capacity of
Quantum Channels: Part I

In this section, we present the first of two mathematical developments that lead
to a surprising result about the zero-error capacity of quantum channels. By using
different frameworks, Duan [7] and Cubitt et al. [5] were able to construct families
of one-sender one-receiver quantum channels whose zero-error capacities can be
superactivated.

Initially, we describe the construction of two quantum channels, S and F , that
have a vanishing zero-error capacity. In contrast, when used together, the quantum
channel S ˝ F has a positive zero-error capacity, i.e., C.0/.S ˝ F/ > 0. This is
not yet an example of superactivation. However, if we construct a quantum channel
E D S ˚ F as the direct sum of S and F ,

E.�/ D S.P0�P0/C F.P1�P1/; (5.33)
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E⊗2(|Φi〉〈Φi|)

E = S ⊕F

E = S ⊕F

|Φi〉〈Φi|

Alice Bob

Fig. 5.10 A quantum channel E whose zero-error capacity can be superactivated. The channel E
is the direct sum of S and F , two quantum channels with a vanishing one-shot zero-error capacity
with the property that C.0/.S ˝F/ > 0. The channel E has a one-shot zero-error capacity equal to
zero, but when used twice, Bob can perfectly distinguish between two output states E˝2.j˚0ih˚0j/
and E˝2.j˚1ih˚1j/

where P0 and P1 are specific projectors over the input state space, then it can
be showed that the channel E has the one-shot zero-error capacity equal to zero,
whereas classical information can be transmitted making use of the direct sum
channel twice. The setup is showed in Fig. 5.10.

Consider a quantum channel E with Kraus operators E � fEkgn
kD1, where E.�/ DP

k Ek�E�k and
P

k E�k Ek D I. According to (5.8), if the quantum channel E has
positive zero-error capacity, then there exist at least two orthogonal input states
j 0i; j 1i such that

Tr
�E�.j 0ih 0j/E.j 1ih 1j/� D

X
a;b

jjh 0jE�aEbj 1ijj2

D 0; (5.34)

which means that

Tr
�
E�aEbj 0ih 1j

� D 0 (5.35)

for all 1 � a; b � n. It is evident that operators E�aEb play an important role in
studying the zero-error capacity of quantum channels. Define

K.E/ D spanfE�aEb W 1 � a; b � ng: (5.36)

In linear algebra, a basis B of a matrix space vector is called unextendible
if B? contains no rank-one matrices. Consequently, B? contains only matrices
with rank two or more and, therefore, we say that B? is a completely entangled
state space. When B? contains at least one rank-one matrix, the basis B is called
extendible. This kind of partition of a state space has interesting applications in
quantum information theory, specially in distinguishability of general quantum
states and subspaces. Some references about unextendible basis can be found at
Further Reading section. For our purposes, we just mention an important property
of unextendible basis. It was shown that if the dimension of a matrix subspace B is
dim.B/ < 2d � 1, where d is the dimension of the whole matrix space, then B is
always extendible.
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We turn our attention to (5.35). First note that the operator j 0ih 1j is orthogonal
to E�aEb for all 1 � a; b � n, i.e., j 0ih 1j 2 K.E/?. Moreover, the operator
j 0ih 1j has rank equal to one. Therefore, we conclude that if a quantum channel
E � fEkgn

kD1 has positive one-shot zero-error capacity, then K.E/ is extendible. The
converse is also true, as states the following lemma [7].

Lemma 5.1. Let E � fEkgn
kD1 be a quantum channel with Kraus operators Ek. The

channel E has positive zero-error capacity if and only if K.E/ is extendible.

Another property of K.E/ is K.E/� D K.E/. Note that K.E/� D fK�;K 2
K.E/g. Moreover, because E is trace preserving, it turns out that I 2 K.E/. In
fact, these two properties are necessary and sufficient conditions to guarantee the
existence of a quantum channel from an input state space of operators B.Hd/ to the
output state space B.Hd0/.

Lemma 5.2 (Duan [7]). Let M be a matrix subspace of B.Hd/. There is a quantum
channel E from B.Hd/ to B.Hd0/ such that K.E/ D M if and only if M� D M and
I 2 M.

The conditions in Lemmas 5.1 and 5.2 are important because they allow to
construct quantum channels whose zero-error capacity can be superactivated. As
already mentioned, this can be achieved by finding two quantum channels, S and
F , with vanish zero-error capacity, whereas S ˝F has positive zero-error capacity.
This can be done by writing down two partitions of a state space, say K.S/ and
K.F/, with the following properties: K.S/ and K.F/ are unextendible, whereas
K.S/˝ K.F/ is extendible.

Example 5.6 (Superactivation of the Zero-Error Capacity of Quantum Channels).
Let K.S/ be the matrix state space spanned by the vectors:

S1 D j0ih0j C j1ih1j;
S2 D j2ih2j C j3ih3j;
S3 D j2ih0j � j0ih2j;
S4 D j3ih0j C j0ih3j; (5.37)

S5 D j1ih3j C j3ih1j;
S6 D cos 	 j0ih1j C sin 	 j2ih3j � j1ih2j;
S7 D cos 	 j1ih0j C sin 	 j3ih2j � j2ih1j;
S8 D sin 	 j0ih1j � cos 	 j2ih3j � sin 	 j1ih0j C cos 	 j3ih2j;

where 0 < 	 < 
=2 is a parameter. The reader can verify that K.S/? D K.S/
and I 2 K.S/. In addition, consider the matrix state space spanned by the following
vectors:
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F1 D j0ih0j � j1ih1j;
F2 D j2ih2j � j3ih3j;
F3 D j2ih0j C j0ih2j;
F4 D j3ih0j � j0ih3j; (5.38)

F5 D j1ih3j � j3ih1j;
F6 D cos 	 j0ih1j C sin 	 j2ih3j C j1ih2j;
F7 D cos 	 j1ih0j C sin 	 j3ih2j C j2ih1j;
F8 D � sin 	 j0ih1j C cos 	 j2ih3j C sin 	 j1ih0j � cos 	 j3ih2j:

The reader can easily verify that K.F/ satisfies the Hermitian condition, K.F/� D
K.F/. Moreover, the subspaces K.S/ and K.F/ are orthogonal with respect to the
Hilbert-Schmidt inner product.

The two matrix vectors state spaces K.S/ and K.F/ has the following desirable
properties:

(a) K.S/ and K.F/ are unextendible, i.e., they are completely entangled state
spaces;

(b) K.S/˝ K.F/ is extendible.

In order to verify property (a), define a rank-one matrix j ih�j orthogonal to
K.S/, where j i D P3

iD0 cijii and j�i D P3
jD0 djjji. Then, for each k D 1; : : : ; 8,

Tr .Skj ih�j/ D 0 implies ci D di D 0 for all 0 � i � 3, i.e., the orthogonal
complement of K.S/ has no rank-one matrices and, therefore, K.S/ is unextendible.
The same holds for the subspace K.F/.

Property (b) can be demonstrated by defining the quantum state

j˚0i D j00i C j11i C j22i C j33i
2

(5.39)

and the operator U D j0ih0j � j1ih1j C j2ih2j � j3ih3j. The reader can verify that
the following quantum state

j˚1i D .I ˝ U/
j00i C j11i C j22i C j33i

2
(5.40)

gives rise to the rank-one matrix j˚1ih˚1j orthogonal to K.S/˝ K.S/, i.e.,

Tr
�
Si ˝ Fjj˚1ih˚1j

� D 0 8i; j D 1; : : : ; 8:

Therefore, the vector space K.S/ ˝ K.S/ is extendible because .K.S/ ˝ K.S//?
has a rank-one matrix.

According to Lemma 5.2, the corresponding quantum channels S and F have no
zero-error capacity when used individually, whereas the channel S ˝F has positive
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zero-error capacity. By using S ˝ F , a sender can prepare one of the entangled
states j˚0i and j˚1i to transmit a classical message to a receiver, since the latter can
perfectly distinguish between S ˝ F.j˚0i/ and S ˝ F.j˚1i/.

As already mentioned, this is not yet an example of superactivation, since S
and F are different channels. However, if we consider the direct sum channel S ˚
F (5.33),

E.�/ D S.P0�P0/C F.P1�P1/;

with P0 D j˚0ih˚0j and P1 D I � j˚0ih˚0j, then it is clear that a single use of
the channel E cannot transmit classical information without error. In contrast, one
can verify that when the channel E is used twice, then Bob is able to distinguish
between the two orthogonal states, E˝2.j˚0i/ and E˝2.j˚1i/. Therefore, the use
of entanglement between two uses of a quantum channel can superactivate the zero-
error capacity of the channel. Finally, we can conclude that the asymptotic zero-error
capacity of E is

C.0/.E/ � 0:5 bits per channel use:

A short remark on the construction of the quantum channels S and F should be
given. First, note that

M D
8X

iD1
S�i Si D

8X
iD1

F�i Fi;

where

M D

2
664
4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

3
775 :

In order to construct the corresponding trace-preserving quantum operations E we
only need to define the sets

S �
n
SiM

� 1
2

o8
iD1 and F �

n
FiM

� 1
2

o8
iD1 ; (5.41)

where

M� 1
2 D

2
664
0:5 0 0 0

0 0:5 0 0

0 0 0:5 0

0 0 0 0:5

3
775 :
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5.5.3 Superactivation of the Classical Zero-Error Capacity
of Quantum Channels: Part II

This section describes a different approach to determine necessary and sufficient
conditions for the existence of quantum channels, S and F , whose one-shot zero-
error capacities are zero, while the composite channel S˝F has positive (one-shot)
zero-error capacity.

Consider a quantum channel S W B.H/ ! B.H/. The channel S has a vanishing
one-shot zero-error capacity if and only if all quantum states in H are adjacent, i.e.,

8j i; j'i 2 H W Tr
�S.j i/�S.j'i/� ¤ 0: (5.42)

Let S� be the adjoint2 (or dual) of S with respect to the Hilbert-Schmidt inner
product. Because the cyclic property of the trace,

Tr
�S.j i/�S.j'i/� D Tr . � S.S.j'i///

D Tr
�
 � S� ı S.j'i/�; (5.43)

where  � j ih j and S.S.�// � S ı S.�/ were defined for short.
Conversely, a quantum channel has positive zero-error capacity if and only if

there exists at least one pair of non-adjacent states in H, i.e.,

9j i; j'i 2 H W Tr
�S.j i/�S.j'i/� D 0; (5.44)

or, equivalently,

9j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� D 0: (5.45)

The problem of finding quantum channels whose zero-error capacities can be
superactivated is reformulated as follows. One needs to find two quantum channels
S , F , such that

(a)

8j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� ¤ 0; (5.46)

which means C.0/.S/ D 0;

2The adjoint of S W B.H/ ! B.H/ is dual with respect to the Hilbert-Schmidt inner product such
that Tr

�
��S.�/

� D Tr
�
S�.�/��

�
, �; � 2 B.H/. If S � fEkg is defined by a set of Kraus operator

Ek, then S� � fE�k g.
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(b)

8j i; j'i 2 H W Tr
�
 � F� ı F.j'i/� ¤ 0; (5.47)

which means C.0/.F/ D 0;
(c)

9j˛i; j�i 2 H˝2 W Tr
�
˛ � .S� ı S/˝ .F� ı F/.j�i� D 0; (5.48)

which means C.0/.S ˝ F/ > 0.

The composite map S� ı S plays an important role in studying the zero-
error capacity. A map N is called conjugate-divisible if it can be decomposed
as N D S� ı S . Before enunciating a theorem that establishes necessary and
sufficient conditions for the existence of conjugate-divisible maps and gives a full
characterization of its corresponding Choi-Jamiołkowski matrices, it is helpful to
define positive-semidefinite states and subspaces, as well as conjugate-symmetric
states and subspaces.

For bipartite states j�iAB 2 HAB with basis jiAijjBi, there exists an isomorphism
with the space of dA 	 dA matrices in the following way:

j�iAB D
X

ij

MijjiAijjBi:

In this way, the bipartite state j�iAB is said to be positive-semidefinite if the
corresponding matrix Mj�iAB

D ŒMij� is positive-semidefinite. Analogously, a
subspace HAB is positive-semidefinite if it can be spanned by a set of positive-
semidefinite states.

A bipartite state or operator j�iAB 2 HAB is conjugate-symmetric in a given basis
jiAijjBi if it is invariant under the flip operation:

F

0
@X

ij

cijjiAijjBi
1
A D

X
ij

NcijjjAijiBi:

The effect of the flip operation is to interchange the two parties and complex
conjugation. Similarly, a subspace is said to be conjugate-symmetric if it is invariant
under the same operation.

Theorem 5.3 (Existence of Conjugate-Divisible Maps [5]). Given a subspace
HAB � H˝2 such that supp .TrB .HAB// D H, there exists a conjugate-divisible
map with (in general non-standard) Choi-Jamiołkowski matrix �AB such that
supp .�AB/ D HAB if and only if HAB is a positive-semidefinite and conjugate-
symmetric subspace.
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The notation supp .TrB .HAB// stands for
S

j�i2HAB
supp .TrB .j�ih�j//. Now

requirements (a) to (c) can be converted into necessary and sufficient conditions for
the maps to satisfy (5.46) to (5.48). Let �S and �F be the Choi-Jamiołkowski
matrices corresponding to the conjugate-divisible maps NS D S� ı S and
NF D F� ı F , respectively. Equations (5.46) and (5.47) can be rewritten as

8j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� D Tr

�
 � TrA

�
�S � 'T ˝ 1

��
D Tr .�S � ' ˝  /

¤ 0; (5.49)

and

8j i; j'i 2 H W Tr .�F � ' ˝  / ¤ 0: (5.50)

Therefore, if H�S ;H�F � H˝2 are the subspaces spanned by the support of �S
and �F , respectively, it is necessary and sufficient to require that their orthogonal
complements contain no product states, i.e.,

Àj i; j'i 2 H W j i ˝ j'i 2 H?
�S ;H?

�F : (5.51)

We turn our attention to (5.48) in order to find necessary and sufficient conditions
to the joint map S ˝ F to fulfill the corresponding requirement. Without loss of
generality, fix the states j˛i and j�i to be maximally entangled in the following
way. Let j!i be the full rank (unnormalized) state j!i D P

i jiijii and define j˛i D
.U ˝ V/j!i, j�i D .W ˝ X/j!i, where U;V;W;X are unitary. Again, if �S and �F
are the Choi-Jamiołkowski matrices corresponding to the conjugate-divisible maps
NS D S� ı S and NF D F� ı F , respectively, then

0 D Tr
�
˛ � .S� ı S/˝ .F� ı F/.j�i�

D Tr .˛ � NS ˝ NF .j�i/
D Tr

�
˛ � TrA

�
�S ˝ �F � �T ˝ 1

��
D Tr

�
�S ˝ �F � �T ˝ ˛

�
D Tr

�
�S ˝ �F � .U ˝ V!TUT ˝ VT/˝ .W ˝ X!W� ˝ X�/

�

D Tr
��

U ˝ W�SUT ˝ W�
�T � �V ˝ X�FVT ˝ X�

��

D Tr
�
�T
S � �U ˝ V�FU� ˝ V�

��
: (5.52)

Besides fulfilling the requirements (5.51), the support of the Choi-Jamiołkowski
matrices �S and �F must be related by

HT
�F D .U ˝ V/H?

�S :
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Because conjugate-symmetry, Schmidt-rank, and positive-semidefiniteness are
invariant under the transpose operation, we can write

H�F D .U ˝ V/H?
�S : (5.53)

Moreover, if a subspace is conjugate-symmetric, then so is its orthogonal comple-
ment. Considering the fact that Schmidt-rank is invariant under unitary operations,
all the conditions can be expressed in terms of a single subspace H2 � H˝2.
Finally, (5.51) and (5.53), together with Theorem 5.3, give necessary and sufficient
conditions to guarantee the existence of two quantum channels S and F such that
C.0/.E/ D C.0/.F/ D 0, while the composite channel S ˝ F has positive one-shot
zero-error capacity. All of these conditions are grouped in Theorem 5.4

Theorem 5.4 (Superactivation of the One-Shot Zero-Error Capacity [5]). If
there exists a subspace H2 � H˝2 and unitaries U;V satisfying

Àj i; j'i 2 H W j i ˝ j'i 2 H?
2 ; (5.54)

Àj i; j'i 2 H W j i ˝ j'i 2 H2; (5.55)

F.H2/ D H2; (5.56)

F.U ˝ V � H2/ D U ˝ V � H2; (5.57)

9fMi � 0g W H2 � spanfMig; (5.58)

9fMj � 0g W U ˝ V � HT
2 � spanfMjg; (5.59)

then there exist quantum channels S and F whose one-shot zero-error capacity is
zero, whereas the joint channel S ˝ F has positive zero-error capacity.

In Theorems 5.4, (5.54) and (5.55) fulfill requirements (5.46) and (5.47), i.e.,
they impose that the one-shot zero-error capacity of the channels S and F are both
equal to zero. Equation (5.57) ensures that the joint channel S ˝ F has positive
zero-error capacity, whereas (5.56), (5.58), and (5.59) are necessary and sufficient
conditions to guarantee the existence of the corresponding quantum channels, as
stated in Theorem 5.3.

5.6 Further Reading

In this chapter, we revisited the classical zero-error capacity of quantum channels
proposed by Medeiros [11]. This chapter is based on his thesis, but many articles
published previously built up his theory [12–14, 16].

Many alternative definitions to the zero-error capacity of a quantum channel can
also be found in the literature. Medeiros and Assis proposed a version in which the
maximum amount of quantum information sent through quantum channels without
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errors is considered, the so-called quantum zero-error capacity of a quantum channel
[14]. Other variants proposed by Winter et al. are shown in Chap. 8 and can also be
found detailed in papers by these authors [4, 6, 9].

Superactivation was first described by Duan and Shi [8] for a scenario of multiple
senders and receivers. Using the concept of unextendible basis [3, 19, 22], Duan
[7] demonstrated the existence of one-sender one-receiver quantum channel whose
zero-error capacity can be activated. This phenomena was independently studied
by Cubitt et al., which proved a more general result on the superactivation of the
asymptotic zero-error capacity [5]. Park and Lee [18] showed that the zero-error
capacity of qubit channels cannot be superactivated.

Cubitt and Smith [2] considered the scenario where two quantum channels S
and F have a vanishing zero-error capacity, whereas the joint channel S ˝ F could
transmit quantum information at a positive rate and with probability of error equal
to zero. The authors called this effect the super-duper-activation of the quantum
zero-error capacity. Various examples of low dimensional quantum channels whose
one-shot classical and quantum zero-error capacities can be superactivated were
described by Shirokov and Shulman [21].
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