
3Advice Complexity

In this chapter, we introduce another important class of online algorithms. So far,
we have considered deterministic and randomized approaches. For paging and the
ski rental problem, randomization enables us to construct more powerful algorithms.
More specifically, we are able to design randomized online algorithms that are a
lot better in terms of their expected competitive ratio; for paging, we even have an
exponential improvement. The third model, online algorithms with advice, is even
more powerful. We introduce this concept and, as in the two preceding chapters, use
paging as an example to illustrate the basic ideas. The main motivation to study
this model is mostly a theoretical one; it gives us a very intuitive formalization of the
notion of “hardness” in the context of online computation. The idea is to measure
the amount of information about the yet unknown parts of the input that an online
algorithm needs to know in order to achieve some particular output quality. To have
a formal framework, we introduce an oracle which sees the whole input in advance
and may encode any binary information about this input onto a so-called advice
tape. An online algorithm can then use this tape as a resource during computation.
We then ask for the number of bits of advice the online algorithm needs to be, say,
𝑐-competitive, for some specific constant 𝑐. The number of advice bits used is given
by a function of the input length 𝑛, similar to the number of random bits, which we
studied in the preceding chapter; this number is called the advice complexity of the
algorithm.

We first introduce the model of advice formally. Next, to be able to prove upper
bounds on the advice complexity, we describe the concept of self-delimiting strings;
these allow an online algorithm to read a number of bits from the advice tape in
a situation where it does not have any information about the length of this string.
We continue by explaining how to prove lower bounds on the advice complexity; for
this reason, we introduce so-called partition trees. After that, we study the advice
complexity of paging (that is, the advice complexity of online algorithms for paging)
both for obtaining optimal solutions and for using only a small number of advice bits.

� Springer International Publishing Switzerland 2016
D. Komm, An Introduction to Online Computation,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-319-42749-2_3

85

Chapter 3. Advice Complexity

Finally, we make some interesting observations on the connection between advice
and randomization.

3.1 Introduction
Before we designed the randomized online algorithm RSki for the ski rental problem,
we saw that deterministic online algorithms are almost twice as bad as an optimal
offline algorithm. We want to have a closer look at this fact. More specifically, we
want to answer the question

Why are they twice as bad?

To phrase the question even more exactly, we ask

What are they missing?

It is tempting to give a simple answer. What they miss is the complete input.
Sure, if we had a complete and accurate weather forecast, we could simply compute
an optimal solution for any instance of the ski rental problem; count the number
of days with good weather, and check whether it is at least 𝑘. If it is, we buy the
skis, otherwise we rent them. But is it really necessary to know the whole input to
be optimal? If we think about it, all that we need is to be able to make a simple
“yes”/“no” decision, namely, whether to buy the skis on the first day with good
weather or to rent them again and again. So what we are missing is basically the
smallest amount of information there is; one single bit.

As discussed in Chapter 1, the competitive ratio tells us how much we pay if we
work on a specific online problem. The advice complexity, on the other hand, tells us
what we pay for. For the ski rental problem, every deterministic online algorithm is
almost 100% worse than the optimal solution in the worst case, and the “why” can
be answered with “because we don’t know this single bit.” However, of course, in
general the question “why” or “what” cannot be answered this easily; for instance,
a single bit of information will probably not enable us to get an optimal solution
for the paging problem (but surprisingly, later in this chapter, we will see that a
constant amount of additional information does help quite a lot). As a matter of
fact, different online problems behave very differently when we investigate them with
respect to the information that is necessary to obtain some good solution quality. As
mentioned above, we can always say that knowing the whole input in advance helps
to create an optimal solution, but for some problems we may be able to compress
some critical property of the input that already enables us to improve a lot over
deterministic or randomized strategies. In a way, we ask about the information
content of the problems, that is, the information that is hidden in the instances and
that needs to be extracted; here, the advice complexity is a powerful tool.

To be able to measure this amount of information, we use a model where an oracle
is introduced that knows the whole input 𝐼 of a given online problem in advance.
This oracle can write binary information about 𝐼 on a so-called advice tape that

86

3.1. Introduction

can afterwards be used by an online algorithm that works on 𝐼. Informally, we can
describe this model as follows.

• We do not simply design online algorithms, but an online algorithm Alg is
always created together with an oracle. We call Alg an online algorithm with
advice.

• For every input, the oracle writes some so-called advice bits on the advice tape.
• The adversary knows both Alg and the oracle; in particular, it knows which

advice the oracle writes on the tape, given a specific input.

In the classical model, the adversary inspects Alg and then constructs an input
that causes Alg to perform as badly as possible. Now, there is a third party, which
is essentially an all-knowing counselor working for the algorithm. Note that the
third bullet point suggests that, in the model of computing with advice, we have
an extremely powerful adversary. However, if we take a closer look, this is not the
case; it is sufficient if the adversary merely knows Alg, and, as a consequence, an
upper bound 𝑏(𝑛) on the number of advice bits that the algorithm reads for a given
input length 𝑛. For any 𝑛 and 𝑏(𝑛), the adversary can simply simulate Alg on every
possible advice string 𝜑 of length 𝑏(𝑛) and therefore find the best advice. It can then
choose an instance 𝐼 ′ of length 𝑛 of the given online problem Π such that

𝐼 ′ := arg max
𝐼

{︂
min

𝜑

{︂
gain(Opt(𝐼))
gain(Alg𝜑(𝐼))

}︂}︂
if Π is a maximization problem, or

𝐼 ′ := arg max
𝐼

{︃
min

𝜑

{︃
cost(Alg𝜑(𝐼))
cost(Opt(𝐼))

}︃}︃
if Π is a minimization problem. If possible, the adversary will additionally try to
make sure that, for the set of instances it constructs in the above way, the optimal
cost (gain, respectively) increases unboundedly with the input length, such that a
lower bound on the non-strict competitive ratio is obtained.

The above formula reminds us of the minimax theorem from Section 2.4. However,
both the adversary and the algorithm pick pure strategies. The important thing is
that no matter which strategy the adversary decides to use, Alg will always pick a
best of its strategies as a response. Now let us describe the steps that are made in
the model of computing with advice.

Step 1. The adversary constructs an input 𝐼 of length 𝑛 such that the competitive
ratio of Alg using the advice tape is maximized; the adversary knows the number
𝑏(𝑛) of advice bits Alg reads at most.

Step 2. After that, the oracle inspects 𝐼 and writes an advice string 𝜑 on the advice
tape which depends on 𝐼.

87

Chapter 3. Advice Complexity

Step 3. Alg reads the input 𝐼 and computes an output 𝑂 while using the advice
tape; Alg reads at most a prefix of length 𝑏(𝑛) from the tape.

Step 4. If Alg obtains a competitive ratio of at most 𝑐, we say that Alg is 𝑐-
competitive with advice complexity 𝑏(𝑛) or that Alg needs at most 𝑏(𝑛) advice
bits to be 𝑐-competitive.

A crucial property of this model is that the advice tape has infinite length. This is
important to prevent any situations in which information may be encoded into the
length of the advice. On first sight, it seems redundant since the oracle and Alg are
designed in such a way that the online algorithm never uses more than 𝑏(𝑛) advice
bits in total anyway; but if we take a closer look, without this property, we could
design an online algorithm with advice and an oracle that work as follows. Suppose
that, for some input of length 𝑛, the oracle writes 𝑏(𝑛) = 𝑛 advice bits on the tape.
At the beginning, the online algorithm reads all the 𝑏(𝑛) bits until the end, and
thus knows the length of the input. In a way, it gets this knowledge for free since
it is only implicitly communicated by the advice length but not by its content. Of
course, it is perfectly fine if the oracle writes the input length on the advice tape
explicitly. The difference is that, in this case, this information is part of the advice
and therefore accounted for.

Moreover, the tape is accessed sequentially (similar to the random tape of a
randomized algorithm).
Example 3.1. Summarizing what we just learned, we can state that there is an
optimal online algorithm with advice for the ski rental problem which uses 1 bit
of advice. An oracle first reads the whole input and computes whether there are
more than 𝑘 days with good weather. If there are, it writes a 1 at the first position
of the advice tape; else it writes a 0 at this position. In the first time step, the
corresponding algorithm reads the first bit. If it is 1, the algorithm buys the skis at
the first day with good weather; otherwise it rents them at every such day. Clearly,
this algorithm always has the smallest cost possible. ♢

Now we are going to formally define online algorithms with advice. Following
the preceding discussion, it seems to make sense to have a definition analogous to
Definition 2.1 for randomized online algorithms.

Definition 3.1 (Online Algorithm with Advice). Let Π be an online
problem and let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an instance of Π. An online algo-
rithm Alg with advice for Π computes the output Alg𝜑(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛),
where 𝑦𝑖 depends on 𝜑, 𝑥1, 𝑥2, . . . , 𝑥𝑖 and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; 𝜑 denotes a binary
advice string.

The essential difference between randomized online computation and online com-
putation with advice comes into play when we define the competitive ratio for online
algorithms with advice.

88

3.1. Introduction

Definition 3.2 (Competitive Ratio with Advice). Let Π be an online
problem, let Alg be a consistent online algorithm with advice for Π, and let
Opt be an optimal offline algorithm for Π. For 𝑐 ≥ 1, Alg is 𝑐-competitive with
advice complexity 𝑏(𝑛) for Π if there is a non-negative constant 𝛼 such that, for
every instance 𝐼 ∈ ℐ, there is an advice string 𝜑 such that

gain(Opt(𝐼)) ≤ 𝑐 · gain
(︀
Alg𝜑(𝐼)

)︀
+ 𝛼

if Π is a maximization problem, or

cost
(︀
Alg𝜑(𝐼)

)︀
≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

if Π is a minimization problem, and Alg uses at most the first 𝑏(𝑛) bits of 𝜑. If
the above inequality holds for 𝛼 = 0, Alg is called strictly 𝑐-competitive with
advice complexity 𝑏(𝑛); Alg is called optimal with advice complexity 𝑏(𝑛) if it is
strictly 1-competitive with advice complexity 𝑏(𝑛). The competitive ratio of an
online algorithm Alg with advice complexity 𝑏(𝑛) is defined as

𝑐Alg := inf{𝑐 ≥ 1 | Alg is 𝑐-competitive for Π
with advice complexity 𝑏(𝑛)} .

For such an online algorithm Alg, we thus require that, for every input, there is
some advice string that allows Alg to obtain the given competitive ratio; we do not
care whether this particular advice string is extremely bad for all other instances.
This is the crucial difference when comparing this model to that of randomized online
computation. The oracle deduces the advice string from the concrete input and does
not use any randomness in the process. Still, the models share a common property,
namely a binary tape that allows us to treat them as a collection of deterministic
algorithms. We can thus formulate an analogous statement to Observation 2.2 (see
also Exercise 2.2).

Observation 3.1. Every online algorithm Alg with advice that uses at most 𝑏(𝑛)
advice bits for inputs of length 𝑛 can be viewed as a set strat(Alg, 𝑛) = {𝐴1, 𝐴2, . . . ,
𝐴2𝑏(𝑛)} of 2𝑏(𝑛) deterministic online algorithms on inputs of length 𝑛, from which
Alg always chooses one with the best performance for the given instance.

For every given randomized online algorithm Rand, we can design an online
algorithm Alg with advice that uses its advice tape the same way Rand uses its
random tape. Accompanying Alg, we create an oracle that, for every instance,
writes a “best” string on the advice tape; following this idea, we can state the
following observation.

Observation 3.2. For any online problem Π, the following two implications hold.

89

Chapter 3. Advice Complexity

(i) If there is a randomized online algorithm for Π that is 𝑐-competitive in expecta-
tion and uses at most 𝑏(𝑛) random bits, then there is also an online algorithm
with advice for Π that is 𝑐-competitive and that uses at most 𝑏(𝑛) advice bits.

(ii) Conversely, if there is provably no online algorithm with advice that is 𝑐-
competitive while using at most 𝑏(𝑛) advice bits for Π, then there is also no
randomized online algorithm for Π that is 𝑐-competitive in expectation and that
uses at most 𝑏(𝑛) random bits.

In Section 3.5, we will revisit the relation between advice and randomization and
show some non-trivial connections.

3.2 Self-Delimiting Encoding of Strings
In this section, we focus on how to concretely encode information onto the advice
tape, and especially on one particular problem that arises when there are multiple
pieces of information that need to be delimited when using a binary alphabet.

Let 𝑑 be some natural number. We know that we can encode 2𝑑 different numbers
in binary with 𝑑 bits. To encode an arbitrary natural number 𝑚 in binary, we need
⌈log2(𝑚 + 1)⌉ bits. If 𝑚 is always at least 1, we only need ⌈log2 𝑚⌉ bits; this can be
done by writing 𝑚 − 1 on the advice tape in binary. In the following considerations,
we always assume that this is true for 𝑚.

It gets more difficult if we think about the special kind of resource we are dealing
with in this setting. In particular, as already discussed in the previous section, we
are facing the fact that the advice tape we are using has an infinite length; behind
the actual advice, there is an infinite undefined suffix. The alphabet that the oracle
uses to write on the advice tape is binary, and thus we do not have any delimiter
to mark where the encoding of some binary substring (encoding, for instance, the
length of the input) ends. Moreover, in general, we cannot use any special sequence
of bits like, for instance, “111” as a delimiter since the same sequence might also be
part of the advice (see Exercise 3.3).

What can we do about this? To answer this question, self-delimiting encodings
come into play. The idea is to augment the advice with some control bits that allow
the algorithm to decode the advice itself. Again, let 𝑚 be a positive number that we
want to encode. The idea is to tell the algorithm how many bits (from the infinite
advice tape) belong to the binary representation of 𝑚 − 1.

First, we need at most ⌈log2 𝑚⌉ bits to encode 𝑚 − 1 on the tape. Then, we
can use an additional ⌈log2 𝑚⌉ bits to tell the algorithm which bits belong to the
string of length ⌈log2 𝑚⌉ as follows. We write the binary representation of 𝑚 − 1
on odd positions of the advice tape. On even positions, we write a 1 if the next
bit still belongs to the binary representation of 𝑚 − 1, and a 0 otherwise. Thus, if
𝑏1𝑏2 . . . 𝑏⌈log2 𝑚⌉ is the binary representation of 𝑚 − 1, the content of the advice tape
starts with

𝑏1 1 𝑏2 1 . . . 𝑏⌈log2 𝑚⌉−1 1 𝑏⌈log2 𝑚⌉ 0 .

90

3.2. Self-Delimiting Encoding of Strings

As a consequence, we need to use 2⌈log2 𝑚⌉ advice bits instead of ⌈log2 𝑚⌉ bits; we
call this a self-delimiting encoding of 𝑚.

With another simple idea, we can improve this approach and use a smaller number
of bits. For small values of 𝑚, we use the encoding

1: 0 0 . . . and 2: 0 1

If 𝑚 is at least 3, at the beginning of the advice tape, we tell the algorithm how
many bits are used to encode 𝑚 − 1, that is, we write the number ⌈log2 𝑚⌉. This
can be done using at most ⌈log2(⌈log2 𝑚⌉)⌉ additional bits since 𝑚 is at least 3 and
thus ⌈log2 𝑚⌉ is at least 2; hence, we can write ⌈log2 𝑚⌉ − 1 on the tape. Now we
are left with marking where these first ⌈log2(⌈log2 𝑚⌉)⌉ bits end and the binary
representation of 𝑚 − 1 starts. To this end, we can use exactly the same idea as
above and thus we need at most

2⌈log2(⌈log2 𝑚⌉)⌉ + ⌈log2 𝑚⌉

bits to encode 𝑚 in a self-delimiting way. Note that, this way, the string always
starts with a 1; hence, the cases where 𝑚 is 1 or 2 can be distinguished from the case
that 𝑚 is at least 3 without any further information. The algorithm can now start
reading until it encounters a 0 at an even position. Then, it computes the number of
bits it needs to read afterwards to obtain 𝑚. We trade the multiplicative constant 2
for an additive term that is asymptotically smaller. Sample encodings are shown in
the following table.

𝑚 𝑚 − 1 ⌈log2 𝑚⌉ − 1 ⌈log2(⌈log2 𝑚⌉)⌉ self-delimiting string

1 0 − − 0 0
2 1 − − 0 1
3 2 1 1 1 0 1 0
4 3 1 1 1 0 1 1
5 4 2 2 1 1 0 0 1 0 0
6 5 2 2 1 1 0 0 1 0 1
7 6 2 2 1 1 0 0 1 1 0
8 7 2 2 1 1 0 0 1 1 1
9 8 3 2 1 1 1 0 1 0 0 0
10 9 3 2 1 1 1 0 1 0 0 1
...

...
...

...
...

256 255 7 3 1 1 1 1 1 0⏟ ⏞
2⌈log2(⌈log2 𝑚⌉)⌉ bits

1 1 1 1 1 1 1 1⏟ ⏞
⌈log2 𝑚⌉ bits

...
...

...
...

...

91

Chapter 3. Advice Complexity

Example 3.2. Suppose we want to encode the number 43 onto the advice tape;
moreover, it is known that the encoded number is not 0. Thus, we write 42 on the
tape. If we simply encode it in binary, we get a prefix

1 0 1 0 1 0 . . .⏟ ⏞
42

of the advice string; but if we only see this string, we cannot at all decode it in a
unique way. It could, for instance, also be interpreted as

1 0 1 0 1 0 . . .⏟ ⏞
10

by an online algorithm assuming that the last two depicted bits already belong to
the undefined part of the tape. Now let us make use of self-delimiting encodings. We
realize that we need ⌈log2 42⌉ = 6 bits to encode 42 in binary. Therefore, we first
write the number 5 in a self-delimiting way on the advice tape (using 2⌈log2 5⌉ = 6
additional bits) followed by the number 42 and obtain a prefix

1 1 0 1 1 0 1 0 1 0 1 0 . . .⏟ ⏞
5 (self-delimiting)

⏟ ⏞
42

of the tape content. Now an online algorithm with advice is able to decode the
advice without further knowledge. ♢

At times, we want to encode multiple numbers, and we know that they have some
common upper bound.

Example 3.3. Suppose we want to encode the numbers 8, 12, and 13. Furthermore,
we know that there are three numbers in total and none of them are 0 or larger than
16, that is, they can all be written in binary using at most four bits. We can encode
them as

1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 . . .⏟ ⏞
3 (self-delim.)

⏟ ⏞
7

⏟ ⏞
11

⏟ ⏞
12

and again, an algorithm is able to unambiguously decode the string. ♢

We will use self-delimiting strings on several occasions. One application is imme-
diate, namely this enables us to let some online algorithm know the input length
𝑛. Intuitively, this already might be a great advantage in some applications. The
input length is never 0. Furthermore, we ignore the special cases that 𝑛 is 1 or 2 to
keep the formulas simple. Therefore, to encode 𝑛 in a self-delimiting way, we usually
need an additional

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉

advice bits.

92

3.3. Proving Lower Bounds

Exercise 3.1. Describe alternative ways to obtain self-delimiting encodings of a natural
number 𝑚 that use roughly 2⌈log2 𝑚⌉ bits. Again, assume that 𝑚 is at least 1.

Exercise 3.2. Improve the upper bound on how many bits must be used to encode a
number 𝑚 in a self-delimiting way by iterating the above strategy. Informally discuss the
limitations of this approach.

Exercise 3.3. Consider the following idea. No single bit is interpreted as a letter, but
three consecutive bits, and the information is encoded using this larger alphabet. The
sequence “111” marks the end of the current string. Argue why this strategy is not superior
to the one we introduced above; here, we are interested in the case that the length of the
string we want to encode tends to infinity.

Of course, there are situations where we do not need a self-delimiting encoding of
the advice. Similarly to barely random algorithms, we can design online algorithms
with advice that read a constant number of advice bits, which is fixed from the
beginning; an extreme case was the simple algorithm for the ski rental problem from
Example 3.1. Moreover, we could think of algorithms that read a fixed number of
advice bits in every time step. In this case, the algorithm knows how much advice
to use as it realizes when the input ends.

3.3 Proving Lower Bounds
Proving the existence of some object is usually a lot simpler than proving its non-
existence. To show that an object with some given property (for instance, an online
algorithm with advice that uses a certain number of advice bits) exists, it suffices to
construct such an object; therefore, such proofs are usually constructive. Showing
that such an object does not exist may generally be more difficult. What we need to
do is to prove that all possible objects do not have the given property. In our case,
how do we prove that there is no online algorithm with advice that reads at most a
given number of advice bits and achieves a given output quality? For such hardness
results, we often use combinatorial arguments that, on a high level, work as follows.

1. For infinitely many 𝑛 ∈ N+, construct sets of instances of length 𝑛 that have
unique and pairwise different optimal solutions.

2. If an algorithm has to make different decisions for, say, two different instances
in some time step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛, the common prefix of length 𝑖 of these
instances is the same. In other words, a deterministic online algorithm cannot
tell which of the two instances it is dealing with until after 𝑇𝑖.

3. From Observation 3.1, we know that an online algorithm with advice that uses
𝑏(𝑛) advice bits can be seen as picking one from 2𝑏(𝑛) deterministic algorithms.
Thus, for each of the instances, one of these algorithms is chosen. If the set of
instances of length 𝑛 is larger than 2𝑏(𝑛), some instances must be processed
by the same deterministic algorithm; we do not know which, but we can still

93

Chapter 3. Advice Complexity

argue why this implies that this particular algorithm cannot be optimal on all
of these instances (or is even unable to achieve some particular competitive
ratio).

This idea behind this is formalized by so-called “partition trees.” These are used
to structure a set of instances according to common prefixes. In what follows, for
every instance 𝐼 of the given online problem, let [𝐼]𝑛′ denote the prefix of length 𝑛′

of 𝐼; likewise [𝑂]𝑛′ denotes the prefix of length 𝑛′ of a solution 𝑂 ∈ sol(𝐼). For every
instance 𝐼, let solOpt(𝐼) ⊆ sol(𝐼) denote the set of optimal solutions for 𝐼.

Definition 3.3 (Partition Tree). Let ℐ be a set of instances of some online
problem Π. A partition tree ̂︀𝒯 of ℐ is a tree with the following properties.

(i) Every vertex 𝑣 of ̂︀𝒯 is labeled by a set ℐ𝑣 ⊆ ℐ of instances and a natural
number 𝜌𝑣 such that all instances in ℐ𝑣 have a common prefix of length at
least 𝜌𝑣.

(ii) For every inner vertex 𝑣 of ̂︀𝒯 , the set of instances of its children form a
partition of the instances of ℐ𝑣.

(iii) For the root 𝑟, we have ℐ𝑟 = ℐ.

The set of instances ℐ does not necessarily only include instances of the same
length (see Theorem 8.13). The usual way to define partition trees, however, is
to construct sets ℐ (𝑛) of instances of length 𝑛 for infinitely many 𝑛 together with
partition trees for every ℐ (𝑛). The key to using partition trees to prove lower bounds
on the advice complexity of optimal online algorithms with advice is formalized by
the next lemma.

Lemma 3.1. Let ℐ be a set of instances of some online problem Π with a partition
tree ̂︀𝒯 of ℐ. Let 𝑣1 and 𝑣2 be two vertices from ̂︀𝒯 such that neither one is an ancestor
of the other one, let 𝐼1 ∈ ℐ𝑣1 and 𝐼2 ∈ ℐ𝑣2 be any two instances of Π, and let 𝑣 be
the lowest common ancestor of both 𝑣1 and 𝑣2. If

[𝑂1]𝜌𝑣
̸= [𝑂2]𝜌𝑣

,

for every 𝑂1 ∈ solOpt(𝐼1) and 𝑂2 ∈ solOpt(𝐼2), then every optimal online algorithm
with advice has to use different advice strings for 𝐼1 and 𝐼2.

Proof. Since 𝑣 is an ancestor of both 𝑣1 and 𝑣2, we have both 𝐼1 ∈ ℐ𝑣 and 𝐼2 ∈ ℐ𝑣,
for all 𝐼1 ∈ ℐ𝑣1 and 𝐼2 ∈ ℐ𝑣2 . Due to Definition 3.3, we have [𝐼1]𝜌𝑣

= [𝐼2]𝜌𝑣
, but

due to the assumption of the lemma, [𝑂1]𝜌𝑣
̸= [𝑂2]𝜌𝑣

for every 𝑂1 ∈ solOpt(𝐼1) and
𝑂2 ∈ solOpt(𝐼2). In other words, the instances have the same prefix of length 𝜌𝑣,
but their optimal solutions differ in the first 𝜌𝑣 answers.

Now let Alg be any optimal online algorithm with advice for Π, and assume that
Alg reads the same advice for 𝐼1 and 𝐼2, which means that it chooses the same

94

3.4. The Advice Complexity of Paging

deterministic algorithm 𝐴 for both instances. Since 𝐼1 and 𝐼2 have the same prefix
of length 𝜌𝑣, that is, they look identical to 𝐴 up to time step 𝑇𝜌𝑣

, 𝐴 produces the
same output on this prefix. However, by the assumption of the lemma, some of the
first 𝜌𝑣 optimal answers must be different for 𝐼1 and 𝐼2, and therefore 𝐴 and thus
Alg cannot compute optimal solutions for both of them. �

Finally, we can use Lemma 3.1 to prove the following theorem.

Theorem 3.1. Let ℐ be a set of instances of some online problem Π with a partition
tree ̂︀𝒯 of ℐ with 𝑤 leaves, such that the conditions of Lemma 3.1 are satisfied. Then
every optimal online algorithm with advice for Π has to use at least log2 𝑤 advice
bits.

Proof. It follows from Lemma 3.1 that, under the given conditions, every optimal
online algorithm with advice needs to use two different advice strings for any two
instances that correspond to different vertices in ̂︀𝒯 with neither one being an ancestor
of the other. Thus, such an algorithm needs to use a different advice string for every
leaf. Since, when reading at most 𝑏 bits, there are 2𝑏 different advice strings, it
follows that 2𝑏 ≥ 𝑤 must be satisfied, and thus 𝑏 ≥ log2 𝑤. �

In order to keep our arguments simple, we will usually try to construct the set
ℐ such that all instances have unique optimal solutions that are only optimal for
this one instance. Moreover, the leaves of the partition tree are such that they only
contain (a set with) a single instance each. In many of the subsequent lower-bound
proofs, we will not explicitly construct partition trees, but incorporate the above
ideas in our direct arguments. Learning about this general idea is important if one
is to see the bigger picture of what is happening. Sometimes, however, there will be
alternative proofs that explicitly use partition trees.

The arguments for lower bounds can also be used in another way. Suppose
that we can show that every deterministic online algorithm can only be optimal
(𝑐-competitive, respectively) for, say, at most 𝛿𝑛 instances of length 𝑛 of some online
problem Π. The best case for an online algorithm Alg with advice is met if all these
sets of instances are disjoint. Suppose Alg uses at most 𝑏(𝑛) advice bits for inputs
of length 𝑛. If we are able, for infinitely many 𝑛, to construct a set of instances of
Π of size 𝜇(𝑛) with 𝜇(𝑛) > 2𝑏(𝑛) · 𝛿𝑛, then we know that Alg cannot be optimal
(𝑐-competitive, respectively).

3.4 The Advice Complexity of Paging
We are now ready to study the advice complexity of the paging problem, which
we used before to illustrate the concepts of deterministic and randomized online
computation.

95

Chapter 3. Advice Complexity

3.4.1 Optimality
We start by describing three different approaches to design optimal online algorithms
with advice that have linear advice complexity.

Example 3.4. We design a simple online algorithm PLin1 with advice and an
oracle for paging that work as follows. The oracle inspects the input 𝐼, which consists
of a sequence of pages that have indices between 1 and 𝑚 (where 𝑚 is the number
of pages in total). The most straightforward strategy would be to communicate the
whole instance 𝐼 by encoding the indices. Note that, for any 𝐼 with |𝐼| = 𝑛, there
are obviously 𝑚𝑛 different instances. Clearly, if PLin1 knows the complete instance
in advance, it can be optimal. A number between 1 and 𝑚 can be encoded with
⌈log2 𝑚⌉ bits, thus we need a total of 𝑛⌈log2 𝑚⌉ advice bits for this strategy.

However, we are not done yet. PLin1 needs to compute an optimal solution in
advance; but it does not know the length of the input and the advice tape has infinite
length. Thus, we can use self-delimiting strings as described in Section 3.2. PLin1
knows the number of different pages 𝑚 in advance and it can thus compute ⌈log2 𝑚⌉;
so the oracle “only” needs to tell the algorithm the concrete input length 𝑛. As we
know from Section 3.2, writing it down in a self-delimiting way can be done with
2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ bits.

PLin1 now proceeds as follows. It starts reading the advice tape until it finds a 0
at an even position. After that, it computes ⌈log2 𝑛⌉ from the first ⌈log2(⌈log2 𝑛⌉)⌉
bits it found at odd positions. Then it reads the next ⌈log2 𝑛⌉ bits and computes
𝑛. Now knowing 𝑛 and 𝑚, it reads the next 𝑛⌈log2 𝑚⌉ advice bits and interprets
them as a sequence of length 𝑛 of numbers between 1 and 𝑚. For this instance,
it computes an optimal solution and acts according to it. All in all, we have thus
created an optimal online algorithm with advice that uses

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ + 𝑛⌈log2 𝑚⌉

advice bits. ♢

This was probably the easiest approach one could come up with. However, in
general, we think of 𝑚 as a very large constant, especially with respect to the cache
size 𝑘. With an approach that is almost as simple as the one from Example 3.4, we
now design an online algorithm with advice that has an advice complexity that does
not depend on 𝑚 at all. The only thing that is required is a little more work for the
oracle.

Example 3.5. How about not encoding the input, but the optimal output? Again,
we design an online algorithm PLin2 with advice and an oracle. For a given instance
𝐼, the oracle computes an optimal solution Opt(𝐼) where Opt is some arbitrary but
fixed optimal algorithm. This solution is uniquely defined by a sequence of length at
most 𝑛 of numbers between 1 and 𝑘. Each number simply represents the position
of the cache cell that Opt uses on a page fault. Thus, in every time step where
the requested page is not in PLin2’s cache, it reads the next ⌈log2 𝑘⌉ bits from the

96

3.4. The Advice Complexity of Paging

advice tape and removes the corresponding page. Clearly, both algorithms compute
the same solution. Moreover, since no algorithm can make more than 𝑛 page faults
in total, PLin2 never uses more than 𝑛⌈log2 𝑘⌉ advice bits.

There is a nice detail about this strategy. Since the oracle already computed the
optimal solution for us, we do not need to communicate 𝑛 to the algorithm. PLin2
can just read exactly ⌈log2 𝑘⌉ bits in every time step where it causes a page fault,
and 𝑘 is known in advance. ♢

Both PLin1 and PLin2 are optimal online algorithms for paging with linear advice
complexity. However, their advice complexities differ in the multiplicative constant.
We now prove that it is even possible to be optimal without using any multiplicative
constant.
Theorem 3.2. There is an optimal online algorithm PLin3 with advice for paging
that uses at most 𝑛 + 𝑘 advice bits.

Proof. Let Opt be an optimal offline algorithm for paging. We call a page in the
cache of Opt active if it is requested once more before Opt removes it from the
cache. PLin3 is designed such that it also has every active page in its cache in the
corresponding time step. To this end, the algorithm has a flag for every cache cell
that marks the page it contains as either active or passive. Note that passive pages
do not necessarily correspond to the pages in Opt’s cache that are not active.

For every request that causes a page fault, PLin3 removes an arbitrary page that
is passive. So, if a page 𝑝 is requested that causes a page fault for PLin3, this
cannot be an active page as PLin3 has all active pages in its cache in every time
step. Furthermore, 𝑝 cannot be a passive page that is in Opt’s cache at this point
in time since this immediately contradicts the definition of passive pages. Thus, 𝑝
also causes Opt to make a page fault in this time step. Opt now removes a page
𝑝′ that is not active. In this case, there is always a passive page in PLin3’s cache,
which may be different from 𝑝′. It follows that PLin3 does not cause more page
faults than Opt; but then PLin3 must be optimal as well.

Now let us bound the number of advice bits from above. For every request, PLin3
reads a bit from the advice tape that indicates whether the requested page is active
or passive (if the page is already in the cache, its flag is updated). For PLin3 to be
optimal, the 𝑘 pages that are in the cache at the beginning need to be marked active
or passive before the input is processed. It follows that PLin3 uses 𝑛 + 𝑘 advice bits
in total. �

Especially the difference between Example 3.5 and Theorem 3.2 gives us an idea
about what advice complexity is all about. In the former case, we basically encode a
complete optimal solution. Thus, PLin2 really knows exactly what it has to do when
a page fault occurs, that is, which page must be replaced. But this full knowledge
is not necessary; what needs to be “extracted” from this information is just which
pages may be removed and which must not be removed. Which concrete page is then
chosen from the ones that are allowed to be removed is not important in computing
an optimal solution.

97

Chapter 3. Advice Complexity

Exercise 3.4. Prove that there is a 1-competitive online algorithm with advice for paging
that uses at most 𝑛 advice bits.

Exercise 3.5. Suppose that we change the definition of paging such that the cache of
any online algorithm is empty at the beginning. Does this affect the upper bound of
Theorem 3.2? What happens if the optimal algorithm starts with a different cache content?

Exercise 3.6. Prove that if 𝑚 = 𝑘 + 1, then there is an optimal online algorithm PLin4
with advice for paging that uses ⌈𝑛/𝑘⌉ · ⌈log2 𝑘⌉ advice bits.

Next, we complement the upper bound with some lower bounds. In this context,
this means that we need to show that there is no optimal online algorithm with
advice that uses fewer than a given number of advice bits. As mentioned in the
previous section, such a proof is in many cases harder than the above constructive
proofs. We now use one of the approaches described to give a linear lower bound on
the advice complexity of any optimal online algorithm with advice for paging.

Theorem 3.3. Every optimal online algorithm with advice for paging has to use at
least (log2 𝑘/𝑘)𝑛 advice bits if the total number of pages 𝑚 may depend on 𝑛.

Proof. Let 𝑛 be a multiple of 𝑘. We construct a set ℐ (𝑛) that contains instances of
length 𝑛 of the following form. Every instance is again divided into 𝑁 phases; each
phase consists of exactly 𝑘 requests for different pages. We also design an optimal
algorithm Opt that replaces exactly one page in every phase. Any algorithm that
diverges from Opt at some point cannot be optimal, as we show in the following.

Let 𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘
denote the pages that are in the cache of Opt at the beginning

of some phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 . In 𝑃𝑗 , first a page 𝑝𝑗 is requested that is different
from all these pages and that was never requested before. This causes a page fault
for any demand paging algorithm. Next, 𝑘 − 1 of the 𝑘 pages that were in Opt’s
cache at the beginning of 𝑃𝑗 are requested. This means that there is some page
𝑝′

𝑗 ∈ {𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘
} that Opt can replace in the first time step 𝑇(𝑗−1)𝑘+1 of 𝑃𝑗

without causing an additional page fault during 𝑃𝑗 . The important point is that,
due to the new page 𝑝𝑗 , every demand paging algorithm must make one page fault
in every phase. If, in some phase, a second page fault is caused, this cannot be
compensated afterwards.

Now we show that the optimal solution for any given instance from ℐ (𝑛) is unique.
For a contradiction, suppose there is a different optimal solution. Thus, in some
phase, the two corresponding solutions for the first time replace different pages in
the first time step of this phase (if both solutions replace the same page, they both
do not make page faults in the remainder of this phase). However, this immediately
implies that one of them makes two page faults during this phase and therefore
cannot be optimal. Moreover, any two different instances have different optimal
solutions, because they need to replace different pages at least once to make only
one page fault in each phase.

Next, we calculate how many instances there are in total for inputs of length 𝑛.
There are 𝑁 = 𝑛/𝑘 phases in total. In every phase 𝑃𝑗 , exactly one page 𝑝′

𝑗 , which

98

3.4. The Advice Complexity of Paging

is one of the 𝑘 pages 𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘
, is not requested. Since the page 𝑝𝑗 that is

requested first is the same for every instance, there are 𝑘 different possibilities for a
request sequence in one phase (the order of the other pages does not matter as it
does not influence the optimal solution). It follows that

|ℐ (𝑛)| = 𝑘𝑛/𝑘 ,

and as a result of the observations we just made, each instance has a unique optimal
solution that is only optimal for this particular instance.

Thus, every online algorithm Alg with advice that reads fewer than

log2
(︀
𝑘𝑛/𝑘

)︀
= 𝑛

𝑘
· log2 𝑘

advice bits uses one deterministic strategy 𝐴 ∈ strat(Alg, 𝑛) for two different
instances from ℐ (𝑛). Let these two instances be 𝐼1 and 𝐼2. There is a phase 𝑃𝑖 in
which for the first time two different pages 𝑝′

𝑖,1 and 𝑝′
𝑖,2 for 𝐼1 and 𝐼2 are replaced by 𝑝𝑖

in the corresponding optimal solutions Opt(𝐼1) and Opt(𝐼2), respectively. However,
the prefixes of 𝐼1 and 𝐼2 that include the request 𝑥(𝑖−1)𝑘+1 = 𝑝𝑖 are identical, and
thus 𝐴 replaces the same page for both instances; it immediately follows that 𝐴
causes one additional page fault for one of the two instances. As a result, 𝐴 cannot
be optimal for both 𝐼1 and 𝐼2; and therefore Alg cannot be optimal for them as
well. �

Exercise 3.7. Give an alternative proof of Theorem 3.3 using partition trees (see Defini-
tion 3.3).

The arguments used in the proof of Theorem 3.3 rely on the fact that 𝑚 is
unbounded, that is, the number of pages requested in total grows with the input
length 𝑛. It is preferable to get rid of this undesired requirement while maintaining
that every input has one unique optimal solution. A naive approach that simply
uses the same idea as above with a constant number of pages does not seem very
promising, as the following example suggests.

Example 3.6. Let 𝑘 = 5, 𝑚 = 6, and suppose that the caches of Alg and Opt
are, as always, initialized with the first five pages, that is, we have

Opt : 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 .

Assume that we follow the same strategy as we used in the proof of Theorem 3.3.
The first phase starts by requesting 𝑝6 and four of the other pages. In our example,
the instance 𝐼 starts with 𝑝6, 𝑝3, 𝑝4, 𝑝5, 𝑝2. After the first request, Opt replaces the
page 𝑝1 with 𝑝6, and therefore causes one page fault. Now let us assume that Alg
replaces 𝑝2 instead, which leads to the situation

Opt : 𝑝6 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝3 𝑝4 𝑝5 .

99

Chapter 3. Advice Complexity

The subsequent requests of 𝑃1 do not cause a page fault for Opt, but clearly, Alg
causes a page fault when 𝑝2 is requested in 𝑇5. Alg may replace any page with 𝑝2;
let us assume it chooses 𝑝3, which leads to

Opt : 𝑝6 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝2 𝑝4 𝑝5

when 𝑃1 is over.
Now 𝑃2 starts by requesting the unique page that is not in the cache of Opt, that

is, 𝑝1; the next four requests could be 𝑝2, 𝑝4, 𝑝5, 𝑝6. In this case, Opt replaces 𝑝3
with 𝑝1 in 𝑇6, which causes one page fault. However, Alg does not induce any page
fault in 𝑃2. Therefore, after 𝑃2, both algorithms made two page faults in total and
we have

Opt : 𝑝6 𝑝2 𝑝1 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝2 𝑝4 𝑝5 ,

that is, both caches have the same content. ♢

We need to enlarge the phases so that there is still only one unique optimal solution
for any instance we construct. Then, it is possible to give a proof for 𝑚 = 𝑘 + 1 that
still shows a linear lower bound (with a constant that is two times worse).

Example 3.7. Again, let 𝑘 = 5 and 𝑚 = 6. Since the straightforward approach of
Example 3.6 does not work, we now repeat each phase a second time right after the
𝑘 different pages of this phase were requested. In this context, we speak of the first
and second “iteration” of the phase. So this time, the instance starts with a phase
𝑃1, which is, for instance, given by

(𝑝6, 𝑝2, 𝑝3, 𝑝4, 𝑝5⏟ ⏞
iteration 1

, 𝑝6, 𝑝2, 𝑝3, 𝑝4, 𝑝5⏟ ⏞
iteration 2

) .

Opt again replaces 𝑝1 with 𝑝6 in 𝑇1 and has cost 1 in 𝑃1. If Alg again decides to
replace another page with 𝑝6 instead, for instance, 𝑝5, this leads to a second page
fault in the first iteration, because 𝑝5 is requested again. We distinguish two cases
depending on what Alg does when 𝑝5 is requested during the first iteration of 𝑃1.

Case 1. Assume that Alg replaces 𝑝1 with 𝑝5. The cache content is then
𝑝2 𝑝6 𝑝3 𝑝4 𝑝5 ,

which corresponds to the cache content of Opt after 𝑃1. However, Alg made one
additional page fault so far, and enters the next phase without any advantage
compared to Opt.

Case 2. Assume that Alg replaces a page with 𝑝5 such that its cache remains
different from that of Opt, for instance, Alg removes 𝑝4. This leads to

𝑝1 𝑝6 𝑝3 𝑝5 𝑝2 ,

which implies a third page fault in the second iteration of 𝑃1 when 𝑝4 is requested.
Again, Alg may replace a page that leads to a cache content different from Opt,

100

3.4. The Advice Complexity of Paging

and it may be the case that Alg has cost 0 in the next phase 𝑃2 as a consequence.
However, we can show that this does not give Alg an advantage with respect to
the whole instance since it now caused two more page faults than Opt.

In both cases, Alg is worse than Opt. ♢

We generalize this idea to prove the following theorem.

Theorem 3.4. Every optimal online algorithm with advice for paging has to use at
least (log2 𝑘/(2𝑘))𝑛 advice bits.

Proof. Let there be 𝑚 = 𝑘 + 1 pages in total; let 𝑛 be a multiple of 2𝑘. We construct
a set ℐ (𝑛) of instances in the following way. Again, every input 𝐼 ∈ ℐ (𝑛) is divided
into 𝑁 phases, this time of length 2𝑘 each. Every phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 starts
by requesting page 𝑝𝑗 , which is currently not in the cache of Opt. Then, as in the
proof of Theorem 3.3, 𝑘 − 1 pages are requested that are all in the cache of Opt
when 𝑃𝑗 begins. These 𝑘 different pages are then requested in the same order one
more time. As in Example 3.7, we refer to these two sequences of 𝑘 requests as the
first and second iteration, respectively.

First, we prove that Opt is both optimal and unique. To this end, we show that,
for all 𝐼 ∈ ℐ (𝑛), any solution that deviates from Opt(𝐼) is worse than Opt on 𝐼. Let
Alg be some algorithm such that Alg(𝐼) and Opt(𝐼) differ; as before, we assume
that Alg is a demand paging algorithm. Let 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 be the first phase in
which Alg replaces a different page than Opt. This must happen at the beginning
of 𝑃𝑗 , that is, in time step 𝑇(𝑗−1)2𝑘+1, because, if both algorithms replace the same
page in such a time step, they act identically in the rest of the phase (since they
both do not cause additional page faults during this phase).

As 𝑃𝑗 is the first phase in which the algorithms differ, they have the same cache
content at the beginning of 𝑃𝑗 , and thus requesting 𝑝𝑗 causes a page fault for both
Alg and Opt. Since Opt removes the unique page 𝑝′

𝑗 that is not requested during
𝑃𝑗 (note that 𝑝′

𝑗 = 𝑝𝑗+1, for 1 ≤ 𝑗 ≤ 𝑁 − 1), Alg causes one additional page fault
in this first iteration of 𝑃𝑗 . This happens when the page 𝑝′′

𝑗 ̸= 𝑝′
𝑗 is requested, which

Alg replaced with 𝑝𝑗 at the beginning. If 𝑗 = 𝑁 , it immediately follows that Alg
is worse than Opt. Thus, in what follows, we assume that 1 ≤ 𝑗 ≤ 𝑁 − 1. We now
distinguish two cases depending on Alg’s action when 𝑝′′

𝑗 is requested.

Case 1. If Alg replaces 𝑝′
𝑗 with 𝑝′′

𝑗 , then the two algorithms end phase 𝑃𝑗 with the
same cache content, but Alg caused an additional page fault.

Case 2. If Alg replaces some page 𝑝′′′
𝑗 ̸= 𝑝′

𝑗 with 𝑝′′
𝑗 , then it will have another page

fault in the second iteration, when 𝑝′′′
𝑗 is requested again. On this request, Alg

can again replace 𝑝′
𝑗 with 𝑝′′′

𝑗 , which again leads to a cache content identical to
that of Opt. If Alg chooses another page to replace with 𝑝′′′

𝑗 , the two algorithms
enter 𝑃𝑗+1 with different cache contents.
If 𝑗 + 1 = 𝑁 , we are again done. So suppose 𝑗 + 1 < 𝑁 ; then there is a (possibly
empty) sequence of phases such that the cache content of Alg differs from that

101

Chapter 3. Advice Complexity

of Opt at the end of each phase. For any such phase, Alg makes at least one
page fault (since exactly the pages in Opt’s cache were requested), and thus the
distance between the two algorithms stays the same. If this is true for all remaining
phases, we are again done. Conversely, suppose there is a phase 𝑃𝑗′ in which Alg
causes no page fault. Then, it still caused one more page fault than Opt, but has
the same cache content as Opt at the end of 𝑃𝑗′ .

In any case, either the input ends with Alg having a larger cost than Opt, or
both algorithms end up in a situation in which they start the next phase with the
same pages in their caches, but Alg made at least one more page fault than Opt.
Thus, we can apply the above arguments inductively for the remainder of the input.
Since Alg is worse than Opt on 𝐼, it follows that the solution computed by Opt is
indeed unique and optimal.

By the same reasoning as in the proof of Theorem 3.3, an optimal online algorithm
with advice needs to use two different advice strings for any two instances from ℐ (𝑛).
Consequently, it needs to use

log2
(︀
𝑘𝑛/(2𝑘))︀ = 𝑛

2𝑘
· log2 𝑘

advice bits. �

In conclusion, a linear number of advice bits is both necessary and sufficient to
compute an optimal output for any paging instance.

3.4.2 Small Competitive Ratio
We continue with studying how much a small amount of advice can help when dealing
with the paging problem. In particular, suppose an online algorithm is only allowed
to read a constant number of advice bits that does not depend on the input length 𝑛.
Actually, we already know that we can achieve quite a lot with a constant number of
advice bits. We designed a barely random algorithm for paging in Section 2.6 that is
(3𝑏 + 2(𝑘 + 1)/2𝑏)-competitive in expectation when using 𝑏 random bits; in the first
section of this chapter (see Observation 3.2(i)), we have seen that this enables us to
construct an online algorithm with advice that uses 𝑏 advice bits and is as good. We
can therefore derive the following theorem.

Theorem 3.5. There is an online algorithm with advice for paging that uses 𝑏 advice
bits, where 2𝑏 < 𝑘, and is strictly(︂

3𝑏 + 2(𝑘 + 1)
2𝑏

)︂
-competitive.

Proof. This is a direct consequence of Theorem 2.12 and Observation 3.2. �

Next, we complement this upper bound with a lower bound for a constant number
of advice bits which is very close to it.

102

3.4. The Advice Complexity of Paging

⏟
 ⏞

𝒯 ′
𝑣 𝑑

𝒯𝑤

Figure 3.1. The tree 𝒯𝑣 that represents some instances from ℐ(𝑛).

Theorem 3.6. Let 𝜀 > 0. No online algorithm with advice for paging that uses 𝑏
advice bits, where 2𝑏 < 𝑘, is(︂

𝑘

2𝑏
− 𝜀

)︂
-competitive.

Proof. Let 𝜀 > 0, and let Alg be some online algorithm with advice for paging
that uses a constant number 𝑏 of advice bits. For the proof, it is again sufficient to
consider instances with a total of 𝑚 = 𝑘 + 1 pages. Let 𝑛 be a multiple of 𝑘. We
now construct a set ℐ (𝑛) of instances of length 𝑛 that we can represent by a special
kind of tree. All instances start by requesting the page 𝑝𝑘+1, which is not in the
cache. Now we arrange all instances in a 𝑘-ary tree 𝒯 that has 𝑛 levels, that is, 𝒯
is of height 𝑛 − 1. The leaves represent the complete instances from ℐ (𝑛) of length
𝑛. In general, every vertex 𝑣 corresponds to a prefix of exactly those instances that
are leaves in the subtree rooted at 𝑣. Every inner vertex in the tree has exactly 𝑘
children, which represent the 𝑘 possible pages that can be requested in the following
time step. Of course, the same page is never requested twice in two consecutive time
steps. It follows that the root of the tree corresponds to the first request 𝑝𝑘+1, which
is a prefix of every instance that is represented by the tree.

For every instance, Alg chooses one out of 2𝑏 online algorithms from strat(Alg);
thus, every instance from ℐ (𝑛) is processed by one of these algorithms. We are now
going to color the leaves of 𝒯 depending on which algorithm processes them; so every
leaf gets a color between 1 and 2𝑏.

103

Chapter 3. Advice Complexity

Let 𝑑 := ⌊𝑛/2𝑏⌋. For every vertex 𝑣, we denote the subtree of 𝒯 that has the root
𝑣 by 𝒯𝑣. We now show that the following is true for every 𝑣.

If 𝒯𝑣 has at least 𝑑 · 𝑖 levels and all leaves of 𝒯𝑣 are colored with at
most 𝑖 colors, then there is an instance in ℐ (𝑛) (represented by a leaf
of 𝒯𝑣) for which Alg causes at least 𝑑 page faults.

(3.1)

We prove the claim by induction on the number of colors 𝑖.

Base Case. Let 𝑖 = 1, and let 𝒯𝑣 be a tree with at least 𝑑 levels whose leaves are
colored with one color. This is equivalent to the situation where Alg uses the
same algorithm from strat(Alg) for all instances represented by 𝒯𝑣, and therefore
works fully deterministically. Then there is an instance in 𝒯𝑣 such that Alg causes
exactly one page fault on every level of 𝒯𝑣; thus, it makes 𝑑 page faults in total,
which covers the base case.

Induction Hypothesis. The claim holds for 𝑖 − 1.
Induction Step. Let 𝑖 > 1. We cut 𝑇𝑣 after 𝑑 levels yielding a tree 𝒯 ′

𝑣 . Every leaf 𝑤
of 𝒯 ′

𝑣 is the root of a subtree 𝒯𝑤 of 𝒯 with at least 𝑑(𝑖 − 1) levels; see Figure 3.1.
We now distinguish two cases depending on the number of colors that are used in
the trees 𝒯𝑤.
Case 1. If there is a tree 𝒯𝑤 whose leaves are colored with at most 𝑖 − 1 different

colors, then, by the induction hypothesis, it follows that Alg causes 𝑑 page
faults on some instance that is represented by a leaf of 𝒯𝑤. Obviously, then
there is also such an instance that is represented by a leaf of 𝒯𝑣.

Case 2. Conversely, if such a tree does not exist, since all leaves of 𝒯𝑣 are colored
with 𝑖 colors, we know that there is a color 𝑧 such that every subtree 𝒯𝑤 has
a leaf that is colored with 𝑧. If we take these leaves from every subtree, the
corresponding instances are again processed by the same algorithm, that is, the
same advice is used for each of them.
Due to the construction of 𝒯 , the request sequences that lead to the correspond-
ing trees 𝒯𝑤 are all possible request sequences of length 𝑑 (where the same page
is never requested in two consecutive time steps). Hence, there is an instance
such that Alg causes a page fault on all levels of 𝒯 ′

𝑣 ; therefore, it makes 𝑑 page
faults in total.

Now we can use (3.1) for 𝑖 = 2𝑏 and conclude that Alg causes at least⌊︁ 𝑛

2𝑏

⌋︁
page faults on inputs that are represented by a tree with ⌊𝑛/2𝑏⌋ · 2𝑏 ≤ 𝑛 levels, and
thus have length at most 𝑛. On the other hand, we know that there is an optimal
algorithm that makes a page fault at most every 𝑘 requests. Since 𝑛 is a multiple of
𝑘, it follows that the optimal cost for instances of length 𝑛 is at most 𝑛/𝑘.

104

3.5. Advice and Randomization

To finish the proof, we plug these two bounds into Definition 3.2, that is, the
definition of the competitive ratio, yielding

𝑛

2𝑏
− 1 ≤

⌊︁ 𝑛

2𝑏

⌋︁
≤ 𝑐 · 𝑛

𝑘
+ 𝛼 ,

which is why the competitive ratio of Alg can be bounded from below by

𝑐 ≥ 𝑘

2𝑏
− (𝛼 + 1)𝑘

𝑛
,

which is larger than 𝑘/2𝑏 − 𝜀 for infinitely many 𝑛. �

3.5 Advice and Randomization
If we follow our intuition, advice bits seem to be a lot more powerful than random
bits. After all, we compare a situation where we always pick a best strategy for the
given instance to a situation where we pick strategies with a fixed distribution; in
essence, we compare “the best” with “the average.” It is therefore natural to ask
whether there exists a scenario in which it is possible to save some bits if they are
supplied by an oracle and not a random source. In what follows, we give a positive
answer to this question. More specifically, we show that if there is some randomized
online algorithm Rand for some online minimization problem Π, then there is also
some online algorithm with advice that is almost as good while using a number of
advice bits which (and this is the interesting part) does not depend on the number of
random bits Rand uses. However, the bound does depend on the number of possible
instances of Π of the given length. The proof uses some ideas that are similar to the
proof of Yao’s principle, which we have introduced in Sections 2.3 and 2.4.

Theorem 3.7. Let Π be an online minimization problem with 𝜇(𝑛) different in-
stances of length 𝑛. Suppose there is a randomized online algorithm for Π that is
𝑐-competitive in expectation. Then, for any 𝜀 > 0, there is a (1 + 𝜀)𝑐-competitive
online algorithm with advice for Π that uses at most

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ + log2

(︂⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

)︂
advice bits.

Proof. Let Rand be a randomized online algorithm for Π that uses 𝑏(𝑛) random
bits for any input length 𝑛. Due to Observation 2.2, this is equivalent to choos-
ing uniformly at random a deterministic strategy from a set strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴2𝑏(𝑛)}. We design an online algorithm Alg with advice for Π in the
following way. Since Rand is 𝑐-competitive in expectation, according to Defini-
tion 2.2, there is a constant 𝛼 such that, for every instance 𝐼 of Π, we have

E[cost(Rand(𝐼))] ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

105

Chapter 3. Advice Complexity

or, equivalently,
E[cost(Rand(𝐼))] − 𝛼

cost(Opt(𝐼)) ≤ 𝑐 .

Now, for each deterministic strategy 𝐴𝑗 and each instance 𝐼𝑖 of length 𝑛, for
1 ≤ 𝑗 ≤ 2𝑏(𝑛) and 1 ≤ 𝑖 ≤ 𝜇(𝑛), we set

𝑐𝑖,𝑗 := cost(𝐴𝑗(𝐼𝑖)) − 𝛼

cost(Opt(𝐼𝑖))
;

recall that 𝑐𝑖,𝑗 is called the performance of 𝐴𝑗 on 𝐼𝑖. As a next step, we construct a
(𝜇(𝑛)×2𝑏(𝑛))-matrix ℳ that we fill with these entries similarly to Section 2.4.

𝐴1 𝐴2 𝐴3 . . .
𝐼1 𝑐1,1 𝑐1,2 𝑐1,3 . . .
𝐼2 𝑐2,1 𝑐2,2 𝑐2,3
𝐼3 𝑐3,1 𝑐3,2 𝑐3,3
...

... . . .

As a result, the entry in the 𝑖th row and the 𝑗th column gives the performance of
Rand on the input 𝐼𝑖 if Rand chooses the deterministic strategy 𝐴𝑗 . The central
idea of the proof is to show that we are able to cleverly choose a small number
of columns of ℳ such that the performances of the corresponding deterministic
strategies are good for many instances, and the chosen strategies cover all input
instances. We collect these deterministic algorithms in a set 𝒜, and Alg gets as
advice the index of the algorithm from 𝒜 that should be used for the input at
hand (and some additional information we will describe later); the “index” can, for
instance, refer to the canonical order of the binary random strings to which the
algorithms correspond.

One row 𝑖 of ℳ corresponds to exactly one input 𝐼𝑖. Thus, by the definition of 𝑐𝑖,𝑗

and the expected competitive ratio of Rand, for every 𝑖 with 1 ≤ 𝑖 ≤ 𝜇(𝑛), we get

1
2𝑏(𝑛)

2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 = 1
2𝑏(𝑛)

2𝑏(𝑛)∑︁
𝑗=1

cost(𝐴𝑗(𝐼𝑖)) − 𝛼

cost(Opt(𝐼𝑖))

=
1

2𝑏(𝑛)

∑︀2𝑏(𝑛)

𝑗=1 (cost(𝐴𝑗(𝐼𝑖)) − 𝛼)
cost(Opt(𝐼𝑖))

= E[cost(Rand(𝐼𝑖))] − 𝛼

cost(Opt(𝐼𝑖))
≤ 𝑐

or, equivalently,
2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 ≤ 𝑐 · 2𝑏(𝑛) .

106

3.5. Advice and Randomization

For the sum of all entries in all cells of ℳ, we get

𝜇(𝑛)∑︁
𝑖=1

2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 ≤
𝜇(𝑛)∑︁
𝑖=1

𝑐 · 2𝑏(𝑛) ≤ 𝑐 · 2𝑏(𝑛) · 𝜇(𝑛) .

Since there are 2𝑏(𝑛) columns in ℳ, there is one column (deterministic strategy)
𝑗′ such that

𝜇(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗′ ≤ 𝑐 · 𝜇(𝑛) . (3.2)

The corresponding online algorithm 𝐴𝑗′ is then included in 𝒜 and it is used for any
instance 𝐼𝑖, for which 𝑐𝑖,𝑗′ ≤ (1 + 𝜀)𝑐. Let 𝑠 = 𝑠(𝑗′) denote the number of these
instances. In what follows, we want to estimate the size of 𝑠, that is, for how many
instances Alg can use 𝐴𝑗′ . Clearly, the performance of 𝐴𝑗′ is worse than (1 + 𝜀)𝑐
on 𝜇(𝑛) − 𝑠 instances.

Summing up, this gives a total of more than (𝜇(𝑛)−𝑠)(1+𝜀)𝑐 for the corresponding
rows and we have

𝜇(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗′ > (𝜇(𝑛) − 𝑠)(1 + 𝜀)𝑐 .

Together with (3.2), it follows that (𝜇(𝑛) − 𝑠)(1 + 𝜀)𝑐 < 𝜇(𝑛)𝑐 and therefore

𝑠 >

(︂
𝜀

1 + 𝜀

)︂
𝜇(𝑛) ,

which means we can use the deterministic strategy 𝐴𝑗′ for a fraction 𝜀/(1 + 𝜀) of the
instances as we know that on these its performance is not worse than (1 + 𝜀)𝑐.

After 𝐴𝑗′ is put into the set 𝒜, we remove the column 𝑗′ from ℳ together with all
rows that correspond to inputs on which 𝐴𝑗′ achieves a sufficiently good performance.
There remain(︂

1 − 𝜀

1 + 𝜀

)︂
𝜇(𝑛) =

(︂
1

1 + 𝜀

)︂
𝜇(𝑛)

rows for which we need to find another algorithm from strat(Rand, 𝑛). For every
remaining row, the removed entry in column 𝑗′ was larger than 𝑐. It follows that,
after removing this column, the average over all entries of the remaining rows is still
not larger than 𝑐. Therefore, we can repeat the aforementioned procedure with the
remaining 1/(1 + 𝜀)𝜇(𝑛) rows of ℳ. This way, we find another deterministic online
algorithm 𝐴𝑗′′ , which has a sufficiently good performance on a fraction 𝜀/(1 + 𝜀) of
the remaining instances.

107

Chapter 3. Advice Complexity

Now we compute how often we have to iterate this procedure until we have found
an algorithm for every input; this means we want to find a natural number 𝑟 such
that (︂

1
1 + 𝜀

)︂𝑟

𝜇(𝑛) < 1 .

We get(︂
1

1 + 𝜀

)︂𝑟

<
1

𝜇(𝑛) ⇐⇒ (1 + 𝜀)𝑟 > 𝜇(𝑛) ⇐⇒ 𝑟 > log1+𝜀(𝜇(𝑛)) ,

which means that we have to make at most⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

iterations, that is, we need that many deterministic algorithms from strat(Rand, 𝑛).
This immediately gives an upper bound on the size of 𝒜.

Finally, we calculate the number of advice bits needed for this approach.

1. First, Alg needs to know the input length 𝑛, which can be encoded on
the advice tape using ⌈log2 𝑛⌉ bits. However, this must be done in a self-
delimiting fashion (as described in Section 3.2), summing up to a total of
2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ advice bits.

2. Knowing 𝑛, Alg constructs ℳ by simulating the randomized online algorithm
Rand on every possible input of length 𝑛 and every possible “random” string
of length 𝑏(𝑛). Then, Alg constructs 𝒜 and enumerates all algorithms from
𝒜 in, for instance, canonical order. After reading another

log2

(︂⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

)︂
advice bits, Alg can pick one algorithm from 𝒜, which is then simulated for
the input at hand.

It follows that the performance of Alg on any instance is at most (1 + 𝜀)𝑐 and
Alg uses as much advice as claimed by the theorem. �

Exercise 3.8. Explain where the argumentation in the proof of Theorem 3.7 does not
work if we use Observation 2.1 instead of Observation 2.2, and specifically assume that
ℓ(𝑛) < 2𝑏(𝑛)?

The following example illustrates how the deterministic strategies are chosen in
the proof of Theorem 3.7.

108

3.5. Advice and Randomization

Example 3.8. Suppose we are given a randomized online algorithm Rand that
uses three random bits for the given input length 𝑛; thus, we have strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴8}. As described above, the online algorithm with advice knows 𝑛,
computes 𝑏(𝑛), and finally simulates Rand on every input of length 𝑛 and every
“random” string of length 𝑏(𝑛).

Moreover, assume there are nine inputs of length 𝑛, and that Rand is 3-competitive
in expectation. Then Alg obtains the following matrix ℳ.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 Average
𝐼1 5 4 4 2 3 1 4 1 3
𝐼2 3 1 1 3 5 5 2 4 3
𝐼3 4 6 4 1 2 4 1 2 3
𝐼4 1 1 5 5 4 2 3 3 3
𝐼5 2 2 4 2 5 2 2 5 3
𝐼6 1 5 1 8 1 2 4 2 3
𝐼7 2 1 4 1 4 3 5 4 3
𝐼8 1 3 1 7 2 2 3 5 3
𝐼9 3 3 6 2 1 4 1 4 3

As marked in ℳ, the deterministic strategy 𝐴2 has a performance that is better
than (1 + 𝜀) · 3 (even 3 in this simple example) on the six inputs 𝐼2, 𝐼4, 𝐼5, 𝐼7, 𝐼8,
and 𝐼9. 𝐴2 is included in 𝒜, and the second column is removed from ℳ together
with the rows that correspond to the above inputs. This results in the following
matrix with decreased average values for every row.

𝐴1 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 Average
𝐼1 5 4 2 3 1 4 1 2.86
𝐼2
𝐼3 4 4 1 2 4 1 2 2.58
𝐼4
𝐼5
𝐼6 1 1 8 1 2 4 2 2.72
𝐼7
𝐼8
𝐼9

Finally, there are even two algorithms, namely 𝐴5 and 𝐴8, that perform well for
all remaining instances. Thus, 𝒜 has size 2. ♢

At this point, one might wonder whether the factor of 1 + 𝜀 is unavoidable, or
whether it is possible to design an online algorithm with advice from any randomized
online algorithm that is as good. The answer is that the latter is not possible, as the
following online problem shows.

Example 3.9. Consider the following online minimization problem. The input
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) starts with the request 𝑥1 = 0. All other requests are bits, that

109

Chapter 3. Advice Complexity

is, 𝑥𝑖 ∈ {0, 1} with 2 ≤ 𝑖 ≤ 𝑛; as answers, also bits must be given, that is, 𝑦𝑖 ∈ {0, 1}
with 1 ≤ 𝑖 ≤ 𝑛.

Now, if 𝑦𝑖 = 𝑥𝑖+1 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 − 1, then the total cost is 1, otherwise,
it is 𝑛 (the last answer 𝑦𝑛 is ignored). In other words, an optimal algorithm has cost
1, and any other solution has cost 𝑛. Obviously, a best randomized online algorithm
chooses every answer such that it is 0 or 1 with probability 1/2 each. This algorithm
uses 𝑛 − 1 random bits and its expected competitive ratio is

2𝑛−1−1
2𝑛−1 · 𝑛 + 1

2𝑛−1 · 1
1 = 𝑛 − 𝑛 + 1

2𝑛−1 .

On the other hand, no online algorithm Alg with advice that uses fewer than
𝑛 − 1 advice bits is better than 𝑛-competitive. This is due to the fact that there
are at most 2𝑛−2 deterministic strategies Alg chooses from if it uses at most 𝑛 − 2
advice bits. Therefore, there are at least two different instances that get the same
advice string. Let these two instances be 𝐼1 and 𝐼2, and let 𝐴 ∈ strat(Alg) be the
deterministic algorithm that is chosen for both of them. 𝐼1 and 𝐼2 differ for the first
time in time step 𝑇𝑖 with 2 ≤ 𝑖 ≤ 𝑛; but they have the same prefix of length 𝑖 − 1.
Therefore, 𝐴 outputs the same bit in 𝑇𝑖−1, and consequently has cost 𝑛 on one of
the two instances. ♢

In Chapter 7, we will return to such problems where bits need to be guessed;
however, there we will consider different cost functions. It follows that there exist
online problems for which an online algorithm with advice that is equally good as a
best randomized online algorithm in expectation needs as many advice bits as the
latter uses random bits.

We have now introduced the three models of online computation that we will
study in the following chapters. It will turn out that the relationship between them
varies heavily with the problem we are considering.

3.6 Historical and Bibliographical Notes
The advice complexity of online problems was introduced by Dobrev et al. [53] in
2008 as a new measurement for online algorithms addressing the aforementioned
pessimistic view of competitive analysis. In particular, the authors investigated
paging and the problem of differentiated services; see, for instance, Lotker and
Patt-Shamir [112]. Originally, two different “modes of operation” were proposed and
studied, which allow different ways of communication between the oracle and the
online algorithm. The following description is taken from Komm [97].

• The helper model. Here, we think of an oracle that oversees Alg’s actions
during runtime. The oracle may interact with the algorithm by giving some
bits of advice in every time step; this is done without a request for help by
Alg. The crucial observation is that the advice may be empty, which can also
carry some piece of information and thus may be exploited by the algorithm.

110

3.6. Historical and Bibliographical Notes

• The answerer model. The second model is more restrictive in some sense as
the algorithm Alg has to explicitly ask the oracle for advice in some time
step. The oracle then has to respond with some advice string, that is, it is not
allowed to send an empty string, but still may encode some extra information
into the length of its answer.

In both models, it is assumed that Alg knows the length of the input in advance.
A more detailed and formal description is given by Dobrev et al. [53, 54].

The problem with the above model (and both modes of operation) is that some
information can be encoded into the lengths of the advice strings. Moreover, it is
desirable to stick to a scenario where the input length of the current instance is not
known in advance, because this is exactly one of the properties that define the nature
of computing online. Of course, it is possible that the input length is communicated
to the algorithm, but we demand that this is accounted for in a clean way and it is
not possible to do such a thing implicitly.

Addressing these issues, two different refined models were suggested in 2009. Emek
et al. [58] proposed a model in which the number of advice bits supplied is fixed in
every time step. Note that it is therefore impossible to study sublinear advice as
we did, for example, in Theorem 3.5. Emek et al. applied this model to metrical
task systems and the 𝑘-server problem (which we will investigate in Chapter 4).
Böckenhauer et al. [30] and Hromkovič et al. [82] proposed the model that is used
throughout this book. Hromkovič et al. suggested using this approach to quantify
the information content of the given online problem. Böckenhauer et al. first applied
it to paging (obtaining some of the results given in Section 3.4), the disjoint path
allocation problem (which will be described in Subsection 7.4.3), and the job shop
scheduling problem (which we will study in Chapter 5); for more details, we refer to
the technical report [31].

It is noteworthy that this model is equivalent to a variant of the answerer model
where the input length is unknown and the online algorithm with advice specifies
the number of bits it wants to get as an answer (it may ask multiple times in one
time step); the oracle is not allowed to answer with any other number of advice bits
(in particular, it is also not allowed to give an empty answer).

The self-delimiting encoding of binary strings that we introduced in Section 3.2 is
strongly related to Elias coding, which was developed by Elias [57].

The concept of partition trees was implicitly used in many publications. It was
first formalized (see Definition 3.3, Lemma 3.1, and Theorem 3.1) by Barhum et
al. [16]; see also Steffen [135].

The problem-independent construction of an online algorithm with advice from
a randomized online algorithm for online minimization problems was shown by
Böckenhauer et al. [24,29]. An analogous theorem for online maximization problems
was later proven by Selečéniová [129].

Emek et al. [58,60] proved a lower bound on the advice complexity of an online
algorithm that also uses randomness for metrical task systems. Böckenhauer et al. [25]
introduced the so-called boxes problem to further study the collaboration between

111

Chapter 3. Advice Complexity

advice and randomization. More non-trivial connections between randomization and
advice were observed by Komm [97], Mikkelsen [117], and Böckenhauer et al. [23].

112

	3
Advice Complexity
	3.1 Introduction
	3.2 Self-Delimiting Encoding of Strings
	3.3 Proving Lower Bounds
	3.4 The Advice Complexity of Paging
	3.4.1 Optimality
	3.4.2 Small Competitive Ratio

	3.5 Advice and Randomization
	3.6 Historical and Bibliographical Notes

