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“From error to error,
one discovers the entire truth.”

– Sigmund Freud (1856–1939)





Foreword

The field of Quantum Information Science (QIS) has the potential to lead to
revolutionary advances in our capability to communicate and process information. It
has grown and diversified with a spectacular dynamism since the 1980s, following
the work of pioneers such as Charles Bennett, Richard Feynman, or Artur Ekert.
Those progresses were rooted in a vision that has proved to be extremely fertile:
asking—and answering—questions about information processing by combining
quantum physics and computer science approaches. QIS is entering a new and
exciting stage of its development, with the emergence of a focused effort on
quantum engineering, stimulated by our ability to fabricate increasingly efficient
and reliable devices for quantum information processing. This fact may soon allow
to experimentally observe the so-called quantum supremacy, i.e., the ability of
quantum processing machines to solve information processing tasks that are beyond
the reach of existing classical computing devices.

Many important factors can be accounted for to explain these impressive
developments, starting of course by the level of maturity reached by classical
information processing, computer science, and quantum physics at the end of the
twentieth century. We believe that it is particularly interesting, as an introduction to
this book on quantum zero-error information theory, to also mention a somehow
distinctive feature of QIS: the development of a common language, quantum
information theory, shared by mathematicians, physicists, and now engineers to talk
about information from a quantum perspective.

Standing on the shoulders of Shannon information theory, quantum information
theory has gradually become an extremely rich and powerful language, allowing
to address not only the fundamental issues of quantum information processing and
quantum communications but also the security of cryptographic tasks in a quantum
context and, even more recently, quantum thermodynamics.

The present textbook, written by Elloá B. Guedes, Rex A.C. Medeiros, and
Francisco Marcos de Assis, is presenting wonderful contributions to quantum
information theory, several of them by the authors themselves that have already
contributed to making it an ever-richer language. The authors have in particular
played a decisive role in this research by introducing, almost 15 years ago, a question
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viii Foreword

that was very original at that time: how could the theory of zero-error information
theory, developed in the seminal work of Claude E. Shannon in 1956, be translated
and actually extended in a quantum context?

This question has proved to be an extremely fertile topic of research since
then, leading to important progress in our understanding of structural properties
of channels in quantum information theory as well as fascinating connections with
complexity theory. This textbook contains a pedagogical introduction to quantum
information theory, offering an approach to this common language that will be
particularly well suited to readers with a background in mathematics and informa-
tion theory. The book also proposes a thorough and original survey of the different
important contributions to quantum zero-error information theory, including recent
results. We are convinced that this book will be a highly valuable resource for
researchers in quantum information and a stimulation for future progresses in zero-
error quantum information theory.

Paris, France Romain Alléaume
May 2016



Preface

This is a textbook on Quantum Zero-Error Information Theory. The reader will find
an approachable introduction to this subject, from the building blocks of this theory
to the latest contributions to the literature. The contents of several original research
papers are introduced in a pedagogical way, making it easier for the reader to learn
the concepts and depict the developments.

Our dedication to this subject started almost 15 years ago when we were
with the IQuanta—Institute for Studies in Quantum Computation and Information,
Campina Grande Federal University, Paraíba, Brazil. This institute was founded
considering a multidisciplinary body of research having strong interest in learning
and contributing to this amazing field of quantum computation and information.
Since the definition of the zero-error capacity of quantum channels in 2005, many
interesting contributions to this area were given by some of the most important
researches in quantum information around the world. Last year, we decided to write
a book that contemplate our seminal contributions, as well as the state of the art in
this field.

This book starts with an introduction to the fundamentals of quantum information
processing in Chap. 2. The main goal of this chapter is to introduce the basic
concepts of quantum mechanics for the reader who is not familiar with them.
We show how information is represented, processed, and measured in a quantum
domain. We also introduce some of the amazing features of the quantum mechanics
theory, such as superposition, parallelism, and entanglement. All the concepts
presented in this chapter are essential for understanding further results in quantum
information theory.

Chapter 3 revisits elementary concepts of classical and quantum information
theory. Initially, we give a mathematical definition of information and define
the main measures of information, such as entropy and mutual information. We
characterize information sources and communication channels in order to enunciate
two important theorems proposed by Shannon—the source coding and channel
coding theorems. Concerning the quantum information theory, we explore the
quantum counterpart of classical concepts already presented. Initially, we define
what are quantum states and how information can be encoded within them. Then, we
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x Preface

introduce measures of quantum information in terms of the von Neumann entropy.
Quantum channels are defined, as well as the accessible information of quantum
source. These initial concepts, together with basic results such as the Holevo bound,
are sufficient to introduce a variety of quantum channels capacity, such as the C1;1
capacity, the HSW capacity, the quantum capacity, and the entanglement-assisted
capacity. These capacities illustrate how quantum channels can be used to convey
information in many different ways.

Once these background skills are established, Chap. 4 gives an overview of the
classical zero-error information theory. The chapter examines the results of an
important paper written by Claude E. Shannon in 1956, where he demonstrated
how classical channels could be used to transmit information in a scenario where no
errors are permitted, instead of allowing an asymptotically small probability of error.
We show the characterization of such capacity, its relation with graph theory, the
Lovász theta function, and the zero-error capacity of sums and products of classical
channels.

Chapter 5 brings the generalization of zero-error capacity to the quantum
scenario. Many of the results presented in this chapter, including the definition of
the zero-error capacity of quantum channels, were taken from the PhD thesis of Rex
A.C. Medeiros, when he was advised by Francisco Marcos de Assis of Campina
Grande Federal University and Gérard Cohen and Romain Alléaume of Télécom
ParisTech. The chapter also presents contributions from other researchers; the most
impressive of which is the superactivation of the zero-error capacity, a phenomenon
that has no counterpart in classical theory.

The next two chapters present contributions to the quantum zero-error informa-
tion theory developed by Elloá B. Guedes during her doctorate under the advisory
of Francisco Marcos de Assis at Campina Grande Federal University. Chapter 6
introduces the notion of zero-error secrecy capacity of quantum channels which puts
together both zero-error and secrecy capacities. This is a particular scenario where
information can be conveyed not only without errors but also in perfect secrecy
among two parties sharing a particular class of quantum channels. The chapter
starts with some background concepts regarding decoherence-free subspaces and
quantum secrecy capacity. Also, we present a characterization of the quantum zero-
error secrecy capacity in terms of graphs. Finally, a security analysis of the proposed
protocol is made; some examples and related literature are also included.

Chapter 7 introduces a measure of information of quantum source that is based on
the zero-error capacity of classical channels, the zero-error accessible information of
quantum sources. It has no classical counterpart and measures the maximum amount
of information that can be retrieved from a quantum source after a measurement
without decoding errors. Besides introducing this concept, the chapter includes
some examples and discusses some related works in the literature.

Finally Chap. 8 includes most of the recent contributions to the literature of
zero-error information theory. After some discussion about classical and quantum
correlations on the proof of Bell’s inequality, Gleason and Kochen-Specker theo-
rems are introduced in order to give a formal definition of the quantum chromatic
number. A quantum version of the Wielandt’s inequality is discussed, followed by



Preface xi

the definition of the entangled assisted zero-error capacity of a quantum channel and
a very interesting generalization of the Lovász # functional. The quantum clique
problem is defined, and we show that the problem of finding the quantum clique
belongs to the QMA-complete complexity class. Some of these topics are currently
being actively researched and have strong impact on the development of new results
in quantum zero-error information theory.

We recommend our readers to follow the dependency diagram below in order
to see how the chapters of the book are interconnected. The most important
dependencies are emphasized with a continuous line, while suggested reading is
shown with a dotted line.

By reading this book, we believe that the reader will follow the path along the
most up-to-date developments of the quantum zero-error information theory. To
make this task easier, the reader can find suggestions for further reading at the end of
each chapter. The references lead to original works where the reader can retrieve the
seminal ideas behind every subject discussed. Within the chapters, the readers can
also find many detailed examples to illustrate and help in understanding the multiple
concepts presented.



xii Preface

Corrections to this edition and suggestions or comments regarding the topics dis-
cussed can be sent to our e-mails (ebgcosta@uea.edu.br, rexmedeiros@ect.ufrn.br,
fmarcos@dee.ufcg.edu.br). We would be very glad to hear from you!

Manaus, Brazil Elloá B. Guedes
Natal, Brazil Rex A.C. Medeiros
Campina Grande, Brazil Francisco Marcos de Assis
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Chapter 1
Introduction

Classical information is, roughly speaking, everything that can be transmitted
from a sender to a receiver with any finite set of symbols, like letters from
the alphabet (a; b; : : : ; z) or binary digits (0 or 1). When studying such kind of
information we are not concerned with the semantic meaning of the information
(such as in the complex and non-trivial meaning of the word “love”), but with
syntactic and pragmatic aspects of it. The syntactic aspect deals with the relationship
between the symbols used to construct a message and the pragmatic aspect that
considers the actions taken by the parties (sender and receiver) in order to exchange
messages [5]. This approach to deal with information was introduced by Claude
Shannon in his seminal paper entitled “A Mathematical Theory of Communication”
that inaugurated the classical information theory [17].

Classical information theory is a branch of applied Mathematics, Electrical
Engineering, and Computer Science involving the quantification, storage, and
communication of information. The results of this theory lie at the heart of every
modern technology, underpinning all communications, networking, and data storage
systems [4].

An interesting historical fact regarding this theory is that Claude Shannon both
posted its fundamental problems and also, to a large extent, answered them. These
problems were:

1. How much can a message be compressed?
2. At what rate can we communicate reliably over a noisy channel?

The answer to the first question is the noiseless coding theorem, whose objective
is to remove redundancy, making messages smaller. It enabled many following
results regarding data compression. The answer for the second question is the
channel coding theorem, which gave rise to the entire fields of error-correcting codes
and channel coding theory.

At the time, Shannon himself realized that his results would not only have appli-
cations in communication theory, but also in the theory of computing machines, the
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design of telephone exchanges, and other fields [1]. In fact, besides communication
theory, classical information theory results developed by Shannon and by many
other researchers have fundamental contributions in the fields of Physics, Electrical
Engineering, Computer Science, Probability and Statistics, among many others.

Until the 1970s, the realization of physical devices based on information and
communication theory was restricted to apparatus whose operation was governed by
the laws of classical physics. Such devices include telephones, radios, computers,
and communication systems, among others. Especially from the 1980s, theoretical
works together with experimental realizations have demonstrated that quantum
mechanical features and properties could be used to build up communication sys-
tems. The most impressive example is the quantum cryptographical key distribution
system described and realized by Bennett and Brassard in 1984 [2]. The quantum
key distribution (QKD) protocol BB84, as the system became known, has caught
the interest of many researchers around the world, giving rise to a new and exciting
research area: the quantum information, communication, and computing theory.
Although quantum mechanics theory started to be understood by the 1900s, as we
see below, technological constraints had limited the development of devices based
on this theory.

In 1900, Max Planck noticed that, upon studying black body radiation, particles
like atoms and photons did not follow the rules of classical Physics. In order
to overcome such problem, quantum mechanics was developed from 1900 to
1920, being considered nowadays as the most accurate model of reality that is
currently known. It made possible the understanding of the fundamental particles
and forces of nature, culminating in the development of the standard model of
particle physics [14].

Since quantum mechanics describes the physics of quantum particles, what
would change if we store information in a quantum system, such as a photon, or the
spin of an electron? The answer to this question made quantum information theory
come into existence. According to it, quantum information is information stored
as a property of a quantum system that can be transmitted, stored, and processed
following the laws of quantum mechanics.

Quantum information theory requires a basic understanding of quantum
mechanics because quantum information has some unique characteristics, such
as:

• The state of a quantum system cannot be copied or measured without disturbing
it;

• The quantum state of two systems can be entangled, the two-system ensemble
has a definite state, though neither individual system has a well-defined state of
its own;

• It is not possible to reliably distinguish non-orthogonal states of a quantum
system [5].

The properties of quantum information are remarkable and can be exploited for
information processing. Quantum information theory may, thus, be defined as the
study of the achievable limits to information processing possible within quantum
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mechanics [13]. We can also say that quantum information theory combines
classical information theory with quantum mechanics to model information-related
processes in quantum systems.

At a more fundamental level, it has become clear that an information theory
based on quantum principles extends and complements classical information theory.
The new theory includes quantum generalizations of classical notions such as
sources, channels, and codes, as well as two complementary, quantifiable kinds of
information—classical information and quantum entanglement [3].

Quantum information theory may be defined as the study of the achievable limits
to information processing possible within quantum mechanics. First, it aims to
determine limits on the class of information processing tasks which are possible
in quantum mechanics. Second, it provides constructive means for achieving
information processing tasks [13]. In a more detailed description, we can say that
quantum information theory deals with four main topics [15]:

1. Transmission of classical information over quantum channels;
2. The tradeoff between acquisition of information about a quantum state and

disturbance of the state;
3. Quantifying quantum entanglement;
4. Transmission of quantum information over quantum channels.

Regarding the first and the fourth topics which deal with information transmis-
sion, we are interested in understanding how classical information theory concepts
and theorems are translated to the quantum domain in particular, because there
are differences between classical and quantum channels. While classical channels
can only transmit classical information, quantum channels can transmit classical
information, private classical information, or quantum information. It can be used
alone, with shared entanglement, or together with other classical and quantum
channels.

It is possible to say that some results are well established in the quantum
information theory literature. For example, quantum data compression, superdense
coding, quantum teleportation, and entanglement concentration exemplify non-
trivial ways in which quantum channels can be used, alone or in combination with
classical channels, to transmit classical and quantum information. More recently,
quantum error-correcting codes and entanglement distillation protocols have been
discovered, which allow reliable transmission of classical and quantum information
through noisy quantum channels [3].

One of the most intuitive ways to develop quantum information theory was
considering a search, a translation, or an analogy of classical information theory
concepts and theorems to the quantum domain. This approach allowed many
successful results, such as in the case of the Schumacher’s quantum noiseless coding
theorem [16] which is a quantum counterpart of the Shannon’s noiseless coding
theorem.

Recalling the importance of Shannon’s 1956 findings to the classical information
theory, 8 years after his seminal paper, Shannon himself demonstrated how classical
channels could be used to transmit information in a scenario where no errors are
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allowed [18]. This approach differs from his early results where an asymptotically
small probability of error could be allowed. Considering this new scenario, he
defined the so-called zero-error capacity which can be understood as the least upper
bound of rates at which information can be transmitted through a classical channel
with a probability of error equal to zero. In this domain where errors are not allowed,
combinatorics and graph theory play an important role.

Considering an intuitive search for the equivalent of classical concepts in the
quantum domain, Medeiros and de Assis proposed a quantum counterpart of the
zero-error capacity, the zero-error classical capacity of quantum channels [7–12].
In their work, they established the conditions required to send classical information
through quantum channels without decoding errors. With such a contribution, they
inaugurated the field of quantum zero-error information theory.

Quantum zero-error information theory is a sub-field of quantum information
theory which aims at studying and proposing techniques, protocols, and information
measures to allow the transmission of classical or quantum information through
noisy quantum channels without decoding errors.

After Medeiros’ and de Assis’ seminal work in quantum zero-error information
theory, many contributions and results started to appear in the literature. Beigi and
Shor studied the computational complexity of computing the zero-error capacity of
quantum channels. They proposed the quantum clique problem and demonstrated
that solving the later is equivalent to finding the zero-error capacity of a quantum
channel. Beigi and Shor proved that the quantum clique problem is QMA-
complete. Developments from several authors showed that two quantum channels
with a vanishing zero-error capacity can be combined in such ways that the joint
channel has positive zero-error capacity, i.e., the zero-error capacity of quantum
channels can be superactivated. This is an amazing result with no classical counter-
part, since the superactivation is only possible, thanks to the quantum entanglement;
the use of entangled states between two channel uses activates the capacity of
two (originally incapable) quantum channels for transmitting information. Elloá
and de Assis studied the secrecy capacity of quantum channels in a zero-error
scenario, demonstrating that zero-error communication can be reached altogether
with secrecy when communicating by means of quantum channels. Also, they
defined a new measure of information for quantum sources, the so-called zero-error
accessible information of a quantum source. Other remarkable results to this field
are the generalization of the Lovász # functional to quantum theory, the definition
of new quantities in graph theory, and the study of their quantum computational
complexity. This book presents these and other results on quantum zero-error
information theory since its establishment in 2005.

We can see from the recent developments and results from many authors in
the literature that we can indeed consider the quantum zero-error information as
a theory. According to the Oxford dictionary, the meaning of the word “theory” can
be understood as a set of principles on which the practice of an activity is based [6].
In our scenario, the principle considered is not to allow errors in information. All
the results and developments observed so far are a consequence of this premise.
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In the following pages, the reader will be guided from the basic concepts to the
most recent findings in quantum zero-error information theory. We show how ideas
that started with Shannon were updated and developed in order to consider quantum
information in a scenario with complete absence of errors. The reader will be able to
see how quantum zero-error information theory is interesting and worth exploring.
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Chapter 2
Fundamentals of Quantum Information
Processing

Quantum mechanics is a part of quantum theory that aims at describing the nature
when we consider the subatomic physics, or quantum physics. It can also be
understood as the mathematical framework to describe isolated quantum systems,
whose behavior cannot be captured by classical physics [10]. We have two ways
to consider when we have the necessity to incorporate quantum mechanical effects
into computing and communications: (1) use it to strive to suppress the quantum
effects and still preserve a semblance of classicality even though the computational
or communication elements are very small; or (2) use it to enhance quantum effects
and try to find clever ways to enhance and sustain them to achieve old computational
and communication goals in new ways. Quantum computing and communications
use the latest strategy by harnessing quintessentially quantum effects [13].

Taking into account the approach required for quantum computation and commu-
nications, when we desire to build algorithms and hardware for quantum computing
and communications we must consider the postulates of quantum mechanics. These
postulates specify how we can represent, process, and measure information in this
new domain.

In this chapter we are going to introduce some basic concepts of quantum
information processing. Firstly, we make the reader familiar with the Dirac notation
[1], a concise representation of the quantum mechanics concepts, which implies in
a simplification of the calculi to be performed. After that, we are going to introduce
the density operators, very useful in the domain of quantum communications.

This chapter provides a quick review of basic concepts for the understanding of
subsequent chapters. However, it does not contain a complete explanation of the
mathematics behind quantum mechanics. It is extensive and there are entire books
dedicated to it. The chapter concludes with suggestions for further reading.

This chapter is organized as follows. Section 2.1 introduces the qubit, which is
the fundamental unit of information in a quantum system. Section 2.2 describes
how the evolution is carried out in a quantum system, whereas Sect. 2.3 shows how
we can bring information from a quantum system to a classical level by means of
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projective measurements and of positive operator-value measurements. The density
operator formalism, very useful for quantum communications, is shown in Sect. 2.4.
Entanglement, which does not have a classical counterpart, is discussed in Sect. 2.5.
The postulates of quantum mechanics are presented in Sect. 2.6 using the density
operator notation.

2.1 Representing Information

The basic unity of information in classical computing and communications is the
bit, or binary digit, which can be 0 or 1 (false or true, respectively). The information
is represented, or encoded, by a sequence of bits.

On the other hand, the basic unity of information in quantum computing and
communications is a two-state quantum mechanical system: the qubit, or quantum
bit. Consequently, the state of a qubit is represented by a unit vector in a 2-
dimensional complex Hilbert space. We call such a vector a ket and we denote the
state by j i, where j�i is the vector and  is the label of the qubit. The following
definition formalizes the state of a qubit.

Definition 2.1 (State of a Qubit). The state of a qubit  , denoted by j i, can be
represented by a vector in a 2-dimensional Hilbert space H, i.e.,

j i D ˛ j0i C ˇ j1i ; (2.1)

where ˛ and ˇ are complex numbers (˛; ˇ 2 C), which must satisfy the unitary
restriction

j˛j2 C jˇj2 D 1: (2.2)

The states j0i and j1i form a basis for the 2-dimensional Hilbert space.

The use of j i to represent the state of a qubit does not depend on the manner
that it is physically encoded. A certain state j�i, for example, could refer to the state
of a polarized photon, or an excited state of an atom, or the direction of circulation
of a superconducting current, etc. [13]. Such representation enables us to treat qubits
as abstract mathematical objects [10, Chap. 1].

In (2.1), the states j0i and j1i are known as computational basis states, and form
an orthonormal basis for the 2-dimensional Hilbert space. The notation of j0i and
j1i in terms of vectors is

j0i D
�
1

0

�
; j1i D

�
0

1

�
: (2.3)
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Using the computational basis, the general state of a qubit j i is denoted by

j i D ˛ j0i C ˇ j1i

D ˛

�
1

0

�
C ˇ

�
0

1

�

D
�
˛

ˇ

�
: (2.4)

We say that ˛ and ˇ are the amplitudes associated with the states j0i and j1i,
respectively.

When ˛ and ˇ in (2.1) are non-zero, we say that the qubit is in a superposition
state. Differently from bits, qubits are not constrained to be wholly 0 or wholly 1
at a given moment [13]. According to quantum mechanics, the modulus squared of
˛; ˇ in the former equation gives the probability of measuring the qubit in state j0i
or in state j1i, respectively [7]. It means that

• j˛j2 gives the probability of finding j i in state j0i;
• jˇj2 gives the probability of finding j i in state j1i.

The unitary restriction of Definition 2.1 is related to the probability of obtaining
a given measurement result. In particular, if j˛j D jˇj, we say that the qubit is in an
equally distributed superposition.

Example 2.1 (Qubits in Superposition). Let j'i and j�i denote the states of two
qubits in superposition:

j'i D 1p
3

j0i C
r
2

3
j1i ; (2.5)

j�i D 1p
2

j0i � 1p
2

j1i : (2.6)

Although both qubits are in superposition, only the state j�i is in an equally
distributed superposition.

The Hermitian conjugate of a ket j i is called a bra or dual vector. A bra
is denoted by h j D j i�, where � indicates complex conjugation and matrix
transposition.

h j D j i�

D �j i��T

D
�
˛�
ˇ�
�T

D �
˛� ˇ� � : (2.7)
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Example 2.2 (Bra). The Hermitian conjugate of (2.5) is given by

h'j D j'i�

D
2
4

1p
3q
2
3

3
5
�

D
h

1p
3

� q 2
3

� i

D
h

1p
3

q
2
3

i
:

A remarkable difference from quantum to classical computing and communica-
tion is that while a bit can represent only two distinct values, a qubit can assume
infinitely many different states. The only constraint is the unitary restriction (2.1).
Therefore, while the basic unity of quantum information is unlimited, the classical
unity of information is restricted to the values “true” and “false.”

We can also introduce a geometrical representation for a single qubit. To do so,
we rewrite (2.1) as

j i D e��
h
cos

�˛
2

	
j0i C e�ˇ sin

�˛
2

	
j1i
i
; (2.8)

where ˛; ˇ; � 2 R. Factor e�� is called the global phase. The factor does
not influence measurement statistics, since its absolute value is equal to one.
Consequently, global phase is often omitted [5]. While (2.1) is related to a vector in
a two-dimensional Hilbert space, the qubit (2.8) without e�� has a nice geometrical
interpretation on a three-dimensional polar coordinate system. Figure 2.1 illustrates
the representation of (2.8) in a Bloch sphere.

Example 2.3 (Geometrical Representation). The qubit (2.6) can be denoted accord-
ing to the geometrical representation as

j�i D cos
��
4

	
j0i � sin

��
4

	
j1i :

2.1.1 Composite Quantum Systems

In classical computing and communications, a bit can represent two values, 0 or 1.
Therefore, a register of n bits can store 2n different values, one each time. Thanks
to the superposition of quantum states, a quantum register of n qubits can store
2n different values at the same time. The concept of composite quantum systems is
shown in Definition 2.2.
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Fig. 2.1 Geometrical
visualization of a qubit in
Bloch sphere

α

β
x

y

z

|0〉

|1〉

|ψ〉

Definition 2.2 (Composite Quantum Systems). A composite quantum system,
also called quantum register or multi-qubit quantum systems, is made up of two
or more distinct physical systems. The state space of a composite quantum system
is the tensor product of the state space of its components. If j 1i ; : : : ; j ni describe
the states of n isolated quantum systems, the state of the composite system is
j 1i ˝ : : :˝ j ni.

The tensor product of the states jai and jbi, also known as direct or Kronecker
product, is denoted by jai ˝ jbi D jabi, and calculated as follows:

jai ˝ jbi D

2
664

a1
a2
: : :

an

3
775˝

2
664

b1
b2
: : :

bn

3
775

D

2
664

a1 � jbi
a2 � jbi
: : :

an � jbi

3
775 : (2.9)

Let j i be the state of a certain 2-qubit system. The representation of j i is
given by

j i D j 1i ˝ j 2i
D .˛1 j0i C ˇ1 j1i/˝ .˛2 j0i C ˇ2 j1i/
D ˛1˛2 j00i C ˛1ˇ2 j01i C ˇ1˛2 j10i C ˇ2ˇ2 j11i
D ˛00 j00i C ˛01 j01i C ˛10 j10i C ˛11 j11i (2.10)
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D ˛0
0 j0i C ˛0

1 j1i C ˛0
2 j2i C ˛0

3 j3i

D
22�1X
iD0

˛0
i jii : (2.11)

It is interesting to notice that (2.11) uses decimal notation for indexes and labels
instead of binary notation employed in (2.10)—this is a simplification commonly
adopted in quantum computation and communication. The state j i of two qubits
contains all the states 0, 1, 2, and 3 at the same time, each of them with its own
amplitude ˛0

i . In this case, if at least two distinct ˛0
i ¤ 0, we say that j i is in

a superposition. Storing these amplitudes on a classical computer simultaneously
requires up to four registers. Instead, quantum computers perform the same task just
using a composite quantum system of two qubits in superposition.

In a general way, the state of an n-qubit system can be written as

j i D
2n�1X
iD0

˛i jii ; (2.12)

with
P2n�1

iD0 j˛ij2 D 1. The states j0i ; j1i ; : : : ; j2n � 1i form the computational basis
of the 2n-dimensional Hilbert space.

Another way to represent a composite quantum state is to consider it as belonging
to a larger Hilbert space H composed by tensor product of state vectors belonging to
Hilbert spaces H1 and H2. We can construct a certain vector j i 2 H as the tensor
product of two vectors j�i 2 H1 and j'i 2 H2:

j i D j�i ˝ j'i : (2.13)

The tensor product has the following properties:

1. For ˛ 2 C, j�i 2 H1 and j i 2 H2,

˛ .j�i ˝ j i/ D .˛ j�i/˝ j i D j�i ˝ .˛ j'i/ : (2.14)

2. For j�1i ; j�2i 2 H1 and j i 2 H2,

.j�1i C j�2i/˝ j i D j�1i ˝ j i C j�2i ˝ j i : (2.15)

3. For j�i 2 H1 and j 1i ; j 2i 2 H2,

j�i ˝ .j 1i C j 2i/ D j�i ˝ j 1i C j�i ˝ j 2i : (2.16)
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2.2 Processing Information

Classical information processing is performed by applying operations on bits that
represent information. In the quantum scenario, the information processing is also
performed by operators, which are applied on the state of qubits. Typically, these
operators are denoted by capital letters of the alphabet and have special properties
stated in the following definition:

Definition 2.3 (Quantum Operator). An isolated quantum system originally in
the state j 1i evolves to state j 2i by means of the application of a quantum
operator U:

j 2i D U j 1i : (2.17)

Quantum operators are required to be unitary because they should preserve vector
norms. A unitary operator U has the following property: U� D U�1, where U�

denotes the Hermitian conjugate (conjugate transpose) of U and U�1 is the inverse
of U. Therefore, any unitary operator satisfies

U� � U D U � U� D 1; (2.18)

where 1 is the identity matrix [6].

Because quantum operators are unitary, the evolution of an isolated quantum
system is reversible. For example, we can easily return to the state j 1i from j 2i
just applying the unitary operator U�:

U� j 2i D U�.U j 1i/ D .U�U/ j 1i D j 1i : (2.19)

Some operators play an important role in quantum information processing and
quantum computing. Particularly, the set known as Pauli matrices is specially
interesting:

	0 D 1 D
�
1 0

0 1

�
; 	1 D 	x D X D

�
0 1

1 0

�
;

	2 D 	y D Y D
�
0 �i
i 0

�
; 	3 D 	z D Z D

�
1 0

0 �1
�
:

The Pauli matrices are Hermitian, i.e., 	k D 	
�
k , k D 0; : : : ; 3. The operator X,

in particular, is the quantum analog of the classical NOT gate. For instance, when
this operator is applied to j0i we get X j0i D j1i. Pauli matrices are widely used in
several quantum computation and communication algorithms.

The Hadamard matrix, denoted by H, is another very important operator because
it can build equally distributed superpositions. Moreover, when applied to any state
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of a 2-dimensional Hilbert space, it performs a 45ı rotation on such state. The
matricial representation of this operator is

H D 1p
2

�
1 1

1 �1
�
: (2.20)

If we apply Hadamard to the state j1i, this operator will create the superposition
H j1i D 1p

2
.j0i � j1i/ D j�i. The states j�i and jCi D H j0i are known as the

Hadamard basis.

2.2.1 Tensor Product of Operators

Suppose we have a composite quantum system and we wish to apply a quantum
operator to each of the respective states. To enable quantum operators to be applied
in multi-qubit systems, we must define tensor products of quantum operators.

Definition 2.4 (Tensor Product of Operators). Let A and B be the matricial
representation of two quantum operators with dimensions m � n and p � q,
respectively. The tensor product A ˝ B is defined by

A ˝ B �

2
6664

A11B A12B : : : A1nB
A21B A22B : : : A2nB
:::

:::
: : :

:::

Am1B Am2B : : : AmnB

3
7775 : (2.21)

The resulting matrix A ˝ B has dimension .nq/ � .mp/ and can be applied to a
composite quantum system as previously explained. We denote the n-tensor product
of the operator U with itself by U˝n. For example, U˝3 D U ˝ U ˝ U.

The Hadamard operator, in particular, is very useful in many quantum comput-
ing and communication algorithms. For example, n-tensor product of Hadamard
operators can be used to create n equally distributed superposition of qubits. Then,
an arbitrary quantum operator acting on the state space of the n-qubits can be
applied to the composite system in a simultaneous way. This feature, called quantum
parallelism, is restricted to quantum computation. Parallelism is not performed
efficiently by classical computers because, for instance, simulating a superposition
of n qubits requires 2n classical registers and individual application of the operation
in each of them.

Example 2.4 (Tensor Product of Operators). Let j i D j00i D j0i˝2 be a 2-qubit
quantum system. The application of the Hadamard operator to both qubits is
performed by the operator H˝2 D H ˝ H in the following way:
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H˝2 j0i˝2 D H j0i ˝ H j0i

D
�
1p
2
.j0i C j1i/

�
˝
�
1p
2
.j0i C j1i/

�

D jCi jCi
D jCi˝2 :

2.2.2 Projection Operators

The result of the outer product operation on a vector j i with itself, denoted
by j i h j, is a linear projection operator. Such operator j i h j, performs the
following mapping:

j i h j j'i 7! j i h j'i D h j'i j i ; (2.22)

where j i ; j'i 2 H. That is, the operator j i h j projects a vector j'i onto
the 1-dimensional subspace of H spanned by j i. Such an operator is called an
orthogonal projector [6].

More generally, suppose H is an n-dimensional Hilbert space. Let fj1i ; : : : ; jkig
be any orthonormal basis of a subspace H0 of H, k � n. Then,

P D
kX

iD1
jii hij (2.23)

is an orthogonal projector onto the subspace H0. It is easy to see that projectors are
Hermitian operators. Moreover, for any orthogonal projector P, P2 D P [7].

Projection operators also satisfy the completeness relation, i.e., if fj1i ; : : : ; jnig
is an orthonormal basis of an n-dimensional Hilbert space H, then

P D
nX

iD1
jii hij D 1: (2.24)

Example 2.5 (Completeness Relation). Let BH D fjCi ; j�ig be the Hadamard
basis of the 2-dimensional Hilbert space. The corresponding projection operators are

PC D jCi hCj D
�
1
2
1
2

1
2
1
2

�
;

P� D j�i h�j D
�

1
2

� 1
2

� 1
2

1
2

�
:

It is straightforward to see that PC C P� D 1.
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2.3 Measuring Information

An isolated quantum system evolves by means of unitary transformations. While it
remains closed, no information can be inferred from the system. In order to access
the state of a quantum system, we need to perform a task called measurement.
Measurements can be viewed as an “interface” from the quantum world to the
classical level; it is the unique way to extract useful information from qubits after
some processing.

In the classical scenario, measurement is a trivial task and the results depend only
on the apparatus accuracy. Moreover, measurements do not disturb the state of the
classical system, no matter how many times we measure the corresponding quantity.
However, in quantum scenario, measurement is not a trivial task because it affects
the isolated quantum system causing a collapse in the state space of corresponding
quantum system being measured. As a consequence, measurements are irreversible
operations in quantum systems—once a qubit is measured, it is not possible to return
to the state it had right before the measurement [8].

A classical computer follows essentially a load-run-read cycle wherein one loads
data into the machine, runs a program using this data as input, and then reads out
the result. This becomes an analogous prepare-evolve-measure cycle on a quantum
computer. That is, one prepares a quantum state, evolves it on the quantum computer
by means of unitary transformations and, finally, measures the result [13].

There are two special cases of general measurements that play an important role
in quantum information and computation: projective measurements and positive
operator-valued measurements.

Definition 2.5 (Projective Measurement). A projective measurement is described
by an observable M, which is a Hermitian operator on the state space of the system
being measured. The observable M has a spectral decomposition

M D
X

m


mPm; (2.25)

where Pm is a projector onto the eigenspace of M with eigenvalue 
m. Measurement
outcomes correspond to the eigenvalue indexes m. When a system in a state j i is
observed, the probability of getting output m is

p.m/ D h j Pm j i : (2.26)

Given that the outcome m occurred, the state of the system immediately after the
measurement will be

ˇ̌
 0˛ D Pm j ip

p.m/
: (2.27)
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Instead of giving an observable to describe a projective measurement, we can
simply construct a list of projectors Pm satisfying

P
m Pm D 1 and PiPj D ıijPi,

i.e., projectors must be pairwise orthogonal. The corresponding observable is then
M D P

m mPm. We say that a quantum system is measured in a basis jmi when a
projective measurement with projectors P D jmi hmj is performed, where jmi is an
orthonormal basis.

Example 2.6 (Projective Measurements). Suppose a quantum system in the state
j i D 1p

2
.j0i � j1i/. Performing a projective measurement in the computational

basis with projectors fP0 D j0i h0j ,P1 D j1i h1jg gives the output “0” with proba-
bility

p.0/ D h j P0 j i

D

 h0j � h1jp

2

�
j0i h0j


 j0i � j1ip
2

�

D 1

2
:

Similarly, we found that p.1/ D 1
2
. In this case, getting the two possible outputs is

an equally likely event. Given that outcome “0” occurs, the post measurement state
will be

ˇ̌
 0˛ D P0 j ip

p.0/

D
j0i h0j

� j0i�j1ip
2

	
q

1
2

D j0i :

As we can expect, the post-measurement state given that output “1” occurred is
j 0i D j1i.

In some applications, however, the system state after the measurement is not
important. For example, in quantum error-correction codes, the measurement output
on the received quantum codeword gives the error syndrome, which is used to
choose a unitary operator in order to (possibly) correct the error introduced by the
noisy quantum channel. In such situations, we are only interested in the outcomes
and their associated probabilities. The Positive Operator-Value Measurement for-
malism (POVM formalism) is the most appropriate theoretical tool to deal with this
scenario.

Definition 2.6 (POVM Measurements). A Positive Operator-Value Measurement
(POVM) is defined by a set of Hermitian, positive operators fEmg acting on the state
space of the quantum system being measured [10, Sect. 2.2.6]. The probability of
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. . . . . .

1 2 3 i m

|ψ〉 |ψ 〉

Fig. 2.2 A POVM measurement apparatus. When a quantum state is measured using a set of
POVM elements fE1; : : : ;Emg, an led is turned on indicating the outcome

getting outcome m given that the state j i is measured is

p.m/ D h j Em j i : (2.28)

POVM operators must satisfy the completeness relation, i.e.,

X
m

Em D 1: (2.29)

Differently from general and projective measurements, we are not able to
predict the post-measurement state of quantum system after a POVM measurement.
Fortunately, most of the applications in quantum computation and information
do not care about post-measurement states. Instead, we are often interested in
measurement outcomes and the corresponding associated probabilities. Figure 2.2
illustrates a POVM measurement apparatus. When an unknown quantum state j i
is measured, a led turns on to indicate the outcome.

2.4 Density Operator

Pure quantum states are represented by unitary vectors belonging to an appropriate
Hilbert space. This kind of system suggests a lowest degree of ignorance, since we
have nothing further to discover than the quantum state itself.

However, a qubit can be in an ensemble of pure states, i.e., the system can be in a
certain state j ii with probability pi, i > 1. We describe the state of such qubit as an
ensemble of possible pure states and their associated probabilities fj ii ; pig, whereP

i pi D 1. The whole system is said to be in a mixed quantum state. In summary,
the formalism we have used so far is not adequate to represent quantum systems in
two situations:

1. When the quantum system state is one of j 1i, j 2i, : : : with probabilities p1, p2,
: : :.

2. When a certain system (called A) is part of a larger quantum system AB.

In these situations, the mathematical formalism of density operators is more
suitable to describe the state of the whole quantum system.
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Definition 2.7 (Density Operator). Suppose that a quantum system is in one of
the states j ii with probability pi,

P
i pi D 1. We say that the quantum system

is an ensemble fj ii ; pig. The density operator that describes the whole system is
defined as

� D
X

i

pi j ii h ij : (2.30)

Example 2.7 (Density Operator—Pure State). Suppose that we apply the
Hadamard operator to a quantum state j 0i initially on the state j0i. Then, the
state of the quantum system will be

j 1i D H j 0i
D H j0i

D 1p
2
.j0i h0j C j0i h1j C j1i h0j � j1i h1j/ j0i

D 1p
2
.j0i C j1i/ :

Using the density operator formalism, the system state after the Hadamard operation
can be denoted as

� D j 1i h 1j

D
�
1p
2
.j0i C j1i/

� �
1p
2
.h0j C h1j/

�

D 1

2
.j0i h0j C j0i h1j C j1i h0j C j1i h1j/

D 1

2

�
1 1

1 1

�
:

Although we had used the density operator formalism to represent the state of the
system, the system itself remains in a quantum pure state.

Example 2.8 (Density Operator—Mixed State). Consider that a quantum system
can be in one of the states jCi and j�i with probability 1/3 and 2/3, respectively.
The density operator of the system is given by

� D
�
1

3


 j0i C j1ip
2

�
 h0j C h1jp
2

��
C
�
2

3


 j0i � j1ip
2

�
 h0j � h1jp
2

��

D 1

6
.j0i h0j C j0i h1j C j1i h0j C j1i h1j/C
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C2

6
.j0i h0j � j0i h1j � j1i h0j C j1i h1j/

D j0i h0j
2

� j0i h1j
3

� j1i h0j
3

C j1i h1j
2

D
�
1=2 �1=3

�1=3 1=2

�
:

Density operators have a well-defined characterization. The reader can easily
prove the following theorem:

Theorem 2.1 (Density Operator). An operator � is a density operator associated
with an ensemble fj ii ; pig if and only if it satisfies two conditions:

1. Trace Condition. � has trace equal to 1;
2. Positivity Condition. � is a positive operator.

Example 2.9 (Trace and Positivity). From the density operator � of the previous
example, we can see that its trace is equal to 1, as stated by the trace condition.

Tr.�/ D Tr


�
1=2 �1=3

�1=3 1=2

��

D 1

2
C 1

2

D 1:

Positivity condition can be checked by calculating the eigenvalues of �, which are

1 D 5

6
and 
2 D 1

6
. Since both eigenvalues are positive, � is a positive operator as

well.

Given a density matrix �, how can we infer that the corresponding quantum
system is in a pure or mixed state? It turns out that all we need to do is calculate the
trace of �2, as shown in the following theorem.

Theorem 2.2 (Condition to � Describe a Pure or Mixed State). Let � be a
density operator representing a quantum system. Then, Tr

�
�2
� � 1, with equality if

and only if the system is in a pure state.

The two previous examples are useful to illustrate the theorem. Density operator
of Example 2.7 represents a quantum system in a pure state. Since

� D 1

2

�
1 1

1 1

�
;
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then

Tr
�
�2
� D Tr



1

4

�
2 2

2 2

��

D 1:

Similarly, for the density operator of Example 2.8,

Tr
�
�2
� D Tr


�
13=36 �1=3
�1=3 13=36

��

D 13=18

< 1;

which means that the quantum system is in a mixed state.

2.5 Entanglement

Quantum systems display properties that are unknown for classical ones, such as
the superposition of quantum states, interference, or tunneling. These are all one-
particle effects that can be observed in quantum systems, which are composed
of a single particle. But these are not the only distinctions between classical
and quantum objects—there are further differences that manifest themselves in
composite quantum systems, that is, systems that are comprised of at least two
subsystems [9].

Entanglement is a property of two or more quantum systems which exhibit
correlations that cannot be explained by classical physics [12], being a key resource
in quantum computation and quantum information theory. Entanglement occurs on
composite quantum systems and involves unusually strong correlation between parts
of them [13]. We begin by defining an entangled pure state.

Definition 2.8 (Entangled Pure State). A multi-qubit pure state is entangled if
and only if it cannot be factored into the direct product of a definite state for each
qubit individually. Thus, a pair of qubits, A and B, are entangled if and only if their
joint state j ABi cannot be written as the product of a pure state for qubit A and a
pure state for qubit B, i.e., j ABi ¤ j Ai ˝ j Bi for any choice of states j Ai and
j Bi [13].

If the systems A and B are entangled, this means that the values of certain
properties of system A are correlated with the values that those properties will
assume for system B. The properties can become correlated even when the two
systems are spatially separated [7].
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Example 2.10 (Entangled Pure State [12]). States of two quantum systems can be
considered together by taking their tensor product. For example, the two Hadamard
states jCi and j�i can be considered together in the form

jCi ˝ j�i D
�
1p
2
.j0i C j1i/

�
˝
�
1p
2
.j0i � j1i/

�

D 1

2
.j00i C j01i C j10i � j11i/ :

The state jCi˝j�i represents a 2-qubit system which is not entangled. On the other
hand, consider the following quantum state:

jˇ00i D j00i C j11ip
2

: (2.31)

If we try to write jˇ00i as a tensor product of two pure qubits j Ai D ˛ j0i C ˇ j1i
and j Bi D � j0i C ı j1i, we get

jˇ00i D .˛ j0i C ˇ j1i/˝ .� j0i C ı j1i/
D ˛� j00i C ˇ� j01i C ˛ı j01i C ˇı j11i :

It is easy to see that we cannot find ˛; ˇ; � , and ı that simultaneously satisfy ˛� D
ˇı D 1 and ˇ� D ˛ı D 0. Therefore, the state jˇ00i is entangled, since it cannot
be broken down into two separate qubit pure states.

The state jˇ00i belongs to a very important set of entangled states known as
Bell states or EPR pairs. The Bell states form a basis for the 4-dimensional Hilbert
space and play an important role in many quantum communication protocols. The
Bell states are defined as

jˇ00i D j00i C j11ip
2

; (2.32)

jˇ01i D j01i C j10ip
2

; (2.33)

jˇ10i D j00i � j11ip
2

; (2.34)

jˇ11i D j01i � j10ip
2

: (2.35)

If a state j ABi is entangled, then tracing out one of the two systems leads to a
mixed state. If j ABi D j Ai ˝ j Bi is not entangled, then tracing out part A or
part B of the space leads to j Bi or j Ai, respectively. Recalling that Tr.�2/ D 1 if
and only if � is a pure state, we have a simple formula for testing whether a state is
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entangled or not [12]. Therefore, the state j ABi is entangled if and only if

Tr.TrA.j ABi h ABj/2/ < 1: (2.36)

This procedure works well once the composite system j ABi is a quantum pure state.

Example 2.11. We want to use (2.36) to check the entangled state jˇ00i. First, we
trace out the system B from the state jˇ00i:

�A D TrB.jˇ00i hˇ00j/

D
�
1

2
j0i h0j C 1

2
j1i h1j

�
:

Finally,

Tr.�2A/ D Tr

 �
1

2
j0i h0j C 1

2
j1i h1j

�2!

D 1

4
C 1

4

< 1:

We investigate now the entanglement in the framework of quantum mixed states.
Tensor products of mixed states, � D �1 ˝ �2, do not exhibit correlations, as do not
the tensor products of pure states. A convex sum of different product states,

� D
X

i

pi�1;i ˝ �2;i; (2.37)

with pi > 0 and
P

i pi D 1, will in general yield correlated measurement results, i.e.,
there are local observables a and b such that Tr.�.a ˝ b// ¤ Tr.�.a ˝1//Tr.�.1˝
b// D Tr1 �1a Tr2 �2b. These correlations can be described in terms of the classical
probabilities pi and, therefore, they are considered classical. States like (2.37) are
called separable mixed states [9].

In contrast, mixed entangled states are characterized by the non-existence of a
decomposition into product states, as stated in the next definition.

Definition 2.9 (Mixed Entangled State [9]). A mixed state � is entangled if there
are no local states �1;i and �2;i, and non-negative weights pi, such that � can be
expressed as a convex mixture, i.e.,

À�1;i; �2;i; pi � 0 such that � D
X

i

pi�1;i ˝ �2;i: (2.38)
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Entanglement plays an important role in quantum information, communication,
and computing. Perhaps, the most impressive application of entanglement is
teleportation. Suppose that two physically separated parties, Alice and Bob, each
takes one qubit of an EPR pair. Then, Alice can perform a teleportation of an
arbitrary and unknown quantum state toward Bob by sending to him two classical
bits of information. The quantum key distribution protocol proposed by Ekert [2],
for instance, is based on this idea. A very didactic presentation of this protocol can
be found in Fayngold and Fayngold [3].

2.6 Postulates of Quantum Mechanics

The concepts presented previously are organized in a framework of a workable
physical theory, the so-called postulates of quantum mechanics. These postulates
are a set of axioms that define how the theory operates [7]. According to the state-
of-the-art knowledge, most of the rules in the universe can be traced back to these
postulates and only a few effects seem to be an exception [5].

Frequently, the postulates of quantum mechanics are enunciated using the Dirac
notation. Considering our purposes, we are going to enunciate these postulates using
the density operators formalism, which is more convenient in quantum information
and communication applications [10].

The first postulate tells us how physical states are represented in quantum
mechanics. A quantum mechanical two-level system might be a single photon that
can be found in one of the two distinct paths or a presence or absence of a photon in
a particular location or path [6].

Postulate 2.1 (State Space of an Isolated Quantum System). We associate with
an isolated quantum system a complex vector space with inner product (i.e., a
Hilbert space) known as space state of the system. This system is completely
described by a density operator �, which is positive and has trace equal to 1,
acting on the space state of the system. If the quantum system is in the state �i

with probability pi, then the density operator of this system is
P

i pi�i.

The evolution of a closed quantum system is described by a unitary operator
U. If the system is initially in the state j ii with probability pi, after applying the
operator U the state will be U j ii with probability pi. Thus, the evolution of a
quantum system according to the density operator framework is described by

� D
X

i

pi j ii h ij U�!
X

i

piU j ii h ij U� D U�U�: (2.39)

Postulate 2.2 (Evolution of Closed Quantum Systems). The evolution of a closed
quantum system is described by a unitary transformation. Therefore, the state of a
quantum system � at time t1 is associated with the state �0 at time t2 by means of a
unitary operator U that depends only on t1 and t2:

�0 D U�U�: (2.40)
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Measuring a quantum system that is in the state j i seeks to obtain classical
information about this state [11]. We can say that measurements connect the
quantum and classical worlds; they are the only tools which allow taking a look
at what happens in the quantum world [6]. Measuring the state of an unknown
quantum system, in general, disturbs the state irreversibly. In those cases, there is
no way to know or recover the state before the measurement. If the state was not
disturbed, no new information about it is obtained [11]. Thus, measurements are
obviously not reversible and therefore they represent the only exception under the
unitary constraint.

The third postulate of quantum mechanics is synthesized as follows.

Postulate 2.3 (Quantum System Measurement). Quantum measurements are
described by a set of measurement operators fMmg. These operators act on the space
state of the quantum system being measured. The index m refers to the output that
can occur at the measurement. If the state of the system prior to the measurement
is �, then the probability of getting m at the measurement is

p.m/ D Tr.M�
mMm�/: (2.41)

Given that the output m occurred, the post-measurement state of the system will be

�0 D Mm�M�
m

Tr.M�
mMm�/

: (2.42)

The set of measurement operators satisfies the completeness relationP
m M�

mMm D 1.

The most common type of measurement in quantum mechanics is the projective
measurement. This kind of measurement projects the system onto one of the eigen-
subspaces of an observable and returns the corresponding eigenvalue. However,
there exists a whole range of problems, such as pure state discrimination or joint
measurement on several qubits, where it is more advantageous to use a general
measurement procedure that tries to detect outcomes using a set of non-orthogonal
operators. For such situations, a POVM measurement is adequate [3].

So far we have discussed the postulates for the case of a single system. If we want
to study potentially useful quantum computing and communication applications,
we need to understand how quantum mechanics works for systems composed of
several qubits interacting with each other [6]. Entanglement, for instance, arises
from composite quantum systems defined in the fourth postulate.

Postulate 2.4 (Composite Quantum Systems). The state space of a composite
quantum system is the tensor product of the space of states that compose it. If these
systems are numbered from 1 to n, and the system i is in the state �i, then the state of
the composite system will be �1 ˝ �2 ˝ : : :˝ �n.

In a very ingenious way, Portugal says that the postulates of quantum mechanics
presented previously can be understood as “game rules.” If you break then, you
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are out of the game, i.e., you must respect them to create and understand quantum
algorithms, protocols, etc. Considering the idea of game rules, the first postulate
can be described as the arena where the game goes on. The second describes the
dynamics of the game. The third describes the process of physical measurement.
The fourth postulate describes how we adjoin various systems [11].

2.7 Further Reading

In this chapter we introduced an overview of some important quantum mechanics
concepts. We presented the notion of qubits, evolution of quantum systems and
projective and POVM measurements using the Dirac notation [1], widely known
for simplifying the operations to be performed. We showed how entanglement rep-
resents non-trivial correlations between two or more quantum systems. Lastly, we
introduced the density operators and enunciated the quantum mechanics postulates
according to this framework.

Concepts presented in this chapter are an overview organized from many works
in the literature: Williams [13], Nielsen and Chuang [10], Kaye et al. [6], Imre
and Balazs [5], Hirvensalo [4], McMahon [7], Fayngold and Fayngold [3], among
others. We kindly recommend these references for further reading.
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Chapter 3
Fundamentals of Information Theory

The statistical theory of communication introduced by Claude Shannon answers
fundamental questions about a system consisting of agents exchanging classical
information through a classical communication channel [20]. The proposition of
information theory was made in the electrical engineering domain due to the
problems with telegraphs, radios, and telephones that the engineers faced in order
to attend a growing demand of customers. Such practical challenges motivated
the search for answers to fundamental questions such as how to define and
quantify information, bounds to information compression and also strategies to
exchange information securely [9]. Nowadays, information theory lies at the heart of
modern technology, underpinning all communications, networking, and data storage
systems.

The history of classical information theory began with Claude Shannon [28]. In
this paper, he coined the essential terminology, and he stated and justified the main
mathematical definitions, as well as the two fundamental theorems of information
theory. The noiseless coding theorem quantifies the physical resources required
to store the output of an information source; the second, called channel coding
theorem, quantifies how much information it is possible to reliably transmit through
a noisy communication channel [24].

We can say that information theory has two primary goals. The first is the
development of fundamental theoretical limits on the achievable performance when
communicating a given information source over a communication channel and
using a specified coding scheme. The second goal is the development of coding
schemes that provide reasonably good performance in comparison with the optimal
theoretical limits established by the theory. [14].

While classical information theory refers to a mathematical framework for
modeling the manipulation and transmission of classical information, quantum
information theory studies fundamental problems related to the transmission of
classical and quantum information over quantum communication channels. Quan-
tum information theory promises to lead to a deeper understanding of fundamental

© Springer International Publishing Switzerland 2016
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properties of nature and, at the same time, support new and exciting applications
[20]. Quantum information is a fascinating topic precisely because it shows that the
laws of information processing are actually dependent on the laws of physics [36].

This chapter introduces some elementary concepts regarding information theory.
We start with classical information theory, aiming at introducing the two important
theorems of Claude Shannon. First, we present entropy and other measures of
information in Sect. 3.1.1. Then, we discuss in Sect. 3.1.2 a very important quantity
in classical information theory, the capacity of a noisy classical channel. In the
second part of the chapter, we introduce quantum information theory. We start
with von Neumann entropy and other measures of information in Sect. 3.2.1.
Section 3.2.2 introduces the definitions regarding quantum channels, including the
Choi-Jamiołkowski isomorphism; the accessible information, Holevo quantity and
the first type of quantum capacity are discussed in Sect. 3.2.3. The classical capacity
of quantum channels is presented in Sect. 3.2.4. Finally, Sect. 3.2.5 discusses other
capacities of quantum channels.

3.1 Classical Information Theory

In 1948, while working at Bell Labs, Claude E. Shannon developed the first suc-
cessful theory of information, where information is modeled as events which occur
with certain probabilities [36]. Besides defining precisely what is information and
how to measure it, Shannon proved the existence of codes that allow communication
with a negligible probability of error, since the transmission rate is below a certain
parameter, called the channel capacity [9].

According to information theory, an information source can be modeled as a
physical device that outputs letters from some fixed alphabet, each letter with a
given probability. Let X denote a source alphabet that consists of messages, say
x1; x2; : : :, with probabilities p.x1/; p.x2/; : : :, satisfying

p.x/ � 0;8x 2 X ; and
X
x2X

p.x/ D 1: (3.1)

For our purposes, we are only interested in stationary memoryless information
sources, where subsequent source outputs are not correlated; by stationary, we mean
that the probability mass function of the information source does not change over
time.

In information theory, the term “information” is not a quantity associated with
individual messages, but rather characterizes the source of the messages. The
point of characterizing the source is to discover what capacity is required in a
communication channel to transmit all the messages the source produces [34].

Along this section we will depict the elementary concepts regarding classical
information theory, presenting definitions and illustrative examples. We will focus
our discussions on introducing the two main theorems proposed by Shannon
[28] because they establish fundamental limits on data compression and reliable
transmission over noisy classical channels.
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3.1.1 Entropy and Other Measures of Information

Entropy is a measure of unpredictability of information content. The concept of
entropy was introduced into thermodynamics in the nineteenth century. It was
considered to be a measure of the extent to which a system was disordered. Shannon
[28] introduced this concept into communication theory and it was then realized
that entropy is a property of any stochastic system and the concept is now used
widely in many fields, such as statistics, computing, information processing, among
others [35].

In order to define entropy, let X be a discrete random variable with alphabet X
and probability mass function given by p.x/ D PrŒX D x�, x 2 X .

Definition 3.1 (Entropy). The binary entropy of X, denoted by H.X/, is defined as
the expected amount of information gained from observing X:

H.X/ D �
X
x2X

p.x/ log p.x/: (3.2)

The logarithm is taken in base 2 and we consider that 0 log 0 � 0. Entropy
is expressed in bits. As expected, the entropy is not related with the values that
the random variable can assume, but rather with their probabilities. Furthermore,
entropy is a positive function, i.e., H.X/ � 0, for any X.

Example 3.1. Let X be a random variable related to an unfair dice whose even
values can appear twice more often than the odd values. This random variable has
alphabet X D f1; : : : ; 6g and probability mass function p.1/ D p.3/ D p.5/ D 1

9

and p.2/ D p.4/ D p.6/ D 2
9
. The entropy of X is given by:

H.X/ D �
X
x2X

p.x/ log p.x/

D � .p.1/ log p.1/C : : :C p.6/ log p.6//

D �


3 � 1
9

log
1

9
C 3 � 2

9
log

2

9

�

� �
�
3 � 1
9

� .�3:1699/C 3 � 2
9

� .�2:1699/
�

� 2:5032 bits.

This entropy value means that, on average, it is necessary 2:5032 binary questions
in order to discover the value of a realization of X. It is interesting to notice that
this result is in sharp contrast with the entropy of a fair dice Y , H.Y/ � 2:5849

bits. Given that some results of the random variable X are more likely to occur, the
average number of binary questions is reduced, i.e., the uncertainty regarding X is
lower than the uncertainty of Y .
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Fig. 3.1 Binary entropy
function
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Binary Entropy Function

A special case for the entropy happens when the random variable has only two
possible outcomes. For such situations, we define the binary entropy function as
follows.

Definition 3.2 (Binary Entropy Function). Let X be a binary random variable
with alphabet X D fx1; x2g, and probability mass function p.x1/ D p and p.x2/ D
1 � p. We denote by H.p/ the binary entropy function:

H.p/ D H.X/ D �p log p � .1 � p/ log.1 � p/; (3.3)

recalling that p 2 Œ0; 1�.
A graphic for the binary entropy function versus p is showed in Fig. 3.1. It is easy

to see that

1. H.p/ > 0 for 0 < p < 1.
2. H.p/ is symmetric about p D 0:5.
3. lim!0 H.p/ D lim!1 H.p/ D 0.
4. H.p/ is increasing for 0 < p < 0:5 and decreasing for 0:5 < p < 1 and has a

maximum for p D 0:5.
5. The binary entropy is a concave function of p.

Shannon entropy can be used to define other measures of information that capture
relationships between two random variables X and Y . We define along this section
the joint entropy, the conditional entropy, the relative entropy, and the mutual
information.

The joint entropy is an extension of the entropy to a pair of random variables. It
is defined as follows.

Definition 3.3 (Joint Entropy). The joint entropy H.X;Y/ of a pair of discrete
random variables .X;Y/ with joint distribution p.x; y/ is defined by

H.X;Y/ D �
X
x2X

X
y2Y

p.x; y/ log p.x; y/: (3.4)
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Table 3.1 Joint distributions
of the random variables X
and Y

Example 3.2. Let X and Y be two random variables with joint distribution shown in
Table 3.1. The joint entropy H.X;Y/ is given by

H.X;Y/ D �
X
x2X

X
y2Y

p.x; y/ log p.x; y/

D � Œp.x1; y1/ log p.x1; y1/C p.x1; y2/ log p.x1; y2/C
C p.x2; y1/ log p.x2; y1/C p.x2; y2/ log p.x2; y2/�

D � Œ0:3 � .�1:73/C 0:1 � .�3:32/C 0:1 � .�3:32/C 0:5 � .�1/�
D 1:683 bits.

The conditional entropy measures the information gained from learning the
outcome of X given that Y is known.

Definition 3.4 (Conditional Entropy). If .X;Y/ 	 p.x; y/, the conditional entropy
H.YjX/ is defined as

H.XjY/ D
X
x2X

p.x/H.YjX D x/

D �
X
x2X

p.x/
X
y2Y

p.yjx/ log p.yjx/

D �
X
x2X

X
y2Y

p.x; y/ log p.yjx/; (3.5)

where p.yjx/ D p.x; y/=p.x/.

Example 3.3. Consider the random variables X and Y presented in Example 3.2
with probabilities given in Table 3.1. It follows that H.YjX/ is given by

H.YjX/ D
X
x2X

p.x/H.YjX D x/

D 0:4H.0:75/C 0:6H.0:1667/

� 0:4 � 0:81C 0:6 � 0:648
D 0:712 bits:

y1 y2
x1 0:3 0:1

x2 0:1 0:5
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The conditional entropy H.XjY/ is

H.XjY/ D
X
y2Y

p.y/H.XjY D y/

D 0:4H.0:75/C 0:6H.0:1667/

� 0:712 bits:

Although H.YjX/ and H.XjY/ are equal, this is not always the case.

The joint and conditional entropies can be used to build a relationship called the
chain rule, given by

H.X;Y/ D H.X/C H.XjY/; (3.6)

which can be proved by applying the definition of p.xjy/.
Example 3.4. To check the chain rule, consider again the two random variables
X and Y of Examples 3.2 and 3.3. We have shown that H.X;Y/ D 1:683 bits
and H.YjX/ D 0:712 bits. Considering that H.X/ D H.0:4/ D 0:971 bits, then
H.X;Y/ D 0:971C 0:712 D 1:683, as stated by the chain rule.

Definition 3.5 (Relative Entropy). The relative entropy of two random variables
X and Y is defined as follows:

H.XjjY/ D �
X
x2X

X
y2Y

p.x/ log p.y/ � H.X/

D
X
x2X

X
y2Y

p.x/ log
p.x/

p.y/
: (3.7)

The relative entropy represents the difference between the expected information
obtained from Y , given that they are distributed according to X, i.e., according to

X
x;y

p.x/ log p.y/;

and the expected information obtained from X, H.X/ [36].

Example 3.5. Let X be a random variable corresponding to the unfair dice described
previously in Example 3.1, and let Y be a random variable corresponding to a fair
dice. The relative entropy among X and Y is given by

H.XjjY/ D
X
x2X

X
y2Y

p.x/ log
p.x/

p.y/
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D 3 �
0
@1
9

X
y2Y

log
1=9

p.y/

1
AC 3 �

0
@3
9

X
y2Y

log
3=9

p.y/

1
A

D 3 � 1
9

� 6 log
1=9

1=6
C 3 � 2

9
� 6 log

2=9

1=6

� �1:16C 1:660

� 0:5 bits:

We now introduce mutual information, which is a measure of the amount of
information that one random variable contains about another random variable. The
mutual information can also be understood as the reduction in the uncertainty of one
random variable due to the knowledge of the other [9].

Definition 3.6 (Mutual Information). Consider two random variables X and Y
with a joint probability mass function p.x; y/ and marginal probability mass
functions p.x/ and p.y/. The mutual information I.XI Y/ is the relative entropy
between the joint distribution and the product distribution p.x/p.y/:

I.XI Y/ D
X
x2X

X
y2Y

p.x; y/ log
p.x; y/

p.x/p.y/

D H.X/ � H.XjY/: (3.8)

If the variables X and Y are independent, then the mutual information I.XI Y/ is
zero. If the random variables are completely correlated, then the mutual information
between them is the information contained in X. More formally, if there exists a
bijection f such that P.X D x/ D P.Y D f .x//, then I.XI Y/ D H.X/ D H.Y/ [36].

Example 3.6. Consider the random variables X and Y from Example 3.4. The
mutual information between them is given by

I.XI Y/ D H.X/ � H.XjY/
D 0:971 � 0:712
D 0:259 bits:

The Venn diagram in Fig. 3.2 illustrates the relationship between entropies,
joint entropy, conditional entropies and mutual information between two random
variables X and Y .
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Fig. 3.2 Venn diagram of
entropy and other measure
functions and their
relationship

H(X,Y )

H(X|Y ) H(Y |X)I(X;Y )

H(X) H(Y )

Alice
Encoding Decoding

Channel
p(y|x) Bob

XM n M̂Y n

Fig. 3.3 Generic communication model

3.1.2 Capacity of a Noisy Classical Channel

Information does not only have to be used or stored, but it also has to be transmitted.
In communication systems a sender converts (encodes) a message to a form suitable
for transmission through a communication medium, be it a fiberoptic channel,
satellite link, or radio signal through space. The receiver then detects the transmitted
signal and decodes it back to the original message [35].

When two parties communicate, each one can influence the physical state of the
other through some physical process. The precise nature of the parties and of the
signaling process can be very different, thus it is necessary to consider an abstract
model of communication [20].

Considering the importance of such abstraction, we follow Shannon’s original
work and consider a generic communication model, as shown in Fig. 3.3. In this
model, a sender Alice wants to send a message M to a receiver Bob.

Alice is the source of the messages. She owns a predefined set of messages
M D fM1;M2; : : : ;Mmg, and she can pick each one with a certain probability p.M1/,
p.M2/; : : : ; p.Mm/ that does not change over time. The first step to send the message
M is to map it into symbols from the channel alphabet, denoted by X , resulting in a
codeword Xn of length n.

The channel can be any physical medium such as a telephone wire, the internet,
a hard disk, an optic fiber, among others. In the real world, the data which is
transferred through the channel may be subject to distortion, noise, and interference.
Definition 3.7 formalizes the idea of a communication channel.

Definition 3.7 (Discrete Channel). A discrete channel is a triple .X ;Y;P/, where
X D fx1; x2; : : : ; xrg is the input alphabet, Y D fy1; y2; : : : ; ysg is the output
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alphabet and P denotes a probability transition matrix. The probability Py;x D p.yjx/
denotes the probability of obtaining an output y when the channel’s input was x.

The probability transition matrix has the form:

P D

2
6664

p.y1jx1/ p.y2jx1/ : : : p.ysjx1/
p.y1jx2/ p.y2jx2/ : : : p.ysjx2/

:::
: : :

p.y1jxr/ p.y2jxr/ : : : p.ysjxr/

3
7775 : (3.9)

From the channel matrix, it is possible to see that

• Each row of P contains the probabilities of all possible outputs from the same
input to the channel.

• Each column of P contains the probabilities of all possible inputs to a particular
output from the channel.

• If we transmit the symbol xi, then we must receive an output symbol with
probability 1, that is:

sX
jD1

p.yjjxi/ D 1; for i D 1; 2; : : : ; r: (3.10)

For a given discrete channel, we can construct a graph as follows. Each symbol
in X corresponds to a vertex in the graph, labeled with the corresponding symbol;
the same for the symbols in Y . If p.yjjxi/ > 0, there is an edge directed from xi to
yj, labeled with p.yjjxi/. An example of such graph is illustrated in Fig. 3.4, where
only the edges from x1 and their labels are emphasized.

A widely adopted model of channel is the discrete memoryless channel without
feedback, or discrete memoryless channel (DMC), for short. In this kind of channel,
the behavior and the effect of the noise at time t will not depend on the behavior of
the channel or the effect of noise at any previous time t � 1; t � 2; : : :. This kind of
channel is defined as follows.

Fig. 3.4 Graph of a discrete
channel
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Definition 3.8 (Discrete Memoryless Channel). A discrete memoryless channel
is a discrete channel whose transition probabilities can be factored in the following
way:

p.yN jxN/ D
NY

iD1
p.yijxi/: (3.11)

Example 3.7 (Noiseless Channel). Consider a DMC with binary input and output
alphabets, labeled f0; 1g. The channel is said to be noiseless if there is no
transmission errors. The probability transition matrix is given by

P D
2
4p.y D 0jx D 0/ D 1 p.y D 1jx D 0/ D 0

p.y D 0jx D 1/ D 0 p.y D 1jx D 1/ D 1

3
5 ;

and the graph corresponding to this channel is shown in Fig. 3.5.

Shannon verified an entropy-related bound on how good compression can be for
a given source by using the notion of a noiseless channel.

Theorem 3.1 (Noiseless Coding Theorem [28]). Let a classical source S emit
symbols from an alphabet according to a given probability distribution. For n
sufficiently large, a message sent of length n over a noiseless channel can be
compressed without loss of information to a minimum of H.S/ � n bits.

Shannon’s theorem establishes a bound for lossless compression algorithms, it
does not provide us with one. Huffman’s algorithm is the most famous and basic
compression algorithm [41].

Example 3.8 (Binary Symmetric Channel). Consider a channel with f0; 1g as input
and output alphabets. Suppose that the channel introduces a bit flip 5% of times.
The graph of this channel, called Binary Symmetric Channel (BSC), is showed in
Fig. 3.6. The channel matrix is given by

P D
�
0:95 0:05

0:05 0:95

�
:

Fig. 3.5 Graph of a noiseless
channel 0

1

0

1

1

1
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Fig. 3.6 Graph of a bit-flip
channel 0

1

0

1
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Fig. 3.7 Example of an input and output sequences from a binary symmetric channel

The channel is said to be symmetric because p.y D 0jx D 0/ D p.y D 1jx D 1/

and p.y D 1jx D 0/ D p.y D 0jx D 1/. An example of input and output sequences
from this channel is shown in Fig. 3.7.

When a message of index M is transmitted by Alice using a codeword of length n,
Bob guesses the index M of the transmitted message using an appropriate decoding
rule OM D g.Yn/. Bob makes a mistake if OM is different from the index M that was
transmitted. To formalize such scenario, we introduce some definitions.

Definition 3.9 (.m; n/ Code). An .m; n/ code for a DMC .X ;Y;P/ consists of a
set of messages M D fM1;M2; : : : ;Mmg, an encoder f W M ! X n, and a decoder
g W Yn ! M. The rate of this .m; n/ code is

R D log jMj
n

bits per transmission. (3.12)

As mentioned before, the channel can introduce errors, causing the received
message to be different from the original message. Despite the errors, we are
interested in the maximum amount of information that can be transmitted per
channel use. This quantity is defined as the capacity of the channel.

Definition 3.10 (Ordinary Channel Capacity). The maximum average mutual
information, I.X;Y/, in any single use of a channel defines the channel capacity.
Mathematically, the channel capacity is defined as

C D max
PX

I.XI Y/; (3.13)

where I denotes the mutual information, X and Y are random variables representing
the channel input and output, respectively. The maximum is taken over all possible
input probability distributions.
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Example 3.9 (Channel Capacity of the Bit-Flip Channel [23]). Recall the bit-flip
channel introduced in Example 3.8, with probability transition matrix:

P D
�
0:95 0:05

0:05 0:95

�
:

For this channel, we have that H.YjX D 0/ D H.YjX D 1/ D H.0:05/. The
mutual information is given by

I.XI Y/ D H.Y/ � H.YjX/
D H.Y/ �

X
x2X

p.x/H.YjX D x/

D H.Y/ � Œp.x D 0/H.YjX D 0/C p.x D 1/H.YjX D 1/�

D H.Y/ � H.0:05/

� 1 � H.0:05/ (3.14)

� 1 � 0:2863
� 0:7137 bits;

where (3.14) follows because Y is a binary random variable. Since equality in (3.14)
is attained if Y is uniform, which will hold if input X is uniform, we conclude that
the capacity of this channel is given by

C D 1 � H.0:05/ D 0:7137 bits:

Therefore, the capacity is achieving when X assumes a uniform distribution, p.x D
0/ D P.x D 1/ D 1=2.

The channel capacity has the following properties [9]:

• C � 0, since I.XI Y/ � 0.
• C � log jX j, since C D max I.XI Y/ � max H.X/ D log jX j.
• C � log jYj for the same reason.
• I.XI Y/ is a continuous function of p.x/.
• I.XI Y/ is a concave function of p.x/.

Example 3.10 (Binary Erasure Channel). In a binary erasure channel (BEC),
whose graph representation is shown in Fig. 3.8, the input alphabet is X D f0; 1g
and the output alphabet is Y D f0; 1; ‹g, where ‹means that the input bit was lost. It
is important to emphasize that the receiver knows when the input is lost, i.e., when
neither 0 nor 1 was actually received. This channel matrix is given by

P D
�
1 � � �

� 1 � �
�
; (3.15)

where � is the erasure probability.
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Fig. 3.8 Graph of a binary
erasure channel
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The binary erasure channel capacity is given as follows:

C D max
P

I.XI Y/

D max
P
.H.Y/ � H.YjX//

D max
P

H.Y/ � H.�/:

The reader may think that the maximum of H.Y/ would be log 3, since the output
alphabet contains three symbols. However, we cannot achieve this because of the
input distribution. Let E be the event fY D‹g. Then,

H.Y/ D H.Y;E/ D H.E/C H.YjE/:

Let Pr.x D 1/ D � . The entropy of Y will be

H.Y/ D H..1 � �/.1 � �/; �; �.1 � �//
D H.�/C .1 � �/H.�/:

Using these results, the BEC capacity becomes

C D max
P

H.Y/ � H.�/

D max
�
.1 � �/H.�/C H.�/ � H.�/

D max
�
.1 � �/H.�/

D 1 � �;

where the capacity is achieved when � D 1
2
. This result is intuitively reasonable:

since a proportion of � bits are lost in the channel, it is possible to recover (at most)
a proportion of .1 � �/ bits. Hence, the capacity is .1 � �/ bits per channel use.

Calculating C is not an easy task because it involves maximization of I.XI Y/
over r D log jX j independent variables, subject to two constraints:

1. p.x/ � 0;8x 2 X .
2.
P

x2X p.x/ D 1.
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Considering this hardness, which is due to a constrained maximization of a non-
linear function, some methods are suggested by the proper literature [9, 35]:

• Gradient search algorithms.
• Constrained maximization using calculus and the Kuhn-Tucker conditions.
• Standard constrained maximization techniques like the method of Lagrangian

multipliers.
• Iterative algorithms developed by Arimoto [1] and Blahut [7].
• Derivation for special cases.

In general, there is no closed-form solution for the capacity. But for many simple
channels it is possible to calculate the capacity using properties such as symmetry
[9].

The channel capacity measures the amount of information that can be carried
over the channel; in fact, it characterizes the maximal amount of transmission
rate for reliable communication. Prior to the mid-1940s people believed that
transmitted data subject to noise corruption can never be perfectly recovered unless
the transmission rate approaches zero. Shannon’s landmark work [28] disproved this
thinking and established the well-known Channel Coding Theorem: as long as the
transmission rate (in bits per channel use) is below (but can be arbitrarily close to)
the channel capacity, the error can be made smaller than any given number (which
we term arbitrarily small) by some properly designed coding scheme [23].

Definition 3.11 (Average Error Probability). Let


i D PrŒg.Yn/ ¤ ijXn D f .i/� (3.16)

be the conditional probability that the receiver Bob makes a wrong guess, given that
the i-th codeword is sent. The average error probability 
.n/ for an .m; n/ coding
scheme is defined as


.n/ D 1

M

MX
iD1


i: (3.17)

Theorem 3.2 (Channel Coding Theorem [28]). For a discrete memoryless chan-
nel, it is possible to transmit messages with an arbitrarily small error probability if
the communication rate R is below the channel capacity C. Specifically, for every
rate R < C there exists a sequence of .2nR; n/ coding schemes with average error
probability 
.n/ ! 0 as n ! 1.

This theorem reconciles two competing parameters for a noisy channel: (1) a
high transmission rate; and (2) a low error probability [8]. Some ideas that follow
from this theorem are: allowing an arbitrarily small but nonzero probability of error;
using the channel many times in succession, so that the law of large numbers comes
into effect; and calculating the average of the probability of error over a random
choice of codebooks, which symmetrizes the probability, and which can then be
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used to show the existence of at least one good code [9]. We refer to the book of
Desurvire [12, Sect. 13.3] for a complete detailed proof of this theorem, presented
with three different approaches.

Although the channel coding theorem guarantees the existence of good coding
schemes with arbitrarily small error probability for long n, it does not provide a way
of constructing the best coding schemes. Ever since Shannon’s original findings,
researchers have tried to develop practical coding schemes that are easy to encode
and decode [23].

3.2 Quantum Information Theory

Quantum information theory studies fundamental problems related to transmission
of classical and quantum information over quantum communication channels,
such as the entropy of quantum systems, the classical and quantum capacities
of quantum channels, the effect of the noise, fidelity, and optimal information
encoding. Quantum information theory promises to lead to a deeper understanding
of fundamental properties of nature and, at the same time, support new and exciting
applications [20].

Quantum information theory intersects two of the great sciences of the twentieth
century: the quantum theory and information theory. It was really only a matter of
time before physicists, mathematicians, computer scientists, and engineers began
to consider the convergence of the two subjects, as quantum theory was essentially
established by 1926 and information theory by 1948 [39].

We can think of classical information theory as a subset of quantum information
theory, where we are restricted to orthogonal states. In this view, there is no division
between the classical and quantum worlds. However, since quantum information
seems to be broader than classical information, a question that arises is how
quantum information can be characterized? It turns out, however, that quantum
information can be quantified in the same way as classical information using
Shannon’s prescription [36].

The second part of the chapter will depict important concepts regarding quantum
information theory, making, when possible, analogies with the classical domain.
After some elementary definitions, we will focus our discussions to quantum
channels and their capacities. In quantum information theory, quantum channels
can be used in many different ways: they can transmit classical information, private
classical information, or quantum information. A quantum channel can be used
alone, with shared entanglement, or even together with other classical and quantum
channels.
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3.2.1 von Neumann Entropy and Other Measures of
Information

The Shannon entropy measures the uncertainty associated with a classical prob-
ability distribution. Quantum states, on the other hand, are described by density
operators, instead of probability distributions [24]. Considering such difference,
John von Neumann realized that quantum mechanics required a definition of
entropy covering pure and also mixed states [20]. He introduced such mathematical
formalism for quantum mechanics in a book published in 1932 [38].

Firstly, we need to define a quantum analogue of a classical source. A quantum
source outputs d quantum states j 1i, j 2i ; : : : ; j di with corresponding proba-
bilities p1, p2; : : : ; pd. States j ii are not restricted to be orthogonal. The quantum
source can be characterized by a density operator � given by

� D
dX

iD1
pi j ii h ij ; (3.18)

where
Pd

iD1 pi D 1.
We are now ready to define the von Neumann entropy.

Definition 3.12 (von Neumann Entropy). The von Neumann entropy of a quan-
tum state � is

S.�/ D � Tr.� log �/: (3.19)

The logarithm is taken on base 2. The logarithm of � can be calculated by taking
its spectral decomposition � D P

i 
i j'ii h'ij, where log � D P
i log.
i/ j'ii h'ij.

Because 
i are the eigenvalues of � and fj'iig forms an orthonormal set, the von
Neumann entropy can be written as

S.�/ D � Tr

2
4X

i

j'ii h'ij
X

j

log
j

ˇ̌
'j
˛ ˝
'j

ˇ̌35

D � Tr

"X
i


i log
i j'ii h'ij
#

D �
X

i


i log
i; (3.20)

with 0 log 0 � 1.

From the definition, it is straightforward to see that the von Neumann entropy of
a density matrix � is the Shannon entropy of its eigenvalues 
i. The von Neumann
entropy can be understood as a measure of the mixedness of �. This measure is
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bounded by 0 � S.�/ � log d; when S.�/ D 0, � is a pure state. The maximum
log d corresponds to the quantum state � D 1d=d. In this case, we have a maximum
ignorance about the state of the system. The state � D 1d=d characterizes a
completely depolarized system [22].

Example 3.11 (von Neumann Entropy of a Pure State). Let � be the density
operator corresponding to the pure state of Example 2.7:

� D 1

2

�
1 1

1 1

�
:

The eigenvalues of � are f0; 1g. Therefore, the von Neumann entropy of � is given by

S.�/ D �0 log 0 � 1 log 1

D 0:

Example 3.12 (von Neumann Entropy of a Mixed State [21]). Let 	 be a quantum
state with the following density matrix

	 D
�
1
2
1
4

1
4
1
2

�
:

The eigenvalues of 	 are
˚
3
4
; 1
4

�
. We can see that 	 is a mixed state:

	2 D
�
1
2
1
4

1
4
1
2

� �
1
2
1
4

1
4
1
2

�
D
�

5
16

1
4

1
4

5
16

�

) Tr.	2/ D 5

16
C 5

16
D 5

8
:

Therefore, the von Neumann entropy of 	 is

S.	/ D � Tr 	 log 	

D �3
4

log
3

4
� 1

4
log

1

4

� 0:3112C 0:5

� 0:8112:

Consider that � is a composite separable state, i.e., it has the form � D �1˝�2˝
: : :˝ �n. The entropy is additive in the following sense:

S.�/ D S.�1 ˝ �2 ˝ : : :˝ �n/ D S.�1/C S.�2/C : : :C S.�n/: (3.21)
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The von Neumann entropy is subadditive [24, p. 515]. If �1 and �2 are reduced
density matrices of a composite system �, the subadditivity inequality states that

S.�/ � S.�1/C S.�2/: (3.22)

Example 3.13 (von Neumann Entropy of a Completely Mixed State [21]). Consider
that Alice and Bob share the Bell state

jˇ10i D j00i � j11ip
2

;

where the first qubit belongs to Alice and the second belongs to Bob. A density
operator that describes this state is

� D jˇ10i hˇ10j

D j00i h00j � j00i h11j � j11i h00j C j11i h11j
2

:

In matrix form, we have

� D 1

2

2
664
1 0 0 �1
0 0 0 0

0 0 0 0

�1 0 0 1

3
775 :

The eigenvalues of � are f1; 0; 0; 0g. We can quickly see that the entropy of � is
S.�/ D � log 1 D 0.

If we trace out the first qubit, we get the reduced density matrix for Bob:

�B D TrA � D 1

2

�
1 0

0 1

�
:

This is a completely mixed state with entropy given by

S.�B/ D � log
1

2
D 1:

We find a similar result for Alice if we make a partial trace on the second qubit. It
is also possible to see that S.�/ � S.�A/C S.�B/ is satisfied.

The von Neumann entropy is a measure of our ignorance about the quantum
state, and plays a similar role for quantum states as the Shannon entropy does for
classical random variables. From the point of view of the von Neumann entropy, a
quantum state can be understood as a quantum information source.
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Besides additivity and subadditivity, some other properties of the von Neumann
entropy are

• Purity. If � is a pure state, then S.�/ D 0.
• Invariance. If U is an unitary transformation, then S.�/ D S.U�U�/ for any �.
• Concavity. Provided pi � 0 and

P
i pi D 1, then S

�P
i pi � �i

� � P
i piS.�i/.

This result shows that the less we know about how a state is prepared the greater
its von Neumann entropy.

• Boundness. S.�/ � H.fpig/ for an ensemble of quantum states j ii with
probabilities pi, and � D P

i pi j ii. The von Neumann entropy of the density
matrix is never greater than the Shannon entropy of the corresponding classical
ensemble. Equality holds when the quantum states are pairwise orthogonal and
hence unambiguously distinguishable.

• Strong Subadditivity. For two systems AB and BC having common subsystem
B, the sum of the von Neumann entropies of their union and intersection is less
than the sum of their von Neumann entropies, i.e., S.�ABC/C S.�B/ � S.�AB/C
S.�BC/.

• Arak-Lieb Inequality. A bipartite state �AB can be completely known (zero
entropy) even though its parts are not, such as when S.�A/ D S.�B/ ¤ 0. In
other words, S.�AB/ � jS.�A/ � S.�B/j [40, Sect. 11.4.1].

Making an equivalence with the classical concepts presented previously, it is
also possible to define a quantum version of the joint entropy, which refers to the
quantum entropy of a combined system.

Definition 3.13 (Quantum Joint Entropy). Given a quantum system �AB with two
subsystems �A and �B, the quantum joint entropy of the combined system is

S.�A; �B/ D S.�AB/ D � Tr �AB log �AB: (3.23)

As we already know, the von Neumann entropy of a pure state is zero. When
a pure state describes an entangled composite quantum system, the corresponding
reduced density operator has positive von Neumann entropy. Thus, the joint entropy
of an entangled quantum system can be negative. This contrasts with the classical
joint entropy, which is never negative [36].

Definition 3.14 (Quantum Conditional Entropy). Given two subsystems A and
B and their composite system AB, the quantum conditional entropy is defined as

S.�Aj�B/ D S.�AB/ � S.�B/: (3.24)

This definition is equivalent to the classical chain rule (3.6). If the joint system
�AB is in a pure state, we have that S.�AB/ D 0. From (3.24), the conditional entropy
becomes S.�Aj�B/ D �S.�B/ � 0. The same holds for S.�Bj�A/ D �S.�A/ � 0.
Hence, the quantum conditional entropy can be negative, which is definitely a non-
classical feature [12].

The relative entropy for the quantum domain is also defined.
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Definition 3.15 (Quantum Relative Entropy). Let � and 	 be two density opera-
tors. The quantum relative entropy of � to 	 is defined by

S.�jj	/ D Tr � log � � Tr 	 log 	: (3.25)

The quantum relative entropy can sometimes be infinite, as can the classical
relative entropy. In particular, the relative entropy is defined to be C1 if the kernel
of 	 , the vector space spanned by the eigenvectors of 	 with zero eigenvalues,
has non-trivial intersection with the support of �, the vector space spanned by
the eigenvectors of � with non-zero eigenvalues. Otherwise, the quantum relative
entropy is finite [24].

The relative entropy tells us how similar two density operators are. It is minimal
when � D 	 , in which case S.�jj�/ D 0. Other properties of the relative entropy are
listed below:

• Additivity. S.	1 ˝ 	2jj�1 ˝ �2/ D S.	1jj�1/ C S.	2jj�2/. The relative entropy
inherits additivity from the von Neumann entropy.

• Non-Negativity. From Klein’s inequality, the quantum relative entropy is always
non-negative, S.�jj	/ � 0, with equality if and only if � D 	 [24].

• Convexity. S.
	1C .1�
/	2jj�/ � 
S.	1jj�1/C .1�
/S.	2jj�/. This rule says
that the relative entropy is convex, which means that mixing of physical states
decreases the distance between them.

• Invariance. S.U�U�jjU	U�/ D S.�jj	/. The quantum relative entropy is
invariant under unitary transformation.

• Partial Trace Decreases Distinguishability. S.TrB 	 jjj TrB �/ � S.	 jj�/. The
less information we have about two states, the less we can tell if there is any
difference between them.

• Donald’s Inequality. The average distance to 	 equals the average distance to
� plus the distance from � to 	 , where � is the average state. In a mathematical
notation,

P
k pkS.�kjj	/ D P

k pkS.�kjj�/C S.�jj	/, where � D P
k pk�k [36].

Definition 3.16 (Quantum Mutual Information). Let A and B be two subsystems
of a larger quantum system AB. We define the quantum mutual information
S.�AI �B/ as

S.�AI �B/ D S.�A/C S.�B/ � S.�AB/: (3.26)

Analogously to the classical case, the quantum mutual information represents
the measure of information correlation between two quantum subsystems A, B. If
the composite system AB is not correlated, �AB D �A ˝ �B, then S.�aI �B/ is zero. If
the joint system is pure (S�AB D 0 and S.�A/ D S.�B/), then S.�AI �B/ D 2S.�A/ D
2S.�B/.

The Venn diagram in Fig. 3.9 illustrates the relationship between the von
Neumann entropy, quantum joint entropy, quantum conditional entropies and mutual
information between two systems �A and �B.
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Fig. 3.9 Venn diagram of
von Neumann entropy and
other quantum measure
functions and their
relationship

S(ρA ; ρB )

S(ρA ) S(ρB )

S(ρAB )

S(ρA  ρB ) S(ρB ρA )⏐ ⏐

3.2.2 Quantum Channels

The time evolution of a closed quantum system � is completely described by
unitary operators. If the system remains closed, it is always possible to return to
the initial system state. Suppose that a closed quantum system interacts in some
way with an open system, here called environment. Additionally, suppose that after
the interaction the system becomes closed again. We denote by E.�/ the state of the
system after interaction.

In general, the final state E.�/ cannot be related by a unitary transformation to the
initial state �. The formalism used to deal with such situation is known as quantum
operations. A quantum operation is a map E from the set of operators of the input
space H1 to the output state space H2 with the following properties1 [22, 24]:

• Property 1. TrŒE.�/� is the probability that the process represented by E occurs,
when � is the initial state. Thus 0 � TrŒE.�/� � 1 for any state �.

• Property 2. E is a convex-linear map on the set of density operators, that is, for
probabilities fpig:

E
 X

i

pi�i

!
D
X

i

piE.�i/: (3.27)

• Property 3. E is a completely positive map. If E maps density operators of system
H1 to density operator of system H2, then E.A/ must be positive for any positive
operator A. Furthermore, .1 ˝ E/.B/ must be positive for any positive operator
B on a composite system RH1, where 1 denotes the identity map on R.

The proof of the next theorem can be found in Nielsen and Chuang [24, p. 368].

1For the sake of simplicity, we consider H1 D H2 D H.
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Theorem 3.3. A map E satisfies properties 1, 2, and 3 if

E.�/ D
X

i

Ei�E�i ; (3.28)

for some set of Kraus operators fEig, which maps the input Hilbert space to the
output Hilbert space, and

P
i E�i Ei � 1.

To model a quantum channel, it is required that the map E takes a valid density
operator � into another valid one E.�/. Hence, quantum channels belong to a class
of maps called completely positive trace-preserving maps, which are completely
positive maps that preserve the trace of operators, i.e.,

1 D Tr �

D Tr E.�/
D Tr

X
i

Ei�E�i

D Tr
X

i

E�i Ei�: (3.29)

Since this relationship is valid for all �, then we must have
X

i

E�i Ei D 1: (3.30)

Putting these concepts together, we present a formal definition of quantum channels.

Definition 3.17 (Quantum Channel). A quantum channel E is a trace-preserving
completely positive map that acts on an input state � as follows:

E.�/ D
mX
i

Ei�E�i ; (3.31)

where fEigm
iD1 is a set of Kraus operators (or operation elements) satisfying the

completeness relation
Pm

iD1 E�i Ei D 1. This way of defining quantum channels is
known as the operator-sum formalism.

The simplest quantum channel is the identity channel, E � 1, which leaves
intact the input quantum state. The identity channel is the quantum counterpart of
the noiseless channel discussed in Example 3.7. For other quantum channels, errors
and noise may occur.

Example 3.14 (Bit-Flip Quantum Channel). In a bit-flip quantum channel the state
of a qubit is changed with probability 1 � p from j0i to j1i and vice versa. Its
operation elements are

np
p1;

p
1 � pX

o
:
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This way, the operator-sum representation is

E.�/ D p�C .1 � p/X�X:

Example 3.15 (Quantum Depolarizing Channel [24]). Consider a quantum depo-
larizing channel. In a 2-dimensional Hilbert space, this channel leaves a qubit intact
with probability 1� p and replaces the input state by a completely depolarized state
12 with probability p:

E.�/ D .1 � p/�C p
1

2
12:

The Kraus operators of this quantum channel are given by the following set:

(r
1 � 3p

4
12;

p
p

2
X;

p
p

2
Y;

p
p

2
Z

)
: (3.32)

Therefore, the operator-sum representation of the quantum depolarizing channel is

E.�/ D .1 � p/�C p

3
.X�X C Y�Y C Z�Z/;

according to which the state � is left untouched with probability 1 � p and the
operators X, Y , and Z are applied each with probability p=3.

The generalization of this quantum channel to an arbitrary dimension d is given
by

E.�/ D .1 � p/�C p

d
1d: (3.33)

3.2.2.1 The Choi-Jamiołkowski Isomorphism

The use of operator-sum formalism to describe non-unitary evolutions of quantum
system, as stated in Definition 3.17, is sufficient to understand most of the
concepts presented in this book. However, there are many ways of representing
trace-preserving completely positive (TPCP) quantum maps. The so-called Choi-
Jamiołkowski isomorphism associates a linear operator with an Hermitian matrix
in the following way. Consider a quantum channel E , a TPCP map from the set of
operators of the input Hilber space H1 to the set of operators in H2. For simplicity,
consider H D H1 D H2 and dim.H/ D d. Let j!iAB D P

i jiiAjiiB be a bipartite,
full Schmidt-rank2 state belonging to H˝H, where jii stands for the computational

2The Schmidt decomposition of a bipartite quantum state j iAB 2 HA ˝ HB is given by
j iAB D P

i 
ijiiAjiiB, where 
i � 0,
P

i 

2
i D 1, and jiiA, jiiB are orthonormal basis for HA, HB,
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basis of H. The Choi-Jamiołkowski matrix associated with the channel E is obtained
by applying the channel E to the second half of j!iAB:

	AB D .1 ˝ E/.j!iAB/: (3.34)

The operator 	AB, also known as dynamical matrix, is a d2 � d2 operator acting on
the Hilbert space H˝2. The map E can be recovered by tracing out the system A
from 	AB � �T ˝ 1, i.e.,

E.�/ D TrA
�
	AB � �T ˝ 1

�
: (3.35)

Although we have supposed E as being a TPCP map, the Choi-Jamiołkowski
isomorphism holds for any positive linear maps (in particular, TPCP maps). More-
over, the dynamical matrix 	AB has special properties depending on the specificity
of the corresponding linear map. For example, the set of completely positive maps is
isomorphic to the set of all positive matrices acting on the corresponding composite
space. In particular, if the operator E is a TPCP map, then the operator 1

Tr.j!ih!jAB/
	AB

is a trace-one positive definite matrix. When the operator E is a unitary rotation (and
hence a unitary operation), then the corresponding dynamical matrix is a density
operator corresponding to a pure state in H˝2 [3].

The Choi-Jamiołkowski isomorphism plays an important role in some problems
of quantum information. When dealing with entanglement witness, for example, the
isomorphism is employed to decide whether a given bipartite state �AB is entan-
gled or separable. Some results concerning the additivity conjecture of quantum
information were demonstrated using this framework for representing quantum
channels [11]. In the context of zero-error quantum communications, properties
of the Choi-Jamiołkowski isomorphism are used to demonstrate the existence of
quantum channels whose zero-error error capacity can be superactivated. More
precisely, it was demonstrated the existence of two quantum channels, E1 and E2,
for which no information can be perfectly transmitted when the channels are used
individually, whereas perfect information transmission can be accomplished once
the channels are used together, i.e., the channel E1 ˝ E2 has positive zero-error
capacity.

Example 3.16 (The Choi-Jamiołkowski Isomorphism). Consider the quantum depo-
larizing channel discussed in Example 3.15:

E.�/ D .1 � p/�C p

3
.X�X C Y�Y C Z�Z/ :

respectively. The cardinality of f
ig, including multiplicity, is known as Schmidt rank or Schmidt
number of j iAB.
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The Choi-Jamiołkowski matrix associated with the channel E is

	AB D .1d ˝ E/.j!iAB/

D .1 � p/j!ih!jAB C p

3
.12 ˝ X � j!ih!jAB � 1d ˝ X C

C 1d ˝ Y � j!ih!jAB � 1d ˝ Y C 1d ˝ Z � j!ih!jAB � 1d ˝ Z/;

where d is the dimension of the input/output Hilbert space H, j!iAB D Pd
iD1 jiiAjiiB

and fj1i; : : : ; jdig stands for the computational basis of H. Equation (3.35) can be
used to recover the Kraus operators of the channel or to calculate the output for a
given input state.

To better illustrate this example, consider the depolarizing channel of two qubits
with p D 1=4. Let fj0i; j1ig be the computational basis of the 2-dimensional Hilbert
space H. The (up to a normalization factor) full Schmidt-rank state in H˝2 is given
by

j!iAB D j00i C j11i:

The dynamical matrix corresponding to the channel E is

	AB D

2
664
5
6

0 0 6
9

0 1
6

0 0

0 0 1
6

0
6
9

0 0 5
6

3
775 :

Because E is a completely positive trace-preserving map, the matrix 	AB is positive
definite, i.e., all eigenvalues of 	AB are positive. For instance, suppose we wish to
calculate E.�/, where � D j ih j, with j i D 0:6j0i C 0:8j1i. The corresponding
output state is given by

E.�/ D TrA
�
	AB � �T ˝ 12

�

D TrA

0
BB@
0:30 0:32 0:40 32

75

0 0:06 0 0:08

0:08 0 8
75

0

0:24 0:40 0:32 8
15

1
CCA

D



61
150

0:32

0:32 89
150

�
:

The dynamical matrix (3.34) is known as standard Choi-Jamiołkowski matrix of
E because it is obtained by setting j!iAB D P

i jiiAjiiB. In fact, the isomorphism
holds for any bipartite, full Schmidt-rank state j!iAB D P

i 
ij'iiAj�iiB. Since A
and B are identical Hilbert spaces, we can find a unitary basis change operator U
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such that Uj'ii D j�ii. Therefore, the map (3.35) becomes

E.�/ D TrA

�
.U	�1=2

A ˝ 1/ � 	AB � .	�1=2
A U� ˝ 1/ � �T ˝ 1

	
; (3.36)

where 	A D TrB .	AB/. Finally, the non-standard (general) Choi-Jamiołkowski
matrix 	AB is related with the standard dynamic matrix Q	AB by

Q	AB D .U	�1=2
A ˝ 1/ � 	AB � .	�1=2

A U� ˝ 1/: (3.37)

3.2.3 Accessible Information, Holevo Bound and C1;1 Capacity
of Quantum Channels

Consider a classical source emitting symbols X D 1; : : : ; n with probabili-
ties p1; : : : ; pn. Suppose that symbols emitted by the source are used by Alice to
prepare quantum states �1; : : : ; �n. After the preparation, Alice gives the quantum
state to Bob, which is allowed to perform individual measurements aiming at
inferring the symbol emitted by the source. Define X and Y as being the random
variables representing the classical source and measurement outcomes, respectively.
The accessible information is a measure of the maximum mutual information among
these two random variables.

Definition 3.18 (Accessible Information). Let F be a quantum source emitting
quantum states f�1; : : : ; �ng with probabilities p1; : : : ; pn. Thus, this source is
characterized by the ensemble f�i; pig. Let X be a random variable that represents
the source outputs. Let Y be a random variable describing measurement outcomes
of the quantum states �i. The accessible information between X and Y is given by

Iacc.F/ D max
fMmg

I.XI Y/; (3.38)

where the maximum is taken over all possible measurement schemes.

The accessible information is a measure of how well Bob can infer the state
prepared by Alice. Unfortunately, no general method for calculating the accessible
information is known; however, a variety of important bounds can be proved, the
most important of which is the Holevo bound [24].

Definition 3.19 (Holevo Quantity [15]). Consider a quantum memoryless source
F with ensemble f�i; pig of quantum states, i.e., the source F emits �i with
probability pi. Define

�.F/ D S.�/ �
X

i

piS.�i/; (3.39)
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where S is the von Neumann entropy and � D P
i pi�i. The quantity �.F/ is known

as Holevo quantity.

The Holevo bound states that

Iacc.F/ � �.F/: (3.40)

It establishes an upper limit on how much information can be contained in a
quantum system represented by a particular ensemble. Holevo bound and accessible
information are discussed in more detail in Chap. 7.

Considering information measures and the characterization of quantum channels
presented previously, we are ready to introduce the C1;1 capacity of a quantum
channel. This capacity can be understood as the maximum of the accessible
information, at the channel output, over all ensembles of input states, once each
output state is individually measured. [30].

Definition 3.20 (C1;1 Capacity [15, 30]). Let E be a quantum channel as presented
in Definition 3.17. The C1;1 capacity of E , denoted by C1;1.E/, is defined as
the maximum over all input ensembles of the accessible information of the
corresponding output ensemble:

C1;1.E/ D maxf�x;pxgIacc.fE.�x/; pxg/; (3.41)

where Iacc is the accessible information of the ensemble fE.�x/; pxg.

The information transmission protocol of the C1;1 capacity has three con-
straints:

1. Entangled states are not allowed between two or more uses of the channel E . It
explains the first “1” subscript in the C1;1 capacity.

2. Joint quantum measurements involving several channel output are not allowed.
This is the meaning of the second “1.”

3. Adaptive measurements on the output are not allowed, i.e., Bob is not allowed to
perform a partial measurement over the state, use such result to choose the next
measurement, and return to complete the first measurement [22, 30].

Example 3.17 (Adapted from [30]). Consider that a quantum source can emit the
states j 1i and j 2i according to a uniform probability distribution. Let j 1i D j0i
and j 2i D cos 
 j0i C sin 
 j1i, where 
 is a real parameter. The density operator
� that represents this quantum source is

� D 1

2

�
1C cos2 
 cos 
 sin 

cos 
 sin 
 1 � cos2 


�
:

The state � is sent over a quantum channel E which may introduce errors. Suppose
that the quantum channel E is a binary symmetric channel with error probability

p D 1

2
� sin 


2
:
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Fig. 3.10 A plot of the von
Neumann entropy of the
density matrix � and the
accessible information for
E.�/, for 0 � 
 � �=2
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In this channel, the input j 1i is replaced by j 2i with probability p or left
untouched with probability 1 � p. The same holds for j 2i.

The von Neumann entropy of the input � is equal to H. 1
2

� cos 

2
/. The accessible

information is 1� H. 1
2

� sin 

2
/. Both measures of information as a function of 
 are

illustrated in Fig. 3.10. It is possible to see that the von Neumann entropy is larger
than the accessible information.

Considering this scenario, the value of 
 which maximizes the output’s accessible
information is 
 D �=2. In this case,

C1;1.E/ D 1 bit; (3.42)

which means that Bob can retrieve at most 1 bit per use of this quantum channel.
The result is consistent with what we expected, since p D 0 (identity channel) for

 D �=2.

3.2.4 Classical Capacity of a Quantum Channel

Quantum channels can be used in many different ways to transmit information
between two parties. If we restrict ourselves to bits, the classical capacity of
a quantum channel describes the amount of classical information that can be
transmitted through the channel, a natural extension of the capacity definition
from classical channels to the quantum world. This measure of information can
be described by means of quantum mutual information [17].

Recall the problem of sending classical messages M randomly chosen from
a set fM1;M2; : : : ;Mng by means of a quantum channel. Differently from the
first assumption of the C1;1 communication protocol, Alice is allowed to prepare
codewords as tensor products of quantum states �1 ˝ �2 ˝ : : :, where each of
the states �1; �2; : : : is chosen from an ensemble f�i; pig. Moreover, Bob is now
allowed to use a POVM at the channel output. This means that he can wait for a
number of states and measure all these states together (joint measurement), instead
of measuring every qubit one by one (single measurement).
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The notation C1;1.E/ stands for the classical capacity of a quantum channel E , in
a scenario where Alice cannot use entangled states between two or more uses of the
channel, whereas Bob is allowed to perform collective measurements at the channel
output. The problem of finding C1;1 was studied simultaneously and independently
by Holevo [16] and by Schumacher and Westmoreland [27]. The following result is
known as the Holevo-Schumacher-Westmoreland (HSW) theorem.

Theorem 3.4 (HSW Theorem [16, 27]). The C1;1.�/ capacity of a quantum
channel E is

C1;1.E/ � max
f�i;pig

"
S

 
E
 X

i

pi�i

!!
�
X

i

piS.E.�i//

#
; (3.43)

where the maximum is taken over all ensembles fpi; �ig of input quantum states.

The proof of this theorem makes use of random coding and typical subspaces.
A detailed demonstration can be found in Nielsen and Chuang [24, p. 555]. As
with Shannon’s channel coding theorem (vide Theorem 3.2), the capacity C1;1.�/
represents the maximum code rate for which the probability of transmission error
can be made arbitrarily small, assuming sufficiently long message lengths [12].

Example 3.18 (C1;1 Capacity of a Quantum Depolarizing Channel). Consider a 2-
dimensional quantum depolarizing channel as presented in Example 3.15. Consider
that Alice can send states from an ensemble fˇ̌ j

˛ ˝
 j

ˇ̌
; pjg. Then, after passing

through the depolarizing channel, we have

E.ˇ̌ j
˛ ˝
 j

ˇ̌
/ D p

ˇ̌
 j
˛ ˝
 j

ˇ̌C .1 � p/
1

2
:

The quantum state E.ˇ̌ j
˛ ˝
 j

ˇ̌
/ has eigenvalues .1C p/=2. Therefore,

S.E.ˇ̌ j
˛ ˝
 j

ˇ̌
// D H



1C p

2

�
;

which does not depend on
ˇ̌
 j
˛

at all. Hence, maximization (3.43) can be done
by maximizing the entropy S.

P
i E.

ˇ̌
 j
˛ ˝
 j

ˇ̌
//. Notice that if fˇ̌ j

˛g is a set of
orthonormal states, then

P
j E.

ˇ̌
 j
˛ ˝
 j

ˇ̌
/ D p.

P
j

ˇ̌
 j
˛ ˝
 j

ˇ̌
/ C .1 � p/12 D 12,

which maximizes S.
P

j E.
ˇ̌
 j
˛ ˝
 j

ˇ̌
//. Therefore, the HSW capacity of the quantum

depolarizing channel E is given by

C1;1.E/ D 1 � H2



1C p

2

�
:

Figure 3.11 illustrates the plot of C1;1.E/ versus the probability p. One can
notice that the lower the probability of dephasing, the higher the channel capacity.
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Fig. 3.11 A plot of the C1;1
capacity for a quantum
depolarizing channel versus
the probability of
non-dephasing
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Example 3.19 (Classical Capacity of a Bit-Flip Quantum Channel [12]). Let E
denote a bit-flip quantum channel with flip probability equal to p, as previously
discussed in Example 3.14. Assuming orthogonal input symbols �1 D j0i h0j and
�2 D j1i h1j, the channel output is given by

E
 X

i

pi�i

!
D E.p1�1 C .1 � p1/�2/

D



p C p1 � 2 � p � p1 0

0 1 � Œp C p1 � 2 � p � p1�

�
:

Notice that p stands for the bit-flip error probability, while p1 stands for the
probability associated with �1 in the input ensemble. We are going to obtain the
von Neumann entropies in order to calculate the channel capacity. First, we have

S

"
E
 X

i

pi�i

!#
D � f.p C p1 � 2 � p � p1/ log2.p C p1 � 2 � p � p1/C

C Œ1 � .p C p1 � 2 � p � p1/ log2Œ1 � .p C p1 � 2 � p � p1/��g
D H.p C p1 � 2 � p � p1/:

The von Neumann entropy of E.�1/ and E.�2/ is given by

S.E.�1// D H.p/;

S.E.�2// D H.p/:

Combining these results, we have that the C1;1 capacity of the bit-flip quantum
channel E is

C1;1.E/ D max
fp;p1g

H.p C p1 � 2 � p � p1/ � H.p/:
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Fig. 3.12 A plot of the C1;1
capacity for a bit-flip
quantum channel considering
different p1 values
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This maximization problem can be solved analytically by studying the partial
derivatives, but we must recall that max S.�/ is an upper bound for the capacity.
Using the definition of the input density operator � D p1�1 C .1 � p1/�2, we get
S.�/ D H.p1/. The maximum of S.�/ is attained considering a uniform distribution,
i.e., when p1 D 1=2. Therefore, for a bit-flip error probability p, the channel capacity
is

C1;1.E/ D H.p C 1=2 � 2p=2/ � H.p/

D 1 � H.p/: (3.44)

Figure 3.12 shows the values of C1;1.E/ where E is a bit-flip quantum channel.
This capacity is shown as a function of the bit-flip probability p and for different
values of p1, the probability associated with one of the states in the input ensemble.

Interestingly, the channel capacity is seen to have two maxima, i.e., for p D 0

and p D 1. These two limiting cases correspond to the noiseless channel and the
“deterministic” bit-flip channel, respectively. A deterministic bit-flipping is simply
a change of code polarity, meaning that the classical codewords from Alice to Bob
are exactly inverted or complemented, which entails no information degradation or
error. The other limiting situation is obtained for p D 1=2, meaning that the qubit
has a 50% chance of being flipped and a 50% chance of being conserved in its
integrity. Bob’s measurement amounts to a coin-flipping experiment, and all initial
information is lost, which is the situation of the useless channel [12].

3.2.5 Other Capacities of Quantum Channels

A quantum communication channel can be used for several purposes: it can transmit
classical information, private classical information, or quantum information. The
channel can be used alone, with shared entanglement, or even together with other
quantum channels. For each of these settings there is a capacity that quantifies a
channel’s potential for communication [33].
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In this section, we proceed our study of quantum channels capacities by
presenting other common types: the adaptive capacity of a quantum channel, the
entanglement-assisted capacity, and also the quantum capacity. In Chap. 6, we cover
the private capacity of a quantum channel. Besides, recall that most of this book is
devoted to introduce and discuss the consequences of the zero-error capacity of
quantum channels.

The adaptive capacity of a quantum channel, defined by Shor [31], is similar
to the C1;1 capacity, except that Bob can perform adaptive measurements on the
received states. First, he makes a measurement on a given state that only partially
reduces the quantum state. Then, Bob uses this measurement outcome to make
intervening measurements on other states and, finally, he returns to make a further
measurement on the reduced state of the original signal. The latter measurement
may depend on the outcomes of intervening measurements [22].

In his paper, Shor illustrated the adaptive capacity using the lifted trine states:

T0.˛/ D p
1 � ˛ j000i C p

˛ j001i ; (3.45)

T1.˛/ D �1
2

p
1 � ˛ j000i C

p
3

2

p
1 � ˛ j010i C p

˛ j001i ; (3.46)

T2.˛/ D �1
2

p
1 � ˛ j000i �

p
3

2

p
1 � ˛ j010i C p

˛ j001i : (3.47)

If the lifted trine states are used, then the adaptive capacity is strictly greater than the
C1;1 capacity, and less than the C1;1 capacity, for ˛ > 0. Moreover, it was shown
that for any ensemble of two pure states at the channel input, the adaptive capacity
is equal to the C1;1 capacity.

The adaptive capacity of a quantum channel is formalized below.

Definition 3.21 (Adaptive Capacity [31]). The adaptive capacity C1;A.E/ of a
quantum channel E is defined to be the supremum of the information rate over all
encodings and all measurement strategies that use quantum operations local to the
separate states and classical computation to coordinate them.

As previously introduced in Sect. 2.5, entanglement is a very interesting feature
of quantum mechanics that is used as a physical resource by several protocols
and applications in quantum information and computation. Regarding quantum
channels, Bennett and his collaborators [4, 5] have demonstrated that shared
entanglement can increase the classical capacity of noisy quantum channels [22].

The entanglement-assisted capacity of a noisy quantum channel is defined as the
asymptotical classical information transmission rate that could be sent through a
noisy quantum channel in a scenario where an arbitrary amount of entanglement is
shared between Alice and Bob prior to the transmission.

Definition 3.22 (Entanglement-Assisted Capacity [5]). The entanglement-
assisted capacity of a noisy quantum channel E is

CE.E/ D max
�2Hin

S.�/C S.E.�// � S..E ˝ I/.˚�//; (3.48)
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where � 2 Hin is a density matrix over the input states; ˚� is a pure state belonging
to the tensor product of state spaces Hin ˝ HR such that TrRŒ˚�� D �; Hin is the
input state space and HR is a space of reference. The third term of the right side
of (3.48), S..E ˝ I/.˚�//, denotes the von Neumann entropy of the purification ˚�
of � over the reference system HR, half of which (Hin) has been sent through the
channel E while the other half (HR) has been sent through the identity channel (this
corresponds to the portion of the entangled state that Bob holds at the start of the
protocol) [22].

The quantity being maximized in (3.48) is the quantum mutual information. In
order to transmit information using the protocol described above, Alice and Bob
“consume” entanglement. In general, S.�/ qubits of entanglement (i.e., EPR pairs)
per channel use are necessary to reach the entanglement-assisted capacity.

A remarkable thing about (3.48) is that we have an equality—the formula is
single-letter. There is no need to take a limit over many channels uses, so this
formula gives a complete characterization of the channel’s capability for classical
transmission given free access to entanglement [33]. It can also be concluded that
shared entanglement does not change the additivity of quantum mutual information
[17].

So far, we have presented different kinds of classical capacities for quantum
channels. However, quantum channels extend the possibilities, and we can send
classical information, entanglement-assisted classical information, private informa-
tion, and, of course, quantum information [17].

To characterize this scenario, Alice has a quantum system whose state she would
like to transmit coherently to Bob. To do so, Alice first encodes this quantum
system into non-orthogonal superposed or entangled quantum states from a certain
ensemble, sending the encoded state through a noisy quantum channel. Bob, in his
turn, receives a quantum state which will be decoded. We are interested in answering
how much quantum information can be reliably transmitted over a noisy quantum
channel. The answer to this question is a quantity called quantum capacity, which
also characterizes the fundamental limits of quantum error correction [33].

Before introducing the quantum capacity, we need to introduce the notion of
fidelity, a measure that characterizes the quality of a quantum message transmission.
The fidelity measures the probability of confusing two states if we are allowed to
make only one measurement on one system, prepared in one of the two states [36].

Definition 3.23 (Fidelity). Let � and 	 be two density operators. The fidelity F
between � and 	 is given by

F.�; 	/ D Tr


qp
�	

p
�

�
: (3.49)

Fidelity is a concept that comes from the inner product of two quantum states.
Let j i and j'i be two states. The inner product j h'j ij2 gives the probability of
finding the system in the state j'i if it is known to be in the state j i, and vice
versa. Hence this is a kind of measure of how similar the two states are or how
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much overlap there is between them. Suppose that � D j i h j and 	 D j'i h'j.
Since they are pure states, �2 D � and 	2 D 	 , and hence, � D p

� and 	 D p
	 .

Therefore, the fidelity of these two pure states is F.�; 	/ D j h'j ij [21].
The fidelity is symmetric, i.e., F.�; 	/ D F.	; �/; it is invariant under unitary

operations, that is, F.U�U�;U	U�/ D F.�; 	/. Because the fidelity represents a
probability, F.�; 	/ is a number that ranges between 0 and 1, i.e., 0 � F.�; 	/ � 1.

Consider that Alice has a quantum source which emits states �.1/; �.2/; : : : ;
�.n/; : : :, where �.n/ 2 H˝n

in and Hin is the input Hilbert space. We define the entropy
rate R of this source as

R D lim sup
n!1

S
�
�.n/

�
n

; (3.50)

where S.�/ is the von Neumann entropy.
In order to send a state emitted by this source through a quantum channel E , Alice

needs to encode the state according to some encoding function Enc W B.H˝n
in / !

B.H˝m
E /, where Hin is the input Hilbert space and HE is the channel Hilbert space.

Upon receiving the quantum state at the channel output, Bob must decode it using a
certain decoding function Dec W B.Hout/ ! B.H˝n

in /. We say that the pair .Enc;Dec/

is a coding scheme for Alice’s source into the channel E , where Enc and Dec are trace
preserving maps.

We say that a rate R is achievable over a quantum channel E if there is a quantum
source with entropy R that may be sent reliably over the channel. We define the
quantum capacity of the channel E , denoted by Q.E/, as the supremum of all
achievable rates over the channel E .

Definition 3.24 (Quantum Capacity [20]). The quantum capacity of a quantum
channel E is the largest number Q.E/ such that for any rate R < Q.E/, � > 0, and
block sizes n and m, there exists an encoding procedure Enc mapping n qubits into
m > n intermediate systems, Enc.�

.n//, and feeds them to m independent instances
of a quantum channel characterized by the superoperator E ; there should also be a
decoding procedure Dec mapping the m channel outputs to n qubits such that the
original state �.n/ can be recovered with a fidelity F at least 1 � �, i.e.,

F.�.n/;Dec.E˝m.Enc.�
.m///// D 1 � �: (3.51)

In order to introduce an important theorem regarding the quantum capacity, it is
necessary to rethink how information is modified when it is transferred through a
noisy quantum channel EAB between Alice and Bob. We consider that the system
of interest emitted by Alice’s source, say �A, interacts with the environment E. The
environment starts in a pure state and the evolution is described by a quantum closed
system, which covers the system of interest and the environment. The output of
the quantum channel to Bob is the result of a partial trace over the state of the
environment. In a mathematical notation, a noisy evolution through E has the form:

E.�A/ D TrE
�
U�A ˝ j0i h0jE U�

�
; (3.52)



3.3 Further Reading 61

where j0i is some fixed pure state in which the environment starts and U is a unitary
matrix from AE to BE [33].

We now introduce another quantity very important for quantum information
theory, the coherent information. It is a property of a quantum state �A and a
quantum channel E , which attempts to describe how much quantum information in
the state will remain after the state goes through the channel. Coherent information
is the quantum analogue of the classical mutual information, defined previously in
Sect. 3.1.1.

Definition 3.25 (Coherent Information [26]). The coherent information between
a state � and a quantum channel E is defined as

I.�iE/ � S.E.�// � S.E ; �/; (3.53)

where S.E.�// is the von Neumann entropy of the output state and S.E ; �/ is the
entropy exchange between the state and the channel.

Remember that the Shannon capacity of a classical channel is calculated in terms
of the mutual information. Analogously, the quantum channel capacity to carry
quantum information is given in terms of coherent information. This result was
stated and proved by Lloyd [19], Shor [29], and Devetak [13]. The LSD theorem
states that

Q.E/ D lim
n!1

1

n
Q.1/.E˝n/

D lim
n!1

1

n
max
f�i;pig

I.�AiE.�A//

D lim
n!1

1

n
max
f�i;pig

.S.�B/ � S.�E//; (3.54)

where �B is the channel output and �E is the state of the environment [17].
The normalization factor 1=n indicates that the information transfer is measured
per channel use. A detailed proof of this theorem can be found in Wilde [39,
Sect. 23.n.5].

For a certain quantum channel E , typically, Q.E/ < C.E/ < CE.E/ [20]. Detailed
examples of how to calculate the quantum capacity for amplitude damping and
erasure quantum channels can be found in Wilde [39, Sect. 23.7].

3.3 Further Reading

In this chapter we introduced fundamental concepts of information theory by pre-
senting it in two parts: the classical information theory and the quantum information
theory. Regarding the classical part, we introduced measures of information, the
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notion of channel capacity, and two important theorems (noiseless coding and
channel coding), both proposed by Shannon. Regarding the quantum part, we
introduced some important information measures, the notion of quantum channels,
and some different kinds of quantum channel capacities, such as the classical,
entanglement-assisted, and quantum capacities.

There are many interesting topics regarding information theory that could not
be covered here for matters of space and time. Regarding the classical part, some
acclaimed surveys recall the development and the main results of this theory
[6, 32, 37]. Also, many books with a more didactic approach have been published
with exercises and examples, aiming at introducing this theory to the novice reader
[9, 10, 14, 18, 23, 35].

Regarding quantum information theory, we refer the reader to very up-to-date
books that comprise many concepts of this theory, discussing results, detailing
proofs, and also presenting references to the seminal papers [12, 17, 20, 24, 36, 39].
In particular, for more details regarding the capacity of quantum channels, we
recommend the reader to take a look at the following papers [2, 4, 19, 25, 26].
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Chapter 4
Classical Zero-Error Information Theory

Information theory was introduced by Claude E. Shannon in 1948 [10]. In his paper,
Shannon defined a number C representing the capacity of a communication channel
for transmitting information reliably. He proved the existence of codes that allow
reliable transmission between two parties, provided that the communication rate is
less than the channel capacity. A randomly generated code with large block size has
a high probability to be a good code. By reliable transmission we mean that the error
probability can be made as close to zero as possible, but not actually zero. Most of
the information theory issues, including channel capacity, are based on probability
theory and statistics. This asymptotic capacity is hereafter denoted as the ordinary
capacity.

In 1956, 8 years after his first paper introducing information theory, Shannon
demonstrated how discrete memoryless channels (DMCs) could be used to transmit
information in a scenario where no errors are permitted, instead of allowing an
asymptotically small probability of error. The so-called zero-error capacity was
defined as the least upper bound of rates at which information can be transmitted
through a DMC with a probability of error equal to zero [11].

Most of the real communication systems do not require a zero probability of error
when transmitting and receiving information. Although, there are some situations in
which it would be interesting to consider a scenario where no transmission errors
are allowed and ask for the maximum rate at which information can be transmitted
[6]:

• Applications where no errors can be tolerated;
• In some models, only a small number of channel uses or a few source instances

are available. Therefore, we cannot appeal to results ensuring that the error
probability decreases as the number of uses or instances increases;

• Zero-error information theory can be used to study the communication complex-
ity of error-free protocols and functions;

• Functionals and methods originally used in zero-error information theory are
often applied in mathematics and computer science.

© Springer International Publishing Switzerland 2016
E.B. Guedes et al., Quantum Zero-Error Information Theory,
DOI 10.1007/978-3-319-42794-2_4
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In his seminal paper, Shannon gave a graph theoretic approach to the zero-
error capacity. By associating a DMC with a graph, Shannon introduced a new
quantity in graph theory, the Shannon capacity of a graph [1, 4, 5]. Differently from
the ordinary capacity, finding the zero-error capacity of a DMC (or a graph) is a
combinatorial problem. Because of its restrictive nature—a vanishing probability of
error is required—the zero-error information theory is frequently unknown to many
information theorists. Nevertheless, its methods play an important role in areas like
combinatorics and graph theory.

This chapter aims to introduce the main concepts of the classical zero-error
information theory. We begin by defining the zero-error capacity of a discrete
memoryless channel in Sect. 4.1. Section 4.2 shows how the problem of finding
the zero-error capacity can be stated in terms of a graph quantity. The Lovász theta
function and some of its properties are depicted in Sect. 4.3 and, lastly, in Sect. 4.4,
the zero-error capacity of the sum and product of channels is discussed.

4.1 The Zero-Error Capacity

In communication theory, we say that Alice communicates with Bob when the
physical acts of Alice have induced a desired physical state in Bob. As this transfer
of information is a physical process, it is subject to the uncontrollable ambient noise
and imperfections of the physical signaling process itself. The communication is
successful if the receiver Bob and the transmitter Alice agree on what was sent.

A common classical communication system was shown in Fig. 3.3. The encoder
maps source symbols from a finite alphabet into some sequence of channel symbols,
afterwards called codeword, which is sent through the channel. The channel
produces an output sequence which is random but has a probability distribution that
depends on the input sequence. From the output sequence, we attempt to recover
the transmitted message. Two input sequences are said to be confusable when they
induce the same output sequence. Shannon showed that we can choose a “non-
confusable” subset of input sequences in a manner that with high probability, there is
only one highly likely input that could have caused the particular output. Essentially,
this means that we can reconstruct input sequences at the output with negligible
probability of error. As already described in Chap. 3, the maximum rate at which
this can be done is called the ordinary capacity of the channel C.

The channel coding theorem asserts that even the best coding scheme attaining
the ordinary capacity C allows for an asymptotically small but non-vanishing
probability of error. From now, we will be interested in the case where no
transmission errors are permitted.

Consider a classical discrete memoryless channel .X ;Y;P/. Symbols in the input
and output alphabets will be hereafter called input and output symbols, respectively.
Shannon [11] defined an error-free code as follows:
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Definition 4.1 (.M; n/ Error-Free Code). An .M; n/ error-free code for the DMC
.X ;Y;P/ in Fig. 3.3 is composed of the following:

1. A set of indexes f1; : : : ;Mg, where each index is associated with a classical
message.

2. An encoding function

Xn W f1; : : : ;Mg ! X n;

yielding codewords x1 D Xn.1/; : : : ; xM D Xn.M/. The set of all codewords is
called a codebook.

3. A decoding function

g W Yn ! f1; : : : ;Mg;
which deterministically assigns a guess to each possible received codeword with
the following property:

Pr .g.Yn/ ¤ ijXn D Xn.i// D 0 8 i 2 f1; : : : ;Mg: (4.1)

In the zero-error context, we are particularly interested in symbols that can be
fully distinguished at the channel output. They are called non-adjacent symbols.

Definition 4.2 (Adjacency). Consider a DMC .X ;Y;P/. Two input symbols
xi; xj 2 X are said to be adjacent (or indistinguishable) if there exists an output
symbol in Y that can be caused by either of these two, i.e., there is an y 2 Y
such that both p.yjxi/ and p.yjxj/ do not vanish. Otherwise, they are said to be
non-adjacent (or distinguishable).

Consider the sequence x D x1x2 : : : xn being transmitted through a DMC. The
output sequence y D y1y2 : : : yn is received with probability

pn.yjx/ D
nY

iD1
p.yijxi/: (4.2)

If two sequences x0 and x00 can both result in the sequence y with positive probability,
then no decoder can decide with zero probability of error which of the two sequences
has been transmitted by the sender. Such sequences will be called indistinguishable
or adjacent at the receiving end of the DMC. In fact, if all input symbols in X are
adjacent to each other, any code with more than one codeword has a probability of
error great than zero. This is equivalent to say that x0 and x00 are distinguishable if
and only if there exists at least one i, 1 � i � n, such that x0

i and x00
i are non-adjacent,

as illustrated in Fig. 4.1.
It is useful to think of probability distributions p.yjx/ and pn.�jx/ as vectors

of dimension jX j and jX jn, respectively. Using this approach, we can rewrite the
statement given earlier by saying that two sequences x0; x00 2 X n are distinguishable
at the receiving end of the DMC channel if and only if the corresponding vectors
pn.�jx0/ and pn.�jx00/ are orthogonal.
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x′ = x′
1x

′
2 . . . x′

i . . . x′
n−1x

′
n

x′′ = x′′
1x

′′
2 . . . x′′

i . . . x′′
n−1x

′′
n

Fig. 4.1 Two distinguishable sequences x0 and x00. For at least one i, 1 � i � n, the input symbols
x0

i and x00

i are non-adjacent

Definition 4.3 (Zero-Error Capacity). Define N.n/ as the maximum cardinality
of a set of mutually orthogonal vectors among the pn.�jx/, x 2 X n. The zero-error
capacity of the channel .X ;Y;P/ is given by

C0 D lim sup
n!1

1

n
log N.n/: (4.3)

Intuitively, C0 is the bit-per-symbol error-free information transmission rate capa-
bility of the channel.

The number N.n/ in (4.3) is super multiplicative, i.e.,

N.n C m/ � N.n/ � N.m/: (4.4)

To verify this, let x0 and x00 be sequences of length n and m, respectively. Then,
there exist at least N.n/ � N.m/ non-adjacent sequences of length n C m, obtained by
concatenating sequences of length n with sequences of length m. Hence, we can use
the Fekete’s lemma [12, p. 85] to demonstrate that the superior limit (4.3) is a true
limit and actually coincides with the supremum of numbers 1

n log N.n/.
Shannon pointed out that the zero-error capacity of a DMC .X ;Y;P/ depends

only on which symbols in X are adjacent to each other. This is a major difference
between the error-free capacity and the ordinary capacity, since in the latter the
capacity depends on the choice of the probability distribution of the input symbols
X . It is easy to demonstrate that a DMC has a non-vanishing error-free capacity if
and only if there exist at least two non-adjacent symbols in X . Figure 4.2 shows
some discrete memoryless channels. For the binary symmetric channel with 0 <
p < 1, the two input symbols are adjacent yielding C0 D 0. Both channels in
Fig. 4.2b, c have at most two pairs of non-adjacent symbols. For example, if we
consider codewords of length one, we can perform error-free communication by
choosing to send only symbols f0; 2g or f1; 3g of the channel in Fig. 4.2b. In this
case, the rate of the code is log 2 D 1 bit per channel use.

One might ask whether we can increase the transmission rate by varying the
code length or whether C0 D log N.1/. It turns out that we can. Consider the
sequences f00; 12; 24; 31; 43g of length 2 for the G5 DMC of Fig. 4.2c. Clearly,
these sequences are pairwise distinguishable at the channel output and hence are
codewords of an error-free code of length two. The ordinary capacity of G5 can be
easily calculated (C D log 5=2) . Therefore, the zero-error capacity of G5 is lower



4.1 The Zero-Error Capacity 69

Fig. 4.2 Some discrete
memoryless channels. Since
we are interested in adjacency
relations, we omit the
transition probabilities. (a)
The binary symmetric
channel. (b) A discrete
channel with quaternary
alphabeth. (c) The pengaton
channel G5
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and upper bounded by

1

2
log 5 � C0.G5/ � log 5=2: (4.5)

These bounds were given by Shannon in 1956, and the problem of finding the
capacity C0.G5/ remained open during 20 years until Lovász [7] gave a brilliant
solution. He showed that the Shannon’s lower bound was tight

C0.G5/ D 1

2
log 5:

We demonstrate such result in Sect. 4.3, where we introduce the Lovász theta
function.

As we can see, the calculation of the zero-error capacity is a very difficult
problem even for simple channels. Although some methods we discuss in the next
sections enable the computation of the zero-error capacity of particular classes of
discrete memoryless channels, the general problem remains wide open.

4.1.1 The Adjacency-Reducing Mapping

The calculation of the zero-error capacity of simple channels can be done using the
notion of adjacency-reducing mapping. This means a mapping f W X ! X with
the property that if xi and xj are not adjacent in the channel, then f .xi/ and f .xj/

are not adjacent. Given an .M; n/ error-free code for the channel, we can obtain
an equivalent error-free code by applying the adjacency-reducing mapping to each
codeword, since f never produces new adjacencies. Suppose that for a given DMC
the mapping f takes all symbols in X onto a subset X 0 
 X of the symbols no
two of which are adjacent. Clearly, there are at least jX 0jn n-length distinguishable
sequences for this channel. However, any error-free code of length n has at most
jX 0jn sequences, given that the application of f on this code leads to a new error-
free code whose alphabet contains only jX 0j symbols. These observations imply the
following theorem:
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Theorem 4.1. Let .X ;Y;P/ be a discrete memoryless channel. If all symbols in
X can be mapped by an adjacency-reducing mapping f into a subset X 0 
 X of
non-adjacent symbols, then C0 D log jX 0j.

As an example, consider the DMC illustrated in Fig. 4.2b. Let f be a mapping
with f .0/ D 0, f .1/ D 0, f .2/ D 2 and f .3/ D 2. It is easy to see that f is
an adjacency-reducing mapping satisfying the condition of Theorem 4.1, where
X 0 D f0; 2g. Therefore, the zero-error capacity of the channel is C0 D log jX 0j D 1

bit per channel use. It is easy to see that we cannot construct an adjacency-reducing
mapping f for the G5. Except for the G5 channel, it is possible and easy to construct
adjacency-reducing maps for all discrete memoryless channels up to five input
symbols—and so calculate their zero-error capacities. All DMCs with six input
symbols were analyzed and their zero-error capacity computed, except for four
channels whose capacity can be given in terms of C0.G5/.

In the next section, we show how a graph (and its complement) can be associated
with a discrete memoryless channel. Theorem 4.1 is restated in a graph-based
language.

4.2 Relation with Graph Theory

The problem of computing the zero-error capacity of discrete memoryless channels
can be reformulated in terms of graph theory. Given a DMC .X ;Y;P/, we can
construct a characteristic graph G as follows. Take as many vertices as the number
of input symbols in X and connect two vertices with an edge if the corresponding
input symbols in X are distinguishable. Using such approach, the vertex set of G is
V.G/ D X and its set of edges E.G/ is composed of pairs of orthogonal rows in P.
The characteristic graph of channels in Fig. 4.2 is shown in Fig. 4.3.

In graph theory, the order of a graph is the cardinality of its vertex set. A clique
is defined as any complete subgraph of G, and the clique number [2] of a graph G,
denoted by !.G/, stands for the maximal order of a clique in G. It is easy to see that

1

c
41

3 2

0

31

20
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a
0

Fig. 4.3 Characteristic graphs G of discrete memoryless channels in Fig. 4.2. The vertex set of G is
the set of input symbols X and its set of edges corresponds to all pairs of distinguishable symbols
in X . (a) Characteristic graph of the binary symmetric channel. (b) Characteristic graph of the
discrete channel with quaternary alphabeth. (c) Characteristic graph of the pengaton channel G5
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the maximum number of non-adjacent symbols in G is !.G/, namely N.1/ D !.G/.
For example, the pentagon graph G5 of Fig. 4.3c has the clique number !.G5/ D 2.
Note that the vertex set of any clique corresponds to a set of distinguishable symbols
in the channel.

Define the n-product Gn of the graph G as a graph for which V.Gn/ D X n and
fx0; x00g 2 E.Gn/ if for at least one 1 � i � n, the i-th coordinates of x0 and x00 satisfy
fx0

i; x
00
i g 2 E.G/. Such product of graphs, often called Shannon’s product, has the

following meaning: the vertex set of Gn is composed of all n-length sequences, and
we connect the vertices x0 and x00 if the corresponding sequences are distinguishable,
as illustrated in Fig. 4.1.

It is clear that the number of distinguishable sequences of length n is the clique
number of Gn, i.e, N.n/ D !.Gn/. Moreover, the sequences in the vertex set of the
corresponding complete subgraph define an n-length error-free code for the channel.
Therefore, the zero-error capacity of the DMC .X ;Y;P/ can be rewritten as

C0 D sup
n

1

n
log!.Gn/: (4.6)

In graph theory, the value (4.6) refers to the Shannon capacity of the graph G, and
is denoted by C0.G/.

The chromatic number of a graph G, denoted by �.G/, is the smallest number
of colors necessary to color the vertices of a graph so that no two adjacent vertices
have the same color. More formally, �.G/ is the smallest cardinality of a set K
for which there exists a function f W V.G/ ! K with the property that adjacent
vertices are mapped into different elements of K. Let .X ;Y;P/ be a DMC for which
the clique and the chromatic numbers of the characteristic graph G are the same,
!.G/ D �.G/. For any coloration of G, if we define the set X 0 in Theorem 4.1 as
being the vertex set of the maximal clique in G, then we can always construct an
adjacency-reducing mapping f fulfilling the requirement of the theorem: all symbols
whose vertices share a given color are mapped into the corresponding symbol in
X 0 that own such color. Because different colors are associated with non-adjacent
symbols, such mapping ensures that any two non-adjacent symbols in X will be
mapped into non-adjacent ones in X 0. Moreover, because symbols in X 0 correspond
to the vertex set of the maximal clique, they are mutually distinguishable. Therefore,
Theorem 4.1 can be entirely reformulated.

Theorem 4.1’. Let .X ;Y;P/ be a discrete memoryless channel and G the corre-
sponding characteristic graph. If !.G/ D �.G/, then C0 D �.G/.

The best known graphs for which !.G/ D �.G/ are the so-called perfect graphs
[2]. A perfect graph is a graph G such that for every induced subgraph of G, the
chromatic number equals the clique number. The class of perfect graphs includes
bipartite graphs, interval graphs, and wheel graphs with an odd number of vertices.
The smallest vertex set on which a graph exists with !.G/ ¤ �.G/ has five vertices,
and corresponds to the pentagon graph G5 already discussed in the previous section.
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Although !.G/ D �.G/ is a sufficient condition for !.Gn/ D Œ!.G/�n, Lovász
showed that it is not a necessary condition [7]. An example is the complement of
the Petersen graph, which is isomorphic with the Kneser graph KG5;2. However, it
is unknown whether the equality log!.G0/ D C0.G0/ for every induced subgraph
G0 � G implies that G is perfect.

Originally, Shannon used a different but equivalent approach for relating the
zero-error capacity with elements of graph theory. For a given DMC .X ;Y;P/, we
can associate an adjacency matrix A D �

aij
�

as follows:

aij D
(
1 if xi is adjacent to xj or if i D j

0 otherwise;
(4.7)

where xi; xj 2 X . If two channels give rise to the same adjacency matrix,
then it is obvious that an error-free code for one will be an error-free code for
the other and, hence, the zero-error capacity C0 for one will also apply to the
other [11]. Such approach considers the adjacency structure of the adjacency matrix
to construct a linear graph, called adjacency graph, which is the complementary
of the characteristic graph. Therefore, both graphs have the same vertex set X and
two vertices in the adjacency graph are connected by an edge if and only if they
are not connected in the characteristic graph. Equivalently, an edge connects two
vertices in the adjacency graph if and only if the corresponding input symbols in
X are adjacent. In this case, we say that two vertices in the adjacent graph are
independent if the corresponding symbols are non-adjacent in the channel. Clearly,
there are N.1/ independent vertices in G. Figure 4.4 shows the adjacency graphs of
the discrete memoryless channels of Fig. 4.2.

Shannon [11] proved the following bounds on the zero-error capacity:

Theorem 4.2. Let .X ;Y;P/ be a DMC. The error-free capacity is bounded by the
inequalities:

� log min
p.xi/

X
ij

aijp.xi/p.xj/ � C0 � min
p.yjx/

C; (4.8)

b
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3 2
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0 1
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Fig. 4.4 Adjacency graphs of discrete memoryless channels corresponding to the channels of
Fig. 4.2. These graphs are constructed by taking as many vertices as the number of symbols in
X , and connecting two vertices if the corresponding symbols are adjacent in the channel. (a)
Adjacency graph of the binary symmetric channel. (b) Adjacency graph of the discrete channel
with quaternary alphabeth. (c) Adjacency graph of the pengaton channel G5
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where C is the ordinary capacity of any discrete memoryless channel with stochastic
matrix P D Œp.yjx/� giving rise to the adjacency matrix A D �

aij
�
; p.xi/ stands for

the input probability distribution.

The proof of the theorem can be found in [11]. Although the upper bound is fairly
obvious, it has an interesting formulation in graph theory [8] according to which

C0 � log��.G/; (4.9)

where ��.G/ is the fractional chromatic number of the adjacency graph G, a well-
studied concept in polyhedral combinatorics [9] defined as follows. We assign
nonnegative weights p.xi/ to the vertices X of G such that

X
xi2C

p.xi/ � 1

for every complete subgraph C in G. This assignment is called a fractional coloring.
The fractional chromatic number is the maximum of

P
xi2X p.xi/, where the max-

imum is taken over all fractional colorings of G. Actually, the fractional chromatic
number is the solution of the real-valued relaxation of the integer programming
problem that defines the chromatic number of G [6].

Suppose that a DMC .X ;Y;P/ gives rise to an adjacency graph G such that G
can be covered by N.1/ cliques. By this we mean that there are N.1/ cliques in G,
namely C1; : : : ;CN.1/, in a way that their vertex sets, V.C1/; : : : ;V.CN.1//, form a
partition of V.G/. Theorem 4.1 can be rewritten as [7]:

Theorem 4.1”. Let G be the adjacency graph of a discrete memoryless channel
.X ;Y;P/. If G can be covered by N.1/ cliques, then C0 D log N.1/.

Figure 4.5 illustrates Theorem 4.1”. The maximum number of independent
vertices in the adjacency graph of Fig. 4.5a is N.1/ D 2, e.g., 0 and 3. An adjacency-
reducing mapping f for the corresponding DMC takes f .0/ D f .1/ D f .2/ D 0 and
f .3/ D f .4/ D 3. This mapping can be readily obtained by associating 0 and 3
with vertices of the order-2 and order-3 cliques, respectively. The cube graph has
N.1/ D 4, and can be covered by four clique of order 2 as illustrated in Fig. 4.5b.
Therefore, the zero-error capacity of the equivalent DMC is C0 D log 4 D 2 bits
per channel use.

4.3 Lovász # Function

The redefinition of the zero-error capacity in terms of graph has yielded interesting
constructions in combinatorics and graph theory. An example of such construc-
tions is the Lovász theta function # . The functional # has many applications in
computer science and combinatorics. Particularly, the # function is a polynomially
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Fig. 4.5 Graphs that can be covered by a number of cliques. (a) An adjacency graph with two
independent vertices. This graph can be covered by two cliques and therefore there is an adjacency
reducing map satisfying the requirement of Theorem 4.1. (b) The cube graph can be covered by
four cliques of order two

computable functional sandwiched in between two NP-complete problems in graph
theory: the clique and the chromatic numbers of a graph [3]. The very nice
formulation we present in this section was used to compute the zero-error capacity
of the pentagon graph (4.5), initially lower and upper bounded by Shannon.

Given a DMC .X ;Y;P/ and the corresponding adjacency graph G with vertex
set X , an orthonormal representation of G is a set of jX j vectors vxi in a Euclidean
space, such that if xi; xj 2 X are non-adjacent, then vxi and vxj are orthogonal. The
value of an orthonormal representation is defined as

min
c

max
xi2X

1

.cTvxi/
2
;

where the minimum is taken over all unitary vectors c. The vector c yielding the
minimum is called the handle of the representation. The Lovász #.G/ function
of a graph is defined as the minimum value over all representations of G, and a
representation is called optimal if it attains this minimum value. Lovász proved the
following result [7]:

Theorem 4.3. The zero-error capacity of a DMC .X ;Y;P/ is upper bounded by
the logarithm of the # function of its adjacency graph G:

C0 � log#.G/: (4.10)

Proof. First, we should note that if G and H are two graphs, and GH is their product
as defined in Sect. 4.2, then #.GH/ � #.G/#.H/. Let fvx0

i
g and fux00

j
g be optimal

orthonormal representations of G and H with handles c and d, respectively. It is easy
to see that fvx0

i
˝ ux00

j
g is an orthonormal representation of GH and c ˝ d is a unitary

vector. Therefore,
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#.GH/ � max
x0

i ;x
00

j

1�
.c ˝ d/T.vx0

i
˝ ux00

j
/
	2

D max
x0

i

1

.cTvxi/
2

max
x00

j

1

.dTux00

j
/2

D #.G/#.H/:

By definition, if G is an adjacency graph and fvxig is an optimum representation
with handle c, then there are N.1/ vectors fvx1 ; : : : ; vxN.1/g pairwise orthogonal in
this representation, where N.1/ is the maximum number of independent vertices in
G. Hence,

1 D jjcjj2 �
N.1/X
iD1
.cTvxi/

2 � N.1/

#.G/
: (4.11)

Equation (4.4) implies N.1/n � N.n/. Finally,

C0 D sup
n

1

n
log N.n/ � sup

n

1

n
log#.Gn/ � sup

n

1

n
log#.G/n D log#.G/:

Theorem 4.3 allows of the calculation of the zero-error capacity of the pentagon
graph. Remember that Shannon was only able to give lower and upper bounds for the
capacity, 1

2
log 5 � C0.G5/ � log 5

2
. First, construct an orthonormal representation

for the pentagon G5 of Fig. 4.4c as follows. Consider an umbrella whose handle
and five ribs have unitary length. Let v0; : : : ; v4 be the ribs and c the handle, as
vectors oriented away from their common point. Open the umbrella to the point
where the maximum angle between the ribs is �=2. Note that the angle between
two consecutive ribs must be the same, and that the angle between alternate ribs
must be �=2. It is clear that fv0; : : : ; v4g forms an orthonormal representation of
G5. Figure 4.6 illustrates this scenario, at which we plot the handle c and the two
orthogonal vectors v1 and v3. The extremities of the six vectors are points on a

Fig. 4.6 A spherical triangle
delimited by the vectors v1,
v3 and the handle c. In a
plane normal to the handle,
the angle between two
consecutive projections
v0

i; v0

iC1 mod 5 of the vectors
vi is 2�=5. The spherical
angle †A is the angle
between the vectors v0

1 and
v0

3, i.e., †A D 4�=5

α

B A C
c

α

0

v1 v3
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unitary three-dimensional sphere centered in 0, and the points defined by the handle
and any two alternated vectors delimit a spherical triangle identical to the triangle
ABC of Fig. 4.6. We are interested in the value of the representation, i.e.,

min
c

max
0�i�4

1

.cTvi/2
:

Note that cTvi stands for the cosine of the angle between the handle and the rib vi,
namely cTvi D cos.˛/. Let ˇ D �=2 be the angle between v1 and v3. The first
spherical cosine theorem states that

cos.ˇ/ D cos2.˛/C sin2.˛/ cos.†A/:

Because angles ˛ between the ribs and the handle are the same, the spherical angle
†A is the angle between the projection of the vectors v1 and v3 on the plane normal
to the handle c, i.e., †A D 4�=5. Finally, we can write

0 D cos2.˛/C sin2.˛/ cos.4�=5/;

which gives cos2.˛/ D .cTvi/
2 D 1=

p
5: Hence,

C0.G5/ � log#.G5/ � log



1

cos2.˛/

�
D log

p
5 D 1

2
log 5:

The opposite inequality is known and the Shannon lower bound is tight.
The definition of #.G/ is not unique. In his work, Lovász [7] pointed out four

equivalent definitions for #.G/. For example, he showed that #.G/ is the minimum
of the largest eigenvalue of any symmetric matrix .aij/

jX j
i;jD1 such that aij D 1 if i D j

or if xi and xj are non-adjacent.
Although the Lovász # function behaves very beautifully, the value of log#.G/

is generally different from the capacity. A new bound on the zero-error capacity was
derived by Haemers [5], and it is sometimes better but quite often much worse than
#.G/. A quadratic matrix of order jX j is said to fit the graph G if its diagonal entries
are all nonzero and the element ai;j is zero if and only if the symbols xi and xj are
adjacent in the channel. Haemers proved that the logarithm of the ranking of those
matrices upper bounds the zero-error capacity of G. This result was illustrated with
some examples for which his bound is better than #.G/. However, this is not true
for the pentagon graph G5.

The Lovász functional was generalized to the quantum scenario as an upper
bound for the number of entanglement-assisted zero-error messages sent through
a noisy quantum channel.

Next, we investigate the zero-error capacity of sum and product of discrete
memoryless channels.
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4.4 The Sum and Product of Channels

Consider two discrete memoryless channels .X1;Y1;P1/ and .X2;Y2;P2/ with
zero-error capacities C01 and C02 , respectively. We are interested in transmitting
information using the two channels and we ask for the zero-error capacity of the
joint system [11]. Basically, there are two natural ways of assembling two channels
to form a single channel, which we call the sum and the product of two channels.

The sum of two channels is a new channel .X1 t X2;Y1 t Y2;P1 ˚ P2/, where
the stochastic matrix of the sum channel is the direct sum of the two stochastic
matrices, and the input (output) set is the disjoint union of X1 (Y1) and X2 (Y2),
respectively. Intuitively, the sum channel behaves as .X1;Y1;P1/ if an input symbol
x1i 2 X1 is used. Otherwise, it behaves as .X2;Y2;P2/. This corresponds physically
to a situation where either of two channels may be used but not both. Analogously,
the product channel is a new DMC .X1�X2;Y1�Y2;P1˝P2/, where the stochastic
matrix is the direct product of the two matrices, and the input (output) set is
the Cartesian product of X1 (Y1) and X2 (Y2), respectively. In this case, we can
think of the product DMC as of a nonstationary memoryless channel over which
transmission is governed in strict alternation by the stochastic matrices P1 and P2:

p.y1i ; y2i jx1i ; x2i/ D p.y1i jx1i/p.y2i jx2i/:

Consider two DMCs, .X1;Y1/;P1, .X2;Y2;P2/, and let C1, C2 be their correspond-
ing ordinary capacities. It is well known [10] that the ordinary capacity of the
sum channel is CC D log .exp C1 C exp C2/. For the product channel, the ordinary
capacity is proved to be C� D C1 C C2.

The error-free communication capacity of the sum and product channels was
studied by Shannon [11]. If C0C

and C0�
denote the zero-error capacity of the sum

and product channels, respectively, then Shannon demonstrated that

C0C
� log .exp C01 C exp C02/ (4.12)

and

C0�
� C01 C C02 ; (4.13)

with equality if and only if the adjacent graph G of either of the two channels can
be colored using ˛.G/ colors. In an analogy with the ordinary capacity, Shannon
conjectured that, in fact, equalities always hold for zero-error capacities. The
product channel conjecture was implicitly disproved in a example of Haemers [5].
More recently, Alon [1] proved the existence of channels for which C0�

> C01CC02 .
Such results suggest that the zero-error capacity behaves quite different from the
ordinary capacity.
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Suppose that C01 D C02 D 0. It is straightforward to see that C0C
D C0�

D 0. In
the quantum scenario, however, quantum effects can be used to activate the capabil-
ity of two quantum channels perform, together, classical zero-error communication,
even if both quantum channels have zero-error capacities equal to zero!

4.5 Further Reading

We have presented in this chapter fundamental concepts in zero-error information
theory. We have started by defining the zero-error capacity of a DMC and intro-
ducing a method to calculate the capacity of simple channels. Then, the problem
of finding the zero-error capacity was reformulated in terms of graph theory. It was
shown how several results in zero-error theory can be restated in a graph language.
The most famous upper bound on the zero-error capacity, the Lovász # function,
was presented and used to calculate the zero-error capacity of the pentagon graph,
a problem that remained open during more than 20 years. Finally, we presented the
zero-error capacity of sum and products of discrete memoryless channels.

The zero-error capacity of DMC was first studied by Shannon in 1956 [10].
Lovász introduced the theta functional in 1979 [7]. A wide survey about develop-
ments in the zero-error information theory until 1998 can be found in Körner and
Orlitsky [6], as part of an IEEE Transactions on Information Theory commemora-
tive issue due to the 50th anniversary of Shannon Theory.
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Chapter 5
Zero-Error Capacity of Quantum Channels

Quantum zero-error information theory deals with techniques, protocols and ana-
lyzes methods to allow communication of classical or quantum information through
quantum noisy channels, with the main requirement that no errors can be tolerated.
This new research field aims to generalize and extend the classical zero-error theory
proposed by Shannon and outlined in Chap. 4.

Because quantum mechanics has many features not present in the classical
world, e.g. entanglement, one may expect that developments in this area should
not only generalize definitions and results from classical theory but they must go
beyond. This is exactly what has been happening! As we already know, a classical
channel has an asymptotically positive zero-error capacity if and only if the one-
shot capacity is positive, i.e., N.1/ > 1. One of the most impressive results in
quantum zero-error information theory is that there exist quantum channels such
that no information can be perfectly transmitted with a single use, whereas the
communication is possible with two channel uses. This phenomenon is known as
superactivation of the quantum zero-error capacity.

In this chapter we present the classical zero-error capacity of quantum channels,
which is a generalization of the zero-error capacity of discrete memoryless channels.
Section 5.1 deals with main concepts and definitions. In Sect. 5.2, an equivalent
definition for the quantum zero-error capacity is given in terms of graphs. Some
properties of quantum states reaching the channel capacity are investigated in
Sect. 5.3. Section 5.4 presents an upper bound for the quantum zero-error capacity
in terms of the Holevo-Schumacher-Westmoreland capacity and, finally, Sect. 5.5
discusses the superactivation of the zero-error capacity of quantum channels.

© Springer International Publishing Switzerland 2016
E.B. Guedes et al., Quantum Zero-Error Information Theory,
DOI 10.1007/978-3-319-42794-2_5
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5.1 Classical Zero-Error Capacity of Quantum Channels

In quantum information theory, the Holevo-Schumacher-Westmoreland (HSW)
capacity can be understood as a quantum version of the ordinary capacity of
classical channels originally defined by Shannon. Fundamentally, the parallel is due
to the communication protocol used by the HSW capacity: quantum codewords are
composed by tensor product of quantum states and collective measurements can be
made at the channel output.

The first zero-error capacity of quantum channels was defined taking into account
the HSW communication protocol, with the restriction that the probability of
decoding errors should be zero. In this sense, the classical zero-error capacity
(CZEC) of a quantum channel can be viewed as the “error-free” version of the HSW
capacity, as well as the quantum generalization of the zero-error capacity of classical
channels.

Given an arbitrary quantum channel, we ask for the maximum amount of
classical information per channel use that can be transmitted with zero probability of
error. For this purpose, we consider a d-dimensional quantum channel E � fEag as
a completely positive tracing preserving map. Let S be a subset of quantum states
belonging to a d-dimensional Hilbert space H. States �i 2 S will be called input
states.

Initially, a sender Alice chooses a message from a set f1; : : : ;mg containing m
classical messages. The encoder maps this message into an n-tensor product of
quantum states of S . The resulting state is called quantum codeword, which is
sent through the noisy quantum channel E . The receiver Bob performs a collective
measurement with a POVM on the received state. The measurement output becomes
argument of the decoding function. The decoder has to decide which message
was sent by Alice considering that errors are not allowed. The sketch of the
communication protocol is shown in Fig. 5.1.

The error-free communication protocol can be summarized as follows.

• The source alphabet is the set S D f�1; : : : ; �`g, where S � H;
• In order to be transmitted through the quantum channel, classical messages are

mapped into tensor products of quantum states in S;

E(·)Quantum
Encoder

POVM
y ∈ {1, . . . ,k}

i ∈ {1, . . . ,m}

S = {ρ1, . . . ,ρl}
{Mi}ki=1

Decoder

ĩ ∈ {1, . . . ,m}

Fig. 5.1 Quantum zero-error communication system
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• At the channel output, the decoder performs collective measurements in order to
estimate the message that was sent.

Taking this into account, we can now define error-free quantum codes.

Definition 5.1 (.m; n/ Error-Free Quantum Code). An .m; n/ error-free quantum
code for a quantum channel E is composed of:

1. a set of indexes f1; : : : ;mg, each one associated with a classical message;
2. an encoding function

fn W f1; : : : ;mg ! S˝n (5.1)

leading to codewords fn.1/ D �1; : : : ; fn.m/ D �m, �i 2 S˝n;
3. a decoding function

g W f1; : : : ; kg ! f1; : : : ;mg (5.2)

that deterministically associates each of the possible measurement results per-
formed by a POVM M D fMigk

iD1 with a message. The decoding function has
the following property:

PrŒg.E.fn.i/// ¤ i� D 0 8i 2 f1; : : : ;mg : (5.3)

Clearly, the rate of this code is Rn D 1
n log m bits per channel use.

With these codes we can now define the classical zero-error capacity (CZEC) of
a quantum channel .

Definition 5.2 (Quantum Zero-Error Capacity [11]). Let E.�/ be a TPCP map
that represents a quantum noisy channel. The quantum zero-error capacity of E ,
denoted by C.0/.E/, is the highest superior limit of achievable rates with zero-error
decoding probability, i.e,

C.0/.E/ D sup
S

sup
n

1

n
log˛n.E/; (5.4)

where ˛n.E/ D m is the maximum number of classical messages that can be
transmitted without errors when an .m; n/ error-free quantum code is used with input
alphabet S .

For a given .m; n/ error-free quantum code attaining the quantum zero-error
capacity of E , we define an optimum pair .S;M/.

Definition 5.3 (Optimum Pair .S;M/ [15]). An optimum pair .S;M/ is com-
posed by a set of input states S and a POVM M for which the quantum zero-error
capacity is reached.
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We are interested in scenarios where the classical zero-error capacity of a
quantum channel is non-zero. This is only possible when at least two input states
are non-adjacent. Definition 5.4 synthesizes this idea.

Definition 5.4 (Adjacency of Quantum States). Let E be a quantum channel and
�i; �j 2 S two quantum states, i ¤ j, from the input alphabet of the channel. We
say that �i and �j are non-adjacent (orthogonal or distinguishable) in the output of
E if the Hilbert subspaces spanned by the supports of �i and �j are orthogonal. We
denote it by �i ?E �j.

Adjacency of quantum states can be generalized to tensor product, as illustrated
in Fig. 5.2. Let O�i and O�j be two input tensor products O�i D �i;1 ˝ : : : ˝ �i;n and
O�j D �j;1 ˝ : : :˝ �j;n. If there is at least one �i;k ?E �j;k, then O�i ?E O�j.

Taking adjacency into account, a quantum channel E has positive zero-error
capacity if and only if the set S contains at least two non-adjacent states.

Example 5.1 (Quantum Channel with a Vanishing Zero-Error Capacity). Suppose
that a depolarizing quantum channel can transmit an input state � intact with
probability 1 � p or exchange it by a complete mixed state with probability p, as
discussed in Example 3.15. Let d be the dimension of the input Hilbert state H and
let 1d be the identity matrix of dimension d. This channel is shown in Fig. 5.3.

Recall that the formal representation of this channel is given by

E.�/ D .1 � p/�C p
1

d
1d; (5.5)

where 0 < p < 1. To check if this channel has positive zero-error capacity, we
verify if there exist at least two different states, �i and �j, which are distinguishable
at the channel output, i.e.,

TrŒE.�i/E.�j/� D Tr

�

.1 � p/�i C p

1

d
1d

�

.1 � p/�j C p

1

d
1d

��

Fig. 5.2 Two quantum states
O�i e O�j are distinguishable if
there is at least one
�i;k ?E �j;k, 1 � k � n

E(ρ̂i) = E(ρi1) ⊗·· ·⊗ E(ρik) ⊗·· ·⊗E(ρin)

E(ρ̂ j) = E(ρ j1)⊗·· ·⊗ E(ρ jk) ⊗·· ·⊗E(ρ jn)

Fig. 5.3 Quantum
depolarizing channel

1
d d

ρρ 1− p

p
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ρ1

ρ2

ρ0

ρ3

ρ4

ρ5

ρ6

ρ7

M1

M2

M0

M3

M4

M5

M6

M7

(a)

ρ1

ρ2

ρ0

ρ3

ρ4

ρ5

ρ6

ρ7

M1

M2

M0

M3

M4

M5

M6

M7

(b)

Fig. 5.4 Diagrams representing the transitions performed by the channel " over the input. (a) A
discrete memoryless channel. (b) A subset of non-adjacent states at the channel output

D Tr

�
.1 � p/2 TrŒ�i�j�C p.1 � p/

d
TrŒ�i C �j�C p2

d2
1d

�

> 0;

for any 0 < p < 1. This way, the zero-error capacity of the depolarizing quantum
channel E is zero, i.e., C.0/.E/ D 0.

Example 5.2 (Quantum Channel with Positive Zero-Error Capacity). Suppose a
quantum channel E in an 8-dimensional Hilbert space. Consider a set of classical
messages f0; 1; : : : ; 7g associated with a set of pure quantum input states S D
f�0 D j0i h0j ; �1 D j1i h1j ; : : : ; �7 D j7i h7jg, in which 0 7! �0; 1 7! �1; : : : ; 7 7!
�7. Let M be a POVM specified by M D fMi D jii hijg7iD0. Notice that

P7
iD0 Mi D

1. We consider that the quantum channel acts on the input as shown in Fig. 5.4a.
This channel has positive zero-error capacity because it is possible to identify

a subset of non-adjacent states at the channel output, as shown in Fig. 5.4b. This
subset is composed by f�0; �1; �3; �5; �7g and it is maximal. We have that

C.0/.E/ � 1

1
log2 5

� 2:321 bits per symbol per channel use.

It is important to emphasize that it is not possible to state that the zero-error
capacity of this quantum channel is equal to 2:321 bits per channel use, since the
supremum (5.4) should be taken over all sets S and over all zero-error quantum
codes of length n.
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5.2 Representation in Graphs

The zero-error capacity of quantum channels allows for a representation in terms
of graphs [11, 14], as does the zero-error capacity of classical channels. Given a
quantum channel and a set S of input states, we can construct a characteristic graph
as follows.

Definition 5.5 (Characteristic Graph). Let E be a quantum channel. For a given
set of input states S D f�1; �2; : : : ; �`g, we can build a characteristic graph G with
vertices and edges given by

1. V.G/ D f1; 2; : : : ; `g, where each vertex is associated with an input state in S;
2. E.G/ D ˚

.i; j/j�i ?E �jI �i; �j 2 SI i ¤ j
�
.

This notion of characteristic graph can be extended to the n-tensor product of
states in S , S˝n, giving rise to the graph Gn, where V.Gn/ D V.G/n and two vertices
in V.Gn/ are connected if and only if the corresponding n-tensor input states are
non-adjacent at the channel output, i.e.,

1. V.Gn/ D f1; 2; : : : ; `gn,
2. E.Gn/ D ˚

.i1 : : : in; j1 : : : jn/j�ik ?E �jk

�
for at least one k, 1 � k � n; �ik ; �jk 2

S .

With this representation we can verify that vertices connected by an edge in the
graph Gn correspond to mutually non-adjacent product states at the channel output.
Therefore, the maximum amount of messages that can be transmitted by an .m; n/
error-free quantum code with input alphabet S is given by the clique number of
Gn, denoted by !.Gn/, i.e., !.Gn/ D ˛n.E/. Moreover, we can give an alternative,
equivalent definition of the zero-error capacity of quantum channels in terms of
graph theory.

Definition 5.6 (Classical Zero-Error Capacity of a Quantum Channel). The
zero-error capacity of a quantum channel E is given by

C.0/.E/ D sup
S

sup
n

1

n
log!.Gn/; (5.6)

where the supremum is taken over all input sets S and over all codes of length n.

Example 5.3 (Zero-Error Capacity from a Graph). Let’s return to the channel E of
Example 5.2 and illustrated in Fig. 5.4a. The characteristic graph associated with
the subset S is shown in Fig. 5.5. The clique number of this characteristic graph is
5, corresponding to the pairs f.0; 1/; .1; 3/; .3; 5/; .5; 7/; .7; 0/g. The clique of the
characteristic graph of E is shown in Fig. 5.5 with dotted edges.
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Fig. 5.5 Characteristic
Graph of E from Example 5.2

0

1

2

3 4

5

6

7

5.3 Quantum States Attaining the Zero-Error Capacity

We turn our attention to the subset S D f�1; : : : ; �lg that reaches the supre-
mum (5.6). Note that states �i 2 S can be either pure or mixed states. It turns
out that the zero-error capacity of a quantum channel can always be reached by a
set of quantum pure states.

Proposition 5.1. The zero-error capacity of quantum channels can be achieved by
a set S composed only of pure quantum states, i.e., S D f�i D jviihvijg.

To prove the proposition, consider a quantum channel with Kraus operators E �
fEag, and assume that the capacity is reached by a subset S that contains mixed
states. Then, we show that it is always possible to write a new subset S 0 composed
only of pure states that also achieves the channel capacity.

Initially, note that two quantum states � and 	 have orthogonal supports if and
only if Tr .�	/ D 0. We can write

Tr
�E.�i/E.�j/

� D Tr

 X
a

X
r


ir Eajvir ihvir jE�a
X

b

X
s


js Ebjvjsihvjs jE�b
!

D Tr

 X
a

X
r

X
b

X
s


ir
js Eajvir ihvir jE�aEbjvjsihvjs jE�b
!

D
X

a;r;b;s


ir
js jjhvir jE�aEbjvjsijj2; (5.7)

where �i D P
s 
is jvisihvis j. Suppose that �i?E�j, then hvir jE�aEbjvjsi D 0 for

all indexes r and s. Now, without loss of generality, define a new set S 0 D
fjv11i; : : : ; jvl1ig, where jvi1i 2 supp �i is a pure state in the support of �i. It is
clear that if �i and �j are non-adjacent, then

Tr
�E.jvi1i/E.jvj1i/

� D Tr

 X
a

Eajvi1ihvi1 jE�a
X

b

Ebjvj1ihvj1 jE�b
!
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D Tr

 X
a

X
b

Eajvi1ihvi1 jE�aEbjvj1ihvj1 jE�b
!

D
X
a;b

jjhvi1 jE�aEbjvj1ijj2

D 0: (5.8)

Note that all non-adjacency relationships in S are at least preserved when using the
subset S 0. In terms of graphs, the characteristic graph G0 due to S 0 can be obtained
from G, the characteristic graph due to S , by probably adding a number of edges
but never deleting edges. Because adding new vertices never decreases the clique
number of a graph, we can conclude that the subset S 0 also attains the quantum
zero-error capacity.

Now the relationship between orthogonality at the channel input and non-
adjacency at the channel output is investigated. It is straightforward to see that
two non-adjacent quantum states are necessarily orthogonal at the channel input.
At a first glance, we can think that maximizing the number of pairwise non-adjacent
quantum states requires pairwise orthogonal states at the channel input. Surprisingly,
it turns out that there exist quantum channels such that we can do better by choosing
a subset S where not all states are pairwise orthogonal.

To illustrate this feature, we present a mathematically motivated example of a
quantum channel for which the capacity is attained by a set of non-orthogonal
input states. In addition, the channel gives rise to the pentagon graph for the subset
reaching the capacity.

Example 5.4. Let e be a quantum channel with operation elements fE1;E2;E3g
given by

E1 D

2
666664

0:5 0 0 0
p
49902
620

0:5 �0:5 0 0 0

0 0:5 �0:5 0 0

0 0 0:5 �
p
457
50

p
457
50

0 0 0 �0:62 � 289
1550

3
777775
; E2 D

2
666664

0:5 0 0 0 �
p
49902
620

0:5 0:5 0 0 0

0 0:5 0:5 0 0

0 0 0:5
p
457
50

�
p
457
50

0 0 0 0:5 0:5

3
777775
;

E3 D 0:3j4ih4j;

where ˇ D fj0i; : : : ; j4ig is the computational basis for the Hilbert space of
dimension five. Consider the following set S of input states for E :

S D



jv1i D j0i; jv2i D j1i; jv3i D j2i; jv4i D j3i; jv5i D j3i C j4ip
2

�
: (5.9)

In order to construct the characteristic graph G, we need to explicit all adjacency
relations between states in S . If the channel outputs E.jvii/ are calculated for every
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(b)(a)

|v1 |〉 0〉

|v2〉 |v5〉

|2〉|3〉

|1〉 |4〉

|v4〉 |v3〉

Fig. 5.6 (a) Characteristic graph G for the subset S containing non-adjacent input states. (b)
Characteristic graph for a subset S0 of mutually orthogonal input states. In this case, the
transmission rate is less than C.0/.pentagon/ for any zero-error quantum code with alphabet S0

jvii 2 S , one can verify that

jv1i?E jv3i; jv1i?E jv4i; jv2i?E jv4i;
jv2i?E jv5i; and jv3i?E jv5i:

These relations give rise to the pentagon as characteristic graph, as it is illustrated
in Fig. 5.6a.

It is important to note that if we replace the state jv5i D j3iCj4ip
2

with the state

j4i, then the subset S becomes the (orthonormal) basis ˇ. For the subset ˇ, the
characteristic graph is shown in Fig. 5.6b. The zero-error capacity of the former
graph is C0 D 1

2
log 5 bits/use, whereas the latter has zero-error capacity C0 D

1 bit/use. Because there is no other subset of input states giving rise to a graph with
C0 � 1, the zero-error capacity of E is

C.0/.E/ D 1

2
log 5 bits/use:

5.4 Relation with Holevo-Schumacher-Westmoreland
Capacity

Quantum channels have different kinds of capacity, depending mainly on if the
information to be sent is either classical or quantum and on the communication
protocol [17]. When classical messages are mapped into tensor products at the
channel input and collective measurements are performed at the channel output, the
capacity of the quantum channel to convey classical information with a negligible
error probability after many channel uses, denoted by C1;1, is given by the Holevo-
Schumacher-Westmoreland (HSW) theorem [10, 20].

As we already mentioned, the HSW capacity can be understood as a generaliza-
tion of the ordinary capacity of classical channels. According to the HSW theorem,
this capacity is given by

C1;1.E/ � max
pi;�i

�pi;�i ; (5.10)
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where

�pi;�i D S

 
E
 X

i

pi�i

!!
�
X

i

piS .E.�i// : (5.11)

The term S.�/ in (5.11) stands for the von Neumann entropy; the maximum (5.10)
takes into account all possible input ensembles f�i; pig for the quantum channel E ;
�pi;�i is known as the Holevo quantity.

Theorem 5.1 (Bound on the Quantum Zero-Error Capacity). The zero-error
capacity of a quantum channel E is upper bounded by the HSW capacity, i.e.,

C.0/.E/ � C1;1.E/ � max
pi;�i

�pi;�i : (5.12)

To prove the theorem, we assume that Alice sends to Bob a message chosen
uniformly from the set f1; : : : ; 2nRg. If we define a random variable X representing
indexes of classical messages, then

H.X/ D nR; (5.13)

where H stands for the classical Shannon entropy [1]. Let Y be a random variable
representing POVM outputs. Using the definition of mutual information, we get

nR D H.X/ D H.XjY/C I.X;Y/: (5.14)

Because the quantum code is error-free, H.XjY/ D 0. Suppose that Alice encodes
the message i as �i D �i1 ˝ � � � ˝ �in . Applying the Holevo bound we get

nR D I.X;Y/

� S

0
@ 2nRX

iD1

1

2nR
E.�i/

1
A �

2nRX
iD1

1

2nR
S.E.�i//: (5.15)

Remember that E.�i/ D E.�i1 /˝� � �˝E.�in/. Hence, we can apply the subadditivity
of the von Neumann entropy, S.A;B/ � S.A/C S.B/:

nR �
nX

jD1
S

0
@ 2nRX

iD1

1

2nR
E.�ij/

1
A �

2nRX
iD1

1

2nR

nX
jD1

S.E.�ij//

D
nX

jD1

2
4S

0
@ 2nRX

iD1

1

2nR
E.�ij/

1
A �

2nRX
iD1

1

2nR
S.E.�ij//

3
5 : (5.16)
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Because the capacity (5.10) is calculated by taking the ensemble that gives the
maximum, we can conclude that each term on the right side of (5.16) is less than or
equal to C1;1.E/. Then,

nR � nC1;1.E/ (5.17)

and the inequality follows for all zero-error quantum block codes of length n and
rate R. This is an intuitive result, since one would expect to increase the information
transmission rate whenever a small probability of error is allowed.

Example 5.5. Consider the quantum channel of the Example 5.4 and the set S of
non-orthogonal states giving rise to the pentagon as characteristic graph. Obviously,
we do not know if S attains the supremum (5.10). However, S does attain the zero-
error capacity of E , which is C0.G5/ D 1

2
log 5 bits per use. In this case, a simple

calculation shows that the � quantity for the family fS; pi D 1=5g is greater than
C0.G5/, i.e.,

�fS;1=5g D 1

5

"
S

 
E
 

5X
iD1

jviihvij
!!

�
5X

iD1
S.E.jviihvij//

#

D 1:53

� C0.G5/

D 1:16: (5.18)

5.5 Superactivation of Zero-Error Capacity

A well-known result in classical zero-error communication asserts that a discrete
memoryless channel has positive zero-error capacity if and only if N.1/ > 1.
Therefore, if one use of the channel cannot transmit zero-error information, then
many uses cannot either. Thanks to entanglement, the capacity of quantum channels
to carry classical or quantum information behaves significantly different from
the corresponding classical capacity. Concerning the zero-error capacity, there are
quantum channels such that the use of entangled input states allows for a positive
zero-error capacity even when the one-shot capacity is zero.1 This phenomenon is
known as superactivation of zero-error capacity of quantum channels.

The activation of zero-error capacity was first demonstrated by Duan and Shi [8]
in a scenario of a multipartite communication system, where m senders want to
send classical messages to n receivers using a noisy multipartite quantum channel.

1By one-shot capacity we mean the transmission rate for a single channel use.
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Em,n(ρk)
Em,n

ρk
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C

C
decoding

...

|0〉Sender S1

|0〉Sender Sm

estimated k
...message k

...

Receiver Rn

Receiver R1

LO
C

C
encoding

Fig. 5.7 An .m; n/ multipartite quantum channel. When the senders want to transmit the message
k, they start with the state j0i ˝ � � � ˝ j0i. Then, LOCC is used to encode j0i˝m into a quantum
stated �k, which is transmitted through the channel Em;n. At the channel output, receivers make use
of LOCC to decode Em;n.�k/ and get an estimation of the original message k

Afterwards, superactivation was found on several classes of one sender/one receiver
quantum channels.

5.5.1 Activation of Zero-Error Capacity on Multipartite
Quantum Channels

Consider a scenario where n senders, S1; : : : ; Sn, want to communicate with m
receivers, R1; : : : ;Rm, using a multipartite quantum communication channel, E .
Figure 5.7 illustrates the general setup of this system. As a reasonable assumption,
Duan and Shi considered that the senders can use LOCC (local operations and
classical communication) in order to prepare and code the quantum state to be
transmitted [8]. At the channel output, the receivers can also use LOCC to decode
the output message.

Let E be an .m; n/multipartite quantum channel defined as the following positive
trace-preserving map:

Em;n W B.HS/ �! B.HR/;

where HS D HS1 ˝ � � � ˝ HSm and HR D HR1 ˝ � � � ˝ HRn are the state spaces of
senders and receivers, respectively. In order to transmit a message, the senders start
with a state j0i ˝ � � � ˝ j0i and prepare the input quantum codeword � 2 HS using
LOCC. At the channel output, the receivers make use of LOCC to decode the output
state Em;n.�/. The communication scheme is illustrated in Fig. 5.8.

As an example, define 	0 D jˇ00ihˇ00j and 	1 D 1
3
.1 � 	0/, where jˇ00i D

j00iCj11ip
2

stands for the Bell state. Consider the following one sender (Charlie) two
receivers (Alice an Bob) quantum channel

E1;2.�/ D h0j�j0i	0 C h1j�j1i	1; (5.19)
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Second channel useFirst channel use Bob

E1,2E1,2 |β00〉〈β00||0〉 |0〉 or |1〉
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Fig. 5.8 Example of a E1;2 channel whose zero-error capacity can be activated. Although no
perfect transmission can be archived with a single use, a sender can transmit one bit of information
by using the channel twice. The zero-error capacity of this channel is at least 0:5 bits per channel
use

which takes a qubit � into two qubits—one qubit for each receiver. It is straight-
forward to see that there exists just one pair of adjacent input states for this
channel, corresponding to the qubits j0i and j1i, since E1;2.j0ih0j/ D 	0 and
E1;2.j1ih1j/ D 	1. Although 	0 and 	1 are orthogonal quantum states, Alice and Bob
are not able to distinguish them after a single use of the channel. This arises from the
fact that no quantum communication is allowed between the receivers. Because the
one-shot zero-error capacity of this channel is zero, one may think that no zero-error
information can be transmitted, even after many channel uses. Shannon proved that
this assertion is always true for classical channels. Thanks to entanglement, quantum
channels behave drastically different from classical channels. Now suppose that the
Charlie uses the channel E1;2.�/ twice to transmit �˝2 D j00i or �˝2 D j01i. The
corresponding received states are

E˝2
1;2 .j00ih00j/ D 	0 ˝ 	0; (5.20)

E˝2
1;2 .j01ih01j/ D 	0 ˝ 	1: (5.21)

No matter what are the messages transmitted by Charlie, j00i or j01i, Alice and Bob
always will share the Bell state 	0 D jˇ00i. In order to complete the communication,
Alice and Bob make use of the shared state jˇ00i to teleport the second qubit, e.g.,
Alice teleports his part of the entangled state 	0 or 	1 to Bob. Finally, Bob performs
a projective measurement in order to distinguish between 	0 or 	1. Because we are
able to transmit two messages without confusion using the channel twice, the zero-
error capacity is, at least,

C.0/.E1;2/ � 1

2
log 2 D 0:5 bits per channel use:
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This is an amazing result with no counterpart in classical zero-error information
theory. A single use of E1;2 cannot transmit error-free messages, whereas two uses
can! This phenomenon is called activation of the zero-error capacity.

Considering that senders and receivers agree on the LOCC protocol above, Duan
and Shi proved the following theorem:

Theorem 5.2 (Activation of the Zero-Error Capacity on Multipartite Quantum
Channels). For any m > 1 or n > 1, there exist .m; n/ multipartite quantum chan-
nels for which one use of channel cannot transmit zero-error classical information,
whereas two or more uses can.

To prove the theorem, it is sufficient to explicit two multipartite quantum chan-
nels, E1;2 and E2;1, for which the zero-error capacity can be activated. That is because
any .m; n/ multipartite quantum channels can be extended to an .m C m0; n C n0/
channel, m0 and n0 positive integers, by ignoring the input from the additional m0
senders and setting to j0i the output to all the additional n0 receivers.

Consider a .2; 1/ multipartite quantum channel E2;1 from two senders, Alice and
Bob, to one receiver, Charlie,

E2;1 W B.HS/ �! B.HR/; (5.22)

where HS D HSA ˝ HSB and HR D HRC . The state spaces of Alice and Bob, HSA

and HSB , are four dimensional spaces. The output state space HRC is a qubit. The
quantum channel E2;1 is defined as follows:

E2;1.�/ D Tr .P0�/ j0ih0j C Tr .P1�/ j1ih1j; (5.23)

where P0 is a projector onto the state space S0 
 HS spanned by the (unnormalized)
vectors

j 1i D j00i � j11i;
j 2i D j22i � j33i;
j 3i D j20i � j31i;
j 4i D j02i C j13i; (5.24)

j 5i D j30i � j03i;
j 6i D j10i � p

2j21i C j32i;
j 7i D j01i C p

2j12i C j23i;
j 8i D j10i � j32i � j01i C j23i;

and P1 is the projector onto S1, which is the orthogonal complement of S0, i.e.,
S1 D S?

0 . The vectors j ii were carefully chosen in order to span a completely
entangled state subspace. Consequently, S0 has no product state, which means that
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S0 does not have any state j�i such that j�i D j�Ai ˝ j�Bi, j�Ai 2 HSA and
j�Bi 2 HSB . Because any quantum codeword � prepared by Alice and Bob using
LOCC is necessarily a product state, it turns out that Tr .P0�/ > 0 as well as
Tr .P1�/ > 0. As a consequence, the corresponding outputs of the channel (5.23) are
always non-orthogonal mixed states. Therefore, there are no pairs of adjacent states
at the channel input and the one-shot zero-error capacity is zero, i.e., no classical
information can be transmitted with a single use of the E2;1 channel. However, the
use of entanglement between two uses of channel enables the transmission of a
classical bit with a zero probability of error.

Let j˚i be the following bipartite quantum state:

j˚i D 1

2
.j00i C j11i C j22i C j33i/: (5.25)

Because j˚i 2 HS ˝ HS, we denote by j˚iAA0 the multipartite state j˚i prepared
by Alice, where A and A0 denote the first and the second component of j˚i,
respectively. The same holds for the state j˚iBB0 prepared by Bob. Define Ui D
j0ih0j � j1ih1j C j2ih2j � j3ih3j as an operator that acts on the component i of j˚i,
where i 2 fA;A0;B;B0g. In order to activate the zero-error capacity of the channel,
the senders use the quantum channel twice in the following way:

1. Alice locally prepares the state j˚i, denoted by j˚iAA0 . Bob does the same,
getting j˚iBB0 ;

2. Using LOCC, Alice and Bob agree on who will transmit the message (one bit)
to Charlie. Without loss of generality, suppose that Alice sends the message (the
bit “0”) to Charlie;

3. Alice and Bob transmit the first components of their bipartite state, i.e., the
components A and B of j˚iAA0 and j˚iBB0 , respectively. This is the first use of
the channel;

4. The second components of each state j˚Ai and j˚iBB0 are sent;
5. After the second round, Charlie performs a joint projective measurement in order

to estimate the message sent by Alice and Bob. As will be explained below, the
received state is given by

E˝2
2;1 .j˚iAA0 ˝ j˚iBB0/ D j00ih00j C j11ih11j

2
: (5.26)

6. Instead, if Alice chooses to send the bit “1,” then she applies the operator Ui to
one of the components A or A0 of j˚iAA0 . As will be demonstrated next, the whole
received state by Charlie is

E˝2
2;1 .UA or A0 j˚iAA0 ˝ j˚iBB0/ D j01ih01j C j10ih10j

2
: (5.27)
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Charlie
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Fig. 5.9 Example of a E2;1 channel whose one-shot zero-error capacity is equal to zero. Figure
illustrates how Alice and Bob can use the channel twice in order to transmit one bit to Charlie
without confusion. The zero-error capacity of this channel is at least 0:5 bits/use

It is straightforward to see that the two possible output quantum states (5.26)
and (5.27) are orthogonal, i.e., they can be fully distinguished by Charlie using a
projective measurement. Figure 5.9 illustrates the communication protocol.

By linearity, the output of the quantum channel (5.23) after two channel uses can
be written as

E˝2
2;1 .�/ D Tr ..P0 ˝ P0/�/j00ih00j C Tr ..P0 ˝ P1/�/j01ih01j

CTr ..P1 ˝ P0/�/j10ih10j C Tr ..P1 ˝ P1/�/j11ih11j: (5.28)

Before the first transmission and supposing that Alice wishes to send the message
“0,” the global system state at the channel input is given by

j˚iAA0 ˝ j˚iBB0 D 1=4.j0000i C j0011i C j0022i C j0033i
Cj1100i C j1111i C j1122i C j1133i
Cj2200i C j2211i C j2222i C j2233i
Cj3300i C j3311i C j3322i C j3333i/: (5.29)

Unfortunately, we cannot directly apply the above state to the composite chan-
nel (5.28) in order to get the output state after the second channel use. To see
this, first note that we have written in bold the components of the global input
state (5.29) that belongs to Bob. However, the expression of E˝2

2;1 .�/ presumes
that the components of � must be organized in an order compatible with the
original transmission protocol. For example, the second trace operator in (5.28),
Tr ..P0 ˝ P1/�/, means that we must apply P0 to the components A and B of
j˚iAA0 and j˚iBB0 , respectively. Analogously, the projector P1 must be applied to



5.5 Superactivation of Zero-Error Capacity 95

the parts A0 and B0 of the corresponding quantum systems. For instance, we can
manipulate (5.29) to fulfill this requirement. We call � D j˚0ih˚0j the state of the
system corresponding to the message “0,” where

j˚0i D j˚ABA0B0i
D 1=4.j0000i C j0101i C j0202i C j0303i

Cj1010i C j1111i C j1212i C j1313i
Cj2020i C j2121i C j2222i C j2323i
Cj3030i C j3131i C j3232i C j3333i/: (5.30)

Now supposing that Alice wants to transmit the message “1” and that she applies
the operator Ui to any of the components of j˚iAA0 , we have

Uij˚iAA0 D .j0ih0j � j1ih1j C j2ih2j � j3ih3j/1
2
.j00i C j11i C j22i C j33i/

D 1

2
.j00i � j11i C j22i � j33i/:

The whole state of the system before the transmission is

Uij˚iAA0 ˝ j˚iBB0 D 1=4.j0000i C j0011i C j0022i C j0033i
�j1100i � j1111i � j1122i � j1133i
Cj2200i C j2211i C j2222i C j2233i
Cj3300i � j3311i � j3322i � j3333i/: (5.31)

In the same way, we can manipulate the above state in order to apply the channel
E2;1.�/ twice:

j˚1i D j˚ABA0B0i
D 1=4.j0000i C j0101i C j0202i C j0303i

�j1010i � j1111i � j1212i � j1313i
Cj2020i C j2121i C j2222i C j2323i
�j3030i � j3131i � j3232i � j3333i/: (5.32)

Finally, the reader can verify that

E˝2
2;1 .j˚0ih˚0j/ D j00ih00j C j11ih11j

2
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and

E˝2
2;1 .j˚1ih˚1j/ D j01ih01j C j10ih10j

2

are orthonormal quantum states. In summary, one use of the quantum channel
always leads to non-orthogonal mixed states and, therefore, the channel one-shot
zero-error capacity vanishes. In contrast, using the channel twice, Alice and Bob
can agree on a LOCC protocol in order to send one message to Charlie without
confusion. Therefore, the asymptotical zero-error capacity of this channel is

C.0/.E2;1/ � 1

2
log 2 D 0:5 bits per channel use:

Besides its amazing feature of having the zero-error capacity activated, the
channel E2;1.�/ has another interesting property. Alice and Bob can use the channel
twice to send one bit of information to Charlie without leaking any information
about the transmitted message to the other sender.

For instance, the activation of the zero-error capacity was shown in a context of
a multiuser quantum channel, where senders and receivers share a classical channel
to run a LOCC protocol. A natural question is whether there exist one-sender one-
receiver quantum channels such that the zero-error capacity can be activated, i.e.,
quantum channels that a single sender cannot perfectly transmit a message to a
single receiver just using the channel once, whereas such transmission is possible
using the channel twice. Surprisingly, these quantum channels exist; this feature
was discovered simultaneously by Duan [7] and by Cubitt et al. [5]. The so-called
superactivation of the zero-error capacity is explained in the next section.

5.5.2 Superactivation of the Classical Zero-Error Capacity of
Quantum Channels: Part I

In this section, we present the first of two mathematical developments that lead
to a surprising result about the zero-error capacity of quantum channels. By using
different frameworks, Duan [7] and Cubitt et al. [5] were able to construct families
of one-sender one-receiver quantum channels whose zero-error capacities can be
superactivated.

Initially, we describe the construction of two quantum channels, S and F , that
have a vanishing zero-error capacity. In contrast, when used together, the quantum
channel S ˝ F has a positive zero-error capacity, i.e., C.0/.S ˝ F/ > 0. This is
not yet an example of superactivation. However, if we construct a quantum channel
E D S ˚ F as the direct sum of S and F ,

E.�/ D S.P0�P0/C F.P1�P1/; (5.33)
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E⊗2(|Φi〉〈Φi|)

E = S ⊕F

E = S ⊕F

|Φi〉〈Φi|

Alice Bob

Fig. 5.10 A quantum channel E whose zero-error capacity can be superactivated. The channel E
is the direct sum of S and F , two quantum channels with a vanishing one-shot zero-error capacity
with the property that C.0/.S ˝F/ > 0. The channel E has a one-shot zero-error capacity equal to
zero, but when used twice, Bob can perfectly distinguish between two output states E˝2.j˚0ih˚0j/
and E˝2.j˚1ih˚1j/

where P0 and P1 are specific projectors over the input state space, then it can
be showed that the channel E has the one-shot zero-error capacity equal to zero,
whereas classical information can be transmitted making use of the direct sum
channel twice. The setup is showed in Fig. 5.10.

Consider a quantum channel E with Kraus operators E � fEkgn
kD1, where E.�/ DP

k Ek�E�k and
P

k E�k Ek D I. According to (5.8), if the quantum channel E has
positive zero-error capacity, then there exist at least two orthogonal input states
j 0i; j 1i such that

Tr
�E�.j 0ih 0j/E.j 1ih 1j/� D

X
a;b

jjh 0jE�aEbj 1ijj2

D 0; (5.34)

which means that

Tr
�
E�aEbj 0ih 1j

� D 0 (5.35)

for all 1 � a; b � n. It is evident that operators E�aEb play an important role in
studying the zero-error capacity of quantum channels. Define

K.E/ D spanfE�aEb W 1 � a; b � ng: (5.36)

In linear algebra, a basis B of a matrix space vector is called unextendible
if B? contains no rank-one matrices. Consequently, B? contains only matrices
with rank two or more and, therefore, we say that B? is a completely entangled
state space. When B? contains at least one rank-one matrix, the basis B is called
extendible. This kind of partition of a state space has interesting applications in
quantum information theory, specially in distinguishability of general quantum
states and subspaces. Some references about unextendible basis can be found at
Further Reading section. For our purposes, we just mention an important property
of unextendible basis. It was shown that if the dimension of a matrix subspace B is
dim.B/ < 2d � 1, where d is the dimension of the whole matrix space, then B is
always extendible.
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We turn our attention to (5.35). First note that the operator j 0ih 1j is orthogonal
to E�aEb for all 1 � a; b � n, i.e., j 0ih 1j 2 K.E/?. Moreover, the operator
j 0ih 1j has rank equal to one. Therefore, we conclude that if a quantum channel
E � fEkgn

kD1 has positive one-shot zero-error capacity, then K.E/ is extendible. The
converse is also true, as states the following lemma [7].

Lemma 5.1. Let E � fEkgn
kD1 be a quantum channel with Kraus operators Ek. The

channel E has positive zero-error capacity if and only if K.E/ is extendible.

Another property of K.E/ is K.E/� D K.E/. Note that K.E/� D fK�;K 2
K.E/g. Moreover, because E is trace preserving, it turns out that I 2 K.E/. In
fact, these two properties are necessary and sufficient conditions to guarantee the
existence of a quantum channel from an input state space of operators B.Hd/ to the
output state space B.Hd0/.

Lemma 5.2 (Duan [7]). Let M be a matrix subspace of B.Hd/. There is a quantum
channel E from B.Hd/ to B.Hd0/ such that K.E/ D M if and only if M� D M and
I 2 M.

The conditions in Lemmas 5.1 and 5.2 are important because they allow to
construct quantum channels whose zero-error capacity can be superactivated. As
already mentioned, this can be achieved by finding two quantum channels, S and
F , with vanish zero-error capacity, whereas S ˝F has positive zero-error capacity.
This can be done by writing down two partitions of a state space, say K.S/ and
K.F/, with the following properties: K.S/ and K.F/ are unextendible, whereas
K.S/˝ K.F/ is extendible.

Example 5.6 (Superactivation of the Zero-Error Capacity of Quantum Channels).
Let K.S/ be the matrix state space spanned by the vectors:

S1 D j0ih0j C j1ih1j;
S2 D j2ih2j C j3ih3j;
S3 D j2ih0j � j0ih2j;
S4 D j3ih0j C j0ih3j; (5.37)

S5 D j1ih3j C j3ih1j;
S6 D cos 
 j0ih1j C sin 
 j2ih3j � j1ih2j;
S7 D cos 
 j1ih0j C sin 
 j3ih2j � j2ih1j;
S8 D sin 
 j0ih1j � cos 
 j2ih3j � sin 
 j1ih0j C cos 
 j3ih2j;

where 0 < 
 < �=2 is a parameter. The reader can verify that K.S/? D K.S/
and I 2 K.S/. In addition, consider the matrix state space spanned by the following
vectors:
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F1 D j0ih0j � j1ih1j;
F2 D j2ih2j � j3ih3j;
F3 D j2ih0j C j0ih2j;
F4 D j3ih0j � j0ih3j; (5.38)

F5 D j1ih3j � j3ih1j;
F6 D cos 
 j0ih1j C sin 
 j2ih3j C j1ih2j;
F7 D cos 
 j1ih0j C sin 
 j3ih2j C j2ih1j;
F8 D � sin 
 j0ih1j C cos 
 j2ih3j C sin 
 j1ih0j � cos 
 j3ih2j:

The reader can easily verify that K.F/ satisfies the Hermitian condition, K.F/� D
K.F/. Moreover, the subspaces K.S/ and K.F/ are orthogonal with respect to the
Hilbert-Schmidt inner product.

The two matrix vectors state spaces K.S/ and K.F/ has the following desirable
properties:

(a) K.S/ and K.F/ are unextendible, i.e., they are completely entangled state
spaces;

(b) K.S/˝ K.F/ is extendible.

In order to verify property (a), define a rank-one matrix j ih�j orthogonal to
K.S/, where j i D P3

iD0 cijii and j�i D P3
jD0 djjji. Then, for each k D 1; : : : ; 8,

Tr .Skj ih�j/ D 0 implies ci D di D 0 for all 0 � i � 3, i.e., the orthogonal
complement of K.S/ has no rank-one matrices and, therefore, K.S/ is unextendible.
The same holds for the subspace K.F/.

Property (b) can be demonstrated by defining the quantum state

j˚0i D j00i C j11i C j22i C j33i
2

(5.39)

and the operator U D j0ih0j � j1ih1j C j2ih2j � j3ih3j. The reader can verify that
the following quantum state

j˚1i D .I ˝ U/
j00i C j11i C j22i C j33i

2
(5.40)

gives rise to the rank-one matrix j˚1ih˚1j orthogonal to K.S/˝ K.S/, i.e.,

Tr
�
Si ˝ Fjj˚1ih˚1j

� D 0 8i; j D 1; : : : ; 8:

Therefore, the vector space K.S/ ˝ K.S/ is extendible because .K.S/ ˝ K.S//?
has a rank-one matrix.

According to Lemma 5.2, the corresponding quantum channels S and F have no
zero-error capacity when used individually, whereas the channel S ˝F has positive
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zero-error capacity. By using S ˝ F , a sender can prepare one of the entangled
states j˚0i and j˚1i to transmit a classical message to a receiver, since the latter can
perfectly distinguish between S ˝ F.j˚0i/ and S ˝ F.j˚1i/.

As already mentioned, this is not yet an example of superactivation, since S
and F are different channels. However, if we consider the direct sum channel S ˚
F (5.33),

E.�/ D S.P0�P0/C F.P1�P1/;

with P0 D j˚0ih˚0j and P1 D I � j˚0ih˚0j, then it is clear that a single use of
the channel E cannot transmit classical information without error. In contrast, one
can verify that when the channel E is used twice, then Bob is able to distinguish
between the two orthogonal states, E˝2.j˚0i/ and E˝2.j˚1i/. Therefore, the use
of entanglement between two uses of a quantum channel can superactivate the zero-
error capacity of the channel. Finally, we can conclude that the asymptotic zero-error
capacity of E is

C.0/.E/ � 0:5 bits per channel use:

A short remark on the construction of the quantum channels S and F should be
given. First, note that

M D
8X

iD1
S�i Si D

8X
iD1

F�i Fi;

where

M D

2
664
4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

3
775 :

In order to construct the corresponding trace-preserving quantum operations E we
only need to define the sets

S �
n
SiM

� 1
2

o8
iD1 and F �

n
FiM

� 1
2

o8
iD1 ; (5.41)

where

M� 1
2 D

2
664
0:5 0 0 0

0 0:5 0 0

0 0 0:5 0

0 0 0 0:5

3
775 :
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5.5.3 Superactivation of the Classical Zero-Error Capacity
of Quantum Channels: Part II

This section describes a different approach to determine necessary and sufficient
conditions for the existence of quantum channels, S and F , whose one-shot zero-
error capacities are zero, while the composite channel S˝F has positive (one-shot)
zero-error capacity.

Consider a quantum channel S W B.H/ ! B.H/. The channel S has a vanishing
one-shot zero-error capacity if and only if all quantum states in H are adjacent, i.e.,

8j i; j'i 2 H W Tr
�S.j i/�S.j'i/� ¤ 0: (5.42)

Let S� be the adjoint2 (or dual) of S with respect to the Hilbert-Schmidt inner
product. Because the cyclic property of the trace,

Tr
�S.j i/�S.j'i/� D Tr . � S.S.j'i///

D Tr
�
 � S� ı S.j'i/�; (5.43)

where  � j ih j and S.S.�// � S ı S.�/ were defined for short.
Conversely, a quantum channel has positive zero-error capacity if and only if

there exists at least one pair of non-adjacent states in H, i.e.,

9j i; j'i 2 H W Tr
�S.j i/�S.j'i/� D 0; (5.44)

or, equivalently,

9j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� D 0: (5.45)

The problem of finding quantum channels whose zero-error capacities can be
superactivated is reformulated as follows. One needs to find two quantum channels
S , F , such that

(a)

8j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� ¤ 0; (5.46)

which means C.0/.S/ D 0;

2The adjoint of S W B.H/ ! B.H/ is dual with respect to the Hilbert-Schmidt inner product such
that Tr

�
��S.	/

� D Tr
�
S�.�/�	

�
, �; 	 2 B.H/. If S � fEkg is defined by a set of Kraus operator

Ek, then S� � fE�k g.
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(b)

8j i; j'i 2 H W Tr
�
 � F� ı F.j'i/� ¤ 0; (5.47)

which means C.0/.F/ D 0;
(c)

9j˛i; j�i 2 H˝2 W Tr
�
˛ � .S� ı S/˝ .F� ı F/.j�i� D 0; (5.48)

which means C.0/.S ˝ F/ > 0.

The composite map S� ı S plays an important role in studying the zero-
error capacity. A map N is called conjugate-divisible if it can be decomposed
as N D S� ı S . Before enunciating a theorem that establishes necessary and
sufficient conditions for the existence of conjugate-divisible maps and gives a full
characterization of its corresponding Choi-Jamiołkowski matrices, it is helpful to
define positive-semidefinite states and subspaces, as well as conjugate-symmetric
states and subspaces.

For bipartite states j�iAB 2 HAB with basis jiAijjBi, there exists an isomorphism
with the space of dA � dA matrices in the following way:

j�iAB D
X

ij

MijjiAijjBi:

In this way, the bipartite state j�iAB is said to be positive-semidefinite if the
corresponding matrix Mj�iAB

D ŒMij� is positive-semidefinite. Analogously, a
subspace HAB is positive-semidefinite if it can be spanned by a set of positive-
semidefinite states.

A bipartite state or operator j�iAB 2 HAB is conjugate-symmetric in a given basis
jiAijjBi if it is invariant under the flip operation:

F

0
@X

ij

cijjiAijjBi
1
A D

X
ij

NcijjjAijiBi:

The effect of the flip operation is to interchange the two parties and complex
conjugation. Similarly, a subspace is said to be conjugate-symmetric if it is invariant
under the same operation.

Theorem 5.3 (Existence of Conjugate-Divisible Maps [5]). Given a subspace
HAB � H˝2 such that supp .TrB .HAB// D H, there exists a conjugate-divisible
map with (in general non-standard) Choi-Jamiołkowski matrix 	AB such that
supp .	AB/ D HAB if and only if HAB is a positive-semidefinite and conjugate-
symmetric subspace.
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The notation supp .TrB .HAB// stands for
S

j�i2HAB
supp .TrB .j�ih�j//. Now

requirements (a) to (c) can be converted into necessary and sufficient conditions for
the maps to satisfy (5.46) to (5.48). Let 	S and 	F be the Choi-Jamiołkowski
matrices corresponding to the conjugate-divisible maps NS D S� ı S and
NF D F� ı F , respectively. Equations (5.46) and (5.47) can be rewritten as

8j i; j'i 2 H W Tr
�
 � S� ı S.j'i/� D Tr

�
 � TrA

�
	S � 'T ˝ 1

��
D Tr .	S � ' ˝  /

¤ 0; (5.49)

and

8j i; j'i 2 H W Tr .	F � ' ˝  / ¤ 0: (5.50)

Therefore, if H	S ;H	F � H˝2 are the subspaces spanned by the support of 	S
and 	F , respectively, it is necessary and sufficient to require that their orthogonal
complements contain no product states, i.e.,

Àj i; j'i 2 H W j i ˝ j'i 2 H?
	S ;H?

	F : (5.51)

We turn our attention to (5.48) in order to find necessary and sufficient conditions
to the joint map S ˝ F to fulfill the corresponding requirement. Without loss of
generality, fix the states j˛i and j�i to be maximally entangled in the following
way. Let j!i be the full rank (unnormalized) state j!i D P

i jiijii and define j˛i D
.U ˝ V/j!i, j�i D .W ˝ X/j!i, where U;V;W;X are unitary. Again, if 	S and 	F
are the Choi-Jamiołkowski matrices corresponding to the conjugate-divisible maps
NS D S� ı S and NF D F� ı F , respectively, then

0 D Tr
�
˛ � .S� ı S/˝ .F� ı F/.j�i�

D Tr .˛ � NS ˝ NF .j�i/
D Tr

�
˛ � TrA

�
	S ˝ 	F � �T ˝ 1

��
D Tr

�
	S ˝ 	F � �T ˝ ˛

�
D Tr

�
	S ˝ 	F � .U ˝ V!TUT ˝ VT/˝ .W ˝ X!W� ˝ X�/

�

D Tr
��

U ˝ W	SUT ˝ W�
�T � �V ˝ X	FVT ˝ X�

�	

D Tr
�
	T
S � �U ˝ V	FU� ˝ V�

��
: (5.52)

Besides fulfilling the requirements (5.51), the support of the Choi-Jamiołkowski
matrices 	S and 	F must be related by

HT
	F D .U ˝ V/H?

	S :
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Because conjugate-symmetry, Schmidt-rank, and positive-semidefiniteness are
invariant under the transpose operation, we can write

H	F D .U ˝ V/H?
	S : (5.53)

Moreover, if a subspace is conjugate-symmetric, then so is its orthogonal comple-
ment. Considering the fact that Schmidt-rank is invariant under unitary operations,
all the conditions can be expressed in terms of a single subspace H2 � H˝2.
Finally, (5.51) and (5.53), together with Theorem 5.3, give necessary and sufficient
conditions to guarantee the existence of two quantum channels S and F such that
C.0/.E/ D C.0/.F/ D 0, while the composite channel S ˝ F has positive one-shot
zero-error capacity. All of these conditions are grouped in Theorem 5.4

Theorem 5.4 (Superactivation of the One-Shot Zero-Error Capacity [5]). If
there exists a subspace H2 � H˝2 and unitaries U;V satisfying

Àj i; j'i 2 H W j i ˝ j'i 2 H?
2 ; (5.54)

Àj i; j'i 2 H W j i ˝ j'i 2 H2; (5.55)

F.H2/ D H2; (5.56)

F.U ˝ V � H2/ D U ˝ V � H2; (5.57)

9fMi � 0g W H2 � spanfMig; (5.58)

9fMj � 0g W U ˝ V � HT
2 � spanfMjg; (5.59)

then there exist quantum channels S and F whose one-shot zero-error capacity is
zero, whereas the joint channel S ˝ F has positive zero-error capacity.

In Theorems 5.4, (5.54) and (5.55) fulfill requirements (5.46) and (5.47), i.e.,
they impose that the one-shot zero-error capacity of the channels S and F are both
equal to zero. Equation (5.57) ensures that the joint channel S ˝ F has positive
zero-error capacity, whereas (5.56), (5.58), and (5.59) are necessary and sufficient
conditions to guarantee the existence of the corresponding quantum channels, as
stated in Theorem 5.3.

5.6 Further Reading

In this chapter, we revisited the classical zero-error capacity of quantum channels
proposed by Medeiros [11]. This chapter is based on his thesis, but many articles
published previously built up his theory [12–14, 16].

Many alternative definitions to the zero-error capacity of a quantum channel can
also be found in the literature. Medeiros and Assis proposed a version in which the
maximum amount of quantum information sent through quantum channels without
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errors is considered, the so-called quantum zero-error capacity of a quantum channel
[14]. Other variants proposed by Winter et al. are shown in Chap. 8 and can also be
found detailed in papers by these authors [4, 6, 9].

Superactivation was first described by Duan and Shi [8] for a scenario of multiple
senders and receivers. Using the concept of unextendible basis [3, 19, 22], Duan
[7] demonstrated the existence of one-sender one-receiver quantum channel whose
zero-error capacity can be activated. This phenomena was independently studied
by Cubitt et al., which proved a more general result on the superactivation of the
asymptotic zero-error capacity [5]. Park and Lee [18] showed that the zero-error
capacity of qubit channels cannot be superactivated.

Cubitt and Smith [2] considered the scenario where two quantum channels S
and F have a vanishing zero-error capacity, whereas the joint channel S ˝ F could
transmit quantum information at a positive rate and with probability of error equal
to zero. The authors called this effect the super-duper-activation of the quantum
zero-error capacity. Various examples of low dimensional quantum channels whose
one-shot classical and quantum zero-error capacities can be superactivated were
described by Shirokov and Shulman [21].
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Chapter 6
Zero-Error Secrecy Capacity

Quantum key distribution is one of the most settled techniques nowadays to
perform secure communications over quantum channels [42, p. 586]. Even though
its security proofs are well established [37], in practical scenarios many of these
protocols are not adequate due to noise in the quantum channel. The noise does not
only increase the error rate in the transmission, but can also hinder eavesdropping
detection in a process of security control [34].

Considering the practical difficulties to perform secure communications in noisy
quantum channels, this chapter introduces some recent results regarding the zero-
error secrecy capacity (ZESC), the higher transmission rate that can be achieved
in certain noisy quantum channels that allows information to be sent without errors
and in an unconditionally secure way. This capacity unifies concepts from quantum
zero-error information theory, from quantum secrecy capacity of quantum channels,
and also from decoherence-free subspaces and subsystems.

To present such developments, this chapter is organized as follows. Some
background concepts of decoherence-free subspaces and subsystems are presented
in Sect. 6.1. Section 6.2 discusses the quantum secrecy capacity. The model of
communications and the formalism of concepts and proofs regarding ZESC are
shown in Sect. 6.3. The relation between ZESC and graph theory is elucidated
in Sect. 6.4. After that, the security level that this approach provides is presented
in Sect. 6.5. Detailed examples considering different scenarios for the ZESC are
illustrated in Sect. 6.6. Recent works in literature that have intersections with the
ZESC, and that may point to further work are introduced in Sect. 6.7. Lastly, further
reading is suggested in Sect. 6.8.

© Springer International Publishing Switzerland 2016
E.B. Guedes et al., Quantum Zero-Error Information Theory,
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6.1 Decoherence-Free Subspaces and Subsystems

Suppose a closed quantum system composed by a system of interest, denoted by
S and defined in a Hilbert space H, and by the environment, denoted by E. This
system has the following Hamiltonian:

H D HS ˝ 1E C 1S ˝ HE C HSE; (6.1)

where 1 is the identity operator, HS denotes the operator of the system of interest,
HE denotes the operator of the environment, and HSE denotes the operator of the
interaction between system and environment [34].

To a complete absence of errors, the ideal scenario happens when HSE is zero,
indicating that system and environment are completely decoupled and evolved uni-
tary according to their own Hamiltonians HS and HE, respectively [34]. However,
in realistic situations, this ideal scenario does not occur since no system can be
completely free of errors. So, after isolating a system as better as possible, we must
adopt at least one of the following strategies: identify and correct errors when they
occur; avoid error as much as possible; suppress the error of the system [5].

If some symmetries exist in the interaction between system and environment,
it is possible to find a “safe place” in the Hilbert space that is not subject to the
negative effects of decoherence. Let fAi.t/g be a set of operators in the operator-sum
representation (OSR) describing the evolution of a system. We say that a density
matrix �S is invariant under the operators fAi.t/g if

P
i Ai.t/�SA�i .t/ D �S. Taking

this into account, we can define the decoherence-free subspaces and subsystems
(DFS) whose states are invariant despite a non-trivial coupling between system and
environment.

Definition 6.1 (Decoherence-Free Subspaces and Subsystems [1]). A subspace
QH from a Hilbert space H is said to be decoherence-free regarding the coupling

between system and environment if every pure state in this subspace is invariant
under the OSR evolution, despite any environment initial condition, i.e.,

X
i

Ai.t/jQkihQkjA�i .t/ D jQkihQkj;8jQkihQkj 2 QH;8�E.0/: (6.2)

Let the Hamiltonian of the interaction between system and environment be
HSE D P

j Sj ˝ Ej, where Sj and Ej are the operators of the system and the
environment, respectively. We consider that the environment operators Ej are
linearly independent. The symmetries required to the existence of a DFS are
described as follows, whose proof is shown in [34, Sect. 5].

Theorem 6.1 (Conditions for the Existence of Decoherence-Free Subspaces).
A subspace QH is decoherence-free if and only if the system operators Sj act
proportionally to the identity in this subspace, i.e.,

SjjQki D cjjQki 8j; jQki 2 QH: (6.3)
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The notion of a subspace that remains decoherence-free during the system
evolution is not, however, the most general way to decoherence-free encoding
in quantum systems [34]. Knill et al. [32] developed a method to encoding into
subsystems instead of subspaces.

Definition 6.2 (Decoherence-Free Subsystems). Let E W B.H/ ! B.H/ be
a positive trace-preserving superoperator in a Hilbert space H. Suppose H D
.HA ˝ HB/˚ K. We say that HB (dim.HB/ � 1) is a decoherence-free subsystem
if, 8	A 2 B.HA/ and 8	B 2 B.HB/, there is �A 2 B.HA/ such that

E.	A ˝ 	B/ D �A ˝ 	B: (6.4)

We can also write this definition using the partial trace:

TrA ŒE.	/� D TrA.	/ 8	 D 	A ˝ 	B: (6.5)

When dim.HA/ D 1, we say that HB is a decoherence-free subspace for E .
It is possible to build codes from states of a DFS which are known as quantum

error-avoiding codes (QEAC). Information encoded into DFS is not affected by
the channel’s noise. Therefore, no error-correcting procedure is necessary. Error-
avoiding codes can be contrasted with quantum error-correcting codes (QECC)
regarding some aspects: QECCs are designed to correct errors after they occur,
while QEACs do not have abilities to correct errors, because they avoid it; the
most adopted QECCs are non-degenerated, while QEACs are highly degenerated
codes; QEACs usually require less physical qubits to represent a logical qubit when
compared to QECCs. In particular, if the degenerescence of a QECC reaches the
maximum, then this code is reduced to a QEAC, showing a situation where one
kind of code becomes equivalent to the other [14].

Even though DFS is a way to avoid errors, not all situations attain symmetry
requirements to the existence of such subspaces. Zanardi and Rasetti [58] state that
such conditions occur only if there is collective decoherence which occurs when
several qubits couple in an identical way with the environment while undergoing
both dephasing and dissipation.

Example 6.1 (Collective Dephasing Quantum Channel). Dephasing is a phe-
nomenon in which the relative phase of a qubit is lost. Quantum channels with
collective dephasing act on the input state in the following way:

j0i ! j0i ;
j1i ! e{� j1i ;

where � is the collective dephasing parameter that varies with time. A logic qubit
composed by two physical qubits with anti-parallel parity is immune to collective
dephasing, i.e.,

j0Li D j01i ;
j1Li D j10i :
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A qubit can be, thus, encoded as j Li D ˛ j0Li C ˇ j1Li. As expected, j Li does
not suffer from the collective decoherence due to this channel:

E.j Li/ D E .˛ j0Li C ˇ j1Li/
D ˛e{� j01i C ˇe{� j10i
D e{� .˛ j01i C ˇ j10i/
D e{� j Li
D j Li ;

since the global phase factor e{� acquired during this process has no physical
significance [7]. It means that the states j01i and j10i belong to QH, a decoherence-
free subspace from H in a quantum channel with collective dephasing.

Some practical results already reported in the literature consider the identifica-
tion, implementation, and adoption of several DFS in quantum computation and
communication [2, 17, 29, 31, 33, 35, 41, 51, 57, 59]. For quantum communications,
in particular, DFS are useful for building quantum repeaters. Such devices are
used for quantum key distribution, quantum teleportation schemes and also for
quantum computer networks [13]. The work of Xue [56] shows the characterization
of quantum repeaters with DFS for long distance quantum communications.

6.1.1 Method for Obtaining Decoherence-Free Subspaces and
Subsystem

Despite the ability to preserve the fidelity of quantum states, one of the limitations
regarding the use of DFS relies on the difficulty to identify them [5]. In order to
circumvent this problem, Choi and Kribs [9] proposed a method to identify DFS
when the error model of the quantum channel is known. The main goal of this
section is the characterization of this method that is mainly algebraic.

Let E W B.H/ ! B.H/ be a quantum operation. The error model can be
specified, for example by the operation elements fEag of an OSR, E � fEag. The
noise commutator A0

for E is the set of all operators B.H/ which commute with the
operators Ea and E�a. When considering unital channels (which satisfy E.1/ D 1),
we have that all 	 2 A0

satisfy E.	/ D 	 . As a consequence, A is a �-algebra1

generated by Ea that is called interaction algebra associated with E .

1The formalism of �-algebras, also known as C�-algebras, was developed for its use on quantum
mechanics of observables. A �-algebra is a Banach �-algebra with an additional condition for the
norm: jjA� � Ajj D jjA2jj for all A 2 U , where U is an algebra with complex norm. A complete
tutorial on �-algebras can be found on Davidson [10].
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However, quantum channels are generally non-unital and hence we must explore
a more general formalism. Any operator 	 that belongs to the noise commutator A0

satisfies E.	/ D 	E.1/ D E.1/	 . Given a projector P in B.H/, the objective is
to find a subalgebra PB.H/P of B.H/ with algebra B.PH/. To do so, we have the
following theorem.

Theorem 6.2 (Choi and Kribs [9]). Let E D fEag be a quantum operation on
B.H/. Suppose that P is a projection onto H that satisfies

E.P/ D PE.P/P: (6.6)

Then, EaP D PEaP, 8a. Define

A0

P � ˚
	 2 B.PH/ W Œ	;PEaP� D 0 D �

	;PE�aP
��

(6.7)

and

FixP.E/ � f	 2 B.PH/ W E.	/ D 	E.P/ D E.P/	;
E.	�	/ D 	�E.P/	; E.	; 	�/ D 	E.P/	�� : (6.8)

Therefore, FixP.E/ is a �-algebra inside B.PH/ that coincides with A0

P, i.e.,

FixP.E/ D A0

P: (6.9)

The proof of this theorem will not be fully discussed; we just highlight some of
the most important aspects. If P satisfies (6.6), then

0 � P?EaPE�aP? � P?E.P/P? D 0 8a: (6.10)

To whatever operators A;B 2 B.H/, A � B ) h j B � A j i � 0, 8 j i 2 H. This
way, P?EaP D 0 or, equivalently, EaP D PEaP, 8a. When considering 	 2 A0

P,
then

E.	/ D
X

a

EaP	PE�a

D 	
X

a

EaPE�a D
X

a

EaPE�a	

D 	E.P/ D E.P/	: (6.11)

Projectors P satisfying (6.6) have some properties. For instance, a quantum
channel E � fEag acts on a quantum state 	 2 A0

P projecting it into another state 	 0
in the subspace defined by P. To support this statement, we have that
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	 0 D E.	/
D 	E.P/
D .P	P/.PE.P/P/
D PŒ	PE.P/�P 2 B.PH/: (6.12)

In this particular case, E.	/ D 	 only if E.P/ D 1.
The next step is to show how projectors with such characterization can capture

the DFS of a quantum operation E .

Theorem 6.3 (Method for Obtaining DFS [9]). Let E be a quantum operation in
B.H/. Let P be a projector that satisfies (6.6), and let PH D ˚k.HAk ˝ HBk/ be
the decomposition of PH induced by the structure of the �-algebra A0

P D FixP.E/.
Then, the subsystems HBk , with dim.HBk/ > 1, are decoherence-free for E .

We can say that the essence of this method relies on the identification of all
projectors P satisfying (6.6). Thenceforth, the structure of A0

P D FixP.E/ is used to
determine what are the states that belong to the DFS.

One important aspect is the optimality of the proposed method. It means
that it can capture all projectors satisfying (6.6) [9, Theorem 3]. Despite the
characterization of such method, the authors state that no computational procedures
were developed to this purpose yet.

Example 6.2 (Identifying a DFS in a Quantum Channel). Suppose that the quantum
channel E � fE0;E1;E2g acts on a bidimensional space state with the following
Kraus operators:

E0 D ˛.j00i h00j C j11i h11j/C j01i h01j C j10i h10j ;
E1 D ˇ.j00i h00j C j11i h11j C j01i h01j C j10i h10j/;
E2 D ˇ.j00i h00j C j11i h11j � j01i h01j � j10i h10j/;

where q is a scalar, 0 < q < 1; ˛ D p
1 � 2q; ˇ D p

q=2. It is possible to notice
that E.1/ D P2

aD0 EaE�a ¤ 1 and, therefore, this channel is not unital.
In this channel model, there is only one state � such that E.�/ D �. However,

such invariance does not come from the action of E , but from a fixed point.
Despite that, there is a DFS with such dimension when we consider the projector
P D j01i h01j C j10i h10j, i.e., all operators supported by P are invariant under E . It
means that E.	 0/ D 	 0 for all 	 0 D P	P.

To exemplify this statement, let the density operator of the state j i be

j i h j D j01i h01j C j01i h00j C j00i h01j C j00i h00j
2

:

Applying the projector P onto j i results
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ˇ̌
 0˛ ˝ 0 ˇ̌ D P j i h j P

D .j01i h01j C j10i h10j/

 j01i h01j C j01i h00j C j00i h01j C j00i h00j

2

�
P

D

 j01i h01j C j01i h00j

2

�
.j01i h01j C j10i h10j/

D j01i h01j
2

:

Note that j 0i h 0j does not vary after passing the channel E , despite it does not
belong to the noise commutator A0 for E :

E.ˇ̌ 0˛ ˝ 0 ˇ̌/ D
2X

aD0
Ea

ˇ̌
 0˛ ˝ 0 ˇ̌E�a

D j01i h01j
2

C ˇ � j01i h01j
2

� ˇ � j01i h01j
2

D j01i h01j
2

:

6.1.2 Relation with the Zero-Error Capacity of Quantum
Channels

The work of Medeiros et al. [39] explores the relation between DFS and zero-error
capacity of quantum channels. This relation is established from the method for
obtaining DFS of Choi and Kribs [9], showed in the previous section. The purpose
of this section is to show this relation.

We know that a quantum channel has zero-error capacity if and only if there
are at least two non-adjacent states at the channel input. Considering an optimum
pair .S;M/ according to Definition 5.3, it is possible to derive a pair .S 0;M0/,
where S 0 
 S , M0 D fM1; : : : ;Mk;MkC1g 
 M, and MkC1 D 1 �Pk

iD1 Mi. The
projectors Mi 2 M0, with 1 � i � k, satisfy

E.Mi/ D MiE.Mi/Mi (6.13)

and

MiMj D ıijMiMj; (6.14)

where ı denotes the Kronecker’s delta. When choosing projectors with such
restrictions, we notice that the elements of S 0 can define a DFS, as established in
the method for obtaining DFS explored in Sect. 6.1.1.
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As a consequence, we have that the set .S 0;M0/ is optimum and the zero-error
capacity C.0/.E/ defined for this set can be bigger than the zero-error capacity
C.0/.E/ defined for .S;P/, it means that C.0/.E/ � C.0/.E/. The proofs of such
consequences make use of graph theory and mappings properties [39].

In summary, the conclusion of those authors regarding the relation of DFS and
zero-error capacity is that if a zero-error quantum channel has a DFS, then the zero-
error capacity must be obtained from the DFS by using projectors that attain certain
properties.

6.2 Quantum Secrecy Capacity

The privacy in quantum systems was initially considered by Schumacher and
Westmoreland [45]. These researchers conceived a model that allows two legitimate
parties, Alice and Bob, to exchange classical messages through a noisy quantum
channel. An eavesdropper (Eve) has total access to the environment of the quantum
channel from which she is able to capture information of the legitimate parties.

Alice sends messages from a set of integers U D f1; 2; : : : ; jU jg mapped on an
ensemble of quantum states f�.u/; pu W u 2 Ug. The states of the ensemble are called
quantum codewords, composed by tensor products of quantum states:

�.u/ D �1.u/˝�2.u/˝ : : :˝�n.u/ u 2 U ; �i.u/ 2 H; i D 1; 2; : : : ; n: (6.15)

The mapping characterizes a quantum block code with block length n and rate
R D 1

n log jU j. A decoding scheme for this quantum code is a decoding function that
associates univocally an output quantum state with a set of integers, i.e., g W H ! U ,
Ou D g.E.�.u/// 2 U . An error occurs when g.E.�.u/// ¤ u.

The quantum privacy between Alice and Bob is limited by the coherent
information among them. The coherent information is an information measure that
quantifies the difference between the von Neumann entropies of two systems: the
system of interest and the environment [45]. When considering this formulation, Cai
et al. [6] and Devetak [11] notice some similarities with classical wiretap channels
proposed by Wyner [54]. Then, they proposed a quantum version of such channels,
presented in Definition 6.3 and illustrated in Fig. 6.1.

Definition 6.3 (Quantum Wiretap Channel). A quantum memoryless wiretap
channel is described by a superoperator E in a complex Hilbert space H D
HBob ˝ HEve. When Alice sends a quantum state � 2 H˝n, Bob receives �Bob D
TrEveŒE˝n.�/� and Eve receives �Eve D TrBobŒE˝n.�/�, where n is the dimension of
input Hilbert space.

When communicating over a quantum wiretap channel, security can be achieved
by using a particular type of quantum block code: the quantum wiretap codes.
Two additional parameters are necessary: 
, which represents an upper bound for
the error-probability; and �, which represents an upper bound for the maximum
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Fig. 6.1 General model of a quantum wiretap channel

accessible information by the eavesdropper Eve. A quantum wiretap code is referred
to as a 4-tuple .n; jU j ; 
; �/. A formal characterization of such codes is given below.

Definition 6.4 (Quantum Wiretap Block Codes). Consider a quantum block
code of length n and rate R D 1

n log jU j, where U D f1; 2; : : : ; jU jg is a set of
classical messages. The set of codewords labeled by the index of the messages is
given as follows:

˝.U/ D f�.u/ W u 2 Ug: (6.16)

We assume that the decoding function is given by the POVM fDu W u 2 Ug, whereP
u Du � 1.
This code is said to be a quantum wiretap block code with parameters (n, jU j, 
,

�), or quantum wiretap code for short, if two conditions are attained:

Pe D 1 � 1

jU j
X
u2U

TrEveŒE.�.u//Du� � 
; (6.17)

and

1

n

(
S

 X
u2U

TrBobŒE˝n.�.u//�

!
�
X
u2U

1

jU jS.TrBobŒE˝n.�.u//�/

)
� �: (6.18)

In the definition of a quantum wiretap code with parameters .n; jU j ; 
; �/, (6.17)
ensures an average probability of decoding errors for Bob lower than 
, and (6.18)
limits the information accessible to the eavesdropper, which captures almost nothing
from the message sent by Alice [6].

Lastly, the secrecy capacity of a quantum channel is defined as follows.

Definition 6.5 (Quantum Secrecy Capacity). The secrecy capacity of a quantum
channel E is the largest real number CS.E/, such that for all �; 
; � > 0 and n large
enough, there is a quantum wiretap code with parameters .n; jU j ; 
; �/ such that

CS.E/ < 1

n
log jU j C �: (6.19)
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Only uniformly distributed messages were considered in the previous definitions,
but the following theorem is a more general result for the quantum secrecy capacity
[6, Sect. 5].

Theorem 6.4 (Quantum Secrecy Capacity). Let E be a quantum wiretap channel
as characterized in Definition 6.3. The quantum secrecy capacity of E satisfies

CS.E/ � max
fPg

�
�Bob � �Eve

�
; (6.20)

where the maximum is taken over all probability distributions over U ; and �Bob and
�Eve are Holevo quantities defined as

�Bob D S.�Bob/ �
X

i

piS.�Bob.i//; (6.21)

�Eve D S.�Eve/ �
X

i

piS.�Eve.i//; (6.22)

where �Bob is the state received by Bob after a partial trace over the environment;
and �Eve is Eve’s final state.

The proof of this theorem makes use of the random coding proof technique to
ensure that the information gathered by Eve is negligible. When the information
transmission rate through the channel is smaller than the quantum secrecy capacity,
the protocol guarantees unconditional security [6]. This capacity is equivalent to the
definition of privacy presented by Schumacher and Westmoreland [45].

The quantum secrecy capacity (6.20) is the quantum counterpart of the classical
secrecy capacity proposed by Wyner [54]. We can, therefore, notice some simi-
larities between both definitions: they limit the decoding error probability and the
information accessible to the wiretapper.

A particular characteristic of the quantum secrecy capacity is that it does not have
single letter characterization, i.e., the capacity cannot be directly calculated because
the maximum is taken over all possible input states as well as all possible probability
distributions [6, 11].

Some codes for quantum wiretap channels can be found in the literature. Hamada
[25, 26] proposed classes of codes for both classical and quantum wiretap channels.
In the quantum case, they are based on concatenated conjugate codes that are
equivalent to the Calderbank-Shor-Steane (CSS) codes [42, Sect. 10.4.2]. Another
characteristic of the proposed code is the polynomial-time complexity for encoding
and decoding in terms of channel usage.

Another class of codes for quantum wiretap channels was proposed by Wilde
and Guha [53]. This construction is based on polar codes for degraded wiretap
channels that reach the symmetric secrecy capacity for a quantum wiretap channel
with a classical eavesdropper. Although this class of codes also has a polynomial-
time complexity for encoding and decoding, examples of such codes are strongly
dependent on numerical simulations [16]. Nonetheless, the authors showed that such
codes perform well when used to carry information through amplitude damping,
dephasing, erasure, and cloning quantum channels [16, 53].



6.3 Zero-Error Secrecy Capacity 117

6.3 Zero-Error Secrecy Capacity

Consider a scenario where two legitimate parties, Alice and Bob, want to exchange
classical messages through a quantum channel E in a secret and error-free way.
These messages must be protected from an eavesdropper (Eve), which has complete
and non-restricted access to the environment. This communication model is similar
to the scenario already considered in Fig. 6.1.

The communication model where the eavesdropper has complete access to the
environment follows the formalism proposed by Cai et al. [6] and of Devetak [11]
for the characterization of quantum wiretap channels. In practical scenarios, it is
more common to consider a direct action of the eavesdropper on the main quantum
channel and its implications in the communication and in the non-authorized
information gathering, e.g., in quantum key distribution protocols. The scenario
described in Fig. 6.1, although different from this approach, can also be physically
implemented and is already consolidated in the literature for quantum privacy
purposes [45]. In particular, the channel E has Kraus operators fEag and positive
zero-error capacity. The following characterization presents the quantum channel
under consideration.

Characterization 6.1 (Quantum Channel with Positive Zero-Error Capacity).
Let E be a trace-preserving quantum map with Kraus operators fEag, which
represents a noisy quantum channel E . We consider that E has a strictly positive
zero-error capacity, C.0/.E/ > 0, reached by an optimum pair .S;M/.

If there exists a POVM M0 D fM1; : : : ;Mkg that satisfies (6.13) and (6.14), then

E.Mi/ D MiE.Mi/Mi; (6.23)

MiMj D ıi;jMiMj; (6.24)

for all i; j � k. Furthermore, if we define

S 0 D
n
�i D jsii hsijkiD1 ; �i 2 MiH and Œ�i;MiEaMi� D 0 D �

�i;MiE
�
aMi

�o
;

(6.25)

then the pair .S 0;M0/ is also optimum. Since .S 0;M0/ has been obtained according
to the method described in Sect. 6.1.1, the quantum states �i 2 S 0 characterize
an orthonormal basis set for the decoherence-free subspace QH. For the sake of
simplicity, from now on we will use the notation QH in a reference for the basis states
of this decoherence-free subspace. Therefore, states in S 0 can be used to encode
information that will be immune to an eavesdropper, as shown in the following
lemmas.

Lemma 6.1 (Optimum Pair .S 0;M0/ Defines a QEAC). The optimum pair
.S 0;M0/ is a quantum error avoiding code (vide Sect. 6.2).
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Proof. In order to prove this lemma, we must show that the pair .S 0;M0/ has all the
elements of a QEAC.

Let U D fu1; : : : ; ukg be a set of classical messages; each message in U is
associated with a state in S 0 through a bijection. The set S 0 defines a codebook
QP.U/ D f Q�.ui/ D �ig � S 0 with codewords of length n. The decoding is performed
by a set of positive operators Mi 2 M0, i 2 1; : : : ; jU j, with

PjU j
iD1 Mi � 1. Indeed,

there is a bijective correspondence between the set of POVM operators M0
i and the

set of messages U . Therefore, the pair . QP.U/;M0/, which is equivalent to .S 0;M0/,
defines a quantum error-avoiding code of length n and rate 1

n log jU j.
It is straightforward to see that for each DFS we can construct a quantum error-

avoiding code to the corresponding quantum channel. The channel E is subject
to collective decoherence, being governed by the Hamiltonian (6.1). Thanks to
symmetries existing in collective decoherence, states in the DFS do not suffer the
action of HSE, the Hamiltonian component representing the interaction between
system and environment.

When Alice wants to send a message u to Bob using a quantum error-avoiding
code, she encodes u into a quantum codeword Q�.u/ and sends the corresponding
state through the channel E . We assume that the environment starts in a pure state
j0Ei h0Ej. Due to the decoherence, Bob and Eve will receive the following states,
respectively,

�Bob. Q�.u// D TrEve ŒE. Q�.u/˝ j0Ei h0Ej/� ; (6.26)

�Eve. Q�.u// D TrBob ŒE. Q�.u/˝ j0Ei h0Ej/� : (6.27)

Since Alice uses a QEAC, dynamic symmetries protect the quantum codeword
from interacting with the environment. Therefore, the joint evolution between
system and environment happens in a decoupled way. Thus, the state �Bob. Q�.u//
is given by

�Bob. Q�.u// D TrEve ŒE. Q�.u/˝ j0Ei h0Ej/� (6.28)

D TrEve

"X
a

Ea . Q�.u/˝ j0Ei h0Ej/E�a

#

D TrEve Œ Q�.u/˝ �E� (6.29)

D Q�.u/; (6.30)

where (6.29) is due to the invariance of a state from a DFS under the OSR operators.
Taking into account the Hamiltonian (6.1) of the quantum system and consid-

ering the fact that system of interest and environment have not interacted, then
it is possible to ensure that the environment suffered only the action of HE,
which indicates a unitary evolution restricted to the environment. It means that
�Eve. Q�.u// D �E (6.27) is a pure state.



6.3 Zero-Error Secrecy Capacity 119

Proceeding with the development, it is possible to state and prove the following
lemma.

Lemma 6.2 (Optimum Pair .S 0;M0/ Defines a Wiretap Code). The pair
.S 0;M0/ defines a quantum wiretap code with parameters .n; jU j ; 0; 0/.
Proof. In Definition 6.4 of a wiretap code as proposed by Cai et al. [6], two
conditions must be satisfied in order to achieve secrecy: (1) the average error
decoding probability must be small; and (2) the accessible information to the
eavesdropper must be arbitrarily small. As we show below, these two requirements
are actually satisfied.

For the first condition, note that the pair .S 0;M0/ is optimal, i.e., the set S 0 attains
the zero-error capacity. If quantum codewords are composed of tensor products
of states in S 0, then the communication is accomplished without decoding errors.
Therefore, 
 D 0 and the first condition is attained.

In order to verify the second condition, we need to check the accessible
information by Eve, which is given as

S

 X
u2U

1

jU j TrBob E. Q�.u//
!

�
X
u2U

1

jU jS .TrBob E. Q�.u/// � �; (6.31)

where � is arbitrarily small. Instead of calculating the left side of (6.31), we make
use of an upper bound for the accessible information, the Holevo quantity, defined
by

�Eve D S.�Eve. Q�.u/// �
X

u

puS.�Eve;u Q�.u//: (6.32)

Because quantum codewords are composed by states in S 0 that belongs to a DFS,
there are no interactions between the system and the environment. Therefore, the
initial environment state, j0Ei, evolves only under the Hamiltonian HE, indicating a
unitary evolution restricted to the environment. It means that the final environment
state is pure. This way:

�Eve D S.�Eve. Q�.u/// �
X

u

puS.�Eve;u Q�.u//

D S.�E/ �
X

u

puS.�Eve;u Q�.u//

D 0 �
X

u

puS.�Eve;u Q�.u//: (6.33)

Because �Eve � 0, S.�/ � 0 for any �, and that pu � 0 for all u, then the sum at
the right side of (6.33) is zero. Therefore, �Eve D 0. Since the Holevo quantity is an
upper bound for accessible information, the left side of (6.31) is zero, i.e., � D 0.
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Lemmas 6.1 and 6.2 guarantee that unconditionally secure communication can
be performed by using codewords composed by quantum states belonging to a DFS
for corresponding quantum channel [23].

Even though an optimum .S 0;M0/ defines a wiretap code with parameters
(n, jU j,0,0), it is not always possible to extract .S 0;M0/ from an optimum pair
.S;M/. According to Lemma 6.1, the quantum states in S 0 belongs to QH for the
channel E .

However, considering practical scenarios, a DFS may exist in such conditions,
even with smaller cardinality than the set of messages, i.e., with dim. QH/ < jU j.
For such situations, we use a wiretap code with parameters .n; dim. QH/; 0; 0/, which
allows a communication free of errors and without information leakage. Despite
that, in this second situation the communication occurs with a lower rate than when
considered the code obtained according to the conditions previously mentioned.
Taking this into account and also both lemmas proved, we can characterize a new
kind of capacity for quantum channels, whose definition is given as follows.

Definition 6.6 (Zero-Error Secrecy Capacity). Let E be a quantum channel
according to Characterization 6.1. We define the zero-error secrecy capacity of E
as the largest real number C.0/

S .E/ such that, for every � > 0 and sufficiently large
n, there is a quantum wiretap code .n; jU j ; 0; 0/ which satisfies

C.0/
S .E/ � 1

n
log jU j C �: (6.34)

Two main features of this capacity are the absence of decoding errors and of
information leakage to the eavesdropper. It is in contrast with the secrecy capacity
of quantum channels, in which decoding errors among the legitimate parties can
occur.

The following theorem gives a way of quantifying the zero-error secrecy
capacity.

Theorem 6.5 (Zero-Error Secrecy Capacity). Let E be a quantum channel
according to Characterization 6.1. The zero-error secrecy capacity of E is given by

C.0/
S .E/ � min

˚
C.0/.E/;CS.E/

�
(6.35)

� min

(
sup

QH
sup

n

1

n
log dim. QH/n;max

fPg
�Bob

)
; (6.36)

where n is the length of the code; the maximum is taken over all probability
distributions P over U , and �Bob denotes an upper bound for the accessible
information of the receiver (Bob):

�Bob D S

 X
u

pu�Bob. Q�.u//
!

�
X

u

puS .�Bob. Q�.u/// ; (6.37)

where pu is the a priori probability of the symbol u 2 U .
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Proof. This proof considers some facts about the capacities of a quantum channel E .
Let C1;1.E/ be the ordinary classical capacity of E defined according to the Holevo-
Schumacher-Westmoreland theorem [28, 44]. Let CS.E/ be the secrecy capacity of
E [6, 11]. And, lastly, let C.0/.E/ be the classical zero-error capacity of a quantum
channel E [38]. We have that CS.E/ � C1;1.E/, and that C.0/.E/ � C1;1.E/.

Considering that jU j D dim. QH/, a code with parameters .n; jU j ; 0; 0/ is
simultaneously an error-free code and also a wiretap code. By definition, we know
that the zero-error capacity is related to the maximum amount of messages that
are distinguishable at the channel output. Since each word in the alphabet was
associated with a state of a DFS, according to Lemma 6.1, we have

C.0/.E/ D sup
QH

sup
n

1

n
log dim. QH/n; (6.38)

where n is the length of the code. Since this is a wiretap code having input symbols
belonging to QH, CS.E/ D �Bob � �Eva. As a consequence of Lemma 6.2,

C.0/
S .E/ � max

fPg
�
�Bob � �Eva

�

� max
fPg

�
�Bob � 0�

D max
fPg

�Bob; (6.39)

where the maximum is taken over all a priori probability distributions P of the
symbols u 2 U . The equality follows from the HSW theorem. We have to consider
two situations:

1. There exists an optimum pair .S 0;M0/ derived from .S;M/ according to (6.23)
and (6.24). In this case, jU j D dim. QH/ and C.0/

S .E/ D CS.E/ D C.0/.E/.
2. There exists a DFS QH for the channel that is not directly obtained from the error-

free code. In this situation, CS.E/ < C.0/.E/, i.e., error-free and leakage-free
communication is only possible if C.0/

S .E/ D min
˚
C.0/.E/;CS.E/

�
.

This way, the final expression for the zero-error secrecy capacity can be described
in terms of the relation between the zero-error capacity and the secrecy capacity:

C.0/
S .E/ D min

˚
C.0/.E/;CS.E/

�
; (6.40)

where C.0/.E/ and CS.E/ are the zero-error capacity and the secrecy capacity of E ,
respectively.

When a quantum channel E has C.0/
S .E/ D sup QH supn

1
n log dim. QH/n, then the

zero-error secrecy capacity is straightforwardly obtained from the dimension of the
largest existing DFS for the channel.
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According to Medeiros et al. [40], the zero-error capacity can be achieved using
tensor product of pure states at the channel input. We can see that the same holds
for the zero-error secrecy capacity C.0/

S .E/.
The zero-error secrecy capacity communication protocol has the same level of

security of the protocol established by Schumacher and Westmoreland [45]. Accord-
ing to the authors, the ability of a quantum channel to send private information is at
least as great as its ability to send coherent information. In the zero-error secrecy
capacity scenario, the information can be retrieved completely free of errors at
the channel output. Therefore, the ability to communicate private information is
maximized.

When considering the difficulties to implement quantum channels that enable
communications completely free of errors [34], the zero-error secrecy capacity
allows error-free and secure communications to be performed since the quantum
channel attains some conditions. This is the case of quantum channels with collec-
tive decoherence [13, 30, 55], and the quantum channels with positive zero-error
capacity discussed in [24]. In the latter example, the quantum channel proposed by
Xue [56] can be used for long-distance zero-error quantum communications.

Although the zero-error secrecy capacity was adequately defined, it is zero
for many kinds of quantum channels. We can say, indeed, that this capacity is
different from zero only for quantum channels with positive zero-error capacity and
for channels under the effect of collective-decoherence, allowing the existence of
decoherence-free subspaces. Nevertheless, the definition of the zero-error secrecy
capacity can improve our knowledge regarding the “abilities” of quantum channels,
allowing a more adequate use in certain situations.

6.4 Representation in Graphs

In this section the relation between the ZESC and the graph theory will be depicted.
Unfortunately, this relation is not so general as for the zero-error capacity of
quantum channels, as presented previously in Sect. 5.2. The relation is only useful
to describe quantum channels satisfying the first situation described in the proof of
Theorem 6.5.

If there is a non-empty subset M0 obtained from M according to (6.23)
and (6.24), then it follows from the method of Choi and Kribs shown previously
in Sect. 6.1.1 that .S 0;M0/ characterizes a DFS QH, which is a subspace of the
input Hilbert space H. Supposing the existence of a set S 0, it is possible to build a
characteristic graph for quantum channels with positive zero-error secrecy capacity.
This construction is similar to that made for the zero-error capacity, as presented in
Definition 5.5. However, there are some differences between the two vertex sets in
each case.
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Let E be a quantum channel with positive zero-error secrecy capacity attaining
the first situation of the Theorem 6.5. The characteristic graph of E , denoted by
QG D hV;Ei, is built as follows.

1. The vertex set V is composed by the elements QH, which are referred by the
indexes of the corresponding messages, i.e., V D ˚

1; 2; : : : ; dim. QH/�.
2. The set of edges E connects two vertices if they are non-adjacent at the channel’s

end (see Definition 5.4).

The n-th Shannon product of QG, denoted by QGn, has the vertex set Vn, each vertex
corresponding to an n-tensor product of state belonging to S 0˝n. Two vertices in Vn

are connected if the two corresponding n-tensor product states are adjacent.
Taking under consideration such graph, since the elements of a DFS QH are

pairwise distinguishable at the channel’s end, then the resulting graph is complete.
Thus, the largest number of messages that can be transmitted without error by the
quantum channel E is given by the clique number QGn.

This way, the zero-error secrecy capacity of a quantum channel E that attends the
situation 1 of Theorem 6.5 is

C.0/
S D sup

QH
sup

n

1

n
log!. QGn/: (6.41)

Given a certain integer and a graph, finding a clique in the graph with size equal
to the integer given is an NP-Complete problem. However, some characteristics of
the zero-error and of DFS can be taken into account to obtain C.0/

S .E/. If the graph
built from QH is complete, then the clique number QG is equal to dim. QH/, which takes
us to the known expression (6.38). Such relation between the clique number and the
cardinality of the corresponding set of vertices does not arise in ordinary quantum
zero-error channels. This particularity arises thanks to the DFS.

6.5 Security Analysis

To analyze the security of the proposed scheme, we have to consider that there are
three types of secrecy.

1. Strong Secrecy. It requires that the total amount of information transferred
to the eavesdropper goes to zero in the asymptotic limit of the number of
communications;

2. Weak Secrecy. It requires that the information per symbol transferred to the
eavesdropper go to zero in the asymptotic limit of the number of communications
[50];

3. Perfect Secrecy. It requires that no information is transferred to the eavesdropper
[48].
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According to the communication scheme proposed, when Alice encodes a
message using a quantum wiretap code with parameters .n; jU j ; 0; 0/ and sends it
to Bob, we have that the set of input states belong to a DFS. Thanks to the DFS,
the input states do not interact with the environment. The eavesdropper, in turn,
has access only to the environment whose state is pure along the interaction. As a
consequence, the information accessible to Eve is zero, obtained from �Eva D 0 as
shown in the proof of Lemma 6.2. Eve’s uncertainty regarding the secret messages
does not have changes, even if she observed the state of the environment completely.
We can conclude, therefore, that the scheme under consideration has perfect secrecy.

6.6 Examples

We will now show some examples regarding the zero-error secrecy capacity.

Example 6.3 (Strictly Positive ZESC). Initially, we assume that a quantum channel
E1 has positive quantum zero-error capacity reached by an optimum pair .S1;M1/,
as shown in Fig. 6.2a. By following the procedures described in Sect. 6.3, a pair
.S 0

1;M
0

1/ is obtained, as shown in Fig. 6.2b.
Characteristic graphs for E1 with inputs (S1;M1) and (S 0

1;M
0

1) can be found in
Fig. 6.3a, b, respectively.

As can be seen, the largest clique has size 2 and is obtained by the pair .0; 1/ in
both cases. It leads to a quantum zero-error capacity equal to

C.0/.E1/ D sup
QH1

sup
n

1

n
log dim. QH1/

n

D log 2

D 1 bit per symbol per channel use. (6.42)

Fig. 6.2 Representation of
the transitions performed in
the quantum channel E1 for
input states from optimum
pairs (a) (S1;M1) and (b)
(S 0

1;M
0
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Fig. 6.4 Results obtained in
the attempt to
maximize (6.43) over the
pairs .p0; p1/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

χ
B
ob

p0

The quantum states in the DFS QH1 are those from S 0

1. To obtain the secrecy capacity
of this channel, the software Mathematica R	 was adopted in the attempt to obtain a
maximum value for �Bob:

CS.E1/ D �Bob

D max
fPg

S .p0 � �0 C p1 � �1/ : (6.43)

To reach this objective, we used an exhaustive search among 30;000 pairs of
.p0; p1/ respecting the restriction that p0 C p1 D 1. The graphic shown in Fig. 6.4
is a result of such search. As it can be seen, the maximum value for Bob’s Holevo
quantity is 1. This result was already expected since equal probabilities maximize
the von Neumann entropy (6.43).

This way, for the channel E1, the zero-error secrecy capacity is

C.0/
S .E1/ D min

˚
C.0/.E1/;CS.E1/

�
D min f1; 1g
D 1 bits per symbol per channel use.

It is possible to conclude, from this first example, that there are quantum channels
E whose zero-error secrecy capacity is strictly positive, i.e. , C.0/

S .E/ > 0.

Example 6.4 (Non-Trivial ZESC). In this second example, the quantum channel
E2 has positive zero-error capacity reached by an optimum pair .S2;M2/ where
S2 D f�1; : : : ; �6g and M2 D fMi D j�ii h�ijg6iD1. The model of errors for the
channel is shown in Fig. 6.5a. Since we are interested in the adjacency relations, the
probabilities were omitted.

From the pair .S2;M2/ we obtained the pair .S 0

2;M
0

2/ were S 0

2 D f�2; �3; �5g
and M0

2 D fM2;M3;M5g. The relation between input and output states is depicted
in Fig. 6.5b.



126 6 Zero-Error Secrecy Capacity

Fig. 6.5 Transitions
performed by the quantum
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Characteristic graphs for E2 with inputs (S2;M2) and (S 0

2;M
0

2) can be found
in Fig. 6.6a, b, respectively. The clique number !. QG.E2// is equal to 3 and can be
obtained from the vertices .2; 3; 5/, .1; 3; 5/, or also .2; 3; 6/ considering the graph
in Fig. 6.6a. On the other hand, the clique of the graph in Fig. 6.6b is also equal to
3, but obtained directly from the vertices .2; 3; 5/.

The quantum zero-error capacity of E2 considering the pair (S 0

2;M
0

2) is

C.0/.E2/ D sup
QH2

sup
n

1

n
log dim. QH2/

n

D log 3

� 1; 5849 bits per symbol per channel use. (6.44)

Aiming at quantifying CS.E2/, Bob’s Holevo quantity (6.45) was obtained with
the software Mathematica R	 in the attempt to maximize it over the triple .p1; p2; p3/
under the restriction p1 C p2 C p3 D 1.

CS.E2/ D �Bob D max
fPg

S .p1 � �2 C p2 � �3 C p3 � �5/ : (6.45)

The exhaustive search considered 20;000 valid triples. The results obtained are pre-
sented in Fig. 6.7, which shows the graphic obtained in two different perspectives.
According to the results observed, the highest value observed for �Bob was 1:5849
bits per symbol per channel use.
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Fig. 6.7 Two different perspectives for the graph of Holevo quantity (6.45) with exhaustive search
over the pairs .p1; p2; p3/. (a) Perspective 1 (b) Perspective 2

With these results, we have that the zero-error secrecy capacity of E2 is

C.0/
S .E2/ � min

˚
C.0/.E2/;CS.E2/

�
� min f1:5849; 1:5849g
� 1:5849 bits per symbol per channel use.

From this example, we can conclude that there are quantum channels E whose
zero-error secrecy capacity is non-trivial, i.e., C.0/

S .E/ > 1. We cannot guarantee
that the ZESC of E2 is 1:5849 because we considered the case for n D 1. We do
not have knowledge if there exists other DFS with higher dimensions for different
values of n.

The collective amplitude damping quantum channel [1] has ZESC equal to the
one of E2, characterizing a practical example of the non-triviality of this capacity.

The equality between the zero-error and secrecy capacities verified in the results
of the quantum channel E2 is not a surprise. It happens because it is possible to derive
an optimum pair .S 0

2;M
0

2/ from .S2;M2/. This example illustrates a quantum
channel which is in the first situation of Theorem 6.5.

Example 6.5 (Situation 2 of Theorem 6.5). In the examples shown previously, we
have that C.0/.E/ D CS.E/, emphasizing occurrences of the first situation in the
proof of Theorem 6.5. The third example illustrates the second situation described.

Let E3 be a quantum channel whose model of errors is composed by four
elements: E0 D j0i h0j, E1 D j1i h1j, E2 D 1

2
j2i h2jC 1

2
j3i h2j, and E3 D 1

2
j3i h3jC

1
2

j2i h3j, i.e., E3 � fEig3iD0. We have that S3 D f�i D jii hij ; i D 0; : : : ; 3g. The
mappings of the channel E3 over the inputs from .S3;M3/ are shown in Fig. 6.8a.

Upon considering the channel E3, we can see that its quantum zero-error capacity
is equal to C.0/.E3/ D log 3 bits per symbol per channel use, considering three
classical messages associated with the input states in the following way: 0 7! �0,
1 7! �1, 2 7! �2, and 2 7! �3. However, in the attempt to obtain the quantum
secrecy capacity of E3, it is not possible to obtain a pair .S 0

3;M
0

3/ which is also
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Fig. 6.8 Representation of
the mappings of E3 into the
inputs of the optimum pair (a)
(S3;M3) and of the (b)
existing DFS
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Fig. 6.9 Quantum (a) channel E4 and its (b) characteristic graph

optimum, because the transitions that cause E3.�2/ D �3 and E3.�3/ D �2 result
in an interaction with the environment. Such interaction causes information leakage
which is not adequate for a quantum secrecy scenario. However, this channel has a
DFS with 2 states, �0 and �1, shown in Fig. 6.8b.

This way, the ZESC of E3 is

C.0/
S .E3/ D min

˚
C.0/.E3/;CS.E3/

�
D min flog 3; log 2g
D 1 bits per symbol per channel use.

Example 6.6 (Quantum Channel With No Zero-Error Secrecy Capacity). In the
previous examples we saw that C.0/

S .E/ ¤ 0, but it is important to show that it is not
always true. For the quantum channel E4 in Fig. 6.9a, whose characteristic graph is
shown in Fig. 6.9b, we have that C.0/.E/ is reached by an optimum pair .S4;M4/,
with S4 D f j00i ; j12i ; j24i ; j31i ; j43ig and M4 D fM0;0;M1;2;M2;4;M3;1;M4;3g,
where

P4
M2M4

M � 1.
Finding the zero-error capacity of the classical channel corresponding to E4 was

a problem proposed by Shannon [49] whose solution was presented 20 years later
by Lovász [36]. In the quantum case, the quantum zero-error capacity is reached
after two or more uses of the channel, as shown by Medeiros [38, p. 70]. Such result
was previously shown in Example 5.4.
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The channel E4 is not unital and there is no Mi 2 M that satisfies the condition
E.Mi/ D MiEMi. This way, there is no DFS in the inner structure of the error-free
code associated with the channel. It means that every input performs a transition
which causes an undesired interaction with the environment which can lead to an
information leakage. This way, we have that the quantum secrecy capacity of E4 is

C.0/
S D min

˚
C.0/.E/;CS.E/

�

D min



1

2
log 5; 0

�

D 0:

This example illustrates that despite some channels have positive and non-trivial
quantum zero-error capacity obtained from two or more uses of the channel, the
nonexistence of a DFS causes M0 D ¿. It results that no pair .S 0;M0/ can be
used to encode messages without decoding errors and with secrecy. In other words,
C.0/

S .E4/ D 0.

6.7 Related Literature

Until the first articles describing the results presented in Sect. 6.3 [20–23], many
works in the literature explored the use of DFS in communication, but not
considering their capability to send unconditionally secure messages. Among
some works it was possible to see applications of DFS in protocols for quantum
secure direct communication and for quantum deterministic secure communication
[3, 12, 43]. In such protocols there is redundancy and eavesdropping check which
increases significantly the number of messages exchanged in order to perform
the communication with security. By using results previously discussed [23], all
these protocols could be simplified with less message exchanges but with the same
security, as can be seen in more detail in [19].

Regarding quantum wiretap channels, a few codes for this purpose were found,
as presented previously in Sect. 6.2. The codes proposed by Hamada [25, 26] are
based on CSS codes and, according to the author, can be easily used for practical
implementation since they do not demand resources as entanglement. However, the
rate of these codes is below the quantum secrecy capacity of the channel. The work
of Wilde, Guha, and Dutton [16, 53] shows a code for quantum wiretap channels
based on polar codes. The authors discuss that these codes can be restricted to
certain quantum channels. Regarding the proposition of wiretap codes from DFS
and quantum error-avoiding codes, as shown in Sect. 6.3, no similar strategies were
found so far.

Braunstein et al. [4] enlighten the relation between DFS and zero-error sub-
spaces, showing how the last is an instance of the former. Besides, the authors also
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proposed a method to find DFS in zero-error subspaces which has similarities with
the method of Medeiros et al. [39]. In the characterization of the zero-error secrecy
capacity we opted out to use the method of Medeiros et al. because it is guaranteed
optimum and because it helped in showing a more intuitive approach to find a DFS
in a quantum channel with positive zero-error capacity. It is important to emphasize
that the work of Braunstein et al. [4] has other results, such as lower and upper
bounds for the dimension of such subspaces.

Starting from confusability graphs for quantum channels, the work of Chiribella
and Yang [8] aims at searching for connected components to identify, among others,
decoherence-free subspaces. The work of these authors, however, focus on quantum
covariant channels and they did not explore the quantum zero-error capacity of such
channels nor the relation with the confusability graphs considered by Duan et al.
[15].

Regarding capacity, Watanabe [52] characterizes a class of quantum channels
more capable than the environment. In these channels, the quantum capacity and
the secrecy capacity are equal. However, the author shows that the conditions that
make a channel of such kind are, in general, hard to verify.

6.8 Further Reading

This chapter aimed at showing the zero-error secrecy capacity, the highest rate
according to which it is possible to exchange messages through certain noisy and
wiretapped quantum channels without decoding errors nor information leakage.
This capacity puts together concepts of quantum zero-error information theory, of
quantum secrecy capacity, and of decoherence-free subspaces and subsystems. The
results, when possible, were also shown in terms of graph theory and the security
analysis was discussed. Detailed examples illustrated the concepts introduced.
Relations with other works in literature were also presented.

The articles that introduce the concepts to build up the zero-error secrecy capacity
can be found in [20–23]. The thesis in which the concept was fully characterized was
published only in Portuguese [18].

Besides the quantum zero-error information theory, the other building blocks of
ZESC which are the decoherence-free subspaces and quantum wiretap channels,
covered in the sections of this chapter, are very interesting with many applications
and with perspective for many developments. As a suggestion regarding DFS,
we recommend the work of Lidar and Whaley [34] and the thesis of Bacon [1].
Regarding quantum wiretap channels, we recommend the seminal papers of Cai
et al. [6] and Devetak [11]. The book of Hayashi [27, Sect. 9.5] contains a section
regarding this subject in the context of discussing quantum communications over
eavesdropped channels.

Regarding future work with ZESC, Shabani et al. [46, 47] discuss the existence
of “more relaxed” conditions for the existence of DFS. Taking this into account,
could such conditions be considered and implemented in practical scenarios to
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favor the positivity of the zero-error secrecy capacity in a more wide number of
noisy quantum channels? Such answer could favor more practical implementations
of quantum communications which are simultaneously error-free and secure.
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Chapter 7
Zero-Error Accessible Information
of a Quantum Source

A quantum source is an essential component of quantum communication system
because it corresponds to the set of quantum symbols that will be used to encode
classical messages. In this encoding process, there is a bijective mapping between
messages and quantum states, but each quantum state is associated with a certain
probability. Differently from classical messages that are completely distinguishable,
quantum states may not necessarily be so. A consequence is that the classical
information encoded by the quantum source may not be fully recoverable after a
measurement.

Considering this intrinsic difficulty to recover information from quantum
sources, an information measure, called accessible information, has been proposed
in the literature [12, Sect. 12.1]. It establishes the maximum amount of classical
information that can be retrieved after being encoded by a quantum source. Because
all measurement strategies can be used to retrieve information from the quantum
system, calculating the accessible information is a hard task in general. Fortunately,
there are some useful upper and lower bounds that are easiest to calculate and that
give good estimates for the accessible information [3, 4, 7, 8, 16].

Aiming at avoiding errors in decoding messages from quantum sources, this
chapter presents some recent results regarding an information measure for quantum
sources, called Zero-Error Accessible Information (ZEAI). This quantity represents
the maximum amounts of bits per symbol that can be retrieved from a quantum
source with no decoding errors. The ZEAI of a quantum source unifies concepts
from quantum sources, accessible information, classical zero-error information
theory and also from graph theory.

To introduce these results, this chapter is organized as follows. In Sect. 7.1 we
revisit some fundamental concepts such as the formal definition of a memoryless
quantum source, its entropy, accessible information, and the Holevo bound, which
is an upper bound for accessible information. Section 7.2 introduces the ZEAI of
a quantum source and its relation with classical zero-error channels. The relation

© Springer International Publishing Switzerland 2016
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136 7 Zero-Error Accessible Information of a Quantum Source

between ZEAI and graph theory is elucidated in Sect. 7.3. After that, some detailed
examples are given in Sect. 7.4. The relation of ZEAI and other works in the
literature is described in Sect. 7.5.

7.1 Accessible Information of Quantum Sources

To study accessible information in the quantum information theory domain, we take
into account the canonical communication scheme shown in Fig. 7.1. The quantum
source encodes classical messages in quantum states as described in Definition 7.1.

Definition 7.1 (Memoryless Quantum Source). Let A D f0; : : : ; `g be a set of
classical messages. A memoryless quantum source is a device that prepares quantum
states according to an ensemble f�i; pig. The set S D f�0; : : : ; �`g is denoted
the source alphabet, commonly composed of pure non-orthogonal quantum states
�i, called quantum letters. The quantum letter �i is associated with the classical
message i. The quantum source outputs a letter �i with probability pi, whereP`

iD0 pi D 1. For a given sequence a of classical messages, a D a1a2 : : : an, a 2 An,
the corresponding quantum state prepared by the quantum source, called quantum
codeword, is given by the tensor product of the corresponding quantum letters, i.e.,

�.a/ D �a1 ˝ �a2 ˝ : : :˝ �an : (7.1)

According to Definition 2.7, the ensemble f�i; pig of a quantum source can also
be represented by the corresponding density operator

� D
X̀
iD0

pi�i: (7.2)

Taking into account such density operator for a quantum source, we can introduce
the entropy of a quantum source.

Quantum
Source

Quantum alphabet: S = {ρ0, ρ1, . . . , ρ }
Quantum letters: ρk, k = 1, . . . ,

Encoder
ρ = k=1 pkρk

Classical Messages: a ∈ An

ρ(a) = ρa1 ⊗ ρa2 ⊗ . . . ⊗ ρan

POVM
â = â1 · â2 · . . . · ân

boBecilA

a = a1 · a2 · . . . · an

Fig. 7.1 Canonical communication model in which there is a single sender and a single receiver
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Definition 7.2 (Entropy of a Quantum Source). The entropy of a quantum
source is the von Neumann entropy of the density operator (7.2) that describes the
ensemble f�i; pig, i.e.,

S.�/ D � Tr � log �: (7.3)

We assume that Alice has a quantum source with the given description and that
she prepares the quantum state �. Alice gives such quantum state to Bob, who
can adopt a POVM measurement scheme aiming at identifying the corresponding
message sent by Alice. The measurement outputs are arguments for a decoding
function. The decoder must decide which classical message was originally sent by
Alice.

A quantum source is purely classical if the corresponding source alphabet S is
composed of pairwise orthogonal quantum states, since such states are completely
distinguishable at the receiver’s end. If the set S contains nonorthogonal quantum
states, then there is no measurement strategy that can extract all the information
about the quantum source. A third situation considers that the states of the quantum
source are nonorthogonal but with commuting density matrices. In this case we have
a broadcast source in which given two quantum systems that are not a copy of the
source, their partial trace results in the state of the quantum source [2].

We recall the accessible information, presented in Definition 3.18. It is a measure
of how well one can infer the state prepared by the source by measuring its output. In
quantum information theory, there is no general method to calculate the accessible
information of a quantum source. However, several lower and upper bounds for the
accessible information were demonstrated; the most important is the Holevo bound
[12, Chap. 12].

Theorem 7.1 (Holevo Bound [7]). Suppose that Alice has a quantum source F
with ensemble f�i; pig. She sends Bob some quantum letters emitted by F. Bob
measures the received quantum letters with a POVM fMigm

iD0 and obtains B. The
Holevo bound states that for any measurement scheme used by Bob, we have that

Iacc.F/ � S.�/ �
X̀
kD0

pkS.�k/; (7.4)

where � is the density operator given by (7.2).

The right side of (7.4) is known as the Holevo quantity and it is denoted by �.
Taking into account the concavity of the entropy, we have I.AI B/ � � � H.A/.

Example 7.1 (Holevo Bound). Suppose that Alice has a quantum source F that
emits the states �0 and �1 according to a uniform distribution, where j 0i D
j0i, j 1i D cos 
 j0i C sin 
 j1i, �0 D j 0i h 0j, and �1 D j 1i h 1j. From
Example 3.17, we know that S.�/ D H. 1

2
� cos 


2
/. Remember that �0 and �1 are

pure states. Again, consider that A is the index of the state emitted by the source
and B corresponds to the measurement result. The best measurement strategy to
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discriminate between �0 and �1 is given by the projective measurement M D fE0 D
jw0i hw0j ;E1 D jw1i hw1jg, where

jw0i D cos



�

4
C 


2

�
j0i C sin



�

4
C 


2

�
j1i ; (7.5)

jw1i D cos



��
4

C 


2

�
j0i C sin



��
4

C 


2

�
j1i : (7.6)

Notice that hw0j w1i D 0 and that E0 C E1 D 1. The conditional probability that
B D b given that A D a, for a; b 2 f0; 1g, is calculated as

p.bja/ D Tr.Eb j ai h aj/ D j hwbj aij2 D


1Csin 


2
if a D b

1�sin 

2

if a ¤ b
(7.7)

It is possible to see that we can make an analogy with a binary symmetric
channel, where A is the input, B is the output, and the error probability is 1�sin 


2
(see

Example 3.8). The random variable A is uniformly distributed at the channel input
and the random variable B is also uniformly distributed. Then, H.A/ D H.B/ D 1.
The mutual information is given by

I.XI Y/ D H.Y/ � H.YjX/

D 1 � H



1 � sin 


2

�
: (7.8)

Since the measurement scheme is proven to be optimal [1], we have that Iacc.F/ D
1� H

�
1�sin 

2

�
. Figure 7.2 shows plots of accessible information Iacc.F/ and Holevo

quantity �.F/ versus the parameter 
 . For any 0 � 
 � � , we see that Iacc.F/ �
�.F/, with equality when 
 D �=2, i.e., when the states �0 and �1 are completely
distinguishable.

Fig. 7.2 Plots of accessible
information and Holevo
bound for a quantum source F
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In the previous example, the parameter 
 D �=2 led the quantum letters to be
orthogonal and the accessible information was maximum. Unfortunately, there are
situations where Bob is not able to infer the state given by Alice.

Example 7.2 (Measurement with Inconclusive Results). Suppose that a quantum
source can produce two quantum states j 1i D j0i or j 2i D j0iCj1ip

2
with equal

probability. Since h 1j 2i ¤ 0, it is not possible to precisely determine what state
was emitted by the source. However, it is possible to perform measurements that
can distinguish these states most of the time. To do this, define a POVM with the
following three elements:

E1 D
p
2

1C p
2

j1i h1j ;

E2 D
p
2

1C p
2

.j0i � j1i/.h0j � h1j/
2

;

E3 D 1 � E1 � E2:

Suppose that the state j 1i was delivered by the quantum source. After perform-
ing a measurement with POVM operators fE1;E2;E3g, the probability of getting 1
is zero, since h 1j E1 j 1i D 0. Therefore, if measurement outcomes 1, then we can
conclude with certainty that the state emitted by the source was j 2i. In a similar
way, if the measurement result is 2, then we conclude that the source outputted
the state j 1i. Certain times, however, the result will be 3 and the measurement
is inconclusive. In summary, every time we get outputs 1 and 2 we can infer the
quantum state emitted by the source without confusion. Otherwise, we can infer
nothing, since p1 D p2 D 1=2.

7.2 Zero-Error Accessible Information of a Quantum Source

We are going to consider the simplified communication scheme of Fig. 7.1. Alice has
a quantum source that emits quantum letters to be measured by Bob using a POVM.
When Bob attempts to identify the received message, we assume that no decoding
errors can occur. In other words, by using measurements, Bob must be 100% sure
about the original message sent by Alice. Next, we define the Zero-Error Accessible
Information (ZEAI) of a quantum source.

Definition 7.3 (Zero-Error Accessible Information of a Quantum Source).
Let A be a discrete random variable corresponding to message indexes that are
associated with quantum letters emitted by a memoryless quantum source F. Now
let B be a discrete random variable corresponding to measurement results of
quantum states sent by the source. The zero-error accessible information of such
quantum source, denoted by I.0/acc.F/, is the maximum amount of messages of length
n sent by the source such that H.AjB/ D 0.
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In the original definition of accessible information, vide Definition 3.18, we have
that the maximum is taken over the mutual information of the random variables A
and B. This turn, in Definition 7.3, we have that the maximum is taken over the set
of messages that makes the conditional entropy of A and B equal to zero.

The equality in H.AjB/ D 0 of Definition 7.3 means that the uncertainty of the
random variable A is zero when the random variable B is known, showing the zero-
error behavior in this measure of information.

The next step is to obtain a numerical expression for the ZEAI of a quantum
source.

Theorem 7.2 (Numerical Expression for ZEAI). Let N.n/ be the set of quantum
codewords of length n which can be sent by a memoryless quantum source F and that
can be retrieved with no error with a POVM measurement. The zero-error accessible
information of F is given by

I.0/acc.F/ , sup
n!1

1

n
log N.n/: (7.9)

Proof. To demonstrate the theorem, we consider that both the emission of quantum
letters by the quantum source and the subsequent measurement with no decoding
errors are equivalent to the zero-error capacity of a discrete memoryless quantum
channel.

To do so, we consider that the state produced by the quantum source and the
output of the POVM can be written as a discrete memoryless classical channel W W
A ! B with the following stochastic matrix

W.a; b/ , PrŒB D bjA D a� D Tr.�aMb/; .a; b/ 2 A � B; (7.10)

where �a is the quantum letter emitted by the source; Mb is the operation element
of the POVM used for measurement; and A and B are the alphabets of the random
variables A and B, respectively. When the source emits k quantum letters, we have

Wk.ak; bk/ D
kY

iD1
W.ai; bi/: (7.11)

Considering this interpretation, the maximum amount of messages per number
of source emissions that can be sent over the channel W with no decoding
errors is corresponding to its zero-error capacity, i.e., I.0/acc.F/ D C0.W/ D
supn!1 1

n log N.n/. Thus, we conclude the proof.

Theorem 7.2 shows an interesting aspect: although zero-error accessible informa-
tion is a measure of information that characterizes a quantum device, its computation
depends on the classical zero-error capacity of a corresponding discrete memoryless
channel. This is a counterintuitive result specially because there is no restriction
or requirement regarding the quantum letters emitted by the source nor regarding



7.3 Representation in Graphs 141

their probabilities. Note that if the quantum source is purely classical, we have
that all quantum letters are distinguishable. In this case, the zero-error accessible
information is log jSj, where S is the alphabet of the quantum source.

The accessible information of a classical source is not a relevant measure of
information, since two classical states can always be distinguished. In contrast,
the ZEAI of a quantum source is not trivial because quantum information cannot
always be distinguished. It is important to emphasize that the definition of ZEAI of
a quantum source imposes one restriction: the absence of errors. As a consequence,
we can verify the following inequalities: I.0/acc.F/ � Iacc.F/ � �.F/ for a quantum
source F.

7.3 Representation in Graphs

The zero-error capacity of classical channels has a formulation in terms of graph
theory, as shown previously in Sect. 5.2. The problem of finding the zero-error
accessible information of a quantum source is equivalent to the problem of obtaining
the zero-error capacity of a classical channel. Concepts like orthogonality of input
states and characteristic graphs of a quantum channel are straightforwardly defined
for a quantum source.

Definition 7.4 (Orthogonality of Quantum Letters). Given two quantum letters
�i D j ii h ij and �j D ˇ̌

 j
˛ ˝
 j

ˇ̌
belonging to the alphabet S of a quantum source,

we say that �i and �j are non-adjacent, denoted by �i ? �j, if they are orthogonal,
i.e., h ij ji D 0.

Orthogonality of quantum letters can be extended to quantum codewords. Two
quantum codewords �.i/ D �i1 ˝ �i2 ˝ : : :˝ �in and �.j/ D �j1 ˝ �j2 ˝ : : :˝ �jn are
said to be orthogonal or non-adjacent if there is at least one k, 1 � k � n, such that
the corresponding quantum letters �ik and �jk are non-adjacent. The characteristic
graph can therefore be defined.

Definition 7.5 (Characteristic Graph of a Quantum Source). Let F be a memo-
ryless quantum source according to Definition 7.1. The characteristic graph of F is
given by G.F/ D hV;Ei, where the sets of vertices and edges are given as follows.

1. The vertex set V is given by the classical messages associated with quantum
letters of the source alphabet S;

2. There is an edge connecting the vertices .i; j/ if the corresponding quantum letters
�i and �j, i ¤ j, are non-adjacent.

The graph G.F/ can be generalized for n quantum source outputs. The vertex set
of Gn.F/ is given by Vn, and the set of edges is composed by the pairs of vertices
whose corresponding codewords of length n are orthogonal.
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Vertices of the characteristic graph are connected if the corresponding quantum
letters or codewords are fully distinguishable by means of a quantum measurement.
A clique on the characteristic graph corresponds to a subset of quantum letters or
codewords that are pairwise distinguishable. The zero-error accessible information
can be defined in terms of the clique number of the characteristic graph.

Theorem 7.3 (ZEAI in terms of Graph Theory). Let F be a quantum source with
characteristic graph G.F/ according to Definition 7.5. The accessible information
of F is given by

I.0/acc.F/ D sup
n

1

n
log!.Gn.F//; (7.12)

where !.Gn.F// stands for the clique number of Gn.F/.

Proof. As proved in Theorem 7.2, there is an equivalence between the zero-error
accessible information of a quantum source F and the zero-error capacity of a
discrete memoryless classical channel W. As we already know, two input letters are
non-adjacent at the source output if the corresponding rows of the stochastic matrix
W.bja/ are orthogonal. It is straightforward to conclude that the characteristic graph
of the quantum source is identical to the characteristic graph of the DMC W, whose
zero error-capacity is given by the right side of (7.12).

Upon reducing the zero-error accessible information to the problem of identi-
fying the clique number of a graph, we can see that the calculation of the ZEAI
is an NP-complete problem. The exponential hardness is due to the difficulties of
identifying the best POVM for zero-error measurements as well as in determining
the length n of quantum codewords that maximize the number of non-confusable
codewords per source output.

7.4 Examples

This section shows how to obtain the zero-error accessible information for some
quantum sources by following the procedures shown previously in Sect. 7.2.

Example 7.3 (Quantum Source With ZEAI Equal to Zero). Let F1 be a quantum
source that emits two states �1 D j0i h0j and �2 D jCi hCj D 1

2
.j0i h0j C j0i h1j C

j1i h0jCj1i h1j/ according to the uniform distribution. The source ensemble is given
by f�i; pig, where p1 D p2 D 0:5. According to Definition 7.4, it is easy to verify
that the quantum letters �1 and �2 are non-orthogonal, since h0j Ci D 1p

2
. Thus, we

have that I.0/acc.F1/ D 0.

Example 7.4 (ZEAI of a Purely Classical Quantum Source). Let F2 be a quantum
source that emits states belonging to the computational basis of the 8-dimensional
Hilbert space, f�0 D j0i h0j ; �1 D j1i h1j ; : : : ; �7 D j7i h7jg, each one with
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Fig. 7.3 Characteristic graph
of the quantum source F2

ρ0

ρ1

ρ2

ρ3 ρ4

ρ5

ρ6

ρ7

probability 1=8. According to Definition 7.5, the characteristic graph of F2 is shown
in Fig. 7.3.

Considering that states emitted by the source are pure and orthogonal, we have
that F2 is a purely classical quantum source. A projective measurement scheme with
the POVM fM2;i D jii hijg7iD0 is sufficient to perfectly distinguish all the states. This
way, the zero-error accessible information of F2 is

I.0/acc.F2/ D sup
n

1

n
log!.Gn.F//

D 1

1
log 8

D 3 bits per symbol:

In this example, it is interesting to notice that individual measurements are
sufficient to reach the zero-error accessible information of this quantum source.
Because G.F/ is a complete graph, !.Gn.F// D !.G.F//n D jSjn. Therefore,
1
n log jSjn D log jSj.
Example 7.5 (ZEAI of a Quantum Source Corresponding to the Pentagon). Let F3
be a quantum source that emits quantum letters of the alphabet S D f�0; : : : ; �4g,
which is composed only of pure states that are not necessarily orthogonal. These
letters are emitted according to the uniform distribution. Figure 7.4 illustrates the
characteristic graph of F3. This is the pentagon graph of the G5 channel of Fig. 4.3,
whose zero-error capacity was calculated by Lovász and discussed in Sect. 4.3 and
in the Example 5.4.
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Fig. 7.4 Characteristic graph
of the quantum source F3

ρ0

ρ2 ρ3

ρ4 ρ1

To reach the zero-error accessible information of F3, we consider quantum
codewords of length n D 2 and the POVM M D fM00;M12;M24;M31;M43g. Then,

I.0/acc.F3/ D 1

2
log 5

� 1;1609 bits per symbol: (7.13)

This example illustrates how collective measurements can extract more zero-error
information from the quantum source than individual measurements. Moreover, we
need more than one source emission in order to reach the zero-error accessible
information.

7.5 Related Literature

The accessible information is not known for most quantum sources, and indeed,
there is no general method for calculating this quantity. The Holevo bound is the
famous and the most important upper bound of the accessible information [7]. The
Holevo � quantity is fundamental in proving several results in quantum information
theory. Cerf and Adami [3] presented a formal proof for the bound and extended it
to consider sequential measurements based on conditional and mutual entropies.

The first lower bound of the accessible information was conjectured by Wootters
[16] and proved by Jozsa et al. [8]. Other bounds based on Jensen and Schwarz
inequalities and also in purification schemes were also proposed in the literature. A
survey can be found in Fuchs [4, Sect. 3.5].

Several numerical methods to calculate the accessible information were devel-
oped. In general, these methods seek for the best POVM that maximizes the mutual
information I.AI B/. Nascimento and de Assis [10, 11] developed a method that is
based on genetic algorithms. The open-source tool SOMIM (Search for Optimal
Measurements by an Iterative Method) also considers this approach and makes use
of an iterative method to find the best measurement scheme [9, 13, 15].

Sasaki et al. [14] addressed the problem of obtaining the accessible information
of a quantum source, but restricted to the case of real and symmetric quantum
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sources. A quantum source is said to be real if the coefficients of the quantum letters
are real numbers. The symmetry is verified when the states of the quantum source
are equally spaced in a plane x � z of the Bloch sphere. To calculate the accessible
information of this kind of quantum source, the authors developed a method based
on group theory to identify the best measurement. The resulting POVM has only
three elements and can be implemented in a real scenario with existing technology,
as discussed by the authors. Unfortunately, the results of Sasaki et al. [14] are
restricted only to a certain class of quantum sources.

7.6 Further Reading

In this chapter we introduced the zero-error accessible information, a measure of
information that gives the maximum amount of information that can be retrieved
from a quantum source without errors. Obtaining the zero-error accessible infor-
mation of a quantum source can be reduced to the problem of finding the
zero-error capacity of an equivalent classical channel. The ZEAI involves concepts
from quantum sources, accessible information, classical and quantum information
theories and also from graph theory. Some examples illustrated the concepts and the
relation with other existing works was discussed.

The zero-error accessible information was first proposed by Guedes and de Assis
[6]. Later, on the thesis of Guedes [5], this concept was fully depicted. As discussed
in Sect. 7.3, the problem of finding the ZEAI of a quantum source is equivalent to
identifying the clique number of a graph, which is NP-Complete.

Some authors developed heuristics to obtain the best POVM based on iterative
methods [9, 13, 15]. Other strategies include genetic algorithms [10, 11].
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Chapter 8
Recent Developments in Quantum Zero-Error
Information Theory

In the previous Chaps. 6–7 some recent developments and applications of the quan-
tum zero-error information theory were introduced. In this chapter we introduce
some contributions from other authors to the field.

This chapter is organized as follows. We revisit some nonlocal phenomena by
Bell’s inequalities and their consequences in Sect. 8.1. After that, we introduce some
definitions that did not appear so far. We revisit relevant contrasts of classical and
quantum correlations and discuss a proof of the Bell’s inequality. Also, due to their
importance, we revisit Gleason’s and Kochen-Specker’s theorems. We observe that
this section has a historical flavor, so the reader, based on his own background, can
skip this first section and go straight to the next section.

The classical zero-error capacity of a quantum channel, introduced in Chap. 5,
was defined in terms of the clique number of the characteristic graph of a quantum
channel. Now, in Sect. 8.2, we comment on the results introduced more recently:
the literature by Scarpa, Severini, and Mancinska [26, 32]. Their contribution,
mainly the second one, clearly binds Kochen-Specker (also known as Bell-Kochen-
Specker) theorems to the quantum zero-error information theory.

A quantum version of the Wielandt’s inequality [31] is described in Sect. 8.3.
This inequality states an upper bound to the number of uses of a quantum channel
in order to map an arbitrary density operator to a full rank operator. In this
interesting paper, the authors state a remarkable relation with the quantum zero-
error information theory intermediated by dichotomy theorems.

A variant of the zero-error capacity which considers entanglement assistance is
presented in Sect. 8.4. Results of Winter et al. [14, 15, 17] in which non-commutative
graphs are used for the quantum zero-error information theory are presented in
Sect. 8.5. A quantum version of the Lovász theta function and some alternate
definitions for the zero-error capacity of a quantum channel are presented as well.

A non-trivial application of zero-error quantum channels to help in determining
the complexity class of a well-known problem was proposed by Beigi and Shor [5]
which is now depicted in Sect. 8.5.

© Springer International Publishing Switzerland 2016
E.B. Guedes et al., Quantum Zero-Error Information Theory,
DOI 10.1007/978-3-319-42794-2_8
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8.1 Bell’s Inequalities

Entanglement motivated the famous article “Can Quantum Mechanical Description
of Physical Reality Be Considered Complete?” written by Einstein, Poldosky, and
Rosen, EPR for short [19]. After an important and long discussion, concepts like
principle of locality, elements of reality, and hidden variables were defeated. The
principle of locality, for example, claims that the events occurring in place are
independent of parameters, eventually controlled at another “distant place” in the
same time, but it was not confirmed.

The main assumption in EPR argument is the a priori concept of element of
reality that could be obeyed by the Nature. The EPR paper aimed to show that
quantum mechanics was an incomplete theory based on a sufficient condition for a
physical property to be an element of reality:

“If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unit) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity” [19].

Example 8.1 (Quantum Correlations are Stronger than the Classical Ones [29]).
This example sets forth that quantum correlations are in general stronger than the
classical ones. Consider a block of explosive material, in rest at t D 0, so at this

time with angular moment
�!
J D 0 exploding in two asymmetric parts, as shown in

Fig. 8.1. Due to conservation laws [39, p. 323], the two parts carry angular moments,�!
J1 D ��!

J2 , respectively.
Suppose observers detecting the fragments and measuring the classical dynami-

cal variables a D sign.�!̨ � �!
J1 / and b D sign.

�!̌ � �!
J2 /, respectively, where j˛i and

jˇi are arbitrary unit vectors chosen by the observers. Obviously, a; b D ˙1.

For N repetitions of the experiment, with directions of
�!
J1 and

�!
J2 randomly

distributed, the averages are near to zero, that is,

hai D 1

N

NX
jD1

aj � 0; hbi D 1

N

NX
jD1

bj � 0: (8.1)

Fig. 8.1 Classical setup with
zero angular moment

→
J 1

→
J 2
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In order to compare their results, the observers calculate the correlation, defined by

habi D 1

N

NX
jD1

ajbj: (8.2)

The correlation is not zero in general. For concreteness, taking �!̨ D �!̌
, the

observers get aj D �bj, and in this case correlation yields habi D �1:
For arbitrary �!̨ and

�!̌
the solution is [29]:

habi D �1C 2


�
; 0 � 
 � �; (8.3)

where 
 stands for the angle between directions �!̨ and
�!̌

. Notice that the
correlation increases linearly from �1 to C1 as 
 varies from 0 to � . Such
correlation is shown in the plot of Fig. 8.2

Now let’s consider the quantum turn. Consider the quantum analogy taking into
consideration the singlet (entangled state)

j i D j01i � j10ip
2

: (8.4)

Assume that observers measure the observables �!̨ � 	a along the axis �!̨ and
�!̌ � 	b,

along the axis
�!̌

, respectively. As before, in the classical analog, unit vectors are
arbitrarily chosen by the observers and the possible values of a and b measurements
are ˙1. The average values are both zero, that is

hai D hbi D 0: (8.5)

θ

π
2

π

〈ab〉

−1

0

1

−1 +
cos

2θ
π

− cos
θ

Fig. 8.2 Classical and quantum correlations
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Furthermore, correlation can be calculated, according to quantum mechanics
rules, as

habi D h j .�!̨ � 	a/.
�!̌ � 	b/ j i ; (8.6)

where 	a and 	b are the Pauli matrices of the systems a and b, respectively.
For the singlet one has

	a j i D �	b j i : (8.7)

Therefore, using the identity .�!̨�	/.�!̌�	/ D �!̨��!̌C {.�!̨��!̌
/ �	 , the correlation

is then obtained

habi D � cos 
: (8.8)

The main remark here is that quantum correlation, which is also shown in
Fig. 8.2, is stronger than the classical correlation for all values of 
 , except 
 D 0,
�
2

and � .

The EPR paradox was solved by the Bell’s inequality. It is interesting to remark
that the inequality is not about quantum mechanics, rather its proof is general
and independent of Physics. The central statement is that if one assumes validity
of principle of locality, then there is an upper bound to the correlation between
distant events. What Bell’s inequality states is that local realism is incompatible
with quantum mechanics.

In order to see an explanation why this happens, one must consider the thought
experiment outlined in Fig. 8.3. Assuming the EPR principle, that is assuming
the truth of local realism or the existence of hidden variables, we shall perform
calculations to obtain the Bell’s CHSH inequalities1 [11]. After, real measurements
demonstrate the violation of those inequalities.

In the thought experiment, a physicist, say, Charlie, repeats a large number, N, of
preparations of two particles (say “left” and “right,” respectively) and send, one by
one, to his colleagues, Alice and Bob. The left particle is sent to Alice and the right
one is sent to Bob. Later, Alice and Bob perform simultaneously measurements
on their respective particles. Alice’s lab is too far from Bob’s lab in such a way
their respective actions are concurrent [30], that is, their actions are relativistically
disconnected.

Additionally, Alice is free to choose directions �!̨ or
�!̌

to perform her mea-
surements, which results in a random variable denoted by A D ˙1, if she chooses
direction �!̨, or a random variable denoted by B D ˙1 if she chooses direction�!̌

. Similarly, Bob is free to choose directions �!� or
�!
ı , and from his measurement

obtains random variables C D ˙1 and D D ˙1, respectively.

1The letters CHSH are a mention to the authors of this form of Bell’s inequality [11].
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Alice
A = ±1
B = ±1

Bob
C = ±1
D = ±1

Charlie
|ψ〉 = |01〉−|10〉√

2

I(Alice; Bob) = 0

right particlelef
t p

ar
tic
le

labs relativistically disconnected

Fig. 8.3 Bell’s inequality

Table 8.1 Values assumed
by the random variables A
and B

A D �1 A D 1 A D �1 A D 1

(a) Values for A C B (b) Values for A � B

B D �1 �2 0 B D �1 0 2

B D 1 0 2 B D 1 �2 0

Now consider the random variable V defined by the following sum

V D AC C BC C BD � AD (8.9)

D .A C B/C C .B � A/D; (8.10)

where (8.10) follows from a simple rearrangement. From (8.10), it is clear that, as
A D ˙1 and B D ˙1, either .A C B/C D 0 or .B � A/B D 0. From this, according
to Table 8.1, it is easy to check that

V D AC C BC C BD � AD D ˙2: (8.11)

Now consider the expected value EŒV�:

EŒV� D EŒAC C BC C BD � AD� (8.12)

D
X

a;b;c;d

PrŒa; b; c; d�.ac C bc C bd � ad/ (8.13)

� 2
X

a;b;c;d

PrŒa; b; c; d� (8.14)

� 2; (8.15)

where (8.12) and (8.13) are definitions, (8.14) is justified by (8.11), and (8.15)
is because probabilities sum to one. On the other hand, from linearity of the
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expectation

EŒV� D EŒAC�C EŒBC�C EŒBD� � EŒAD� (8.16)

Comparing (8.15) with (8.16), we get the Bell’s CHSH inequality:

EŒAC�C EŒBC�C EŒBD� � EŒAD� � 2: (8.17)

Recall that the last inequality, shown in (8.17), was obtained based on the principle
of local realism, and there is nothing wrong with this formula under that assump-
tion. However, here, the authors objective was to check its validity for quantum
mechanics. A question that arises is: how to perform this task?

Fortunately, the expectations on the left side of (8.17) can be estimated, with
accuracy 1p

N
, through repeating the experiments N times. For example, let 1EŒAC�

denote the estimate of EŒAC�, then

1EŒAC� D
PN

jD1 ajcj

N
�! EŒAC�; (8.18)

with high probability, as the number of repetitions, N, increases [28].
Now, consider quantum mechanics into account. As it is suggested in Fig. 8.3,

Charlie sends the left qubit to Alice and the right qubit to Bob. The random
variables A;B;C, and D are defined by the results of measurements of the following
observables:

A D Z1 C D �Z2 � X2p
2

(8.19)

B D X1 D D Z2 � X2p
2

(8.20)

where subscripts 1, 2 stand for the left and right qubits sent by Charlie, respectively.
The calculation of the expected values is straightforward, for example,

EŒAC� D h j
�

Z1 ˝ �Z2 � X2p
2

	
j i ; (8.21)

and similar to BC, BD, and AD. But these calculations turn out to:

EŒAC� D EŒBC� D EŒBD� D �EŒAD� D 1p
2
: (8.22)

But, with these values, the sum adds up to:

EŒAC�C EŒBC�C EŒBD� � EŒAD� D 2
p
2: (8.23)
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The result obtained in (8.23) shows a clear violation to the upper bound obtained
in (8.17).

The conflicting results of Bell’s CSHS inequality and the last result obtained from
quantum mechanics vide (8.23) only can be solved via experimental procedures.
Several such procedures were performed starting in the decades of 1960 and 1970.
One of the most important was the work of Aspect et al. [3] that used two-photon
atomic transitions in the setup. The results corroborated the predictions of quantum
mechanics.

What the prior description shows is that for entangled states it is viable to find
a pair of observables correlated in such a way their correlations violate the Bell’s
inequality. The meaning is that quantum mechanics produces statistical predictions
that cannot be explained if one assumes the Einstein locality, that is, assuming
that the results of experiments performed in a location are independent of another,
discretionary one performed in another distant location, simultaneously.

8.1.1 Functional Consistency

Due to the complexity in demonstrating mentioned violations of Bell’s CHSH
inequality, new ways for demonstrated nonlocality were proposed [27]. Given a
set of commuting observables A;B;C; : : : and a set of quantum states j i ; j�i ; : : :,
then it is viable measuring the observables simultaneously and to obtain the joint
distribution of the values of the observables chosen from that set. Consider an
ensemble of identically prepared systems, in the state, say, j�i, and suppose these
states are described by observables A;B;C; : : :. Each measure shall assign numerical
values for each observable, v.A/; v.B/; v.C/; : : :. Quantum rules require that
v.A/ is dependent only on the operator A, not on the state j�i, and require also
that in a commuting set of observables the only allowed results of simultaneous
measurement are in the set of simultaneous eigenvalues.

From requirements considered [27], it is possible to notice that for any particular
functional identity

f .A;B;C; : : :/ D 0; (8.24)

fulfilled by the commuting observables, should be fulfilled by the set of eigenvalues,
that is

f .v.A/; v.B/; v.C/; : : :/ D 0: (8.25)

For example, if A and B commute, then

C D A C B
.ŒA;B�D0/H) v.C/ D v.A/C v.B/; (8.26)
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or, equivalently,

C � A � B D 0
.ŒA;B�D0/H) v.C/ � v.A/ � v.B/ D 0: (8.27)

But, implications (8.26) or (8.27) are valid only if A and B commute! Because if it is
not this way, A’s and B’s eigenvalues are different and they cannot be simultaneously
measured. There is no evidence supporting those identities. However, in the sense
of mean, (8.27) holds ever, that is, for any quantum state j�i, it is true that

h�j A C B j�i D h�j A j�i C h�j B j�i ; (8.28)

even despite the fact that A and B do not commute. Historically, famous mistakes
happened probably motivated by this caveat [36].

We have seen that one important meaning of the Bell’s CHSH inequalities is
that for an entangled quantum state it is viable to find pairs of observables such
that quantum mechanics statistics predictions are incompatible with the requirement
of locality (also referred to as Einstein locality). Equivalently, this means that the
results of measurements made at a given place are not all independent of those
obtained at a remote lab.

An n � n matrix M is said to be diagonalizable if and only if the sum of the
dimensions of the its eigenspaces equals n or, equivalently, if and only if M is similar
to a diagonal matrix, that is, there exist an invertible matrix P such that

P�1MP D

0
BBB@

1 0 : : : 0

0 
2 : : : 0
:::
:::
:::
:::

0 0 : : : 
n

1
CCCA ; (8.29)

where the scalars 
i .i D 1; 2; : : : n/ are the eigenvalues of M. From

MP D P

0
BBB@

1 0 : : : 0

0 
2 : : : 0
:::
:::
:::
:::

0 0 : : : 
n

1
CCCA D �


1 j˛1i 
2 j˛2i : : : 
n j˛ni� ; (8.30)

where P can be written as

P D .jv1i ; jv2i ; : : : ; jvni/ : (8.31)

In this representation j˛ii .i D 1; 2; : : : ; n/ and ˛i .i D 1; 2; : : : ; n/ are the
eigenvectors and eigenvalues of M, respectively.

If for a matrix M there is only one basis in which it is diagonal, that basis
corresponds to a maximal quantum test which is equivalent to a measurement of
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the observable represented by M. If ŒM;N� D 0 (M and N commute), it is possible
to find a basis in which both matrices are diagonal. This basis corresponds to a
maximal test, which provides a measurement of both M and N. Therefore two
commuting operators can be simultaneously measured, otherwise they are said to
be incompatible.

Generalization is straightforward. A set of matrices are said to be simultaneously
diagonalizable if there exists a single invertible matrix P such that P�1MP is a
diagonal matrix for every M in the set. A set of diagonalizable matrices commutes if
and only if the set is simultaneously diagonalizable. A set of commuting operators
is said to be complete if there exists a single basis in which all these operators are
diagonal.

8.1.2 Context

If, regardless of the previously mentioned ambiguity, we insist in assuming that
the measurement of an operator M depends uniquely on the objective properties of
the measured quantum system, then we are assuming validity of contextualization
of the setup to determine the measurement results completely. For example, if
ŒM;N� D 0 and also, ŒM;V� D 0, we can jointly measure M and N, or jointly
M and V , then we wait that the result of the measurement of M does not depend
on its context, specifically, whether we measure only M, or M and N, etc. Notice
that the assumption made is clearly counterfactual, that is, it cannot be put under an
experimental setup.

Considered jointly, contextuality and functional consistency are indeed incom-
patible with the predictions of quantum theory, in spite of their “reasonability.” The
following example is particularly illustrative of this point.

Example 8.2 (Peres [29]). Consider a pair of qubits, not necessarily entangled
(singlets), and the operators displayed in the following matrix

A D
0
@1 ˝ Z Z ˝ 1 Z ˝ Z

X ˝ 1 1 ˝ X X ˝ X
X ˝ Z Z ˝ X Y ˝ Y

1
A : (8.32)

It is possible to verify that:

• Each operator has eigenvalue ˙1;
• In each row the three operators commute;
• In each column the three operators commute;
• Each operator is product of the two others, with exception of the third column,

that requires a minus sign.
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On the other hand, consider the sequences

.X ˝ Z/.Z ˝ X/ D .XZ/˝ .ZX/ (8.33)

D .�{Y/˝ .{Y/ (8.34)

D Y ˝ Y; (8.35)

and

.Z ˝ Z/.X ˝ X/ D .ZX/˝ .XZ/ (8.36)

D .�{Y/˝ .�{Y/ (8.37)

D �Y ˝ Y: (8.38)

Due to the opposite signs in (8.35) and (8.38), we cannot assign ˙1 values to entries
of matrix A in such a way that those came out of measuring the operators form A.

8.1.3 Gleason’s Theorem

This important theorem states that for Hilbert spaces of dimension at least three, the
only possible probability measures are that of the form

hAi D Tr .�A/ ; (8.39)

where � stands for a prepared quantum state and A is an observable. This means that
there is not observable other than (8.39). The proof of that theorem is recognized as
difficult.2

One of the issues raised by Gleason is that assuming only the primitives:

• Decision tests (only yes/no answers allowed) are represented by projectors in a
Hilbert space;

• Compatible tests simultaneously correspond to commuting projectors;
• If P and Q are orthogonal projectors, then their sum, S D P C Q, which is itself

a projector, obeys

hSi D hPi C hQi; (8.40)

then, for Hilbert spaces with dimension larger than 2, (8.39) is the only that gives
the corrected statistics for the measurements. The main remark is that the projector
S; Tr S D 2, can be decomposed in unlimited number of manners. For instance, take

P1 D j˛i h˛j ; (8.41)

P2 D jˇi hˇj ; (8.42)

2See an interesting “geometry oriented” discussion in [6, p. 151].



8.1 Bell’s Inequalities 157

projectors onto orthonormal vectors j˛i and jˇi, respectively. Consider the next
“rotations”:

jai D j˛i C jˇip
2

; (8.43)

jbi D j˛i � jˇip
2

: (8.44)

Clearly jai and jbi are also orthonormal. The projectors onto these last vectors are

Q1 D jai haj ; (8.45)

Q2 D jbi hbj : (8.46)

The last two decompositions satisfy

Q1 C Q2 D jai haj C jbi hbj (8.47)

D .j˛i C jˇi/.h˛j C hˇj/
2

C .j˛i � jˇi/.h˛j � hˇj/
2

(8.48)

D P1 C P2: (8.49)

The identity Q1 C Q2 D P1 C P2 is considered as trivial, but, in contrast, the similar
statement about the averages is not. Such statement regarding the averages can be
formally written as:

hP1i C hP1i D hQ1i C hQ2i: (8.50)

Considering such non-trivial nature, it deserves to be experimentally verified [29].

8.1.4 The Kochen-Specker Theorem

Mermin [27] introduced the following reasoning. Take observables with eigenvalues
1 or 0 with corresponding spin components 0;˙1. The sums of the squared spin
components along any three orthogonal axis, x; y; z obey

S2x C S2y C S2z D s.s C 1/ D 2: (8.51)

This is valid for particles with spin s D 1. Additionally, the squared components
S2x ; S2y , and S2z form a mutually commuting set. The results of measurement are 0 or
1 for each direction, x, y, or z, additionally, that results must fulfill condition (8.51).

Assume that a set of directions with many orthogonal trials is given, in
conjunction with the set of observables (squared spins components) alongside that
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directions. As the observables along orthogonal axes, the squared components are
mutually commuting and due to constraint (8.51), the measured values equals one
of the three triads .1; 1; 0/; .1; 0; 1/ or, .0; 1; 1/.

The contextuality, that is, the impossibility of description supported on local
hidden variables, can be proved revealing quantum states for which the statistics of
their respective observables (S2x ; S

2
y ; S

2
y), connected with the orthogonal axes, cannot

be obtained by any assignments of 1s and 0s to every direction in the set, such that
condition (8.51) holds.

The Kochen-Specker theorem exhibits a set of vectors, called Kochen-Specker
(KS) sets such that it is impossible to assign 1’s (associated with a color red) and 0’s
(associated with a color blue) and condition (8.51) is kept.

Notice that no statistics relative of the states is necessary for justification. This
exclusion of statistics from the problem is similar to the change from the classical
information theory, where asymptotically small probability of error is admitted
to the zero-error information theory where no error is admitted. In the first, the
ordinary information theory, probability measures are essential. For the last, zero-
error information theory, graph theory and combinatorics are the main tools for
analysis.

From the last discussion, it is possible to give a concise statement of the KS
theorem in terms of the following problem.

Problem 8.1 (Mermin [27]). Determine a set of directions (vectors) in a 3-
dimensional space such that it is impossible to assign a color (red or blue) to each
direction under the condition that every subset of three mutually orthogonal vectors
contains exactly one blue and two red vectors.

For the sake of completeness, the solution (proof) given by Mermin [27] is
sketched here. Firstly, notice that only directions are essential, one is free to modify
the size of the vectors. Without loss of generality assume the unit vector z, blue,
defining this axis. Take the red vector a living in the y-z plane:

a D z C ˛y; 0 < ˛ < 0:5: (8.52)

Then consider the following remarks:

• As z is blue, x and y are both red. Indeed, any vector in the x-y must be red, due
to the condition that one cannot have two orthogonal blue vectors, that is

c D ˇx C y; for any ˇ: (8.53)

must be red.
• Additionally, since a and x are red, any vector in their plane must be red. To the

proof, we shall soon verify that an interesting red vector in this plane is

d D 1

ˇ
x � 1

˛
a: (8.54)



8.1 Bell’s Inequalities 159

• Notice that because a D z C ˛y, then d is orthogonal to c D ˇx C y. To see this,
it is enough to perform the scalar product (denoted by “�” ):

d � c D


1

ˇ
x � 1

˛
a
�

� .ˇx C y/ (8.55)

D kxk2 � ˇ

˛
.z C ˛y/ � x � 1

˛
.z C ˛y/ � y (8.56)

D kxk2 � kyk2 (8.57)

D 0: (8.58)

• Recall that c and d are both red, so the normal to their plane must be blue.
Therefore, any vector in their plane must be red. So, the following sum is red:

e D d C c: (8.59)

• Since ˛ 2 .0; 0:5/, then 1
˛
> 2, and, for ˇ 2 R,

ˇ̌̌
ˇˇ C 1

ˇ

ˇ̌̌
ˇ 2 .2;1/; (8.60)

it is viable determined a value of ˇ such that e is parallel to

f D x � z: (8.61)

Also, changing the signal of ˇ results in another e parallel to

g D �x � z: (8.62)

• Since e is red independently of the ˇ value, both f and g must be red.
• But, f � g D 0, they are orthogonal; so the normal to their plane is blue and any

vector in their plane is surely red.
• Notice that

z D �1
2

f � 1

2
g (8.63)

lives in the f; g plane, but z is blue. This is the contradiction sought.

A chain of simpler and simpler proofs of quantum contextuality has been
introduced since the KS theorem has appeared in the literature. One of these recent
simplifications was introduced by Cabello et al. [9]. Experimental apparatus has also
been explored in this same kind of sequence of simplifications [16].
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An interesting approach concerning the plethora of nonlocality proofs is given in
van Dam et al. [35], where the authors, rooted on Kullback-Lieber distance, propose
a measure for the amount of evidence provided by the experimental setup.

In the following sections, recent results related with quantum zero-error informa-
tion theory are examined.

8.2 Quantum Chromatic Number and Kochen-Specker Sets

Throughout this section we shall use definitions from graph theory introduced
earlier in Chap. 4. Eventually, for the sake of easiness, some of those may be
redundant.

Scarpa and Severini [32] and Mancinska et al. [26] introduced conditions for
equality and strict inequality between three quantities associated with a graph G:

• The minimum dimension of orthogonal representation, denoted by �.G/;
• The quantum chromatic number, denoted by �q.G/;
• The ordinary quantum chromatic number, denoted by �.G/.

One remarkable contribution introduced in the mentioned works is the
outstanding role performed by the KS sets in the proofs. These sets are collections
of vectors with applications to investigations about the calculation of quantum
zero-error capacities of quantum channels.

The quantum chromatic number is a remarkable parameter for at least one
reason: it is a tool for differentiating aspects of quantum and classical behavior, in
particular, for entanglement-assisted communications. Also the quantum chromatic
eases comprehension of combinatorial parameters as, e.g., the Lovász theta function
and the minimum dimension of an orthogonal representation of a simple graph.

In this section only simple graphs (unweighted, unidirected graphs without self-
loops) are considered and, as before, for a graph G, V.G/ and E.G/ denote its vertex
and edge sets, respectively.

Before introducing the relationship between the concepts of quantum chromatic
number, KS sets, and their consequences for the zero-error information theory,
however, due to its importance, we shall review main concepts related to the
Kochen-Specker theorem, following mainly the reading given in Peres [29].

A proper k-coloring of a graph is an assignment of k colors such that every two
adjacent vertices have different colors. The chromatic number of a graph G, �.G/,
is the minimum number of colors k needed to build a proper k�coloring map of G.

We now introduce a coloring game for a graph G D .V;E/. We consider that
Alice and Bob claim that they have a proper k-coloring for G and a referee tests this
claim with a one-round game. The rules of the game do not allow communication
between the players. The referee asks Alice the color, say a, for the vertex v and
Bob for the color, say, b, for the vertex w. Alice and Bob win the game if, for
a; b 2 f1; : : : ; kg:
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• IF v D w, THEN a D b;
• IF .v;w/ 2 E, THEN, a ¤ b.

A classical strategy is formed by two deterministic functions:

gA W V ! f1; : : : ; kg; (8.64)

gB W V ! f1; : : : ; kg: (8.65)

It is clear that, independently of the strategy chosen by the players, including even
probabilistic strategies, they cannot win the game with probability 1 if k < �.G/,
that is, using less than the chromatic number of colors in their assumed proper k-
coloring procedure.

A quantum strategy the players can take advantage of is a convenient entangled
state j i living in a Hilbert space of dimension d and two collections of POVMs in
the following way:

• For all v 2 V , Alice owns fEvagaD1;:::;k and similarly Bob owns fFvbgbD1;:::;k;
• Alice applies her POVM fEvagaD1;:::;k to her part of the entangled state and get

the value a;
• Bob applies his POVM fFvagaD1;:::;k to his part of the entangled state and get the

value b.

In order to have consistent conditions, for a quantum strategy, the rules are
adapted in such a way that Alice and Bob win the game, if only if

8v 2 V; 8a ¤ b; h j Eva ˝ Fvb j i D 0; (8.66)

8.v;w/ 2 E; 8a; h j Eva ˝ Fwa j i D 0: (8.67)

If these conditions are attained, the strategy is said to be a winning strategy. Notice
that only the number of measurement operator is fixed, neither the dimension
of the entangled stated nor the rank of the measurement operator is taken into
consideration. This motivates the following definition.

Definition 8.1 (Quantum Chromatic Number [32]). For all graphs G, the quan-
tum chromatic number �q.G/ is the minimum number k such that there exists a
quantum k-coloring of G.

In the following W stands for the complex conjugate of the complex matrix W,
that is, the .i; j/ entry of W is obtained from the corresponding .i; j/ entry of W taking
its complex conjugate. The Hilbert-Schmidt product of two complex matrices W and
V is given, as usual, by

hWj Vi D Tr WV�: (8.68)

The normal form of a k-coloring emphasizes the simplicity of its structure.
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Proposition 8.1 (Normality [32]). If G has a quantum k-coloring, then there exists
a quantum k-coloring of G in normal form, with the following properties:

1. All POVMs are projective measurements with k projectors of rank r;
2. The state j i is the maximally entangled of local dimension rk;
3. For all pairs v; a, the projectors of Alice and Bob are conjugate, that is, Ev;a D

Fv;a
4. The consistency conditions can be represented as

8 .v;w/ 2 E; 8 a 2 f1; : : : kg; hEva;Ewai D 0: (8.69)

The proof for this proposition was introduced by Scarpa and Severini [32]. The
authors emphasize that the quantum chromatic number depends on the rank of the
POVM elements adopted by Alice and Bob. This remark motivates the following
definition.

Definition 8.2 (Rank-r Quantum Chromatic Number [32]). The rank-r quantum
chromatic number �.r/q .G/ of G is the minimum number of colors k such that G has
quantum k-coloring formed by projectors of rank r and a maximally entangled state
of local dimension rk.

It can be observed that �.r/q .G/ � �
.s/
q .G/ if r � s [32]. For rank-1 quantum

coloring, the dimension of the maximally entangled state equals k and, the rank-1
projectors for each vertice v, can be represented as the outer product

jevai hevaj ; a 2 f1; : : : ; kg; (8.70)

for an orthonormal basis fjevaia2f1;:::;kgg. Therefore (8.69) can be rewritten as:

8.v;w/ 2 E.G/; 8a 2 f1; : : : ; kg; hevaj ewai D 0: (8.71)

If a quantum k-coloring of a graph G.V;E/ is given, then a matrix representation
of G can be constructed with the map:

˚ W V ! C
k�k; (8.72)

such that for all .v;w/ 2 E it is required

diag.˚.v/�˚.w// D 0: (8.73)

Here, diag.A/ stands for the vector formed with the A diagonal entries. The map ˚
is built taking for all v 2 V a unitary matrix Uv mapping the computational basis
fjiii2f1;:::;kgg to fjevai ; a 2 f1; : : : ; gg. Notice that Uv is a k � k matrix and (8.71)

condition assures that if .v;w/ is an edge then the diagonal entries of U�
vUw are

zero.
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8.2.1 Relationship Between �.G/; �
.1/
q .G/ and �.G/

A k-dimensional orthogonal representation of G D .V;E/ is a map

� W V ! C
k; (8.74)

such that for all .v;w/ 2 E, the inner product h�.v/j�.w/i D 0. The orthogonal
rank of a graph G, denoted by �.G/, is defined as the minimum k such that an
orthogonal representation of G in C

k exists.
For all graphs G the following inequalities hold [10]:

�.G/ � �.1/q .G/ � �.G/: (8.75)

If we have two graphs G and H, we can now define the Cartesian product GH.

• The vertex set V.GH/ D V.G/� V.H/ is the Cartesian product of the vertex sets
of G and H;

• An edge between vertices .a1; b1/; .a2; b2/ 2 V.GH/ is either

– a1 D a2 and .b1; b2/ 2 E.H/, or
– .a1; a2/ 2 E.G/ and b1 D b2.

Notice that a vertex in V.GH/ corresponds to a pair .a; b/ of vertices where a is
from G and b is from H.

Let Kk be a complete graph with k vertices. The next proposition clarifies the
relation between the minimum dimension of orthogonal representation and the
quantum chromatic number.

Proposition 8.2 (Scarpa and Severini [32]). For all graphs G:

�.1/q D minfk W �.GKc/ D kg: (8.76)

From this proposition follows a condition for equality between the rank-1
quantum chromatic number and orthogonal rank of a graph G.

Theorem 8.1 (Scarpa and Severini [32]). For all graphs G:

�.1/q .G/ D �.G/ if only if �.GK�.G// D �.G/: (8.77)

8.3 Wielandt’s Inequality

We have defined a quantum channel, denoted E , as a trace preserving completely
positive linear map (TPCP), that is,

E W MD�D ! MD�D; (8.78)
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where MD�D is the space of the complex D � D matrices. The Kraus operators
Wk 2 fMD�Dgd

kD1 are a versatile representation of quantum channel EW :

EW.�/ D
dX

kD1
Wk�W�

k : (8.79)

Unitary operations, some kind of measurements, addition of uncorrelated quan-
tum systems, substituting of a input state by other state are some operations in a
quantum channel that can be well represented by Kraus operators.

Another useful representation, that allows modeling any operation by a unitary
operation on a larger Hilbert space, is the Stinespring theorem:

Theorem 8.2 (Stinespring Theorem). Let E be a trace-preserving quantum oper-
ation on a Hilbert space H. Then there is an ancilla space K of dimension dimK �
.dimH/2 so that for any fixed j�i 2 K there is a unitary transformation OU on H˝K
with

E.�/ D TrKf OU.�˝ j�i h�j/ OU�g: (8.80)

However, for quantum channels the representation by means of Kraus operators
is actually more usual, at least for applications where discrete classical information
are to be transmitted. In this section we discuss some relevant development of the
notion of zero-error communications through quantum channels.

As usual we begin with a classical concept to later introduce extensions of that
concept into the quantum framework. Recall the definition of a classical discrete
memoryless channel (DMC) .X � Y;W.YjX// for which jX j D jYj D D. The
main elements of a DMC are shown in Fig. 8.4. The matrix W.YjX/ is defined as a
stochastic matrix whose rows are indexed by the elements of X while the columns
are indexed by those of the finite set Y . The .x; y/ entry of W.YjX/ is the probability
that Y D y is received when X D x is transmitted.

Source messages V are picked from a finite set (alphabet of the source) and are
mapped by means of the encoder in codewords Xn D .X1;X2; : : : ;Xn/. Each Xi ,
i D 1; 2; : : : ; n, is transmitted through the memoryless channel that produces an
output Yi in such a way that

Pr .Yn D ynjXn D xn/ D
nY

iD1
Pr .Yi D yijXi D xi/ : (8.81)

V

Message
Encoder

Xn Channel

W (Y |X)

Y n

Decoder
̂V

Estimate

Fig. 8.4 Classical communication systems
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The right-hand product means the i-th output yi of a DMC depends by a stochastic
map only on the i-th input xi. This is the motivation to the term memoryless in the
definition.

If we take into account the input and output blocks, Xn and Yn, respectively, it is
natural to define a stochastic matrix for these blocks, say,

W.n/.YnjXn/ , Pr .YnjXn/ D W ˝ W ˝ : : :˝ W„ ƒ‚ …
n times

: (8.82)

Notice that the probability distributions W.�jx/ and W.n/.�jxn/ correspond to the
x-th and xn-th lines of the product matrix, respectively. If two input blocks Xn and
QXn can lead to the same output block Yn, decoding cannot be performed without
error. We say that Xn and QXn are confusable or indistinguishable.

Sanz et al. [31] proposed an extension of the classical Wielandt’s inequality to
quantum channels. The concept concerns the number of applications of the channel
to any source (probability distribution) for which any output will be reached.

Before introducing the formal definition for the quantum case, we will recall
some important notions. A matrix is said to be positive if its entries are all strictly
positive.3 This means that for a positive DMC matrix W, any output y 2 Y can be
reached from any input x 2 X at the input.

Definition 8.3 (Primitive Matrix). A square stochastic matrix W is said to be
primitive if there is an m 2 N such that .Wm/ij > 0 for all .i; j/, that is if Wm is
positive. The minimum m for which this occurs, denoted p.W/, is said to be the
classical index of primitivity of W.

It means that if a DMC probability transition matrix W is primitive, then using
p.W/ times a DMC .X � Y;W.YjX//, any y 2 Y can be reached from each input
x 2 X transmitted or, equivalently, for the product channel displayed in Fig. 8.4, all
input blocks Xn are confusable.

The Wielandt’s inequality [22, p. 520] states that, for every primitive matrix W,
then:

p.W/ � D2 � 2D C 2: (8.83)

Observe that the Wielandt’s inequality does not depend on the matrix elements;
only its primitivity is required. There are applications of the Wielandt’s inequality
for several fields, e.g., to graph theory, number theory, numerical analysis, etc. An
extension of the concept of index of primitivity to the quantum framework was
introduced by Sanz et al. [31] which is defined by the number of times a channel
must be used, so that it maps any density operator to one with full rank.

3We call the attention that there is no connection of definition of positive matrix with the definition
of positive definite matrix.
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Fig. 8.5 Graph of the DMC
induced by the stochastic
matrix of (8.84) for D D 5.
Labels on the edge .x; y/
stand for conditional
probabilities, for instance,
˛ D PrŒY D 0jX D 4�

0 0

1 1

2 2

3 3

4 4

1

1

1

1
β

α

Example 8.3. The following D � D matrix

W D

0
BBBBB@

0 1 0 � : : : 0 0
0 0 1 0 : : : � 0
:::
:::
:::
:::
:::
:::
:::

0 0 0 0 : : : 0 1

˛ ˇ 0 0 : : : � 0

1
CCCCCA

(8.84)

is primitive, for ˛ > 0 and ˇ > 0, ˛ C ˇ D 1. The primitivity is due to the fact that
Wm is positive for m D D2 � 2D C 2. This is just the Wielandt bound [28, p. 730].
For instance, fixing D D 5, we have p.W/ D m D 17, which means that 17 uses of
that DMC, every output block Y17 2 Y17 can be reached from any X17 2 X 17 input
block of symbols.

The graph of transitions for the DMC induced by this matrix .D D 5/ is displayed
in Fig. 8.5.

Consider the probability row vector p of the input X as:

p D .p0; p1; p2; p3; p4/ : (8.85)

That is, px D PrŒX D x�, x 2 X . Similarly denote

q D .q0; q1; q2; q3; q4/ ; (8.86)

the probability row vector of the output Y , that is, py D PrŒY D y�, y 2 Y . The
transition channel matrix W defines the relationship between probability vectors p
and q, as follows:

q D pW: (8.87)
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8.3.1 Quantum Index of Primitivity

Let EW be the quantum channel defined by Kraus operators fWk 2 MD�Dgd
kD1,

that is

EW .�/ D
dX

kD1
Wk�W�

k : (8.88)

The quantum index of primitivity, denoted by q, is defined to a quantum channel
(TPCP map) by the least m 2 N such that m uses of the channel assures that every
positive semidefinite operator is mapped onto a positive definite operator, where D
is the dimension of the Hilbert space, and d the number of linearly independent
Kraus operators.

It is possible to show that

q � .D2 � d C 1/D2; (8.89)

where D is the dimension of the Hilbert space, and d the number of linearly
independent Kraus operators.

Our proposal now is to focus on the issues of the inequality (8.89) connected
with the notion of quantum channels with positive zero-error capacity. In this way,
we need to recall some preliminaries given in [31]. Firstly, the authors define
Sn.W/ 2 MD�D as the linear space spanned by all possible products of exactly n
Kraus operators, Wk1Wk2 : : :Wkn and denote W.n/

k the elements of Sn.W/, with this,
they define

Hn.W; '/ , Sn.W/ j'i � C
D; (8.90)

as the space spanned by all vectors Wk1Wk2 : : :Wkn j'i, where j'i 2 C. Secondly,
Sanz et al. [31] recall the one-to-one correspondence between a quantum channel E
and its Choi matrix

!.E/ , .1 ˝ E/.˝/; (8.91)

where ˝ D PD
i;j jiii hjjj : Then, the observed rank

�En
W.j'i h'j/� D dim ŒHn.W; '/�.

Equipped with prior discussion, three properties are introduced.

1. Primitive Quantum Channel. A quantum channel EW is said to be primitive
if there exists some n 2 N such that for all j�i 2 C

D; Hn.W; '/ D C
D: The

number q.EW/ stands for the minimum n for which the condition is reached. This
means that for every input density operator � the output En

W.�/, obtained after n
applications of the channel is full-rank. It is observed that if EW is primitive, then
for every m 2 N; Em

W is also primitive and we have

Hn.W; '/ D C
D for all n � q.EW/: (8.92)



168 8 Recent Developments in Quantum Zero-Error Information Theory

2. Eventually Full Kraus Rank Quantum Channel. A quantum channel EW is
called eventually full Kraus rank if there exists some n 2 N such that Sn.W/ D
MD�D. This means that rank

�
w.En

W/
� D D2. The number i.W/ stands for the

minimum n for which that condition is satisfied. Notice that if EW fulfills this
property, then Sn.W/ D MD�D for all n � i.W/.

3. Strongly Irreducible Quantum Channel. A quantum channel EW is said to be
strongly irreducible if the following two conditions are fulfilled:

a. EW has a unique eigenvalue, 
, with j
j D 1;
b. The corresponding eigenvector � is a positive definite operator .� > 0/.

An important question now is how the classical Wielandt bound relates with the
quantum one. The main tool is to make an embedding of the classical channel in the
quantum framework, as it is shown in the next example.

Example 8.4. Consider again the classical DMC illustrated in Fig. 8.5 (for D D 5)
and respective stochastic matrix W given by (8.84). It is easy to see that embedding
is obtained by intermediate the following map EW defined by the Kraus operators

Wx;y D p
wx;y jyi hxj ; x 2 X ; y 2 Y : (8.93)

For an input (diagonal) operator

� D ıx;ypx D

0
BBBBB@

p0 0 0 0 0

0 p1 0 0 0

0 0 p2 0 0

0 0 0 p3 0
0 0 0 0 p4

1
CCCCCA
: (8.94)

Here, ıx;y stands for the Kronecker function and px; x 2 f0; 1; 2; 3; 4g, are the entries
of input probability vector p (recall Example 8.3). The output is given by

	 D EW.�/ıx;yqy D

0
BBBBB@

q0 0 0 0 0

0 q1 0 0 0

0 0 q2 0 0

0 0 0 q3 0
0 0 0 0 q4

1
CCCCCA
; (8.95)

where qy; y 2 f0; 1; 2; 3; 4g, are the entries of the output vector q.
The set of Kraus operators are

˚ j1i h0j ; j2i h1j ; j3i h2j ; j4i h3j ;p˛ j0i h4j ;
p
ˇ j4i h4j �: (8.96)

Assume W is a primitive DMC stochastic probability transition matrix with
primitivity index p.W/. The following is proved in [31].
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Proposition 8.3. Let W be a primitive stochastic map and let EW be the correspond-
ing TPCP. The channel EW is also primitive and

q.W/ D p.W/ D i.W/: (8.97)

Notice that equality of (8.97) holds for quantum channels resulting of the above
DMC embedding. This fact is illustrated next.

Example 8.5. Let us consider a “genuine” quantum channel, with D D 2 and d D 3

given by the Kraus operators
n
W1 D 1p

3
X; W2 D 1p

3
Y; W3 D 1p

3
Z
o

(8.98)

where X, Y , and Z are the Pauli matrices. Explicitly, the map is given by

EW.�/ D 1

3

 
X�X� C Y�Y� C Z�Z�

!
; (8.99)

for an input state �.
It is straightforward to check that in this case q.EW/ D 1 and i.W/ D 2: The

quantum Wielandt’s bound is 8 D .D2 � d C 1/D2 � q.EW/.
There is an open question if the quantum Wielandt’s bound is sharp, however the

following theorem is very important because establishing a universal dichotomy
behavior of the zero-error capacity of the important class of unital quantum
channels. This dichotomy result is universal in the sense that it depends only on
the dimension of the Hilbert space, D, and not on the channel itself.

Theorem 8.3 (Dichotomy Behavior [31]). Let C.0/.E/ be the zero-error classical
capacity of the quantum channel E . If E is a quantum channel with full-rank fixed
point, then either C.0/.En/ � 1 for all n or C.0/

�Eq.E/� D 0.

Notice that if En stands for the input–output relationship after n units of time or
space then the theorem reveals the existence of a universal critical length n D q.E/
such that once a transmission is successfully viable then a successful transmission
m � n is possible.

8.4 Entanglement-Assisted Zero-Error Capacity

In Sect. 3.2.5 we saw different capacities of quantum channels. The entanglement-
assisted capacity in particular considers that the parties share an unrestricted amount
of previously shared entanglement which they can use in order to maximize the
information changed through the quantum channel. In this section, we describe
how entanglement can be used in a zero-error scenario for exchanging classical
information.
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Before introducing the entanglement-assisted zero-error communication, we
need some background concepts. We start with the hypergraph of a quantum
channel.

Definition 8.4 (Hypergraph of a Quantum Channel [13]). Let E be a quantum
channel. The hypergraph of E , denoted by H.E/, is a set of vertices, denoted by S
and a set of subsets of S. The set of vertices S is composed by the channel input.
There is one hyperedge for each of the outputs, which contains all the inputs that
have a nonzero probability of causing that output.

We also use the concept of clique in hypergraphs. A clique of H.E/ is a set �i of
possible inputs of a given output in a confusability graph. In other words, the clique
�i contains all the inputs that can cause the same output.

In this current scenario, in particular, prior to information exchange through the
quantum channel, Alice and Bob share a d-dimensional entangled state �AB D
j˚ABi h˚ABj given by

j˚ABi D 1p
d

d�1X
iD0

jiAi jiBi (8.100)

Considering that such pre-shared entanglement is available, Cubitt et al. [13]
proposed a protocol for entanglement-assisted zero-error communication that is
described as follows:

1. Alice chooses a message m 2 f1; : : : ;Kg from a set of messages, where K is the
number of messages. Alice wants to send the message m to Bob;

2. Alice measures her half of the entangled system using a complete orthogonal
basis, say Bm D fj Kxig, where Kx is a vertice in a clique �m from the hypergraph
H.E/;

3. Alice sends the result of her measurement to Bob.
Some clarifications are needed before proceeding. In the hypergraph H.E/

the vertice x represents the unit vector j Kxi such that if x and Kx are adjacent then
h xj Kxi D 0. Recalling that K is the size of the messages set, the hypergraph has
K cliques of size d, say f�1; : : : ; �Kg. It is analogous to say that each message m
has a d-size clique �m in the hypergraph H.E/.

4. After Alice’s measurement, Bob’s state will collapse to j xi�;
5. Bob will measure his state in Bm D fj xig in order to get the final state j Kxi�;
6. Bob output is denoted by y. His possible states are determined by those vertices

x, for which p.yjKx/ > 0 and these adjacent states are mutually orthogonal, i.e.,
for any Kx1 and Kx2, then hKx1j Kx2i D 0 [23].

For short, to send K messages using entanglement, Alice and Bob can use a max-
imally entangled state of rank d: to send m, Alice measures her side of the state in
the bases Bm and obtains the outcome j (at random). She inputs .mI j/ to the channel.
Bob’s output tells him that Alice’s input was in some particular mutually confusable
subset, but by construction, these inputs correspond to mutually orthogonal residual
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states of his subsystem, so he can perform a projective measurement to determine
precisely which input Alice made to the classical channel, and hence which of the
K messages she chose to send, with certainty [13].

Using the previously defined elements and protocol characterized, we can now
characterize the entanglement-assisted zero-error classical capacity of quantum
channels.

Theorem 8.4 (Entanglement-Assisted Zero-Error Capacity [13]). Let E be a
quantum channel. The entanglement-assisted zero-error capacity of E , denoted by
C.0/

E .E/, is given by

C.0/
E .E/ D lim

n!1
1

n
log KE.E˝n/ � log.KE/ (8.101)

where KE is the number of mutually non-adjacent input messages with entanglement
assistance.

Theorem 8.5 (Cubitt-Leung-Matthews-Winter Theorem [13] via [23]). For a
quantum channel E with hypergraph H.E/, there exists an entanglement-assisted
quantum communication protocol that can send one of K messages with zero error;
hence for entanglement-assisted asymptotic classical zero error capacity

log.K/ � C.0/.E/ D lim
n!1

1

n
log.K.E˝n// < C.0/

E .E/

D lim
n!1

1

n
log KE.E˝n/ � log.KE/: (8.102)

This theorem shows us that entanglement can sometimes be used to increase the
number of classical messages which can be sent perfectly over quantum channels
[13].

Some results in the literature have interesting connections with the entanglement-
assisted zero-error capacity. Leung et al. [25], using certain input codewords (based
on a Pauli graph), show that entanglement can help to increase the classical zero-
error capacity to the maximum achievable HSW capacity.

In general, it is possible to observe the following relation between the classical
zero-error quantities:

C.0/.E/ < C.0/
E .E/ � C1;1.E/ (8.103)

Recalling that the zero-error capacity is a quantity hard to compute even for small
characteristic graphs, upper bounds play an important role, in particular, the Lovász
# function is commonly considered. Beigi [4] verified that the Lovász # function
is an upper bound on the zero-error capacity even in the presence of entanglement
between the sender and receiver.
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8.5 Non-Commutative Graphs and Quantum Lovász #

Function

The works of Duan, Cubitt, Severini, Winter, and other collaborators [14, 15, 17]
introduce the theory of non-commutative graphs in the study of quantum zero-
error capacity problem. Starting with the Kraus form of representation of a quantum
channel, the authors define a generalization of the classical adjacency graph called
non-commutative (confusability) graph by the operator space:

S , spanfW�
j Wk W j; kg < L.H/ (8.104)

where L.H/ stands for the set of observable on Hilbert space H.
According to this graph definition, a zero-error code consists in the anti-clique

of the corresponding graph. The biggest anti-clique, called independence number
and denoted by ˛.G/, corresponds to the maximum number of messages that can be
transmitted through the channel with probability of error equal to zero. This way,
the classical zero-error capacity of a channel with graph G is given by

C.0/.G/ D lim
n!1 log˛.Gn/ D sup

n
log˛.Gn/: (8.105)

Translating this concept to the quantum scenario, we have a quantum channel
E W B.HX/ ! B.HY/, where B.�/ is the space of linear operators from a given
Hilbert space. This way, the event Ex;y W HX ! HY , that corresponds to the input
of a quantum state x 2 X and the output of a quantum state y 2 Y in this quantum
channel, is given by

Ex;y D
p

p.yjx/ jyi hxj : (8.106)

This way, we can define the confusability graph of a quantum channel (or non-
commutative graph) as being a subspace

S D span
n
E�x0;y0 � Ex;y ¤ 0I x; x0 2 X ; y; y0 2 Y

o
: (8.107)

It is interesting to notice that such definition emphasizes the channel’s input that
can be confused, while in Chap. 5 the approach was to emphasize inputs that are not
adjacent. Despite this difference, both definitions are equivalent.

Example 8.6 (Confusability Graph of a Quantum Channel). Let E be a quantum
channel shown in Fig. 8.6a. The input alphabet contains the symbols X D fa; bg
and the output alphabet contains the symbols Y D fc; dg.

According to (8.106), we have the following events:

Ea;c D 1 � jci haj D jci haj ; (8.108)
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Fig. 8.6 Example of a graph
of a quantum channel (a)
transitions probabilities at the
channel’s end (b)
confusability graph
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Ea;d D 0 � jdi haj D 0; (8.109)

Eb;c D
r
1

3
jci hbj ; (8.110)

Eb;d D
r
2

3
jdi hbj : (8.111)

It is important to emphasize that these events have a straight correspondence with
the quantum channel it is related. From these events, we can consider the following
elements that will compose the confusability graph (see (8.107))

E�a;c � Ea;c D jai haj ; (8.112)

E�a;c � Eb;c D
r
1

3
jai hbj ; (8.113)

E�b;c � Ea;c D
r
1

3
jbi haj ; (8.114)

E�b;c � Eb;c D 1

3
jbi hbj ; (8.115)

E�b;d � Eb;d D 2

3
jbi hbj : (8.116)

Thus,

S D span
n
E�a;c � Ea;c;E

�
a;c � Eb;c;E

�
b;c � Ea;c;E

�
b;c � Eb;c;E

�
b;d � Eb;d

o
: (8.117)

Considering the subspace S we can denote the zero-error capacity of a quantum
channel. This capacity is given by the following expression, considering that the
biggest set of self-orthogonal states is given by fj�mi W m D 1; : : : ;Ng

8m ¤ m0 W j�mi h�m0 j 2 S?; (8.118)
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Table 8.2 Alternative definitions for zero-error capacities considering independence numbers

Capacity Expression Observations

Classical
zero-error
capacity

C.0/.S/ D limn!1

1
n log˛.S˝n/ Shown previously in (8.105)

Quantum
zero-error
capacity

Q.0/.S/ D limn!1

1
n log˛q.S˝n/ ˛q denotes the quantum independence

number whose value depends on the
existence of a Stienespring dilatation in
the channel.

Entanglement
assisted
zero-error
capacity

C.0/
E .S/ D limn!1

1
n log Q̨.S˝n/ Q̨ denotes the higher integer N for

which there are (i) Hilbert spaces HX0

and HY0; (ii) ! 2 S.HX0 ˝ HY0/; (iii)
a map Em W B.HX0/ ! B.HX/, such
that there are N states �m D .E ı Em ˝
1Y0/! which are mutually adjacent.

Generalized
entan-
glement
assisted
zero-error
capacity

OC.0/
E .S/ D limn!1

1
n log Ǫ.S˝n/ Ǫ denotes the higher independence

number assisted by generalized entan-
glement which demands that Em.	/ DP

j Ejm	E�jm and that
P

j E�jmEjm 2
GL.HX0/ to be invertible.

where S? is an orthogonal subspace to S given in (8.107). The expression in (8.118)
has some relations with the corresponding independence number of the graph. In
Example 8.6, for instance, we have that S? D ¿. It implies that the classical zero-
error capacity of the quantum channel E is equal to zero.

For every confusability graph S � B.HX/ we have the following relation

˛q.S/ � ˛.S/ � Q̨U.S/ � Q̨ .S/ � Ǫ .S/ (8.119)

where each of these ˛s, called independence numbers, has relation with a different
kind of zero-error capacity, as shown in Table 8.2. Detailed information about how
to obtain such numbers can be found in the work of Duan et al. [17, 18].

The classical zero-error capacity C.0/ and the quantum zero-error capacity Q.0/

of a quantum channel were deeply discussed in Chap. 5. The zero-error capacity
assisted by entanglement was introduced in the previous section.

Among the independence numbers showed, the only which is not directly related
to a zero-error capacity is Q̨U.S/ because it considers unitary restrictions in its
definitions. The numbers ˛q.S/, ˛.S/, Q̨ .S/ are Ǫ .S/ computable. However, finding a
computable expression to the associated zero-error capacity cannot be a trivial task.

Regarding the Lovász theta function, presented in Sect. 4.3 for the classical
scenario, it works as an upper bound for the zero-error capacity of a DMC. It is
natural to pursue a quantum version of such definition. It was presented by the
authors and is formally defined as follows.
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Definition 8.5 (Quantum Lovász Theta Number [17]). Let S be the non-
commutative graph of a quantum channel E . The quantum Lovász theta number is
given by

Q#.S/ D sup
n
#.S ˝ L.Cn// (8.120)

D sup
n

maxfk1 C Tk W T 2 S? ˝ L.Cn/;1 C T � 0g; (8.121)

where the supremum is over all integers n, and the maximum is taken over Hermitian
operators T .

The authors show more results regarding characteristics of this quantum version
of the Lovász theta number, such as its monotonicity and supermultiplicativity.

Considering the independence numbers and their corresponding zero-error
capacities as well as the Lovász theta number, both characterized using the
same approach of non-commutative graphs, the authors believe that these results
suggest that there might be a much more systematic way in which operator systems
generalize Graph Theory to the non-commutative domain. They are pursuing new
results in such direction.

8.6 QMA-Completeness of Quantum Clique

In this section we are going to explore the results of Beigi and Shor regarding
the computational complexity of the quantum clique problem which was found
out to be QMA-complete [5]. According to the authors, the original problem of
finding the quantum clique can be written in terms of finding the zero-error capacity
of a quantum channel. Exploring the zero-error behavior in this scenario brought
relevant contributions to the theory of complexity, enlightening the classification of
an important problem according to quantum complexity classes.

Theory of Complexity is a subarea of computer science whose goal is to prove
for important problems that their solutions require certain minimum resources [38].
When considering each solution, it takes into account a model of computation (clas-
sical Turing machines, probabilistic Turing machines, quantum Turing machines,
for instance) and a certain resource (for example, memory or time) [34].

Problems are grouped into complexity classes, according to the model used and
to a function of the amount of resources their best solutions demand over a certain
size of input in a worst-case scenario. For classical models of computation and when
time resources are considered, the complexity classes P and NP are widely studied.

An algorithmic problem belongs to the complexity class P of polynomially
solvable problems if it can be solved by an algorithm with polynomial worst-case
runtime [38]. The class P is felt to capture the notion of problems with efficient
time solutions considering classical (deterministic) Turing machines [2].
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The complexity class NP contains problems having efficiently verifiable solu-
tions. In other words, if x is a solution to the problem (certificate), it is possible
to verify that in deterministic polynomial time [2]. For example, the subset sum
is in the NP class. In this problem, given a list of n numbers A1;A2; : : : ;An and
a number T , one must decide if there is a subset of numbers that sums up to T .
The certificate for this problem is the list of members in this subset. For a practical
example in the problem considered, if the list of numbers is f4;�8; 0; 22;�17; 3; 2g
and T D 1, then the certificate f4;�8; 3; 2g can be verified as a solution to the
problem in polynomial time.

Any problem in P is also in the NP class because we can solve it in polynomial
time even without the need of a certificate [12]. However, the question if the classes
P and NP are equal or different remains as one of the most important challenges
for computer science. Certain problems in the NP class, in particular, have a special
classification. A problem in NP is called an NP-complete problem if any efficient
algorithm for it can be converted into an efficient algorithm for any other problem
in NP [20].

Considering this brief introduction of computational complexity, from now on
we will examine more closely the contribution and the results of Beigi and Shor [5].
Some definitions and argumentation presented below in this section are from their
original work and the reader is referred to it for more details.

The clique of a graph is a widely known NP-complete problem. Given a graph
G a clique is a subset of vertices, every two of which are adjacent, and the size of a
clique is the number of its vertices. The clique problem is that given a graph G and
an integer number k, decide whether G contains a clique of size k or not.

Let GC be the complement of the graph G. In the complement of G a clique is
changed to an independent set. A subset of a graph G where no two vertices are
adjacent characterize an independent set. The maximum size of an independence
set is the independence number of the graph G, denoted by ˛.G/. So the clique
problem in the complement graph reduces to decide whether ˛.G/ � k, and then
it is NP-complete. This reduction is important because the problem of computing
˛.G/ is related to the problem of computing the zero-error capacity of a classical
discrete memoryless channel, as shown extensively on Chap. 4.

The quantum version of the clique problem, known as quantum clique problem,
is also to decide whether ˛.E/ � k for a given quantum channel E . It is equivalent
to decide whether there exists quantum states �1; : : : ; �k such that E.�1/; : : : ; E.�k/

have orthogonal supports or not. Note that, for any two states 	1; 	2, then Tr.	1	2/ �
0 and equality holds iff 	1 and 	2 have orthogonal supports.

Let 	1;2 D 	1 ˝ 	2 then Tr.	1	2/ D Tr.S	1;2/, where S is the swap gate
(S j i j'i D j'i j i). We can estimate Tr.	1	2/ by applying the swap gate. We
must notice that if 	1;2 is not separable then the equality does not hold and the
orthogonality is not implied by Tr.S	1;2/ D 0. To avoid this problem we must
restrict ourselves to entanglement breaking channels.

Definition 8.6 (Entanglement Breaking Quantum Channel [5]). A quantum
channel E is called an entanglement breaking quantum channel if there are POVM
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fMig and states 	i such that

E.�/ D
X

i

Tr.Mi�/	i (8.122)

for any �. In this case, E˝2.�1;2/ is always separable, Tr.SE˝2.�1;2// � 0 and
equality implies E.�1/ and E.�2/ are orthogonal.

Putting all the concepts together, we can now formally define the quantum clique
problem.

Definition 8.7 (Quantum Clique Problem [5]). The quantum clique problem
.E ; k; a; b/ is defined as follows:

• Input. Integer numbers n and k; non-negative real numbers a and b with an
inverse polynomial gap b � a > n�c; and E an entanglement breaking quantum
channel that acts on n-qubit states;

• Promise. Either exists �1 ˝ : : :˝�k such that
P

i;j Tr.SE.�i/˝E.�j// � a or for
any states �1;2;:::;k we have

P
i;j Tr.SE˝2.�i;j// � b;

• Output. Decide which one is the case.

Despite the deep understanding of the clique problem as an NP-complete
problem in the classical case, the same does not happen to the quantum clique
problem prior to the work discussed here. Even nowadays, our knowledge regarding
quantum complexity theory is still not rich as its classical analogue.

Now we are going to characterize the QMA quantum complexity class that,
loosely speaking, is the quantum version of the NP class [37]. The acronym of
this complexity class stands for Quantum-Merlin-Arthur where Merlin is an oracle
with infinite computational power and Arthur is a quantum polynomial time verifier.
Merlin answers decision problems of the type “Is x in L?” and accompany the
answer with a polynomial certificate y which Arthur can verify in polynomial time
using a quantum machine [1]. We associate two probabilities with the QMA class
which are related to the completeness and soundness. The formal definition of such
complexity class is presented as follows.

Definition 8.8 (QMA Complexity Class [37]). A language L is said to be in
QMA.2=3; 1=3/ if there exists a quantum polynomial time verifier V such that

• Completeness. 8x 2 L; 9 j�i 2 Hp.jxj/;Pr.V.jxi j�i/ D 1/ � 2=3;
• Soundness. 8x 62 L;8 j�i 2 Hp.jxj/;Pr.V.jxi j�i/ D 1/ � 1=3;

After the QMA complexity class was characterized, Kitaev introduced a
problem from Physics called the “local Hamiltonian problem” and showed that it
is QMA-complete. This problem is the quantum analogue of the classical SAT
problem and these results are the analogue of the Cook-Levin theorem [5]. The
formal definition of this problem is described below.
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Definition 8.9 (Local Hamiltonian Problem [24]). The k-local Hamiltonian prob-
lem (H1; : : : ;Hs; a; b/ is defined as follows:

• Input. An integer n, real numbers a, b such that b � a > n�c, and polynomially
many Hermitian non-negative semidefinite matrices H1; : : : ;Hs with bounded
norm kHik � 1, such that each of them acts just on k of n qubits;

• Promise. The smallest eigenvalue of H1C : : :CHs is either less than a or greater
than b;

• Output. Decide which one is the case.

Intuitively, a k-local matrix assigns a real number to any quantum state on n
qubits. This number depends only on the reduced state of the k qubits where a
quantum operator M acts non-trivially, and can be thought of as a locally defined
penalty on a given quantum state. Loosely speaking, the k-local Hamiltonian
problem asks whether there exists a quantum state that can significantly avoid a
collection of such penalties [37].

Considering the quantum clique problem, the following theorem states its
complexity.

Theorem 8.6 (Quantum Clique is QMA-Complete [5]). The quantum clique
problem .E ; k; a; b/ where E is an entanglement breaking channel on n-qubit states
and has the operator-sum representation

E.�/ D
rX

iD1
Ei�E�i ; (8.123)

where
P

i E�i Ei D 1 and r D poly.n/, is QMA-complete.

The proof of this theorem consists in showing that .E ; k; a; b/ is QMA. To
prove the hardness, the authors establish a polynomial time reduction from the local
Hamiltonian problem to quantum clique. In this result, a is a positive number that
means that some probability of error is allowed.

If we consider the case a D 0, we will try to find a protocol with no error. In this
case, .E ; k; a D 0; b/ exactly says that whether ˛.E/ � k or not. We can achieve this
by using a zero-error quantum channel E where

E.�/ D
rX

i�1
Tr.Mi�/ jii hij ; (8.124)

where fM1; : : : ;Mrg is a POVM and j1i ; : : : ; jri are orthogonal states. Checking
orthogonality of two outcomes states is accomplished in the following way: given
two states E.�/ and E.�0/ we measure them in the basis j1i ; : : : ; jri. If the outcome
of the measurements are the same, then their supports are not orthogonal.

So, the quantum clique problem .E ; k; a D 0; b/ where E is a zero-error quantum
channel that can be implemented exactly by a polynomial time verifier is QMA1-
complete. The article of Beigi and Shor contains the entire version of the proofs
briefly discussed here [5].
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Some promise problems in the literature are known to be QMA-complete,
such as variants of the local Hamiltonian problem, the density matrix consistency
problem, and also other problems about quantum circuits [37]. However, the
quantum clique problem is the only so far in this complexity class whose complexity
was described using zero-error quantum channels.

This section described the complexity classification of the quantum clique
problem. We presented the results of Beigi and Shor that showed a non-trivial result
where zero-error quantum channels helped in determining the quantum complexity
of a problem. The contributions of these authors enrich the knowledge regard-
ing quantum complexity classes and the classification of an important quantum
problem, which may have implications in algorithms and protocols for practical
applications.

8.7 Further Reading

In this section we could see some developments in the literature that provide new
results and insights into the quantum zero-error information theory. We saw the
background which relates quantum zero-error information theory with Kochen-
Specker sets and Bell’s inequality. The quantum version of the Wielandt’s inequality
which states an upper bound to the number of uses of a quantum channel in order
to map an arbitrary density operator to a full rank operator was also discussed.
An alternative version of the zero-error capacity of quantum channels considering
entanglement assistance was introduced. The approach for zero-error capacity
considering non-commutative graphs and the quantum counterpart of the Lovász
theta function was also considered. Lastly, an application of quantum zero-error
channels to find the complexity class of a problem showed a non-trivial application
of the concepts discussed along the book.

Other recent results besides those discussed here can also be found in the
literature. Blume-Kohout et al. [7] developed a framework to handle quantum
information that can be perfectly preserved (i.e, with zero-error) by the system
dynamics. According to the authors, the system dynamics affects the kind of
information that can be carried or store (classical, quantum or neither, for instance).
Taking that into account, the main purpose of their operational framework is
to describe how to perfectly preserve information despite the system dynamics.
This framework considers not only quantum channels with positive zero-error
capacity, but also quantum error-correcting codes, decoherence-free subspaces and
subsystems and even other methods proposed by the own authors, such as the
unconditionally preserved codes. This work provides an exhaustive classification
of ways that information can be preserved.

Regarding practical implementations, Gyongyosi and Imre [21] considered the
use of multiple optical channels to send information. Each of these individual
channels has no positive zero-error capacity, but when used jointly the zero-error
capacity is superactivated. Their idea is to adopt such strategy as part of the
implementation of quantum repeaters, devices that can extend the range of quantum
communication between sender and receiver.
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Besides the already described results on superactivation of zero-error capacity,
Shirokov [33] showed a special kind of superactivation of quantum channels under
block coding.

Brië t et al. considered the use of quantum entanglement in the zero-error source-
channel coding problem [8]. In their scenario, Alice and Bob are each given an input
from a random source and get access to a noisy channel through which Alice can
send messages to Bob. Their goal is to minimize the average number of channel
uses per source input such that Bob can learn Alice’s inputs with zero probability
of error. Their results show lower bound and optimum rate of entanglement-assisted
source codes and the advantage that entanglement can give in the source-channel
coding problem.

We hope that much more results on quantum zero-error information theory are
yet to come.
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