
1Introduction

This chapter introduces the concept of computing online, after briefly looking at
algorithms from a more general perspective. As a starting point, we consider
optimization problems and 𝒩 𝒫-hardness on a very high level. Next, we describe one
of the strategies used to attack such problems, namely approximation algorithms.
As an example, we have a quick look at the simple knapsack problem, which is one
of the most famous 𝒩 𝒫-hard maximization problems. We study this problem as we
will meet it again later in this book; in Chapter 6, we formulate an online version of
the problem where we make use of our insights into the greedy strategy for the offline
version. The goal is to quickly recall what we understand as computing problems
and algorithms, not to give an introduction to the topic; we assume that the reader
is already familiar with these concepts. The objective of these first few pages is to
put into context what we learn next.

After that, we formally introduce the main topic of this book: online computation,
that is, algorithms that work on problem instances which they do not know from
the start, but that get revealed piece by piece. These algorithms are called online
algorithms, and they are commonly analyzed using so-called competitive analysis,
which compares their solution to an optimal one; this is a concept that is strongly
related to studying the approximation ratios of algorithms described in the afore-
mentioned setting. We start by giving a formal definition, which we link to the
paging problem. Paging, as it is defined in this book, is a very simplified version of
what is met in practical settings; a simple two-level memory hierarchy is assumed
that consists of a small fast memory, called the cache, and a larger slow memory.
The objective is to manage the memory such that the slow memory is accessed as
rarely as possible. The problem is motivated by the difference in speed between the
main memory and the CPU. Note that, from a practical point of view, we should be
speaking of caching in this context, but we use the terminology that is established
in the area of online algorithms. We are not concerned with the technical details of
this problem, but we want to break it down to its essence. Paging will accompany

� Springer International Publishing Switzerland 2016 1
D. Komm, An Introduction to Online Computation,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-319-42749-2_1

Chapter 1. Introduction

us in Chapters 2 and 3, where we introduce two different models of computation,
namely randomized computation and computation with advice. In this chapter, we
state some basic results and present fundamental techniques to analyze deterministic
online algorithms, and make clear to which points we need to pay special attention.
For paging, we introduce some important strategies and give upper and lower bounds
on their competitive ratios (analogously to the approximation ratio, the competitive
ratio roughly corresponds to the factor by which a solution computed by an online
algorithm is worse than an optimal solution). To analyze the latter, we consider
worst-case instances and introduce a hypothetical adversary that tries to make the
online algorithm at hand perform as badly as possible. We show an upper bound on
the competitive ratio that solely depends on the given cache size 𝑘; this is done by
proving that an online algorithm that implements a simple first in first out (FIFO)
strategy (basically treating the cache like a queue) achieves this competitive ratio.
This bound is tight as there is an adversary that can make sure that no online
algorithm can be more successful in general. Interestingly, we also show that FIFO’s
counterpart, that is, a last in first out (LIFO) strategy, is a lot worse, as is a least
frequently used (LFU) strategy. After that, we introduce the general concept of
marking algorithms for the paging problem. This class of algorithms, which contains
algorithms that implement a least recently used (LRU) strategy, is also shown to
achieve a competitive ratio of 𝑘. Finally, we quickly touch upon two ideas to possibly
grant an online algorithm an advantage over the adversary, namely seeing into the
future for a little bit, or having a larger cache than the optimal algorithm that the
online algorithm is compared against.

1.1 Offline Algorithms
The term algorithm may without hesitation be called the central notion of computer
science; it is the formal description of a strategy to solve a given instance of a
problem. It is important to point out that this description is finite, but it should be
applicable to every instance of the problem although there may be infinitely many.
The origin of the word dates back to Muh. ammad ibn Mūsā al-Khwārizmı̄, a Persian
mathematician, who lived in the eighth and ninth century. In computer science, we
are concerned with the study of these algorithms to both explore what is doable by
means of computers, that is, which kind of work can be automated, and how well it
can be done when satisfying certain conditions such as, for instance, bounding the
time spent to solve the problem.

The investigation of the first point is based on one of the major breakthrough
results of twentieth-century science. There are well-defined problems that cannot be
solved algorithmically, that is, no matter how powerful a computer’s resources will
be at some point, it will not be able to answer these questions. In 1936, Alan Turing
wrote his pioneering paper “On computable numbers with an application to the
Entscheidungsproblem,” introducing a formal definition of the notion of algorithm
and then (using arguments similar to those in the proof of Gödel’s fundamental

2

1.1. Offline Algorithms

Incompleteness Theorem) showing that, for some particular problems, algorithms
cannot give a correct answer. Today, we call his formalization the Turing machine in
his honor. The informal term algorithm is formalized by Turing machines that always
finish their work in finite time (they “halt”). Most computer scientists agree that
these hypothetical machines do indeed formalize what we understand as algorithms.
Since then, a lot of effort has been made to further refine Turing’s result, and
nowadays the field of computability is one of the cornerstones of theoretical computer
science.

One such question that we cannot answer algorithmically in general is the halting
problem, which asks

Does a given Turing machine halt on a given input or does it run forever?

Even though there are only two possible answers, namely “yes” and “no,” no
algorithm can figure out the correct answer for all possible Turing machines. We
call such a problem a decision problem. In this book, we only deal with computable
problems, that is, problems for which, in principle, algorithms can compute a solution.
As an example, such a computable decision problem can be given by the question

Is a given natural number a prime number?

Obviously, there are infinitely many instances of this problem, namely all natural
numbers. Moreover, we can find a finite description to answer this question for any
given such number 𝑥 ∈ N. If 𝑥 is either 0 or 1, we answer “no,” and otherwise we
check for every number 𝑦 ∈ {2, 3, . . . , ⌊

√
𝑥⌋} whether it divides 𝑥. If we find such a

𝑦, we answer “no,” otherwise we answer “yes.”
In what follows, we usually ask questions that do not have a simple answer like

“yes” or “no,” but are more involved. A typical such question is

Given a traffic network, what is the fastest tour that visits all cities on
the map exactly once and returns to the starting point?

The above problem is the famous traveling salesman problem (TSP) and we know
that, given enough time, we can answer it with the fastest tour there is, for any given
instance. The next definition formalizes such an optimization problem; there are two
different objectives, either to minimize some cost or to maximize some gain; we thus
speak of minimization or maximization problems. For the TSP, we want to minimize
some cost, namely the total traveling time that is associated with every tour.

3

Chapter 1. Introduction

Definition 1.1 (Optimization Problem). An optimization problem Π con-
sists of a set of instances ℐ, a set of solutions 𝒪, and three functions sol : ℐ →
𝒫(𝒪), quality : ℐ × 𝒪 → R, and goal ∈ {min, max}. For every instance 𝐼 ∈ ℐ,
sol(𝐼) ⊆ 𝒪 denotes the set of feasible solutions for 𝐼. For every instance 𝐼 ∈ ℐ
and every feasible solution 𝑂 ∈ sol(𝐼), quality(𝐼, 𝑂) denotes the measure of 𝐼 and
𝑂. An optimal solution for an instance 𝐼 ∈ ℐ of Π is a solution Opt(𝐼) ∈ sol(𝐼)
such that

quality(𝐼, Opt(𝐼)) = goal{quality(𝐼, 𝑂) | 𝑂 ∈ sol(𝐼)} .

If goal = min, we call Π a minimization problem and write “cost” instead of
“quality.” Conversely, if goal = max, we say that Π is a maximization problem
and write “gain” instead of “quality.”

We call an algorithm consistent for a given problem Π if it computes a feasible
solution for every given instance (input). We denote the solution computed by an
algorithm Alg on an instance 𝐼 by Alg(𝐼). When, for instance, considering a
minimization problem, we denote the cost incurred by Alg on the instance 𝐼 by
cost(𝐼, Alg(𝐼)); likewise, for maximization problems, we write gain(𝐼, Alg(𝐼)) for
the gain of Alg’s solution when given 𝐼. To have an easier notation, we usually
simply write cost(Alg(𝐼)) or gain(Alg(𝐼)), respectively.

We now have a framework of (computable) optimization problems and algorithms
to solve them. However, not only from a practical point of view, we are typically not
satisfied to merely know that we are able to design an algorithm to solve some given
problem; we would also like to get the solution while obeying some given restrictions.
One such restriction might be an upper bound on the running time of the algorithm
at hand. Here, computer scientists consider an algorithm efficient if its running
time is in 𝒪(𝑛𝑘) for all inputs of length 𝑛 and some natural number 𝑘 which is
independent of 𝑛; we call such algorithms polynomial-time algorithms. Consider our
algorithm for testing whether a given natural number is a prime number, and let
us call this algorithm Prime. Furthermore, assume that the input 𝑥 is encoded as
a binary string of length 𝑛. We can roughly estimate the running time of Prime
as follows. Due to its length, 𝑥 has a size of around 2𝑛; if 𝑥 is prime, Prime tests
the divisibility of 𝑥 for roughly

√
2𝑛 = 2𝑛/2 natural numbers and thus its running

time grows exponentially in 𝑛; hence, Prime is not efficient. Of course, if 𝑥 is not a
prime, but, say, divisible by 2, Prime finishes with the answer “no” very quickly;
but we are interested in the worst-case behavior of the algorithms we study, and we
keep this point of view throughout this book.

All decision problems that can be solved in polynomial time are members of the
class 𝒫. The class 𝒩 𝒫 contains all decision problems Π for which we can verify in
polynomial time that, for all instances of Π that have the answer “yes,” the answer
is indeed “yes.” The exact relation between the two classes 𝒫 and 𝒩 𝒫 is surely one
of the most important and famous questions in computer science and mathematics.

4

1.1. Offline Algorithms

It is easy to see that 𝒫 ⊆ 𝒩 𝒫 ; of course, if we can decide whether a given instance
of a decision problem is a “yes” instance, we can also verify that this is the case.
However, we do not know yet whether the above inclusion is strict, that is, whether

𝒫 (𝒩 𝒫 or 𝒫 = 𝒩 𝒫

is true. In the following, we will assume the former, that is, 𝒫 ̸= 𝒩 𝒫. To at least
identify a class of problems in 𝒩 𝒫 that are promising candidates to be outside 𝒫,
one defines a class of problems that are “hard” in the sense that the ability to solve
any of them in polynomial time immediately allows us to solve all problems in 𝒩 𝒫 in
polynomial time. These problems, which are not necessarily decision problems, are
called 𝒩 𝒫-hard. The TSP is such a problem; primality testing is not. If a problem
is 𝒩 𝒫-hard and a member of 𝒩 𝒫 , it is called 𝒩 𝒫-complete.

Unless 𝒫 = 𝒩 𝒫 , we cannot hope for an algorithm that works in polynomial time
for an 𝒩 𝒫-hard optimization problem. We can, however, sometimes at least hope
to get a “good” solution in a time that is acceptable. This means that we pay
with accuracy (such a solution will not be optimal in general), but we can get a
satisfactory upper bound on the time we need to spend; such solutions are computed
by approximation algorithms, which we formally define in what follows.

Definition 1.2 (Approximation Algorithm). Let Π be an optimization
problem, and let Alg be a consistent algorithm for Π. For 𝑟 ≥ 1, Alg is an
𝑟-approximation algorithm for Π if, for every 𝐼 ∈ ℐ,

gain(Opt(𝐼)) ≤ 𝑟 · gain(Alg(𝐼))

if Π is a maximization problem, or

cost(Alg(𝐼)) ≤ 𝑟 · cost(Opt(𝐼))

if Π is a minimization problem.
The approximation ratio of Alg is defined as

𝑟Alg := inf{𝑟 ≥ 1 | Alg is an 𝑟-approximation algorithm for Π} .

In general, 𝑟 (and thus 𝑟Alg) is not necessarily constant, but may be a function
that depends on the input length 𝑛. Intuitively, a 2-approximation algorithm for
a minimization problem Π is thus an algorithm that computes, for any instance
𝐼 of Π, an output such that the cost of this solution is never more than twice as
large as the cost of an optimal solution. What we want are of course approximation
algorithms that are efficient, that is, work in polynomial time. For the TSP, which
we described above, there is, for instance, a polynomial-time 3/2-approximation
algorithm, known as the Christofides algorithm, if the input satisfies certain natural
conditions. However, if these conditions are not met, it can be proven that there are

5

Chapter 1. Introduction

instances of the TSP of length 𝑛 such that there is no polynomial-time approximation
algorithm with an approximation ratio bounded by any polynomial in 𝑛.

Now let us consider the following maximization problem. Suppose you want to
pack a number of objects into a knapsack with a given weight capacity. Each such
object has an assigned weight that also corresponds to its value and is given by a
positive integer. The input is described by the weights of the objects and the weight
capacity of the knapsack. The goal is to maximize the total value of the objects
packed.

Definition 1.3 (Simple Knapsack Problem). The simple knapsack prob-
lem is a maximization problem. An instance 𝐼 is given by a sequence of 𝑛 + 1
positive integers 𝐵, 𝑤1, 𝑤2, . . . , 𝑤𝑛, where we consider 𝑤𝑖 with 1 ≤ 𝑖 ≤ 𝑛 to
be the weight of the 𝑖th object; 𝐵 is the capacity of the knapsack. A feasible
solution for 𝐼 is any set 𝑂 ⊆ {1, 2, . . . , 𝑛} such that∑︁

𝑖∈𝑂

𝑤𝑖 ≤ 𝐵 .

The gain of a solution 𝑂 and a corresponding instance 𝐼 is given by

gain(𝐼, 𝑂) =
∑︁
𝑖∈𝑂

𝑤𝑖 .

The goal is to maximize this number.

In the following, we assume that the weight of every object is smaller than 𝐵.
This makes sense as all objects that are heavier than the knapsack’s capacity cannot
be part of any solution and may thus be neglected. It is well known that there is
no polynomial-time algorithm for the simple knapsack problem that solves every
given instance optimally, unless 𝒫 = 𝒩 𝒫 . This problem will be very interesting for
us later in a different setting; for now, we just want to give an easy idea of how to
approximate optimal solutions in reasonable time. More precisely, we give a simple
2-approximation algorithm that works in polynomial time. The idea is to first sort
the objects 𝑤1, 𝑤2, . . . , 𝑤𝑛 in descending order (with respect to their weights) and
then follow what is called a greedy strategy.

This simply means to pack objects into the knapsack starting with the heaviest
one, then the second heaviest, and so on, as long as there is space left in the knapsack;
the corresponding algorithm KnGreedy is shown in Algorithm 1.1.

It is easy to see that the running time of KnGreedy is in 𝒪(𝑛 log 𝑛). Sorting 𝑛
integers can be done in 𝒪(𝑛 log 𝑛) and after that, every object is inspected at most
one more time. It is not much more difficult to show that the gain of any solution
computed by KnGreedy is at least half as large as the optimal gain.

Theorem 1.1. KnGreedy is a polynomial-time 2-approximation algorithm for the
simple knapsack problem.

6

1.1. Offline Algorithms

𝑂 := ∅; // Initialization
𝑠 := 0;
𝑖 := 0;
sort 𝑤1, 𝑤2, . . . , 𝑤𝑛; // Preprocessing; we assume that

// now 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛

while 𝑖 < 𝑛 and 𝑠 + 𝑤𝑖+1 ≤ 𝐵 do // Pack objects greedily
𝑂 := 𝑂 ∪ {𝑖 + 1};
𝑠 := 𝑠 + 𝑤𝑖+1;
𝑖 := 𝑖 + 1;

output 𝑂;
end

Algorithm 1.1. KnGreedy for the simple knapsack problem.

Proof. Consider any instance 𝐼 = (𝐵, 𝑤1, 𝑤2, . . . , 𝑤𝑛) of the simple knapsack problem,
and assume without loss of generality that 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛. We distinguish two
cases with respect to the total weight of the objects in 𝐼.
Case 1. If all objects fit into the knapsack, then KnGreedy is even optimal, as it

packs all of them.
Case 2. Thus, we assume that the total weight is larger than 𝐵, and distinguish two

more cases depending on the weight of the largest object in 𝐼.
Case 2.1. Suppose there is an object 𝑤𝑖 of weight at least 𝐵/2. We then have

𝑤1 ≥ 𝐵/2 and 𝑤1 is always packed into the knapsack. Since 𝐵 is an upper
bound for any solution, it follows that the approximation ratio of KnGreedy
is at most 2 in this case.

Case 2.2. Suppose that the weights of all objects are smaller than 𝐵/2, and let 𝑗
be the index of the first object that is too heavy to be packed into the knapsack
by KnGreedy. It follows from our assumption that 𝑤𝑗 < 𝐵/2, and this implies
that the space that is already occupied by the objects 𝑤1, 𝑤2, . . . , 𝑤𝑗−1 must be
larger than 𝐵/2. Thus, we immediately get an approximation ratio of at most 2
also in this case.

We conclude that KnGreedy is a polynomial-time 2-approximation algorithm
for the simple knapsack problem. �

An example instance and the corresponding solution computed by KnGreedy
are shown in Figure 1.1. Note that the greedy strategy works due to the preceding
sorting of the weights of the objects. We now quickly discuss the tightness of our
analysis of this algorithm. For any 𝑛 ≥ 3 and any arbitrarily large even 𝐵, consider
an instance 𝐼 that consists of a capacity 𝐵 and the sequence

𝐵

2 + 1,
𝐵

2 ,
𝐵

2 , . . . ,
𝐵

2⏟ ⏞
𝑛−1 times

(1.1)

7

Chapter 1. Introduction

(a) The original instance

(b) The sorted instance

𝐵

(c) The solution

Figure 1.1. The greedy strategy; first sort, then pack greedily what fits.

of weights. If given 𝐼 as input, KnGreedy packs the first object into the knapsack,
which results in a situation where no more objects may be packed; thus, we have
gain(KnGreedy(𝐼)) = 𝐵/2 + 1. On the other hand, any optimal solution Opt(𝐼)
for 𝐼 may safely pack any two objects into the knapsack except the first one, and
therefore gain(Opt(𝐼)) = 𝐵. It follows that

𝑟KnGreedy ≥ gain(Opt(𝐼))
gain(KnGreedy(𝐼)) = 𝐵

𝐵
2 + 1

= 2
1 + 2

𝐵

,

which tends to 2 with increasing 𝐵.
This sums up our first ideas of how to deal with optimization problems that are in

general regarded as infeasible. We pay with accuracy, and we gain speed in return. Of
course, there are smarter methods to deal with the (simple) knapsack problem than
just following a simple greedy approach. In particular, there is an algorithm that
achieves an approximation ratio of 1+𝜀 running in time 𝒪(𝑛3 ·1/𝜀), for every constant
𝜀 > 0; such an algorithm that achieves an arbitrarily good approximation ratio 1 + 𝜀
in a time that is polynomial both in 𝑛 and 1/𝜀 is called a fully polynomial-time
approximation scheme (FPTAS).

Exercise 1.1. Algorithm 1.1 shows a very naive implementation of KnGreedy as it
already stops packing objects into the knapsack after one object is encountered that is too

8

1.2. Online Algorithms and Paging

heavy. However, there might still be smaller objects in the input. Would it help to consider
them? How would the analysis change?

Exercise 1.2. As an input, an algorithm for the TSP expects a complete graph with edge
weights that are positive real numbers; a feasible solution is a Hamiltonian cycle in the
given graph, and the goal is to output such a cycle with minimum cost (the cost being
the sum of all weights of edges that it consists of). The greedy algorithm TSPGreedy
starts with an arbitrary vertex and follows an edge of minimum weight to a yet unvisited
neighboring vertex; this is iterated until all 𝑛 vertices are visited. Then, the last and first
vertex are connected to obtain a Hamiltonian cycle. Argue on an intuitive level why this
approach is bad for the TSP.

We will revisit TSPGreedy in Chapter 8. Although greedy strategies are bad for
many other optimization problems, they will play an important role throughout this
book. Let us therefore end this section with the remark that there are optimization
problems for which they work quite well. One such problem is the minimum spanning
tree problem (MSTP) to which we will also return in Chapter 8.

Exercise 1.3. An algorithm for the MSTP also expects a complete graph 𝐺 with edge
weights that are positive real numbers as input. The goal is to compute a minimum spanning
tree of 𝐺, that is, a subgraph of 𝐺 that is connected, does not contain any cycles, contains
all vertices, and that has minimum cost. Consider the following greedy algorithm Kruskal.
If 𝑛 denotes the number of vertices of 𝐺, Kruskal works in 𝑛 − 1 rounds. In every round,
an edge 𝑒 of 𝐺 is chosen to be part of the solution; 𝑒 is an edge of minimum weight that is
not yet chosen and that does not close a cycle with respect to the already chosen edges.
Prove that Kruskal always computes an optimal solution.

1.2 Online Algorithms and Paging
As described above, an algorithm computes a well-defined output for any given
instance of a computational problem. In this context, we have, so far, briefly spoken
about efficient approximation algorithms for 𝒩 𝒫-hard problems. In other words, we
have imposed certain requirements on the algorithms we want to study; we demanded
that they have a polynomial running time while producing an output for any instance
of the given problem. If 𝒫 ̸= 𝒩 𝒫, we may thus only hope to get an approximate
solution. In the following, we want to focus on another restriction that we encounter
in practice. Here, we are not concerned with not taking too much time, but with
the fact that we do not know the whole instance of the problem at hand in advance.
Until now, we assumed that from the start we have all information available that we
need to compute a solution.

This assumption may be unrealistic in scenarios such as the following. From a
practical point of view, the basic design principle of modern computers follows the
von Neumann architecture. Computers suffer from the fact that the CPU is usually
a lot faster than its main memory, which leads to a bad overall performance as

9

Chapter 1. Introduction

CPU

Main memory

1
2
3
4
5
6
7
8
9
10
11
12

...

Cache

8
2
1

4
7

10
3

Figure 1.2. A schematic view of an environment in which we study paging. In the
main memory, pages with indices 1, 2, . . . , 𝑚 are stored, while a small subset of them is
currently stored in the cache of size 𝑘 ≪ 𝑚.

the CPU cannot be utilized to its full extent. To overcome this drawback, another
memory, the so-called cache, is introduced. This memory is a lot faster than the
main memory; however, it is therefore also a lot more expensive and thus smaller.

Now we consider the important task of an operating system to manage the cache
in such a way that we need to access the main memory as rarely as possible. We
want to study the essence of what makes this problem hard, and thus we look at
a simplified version of the problem; see Figure 1.2. In a practical setting, we are
confronted with a much more complicated situation, and there are usually many
different levels of caches; here, we only deal with a two-level memory hierarchy. More
precisely, for our theoretical investigations, we make the following assumptions.

• There are two different types of memory, namely the aforementioned main
memory and the cache.

• Both of them may store chunks of data of a fixed size, which we call pages; we
assume that each page has a size of 1.

• The main memory can store 𝑚 pages, denoted by 𝑝1, 𝑝2, . . . , 𝑝𝑚, the cache can
store 𝑘 pages; we assume that there are 𝑚 pages in total.

• As the cache is a lot more expensive than the main memory, we have 𝑚 ≫ 𝑘.
• The input is subdivided into discrete time steps 𝑇1, 𝑇2, . . . , 𝑇𝑛. During such a

time step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛, exactly one page is requested, that is, needed in
the ongoing computation.

• The CPU can only access pages that are stored in the cache.
• As a consequence, if a requested page is not in the cache in the corresponding

time step, it needs to be loaded into it from the main memory, which causes a

10

1.2. Online Algorithms and Paging

cost of 1; we call this situation a page fault. In this case, if there is no space
left in the cache, a victim page has to be selected and removed from the cache
to make room.

• Conversely, accessing a page from the cache does not induce any cost.

This problem is called the paging problem. For convenience, we will simply refer
to it as “paging.” An algorithm for paging is basically defined by the strategy it uses
to choose the victim pages, that is, which page it replaces in the cache if a page fault
occurs.

Paging is a prominent member of a broad class of problems for which the concrete
input is revealed piecewise at runtime. Such problems are called online problems, and
it is obvious that we encounter them in many practical situations, when, for instance,
humans frequently interact with computers. We will see many other examples
throughout this book. However, at first, we need a formalism that enables us to
study strategies to handle such problems. Similarly to “offline” problems, which we
described in the previous section, the objective in online problems can either be to
minimize some cost or to maximize some gain; for instance, for paging we want to
minimize the number of page faults that occur.

We start by defining online problems formally. The following definition is similar
to that of offline problems from Definition 1.1, but here we need to introduce the
two notions request and answer, which will be crucial for our further formalizations.

Definition 1.4 (Online Problem). An online problem Π consists of a set of
instances ℐ, a set of solutions 𝒪, and three functions sol, quality, and goal
with the same meaning as for general optimization problems according to
Definition 1.1. Every instance 𝐼 ∈ ℐ is a sequence of requests 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
and every output 𝑂 ∈ 𝒪 is a sequence of answers 𝑂 = (𝑦1, 𝑦2, . . . , 𝑦𝑛), where
𝑛 ∈ N+ (thus, all instances and solutions are finite). An optimal solution for an
instance 𝐼 ∈ ℐ of Π is a solution Opt(𝐼) ∈ sol(𝐼) such that

quality(𝐼, Opt(𝐼)) = goal{quality(𝐼, 𝑂) | 𝑂 ∈ sol(𝐼)} .

If goal = min, we call Π an online minimization problem and write “cost” instead
of “quality.” Conversely, if goal = max, we say that Π is an online maximization
problem and write “gain” instead of “quality.”

As in the case of offline problems, we usually simply write cost(𝑂) instead of
cost(𝐼, 𝑂) if 𝐼 is clear from the context. Definition 1.4 does not yet formalize what
we mean by online computation; namely, that the output must be computed with
incomplete information. In particular, we want to model that an algorithm that
works on such a problem

1. only knows a prefix of the input in every given time step,
2. makes decisions that are based only on this knowledge, and

11

Chapter 1. Introduction

3. may not revoke any decision it already made.

We formalize these rules in the following definition of online algorithms, which are
the main objects of study throughout this book.

Definition 1.5 (Online Algorithm). Let Π be an online problem and let
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an instance of Π. An online algorithm Alg for Π
computes the output Alg(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛), where 𝑦𝑖 only depends on
𝑥1, 𝑥2, . . . , 𝑥𝑖 and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; Alg(𝐼) is a feasible solution for 𝐼, that is,
Alg(𝐼) ∈ sol(𝐼).

Although the notion time step is not explicitly used in Definitions 1.4 and 1.5, we
implicitly assign the 𝑖th request 𝑥𝑖 and the corresponding answer 𝑦𝑖 to time step 𝑇𝑖.

How do we assess the output quality of an online algorithm? A natural approach
is to have a definition analogous to the approximation ratio defined in Definition 1.2
for offline algorithms. As a matter of fact, we are facing a similar situation. The
approximation ratio formalizes what we can achieve for an 𝒩 𝒫-hard problem when
computing in polynomial running time (if we assume 𝒫 ̸= 𝒩 𝒫). In the context of
online computation, we ask what we can achieve when we do not know the whole
input in advance. So there are two different restrictions, and in both cases we want to
know what we pay for obeying them. In Definition 1.2, we compared the cost or gain
of a solution computed by an algorithm to the cost or gain of an optimal solution.
This is exactly the same thing that we do with online algorithms. More specifically,
we now define the term competitive ratio analogously to the approximation ratio;
however, there are some small differences.

Definition 1.6 (Competitive Ratio). Let Π be an online problem, and let
Alg be a consistent online algorithm for Π. For 𝑐 ≥ 1, Alg is 𝑐-competitive for
Π if there is a non-negative constant 𝛼 such that, for every instance 𝐼 ∈ ℐ,

gain(Opt(𝐼)) ≤ 𝑐 · gain(Alg(𝐼)) + 𝛼

if Π is an online maximization problem, or

cost(Alg(𝐼)) ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

if Π is an online minimization problem. If these inequalities hold with 𝛼 = 0, we
call Alg strictly 𝑐-competitive; Alg is called optimal if it is strictly 1-competitive.

The competitive ratio of Alg is defined as

𝑐Alg := inf{𝑐 ≥ 1 | Alg is 𝑐-competitive for Π} .

If the competitive ratio of Alg is constant and the best that is achievable by
any online algorithm for Π, we call Alg strongly 𝑐Alg-competitive.

12

1.2. Online Algorithms and Paging

Note that, in online computation, the term optimal solution even has a somewhat
stronger meaning than in the context of offline algorithms. In the latter case, optimal
solutions to instances of “hard” problems were those that can hypothetically be
computed when we are given more time (as opposed to polynomial time). In an
online setting, an optimal solution even refers to solutions that usually can only
be computed based on some knowledge (for instance, the complete instance) that
we generally do not possess; therefore, we call Opt(𝐼) an optimal offline solution
for 𝐼. Additionally, in online computation, we do not take the running time of the
algorithms we study into account. For most of the problems we will investigate,
the designed online algorithms will be efficient, but there will also be algorithms
that take far longer to compute a solution. The same holds for the memory that
our algorithms use. In particular, we will always assume that there are no space
restrictions, and that an online algorithm is able to remember all choices that it made
before in any time step. It is important to keep in mind that “optimal” refers to a
solution quality we can generally not guarantee, although Definition 1.6 does speak
about “optimal online algorithms.” On the other hand, by “strongly competitive,”
we mean “best possible.” Moreover, let us emphasize that the term “optimal” only
corresponds to the output quality of an algorithm and is independent of any of its
other parameters such as the aforementioned time and space complexities. We can
think of Opt(𝐼) as being computed by a hypothetical offline algorithm Opt which
is optimal in this sense. Throughout this book, we will either speak about Opt or
Opt(𝐼) depending on what is more intuitive in the current situation.

Usually, Alg is clear from the context and we simply write “𝑐” instead of “𝑐Alg.”
At times, we have to speak about the cost or gain of an online algorithm Alg on
a subsequence of an instance 𝐼 or even a single request; we will denote this by, for
instance, cost(Alg((𝑥𝑗 , 𝑥𝑗+1, . . . , 𝑥𝑘))), for some 𝑗, 𝑘 with 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛. Moreover,
if we refer to a concrete instance 𝐼, we sometimes speak of the performance of Alg
on 𝐼; this performance is a lower bound on Alg’s competitive ratio.

Note that, similarly to the approximation ratio, an online algorithm has a better
solution quality the smaller its competitive ratio 𝑐 is, and that 𝑐 is never smaller
than 1. Furthermore, both measurements are worst-case measures, that is, we are
interested in studying how well an algorithm works on its hardest instances for the
given problem.

When analyzing and classifying online algorithms with respect to their competitive
ratios, we speak of competitive analysis. As with the approximation ratio, the
competitive ratio is not necessarily constant, but may be a function of the input
length 𝑛. We use the following terminology.

• If the competitive ratio of some online algorithm Alg is at most 𝑐, where 𝑐
is a constant, we call Alg competitive or (depending on whether this holds
for 𝛼 = 0) strictly competitive. If an online algorithm does not possess a
competitive ratio with an upper bound that is independent of the input length,
we call it not competitive.

13

Chapter 1. Introduction

• It is fine to call an online algorithm competitive if its competitive ratio depends
on some parameter of the studied problem such as, for instance, the cache size
𝑘 when we are dealing with the paging problem. Such parameters are known
to the online algorithm in advance.

• There are, however, problems where we have to be very careful with this
classification. For instance, in Chapter 5 we will deal with a problem for which
the input length is bounded from above by a parameter of the problem.

Another difference between the competitive ratio and the approximation ratio is
that the former uses an additive constant 𝛼 in its definition, which is not present
in the definition of the approximation ratio. This constant plays an important
role in an online setting. If we consider an (offline) approximation algorithm that
works well on all but finitely many instances, we can always include finitely many
exceptions in our algorithm. In an online setting, this is not possible since an
online algorithm cannot distinguish these exceptional cases at the beginning of its
computation. However, using an appropriate value of 𝛼, we can also cope with a
finite number of exceptions here. To prove lower bounds, the constant 𝛼 forces us to
construct infinitely many instances with increasing costs or gains. It is not sufficient
to construct a finite number of instances, not even an infinite number where the costs
or gains are bounded by some constant. Let us give an example of a hypothetical
online minimization problem to illustrate this point.

Example 1.1. Consider some online minimization problem Π and suppose we can
show that, for every online algorithm Alg for Π, there is an instance 𝐼 on which
it has a cost of at least 10, while the optimal solution Opt(𝐼) has cost 1. We are
now tempted to conclude that every online algorithm for Π is at best 10-competitive.
If we have a closer look at Definition 1.6, however, we see that this is actually not
allowed. In fact, there may still be 1-competitive online algorithms for Π, because, if
we choose 𝑐 = 1 and 𝛼 = 9, the inequality

cost(Alg(𝐼)) ≤ 1 · cost(Opt(𝐼)) + 9

from Definition 1.6 still holds if we just plug in the values cost(Alg(𝐼)) = 10 and
cost(Opt(𝐼)) = 1.

On the other hand, suppose we can give a set of infinitely many instances of Π
such that, for every such instance of length 𝑛, every online algorithm has a cost of
at least 10𝑛, while Opt has cost 𝑛. In this case, we may indeed state that every
online algorithm for Π is at best 10-competitive. There is no constant 𝛼 such that,
for some arbitrarily small constant 𝜀 > 0 and any instance 𝐼 from above, we have

cost(Alg(𝐼)) ≤ (10 − 𝜀) · cost(Opt(𝐼)) + 𝛼 ,

as

10𝑛 ≤ (10 − 𝜀)𝑛 + 𝛼 ⇐⇒ 𝛼 ≥ 𝜀𝑛

leads to a contradiction to the fact that 𝛼 is constant. ♢

14

1.2. Online Algorithms and Paging

Next, we formalize this observation; we start with online minimization problems.
Suppose there is a set of instances ℐ = {𝐼1, 𝐼2, . . .} such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such
that the number of different input lengths in ℐ is infinite. Furthermore, suppose we
can show that, for every online algorithm Alg,

cost(Alg(𝐼𝑖))
cost(Opt(𝐼𝑖))

≥ 𝑐(𝑛) , (1.2)

where 𝑛 = |𝐼𝑖| and 𝑐 : N+ → R+ is a function that increases unboundedly with 𝑛. If
Alg were competitive, there would be two constants 𝑐′ and 𝛼 such that

cost(Alg(𝐼𝑖)) ≤ 𝑐′ · cost(Opt(𝐼𝑖)) + 𝛼 ,

and together with (1.2) we obtain

(𝑐(𝑛) − 𝑐′) · cost(Opt(𝐼𝑖)) ≤ 𝛼,

which is a contradiction (under the reasonable assumption that the optimal cost is
bounded from below by a positive constant). Therefore, whenever we show a lower
bound on the competitive ratio that increases unboundedly with the input length,
we do not need to consider 𝛼 at all; in this case, we can conclude that the given
online algorithm is not competitive. Note that the same argumentation holds for any
function 𝑐′ with 𝑐′(𝑛) ∈ 𝑜(𝑐(𝑛)). Now let us consider competitive online algorithms.

Theorem 1.2. Let Π be an online minimization problem, and let ℐ = {𝐼1, 𝐼2, . . .}
be an infinite set of instances of Π such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such that the number
of different input lengths in ℐ is infinite. If there is some constant 𝑐 ≥ 1 such that

(i) cost(Alg(𝐼𝑖))
cost(Opt(𝐼𝑖))

≥ 𝑐 , for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

cost(Opt(𝐼𝑖)) = ∞ ,

for any online algorithm Alg, then there is no (𝑐 − 𝜀)-competitive online algorithm
for Π, for any 𝜀 > 0.

Proof. For a contradiction, suppose that both conditions (i) and (ii) are satisfied,
but there still is a (𝑐 − 𝜀)-competitive online algorithm Alg′ for Π, for some 𝜀 > 0.
Thus, by the definition of the competitive ratio, there is a constant 𝛼 such that

cost
(︀
Alg′(𝐼𝑖)

)︀
≤ (𝑐 − 𝜀) · cost(Opt(𝐼𝑖)) + 𝛼 ,

and thus (assuming that the optimal cost is never zero)

cost(Alg′(𝐼𝑖))
cost(Opt(𝐼𝑖))

− 𝛼

cost(Opt(𝐼𝑖))
≤ 𝑐 − 𝜀 , (1.3)

for every 𝑖 ∈ N+. Due to condition (i), the first term of (1.3) is at least 𝑐. Furthermore,
(ii) implies that there are infinitely many instances for which the second term of (1.3)
is smaller than 𝜀, which is a direct contradiction. �

15

Chapter 1. Introduction

Instead of speaking of 𝑐 − 𝜀, we will sometimes (unless some 𝜀 is explicitly used
in a proof) simply state that there is no online algorithm that is “better than 𝑐-
competitive.” However, formally it could still be the case that there is, for instance,
some (𝑐 − 1/𝑛)-competitive online algorithm. Then, (1.3) does not necessarily lead
to a contradiction with (ii). Throughout this book, in this context “better than” will
always mean “better by some arbitrarily small constant 𝜀.” Moreover, sometimes we
will not define the set ℐ explicitly, but only speak of one “representative” instance.

For maximization problems, we can prove a statement analogous to Theorem 1.2.
Theorem 1.3. Let Π be an online maximization problem, and let ℐ = {𝐼1, 𝐼2, . . .}
be an infinite set of instances of Π such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such that the number
of different input lengths in ℐ is infinite. If there is some constant 𝑐 ≥ 1 such that

(i) gain(Opt(𝐼𝑖))
gain(Alg(𝐼𝑖))

≥ 𝑐 , for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

gain(Opt(𝐼𝑖)) = ∞ ,

for any online algorithm Alg, then there is no (𝑐 − 𝜀)-competitive online algorithm
for Π, for any 𝜀 > 0.

Proof. Again, we do not need to consider 𝛼 when the given online algorithm is not
competitive. For a contradiction, suppose that both conditions (i) and (ii) hold, but
there is a (𝑐 − 𝜀)-competitive online algorithm Alg′ for Π, for some 𝜀 > 0. It follows
that there is some constant 𝛼 such that

gain(Opt(𝐼𝑖))
gain(Alg′(𝐼𝑖))

− 𝛼

gain(Alg′(𝐼𝑖))
≤ 𝑐 − 𝜀 , (1.4)

for every 𝑖 ∈ N+. Since, due to (i) and (ii), Alg′ would not be competitive if its
gain were bounded by a constant, we can assume that

lim
𝑖→∞

gain
(︀
Alg′(𝐼𝑖)

)︀
= ∞ . (1.5)

Due to (i), the first term of (1.4) is at least 𝑐; due to (1.5), there are infinitely many
instances for which the second term is smaller than 𝜀, which is a contradiction. �

To sum up, if we are not speaking about the strict competitive ratio, but allow
𝛼 > 0 when proving lower bounds, we will always try to construct an infinite set
of instances such that the conditions (i) and (ii) of Theorem 1.2 (Theorem 1.3,
respectively) are satisfied when dealing with online minimization (maximization,
respectively) problems.

To this end, for paging, we will use the concept of phases, which consist of a
number of consecutive time steps. We then show that every online algorithm is worse
than an optimal solution by some factor 𝑐 within one phase, and that it is possible
to repeat phases for an arbitrary number of times. Thus, 𝑐 is a lower bound on the
competitive ratio of any online algorithm for paging. Before we start investigating
the problem in terms of upper and lower bounds on the achievable competitive ratio,
we define it formally.

16

1.2. Online Algorithms and Paging

Definition 1.7 (Paging). The paging problem is an online minimization prob-
lem. Let there be 𝑚 memory pages 𝑝1, 𝑝2, . . . , 𝑝𝑚, which are all stored in the
main memory, where 𝑚 is some positive integer. An instance is a sequence
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), such that 𝑥𝑖 ∈ {𝑝1, 𝑝2, . . . , 𝑝𝑚}, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,
that is, the page 𝑥𝑖 is requested in time step 𝑇𝑖. An online algorithm Alg for
paging maintains a cache memory of size 𝑘 with 𝑘 < 𝑚, which is formalized
by a tuple 𝐵𝑖 = (𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘

) for time step 𝑇𝑖. At the beginning, the cache
is initialized as 𝐵0 = (𝑝1, 𝑝2, . . . , 𝑝𝑘), that is, with the first 𝑘 pages. If, in
some time step 𝑇𝑖, a page 𝑥𝑖 is requested and 𝑥𝑖 ∈ 𝐵𝑖−1, Alg outputs 𝑦𝑖 = 0.
Conversely, if 𝑥𝑖 /∈ 𝐵𝑖−1, Alg has to choose a page 𝑝𝑗 ∈ 𝐵𝑖−1, which is then
removed from the cache to make room for 𝑥𝑖. In this case, Alg outputs 𝑦𝑖 = 𝑝𝑗

and the new cache content is 𝐵𝑖 = (𝐵𝑖−1 ∖ {𝑝𝑗}) ∪ {𝑥𝑖}. The cost is given by
cost(Alg(𝐼)) = |{𝑖 | 𝑦𝑖 ̸= 0}| and the goal is to minimize this number.

Note that our definition imposes some restrictions on algorithms designed for the
problem, such as that it is impossible to remove pages if there is no page fault. We
will see shortly that this is not as restrictive as it may seem; at some points, however,
we will allow this constraint to be violated.

To consolidate our feeling for the problem, let us consider a simple instance of
paging before we start the formal analysis.

Example 1.2. Suppose 𝑘 = 6, there are 𝑚 pages 𝑝1, 𝑝2, . . . , 𝑝𝑚 in total, and ac-
cording to Definition 1.7 the cache is initialized as

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 .

Now suppose that we are given an instance 𝐼 = (𝑝4, 𝑝7, 𝑝5, 𝑝1, . . .). In time step
𝑇1, page 𝑝4 is requested, which is already in the cache; thus, any online algorithm
outputs “0” and there is no cost caused in this time step. The next request is page
𝑝7, and therefore some page needs to be removed from the cache to make room.
Assume page 𝑝1 gets chosen to be replaced by 𝑝7, which leads to the situation

𝑝7 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 .

After that, page 𝑝5 can be loaded directly from the cache and again causes no cost.
In time step 𝑇4, however, the cache content needs to be changed once more, as 𝑝1 is
not present anymore. Hence, after four time steps, the cost is 2. It is easy to see
that a strategy which replaced, for instance, 𝑝4 instead of 𝑝1 in time step 𝑇2, only
has a cost of 1 at this point. ♢

Having every algorithm start with the same pages in the cache seems to be a
reasonable assumption. What we are interested in is to measure how well an online
algorithm works compared to what it could hypothetically achieve in the given
situation. Thus, we compare its solution to an optimal one that has the same

17

Chapter 1. Introduction

starting situation. As a matter of fact, also this assumption is less restrictive than it
seems, because the head start that may come with a different cache content at the
beginning can be hidden in the constant 𝛼 from Definition 1.6.

Moreover, as already discussed, Definition 1.7 implies that an online algorithm for
paging only removes a page from the cache if the currently requested page is not
already in the cache; we call such algorithms demand paging algorithms. Of course,
we could also think of an alternative definition where a page, or even an arbitrary
number of pages, may be removed from and loaded into the cache in every time step.
However, it can easily be shown that this does not give an online algorithm any
advantage.

Exercise 1.4. Suppose that we change Definition 1.7 such that algorithms may start with
different cache contents. Prove that this does not change the competitive ratio of any online
algorithm Alg. More precisely, show that if Alg is 𝑐-competitive for paging as formalized
in Definition 1.7, then Alg is also 𝑐-competitive if Opt has a different set of pages in its
cache at the beginning.

Exercise 1.5. Show that an online algorithm that is allowed to replace an arbitrary number
of pages in every time step can be converted to a demand paging algorithm, that is, an
online algorithm that is in accord with Definition 1.7, without increasing its cost. Of course,
for such an online algorithm the cost measurement changes. Such an algorithm pays 1 for
each replacement of a page in the cache.

Exercise 1.6. So far, it cannot happen that the cache contains empty cells at any point in
time, as it is full initially (with the pages 𝑝1, 𝑝2, . . . , 𝑝𝑘), and the only operation to change
the cache is to replace a page with another one. In what follows, we will study an online
algorithm that is allowed to remove some pages from the cache without loading other pages
into it. Show that also such an algorithm can be converted into a demand paging algorithm
without increasing its cost. Again, the cost measurement has to be changed. Here, the
removal of a page from the cache is free, while loading a page into the cache causes cost 1.

As already mentioned, an (online) algorithm for paging is basically defined by the
strategy that it follows when a page fault occurs and a page in its cache (the victim
page) needs to be replaced. There are many different strategies an algorithm may
follow; let us describe a few.

• First In First Out (FIFO). With this strategy, the cache is organized as a
queue. If a page must be evicted from the cache, the one residing in the cache
for the longest time is chosen. The first 𝑘 pages may be removed arbitrarily.

• Last In First Out (LIFO). This strategy is the counterpart to FIFO since it
organizes the cache as a stack. In case of a page fault, the page that was most
recently loaded into the cache is removed from the cache. On the first page
fault, an arbitrary page may be replaced.

• Least Frequently Used (LFU). On a page fault, the page is removed that was
so far used least frequently. Ties are broken arbitrarily.

18

1.3. An Upper Bound for Paging

• Least Recently Used (LRU). Here, on a page fault, the page is removed that
was last requested least recently. Also here, the first 𝑘 pages may be removed
arbitrarily.

• Flush When Full (FWF). The cache gets completely emptied (“flushed”) if a
page is requested that is not already in the cache and there is no empty cell.
This strategy does not comply with Definition 1.7 since it is not a demand
paging strategy; it may remove multiple pages on a page fault, but only loads
pages into the cache if the requested page is not already present. As stated
in Exercise 1.6, we assume that only loading a page into the cache causes
cost 1. An online algorithm that uses the FWF strategy can be converted
to be in accord with Definition 1.7 without increasing the cost (as stated in
Exercise 1.6).

• Longest Forward Distance (LFD). Here, on a page fault, the page is removed
whose next request will be the latest.

In what follows, we denote, for instance, by Fifo an (online) algorithm that
implements the FIFO strategy. Clearly, Lfd is an offline algorithm as it requires
knowledge about the future input to replace a page. The other strategies are online
strategies, but they have different solution qualities in terms of competitive analysis.
The next sections are devoted to studying them in more detail.

1.3 An Upper Bound for Paging
In the preceding section, we defined that an online algorithm is competitive if its
competitive ratio 𝑐 is bounded by a constant with respect to the input length. For
paging, this means that 𝑐 may depend on both the cache size 𝑘 and the size of the
main memory 𝑚. Three of the above online algorithms are 𝑘-competitive, so their
solution qualities do not at all depend on the number of pages that are available
in total. As an example, we will consider Fifo; but before that, we introduce an
important tool that will prove to be helpful in the subsequent analysis.

Definition 1.8 (𝑘-Phase Partition). Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an arbi-
trary instance of paging. A 𝑘-phase partition of 𝐼 assigns the requests from 𝐼 to
consecutive disjoint phases 𝑃1, 𝑃2, . . . , 𝑃𝑁 such that

• phase 𝑃1 starts with the first request for a page that is not initially in
the cache. Then, 𝑃1 contains a maximum-length subsequence of 𝐼 that
contains at most 𝑘 distinct pages;

• for any 𝑖 with 2 ≤ 𝑖 ≤ 𝑁 , phase 𝑃𝑖 is a maximum-length subsequence of 𝐼
that starts right after 𝑃𝑖−1 and again contains at most 𝑘 distinct pages.

19

Chapter 1. Introduction

It is crucial to note that a phase does not necessarily end right after 𝑘 distinct
pages were requested, but right before a (𝑘 + 1)th one is requested. The last phase
of a 𝑘-phase partition is not necessarily complete. It is also important to note that
a 𝑘-phase partition is defined on inputs, and not for algorithms; let us look at an
example.

Example 1.3. Suppose we are dealing with paging with cache size 5, and we are
given an input

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4, 𝑝2, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1, 𝑝8, 𝑝7, 𝑝6) .

Recall that the cache is initialized as (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5). Then we obtain a 𝑘-phase
partition

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4⏟ ⏞
𝑃1

, 𝑝2, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1⏟ ⏞
𝑃2

, 𝑝8, 𝑝7, 𝑝6⏟ ⏞
𝑃3

) ,

where the last phase 𝑃3 is incomplete. Observe that if we shift the phases by one,
that is, if we consider the partition

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4, 𝑝2⏟ ⏞
𝑃 ′

1

, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1, 𝑝8⏟ ⏞
𝑃 ′

2

, 𝑝7, 𝑝6⏟ ⏞
𝑃 ′

3

)

instead, there are still at least 𝑘 distinct pages requested during any one phase
(except during the last one 𝑃 ′

3). However, there are two differences between the
previous phases and these ones. First, they do not have maximum length (with
respect to containing 𝑘 different pages) anymore; and second, since the first page
requested in 𝑃𝑖+1 was different from all pages in 𝑃𝑖, we observe that in 𝑃 ′

𝑖 there are
𝑘 distinct pages requested that are different from the last page requested before 𝑃 ′

𝑖

starts. ♢

We now use a 𝑘-phase partition of the given input to analyze Fifo.

Theorem 1.4. Fifo is strictly 𝑘-competitive for paging.

Proof. Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be any instance of paging and consider 𝐼’s 𝑘-phase
partition 𝑃1, 𝑃2, . . . , 𝑃𝑁 according to Definition 1.8. Without loss of generality, we
assume that 𝑥1 /∈ {𝑝1, 𝑝2, . . . , 𝑝𝑘}, that is, the sequence starts with a page fault for
any algorithm.

Let us consider a fixed phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . First, we show that Fifo does
not cause more than 𝑘 page faults during 𝑃𝑖. By definition, there are at most 𝑘
distinct pages requested during this phase. Let 𝑝 be the first page that causes a page
fault for Fifo during 𝑃𝑖. Then, out of all pages requested during 𝑃𝑖, 𝑝 will be the
first one that is removed again, and can thus cause a second page fault (for the same
page). When 𝑝 gets loaded into the cache, there are 𝑘 − 1 pages in the cache that
get removed from the cache before 𝑝. Thus, 𝑝 stays in the cache for the next 𝑘 − 1

20

1.4. A Lower Bound for Paging

page faults, and consequently no page causes more than one page fault during one
phase. Therefore, there are at most 𝑘 page faults in total during one phase.

Second, we argue that a fixed optimal solution Opt(𝐼) has to make at least one
page fault for every phase. To this end, we shift all phases by one as in Example 1.3,
leading to a new partition 𝑃 ′

1, 𝑃 ′
2, . . . , 𝑃 ′

𝑁 , where 𝑃 ′
𝑁 might be the empty sequence;

however, the first 𝑁 − 1 shifted phases must be complete. As already observed, since
the phases 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 − 1 had maximum length, the phase 𝑃 ′

𝑖 now contains
requests to 𝑘 pages that differ from the page 𝑝′ that was last requested before the
start of 𝑃 ′

𝑖 . We know that 𝑝′ is in the cache of Opt at the beginning of 𝑃 ′
𝑖 . Since

there are 𝑘 more requests different from 𝑝′, Opt has to cause one page fault during
𝑃 ′

𝑖 . This adds up to 𝑁 − 1 page faults for Opt(𝐼) plus an additional one on 𝑥1 at
the beginning of 𝐼.

Since Fifo causes at most 𝑁 · 𝑘 page faults in total while Opt causes at least 𝑁 ,
it follows that Fifo is strictly 𝑘-competitive. �

By similar reasoning to the preceding proof, it can be shown that Lru and (which
might be surprising) Fwf are also strictly 𝑘-competitive.

Exercise 1.7. Prove that Lru is strictly 𝑘-competitive for paging.

Exercise 1.8. Prove that Fwf is also strictly 𝑘-competitive for paging. Recall that you
need to change the definition of a paging algorithm for this case; Fwf has cost 1 whenever
it loads a page into the cache (see Exercise 1.6).

Exercise 1.9. We define a different phase partition to the one in Definition 1.8, which
now depends on the online algorithm Fifo. The first phase 𝑃Fifo,1 ends after the first page
fault that is caused by Fifo. Every subsequent phase has a length that is such that Fifo
causes exactly 𝑘 page faults in it; the phase ends right after the 𝑘th page fault occurred.
Formally, phase 𝑃Fifo,𝑖 ends immediately after Fifo made (𝑖 − 1)𝑘 + 1 page faults. The last
phase may be shorter. Use this phase partition to show that Fifo is 𝑘-competitive.

Does your proof show that Fifo is strictly 𝑘-competitive?

Exercise 1.10. Fifo experiences a phenomenon that is known as Bélády’s anomaly, which
states that there are instances on which Fifo causes more page faults if it has a larger
cache. Find such an instance.
Hint. It suffices to consider two cache sizes 3 and 4 and a total number of nine pages.

1.4 A Lower Bound for Paging
We now know that there are 𝑘-competitive online algorithms for paging. But are
these algorithms strongly competitive? In other words, is this the best we can hope
for or are there online algorithms which outperform Fifo, Fwf, and Lru?

The answer is that there is nothing better from a worst-case point of view. This
means that, for every online algorithm Alg, there are infinitely many instances of
paging for which Alg’s cost is at least 𝑘 times larger than the optimal cost. To

21

Chapter 1. Introduction

model such hard instances, we think of an adversary that constructs a hard instance
𝐼 while knowing the online algorithm Alg we want to analyze. In a way, Alg and
the adversary are two players in a game and they have directly opposing goals (in
Section 2.4, we will have a closer look at this point of view). As paging is an online
minimization problem, this means that the adversary tries to make Alg have a cost
that is as large as possible compared to the cost of an optimal solution Opt(𝐼) for 𝐼
and thereby to maximize the competitive ratio of Alg. If not stated otherwise, we
will assume that we are dealing with demand paging algorithms as in Definition 1.7;
with the considerations above (in particular, Exercises 1.5 and 1.6), we know that
this does not cause any restriction.

Theorem 1.5. No online algorithm for paging is better than 𝑘-competitive.

Proof. Let 𝑚 = 𝑘 +1, that is, we only require that there are pages 𝑝1, 𝑝2, . . . , 𝑝𝑘+1 in
total; let 𝑛 be some multiple of 𝑘. Recall that the cache is initialized as (𝑝1, 𝑝2, . . . , 𝑝𝑘),
and we consider an arbitrary online algorithm Alg for paging. Obviously, there is
exactly one page, at any given time step, that is not in the cache of Alg. The whole
idea is that the adversary always requests exactly this page to obtain an instance 𝐼
of length 𝑛. Since it knows Alg, it can always foresee which page will be replaced
by Alg if a page fault occurs.

output “𝑝𝑘+1” ; // Inevitable page fault
𝑖 := 1;
while 𝑖 ≤ 𝑛 − 1 do

𝑝 := the page that is currently not in the cache of Alg;
output “𝑝” ;
𝑖 := 𝑖 + 1;

end

Algorithm 1.2. Adversary for any paging algorithm.

More formally, consider Algorithm 1.2, which creates the instance 𝐼 of length 𝑛
for Alg by following this strategy. It is easy to see that this instance causes a page
fault for Alg in every time step, and thus a total cost of 𝑛. However, this is not
sufficient to prove the claim. The competitive ratio compares this value to what
could have been achieved on 𝐼 if it had been known; in other words, we need to
study the optimal cost on this instance as well.

To do so, we again divide the input into distinct consecutive phases. This time,
one phase consists of exactly 𝑘 time steps, that is, Alg makes exactly 𝑘 page faults
within a phase (recall that 𝑛 is a multiple of 𝑘). If we can show that Opt causes at
most one page fault in every phase, we are done. Consider the first phase 𝑃1. In
time step 𝑇1, every algorithm causes a page fault as the requested page 𝑝𝑘+1 is not
in the cache by definition. Opt can now choose one of the pages 𝑝1, 𝑝2, . . . , 𝑝𝑘 to
be removed to load 𝑝𝑘+1. 𝑃1 consists of exactly 𝑘 − 1 more time steps, so at most

22

1.4. A Lower Bound for Paging

𝑘 − 1 more distinct pages are requested. Therefore, there is at least one page 𝑝′

among 𝑝1, 𝑝2, . . . , 𝑝𝑘 that is not requested during this phase, and Opt chooses 𝑝′ to
be removed in time step 𝑇1. There may be more than one such page, in which case
Opt chooses the page whose first request is the latest among all such pages (Opt
therefore implements the offline strategy Lfd).

We can use the same argument for any other phase 𝑃𝑖 with 2 ≤ 𝑖 ≤ 𝑁 . The
only difference is that Opt does not surely cause a page fault in the first time
step 𝑇(𝑖−1)𝑘+1 of this phase, but it may cause a page fault later or even not at all.
However, whenever a page fault occurs, by the same reasoning as for phase 𝑃1, there
must be some page that is not requested anymore during phase 𝑃𝑖 and that may
therefore be safely removed from the cache.

Finally, we need to deal with the additive constant 𝛼 from Definition 1.6. If the
number of page faults caused by Opt is constant, Alg is not competitive. On the
other hand, if the number of page faults increases with 𝑛, Theorem 1.2 implies that
Alg cannot be better than 𝑘-competitive. �

We see that the adversary can guarantee that any online algorithm causes a page
fault in every time step. Thus, with respect to the pure cost, all online algorithms are
equally bad. Then again, for instance, Fifo outperforms Lifo when these strategies
are analyzed according to their competitive ratios. This is due to the fact that Fifo
keeps pages it just loaded in the cache for a longer time than Lifo.
Theorem 1.6. Lifo is not competitive for paging.

Proof. To prove the claim, we show that, for every 𝑛, there is an instance 𝐼 of paging
of length 𝑛 such that cost(Lifo(𝐼))/cost(Opt(𝐼)) grows proportionally with 𝑛. To
this end, we give an instance of length 𝑛 that always requests the same two pages;
again, it suffices to choose 𝑚 = 𝑘 + 1. The adversary again first requests 𝑝𝑘+1, and
since all pages 𝑝1, 𝑝2, . . . , 𝑝𝑘 are in the cache at the beginning, Lifo removes some
fixed page from the cache, say 𝑝𝑖. Since the adversary knows that Lifo chooses 𝑝𝑖,
it requests it in time step 𝑇2 and Lifo removes 𝑝𝑘+1, which is now the page that
was last loaded into the cache. Then, Lifo must remove 𝑝𝑖 in time step 𝑇3 when
the adversary again requests 𝑝𝑘+1. The adversary continues in this fashion, that is,
𝐼 is given by

(𝑝𝑘+1, 𝑝𝑖, 𝑝𝑘+1, 𝑝𝑖, . . .) .

In every time step, Lifo causes a page fault while there is an optimal solution
Opt(𝐼) that removes a page 𝑝𝑗 with 𝑗 ̸= 𝑖 in time step 𝑇1 and has cost 1 overall,
because it has 𝑝𝑖 and 𝑝𝑘+1 in its cache from that point on. �

So we see that there is a significant difference between Fifo and Lifo. This is not
very surprising; intuitively it seems like a bad idea to immediately remove a page
from the cache that was just loaded into it. What about Lfu? Here, an intuitive
point of view might suggest more success; we learn from what happened so far,
namely, we replace a page that was in some sense the least valuable up to now.
Unfortunately, this strategy is not much better in the worst case.

23

Chapter 1. Introduction

Theorem 1.7. Lfu is not competitive for paging.

Proof. The proof is only slightly more complex than the one for Lifo from Theo-
rem 1.6. For every 𝑛′, consider the instance 𝐼 given by

(𝑝1, 𝑝1, . . . , 𝑝1⏟ ⏞
𝑛′ requests

, 𝑝2, 𝑝2, . . . , 𝑝2⏟ ⏞
𝑛′ requests

, . . . , 𝑝𝑘−1, 𝑝𝑘−1, . . . , 𝑝𝑘−1⏟ ⏞
𝑛′ requests

, 𝑝𝑘+1, 𝑝𝑘, . . . , 𝑝𝑘+1, 𝑝𝑘⏟ ⏞
2(𝑛′−1) requests

)

of length 𝑛 := (𝑘−1)𝑛′+2(𝑛′−1). In the first (𝑘−1)𝑛′ time steps, no online algorithm
causes a page fault, and after that, all pages in the cache have been requested 𝑛′

times except for 𝑝𝑘. Thus, when 𝑝𝑘+1 is requested in time step 𝑇(𝑘−1)𝑛′+1, Lfu
removes 𝑝𝑘, which is the page in the cache that was used least frequently. Next, the
adversary requests 𝑝𝑘, and this is iterated until both pages 𝑝𝑘 and 𝑝𝑘+1 have been
requested exactly 𝑛′ − 1 times each. Clearly, Lfu makes a page fault in each of the
last 2(𝑛′ − 1) time steps. On the other hand, an optimal solution Opt(𝐼) simply
removes a page 𝑝𝑗 with 𝑗 ̸= 𝑘 in time step 𝑇(𝑘−1)𝑛′+1 and causes no more page faults.
Since

𝑛′ = 𝑛 + 2
𝑘 + 1 ,

the competitive ratio of Lfu can be bounded from below by

2(𝑛′ − 1) = 2(𝑛 − 𝑘 + 1)
𝑘 + 1 ,

which is a linear function in 𝑛. �

According to Definition 1.6, neither Lifo nor Lfu are competitive; however, if we
take a closer look, the lower bound on the competitive ratio of Lifo is stronger than
that of Lfu by a factor which tends to (𝑘 + 1)/2 with growing 𝑛.

Exercise 1.11. We have defined Lfu such that it keeps track of all 𝑚 pages and removes
one of the pages that was least frequently used in the sum. Suppose the algorithm forgets
the number of accesses of pages that are not in the cache and initializes it with 1 for every
page that is loaded. Does this give a stronger lower bound?

Exercise 1.12. Now consider the online algorithm Max that always replaces the page in
its cache that has the largest index, that is, for any cache content 𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑘 , the page
𝑝𝑗 with 𝑗 = max{𝑖1, 𝑖2, . . . , 𝑖𝑘} is removed in case of a page fault. Is Max competitive? If
so, prove an upper bound on the competitive ratio that is as good as possible. If not, show
that Max has no constant competitive ratio. How about an online algorithm Min that is
defined accordingly?

Exercise 1.13. Consider the following online algorithm Walk that replaces the page at
position 1 + ((𝑖 − 1) mod 𝑘) in the cache on the 𝑖th page fault. Less formally, it replaces
the pages in the order they are stored in the cache, continuing with the first cell if it used
the 𝑘th one for the preceding page fault. Argue why Walk is 𝑘-competitive.

24

1.5. Marking Algorithms

Exercise 1.14. A phenomenon that is observed in practical settings is locality of reference,
that is, that pages are likely to be requested consecutively if they are located next to each
other. We want to make use of this fact and define an algorithm Local that always removes
the page whose page index is farthest away from the requested one on a page fault (ties are
broken arbitrarily). Is Local competitive?

1.5 Marking Algorithms
Now that we have established a lower bound on any paging algorithm and a matching
upper bound for some specific strategies, we want to focus on a more general concept,
the so-called marking algorithms. This class of algorithms plays an important role
in the context of randomized computation for paging, which we will study in the
following chapter.

A marking algorithm works in phases and marks pages that were already requested;
it only removes pages that are not marked. If all pages in the cache are marked and
a page fault occurs, the current phase ends, and a new one starts by first unmarking
all pages in the cache. Before processing the first request, all pages get marked such
that the first request that causes a page fault starts a new phase. The pseudo-code
of a marking algorithm is shown in Algorithm 1.3.

mark all pages in the cache; // First page fault starts new phase
for every request 𝑥 do

if 𝑥 is in the cache
if 𝑥 is unmarked

mark 𝑥;
output “0”;

else
if there is no unmarked page

unmark all pages in the cache; // Start new phase
𝑝 := somehow chosen page among all unmarked cached pages;
remove 𝑝 and insert 𝑥 at the old position of 𝑝;
mark 𝑥;
output “𝑝”;

end

Algorithm 1.3. General scheme of a marking algorithm for paging.

We now show that this general concept allows for strongly competitive online
algorithms by using the concept of phases as in the proof of Theorem 1.4. More
precisely, we will prove that the phases of marking algorithms correspond to the
phases of a 𝑘-phase partition from Definition 1.8. Except possibly the last one, a
phase of a marking algorithm consists of a maximum-length sequence of requests for
𝑘 different pages. This makes it very easy for us to argue why such an algorithm
makes at most 𝑘 page faults in one phase.

25

Chapter 1. Introduction

Theorem 1.8. Every marking algorithm is strictly 𝑘-competitive for paging.

Proof. Let Mark be a fixed marking algorithm; let 𝐼 denote the given input and
consider its 𝑘-phase partition into 𝑁 phases 𝑃1, 𝑃2, . . . , 𝑃𝑁 according to Definition 1.8.
By the same argument as in the proof of Theorem 1.4, we conclude that any optimal
algorithm Opt makes at least 𝑁 page faults in total on 𝐼.

What remains to be done is to show that Mark makes at most 𝑘 page faults in one
fixed phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . We denote the 𝑁 phases explicitly defined by Mark
by 𝑃Mark,1, 𝑃Mark,2, . . . , 𝑃Mark,𝑁 and claim that both 𝑁 = 𝑁 and 𝑃𝑗 = 𝑃Mark,𝑗 , for
all 𝑗 with 1 ≤ 𝑗 ≤ 𝑁 . Since Mark makes at most 𝑘 page faults in one phase 𝑃Mark,𝑖

(clearly, there cannot be more page faults than pages marked at the end of 𝑃Mark,𝑖),
the claim follows. We first observe that both 𝑃1 and 𝑃Mark,1 start with the first
request that causes a page fault. Every phase 𝑃𝑖 except the last one is by definition a
maximum-length sequence of 𝑘 distinct requests. Every requested page gets marked
by Mark after being requested. If 𝑘 distinct pages were requested, all pages in
Mark’s cache are marked. With the (𝑘 + 1)th distinct page 𝑝′ being requested since
the beginning of 𝑃𝑖, a new phase 𝑃𝑖+1 starts. In this time step, Mark also starts a
new phase 𝑃Mark,𝑖+1, as there is no unmarked page left in its cache to replace with
𝑝′. Thus, the phases 𝑃𝑖 and 𝑃Mark,𝑖 coincide. As a consequence, Mark makes at
most 𝑘 page faults per phase and the claim follows. �

It can be shown that some of the online algorithms we discussed are in fact marking
algorithms, although they do not explicitly mark pages.

Theorem 1.9. Lru is a marking algorithm.

Proof. To prove the claim means to show that Lru never removes a page that is
currently marked by some marking algorithm. For a contradiction, suppose that Lru
is not a marking algorithm. Then there is some instance 𝐼 such that Lru removes
a page that is marked. Let 𝑝 be the page for which this happens for the first time,
and denote the corresponding time step by 𝑇𝑗 with 1 ≤ 𝑗 ≤ 𝑛 during some phase
𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . Since 𝑝 is marked, it must have been requested before during
𝑃𝑖, say in time step 𝑇𝑗′ with 𝑗′ < 𝑗. After that, 𝑝 was most recently used; thus, if
Lru removes 𝑝 in time step 𝑇𝑗 , there must have been 𝑘 distinct requests following
time step 𝑇𝑗′ that are all different from 𝑝; the first 𝑘 − 1 cause 𝑝 to become least
recently used afterwards, and on the 𝑘th such request 𝑝 is removed according to
Lru. As a consequence, 𝑃𝑖 consists of at least 𝑘 + 1 different requests, which is a
direct contradiction to the definition of a 𝑘-phase partition. �

Exercise 1.15. Prove that Fwf is also a marking algorithm.

Exercise 1.16. How about Lifo and Fifo? Justify your answer.

26

1.6. Refined Competitive Analysis

1.6 Refined Competitive Analysis
Competitive analysis, as we studied it so far, is a pure worst-case measurement; it
formalizes a framework in which, for any given online algorithm, the worst possible
situation is met. Actually, it might be quite a realistic setting to assume some
additional knowledge about the input. There are numerous attempts to get a more
realistic model for such situations. In Chapter 3, we will introduce a very general
method to deal with additional information and its quantification. At this point,
we only want to pick two more specific approaches to give more power to online
algorithms for paging.

1.6.1 Lookahead
The straightforward approach to give an online algorithm an advantage compared to
the classical model is to enable it to have some lookahead, that is, to allow it to look
into the future for ℓ time steps. It might be surprising, but this knowledge does not
help to improve the competitive ratio. Consider paging with lookahead ℓ; this means
that, in any time step, an online algorithm Algℓ sees the current request together
with the subsequent ℓ requests. Since the adversary we use to model hard instances
knows Algℓ, it surely knows ℓ and may therefore proceed as follows.

Each request is repeated ℓ times such that Alg is still somewhat “in the dark”
in the time step where it has to replace a page. We again only need to consider
the case where 𝑚 = 𝑘 + 1. The first ℓ + 1 requests all ask for the only page that is
not in the cache initially, that is, 𝑝𝑘+1. In the first time step, Algℓ must replace a
page, but it cannot see which page is requested in time step 𝑇ℓ+2. Therefore, the
additional knowledge is completely useless, and the adversary can simply request 𝑝𝑖

which Algℓ replaces in time step 𝑇1. When Algℓ then must find a page to replace
with 𝑝𝑖, it only knows the prefix

(𝑝𝑘+1, 𝑝𝑘+1, . . . , 𝑝𝑘+1⏟ ⏞
ℓ requests

, 𝑝𝑖, 𝑝𝑖, . . . , 𝑝𝑖⏟ ⏞
ℓ requests

, . . .)

of the input 𝐼, which again does not help.
Continuing in this fashion, the adversary can ensure that Algℓ causes a page fault

every ℓ + 1 time steps. With the same reasoning as in the proof of Theorem 1.5,
Opt(𝐼) causes at most one page fault every 𝑘(ℓ + 1) time steps. For such inputs of
length 𝑛, Algℓ causes 𝑛/(ℓ+1) page faults, while Opt(𝐼) causes at most 𝑛/(𝑘(ℓ+1)).
As a result, the competitive ratio of Algℓ has a lower bound of 𝑘.
Theorem 1.10. No online algorithm with lookahead ℓ for paging is better than
𝑘-competitive. �

1.6.2 Resource Augmentation
Another principle to improve the chances of an online algorithm against the adversary
is called resource augmentation. Here, we allow the online algorithm to use more

27

Chapter 1. Introduction

resources than the optimal offline algorithm. What this means in detail depends on
the problem at hand. For paging, Opt is only allowed to use a cache size of ℎ ≤ 𝑘
for the same input; this problem is called the (ℎ, 𝑘)-paging problem. We assume
that Opt’s cache is initialized with the first ℎ pages 𝑝1, 𝑝2, . . . , 𝑝ℎ. This problem is
a generalization of paging as we studied it until now, which can just be viewed as
(𝑘, 𝑘)-paging.
Theorem 1.11. Every marking algorithm is 𝑘/(𝑘 − ℎ + 1)-competitive for (ℎ, 𝑘)-
paging.

Proof. The proof follows from an easy modification of the proof of Theorem 1.4. Let
Mark be any marking algorithm. Once more, consider the 𝑘-phase partition of a
given input 𝐼. For any given phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 , we know that Mark causes
at most 𝑘 page faults as shown in the proof of Theorem 1.8.

To bound the number of page faults that Opt(𝐼) causes, let us again shift the
phases by one to obtain a new partition 𝑃 ′

1, 𝑃 ′
2, . . . , 𝑃 ′

𝑁 ; again, 𝑃 ′
𝑁 may be empty.

Let 𝑝 be the first request during the phase 𝑃𝑖. Then, Opt’s cache contains ℎ − 1
pages at the beginning of 𝑃 ′

𝑖 that are different from 𝑝, and since, for any 𝑖 with
1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑘 distinct pages (that are all different from 𝑝) are requested within
𝑃 ′

𝑖 , Opt(𝐼) has to make 𝑘 − (ℎ − 1) page faults.
In the first 𝑁 − 1 phases, Mark causes (𝑁 − 1)𝑘 page faults whereas Opt(𝐼)

causes (𝑁 − 1)(𝑘 − (ℎ − 1)) page faults. In 𝑃𝑁 , Mark causes at most 𝑘 page faults;
on the other hand, Opt(𝐼) causes one additional page fault with the first request of
𝑃1. A competitive ratio of at most 𝑘/(𝑘 − (ℎ − 1)) follows, where we set the additive
constant 𝛼 from Definition 1.6 to 𝑘 − 1. �

Observe that Theorem 1.11 does not claim strict competitiveness, whereas we
know from Theorem 1.8 that the competitive ratio is indeed strict for ℎ = 𝑘. This is
due to the fact that we know that Opt(𝐼) has to make one page fault right before 𝑃 ′

1,
which we can then assign to the at most 𝑘 page faults a marking algorithm causes in
the last phase 𝑃𝑁 . Obviously, an analogous argument for ℎ < 𝑘 does not work (we
would have to assign 𝑘 − (ℎ − 1) page faults of the optimal solution to the at most 𝑘
page faults of the marking algorithm).

We will briefly revisit resource augmentation for the 𝑘-server problem in Chapter 4,
and when studying the online knapsack problem in Chapter 6.

Exercise 1.17. What happens if we assume 𝑘 < ℎ instead of ℎ ≤ 𝑘?

Exercise 1.18. Show that the bound of Theorem 1.11 is tight, that is, that no online
algorithm is better than 𝑘/(𝑘 − ℎ + 1)-competitive for (ℎ, 𝑘)-paging.

1.7 Historical and Bibliographical Notes
As already mentioned, Turing machines were introduced by Turing [138] in 1936.
Two major subjects in the kernel of theoretical computer science are computability

28

1.7. Historical and Bibliographical Notes

theory and complexity theory, which are both basically built around this model.
Of course, our introduction was extremely short and incomplete. There is a very
rich literature on computability and computational complexity, for instance, the
textbooks written by Arora and Barak [11], Hopcroft et al. [78], Hromkovič [79, 80],
Papadimitriou [122], and Sipser [130]. As for approximation algorithms, both
Hromkovič [79] and Vazirani [139] give very good introductions.

Today we know that testing whether a given number is prime can be done in
polynomial time [1].

The algorithm Kruskal from Exercise 1.3 is known as Kruskal’s algorithm and
named after Kruskal, who first published it in 1956 [110]. In Chapter 8, we will
introduce an online version of the MSTP and exploit Kruskal’s optimality.

The decision version of the knapsack problem (more precisely, a variant that is
called the subset sum problem) is among “Karp’s 21 𝒩 𝒫-complete problems” [93]. In
other words, it was one of the first problems ever to be proven to be 𝒩 𝒫-complete.
For the optimization version, there is a pseudo-polynomial-time algorithm that is
based on dynamic programming [79,139]. Ibarra and Kim [84] used this approach to
design an FPTAS. Therefore, the offline version of the problem is one of the easier
𝒩 𝒫-hard problems. More details about the knapsack problem and its variants are,
for instance, given in the textbook by Kellerer et al. [94]. The Christofides algorithm
for the TSP was introduced in 1976 by Christofides [44].

Competitive analysis was introduced in 1985 by Sleator and Tarjan [131]. The
lower bound of 𝑘 for paging was also proven in this paper (even the more general
result from Exercise 1.18 that makes use of resource augmentation); the authors also
showed that Lru is 𝑘-competitive. Bélády proved that Lfd (which he called Min,
not to be confused with the online algorithm from Exercise 1.12) is an optimal offline
algorithm for paging [18]. The terms competitive and strongly competitive were first
used in this context by Karlin et al. [92].

“Online Computation and Competitive Analysis” from Borodin and El-Yaniv [34]
is certainly the standard textbook on online algorithms and gives both a broad and
deep introduction to the topic. Additionally, there are many excellent surveys on
online algorithms by, for instance, Albers [4, 6], Fiat and Woeginger [63], and Irani
and Karlin [86].

Although Fifo, Fwf, and Lru achieve the same competitive ratio from our
theoretical point of view, it has been pointed out that this does not reflect what
is observed in practice [34, 47]. The criticism has been made that the idea of
competitive analysis is not sufficiently fine-grained as it is, in general, too pessimistic
[6, 20, 38, 54, 62, 86, 107]; in other words, many algorithms that perform very well
in practice are considered to be very weak with respect to competitive analysis. A
more detailed survey of the different refinements of competitive analysis that were
proposed since its introduction is given by Fiat and Woeginger [62] and in Chapter 3
of the dissertation of Dorrigiv [56].

Bélády’s anomaly (see Exercise 1.10) was first observed by Bélády, Nelson, and
Shedler [19].

29

Chapter 1. Introduction

Due to the fact that a usual lookahead does not help, Albers followed a different
approach by introducing and using a so-called strong lookahead that enables the
algorithm to see ℓ pairwise distinct future requests [5]. This more powerful knowledge
about the future does indeed help for paging. Let ℓ ≤ 𝑘 − 2; then there is an online
algorithm (basically a variant of the abovementioned strategy Lru) with strong
lookahead ℓ that is (𝑘 − ℓ)-competitive, and this bound is tight. The concept of
resource augmentation was introduced by Kalyanasundaram and Pruhs [89, 90]
(though implicitly used earlier [50, 131]), and since then used for a number of
problems [50, 123]. Iwama and Zhang [88] and Han and Makino [75] used this
relaxation of pure competitive analysis to study online versions of the knapsack
problem; for this problem, we combine resource augmentation and computing with
advice in Chapter 6.

30

	1
Introduction
	1.1 Offline Algorithms
	1.2 Online Algorithms and Paging
	1.3 An Upper Bound for Paging
	1.4 A Lower Bound for Paging
	1.5 Marking Algorithms
	1.6 Refined Competitive Analysis
	1.6.1 Lookahead
	1.6.2 Resource Augmentation

	1.7 Historical and Bibliographical Notes

