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Preface

The design and analysis of algorithms deals with extracting certain information
from instances of computational problems. In a way, this information is “hidden” in
the instances, and usually the aim is to come up with a clever way to obtain the
desired information with as little effort (for instance, using as little space and time)
as possible. In online computation, we are facing a situation that somewhat diverges
from this setting. Here, the instance is not known in advance, but we gradually get
to know it piece by piece over time. However, parts of the final output must already
be created before the whole input is known. As an example, consider the paging
problem, which we will study in the first three chapters of this book. In a nutshell,
the task is to manage the cache of a computer that can contain a small fraction of
the data that is needed during computation. All the data is stored in the larger and
much slower main memory, and our goal is to minimize the number of accesses to this
slow memory. In other words, the cache should be managed with the goal in mind
that the required data is available in the cache as often as possible. The smallest
unit of data that can be moved from the main memory to the cache is called a page.
If a requested page is currently not in the cache, it must be loaded into the cache
by replacing another page, since we assume that the CPU can only directly access
the cache but not the main memory. This must of course be done during runtime,
that is, the pages are requested while the operating system is running and executing
programs that require different pages in some order. Thus, the basic question that
we ask when dealing with this problem is “Which page should be replaced if we do
not know anything about the pages that are requested afterwards?”

In this book, we study online computation in different settings. The book it
organized as follows. Every chapter begins with an overview of its content and con-
cludes with some bibliographical remarks, historical notes, and literature for further
reading. The first three chapters each introduce a different model of computation
in an online environment—deterministic, randomized, and with advice. We use the
paging problem to serve as an example for each of them.
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We start with a very brief description of computing problems and then focus on the
concept of computing online. Chapter 1 investigates what can be done in this setting
when assuming that the requested data arrives in a worst possible manner. Such
a worst-case analysis will be used throughout this book. The output of an online
algorithm is compared to that of an optimal (offline) algorithm for the given problem;
this approach is known as competitive analysis. In this context, “optimal” means
that the algorithm knows the whole input, and thus has an enormous advantage
compared to the online algorithm which is analyzed. To model worst-case instances,
we introduce an adversary that knows the given online algorithm, and constructs the
input such that it makes the online algorithm perform as badly as possible compared
to an optimal algorithm. Of course, the existence of such an optimal algorithm
is merely hypothetical, and it usually obtains a solution quality that cannot be
reached when computing online. We illustrate what can be done when dealing with
such a situation for the aforementioned paging problem. In particular, we survey
different strategies to manage the cache, such as first in first out, last in first out,
least frequently used, and least recently used. More over, we analyze a broad class of
online algorithms for paging called marking algorithms.

We study the power of randomized computation, that is, algorithms that produce
output that is based on randomness, in Chapter 2. In this case, we assume that
the adversary still knows the algorithm, but it does not know the outcomes of the
random decisions. Here, we compare the expected value of the online algorithm’s
solution quality to an optimal output on instances which are again constructed by
the adversary in a worst-case manner. We will see in Section 2.2 that this allows the
design of online algorithms which are exponentially better (in expectation) than any
online algorithm that does not use randomness. To show that this result cannot be
asymptotically improved, we learn about a lower-bound technique for randomized
(online) algorithms, called Yao’s principle. Moreover, the ski rental problem is
used as another example in order to compare deterministic and randomized online
computation.

A major focus of this book which distinguishes it from other works (and there
are very good ones, see Section 1.7) is that we will always try to be very specific
about the information which is hidden in a given instance. In online computation, we
usually do not care about the running time of the algorithms we construct or study;
we are more interested in what we are losing due to computing without knowing
the whole input (one might say “the future”). The advice complexity of an online
algorithm, which is introduced in Chapter 3, measures the amount of information
that is needed to obtain a given solution quality. For every online problem we study,
we will pose the question of how much we must know about the input to perform
well; in a way, this is the information content of the problem. Knowing some simple
characteristic helps a lot in some cases; in others, full knowledge of the input is
required. This additional knowledge is called advice, and as a measurement, the
advice complexity (in simple words, the size of the advice) tries to gain some insight
into what makes an online problem hard. We first investigate how much advice is
both necessary and sufficient to design online algorithms for the paging problem
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that achieve a certain (for instance, optimal) solution quality. Then we make a
general observation that connects online algorithms with advice and randomized
online algorithms.

The following five chapters are each devoted to a single online problem, each of
which is investigated with respect to the above three models of computation.

Chapter 4 studies the 𝑘-server problem, which is one of the most prominent online
problems. It is of particular interest since, unlike the paging problem, it is not fully
understood. This is remarkable as the question “How well can a deterministic or
randomized online algorithm perform for the 𝑘-server problem?” is unanswered for
more than 25 years. We first study some simple subclasses of the problem, and then
focus on what can be done when given advice. These results have some interesting
implications for randomized online algorithms for the 𝑘-server problem.

Chapter 5 deals with a special variant of online scheduling where two partially
unknown sequences of tasks should be processed in such a way that as much work
as possible is parallelized. For this problem, we are mostly interested in comparing
randomized online algorithms to those with advice. It turns out that, for this
problem, the difference between whether information about the yet unknown parts
of the input is supplied or just guessed is rather small.

In Chapter 6, we study an online version of the knapsack problem, and our aim is
to give a complete picture of what is possible in each of the above three cases. This
is done for both the simple and the general version of the problem. In particular,
the former has an intriguing behavior when it comes to how much advice is both
sufficient and necessary to obtain a certain solution quality. On the one hand, the
case of no additional information leads to a situation where any deterministic online
algorithm can be forced by the adversary to perform arbitrarily badly. On the other
hand, as little as one single bit of advice allows for a solution that is never worse
than twice as bad as an optimal one. Any additional bit of advice does not change
this until advice is given which has a length that is logarithmic in the input length;
this much advice can be used to get a solution that is worse than an optimal one
only by a constant factor arbitrarily close to 1. However, to be optimal instead of
almost optimal, linear advice is necessary instead of only logarithmic advice.

Chapter 7 studies the bit guessing problem, which is a very generic problem that
basically captures the essence of what it means to “compute online.” Results about
deterministic and randomized online algorithms for the problem can be obtained
in a rather straightforward manner. However, our main focus is to use results on
the hardness of bit guessing to allow statements about the hardness of other online
problems by a special kind of reduction. We construct such reductions for three
online problems, namely the 𝑘-server problem, the online set cover problem, and the
disjoint path allocation problem.

Finally, we study different online graph problems in Chapter 8. In the online
setting considered, the vertices arrive in an online fashion; a vertex is revealed
together with all edges that connect it to previously revealed vertices. We start with
the coloring problem and present results for both deterministic online algorithms
and online algorithms with advice. Last, we investigate an online version of the
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minimum spanning tree problem. Here, we are particularly interested in connections
between the online and offline versions of the problem when dealing with special
graph classes.

This book by no means claims or even tries to be complete in any sense. It should
be understood as an introduction to a selected set of topics that are met in online
computation. There are, however, many other topics that are not addressed. For
a start, there are many different models that are all worth studying but which are
not investigated here. There are, for instance, different types of adversaries when
dealing with randomization in online computation that do have knowledge about
some of the random decisions made by the online algorithms. Furthermore, there
are approaches different to that of competitive analysis such as assuming some
probability distribution over inputs instead of having an adversary pick one. As a
matter of fact, competitive analysis was often criticized for being too pessimistic,
which is why a large number of refined models were introduced; this is also one of
the reasons why we study the advice complexity as a complementary measurement
asking questions that go beyond “How good can an online algorithm be for a given
problem?” and that are more along the lines of “What is it that makes a given
problem hard?” However, there are also different models of computing with advice
that we will not study in detail in this book; they are described in Section 3.6. Last,
there are of course many other online problems out there, many of which both pose
and answer interesting questions about the power of determinism, randomization,
and advice in online settings.

The Audience
This book is intended for computer science students that have some basic knowledge
in algorithmics and discrete mathematics; for instance, it is assumed that the
reader knows what a binomial coefficient is, how the expected value of a discrete
random variable is computed, how to read and apply the Landau symbols (big-𝒪
notation), and how a worst-case analysis of a given approximation algorithm is done.
Basically, the reader should be familiar with how theoretical computer scientists see
the world. However, most of the ideas and techniques presented in this book are
built on basic fundamentals. All in all, a sufficient preparation should been given
by an undergraduate course on theoretical computer science, algorithms and data
structures, and discrete mathematics.

At any point, the notation is kept as simple and basic as possible, and the intuition
behind the proofs is given, and not just the mathematical details. There are, however,
some theorems that are stated without a proof. In this case, pointers to these proofs
can be found in the section “Historical and Bibliographical Notes” at the end of
the corresponding chapter. Sections marked with “⋆” are technically advanced, but
should still be suitable for students on a graduate level.

Another goal of this book is to be useful to researchers who are interested in the
concept of advice complexity, and how to apply it. To this end, the basic principles
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are discussed in detail, and put into context. Different techniques to obtain lower
and upper bounds are described and used, and the reader is challenged to apply her
or his knowledge in the exercises. Altogether, there are 101 of them; the solutions
are given at the end of this book. The idea behind these exercises is to gain a deeper
insight into some details, to try alternative proofs, and, most importantly, to get
a good intuition and technical understanding of the results. Most exercises can be
answered by readers at an undergraduate level. Exercises that are technically more
challenging are again marked with “⋆.”
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1Introduction

This chapter introduces the concept of computing online, after briefly looking at
algorithms from a more general perspective. As a starting point, we consider
optimization problems and 𝒩 𝒫-hardness on a very high level. Next, we describe one
of the strategies used to attack such problems, namely approximation algorithms.
As an example, we have a quick look at the simple knapsack problem, which is one
of the most famous 𝒩 𝒫-hard maximization problems. We study this problem as we
will meet it again later in this book; in Chapter 6, we formulate an online version of
the problem where we make use of our insights into the greedy strategy for the offline
version. The goal is to quickly recall what we understand as computing problems
and algorithms, not to give an introduction to the topic; we assume that the reader
is already familiar with these concepts. The objective of these first few pages is to
put into context what we learn next.

After that, we formally introduce the main topic of this book: online computation,
that is, algorithms that work on problem instances which they do not know from
the start, but that get revealed piece by piece. These algorithms are called online
algorithms, and they are commonly analyzed using so-called competitive analysis,
which compares their solution to an optimal one; this is a concept that is strongly
related to studying the approximation ratios of algorithms described in the afore-
mentioned setting. We start by giving a formal definition, which we link to the
paging problem. Paging, as it is defined in this book, is a very simplified version of
what is met in practical settings; a simple two-level memory hierarchy is assumed
that consists of a small fast memory, called the cache, and a larger slow memory.
The objective is to manage the memory such that the slow memory is accessed as
rarely as possible. The problem is motivated by the difference in speed between the
main memory and the CPU. Note that, from a practical point of view, we should be
speaking of caching in this context, but we use the terminology that is established
in the area of online algorithms. We are not concerned with the technical details of
this problem, but we want to break it down to its essence. Paging will accompany
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Chapter 1. Introduction

us in Chapters 2 and 3, where we introduce two different models of computation,
namely randomized computation and computation with advice. In this chapter, we
state some basic results and present fundamental techniques to analyze deterministic
online algorithms, and make clear to which points we need to pay special attention.
For paging, we introduce some important strategies and give upper and lower bounds
on their competitive ratios (analogously to the approximation ratio, the competitive
ratio roughly corresponds to the factor by which a solution computed by an online
algorithm is worse than an optimal solution). To analyze the latter, we consider
worst-case instances and introduce a hypothetical adversary that tries to make the
online algorithm at hand perform as badly as possible. We show an upper bound on
the competitive ratio that solely depends on the given cache size 𝑘; this is done by
proving that an online algorithm that implements a simple first in first out (FIFO)
strategy (basically treating the cache like a queue) achieves this competitive ratio.
This bound is tight as there is an adversary that can make sure that no online
algorithm can be more successful in general. Interestingly, we also show that FIFO’s
counterpart, that is, a last in first out (LIFO) strategy, is a lot worse, as is a least
frequently used (LFU) strategy. After that, we introduce the general concept of
marking algorithms for the paging problem. This class of algorithms, which contains
algorithms that implement a least recently used (LRU) strategy, is also shown to
achieve a competitive ratio of 𝑘. Finally, we quickly touch upon two ideas to possibly
grant an online algorithm an advantage over the adversary, namely seeing into the
future for a little bit, or having a larger cache than the optimal algorithm that the
online algorithm is compared against.

1.1 Offline Algorithms
The term algorithm may without hesitation be called the central notion of computer
science; it is the formal description of a strategy to solve a given instance of a
problem. It is important to point out that this description is finite, but it should be
applicable to every instance of the problem although there may be infinitely many.
The origin of the word dates back to Muh. ammad ibn Mūsā al-Khwārizmı̄, a Persian
mathematician, who lived in the eighth and ninth century. In computer science, we
are concerned with the study of these algorithms to both explore what is doable by
means of computers, that is, which kind of work can be automated, and how well it
can be done when satisfying certain conditions such as, for instance, bounding the
time spent to solve the problem.

The investigation of the first point is based on one of the major breakthrough
results of twentieth-century science. There are well-defined problems that cannot be
solved algorithmically, that is, no matter how powerful a computer’s resources will
be at some point, it will not be able to answer these questions. In 1936, Alan Turing
wrote his pioneering paper “On computable numbers with an application to the
Entscheidungsproblem,” introducing a formal definition of the notion of algorithm
and then (using arguments similar to those in the proof of Gödel’s fundamental
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1.1. Offline Algorithms

Incompleteness Theorem) showing that, for some particular problems, algorithms
cannot give a correct answer. Today, we call his formalization the Turing machine in
his honor. The informal term algorithm is formalized by Turing machines that always
finish their work in finite time (they “halt”). Most computer scientists agree that
these hypothetical machines do indeed formalize what we understand as algorithms.
Since then, a lot of effort has been made to further refine Turing’s result, and
nowadays the field of computability is one of the cornerstones of theoretical computer
science.

One such question that we cannot answer algorithmically in general is the halting
problem, which asks

Does a given Turing machine halt on a given input or does it run forever?

Even though there are only two possible answers, namely “yes” and “no,” no
algorithm can figure out the correct answer for all possible Turing machines. We
call such a problem a decision problem. In this book, we only deal with computable
problems, that is, problems for which, in principle, algorithms can compute a solution.
As an example, such a computable decision problem can be given by the question

Is a given natural number a prime number?

Obviously, there are infinitely many instances of this problem, namely all natural
numbers. Moreover, we can find a finite description to answer this question for any
given such number 𝑥 ∈ N. If 𝑥 is either 0 or 1, we answer “no,” and otherwise we
check for every number 𝑦 ∈ {2, 3, . . . , ⌊

√
𝑥⌋} whether it divides 𝑥. If we find such a

𝑦, we answer “no,” otherwise we answer “yes.”
In what follows, we usually ask questions that do not have a simple answer like

“yes” or “no,” but are more involved. A typical such question is

Given a traffic network, what is the fastest tour that visits all cities on
the map exactly once and returns to the starting point?

The above problem is the famous traveling salesman problem (TSP) and we know
that, given enough time, we can answer it with the fastest tour there is, for any given
instance. The next definition formalizes such an optimization problem; there are two
different objectives, either to minimize some cost or to maximize some gain; we thus
speak of minimization or maximization problems. For the TSP, we want to minimize
some cost, namely the total traveling time that is associated with every tour.
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Definition 1.1 (Optimization Problem). An optimization problem Π con-
sists of a set of instances ℐ, a set of solutions 𝒪, and three functions sol : ℐ →
𝒫(𝒪), quality : ℐ × 𝒪 → R, and goal ∈ {min,max}. For every instance 𝐼 ∈ ℐ,
sol(𝐼) ⊆ 𝒪 denotes the set of feasible solutions for 𝐼. For every instance 𝐼 ∈ ℐ
and every feasible solution 𝑂 ∈ sol(𝐼), quality(𝐼,𝑂) denotes the measure of 𝐼 and
𝑂. An optimal solution for an instance 𝐼 ∈ ℐ of Π is a solution Opt(𝐼) ∈ sol(𝐼)
such that

quality(𝐼,Opt(𝐼)) = goal{quality(𝐼,𝑂) | 𝑂 ∈ sol(𝐼)} .

If goal = min, we call Π a minimization problem and write “cost” instead of
“quality.” Conversely, if goal = max, we say that Π is a maximization problem
and write “gain” instead of “quality.”

We call an algorithm consistent for a given problem Π if it computes a feasible
solution for every given instance (input). We denote the solution computed by an
algorithm Alg on an instance 𝐼 by Alg(𝐼). When, for instance, considering a
minimization problem, we denote the cost incurred by Alg on the instance 𝐼 by
cost(𝐼,Alg(𝐼)); likewise, for maximization problems, we write gain(𝐼,Alg(𝐼)) for
the gain of Alg’s solution when given 𝐼. To have an easier notation, we usually
simply write cost(Alg(𝐼)) or gain(Alg(𝐼)), respectively.

We now have a framework of (computable) optimization problems and algorithms
to solve them. However, not only from a practical point of view, we are typically not
satisfied to merely know that we are able to design an algorithm to solve some given
problem; we would also like to get the solution while obeying some given restrictions.
One such restriction might be an upper bound on the running time of the algorithm
at hand. Here, computer scientists consider an algorithm efficient if its running
time is in 𝒪(𝑛𝑘) for all inputs of length 𝑛 and some natural number 𝑘 which is
independent of 𝑛; we call such algorithms polynomial-time algorithms. Consider our
algorithm for testing whether a given natural number is a prime number, and let
us call this algorithm Prime. Furthermore, assume that the input 𝑥 is encoded as
a binary string of length 𝑛. We can roughly estimate the running time of Prime
as follows. Due to its length, 𝑥 has a size of around 2𝑛; if 𝑥 is prime, Prime tests
the divisibility of 𝑥 for roughly

√
2𝑛 = 2𝑛/2 natural numbers and thus its running

time grows exponentially in 𝑛; hence, Prime is not efficient. Of course, if 𝑥 is not a
prime, but, say, divisible by 2, Prime finishes with the answer “no” very quickly;
but we are interested in the worst-case behavior of the algorithms we study, and we
keep this point of view throughout this book.

All decision problems that can be solved in polynomial time are members of the
class 𝒫. The class 𝒩 𝒫 contains all decision problems Π for which we can verify in
polynomial time that, for all instances of Π that have the answer “yes,” the answer
is indeed “yes.” The exact relation between the two classes 𝒫 and 𝒩 𝒫 is surely one
of the most important and famous questions in computer science and mathematics.
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1.1. Offline Algorithms

It is easy to see that 𝒫 ⊆ 𝒩 𝒫 ; of course, if we can decide whether a given instance
of a decision problem is a “yes” instance, we can also verify that this is the case.
However, we do not know yet whether the above inclusion is strict, that is, whether

𝒫 ( 𝒩 𝒫 or 𝒫 = 𝒩 𝒫

is true. In the following, we will assume the former, that is, 𝒫 ̸= 𝒩 𝒫. To at least
identify a class of problems in 𝒩 𝒫 that are promising candidates to be outside 𝒫,
one defines a class of problems that are “hard” in the sense that the ability to solve
any of them in polynomial time immediately allows us to solve all problems in 𝒩 𝒫 in
polynomial time. These problems, which are not necessarily decision problems, are
called 𝒩 𝒫-hard. The TSP is such a problem; primality testing is not. If a problem
is 𝒩 𝒫-hard and a member of 𝒩 𝒫 , it is called 𝒩 𝒫-complete.

Unless 𝒫 = 𝒩 𝒫 , we cannot hope for an algorithm that works in polynomial time
for an 𝒩 𝒫-hard optimization problem. We can, however, sometimes at least hope
to get a “good” solution in a time that is acceptable. This means that we pay
with accuracy (such a solution will not be optimal in general), but we can get a
satisfactory upper bound on the time we need to spend; such solutions are computed
by approximation algorithms, which we formally define in what follows.

Definition 1.2 (Approximation Algorithm). Let Π be an optimization
problem, and let Alg be a consistent algorithm for Π. For 𝑟 ≥ 1, Alg is an
𝑟-approximation algorithm for Π if, for every 𝐼 ∈ ℐ,

gain(Opt(𝐼)) ≤ 𝑟 · gain(Alg(𝐼))

if Π is a maximization problem, or

cost(Alg(𝐼)) ≤ 𝑟 · cost(Opt(𝐼))

if Π is a minimization problem.
The approximation ratio of Alg is defined as

𝑟Alg := inf{𝑟 ≥ 1 | Alg is an 𝑟-approximation algorithm for Π} .

In general, 𝑟 (and thus 𝑟Alg) is not necessarily constant, but may be a function
that depends on the input length 𝑛. Intuitively, a 2-approximation algorithm for
a minimization problem Π is thus an algorithm that computes, for any instance
𝐼 of Π, an output such that the cost of this solution is never more than twice as
large as the cost of an optimal solution. What we want are of course approximation
algorithms that are efficient, that is, work in polynomial time. For the TSP, which
we described above, there is, for instance, a polynomial-time 3/2-approximation
algorithm, known as the Christofides algorithm, if the input satisfies certain natural
conditions. However, if these conditions are not met, it can be proven that there are
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instances of the TSP of length 𝑛 such that there is no polynomial-time approximation
algorithm with an approximation ratio bounded by any polynomial in 𝑛.

Now let us consider the following maximization problem. Suppose you want to
pack a number of objects into a knapsack with a given weight capacity. Each such
object has an assigned weight that also corresponds to its value and is given by a
positive integer. The input is described by the weights of the objects and the weight
capacity of the knapsack. The goal is to maximize the total value of the objects
packed.

Definition 1.3 (Simple Knapsack Problem). The simple knapsack prob-
lem is a maximization problem. An instance 𝐼 is given by a sequence of 𝑛+ 1
positive integers 𝐵,𝑤1, 𝑤2, . . . , 𝑤𝑛, where we consider 𝑤𝑖 with 1 ≤ 𝑖 ≤ 𝑛 to
be the weight of the 𝑖th object; 𝐵 is the capacity of the knapsack. A feasible
solution for 𝐼 is any set 𝑂 ⊆ {1, 2, . . . , 𝑛} such that∑︁

𝑖∈𝑂
𝑤𝑖 ≤ 𝐵 .

The gain of a solution 𝑂 and a corresponding instance 𝐼 is given by

gain(𝐼,𝑂) =
∑︁
𝑖∈𝑂

𝑤𝑖 .

The goal is to maximize this number.

In the following, we assume that the weight of every object is smaller than 𝐵.
This makes sense as all objects that are heavier than the knapsack’s capacity cannot
be part of any solution and may thus be neglected. It is well known that there is
no polynomial-time algorithm for the simple knapsack problem that solves every
given instance optimally, unless 𝒫 = 𝒩 𝒫 . This problem will be very interesting for
us later in a different setting; for now, we just want to give an easy idea of how to
approximate optimal solutions in reasonable time. More precisely, we give a simple
2-approximation algorithm that works in polynomial time. The idea is to first sort
the objects 𝑤1, 𝑤2, . . . , 𝑤𝑛 in descending order (with respect to their weights) and
then follow what is called a greedy strategy.

This simply means to pack objects into the knapsack starting with the heaviest
one, then the second heaviest, and so on, as long as there is space left in the knapsack;
the corresponding algorithm KnGreedy is shown in Algorithm 1.1.

It is easy to see that the running time of KnGreedy is in 𝒪(𝑛 log 𝑛). Sorting 𝑛
integers can be done in 𝒪(𝑛 log 𝑛) and after that, every object is inspected at most
one more time. It is not much more difficult to show that the gain of any solution
computed by KnGreedy is at least half as large as the optimal gain.

Theorem 1.1. KnGreedy is a polynomial-time 2-approximation algorithm for the
simple knapsack problem.
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𝑂 := ∅; // Initialization
𝑠 := 0;
𝑖 := 0;
sort 𝑤1, 𝑤2, . . . , 𝑤𝑛; // Preprocessing; we assume that

// now 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛

while 𝑖 < 𝑛 and 𝑠+ 𝑤𝑖+1 ≤ 𝐵 do // Pack objects greedily
𝑂 := 𝑂 ∪ {𝑖+ 1};
𝑠 := 𝑠+ 𝑤𝑖+1;
𝑖 := 𝑖+ 1;

output 𝑂;
end

Algorithm 1.1. KnGreedy for the simple knapsack problem.

Proof. Consider any instance 𝐼 = (𝐵,𝑤1, 𝑤2, . . . , 𝑤𝑛) of the simple knapsack problem,
and assume without loss of generality that 𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛. We distinguish two
cases with respect to the total weight of the objects in 𝐼.
Case 1. If all objects fit into the knapsack, then KnGreedy is even optimal, as it

packs all of them.
Case 2. Thus, we assume that the total weight is larger than 𝐵, and distinguish two

more cases depending on the weight of the largest object in 𝐼.
Case 2.1. Suppose there is an object 𝑤𝑖 of weight at least 𝐵/2. We then have
𝑤1 ≥ 𝐵/2 and 𝑤1 is always packed into the knapsack. Since 𝐵 is an upper
bound for any solution, it follows that the approximation ratio of KnGreedy
is at most 2 in this case.

Case 2.2. Suppose that the weights of all objects are smaller than 𝐵/2, and let 𝑗
be the index of the first object that is too heavy to be packed into the knapsack
by KnGreedy. It follows from our assumption that 𝑤𝑗 < 𝐵/2, and this implies
that the space that is already occupied by the objects 𝑤1, 𝑤2, . . . , 𝑤𝑗−1 must be
larger than 𝐵/2. Thus, we immediately get an approximation ratio of at most 2
also in this case.

We conclude that KnGreedy is a polynomial-time 2-approximation algorithm
for the simple knapsack problem. �

An example instance and the corresponding solution computed by KnGreedy
are shown in Figure 1.1. Note that the greedy strategy works due to the preceding
sorting of the weights of the objects. We now quickly discuss the tightness of our
analysis of this algorithm. For any 𝑛 ≥ 3 and any arbitrarily large even 𝐵, consider
an instance 𝐼 that consists of a capacity 𝐵 and the sequence

𝐵

2 + 1, 𝐵2 ,
𝐵

2 , . . . ,
𝐵

2⏟  ⏞  
𝑛−1 times

(1.1)
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(a) The original instance

(b) The sorted instance

𝐵

(c) The solution

Figure 1.1. The greedy strategy; first sort, then pack greedily what fits.

of weights. If given 𝐼 as input, KnGreedy packs the first object into the knapsack,
which results in a situation where no more objects may be packed; thus, we have
gain(KnGreedy(𝐼)) = 𝐵/2 + 1. On the other hand, any optimal solution Opt(𝐼)
for 𝐼 may safely pack any two objects into the knapsack except the first one, and
therefore gain(Opt(𝐼)) = 𝐵. It follows that

𝑟KnGreedy ≥ gain(Opt(𝐼))
gain(KnGreedy(𝐼)) = 𝐵

𝐵
2 + 1

= 2
1 + 2

𝐵

,

which tends to 2 with increasing 𝐵.
This sums up our first ideas of how to deal with optimization problems that are in

general regarded as infeasible. We pay with accuracy, and we gain speed in return. Of
course, there are smarter methods to deal with the (simple) knapsack problem than
just following a simple greedy approach. In particular, there is an algorithm that
achieves an approximation ratio of 1+𝜀 running in time 𝒪(𝑛3 ·1/𝜀), for every constant
𝜀 > 0; such an algorithm that achieves an arbitrarily good approximation ratio 1 + 𝜀
in a time that is polynomial both in 𝑛 and 1/𝜀 is called a fully polynomial-time
approximation scheme (FPTAS).

Exercise 1.1. Algorithm 1.1 shows a very naive implementation of KnGreedy as it
already stops packing objects into the knapsack after one object is encountered that is too
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heavy. However, there might still be smaller objects in the input. Would it help to consider
them? How would the analysis change?

Exercise 1.2. As an input, an algorithm for the TSP expects a complete graph with edge
weights that are positive real numbers; a feasible solution is a Hamiltonian cycle in the
given graph, and the goal is to output such a cycle with minimum cost (the cost being
the sum of all weights of edges that it consists of). The greedy algorithm TSPGreedy
starts with an arbitrary vertex and follows an edge of minimum weight to a yet unvisited
neighboring vertex; this is iterated until all 𝑛 vertices are visited. Then, the last and first
vertex are connected to obtain a Hamiltonian cycle. Argue on an intuitive level why this
approach is bad for the TSP.

We will revisit TSPGreedy in Chapter 8. Although greedy strategies are bad for
many other optimization problems, they will play an important role throughout this
book. Let us therefore end this section with the remark that there are optimization
problems for which they work quite well. One such problem is the minimum spanning
tree problem (MSTP) to which we will also return in Chapter 8.

Exercise 1.3. An algorithm for the MSTP also expects a complete graph 𝐺 with edge
weights that are positive real numbers as input. The goal is to compute a minimum spanning
tree of 𝐺, that is, a subgraph of 𝐺 that is connected, does not contain any cycles, contains
all vertices, and that has minimum cost. Consider the following greedy algorithm Kruskal.
If 𝑛 denotes the number of vertices of 𝐺, Kruskal works in 𝑛− 1 rounds. In every round,
an edge 𝑒 of 𝐺 is chosen to be part of the solution; 𝑒 is an edge of minimum weight that is
not yet chosen and that does not close a cycle with respect to the already chosen edges.
Prove that Kruskal always computes an optimal solution.

1.2 Online Algorithms and Paging
As described above, an algorithm computes a well-defined output for any given
instance of a computational problem. In this context, we have, so far, briefly spoken
about efficient approximation algorithms for 𝒩 𝒫-hard problems. In other words, we
have imposed certain requirements on the algorithms we want to study; we demanded
that they have a polynomial running time while producing an output for any instance
of the given problem. If 𝒫 ̸= 𝒩 𝒫, we may thus only hope to get an approximate
solution. In the following, we want to focus on another restriction that we encounter
in practice. Here, we are not concerned with not taking too much time, but with
the fact that we do not know the whole instance of the problem at hand in advance.
Until now, we assumed that from the start we have all information available that we
need to compute a solution.

This assumption may be unrealistic in scenarios such as the following. From a
practical point of view, the basic design principle of modern computers follows the
von Neumann architecture. Computers suffer from the fact that the CPU is usually
a lot faster than its main memory, which leads to a bad overall performance as
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Figure 1.2. A schematic view of an environment in which we study paging. In the
main memory, pages with indices 1, 2, . . . , 𝑚 are stored, while a small subset of them is
currently stored in the cache of size 𝑘 ≪ 𝑚.

the CPU cannot be utilized to its full extent. To overcome this drawback, another
memory, the so-called cache, is introduced. This memory is a lot faster than the
main memory; however, it is therefore also a lot more expensive and thus smaller.

Now we consider the important task of an operating system to manage the cache
in such a way that we need to access the main memory as rarely as possible. We
want to study the essence of what makes this problem hard, and thus we look at
a simplified version of the problem; see Figure 1.2. In a practical setting, we are
confronted with a much more complicated situation, and there are usually many
different levels of caches; here, we only deal with a two-level memory hierarchy. More
precisely, for our theoretical investigations, we make the following assumptions.

• There are two different types of memory, namely the aforementioned main
memory and the cache.

• Both of them may store chunks of data of a fixed size, which we call pages; we
assume that each page has a size of 1.

• The main memory can store 𝑚 pages, denoted by 𝑝1, 𝑝2, . . . , 𝑝𝑚, the cache can
store 𝑘 pages; we assume that there are 𝑚 pages in total.

• As the cache is a lot more expensive than the main memory, we have 𝑚 ≫ 𝑘.
• The input is subdivided into discrete time steps 𝑇1, 𝑇2, . . . , 𝑇𝑛. During such a

time step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛, exactly one page is requested, that is, needed in
the ongoing computation.

• The CPU can only access pages that are stored in the cache.
• As a consequence, if a requested page is not in the cache in the corresponding

time step, it needs to be loaded into it from the main memory, which causes a
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cost of 1; we call this situation a page fault. In this case, if there is no space
left in the cache, a victim page has to be selected and removed from the cache
to make room.

• Conversely, accessing a page from the cache does not induce any cost.

This problem is called the paging problem. For convenience, we will simply refer
to it as “paging.” An algorithm for paging is basically defined by the strategy it uses
to choose the victim pages, that is, which page it replaces in the cache if a page fault
occurs.

Paging is a prominent member of a broad class of problems for which the concrete
input is revealed piecewise at runtime. Such problems are called online problems, and
it is obvious that we encounter them in many practical situations, when, for instance,
humans frequently interact with computers. We will see many other examples
throughout this book. However, at first, we need a formalism that enables us to
study strategies to handle such problems. Similarly to “offline” problems, which we
described in the previous section, the objective in online problems can either be to
minimize some cost or to maximize some gain; for instance, for paging we want to
minimize the number of page faults that occur.

We start by defining online problems formally. The following definition is similar
to that of offline problems from Definition 1.1, but here we need to introduce the
two notions request and answer, which will be crucial for our further formalizations.

Definition 1.4 (Online Problem). An online problem Π consists of a set of
instances ℐ, a set of solutions 𝒪, and three functions sol, quality, and goal
with the same meaning as for general optimization problems according to
Definition 1.1. Every instance 𝐼 ∈ ℐ is a sequence of requests 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
and every output 𝑂 ∈ 𝒪 is a sequence of answers 𝑂 = (𝑦1, 𝑦2, . . . , 𝑦𝑛), where
𝑛 ∈ N+ (thus, all instances and solutions are finite). An optimal solution for an
instance 𝐼 ∈ ℐ of Π is a solution Opt(𝐼) ∈ sol(𝐼) such that

quality(𝐼,Opt(𝐼)) = goal{quality(𝐼,𝑂) | 𝑂 ∈ sol(𝐼)} .

If goal = min, we call Π an online minimization problem and write “cost” instead
of “quality.” Conversely, if goal = max, we say that Π is an online maximization
problem and write “gain” instead of “quality.”

As in the case of offline problems, we usually simply write cost(𝑂) instead of
cost(𝐼,𝑂) if 𝐼 is clear from the context. Definition 1.4 does not yet formalize what
we mean by online computation; namely, that the output must be computed with
incomplete information. In particular, we want to model that an algorithm that
works on such a problem

1. only knows a prefix of the input in every given time step,
2. makes decisions that are based only on this knowledge, and
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3. may not revoke any decision it already made.

We formalize these rules in the following definition of online algorithms, which are
the main objects of study throughout this book.

Definition 1.5 (Online Algorithm). Let Π be an online problem and let
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an instance of Π. An online algorithm Alg for Π
computes the output Alg(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛), where 𝑦𝑖 only depends on
𝑥1, 𝑥2, . . . , 𝑥𝑖 and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; Alg(𝐼) is a feasible solution for 𝐼, that is,
Alg(𝐼) ∈ sol(𝐼).

Although the notion time step is not explicitly used in Definitions 1.4 and 1.5, we
implicitly assign the 𝑖th request 𝑥𝑖 and the corresponding answer 𝑦𝑖 to time step 𝑇𝑖.

How do we assess the output quality of an online algorithm? A natural approach
is to have a definition analogous to the approximation ratio defined in Definition 1.2
for offline algorithms. As a matter of fact, we are facing a similar situation. The
approximation ratio formalizes what we can achieve for an 𝒩 𝒫-hard problem when
computing in polynomial running time (if we assume 𝒫 ̸= 𝒩 𝒫). In the context of
online computation, we ask what we can achieve when we do not know the whole
input in advance. So there are two different restrictions, and in both cases we want to
know what we pay for obeying them. In Definition 1.2, we compared the cost or gain
of a solution computed by an algorithm to the cost or gain of an optimal solution.
This is exactly the same thing that we do with online algorithms. More specifically,
we now define the term competitive ratio analogously to the approximation ratio;
however, there are some small differences.

Definition 1.6 (Competitive Ratio). Let Π be an online problem, and let
Alg be a consistent online algorithm for Π. For 𝑐 ≥ 1, Alg is 𝑐-competitive for
Π if there is a non-negative constant 𝛼 such that, for every instance 𝐼 ∈ ℐ,

gain(Opt(𝐼)) ≤ 𝑐 · gain(Alg(𝐼)) + 𝛼

if Π is an online maximization problem, or

cost(Alg(𝐼)) ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

if Π is an online minimization problem. If these inequalities hold with 𝛼 = 0, we
call Alg strictly 𝑐-competitive; Alg is called optimal if it is strictly 1-competitive.

The competitive ratio of Alg is defined as

𝑐Alg := inf{𝑐 ≥ 1 | Alg is 𝑐-competitive for Π} .

If the competitive ratio of Alg is constant and the best that is achievable by
any online algorithm for Π, we call Alg strongly 𝑐Alg-competitive.
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Note that, in online computation, the term optimal solution even has a somewhat
stronger meaning than in the context of offline algorithms. In the latter case, optimal
solutions to instances of “hard” problems were those that can hypothetically be
computed when we are given more time (as opposed to polynomial time). In an
online setting, an optimal solution even refers to solutions that usually can only
be computed based on some knowledge (for instance, the complete instance) that
we generally do not possess; therefore, we call Opt(𝐼) an optimal offline solution
for 𝐼. Additionally, in online computation, we do not take the running time of the
algorithms we study into account. For most of the problems we will investigate,
the designed online algorithms will be efficient, but there will also be algorithms
that take far longer to compute a solution. The same holds for the memory that
our algorithms use. In particular, we will always assume that there are no space
restrictions, and that an online algorithm is able to remember all choices that it made
before in any time step. It is important to keep in mind that “optimal” refers to a
solution quality we can generally not guarantee, although Definition 1.6 does speak
about “optimal online algorithms.” On the other hand, by “strongly competitive,”
we mean “best possible.” Moreover, let us emphasize that the term “optimal” only
corresponds to the output quality of an algorithm and is independent of any of its
other parameters such as the aforementioned time and space complexities. We can
think of Opt(𝐼) as being computed by a hypothetical offline algorithm Opt which
is optimal in this sense. Throughout this book, we will either speak about Opt or
Opt(𝐼) depending on what is more intuitive in the current situation.

Usually, Alg is clear from the context and we simply write “𝑐” instead of “𝑐Alg.”
At times, we have to speak about the cost or gain of an online algorithm Alg on
a subsequence of an instance 𝐼 or even a single request; we will denote this by, for
instance, cost(Alg((𝑥𝑗 , 𝑥𝑗+1, . . . , 𝑥𝑘))), for some 𝑗, 𝑘 with 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛. Moreover,
if we refer to a concrete instance 𝐼, we sometimes speak of the performance of Alg
on 𝐼; this performance is a lower bound on Alg’s competitive ratio.

Note that, similarly to the approximation ratio, an online algorithm has a better
solution quality the smaller its competitive ratio 𝑐 is, and that 𝑐 is never smaller
than 1. Furthermore, both measurements are worst-case measures, that is, we are
interested in studying how well an algorithm works on its hardest instances for the
given problem.

When analyzing and classifying online algorithms with respect to their competitive
ratios, we speak of competitive analysis. As with the approximation ratio, the
competitive ratio is not necessarily constant, but may be a function of the input
length 𝑛. We use the following terminology.

• If the competitive ratio of some online algorithm Alg is at most 𝑐, where 𝑐
is a constant, we call Alg competitive or (depending on whether this holds
for 𝛼 = 0) strictly competitive. If an online algorithm does not possess a
competitive ratio with an upper bound that is independent of the input length,
we call it not competitive.

13
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• It is fine to call an online algorithm competitive if its competitive ratio depends
on some parameter of the studied problem such as, for instance, the cache size
𝑘 when we are dealing with the paging problem. Such parameters are known
to the online algorithm in advance.

• There are, however, problems where we have to be very careful with this
classification. For instance, in Chapter 5 we will deal with a problem for which
the input length is bounded from above by a parameter of the problem.

Another difference between the competitive ratio and the approximation ratio is
that the former uses an additive constant 𝛼 in its definition, which is not present
in the definition of the approximation ratio. This constant plays an important
role in an online setting. If we consider an (offline) approximation algorithm that
works well on all but finitely many instances, we can always include finitely many
exceptions in our algorithm. In an online setting, this is not possible since an
online algorithm cannot distinguish these exceptional cases at the beginning of its
computation. However, using an appropriate value of 𝛼, we can also cope with a
finite number of exceptions here. To prove lower bounds, the constant 𝛼 forces us to
construct infinitely many instances with increasing costs or gains. It is not sufficient
to construct a finite number of instances, not even an infinite number where the costs
or gains are bounded by some constant. Let us give an example of a hypothetical
online minimization problem to illustrate this point.

Example 1.1. Consider some online minimization problem Π and suppose we can
show that, for every online algorithm Alg for Π, there is an instance 𝐼 on which
it has a cost of at least 10, while the optimal solution Opt(𝐼) has cost 1. We are
now tempted to conclude that every online algorithm for Π is at best 10-competitive.
If we have a closer look at Definition 1.6, however, we see that this is actually not
allowed. In fact, there may still be 1-competitive online algorithms for Π, because, if
we choose 𝑐 = 1 and 𝛼 = 9, the inequality

cost(Alg(𝐼)) ≤ 1 · cost(Opt(𝐼)) + 9

from Definition 1.6 still holds if we just plug in the values cost(Alg(𝐼)) = 10 and
cost(Opt(𝐼)) = 1.

On the other hand, suppose we can give a set of infinitely many instances of Π
such that, for every such instance of length 𝑛, every online algorithm has a cost of
at least 10𝑛, while Opt has cost 𝑛. In this case, we may indeed state that every
online algorithm for Π is at best 10-competitive. There is no constant 𝛼 such that,
for some arbitrarily small constant 𝜀 > 0 and any instance 𝐼 from above, we have

cost(Alg(𝐼)) ≤ (10 − 𝜀) · cost(Opt(𝐼)) + 𝛼 ,

as

10𝑛 ≤ (10 − 𝜀)𝑛+ 𝛼 ⇐⇒ 𝛼 ≥ 𝜀𝑛

leads to a contradiction to the fact that 𝛼 is constant. ♢
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Next, we formalize this observation; we start with online minimization problems.
Suppose there is a set of instances ℐ = {𝐼1, 𝐼2, . . .} such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such
that the number of different input lengths in ℐ is infinite. Furthermore, suppose we
can show that, for every online algorithm Alg,

cost(Alg(𝐼𝑖))
cost(Opt(𝐼𝑖))

≥ 𝑐(𝑛) , (1.2)

where 𝑛 = |𝐼𝑖| and 𝑐 : N+ → R+ is a function that increases unboundedly with 𝑛. If
Alg were competitive, there would be two constants 𝑐′ and 𝛼 such that

cost(Alg(𝐼𝑖)) ≤ 𝑐′ · cost(Opt(𝐼𝑖)) + 𝛼 ,

and together with (1.2) we obtain

(𝑐(𝑛) − 𝑐′) · cost(Opt(𝐼𝑖)) ≤ 𝛼,

which is a contradiction (under the reasonable assumption that the optimal cost is
bounded from below by a positive constant). Therefore, whenever we show a lower
bound on the competitive ratio that increases unboundedly with the input length,
we do not need to consider 𝛼 at all; in this case, we can conclude that the given
online algorithm is not competitive. Note that the same argumentation holds for any
function 𝑐′ with 𝑐′(𝑛) ∈ 𝑜(𝑐(𝑛)). Now let us consider competitive online algorithms.

Theorem 1.2. Let Π be an online minimization problem, and let ℐ = {𝐼1, 𝐼2, . . .}
be an infinite set of instances of Π such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such that the number
of different input lengths in ℐ is infinite. If there is some constant 𝑐 ≥ 1 such that

(i) cost(Alg(𝐼𝑖))
cost(Opt(𝐼𝑖))

≥ 𝑐 , for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

cost(Opt(𝐼𝑖)) = ∞ ,

for any online algorithm Alg, then there is no (𝑐− 𝜀)-competitive online algorithm
for Π, for any 𝜀 > 0.

Proof. For a contradiction, suppose that both conditions (i) and (ii) are satisfied,
but there still is a (𝑐− 𝜀)-competitive online algorithm Alg′ for Π, for some 𝜀 > 0.
Thus, by the definition of the competitive ratio, there is a constant 𝛼 such that

cost
(︀
Alg′(𝐼𝑖)

)︀
≤ (𝑐− 𝜀) · cost(Opt(𝐼𝑖)) + 𝛼 ,

and thus (assuming that the optimal cost is never zero)

cost(Alg′(𝐼𝑖))
cost(Opt(𝐼𝑖))

− 𝛼

cost(Opt(𝐼𝑖))
≤ 𝑐− 𝜀 , (1.3)

for every 𝑖 ∈ N+. Due to condition (i), the first term of (1.3) is at least 𝑐. Furthermore,
(ii) implies that there are infinitely many instances for which the second term of (1.3)
is smaller than 𝜀, which is a direct contradiction. �
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Instead of speaking of 𝑐− 𝜀, we will sometimes (unless some 𝜀 is explicitly used
in a proof) simply state that there is no online algorithm that is “better than 𝑐-
competitive.” However, formally it could still be the case that there is, for instance,
some (𝑐− 1/𝑛)-competitive online algorithm. Then, (1.3) does not necessarily lead
to a contradiction with (ii). Throughout this book, in this context “better than” will
always mean “better by some arbitrarily small constant 𝜀.” Moreover, sometimes we
will not define the set ℐ explicitly, but only speak of one “representative” instance.

For maximization problems, we can prove a statement analogous to Theorem 1.2.
Theorem 1.3. Let Π be an online maximization problem, and let ℐ = {𝐼1, 𝐼2, . . .}
be an infinite set of instances of Π such that |𝐼𝑖| ≤ |𝐼𝑖+1|, and such that the number
of different input lengths in ℐ is infinite. If there is some constant 𝑐 ≥ 1 such that

(i) gain(Opt(𝐼𝑖))
gain(Alg(𝐼𝑖))

≥ 𝑐 , for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

gain(Opt(𝐼𝑖)) = ∞ ,

for any online algorithm Alg, then there is no (𝑐− 𝜀)-competitive online algorithm
for Π, for any 𝜀 > 0.

Proof. Again, we do not need to consider 𝛼 when the given online algorithm is not
competitive. For a contradiction, suppose that both conditions (i) and (ii) hold, but
there is a (𝑐− 𝜀)-competitive online algorithm Alg′ for Π, for some 𝜀 > 0. It follows
that there is some constant 𝛼 such that

gain(Opt(𝐼𝑖))
gain(Alg′(𝐼𝑖))

− 𝛼

gain(Alg′(𝐼𝑖))
≤ 𝑐− 𝜀 , (1.4)

for every 𝑖 ∈ N+. Since, due to (i) and (ii), Alg′ would not be competitive if its
gain were bounded by a constant, we can assume that

lim
𝑖→∞

gain
(︀
Alg′(𝐼𝑖)

)︀
= ∞ . (1.5)

Due to (i), the first term of (1.4) is at least 𝑐; due to (1.5), there are infinitely many
instances for which the second term is smaller than 𝜀, which is a contradiction. �

To sum up, if we are not speaking about the strict competitive ratio, but allow
𝛼 > 0 when proving lower bounds, we will always try to construct an infinite set
of instances such that the conditions (i) and (ii) of Theorem 1.2 (Theorem 1.3,
respectively) are satisfied when dealing with online minimization (maximization,
respectively) problems.

To this end, for paging, we will use the concept of phases, which consist of a
number of consecutive time steps. We then show that every online algorithm is worse
than an optimal solution by some factor 𝑐 within one phase, and that it is possible
to repeat phases for an arbitrary number of times. Thus, 𝑐 is a lower bound on the
competitive ratio of any online algorithm for paging. Before we start investigating
the problem in terms of upper and lower bounds on the achievable competitive ratio,
we define it formally.
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Definition 1.7 (Paging). The paging problem is an online minimization prob-
lem. Let there be 𝑚 memory pages 𝑝1, 𝑝2, . . . , 𝑝𝑚, which are all stored in the
main memory, where 𝑚 is some positive integer. An instance is a sequence
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), such that 𝑥𝑖 ∈ {𝑝1, 𝑝2, . . . , 𝑝𝑚}, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,
that is, the page 𝑥𝑖 is requested in time step 𝑇𝑖. An online algorithm Alg for
paging maintains a cache memory of size 𝑘 with 𝑘 < 𝑚, which is formalized
by a tuple 𝐵𝑖 = (𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘

) for time step 𝑇𝑖. At the beginning, the cache
is initialized as 𝐵0 = (𝑝1, 𝑝2, . . . , 𝑝𝑘), that is, with the first 𝑘 pages. If, in
some time step 𝑇𝑖, a page 𝑥𝑖 is requested and 𝑥𝑖 ∈ 𝐵𝑖−1, Alg outputs 𝑦𝑖 = 0.
Conversely, if 𝑥𝑖 /∈ 𝐵𝑖−1, Alg has to choose a page 𝑝𝑗 ∈ 𝐵𝑖−1, which is then
removed from the cache to make room for 𝑥𝑖. In this case, Alg outputs 𝑦𝑖 = 𝑝𝑗
and the new cache content is 𝐵𝑖 = (𝐵𝑖−1 ∖ {𝑝𝑗}) ∪ {𝑥𝑖}. The cost is given by
cost(Alg(𝐼)) = |{𝑖 | 𝑦𝑖 ̸= 0}| and the goal is to minimize this number.

Note that our definition imposes some restrictions on algorithms designed for the
problem, such as that it is impossible to remove pages if there is no page fault. We
will see shortly that this is not as restrictive as it may seem; at some points, however,
we will allow this constraint to be violated.

To consolidate our feeling for the problem, let us consider a simple instance of
paging before we start the formal analysis.

Example 1.2. Suppose 𝑘 = 6, there are 𝑚 pages 𝑝1, 𝑝2, . . . , 𝑝𝑚 in total, and ac-
cording to Definition 1.7 the cache is initialized as

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 .

Now suppose that we are given an instance 𝐼 = (𝑝4, 𝑝7, 𝑝5, 𝑝1, . . .). In time step
𝑇1, page 𝑝4 is requested, which is already in the cache; thus, any online algorithm
outputs “0” and there is no cost caused in this time step. The next request is page
𝑝7, and therefore some page needs to be removed from the cache to make room.
Assume page 𝑝1 gets chosen to be replaced by 𝑝7, which leads to the situation

𝑝7 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 .

After that, page 𝑝5 can be loaded directly from the cache and again causes no cost.
In time step 𝑇4, however, the cache content needs to be changed once more, as 𝑝1 is
not present anymore. Hence, after four time steps, the cost is 2. It is easy to see
that a strategy which replaced, for instance, 𝑝4 instead of 𝑝1 in time step 𝑇2, only
has a cost of 1 at this point. ♢

Having every algorithm start with the same pages in the cache seems to be a
reasonable assumption. What we are interested in is to measure how well an online
algorithm works compared to what it could hypothetically achieve in the given
situation. Thus, we compare its solution to an optimal one that has the same
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starting situation. As a matter of fact, also this assumption is less restrictive than it
seems, because the head start that may come with a different cache content at the
beginning can be hidden in the constant 𝛼 from Definition 1.6.

Moreover, as already discussed, Definition 1.7 implies that an online algorithm for
paging only removes a page from the cache if the currently requested page is not
already in the cache; we call such algorithms demand paging algorithms. Of course,
we could also think of an alternative definition where a page, or even an arbitrary
number of pages, may be removed from and loaded into the cache in every time step.
However, it can easily be shown that this does not give an online algorithm any
advantage.

Exercise 1.4. Suppose that we change Definition 1.7 such that algorithms may start with
different cache contents. Prove that this does not change the competitive ratio of any online
algorithm Alg. More precisely, show that if Alg is 𝑐-competitive for paging as formalized
in Definition 1.7, then Alg is also 𝑐-competitive if Opt has a different set of pages in its
cache at the beginning.

Exercise 1.5. Show that an online algorithm that is allowed to replace an arbitrary number
of pages in every time step can be converted to a demand paging algorithm, that is, an
online algorithm that is in accord with Definition 1.7, without increasing its cost. Of course,
for such an online algorithm the cost measurement changes. Such an algorithm pays 1 for
each replacement of a page in the cache.

Exercise 1.6. So far, it cannot happen that the cache contains empty cells at any point in
time, as it is full initially (with the pages 𝑝1, 𝑝2, . . . , 𝑝𝑘), and the only operation to change
the cache is to replace a page with another one. In what follows, we will study an online
algorithm that is allowed to remove some pages from the cache without loading other pages
into it. Show that also such an algorithm can be converted into a demand paging algorithm
without increasing its cost. Again, the cost measurement has to be changed. Here, the
removal of a page from the cache is free, while loading a page into the cache causes cost 1.

As already mentioned, an (online) algorithm for paging is basically defined by the
strategy that it follows when a page fault occurs and a page in its cache (the victim
page) needs to be replaced. There are many different strategies an algorithm may
follow; let us describe a few.

• First In First Out (FIFO). With this strategy, the cache is organized as a
queue. If a page must be evicted from the cache, the one residing in the cache
for the longest time is chosen. The first 𝑘 pages may be removed arbitrarily.

• Last In First Out (LIFO). This strategy is the counterpart to FIFO since it
organizes the cache as a stack. In case of a page fault, the page that was most
recently loaded into the cache is removed from the cache. On the first page
fault, an arbitrary page may be replaced.

• Least Frequently Used (LFU). On a page fault, the page is removed that was
so far used least frequently. Ties are broken arbitrarily.
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• Least Recently Used (LRU). Here, on a page fault, the page is removed that
was last requested least recently. Also here, the first 𝑘 pages may be removed
arbitrarily.

• Flush When Full (FWF). The cache gets completely emptied (“flushed”) if a
page is requested that is not already in the cache and there is no empty cell.
This strategy does not comply with Definition 1.7 since it is not a demand
paging strategy; it may remove multiple pages on a page fault, but only loads
pages into the cache if the requested page is not already present. As stated
in Exercise 1.6, we assume that only loading a page into the cache causes
cost 1. An online algorithm that uses the FWF strategy can be converted
to be in accord with Definition 1.7 without increasing the cost (as stated in
Exercise 1.6).

• Longest Forward Distance (LFD). Here, on a page fault, the page is removed
whose next request will be the latest.

In what follows, we denote, for instance, by Fifo an (online) algorithm that
implements the FIFO strategy. Clearly, Lfd is an offline algorithm as it requires
knowledge about the future input to replace a page. The other strategies are online
strategies, but they have different solution qualities in terms of competitive analysis.
The next sections are devoted to studying them in more detail.

1.3 An Upper Bound for Paging
In the preceding section, we defined that an online algorithm is competitive if its
competitive ratio 𝑐 is bounded by a constant with respect to the input length. For
paging, this means that 𝑐 may depend on both the cache size 𝑘 and the size of the
main memory 𝑚. Three of the above online algorithms are 𝑘-competitive, so their
solution qualities do not at all depend on the number of pages that are available
in total. As an example, we will consider Fifo; but before that, we introduce an
important tool that will prove to be helpful in the subsequent analysis.

Definition 1.8 (𝑘-Phase Partition). Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an arbi-
trary instance of paging. A 𝑘-phase partition of 𝐼 assigns the requests from 𝐼 to
consecutive disjoint phases 𝑃1, 𝑃2, . . . , 𝑃𝑁 such that

• phase 𝑃1 starts with the first request for a page that is not initially in
the cache. Then, 𝑃1 contains a maximum-length subsequence of 𝐼 that
contains at most 𝑘 distinct pages;

• for any 𝑖 with 2 ≤ 𝑖 ≤ 𝑁 , phase 𝑃𝑖 is a maximum-length subsequence of 𝐼
that starts right after 𝑃𝑖−1 and again contains at most 𝑘 distinct pages.
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It is crucial to note that a phase does not necessarily end right after 𝑘 distinct
pages were requested, but right before a (𝑘 + 1)th one is requested. The last phase
of a 𝑘-phase partition is not necessarily complete. It is also important to note that
a 𝑘-phase partition is defined on inputs, and not for algorithms; let us look at an
example.

Example 1.3. Suppose we are dealing with paging with cache size 5, and we are
given an input

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4, 𝑝2, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1, 𝑝8, 𝑝7, 𝑝6) .

Recall that the cache is initialized as (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5). Then we obtain a 𝑘-phase
partition

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4⏟  ⏞  
𝑃1

, 𝑝2, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1⏟  ⏞  
𝑃2

, 𝑝8, 𝑝7, 𝑝6⏟  ⏞  
𝑃3

) ,

where the last phase 𝑃3 is incomplete. Observe that if we shift the phases by one,
that is, if we consider the partition

(𝑝3, 𝑝1, 𝑝7, 𝑝5, 𝑝7, 𝑝8, 𝑝3, 𝑝4, 𝑝4, 𝑝2⏟  ⏞  
𝑃 ′

1

, 𝑝2, 𝑝3, 𝑝5, 𝑝1, 𝑝7, 𝑝3, 𝑝1, 𝑝8⏟  ⏞  
𝑃 ′

2

, 𝑝7, 𝑝6⏟  ⏞  
𝑃 ′

3

)

instead, there are still at least 𝑘 distinct pages requested during any one phase
(except during the last one 𝑃 ′

3). However, there are two differences between the
previous phases and these ones. First, they do not have maximum length (with
respect to containing 𝑘 different pages) anymore; and second, since the first page
requested in 𝑃𝑖+1 was different from all pages in 𝑃𝑖, we observe that in 𝑃 ′

𝑖 there are
𝑘 distinct pages requested that are different from the last page requested before 𝑃 ′

𝑖

starts. ♢

We now use a 𝑘-phase partition of the given input to analyze Fifo.

Theorem 1.4. Fifo is strictly 𝑘-competitive for paging.

Proof. Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be any instance of paging and consider 𝐼’s 𝑘-phase
partition 𝑃1, 𝑃2, . . . , 𝑃𝑁 according to Definition 1.8. Without loss of generality, we
assume that 𝑥1 /∈ {𝑝1, 𝑝2, . . . , 𝑝𝑘}, that is, the sequence starts with a page fault for
any algorithm.

Let us consider a fixed phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . First, we show that Fifo does
not cause more than 𝑘 page faults during 𝑃𝑖. By definition, there are at most 𝑘
distinct pages requested during this phase. Let 𝑝 be the first page that causes a page
fault for Fifo during 𝑃𝑖. Then, out of all pages requested during 𝑃𝑖, 𝑝 will be the
first one that is removed again, and can thus cause a second page fault (for the same
page). When 𝑝 gets loaded into the cache, there are 𝑘 − 1 pages in the cache that
get removed from the cache before 𝑝. Thus, 𝑝 stays in the cache for the next 𝑘 − 1
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page faults, and consequently no page causes more than one page fault during one
phase. Therefore, there are at most 𝑘 page faults in total during one phase.

Second, we argue that a fixed optimal solution Opt(𝐼) has to make at least one
page fault for every phase. To this end, we shift all phases by one as in Example 1.3,
leading to a new partition 𝑃 ′

1, 𝑃
′
2, . . . , 𝑃

′
𝑁 , where 𝑃 ′

𝑁 might be the empty sequence;
however, the first 𝑁 − 1 shifted phases must be complete. As already observed, since
the phases 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 − 1 had maximum length, the phase 𝑃 ′

𝑖 now contains
requests to 𝑘 pages that differ from the page 𝑝′ that was last requested before the
start of 𝑃 ′

𝑖 . We know that 𝑝′ is in the cache of Opt at the beginning of 𝑃 ′
𝑖 . Since

there are 𝑘 more requests different from 𝑝′, Opt has to cause one page fault during
𝑃 ′
𝑖 . This adds up to 𝑁 − 1 page faults for Opt(𝐼) plus an additional one on 𝑥1 at

the beginning of 𝐼.
Since Fifo causes at most 𝑁 · 𝑘 page faults in total while Opt causes at least 𝑁 ,

it follows that Fifo is strictly 𝑘-competitive. �

By similar reasoning to the preceding proof, it can be shown that Lru and (which
might be surprising) Fwf are also strictly 𝑘-competitive.

Exercise 1.7. Prove that Lru is strictly 𝑘-competitive for paging.

Exercise 1.8. Prove that Fwf is also strictly 𝑘-competitive for paging. Recall that you
need to change the definition of a paging algorithm for this case; Fwf has cost 1 whenever
it loads a page into the cache (see Exercise 1.6).

Exercise 1.9. We define a different phase partition to the one in Definition 1.8, which
now depends on the online algorithm Fifo. The first phase 𝑃Fifo,1 ends after the first page
fault that is caused by Fifo. Every subsequent phase has a length that is such that Fifo
causes exactly 𝑘 page faults in it; the phase ends right after the 𝑘th page fault occurred.
Formally, phase 𝑃Fifo,𝑖 ends immediately after Fifo made (𝑖− 1)𝑘+ 1 page faults. The last
phase may be shorter. Use this phase partition to show that Fifo is 𝑘-competitive.

Does your proof show that Fifo is strictly 𝑘-competitive?

Exercise 1.10. Fifo experiences a phenomenon that is known as Bélády’s anomaly, which
states that there are instances on which Fifo causes more page faults if it has a larger
cache. Find such an instance.
Hint. It suffices to consider two cache sizes 3 and 4 and a total number of nine pages.

1.4 A Lower Bound for Paging
We now know that there are 𝑘-competitive online algorithms for paging. But are
these algorithms strongly competitive? In other words, is this the best we can hope
for or are there online algorithms which outperform Fifo, Fwf, and Lru?

The answer is that there is nothing better from a worst-case point of view. This
means that, for every online algorithm Alg, there are infinitely many instances of
paging for which Alg’s cost is at least 𝑘 times larger than the optimal cost. To
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model such hard instances, we think of an adversary that constructs a hard instance
𝐼 while knowing the online algorithm Alg we want to analyze. In a way, Alg and
the adversary are two players in a game and they have directly opposing goals (in
Section 2.4, we will have a closer look at this point of view). As paging is an online
minimization problem, this means that the adversary tries to make Alg have a cost
that is as large as possible compared to the cost of an optimal solution Opt(𝐼) for 𝐼
and thereby to maximize the competitive ratio of Alg. If not stated otherwise, we
will assume that we are dealing with demand paging algorithms as in Definition 1.7;
with the considerations above (in particular, Exercises 1.5 and 1.6), we know that
this does not cause any restriction.

Theorem 1.5. No online algorithm for paging is better than 𝑘-competitive.

Proof. Let 𝑚 = 𝑘+1, that is, we only require that there are pages 𝑝1, 𝑝2, . . . , 𝑝𝑘+1 in
total; let 𝑛 be some multiple of 𝑘. Recall that the cache is initialized as (𝑝1, 𝑝2, . . . , 𝑝𝑘),
and we consider an arbitrary online algorithm Alg for paging. Obviously, there is
exactly one page, at any given time step, that is not in the cache of Alg. The whole
idea is that the adversary always requests exactly this page to obtain an instance 𝐼
of length 𝑛. Since it knows Alg, it can always foresee which page will be replaced
by Alg if a page fault occurs.

output “𝑝𝑘+1” ; // Inevitable page fault
𝑖 := 1;
while 𝑖 ≤ 𝑛− 1 do

𝑝 := the page that is currently not in the cache of Alg;
output “𝑝” ;
𝑖 := 𝑖+ 1;

end

Algorithm 1.2. Adversary for any paging algorithm.

More formally, consider Algorithm 1.2, which creates the instance 𝐼 of length 𝑛
for Alg by following this strategy. It is easy to see that this instance causes a page
fault for Alg in every time step, and thus a total cost of 𝑛. However, this is not
sufficient to prove the claim. The competitive ratio compares this value to what
could have been achieved on 𝐼 if it had been known; in other words, we need to
study the optimal cost on this instance as well.

To do so, we again divide the input into distinct consecutive phases. This time,
one phase consists of exactly 𝑘 time steps, that is, Alg makes exactly 𝑘 page faults
within a phase (recall that 𝑛 is a multiple of 𝑘). If we can show that Opt causes at
most one page fault in every phase, we are done. Consider the first phase 𝑃1. In
time step 𝑇1, every algorithm causes a page fault as the requested page 𝑝𝑘+1 is not
in the cache by definition. Opt can now choose one of the pages 𝑝1, 𝑝2, . . . , 𝑝𝑘 to
be removed to load 𝑝𝑘+1. 𝑃1 consists of exactly 𝑘 − 1 more time steps, so at most
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𝑘 − 1 more distinct pages are requested. Therefore, there is at least one page 𝑝′

among 𝑝1, 𝑝2, . . . , 𝑝𝑘 that is not requested during this phase, and Opt chooses 𝑝′ to
be removed in time step 𝑇1. There may be more than one such page, in which case
Opt chooses the page whose first request is the latest among all such pages (Opt
therefore implements the offline strategy Lfd).

We can use the same argument for any other phase 𝑃𝑖 with 2 ≤ 𝑖 ≤ 𝑁 . The
only difference is that Opt does not surely cause a page fault in the first time
step 𝑇(𝑖−1)𝑘+1 of this phase, but it may cause a page fault later or even not at all.
However, whenever a page fault occurs, by the same reasoning as for phase 𝑃1, there
must be some page that is not requested anymore during phase 𝑃𝑖 and that may
therefore be safely removed from the cache.

Finally, we need to deal with the additive constant 𝛼 from Definition 1.6. If the
number of page faults caused by Opt is constant, Alg is not competitive. On the
other hand, if the number of page faults increases with 𝑛, Theorem 1.2 implies that
Alg cannot be better than 𝑘-competitive. �

We see that the adversary can guarantee that any online algorithm causes a page
fault in every time step. Thus, with respect to the pure cost, all online algorithms are
equally bad. Then again, for instance, Fifo outperforms Lifo when these strategies
are analyzed according to their competitive ratios. This is due to the fact that Fifo
keeps pages it just loaded in the cache for a longer time than Lifo.
Theorem 1.6. Lifo is not competitive for paging.

Proof. To prove the claim, we show that, for every 𝑛, there is an instance 𝐼 of paging
of length 𝑛 such that cost(Lifo(𝐼))/cost(Opt(𝐼)) grows proportionally with 𝑛. To
this end, we give an instance of length 𝑛 that always requests the same two pages;
again, it suffices to choose 𝑚 = 𝑘 + 1. The adversary again first requests 𝑝𝑘+1, and
since all pages 𝑝1, 𝑝2, . . . , 𝑝𝑘 are in the cache at the beginning, Lifo removes some
fixed page from the cache, say 𝑝𝑖. Since the adversary knows that Lifo chooses 𝑝𝑖,
it requests it in time step 𝑇2 and Lifo removes 𝑝𝑘+1, which is now the page that
was last loaded into the cache. Then, Lifo must remove 𝑝𝑖 in time step 𝑇3 when
the adversary again requests 𝑝𝑘+1. The adversary continues in this fashion, that is,
𝐼 is given by

(𝑝𝑘+1, 𝑝𝑖, 𝑝𝑘+1, 𝑝𝑖, . . .) .
In every time step, Lifo causes a page fault while there is an optimal solution

Opt(𝐼) that removes a page 𝑝𝑗 with 𝑗 ̸= 𝑖 in time step 𝑇1 and has cost 1 overall,
because it has 𝑝𝑖 and 𝑝𝑘+1 in its cache from that point on. �

So we see that there is a significant difference between Fifo and Lifo. This is not
very surprising; intuitively it seems like a bad idea to immediately remove a page
from the cache that was just loaded into it. What about Lfu? Here, an intuitive
point of view might suggest more success; we learn from what happened so far,
namely, we replace a page that was in some sense the least valuable up to now.
Unfortunately, this strategy is not much better in the worst case.
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Theorem 1.7. Lfu is not competitive for paging.

Proof. The proof is only slightly more complex than the one for Lifo from Theo-
rem 1.6. For every 𝑛′, consider the instance 𝐼 given by

(𝑝1, 𝑝1, . . . , 𝑝1⏟  ⏞  
𝑛′ requests

, 𝑝2, 𝑝2, . . . , 𝑝2⏟  ⏞  
𝑛′ requests

, . . . , 𝑝𝑘−1, 𝑝𝑘−1, . . . , 𝑝𝑘−1⏟  ⏞  
𝑛′ requests

, 𝑝𝑘+1, 𝑝𝑘, . . . , 𝑝𝑘+1, 𝑝𝑘⏟  ⏞  
2(𝑛′−1) requests

)

of length 𝑛 := (𝑘−1)𝑛′+2(𝑛′−1). In the first (𝑘−1)𝑛′ time steps, no online algorithm
causes a page fault, and after that, all pages in the cache have been requested 𝑛′

times except for 𝑝𝑘. Thus, when 𝑝𝑘+1 is requested in time step 𝑇(𝑘−1)𝑛′+1, Lfu
removes 𝑝𝑘, which is the page in the cache that was used least frequently. Next, the
adversary requests 𝑝𝑘, and this is iterated until both pages 𝑝𝑘 and 𝑝𝑘+1 have been
requested exactly 𝑛′ − 1 times each. Clearly, Lfu makes a page fault in each of the
last 2(𝑛′ − 1) time steps. On the other hand, an optimal solution Opt(𝐼) simply
removes a page 𝑝𝑗 with 𝑗 ̸= 𝑘 in time step 𝑇(𝑘−1)𝑛′+1 and causes no more page faults.
Since

𝑛′ = 𝑛+ 2
𝑘 + 1 ,

the competitive ratio of Lfu can be bounded from below by

2(𝑛′ − 1) = 2(𝑛− 𝑘 + 1)
𝑘 + 1 ,

which is a linear function in 𝑛. �

According to Definition 1.6, neither Lifo nor Lfu are competitive; however, if we
take a closer look, the lower bound on the competitive ratio of Lifo is stronger than
that of Lfu by a factor which tends to (𝑘 + 1)/2 with growing 𝑛.

Exercise 1.11. We have defined Lfu such that it keeps track of all 𝑚 pages and removes
one of the pages that was least frequently used in the sum. Suppose the algorithm forgets
the number of accesses of pages that are not in the cache and initializes it with 1 for every
page that is loaded. Does this give a stronger lower bound?

Exercise 1.12. Now consider the online algorithm Max that always replaces the page in
its cache that has the largest index, that is, for any cache content 𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑘 , the page
𝑝𝑗 with 𝑗 = max{𝑖1, 𝑖2, . . . , 𝑖𝑘} is removed in case of a page fault. Is Max competitive? If
so, prove an upper bound on the competitive ratio that is as good as possible. If not, show
that Max has no constant competitive ratio. How about an online algorithm Min that is
defined accordingly?

Exercise 1.13. Consider the following online algorithm Walk that replaces the page at
position 1 + ((𝑖− 1) mod 𝑘) in the cache on the 𝑖th page fault. Less formally, it replaces
the pages in the order they are stored in the cache, continuing with the first cell if it used
the 𝑘th one for the preceding page fault. Argue why Walk is 𝑘-competitive.
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Exercise 1.14. A phenomenon that is observed in practical settings is locality of reference,
that is, that pages are likely to be requested consecutively if they are located next to each
other. We want to make use of this fact and define an algorithm Local that always removes
the page whose page index is farthest away from the requested one on a page fault (ties are
broken arbitrarily). Is Local competitive?

1.5 Marking Algorithms
Now that we have established a lower bound on any paging algorithm and a matching
upper bound for some specific strategies, we want to focus on a more general concept,
the so-called marking algorithms. This class of algorithms plays an important role
in the context of randomized computation for paging, which we will study in the
following chapter.

A marking algorithm works in phases and marks pages that were already requested;
it only removes pages that are not marked. If all pages in the cache are marked and
a page fault occurs, the current phase ends, and a new one starts by first unmarking
all pages in the cache. Before processing the first request, all pages get marked such
that the first request that causes a page fault starts a new phase. The pseudo-code
of a marking algorithm is shown in Algorithm 1.3.

mark all pages in the cache; // First page fault starts new phase
for every request 𝑥 do

if 𝑥 is in the cache
if 𝑥 is unmarked

mark 𝑥;
output “0”;

else
if there is no unmarked page

unmark all pages in the cache; // Start new phase
𝑝 := somehow chosen page among all unmarked cached pages;
remove 𝑝 and insert 𝑥 at the old position of 𝑝;
mark 𝑥;
output “𝑝”;

end

Algorithm 1.3. General scheme of a marking algorithm for paging.

We now show that this general concept allows for strongly competitive online
algorithms by using the concept of phases as in the proof of Theorem 1.4. More
precisely, we will prove that the phases of marking algorithms correspond to the
phases of a 𝑘-phase partition from Definition 1.8. Except possibly the last one, a
phase of a marking algorithm consists of a maximum-length sequence of requests for
𝑘 different pages. This makes it very easy for us to argue why such an algorithm
makes at most 𝑘 page faults in one phase.
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Theorem 1.8. Every marking algorithm is strictly 𝑘-competitive for paging.

Proof. Let Mark be a fixed marking algorithm; let 𝐼 denote the given input and
consider its 𝑘-phase partition into 𝑁 phases 𝑃1, 𝑃2, . . . , 𝑃𝑁 according to Definition 1.8.
By the same argument as in the proof of Theorem 1.4, we conclude that any optimal
algorithm Opt makes at least 𝑁 page faults in total on 𝐼.

What remains to be done is to show that Mark makes at most 𝑘 page faults in one
fixed phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . We denote the 𝑁 phases explicitly defined by Mark
by 𝑃Mark,1, 𝑃Mark,2, . . . , 𝑃Mark,𝑁 and claim that both 𝑁 = 𝑁 and 𝑃𝑗 = 𝑃Mark,𝑗 , for
all 𝑗 with 1 ≤ 𝑗 ≤ 𝑁 . Since Mark makes at most 𝑘 page faults in one phase 𝑃Mark,𝑖
(clearly, there cannot be more page faults than pages marked at the end of 𝑃Mark,𝑖),
the claim follows. We first observe that both 𝑃1 and 𝑃Mark,1 start with the first
request that causes a page fault. Every phase 𝑃𝑖 except the last one is by definition a
maximum-length sequence of 𝑘 distinct requests. Every requested page gets marked
by Mark after being requested. If 𝑘 distinct pages were requested, all pages in
Mark’s cache are marked. With the (𝑘+ 1)th distinct page 𝑝′ being requested since
the beginning of 𝑃𝑖, a new phase 𝑃𝑖+1 starts. In this time step, Mark also starts a
new phase 𝑃Mark,𝑖+1, as there is no unmarked page left in its cache to replace with
𝑝′. Thus, the phases 𝑃𝑖 and 𝑃Mark,𝑖 coincide. As a consequence, Mark makes at
most 𝑘 page faults per phase and the claim follows. �

It can be shown that some of the online algorithms we discussed are in fact marking
algorithms, although they do not explicitly mark pages.

Theorem 1.9. Lru is a marking algorithm.

Proof. To prove the claim means to show that Lru never removes a page that is
currently marked by some marking algorithm. For a contradiction, suppose that Lru
is not a marking algorithm. Then there is some instance 𝐼 such that Lru removes
a page that is marked. Let 𝑝 be the page for which this happens for the first time,
and denote the corresponding time step by 𝑇𝑗 with 1 ≤ 𝑗 ≤ 𝑛 during some phase
𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . Since 𝑝 is marked, it must have been requested before during
𝑃𝑖, say in time step 𝑇𝑗′ with 𝑗′ < 𝑗. After that, 𝑝 was most recently used; thus, if
Lru removes 𝑝 in time step 𝑇𝑗 , there must have been 𝑘 distinct requests following
time step 𝑇𝑗′ that are all different from 𝑝; the first 𝑘 − 1 cause 𝑝 to become least
recently used afterwards, and on the 𝑘th such request 𝑝 is removed according to
Lru. As a consequence, 𝑃𝑖 consists of at least 𝑘 + 1 different requests, which is a
direct contradiction to the definition of a 𝑘-phase partition. �

Exercise 1.15. Prove that Fwf is also a marking algorithm.

Exercise 1.16. How about Lifo and Fifo? Justify your answer.
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1.6 Refined Competitive Analysis
Competitive analysis, as we studied it so far, is a pure worst-case measurement; it
formalizes a framework in which, for any given online algorithm, the worst possible
situation is met. Actually, it might be quite a realistic setting to assume some
additional knowledge about the input. There are numerous attempts to get a more
realistic model for such situations. In Chapter 3, we will introduce a very general
method to deal with additional information and its quantification. At this point,
we only want to pick two more specific approaches to give more power to online
algorithms for paging.

1.6.1 Lookahead
The straightforward approach to give an online algorithm an advantage compared to
the classical model is to enable it to have some lookahead, that is, to allow it to look
into the future for ℓ time steps. It might be surprising, but this knowledge does not
help to improve the competitive ratio. Consider paging with lookahead ℓ; this means
that, in any time step, an online algorithm Algℓ sees the current request together
with the subsequent ℓ requests. Since the adversary we use to model hard instances
knows Algℓ, it surely knows ℓ and may therefore proceed as follows.

Each request is repeated ℓ times such that Alg is still somewhat “in the dark”
in the time step where it has to replace a page. We again only need to consider
the case where 𝑚 = 𝑘 + 1. The first ℓ+ 1 requests all ask for the only page that is
not in the cache initially, that is, 𝑝𝑘+1. In the first time step, Algℓ must replace a
page, but it cannot see which page is requested in time step 𝑇ℓ+2. Therefore, the
additional knowledge is completely useless, and the adversary can simply request 𝑝𝑖
which Algℓ replaces in time step 𝑇1. When Algℓ then must find a page to replace
with 𝑝𝑖, it only knows the prefix

(𝑝𝑘+1, 𝑝𝑘+1, . . . , 𝑝𝑘+1⏟  ⏞  
ℓ requests

, 𝑝𝑖, 𝑝𝑖, . . . , 𝑝𝑖⏟  ⏞  
ℓ requests

, . . .)

of the input 𝐼, which again does not help.
Continuing in this fashion, the adversary can ensure that Algℓ causes a page fault

every ℓ + 1 time steps. With the same reasoning as in the proof of Theorem 1.5,
Opt(𝐼) causes at most one page fault every 𝑘(ℓ+ 1) time steps. For such inputs of
length 𝑛, Algℓ causes 𝑛/(ℓ+1) page faults, while Opt(𝐼) causes at most 𝑛/(𝑘(ℓ+1)).
As a result, the competitive ratio of Algℓ has a lower bound of 𝑘.
Theorem 1.10. No online algorithm with lookahead ℓ for paging is better than
𝑘-competitive. �

1.6.2 Resource Augmentation
Another principle to improve the chances of an online algorithm against the adversary
is called resource augmentation. Here, we allow the online algorithm to use more
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resources than the optimal offline algorithm. What this means in detail depends on
the problem at hand. For paging, Opt is only allowed to use a cache size of ℎ ≤ 𝑘
for the same input; this problem is called the (ℎ, 𝑘)-paging problem. We assume
that Opt’s cache is initialized with the first ℎ pages 𝑝1, 𝑝2, . . . , 𝑝ℎ. This problem is
a generalization of paging as we studied it until now, which can just be viewed as
(𝑘, 𝑘)-paging.
Theorem 1.11. Every marking algorithm is 𝑘/(𝑘 − ℎ+ 1)-competitive for (ℎ, 𝑘)-
paging.

Proof. The proof follows from an easy modification of the proof of Theorem 1.4. Let
Mark be any marking algorithm. Once more, consider the 𝑘-phase partition of a
given input 𝐼. For any given phase 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 , we know that Mark causes
at most 𝑘 page faults as shown in the proof of Theorem 1.8.

To bound the number of page faults that Opt(𝐼) causes, let us again shift the
phases by one to obtain a new partition 𝑃 ′

1, 𝑃
′
2, . . . , 𝑃

′
𝑁 ; again, 𝑃 ′

𝑁 may be empty.
Let 𝑝 be the first request during the phase 𝑃𝑖. Then, Opt’s cache contains ℎ − 1
pages at the beginning of 𝑃 ′

𝑖 that are different from 𝑝, and since, for any 𝑖 with
1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑘 distinct pages (that are all different from 𝑝) are requested within
𝑃 ′
𝑖 , Opt(𝐼) has to make 𝑘 − (ℎ− 1) page faults.
In the first 𝑁 − 1 phases, Mark causes (𝑁 − 1)𝑘 page faults whereas Opt(𝐼)

causes (𝑁 − 1)(𝑘 − (ℎ− 1)) page faults. In 𝑃𝑁 , Mark causes at most 𝑘 page faults;
on the other hand, Opt(𝐼) causes one additional page fault with the first request of
𝑃1. A competitive ratio of at most 𝑘/(𝑘− (ℎ− 1)) follows, where we set the additive
constant 𝛼 from Definition 1.6 to 𝑘 − 1. �

Observe that Theorem 1.11 does not claim strict competitiveness, whereas we
know from Theorem 1.8 that the competitive ratio is indeed strict for ℎ = 𝑘. This is
due to the fact that we know that Opt(𝐼) has to make one page fault right before 𝑃 ′

1,
which we can then assign to the at most 𝑘 page faults a marking algorithm causes in
the last phase 𝑃𝑁 . Obviously, an analogous argument for ℎ < 𝑘 does not work (we
would have to assign 𝑘− (ℎ− 1) page faults of the optimal solution to the at most 𝑘
page faults of the marking algorithm).

We will briefly revisit resource augmentation for the 𝑘-server problem in Chapter 4,
and when studying the online knapsack problem in Chapter 6.

Exercise 1.17. What happens if we assume 𝑘 < ℎ instead of ℎ ≤ 𝑘?

Exercise 1.18. Show that the bound of Theorem 1.11 is tight, that is, that no online
algorithm is better than 𝑘/(𝑘 − ℎ+ 1)-competitive for (ℎ, 𝑘)-paging.

1.7 Historical and Bibliographical Notes
As already mentioned, Turing machines were introduced by Turing [138] in 1936.
Two major subjects in the kernel of theoretical computer science are computability
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theory and complexity theory, which are both basically built around this model.
Of course, our introduction was extremely short and incomplete. There is a very
rich literature on computability and computational complexity, for instance, the
textbooks written by Arora and Barak [11], Hopcroft et al. [78], Hromkovič [79, 80],
Papadimitriou [122], and Sipser [130]. As for approximation algorithms, both
Hromkovič [79] and Vazirani [139] give very good introductions.

Today we know that testing whether a given number is prime can be done in
polynomial time [1].

The algorithm Kruskal from Exercise 1.3 is known as Kruskal’s algorithm and
named after Kruskal, who first published it in 1956 [110]. In Chapter 8, we will
introduce an online version of the MSTP and exploit Kruskal’s optimality.

The decision version of the knapsack problem (more precisely, a variant that is
called the subset sum problem) is among “Karp’s 21 𝒩 𝒫-complete problems” [93]. In
other words, it was one of the first problems ever to be proven to be 𝒩 𝒫-complete.
For the optimization version, there is a pseudo-polynomial-time algorithm that is
based on dynamic programming [79,139]. Ibarra and Kim [84] used this approach to
design an FPTAS. Therefore, the offline version of the problem is one of the easier
𝒩 𝒫-hard problems. More details about the knapsack problem and its variants are,
for instance, given in the textbook by Kellerer et al. [94]. The Christofides algorithm
for the TSP was introduced in 1976 by Christofides [44].

Competitive analysis was introduced in 1985 by Sleator and Tarjan [131]. The
lower bound of 𝑘 for paging was also proven in this paper (even the more general
result from Exercise 1.18 that makes use of resource augmentation); the authors also
showed that Lru is 𝑘-competitive. Bélády proved that Lfd (which he called Min,
not to be confused with the online algorithm from Exercise 1.12) is an optimal offline
algorithm for paging [18]. The terms competitive and strongly competitive were first
used in this context by Karlin et al. [92].

“Online Computation and Competitive Analysis” from Borodin and El-Yaniv [34]
is certainly the standard textbook on online algorithms and gives both a broad and
deep introduction to the topic. Additionally, there are many excellent surveys on
online algorithms by, for instance, Albers [4, 6], Fiat and Woeginger [63], and Irani
and Karlin [86].

Although Fifo, Fwf, and Lru achieve the same competitive ratio from our
theoretical point of view, it has been pointed out that this does not reflect what
is observed in practice [34, 47]. The criticism has been made that the idea of
competitive analysis is not sufficiently fine-grained as it is, in general, too pessimistic
[6, 20, 38, 54, 62, 86, 107]; in other words, many algorithms that perform very well
in practice are considered to be very weak with respect to competitive analysis. A
more detailed survey of the different refinements of competitive analysis that were
proposed since its introduction is given by Fiat and Woeginger [62] and in Chapter 3
of the dissertation of Dorrigiv [56].

Bélády’s anomaly (see Exercise 1.10) was first observed by Bélády, Nelson, and
Shedler [19].
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Due to the fact that a usual lookahead does not help, Albers followed a different
approach by introducing and using a so-called strong lookahead that enables the
algorithm to see ℓ pairwise distinct future requests [5]. This more powerful knowledge
about the future does indeed help for paging. Let ℓ ≤ 𝑘 − 2; then there is an online
algorithm (basically a variant of the abovementioned strategy Lru) with strong
lookahead ℓ that is (𝑘 − ℓ)-competitive, and this bound is tight. The concept of
resource augmentation was introduced by Kalyanasundaram and Pruhs [89, 90]
(though implicitly used earlier [50, 131]), and since then used for a number of
problems [50, 123]. Iwama and Zhang [88] and Han and Makino [75] used this
relaxation of pure competitive analysis to study online versions of the knapsack
problem; for this problem, we combine resource augmentation and computing with
advice in Chapter 6.
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2Randomization

Now that we have established some basic ideas about online algorithms and compet-
itive analysis, we introduce the concept of randomized online computation. Here,
we basically allow an online algorithm to “flip a coin” from time to time and to
continue its computation based on the outcome. The algorithms we studied so far
were deterministic; this means that their actions were completely determined by the
instance they were given. To distinguish these two different kinds of algorithms, we
will now speak of deterministic online algorithms and randomized online algorithms.
The output computed by a randomized online algorithm is not fully determined by
the instance anymore, but there are different possible outputs, and therefore also
different output qualities, when dealing with the same input. For a fixed input, we
thus study the expected quality of a given randomized online algorithm. We again
study worst-case inputs that are constructed by an adversary; the adversary model
we use is called an oblivious adversary. Such an adversary is weak in the sense that
it does not have any information about the random decisions made by the online
algorithm.

We start by formally defining this model, and then continue by making some
important observations on how to think about these algorithms. After that, we
study randomized online algorithms for paging. An important result is that we can
obtain an output that is exponentially better (in expectation) when computing using
randomness instead of computing deterministically. Next, we learn a very central
technique, known as Yao’s principle, that allows us to prove lower bounds on the
solution quality of randomized online algorithms by arguing about deterministic ones.
First, we prove the statement for the special case where we have both a finite number
of “coin tosses” and a finite class of instances; then, we generalize the results for an
infinite setting. After that, we elaborate some interesting connections between online
algorithms and two-person zero-sum games. Using what we have learned so far, we
show a lower bound on the solution quality of randomized online algorithms for paging
that asymptotically matches the preceding upper bound. Furthermore, as we are
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particularly interested in the number of random bits a randomized online algorithm
has to use, we study so-called barely random algorithms, that is, algorithms that only
use a constant number of random bits to create their output, independent of the
input length. Last, we investigate deterministic and randomized online algorithms
for a very generic online minimization problem that is encountered in many practical
situations, namely the famous ski rental problem.

2.1 Introduction
The results of the previous chapter foreshadow the dilemma we are facing when com-
puting online and considering worst-case instances; deterministic online algorithms
may perform very poorly. Also, we have seen a possible way out by giving algorithms
more power, for instance, by allowing resource augmentation or lookahead. However,
for the latter idea, it turned out that it does not really help for paging with respect
to competitive analysis. Of course, one might ask how realistic it is to perform
such a worst-case analysis the way we do, or whether it is not sufficient to design
algorithms that perform well for most instances. However, we want guarantees in
the following sense. Our worst-case instances may seem artificial from a practical
point of view, but maybe they are actually very natural for certain environments. In
such a situation, there may exist a few hard inputs that always cause a given online
algorithm to fail, although it performs a lot better on all other instances. The way
we measure the solution quality of algorithms, such an algorithm is considered bad.
In other words, we do not want that there are some instances of the given problem
that always cause an online algorithm to perform poorly; even if our feeling is that
these inputs do not occur very often.

However, in a randomized setting, it is acceptable if we design online algorithms for
which we can guarantee that, for every given input, they perform well “on average.”
With this in mind, we use the following approach to enable online algorithms to
obtain a higher output quality, that is, to overcome the drawback of not knowing
the future, at least to some extent. We allow the online algorithm at hand to base
its computations on randomness. So far, the output of a fixed algorithm was fully
determined by its strategy and the input, which is why we call such algorithms
deterministic online algorithms. We may think of randomized online algorithms as
online algorithms that toss a coin from time to time and use the outcome of this
coin flip to produce the output.

Formally, we need to introduce a random source which the algorithm may use;
we neglect the potential difficulties of obtaining truly random numbers and simply
suppose we have access to “real” randomness. In accordance with the model of Turing
machines, we suppose that the random bits are read from a tape in a sequential
manner. More precisely, the algorithm has access to a tape that is of unbounded
length and that has an infinite binary string 𝜓 written on it. Each bit of 𝜓 is either
1 or 0 with a probability of 1/2 each. Let us give a formal definition.
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Definition 2.1 (Randomized Online Algorithm). Let Π be an online
problem and let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an input of Π. A randomized on-
line algorithm Rand for Π computes the output Rand𝜓(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛),
where 𝑦𝑖 depends on 𝜓, 𝑥1, 𝑥2, . . . , 𝑥𝑖 and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; 𝜓 denotes a binary
string, where every bit is chosen with probability 1/2 to be either 0 or 1, and
each choice is independent of all other bits.

So the output created by randomized online algorithms does not simply depend
on the input, but also on 𝜓. In other words, for a fixed randomized online algorithm
and a fixed input, there may be different outputs. Of course, this needs to be
reflected in the way we measure the solution quality of such an algorithm and we
cannot simply apply Definition 1.6. To this end, cost(Rand(𝐼)) (gain(Rand(𝐼)),
respectively) is now a random variable that corresponds to the cost (gain, respectively)
of Rand on 𝐼. We measure the solution quality of a randomized online algorithm by
comparing its expected cost (expected gain, respectively), that is, E[cost(Rand(𝐼))]
(E[gain(Rand(𝐼))], respectively), to that of an optimal offline solution for 𝐼. It is
important to note that the optimal cost (gain, respectively) is a fixed value and not
a random variable in this setting. Also, we are still interested in worst-case analysis
when it comes to the input. This means that we do not consider a probability
distribution over the inputs, but over contents of the random tape 𝜓. A randomized
online algorithm is consistent for an online problem if it computes a feasible solution
for every 𝜓 and every input. In the remainder of this book, we omit 𝜓 for the sake
of an easier notation. These ideas are formalized in the following definition.

Definition 2.2 (Expected Competitive Ratio). Let Π be an online prob-
lem, let Rand be a consistent randomized online algorithm for Π, and let Opt
be an optimal offline algorithm for Π. For 𝑐 ≥ 1, Rand is 𝑐-competitive in
expectation for Π if there is a non-negative constant 𝛼 such that, for every
instance 𝐼 ∈ ℐ,

gain(Opt(𝐼)) ≤ 𝑐 · E[gain(Rand(𝐼))] + 𝛼

if Π is a maximization problem, or

E[cost(Rand(𝐼))] ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

if Π is a minimization problem. If these inequalities hold with 𝛼 = 0, we call
Rand strictly 𝑐-competitive in expectation. The expected competitive ratio of
Rand is defined as

𝑐Rand := inf{𝑐 ≥ 1 | Rand is 𝑐-competitive in expectation for Π} .

If the expected competitive ratio of Rand is constant and the best that is
achievable, we call Rand strongly 𝑐Rand-competitive in expectation.
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When proving lower bounds on the non-strict expected competitive ratio of some
competitive randomized online algorithm, we can proceed analogously to deterministic
online algorithms, that is, as we did in Theorems 1.2 and 1.3. More precisely, we
again construct a set ℐ = {𝐼1, 𝐼2, . . .} of instances and make sure that

lim
𝑖→∞

cost(Opt(𝐼𝑖)) = ∞

when dealing with a minimization problem, and

lim
𝑖→∞

gain(Opt(𝐼𝑖)) = ∞

when speaking about a maximization problem. All the other remarks we made in
Section 1.2 about 𝛼 can also be immediately transferred to the randomized setting.

For sure, one can easily think of alternative approaches to measure the solution
quality of a randomized online algorithm; for instance, we could look at the com-
petitive ratio that is achieved with some certain probability (which we will do in
Section 2.7). Asking for an online algorithm to perform well in expectation is justified
by the following reasoning.

• As mentioned above, if we consider a deterministic online algorithm Alg to
be bad, there are infinitely many inputs for which Alg always produces some
output of low quality, for instance, with large cost, compared to an optimal
solution.

• For a good randomized online algorithm Rand, we require that it performs
well on average. It may very well be the case that Rand produces a bad
output for some instances, but only for some random decisions it makes. If the
expected competitive ratio is small, however, we may hope that this does not
happen too often for a fixed instance, or, if it does happen often, that Rand
performs very well for the remaining random decisions. Thus, there are no
hard instances that always cause Rand to fail, but, on each instance, Rand
only fails sometimes. Of course, this “sometimes” comes in different flavors.

Similarly to deterministic online algorithms, we introduce an adversary that
constructs the input in a malicious way. In accordance with the two points above,
this adversary does not foresee the random decisions that are made by the algorithm;
such an adversary is called an oblivious adversary. It knows all deterministic steps
a given randomized online algorithm Rand makes. Thus, the adversary is aware
of when Rand reads random bits, how many of them are used, and what is done
depending on their values; but it has no clue about what these values will be. In
the deterministic setting, we could think of the adversary as preparing the input
in advance or as “reacting” to the algorithm’s concrete answers. Here, we have to
be more careful, because the adversary is not allowed to base the requests on the
answers of the randomized online algorithm as they may depend on the values of
the random bits; thus, the input has to be constructed in advance.
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Three′
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Figure 2.1. The randomized online algorithm Three′.

A very important point which we need to consider when studying randomized
online algorithms is the number of random decisions they make. An immediate
problem is that we cannot always give an upper bound on the number of random
bits used with absolute certainty. As an example, consider the simple randomized
online algorithm Three that does not get any input and only picks a number
1, 2, or 3 uniformly at random, that is, each with probability 1/3. How do we
achieve this? Well, as Three is a randomized online algorithm, it may read two bits
from its random tape and simply map the outcome to “1,” “2,” or “3.” Thus, as a
straightforward implementation, Three outputs

0 0 . . . → “1,” 0 1 . . . → “2,” and 1 0 . . . → “3”

and all these decisions are made with probability 1/4 as the bits on Three’s random
tape are 0 or 1 with probability 1/2 each. Obviously, this is not sufficient, because
every outcome is supposed to have a probability of 1/3. In other words, what do we
do if the two random bits are both 1? Clearly, we cannot map this event to any of
the three outputs; actually, there only seems to be one meaningful option. If this
case occurs, we read the next two bits from the random tape and follow the same
strategy as above.

Then, however, the outcome might again be that both bits are 1. In this case,
Three has to read another two bits, which happens with probability 1/16, and so
on. In general, the probability that we still do not have a result after 𝑛 tries is 1/4𝑛,
which means that it tends to 0 exponentially fast; still, this does not suffice to say
that Three terminates with absolute certainty after 𝑛 tries.

As a matter of fact, it is easy to see that we can never give any guarantee in such
a case. For a contradiction, suppose there is a natural number 𝑛′ such that there is
a randomized algorithm Three′ that uses 𝑛′ random bits and outputs “1,” “2,” or
“3” uniformly at random and with absolute certainty. Three′ also does not get any
input and therefore its behavior is fully determined by the values of the first 𝑛′ bits
on its random tape. This means that Three′ may act in at most 2𝑛′ ways. If there
are three outcomes and each is supposed to be chosen with the same probability, it
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must be possible to distribute these outputs evenly among the 2𝑛′ possible values of
the random string. Clearly, this is not possible as no power of two is divisible by 3;
this idea is sketched in Figure 2.1.

As we will see in Exercise 2.1, it also does not help to increase the alphabet size
of the random tape of Three′ as we would run into the same problems. So if we
want to be really exact, we even need to model such a simple randomized algorithm
as Three′ as an infinitely branching tree, because, as Figure 2.1 suggests, if we only
have a finite number of leaves, we cannot label them accurately.

Exercise 2.1. Suppose we change the model of randomized online algorithms such that
the random tape does not contain bits, but symbols from an alphabet Σ with |Σ| = 𝜎.
Prove a result similar to the one for Three′.

This behavior contradicts our notion as computer scientists of algorithms. As
mentioned before, algorithms are those Turing machines that always halt, but here
we are dealing with algorithms for which we cannot guarantee that they do. A
possible way to cope with this problem is to analyze how many random bits we
need in expectation; then we can apply Markov’s inequality to derive a bound on
the probability of taking 𝑡 times as long, which is 1/𝑡. We can thus bound the
number of random bits from above such that the probability that the considered
randomized online algorithm uses more bits is very small. Then we will ignore this
last uncertainty in a similar way that we ignore the probability of some hardware
error during computation. Alternatively, we might be satisfied if the probabilities
deviate very slightly from the ideal ones we assume theoretically. In what follows,
we therefore assume that every randomized online algorithm that reads a finite input
only uses a finite number of random bits.

To prove both lower and upper bounds on the expected competitive ratio of
randomized online algorithms, we will often take the following point of view. Let
𝑏 : N → N be a function that gives the maximum number of random binary decisions
(figuratively speaking, the “coin tosses”) of some given randomized online algorithm
Rand for a given input length. As we have just discussed, for any natural number
𝑛, 𝑏(𝑛) is well defined, that is, 𝑏(𝑛) is some natural number as well. Therefore, we
may say that Rand behaves in at most 2𝑏(𝑛) different ways when reading some fixed
input of length 𝑛. If we know Rand, we can compute 𝑏(𝑛) for every 𝑛. Furthermore,
for every given instance of length 𝑛, we can simply simulate Rand for every possible
random string of length 𝑏(𝑛), and thus study the behavior of the deterministic online
algorithms we get as a consequence. The following observation is based on this
idea and allows us to treat a randomized online algorithm as a set of deterministic
algorithms.
Observation 2.1. Every randomized online algorithm Rand that uses at most
𝑏(𝑛) random bits for inputs of length 𝑛 can be viewed as a set strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴ℓ(𝑛)} of ℓ(𝑛) ≤ 2𝑏(𝑛) (not necessarily distinct) deterministic online
algorithms on inputs of length 𝑛, from which Rand randomly chooses one.
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Figure 2.2. Schematic view of a randomized algorithm.

This point of view is shown schematically in Figure 2.2. To emphasize the context,
we always write the names of deterministic strategies from the set strat(Rand, 𝑛)
in italic letters. The probability distribution, on which Rand is based, is arbitrary;
however, it must be possible to implement it with 𝑏(𝑛) random bits. We make
another observation to again allow for an easier analysis. To this end, we note that
every deterministic strategy is chosen with a probability that is a multiple of 1/2𝑏(𝑛).
Now let 𝑎 ∈ {1, 2, . . . , 2𝑏(𝑛)}; instead of choosing a deterministic algorithm with a
probability of 𝑎/2𝑏(𝑛), we can just choose 𝑎 identical deterministic algorithms with a
probability of 1/2𝑏(𝑛) each. This leads to the following observation.

Observation 2.2. Every randomized online algorithm Rand that uses at most
𝑏(𝑛) random bits for inputs of length 𝑛 can be viewed as a set strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴2𝑏(𝑛)} of 2𝑏(𝑛) (not necessarily distinct) deterministic online algorithms
on inputs of length 𝑛, from which Rand chooses one uniformly at random with
probability 1/2𝑏(𝑛).

Exercise 2.2. In Observation 2.2, we speak about “at most 𝑏(𝑛) random bits.” But this
means that the randomized online algorithm Rand may also use fewer bits. Don’t we have
to incorporate this fact? If so, the behavior of Rand can be different for all binary strings
up to a length of 𝑏(𝑛). As a consequence, there would be

𝑏(𝑛)∑︁
𝑖=0

2𝑖 = 2𝑏(𝑛)+1 − 1

possibilities and not just 2𝑏(𝑛). Argue why our reasoning is nevertheless correct, and why it
is wrong to treat Rand as a set of 2𝑏(𝑛)+1 − 1 deterministic algorithms.

Note that the point of view taken in Observations 2.1 and 2.2 is somewhat easier
to see when speaking about offline algorithms instead of online algorithms. If we
use the model of Turing machines, we can just modify a given randomized Turing
machine RTM to another randomized Turing machine RTM′ in the following way.
At the very beginning, RTM′ computes 𝑏(𝑛) and copies 𝑏(𝑛) bits from its random
tape to an additional working tape. After that, RTM′ works exactly like RTM while
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using its working tape the same way as RTM uses its random tape whereas RTM′

does not access its random tape anymore. In this case, no action was taken before
the random bits were copied, and clearly a deterministic strategy is drawn randomly
from a set of deterministic strategies.1 For online algorithms, we cannot use such
a constructive argument since the algorithm itself simply cannot compute 𝑏(𝑛) at
the beginning (because 𝑛 is not known in advance). However, we can compute
this number when analyzing the algorithm, and this is all that is needed in this
case. Moreover, there are randomized algorithms that make a constant number
(with respect to the input length) of random decisions (so-called barely random
algorithms, which we will consider shortly). These algorithms can indeed read all
random bits before starting the computation. For such a randomized algorithm
Rand that reads at most 𝑏 random bits, we simply define the set of deterministic
strategies by strat(Rand) = {𝐴1, 𝐴2, . . . , 𝐴2𝑏}.

Before we proceed to design randomized online algorithms for the paging problem,
let us make some general statements. In Definition 2.2, we did not speak about
optimal randomized online algorithms. In principle, there does not seem to be any
immediate reason why we did not. So this would be a randomized online algorithm
that, for every choice of random bits, produces an optimal solution for every input.
However, if such an algorithm exists, we can immediately make an even stronger
statement.

Theorem 2.1. If, for some online problem Π, there is an optimal randomized online
algorithm, then there also is an optimal deterministic online algorithm for Π.

Proof. Suppose that Rand is an optimal randomized online for Π. Now suppose
we simply design a deterministic online algorithm Alg that, whenever Rand reads
a bit from its random tape, assumes that this bit is, without loss of generality, 1.
Since Rand is optimal, it also has to be optimal in this (admittedly rather unlikely)
case of “random” choices. Therefore, Alg is also optimal; moreover, we note that,
for any fixed input length 𝑛, Alg is one of the strategies in strat(Rand, 𝑛). �

As a consequence, if we show that there is no optimal deterministic online algorithm
for some online problem, we can conclude that there also is no optimal randomized one.
It is very important to note that the above argument only holds for optimality, and
that there is no analogous argument for 1-competitive randomized online algorithms.

Example 2.1. Consider the following online minimization problem, for which we
have an almost optimal randomized online algorithm, but for which any deterministic
online algorithm is very bad. Let 𝜀 > 0 be arbitrary but fixed such that 1/𝜀 ∈ N+.
The input 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) starts with a request 𝑥1 = 𝑛, where 𝑛 is a multiple of
1/𝜀, and we have 𝑛 ≫ 1/𝜀. Every online algorithm has to give an answer 𝑦1 when
reading 𝑥1 such that 1 ≤ 𝑦1 ≤ 𝑛. The second request is 𝑥2 with 1 ≤ 𝑥2 ≤ 𝑛. If
1Note that computing 𝑏(𝑛) may increase the running time. Another issue is that such a construction
does not necessarily work if the memory RTM uses is bounded.
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𝑦1 = 𝑥2, the algorithm has to pay a penalty of 1 in time step 𝑇2 and every subsequent
time step that is a multiple of 1/𝜀, independent of its further answers. If, however,
𝑦1 ̸= 𝑥2, the algorithm only pays 1 in total. Therefore, Opt always has cost 1; both
the cost and the competitive ratio of any deterministic online algorithm are exactly
𝜀𝑛.

Conversely, we can easily design a randomized online algorithm Rand that gives
an answer 𝑦1 with 1 ≤ 𝑦1 ≤ 𝑛 after the first request uniformly at random, that is,
every value is given as an answer with probability 1/𝑛. The expected cost of Rand
is therefore

1
𝑛

· 𝜀𝑛+
(︂

1 − 1
𝑛

)︂
· 1 ≤ 1 + 𝜀 .

It directly follows that Rand is 1-competitive in expectation according to Defini-
tion 2.2 for 𝛼 = 𝜀. ♢

Of course, our argument only works because the input length 𝑛 is revealed to the
algorithm in the first time step.

Note that there is a natural restriction on how much randomization can help in
an online setting that we do not encounter in offline problems. When we deal with
randomized offline algorithms, we can make use of the principle of amplification. The
idea is to run a randomized algorithm multiple times on the same input to increase
the probability of obtaining a correct answer for some decision problem. Let us stick
to offline problems for a second and consider an easy example.

Example 2.2. In Section 1.1, we briefly discussed the decision problem of determin-
ing whether a given number is prime. The Solovay-Strassen algorithm SoSt answers
this question with “yes” or “no” as follows. If the input 𝐼 is prime, the correct
output “yes” is given with probability 1; if the input is composite, however, the
correct output is given with probability at least 1/2. This is, of course, unsatisfying.
If the output is “no,” 𝐼 must be composite; if the output is “yes,” however, it may
very well be the case that 𝐼 is also composite.

Then again, we have an additional promise, namely SoSt only gives the wrong
answer “yes” with a probability of at most 1/2 if 𝐼 is composite. Now suppose we
run SoSt 𝑡 times on the same input. The probability that 𝐼 is composite and “yes”
is still given as an answer all 𝑡 times is at most 1/2𝑡. On the other hand, if during
these 𝑡 runs, an answer “no” is observed once, we know that 𝐼 is composite.

Hence, a correct answer is given with probability at least 1 − 1/2𝑡 if 𝐼 is composite,
and with probability 1 if 𝐼 is prime. For any 𝜀 > 0, we can choose the number 𝑡 of
runs of SoSt such that

1 − 1
2𝑡 > 1 − 𝜀 .

To this end, it suffices to set

𝑡 :=
⌊︂

log2

(︂
1
𝜀

)︂⌋︂
+ 1
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to only allow an arbitrarily small (constant) error in the worst case. ♢

When dealing with approximation algorithms for optimization problems, there
is no simple “yes” or “no” and thus no right or wrong answer. Similarly to the
expected competitive ratio of online algorithms, here, the expected approximation
ratio is taken as a measurement. The nice thing is that through amplification a
statement about some solution quality that is obtained in expectation also allows
for a statement about which solution quality is obtained with an arbitrarily large
(constant) probability. Suppose we are given a randomized offline 𝑟-approximation
algorithm Rand for, say, a minimization problem Π. For any instance 𝐼 of Π, let
𝑑𝐼 := 𝑟 · cost(Opt(𝐼)) where Opt(𝐼) is an optimal solution for 𝐼. Then, we have

E[cost(Rand(𝐼))] ≤ 𝑑𝐼 ,

for every 𝐼. For any given 𝛿 > 0, we can bound the probability that Rand has a
cost that is a factor of 1 + 𝛿 larger than 𝑑𝐼 by

Pr[cost(Rand(𝐼)) ≥ (1 + 𝛿) · 𝑑𝐼 ] ≤ 1
1 + 𝛿

due to Markov’s inequality. If we again run Rand 𝑡 times and choose the solution
with minimum cost at the end, we can bound the probability that the result has a
cost that is at least (1 + 𝛿) · 𝑑𝐼 in all 𝑡 iterations by

Pr[cost(Rand(𝐼)) ≥ (1 + 𝛿) · 𝑑𝐼 in all 𝑡 tries] ≤
(︂

1
1 + 𝛿

)︂𝑡
,

and we note that this upper bound does not depend on 𝑑𝐼 . As in Example 2.2, we
can choose the number of runs 𝑡 of Rand such that

1 −
(︂

1
1 + 𝛿

)︂𝑡
> 1 − 𝜀 .

A possible value is

𝑡 :=
⌊︂

log 1
1+𝛿

(︂
1
𝜀

)︂⌋︂
+ 1 .

In online computation, the technique of amplification unfortunately cannot be
applied as online algorithms only have one shot to compute the output. Thus, a
plain statement about the expected competitive ratio cannot be used in general to
argue about the probabilities to compute a good or bad solution; for such statements
we have to take a closer look.

2.2 A Randomized Online Algorithm for Paging
So far, we have learned that deterministic online algorithms are 𝑘-competitive at
best for the paging problem. A general strategy to really obtain such a competitive
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ratio is that followed by marking algorithms. These algorithms only differ in the
way unmarked pages are replaced. In this section, we design a randomized marking
algorithm RMark, which follows this concept and replaces the unmarked pages
uniformly at random; the idea is shown in Algorithm 2.1.

mark all pages in the cache; // First page fault starts new phase
for every request 𝑥 do

if 𝑥 is in the cache
if 𝑥 is unmarked

mark 𝑥;
output “0”;

else
if there is no unmarked page

unmark all pages in the cache; // Start new phase
𝑝 := randomly chosen page among all unmarked cached pages;
remove 𝑝 and insert 𝑥 at the old position of 𝑝;
mark 𝑥;
output “𝑝”;

end

Algorithm 2.1. Randomized online algorithm RMark for paging.

Our hope is that no oblivious adversary can force RMark to create an output
that is too bad, because which pages reside in the cache at some given point in
time partly depends on random decisions. For any 𝑚 ∈ N+, let 𝐻𝑚 denote the 𝑚th
harmonic number, defined as

𝐻𝑚 := 1 + 1
2 + 1

3 + . . .+ 1
𝑚

=
𝑚∑︁
𝑖=1

1
𝑖
,

which we need to prove the following theorem.

Theorem 2.2. RMark is strictly 2𝐻𝑘-competitive in expectation for paging.

Proof. Let 𝐼 denote the given input, and let there be 𝑁 phases (defined by the
𝑘-phase partition by both RMark and Definition 1.8) in total. Note that the phases
only depend on 𝐼 and not on the random decisions of RMark. Recall that, before
the first request is processed, RMark marks all pages in its cache; thus, the first
page fault starts a new phase. For now, assume that all phases are complete.

Let us analyze a single phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 . In this phase, exactly 𝑘
distinct pages are requested; without loss of generality, we assume that no page is
requested more than once during 𝑃𝑗 . We call all pages that are already in the cache
of RMark at the beginning of 𝑃𝑗 “old.” Conversely, pages that are not old and
that are requested during 𝑃𝑗 are called “new.” For every new page, an unmarked
old page is removed from the cache. Since new pages cause page faults anyway, it is
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certainly a best strategy for the adversary to first request new pages and then old
ones to increase the probability that some of the latter were removed before. Thus,
we assume such an adversary for our analysis. Let 𝑙𝑗 denote the number of new pages
that are requested during 𝑃𝑗 , leading to 𝑙𝑗 page faults made by RMark. Since 𝑃𝑗
is complete, after the first 𝑙𝑗 requests, there are 𝑘− 𝑙𝑗 unmarked old pages requested
during 𝑃𝑗 , and each one is in the cache of RMark with a certain probability.

Consider the request for the first old page. In total, there are 𝑘 unmarked old
pages, some of which are still in the cache and some of which are removed at this
point. More precisely, at the (𝑙𝑗 + 1)th time step of 𝑃𝑗 , in which the first old page is
requested, 𝑘 − 𝑙𝑗 old pages have not yet been removed. Therefore, the probability
that the page that is requested is still in the cache is

𝑘 − 𝑙𝑗
𝑘

.

After that, there are 𝑘 − 1 unmarked old pages and 𝑘 − 𝑙𝑗 − 1 unmarked old pages
that have not yet been removed from the cache. The probability that the page that
is requested in the (𝑙𝑗 + 2)th time step is still in the cache is therefore

𝑘 − 𝑙𝑗 − 1
𝑘 − 1 ,

and in general we get that the 𝑖th requested old page is still in the cache of RMark
with a probability of

𝑘 − 𝑙𝑗 − (𝑖− 1)
𝑘 − (𝑖− 1) .

Conversely, this page is not in the cache with a probability of

1 − 𝑘 − 𝑙𝑗 − (𝑖− 1)
𝑘 − (𝑖− 1) = 𝑙𝑗

𝑘 − (𝑖− 1) ,

which then also denotes the probability that RMark has cost 1 in the corresponding
time step. Together with the cost 𝑙𝑗 for the new pages which are requested at the
beginning of 𝑃𝑗 , we obtain a total expected cost for this phase of

𝑙𝑗 +
𝑘−𝑙𝑗∑︁
𝑖=1

𝑙𝑗
𝑘 − (𝑖− 1) = 𝑙𝑗 + 𝑙𝑗

(︂
1
𝑘

+ 1
𝑘 − 1 + . . .+ 1

𝑙𝑗 + 1

)︂
= 𝑙𝑗 + 𝑙𝑗

(︂
1
𝑘

+ 1
𝑘 − 1 + . . .+ 1⏟  ⏞  

𝐻𝑘

−
(︂

1
𝑙𝑗

+ 1
𝑙𝑗 − 1 + . . .+ 1⏟  ⏞  

𝐻𝑙𝑗

)︂)︂

= 𝑙𝑗(𝐻𝑘 −𝐻𝑙𝑗 + 1)
≤ 𝑙𝑗𝐻𝑘 .

(since 𝑙𝑗 ≥ 1 and thus 𝐻𝑙𝑗 ≥ 1 (every phase starts with a new page))

42



2.2. A Randomized Online Algorithm for Paging

Now let cost(RMark(𝑃𝑗)) denote a random variable that is equal to the cost of
RMark in phase 𝑃𝑗 . Due to linearity of expectation, the total cost of RMark is

E[cost(RMark(𝐼))] = E

⎡⎣ 𝑁∑︁
𝑗=1

cost(RMark(𝑃𝑗))

⎤⎦
=

𝑁∑︁
𝑗=1

E[cost(RMark(𝑃𝑗))]

≤
𝑁∑︁
𝑗=1

𝐻𝑘𝑙𝑗 .

Next, we need to compute a lower bound on the cost of an optimal algorithm Opt.
If we consider two consecutive phases 𝑃𝑗−1 and 𝑃𝑗 , at least 𝑘 + 𝑙𝑗 distinct pages
were requested. Hence, Opt has to make at least 𝑙𝑗 page faults in these two phases.
We can partition the phases in two different ways, either starting with phase 𝑃1 or
𝑃2, that is, we obtain

𝑃1, 𝑃2⏟  ⏞  
𝑙2 faults

, 𝑃3, 𝑃4⏟  ⏞  
𝑙4 faults

, 𝑃5, . . . or 𝑃1, 𝑃2, 𝑃3⏟  ⏞  
𝑙3 faults

, 𝑃4, 𝑃5⏟  ⏞  
𝑙5 faults

, . . . .

Moreover, note that Opt causes 𝑙1 page faults in 𝑃1 since both RMark and Opt
start with the same cache content. We get

cost(Opt(𝐼)) ≥
⌊𝑁/2⌋∑︁
𝑗=1

𝑙2𝑗 and cost(Opt(𝐼)) ≥
⌈𝑁/2⌉∑︁
𝑗=1

𝑙2𝑗−1

and therefore

cost(Opt(𝐼)) ≥ max

⎧⎨⎩
⌊𝑁/2⌋∑︁
𝑗=1

𝑙2𝑗 ,

⌈𝑁/2⌉∑︁
𝑗=1

𝑙2𝑗−1

⎫⎬⎭
≥ 1

2

⎛⎝⌊𝑁/2⌋∑︁
𝑗=1

𝑙2𝑗 +
⌈𝑁/2⌉∑︁
𝑗=1

𝑙2𝑗−1

⎞⎠
=

𝑁∑︁
𝑗=1

1
2 𝑙𝑗 .

Consequently, we obtain an upper bound on the strict expected competitive ratio
of RMark of

𝑁∑︁
𝑗=1

𝐻𝑘𝑙𝑗

⧸︃
𝑁∑︁
𝑗=1

1
2 𝑙𝑗 = 𝐻𝑘

𝑁∑︁
𝑗=1

𝑙𝑗

⧸︃
1
2

𝑁∑︁
𝑗=1

𝑙𝑗 = 2𝐻𝑘 .
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Figure 2.3. Comparison of the reachable competitive ratios of deterministic (solid) and
randomized (dotted) online algorithms for paging.

To finish the proof, let us discuss the case where the last phase 𝑃𝑁 is not complete.
This means that, during 𝑃𝑁 , there are 𝑙𝑁 ≥ 1 new pages requested and fewer than
𝑘 − 𝑙𝑁 old pages. For the lower bound on cost(Opt(𝐼)), nothing changes since it
only incorporates the new pages of 𝑃𝑁 . On the other hand, our upper bound on
cost(RMark(𝑃𝑁 )) decreases. �

To better understand how much randomization helps us for paging, we note that

𝐻𝑚 =
𝑚∑︁
𝑖=1

1
𝑖

≤ 1 +
∫︁ 𝑚

1

1
𝑖

d𝑖 = ln𝑚+ 1 ∈ 𝒪(log𝑚) .

To sum up, we showed that no deterministic online algorithm is better than
𝑘-competitive, but there is a randomized online algorithm, which is 𝒪(log 𝑘)-
competitive in expectation; see Figure 2.3. Hence, randomization allows for an
exponential improvement of the asymptotic output quality in expectation.

In Section 2.5, we will show that, asymptotically, this is the best we can hope for
when considering randomized online algorithms. However, before we show a lower
bound on the expected competitive ratio of any randomized online algorithm for
paging, we introduce a very general technique which often allows us to easily prove
such bounds.

2.3 Yao’s Principle
In this section, we study a connection between randomized and deterministic online
algorithms. More precisely, the theorems below allow us to derive lower bounds on
the expected competitive ratio of randomized online algorithms from bounds on the
solution quality of deterministic online algorithms. It is of course not sufficient to
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show that all deterministic strategies are bad for a given problem. In general, we
can prove such a claim using different worst-case instances. However, since these
deterministic algorithms may perform well for many other instances, there still might
be a “good” randomized online algorithm that chooses between them (basically, that
is the point of randomized computation). We have to show something stronger;
namely, we have to take into account all possible randomized online algorithms,
that is, all distributions over all deterministic online algorithms, and for any of
these distributions, we have to find a hard instance. Obviously, this can be very
challenging since we generally do not know anything about these distributions. Yao’s
principle offers a way to significantly simplify this task. It essentially says that it
is sufficient to show that, for a fixed probability distribution over some instances,
all deterministic strategies give bad results. Intuitively speaking, we will show that
we can use a distribution over instances to derive statements for distributions over
deterministic online strategies. Surprisingly, we are allowed to pick one distribution
over instances and obtain a bound on all distributions over deterministic algorithms.

2.3.1 Finite Problems
In this subsection, we take a first step by proving a restricted version of the claim;
more specifically, we assume that both the number of different instances of the given
problem Π and the number of different deterministic algorithms that are consistent
for Π are finite; we call such problems finite online problems. In this context, by
“deterministic algorithms” we mean generic algorithms; that is, two algorithms that
produce the same output for every instance are considered to be the same algorithm.
The adversary chooses the instances according to a probability distribution PrAdv
over a finite set ℐ of size 𝜇 of instances while the given randomized online algorithm
implements a probability distribution PrRand over strat(Rand). We denote the
expected values with respect to PrAdv or PrRand by EAdv or ERand, respectively.
To have a notation that is consistent with that for deterministic algorithms, we
write EAdv[cost(Alg(ℐ))] when we analyze the expected cost of Alg with respect to
PrAdv for online minimization problems; likewise, we write EAdv[gain(Alg(ℐ))] for
online maximization problems. Let 𝐴1, 𝐴2, . . . , 𝐴ℓ denote all deterministic strategies
that are consistent for Π; without loss of generality, we consider an online algorithm
Rand with strat(Rand) = {𝐴1, 𝐴2, . . . , 𝐴ℓ}.

Note that, since there is only a finite number of instances, any deterministic
online algorithm for Π is 1-competitive since we can choose the additive constant
𝛼 from Definition 1.6 such that it is equal to the worst possible cost (best possible
gain, respectively) over all algorithms and instances from ℐ; this has to be a fixed
constant (assuming that there are no infinite costs or gains, which is true for all
problems considered in this book). As a consequence, we will assume that 𝛼 is 0 in
the following statements, that is, we consider strict competitiveness.

We start by proving two claims in terms of minimizing some cost; combining them
yields Yao’s theorem for finite minimization problems.
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Lemma 2.1. Let Π be a finite online minimization problem, and let ℐ = {𝐼1, 𝐼2,
. . . , 𝐼𝜇} be a set of instances of Π; let PrAdv be a probability distribution over ℐ. If
there is some constant 𝑐 ≥ 1 such that, for every deterministic online algorithm Alg,
we have

EAdv[cost(Alg(ℐ))] ≥ 𝑐 · EAdv[cost(Opt(ℐ))] ,

then, for every randomized online algorithm Rand, there is an instance 𝐼 ∈ ℐ such
that

ERand[cost(Rand(𝐼))] ≥ 𝑐 · cost(Opt(𝐼)) .

Proof. Following Observations 2.1 and 2.2, Rand can be seen as a probability
distribution PrRand, according to which one deterministic algorithm is chosen from a
finite set strat(Rand). Now let us fix some arbitrary probability distribution PrAdv
over ℐ, such that every instance 𝐼 ∈ ℐ gets chosen with probability PrAdv[𝐼]. We
can then compute the expected cost of every deterministic online algorithm 𝐴𝑗 with
respect to PrAdv as

EAdv[cost(𝐴𝑗(ℐ))] =
𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · cost(𝐴𝑗(𝐼𝑖)) . (2.1)

The expected cost of Rand with respect to PrAdv is

EAdv[ERand[cost(Rand(ℐ))]]

=
𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · ERand[cost(Rand(𝐼𝑖))]

=
𝜇∑︁
𝑖=1

⎛⎝PrAdv[𝐼𝑖]
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))

⎞⎠
=

𝜇∑︁
𝑖=1

⎛⎝ ℓ∑︁
𝑗=1

PrAdv[𝐼𝑖] · PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))

⎞⎠
=

ℓ∑︁
𝑗=1

(︃
𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))
)︃

(by changing the order of summation)

=
ℓ∑︁
𝑗=1

(︃
PrRand[𝐴𝑗 ]

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · cost(𝐴𝑗(𝐼𝑖))
)︃

=
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv[cost(𝐴𝑗(ℐ))] . (2.2)

(due to (2.1))
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Now suppose that every deterministic online algorithm has an expected cost that
is at least 𝑐 times larger than the expected optimal cost. Then we obtain

EAdv[ERand[cost(Rand(ℐ))]] =
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv[cost(𝐴𝑗(ℐ))]

≥
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · 𝑐 · EAdv[cost(Opt(ℐ))]

= 𝑐 · EAdv[cost(Opt(ℐ))] . (2.3)
(since the sum of all probabilities is 1)

At this point, we are not done yet as we considered a probability distribution over
the set of inputs; this corresponds to a randomized adversary and this conflicts with
our model where the adversary chooses one particular instance. However, we can
easily “derandomize” the adversary by observing that (2.3) implies that there is a
particular instance 𝐼 ∈ ℐ such that

ERand[cost(Rand(𝐼))] ≥ 𝑐 · cost(Opt(𝐼)) .
To see this, assume the contrary; that is, for every instance 𝐼𝑖 ∈ ℐ with 1 ≤
𝑖 ≤ 𝜇, we have ERand[cost(Rand(𝐼𝑖))] < 𝑐 · cost(Opt(𝐼𝑖)). Then it follows that
PrAdv[𝐼𝑖] · ERand[cost(Rand(𝐼𝑖))] < 𝑐 · PrAdv[𝐼𝑖] · cost(Opt(𝐼𝑖)), for every 𝑖, and
hence

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · ERand[cost(Rand(𝐼𝑖))] < 𝑐

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · cost(Opt(𝐼𝑖)) ,

which is equivalent to
EAdv[ERand[cost(Rand(ℐ))]] < 𝑐 · EAdv[cost(Opt(ℐ))] ,

and therefore directly contradicts (2.3). As a consequence, it follows that there must
be at least one instance 𝐼 ∈ ℐ such that

ERand[cost(Rand(𝐼))]
cost(Opt(𝐼)) ≥ 𝑐 ,

which gives the claimed lower bound on Rand’s strict expected competitive ratio.�

Lemma 2.1 makes a statement on the ratio of the expected cost of online algorithms
to the expected optimal cost. This does not immediately allow us to speak about
the expectation of the ratio of the costs. Let Alg be some arbitrary deterministic
online algorithm for some online problem, and suppose we are given some probability
distribution PrAdv over a set ℐ of inputs of this problem. Note that, in general, we
have

EAdv[cost(Alg(ℐ))]
EAdv[cost(Opt(ℐ))] ̸= EAdv

[︂
cost(Alg(ℐ))
cost(Opt(ℐ))

]︂
.

With little effort, however, we now prove the following lemma similarly to Lemma 2.1.
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Lemma 2.2. Let Π be a finite online minimization problem, and let ℐ and PrAdv be
as described above. If there is some constant 𝑐 ≥ 1 such that, for every deterministic
online algorithm Alg, we have

EAdv

[︂
cost(Alg(ℐ))
cost(Opt(ℐ))

]︂
≥ 𝑐 ,

then, for every randomized online algorithm Rand, there is an instance 𝐼 ∈ ℐ such
that

ERand[cost(Rand(𝐼))] ≥ 𝑐 · cost(Opt(𝐼)) .

Proof. Let us consider a randomized online algorithm Rand that implements a
probability distribution PrRand over a finite set strat(Rand) of deterministic online
algorithms. Suppose that, for every deterministic online algorithm 𝐴𝑗 , we have

EAdv

[︂
cost(𝐴𝑗(ℐ))

cost(Opt(ℐ))

]︂
≥ 𝑐 . (2.4)

According to the definition of the expected value EAdv, we further have

EAdv

[︂
cost(𝐴𝑗(ℐ))

cost(Opt(ℐ))

]︂
=

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · cost(𝐴𝑗(𝐼𝑖))
cost(Opt(𝐼𝑖))

. (2.5)

Likewise, for Rand we get

EAdv

[︂
ERand[cost(Rand(ℐ))]

cost(Opt(ℐ))

]︂
= EAdv

[︃∑︀ℓ
𝑗=1 PrRand[𝐴𝑗 ] · cost(𝐴𝑗(ℐ))

cost(Opt(ℐ))

]︃

=
𝜇∑︁
𝑖=1

(︃
PrAdv[𝐼𝑖] ·

∑︀ℓ
𝑗=1 PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))

cost(Opt(𝐼𝑖))

)︃

=
𝜇∑︁
𝑖=1

⎛⎝PrAdv[𝐼𝑖]
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))
cost(Opt(𝐼𝑖))

⎞⎠
=

𝜇∑︁
𝑖=1

⎛⎝ ℓ∑︁
𝑗=1

PrAdv[𝐼𝑖] · PrRand[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖))
cost(Opt(𝐼𝑖))

⎞⎠
=

ℓ∑︁
𝑗=1

(︃
PrRand[𝐴𝑗 ]

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · cost(𝐴𝑗(𝐼𝑖))
cost(Opt(𝐼𝑖))

)︃
.

(by again changing the order of summation)
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In the last line, we can plug in (2.5), which yields

EAdv

[︂
ERand[cost(Rand(ℐ))]

cost(Opt(ℐ))

]︂
=

ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv

[︂
cost(𝐴𝑗(ℐ))

cost(Opt(ℐ))

]︂
and, due to (2.4), it follows that

EAdv

[︂
ERand[cost(Rand(ℐ))]

cost(Opt(ℐ))

]︂
≥

ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · 𝑐 = 𝑐 .

As before (in the proof of Lemma 2.1), from the definition of the expected value
EAdv, we can immediately conclude that there is an instance 𝐼 ∈ ℐ such that

ERand[cost(Rand(𝐼))]
cost(Opt(𝐼)) ≥ 𝑐

as we claimed. �

Combining Lemmata 2.1 and 2.2 results in Yao’s principle for finite online minimiza-
tion problems. Recall that 𝐴1, 𝐴2, . . . , 𝐴ℓ are all the deterministic online algorithms
for Π, and that every randomized online algorithm for Π can be thought of as
choosing between these algorithms.
Theorem 2.3 (Yao’s Principle for Finite Min. Problems). Let Π be a finite
online minimization problem, and let ℐ, PrAdv, and PrRand be as described above. If
there is some constant 𝑐 ≥ 1 such that

max
{︂

min𝑗(EAdv[cost(𝐴𝑗(ℐ))])
EAdv[cost(Opt(ℐ))] , min

𝑗

(︂
EAdv

[︂
cost(𝐴𝑗(ℐ))

cost(Opt(ℐ))

]︂)︂}︂
≥ 𝑐 ,

then, for every randomized online algorithm Rand for Π, there is an instance 𝐼 ∈ ℐ,
such that

ERand[cost(Rand(𝐼))] ≥ 𝑐 · cost(Opt(𝐼)) . �

Obviously, we would like to have a similar statement for online maximization
problems. This is indeed possible; we leave the proof of the following statement as
an exercise for the reader.
Theorem 2.4 (Yao’s Principle for Finite Max. Problems). Let Π be a finite
online maximization problem, and let ℐ, PrAdv, and PrRand be as described above. If
there is some constant 𝑐 ≥ 1 such that

max
{︃

EAdv[gain(Opt(ℐ))]
max𝑗(EAdv[gain(𝐴𝑗(ℐ))]) , min

𝑗

(︃(︂
EAdv

[︂
gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︂)︂−1
)︃}︃

≥ 𝑐 ,

then, for every randomized online algorithm Rand for Π, there is an instance 𝐼 ∈ ℐ
such that

gain(Opt(𝐼)) ≥ 𝑐 · ERand[gain(Rand(𝐼))] .
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Exercise 2.3. Prove Theorem 2.4.
Hint. For the second argument of the maximum function, consider the reciprocal of the
strict competitive ratio as a measurement.

2.3.2 Infinite Problems
So far, our proofs only work if both strat(Rand) and ℐ are finite. Indeed, if we
assume they are infinitely large, we run into some problems. In this case, it is not
justified anymore to ignore the additive constant 𝛼 when computing a bound on the
competitive ratio of the given online algorithms. This means that we now do not
speak about the strict competitive ratio, and therefore we cannot simply show that
there is one hard instance, but we have to prove the existence of infinitely many.
Second, the expected values cannot necessarily be expressed as finite sums anymore.
However, for many online problems, the number of instances of a given length is
finite (or at least we can use finite subsets of instances of a given length for our
lower-bound argument); for instance, for paging, for a fixed 𝑛, there is just a finite
number of different sequences that request one of 𝑚 pages in every time step, namely
𝑚𝑛. The number of possible answers to a given request is usually also finite, and
thus, for a fixed 𝑛, there is also a finite number of generic algorithms. We again
assume that strat(Rand, 𝑛) consists of all such algorithms. This way, we are able
to apply Yao’s principle for finite problems from the last subsection, yet implicitly
define an infinite set of instances ℐ and speak about an infinite set of algorithms.
Moreover, if we can prove that the expected gain (when considering maximization
problems) or the expected cost (when considering minimization problems) of an
optimal offline algorithm tends to infinity, we can cover the case that 𝛼 is positive;
this is basically the same idea as used for Theorems 1.2 and 1.3. Subsequently,
ℐ1, ℐ2, . . . denote infinitely many finite sets of instances of the given problem such
that all instances in ℐ𝑖 have the same length, and, for every 𝐼 ∈ ℐ𝑖 and 𝐼 ′ ∈ ℐ𝑖+1,
we have |𝐼| < |𝐼 ′|. Furthermore, for every input length 𝑛 considered, there is only a
finite number of deterministic online algorithms 𝐴1, 𝐴2, . . . , 𝐴ℓ(𝑛). The adversary
chooses the instances from ℐ𝑖 according to a probability distribution PrAdv,𝑖; the
expected value is denoted by EAdv,𝑖. Now suppose we can construct ℐ1, ℐ2, . . . as
above for an online minimization problem Π and show that

max
{︂

min𝑗(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))])
EAdv,𝑖[cost(Opt(ℐ𝑖))]

, min
𝑗

(︂
EAdv,𝑖

[︂
cost(𝐴𝑗(ℐ𝑖))

cost(Opt(ℐ𝑖))

]︂)︂}︂
≥ 𝑐 , (2.6)

for every 𝑖 ∈ N+. Applying either Lemma 2.1 or Lemma 2.2, there is an infinite set
ℐ = {𝐼1, 𝐼2, . . .} with 𝐼𝑖 ∈ ℐ𝑖 and |𝐼𝑖| < |𝐼𝑖+1| such that

ERand[cost(Rand(𝐼𝑖))]
cost(Opt(𝐼𝑖))

≥ 𝑐 .

If 𝑐 = 𝑐(𝑛) is an unbounded increasing function, then, by the same reasoning as
for the deterministic case (see Section 1.2), Rand cannot be 𝑐′-competitive for any
𝑐′ with 𝑐′(𝑛) ∈ 𝑜(𝑐(𝑛)).
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But what happens if 𝑐 is constant? Suppose we can also show

lim
𝑖→∞

cost(Opt(𝐼𝑖)) = ∞ ,

for any choice of 𝐼𝑖 ∈ ℐ𝑖. This implies that no randomized online algorithm for Π
is (𝑐− 𝜀)-competitive in expectation, for any 𝜀 > 0; the arguments are exactly the
same as in the proof of Theorem 1.2.

Analogous statements can easily be made for infinite maximization problems,
which is left as an exercise for the reader. Next, we formulate an infinite version of
Yao’s principle where we bound from below the expected cost of an optimal offline
algorithm. However, the proof (which uses a contradiction) only works for the first
argument of the max-expression of (2.6).

Theorem 2.5 (Yao’s Principle for Infinite Min. Problems). Let Π be an on-
line minimization problem, and let ℐ1, ℐ2, . . . and PrAdv,𝑖 be as described above. If
there is some constant 𝑐 ≥ 1 such that

(i) min𝑗(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))])
EAdv,𝑖[cost(Opt(ℐ𝑖))]

≥ 𝑐, for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

EAdv,𝑖[cost(Opt(ℐ𝑖))] = ∞,

then there is no randomized online algorithm for Π that is (𝑐 − 𝜀)-competitive in
expectation, for any 𝜀 > 0.

Proof. For a contradiction, suppose that both conditions (i) and (ii) are true, but
there still is a randomized online algorithm Rand that is (𝑐 − 𝜀)-competitive in
expectation for Π, where 𝜀 > 0. In particular, there is a constant 𝛼 such that, for
every 𝑖 ∈ N+ and every instance 𝐼 ∈ ℐ𝑖, we have that

ERand[cost(Rand(𝐼))] ≤ (𝑐− 𝜀) · cost(Opt(𝐼)) + 𝛼 .

Since this inequality holds for any 𝐼 ∈ ℐ𝑖, we can immediately speak about the
expected value with respect to PrAdv,𝑖, yielding

EAdv,𝑖[ERand[cost(Rand(ℐ𝑖))]] ≤ (𝑐− 𝜀) · EAdv,𝑖[cost(Opt(ℐ𝑖))] + 𝛼 . (2.7)

The same calculations as in the proof of Lemma 2.1 (more precisely, (2.2)) yield

EAdv,𝑖[ERand[cost(Rand(ℐ𝑖))]] =
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))]

= ERand[EAdv,𝑖[cost(Rand(ℐ𝑖))]] ,

and thus it follows that

ERand[EAdv,𝑖[cost(Rand(ℐ𝑖))]] ≤ (𝑐− 𝜀) · EAdv,𝑖[cost(Opt(ℐ𝑖))] + 𝛼 (2.8)
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has to be satisfied.
Since PrAdv,𝑖 is fixed, there is a “best” random choice for Rand, that is,

min
𝑗

(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))]) ≤ ERand[EAdv,𝑖[cost(Rand(ℐ𝑖))]] . (2.9)

The following steps are essentially the same as in the proof of Theorem 1.2. With
(2.8) and (2.9), we get

min
𝑗

(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))]) ≤ (𝑐− 𝜀) · EAdv,𝑖[cost(Opt(ℐ𝑖))] + 𝛼 ,

which is equivalent to (assuming that the expected optimal cost is not zero)

min𝑗(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))])
EAdv,𝑖[cost(Opt(ℐ𝑖))]

− 𝛼

EAdv,𝑖[cost(Opt(ℐ𝑖))]
≤ 𝑐− 𝜀 . (2.10)

Due to (i), the first term of (2.10) is at least 𝑐. Additionally, (ii) implies that there
are infinitely many sets of instances such that the second term of (2.10) is smaller
than 𝜀. Thus, for infinitely many ℐ𝑖, we get a contradiction. �

The proof of the complementing statement for infinite maximization problems is
also left as an exercise.

Theorem 2.6 (Yao’s Principle for Infinite Max. Problems). Let Π be an on-
line maximization problem, and let ℐ1, ℐ2, . . . and PrAdv,𝑖 be as described above. If
there is some constant 𝑐 ≥ 1 such that

(i) EAdv,𝑖[gain(Opt(ℐ𝑖))]
max𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])

≥ 𝑐, for every 𝑖 ∈ N+, and

(ii) lim
𝑖→∞

EAdv,𝑖[gain(Opt(ℐ𝑖))] = ∞,

then there is no randomized online algorithm for Π that is (𝑐 − 𝜀)-competitive in
expectation, for any 𝜀 > 0.

Exercise 2.4. For online maximization problems, we can make observations similar to
those preceding Theorem 2.5. Discuss them.

Exercise 2.5. Prove Theorem 2.6.

⋆2.3.3 Unbounded Problems
In this subsection, we even go a step further and allow infinitely many sets of
infinitely many instances and consistent algorithms. We even allow uncountably
many instances and algorithms in each set, although this is somewhat “too general”
as there is only a countable number of algorithms (to have an easier notation, we
still speak of the 𝑗th algorithm 𝐴𝑗 also in this case). As already mentioned in the
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previous subsection, in contrast to the finite case, the expected values may have
to be expressed as infinite sums; even worse, we may be dealing with continuous
random variables, whose expected values are given by integrals rather than sums.
To study such a setting, we use the following variation of Tonelli’s theorem, which
we state without a proof; it will allow us to prove the “unbounded version” of Yao’s
principle by changing the order of taking the expectation (which so far simply meant
to change the order of summation).

Theorem 2.7 (Tonelli’s Theorem). Let 𝒳 and 𝒴 be probability spaces, and let
𝑓 : 𝒳 × 𝒴 → R+ be a non-negative measurable function. Then, we have∫︁

𝒴

(︂∫︁
𝒳
𝑓(𝑥, 𝑦) d𝑥

)︂
d𝑦 =

∫︁
𝒳

(︂∫︁
𝒴
𝑓(𝑥, 𝑦) d𝑦

)︂
d𝑥 . �

Since we are speaking about infinite sets, in the following we need to replace the
maximum and minimum functions by supremum and infimum functions, respectively.
Unlike in the previous two subsections, we use the limit inferior or limit superior of
the fractions.

Moreover, we prove a more general claim by not grouping instances by their
lengths, but by any suitable parameter. Consider (countably) infinitely many sets
ℐ1, ℐ2, . . . of instances of an online minimization problem Π; each ℐ𝑖 may be of (even
uncountably) infinite size. As always, let PrAdv,𝑖 be a probability distribution over
ℐ𝑖. The following proof is obtained by slightly modifying that of Theorem 2.5.

Theorem 2.8 (Yao’s Principle for Unbounded Min. Problems). Let Π be
an online minimization problem, and let ℐ1, ℐ2, . . . and PrAdv,𝑖 be as described above.
If there is some constant 𝑐 ≥ 1 such that

(i) lim inf
𝑖→∞

(︂
inf𝑗(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))])
EAdv,𝑖[cost(Opt(ℐ𝑖))]

)︂
≥ 𝑐 and

(ii) lim sup
𝑖→∞

(EAdv,𝑖[cost(Opt(ℐ𝑖))]) = ∞ ,

then there is no randomized online algorithm for Π that is (𝑐 − 𝜀)-competitive in
expectation, for any 𝜀 > 0.

Proof. For a contradiction, suppose that both conditions (i) and (ii) are true, but
there still is a randomized online algorithm Rand that is (𝑐 − 𝜀)-competitive in
expectation for Π, where 𝜀 > 0. By the same arguments as in the proof of Theorem 2.5,
we get

EAdv,𝑖[ERand[cost(Rand(ℐ𝑖))]] ≤ (𝑐− 𝜀) · EAdv,𝑖[cost(Opt(ℐ𝑖))] + 𝛼 ,

and, together with Theorem 2.7 (the cost and the probabilities are always non-
negative and measurable), it follows that

ERand[EAdv,𝑖[cost(Rand(ℐ𝑖))]] ≤ (𝑐− 𝜀) · EAdv,𝑖[cost(Opt(ℐ𝑖))] + 𝛼 . (2.11)
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Again using the same arguments as in the proof of Theorem 2.5 gives (assuming
that the expected optimal cost is not zero)

inf𝑗(EAdv,𝑖[cost(𝐴𝑗(ℐ𝑖))])
EAdv,𝑖[cost(Opt(ℐ𝑖))]

− 𝛼

EAdv,𝑖[cost(Opt(ℐ𝑖))]
≤ 𝑐− 𝜀 . (2.12)

As a consequence of (i), there is an 𝑖0 such that the first term of (2.12) is larger
than 𝑐, for any 𝑖 ≥ 𝑖0. Additionally, (ii) implies that there is an infinite increasing
sequence 𝑖1, 𝑖2, . . ., where 𝑖1 ≥ 𝑖0, such that

lim
𝑙→∞

(︂
𝛼

EAdv,𝑖𝑙 [cost(Opt(ℐ𝑖𝑙))]

)︂
= 0 .

Thus, for infinitely many ℐ𝑖, we get a contradiction. �

One possible way to apply Theorem 2.8 is to define the sets to contain instances of
the same length; however, we will use another partitioning of instances in Section 2.5,
where we use Yao’s principle to obtain a lower bound on the expected competitive
ratio of every randomized online algorithm for paging.

Note that, for the last step of our argumentation in the proof above, we needed
the fact that (i) speaks about the limit inferior. If, instead, we had used the limit
superior (which is a weaker assumption), we could not argue the same way. In this
case, we only know that the first term of (2.12) is larger than 𝑐 for infinitely many
𝑖 and the second one tends to 0 for a sequence of infinitely many 𝑖; however, the
intersection of these two sets of input lengths is not necessarily infinite.

For maximization problems, we can prove an analogous statement. We again leave
the proof to the reader.

Theorem 2.9 (Yao’s Principle for Unbounded Max. Problems). Let Π be
an online maximization problem, and let ℐ1, ℐ2, . . . and PrAdv,𝑖 be as described above.
If there is some constant 𝑐 ≥ 1 such that

(i) lim inf
𝑖→∞

(︂
EAdv,𝑖[gain(Opt(ℐ𝑖))]

sup𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])

)︂
≥ 𝑐 and

(ii) lim sup
𝑖→∞

(EAdv,𝑖[gain(Opt(ℐ𝑖))]) = ∞ ,

then there is no randomized online algorithm for Π that is (𝑐 − 𝜀)-competitive in
expectation, for any 𝜀 > 0.

Exercise 2.6. Prove Theorem 2.9.

Before we apply Yao’s principle, we will have a look at the game between a
randomized online algorithm and the adversary from a different perspective. Our
main reason to do this is to present an alternative proof of Yao’s principle for finite
minimization problems.
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2.4 Another Point of View: Game Theory
Again, we consider a randomized online algorithm Rand and an adversary that
tries to force Rand into creating an output that is as bad as possible compared to
an optimal solution. Throughout this section, we will only consider finite online
minimization problems; let Π be such a problem. Rand makes 𝑏 ∈ N+ binary
random decisions and, according to Observation 2.1, therefore picks one out of
ℓ deterministic algorithms 𝐴1, 𝐴1, . . . , 𝐴ℓ from a set strat(Rand), where ℓ ≤ 2𝑏.
Conversely, the adversary can choose an arbitrary input 𝐼1, 𝐼2, . . . , 𝐼𝜇 from a set ℐ,
which Rand then has to work on. We assume that ℓ and 𝜇 are arbitrarily large, but
finite. For the same reasons as in Subsection 2.3.1, we thus assume that the additive
constant 𝛼 is 0.

In what follows, we call 𝐴1, 𝐴2, . . . , 𝐴ℓ the strategies of Rand and 𝐼1, 𝐼2, . . . , 𝐼𝜇
the strategies of the adversary. Moreover, for all 𝑖 and 𝑗 with 1 ≤ 𝑖 ≤ 𝜇 and 1 ≤ 𝑗 ≤ ℓ,
we define the strict performance 𝑐𝑖,𝑗 of 𝐴𝑗 on 𝐼𝑖 as

𝑐𝑖,𝑗 := cost(𝐴𝑗(𝐼𝑖))
cost(Opt(𝐼𝑖))

,

where Opt(𝐼𝑖) is an optimal solution for 𝐼𝑖. With these values, we can construct the
following matrix ℳ.

𝐴1 𝐴2 𝐴3 . . .
𝐼1 𝑐1,1 𝑐1,2 𝑐1,3 . . .
𝐼2 𝑐2,1 𝑐2,2 𝑐2,3
𝐼3 𝑐3,1 𝑐3,2 𝑐3,3
...

... . . .

For the moment, let us stick to the deterministic case, that is, Rand chooses one
strategy with probability 1. We may think of Rand and the adversary as two players
in a game. Rand chooses a column 𝑗 from ℳ, which corresponds to a strategy 𝐴𝑗 ,
and the adversary chooses a row 𝑖 corresponding to an input 𝐼𝑖. In particular, Rand
wants to choose 𝑗 such that, whatever row 𝑖 is chosen by the adversary, the value
𝑐𝑖,𝑗 is as small as possible. Equivalently, we may say that Rand wants to maximize
the value −𝑐𝑖,𝑗 . Conversely, the adversary obviously wants to maximize the value
𝑐𝑖,𝑗 . We call 𝑐𝑖,𝑗 and −𝑐𝑖,𝑗 the payoff of the adversary or Rand, respectively. Since,
for a fixed column and row, Rand has a payoff which is exactly the negated payoff
of the adversary, we call this game a zero-sum game; more specifically, as there are
two players involved, such a game is called a two-person zero-sum game. In what
follows, we say that Rand wants to minimize the adversary’s payoff, which is, as
just noted, the same as if Rand wants to maximize its own payoff, but yields a more
intuitive point of view for our investigations.

We call the adversary the row player and Rand the column player, and we may
assume that both players know the set of strategies of the opponent and therefore ℳ.
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Example 2.3. Suppose the players have two strategies each, and consider the
following matrix ℳ1.

𝐴1 𝐴2
𝐼1 1 2
𝐼2 2 1

The players now study all possible courses and payoffs according to ℳ1, and then
pick a best strategy based on their investigations, and we assume that they both
have to reveal the chosen strategy at the same time. However, it turns out that one
of them would always want to change its strategy. Suppose, for instance, that both
have chosen their first strategy, that is, 𝐴1 and 𝐼1. In this case, the adversary has
a payoff of 𝑐1,1 = 1 and Rand has a payoff of −1. Since the adversary knows the
matrix ℳ1, it wants to change its strategy to 𝐼2 instead. In this case, Rand has a
payoff of −𝑐1,2 = −2, which is why it wants to change its strategy to 𝐴2. If it does
this, the adversary has an incentive to again change its strategy, and we see that we
go round in circles; no matter which strategies are chosen, one player always has
an advantage if it changes its strategy. We can illustrate this situation as follows,
where the arrows point to the maximum values of the columns and the minimum
values of the rows.

𝐴1 𝐴2
𝐼1
𝐼2 ♢

Let us give a different example that leads to a completely different situation.

Example 2.4. Consider the following matrix ℳ2.
𝐴1 𝐴2 𝐴3 𝐴4

𝐼1 7 2 3 1
𝐼2 1 4 5 4
𝐼3 10 9 6 9
𝐼4 6 3 2 11
𝐼5 12 1 2 5

In this example, there is a pair of strategies which, if chosen, lead to a situation in
which neither of the players has an incentive to change its strategy, given that the
other player sticks to its strategy. Specifically, this is the case if Rand chooses 𝐴3
and the adversary chooses 𝐼3; for all other choices, at least one player would want to
change its strategy, as the following illustration shows.

𝐴1 𝐴2 𝐴3 𝐴4
𝐼1
𝐼2
𝐼3
𝐼4
𝐼5
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In such a case, we say that the game is at an equilibrium, and we call 𝑐3,3 the value
of the game. We observe the following two facts.

1. If Rand chooses the strategy 𝐴3, it can be sure that the adversary’s payoff
is not larger than 6; for instance, if Rand chose 𝐴1 instead, the payoff of the
adversary could be significantly larger, namely 12.

2. Conversely, if the adversary chooses the strategy 𝐼3, it can be sure that its
payoff is at least 6. If it chose 𝐼5, its payoff could be a lot smaller, namely 1.

It follows that, in the above case, we can describe the strategies of both players that
lead to an equilibrium as follows.

• Rand chooses its strategy 𝐴𝑗* such that the maximum value over all entries
in this column is as small as possible, that is,

𝑗* = arg min
𝑗

{max
𝑖

{𝑐𝑖,𝑗}} ,

and we set
𝑣Rand := max

𝑖
{𝑐𝑖,𝑗*} .

• On the other hand, the adversary chooses its strategy 𝐼𝑖* such that the minimum
entry over the columns in this row is as large as possible, that is,

𝑖* = arg max
𝑖

{min
𝑗

{𝑐𝑖,𝑗}} ,

and we set
𝑣Adv := min

𝑗
{𝑐𝑖*,𝑗} .

As we have just seen, we have

𝑣Adv = 𝑣Rand = 𝑐3,3

in this example. If 𝑖* and 𝑗* are played, neither player can obtain a larger payoff by
changing its strategy (given that the other one does not change its strategy). ♢

As Example 2.4 suggests, the value of the game can always be computed as above
if the given game has an equilibrium. However, as Example 2.3 shows, this does not
hold in general, although the values 𝑣Rand and 𝑣Adv always exist; we merely know
that

𝑣Adv ≤ 𝑣Rand

is always true. Let us give one last example.

Example 2.5. Consider the following matrix ℳ3.

𝐴1 𝐴2 𝐴3 𝐴4
𝐼1 6 5 8 4
𝐼2 7 6 2 7
𝐼3 1 3 3 2
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We can illustrate ℳ3 as follows.
𝐴1 𝐴2 𝐴3 𝐴4

𝐼1
𝐼2
𝐼3

Suppose both players act according to the principle from Example 2.4. Rand can
guarantee that the payoff of the adversary is at most 6 by playing 𝐴2. Obviously, for
the adversary it would then be best to choose the strategy 𝐼2. However, in this case,
Rand would want to change its strategy and play 𝐴3 instead. On the other hand,
by choosing the strategy 𝐼1, the adversary can always guarantee that its payoff is
at least 4. In this case, Rand would want to choose 𝐴4 and the adversary has an
incentive to change its strategy. As a consequence, the game is not at an equilibrium
if the strategies 𝐼1 and 𝐴2 are chosen. ♢

Such a procedure does not seem very promising for analyzing deterministic al-
gorithms, but this is not what we want anyway.2 We want to speak about ran-
domized online algorithms and, in what follows, let us also assume that the ad-
versary chooses a strategy at random. If we transfer this model to our game, we
are dealing with the following situation. Rand uses a probability distribution
PrRand : strat(Rand) → [0, 1] over the columns of a given matrix ℳ. We denote
the probability PrRand[𝐴𝑗 ] that Rand chooses the strategy 𝐴𝑗 by 𝑞Rand,𝑗 ; the se-
quence 𝑞Rand = (𝑞Rand,1, 𝑞Rand,2, . . . , 𝑞Rand,ℓ) is called the mixed strategy of Rand.
Conversely, the adversary uses a probability distribution PrAdv : ℐ → [0, 1] over the
rows of ℳ. The probability PrAdv[𝐼𝑖] that the adversary chooses the strategy 𝐼𝑖
is denoted by 𝑞Adv,𝑖; the sequence 𝑞Adv = (𝑞Adv,1, 𝑞Adv,2, . . . , 𝑞Adv,𝜇) is called the
mixed strategy of the adversary. To distinguish these strategies from the deter-
ministic setting above, we call the former strategies pure strategies. Since we are
now dealing with a randomized setting, the payoff is modeled by a random variable
𝐶 : ℐ × strat(Rand) → R+, which has an expected value of

E[𝐶] :=
𝜇∑︁
𝑖=1

ℓ∑︁
𝑗=1

𝑞Adv,𝑖 · 𝑐𝑖,𝑗 · 𝑞Rand,𝑗 = 𝑞ᵀAdv · ℳ · 𝑞Rand .

Obviously, Rand wants to minimize this expected value by choosing its probability
distribution accordingly, and conversely, the adversary wants to maximize it. But
what do concrete choices for the two players look like? We can argue as we did
previously for deterministic strategies.

• Rand knows ℳ and further knows that the adversary wants to choose its
mixed strategy 𝑞Adv such that E[𝐶] is maximized for the given choice of 𝑞Rand.
Thus, Rand can choose a strategy 𝑞*

Rand such that
𝑞*

Rand = arg min
𝑞Rand

{max
𝑞Adv

{𝑞ᵀAdv · ℳ · 𝑞Rand}} .

2If we consider a purely deterministic setting, the problem of Examples 2.3 and 2.5 does not appear
anyway since the algorithm is fixed first, and the adversary chooses its strategy afterwards.
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Therefore, the adversary has a payoff of at most
𝑣Rand := max

𝑞Adv
{𝑞ᵀAdv · ℳ · 𝑞*

Rand} .

• Conversely, the adversary can choose a mixed strategy 𝑞*
Adv such that

𝑞*
Adv = arg max

𝑞Adv
{min
𝑞Rand

{𝑞ᵀAdv · ℳ · 𝑞Rand}} .

This means that it can guarantee a payoff of at least
𝑣Adv := min

𝑞Rand
{𝑞*

Adv
ᵀ · ℳ · 𝑞Rand} .

As with deterministic strategies, it is easy to see that we have 𝑣Adv ≤ 𝑣Rand, but
here, this holds with equality even if there is no equilibrium in pure strategies. The
following theorem is one of the most important results from game theory and states
that 𝑣Adv = 𝑣Rand. We will not prove it here.

Theorem 2.10 (Minimax Theorem). For every two-person zero-sum game with
finite strategies, we have

min
𝑞Rand

{max
𝑞Adv

{𝑞ᵀAdv · ℳ · 𝑞Rand}} = max
𝑞Adv

{min
𝑞Rand

{𝑞ᵀAdv · ℳ · 𝑞Rand}} . �

The minimax theorem states that, for any two-person zero-sum game, there is an
equilibrium in mixed strategies 𝑞*

Adv and 𝑞*
Rand that are defined as above. Let us

now go back to online algorithms and see what this implies.
We note that if one of the two mixed strategies 𝑞Adv or 𝑞Rand is fixed, the respective

other player can maximize its payoff by choosing a deterministic strategy. Suppose
that the strategy 𝑞Rand is fixed; this corresponds to the situation we are dealing with
in the context of randomized online algorithms, because the adversary chooses a
deterministic strategy while knowing the probability distribution with which Rand
chooses its deterministic strategies. Then

ℳ · 𝑞Rand =

⎛⎜⎝𝑐1,1 . . . 𝑐1,ℓ
... . . . ...

𝑐𝜇,1 . . . 𝑐𝜇,ℓ

⎞⎟⎠ ·

⎛⎜⎝𝑞Rand,1
...

𝑞Rand,ℓ

⎞⎟⎠ =

⎛⎜⎝𝑐1
...
𝑐𝜇

⎞⎟⎠ ,

which means that the adversary can choose its strategy as a unit vector in which
exactly that distinct entry is non-zero, for which the corresponding entry of the
vector (𝑐1, 𝑐2, . . . , 𝑐𝜇)ᵀ is as large as possible, to maximize its payoff

(︀
𝑞Adv,1, . . . , 𝑞Adv,𝜇

)︀
·

⎛⎜⎝𝑐
′
1
...
𝑐′
𝜇

⎞⎟⎠ .

Analogously, we can argue the other way around. If we combine this fact with
Theorem 2.10, we obtain the following lemma, where 𝑒𝑖 with 1 ≤ 𝑖 ≤ 𝜇 (𝑒𝑗 with
1 ≤ 𝑗 ≤ ℓ, respectively) denotes the corresponding unit vector for which the 𝑖th (𝑗th,
respectively) entry is 1 and all other entries are 0.
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Lemma 2.3 (Loomis’ Lemma). For every two-person zero-sum game with finite
strategies, we have

min
𝑞Rand

{max
𝑖

{𝑒ᵀ𝑖 · ℳ · 𝑞Rand}} = max
𝑞Adv

{min
𝑗

{𝑞ᵀAdv · ℳ · 𝑒𝑗}} . �

Since, for every fixed mixed strategy 𝑞′
Adv for the adversary,

max
𝑞Adv

{min
𝑗

{𝑞ᵀAdv · ℳ · 𝑒𝑗}} ≥ 𝑞′ᵀ
Adv · min

𝑗
{ℳ · 𝑒𝑗} ,

we can, using the minimax theorem (or rather Loomis’ lemma), conclude that, for
every 𝑞′

Adv,

min
𝑞Rand

{max
𝑖

{𝑒ᵀ𝑖 · ℳ · 𝑞Rand}} ≥ 𝑞′ᵀ
Adv · min

𝑗
{ℳ · 𝑒𝑗} .

Now let 𝑞*
Rand be a best mixed strategy for Rand; then we have

max
𝑖

{𝑒ᵀ𝑖 · ℳ · 𝑞*
Rand} ≥ 𝑞′ᵀ

Adv · min
𝑗

{ℳ · 𝑒𝑗} .

If we take a closer look, we observe that this inequality is exactly Yao’s principle,
which we introduced in Section 2.3. The statement is that, for a best randomized
online algorithm (namely 𝑞*

Rand), there is an input (namely 𝑒ᵀ𝑖 ) such that the expected
performance is at least as large as that of a best deterministic online algorithm
(namely 𝑒𝑗 , which induces minimum cost) on an arbitrary but fixed distribution over
inputs (namely 𝑞′ᵀ

Adv).

2.5 A Lower Bound for Randomized Online
Algorithms for Paging

Theorem 2.2 states that the randomized online algorithm RMark for paging obtains
an expected competitive ratio of at most 2𝐻𝑘. The next question is whether this is
all we can do when allowing randomized computations. The following result gives
the answer; as a matter of fact, the bound on the competitive ratio of RMark is
only a multiplicative constant of 2 away from a bound on what a randomized online
algorithm can achieve at best. To prove the claim, we make use of Yao’s principle,
which we introduced in Section 2.3.

Theorem 2.11. No randomized online algorithm for paging is better than 𝐻𝑘-
competitive in expectation.

Proof. As in the proof of Theorem 1.5, it is sufficient to assume that there are only
𝑚 = 𝑘 + 1 pages in total. We construct instances of the following form.

• In the first time step, page 𝑝𝑘+1 is requested; by definition, it is not in the
cache of any algorithm.
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• In every subsequent time step, an arbitrary page is requested other than the
one that was requested right before; each of these 𝑘 pages is requested with
probability 1/𝑘.

We now show that every deterministic online algorithm has a large expected cost
compared to an optimal solution on these instances. Applying Yao’s principle, we can
then derive a lower bound on the expected competitive ratio of a best randomized
online algorithm for paging.

Let Alg be some deterministic online algorithm for paging; without loss of
generality (see Exercises 1.5 and 1.6), we restrict ourselves to demand paging
algorithms. Thus, Alg has exactly 𝑘 pages in its cache in every time step. In other
words, every page that is requested in some time step is not in the cache with a
probability of 1/𝑘 (an exception is, of course, the first time step).

We subdivide the input into phases; the number of phases is denoted by 𝑁 . This
is done similarly to Definition 1.8; however, the phases are now stochastic. By ℐ𝑁
we denote the set of all instances that contain 𝑁 complete phases. Phase 𝑃1 starts
with time step 𝑇1 and ends after time step 𝑇𝑟, where 𝑟 is chosen such that in time
step 𝑇𝑟+1 all of the 𝑘+ 1 different pages were requested. After that, phase 𝑃2, which
is defined analogously, begins, etc. 𝑃𝑁 ends right after time step 𝑇𝑛−1, which means
that there is one more request after the last phase ends. We observe that ℐ𝑁 is well
defined and contains infinitely many instances (of infinitely many lengths). However,
there are instances that are not contained in any set.

Recall that, in every time step (except for 𝑇1), Alg causes a page fault with
probability 1/𝑘. This is true for every instance in ℐ𝑁 , because the probability of
reaching the 𝑁th phase starting with any sufficiently short prefix and continuing
by requesting pages as described is 1. Now let EAdv,𝑁 [cost(Alg(𝑃𝑗))] denote the
expected cost of Alg in phase 𝑃𝑗 , and let |𝑃𝑗 | denote the expected length of 𝑃𝑗 with
1 ≤ 𝑗 ≤ 𝑁 . Then we obtain

EAdv,𝑁 [cost(Alg(𝑃𝑗))] ≥ |𝑃𝑗 | · 1
𝑘
. (2.13)

Conversely, there is an optimal algorithm Opt that does not make more than one
page fault in every single phase plus one additional page fault in 𝑇𝑛; in phase 𝑃1,
Opt causes a page fault in time step 𝑇1 and it replaces the page that is requested at
the beginning of phase 𝑃2, and so on (in 𝑃𝑁 , it replaces the page that is requested
in 𝑇𝑛). As a result, we have

EAdv,𝑁 [cost(Opt(𝑃𝑗))] = 1 , (2.14)

for every phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 .
The key point is to compute the expected length of a single phase; recall that all

phases are complete. Phase 𝑃𝑗 ends when the next page that will be requested is the
first occurrence of the (𝑘+ 1)th different page since the beginning of phase 𝑃𝑗 . Thus,
we have to compute how long it takes in expectation until all pages 𝑝1, 𝑝2, . . . , 𝑝𝑘+1
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have been requested (a combinatorial problem, which is closely related to the well-
known coupon collector’s problem); the expected number of time steps of phase 𝑃𝑗
is this number minus 1. To this end, let 𝑋𝑖, for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 + 1, denote a
random variable that counts the number of steps that pass until the 𝑖th page gets
requested after 𝑖− 1 different pages were already requested (within 𝑃𝑗).

Let us first consider the corresponding probability 𝑞𝑖 that the 𝑖th new page is
requested when in the preceding time steps of 𝑃𝑗 already 𝑖− 1 different pages were
requested. Clearly, 𝑞1 = 1 and, since in the second time step of 𝑃𝑗 the first page is
not requested again, also 𝑞2 = 1; furthermore, 𝑞3 = (𝑘 − 1)/𝑘, 𝑞4 = (𝑘 − 2)/𝑘, etc.
In general, we have

𝑞𝑖 = 𝑘 − (𝑖− 2)
𝑘

, (2.15)

for 2 ≤ 𝑖 ≤ 𝑘 + 1. This is true for every phase including 𝑃1. Now we can compute
the expected value of 𝑋𝑖 as follows. Suppose the (𝑖− 1)th page was just requested,
and now we count the time steps that are needed until the 𝑖th new page is requested.
The probability that this takes 𝑡 time steps is 𝑞𝑖 · (1 − 𝑞𝑖)𝑡−1; in other words, for
𝑡− 1 steps, a page is requested that was already requested before, and then, in the
𝑡th step, a page is requested that was not requested yet. We get

EAdv,𝑁 [𝑋𝑖] =
∞∑︁
𝑡=1

𝑡 · 𝑞𝑖 · (1 − 𝑞𝑖)𝑡−1

=
∞∑︁
𝑡=0

(𝑡+ 1) · 𝑞𝑖 · (1 − 𝑞𝑖)𝑡

=
∞∑︁
𝑡=0

𝑡 · 𝑞𝑖 · (1 − 𝑞𝑖)𝑡 +
∞∑︁
𝑡=0

𝑞𝑖 · (1 − 𝑞𝑖)𝑡

(since none of the summands are negative)

= (1 − 𝑞𝑖) ·
∞∑︁
𝑡=1

𝑡 · 𝑞𝑖 · (1 − 𝑞𝑖)𝑡−1 + 𝑞𝑖 ·
∞∑︁
𝑡=0

(1 − 𝑞𝑖)𝑡

(since the first part is 0 for 𝑡 = 0)

= (1 − 𝑞𝑖) · EAdv,𝑁 [𝑋𝑖] + 𝑞𝑖
1 − (1 − 𝑞𝑖)

,

(using the closed form of the geometric series)

and therefore

EAdv,𝑁 [𝑋𝑖] = 1
𝑞𝑖
. (2.16)

62



2.5. A Lower Bound for Randomized Online Algorithms for Paging

Now let 𝑋 = 𝑋1 +𝑋2 + . . .+𝑋𝑘+1 denote a random variable that counts all time
steps until 𝑘 + 1 different pages were requested since the beginning of 𝑃𝑗 . Then, we
have

EAdv,𝑁 [𝑋] = EAdv,𝑁 [𝑋1 +𝑋2 + . . .+𝑋𝑘+1]
= EAdv,𝑁 [𝑋1] + EAdv,𝑁 [𝑋2] + . . .+ EAdv,𝑁 [𝑋𝑘+1]

(by linearity of expectation)

= 1 + 1
𝑞2

+ . . .+ 1
𝑞𝑘+1

(as a consequence of (2.16))

= 1 +
𝑘+1∑︁
𝑖=2

1
𝑞𝑖

= 1 +
𝑘+1∑︁
𝑖=2

𝑘

𝑘 − (𝑖− 2)

(due to (2.15))

= 1 + 𝑘 ·
𝑘+1∑︁
𝑖=2

1
𝑘 − (𝑖− 2)

= 1 + 𝑘 ·
𝑘∑︁
𝑖=1

1
𝑘 − (𝑖− 1)

= 1 + 𝑘 ·
𝑘∑︁
𝑖=1

1
𝑖

= 1 + 𝑘 ·𝐻𝑘 ,

and thus 𝑃𝑗 ends after an expected number of 𝑘𝐻𝑘 steps. It is important to note
that the above arguments are also true for the first and the last phase.

From (2.13), it follows that the expected cost of Alg in 𝑃𝑗 is at least

EAdv,𝑁 [cost(Alg(𝑃𝑗))] ≥ 𝐻𝑘 . (2.17)

As Alg is any deterministic online algorithm for paging, from (2.14) and (2.17)
together with the fact that Opt causes a page fault in 𝑇𝑛, we obtain

inf𝑗(EAdv,𝑁 [cost(𝐴𝑗(ℐ𝑁 ))])
EAdv,𝑁 [cost(Opt(ℐ𝑁 ))] ≥

∑︀𝑁
𝑗=1 𝐻𝑘

1 +
∑︀𝑁
𝑗=1 1

= 𝑁𝐻𝑘

𝑁 + 1 ,

and since

lim inf
𝑁→∞

(︂
𝑁𝐻𝑘

𝑁 + 1

)︂
= 𝐻𝑘 ,
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it follows that (i) of Theorem 2.8 is satisfied. Moreover, note that the expected cost
of Opt increases with 𝑁 , that is,

lim sup
𝑁→∞

(EAdv,𝑁 [cost(Opt(ℐ𝑁 ))]) = ∞ ,

which means that also (ii) of Theorem 2.8 is true. Therefore, we can apply Yao’s prin-
ciple and conclude that no randomized online algorithm has an expected competitive
ratio better than 𝐻𝑘. �

⋆2.6 A Barely Random Algorithm for Paging
We now have gained some insight into the paging problem. In particular, we know
that there is a randomized online algorithm that is exponentially better than all
deterministic ones. If we take a closer look, we also realize that the algorithms
we have dealt with so far are clearly efficient (in terms of their time complexity).
Now we ask how much randomization we need to be this good. The randomized
marking algorithm RMark that we discussed in Section 2.2 obviously uses a number
of random bits that increases with the input length 𝑛. In this section, we show that
this is not necessary; we only need a constant number (with respect to 𝑛) of random
bits to obtain (asymptotically) the same competitive ratio. To this end, we design a
so-called barely random algorithm RMarkBarely that chooses randomly between
some deterministic marking algorithms. Formally, we have

strat(RMarkBarely) = {Mark1,Mark2, . . . ,Mark2𝑏} ,

where the online algorithms Mark𝑖 with 1 ≤ 𝑖 ≤ 2𝑏 are marking algorithms that
replace unmarked pages in the cache in such a way that if a page is requested, this
page is in the cache for a large number of them. Let us first try to explain the idea
with an example.

Example 2.6. Suppose we read two random bits and thus pick one out of four
algorithms Mark1, Mark2, Mark3, and Mark4. Moreover, suppose the cache has a
size of 7 and is initialized with the pages 𝑝1, 𝑝2, . . . , 𝑝7 such that we are facing the
situation

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

at the beginning. All algorithms memorize these pages in this order. Now, the page
𝑝8 is requested, which is not in the cache. Then Mark𝑖 replaces 𝑝𝑖 with 𝑝8, which
leads to the following situation; we color marked pages gray.

Mark1 : 𝑝8 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark2 : 𝑝1 𝑝8 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝4 𝑝5 𝑝6 𝑝7
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Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝5 𝑝6 𝑝7

If the page 𝑝9 is requested next, all algorithms remove the next page according to
the above order of the pages that were in the cache initially, which leads to

Mark1 : 𝑝8 𝑝9 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark2 : 𝑝1 𝑝8 𝑝9 𝑝4 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝9 𝑝5 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝9 𝑝6 𝑝7

as a result.
The idea is that if, for instance, the page 𝑝2 is now requested, this page has only

been removed from the cache by some algorithms; in this case Mark1 and Mark2. If
one of these four algorithms is chosen uniformly at random, the page 𝑝2 is still in the
cache with a probability of 1/2. However, we run into problems if we continue with
this strategy. It can happen that some algorithms act identically after some time
step. Suppose the “old” page 𝑝1 is requested. Then we get the following situation.

Mark1 : 𝑝8 𝑝9 𝑝1 𝑝4 𝑝5 𝑝6 𝑝7

Mark2 : 𝑝1 𝑝8 𝑝9 𝑝4 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝9 𝑝5 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝9 𝑝6 𝑝7

We note that the algorithms Mark1 and Mark2 now have the same marked and
unmarked pages in their caches. From this point on, these two algorithms behave the
same until the end of the current phase. Clearly, we want to avoid such situations
whenever possible. A way out is to make sure that Mark1 does not remove the page
𝑝3, but some other page which no other algorithm removed so far; an example is 𝑝7,
which leads to the following result.

Mark1 : 𝑝8 𝑝9 𝑝3 𝑝4 𝑝5 𝑝6 𝑝1

Mark2 : 𝑝1 𝑝8 𝑝9 𝑝4 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝9 𝑝5 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝9 𝑝6 𝑝7
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Suppose page 𝑝3 is requested next. Again, if all algorithms follow our original
idea, two algorithms have the same cache content afterwards; this time these are
Mark3 and Mark4, and the cache contents look as follows.

Mark1 : 𝑝8 𝑝9 𝑝3 𝑝4 𝑝5 𝑝6 𝑝1

Mark2 : 𝑝1 𝑝8 𝑝9 𝑝3 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝9 𝑝3 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝9 𝑝6 𝑝7

This problem can also be fixed by making Mark3 remove the page 𝑝6 instead of 𝑝5;
as a consequence, we get the following situation.

Mark1 : 𝑝8 𝑝9 𝑝3 𝑝4 𝑝5 𝑝6 𝑝1

Mark2 : 𝑝1 𝑝8 𝑝9 𝑝3 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝9 𝑝5 𝑝3 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝9 𝑝6 𝑝7

So far, so good, but now we encounter a point where we cannot use this strategy
again. The problem is that there is no page left to remove from the cache that was
not yet removed by any algorithm. ♢

To analyze RMarkBarely, we again consider the 𝑘-phase partition of the input
according to Definition 1.8. Moreover, we use the notion of “old” and “new” pages
as in the proof of Theorem 2.2, where we showed that RMark is 2𝐻𝑘-competitive
in expectation. Now suppose that, at the beginning, three new pages are requested.
Every algorithm from strat(RMarkBarely) removes pages using the principle from
Example 2.6. Afterwards, every algorithm is assigned a sequence of three removed
unmarked old pages; for instance, Mark3 used (𝑝3, 𝑝4, 𝑝5). This is done by ordering
the pages that are in the cache at the beginning in some way (for instance, by their
indices) and make every algorithm replace a unique subsequence as long as this
is possible; see Figure 2.4. As the computation continues, we want to ensure that
these subsequences stay unique for every algorithm, such that no two of them act
identically. Since marked pages do not get evicted in the current phase, they need
to be removed from these subsequences.

If a new page is requested in some time step, the subsequences are extended by
one page, which means that this unmarked old page is removed to load the new page
into the cache. However, if an unmarked old page 𝑝 is requested, the situation is
more complex. After this request, 𝑝 is not unmarked anymore and therefore has to
be removed from every subsequence including it. Algorithms that already removed
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Mark1

Mark2

Mark3

Mark4

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, . . .

Figure 2.4. The pages that are in the cache at the beginning of a phase and the first
two pages that are replaced by the deterministic strategies RMarkBarely chooses from.

𝑝 are now not allowed to remove the page 𝑝′ that would be next according to the
ordering. As we have seen in Example 2.6, we could not guarantee that all algorithms
act differently afterwards. Instead, these algorithms use a page 𝑝′′ which, so far, is
in the cache of all algorithms, that is, it was not removed yet by any algorithm. We
will soon investigate under what circumstances such a page exists, but for now just
assume that it does. Then, we add 𝑝′′ to all subsequences of all algorithms that do
not have 𝑝 in their caches, which means that in their caches 𝑝′′ is replaced by 𝑝.

Example 2.7. We now take a closer look at the situation described in Example 2.6.
The subsequence (𝑝1, 𝑝2) was assigned to Mark1 and (𝑝2, 𝑝3) was assigned to Mark2
after the first two requests 𝑝8 and 𝑝9. If 𝑝1 is requested after that, the subsequence
of Mark2 is unchanged, since it has 𝑝1 in its cache, and simply needs to mark it. The
situation is different for Mark1; here, 𝑝1 is removed from the subsequence since the
page is now marked. If now the page 𝑝3 is removed to load 𝑝1, both subsequences
are (𝑝2, 𝑝3). Thus, Mark1 removes the unmarked page 𝑝7 instead, which leads to
a subsequence (𝑝2, 𝑝7). Consequently, the two algorithms have different unmarked
pages in their caches after this request. ♢

In general, after this strategy is repeated for some number of times, we will
get to a point where we do not have any free (that is, unmarked old) pages left,
and the adversary can force some of the algorithms to have the same marked and
unmarked pages in their caches. RMarkBarely therefore works in rounds in which
it partitions the algorithms into groups. In every round, two algorithms from different
groups replace different pages. The idea is that the unavoidable problem of some
algorithms acting the same from some point on is somewhat “controlled” by building
these groups. Note that RMarkBarely must simulate all deterministic algorithms
Mark1,Mark2, . . . ,Mark2𝑏 at once in order to know how the randomly chosen one
replaces pages.

Exercise 2.7. The instance in Example 2.6 is (𝑝8, 𝑝9, 𝑝1, 𝑝3). It is easy to see that, after a
fifth page is requested, the deterministic algorithms can still choose pages in their caches to
replace such that all caches stay pairwise different.

For 𝑏 = 2 and 𝑘 = 7, give an instance of length 5 such that the last request forces two
algorithms from strat(RMarkBarely) to have the same cache content afterwards.

67



Chapter 2. Randomization

Now that we have a rough idea about how the algorithm works, in what follows,
we prove that RMarkBarely is indeed asymptotically as good as RMark. To this
end, we formalize the ideas we just discussed, and describe the algorithm’s behavior
in more detail.

Theorem 2.12. RMarkBarely uses 𝑏 random bits, where 2𝑏 < 𝑘, and is strictly(︂
3𝑏+ 2(𝑘 + 1)

2𝑏

)︂
-competitive

in expectation for paging.

Proof. Consider the deterministic algorithms Mark1,Mark2, . . . ,Mark2𝑏 and the 𝑘-
phase partition as given by Definition 1.8. The algorithms follow different strategies
to remove unmarked pages. However, the set of marked pages is the same for every
algorithm at any point in time, and thus all algorithms have the same pages in their
caches at the beginning of any phase.

Let there be 𝑁 phases in total, let 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 be an arbitrary phase, and
let us denote pages by “new” and “old” as in the proof of Theorem 2.2; that is, all
pages that are in the cache at the beginning of 𝑃𝑗 are called old, and all pages that
are not old and that are requested during 𝑃𝑗 are called new. Moreover, we ignore
all requests to pages that were already requested during 𝑃𝑗 since they do not cause
page faults for any of the considered marking algorithms. Recall that, during any
phase, at least one new page is requested. For the sake of a simple notation, we
assume that 𝑃𝑗 consists of 𝑘 requests 𝑥1, 𝑥2, . . . , 𝑥𝑘 to unmarked old or new pages.
These 𝑘 requests are now processed in 𝑏+ 1 rounds that are defined as follows.

• Round 𝑅0 starts with request 𝑥1 and takes until request 𝑥𝑘−2𝑏+1 is processed.
• For 𝑧 ≥ 1, round 𝑅𝑧 consists of the 2𝑏/2𝑧 requests 𝑥𝑘−2𝑏−(𝑧−1)+2 to 𝑥𝑘−2𝑏−𝑧+1.

In every round, the 2𝑏 algorithms are divided into 2𝑏/2𝑧 groups 𝒢1,𝒢2, . . . ,𝒢2𝑏−𝑧

each of size 2𝑧. In round 𝑅0, every such group consists of one unique algorithm, that
is, 𝒢𝑖 = {Mark𝑖}. At the beginning of round 𝑅𝑧 with 𝑧 ≥ 1, the two groups 𝒢𝑖 and
𝒢𝑖+2𝑏−𝑧 are merged into a single group 𝒢𝑖; for instance, if there are eight algorithms
in total, 𝒢1 and 𝒢5 are merged to 𝒢1, 𝒢2 and 𝒢6 are merged to 𝒢2, and so on, right
before round 𝑅1.

Now consider a request 𝑥𝑡+1 processed in round 𝑅𝑧, and denote the number of
new pages that are requested during 𝑥1, 𝑥2, . . . , 𝑥𝑡 by 𝑙𝑡. Then there are 𝑡− 𝑙𝑡 old
pages that were requested before and that are already marked in this time step.
Conversely, there are

𝑘 − 𝑡+ 𝑙𝑡 (2.18)

unmarked old pages, and, for every algorithm, some of them are in the cache and
some are not. We denote these pages by 𝑝1, 𝑝2, . . . , 𝑝𝑘−𝑡+𝑙𝑡 , and set

𝑆𝑡 := (𝑝1, 𝑝2, . . . , 𝑝𝑘−𝑡+𝑙𝑡) .
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In other words, 𝑆𝑡 is a sequence of old pages that remain unmarked until the 𝑡th
time step of 𝑃𝑗 ; right before the first time step of 𝑃𝑗 , these are all pages that are in
the cache at the beginning of this phase.

As already stated, every group 𝒢𝑖 replaces pages following a certain strategy. More
specifically, in the 𝑡th time step of 𝑃𝑗 , every 𝒢𝑖 is assigned a set of 𝑙𝑡 unmarked old
pages (determined by the ordering that is given by 𝑆𝑡). This set is

𝐸𝑖,𝑡 := {𝑝𝑖, 𝑝𝑖+1, . . . , 𝑝𝑖+𝑙𝑡−1} ,

for 𝑙𝑡 ≥ 1 and 𝐸𝑖,𝑡 = ∅ for 𝑙𝑡 = 0. Algorithms in 𝒢𝑖 only replace pages in their caches
that are in this set in the corresponding time step. Note that every unmarked old
page is in at most 𝑙𝑡 different sets 𝐸𝑖,𝑡 since |𝐸𝑖,𝑡| = 𝑙𝑡 and by the construction of the
sets. We first have to show that there are always enough unmarked old pages. By
the definition of the sets 𝐸𝑖,𝑡 with 1 ≤ 𝑖 ≤ 2𝑏/2𝑧, the unmarked old pages assigned
to groups are

𝑝1, 𝑝2, . . . , 𝑝2𝑏/2𝑧+𝑙𝑡−1 ,

which amounts to 2𝑏/2𝑧 + 𝑙𝑡 − 1 pages. As noted in (2.18), there are 𝑘 − 𝑡 + 𝑙𝑡
unmarked old pages in total. Thus, there are

(𝑘 − 𝑡+ 𝑙𝑡) −
(︂

2𝑏
2𝑧 + 𝑙𝑡 − 1

)︂
= 𝑘 − 𝑡− 2𝑏

2𝑧 + 1 (2.19)

unmarked old pages left. Next, we bound 𝑡 from above. To this end, recall that round
𝑅𝑧 with 𝑧 ≥ 0 of 𝑃𝑗 ends after the (𝑘 − 2𝑏−𝑧 + 1)th time step of 𝑃𝑗 . Consequently,
we have

𝑡+ 1 ≤ 𝑘 − 2𝑏
2𝑧 + 1 . (2.20)

From (2.19) and (2.20), it follows that the number of pages that are left is at least

𝑘 −
(︂
𝑘 − 2𝑏

2𝑧

)︂
− 2𝑏

2𝑧 + 1 = 1 , (2.21)

and thus the sets 𝐸𝑖,𝑡 are well defined.
Now we describe how the sequences 𝑆𝑡 are modified. As we assume that only

unmarked pages are requested, we can simply distinguish the following two cases.

Case 1. Suppose 𝑥𝑡+1 is a new page. In this case, we set 𝑆𝑡+1 = 𝑆𝑡 (note that both
𝑡 and 𝑙𝑡 increase by one). Moreover, we add another element to all sets, that is,
𝐸𝑖,𝑡+1 = 𝐸𝑖,𝑡 ∪ {𝑝𝑖+𝑙𝑡}. This simply means that the page 𝑝𝑖+𝑙𝑡 gets replaced by
𝑥𝑡+1 in the caches of the corresponding algorithms, which is always possible due
to (2.21).
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Case 2. Now suppose 𝑥𝑡+1 is an unmarked old page. Then 𝑥𝑡+1 is removed from 𝑆𝑡
and replaced by some other page that is so far not assigned to any group.
Due to (2.21), there is at least one page that can take the place of 𝑥𝑡+1. Further-
more, since every unmarked old page is in at most 𝑙𝑡 sets 𝐸𝑖,𝑡, at most 𝑙𝑡 sets
𝐸𝑖,𝑡+1 are different from 𝐸𝑖,𝑡.

We have just shown how the sets 𝐸𝑖,𝑡, which are used to keep track of which pages
are replaced when a page fault occurs, are created and maintained. Now let Mark𝑞
with 1 ≤ 𝑞 ≤ 2𝑏 be some algorithm from a group 𝒢𝑖, and let 𝑥𝑡+1 be a request that
causes a page fault. Then Mark𝑞 loads this page into the cache by replacing a page
from 𝐸𝑖,𝑡+1. We show that such a page always exists. Mark𝑞 has 𝑘 − 𝑡 unmarked
old pages in its cache so far. By definition, there are 𝑙𝑡+1 unmarked old pages in the
set 𝐸𝑖,𝑡+1. In total (see (2.18)), after 𝑥𝑡+1 is processed, there are 𝑘 + 𝑙𝑡+1 − (𝑡+ 1)
unmarked old pages. Consequently, there are only 𝑘 − 𝑡 − 1 unmarked old pages
that are not in 𝐸𝑖,𝑡+1, and hence the cache of Mark𝑞 must contain at least one page
from 𝐸𝑖,𝑡+1. The algorithms are therefore consistent for paging, that is, they always
produce a feasible output.

It remains to bound the expected number of page faults that are caused by
RMarkBarely. This is done by bounding the average number of page faults made
by the algorithms Mark𝑞. We begin with the total number of page faults of all
algorithms combined. To this end, let 𝑙′𝑗 denote the number of new pages that are
requested during phase 𝑃𝑗 .

• Every new page that is requested obviously causes one page fault for every
algorithm, which sums up to

𝑙′𝑗2𝑏 (2.22)

page faults in total.
• It gets a little more tricky for unmarked old pages that are requested. As we

have seen above, such a request 𝑥𝑡+1 forces the algorithms of at most 𝑙𝑡 ≤ 𝑙′𝑗
groups to cause a page fault. Round 𝑅0 consists of 𝑘 − 2𝑏 + 1 time steps,
and since every group includes one single algorithm, this leads to at most
𝑙′𝑗(𝑘 − 2𝑏 + 1) page faults. In round 𝑅𝑧 with 𝑧 ≥ 1, every group consists of 2𝑧
algorithms and 𝑅𝑧 consists of at most 2𝑏/2𝑧 time steps; for each such round,
at most 𝑙′𝑗 groups are affected by this page fault. Since there are 𝑏 such rounds
in total, we get a maximum number of page faults of

𝑙′𝑗
2𝑏
2𝑧 2𝑧 𝑏 .

All in all, the number of page faults in phase 𝑃𝑗 due to unmarked old pages
sums up to at most

𝑙′𝑗(𝑘 − 2𝑏 + 1) + 𝑙′𝑗 2𝑏 𝑏 . (2.23)
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• Last, we bound the number of page faults that are due to the merging of groups.
When the algorithms from group 𝒢𝑖+2𝑏−𝑧 with 1 ≤ 𝑖 ≤ 2𝑏/2𝑧 are added to the
ones from 𝒢𝑖, we assume that, afterwards, they only replace pages according
to the strategy of 𝒢𝑖. However, it may be the case that the former algorithms
replaced unmarked old pages that are still in the caches of the algorithms
from group 𝒢𝑖. For the sake of an easier analysis, we thus assume that the
algorithms from 𝒢𝑖+2𝑏−𝑧 simply load the corresponding unmarked old pages
into their caches without marking them; after that, all algorithms from 𝒢𝑖
are assigned the same group 𝐸𝑖,𝑡. For any affected algorithm, this causes an
additional cost of at most 𝑙𝑡 ≤ 𝑙′𝑗 . Every merging, independent of both the
preceding and succeeding round, affects exactly half of the algorithms, that is,
2𝑏−1 many; this happens exactly 𝑏 times. Therefore, in the sum, this causes at
most another

𝑙′𝑗2𝑏−1𝑏 (2.24)

page faults.

As a direct consequence of (2.22) to (2.24), all algorithms in strat(RMarkBarely)
together have at most a cost of

𝑙′𝑗2𝑏 + 𝑙′𝑗(𝑘 − 2𝑏 + 1) + 𝑙′𝑗2𝑏𝑏+ 𝑙′𝑗2𝑏−1𝑏 = 𝑙′𝑗

(︂
𝑘 + 1 + 3

2 2𝑏 𝑏
)︂

in each phase. This leads to an average cost of

𝑙′𝑗

(︂
𝑘 + 1

2𝑏 + 3
2 𝑏

)︂
of a single algorithm per phase. Finally, as in the proof of Theorem 2.2, we can sum
over all 𝑁 phases and argue that Opt has to make at least

𝑁∑︁
𝑗=1

1
2 𝑙

′
𝑗

page faults in total; furthermore, we can assume that all phases are complete. With
this, we can bound the strict expected competitive ratio of RMarkBarely from
above by

3𝑏+ 2(𝑘 + 1)
2𝑏

as we claimed. �

Now we can use Theorem 2.12 with 𝑏 = ⌊log2 𝑘⌋−1. It follows that RMarkBarely
obtains a strict expected competitive ratio of at most

3⌊log2 𝑘⌋ − 3 + 2(𝑘 + 1)
2⌊log2 𝑘⌋−1 = 3 log2 𝑘 + 𝒪(1) ∈ 𝒪(log 𝑘) .
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Let us briefly interpret these results. No deterministic online algorithm can be
better than 𝑘-competitive. However, this can be improved exponentially by picking a
strategy uniformly at random from a set of constantly many ones. Such phenomena
motivate the study of advice complexity, which we will introduce in the next chapter
and which will subsequently accompany us throughout this book.

⋆2.7 Bounds with Probability Tending to One
So far, we always measured the quality of randomized online algorithms by means of
the expected competitive ratio. In Section 2.1, we mentioned that, for offline problems,
one is usually more interested in the concrete probabilities with which “good” or
“bad” output is created. For a broad class of offline algorithms, statements about
the expected value allow for statements about the concrete probability of success by
using the amplification technique. For online algorithms, this argumentation does
not work in general since they cannot repeat their computation.

However, for some online algorithms for paging, we can make statements that
speak about the concrete probabilities of creating a good output. As for offline
optimization problems, “good” means that the gain or cost of the computed solution
is very close to the expected gain or cost. A desirable result would be that the
probability that this happens is large. But what does “large” mean in this context?
Preferably, it means “not constant,” and we would be happy if the probability tends
to 1, for instance, with increasing input length. In the following, we show that such
a statement is not possible in general by using the fact that any input of length 𝑛
can be extended to an input of length 𝑑𝑛 by repeating every request 𝑑 times. The
following theorem only speaks about strict competitiveness; a general statement is
given in Exercise 2.8.

Theorem 2.13. Let 𝑓 : N → R+ be some unbounded increasing function. There is
no randomized online algorithm for paging that is strictly 𝑐-competitive for inputs of
length 𝑛 with a probability of 1 − 1/𝑓(𝑛), where 𝑐 < 𝑘.

Proof. Let 𝑐 < 𝑘, and suppose there is some 𝑛0 ∈ N+ such that there is a randomized
online algorithm Rand that, for any instance 𝐼 of paging with |𝐼| = 𝑛 ≥ 𝑛0 is strictly
𝑐-competitive with a probability of 1 − 1/𝑓(𝑛), for some function 𝑓 that tends to
infinity with growing 𝑛. Without loss of generality, we assume that Rand is a
demand paging algorithm (see Exercises 1.5 and 1.6).

Now let 𝑛′ ≥ 𝑛0 be an arbitrary natural number that is a large multiple of 𝑘 such
that

1
𝑘𝑘−1 >

1
𝑓(𝑛′) . (2.25)

We design a randomized online algorithm Rand′ that has a strict performance
of 𝑐 with a probability of 1 − 1/𝑓(𝑛′) on inputs of length 𝑘. To this end, Rand′
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simulates Rand on an input that is obtained by repeating every request 𝑛′/𝑘 times.
By definition, Rand has a strict performance of 𝑐 on this input with a probability
of 1 − 1/𝑓(𝑛′). Since Rand′ replaces the same pages as Rand, Rand′ also has a
strict performance of 𝑐 on the original instance of length 𝑘 with a probability of
1 − 1/𝑓(𝑛′).

Next, we show that the existence of Rand′ and thus Rand leads to a contradiction.
Again, let there be 𝑘 + 1 pages in total. Now consider the following instance 𝐼 ′ of
paging of length 𝑘. First, the page 𝑝𝑘+1 is requested, and then some sequence of
𝑘− 1 pages such that the same page is never requested in two consecutive time steps.
We already know that there is an optimal solution for 𝐼 ′ that only makes a page
fault in the first time step.

Now consider the solution of Rand′ for 𝐼 ′. In every time step in which the
algorithm causes a page fault, Rand′ randomly chooses a page to replace in its cache.
There is always a page that is chosen with probability at least 1/𝑘, and the advesary
requests this page in the next time step. Thus, there is a sequence 𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖𝑘−1

of “bad” choices that causes Rand′ to have cost 𝑘. In the first time step, Rand′

chooses the bad page (that is, the page that is requested right after that) with
probability at least 1/𝑘; with probability at least 1/𝑘2, it chooses the bad pages in
the first and the second time step, and so on. Clearly, the probability that it chooses
the bad sequence is at least 1/𝑘𝑘−1. Thus, Rand′ has a strict performance of 𝑘 on 𝐼 ′

with at least this probability; but together with (2.25), this immediately contradicts
our assumption that Rand′ has a strict performance of 𝑐 on 𝐼 ′ with a probability
of 1 − 1/𝑓(𝑛′). As a consequence, Rand′ cannot be strictly 𝑐-competitive with a
probability of 1 − 1/𝑓(𝑛) for inputs of length 𝑛; thus, Rand cannot exist. �

Exercise 2.8.⋆ For Theorem 2.13, we assume that Rand is strictly 𝑐-competitive with
the given probability, and from this conclude that Rand′ cannot be strictly 𝑐-competitive
with this probability on short instances. Prove this result for the case that the additive
constant 𝛼 from Definition 2.2 is allowed to be positive.
Hint. Consider an input length that depends on 𝛼.

A consequence of Theorem 2.13 (and Exercise 2.8) is that we cannot hope for
a randomized online algorithm that is better than (strictly) 𝑘-competitive with a
probability that tends to 1 with growing 𝑛. As we know that there are deterministic
online algorithms that reach this bound, this seems disappointing. Then again, the
instances we used in the proof of this theorem appeared to be rather artificial, as
they basically consist of a linear number of requests for the same page, and the
optimal cost is always one. For paging, instances are of interest for which also the
cost of an optimal solution grows with the input length.

In what follows, we therefore measure the probability of being as good as the
expected value in the number 𝑁 of phases according to the 𝑘-phase partition from
Definition 1.8. Our goal is to again study the randomized marking algorithm RMark,
which was introduced in Section 2.2, and to show that it achieves a competitive
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ratio that is close to its expected value 2𝐻𝑘 with a probability that tends to 1 as
𝑁 increases. To prove this claim, we need the following technical lemma, which we
state without a proof. Let exp: R → R+ be the natural exponential function, that
is, exp(𝑥) = e𝑥 where e = 2.718 . . . is Euler’s number.

Lemma 2.4 (Hoeffding’s Inequality). Let 𝑋1, 𝑋2, . . . , 𝑋𝑁 be independent ran-
dom variables such that 𝑎𝑖 ≤ 𝑋𝑖 − E[𝑋𝑖] ≤ 𝑏𝑖, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑁 . Then

Pr
[︃
𝑁∑︁
𝑖=1

(𝑋𝑖 − E[𝑋𝑖]) ≥ 𝑡

]︃
≤ exp

(︃
− 2𝑡2∑︀𝑁

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︃
,

for any 𝑡 > 0. �

To prove the following theorem, we treat the cost of single phases as random
variables. Note that the number of phases does not simply increase with the input
length.

Theorem 2.14. Let 𝜀 > 0. The probability that the competitive ratio of RMark is
at least 2𝐻𝑘 + 𝜀 tends to 0 as the number of phases tends to infinity.

Proof. Let 𝐼 be any instance of paging, and let RMark be the randomized marking
algorithm defined in Section 2.2; we consider the 𝑘-phase partition according to
Definition 1.8. As in the proofs of Theorems 2.2 and 2.11, for any phase 𝑃𝑖, we
denote the cost of RMark on 𝐼 during 𝑃𝑖 by cost(RMark(𝑃𝑖)) and set

𝐶𝑖 := cost(RMark(𝑃𝑖)) ,

for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑁 , to get an easier notation. Consequently, we have

cost(RMark(𝐼)) =
𝑁∑︁
𝑖=1

𝐶𝑖 . (2.26)

Note that the 𝐶𝑖 are independent random variables since the cache content at the
beginning and the end of any phase does not depend on the random decisions
made in any of the previous phases; indeed, it only depends on 𝐼, which is chosen
deterministically.

Since at most 𝑘 different pages are requested in one phase, we can trivially bound
every random variable 𝐶𝑖 by

0 ≤ 𝐶𝑖 ≤ 𝑘 ,

and thus

−E[𝐶𝑖]⏟  ⏞  
𝑎𝑖

≤ 𝐶𝑖 − E[𝐶𝑖] ≤ 𝑘 − E[𝐶𝑖]⏟  ⏞  
𝑏𝑖

. (2.27)
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Theorem 2.2 states that RMark is strictly 2𝐻𝑘-competitive in expectation, which
means that

E[cost(RMark(𝐼))] ≤ 2𝐻𝑘 · cost(Opt(𝐼)) . (2.28)

Now we are interested in the probability that the cost of RMark is at least (2𝐻𝑘 +
𝜀) · cost(Opt(𝐼)), for any 𝜀 > 0. Using (2.28), (2.26), and linearity of expectation in
this order, we obtain

Pr[cost(RMark(𝐼)) ≥ (2𝐻𝑘 + 𝜀) · cost(Opt(𝐼))]

≤ Pr
[︂
cost(RMark(𝐼)) ≥ (2𝐻𝑘 + 𝜀) · E[cost(RMark(𝐼))]

2𝐻𝑘

]︂
= Pr

[︂
cost(RMark(𝐼))−E[cost(RMark(𝐼))] ≥ 𝜀 · E[cost(RMark(𝐼))]

2𝐻𝑘

]︂
= Pr

[︃
𝑁∑︁
𝑖=1

𝐶𝑖 − E

[︃
𝑁∑︁
𝑖=1

𝐶𝑖

]︃
≥ 𝜀 · E[cost(RMark(𝐼))]

2𝐻𝑘

]︃

= Pr
[︃
𝑁∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖]) ≥ 𝜀 · E[cost(RMark(𝐼))]
2𝐻𝑘

]︃
.

We now apply Hoeffding’s inequality and obtain

Pr
[︃
𝑁∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖]) ≥ 𝜀 · E[cost(RMark(𝐼))]
2𝐻𝑘

]︃

≤ exp
(︃

− (𝜀 · E[cost(RMark(𝐼))])2

2𝐻2
𝑘

∑︀𝑁
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︃
.

Recall that every phase contains at least one request for a new page. Thus, RMark
makes at least one page fault per phase, and we have

E[cost(RMark(𝐼))] ≥ 𝑁 .

Moreover, due to (2.27), we have

𝑁∑︁
𝑖=1

(𝑏𝑖 − 𝑎𝑖)2 = 𝑁𝑘2 .

With this, we finally get

Pr
[︃
𝑁∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖]) ≥ 𝜀 · E[cost(RMark(𝐼))]
2𝐻𝑘

]︃
≤ exp

(︂
− 𝜀2

2𝐻2
𝑘𝑘

2𝑁

)︂
.
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Since both 𝜀 and 𝑘 are constant, this upper bound is monotonically decreasing
in the number of phases 𝑁 . To conclude, the probability that the actual cost of
RMark on 𝐼 is at most (2𝐻𝑘 + 𝜀) · cost(Opt(𝐼)) is at least

1 − 1
eΩ(𝑁) ,

which tends to 1 as we claimed. �

Unfortunately, this approach does not work in general. The proof of Theorem 2.14
only works since we have independent phases induced by RMark.

Exercise 2.9. In the proof of Theorem 2.14, we also made use of the fact that RMark is
strictly 2𝐻𝑘-competitive in expectation. Does the proof still work if we also assume that
the additive constant 𝛼 from Definition 2.2 is positive?

2.8 The Ski Rental Problem
In this section, we study a very simple online problem that is met in disguise in
various situations in everyday life, namely the ski rental problem. The idea is simple
and captures the dilemma we are facing when we need to decide whether it is cheaper
to rent some resource on demand again and again for small cost or to buy it at once,
without knowing how often we need to use it.

Suppose you want to go skiing for as long as possible, but you do not own any
skis. You have two choices. Either you rent skis for a small amount, say, EUR 1,
or you buy the skis for EUR 𝑘, where 𝑘 is some natural number larger than 1. To
simplify things, assume that the only thing that would prevent you from skiing is
the weather, so you are in excellent shape and highly motivated. The problem is,
however, that you only get a reliable weather forecast on the morning of the current
day. Thus, at the beginning of every day with good weather, you have to decide
whether you rent skis or buy them. In the latter case, you probably assume that
buying pays off later as you expect there will be many more days with good weather.
Let us model this situation as an online problem to see what can be achieved in
terms of competitive analysis.

Definition 2.3 (Ski Rental Problem). The ski rental problem is an online
minimization problem. An input consists of a sequence of 𝑛 requests, where
each request is either “good” or “bad,” and the 𝑖th request represents whether it
is possible to ski on the 𝑖th day. If the request is “bad,” the output is always
“⟨null⟩.” If the request is “good,” an online algorithm must either output “rent”
or “buy.” If an online algorithm answers “buy” in some time step, it can only
answer “⟨null⟩” in all subsequent time steps. Let 𝑘 ∈ N+ with 𝑘 ≥ 2; the cost of
an output is the number of “rent” answers, plus 𝑘 if there was a “buy” answer.
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Definition 2.3 implies that, for any online algorithm for the ski rental problem,
we simply need to specify what it does on days with good weather. Let us start
with deterministic strategies. First of all, we note that it is a bad strategy to never
buy the skis at all. If some algorithm never buys the skis no matter how many days
with good weather there are, an adversary can easily force it to have an unbounded
cost, namely 𝑛. But when should the skis be bought? To buy on the first day with
good weather also seems to be a bad idea, because then the adversary will make all
subsequent days have bad weather, and the online algorithm pays 𝑘 times as much
as is necessary.

Let us try another strategy, namely “break even.” This strategy is to rent the skis
for the first 𝑘 − 1 days with good weather and to buy them on the 𝑘th day with
good weather. It turns out that this is the best deterministic strategy we can follow
in such a situation; we denote the corresponding online algorithm by BreakEven.

Theorem 2.15. BreakEven is strictly (2 − 1/𝑘)-competitive for the ski rental
problem and no deterministic online algorithm is better than strictly (2 − 1/𝑘)-
competitive.

Proof. Let us first prove the lower bound. We consider an adversary that always
starts with a sequence of “good” requests, and possibly switches to “bad” at some
point; after such a switch, it never switches back to “good.” As we have just discussed,
never buying the skis is not a promising idea. So we simply distinguish between
three cases depending on when the skis are bought by some online algorithm Alg;
say, this happens on the 𝑖th day with good weather if such a day exists.

Case 1. Suppose 1 ≤ 𝑖 < 𝑘. The adversary constructs the input such that, after the
𝑖th day, all days have bad weather and therefore an optimal strategy rents the
skis for all 𝑖 days with good weather. We can immediately bound the competitive
ratio from below by

𝑘 + 𝑖− 1
𝑖

>
2𝑘 − 1
𝑘

in this case.
Case 2. Now suppose 𝑖 > 𝑘. Again, the adversary causes all days after the 𝑖th to

have bad weather. An optimal strategy in such a case is to buy the skis at the
first day with good weather. We get a bound of

𝑘 + 𝑖− 1
𝑘

>
2𝑘 − 1
𝑘

on the competitive ratio also in the second case.

So far, we have basically covered all algorithms that have a strategy which deviates
from that of BreakEven. Now we study what happens in this case. Of course, we
now consider an arbitrary adversary.

Case 3. So finally, suppose 𝑖 = 𝑘. If there are at least 𝑘 days of good weather, Alg
(more specifically, BreakEven) pays exactly 2𝑘 − 1. In this case, an optimal
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algorithm pays at least 𝑘, no matter whether the skis are rented or bought.
Therefore, the (strict) performance is

2𝑘 − 1
𝑘

= 2 − 1
𝑘
.

On the other hand, if there are fewer than 𝑘 days with good weather, Alg is even
optimal.

Summing up, no online algorithm can be better than strictly (2−1/𝑘)-competitive,
and only BreakEven achieves this competitive ratio. �

According to Definition 1.6, BreakEven is strongly strictly competitive. We
chose to formulate the claim in terms of strict competitiveness, because the cost 𝑘 of
buying the skis is a fixed parameter of the problem. Indeed, BreakEven’s cost is
never larger than 2𝑘 − 1 and therefore, for any 𝐼, if we plug

cost(BreakEven(𝐼)) ≤ 2𝑘 − 1, cost(Opt(𝐼)) ≥ 1, and 𝑐 = 1

into

cost(BreakEven(𝐼)) ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼 ,

we get

2𝑘 − 1 ≤ 1 + 𝛼 .

Hence, for 𝛼 = 2(𝑘 − 1), BreakEven is 1-competitive. Although there do exist
online algorithms that are not competitive for the ski rental problem at all, it seems
to be the case that all somewhat “serious” online algorithms are 1-competitive, but
only for a value for 𝛼 that depends on 𝑘. As a consequence, the interesting case is to
consider strict competitiveness. As we have seen, we cannot be better than strictly
(2 − 1/𝑘)-competitive in a deterministic setting; with increasing 𝑘, this lower bound
tends to 2.

Exercise 2.10. Suppose the cost of buying skis is not a parameter known to any online
algorithm in advance, but is given with the first request; the subsequent requests are either
“good” or “bad” as defined in Definition 2.3. What follows for the non-strict competitive
ratio of BreakEven?

Now we ask how much randomization helps for ski rental. In Section 2.2, we
have seen that randomization allows for a rather drastic, namely exponential (with
respect to the cache size), improvement for paging. As BreakEven already has a
competitive ratio that is better than 2, the improvement for ski rental has to be
less significant. But does randomization help at all? From Theorem 2.1, we already
know that there is no such thing as an optimal randomized online algorithm for this
problem.
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In the following, we describe the randomized online algorithm RSki that chooses
deterministic strategies according to some probability distribution PrRSki. These
strategies are defined as follows; for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑘, let Buy𝑖 be the
deterministic online algorithm that rents skis until day 𝑖− 1 of good weather and
buys them on the 𝑖th such day (if it exists). We set

strat(RSki) := {Buy1,Buy2, . . . ,Buy𝑘}

and define a probability distribution PrRSki : RSki → [0, 1] in what follows. To this
end, let

𝛿 := 𝑘

𝑘 − 1
and

𝛾 := 𝛿 − 1
𝛿𝑘 − 1 .

The probability that RSki chooses the strategy Buy𝑖 is given by

PrRSki[Buy𝑖] := 𝛾𝛿𝑖−1 .

We immediately verify that
𝑘∑︁
𝑖=1

PrRSki[Buy𝑖] =
𝑘∑︁
𝑖=1

𝛾𝛿𝑖−1 = 𝛾
𝑘−1∑︁
𝑖=0

𝛿𝑖 =
(︂
𝛿 − 1
𝛿𝑘 − 1

)︂(︂
𝛿𝑘 − 1
𝛿 − 1

)︂
= 1 ,

thus RSki is well defined. Now we compute an upper bound on its expected
competitive ratio.

Theorem 2.16. RSki is strictly(︂
𝛿𝑘

𝛿𝑘 − 1

)︂
-competitive

in expectation for the ski rental problem.

Proof. At first, we can apply two simplifications that allow us to ignore some instances
that might be created by the adversary.

1. Since every deterministic online algorithm from strat(RSki) buys the skis at
the latest on the 𝑘th day with good weather, we only need to consider inputs
that contain at most 𝑘 such days.

2. Moreover, we may neglect days with bad weather that lie between days with
good weather, because they do not change the achieved competitive ratio. This
is due to the fact that RSki’s behavior does not depend on them (and neither
does an optimal solution).
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In other words, we can assume that all instances consist of 𝑗 days with good weather
and after that, there are only days with bad weather for 1 ≤ 𝑗 ≤ 𝑘. For such
an instance, an optimal solution always has cost 𝑗. If there are 𝑗 days with good
weather, the online algorithm Buy𝑖 has cost 𝑖− 1 + 𝑘 if 𝑖 ≤ 𝑗; conversely, it has cost
𝑗 whenever 𝑖 > 𝑗.

Therefore, the expected cost of RSki on such an instance 𝐼, which has exactly 𝑗
days with good weather, is

E[cost(RSki(𝐼))]

=
𝑗∑︁
𝑖=1

(𝑖− 1 + 𝑘) · PrRSki[Buy𝑖] +
𝑘∑︁

𝑖=𝑗+1
𝑗 · PrRSki[Buy𝑖]

=
𝑗∑︁
𝑖=1

(𝑖− 1) · PrRSki[Buy𝑖] +
𝑗∑︁
𝑖=1

𝑘 · PrRSki[Buy𝑖] +
𝑘∑︁

𝑖=𝑗+1
𝑗 · PrRSki[Buy𝑖] .

By the definition of PrRSki, we get

E[cost(RSki(𝐼))] = 𝛾

𝑗∑︁
𝑖=1

(𝑖− 1)𝛿𝑖−1 + 𝛾𝑘

𝑗∑︁
𝑖=1

𝛿𝑖−1 + 𝛾𝑗

𝑘∑︁
𝑖=𝑗+1

𝛿𝑖−1

= 𝛾

𝑗−1∑︁
𝑖=0

𝑖𝛿𝑖 + 𝛾𝑘

𝑗−1∑︁
𝑖=0

𝛿𝑖 + 𝛾𝑗
𝑘−1∑︁
𝑖=𝑗

𝛿𝑖

= 𝛾

𝑗−1∑︁
𝑖=0

𝑖𝛿𝑖 + 𝛾𝑘

𝑗−1∑︁
𝑖=0

𝛿𝑖 + 𝛾𝑗
𝑘−1∑︁
𝑖=0

𝛿𝑖 − 𝛾𝑗

𝑗−1∑︁
𝑖=0

𝛿𝑖 .

We can now use the closed forms of these geometric series together with

𝛿 = 𝑘

𝑘 − 1 ⇐⇒ 𝑘 = 𝛿

𝛿 − 1 ,

and get

E[cost(RSki(𝐼))]

= 𝛾
(𝑗 − 1)𝛿𝑗+1 − 𝑗𝛿𝑗 + 𝛿

(𝛿 − 1)2 + 𝛾𝑘
𝛿𝑗 − 1
𝛿 − 1 + 𝛾𝑗

𝛿𝑘 − 1
𝛿 − 1 − 𝛾𝑗

𝛿𝑗 − 1
𝛿 − 1

= 𝛾

𝛿 − 1

(︂
(𝑗 − 1)𝛿𝑗+1 − 𝑗𝛿𝑗 + 𝛿

𝛿 − 1 + 𝑘(𝛿𝑗 − 1) + 𝑗(𝛿𝑘 − 𝛿𝑗)
)︂

= 𝛾

𝛿 − 1
(︀
𝑘(𝑗 − 1)𝛿𝑗 − 𝑘𝑗𝛿𝑗−1 + 𝑘 + 𝑘(𝛿𝑗 − 1) + 𝑗(𝛿𝑘 − 𝛿𝑗)

)︀
= 𝛾

𝛿 − 1
(︀
𝑗𝑘𝛿𝑗 − 𝑘𝑗𝛿𝑗−1 + 𝑗𝛿𝑘 − 𝑗𝛿𝑗

)︀
= 𝛾

𝛿 − 1

(︂
𝛿𝑗

(︂
𝑘 − 𝑘

𝛿
− 1

)︂
⏟  ⏞  

0

+ 𝛿𝑘
)︂
𝑗
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= 𝛿𝑘𝛾

𝛿 − 1 𝑗 .

We plug in cost(Opt(𝐼)) = 𝑗 and 𝛾 = (𝛿 − 1)/(𝛿𝑘 − 1), finally obtaining

E[cost(RSki(𝐼))] = 𝛿𝑘(𝛿 − 1)
(𝛿 − 1)(𝛿𝑘 − 1) · cost(Opt(𝐼))

= 𝛿𝑘

𝛿𝑘 − 1 · cost(Opt(𝐼))

as claimed. �

We are now interested in the asymptotic behavior of the expected competitive
ratio of RSki if 𝑘 tends to infinity. Thus, we consider

lim
𝑘→∞

𝛿𝑘 = lim
𝑘→∞

(︂
𝑘

𝑘 − 1

)︂𝑘
= e ,

where as before e = 2.718 . . . denotes Euler’s number, and obtain

lim
𝑘→∞

𝛿𝑘

𝛿𝑘 − 1 = e
e − 1 = 1.582 . . . .

So, under which conditions is RSki better in expectation than BreakEven? To
answer this question, we note that

𝛿𝑘

𝛿𝑘 − 1 < 2 − 1
𝑘

(2.29)

⇐⇒ 𝛿𝑘 <

(︂
2 − 1

𝑘

)︂
𝛿𝑘 − 2 + 1

𝑘

⇐⇒ −
(︂

1 + 1
𝑘

)︂
𝛿𝑘 < −

(︂
2 − 1

𝑘

)︂
⇐⇒

(︂
𝑘

𝑘 − 1

)︂𝑘
>

2𝑘 − 1
𝑘 + 1 ,

(by the definition of 𝛿)

which holds whenever(︂
𝑘

𝑘 − 1

)︂𝑘
≥ 2 . (2.30)

Since (2/(2 − 1))2 = 4 and (𝑘/(𝑘 − 1))𝑘 is monotonically decreasing and tends to
e for 𝑘 ≥ 2, (2.30) and thus (2.29) is true for any 𝑘 ≥ 2. We conclude that, already
for 𝑘 ≥ 2 (which is always satisfied since 𝑘 is a natural number larger than 1), the
randomized online algorithm RSki is better than any deterministic online algorithm;
see Figure 2.5.
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Figure 2.5. Comparison of the competitive ratios of BreakEven and RSki.

2.9 Historical and Bibliographical Notes
Introductions to randomized algorithms are given by, for instance, Hromkovič [81],
Mitzenmacher and Upfal [118], and Motwani and Raghavan [120]. Also the textbook
by Borodin and El-Yaniv [34] spends many chapters on randomized online algorithms.
Knuth and Yao [96] discuss how to generate random numbers using random bits and
remark “. . . we shall use the word ‘algorithm’ for such possibly infinite procedures,
although strictly speaking we should be calling them ‘computational methods’ since
algorithms are traditionally supposed to be finite in their worst case.”

The Solovay-Strassen algorithm was published in 1977 by Solovay and Strassen [133].
A comprehensive analysis is, for instance, given in the aforementioned book by
Hromkovič [81]. Note that this algorithm is a one-sided-error Monte Carlo algorithm
for the inverse problem of deciding whether a given number is composite.

Yao’s principle was first applied by Yao [145] in 1977. Since then, it was used for
a large number of different online problems. The formulation and proof presented in
this chapter follow the textbook by Borodin and El-Yaniv [34].

An introduction to game theory, including zero-sum games, is given by Straffin [136].
The minimax theorem is due to von Neumann [140]. Later, Nash [121] showed that all
games with a finite number of strategies have equilibria in mixed strategies (they are
therefore called Nash equilibria). Loomis’ lemma was proven in 1946 by Loomis [111].
The application of games to online algorithms is discussed in detail by Borodin and
El-Yaniv [35].

The randomized online algorithm RMark is from Fiat et al. [61]. The lower
bound for randomized paging algorithms is also due to Fiat et al. [61]; the proof
presented here is taken from Motwani and Raghavan [120]. Actually, the lower
bound of 𝐻𝑘 is not just asymptotically tight; McGeoch and Sleator [116] designed
a randomized paging algorithm that is 𝐻𝑘-competitive in expectation. The barely
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random algorithm RMarkBarely and its analysis are due to Böckenhauer et al. [30]
and Komm and Královič [101,102].

Hoeffding’s inequality was first proven by Hoeffding [77]. Komm et al. [100]
proved that if a given online problem satisfies some natural conditions, a similar
statement to Theorem 2.14 is possible. In this analysis, the random variables are not
independent, but form a bounded supermartingale. Instead of Hoeffding’s inequality,
the Azuma-Hoeffding inequality [12] is used to bound the cost of any randomized
online algorithm.

The upper bound of RSki for the ski rental problem (see Theorem 2.16) is due
to Karlin et al. [91], who also presented a matching lower bound. The presentation
given in Section 2.8 follows Krumke and Thielen [109].
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3Advice Complexity

In this chapter, we introduce another important class of online algorithms. So far,
we have considered deterministic and randomized approaches. For paging and the
ski rental problem, randomization enables us to construct more powerful algorithms.
More specifically, we are able to design randomized online algorithms that are a
lot better in terms of their expected competitive ratio; for paging, we even have an
exponential improvement. The third model, online algorithms with advice, is even
more powerful. We introduce this concept and, as in the two preceding chapters, use
paging as an example to illustrate the basic ideas. The main motivation to study
this model is mostly a theoretical one; it gives us a very intuitive formalization of the
notion of “hardness” in the context of online computation. The idea is to measure
the amount of information about the yet unknown parts of the input that an online
algorithm needs to know in order to achieve some particular output quality. To have
a formal framework, we introduce an oracle which sees the whole input in advance
and may encode any binary information about this input onto a so-called advice
tape. An online algorithm can then use this tape as a resource during computation.
We then ask for the number of bits of advice the online algorithm needs to be, say,
𝑐-competitive, for some specific constant 𝑐. The number of advice bits used is given
by a function of the input length 𝑛, similar to the number of random bits, which we
studied in the preceding chapter; this number is called the advice complexity of the
algorithm.

We first introduce the model of advice formally. Next, to be able to prove upper
bounds on the advice complexity, we describe the concept of self-delimiting strings;
these allow an online algorithm to read a number of bits from the advice tape in
a situation where it does not have any information about the length of this string.
We continue by explaining how to prove lower bounds on the advice complexity; for
this reason, we introduce so-called partition trees. After that, we study the advice
complexity of paging (that is, the advice complexity of online algorithms for paging)
both for obtaining optimal solutions and for using only a small number of advice bits.

� Springer International Publishing Switzerland 2016
D. Komm, An Introduction to Online Computation,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-319-42749-2_3
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Finally, we make some interesting observations on the connection between advice
and randomization.

3.1 Introduction
Before we designed the randomized online algorithm RSki for the ski rental problem,
we saw that deterministic online algorithms are almost twice as bad as an optimal
offline algorithm. We want to have a closer look at this fact. More specifically, we
want to answer the question

Why are they twice as bad?

To phrase the question even more exactly, we ask

What are they missing?

It is tempting to give a simple answer. What they miss is the complete input.
Sure, if we had a complete and accurate weather forecast, we could simply compute
an optimal solution for any instance of the ski rental problem; count the number
of days with good weather, and check whether it is at least 𝑘. If it is, we buy the
skis, otherwise we rent them. But is it really necessary to know the whole input to
be optimal? If we think about it, all that we need is to be able to make a simple
“yes”/“no” decision, namely, whether to buy the skis on the first day with good
weather or to rent them again and again. So what we are missing is basically the
smallest amount of information there is; one single bit.

As discussed in Chapter 1, the competitive ratio tells us how much we pay if we
work on a specific online problem. The advice complexity, on the other hand, tells us
what we pay for. For the ski rental problem, every deterministic online algorithm is
almost 100% worse than the optimal solution in the worst case, and the “why” can
be answered with “because we don’t know this single bit.” However, of course, in
general the question “why” or “what” cannot be answered this easily; for instance,
a single bit of information will probably not enable us to get an optimal solution
for the paging problem (but surprisingly, later in this chapter, we will see that a
constant amount of additional information does help quite a lot). As a matter of
fact, different online problems behave very differently when we investigate them with
respect to the information that is necessary to obtain some good solution quality. As
mentioned above, we can always say that knowing the whole input in advance helps
to create an optimal solution, but for some problems we may be able to compress
some critical property of the input that already enables us to improve a lot over
deterministic or randomized strategies. In a way, we ask about the information
content of the problems, that is, the information that is hidden in the instances and
that needs to be extracted; here, the advice complexity is a powerful tool.

To be able to measure this amount of information, we use a model where an oracle
is introduced that knows the whole input 𝐼 of a given online problem in advance.
This oracle can write binary information about 𝐼 on a so-called advice tape that
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can afterwards be used by an online algorithm that works on 𝐼. Informally, we can
describe this model as follows.

• We do not simply design online algorithms, but an online algorithm Alg is
always created together with an oracle. We call Alg an online algorithm with
advice.

• For every input, the oracle writes some so-called advice bits on the advice tape.
• The adversary knows both Alg and the oracle; in particular, it knows which

advice the oracle writes on the tape, given a specific input.

In the classical model, the adversary inspects Alg and then constructs an input
that causes Alg to perform as badly as possible. Now, there is a third party, which
is essentially an all-knowing counselor working for the algorithm. Note that the
third bullet point suggests that, in the model of computing with advice, we have
an extremely powerful adversary. However, if we take a closer look, this is not the
case; it is sufficient if the adversary merely knows Alg, and, as a consequence, an
upper bound 𝑏(𝑛) on the number of advice bits that the algorithm reads for a given
input length 𝑛. For any 𝑛 and 𝑏(𝑛), the adversary can simply simulate Alg on every
possible advice string 𝜑 of length 𝑏(𝑛) and therefore find the best advice. It can then
choose an instance 𝐼 ′ of length 𝑛 of the given online problem Π such that

𝐼 ′ := arg max
𝐼

{︂
min
𝜑

{︂
gain(Opt(𝐼))
gain(Alg𝜑(𝐼))

}︂}︂
if Π is a maximization problem, or

𝐼 ′ := arg max
𝐼

{︃
min
𝜑

{︃
cost(Alg𝜑(𝐼))
cost(Opt(𝐼))

}︃}︃
if Π is a minimization problem. If possible, the adversary will additionally try to
make sure that, for the set of instances it constructs in the above way, the optimal
cost (gain, respectively) increases unboundedly with the input length, such that a
lower bound on the non-strict competitive ratio is obtained.

The above formula reminds us of the minimax theorem from Section 2.4. However,
both the adversary and the algorithm pick pure strategies. The important thing is
that no matter which strategy the adversary decides to use, Alg will always pick a
best of its strategies as a response. Now let us describe the steps that are made in
the model of computing with advice.

Step 1. The adversary constructs an input 𝐼 of length 𝑛 such that the competitive
ratio of Alg using the advice tape is maximized; the adversary knows the number
𝑏(𝑛) of advice bits Alg reads at most.

Step 2. After that, the oracle inspects 𝐼 and writes an advice string 𝜑 on the advice
tape which depends on 𝐼.
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Step 3. Alg reads the input 𝐼 and computes an output 𝑂 while using the advice
tape; Alg reads at most a prefix of length 𝑏(𝑛) from the tape.

Step 4. If Alg obtains a competitive ratio of at most 𝑐, we say that Alg is 𝑐-
competitive with advice complexity 𝑏(𝑛) or that Alg needs at most 𝑏(𝑛) advice
bits to be 𝑐-competitive.

A crucial property of this model is that the advice tape has infinite length. This is
important to prevent any situations in which information may be encoded into the
length of the advice. On first sight, it seems redundant since the oracle and Alg are
designed in such a way that the online algorithm never uses more than 𝑏(𝑛) advice
bits in total anyway; but if we take a closer look, without this property, we could
design an online algorithm with advice and an oracle that work as follows. Suppose
that, for some input of length 𝑛, the oracle writes 𝑏(𝑛) = 𝑛 advice bits on the tape.
At the beginning, the online algorithm reads all the 𝑏(𝑛) bits until the end, and
thus knows the length of the input. In a way, it gets this knowledge for free since
it is only implicitly communicated by the advice length but not by its content. Of
course, it is perfectly fine if the oracle writes the input length on the advice tape
explicitly. The difference is that, in this case, this information is part of the advice
and therefore accounted for.

Moreover, the tape is accessed sequentially (similar to the random tape of a
randomized algorithm).
Example 3.1. Summarizing what we just learned, we can state that there is an
optimal online algorithm with advice for the ski rental problem which uses 1 bit
of advice. An oracle first reads the whole input and computes whether there are
more than 𝑘 days with good weather. If there are, it writes a 1 at the first position
of the advice tape; else it writes a 0 at this position. In the first time step, the
corresponding algorithm reads the first bit. If it is 1, the algorithm buys the skis at
the first day with good weather; otherwise it rents them at every such day. Clearly,
this algorithm always has the smallest cost possible. ♢

Now we are going to formally define online algorithms with advice. Following
the preceding discussion, it seems to make sense to have a definition analogous to
Definition 2.1 for randomized online algorithms.

Definition 3.1 (Online Algorithm with Advice). Let Π be an online
problem and let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be an instance of Π. An online algo-
rithm Alg with advice for Π computes the output Alg𝜑(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛),
where 𝑦𝑖 depends on 𝜑, 𝑥1, 𝑥2, . . . , 𝑥𝑖 and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; 𝜑 denotes a binary
advice string.

The essential difference between randomized online computation and online com-
putation with advice comes into play when we define the competitive ratio for online
algorithms with advice.
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Definition 3.2 (Competitive Ratio with Advice). Let Π be an online
problem, let Alg be a consistent online algorithm with advice for Π, and let
Opt be an optimal offline algorithm for Π. For 𝑐 ≥ 1, Alg is 𝑐-competitive with
advice complexity 𝑏(𝑛) for Π if there is a non-negative constant 𝛼 such that, for
every instance 𝐼 ∈ ℐ, there is an advice string 𝜑 such that

gain(Opt(𝐼)) ≤ 𝑐 · gain
(︀
Alg𝜑(𝐼)

)︀
+ 𝛼

if Π is a maximization problem, or

cost
(︀
Alg𝜑(𝐼)

)︀
≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

if Π is a minimization problem, and Alg uses at most the first 𝑏(𝑛) bits of 𝜑. If
the above inequality holds for 𝛼 = 0, Alg is called strictly 𝑐-competitive with
advice complexity 𝑏(𝑛); Alg is called optimal with advice complexity 𝑏(𝑛) if it is
strictly 1-competitive with advice complexity 𝑏(𝑛). The competitive ratio of an
online algorithm Alg with advice complexity 𝑏(𝑛) is defined as

𝑐Alg := inf{𝑐 ≥ 1 | Alg is 𝑐-competitive for Π
with advice complexity 𝑏(𝑛)} .

For such an online algorithm Alg, we thus require that, for every input, there is
some advice string that allows Alg to obtain the given competitive ratio; we do not
care whether this particular advice string is extremely bad for all other instances.
This is the crucial difference when comparing this model to that of randomized online
computation. The oracle deduces the advice string from the concrete input and does
not use any randomness in the process. Still, the models share a common property,
namely a binary tape that allows us to treat them as a collection of deterministic
algorithms. We can thus formulate an analogous statement to Observation 2.2 (see
also Exercise 2.2).

Observation 3.1. Every online algorithm Alg with advice that uses at most 𝑏(𝑛)
advice bits for inputs of length 𝑛 can be viewed as a set strat(Alg, 𝑛) = {𝐴1, 𝐴2, . . . ,
𝐴2𝑏(𝑛)} of 2𝑏(𝑛) deterministic online algorithms on inputs of length 𝑛, from which
Alg always chooses one with the best performance for the given instance.

For every given randomized online algorithm Rand, we can design an online
algorithm Alg with advice that uses its advice tape the same way Rand uses its
random tape. Accompanying Alg, we create an oracle that, for every instance,
writes a “best” string on the advice tape; following this idea, we can state the
following observation.

Observation 3.2. For any online problem Π, the following two implications hold.
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(i) If there is a randomized online algorithm for Π that is 𝑐-competitive in expecta-
tion and uses at most 𝑏(𝑛) random bits, then there is also an online algorithm
with advice for Π that is 𝑐-competitive and that uses at most 𝑏(𝑛) advice bits.

(ii) Conversely, if there is provably no online algorithm with advice that is 𝑐-
competitive while using at most 𝑏(𝑛) advice bits for Π, then there is also no
randomized online algorithm for Π that is 𝑐-competitive in expectation and that
uses at most 𝑏(𝑛) random bits.

In Section 3.5, we will revisit the relation between advice and randomization and
show some non-trivial connections.

3.2 Self-Delimiting Encoding of Strings
In this section, we focus on how to concretely encode information onto the advice
tape, and especially on one particular problem that arises when there are multiple
pieces of information that need to be delimited when using a binary alphabet.

Let 𝑑 be some natural number. We know that we can encode 2𝑑 different numbers
in binary with 𝑑 bits. To encode an arbitrary natural number 𝑚 in binary, we need
⌈log2(𝑚+ 1)⌉ bits. If 𝑚 is always at least 1, we only need ⌈log2 𝑚⌉ bits; this can be
done by writing 𝑚− 1 on the advice tape in binary. In the following considerations,
we always assume that this is true for 𝑚.

It gets more difficult if we think about the special kind of resource we are dealing
with in this setting. In particular, as already discussed in the previous section, we
are facing the fact that the advice tape we are using has an infinite length; behind
the actual advice, there is an infinite undefined suffix. The alphabet that the oracle
uses to write on the advice tape is binary, and thus we do not have any delimiter
to mark where the encoding of some binary substring (encoding, for instance, the
length of the input) ends. Moreover, in general, we cannot use any special sequence
of bits like, for instance, “111” as a delimiter since the same sequence might also be
part of the advice (see Exercise 3.3).

What can we do about this? To answer this question, self-delimiting encodings
come into play. The idea is to augment the advice with some control bits that allow
the algorithm to decode the advice itself. Again, let 𝑚 be a positive number that we
want to encode. The idea is to tell the algorithm how many bits (from the infinite
advice tape) belong to the binary representation of 𝑚− 1.

First, we need at most ⌈log2 𝑚⌉ bits to encode 𝑚 − 1 on the tape. Then, we
can use an additional ⌈log2 𝑚⌉ bits to tell the algorithm which bits belong to the
string of length ⌈log2 𝑚⌉ as follows. We write the binary representation of 𝑚 − 1
on odd positions of the advice tape. On even positions, we write a 1 if the next
bit still belongs to the binary representation of 𝑚− 1, and a 0 otherwise. Thus, if
𝑏1𝑏2 . . . 𝑏⌈log2 𝑚⌉ is the binary representation of 𝑚− 1, the content of the advice tape
starts with

𝑏1 1 𝑏2 1 . . . 𝑏⌈log2 𝑚⌉−1 1 𝑏⌈log2 𝑚⌉ 0 .
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As a consequence, we need to use 2⌈log2 𝑚⌉ advice bits instead of ⌈log2 𝑚⌉ bits; we
call this a self-delimiting encoding of 𝑚.

With another simple idea, we can improve this approach and use a smaller number
of bits. For small values of 𝑚, we use the encoding

1: 0 0 . . . and 2: 0 1 . . . .

If 𝑚 is at least 3, at the beginning of the advice tape, we tell the algorithm how
many bits are used to encode 𝑚− 1, that is, we write the number ⌈log2 𝑚⌉. This
can be done using at most ⌈log2(⌈log2 𝑚⌉)⌉ additional bits since 𝑚 is at least 3 and
thus ⌈log2 𝑚⌉ is at least 2; hence, we can write ⌈log2 𝑚⌉ − 1 on the tape. Now we
are left with marking where these first ⌈log2(⌈log2 𝑚⌉)⌉ bits end and the binary
representation of 𝑚 − 1 starts. To this end, we can use exactly the same idea as
above and thus we need at most

2⌈log2(⌈log2 𝑚⌉)⌉ + ⌈log2 𝑚⌉

bits to encode 𝑚 in a self-delimiting way. Note that, this way, the string always
starts with a 1; hence, the cases where 𝑚 is 1 or 2 can be distinguished from the case
that 𝑚 is at least 3 without any further information. The algorithm can now start
reading until it encounters a 0 at an even position. Then, it computes the number of
bits it needs to read afterwards to obtain 𝑚. We trade the multiplicative constant 2
for an additive term that is asymptotically smaller. Sample encodings are shown in
the following table.

𝑚 𝑚 − 1 ⌈log2 𝑚⌉ − 1 ⌈log2(⌈log2 𝑚⌉)⌉ self-delimiting string

1 0 − − 0 0
2 1 − − 0 1
3 2 1 1 1 0 1 0
4 3 1 1 1 0 1 1
5 4 2 2 1 1 0 0 1 0 0
6 5 2 2 1 1 0 0 1 0 1
7 6 2 2 1 1 0 0 1 1 0
8 7 2 2 1 1 0 0 1 1 1
9 8 3 2 1 1 1 0 1 0 0 0
10 9 3 2 1 1 1 0 1 0 0 1
...

...
...

...
...

256 255 7 3 1 1 1 1 1 0⏟  ⏞  
2⌈log2(⌈log2 𝑚⌉)⌉ bits

1 1 1 1 1 1 1 1⏟  ⏞  
⌈log2 𝑚⌉ bits

...
...

...
...

...
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Example 3.2. Suppose we want to encode the number 43 onto the advice tape;
moreover, it is known that the encoded number is not 0. Thus, we write 42 on the
tape. If we simply encode it in binary, we get a prefix

1 0 1 0 1 0 . . .⏟  ⏞  
42

of the advice string; but if we only see this string, we cannot at all decode it in a
unique way. It could, for instance, also be interpreted as

1 0 1 0 1 0 . . .⏟  ⏞  
10

by an online algorithm assuming that the last two depicted bits already belong to
the undefined part of the tape. Now let us make use of self-delimiting encodings. We
realize that we need ⌈log2 42⌉ = 6 bits to encode 42 in binary. Therefore, we first
write the number 5 in a self-delimiting way on the advice tape (using 2⌈log2 5⌉ = 6
additional bits) followed by the number 42 and obtain a prefix

1 1 0 1 1 0 1 0 1 0 1 0 . . .⏟  ⏞  
5 (self-delimiting)

⏟  ⏞  
42

of the tape content. Now an online algorithm with advice is able to decode the
advice without further knowledge. ♢

At times, we want to encode multiple numbers, and we know that they have some
common upper bound.

Example 3.3. Suppose we want to encode the numbers 8, 12, and 13. Furthermore,
we know that there are three numbers in total and none of them are 0 or larger than
16, that is, they can all be written in binary using at most four bits. We can encode
them as

1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 . . .⏟  ⏞  
3 (self-delim.)

⏟  ⏞  
7

⏟  ⏞  
11

⏟  ⏞  
12

and again, an algorithm is able to unambiguously decode the string. ♢

We will use self-delimiting strings on several occasions. One application is imme-
diate, namely this enables us to let some online algorithm know the input length
𝑛. Intuitively, this already might be a great advantage in some applications. The
input length is never 0. Furthermore, we ignore the special cases that 𝑛 is 1 or 2 to
keep the formulas simple. Therefore, to encode 𝑛 in a self-delimiting way, we usually
need an additional

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉

advice bits.
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Exercise 3.1. Describe alternative ways to obtain self-delimiting encodings of a natural
number 𝑚 that use roughly 2⌈log2 𝑚⌉ bits. Again, assume that 𝑚 is at least 1.

Exercise 3.2. Improve the upper bound on how many bits must be used to encode a
number 𝑚 in a self-delimiting way by iterating the above strategy. Informally discuss the
limitations of this approach.

Exercise 3.3. Consider the following idea. No single bit is interpreted as a letter, but
three consecutive bits, and the information is encoded using this larger alphabet. The
sequence “111” marks the end of the current string. Argue why this strategy is not superior
to the one we introduced above; here, we are interested in the case that the length of the
string we want to encode tends to infinity.

Of course, there are situations where we do not need a self-delimiting encoding of
the advice. Similarly to barely random algorithms, we can design online algorithms
with advice that read a constant number of advice bits, which is fixed from the
beginning; an extreme case was the simple algorithm for the ski rental problem from
Example 3.1. Moreover, we could think of algorithms that read a fixed number of
advice bits in every time step. In this case, the algorithm knows how much advice
to use as it realizes when the input ends.

3.3 Proving Lower Bounds
Proving the existence of some object is usually a lot simpler than proving its non-
existence. To show that an object with some given property (for instance, an online
algorithm with advice that uses a certain number of advice bits) exists, it suffices to
construct such an object; therefore, such proofs are usually constructive. Showing
that such an object does not exist may generally be more difficult. What we need to
do is to prove that all possible objects do not have the given property. In our case,
how do we prove that there is no online algorithm with advice that reads at most a
given number of advice bits and achieves a given output quality? For such hardness
results, we often use combinatorial arguments that, on a high level, work as follows.

1. For infinitely many 𝑛 ∈ N+, construct sets of instances of length 𝑛 that have
unique and pairwise different optimal solutions.

2. If an algorithm has to make different decisions for, say, two different instances
in some time step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛, the common prefix of length 𝑖 of these
instances is the same. In other words, a deterministic online algorithm cannot
tell which of the two instances it is dealing with until after 𝑇𝑖.

3. From Observation 3.1, we know that an online algorithm with advice that uses
𝑏(𝑛) advice bits can be seen as picking one from 2𝑏(𝑛) deterministic algorithms.
Thus, for each of the instances, one of these algorithms is chosen. If the set of
instances of length 𝑛 is larger than 2𝑏(𝑛), some instances must be processed
by the same deterministic algorithm; we do not know which, but we can still
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argue why this implies that this particular algorithm cannot be optimal on all
of these instances (or is even unable to achieve some particular competitive
ratio).

This idea behind this is formalized by so-called “partition trees.” These are used
to structure a set of instances according to common prefixes. In what follows, for
every instance 𝐼 of the given online problem, let [𝐼]𝑛′ denote the prefix of length 𝑛′

of 𝐼; likewise [𝑂]𝑛′ denotes the prefix of length 𝑛′ of a solution 𝑂 ∈ sol(𝐼). For every
instance 𝐼, let solOpt(𝐼) ⊆ sol(𝐼) denote the set of optimal solutions for 𝐼.

Definition 3.3 (Partition Tree). Let ℐ be a set of instances of some online
problem Π. A partition tree ̂︀𝒯 of ℐ is a tree with the following properties.

(i) Every vertex 𝑣 of ̂︀𝒯 is labeled by a set ℐ𝑣 ⊆ ℐ of instances and a natural
number 𝜌𝑣 such that all instances in ℐ𝑣 have a common prefix of length at
least 𝜌𝑣.

(ii) For every inner vertex 𝑣 of ̂︀𝒯 , the set of instances of its children form a
partition of the instances of ℐ𝑣.

(iii) For the root 𝑟, we have ℐ𝑟 = ℐ.

The set of instances ℐ does not necessarily only include instances of the same
length (see Theorem 8.13). The usual way to define partition trees, however, is
to construct sets ℐ (𝑛) of instances of length 𝑛 for infinitely many 𝑛 together with
partition trees for every ℐ (𝑛). The key to using partition trees to prove lower bounds
on the advice complexity of optimal online algorithms with advice is formalized by
the next lemma.

Lemma 3.1. Let ℐ be a set of instances of some online problem Π with a partition
tree ̂︀𝒯 of ℐ. Let 𝑣1 and 𝑣2 be two vertices from ̂︀𝒯 such that neither one is an ancestor
of the other one, let 𝐼1 ∈ ℐ𝑣1 and 𝐼2 ∈ ℐ𝑣2 be any two instances of Π, and let 𝑣 be
the lowest common ancestor of both 𝑣1 and 𝑣2. If

[𝑂1]𝜌𝑣
̸= [𝑂2]𝜌𝑣

,

for every 𝑂1 ∈ solOpt(𝐼1) and 𝑂2 ∈ solOpt(𝐼2), then every optimal online algorithm
with advice has to use different advice strings for 𝐼1 and 𝐼2.

Proof. Since 𝑣 is an ancestor of both 𝑣1 and 𝑣2, we have both 𝐼1 ∈ ℐ𝑣 and 𝐼2 ∈ ℐ𝑣,
for all 𝐼1 ∈ ℐ𝑣1 and 𝐼2 ∈ ℐ𝑣2 . Due to Definition 3.3, we have [𝐼1]𝜌𝑣

= [𝐼2]𝜌𝑣
, but

due to the assumption of the lemma, [𝑂1]𝜌𝑣
̸= [𝑂2]𝜌𝑣

for every 𝑂1 ∈ solOpt(𝐼1) and
𝑂2 ∈ solOpt(𝐼2). In other words, the instances have the same prefix of length 𝜌𝑣,
but their optimal solutions differ in the first 𝜌𝑣 answers.

Now let Alg be any optimal online algorithm with advice for Π, and assume that
Alg reads the same advice for 𝐼1 and 𝐼2, which means that it chooses the same
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deterministic algorithm 𝐴 for both instances. Since 𝐼1 and 𝐼2 have the same prefix
of length 𝜌𝑣, that is, they look identical to 𝐴 up to time step 𝑇𝜌𝑣

, 𝐴 produces the
same output on this prefix. However, by the assumption of the lemma, some of the
first 𝜌𝑣 optimal answers must be different for 𝐼1 and 𝐼2, and therefore 𝐴 and thus
Alg cannot compute optimal solutions for both of them. �

Finally, we can use Lemma 3.1 to prove the following theorem.

Theorem 3.1. Let ℐ be a set of instances of some online problem Π with a partition
tree ̂︀𝒯 of ℐ with 𝑤 leaves, such that the conditions of Lemma 3.1 are satisfied. Then
every optimal online algorithm with advice for Π has to use at least log2 𝑤 advice
bits.

Proof. It follows from Lemma 3.1 that, under the given conditions, every optimal
online algorithm with advice needs to use two different advice strings for any two
instances that correspond to different vertices in ̂︀𝒯 with neither one being an ancestor
of the other. Thus, such an algorithm needs to use a different advice string for every
leaf. Since, when reading at most 𝑏 bits, there are 2𝑏 different advice strings, it
follows that 2𝑏 ≥ 𝑤 must be satisfied, and thus 𝑏 ≥ log2 𝑤. �

In order to keep our arguments simple, we will usually try to construct the set
ℐ such that all instances have unique optimal solutions that are only optimal for
this one instance. Moreover, the leaves of the partition tree are such that they only
contain (a set with) a single instance each. In many of the subsequent lower-bound
proofs, we will not explicitly construct partition trees, but incorporate the above
ideas in our direct arguments. Learning about this general idea is important if one
is to see the bigger picture of what is happening. Sometimes, however, there will be
alternative proofs that explicitly use partition trees.

The arguments for lower bounds can also be used in another way. Suppose
that we can show that every deterministic online algorithm can only be optimal
(𝑐-competitive, respectively) for, say, at most 𝛿𝑛 instances of length 𝑛 of some online
problem Π. The best case for an online algorithm Alg with advice is met if all these
sets of instances are disjoint. Suppose Alg uses at most 𝑏(𝑛) advice bits for inputs
of length 𝑛. If we are able, for infinitely many 𝑛, to construct a set of instances of
Π of size 𝜇(𝑛) with 𝜇(𝑛) > 2𝑏(𝑛) · 𝛿𝑛, then we know that Alg cannot be optimal
(𝑐-competitive, respectively).

3.4 The Advice Complexity of Paging
We are now ready to study the advice complexity of the paging problem, which
we used before to illustrate the concepts of deterministic and randomized online
computation.
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3.4.1 Optimality
We start by describing three different approaches to design optimal online algorithms
with advice that have linear advice complexity.

Example 3.4. We design a simple online algorithm PLin1 with advice and an
oracle for paging that work as follows. The oracle inspects the input 𝐼, which consists
of a sequence of pages that have indices between 1 and 𝑚 (where 𝑚 is the number
of pages in total). The most straightforward strategy would be to communicate the
whole instance 𝐼 by encoding the indices. Note that, for any 𝐼 with |𝐼| = 𝑛, there
are obviously 𝑚𝑛 different instances. Clearly, if PLin1 knows the complete instance
in advance, it can be optimal. A number between 1 and 𝑚 can be encoded with
⌈log2 𝑚⌉ bits, thus we need a total of 𝑛⌈log2 𝑚⌉ advice bits for this strategy.

However, we are not done yet. PLin1 needs to compute an optimal solution in
advance; but it does not know the length of the input and the advice tape has infinite
length. Thus, we can use self-delimiting strings as described in Section 3.2. PLin1
knows the number of different pages 𝑚 in advance and it can thus compute ⌈log2 𝑚⌉;
so the oracle “only” needs to tell the algorithm the concrete input length 𝑛. As we
know from Section 3.2, writing it down in a self-delimiting way can be done with
2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ bits.

PLin1 now proceeds as follows. It starts reading the advice tape until it finds a 0
at an even position. After that, it computes ⌈log2 𝑛⌉ from the first ⌈log2(⌈log2 𝑛⌉)⌉
bits it found at odd positions. Then it reads the next ⌈log2 𝑛⌉ bits and computes
𝑛. Now knowing 𝑛 and 𝑚, it reads the next 𝑛⌈log2 𝑚⌉ advice bits and interprets
them as a sequence of length 𝑛 of numbers between 1 and 𝑚. For this instance,
it computes an optimal solution and acts according to it. All in all, we have thus
created an optimal online algorithm with advice that uses

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ + 𝑛⌈log2 𝑚⌉

advice bits. ♢

This was probably the easiest approach one could come up with. However, in
general, we think of 𝑚 as a very large constant, especially with respect to the cache
size 𝑘. With an approach that is almost as simple as the one from Example 3.4, we
now design an online algorithm with advice that has an advice complexity that does
not depend on 𝑚 at all. The only thing that is required is a little more work for the
oracle.

Example 3.5. How about not encoding the input, but the optimal output? Again,
we design an online algorithm PLin2 with advice and an oracle. For a given instance
𝐼, the oracle computes an optimal solution Opt(𝐼) where Opt is some arbitrary but
fixed optimal algorithm. This solution is uniquely defined by a sequence of length at
most 𝑛 of numbers between 1 and 𝑘. Each number simply represents the position
of the cache cell that Opt uses on a page fault. Thus, in every time step where
the requested page is not in PLin2’s cache, it reads the next ⌈log2 𝑘⌉ bits from the
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advice tape and removes the corresponding page. Clearly, both algorithms compute
the same solution. Moreover, since no algorithm can make more than 𝑛 page faults
in total, PLin2 never uses more than 𝑛⌈log2 𝑘⌉ advice bits.

There is a nice detail about this strategy. Since the oracle already computed the
optimal solution for us, we do not need to communicate 𝑛 to the algorithm. PLin2
can just read exactly ⌈log2 𝑘⌉ bits in every time step where it causes a page fault,
and 𝑘 is known in advance. ♢

Both PLin1 and PLin2 are optimal online algorithms for paging with linear advice
complexity. However, their advice complexities differ in the multiplicative constant.
We now prove that it is even possible to be optimal without using any multiplicative
constant.
Theorem 3.2. There is an optimal online algorithm PLin3 with advice for paging
that uses at most 𝑛+ 𝑘 advice bits.

Proof. Let Opt be an optimal offline algorithm for paging. We call a page in the
cache of Opt active if it is requested once more before Opt removes it from the
cache. PLin3 is designed such that it also has every active page in its cache in the
corresponding time step. To this end, the algorithm has a flag for every cache cell
that marks the page it contains as either active or passive. Note that passive pages
do not necessarily correspond to the pages in Opt’s cache that are not active.

For every request that causes a page fault, PLin3 removes an arbitrary page that
is passive. So, if a page 𝑝 is requested that causes a page fault for PLin3, this
cannot be an active page as PLin3 has all active pages in its cache in every time
step. Furthermore, 𝑝 cannot be a passive page that is in Opt’s cache at this point
in time since this immediately contradicts the definition of passive pages. Thus, 𝑝
also causes Opt to make a page fault in this time step. Opt now removes a page
𝑝′ that is not active. In this case, there is always a passive page in PLin3’s cache,
which may be different from 𝑝′. It follows that PLin3 does not cause more page
faults than Opt; but then PLin3 must be optimal as well.

Now let us bound the number of advice bits from above. For every request, PLin3
reads a bit from the advice tape that indicates whether the requested page is active
or passive (if the page is already in the cache, its flag is updated). For PLin3 to be
optimal, the 𝑘 pages that are in the cache at the beginning need to be marked active
or passive before the input is processed. It follows that PLin3 uses 𝑛+ 𝑘 advice bits
in total. �

Especially the difference between Example 3.5 and Theorem 3.2 gives us an idea
about what advice complexity is all about. In the former case, we basically encode a
complete optimal solution. Thus, PLin2 really knows exactly what it has to do when
a page fault occurs, that is, which page must be replaced. But this full knowledge
is not necessary; what needs to be “extracted” from this information is just which
pages may be removed and which must not be removed. Which concrete page is then
chosen from the ones that are allowed to be removed is not important in computing
an optimal solution.
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Exercise 3.4. Prove that there is a 1-competitive online algorithm with advice for paging
that uses at most 𝑛 advice bits.

Exercise 3.5. Suppose that we change the definition of paging such that the cache of
any online algorithm is empty at the beginning. Does this affect the upper bound of
Theorem 3.2? What happens if the optimal algorithm starts with a different cache content?

Exercise 3.6. Prove that if 𝑚 = 𝑘 + 1, then there is an optimal online algorithm PLin4
with advice for paging that uses ⌈𝑛/𝑘⌉ · ⌈log2 𝑘⌉ advice bits.

Next, we complement the upper bound with some lower bounds. In this context,
this means that we need to show that there is no optimal online algorithm with
advice that uses fewer than a given number of advice bits. As mentioned in the
previous section, such a proof is in many cases harder than the above constructive
proofs. We now use one of the approaches described to give a linear lower bound on
the advice complexity of any optimal online algorithm with advice for paging.

Theorem 3.3. Every optimal online algorithm with advice for paging has to use at
least (log2 𝑘/𝑘)𝑛 advice bits if the total number of pages 𝑚 may depend on 𝑛.

Proof. Let 𝑛 be a multiple of 𝑘. We construct a set ℐ (𝑛) that contains instances of
length 𝑛 of the following form. Every instance is again divided into 𝑁 phases; each
phase consists of exactly 𝑘 requests for different pages. We also design an optimal
algorithm Opt that replaces exactly one page in every phase. Any algorithm that
diverges from Opt at some point cannot be optimal, as we show in the following.

Let 𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘
denote the pages that are in the cache of Opt at the beginning

of some phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 . In 𝑃𝑗 , first a page 𝑝𝑗 is requested that is different
from all these pages and that was never requested before. This causes a page fault
for any demand paging algorithm. Next, 𝑘 − 1 of the 𝑘 pages that were in Opt’s
cache at the beginning of 𝑃𝑗 are requested. This means that there is some page
𝑝′
𝑗 ∈ {𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘

} that Opt can replace in the first time step 𝑇(𝑗−1)𝑘+1 of 𝑃𝑗
without causing an additional page fault during 𝑃𝑗 . The important point is that,
due to the new page 𝑝𝑗 , every demand paging algorithm must make one page fault
in every phase. If, in some phase, a second page fault is caused, this cannot be
compensated afterwards.

Now we show that the optimal solution for any given instance from ℐ (𝑛) is unique.
For a contradiction, suppose there is a different optimal solution. Thus, in some
phase, the two corresponding solutions for the first time replace different pages in
the first time step of this phase (if both solutions replace the same page, they both
do not make page faults in the remainder of this phase). However, this immediately
implies that one of them makes two page faults during this phase and therefore
cannot be optimal. Moreover, any two different instances have different optimal
solutions, because they need to replace different pages at least once to make only
one page fault in each phase.

Next, we calculate how many instances there are in total for inputs of length 𝑛.
There are 𝑁 = 𝑛/𝑘 phases in total. In every phase 𝑃𝑗 , exactly one page 𝑝′

𝑗 , which
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is one of the 𝑘 pages 𝑝𝑗1 , 𝑝𝑗2 , . . . , 𝑝𝑗𝑘
, is not requested. Since the page 𝑝𝑗 that is

requested first is the same for every instance, there are 𝑘 different possibilities for a
request sequence in one phase (the order of the other pages does not matter as it
does not influence the optimal solution). It follows that

|ℐ (𝑛)| = 𝑘𝑛/𝑘 ,

and as a result of the observations we just made, each instance has a unique optimal
solution that is only optimal for this particular instance.

Thus, every online algorithm Alg with advice that reads fewer than

log2
(︀
𝑘𝑛/𝑘

)︀
= 𝑛

𝑘
· log2 𝑘

advice bits uses one deterministic strategy 𝐴 ∈ strat(Alg, 𝑛) for two different
instances from ℐ (𝑛). Let these two instances be 𝐼1 and 𝐼2. There is a phase 𝑃𝑖 in
which for the first time two different pages 𝑝′

𝑖,1 and 𝑝′
𝑖,2 for 𝐼1 and 𝐼2 are replaced by 𝑝𝑖

in the corresponding optimal solutions Opt(𝐼1) and Opt(𝐼2), respectively. However,
the prefixes of 𝐼1 and 𝐼2 that include the request 𝑥(𝑖−1)𝑘+1 = 𝑝𝑖 are identical, and
thus 𝐴 replaces the same page for both instances; it immediately follows that 𝐴
causes one additional page fault for one of the two instances. As a result, 𝐴 cannot
be optimal for both 𝐼1 and 𝐼2; and therefore Alg cannot be optimal for them as
well. �

Exercise 3.7. Give an alternative proof of Theorem 3.3 using partition trees (see Defini-
tion 3.3).

The arguments used in the proof of Theorem 3.3 rely on the fact that 𝑚 is
unbounded, that is, the number of pages requested in total grows with the input
length 𝑛. It is preferable to get rid of this undesired requirement while maintaining
that every input has one unique optimal solution. A naive approach that simply
uses the same idea as above with a constant number of pages does not seem very
promising, as the following example suggests.

Example 3.6. Let 𝑘 = 5, 𝑚 = 6, and suppose that the caches of Alg and Opt
are, as always, initialized with the first five pages, that is, we have

Opt : 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 .

Assume that we follow the same strategy as we used in the proof of Theorem 3.3.
The first phase starts by requesting 𝑝6 and four of the other pages. In our example,
the instance 𝐼 starts with 𝑝6, 𝑝3, 𝑝4, 𝑝5, 𝑝2. After the first request, Opt replaces the
page 𝑝1 with 𝑝6, and therefore causes one page fault. Now let us assume that Alg
replaces 𝑝2 instead, which leads to the situation

Opt : 𝑝6 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝3 𝑝4 𝑝5 .
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The subsequent requests of 𝑃1 do not cause a page fault for Opt, but clearly, Alg
causes a page fault when 𝑝2 is requested in 𝑇5. Alg may replace any page with 𝑝2;
let us assume it chooses 𝑝3, which leads to

Opt : 𝑝6 𝑝2 𝑝3 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝2 𝑝4 𝑝5

when 𝑃1 is over.
Now 𝑃2 starts by requesting the unique page that is not in the cache of Opt, that

is, 𝑝1; the next four requests could be 𝑝2, 𝑝4, 𝑝5, 𝑝6. In this case, Opt replaces 𝑝3
with 𝑝1 in 𝑇6, which causes one page fault. However, Alg does not induce any page
fault in 𝑃2. Therefore, after 𝑃2, both algorithms made two page faults in total and
we have

Opt : 𝑝6 𝑝2 𝑝1 𝑝4 𝑝5 and Alg : 𝑝1 𝑝6 𝑝2 𝑝4 𝑝5 ,

that is, both caches have the same content. ♢

We need to enlarge the phases so that there is still only one unique optimal solution
for any instance we construct. Then, it is possible to give a proof for 𝑚 = 𝑘+ 1 that
still shows a linear lower bound (with a constant that is two times worse).

Example 3.7. Again, let 𝑘 = 5 and 𝑚 = 6. Since the straightforward approach of
Example 3.6 does not work, we now repeat each phase a second time right after the
𝑘 different pages of this phase were requested. In this context, we speak of the first
and second “iteration” of the phase. So this time, the instance starts with a phase
𝑃1, which is, for instance, given by

(𝑝6, 𝑝2, 𝑝3, 𝑝4, 𝑝5⏟  ⏞  
iteration 1

, 𝑝6, 𝑝2, 𝑝3, 𝑝4, 𝑝5⏟  ⏞  
iteration 2

) .

Opt again replaces 𝑝1 with 𝑝6 in 𝑇1 and has cost 1 in 𝑃1. If Alg again decides to
replace another page with 𝑝6 instead, for instance, 𝑝5, this leads to a second page
fault in the first iteration, because 𝑝5 is requested again. We distinguish two cases
depending on what Alg does when 𝑝5 is requested during the first iteration of 𝑃1.

Case 1. Assume that Alg replaces 𝑝1 with 𝑝5. The cache content is then
𝑝2 𝑝6 𝑝3 𝑝4 𝑝5 ,

which corresponds to the cache content of Opt after 𝑃1. However, Alg made one
additional page fault so far, and enters the next phase without any advantage
compared to Opt.

Case 2. Assume that Alg replaces a page with 𝑝5 such that its cache remains
different from that of Opt, for instance, Alg removes 𝑝4. This leads to

𝑝1 𝑝6 𝑝3 𝑝5 𝑝2 ,

which implies a third page fault in the second iteration of 𝑃1 when 𝑝4 is requested.
Again, Alg may replace a page that leads to a cache content different from Opt,
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and it may be the case that Alg has cost 0 in the next phase 𝑃2 as a consequence.
However, we can show that this does not give Alg an advantage with respect to
the whole instance since it now caused two more page faults than Opt.

In both cases, Alg is worse than Opt. ♢

We generalize this idea to prove the following theorem.

Theorem 3.4. Every optimal online algorithm with advice for paging has to use at
least (log2 𝑘/(2𝑘))𝑛 advice bits.

Proof. Let there be 𝑚 = 𝑘+ 1 pages in total; let 𝑛 be a multiple of 2𝑘. We construct
a set ℐ (𝑛) of instances in the following way. Again, every input 𝐼 ∈ ℐ (𝑛) is divided
into 𝑁 phases, this time of length 2𝑘 each. Every phase 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 starts
by requesting page 𝑝𝑗 , which is currently not in the cache of Opt. Then, as in the
proof of Theorem 3.3, 𝑘 − 1 pages are requested that are all in the cache of Opt
when 𝑃𝑗 begins. These 𝑘 different pages are then requested in the same order one
more time. As in Example 3.7, we refer to these two sequences of 𝑘 requests as the
first and second iteration, respectively.

First, we prove that Opt is both optimal and unique. To this end, we show that,
for all 𝐼 ∈ ℐ (𝑛), any solution that deviates from Opt(𝐼) is worse than Opt on 𝐼. Let
Alg be some algorithm such that Alg(𝐼) and Opt(𝐼) differ; as before, we assume
that Alg is a demand paging algorithm. Let 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 be the first phase in
which Alg replaces a different page than Opt. This must happen at the beginning
of 𝑃𝑗 , that is, in time step 𝑇(𝑗−1)2𝑘+1, because, if both algorithms replace the same
page in such a time step, they act identically in the rest of the phase (since they
both do not cause additional page faults during this phase).

As 𝑃𝑗 is the first phase in which the algorithms differ, they have the same cache
content at the beginning of 𝑃𝑗 , and thus requesting 𝑝𝑗 causes a page fault for both
Alg and Opt. Since Opt removes the unique page 𝑝′

𝑗 that is not requested during
𝑃𝑗 (note that 𝑝′

𝑗 = 𝑝𝑗+1, for 1 ≤ 𝑗 ≤ 𝑁 − 1), Alg causes one additional page fault
in this first iteration of 𝑃𝑗 . This happens when the page 𝑝′′

𝑗 ̸= 𝑝′
𝑗 is requested, which

Alg replaced with 𝑝𝑗 at the beginning. If 𝑗 = 𝑁 , it immediately follows that Alg
is worse than Opt. Thus, in what follows, we assume that 1 ≤ 𝑗 ≤ 𝑁 − 1. We now
distinguish two cases depending on Alg’s action when 𝑝′′

𝑗 is requested.

Case 1. If Alg replaces 𝑝′
𝑗 with 𝑝′′

𝑗 , then the two algorithms end phase 𝑃𝑗 with the
same cache content, but Alg caused an additional page fault.

Case 2. If Alg replaces some page 𝑝′′′
𝑗 ̸= 𝑝′

𝑗 with 𝑝′′
𝑗 , then it will have another page

fault in the second iteration, when 𝑝′′′
𝑗 is requested again. On this request, Alg

can again replace 𝑝′
𝑗 with 𝑝′′′

𝑗 , which again leads to a cache content identical to
that of Opt. If Alg chooses another page to replace with 𝑝′′′

𝑗 , the two algorithms
enter 𝑃𝑗+1 with different cache contents.
If 𝑗 + 1 = 𝑁 , we are again done. So suppose 𝑗 + 1 < 𝑁 ; then there is a (possibly
empty) sequence of phases such that the cache content of Alg differs from that
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of Opt at the end of each phase. For any such phase, Alg makes at least one
page fault (since exactly the pages in Opt’s cache were requested), and thus the
distance between the two algorithms stays the same. If this is true for all remaining
phases, we are again done. Conversely, suppose there is a phase 𝑃𝑗′ in which Alg
causes no page fault. Then, it still caused one more page fault than Opt, but has
the same cache content as Opt at the end of 𝑃𝑗′ .

In any case, either the input ends with Alg having a larger cost than Opt, or
both algorithms end up in a situation in which they start the next phase with the
same pages in their caches, but Alg made at least one more page fault than Opt.
Thus, we can apply the above arguments inductively for the remainder of the input.
Since Alg is worse than Opt on 𝐼, it follows that the solution computed by Opt is
indeed unique and optimal.

By the same reasoning as in the proof of Theorem 3.3, an optimal online algorithm
with advice needs to use two different advice strings for any two instances from ℐ (𝑛).
Consequently, it needs to use

log2
(︀
𝑘𝑛/(2𝑘))︀ = 𝑛

2𝑘 · log2 𝑘

advice bits. �

In conclusion, a linear number of advice bits is both necessary and sufficient to
compute an optimal output for any paging instance.

3.4.2 Small Competitive Ratio
We continue with studying how much a small amount of advice can help when dealing
with the paging problem. In particular, suppose an online algorithm is only allowed
to read a constant number of advice bits that does not depend on the input length 𝑛.
Actually, we already know that we can achieve quite a lot with a constant number of
advice bits. We designed a barely random algorithm for paging in Section 2.6 that is
(3𝑏+ 2(𝑘 + 1)/2𝑏)-competitive in expectation when using 𝑏 random bits; in the first
section of this chapter (see Observation 3.2(i)), we have seen that this enables us to
construct an online algorithm with advice that uses 𝑏 advice bits and is as good. We
can therefore derive the following theorem.

Theorem 3.5. There is an online algorithm with advice for paging that uses 𝑏 advice
bits, where 2𝑏 < 𝑘, and is strictly(︂

3𝑏+ 2(𝑘 + 1)
2𝑏

)︂
-competitive.

Proof. This is a direct consequence of Theorem 2.12 and Observation 3.2. �

Next, we complement this upper bound with a lower bound for a constant number
of advice bits which is very close to it.
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⏟
 ⏞

 

𝒯 ′
𝑣 𝑑

𝒯𝑤

Figure 3.1. The tree 𝒯𝑣 that represents some instances from ℐ(𝑛).

Theorem 3.6. Let 𝜀 > 0. No online algorithm with advice for paging that uses 𝑏
advice bits, where 2𝑏 < 𝑘, is(︂

𝑘

2𝑏 − 𝜀

)︂
-competitive.

Proof. Let 𝜀 > 0, and let Alg be some online algorithm with advice for paging
that uses a constant number 𝑏 of advice bits. For the proof, it is again sufficient to
consider instances with a total of 𝑚 = 𝑘 + 1 pages. Let 𝑛 be a multiple of 𝑘. We
now construct a set ℐ (𝑛) of instances of length 𝑛 that we can represent by a special
kind of tree. All instances start by requesting the page 𝑝𝑘+1, which is not in the
cache. Now we arrange all instances in a 𝑘-ary tree 𝒯 that has 𝑛 levels, that is, 𝒯
is of height 𝑛− 1. The leaves represent the complete instances from ℐ (𝑛) of length
𝑛. In general, every vertex 𝑣 corresponds to a prefix of exactly those instances that
are leaves in the subtree rooted at 𝑣. Every inner vertex in the tree has exactly 𝑘
children, which represent the 𝑘 possible pages that can be requested in the following
time step. Of course, the same page is never requested twice in two consecutive time
steps. It follows that the root of the tree corresponds to the first request 𝑝𝑘+1, which
is a prefix of every instance that is represented by the tree.

For every instance, Alg chooses one out of 2𝑏 online algorithms from strat(Alg);
thus, every instance from ℐ (𝑛) is processed by one of these algorithms. We are now
going to color the leaves of 𝒯 depending on which algorithm processes them; so every
leaf gets a color between 1 and 2𝑏.
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Let 𝑑 := ⌊𝑛/2𝑏⌋. For every vertex 𝑣, we denote the subtree of 𝒯 that has the root
𝑣 by 𝒯𝑣. We now show that the following is true for every 𝑣.

If 𝒯𝑣 has at least 𝑑 · 𝑖 levels and all leaves of 𝒯𝑣 are colored with at
most 𝑖 colors, then there is an instance in ℐ (𝑛) (represented by a leaf
of 𝒯𝑣) for which Alg causes at least 𝑑 page faults.

(3.1)

We prove the claim by induction on the number of colors 𝑖.

Base Case. Let 𝑖 = 1, and let 𝒯𝑣 be a tree with at least 𝑑 levels whose leaves are
colored with one color. This is equivalent to the situation where Alg uses the
same algorithm from strat(Alg) for all instances represented by 𝒯𝑣, and therefore
works fully deterministically. Then there is an instance in 𝒯𝑣 such that Alg causes
exactly one page fault on every level of 𝒯𝑣; thus, it makes 𝑑 page faults in total,
which covers the base case.

Induction Hypothesis. The claim holds for 𝑖− 1.
Induction Step. Let 𝑖 > 1. We cut 𝑇𝑣 after 𝑑 levels yielding a tree 𝒯 ′

𝑣 . Every leaf 𝑤
of 𝒯 ′

𝑣 is the root of a subtree 𝒯𝑤 of 𝒯 with at least 𝑑(𝑖− 1) levels; see Figure 3.1.
We now distinguish two cases depending on the number of colors that are used in
the trees 𝒯𝑤.
Case 1. If there is a tree 𝒯𝑤 whose leaves are colored with at most 𝑖− 1 different

colors, then, by the induction hypothesis, it follows that Alg causes 𝑑 page
faults on some instance that is represented by a leaf of 𝒯𝑤. Obviously, then
there is also such an instance that is represented by a leaf of 𝒯𝑣.

Case 2. Conversely, if such a tree does not exist, since all leaves of 𝒯𝑣 are colored
with 𝑖 colors, we know that there is a color 𝑧 such that every subtree 𝒯𝑤 has
a leaf that is colored with 𝑧. If we take these leaves from every subtree, the
corresponding instances are again processed by the same algorithm, that is, the
same advice is used for each of them.
Due to the construction of 𝒯 , the request sequences that lead to the correspond-
ing trees 𝒯𝑤 are all possible request sequences of length 𝑑 (where the same page
is never requested in two consecutive time steps). Hence, there is an instance
such that Alg causes a page fault on all levels of 𝒯 ′

𝑣 ; therefore, it makes 𝑑 page
faults in total.

Now we can use (3.1) for 𝑖 = 2𝑏 and conclude that Alg causes at least⌊︁ 𝑛
2𝑏

⌋︁
page faults on inputs that are represented by a tree with ⌊𝑛/2𝑏⌋ · 2𝑏 ≤ 𝑛 levels, and
thus have length at most 𝑛. On the other hand, we know that there is an optimal
algorithm that makes a page fault at most every 𝑘 requests. Since 𝑛 is a multiple of
𝑘, it follows that the optimal cost for instances of length 𝑛 is at most 𝑛/𝑘.
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To finish the proof, we plug these two bounds into Definition 3.2, that is, the
definition of the competitive ratio, yielding

𝑛

2𝑏 − 1 ≤
⌊︁ 𝑛

2𝑏
⌋︁

≤ 𝑐 · 𝑛
𝑘

+ 𝛼 ,

which is why the competitive ratio of Alg can be bounded from below by

𝑐 ≥ 𝑘

2𝑏 − (𝛼+ 1)𝑘
𝑛

,

which is larger than 𝑘/2𝑏 − 𝜀 for infinitely many 𝑛. �

3.5 Advice and Randomization
If we follow our intuition, advice bits seem to be a lot more powerful than random
bits. After all, we compare a situation where we always pick a best strategy for the
given instance to a situation where we pick strategies with a fixed distribution; in
essence, we compare “the best” with “the average.” It is therefore natural to ask
whether there exists a scenario in which it is possible to save some bits if they are
supplied by an oracle and not a random source. In what follows, we give a positive
answer to this question. More specifically, we show that if there is some randomized
online algorithm Rand for some online minimization problem Π, then there is also
some online algorithm with advice that is almost as good while using a number of
advice bits which (and this is the interesting part) does not depend on the number of
random bits Rand uses. However, the bound does depend on the number of possible
instances of Π of the given length. The proof uses some ideas that are similar to the
proof of Yao’s principle, which we have introduced in Sections 2.3 and 2.4.

Theorem 3.7. Let Π be an online minimization problem with 𝜇(𝑛) different in-
stances of length 𝑛. Suppose there is a randomized online algorithm for Π that is
𝑐-competitive in expectation. Then, for any 𝜀 > 0, there is a (1 + 𝜀)𝑐-competitive
online algorithm with advice for Π that uses at most

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ + log2

(︂⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

)︂
advice bits.

Proof. Let Rand be a randomized online algorithm for Π that uses 𝑏(𝑛) random
bits for any input length 𝑛. Due to Observation 2.2, this is equivalent to choos-
ing uniformly at random a deterministic strategy from a set strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴2𝑏(𝑛)}. We design an online algorithm Alg with advice for Π in the
following way. Since Rand is 𝑐-competitive in expectation, according to Defini-
tion 2.2, there is a constant 𝛼 such that, for every instance 𝐼 of Π, we have

E[cost(Rand(𝐼))] ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼
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or, equivalently,
E[cost(Rand(𝐼))] − 𝛼

cost(Opt(𝐼)) ≤ 𝑐 .

Now, for each deterministic strategy 𝐴𝑗 and each instance 𝐼𝑖 of length 𝑛, for
1 ≤ 𝑗 ≤ 2𝑏(𝑛) and 1 ≤ 𝑖 ≤ 𝜇(𝑛), we set

𝑐𝑖,𝑗 := cost(𝐴𝑗(𝐼𝑖)) − 𝛼

cost(Opt(𝐼𝑖))
;

recall that 𝑐𝑖,𝑗 is called the performance of 𝐴𝑗 on 𝐼𝑖. As a next step, we construct a
(𝜇(𝑛)×2𝑏(𝑛))-matrix ℳ that we fill with these entries similarly to Section 2.4.

𝐴1 𝐴2 𝐴3 . . .
𝐼1 𝑐1,1 𝑐1,2 𝑐1,3 . . .
𝐼2 𝑐2,1 𝑐2,2 𝑐2,3
𝐼3 𝑐3,1 𝑐3,2 𝑐3,3
...

... . . .

As a result, the entry in the 𝑖th row and the 𝑗th column gives the performance of
Rand on the input 𝐼𝑖 if Rand chooses the deterministic strategy 𝐴𝑗 . The central
idea of the proof is to show that we are able to cleverly choose a small number
of columns of ℳ such that the performances of the corresponding deterministic
strategies are good for many instances, and the chosen strategies cover all input
instances. We collect these deterministic algorithms in a set 𝒜, and Alg gets as
advice the index of the algorithm from 𝒜 that should be used for the input at
hand (and some additional information we will describe later); the “index” can, for
instance, refer to the canonical order of the binary random strings to which the
algorithms correspond.

One row 𝑖 of ℳ corresponds to exactly one input 𝐼𝑖. Thus, by the definition of 𝑐𝑖,𝑗
and the expected competitive ratio of Rand, for every 𝑖 with 1 ≤ 𝑖 ≤ 𝜇(𝑛), we get

1
2𝑏(𝑛)

2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 = 1
2𝑏(𝑛)

2𝑏(𝑛)∑︁
𝑗=1

cost(𝐴𝑗(𝐼𝑖)) − 𝛼

cost(Opt(𝐼𝑖))

=
1

2𝑏(𝑛)

∑︀2𝑏(𝑛)

𝑗=1 (cost(𝐴𝑗(𝐼𝑖)) − 𝛼)
cost(Opt(𝐼𝑖))

= E[cost(Rand(𝐼𝑖))] − 𝛼

cost(Opt(𝐼𝑖))
≤ 𝑐

or, equivalently,
2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 ≤ 𝑐 · 2𝑏(𝑛) .
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For the sum of all entries in all cells of ℳ, we get

𝜇(𝑛)∑︁
𝑖=1

2𝑏(𝑛)∑︁
𝑗=1

𝑐𝑖,𝑗 ≤
𝜇(𝑛)∑︁
𝑖=1

𝑐 · 2𝑏(𝑛) ≤ 𝑐 · 2𝑏(𝑛) · 𝜇(𝑛) .

Since there are 2𝑏(𝑛) columns in ℳ, there is one column (deterministic strategy)
𝑗′ such that

𝜇(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗′ ≤ 𝑐 · 𝜇(𝑛) . (3.2)

The corresponding online algorithm 𝐴𝑗′ is then included in 𝒜 and it is used for any
instance 𝐼𝑖, for which 𝑐𝑖,𝑗′ ≤ (1 + 𝜀)𝑐. Let 𝑠 = 𝑠(𝑗′) denote the number of these
instances. In what follows, we want to estimate the size of 𝑠, that is, for how many
instances Alg can use 𝐴𝑗′ . Clearly, the performance of 𝐴𝑗′ is worse than (1 + 𝜀)𝑐
on 𝜇(𝑛) − 𝑠 instances.

Summing up, this gives a total of more than (𝜇(𝑛)−𝑠)(1+𝜀)𝑐 for the corresponding
rows and we have

𝜇(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗′ > (𝜇(𝑛) − 𝑠)(1 + 𝜀)𝑐 .

Together with (3.2), it follows that (𝜇(𝑛) − 𝑠)(1 + 𝜀)𝑐 < 𝜇(𝑛)𝑐 and therefore

𝑠 >

(︂
𝜀

1 + 𝜀

)︂
𝜇(𝑛) ,

which means we can use the deterministic strategy 𝐴𝑗′ for a fraction 𝜀/(1 + 𝜀) of the
instances as we know that on these its performance is not worse than (1 + 𝜀)𝑐.

After 𝐴𝑗′ is put into the set 𝒜, we remove the column 𝑗′ from ℳ together with all
rows that correspond to inputs on which 𝐴𝑗′ achieves a sufficiently good performance.
There remain(︂

1 − 𝜀

1 + 𝜀

)︂
𝜇(𝑛) =

(︂
1

1 + 𝜀

)︂
𝜇(𝑛)

rows for which we need to find another algorithm from strat(Rand, 𝑛). For every
remaining row, the removed entry in column 𝑗′ was larger than 𝑐. It follows that,
after removing this column, the average over all entries of the remaining rows is still
not larger than 𝑐. Therefore, we can repeat the aforementioned procedure with the
remaining 1/(1 + 𝜀)𝜇(𝑛) rows of ℳ. This way, we find another deterministic online
algorithm 𝐴𝑗′′ , which has a sufficiently good performance on a fraction 𝜀/(1 + 𝜀) of
the remaining instances.
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Now we compute how often we have to iterate this procedure until we have found
an algorithm for every input; this means we want to find a natural number 𝑟 such
that (︂

1
1 + 𝜀

)︂𝑟
𝜇(𝑛) < 1 .

We get(︂
1

1 + 𝜀

)︂𝑟
<

1
𝜇(𝑛) ⇐⇒ (1 + 𝜀)𝑟 > 𝜇(𝑛) ⇐⇒ 𝑟 > log1+𝜀(𝜇(𝑛)) ,

which means that we have to make at most⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

iterations, that is, we need that many deterministic algorithms from strat(Rand, 𝑛).
This immediately gives an upper bound on the size of 𝒜.

Finally, we calculate the number of advice bits needed for this approach.

1. First, Alg needs to know the input length 𝑛, which can be encoded on
the advice tape using ⌈log2 𝑛⌉ bits. However, this must be done in a self-
delimiting fashion (as described in Section 3.2), summing up to a total of
2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ advice bits.

2. Knowing 𝑛, Alg constructs ℳ by simulating the randomized online algorithm
Rand on every possible input of length 𝑛 and every possible “random” string
of length 𝑏(𝑛). Then, Alg constructs 𝒜 and enumerates all algorithms from
𝒜 in, for instance, canonical order. After reading another

log2

(︂⌊︂
log2(𝜇(𝑛))
log2(1 + 𝜀)

⌋︂
+ 1

)︂
advice bits, Alg can pick one algorithm from 𝒜, which is then simulated for
the input at hand.

It follows that the performance of Alg on any instance is at most (1 + 𝜀)𝑐 and
Alg uses as much advice as claimed by the theorem. �

Exercise 3.8. Explain where the argumentation in the proof of Theorem 3.7 does not
work if we use Observation 2.1 instead of Observation 2.2, and specifically assume that
ℓ(𝑛) < 2𝑏(𝑛)?

The following example illustrates how the deterministic strategies are chosen in
the proof of Theorem 3.7.
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Example 3.8. Suppose we are given a randomized online algorithm Rand that
uses three random bits for the given input length 𝑛; thus, we have strat(Rand, 𝑛) =
{𝐴1, 𝐴2, . . . , 𝐴8}. As described above, the online algorithm with advice knows 𝑛,
computes 𝑏(𝑛), and finally simulates Rand on every input of length 𝑛 and every
“random” string of length 𝑏(𝑛).

Moreover, assume there are nine inputs of length 𝑛, and that Rand is 3-competitive
in expectation. Then Alg obtains the following matrix ℳ.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 Average
𝐼1 5 4 4 2 3 1 4 1 3
𝐼2 3 1 1 3 5 5 2 4 3
𝐼3 4 6 4 1 2 4 1 2 3
𝐼4 1 1 5 5 4 2 3 3 3
𝐼5 2 2 4 2 5 2 2 5 3
𝐼6 1 5 1 8 1 2 4 2 3
𝐼7 2 1 4 1 4 3 5 4 3
𝐼8 1 3 1 7 2 2 3 5 3
𝐼9 3 3 6 2 1 4 1 4 3

As marked in ℳ, the deterministic strategy 𝐴2 has a performance that is better
than (1 + 𝜀) · 3 (even 3 in this simple example) on the six inputs 𝐼2, 𝐼4, 𝐼5, 𝐼7, 𝐼8,
and 𝐼9. 𝐴2 is included in 𝒜, and the second column is removed from ℳ together
with the rows that correspond to the above inputs. This results in the following
matrix with decreased average values for every row.

𝐴1 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 Average
𝐼1 5 4 2 3 1 4 1 2.86
𝐼2
𝐼3 4 4 1 2 4 1 2 2.58
𝐼4
𝐼5
𝐼6 1 1 8 1 2 4 2 2.72
𝐼7
𝐼8
𝐼9

Finally, there are even two algorithms, namely 𝐴5 and 𝐴8, that perform well for
all remaining instances. Thus, 𝒜 has size 2. ♢

At this point, one might wonder whether the factor of 1 + 𝜀 is unavoidable, or
whether it is possible to design an online algorithm with advice from any randomized
online algorithm that is as good. The answer is that the latter is not possible, as the
following online problem shows.

Example 3.9. Consider the following online minimization problem. The input
𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) starts with the request 𝑥1 = 0. All other requests are bits, that
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is, 𝑥𝑖 ∈ {0, 1} with 2 ≤ 𝑖 ≤ 𝑛; as answers, also bits must be given, that is, 𝑦𝑖 ∈ {0, 1}
with 1 ≤ 𝑖 ≤ 𝑛.

Now, if 𝑦𝑖 = 𝑥𝑖+1 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛− 1, then the total cost is 1, otherwise,
it is 𝑛 (the last answer 𝑦𝑛 is ignored). In other words, an optimal algorithm has cost
1, and any other solution has cost 𝑛. Obviously, a best randomized online algorithm
chooses every answer such that it is 0 or 1 with probability 1/2 each. This algorithm
uses 𝑛− 1 random bits and its expected competitive ratio is

2𝑛−1−1
2𝑛−1 · 𝑛+ 1

2𝑛−1 · 1
1 = 𝑛− 𝑛+ 1

2𝑛−1 .

On the other hand, no online algorithm Alg with advice that uses fewer than
𝑛 − 1 advice bits is better than 𝑛-competitive. This is due to the fact that there
are at most 2𝑛−2 deterministic strategies Alg chooses from if it uses at most 𝑛− 2
advice bits. Therefore, there are at least two different instances that get the same
advice string. Let these two instances be 𝐼1 and 𝐼2, and let 𝐴 ∈ strat(Alg) be the
deterministic algorithm that is chosen for both of them. 𝐼1 and 𝐼2 differ for the first
time in time step 𝑇𝑖 with 2 ≤ 𝑖 ≤ 𝑛; but they have the same prefix of length 𝑖− 1.
Therefore, 𝐴 outputs the same bit in 𝑇𝑖−1, and consequently has cost 𝑛 on one of
the two instances. ♢

In Chapter 7, we will return to such problems where bits need to be guessed;
however, there we will consider different cost functions. It follows that there exist
online problems for which an online algorithm with advice that is equally good as a
best randomized online algorithm in expectation needs as many advice bits as the
latter uses random bits.

We have now introduced the three models of online computation that we will
study in the following chapters. It will turn out that the relationship between them
varies heavily with the problem we are considering.

3.6 Historical and Bibliographical Notes
The advice complexity of online problems was introduced by Dobrev et al. [53] in
2008 as a new measurement for online algorithms addressing the aforementioned
pessimistic view of competitive analysis. In particular, the authors investigated
paging and the problem of differentiated services; see, for instance, Lotker and
Patt-Shamir [112]. Originally, two different “modes of operation” were proposed and
studied, which allow different ways of communication between the oracle and the
online algorithm. The following description is taken from Komm [97].

• The helper model. Here, we think of an oracle that oversees Alg’s actions
during runtime. The oracle may interact with the algorithm by giving some
bits of advice in every time step; this is done without a request for help by
Alg. The crucial observation is that the advice may be empty, which can also
carry some piece of information and thus may be exploited by the algorithm.
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• The answerer model. The second model is more restrictive in some sense as
the algorithm Alg has to explicitly ask the oracle for advice in some time
step. The oracle then has to respond with some advice string, that is, it is not
allowed to send an empty string, but still may encode some extra information
into the length of its answer.

In both models, it is assumed that Alg knows the length of the input in advance.
A more detailed and formal description is given by Dobrev et al. [53, 54].

The problem with the above model (and both modes of operation) is that some
information can be encoded into the lengths of the advice strings. Moreover, it is
desirable to stick to a scenario where the input length of the current instance is not
known in advance, because this is exactly one of the properties that define the nature
of computing online. Of course, it is possible that the input length is communicated
to the algorithm, but we demand that this is accounted for in a clean way and it is
not possible to do such a thing implicitly.

Addressing these issues, two different refined models were suggested in 2009. Emek
et al. [58] proposed a model in which the number of advice bits supplied is fixed in
every time step. Note that it is therefore impossible to study sublinear advice as
we did, for example, in Theorem 3.5. Emek et al. applied this model to metrical
task systems and the 𝑘-server problem (which we will investigate in Chapter 4).
Böckenhauer et al. [30] and Hromkovič et al. [82] proposed the model that is used
throughout this book. Hromkovič et al. suggested using this approach to quantify
the information content of the given online problem. Böckenhauer et al. first applied
it to paging (obtaining some of the results given in Section 3.4), the disjoint path
allocation problem (which will be described in Subsection 7.4.3), and the job shop
scheduling problem (which we will study in Chapter 5); for more details, we refer to
the technical report [31].

It is noteworthy that this model is equivalent to a variant of the answerer model
where the input length is unknown and the online algorithm with advice specifies
the number of bits it wants to get as an answer (it may ask multiple times in one
time step); the oracle is not allowed to answer with any other number of advice bits
(in particular, it is also not allowed to give an empty answer).

The self-delimiting encoding of binary strings that we introduced in Section 3.2 is
strongly related to Elias coding, which was developed by Elias [57].

The concept of partition trees was implicitly used in many publications. It was
first formalized (see Definition 3.3, Lemma 3.1, and Theorem 3.1) by Barhum et
al. [16]; see also Steffen [135].

The problem-independent construction of an online algorithm with advice from
a randomized online algorithm for online minimization problems was shown by
Böckenhauer et al. [24,29]. An analogous theorem for online maximization problems
was later proven by Selečéniová [129].

Emek et al. [58,60] proved a lower bound on the advice complexity of an online
algorithm that also uses randomness for metrical task systems. Böckenhauer et al. [25]
introduced the so-called boxes problem to further study the collaboration between
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advice and randomization. More non-trivial connections between randomization and
advice were observed by Komm [97], Mikkelsen [117], and Böckenhauer et al. [23].
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4The k-Server Problem

In this chapter, we learn about another online problem that is among the most
studied, and that is especially interesting from a theoretical point of view. The
𝑘-server problem is concerned with moving 𝑘 objects (called “servers”) in a metric
space to points that are requested in consecutive time steps. We show that this
problem, although it may not seem obvious, is actually a generalization of paging,
which we studied in the first three chapters. However, the 𝑘-server problem is less
well understood, and we introduce both the 𝑘-server conjecture and the randomized
𝑘-server conjecture, which are two of the most famous open problems in online
computation. We define a very natural class of algorithms for 𝑘-server called lazy
algorithms. Basically, these algorithms are the counterparts of demand paging
algorithms for paging. Since the 𝑘-server problem is rather difficult to get a grip
on in a general setting, that is, if the metric space is arbitrary, we will first restrict
ourselves to specific settings such as a line segment and tree graphs. We show that
greedy algorithms are not competitive for 𝑘-server even on a very simple metric space.
The best competitive ratio that can be reached by deterministic online algorithms is
𝑘 for any metric space that has more than 𝑘 points. To be able to show an upper
bound on the competitive ratio of deterministic online algorithms for 𝑘-server, we
introduce potential functions that allow us to bound the amortized cost of an online
algorithm. We use such functions subsequently to analyze online algorithms that
work on the abovementioned special metric spaces, and that have competitive ratios
of 𝑘; these algorithms are therefore strongly competitive.

Next, we focus on the advice complexity of the 𝑘-server problem starting with
the number of advice bits that are necessary and sufficient to produce an optimal
output. While it is rather straightforward to prove an upper bound, establishing a
lower bound needs a more careful analysis. We show that there are instances where
computing an optimal solution basically reduces to guessing a permutation. Next, we
construct online algorithms with advice for the line segment (again using a potential
function) and the Euclidean plane. For the former case, the constructed algorithm
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is optimal and uses one bit of advice per time step. The algorithm for the plane
has a small competitive ratio and reads a constant number of advice bits in every
time step; here, “constant” means independent of both 𝑘 and 𝑛. The last online
algorithm with advice works for general metric spaces. It uses a greedy approach in
some time steps while cleverly using the advice to bound the additional cost that
is induced by the greedy moves. At the end of this chapter, we discuss the impact
of the connection between advice and randomization stated in Theorem 3.7 on the
randomized 𝑘-server conjecture.

4.1 Introduction
Suppose you want to navigate a number of 𝑘 police cars through a traffic network.
In every time step, a crime is committed, and a police car needs to be specified to
move to the crime scene. Assume that the police car arrives at this crime scene in
the next time step, when the next crime scene is revealed. Of course, an optimal
strategy to navigate the cars is not obvious at the beginning. Maybe, a police car
will be moved away from a position that is the site of a crime in the next time step.
Thus, such a problem is intrinsically online. In the 𝑘-server problem, this scenario
is generalized and put into a theoretical framework. Here, servers (police cars) are
moved in a metric space (traffic network) to requested points (crime scenes). An
example is given in Figure 4.1, where servers are depicted as squares and requests as
crosses (we will stick to these symbols). To give a formal definition, we first need to
define the notion of a metric space.

Definition 4.1 (Metric Space). Let 𝑃 denote a set of points and dist : 𝑃 ×
𝑃 → R a distance function. ℳ = (𝑃, dist) is a metric space if the following
constraints are satisfied.

Identity of Indiscernibles and Non-Negativity. All distances are non-negative
and we do not have to pay to stay at a point, that is, dist(𝑝𝑖, 𝑝𝑖) = 0, for all
𝑝𝑖 ∈ 𝑃 , and dist(𝑝𝑖, 𝑝𝑗) > 0, for all 𝑝𝑖 ̸= 𝑝𝑗 and 𝑝𝑖, 𝑝𝑗 ∈ 𝑃 .

Symmetry. The way back is as expensive as the way there, that is, dist(𝑝𝑖, 𝑝𝑗) =
dist(𝑝𝑗 , 𝑝𝑖), for all 𝑝𝑖, 𝑝𝑗 ∈ 𝑃 .

Triangle Inequality. The direct connection is never more expensive than taking
a detour, that is, dist(𝑝𝑖, 𝑝𝑗) ≤ dist(𝑝𝑖, 𝑝𝑘) + dist(𝑝𝑘, 𝑝𝑗), for all 𝑝𝑖, 𝑝𝑗 , 𝑝𝑘 ∈ 𝑃 .

An example of a subclass of metric spaces is the class of complete undirected
graphs that have edge weights that satisfy the triangle inequality. In Chapter 1, we
briefly discussed the traveling salesman problem. In this context, we mentioned that
there is a 3/2-approximation algorithm if “certain natural conditions” are met; such
metric graphs are exactly what we referred to. For convenience, we will also denote
vertices in a graph by 𝑝𝑖. In the following, for two given vertices of a graph 𝑝1 and 𝑝2
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𝑠1

𝑠2
𝑠3

(a)

𝑠1

𝑠2

𝑠3

(b)

𝑠1

𝑠2
𝑠3

(c)

Figure 4.1. An example of 𝑘-server with three servers.

that are connected by an edge {𝑝1, 𝑝2}, we write dist(𝑝1, 𝑝2) instead of dist({𝑝1, 𝑝2})
to get an easier notation that is also consistent with the distance function of other
metric spaces; dist(𝑝1, 𝑝2) is then referred to as the weight of the edge {𝑝1, 𝑝2}. We
can make an easy observation about another class of graphs.

Observation 4.1. All complete undirected graphs that only have edge weights of 1
and 2 satisfy the triangle inequality.

Exercise 4.1. Prove Observation 4.1.

We now formalize our intuition by formally defining the 𝑘-server problem on
arbitrary metric spaces.

Definition 4.2 (𝑘-Server). The 𝑘-server problem is an online minimization
problem. Let ℳ = (𝑃, dist) be a metric space with 𝑚 points according to
Definition 4.1; we allow 𝑚 = ∞, that is, the metric space may have an unbounded
size. Furthermore, we are given 𝑘 servers 𝑠1, 𝑠2, . . . , 𝑠𝑘, which are positioned on
some of the points of 𝑃 . A configuration 𝐶𝑖 ⊆ 𝑃 , |𝐶𝑖| = 𝑘, is a multiset of points
that describes the positions of the servers in time step 𝑇𝑖. The configuration
𝐶1 that describes where the servers are positioned at the beginning is called
the initial configuration. An input 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) consists of 𝑛 requests,
and each one is a point from 𝑃 . If, in time step 𝑇𝑖, a point 𝑥𝑖 is requested
and there is no server positioned on 𝑥𝑖, a server must be moved to 𝑥𝑖 to serve
this request (it is also allowed to move servers to other points); this leads to a
new configuration 𝐶𝑖+1. The distance between two configurations 𝐶𝑗 and 𝐶𝑗′ is
given by the cost of a minimum-weight matching between 𝐶𝑗 and 𝐶𝑗′ . The aim
is to serve all requests while minimizing the sum of the distances between all
pairs of consecutive configurations.

Definition 4.2 does not make any assumption on 𝐶1, that is, the points on which
the servers are positioned initially. However, we always assume that, for any online
algorithm, these initial positions are the same as for the optimal offline algorithm
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(similarly to our assumption that the cache is initialized with the same pages for
paging).

In what follows, we will simply speak of “𝑘-server” instead of the 𝑘-server problem.
Although Definition 4.2 allows us to place more than one server on the same point,
it is easy to see that this is not necessary; we can modify any online algorithm for
𝑘-server such that it never moves more than one server to one point such that this
modification does not increase the overall cost of any solution computed by this
algorithm.

We can further restrict algorithms for 𝑘-server, which will prove useful later. A
solution for an instance of 𝑘-server is a sequence of configurations, and, between two
configurations, an arbitrary number of servers can be moved. However, sometimes it
is convenient to restrict ourselves to so-called lazy algorithms that move at most one
server in response to each request. Due to the triangle inequality, this can be done
without loss of generality, as any algorithm for 𝑘-server can be transformed into a
lazy one without increasing the cost of any solution it produces. It is easy to see
that, for the case of lazy algorithms, the solutions can be uniquely described as a
sequence of servers used to serve individual requests.

Definition 4.3 (Lazy Online Algorithm). An online algorithm for 𝑘-server
is called lazy if it only moves a server in time steps where there is not yet a
server located at the requested position. Moreover, such an algorithm never
moves more than one server in one time step.

Note that lazy algorithms only act if this is necessary in the corresponding time
step, which resembles the concept of demand paging algorithms for paging from
Section 1.2. We leave the proof that Definition 4.3 does not cause any restriction as
an exercise for the reader.
Theorem 4.1. Every 𝑐-competitive online algorithm for 𝑘-server can be transformed
into a lazy online algorithm for 𝑘-server that is also 𝑐-competitive.

Exercise 4.2. Prove Theorem 4.1.
Exercise 4.3. Suppose we are dealing with a modified version of the 𝑘-server problem
where the distance function does not have to satisfy the triangle inequality. Discuss the
problems that come up when proving Theorem 4.1 for this setting.

When proving lower bounds, we will sometimes assume that all algorithms we
deal with are lazy to simplify our arguments. However, later in this chapter, we will
design online algorithms that are not lazy; also, we will study algorithms that are
consistent with the above definition of laziness, but that may move the unique server
used in one time step back to its original position afterwards.

Now let us study a first approach to deal with 𝑘-server by considering a simple
greedy algorithm KSGreedy. Such an algorithm always moves the closest server to
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2 1𝑝1 𝑝2 𝑝3

(a) The instance

2 1

..
.

𝑠1 𝑠2

(b) A greedy strategy

2 1
𝑠1 𝑠2

(c) An optimal strategy

Figure 4.2. A hard instance for KSGreedy of 𝑘-server on the line.

any requested point. If there is not one unique closest server, it picks one among the
closest ones arbitrarily. It turns out that this algorithm is not competitive, that is,
it is arbitrarily bad already for the case of 2-server on a very simple metric space.

Theorem 4.2. KSGreedy is not competitive for 𝑘-server.

Proof. Consider the following instance 𝐼 that is defined on a graph with three vertices
𝑝1, 𝑝2, and 𝑝3. The edge weights are given by

dist(𝑝1, 𝑝2) = 2 and dist(𝑝2, 𝑝3) = 1.

Moreover, we are given two servers 𝑠1 and 𝑠2 that are positioned on the vertices 𝑝1
and 𝑝3 at the beginning. The instance 𝐼 consists of 𝑛 requests that are alternatingly
𝑝2 and 𝑝3. The first request 𝑝2 must be answered by either moving 𝑠1 or 𝑠2 to
this vertex. Due to dist(𝑝2, 𝑝3) < dist(𝑝1, 𝑝2), KSGreedy uses 𝑠2, which leads to
a cost of 1. After that, 𝑝3 is requested, and again 𝑠2 is the server that is closer;
thus, KSGreedy also has a cost of 1 in the second time step. This is repeated 𝑛/2
times, and as a result KSGreedy pays 𝑛 in total. On the other hand, there is an
optimal algorithm Opt that uses 𝑠1, has a cost of 2 in the first time step, and no
further cost in any subsequent time step; this is shown in Figure 4.2. It follows that
cost(KSGreedy(𝐼))/cost(Opt(𝐼)) = 𝑛/2, and thus there is no constant 𝑐 such that
KSGreedy is 𝑐-competitive. �

Nevertheless, later in this chapter, we will design an algorithm that partially
follows the greedy approach and, making use of the advice supplied, is able to restrict
the harm done by greedy moves.

Exercise 4.4. The analysis of KSGreedy shows a lower bound of 𝑛/2. How much can
you improve this lower bound when sticking to three vertices on a line?

4.2 A Lower Bound for Deterministic Algorithms
So, following a greedy strategy is a bad idea for this problem, but what about online
algorithms for 𝑘-server in general? To give a first answer, we realize that 𝑘-server is
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actually a generalization of paging. To see this, let 𝐼 be any instance of paging, where
as always 𝑘 is the cache size and 𝑚 is the total number of pages. We construct a
complete undirected graph with 𝑚 vertices 𝑝1, 𝑝2, . . . , 𝑝𝑚 and set all edge weights to
1; we position all servers 𝑠1, 𝑠2, . . . , 𝑠𝑘 on the vertices 𝑝1, 𝑝2, . . . , 𝑝𝑘. In the following,
we identify vertices with pages. These positions of the servers (that is, the initial
configuration) symbolize the initial content of the cache. Requesting a vertex 𝑝𝑖 with
1 ≤ 𝑖 ≤ 𝑚 represents requesting the corresponding page 𝑝𝑖. If no server is located at
𝑝𝑖 in the corresponding time step, a page fault occurs. Moving a server from some
vertex 𝑝𝑗 with 1 ≤ 𝑗 ≤ 𝑚 to 𝑝𝑖 induces cost 1. In the corresponding paging instance,
this means that 𝑝𝑗 is replaced by 𝑝𝑖 in the cache.

Theorem 4.3. There is a metric space such that no deterministic online algorithm
for 𝑘-server is better than 𝑘-competitive.

Proof. This is a direct consequence of Theorem 1.5. �

We can even prove a far more general statement that speaks about every metric
space with a least 𝑘 + 1 points.

Theorem 4.4. Let 𝜀 > 0. No deterministic online algorithm for 𝑘-server is (𝑘− 𝜀)-
competitive on any metric space with at least 𝑘 + 1 points.

Proof. Let ℳ = (𝑆, dist) be any metric space with 𝑚 ≥ 𝑘 + 1 points; for the proof,
we only need to consider the first 𝑘+ 1 points 𝑝1, 𝑝2, . . . , 𝑝𝑘+1. Again, the servers are
initially positioned on 𝑝1, 𝑝2, . . . , 𝑝𝑘. Let Alg be any deterministic online algorithm
for 𝑘-server. We construct an instance 𝐼 of length 𝑛 in the following way. As
the discussion preceding Theorem 4.3 suggests, 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is created by
requesting in every time step 𝑇𝑖 the one point on which Alg has not placed a server
(we assume that Alg is lazy, so there is exactly one such point). In time step 𝑇1,
the point 𝑥1 := 𝑝𝑘+1 is requested and Alg moves some server that is located at, say,
point 𝑝 to 𝑥1. After that, in 𝑇2, the point 𝑥2 := 𝑝 is requested by the adversary. It
follows that the cost of Alg in 𝑇1 can be written as dist(𝑥2, 𝑥1). Alg moves a server
that is located at some point 𝑝′ to 𝑥2 as a response. The adversary then requests
𝑥3 := 𝑝′, and thus the cost of Alg in 𝑇2 is dist(𝑥3, 𝑥2). Let 𝑥𝑛+1 denote the last
point from which Alg moves a server to serve the request 𝑥𝑛; then

cost(Alg(𝐼)) =
𝑛∑︁
𝑖=1

dist(𝑥𝑖+1, 𝑥𝑖) . (4.1)

In order to prove that there is some algorithm that is 𝑘 times better than Alg
(minus some constant 𝛼), we consider 𝑘 algorithms Alg1,Alg2, . . . ,Alg𝑘 that work
as follows. To make the arguments simple, we assume that every such algorithm
starts with a non-lazy move such that the algorithm Alg𝑗 moves the server located
at 𝑝𝑗 to the point 𝑝𝑘+1. Therefore, before the first request is served, Alg𝑗 has no
server positioned on 𝑝𝑗 . All subsequent moves are lazy. If, in any time step 𝑇𝑖, any
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algorithm Alg𝑗 has to move a server to 𝑥𝑖, it uses the server located at 𝑥𝑖−1; note
that no such algorithm has to move a server in 𝑇1 after it made the initial move
since 𝑥1 = 𝑝𝑘+1.

We now claim that, after the initial moves in 𝑇1, there are never two algorithms
that have the same uncovered point. The proof is done by induction on 𝑇𝑖.

Base Case. Since every algorithm Alg𝑗 moves the server from the distinct point 𝑝𝑗
to 𝑝𝑘+1 at the beginning, the base case is covered.

Induction Hypothesis. The claim holds for 𝑇𝑖−1.
Induction Step. Consider any two algorithms Alg𝑗′ and Alg𝑗′′ in some time step
𝑇𝑖 with 𝑖 ≥ 2. We distinguish two cases depending on whether the point 𝑥𝑖 is
covered by both of them or not; it follows from the induction hypothesis that the
case that both algorithms have the same point uncovered cannot occur.
Case 1. If the requested point 𝑥𝑖 is covered by both algorithms, they both do not

have to move any server and the claim follows.
Case 2. Without loss of generality, assume that 𝑥𝑖 is not covered by Alg𝑗′ . By

construction, Alg𝑗′ moves the server located at 𝑥𝑖−1 to 𝑥𝑖. Thus, after this
move, Alg𝑗′ has placed servers on all points of 𝑃 except for 𝑥𝑖−1. At the
beginning of 𝑇𝑖, both Alg𝑗′ and Alg𝑗′′ covered 𝑥𝑖−1. Therefore, Alg𝑗′′ still
has a server placed on this point. As a result, Alg𝑗′ and Alg𝑗′′ still cover
different sets of points.

It follows that at most one algorithm has a requested point uncovered in any time
step. Thus, in every time step 𝑇𝑖, at most one algorithm moves a server by a distance
of dist(𝑥𝑖−1, 𝑥𝑖). An exception is the first time step, in which every algorithm Alg𝑗
moves one server by a distance of exactly dist(𝑝𝑗 , 𝑝𝑘+1). In other words, we have

𝑘∑︁
𝑗=1

cost(Alg𝑗(𝐼)) =
𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) +
𝑛∑︁
𝑖=2

dist(𝑥𝑖−1, 𝑥𝑖)

=
𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) +
𝑛∑︁
𝑖=2

dist(𝑥𝑖, 𝑥𝑖−1)

(due to the symmetry of ℳ)

=
𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) +
𝑛−1∑︁
𝑖=1

dist(𝑥𝑖+1, 𝑥𝑖)

=
𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) +
𝑛∑︁
𝑖=1

dist(𝑥𝑖+1, 𝑥𝑖) − dist(𝑥𝑛, 𝑥𝑛+1)

≤
𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) + cost(Alg(𝐼))

(as a consequence of (4.1))
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Therefore, the average cost of an algorithm Alg𝑗 is bounded from above by

1
𝑘

· cost(Alg(𝐼)) + 1
𝑘

𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1) ,

and consequently there must be at least one algorithm among them that has at most
this cost on 𝐼. Thus,

cost(Opt(𝐼)) ≤ 1
𝑘

· cost(Alg(𝐼)) + 1
𝑘

𝑘∑︁
𝑗=1

dist(𝑝𝑗 , 𝑝𝑘+1)⏟  ⏞  
𝛽

, (4.2)

where 𝛽 is constant with respect to 𝑛. For a contradiction, assume that Alg is
(𝑘 − 𝜀)-competitive, for some 𝜀 > 0. Hence, there is a constant 𝛼 such that

cost(Alg(𝐼)) ≤ (𝑘 − 𝜀) · cost(Opt(𝐼)) + 𝛼 ,

and, together with (4.2), it follows that

cost(Alg(𝐼)) ≤ (𝑘 − 𝜀) · 1
𝑘

· cost(Alg(𝐼)) + (𝑘 − 𝜀)𝛽 + 𝛼

⇐⇒ cost(Alg(𝐼)) ≤ 𝑘((𝑘 − 𝜀)𝛽 + 𝛼)
𝜀

. (4.3)

However, the cost of Alg cannot be bounded from above by a constant since it
grows with the input length. Thus, there are infinitely many instances for which (4.3)
leads to a contradiction. It follows that there is no deterministic online algorithm
that achieves a competitive ratio of 𝑘 − 𝜀. �

Exercise 4.5. Suppose that we are dealing with a resource-augmented version of 𝑘-server,
where any online algorithm has 𝑘 servers and Opt has ℎ servers where ℎ ≤ 𝑘; we call
this problem (ℎ, 𝑘)-server. Generalize Theorem 4.4 for (ℎ, 𝑘)-server by proving that no
deterministic online algorithm is (𝑘/(𝑘 − ℎ+ 1) − 𝜀)-competitive, for any 𝜀 > 0.
Hint. The proof can be done using the same input as in the original proof.

Exercise 4.6. Consider 𝑘-server with lookahead ℓ. Does this help?

From Section 1.4, we know that the lower bound of 𝑘 is tight for paging; in other
words, there are (strictly) 𝑘-competitive deterministic online algorithms for paging.
Whether this also holds for 𝑘-server is one of the most famous open problems in
online computation.

Conjecture 4.1 (𝑘-Server Conjecture). There is a 𝑘-competitive deterministic
online algorithm for 𝑘-server.
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If the 𝑘-server conjecture were true, this would mean that paging is as hard as
𝑘-server from a deterministic point of view. This would certainly be an interesting
insight, as we saw that the latter is quite a large generalization of the former;
nevertheless, so far, the best known online algorithm for arbitrary metric spaces
achieves a competitive ratio of 2𝑘− 1. In what follows, we will discuss special metric
spaces where we are able to achieve better results.

We have already seen that “a little bit” of randomization helps a lot when dealing
with paging. Therefore, it seems justified to ask what we can do for 𝑘-server if we
allow an online algorithm to use randomness. For this question, there is also no
answer given yet; in fact, the best-known upper bound is also just that of 2𝑘 − 1,
which is trivially implied by the deterministic setting. Whether this bound can be
improved (maybe even exponentially as for paging) is also open to this day.

Conjecture 4.2 (Randomized 𝑘-Server Conjecture). There is a randomized
online algorithm for 𝑘-server that is Θ(log 𝑘)-competitive in expectation.

There is an interesting connection between online algorithms with advice and the
randomized 𝑘-server conjecture, which is a consequence of Theorem 3.7; we will
return to this in Subsection 4.6.5.

4.3 Potential Functions
To prove upper bounds on the competitive ratios of online algorithms for minimization
problems, we now study a technique that helps us to bound the amortized cost,
that is, the average cost per request that is caused by processing some instance,
of an online algorithm. This tool sometimes allows us to do a clever analysis of
the competitive ratio of a given algorithm. In what follows, we consider online
minimization problems and deterministic online algorithms.

We make the following observations. If we want to show that some online algorithm
Alg achieves a competitive ratio 𝑐, for some constant 𝛼, the inequality

cost(Alg(𝐼)) ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼

must hold for every instance 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the given online minimization
problem Π. Recall that we denote the cost of Alg on a request 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑛
by cost(Alg(𝑥𝑖)). Obviously, we would be done if we could show

cost(Alg(𝑥𝑖)) ≤ 𝑐 · cost(Opt(𝑥𝑖))

for 1 ≤ 𝑖 ≤ 𝑛. However, things are not so easy in general, which is why we analyzed
phases and not single requests when dealing with paging. The idea is that it is
sufficient to show that the cost of the solution computed by Alg is at most 𝑐 times
larger on average over all requests than the cost of an optimal solution. In other
words, Alg may pay more in some time steps if it compensates for this in other
steps. If such time steps even out, Alg is still 𝑐-competitive.
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Now we want to formalize this simple idea by looking at how much “too much”
or “too little” Alg pays for every request. For this purpose, we need the notion of
a configuration of an online algorithm. Formalizing this term is tricky and we will
thus stay on an intuitive level. The configuration of a paging algorithm, for instance,
is the content of the cache, for 𝑘-server it is the positions of the 𝑘 servers in the
metric space; for the latter, we even used the notion in the definition. Note that this
configuration is different from the “internal configuration” of an algorithm; if we use
the formalization of Turing machines, such a configuration is given by the current
state, the head positions, and the content of its tape or tapes. In this context, a
configuration is basically the observable state of the algorithm.

Now let 𝒞Alg denote the set of all configurations of an online algorithm Alg, and
let 𝒞Opt denote the set of configurations of an arbitrary but fixed optimal algorithm
Opt. An initial configuration is a configuration of some algorithm before any part
of the input is processed, such as the initial server positions for 𝑘-server or the initial
cache content for paging. A potential function Φ is a function

Φ: 𝒞Alg × 𝒞Opt → R .

The computation of a fixed deterministic online algorithm can be described by a
sequence of configurations that are uniquely determined by the requests of the input.
Therefore, if Alg and Opt are clear from context, Φ can also be regarded as a
function on requests. In what follows, we will use both views to have an easier
notation. We call Φ(𝑥𝑖) the potential of Alg in time step 𝑇𝑖; Φ(𝑥0) is the potential
before the first request. For an instance 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), we thus have a sequence
Φ(𝑥0),Φ(𝑥1), . . . ,Φ(𝑥𝑛) of potentials. The potential is therefore a value that changes
during the run of Alg depending on the configurations of Alg and Opt; in time
step 𝑇𝑖 it changes by Φ(𝑥𝑖) − Φ(𝑥𝑖−1).

We now define the amortized cost of Alg on the request 𝑥𝑖 as

amcost(Alg(𝑥𝑖)) := cost(Alg(𝑥𝑖)) + Φ(𝑥𝑖) − Φ(𝑥𝑖−1) . (4.4)

These are the costs that we want to guarantee for Alg on average; conversely,
cost(Alg(𝑥𝑖)) denotes the real cost of Alg on 𝑥𝑖. Let us stay on an intuitive level.
In what follows, we want to show that

amcost(Alg(𝑥𝑖)) ≤ 𝑐 · cost(Opt(𝑥𝑖))
and thus

cost(Alg(𝑥𝑖)) ≤ 𝑐 · cost(Opt(𝑥𝑖)) − (Φ(𝑥𝑖) − Φ(𝑥𝑖−1))
holds in every time step 𝑇𝑖. If we now pay too much in some time step, that is, more
than 𝑐 · cost(Opt(𝑥𝑖)), we can compensate for this by decreasing the potential by the
corresponding value. We demand, however, that the potential must not be negative
(for now, see Exercise 4.8 for an extension to negative values). On the other hand,
the potential may also increase, which allows us to pay more in some subsequent
time step. Our goal is to find some potential function and some 𝑐 so that we are
able to guarantee these properties. Let us now express this formally.
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Theorem 4.5. Let Π be an online minimization problem, let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be
an instance of Π, and let Φ be a potential function. For any online algorithm Alg,
we define the amortized cost of Alg on 𝐼 as in (4.4). If

(i) Φ(𝑥𝑖) ≥ 0, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, and
(ii) amcost(Alg(𝑥𝑖)) ≤ 𝑐 · cost(Opt(𝑥𝑖)), for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,

then Alg is 𝑐-competitive for Π.

Proof. Note that Φ(𝑥0) only depends on the initial configurations and is therefore
constant, say, Φ(𝑥0) = 𝛽, for some 𝛽 ∈ R. The proof is very simple; we basically only
plug in the definitions from above together with the assumptions of the theorem,
and observe that we are dealing with an easy telescoping series when summing the
potentials. For the cost of Alg on 𝐼, it immediately follows that

cost(Alg(𝐼)) =
𝑛∑︁
𝑖=1

cost(Alg(𝑥𝑖))

=
𝑛∑︁
𝑖=1

(amcost(Alg(𝑥𝑖)) + Φ(𝑥𝑖−1) − Φ(𝑥𝑖))

= Φ(𝑥0) − Φ(𝑥𝑛) +
𝑛∑︁
𝑖=1

amcost(Alg(𝑥𝑖))

≤ Φ(𝑥0) − Φ(𝑥𝑛) +
𝑛∑︁
𝑖=1

𝑐 · cost(Opt(𝑥𝑖))

(due to condition (ii))
= Φ(𝑥0) − Φ(𝑥𝑛) + 𝑐 · cost(Opt(𝐼))
≤ Φ(𝑥0) + 𝑐 · cost(Opt(𝐼))

(since Φ(𝑥𝑛) is non-negative due to condition (i))
= 𝑐 · cost(Opt(𝐼)) + 𝛽 ,

and consequently Alg is 𝑐-competitive, where we set 𝛼 := 𝛽 for the additive constant
𝛼 of Definition 1.6; note that, in principle, 𝛽 might even be negative. �

If we want to show a strict competitive ratio, we can ask for a potential function
that fulfills the same conditions as in Theorem 4.5, but additionally demand that
the initial potential Φ(𝑥0) is 0. In this case, the above calculation easily holds for
𝛼 = 0 in Definition 1.6.

Corollary 4.1. Let Π, 𝐼, and Φ be as defined in Theorem 4.5. For any online
algorithm Alg, we define the amortized cost of Alg on 𝐼 as above. If the two
conditions (i) and (ii) of Theorem 4.5 hold and

(iii) Φ(𝑥0) = 0,

then Alg is strictly 𝑐-competitive for Π.
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So much for the theory of what can be shown using a potential function. The
difficult part is now to find a potential function for a given problem that satisfies
the above conditions. In the next section, we will show an application for a subclass
of 𝑘-server instances.

Exercise 4.7. How many possible configurations does a paging algorithm have? How
about algorithms for 𝑘-server?

Exercise 4.8. Generalize Theorem 4.5 such that the potential is also allowed to be negative
in some of the time steps.

Exercise 4.9. Generalize the idea of potential functions such that it works for randomized
online algorithms for online minimization problems.

4.4 k-Server on the Line
In Section 4.1, we showed that a very simple class of instances on three points on a
line is hard for the greedy strategy for 𝑘-server. Now we look at a related class of
instances, namely instances on the real interval between 0 and 1; formally, we are
dealing with the metric space ℳ[0,1] = ([0, 1], dist) where dist(𝑥, 𝑦) = |𝑥− 𝑦| for any
two points 𝑥 and 𝑦. It immediately follows that KSGreedy is also not competitive
for this metric space. Therefore, we now study a more clever online algorithm named
DCov (short for “double coverage”) that obtains good results for such instances.

for every request 𝑥 do
𝑠right := ⟨null⟩; // Initialize for this time step
𝑠left := ⟨null⟩;
𝑠right := Closest server right of 𝑥;
𝑠left := Closest server left of 𝑥;
if 𝑠right = ⟨null⟩

output “Move 𝑠left to 𝑥”;
else if 𝑠left = ⟨null⟩

output “Move 𝑠right to 𝑥”;
else

𝑑 := min{dist(𝑠right, 𝑥), dist(𝑠left, 𝑥)};
output “Move 𝑠right 𝑑 to the left and 𝑠left 𝑑 to the right”;

end

Algorithm 4.1. The algorithm DCov for 𝑘-server on the metric space ℳ[0,1].

DCov uses a simple greedy strategy when all servers are positioned on the same
side of the requested point. However, if there are servers both to the left and to the
right of the requested point, DCov moves both the closest server to the left and the
closest server to the right towards the requested point until at least one of them is

124



4.4. k-Server on the Line

𝑠1 𝑠2

(a)

𝑠1 𝑠2

(b)

𝑠2𝑠1

(c)

𝑠1 𝑠2

(d)

𝑠1, 𝑠2

(e)

𝑠2𝑠1

(f)

Figure 4.3. The algorithm DCov on the hard instance for KSGreedy.

positioned on it; the idea is formalized in Algorithm 4.1. In both cases, if there is
more than one server positioned on the same point that is closest to the requested
one, DCov picks one of them arbitrarily. Note that DCov is not a lazy algorithm.

First, we observe that the hard example for KSGreedy does not lead to an
arbitrarily bad performance (on ℳ[0,1]). Indeed, the solution DCov computes has
constant cost, but it is not optimal; see Figure 4.3. More precisely, the cost is 6,
which means it is three times larger than the optimal cost. Now we prove an upper
bound of 𝑘 for any instance on the metric space ℳ[0,1].

Theorem 4.6. DCov is 𝑘-competitive for 𝑘-server on ℳ[0,1].

Proof. We define a potential function Φ for which conditions (i) and (ii) of Theo-
rem 4.5 are satisfied. As already mentioned above, a configuration of an (online)
algorithm for 𝑘-server is given by all the positions of the servers. Hence, the set
𝒞DCov contains all possible configurations

𝐶DCov = {𝑝DCov,1, 𝑝DCov,2, . . . , 𝑝DCov,𝑘}

that describe the server positions of DCov in the current time step; for 𝒞Opt, we
analogously define

𝐶Opt = {𝑝Opt,1, 𝑝Opt,2, . . . , 𝑝Opt,𝑘}.

Recall that both 𝐶DCov and 𝐶Opt are multisets. The potential function Φ is
composed of two parts. The first part is the weight of a minimum-weight matching
between the server positions of the two algorithms multiplied by 𝑘; for two configura-
tions 𝐶DCov and 𝐶Opt, we denote the weight of the matching by 𝑀min(𝐶DCov, 𝐶Opt).
The second part is the sum of the distances between all pairs of servers of DCov,
and we denote this value by 𝐷DCov(𝐶DCov). Then we set

Φ(𝐶DCov, 𝐶Opt) := 𝑘 ·𝑀min(𝐶DCov, 𝐶Opt) +𝐷DCov(𝐶DCov) .

Obviously, the value of Φ is never negative, that is, for all configurations of DCov
and Opt, we have

Φ(𝐶DCov, 𝐶Opt) ≥ 0 .
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With this, condition (i) of Theorem 4.5 is already shown.
As defined in (4.4), the amortized cost of DCov for a request 𝑥𝑖 is

amcost(DCov(𝑥𝑖)) = cost(DCov(𝑥𝑖)) + Φ(𝑥𝑖) − Φ(𝑥𝑖−1) .

For condition (ii), we need to show that, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,

amcost(DCov(𝑥𝑖)) ≤ 𝑘 · cost(Opt(𝑥𝑖)) ,

and thus

Φ(𝑥𝑖) − Φ(𝑥𝑖−1) ≤ 𝑘 · cost(Opt(𝑥𝑖)) − cost(DCov(𝑥𝑖)) . (4.5)

To this end, we have to consider the movements of both Opt and DCov since both
cause a change of the potential. Following Theorem 4.1, without loss of generality,
we assume that Opt is lazy. DCov is not lazy, as already observed.

We now investigate what happens when DCov and Opt change their configuration
in a time step. For the analysis, we assume that the two algorithms make their
moves alternatingly. First, Opt changes its configuration, and then DCov. In both
cases, we bound the change of the potential; we start with the one Opt causes. Since
Opt is lazy, it moves at most one server 𝑠 per request. Clearly, this movement does
not affect the term 𝐷DCov, but only the weight of the minimum-weight matching
𝑀min. In the matching before moving 𝑠, 𝑠 was matched to some server 𝑠′. After
Opt moved 𝑠, the distance between 𝑠 and 𝑠′ changed by at most the distance that
𝑠 traveled, that is, cost(Opt(𝑥𝑖)). Thus, there now is a new matching that has a
weight that is at most cost(Opt(𝑥𝑖)) larger than the weight of the old one. Clearly,
the minimum-weight matching 𝑀min after moving 𝑠 may even be cheaper. Hence,
the potential increases by at most

𝑘 · cost(Opt(𝑥𝑖)) . (4.6)

Next, we look at the change in potential that is caused by the change of DCov to
another configuration after Opt already changed its configuration. We distinguish
two cases that depend on whether DCov moves one or two servers.

Case 1. First, we assume that the algorithm only moves a single server; without loss
of generality, let there be no server positioned to the left of the request, and DCov
therefore moves 𝑠right. The server 𝑠right increases its distance to all other servers
from DCov by cost(DCov(𝑥𝑖)); thus the second term 𝐷DCov of the potential
increases by

(𝑘 − 1) · cost(DCov(𝑥𝑖)) . (4.7)

Now we want to bound how much the first term changes, that is, the weight of
the minimum-weight matching. Note that we are now interested in the matching
before and after DCov moves 𝑠right, and that Opt already moved the server 𝑠
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𝑠 𝑠right𝑠′′ 𝑠′ 𝑠 𝑠right𝑠′′ 𝑠′

(a) Case 1.1. The server 𝑠′′ is located left of 𝑠

𝑠 𝑠right𝑠′′ 𝑠′ 𝑠 𝑠right𝑠′′ 𝑠′

(b) Case 1.2. The server 𝑠′′ is located between 𝑠 and 𝑠right

𝑠 𝑠right 𝑠′𝑠′′ 𝑠 𝑠right 𝑠′𝑠′′

(c) Case 1.3. The server 𝑠′′ is located between 𝑠right and 𝑠′

𝑠 𝑠right 𝑠′ 𝑠′′ 𝑠 𝑠right 𝑠′ 𝑠′′

(d) Case 1.4. The server 𝑠′′ is located right of 𝑠′

Figure 4.4. The different cases regarding the positions of 𝑠′′; the servers of Opt are
filled squares, those of DCov are not filled. In every case, there is a matching that is
not more expensive and in which 𝑠 and 𝑠right are matched. It is easy to see that the
argument also works when 𝑠′ and 𝑠right are positioned on the same point.

which is now positioned on the requested point 𝑥𝑖. We claim that, before DCov
moves the server 𝑠right, there is a minimum-weight matching in which 𝑠right and 𝑠
are matched.
For a contradiction, suppose this is not the case. Then 𝑠 is matched with some
other server 𝑠′ of DCov and 𝑠′ is further to the right of 𝑠 than 𝑠right. Conversely,
𝑠right is matched with a server 𝑠′′ from Opt. We can now make a case distinction
regarding the position of 𝑠′′. For each of the four possible cases, we immediately
see that there is a matching that is not more expensive and in which 𝑠 and 𝑠right
are matched; these cases are shown in Figure 4.4. After DCov answered the
request 𝑥𝑖, the two servers 𝑠 and 𝑠right are positioned on the same point, and
𝑠right was moved by cost(DCov(𝑥𝑖)). Therefore, there is now a matching that is
as expensive as the latter one minus this cost; we conclude that the first term
𝑘 ·𝑀min of the potential decreases by

𝑘 · cost(DCov(𝑥𝑖)) . (4.8)

With (4.6) to (4.8), it follows that

Φ(𝑥𝑖) − Φ(𝑥𝑖−1)
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≤ 𝑘 · cost(Opt(𝑥𝑖)) + (𝑘 − 1) · cost(DCov(𝑥𝑖)) − 𝑘 · cost(DCov(𝑥𝑖))
= 𝑘 · cost(Opt(𝑥𝑖)) − cost(DCov(𝑥𝑖)) ,

which proves (4.5).
Case 2. Now we look at the case that DCov moves two servers 𝑠right and 𝑠left such

that at least one of them is positioned on the point 𝑥𝑖 afterwards. Both servers
are moved by a distance of cost(DCov(𝑥𝑖))/2. For every server of DCov, except
for 𝑠right and 𝑠left, the distance to one of the two gets increased, and the distance
to the other one gets decreased by the same value since both servers are moving
towards each other. As a consequence, the sum of the distances between all
servers of DCov only changes in that 𝑠right and 𝑠left are now by an amount of
cost(DCov(𝑥𝑖)) closer to each other. The second term 𝐷DCov of the potential
thus gets smaller by

cost(DCov(𝑥𝑖)) . (4.9)

With reasoning similar to that above, we can show that 𝑠 and 𝑠right or 𝑠 and 𝑠left are
matched in a minimum-weight matching before DCov changes its configuration;
in particular, if 𝑠 should be matched to 𝑠′, we can match it instead to the server
that is between 𝑠 and 𝑠′. After DCov moved both servers, these costs decreased
from cost(DCov(𝑥𝑖))/2 to 0. On the other hand, the other one of the two servers
was matched with some server 𝑠′′′; clearly, the distance between these servers
can increase by at most cost(DCov(𝑥𝑖))/2. The weight of the minimum-weight
matching therefore does not change in the worst case or even decreases. From
(4.6) and (4.9), it follows that (4.5) is also true in this case.

We conclude that all conditions to apply Theorem 4.5 are met, and it immediately
follows that DCov is 𝑘-competitive. We can bound the additive constant 𝛼 by the
initial potential, which is at most 𝑘2. To see this, note that 𝑀min is 0 since the two
algorithms have the servers positioned on the same points at the beginning. The
sum 𝐷DCov of the distances between all servers of DCov, on the other hand, cannot
be larger than(︂

𝑘

2

)︂
≤ 𝑘2 ,

since the maximum distance between any two servers is at most 1 on ℳ[0,1]. �

Potential functions are widely applicable; for instance, it is possible to give an
alternative proof of the 𝑘-competitiveness of Lru (see Exercise 1.7) using a potential
function that imposes an ordering on the pages that are currently in the cache.

Exercise 4.10. In the proof of Theorem 4.6, we argued that, when there are two servers
𝑠left and 𝑠right next to 𝑠, one of them is matched to 𝑠 after Opt made its move. Show that
it matters which of the two is used. In particular, give an example where one of them is
closer to 𝑠, but a minimum-weight matching matches the other one to 𝑠.
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Exercise 4.11.⋆ As already mentioned, the configurations 𝒞Alg of an (online) algorithm
for paging are the pages that are currently in the cache of Alg. Consider the online
algorithm Lru for paging, which we introduced in Section 1.2. We define a weight function
𝑤 : 𝒞Lru → {1, 2, . . . , 𝑘} such that, for any two pages 𝑝, 𝑝′ ∈ 𝐶Lru, we have 𝑤(𝑝) < 𝑤(𝑝′) if
and only if the most recent request for 𝑝 was earlier than that for 𝑝′. For 𝐶Lru ∈ 𝒞Lru and
𝐶Opt ∈ 𝒞Opt, let 𝐶 := 𝐶Lru ∖ 𝐶Opt. Use the potential function

Φ(𝐶Lru, 𝐶Opt) :=
∑︁
𝑝∈𝐶

𝑤(𝑝)

to prove that Lru is 𝑘-competitive for paging.
Does your proof show that Lru is strictly 𝑘-competitive?

4.5 k-Server on Trees
Now we modify the online algorithm DCov to work on a rather large class of graphs.
First, suppose that we are given a path graph, that is, a graph whose vertices all
have degree 2 except two endpoints that have degree 1. We assume that all edges
have weight 1. Consider the online algorithm DCovP that is a straightforward
adaptation of DCov. The servers are positioned on some of the vertices of the given
path, and every request is served greedily if all servers are located on the same side
of the requested vertex. If however, there is one server to the left and one to the
right, these move towards the request, one edge at a time, until at least one server is
positioned on it. Using reasoning as in the proof of Theorem 4.6, it can be shown
that DCovP is 𝑘-competitive for such graphs.

Next, we generalize paths and consider trees, that is, connected graphs that do not
contain cycles. For now, we assume that all edge weights are 1. We define the online
algorithm DCovT in the obvious fashion. More precisely, if a vertex is requested,
all neighboring servers are moved towards this vertex until at least one of them is
located on it. Formally, a neighbor of a request is a server for which there is no
other server located on any vertex of the unique path between the requested vertex
and the vertex this server is placed on. We have to be careful at this point, because
during the movements of the servers, some of them might no longer be neighbors
because another server “blocks” them. As an example, consider the tree shown in
Figure 4.5. Here, initially 𝑠3, 𝑠5, and 𝑠6 are the neighbors of the request; however,
when 𝑠6 moves one edge towards the requested vertex, 𝑠5 is no longer a neighbor
(hence, 𝑠5 is only moved one edge in total).

We now show that, although trees are a lot more general than paths, following
the double coverage3 strategy again allows us to be 𝑘-competitive.

Theorem 4.7. DCovT is 𝑘-competitive for 𝑘-server on trees.
3Speaking of a “double coverage” strategy in this context is a little misleading since, generally, more
than two servers are moved. However, we will stick with the name “DCovT” as it is commonly
used in the literature.
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𝑠1
𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

Figure 4.5. An example tree.

Proof. Let 𝒞DCovT and 𝒞Opt be defined according to the preceding section. Again,
we assume that Opt is lazy. The proof is very similar to that of Theorem 4.6. We
use the same potential function

Φ(𝐶DCovT, 𝐶Opt) := 𝑘 ·𝑀min(𝐶DCovT, 𝐶Opt) +𝐷DCovT(𝐶DCovT) ,

for 𝐶DCovT ∈ 𝒞DCovT and 𝐶Opt ∈ 𝒞Opt. Recall that 𝑀min is a minimum-weight
matching between the server positions of Opt and DCovT, and 𝐷DCovT is the sum
of the distances between all pairs of servers of DCovT. First, we note that the
potential is again always positive, which means that condition (i) of Theorem 4.5 is
satisfied.

For a given request 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑛, we again consider the movements of Opt
and DCovT separately. First, Opt moves a server 𝑠, which causes an increase of
the potential by at most

𝑘 · cost(Opt(𝑥𝑖)) (4.10)

since 𝑠 increases its distance to the server 𝑠′ from DCovT it was matched to by at
most cost(Opt(𝑥𝑖)).

Now we consider the moves of DCovT. As described above, we have to be a little
more careful than in the case of a line or path. While the servers are moving towards
the requested vertex 𝑥𝑖, some of them might become blocked, that is, they were
neighbors of 𝑥𝑖 at the beginning, but then some other server got closer to the request.
Moreover, there can be multiple servers positioned on the same vertex; in this case,
DCovT moves one of them. We now subdivide the movement of the servers into 𝑁
phases such that, during one phase 𝑃DCovT,𝑗 , a fixed number of servers 𝑘𝑗 is moved.
If a server gets blocked or two servers get positioned on the same vertex, 𝑃DCovT,𝑗
ends, and the next phase 𝑃DCovT,𝑗+1 starts. The last phase ends when at least one
server is positioned on 𝑥𝑖.

Let us bound the change in potential that is due to DCovT in a single phase
𝑃DCovT,𝑗 . Let 𝑑𝑗 denote the distance that every server travels in this phase; thus,
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the total cost of DCovT in 𝑃DCovT,𝑗 is 𝑘𝑗𝑑𝑗 , and the total cost of DCovT in time
step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛 is

cost(DCovT(𝑥𝑖)) =
𝑁∑︁
𝑗=1

𝑘𝑗𝑑𝑗 . (4.11)

We first consider the change of 𝑀min. By the same arguments as in the proof of
Theorem 4.6, one of the moving servers can be matched with the server 𝑠 used by
Opt, which is now positioned on 𝑥𝑖. This server decreases its distance to 𝑠 by 𝑑𝑗 ,
while the other 𝑘𝑗 − 1 servers might increase the distances to the servers they were
matched with before by 𝑑𝑗 each. Therefore, 𝑀min increases by at most

(𝑘𝑗 − 2)𝑑𝑗 . (4.12)
Second, consider the change in 𝐷DCovT. All servers that are moved within phase

𝑃DCovT,𝑗 move a distance of 𝑑𝑗 towards the same vertex 𝑥𝑖. Consequently, they
decrease their distances to each other by 2𝑑𝑗 , and there are exactly(︂

𝑘𝑗
2

)︂
= 𝑘𝑗(𝑘𝑗 − 1)

2
pairs of servers that are affected by this. For all of the 𝑘 − 𝑘𝑗 non-neighboring
servers, one of the neighboring servers increases its distance 𝑑𝑗 . Then again, all
other neighboring servers decrease their distance by 𝑑𝑗 , because they are located in
different subtrees rooted in 𝑥𝑖. This leads to a decrease of

(𝑘 − 𝑘𝑗)(𝑘𝑗 − 2)𝑑𝑗 .
Therefore, 𝐷DCovT decreases by

2𝑑𝑗
𝑘𝑗(𝑘𝑗 − 1)

2 + (𝑘 − 𝑘𝑗)(𝑘𝑗 − 2)𝑑𝑗 . (4.13)

From (4.12) and (4.13), we obtain that the potential decreases by at least
𝑑𝑗𝑘𝑗(𝑘𝑗 − 1) + (𝑘 − 𝑘𝑗)(𝑘𝑗 − 2)𝑑𝑗 − 𝑘(𝑘𝑗 − 2)𝑑𝑗 = 𝑘𝑗𝑑𝑗 (4.14)

in 𝑃DCovT,𝑗 , which is exactly the cost of DCovT in that phase. From (4.10), (4.11)
and (4.14), we finally get

Φ(𝑥𝑖) − Φ(𝑥𝑖−1) ≤ 𝑘 · cost(Opt(𝑥𝑖)) −
𝑁∑︁
𝑗=1

𝑘𝑗𝑑𝑗

= 𝑘 · cost(Opt(𝑥𝑖)) − cost(DCovT(𝑥𝑖)) ,
as we claimed. We can again easily bound the additive constant 𝛼, which is now
larger than for DCov. To this end, let 𝑑max denote the length of a path of maximum
length in 𝒯 . Then the sum of the distances between all servers 𝐷DCovT is(︂

𝑘

2

)︂
· 𝑑max ≤ 𝑘2 · 𝑑max ,

which is a constant since 𝑑max does not depend on the input length. �
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Exercise 4.12. Modify DCovT to work on weighted trees as well. Assume that the
weights are positive integers.

4.6 Advice Complexity
In the last chapter, we introduced advice complexity and studied how powerful
additional information is for paging. In this section, we study the advice complexity
of 𝑘-server; since this problem is a generalization of paging, advice will surely not
prove to be more helpful. We start by analyzing the number of advice bits that allow
us to compute an optimal solution.

4.6.1 Optimality for the General Case
First, we give an upper bound by describing a simple optimal online algorithm
with advice for 𝑘-server. With a very simple argument similar to the one we used
in Example 3.5, we can give an upper bound on the number of advice bits that
guarantee to produce an optimal output for any given instance.

Theorem 4.8. There is an optimal online algorithm with advice for 𝑘-server that
uses 𝑛⌈log2 𝑘⌉ advice bits.

Proof. For any fixed lazy optimal algorithm Opt, the oracle simply specifies the
server that is used in the 𝑖th time step using ⌈log2 𝑘⌉ bits. Then, on every request,
the online algorithm reads the index of this server, serves the request accordingly,
and is therefore optimal. �

For paging, we were able to improve the bound of Example 3.5 to 𝑛 + 𝑘 in
Theorem 3.2. Thus, the question naturally arises whether we can also decrease the
bound of Theorem 4.8 and get rid of the ⌈log2 𝑘⌉ factor in exchange for an additive
constant. As a matter of fact, we cannot. More specifically, we show that if an
online algorithm with advice is optimal for every instance of 𝑘-server, it needs to use
asymptotically log2 𝑘 advice bits for every request. First, we give a bound for inputs
with 𝑘 requests, which we generalize for instances of arbitrary length afterwards. For
the following construction, recall that any graph with a weight function that maps
edges to values 1 and 2 only trivially obeys the triangle inequality and is therefore
metric (see Observation 4.1).

Theorem 4.9. For every optimal online algorithm Alg with advice for 𝑘-server,
there exists an instance with 𝑘 requests in total, such that Alg has to use at least
𝑘(log2 𝑘 − 𝛽) advice bits, for a constant 𝛽 < 1.443.

Proof. Let 𝑘 ∈ N and let 𝐺 = (𝑈 ∪ 𝑊,𝐸, dist) be a complete bipartite graph
with a metric cost function dist : 𝐸 → {1, 2}, where 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑘} and 𝑊 =
{𝑤1, 𝑤2, . . . , 𝑤2𝑘 }. Since |𝑊 | = 2𝑘, we can define a bijective function set : 𝑊 → 𝒫(𝑈)

132



4.6. Advice Complexity

that maps every vertex from 𝑊 to a unique subset of vertices from 𝑈 . We define
the edge weights as follows. For 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑊 , let

dist(𝑢,𝑤) :=
{︃

2 if 𝑢 ∈ set(𝑤) ,
1 otherwise .

Additionally, since formally any instance of 𝑘-server has to be defined on a complete
weighted graph, we define the weights of all edges from (𝑈 × 𝑈) ∪ (𝑊 ×𝑊 ) to be
2. We call edges of weight 1 cheap and edges of weight 2 expensive. A schematic
view of the constructed graph for 𝑘 = 4 is shown in Figure 4.6. We now partition
the vertices from 𝑊 into groups as follows. Let 𝒢𝑖 ⊆ 𝑊 denote the vertices from 𝑊
that correspond to subsets of 𝑈 with exactly 𝑖 elements, that is,

𝒢𝑖 = {𝑤 ∈ 𝑊 | |set(𝑤)| = 𝑖} .

It follows that

|𝒢𝑖| =
(︂
𝑘

𝑖

)︂
.

Since the group 𝒢𝑘 is irrelevant for our subsequent arguments, we will ignore it in
what follows.

Initially, every vertex of 𝑈 is covered by a single server. We construct a set of
instances ℐ (𝑘) in the following way. An instance 𝐼 ∈ ℐ (𝑘) is a sequence (𝑥1, 𝑥2, . . . , 𝑥𝑘)
of requests such that, for every 𝑗 with 1 ≤ 𝑗 ≤ 𝑘,

1. 𝑥𝑗 ∈ 𝒢𝑗−1 and
2. set(𝑥𝑗) ⊆ set(𝑥𝑗+1) .

Note that all requests are from 𝑊 . The first requested vertex is the unique vertex
from 𝑊 (namely the only vertex from 𝒢0) with only cheap edges to 𝑈 . Every
following request has exactly one more expensive edge than the one before; the
requests are chosen in such a way that the set of expensively connected vertices from
𝑈 is extended by one vertex in every time step.

In what follows, to get an easier notation, let us identify the vertices from 𝑈
with their indices. We may represent 𝐼 as a permutation 𝜋𝐼 of {1, 2, . . . , 𝑘} in the
following way.

𝜋𝐼(𝑗) := set(𝑥𝑗+1) ∖ set(𝑥𝑗), for 1 ≤ 𝑗 ≤ 𝑘 − 1 and
𝜋𝐼(𝑘) := 𝑈 ∖ {𝜋𝐼(𝑗) | 1 ≤ 𝑗 ≤ 𝑘 − 1} = 𝑈 ∖ set(𝑥𝑘) .

In other words, 𝜋𝐼(𝑗) denotes that vertex from 𝑈 that is connected to the requested
vertices via expensive edges from request 𝑥𝑗 on. The unique optimal solution Opt(𝐼)
for 𝐼 has a cost of exactly 𝑘, and can also be described by 𝜋𝐼 in the following way.
For every 𝑗, Opt(𝐼) serves the 𝑗th request 𝑥𝑗 by moving one server from some vertex
from 𝑈 , in particular from the vertex 𝜋𝐼(𝑗), to the requested vertex from 𝑊 , via
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𝒢0

𝒢1

𝒢2

𝒢3

𝑠1 𝑠2 𝑠3 𝑠4

Figure 4.6. An example input of 4-server as used in the proof of Theorem 4.9 without
𝒢4. Note that, for ease of presentation, not all edges are shown.

a cheap edge. It is easy to see that there is no solution with a cost of less than 𝑘,
since all the servers start in 𝑈 , all requests are different vertices from 𝑊 , and every
edge has cost of at least 1.

To see that Opt(𝐼) is indeed the unique optimal solution, consider an offline
environment where an optimal offline algorithm Off receives the whole input at
once and may serve the requests in an arbitrary order. It does so in the opposite
order to the order in which the requests are made. The last vertex requested is from
the group 𝒢𝑘−1 and there is one unique vertex 𝜋𝐼(𝑘) connected to it with a cheap
edge. The vertex that was requested before is from 𝒢𝑘−2. Due to our construction,
it also has a cheap edge to 𝜋𝐼(𝑘) and to a second vertex 𝜋𝐼(𝑘 − 1), so that Off now
uses this second edge. Following this strategy, Off uses exactly 𝑘 edges of weight 1;
its strategy is the only one not more expensive than 𝑘.

As we may represent any instance from ℐ (𝑘) by a unique permutation of {1, 2, . . . , 𝑘},
the size of ℐ (𝑘) is 𝑘!. It remains to show that we also need a unique advice string for
every input to be solved optimally by any online algorithm Alg with advice. For a
contradiction, let 𝐼1 and 𝐼2 be two different inputs from ℐ (𝑘), and suppose that Alg
is optimal for both of them. However, for the same advice string 𝜑, the algorithm
Alg behaves deterministically. Let us take the algorithm’s point of view. In time
step 𝑇1, the only vertex from 𝒢0 is requested, and Alg uses some server to serve
this request. Then, in time step 𝑇2, it is revealed whether this was a good choice,
that is, whether the server at 𝜋𝐼(1) was used to serve the first request optimally.
After that, the algorithm chooses a second server to move and again, in time step
𝑇3, it is revealed whether this was a good choice, and so on.
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Suppose that the corresponding permutations of 𝐼1 and 𝐼2 differ at position 𝑗
for the first time. This means that, in time step 𝑇𝑗−1, the algorithm has to make
two different choices for the different inputs. But since it reads the same prefix of
the input up to this point and furthermore uses the same advice string, it has to
behave in the same way. This directly implies that Alg cannot be optimal for both
𝐼1 and 𝐼2. We conclude that we need a different advice string for every instance and
therefore log2(𝑘!) advice bits. Using Stirling’s approximation, we get

log2(𝑘!) ≥ log2

(︃
√

2𝜋𝑘
(︂
𝑘

e

)︂𝑘)︃

= 1
2(log2(2𝜋) + log2 𝑘) + 𝑘(log2 𝑘 − log2 e)

≥ 𝑘(log2 𝑘 − 𝛽) ,

where e = 2.718 . . . is Euler’s number and 𝛽 = log2 e < 1.443, which concludes our
proof. �

From a formal point of view, Theorem 4.9 is sufficient to show a lower bound on
the number of advice bits necessary to compute an optimal solution; but we are not
very happy with the restriction to instances that have a constant length (namely 𝑘).
Therefore, we now generalize this statement in the following theorem, where we deal
with an arbitrary number of requests. First, we make an observation, which we need
in what follows.
Observation 4.2. Suppose that we are dealing with an instance as constructed in
the proof of Theorem 4.9. Moreover, assume that a lazy online algorithm Alg uses
𝑘′ < 𝑘 servers, which are initially positioned on some vertices of 𝑈 . Recall that there
are 𝑘 requests that are each from a different group 𝒢𝑖 with 0 ≤ 𝑖 ≤ 𝑘− 1. For at least
𝑘 − 𝑘′ of these requests, Alg needs to move a server between two groups. Since all
groups are connected to each other by edges of weight 2, it follows that Alg has a
cost of 2 in every such time step.

The idea for the proof of the following theorem is to use 2𝑘 graphs of the type
used in the proof of Theorem 4.9, and to connect them in a special manner. The
optimal solution is forced to act in a unique way on each of them alternatingly, and
any wrong move within any of them cannot be compensated later. We still only
need edge weights of either 1 or 2.
Theorem 4.10. Every optimal online algorithm with advice for 𝑘-server has to use
at least 𝑛(log2 𝑘 − 𝛽)/2 advice bits, for a constant 𝛽 < 1.443.

Proof. We create a set ℐ (𝑛) of instances as follows. We take 2𝑘 disjoint graphs
𝐺𝑖 = (𝑈𝑖 ∪𝑊𝑖, 𝐸𝑖, dist𝑖), where 1 ≤ 𝑖 ≤ 2𝑘, as used to construct instances from ℐ (𝑘)

in the proof of Theorem 4.9; the groups 𝒢𝑖,𝑗 with 1 ≤ 𝑖 ≤ 2𝑘 and 0 ≤ 𝑗 ≤ 𝑘 are also
defined as above. We then connect all vertices from 𝑊𝑖 to the vertices from

𝑈(𝑖+1) mod (2𝑘) = {𝑢(𝑖+1) mod (2𝑘),1, 𝑢(𝑖+1) mod (2𝑘),2, . . . , 𝑢(𝑖+1) mod (2𝑘),𝑘}
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𝑠1 𝑠2 𝑠3 𝑠4

Figure 4.7. The graph used in the proof of Theorem 4.10; only cheap edges are shown.
The two subgraphs are those from Figure 4.6.

such that the edges from 𝒢𝑖,𝑗 to 𝑢(𝑖+1) mod (2𝑘),𝑗+1 have weight 1. All other newly
added edges are assigned weight 2. Formally, the complete input graph 𝐺 =
(𝑃,𝐸, dist) is defined by

𝑃 :=
2𝑘⋃︁
𝑖=1

(𝑈𝑖 ∪𝑊𝑖) ,

𝐸 := {{𝑝, 𝑝′} | 𝑝, 𝑝′ ∈ 𝑃} ,

dist(𝑝, 𝑝′) :=

⎧⎪⎨⎪⎩
dist𝑖(𝑝, 𝑝′) if 𝑝, 𝑝′ ∈ 𝑈𝑖 ∪𝑊𝑖 ,

1 if 𝑝 ∈ 𝒢𝑖,𝑗 and 𝑝′ = 𝑢(𝑖+1) mod (2𝑘),𝑗+1 ,

2 else .

At the beginning, the servers are located at the vertices of 𝑈1. A scheme of a part
of 𝐺 is depicted in Figure 4.7.

There are 𝑛 requests in total, where 𝑛 is a multiple of 4𝑘2. The instances are
subdivided into phases that are further partitioned into rounds. One round consists
of 2𝑘 requests, and one phase consists of 2𝑘 rounds. This leads to a length of 4𝑘2

requests for each phase, and thus there are 𝑛/(4𝑘2) phases in total. The first 𝑘
requests of a round are defined analogously to the 𝑘 requests from the proof of
Theorem 4.10; the next 𝑘 requests are called “resets” as their purpose is solely to
place the servers on the starting positions of the next subgraph.

To describe the idea in more detail, let us consider a single phase 𝑃𝑖 with 1 ≤ 𝑖 ≤
𝑛/(4𝑘2). The 2𝑘 rounds in 𝑃𝑖 are denoted by 𝑅𝑖,1, 𝑅𝑖,2, . . . , 𝑅𝑖,2𝑘. As in the proof
of Theorem 4.10, let 𝜋𝑖,𝑗 denote a permutation of {1, 2, . . . , 𝑘} that corresponds to
the first 𝑘 requests of round 𝑅𝑖,𝑗 . Then, we can write

𝑃𝑖 = (𝜋𝑖,1(1), 𝜋𝑖,1(2), . . . , 𝜋𝑖,1(𝑘), 𝑢2,1, . . . , 𝑢2,𝑘, Round 𝑅𝑖,1

𝜋𝑖,2(1), 𝜋𝑖,2(2), . . . , 𝜋𝑖,2(𝑘), 𝑢3,1, . . . , 𝑢3,𝑘, Round 𝑅𝑖,2

. . . ,
...

𝜋𝑖,2𝑘(1), 𝜋𝑖,2𝑘(2), . . . , 𝜋𝑖,2𝑘(𝑘), 𝑢1,1, 𝑢1,2, . . . , 𝑢1,𝑘) . Round 𝑅𝑖,2𝑘
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All other phases are defined analogously. We observe that, for these instances,
there is a solution that

1. acts according to the corresponding permutations 𝜋𝑖,𝑗 whenever vertices from
𝑊𝑖,𝑗 are requested (as in the proof of Theorem 4.9);

2. moves servers located at 𝒢𝑖,𝑗 to 𝑢(𝑖+1) mod (2𝑘),𝑗+1 whenever vertices from
𝑈(𝑖+1) mod (2𝑘) are requested.

Obviously, this solution has cost 𝑛 in total as it uses an edge of weight 1 in every
time step. We claim that this is indeed the unique optimal solution for any given
instance 𝐼 ∈ ℐ (𝑛).

To give a proof, we first show that any algorithm Alg that has cost 0 in some
time step is worse than Opt in total. Without loss of generality, we assume that
Alg is lazy. Since all vertices that are requested in one phase are different, we make
the following observation. If there is a time step in this phase in which Alg has cost
0, a server must already be placed on the vertex that is requested in this time step.
Due to laziness, this server must be located at this vertex for the last 2𝑘 rounds or
longer; we call such a server parked. In the following, we always assume that such a
parking is successful, that is, the corresponding vertex is indeed requested in the
subsequent phase.

Now let 𝑇𝑗′ denote any time step in which Alg parks a server 𝑠; in some subsequent
time step 𝑇𝑗′′ , Alg has cost 0 as a consequence. In the time steps preceding 𝑇𝑗′ , some
other servers may have been parked, but at most 𝑘 − 2. This follows immediately
from

(𝑗′′ − 1) − 𝑗′ = 4𝑘2 − 1 > 𝑘 ,

that is, Alg needs at least one server to serve the requests 𝑥𝑗′+1, 𝑥𝑗′+2, . . . , 𝑥𝑗′′−1.
Therefore, Alg has parked at most 𝑘 − 1 servers in time step 𝑇𝑗′ , which means that
it saves at most a cost of 𝑘 − 1 while processing the requests 𝑥𝑗′+1, 𝑥𝑗′+2, . . . , 𝑥𝑗′′ .
Now we bound from below what Alg has to pay additionally due to having 𝑠 parked.
There are at least 2𝑘− 1 rounds between these two time steps, and each round takes
place on a different subgraph. Thus, there must be at least

2𝑘 − 1 − (𝑘 − 1) = 𝑘

rounds in which no servers are parked between 𝑥𝑗′+1 and 𝑥𝑗′′−1, and Alg has at
most 𝑘 − 1 servers available in them. Following Observation 4.2 for 𝑘′ = 𝑘 − 1, this
means that Alg uses at most one edge of weight 2 in each of them, leading to an
additional cost of 2𝑘. It follows that parking 𝑠 in 𝑇𝑗′ caused an additional cost of
2𝑘 − (𝑘 − 1) = 𝑘 + 1 for Alg. This is independent of whether any servers were
parked already in 𝑇𝑗′ ; indeed, we assumed that both a maximum number of 𝑘 − 1
servers was parked and Alg had a maximum number of servers available to serve
the subsequent requests.

Since there is no algorithm that is as good as Opt while inducing cost 0 in some
time step, Opt must indeed be optimal. Now we can easily argue that Opt(𝐼) is
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also unique. Whenever requests from 𝒢𝑖,𝑗 with 1 ≤ 𝑖 ≤ 2𝑘 and 0 ≤ 𝑗 ≤ 𝑘 − 1 are
made, we know from Theorem 4.9 that only acting according to 𝜋𝑖,𝑗 allows us to
serve all corresponding requests with cost 1 each. For the resets, there is also only
one unique server that can be used in order to avoid cost 2.

Recall that there are 𝑛/(4𝑘2) phases and each phase consists of 2𝑘 rounds; thus,
there are 𝑛/2𝑘 rounds in total. Summing up, since there is one unique optimal
solution for every instance 𝐼 ∈ ℐ (𝑛) that needs to act according to the permutations

𝜋1,1, 𝜋1,2, . . . , 𝜋𝑛/(4𝑘2),2𝑘 ,

by the same argumentation as in the proof of Theorem 4.9, it directly follows that
at least

𝑛

2𝑘 log2(𝑘!) ≥ 𝑛

2 (log2 𝑘 − 𝛽)

bits of advice are necessary in total to be optimal, for 𝛽 = log2 e. �

An advantage of the proof of Theorem 4.10 is that it works on a finite metric space.
Conversely, if we allow the graph to have unbounded size, which is in accordance
with Definition 4.2, it is easy to prove the lower bounds by easier arguments. In this
case, we can just define an infinite number of rounds, where each round is defined as
above. For such a graph, the same vertex cannot be requested twice, and it is thus
trivial that there is no solution that has cost 0 in any time step.

If we think about it, it is in this case even possible to give a lower bound of

𝑛(log2 𝑘 − log2 e)

by branching the graph infinitely often. If Alg served the first 𝑘 requests according
to the corresponding permutation 𝜋1, all 𝑘 servers are located at unique vertices
that we use as the starting positions for the next 𝑘 requests corresponding to a
permutation 𝜋2, and so on. To prevent Alg from being able to anticipate any
requests by inspecting the graph, we need to do this construction for any possible set
of starting positions, which causes an exponential branching with every additional 𝑘
requests.

4.6.2 Optimality for the Line
We have just seen that an optimal online algorithm for 𝑘-server on general metric
spaces needs roughly log2 𝑘 advice bits in every time step. In contrast to paging,
which we discussed in Subsection 3.4.1, we are not able to give an upper bound that
solely depends on 𝑛. However, we have seen in Section 4.4 that 𝑘-server is easier for
deterministic online algorithms when we restrict ourselves to simpler metric spaces.
More specifically, DCov achieves a competitive ratio of 𝑘 on the line. It is therefore
natural to ask how much advice helps for this particular metric space. One of the
first ideas that come to our mind is to take DCov and make it use advice in the
obvious way. Instead of using the two closest servers (if there are two) to serve a
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request, simply use one of them; which one (the left one or the right one) is indicated
by one advice bit. We call the corresponding online algorithm with advice Cmp
(short for “compliance”). Note that, in contrast to DCov, Cmp is lazy. We now
show that Cmp is optimal. The proof is very similar to that of Theorem 4.6, which
showed that DCov is 𝑘-competitive; in fact, most of the arguments are even simpler.
Theorem 4.11. Cmp is optimal for 𝑘-server on the line and uses 𝑛 advice bits.

Proof. Let 𝐼 be any instance of 𝑘-server on the line and let Opt(𝐼) be some fixed
optimal solution for 𝐼; once more, we assume that Opt is lazy. As in the proof
of Theorem 4.6, we use a potential function Φ; however, this time, the potential
function is only based on a minimum-weight matching 𝑀min between the server
positions of both algorithms. More specifically, for two configurations 𝐶Cmp and
𝐶Opt, we denote the value of the matching by 𝑀min(𝐶Cmp, 𝐶Opt), and we set

Φ(𝐶Cmp, 𝐶Opt) := 𝑀min(𝐶Cmp, 𝐶Opt) .
Again, we assume that the two algorithms make their moves alternatingly. This

is when the advice comes into play. The oracle simulates Opt. From the proof of
Theorem 4.6, we already know that, after Opt made its move, either 𝑠left or 𝑠right
is matched with the server 𝑠 that Opt uses to serve the given request; if only one
of them exists, there is a minimum-weight matching where this distinct server is
matched with 𝑠. After every move of Opt, the oracle computes 𝑀min(𝐶Cmp, 𝐶Opt)
for the two current configurations 𝐶Cmp and 𝐶Opt. Then, with one bit of advice, it
tells Cmp which of 𝑠left or 𝑠right is matched with 𝑠. Cmp then uses this server to
serve the current request.

The potential is clearly never negative, and thus condition (i) of Theorem 4.5 is
satisfied. According to (ii), if we want to show that Cmp is 1-competitive, we further
need to show that, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,

Φ(𝑥𝑖) − Φ(𝑥𝑖−1) ≤ cost(Opt(𝑥𝑖)) − cost(Cmp(𝑥𝑖)) . (4.15)

This means, we need to bound the change of 𝑀min caused by Opt and Cmp in every
time step. First, Opt makes its move using some server 𝑠; this server was matched
with some server in Cmp’s configuration. The distance between these two servers
increases by at most

cost(Opt(𝑥𝑖)) , (4.16)

and therefore 𝑀min (and thus Φ) increases by at most this value.
Now we consider the movement of Cmp after Opt moved 𝑠 to 𝑥𝑖. We can argue

analogously to the proof of Theorem 4.6 and distinguish the following cases.
Case 1. Suppose Cmp moves one server; without loss of generality, this is again
𝑠right since there is no server positioned to the left of 𝑥𝑖. We already know from
Theorem 4.6 that there is a minimum-weight matching, in which 𝑠right and 𝑠 were
matched before Cmp moves 𝑠right. After Cmp’s move, the distance decreased to
zero by exactly cost(Cmp(𝑥𝑖)).

139



Chapter 4. The k-Server Problem

Case 2. If there are both servers 𝑠left and 𝑠right, we know from the proof of Theo-
rem 4.6 that one of them is matched with 𝑠 before Cmp makes its move. Due to
the advice, Cmp uses this server, without loss of generality, say, 𝑠right, to serve 𝑥𝑖.
After this, the weight of the matching again decreased by cost(Cmp(𝑥𝑖)).

Thus, in both cases, the potential decreases by

cost(Cmp(𝑥𝑖)) . (4.17)

Due to (4.16) and (4.17), (4.15) is true in both cases, which proves that Cmp
is 1-competitive. Finally, we note that initially both algorithms have their servers
positioned on the same points, which means that the potential is zero at the beginning,
that is, Φ(𝑥0) = 0. According to Corollary 4.1, Cmp is therefore strictly 1-competitive,
that is, optimal. �

A particularly interesting point of the proof of Theorem 4.11 is that we use a tool
that is designed to analyze a given algorithm (a potential function) to improve this
algorithm.

4.6.3 An Upper Bound for the Euclidean Plane
In this subsection, we consider the subproblem of 𝑘-server where the underlying
metric space is the Euclidean plane; that is, every point 𝑝 of 𝑃 has two coordinates
𝑝𝑥 and 𝑝𝑦, and the distance between any two points 𝑝′ and 𝑝′′ is given by the
Pythagorean theorem, that is,

dist(𝑝′, 𝑝′′) :=
√︁

(𝑝′′
𝑦 − 𝑝′

𝑦)2 + (𝑝′′
𝑥 − 𝑝′

𝑥)2 .

For this case, we study a simple online algorithm Seg with advice that achieves a
constant competitive ratio while using a linear number of advice bits; in particular,
Seg reads a constant number of advice bits 𝑏′ with 𝑏′ ≥ 3 in every time step. If
the requested point is 𝑝 = (𝑝𝑥, 𝑝𝑦), Seg divides the plane into 2𝑏′ disjoint segments
𝑆1, 𝑆2, . . . , 𝑆2𝑏′ with their origin in 𝑝 and with an angle of

2𝜋
2𝑏′ :=𝛾

each; note that 𝛾 ≤ 𝜋/4. Then Seg reads 𝑏′ bits of advice that identify some segment
𝑆𝑗 with 1 ≤ 𝑗 ≤ 2𝑏′ and moves the closest server from 𝑆𝑗 to 𝑝. The idea is shown in
Figure 4.8a. In the following, let

𝑟 := 1
1 − 2 sin

(︀
𝛾
2
)︀ . (4.18)

Figure 4.8b shows the situation for the first time step 𝑇1, where a point 𝑥1 = 𝑝 is
requested. Seg uses a server 𝑠 (located at some point 𝑝 in 𝑆𝑗), incurring a cost of 𝑎
whereas some given solution uses a server 𝑠1 (located at some point 𝑝1) that causes
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𝛾

𝑠1

𝑥1

𝑆𝑗

(a) The 2𝑏′
segments

𝑠1𝑥1
𝑑1

𝑠 = 𝑠𝑖

𝛽

𝑑𝑖

𝑎

𝛾

𝑥𝑖

𝑐

(b) Analysis of a single segment

Figure 4.8. The segments around the request 𝑥1 used by Seg.

cost 𝑑1 where 𝑑1 ≥ 𝑎. The initial distance between the locations of 𝑠1 and 𝑠, that is,
𝑝1 and 𝑝, is denoted by 𝑐. To show that Seg achieves a constant competitive ratio,
we first prove a technical lemma that we need in the analysis. In the proof of this
lemma, we use two trigonometric equalities; we leave their proofs to the reader as a
warm-up.

Exercise 4.13. Prove the law of cosines, which is a generalization of the Pythagorean
theorem and which states that

𝑐2 = 𝑎2 + 𝑑2 − 2𝑎𝑑 cos𝛽
in the Euclidean plane, when 𝑎, 𝑐, and 𝑑 are the sides of a possibly non-right triangle and
𝛽 is the angle opposite to 𝑐, where 𝛽 ≤ 𝜋.

Exercise 4.14. Prove that for any angle 𝜓, we have cos(2𝜓) = 1 − 2(sin𝜓)2.
Hint. Use the addition theorem, that is, cos(𝜎 + 𝜏) = cos𝜎 · cos 𝜏 − sin𝜎 · sin 𝜏 , for any
angles 𝜎 and 𝜏 .

Lemma 4.1. Let 𝑎, 𝑑1, 𝑐, 𝑟, and 𝛾 be as defined above. If 𝑑1 is fixed, we have
𝑎/(𝑑1 − 𝑐) ≤ 𝑟.

Proof. Let 𝛽 denote the angle that is defined by 𝑥1, 𝑠1, and 𝑠 as depicted in
Figure 4.8b; then 𝛽 ≤ 𝛾 ≤ 𝜋/4. Recall that 𝑎 ≤ 𝑑1. Due to the law of cosines (see
Exercise 4.13), we have

𝑐 =
√︁
𝑎2 + 𝑑2

1 − 2𝑎𝑑1 cos𝛽 .

As a consequence (recall that we consider 𝑑1 to be fixed), we obtain
𝑎

𝑑1 − 𝑐
= 𝑎

𝑑1 −
√︀
𝑎2 + 𝑑2

1 − 2𝑎𝑑1 cos𝛽
:=𝑓𝑑1(𝑎, 𝛽) ,
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which we bound from above by analyzing this function with respect to both 𝑎 and
𝛽. First, since 𝛽 ≤ 𝜋/4, 𝑓𝑑1 is monotonically increasing in 𝛽. Now we want to show
that 𝑓𝑑1 also increases with 𝑎; let us substitute 𝛿 := 𝛿(𝑎) =

√︀
𝑎2 + 𝑑2

1 − 2𝑎𝑑1 cos𝛽.
To see how 𝑓𝑑1 behaves with respect to 𝑎, we compute

∂𝑓𝑑1(𝑎, 𝛽)
∂𝑎

= 𝑑1 − 𝛿 + 𝑎𝛿−1(𝑎− 𝑑1 cos𝛽)
(𝑑1 − 𝛿)2

= 𝛿(𝑑1 − 𝛿) + (𝑎2 − 𝑎𝑑1 cos𝛽)
𝛿(𝑑1 − 𝛿)2

= 𝑑1𝛿 − 𝑎2 − 𝑑2
1 + 2𝑎𝑑1 cos𝛽 + 𝑎2 − 𝑎𝑑1 cos𝛽

𝛿(𝑑1 − 𝛿)2

(by resubstituting 𝛿2)

= 𝑑1
𝛿 − 𝑑1 + 𝑎 cos𝛽
𝛿(𝑑1 − 𝛿)2 . (4.19)

If we can show that (4.19) is always positive, then 𝑓𝑑1 is increasing in 𝑎. Since 𝑑1
and the denominator of (4.19) are clearly always positive, it remains to show that
𝛿 + 𝑎 cos𝛽 is larger than 𝑑1, which can be rewritten as√︁

𝑎2 + 𝑑2
1 − 2𝑎𝑑1 cos𝛽 > 𝑑1 − 𝑎 cos𝛽 (4.20)

after resubstituting 𝛿. Since 𝑑1 − 𝑎 cos𝛽 is always positive (as a consequence of
𝑑1 ≥ 𝑎 and cos𝛽 ≤ 1), we can square both sides of (4.20) and obtain

𝑎2 − 𝑎2(cos𝛽)2 > 0 ,

which is always true.
It follows that 𝑎/(𝑑1 − 𝑐) is maximal for 𝑎 = 𝑑1 and 𝛽 = 𝛾, which means that

𝑎

𝑑1 − 𝑐
≤ 𝑑1

𝑑1 −
√︀
𝑑2

1 + 𝑑2
1 − 2𝑑2

1 cos 𝛾
= 1

1 −
√︀

2(1 − cos 𝛾)
.

Finally, we use cos 𝛾 = 1 − 2(sin(𝛾/2))2 (see Exercise 4.14) yielding
𝑎

𝑑1 − 𝑐
≤ 1

1 −
√︂

2
(︁

1 − 1 + 2
(︀
sin

(︀
𝛾
2
)︀)︀2

)︁ = 1
1 − 2 sin

(︀
𝛾
2
)︀

as we claimed. �

Now we are ready to analyze the competitive ratio of Seg. To this end, we need
to take special care of the positions at which the servers are located at the beginning.
As in Definition 4.2, a configuration 𝐶 is a multiset of 𝑘 points from 𝑃 that are
occupied by the servers. A configuration 𝐶𝑝 ↦→𝑝′ is obtained from 𝐶 by moving a
server from 𝑝 ∈ 𝐶 to 𝑝′. Recall that the initial configuration is the configuration at
the beginning, that is, before any request is served. In the following, we will simply
speak of the initial configuration of a given instance.
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Theorem 4.12. Seg is strictly(︂ 1
1 − 2 sin

(︀
𝜋

2𝑏′

)︀)︂-competitive

for 𝑘-server on the Euclidean plane and uses 𝑏′𝑛 advice bits, where 𝑏′ ≥ 3.

Proof. Let 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be any instance with an initial configuration 𝐶, and
let 𝒮 be any solution for 𝐼 and 𝐶. We restrict ourselves to lazy algorithms; therefore,
a solution of an instance is a sequence of servers. To describe a server that is used
to serve a certain request, it is sufficient to specify the point occupied by this server;
thus, the solution can be described by a sequence of points as well. Let 𝒮 serve the
𝑖th request 𝑥𝑖 using a server located at 𝑝𝑖, incurring a cost of 𝑑𝑖 = ‖𝑝𝑖 − 𝑥𝑖‖. Hence,
we can describe 𝒮 as

(𝑝1, 𝑝2, . . . , 𝑝𝑛) .

As described above, for the first request, Seg uses 𝑏′ bits of advice to specify the
segment 𝑆𝑗 around 𝑥1 in which the point 𝑝1 is located. Seg moves the closest server
𝑠 located at a point 𝑝 in 𝑆𝑗 to 𝑥1, incurring a cost of 𝑎 ≤ 𝑑1. Hence, after the first
request 𝑥1, 𝒮 leads to a configuration 𝐶𝑝1 ↦→𝑥1 , whereas Seg is in a configuration
𝐶𝑝 ↦→𝑥1 ; this situation is illustrated in Figure 4.8b.

We prove that the cost of Seg on 𝐼 with initial configuration 𝐶 is at most 𝑟 ·cost(𝒮),
where 𝑟 is defined as in (4.18). The proof is done by induction on the input length 𝑛.

Base Case. If 𝑛 = 1, the cost of Seg is 𝑎 ≤ 𝑑1 = cost(𝒮).
Induction Hypothesis. The claim holds for every instance of length 𝑛− 1 with any

initial configuration.
Induction Step. Let 𝑛 ≥ 2, and let 𝑥𝑖 be the first request that is served by 𝑠 in 𝒮.

Consider the instance 𝐼 ′ = (𝑥2, 𝑥3, . . . , 𝑥𝑛) of length 𝑛−1 with initial configuration
𝐶𝑝 ↦→𝑥1 ; the sequence

(𝑝2, 𝑝3, . . . , 𝑝𝑖−1, 𝑝1, 𝑝𝑖+1, . . . , 𝑝𝑛)
is a solution for 𝐼 ′ with a cost of at most

𝑐+
𝑛∑︁
𝑖=2

𝑑𝑖 ,

where 𝑐 is the distance between 𝑠1 and 𝑠; see Figure 4.8b. By induction, the cost
of Seg on 𝐼 ′ is at most

𝑟 ·

(︃
𝑐+

𝑛∑︁
𝑖=2

𝑑𝑖

)︃
,

and therefore the cost of Seg on 𝐼 is at most

𝑎+ 𝑟 ·

(︃
𝑐+

𝑛∑︁
𝑖=2

𝑑𝑖

)︃
.
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Figure 4.9. The competitive ratio of Seg depending on the number of advice bits 𝑏′

per request.

Due to Lemma 4.1, we have that 𝑎 ≤ 𝑟(𝑑1 − 𝑐) and thus the cost of Seg on 𝐼 with
initial configuration 𝐶 is at most

𝑟 · (𝑑1 − 𝑐) + 𝑟 ·

(︃
𝑐+

𝑛∑︁
𝑖=2

𝑑𝑖

)︃
= 𝑟 ·

𝑛∑︁
𝑖=1

𝑑𝑖 = 𝑟 · cost(𝒮) .

Since 𝒮 is an arbitrary solution, the claim follows. �

Note that, with 𝑏′ tending to infinity, the upper bound on the competitive ratio of
Seg converges to 1; see Figure 4.9.

⋆4.6.4 An Upper Bound for the General Case
We now focus on the tradeoff between the number of advice bits and the competitive
ratio achievable in general metric spaces. As we have seen at the beginning of this
chapter, a simple (deterministic) greedy strategy is very bad for 𝑘-server. In the
previous two subsections, we have seen, for two special metric spaces, how advice
can be used to somewhat restrict the greedy moves in order to improve the solution
quality; both algorithms use a number of advice bits that is linear in the input length.
In what follows, we design an algorithm Chase with advice that follows a greedy
strategy for some of the requests and that is again able to bound the harm done
by these moves by using the advice tape. The algorithm also implements a kind of
marking. In particular, Chase reads, with every request 𝑥𝑖, two so-called control
bits that trigger one of the following three actions.

1. If the control bits are 00, Chase serves 𝑥𝑖 greedily (ties are broken arbitrarily),
and then returns the chosen server to its original position.
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2. If they are 01, 𝑥𝑖 is served by the closest unmarked server, which is not returned
to its original position afterwards. Then, this server gets marked.

3. If they are 11, Chase reads another ⌈log2 𝑘⌉ bits from the advice tape. These
bits encode the index of a server that is then used to serve 𝑥𝑖; again, this server
stays at 𝑥𝑖.

For the rest of this subsection, let

𝑟 :=
⌈︂

⌈log2 𝑘⌉
𝑏′ − 2

⌉︂
,

where 𝑏′ is the number of advice bits Chase reads per time step. Before we elaborate
on the competitive ratio of Chase, we need to describe the algorithm in more detail.
In what follows, let Opt(𝐼) be a fixed optimal solution for some given instance 𝐼.
We again assume that Opt is lazy; note, however, that Chase is not. Now we take
a closer look at Opt. For every 𝑖 with 1 ≤ 𝑖 ≤ 𝑘, we denote by 𝐼𝑖 the subsequence
of 𝐼 consisting of all requests for which Opt uses the server 𝑠𝑖. In other words, 𝐼𝑖
corresponds to the trajectory of 𝑠𝑖 with respect to Opt. Let us give an example.
Example 4.1. Suppose we are given an instance 𝐼 of length 12 for 3-server, and an
optimal algorithm uses the servers as follows.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

𝑠1 × × ×
𝑠2 × × × ×
𝑠3 × × × × ×

Then, the three subsequences are

𝐼1 = (𝑥1, 𝑥4, 𝑥8) ,
𝐼2 = (𝑥2, 𝑥5, 𝑥6, 𝑥11) ,
𝐼3 = (𝑥3, 𝑥7, 𝑥9, 𝑥10, 𝑥12) . ♢

The idea behind Chase is to consider all subsequences 𝐼𝑖 separately. For every
such sequence, the oracle will ensure that a “correct” server 𝑠𝑖 (taking the role of
𝑠𝑖 in Opt’s solution) will be positioned on the “correct” point from time to time;
this “correct” positioning is done using ⌈log2 𝑘⌉ advice bits that encode the index of
𝑠𝑖; 𝑠𝑖 can then be used for some of the subsequent requests within 𝐼𝑖. We will show
that the total cost of Chase is at most 𝑟 times as large as that of Opt (plus some
constant). As in the last subsection, we start with a technical lemma that we need
in the analysis of the algorithm.
Lemma 4.2. For some 𝑟 ∈ N+, consider a sequence 𝑎1, 𝑎2, . . . , 𝑎𝑟 with 𝑎𝑙 ∈ R+,
for 1 ≤ 𝑙 ≤ 𝑟. Then there is a natural number 𝛿 with 1 ≤ 𝛿 ≤ 𝑟 such that

𝑟∑︁
𝑙=1

(2(𝑟 + 𝛿 − 𝑙) + 1)𝑎𝑙 −
𝛿∑︁
𝑙=1

2𝑟𝑎𝑙 ≤ 𝑟
𝑟∑︁
𝑙=1

𝑎𝑙 . (4.21)
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Proof. We prove the claim by computing the average value of the left-hand side of
(4.21) over all possible values 𝛿 with 1 ≤ 𝛿 ≤ 𝑟. We start by summing over all such
values, which yields

𝑟∑︁
𝛿=1

(︃
𝑟∑︁
𝑙=1

(2(𝑟 + 𝛿 − 𝑙) + 1)𝑎𝑙 −
𝛿∑︁
𝑙=1

2𝑟𝑎𝑙

)︃

=
𝑟∑︁
𝛿=1

(︃
𝑟∑︁
𝑙=1

(2(𝑟 + 𝛿) + 1)𝑎𝑙

)︃
−

𝑟∑︁
𝛿=1

(︃
𝑟∑︁
𝑙=1

2𝑙𝑎𝑙

)︃
−

𝑟∑︁
𝛿=1

(︃
𝛿∑︁
𝑙=1

2𝑟𝑎𝑙

)︃
(by splitting the sum into a positive and a negative part)

=
(︃

𝑟∑︁
𝛿=1

(2(𝑟 + 𝛿) + 1)
)︃

·
𝑟∑︁
𝑙=1

𝑎𝑙 − 2𝑟
𝑟∑︁
𝑙=1

𝑙𝑎𝑙 − 2𝑟
𝑟∑︁
𝛿=1

(︃
𝛿∑︁
𝑙=1

𝑎𝑙

)︃
. (4.22)

(since 𝑙, 𝑎𝑙, and 𝑟 do not depend on 𝛿)

Next, we simultaneously add and subtract(︃
𝑟∑︁
𝛿=1

4𝛿
)︃

·
𝑟∑︁
𝑙=1

𝑎𝑙 , (4.23)

and then use that
𝑟∑︁
𝛿=1

(2(𝑟 − 𝛿) + 1) = 𝑟 + 2
𝑟∑︁
𝛿=1

(𝑟 − 𝛿) = 𝑟 + 2
𝑟−1∑︁
𝛿=0

𝛿 = 𝑟2 . (4.24)

As a result of adding and subtracting (4.23) and plugging (4.24) into (4.22), we
obtain that the sum of the left-hand side of (4.21) over all 𝛿 is equal to

𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 +
(︃

𝑟∑︁
𝛿=1

4𝛿
)︃

𝑟∑︁
𝑙=1

𝑎𝑙 − 2𝑟
(︃

𝑟∑︁
𝑙=1

𝑙𝑎𝑙 +
𝑟∑︁
𝛿=1

(︃
𝛿∑︁
𝑙=1

𝑎𝑙

)︃)︃

= 𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 + (2𝑟2 + 2𝑟)
𝑟∑︁
𝑙=1

𝑎𝑙 − 2𝑟
(︃

𝑟∑︁
𝑙=1

𝑙𝑎𝑙 +
𝑟∑︁
𝛿=1

(︃
𝛿∑︁
𝑙=1

𝑎𝑙

)︃)︃
. (4.25)

Now note that
𝑟∑︁
𝛿=1

(︃
𝛿∑︁
𝑙=1

𝑎𝑙

)︃
= 𝑎1 + 𝑎1 + 𝑎2 + 𝑎1 + 𝑎2 + 𝑎3 + . . . + 𝑎1 + 𝑎2 + . . .+ 𝑎𝑟

= 𝑎1 + 𝑎1 + . . .+ 𝑎1⏟  ⏞  
𝑟 times

+ 𝑎2 + 𝑎2 + . . .+ 𝑎2⏟  ⏞  
𝑟−1 times

+ . . .+ 𝑎𝑟

=
𝑟∑︁
𝑙=1

(𝑟 − 𝑙 + 1)𝑎𝑙 . (4.26)
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From (4.25) and (4.26), we finally obtain

𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 + (2𝑟2 + 2𝑟)
𝑟∑︁
𝑙=1

𝑎𝑙 − 2𝑟
(︃

𝑟∑︁
𝑙=1

𝑙𝑎𝑙 +
𝑟∑︁
𝑙=1

(𝑟 − 𝑙 + 1)𝑎𝑙

)︃

= 𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 + (2𝑟2 + 2𝑟)
𝑟∑︁
𝑙=1

𝑎𝑙 − 2𝑟
𝑟∑︁
𝑙=1

(𝑟 + 1)𝑎𝑙

= 𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 + (2𝑟2 + 2𝑟)
𝑟∑︁
𝑙=1

𝑎𝑙 − (2𝑟2 + 2𝑟)
𝑟∑︁
𝑙=1

𝑎𝑙⏟  ⏞  
0

= 𝑟2
𝑟∑︁
𝑙=1

𝑎𝑙 .

Since there are 𝑟 possible values for 𝛿, it follows that for at least one of them we
have

𝑟∑︁
𝑙=1

(2(𝑟 + 𝛿 − 𝑙) + 1)𝑎𝑙 −
𝛿∑︁
𝑙=1

2𝑟𝑎𝑙 ≤ 𝑟
𝑟∑︁
𝑙=1

𝑎𝑙

as we claimed. �

Now we are ready to compute an upper bound on the competitive ratio of Chase.

Theorem 4.13. Chase is⌈︂
⌈log2 𝑘⌉
𝑏′ − 2

⌉︂
-competitive

for 𝑘-server and uses 𝑏′𝑛 advice bits, where 𝑏′ ≥ 3.

Proof. For any instance 𝐼 of 𝑘-server, let the subsequence 𝐼𝑖 be as defined above,
that is, Opt uses the server 𝑠𝑖 for every request in 𝐼𝑖, for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑘.
For every 𝐼𝑖, we fix a constant 𝛿𝑖 ≤ 𝑟, which we will determine later. Every 𝐼𝑖 is
further divided into 𝑁𝑖 phases as follows.

• Phase 𝑃𝑖,1 (that is, the first phase of 𝐼𝑖) starts with the first request from 𝐼𝑖
and ends with the 𝛿𝑖th request from 𝐼𝑖.

• For 𝑗 ≥ 2, phase 𝑃𝑖,𝑗 (that is, the 𝑗th phase of 𝐼𝑖) starts with the (𝛿𝑖 + (𝑗 −
2)𝑟 + 1)th request of 𝐼𝑖 and ends with the (𝛿𝑖 + (𝑗 − 1)𝑟)th request of 𝐼𝑖.

For the sake of an easier proof, we assume that the last phase 𝑃𝑖,𝑁𝑖
is padded by

requesting the last request from 𝑃𝑖,𝑁𝑖
repeatedly such that it has a length of 𝑟. Note

that all other phases also have a length of 𝑟 with the sole exception of the first one,
which has length 𝛿𝑖; we may think of 𝛿𝑖 as an offset that specifies when the second
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phase starts. In the following, we denote the 𝑙th request of the 𝑗th phase 𝑃𝑖,𝑗 of 𝐼𝑖
by 𝑥𝑖,𝑗,𝑙.

The oracle inspects 𝐼 and Opt(𝐼) and constructs the subsequences 𝐼𝑖 as above.
Then, it supplies the advice for every request 𝑥 as follows.

1. If 𝑥 = 𝑥𝑖,1,𝛿𝑖 , that is, 𝑥 is the last request of the first phase of 𝐼𝑖, the oracle
writes 01 on the advice tape. Since this situation occurs at most 𝑘 times,
there is always an unmarked server, which Chase can use for the greedy move
without moving the server back; for the rest of the proof, the unique server
that Chase uses is called 𝑠𝑖.

2. If 𝑥 = 𝑥𝑖,𝑗,𝑟, for 𝑗 ≥ 2, that is, 𝑥 is the last request of any other phase, the
oracle writes 11 on the advice tape, followed by the index of 𝑠𝑖.

3. Else, the oracle writes 00 on the advice tape.

We now bound the cost of Chase on a subsequence 𝐼𝑖 from above. To this end,
we analyze every phase of 𝐼𝑖 separately. First, consider the 𝑗th phase 𝑃𝑖,𝑗 with 𝑗 ≥ 2.
𝑃𝑖,𝑗 starts with the request 𝑥𝑖,𝑗,1. Due to the advice, Chase positioned 𝑠𝑖 on the
last request of the previous phase 𝑃𝑖,𝑗−1, that is, at the point 𝑥𝑖,𝑗−1,𝑧, where 𝑧 = 𝛿𝑖
if 𝑗 = 2 and 𝑧 = 𝑟 if 𝑗 > 2. After that, this server was marked (either right after that
move if 𝑗 = 2, or before if 𝑗 > 2). Therefore, it was only used for greedy moves and
returned to 𝑥𝑖,𝑗−1,𝑧 until the start of 𝑃𝑖,𝑗 . Since we are considering the subsequence
𝐼𝑖, for which Opt only uses the server 𝑠𝑖, it follows that Opt moved this server to
𝑥𝑖,𝑗−1,𝑧 and did not move it until 𝑥𝑖,𝑗,1.

For an easier argument, let 𝑥𝑖,𝑗,0 := 𝑥𝑖,𝑗−1,𝑧. During 𝑃𝑖,𝑗 , Chase has 𝑠𝑖 positioned
on 𝑥𝑖,𝑗,0 at the beginning of every time step. For every request 𝑥𝑖,𝑗,𝑙 with 1 ≤ 𝑙 ≤ 𝑟−1,
Chase uses some server and moves it back to its original position. We have

cost(Chase(𝑥𝑖,𝑗,𝑙)) ≤ 2 · dist(𝑥𝑖,𝑗,0, 𝑥𝑖,𝑗,𝑙)

≤ 2
𝑙∑︁

𝑡=1
dist(𝑥𝑖,𝑗,𝑡−1, 𝑥𝑖,𝑗,𝑡) . (4.27)

(due to the triangle inequality)

Now we consider the last request of 𝑃𝑖,𝑗 , that is, 𝑥𝑖,𝑗,𝑟. This request is also served
by 𝑠𝑖, which is then left at 𝑥𝑖,𝑗,𝑟. It follows that

cost(Chase(𝑥𝑖,𝑗,𝑟)) ≤ dist(𝑥𝑖,𝑗,0, 𝑥𝑖,𝑗,𝑟)

≤
𝑟∑︁
𝑡=1

dist(𝑥𝑖,𝑗,𝑡−1, 𝑥𝑖,𝑗,𝑡) . (4.28)

Next, let us consider Opt; since it uses the same server 𝑠𝑖 for all requests in 𝑃𝑖,𝑗 ,
we easily have, for 1 ≤ 𝑙 ≤ 𝑟,

cost(Opt(𝑥𝑖,𝑗,𝑙)) = dist(𝑥𝑖,𝑗,𝑙−1, 𝑥𝑖,𝑗,𝑙) . (4.29)
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Together with (4.27) and (4.28), we can now bound the cost of Chase on 𝑃𝑖,𝑗 as

cost(Chase(𝑃𝑖,𝑗)) =
𝑟∑︁
𝑙=1

cost(Chase(𝑥𝑖,𝑗,𝑙))

≤
𝑟∑︁
𝑡=1

dist(𝑥𝑖,𝑗,𝑡−1, 𝑥𝑖,𝑗,𝑡) +
𝑟−1∑︁
𝑙=1

(︃
2

𝑙∑︁
𝑡=1

dist(𝑥𝑖,𝑗,𝑡−1, 𝑥𝑖,𝑗,𝑡)
)︃

=
𝑟∑︁
𝑡=1

cost(Opt(𝑥𝑖,𝑗,𝑡)) +
𝑟−1∑︁
𝑙=1

(︃
𝑙∑︁

𝑡=1
2 · cost(Opt(𝑥𝑖,𝑗,𝑡))

)︃
(due to (4.29))

=
𝑟∑︁
𝑡=1

cost(Opt(𝑥𝑖,𝑗,𝑡)) +
𝑟−1∑︁
𝑙=1

2(𝑟 − 𝑙) · cost(Opt(𝑥𝑖,𝑗,𝑙))

(by an argument similar to (4.26))

=
𝑟∑︁
𝑡=1

cost(Opt(𝑥𝑖,𝑗,𝑡)) +
𝑟∑︁
𝑙=1

2(𝑟 − 𝑙) · cost(Opt(𝑥𝑖,𝑗,𝑙))

(since 𝑟 − 𝑟 = 0)

=
𝑟∑︁
𝑙=1

(2(𝑟 − 𝑙) + 1) · cost(Opt(𝑥𝑖,𝑗,𝑙)) . (4.30)

Now we bound the cost of Chase on the first phase 𝑃𝑖,1 of 𝐼𝑖. Essentially, we
can argue in a similar way as for the phases 𝑃𝑖,𝑗 with 𝑗 ≥ 2. However, in 𝑃𝑖,1, we
cannot assume that Chase has positioned a server on the same point where Opt
has positioned 𝑠𝑖. Chase may have marked and positioned 𝑠𝑖 somewhere else; that
is, 𝑠𝑖 = 𝑠𝑖′ with 𝑖 ̸= 𝑖′. Let 𝑝𝑖 denote the initial position of 𝑠𝑖, and let 𝐷 be the
maximum distance between any two servers in the initial configuration. At the
beginning of 𝑃𝑖,1, there is at least one unmarked server 𝑠 left at its original position
𝑝. By the triangle inequality, for every request 𝑥𝑖,1,𝑙 with 1 ≤ 𝑙 ≤ 𝛿𝑖 from 𝑃𝑖,1, we
have

dist(𝑝, 𝑥𝑖,1,𝑙) ≤ dist(𝑝, 𝑝𝑖) + dist(𝑝𝑖, 𝑥𝑖,1,𝑙) ≤ 𝐷 + dist(𝑝, 𝑝𝑖) . (4.31)

This time, for an easier argument, let 𝑥𝑖,1,0 := 𝑝𝑖, that is, 𝑥𝑖,1,0 denotes the initial
position of 𝑠𝑖. For every request 𝑥𝑖,1,𝑙 with 1 ≤ 𝑙 ≤ 𝛿𝑖 − 1, due to (4.31), we have

cost(Chase(𝑥𝑖,1,𝑙)) ≤ 2(𝐷 + dist(𝑝𝑖, 𝑥𝑖,1,𝑙))

≤ 2
(︃
𝐷 +

𝑙∑︁
𝑡=1

(dist(𝑥𝑖,1,𝑡−1, 𝑥𝑖,1,𝑡))
)︃
, (4.32)

analogously to (4.27). For the last request 𝑥𝑖,1,𝛿𝑖 of 𝑃𝑖,1, we get

cost(Chase(𝑥𝑖,1,𝛿𝑖)) ≤ (𝐷 + dist(𝑝𝑖, 𝑥𝑖,1,𝛿𝑖))
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≤ 𝐷 +
𝛿𝑖∑︁
𝑡=1

dist(𝑥𝑖,1,𝑡−1, 𝑥𝑖,1,𝑡) . (4.33)

Adding (4.32) and (4.33), we can use (4.29) for 𝑗 = 1 and do a calculation similar
to (4.30) yielding

cost(Chase(𝑃𝑖,1))

=
𝛿𝑖∑︁
𝑙=1

cost(Chase(𝑥𝑖,1,𝑙))

≤
𝛿𝑖∑︁
𝑡=1

dist(𝑥𝑖,1,𝑡−1, 𝑥𝑖,1,𝑡) +
𝛿𝑖−1∑︁
𝑙=1

(︃
2

𝑙∑︁
𝑡=1

dist(𝑥𝑖,1,𝑡−1, 𝑥𝑖,1,𝑡)
)︃

+ 2𝛿𝑖𝐷

=
𝛿𝑖∑︁
𝑙=1

(2(𝛿𝑖 − 𝑙) + 1) · cost(Opt(𝑥𝑖,1,𝑙)) + 2𝛿𝑖𝐷 (4.34)

as an upper bound on the cost of Chase in 𝑃𝑖,1, where 2𝛿𝑖𝐷 is constant with respect
to the input length. Note that the length 𝛿𝑖 of 𝑃𝑖,1 is possibly smaller than 𝑟, that
is, the lengths of the other phases in 𝐼𝑖.

In order to make (4.30) and (4.34) more consistent, we do the following. We add
𝑟 “dummy” requests at the beginning of 𝐼𝑖 with non-positive indices that all induce
cost 0 for both Chase and Opt. Then, we count 𝑟 − 𝛿𝑖 of these dummy requests
towards 𝑃𝑖,1. More specifically, we assume that 𝑃𝑖,1 also consists of 𝑟 requests

𝑥𝑖,1,−𝑟+𝛿𝑖+1, 𝑥𝑖,1,−𝑟+𝛿𝑖+2, . . . , 𝑥𝑖,1,−𝑟+𝛿𝑖+(𝑟−𝛿𝑖−1), 𝑥𝑖,1,0⏟  ⏞  
new requests

, 𝑥𝑖,1,1, . . . , 𝑥𝑖,1,𝛿𝑖
,

where the 𝑟 − 𝛿𝑖 new requests at the beginning are dummy requests.
Now let 𝑥𝑖,𝛿𝑖+(𝑗−2)𝑟+𝑙 denote the (𝛿𝑖+(𝑗−2)𝑟+ 𝑙)th request of the 𝑖th subsequence

𝐼𝑖. For 𝑗 ≥ 2, we have 𝑥𝑖,𝑗,𝑙 = 𝑥𝑖,𝛿𝑖+(𝑗−2)𝑟+𝑙, and can thus rewrite (4.30) as

cost(Chase(𝑃𝑖,𝑗)) ≤
𝑟∑︁
𝑙=1

(2(𝑟 − 𝑙) + 1) · cost
(︀
Opt(𝑥𝑖,(𝑗−2)𝑟+𝛿𝑖+𝑙)

)︀
. (4.35)

Moreover, for 𝑗 = 1, we can rewrite (4.34) as

cost(Chase(𝑃𝑖,1))

≤ 2𝛿𝑖𝐷 +
𝑟∑︁
𝑙=1

(2(𝑟 − 𝑙) + 1) · cost(Opt(𝑥𝑖,1,−𝑟+𝛿𝑖+𝑙))

= 2𝛿𝑖𝐷 +
𝑟∑︁
𝑙=1

(2(𝑟 − 𝑙) + 1) · cost
(︀
Opt(𝑥𝑖,(𝑗−2)𝑟+𝛿𝑖+𝑙)

)︀
, (4.36)

due to the dummy requests.
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Recall that there are 𝑁𝑖 phases in total within the subsequence 𝐼𝑖. We can give
an upper bound on the cost of Chase on 𝐼𝑖 by simply summing (4.35) 𝑁𝑖 − 1 times
and adding (4.36), which yields

cost(Chase(𝐼𝑖))

≤ 2𝛿𝑖𝐷 +
𝑁𝑖∑︁
𝑗=1

(︃
𝑟∑︁
𝑙=1

(2(𝑟 − 𝑙) + 1) · cost
(︀
Opt(𝑥𝑖,(𝑗−2)𝑟+𝛿𝑖+𝑙)

)︀)︃

= 2𝛿𝑖𝐷 +
𝑟∑︁
𝑙=1

(︃
(2(𝑟 − 𝑙) + 1)

𝑁𝑖∑︁
𝑗=1

cost
(︀
Opt(𝑥𝑖,(𝑗−2)𝑟+𝛿𝑖+𝑙)

)︀)︃

= 2𝛿𝑖𝐷 +
𝛿𝑖∑︁

𝑙=−𝑟+𝛿𝑖+1

(︃
(2(𝛿𝑖 − 𝑙) + 1)

𝑁𝑖∑︁
𝑗=1

cost
(︀
Opt(𝑥𝑖,(𝑗−1)𝑟+𝑙)

)︀)︃
. (4.37)

(by shifting the index of the outer sum by −𝑟 + 𝛿𝑖)

Next, we define

opt𝑖,𝑙 :=
𝑁𝑖∑︁
𝑗=1

cost
(︀
Opt(𝑥𝑖,(𝑗−1)𝑟+𝑙)

)︀
,

that is, the sum of the costs of Opt on every 𝑟th request starting with the 𝑙th request
in 𝐼𝑖 (counting from −𝑟 + 𝛿𝑖 + 1).

Then, (4.37) implies

cost(Chase(𝐼𝑖))

≤ 2𝛿𝑖𝐷 +
𝛿𝑖∑︁

𝑙=−𝑟+𝛿𝑖+1
(2(𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙

= 2𝛿𝑖𝐷 +
𝛿𝑖∑︁
𝑙=1

(2(𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙 +
0∑︁

𝑙=−𝑟+𝛿𝑖+1
(2(𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙

= 2𝛿𝑖𝐷 +
𝛿𝑖∑︁
𝑙=1

(2(𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙 +
𝑟∑︁

𝑙=𝛿𝑖+1
(2(𝑟 + 𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙−𝑟

≤ 2𝛿𝑖𝐷 +
𝛿𝑖∑︁
𝑙=1

(2(𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙 +
𝑟∑︁

𝑙=𝛿𝑖+1
(2(𝑟 + 𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙

(since requests with non-positive index have cost 0)

= 2𝛿𝑖𝐷 +
𝑟∑︁
𝑙=1

(2(𝑟 + 𝛿𝑖 − 𝑙) + 1) · opt𝑖,𝑙 −
𝛿𝑖∑︁
𝑙=1

2𝑟 · opt𝑖,𝑙 .
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It remains to define the length of the first phase, that is, 𝛿𝑖; we do so separately
for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑘. From Lemma 4.2, we know that we can always pick a 𝛿𝑖
with 1 ≤ 𝛿𝑖 ≤ 𝑟 such that

cost(Chase(𝐼𝑖)) ≤ 𝑟
𝑟∑︁
𝑙=1

opt𝑖,𝑙 + 2𝛿𝑖𝐷 = 𝑟 · cost(Opt(𝐼𝑖)) + 2𝛿𝑖𝐷 .

Now that we have an upper bound on the cost of Chase in one subsequence, we can
easily bound its cost on 𝐼 with respect to the cost of Opt by

cost(Chase(𝐼)) =
𝑘∑︁
𝑖=1

cost(Chase(𝐼𝑖))

≤
𝑘∑︁
𝑖=1

(𝑟 · cost(Opt(𝐼𝑖)) + 2𝛿𝑖𝐷)

≤
𝑘∑︁
𝑖=1

(𝑟 · cost(Opt(𝐼𝑖)) + 2𝑟𝐷)

= 𝑟 · Opt(𝐼) + 2𝑘𝑟𝐷 ,

where 2𝑘𝑟𝐷 is constant with respect to the input length. In other words, Chase is
𝑟-competitive.

As a last step, we bound from above the number of advice bits Chase uses.

• In every time step, Chase reads two control bits.
• At the end of every first phase 𝑃𝑖,1, Chase also only reads two bits. However,

at the end of any phase 𝑃𝑖,𝑗 with 𝑗 ≥ 2, the algorithm reads ⌈log2 𝑘⌉ additional
bits that encode the index of the server 𝑠𝑖; thus, it reads 2 + ⌈log2 𝑘⌉ bits in
every 𝑟th time step of 𝐼𝑖. This means that, for every time step in which Chase
reads 2 + ⌈log2 𝑘⌉ advice bits, there are 𝑟 − 1 preceding time steps of 𝐼𝑖 in
which only two advice bits are used.

The number of advice bits 𝑏′ read per time step can therefore be bounded from
above by

𝑏′ ≤ 2(𝑟 − 1)
𝑟

+ 2 + ⌈log2 𝑘⌉
𝑟

= 2 + ⌈log2 𝑘⌉
𝑟

,

which is ensured by

𝑟 ≤ ⌈log2 𝑘⌉
𝑏′ − 2 .

The claim follows. �

This completes our study of concrete online algorithms with advice for the 𝑘-server
problem. We conclude with a general remark.
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4.6.5 Advice and the Randomized k-Server Conjecture
In Section 4.1, we introduced the randomized 𝑘-server conjecture, which states that
there is a randomized online algorithm for this problem that is Θ(log 𝑘)-competitive
in expectation. The next theorem shows how we could use the advice complexity as
a technique to disprove the conjecture.

Theorem 4.14. If every online algorithm with advice for 𝑘-server on metric spaces
with at most 2𝑛 points has to use 𝜔(log 𝑛) advice bits to be 𝒪(log 𝑘)-competitive, then
the randomized 𝑘-server conjecture does not hold.

Proof. Let ℳ be a metric space with a size that is bounded from above by 2𝑛, where
𝑛 is the length of the given instance. Again, let 𝜇(𝑛) denote the number of instances
of length 𝑛. In every time step, one point of ℳ is requested, and thus

𝜇(𝑛) ≤ (2𝑛)𝑛 .

If there is a randomized online algorithm Rand that is 𝒪(log 𝑘)-competitive in
expectation on all such instances, then Theorem 3.7 implies that there is also an
𝒪(log 𝑘)-competitive online algorithm with advice that uses at most

2⌈log2(⌈log2 𝑛⌉)⌉ + ⌈log2 𝑛⌉ + log2

(︂⌊︂
log2((2𝑛)𝑛)
log2(1 + 𝜀)

⌋︂
+ 1

)︂
∈ 𝒪(log 𝑛)

advice bits. Note that this online algorithm with advice is worse than Rand by a
factor of 1 + 𝜀, for any 𝜀 > 0, which is hidden in the 𝒪-notation.

As a consequence, if we can show that any 𝒪(log 𝑘)-competitive online algorithm
with advice for 𝑘-server on ℳ needs to use asymptotically more advice bits, we have
a contradiction to the existence of Rand. �

On the other hand, if the randomized 𝑘-server conjecture were true, Chase could
be improved exponentially for instances on at most 2𝑛 points (so far, it uses a linear
number of advice bits).

4.7 Historical and Bibliographical Remarks
The 𝑘-server problem is certainly one of the most generic and famous online problems;
in the last couple of years, it has been repeatedly called “the holy grail” in the field of
online computation [14,42]. It was introduced by Manasse et al. in 1988 [114]. Since
then, it has been thoroughly studied; for a survey we refer to Koutsoupias [104].

It has been conjectured that there exists a 𝑘-competitive deterministic online
algorithm for 𝑘-server, which continues to be one of the most famous open problems
in theoretical computer science (known as the aforementioned 𝑘-server conjecture,
which was already posed by Manasse et al. [114]). So far, the best known deterministic
algorithm is due to Koutsoupias and Papadimitriou, and it achieves a competitive
ratio of 2𝑘 − 1 [105] (and a strict competitive ratio of 4𝑘 − 2 [59]). The algorithm
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DCov is due to Chrobak et al. [45], and its generalization DCovT was given by
Chrobak and Larmore [46]. In the original publication, the authors already showed
that there is a 𝑘-competitive online algorithm for metric spaces with 𝑘+1 points [114].
In 1996, Koutsoupias and Papadimitriou showed that this is also true for 𝑘 + 2
points [106].

As for employing randomization, Bansal et al. [13] showed in 2011 that there
is a randomized online algorithm that is 𝒪((log 𝑘)2(log𝑚)3 log log𝑚)-competitive
in expectation; recall that 𝑚 denotes the number of points of the metric space
at hand. This algorithm thus obtains a competitive ratio bounded by a function
that is polylogarithmic in 𝑘 if 𝑚 is polynomial in 𝑘. Intriguingly, before that, no
randomized online algorithm was known that is better than the deterministic one
from Koutsoupias and Papadimitriou [105]; and if we speak about arbitrary (possibly
even infinite) metric spaces, this is still the case up to today.

The proof that Lru is 𝑘-competitive for paging using a potential function (Exer-
cise 4.11) is taken from Albers [4].

Online algorithms with advice for the 𝑘-server problem were first investigated by
Emek et al. [60]. In this publication, a different model of advice was used, which
we described in Section 3.6. They gave an online algorithm that reads 𝑏′ bits per
time step and achieves a competitive ratio of 𝑘𝒪(1/𝑏′). Böckenhauer et al. [29]
exponentially improved this result by showing the existence of a

2
⌈︂

⌈log2 𝑘⌉
𝑏′ − 1

⌉︂
-competitive

online algorithm with advice for 𝑘-server; for details, see the technical report [28].
Renault and Rosén [125] enhanced both the algorithm and analysis, obtaining the
online algorithm Chase with advice, which we presented in Subsection 4.6.4. The
optimal online algorithm with advice for the line Cmp is also due to Renault and
Rosén [125]. The online algorithm with advice for the Euclidean plane Seg is due
to Böckenhauer et al. [29], as well as the lower bound presented for optimal online
algorithms with advice (see Theorems 4.9 and 4.10). The upper bound of 𝑛⌈log2 𝑘⌉
(see Theorem 4.8) was already noted by Emek et al. [60].

Renault and Rosén [125] also studied online algorithms with advice on trees. They
gave a 1-competitive online algorithm with advice that uses a number of advice bits
that grows logarithmically with the tree’s caterpillar dimension. Gupta et al. [69]
studied 𝑘-server on special metric spaces with, for instance, bounded treewidth. For
this large subclass of 𝑘-server instances, the authors gave both well-performing online
algorithms with advice and hardness results. Among other results, they showed that
there is a 3-competitive online algorithm with advice for planar graphs that uses
𝒪(𝑛 log log𝑚) bits, where 𝑚 again denotes the number of vertices of the graph.
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5Job Shop Scheduling

A typical setting in which problems are often intrinsically online is that of scheduling
problems. Here, we are given a number of machines, which are abstractions of
certain resources, for instance, CPUs. Additionally, there is a number of jobs that
we want to assign to these machines in a particular way; we say that we want to
schedule the jobs on the machines. The load of a machine depends on how long
it needs to process all the jobs that are scheduled on it. There are many different
kinds of such problems, for instance, depending on whether the jobs all need the
same processing time, and whether the machines are all equally fast. Also, there
are different optimization goals; as an example, one could ask for a schedule that is
as balanced as possible, that is, where all machines have roughly the same load (if
possible). In our case, we deal with minimizing the so-called makespan, which is the
time until the last job is processed.

This chapter studies a very simple variant of the scheduling problem, namely
the so-called job shop scheduling with unit-length tasks (JSS for short). We assume
there are only two jobs and a fixed number of machines; every job needs each
machine exactly once for one time unit. Thus, the load of every machine is exactly
two. More specifically, each job consists of a number of tasks, and each task
requires one particular machine. These tasks are revealed online while the number of
machines (and thus tasks) is known in advance. First, we analyze deterministic online
algorithms for the problem. Using some very easy arguments, it turns out that no
such algorithm is worse than 2-competitive, and so we need to pay special attention
to small values of the competitive ratio. A more careful analysis then yields a tight
bound of 4/3. Next, we construct a class of randomized online algorithms for the
problem. Using a number of random bits that grows logarithmically with the input
length, we show that it is possible to obtain an expected competitive ratio that tends
to 1 with increasing input length. This algorithm also obtains this solution quality
with a probability that tends to 1. After that, we give barely random algorithms for
the problem. Last, we discuss the advice complexity of JSS by giving both upper
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Chapter 5. Job Shop Scheduling

and lower bounds on the number of advice bits of optimal online algorithms with
advice. We then turn to algorithms with a constant number of advice bits. An upper
bound is implied by the existence of the aforementioned barely random algorithms,
and an almost matching lower bound concludes the chapter.

5.1 Introduction

We are given two jobs that each need to use some given machines for one time unit
(time step) each in some specific order. The goal is to schedule the jobs on the
machines while minimizing the processing time of the job that needs longest to be
processed, by parallelizing as much of the work as possible. The difficult part is that
the order in which the machines need to be used is revealed in an online fashion.
Let the two jobs be denoted by 𝐴 and 𝐵, each of which consists of 𝑚 tasks. These
tasks must be executed in sequential order, and each task needs to be processed on
a specific machine. There are exactly 𝑚 such machines, identified by their indices
1, 2, . . . ,𝑚, and each job has exactly one task for every machine. Processing a task
takes exactly one time unit, and, since both jobs need every machine exactly once,
we may represent them as permutations 𝜋𝐴 and 𝜋𝐵 of the set {1, 2, . . . ,𝑚}. The
meaning of such a permutation is that the tasks must be performed in the order
specified by it and, for every machine, the 𝑖th task must be finished before task 𝑖+ 1
can be processed. If, in some time step, both jobs 𝐴 and 𝐵 ask for the same machine,
one of them has to be delayed. The cost of a solution is given by the total time
needed to finish all tasks of both jobs. As mentioned above, the goal is to minimize
this time (the makespan). Let us continue with a formal definition.

Definition 5.1 (Job Shop Scheduling). Job shop scheduling of two jobs
with unit-length tasks (job shop scheduling or JSS for short) is an online mini-
mization problem. The input is given by two permutations 𝜋𝐴 and 𝜋𝐵 , which
correspond to the indices 1, 2, . . . ,𝑚 of the machines that are requested by
the jobs 𝐴 and 𝐵, respectively. In every time step, an online algorithm for
JSS outputs a pair (run, delay), (delay, run), or (run, run). The entry 𝜋𝐴(𝑖+ 1)
(𝜋𝐵(𝑖+ 1), respectively) is revealed in the time step after which “run” appeared
𝑖 times as the first (second, respectively) entry of a pair, for 1 ≤ 𝑖 ≤ 𝑚 − 1.
If “run” appeared 𝑚 times as one of the entries, all following entries at this
position must be “delay.” The output (run, run) is only allowed if the most
recently revealed entries of 𝜋𝐴 and 𝜋𝐵 are different. The aim is to minimize the
makespan, that is, the last time step in which “run” appears.

Note that JSS has a characteristic which is very important for its theoretical
analysis; the length of the permutations 𝑚 is known in advance as it is a parameter
of the problem. Strictly formally, we should thus be speaking of 𝑚-JSS or even
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(𝑑,𝑚)-JSS as the number of jobs 𝑑 is also fixed from the start (although we only
consider 𝑑 = 2 here). To make the notation easier, we will stick to JSS in this book.

There is another special property of this problem; formally, it is not consistent
with the definition of online problems (see Definition 1.4) since the next part of the
input depends on the algorithm’s answer to the current one. Indeed, in Definition 5.1,
we did not assign the requests to time steps, but they are revealed only after the
preceding ones are processed. Conversely, if the algorithm delays a job, the next task
of this job will not be revealed in the subsequent time step. Of course, in our model
of online computation, the adversary always reacts to the previous answers of the
algorithm; but for this problem, it is not allowed to give certain requests depending
on what the algorithm does. Consequently, the length of the input depends on
the output of the algorithm. If we had allowed the answer (delay, delay), an online
algorithm could even delay every instance an arbitrary number of time steps by
delaying both jobs again and again; of course, this would only increase its cost. We
will treat JSS like any other online problem presented in this book, which will not
cause any formal problems; the only difference is that 𝑚 plays the role of 𝑛.

Note that Definition 5.1 implicitly assumes that every algorithm is done after
2𝑚 time steps, which easily implies that every online algorithm is 2-competitive
(or better) for JSS. All online algorithms presented in this chapter are strictly
competitive. The lower bounds hold for the case where the additive constant 𝛼 is
allowed to be positive since the optimal cost grows with 𝑚.4

Theorem 5.1. Every deterministic online algorithm for JSS is strictly 2-competitive.

Proof. In every time step, one task is scheduled. Therefore, scheduling both jobs
cannot take longer than 2𝑚 time steps. On the other hand, every solution has a cost
of at least 𝑚. �

Before we start a formal analysis of the problem, let us give a small example of an
instance of JSS.

Example 5.1. Suppose there are five machines; thus, we know that we will be given
two permutations of length 5 each, which represent the machine indices 1, 2, 3, 4, 5.
Consider an instance 𝐼 where, in the first time step, a pair (4, 1) is given, which
means that the first job requests machine 4 and the second one requests machine 1.
Since these are two different machines, the two tasks can be scheduled in parallel,
and the output (run, run) is created by some online algorithm Alg. In the next
time step, both jobs request machine 2, that is, the pair (2, 2) is given. Thus, Alg
must delay one of them, say job 𝐵, which corresponds to the output (run, delay).
Since the second task of 𝐵 is not yet processed after that, only the third part of 𝐴,
requesting machine 5, is revealed in the next time step; the corresponding part of
the input is therefore (5, ⟨null⟩). Hence, 𝐵 still requests machine 2 while 𝐴 requests
4More formally, we construct sets of instances that always contain infinitely many instances with
an increasing optimal cost.
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5, which means that the third task of 𝐴 and the second task of 𝐵 can be parallelized,
leading to the output (run, run), and so on.

Suppose the complete permutations are given by

𝜋𝐴 = (4, 2, 5, 3, 1) and 𝜋𝐵 = (1, 2, 3, 5, 4) ,

and the complete output of Alg is given by

Alg(𝐼) = ((run, run), (run, delay), (run, run), (run, delay), (run, run),
(delay, run), (delay, run)) .

This representation of the output is not well suited to give us a good intuition
about the computed solution; a more intuitive representation is given by

ScheduleAlg(𝜋𝐴) = (4, 2, 5, 3, 1, , ) ,
ScheduleAlg(𝜋𝐵) = (1, , 2, , 3, 5, 4) ,

and we see that the makespan is 7. This is not optimal; an optimal solution for this
instance is

ScheduleOpt(𝜋𝐴) = (4, 2, 5, , 3, 1) ,
ScheduleOpt(𝜋𝐵) = (1, , 2, 3, 5, 4)

and has a delay of 1 instead of 2. ♢

To get an even more intuitive view of instances and solutions of JSS, we use the
following graphical representation. Consider an (𝑚 × 𝑚)-grid where we label the
𝑥-axis with 𝜋𝐴 and the 𝑦-axis with 𝜋𝐵. The cell in the 𝑖th column and the 𝑗th
row is simply called “cell (𝑖, 𝑗).” A feasible schedule for the induced instance of JSS
is a path that starts at the upper left-hand corner of the grid (that is, the upper
left-hand corner of (1, 1)) and ends at the lower right-hand corner (that is, the lower
right-hand corner of (𝑚,𝑚)). In every time step, where it is initially located at a
cell (𝑖, 𝑗) and 𝜋𝐴(𝑖) ̸= 𝜋𝐵(𝑗), it may make a diagonal move. In this case, the first
𝑖− 1 tasks of 𝐴 and the first 𝑗 − 1 tasks of 𝐵 have already been processed, and the
two jobs request different machines. However, if 𝜋𝐴(𝑖) = 𝜋𝐵(𝑗), both 𝐴 and 𝐵 ask
for the same machine at the same time, and therefore one of them has to be delayed.
In this case, we say that 𝐴 and 𝐵 collide, and we call the corresponding cells in
the grid obstacles; see Figure 5.1. If some algorithm has to delay a job, we say that
it hits an obstacle and therefore cannot make a diagonal move, but makes either a
horizontal or a vertical one. In the first case, 𝐵 gets delayed; in the second case, 𝐴
gets delayed.

Example 5.2. Let us revisit both the instance and the schedule from Example 5.1.
Since 𝑚 = 5, we draw a grid of size 5 × 5 using the graphical representation, which
is shown in Figure 5.1a. The 𝑥-axis is labeled with 𝜋𝐴, that is, 4, 2, 5, 3, 1, and the
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(a) Alg’s solution
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(b) An optimal solution

Figure 5.1. Example of an instance of JSS together with the schedule produced by the
online algorithm Alg from Example 5.1 and an optimal schedule.

𝑦-axis is labeled with 𝜋𝐵 , that is, 1, 2, 3, 5, 4. The gray squares mark the obstacles,
that is, the positions in which both jobs request the same machine. In the first
time step, machines 1 and 4 are requested simultaneously, thus a diagonal move
can be made. After that, however, machine 2 is requested by both 𝐴 and 𝐵; as
a result, one of the jobs has to be delayed. The online algorithm Alg we study
in this example decides to delay 𝐵, and thus there is a horizontal line shown in
the graphical representation. Then it is revealed that 𝐴 requests machine 5, and
thus a diagonal move is made, meaning that the work is parallelized because now
𝐴 requests machine 5 while 𝐵 still requests machine 2. Right after that, another
obstacle is hit. Eventually, Alg arrives at the lower right-hand corner of the grid,
and it makes three diagonal, two horizontal, and two vertical moves in total. An
optimal schedule makes four diagonal moves and only one horizontal and one vertical
move; see Figure 5.1b. ♢

We will use the graphical representation of instances in all of the subsequent proofs.
Before that, however, we make the following observations, which will be of great
help.

Observation 5.1. For every instance of JSS, the following is true.

(i) We can always assume that one of the two permutations is the identity by
relabeling the machines; in our case, this will be 𝜋𝐴.

(ii) Since 𝜋𝐴 and 𝜋𝐵 are permutations, there is exactly one obstacle per row and
exactly one obstacle per column.

(iii) It follows that there are exactly 𝑚 obstacles in the whole grid.
(iv) Every feasible solution makes exactly as many horizontal moves as it makes

vertical ones. We call the number of horizontal (or, alternatively, vertical)
moves the delay of the solution.

(v) The cost of a solution is equal to 𝑚 plus the delay of the solution. It follows
that every solution has a cost of at least 𝑚.

Exercise 5.1. Prove Observation 5.1(v).
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For any online algorithm Alg, we denote the number of diagonal moves Alg
makes on the grid induced by 𝐼 by 𝑑Alg; ℎAlg and 𝑣Alg are defined analogously as
shorthands for the number of horizontal and vertical moves, respectively. Moreover,
we denote the delay of Alg on 𝐼 by delay(Alg(𝐼)). From Observation 5.1(iv) and
Observation 5.1(v), we conclude

delay(Alg(𝐼)) = ℎAlg = 𝑣Alg

and

cost(Alg(𝐼)) = 𝑚+ delay(Alg(𝐼)) = 𝑚+ ℎAlg = 𝑚+ 𝑣Alg .

Exercise 5.2. As suggested in Observation 5.1(i), relabel the instance

𝜋𝐴 = (14, 4, 6 , 10, 7, 2, 11, 12, 16, 17, 5 , 13, 1 , 8, 15, 3 , 9 , 19, 20, 18) ,
𝜋𝐵 = ( 1 , 6, 17, 19, 8, 9, 2 , 5 , 4 , 13, 12, 11, 15, 7, 20, 16, 18, 10, 14, 3 ) .

Exercise 5.3. Find an optimal solution for the instance

𝜋𝐴 = (1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15) ,
𝜋𝐵 = (1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6 ) .

First, try to figure it out using the permutations only. Then use the graphical representation
to verify your solution.

5.2 Deterministic Algorithms
In this section, we study what can be done by a deterministic online algorithm
for JSS. We have learned in Theorem 5.1 that no algorithm for JSS is worse than
2-competitive. Thus, there is rather small room for improvement. Before we have a
look at what we can do, we define a special class of algorithms. Similarly to demand
paging algorithms for paging and lazy algorithms for 𝑘-server, it will sometimes come
in handy to restrict ourselves to such algorithms. Basically, these algorithms are
greedy ones, but to emphasize the context, we give them a special name.

Definition 5.2 (Ambitious Online Algorithm). An online algorithm for
JSS is called ambitious if it makes a diagonal move whenever possible; that is,
as long as it does not arrive at the right or bottom border of the grid, it always
moves diagonally if no obstacle is in its way.

Considering ambitious algorithms (for lower-bound proofs) is no restriction of
generality similarly to the cases of the aforementioned demand paging and lazy
algorithms. The proof is left to the reader as an exercise.

Theorem 5.2. Every online algorithm for JSS with delay 𝑑 can be transformed into
an ambitious online algorithm for JSS that also has delay 𝑑.
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Figure 5.2. An example input with two jobs each of size 20 and the strategies 𝐷−3
and 𝐷2; obstacles are marked by filled cells.

Exercise 5.4. Prove Theorem 5.2.

Next, we introduce a class of solutions that allows us to bound the optimal
cost from above (and which we will use later when considering randomized online
algorithms in Section 5.3 and online algorithms with advice in Section 5.4). Let
diag0 denote the main diagonal from (1, 1) to (𝑚,𝑚) in the given grid. The diagonal
that has a distance of 𝑖 from diag0 and lies below (above, respectively) it is denoted
by diag−𝑖 (diag𝑖, respectively). For any odd 𝑑 that may depend on 𝑚, we consider a
certain set of diagonal strategies

𝒟𝑑 :=
{︂
𝐷𝑖

⃒⃒⃒⃒
𝑖 ∈

{︂
−𝑑− 1

2 ,−𝑑− 3
2 , . . . ,

𝑑− 1
2

}︂}︂
,

where 𝐷𝑗 is the strategy to move to the starting point of diag𝑗 with |𝑗| moves, to
follow diag𝑗 when possible, and to avoid any obstacle by making a horizontal move
directly followed by a vertical one (thus returning to diag𝑗). We have, for instance,
𝒟7 = {𝐷−3, 𝐷−2, 𝐷−1, 𝐷0, 𝐷1, 𝐷2, 𝐷3}; examples of the diagonal strategies 𝐷−3
and 𝐷2 are shown in Figure 5.2.

Note that it is crucial for our analysis that the strategy returns to the diagonal
even though there might be situations where it is an advantage not to take the
vertical move after the horizontal one; by definition, online algorithms that follow
diagonal strategies are not ambitious algorithms. Now we show that, for any given
instance, there is at least one diagonal strategy that has a rather small cost.
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Theorem 5.3. For every instance of JSS, there is an optimal solution that has a
cost of at most 𝑚+ ⌈

√
𝑚 ⌉.

Proof. We show that an algorithm with a cost of at most 𝑚+ ⌈
√
𝑚 ⌉ can be found

among the diagonal strategies
𝒟2⌈

√
𝑚 ⌉+1 =

{︀
𝐷𝑖 | 𝑖 ∈ {−⌈

√
𝑚 ⌉,−⌈

√
𝑚 ⌉ + 1, . . . , ⌈

√
𝑚 ⌉}

}︀
.

Consider an arbitrary instance 𝐼 of JSS. We prove the claim by computing the
average cost of the algorithms in 𝒟2⌈

√
𝑚 ⌉+1 on 𝐼, and conclude that at least one of

these algorithms must have a cost that is at most as large. Let obs : Z → N denote
a function that gives the number of obstacles that are placed on diag𝑖 in 𝐼. The
number of horizontal moves of any diagonal strategy is the number of horizontal
moves it makes either at the beginning or the end plus the number of obstacles it
hits. Since this number is exactly the delay of this solution, we get

delay(𝐷𝑖(𝐼)) = |𝑖| + obs(diag𝑖) (5.1)

and consequently
cost(𝐷𝑖(𝐼)) = 𝑚+ |𝑖| + obs(diag𝑖) .

Following Observation 5.1(iii), there cannot be more than 𝑚 obstacles in total,
which implies

⌈
√
𝑚 ⌉∑︁

𝑖=−⌈
√
𝑚 ⌉

obs(diag𝑖) ≤ 𝑚 . (5.2)

If we sum over all 𝑖, for −⌈
√
𝑚 ⌉ ≤ 𝑖 ≤ ⌈

√
𝑚 ⌉, using (5.1) and (5.2) we obtain

⌈
√
𝑚 ⌉∑︁

𝑖=−⌈
√
𝑚 ⌉

delay(𝐷𝑖(𝐼)) =
⌈
√
𝑚 ⌉∑︁

𝑖=−⌈
√
𝑚 ⌉

(|𝑖| + obs(diag𝑖))

≤ 𝑚+ 2
⌈
√
𝑚 ⌉∑︁

𝑖=1
𝑖

= 𝑚+ ⌈
√
𝑚 ⌉(⌈

√
𝑚 ⌉ + 1) .

The average delay of the strategies in 𝒟2⌈
√
𝑚 ⌉+1 is therefore at most

𝑚+ ⌈
√
𝑚 ⌉(⌈

√
𝑚 ⌉ + 1)

2⌈
√
𝑚 ⌉ + 1 ≤ ⌈

√
𝑚 ⌉2 + ⌈

√
𝑚 ⌉(⌈

√
𝑚 ⌉ + 1)

2⌈
√
𝑚 ⌉ + 1

= ⌈
√
𝑚 ⌉(2⌈

√
𝑚 ⌉ + 1)

2⌈
√
𝑚 ⌉ + 1

= ⌈
√
𝑚 ⌉ ,

which implies that there has to be at least one deterministic strategy in 𝒟2⌈
√
𝑚 ⌉+1

with at most this delay and therefore a cost of at most 𝑚+ ⌈
√
𝑚 ⌉ on 𝐼. �
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Now that we have an upper bound on the cost of an optimal algorithm for JSS on
any instance, we bound the cost of any deterministic online algorithm from below.
The key idea is that the adversary can always make sure that, after a diagonal move,
any online algorithm has to make a non-diagonal move. In other words, we show
that the adversary can ensure that every second move of a given online algorithm is
non-diagonal.

Theorem 5.4. No deterministic online algorithm for JSS has a cost less than 4/3𝑚.

Proof. Let Alg be any deterministic online algorithm for JSS, and let 𝐼 denote the
instance we describe in what follows. As a consequence of Theorem 5.2, we assume
without loss of generality that Alg is ambitious, that is, it makes a diagonal move
whenever possible. We now show that, as long as Alg did not hit a border, we have
that, for every time step 𝑇𝑖,

• if either 𝑖 = 1 or Alg made a diagonal move in 𝑇𝑖−1, the adversary can force
Alg to make a non-diagonal move in 𝑇𝑖, and

• if Alg made a non-diagonal move in 𝑇𝑖−1, the adversary can assign the tasks
such that this does not prevent it from placing any necessary obstacle later.

Let (𝑥𝑖, 𝑦𝑖) with 1 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛 denote the position of the cell at
whose upper left-hand corner Alg is located at the beginning of time step 𝑇𝑖. Then
the 𝑥𝑖th task of job 𝐴 and the 𝑦𝑖th task of 𝐵 have to be assigned (possibly, one of
them was already assigned earlier). In order to show how the adversary places the
obstacles, we prove that the following is true for every 𝑖.

At most the first max{𝑥𝑖, 𝑦𝑖} machines are used in 𝑇1, 𝑇2, . . . , 𝑇𝑖 for
each of the two jobs. (5.3)

We prove the claims by induction on 𝑇𝑖; an example is shown in Figures 5.3 and 5.4.

Base Case. At the beginning of 𝑇1, Alg is at the upper left-hand corner of the cell
(1, 1). It is easy to see that the adversary can force it to make a non-diagonal
move by placing an obstacle at (1, 1), that is, setting 𝜋𝐴(1) = 𝜋𝐵(1) = 1. After
that, the two first tasks have been assigned, and thus (5.3) holds; see Figure 5.3a.

Induction Hypothesis. The claim holds for 𝑇𝑖−1.
Induction Step. Consider time step 𝑇𝑖. We make a case distinction depending on

Alg’s past and present behavior.
Case 1. Suppose Alg made a diagonal move in 𝑇𝑖−1 (and thus 𝑥𝑖 = 𝑥𝑖−1 + 1

and 𝑦𝑖 = 𝑦𝑖−1 + 1). Then, Alg now enters both a new row and a new column,
and the adversary is able to place a new obstacle as follows. Without loss of
generality, assume 𝑥𝑖−1 ≥ 𝑦𝑖−1 (and thus 𝑥𝑖 ≥ 𝑦𝑖), that is, Alg made at least
as many horizontal moves as vertical ones so far. By the induction hypothesis,
at most the first max{𝑥𝑖−1, 𝑦𝑖−1} = 𝑥𝑖−1 machines have been assigned so far.
Then the adversary sets 𝜋𝐴(𝑥𝑖) = 𝜋𝐵(𝑦𝑖) = 𝑥𝑖−1 + 1 = 𝑥𝑖, hence creating an
obstacle at (𝑥𝑖, 𝑦𝑖). Clearly, (5.3) still holds after this; see Figure 5.3c.
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Figure 5.3. The first 12 time steps of an instance created by the adversary in the proof
of Theorem 5.4.

Case 2. Suppose Alg made a non-diagonal move in 𝑇𝑖−1. In this case, the
adversary cannot force Alg to make another non-diagonal move in 𝑇𝑖 since
there can only be one obstacle per column and one obstacle per row, and Alg
is still either in the same column or the same row as right before 𝑇𝑖−1. Due
to Theorem 5.2, we assume that Alg makes a diagonal move. In such a case,
the adversary needs to reveal the next value of either 𝜋𝐴 or 𝜋𝐵 . Without loss
of generality, assume again that 𝑥𝑖−1 ≥ 𝑦𝑖−1. Recall that, by the induction
hypothesis, at most the first max{𝑥𝑖−1, 𝑦𝑖−1} = 𝑥𝑖−1 machines have been
assigned so far. We need to distinguish two cases depending on the previous
move of Alg.
Case 2.1. Suppose Alg made a horizontal move in 𝑇𝑖−1 (and thus 𝑥𝑖 = 𝑥𝑖−1 +1

and 𝑦𝑖 = 𝑦𝑖−1). Then the adversary sets 𝜋𝐴(𝑥𝑖) = 𝑥𝑖−1 + 1 = 𝑥𝑖; see
Figure 5.3d.

Case 2.2. Suppose Alg made a vertical move in 𝑇𝑖−1 (and thus 𝑥𝑖 = 𝑥𝑖−1 and
𝑦𝑖 = 𝑦𝑖−1 + 1). If 𝑥𝑖−1 = 𝑦𝑖−1, the adversary sets 𝜋𝐵(𝑦𝑖) = 𝑥𝑖−1 + 1 = 𝑦𝑖; see
Figure 5.3j. Conversely, if 𝑥𝑖−1 > 𝑦𝑖−1, then the adversary assigns 𝜋𝐵(𝑦𝑖) = 𝑗,
where 𝑗 with 𝑗 < 𝑥𝑖−1 is the smallest index of some machine that is not yet
assigned for 𝐵; see Figure 5.3f for 𝑥𝑖 > 𝑦𝑖 and Figure 5.3h for 𝑥𝑖 = 𝑦𝑖 .

In both cases, (5.3) holds after assigning the task in 𝑇𝑖.
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Figure 5.4. An example of how to place the obstacles in such a way that any deter-
ministic algorithm cannot make two consecutive diagonal moves.

If Alg hits a border, the adversary simply assigns the remaining jobs in any way.
Now we bound the cost of Alg on 𝐼 from below. Recall that delay(Alg(𝐼)) =

ℎAlg = 𝑣Alg. We have

𝑚 = 𝑑Alg + ℎAlg ⇐⇒ delay(Alg(𝐼)) = 𝑚− 𝑑Alg , (5.4)

which means that the delay of Alg decreases as 𝑑Alg increases.
Thus, what remains to be done is to bound 𝑑Alg from above. To this end, consider

the time step right after which Alg hits one of the borders (possibly arriving at the
lower right-hand corner of the grid). After that, Alg cannot make any additional
diagonal move. For a contradiction, assume that 𝑑Alg ≥ 2𝑚/3 + 1. Since, after
every such move, Alg made a non-diagonal move, Alg made more than 2𝑚/3
non-diagonal moves (recall that Alg starts with a non-diagonal move). Thus, so
far, Alg made more than 𝑚/3 horizontal moves or more than 𝑚/3 vertical moves.
However, this implies that Alg made more than 𝑚/3 + 2𝑚/3 + 1 > 𝑚 moves to the
right or to the bottom, which would lead it outside the grid; a contradiction.

It follows that

𝑑Alg ≤ 2
3 𝑚 ,

and thus, due to (5.4), the delay of Alg is at least 𝑚/3, which leads to a cost of
4𝑚/3 on 𝐼. �
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The first 12 time steps of a sample instance are shown in Figure 5.3; the complete
instance is depicted in Figure 5.4. Using what we have learned so far, we can bound
the competitive ratio of any deterministic online algorithm for JSS as follows.

Theorem 5.5. Let 𝜀 > 0. No deterministic online algorithm for JSS is (4/3 − 𝜀)-
competitive.

Proof. Let 𝜀 > 0, and let 𝑚 > 16/(3𝜀)2. In Theorem 5.3, we have already seen that,
for any instance, there is a solution with cost at most 𝑚+ ⌈

√
𝑚 ⌉. Together with

Theorem 5.4, we therefore obtain a lower bound on the competitive ratio of any
deterministic online algorithm of

𝑚+ 1/3𝑚
𝑚+ ⌈

√
𝑚 ⌉

= 1 + 1
3 · 𝑚− 3⌈

√
𝑚 ⌉

𝑚+ ⌈
√
𝑚 ⌉

= 1 + 1
3

(︂
𝑚+ ⌈

√
𝑚 ⌉

𝑚+ ⌈
√
𝑚 ⌉

− 4⌈
√
𝑚 ⌉

𝑚+ ⌈
√
𝑚 ⌉

)︂
= 1 + 1

3 − 4⌈
√
𝑚 ⌉

3(𝑚+ ⌈
√
𝑚 ⌉)

≥ 1 + 1
3 − 4(

√
𝑚+ 1)

3(𝑚+
√
𝑚)

= 1 + 1
3 − 4

3
√
𝑚

> 1 + 1
3 − 𝜀 ,

(since 𝑚 > 16/(3𝜀)2)

which proves the claim. �

To complement this lower bound, we now prove the existence of a deterministic
online algorithm for JSS that is 4/3-competitive. Most of the ideas we need have
already been presented. Let MDiag be an online algorithm that follows the main
diagonal diag0 at the beginning. If it hits an obstacle, it makes a horizontal move
and continues on diag1. Conversely, if it encounters an obstacle on diag1, it makes
a vertical move, thus returning to diag0. This way, MDiag moves between these
two diagonals while making a diagonal move whenever possible. Thus, the main
difference between MDiag and the algorithms from 𝒟𝑑 is that MDiag does not
immediately return to its assigned diagonal (that is, diag0) after it hits an obstacle.

In a nutshell, the idea of MDiag is to maximize the number of diagonal moves
due to (5.4).

Theorem 5.6. MDiag is strictly 4/3-competitive for JSS.

Proof. Let 𝐼 be any instance of JSS. As in the proof of Theorem 5.4, we note that
right after any non-diagonal move due to an obstacle, the adversary cannot force
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Figure 5.5. A solution computed by MDiag and the blocks used in its analysis.

another delay. Let us first speak about time steps in which MDiag does not hit a
border. Consider any such step in which MDiag starts on the main diagonal, and
in which it hits an obstacle (for instance, 𝑇1). Then, MDiag makes a horizontal
move. In the next time step, MDiag can make a diagonal move. Then, a possibly
empty sequence of diagonal moves follows. If MDiag hits another obstacle, it makes
a vertical move, thus returning to diag0. This is followed by another diagonal move,
and another possibly empty sequence of diagonal moves.

We subdivide the grid into blocks such that every block is a subgrid of maximum
size containing exactly one horizontal move of MDiag. Every block contains exactly
one horizontal and one vertical move; see Figure 5.5. Note that the last block may
not be complete. In the worst case, all blocks (except possibly the last one) have a
size of 3 × 3 and, in every block, MDiag advances three cells on the main diagonal
while making four moves in the worst case. Indeed, if MDiag made more than one
diagonal move after the horizontal move, this ratio would only change in its favor.
Likewise, we can assume that the adversary places another obstacle in the cell that
is entered by the algorithm right after the diagonal move that follows the vertical
move. We distinguish the following cases.

Case 1. Suppose there is no obstacle on the main diagonal. Then MDiag is optimal
as it never leaves this diagonal.

Case 2. Suppose there is at least one obstacle on the main diagonal. In this case,
the optimal solution has to make at least one horizontal move; thus, its cost on 𝐼
is at least 𝑚+ 1.
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Case 2.1. Suppose the last block is complete. Then MDiag reaches the lower
right-hand corner of the grid without hitting the right border first. Then, it has
a cost of at most 4/3𝑚.

Case 2.2. Suppose the last block is incomplete. By definition, the upper left-hand
corner of this block is on the main diagonal and the lower right-hand corner
is identical with the lower right-hand corner of the grid. Let the size of this
block be 𝑙 × 𝑙. In this block, MDiag has a cost of at most 𝑙 + 1 since it moves
to diag1 until it hits the border. The total cost is thus at most

4
3(𝑚− 𝑙) + (𝑙 + 1) ,

which decreases when 𝑙 increases. Since 𝑙 is at least 1, the cost is at most
4
3𝑚+ 1 .

It follows that the strict competitive ratio of MDiag is bounded from above by

4𝑚/3 + 1
𝑚+ 1 ≤ 4

3
as we claimed. �

Exercise 5.5. Give a lower bound on the competitive ratio of any deterministic online
algorithm for JSS that follows a fixed diagonal strategy from 𝒟2⌈

√
𝑚 ⌉+1.

Exercise 5.6. How does your bound of Exercise 5.5 change if the algorithm returns to its
diagonal only after it hits another obstacle and not right after the non-diagonal move?

Exercise 5.7. So far, we assumed that both jobs need to use the same number of machines.
Now consider the case where one of the two needs twice as many as the other one. What
can you say about the competitiveness of deterministic online algorithms in this case?

5.3 Randomized Algorithms
We now have tight bounds on the competitive ratio of deterministic online algorithms
for JSS. More specifically, we found out that such an algorithm is always worse by
a factor of at least roughly 4/3 compared to the optimal solution. In this section,
we once more want to find out how much randomization may help us. To this end,
again consider the class 𝒟𝑑 of diagonal strategies, for some odd 𝑑 ≥ 1; 𝑑 may depend
on 𝑚. Let RDiag𝑑 be a randomized online algorithm that chooses a strategy from
this class uniformly at random using at most Θ(log 𝑑) random bits.5 We start with
a general result that proves an upper bound on the expected competitive ratio that
depends on 𝑑.
5Recall our discussion from Section 2.1; since 𝑑 is odd and therefore not a power of 2, there are
some issues with choosing a strategy uniformly at random.
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Theorem 5.7. RDiag𝑑 is strictly(︂
1 + 1

𝑑
+ 𝑑2 − 1

4𝑑𝑚

)︂
-competitive

in expectation for JSS.

Proof. For every odd 𝑑, consider the random variables 𝑋1, 𝑋2, 𝑋, 𝑌 : 𝒟𝑑 → N, where
𝑋1(𝐷𝑖) is the delay caused by the initial horizontal (vertical, respectively) moves
made by the strategy 𝐷𝑖, 𝑋2(𝐷𝑖) is the delay caused by 𝐷𝑖 due to hitting obstacles,

𝑋(𝐷𝑖) := 𝑋1(𝐷𝑖) +𝑋2(𝐷𝑖)

is 𝐷𝑖’s overall delay, and

𝑌 (𝐷𝑖) := 𝑚+𝑋(𝐷𝑖)

is 𝐷𝑖’s overall cost. Recall that 𝐷−𝑗 and 𝐷𝑗 make the same number of non-diagonal
(vertical or horizontal, respectively) moves at the beginning. Since there are exactly
𝑚 obstacles in total for every instance, we get

E[𝑋2] = 1
𝑑

⎛⎝𝑋2(𝐷0) + 2
(𝑑−1)/2∑︁
𝑖=1

𝑋2(𝐷𝑖)

⎞⎠ ≤ 𝑚

𝑑
,

and since 𝑋1(𝐷0) = 0, we get

E[𝑋1] = 1
𝑑

⎛⎝𝑋1(𝐷0) + 2
(𝑑−1)/2∑︁
𝑖=1

𝑋1(𝐷𝑖)

⎞⎠ = 2
𝑑

(𝑑−1)/2∑︁
𝑖=1

𝑖 = 𝑑2 − 1
4𝑑 .

Due to the linearity of expectation, it follows that

E[𝑌 ] = 𝑚+ E[𝑋] = 𝑚+ E[𝑋2] + E[𝑋1] ≤ 𝑚+ 𝑚

𝑑
+ 𝑑2 − 1

4𝑑 .

As a result, the expected competitive ratio of RDiag𝑑 is at most(︂
(𝑑+ 1)𝑚

𝑑
+ 𝑑2 − 1

4𝑑

)︂
1
𝑚

= 1 + 1
𝑑

+ 𝑑2 − 1
4𝑑𝑚 ,

as we claimed. �

The above class of algorithms proves to be very useful for JSS. In the following
three subsections, we analyze different aspects.
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5.3.1 A One-Competitive Randomized Algorithm
First, we consider a randomized online algorithm that chooses between a number
of diagonals that depends on the number of machines 𝑚. More specifically, as in
Section 5.2, let 𝑑 = 2⌈

√
𝑚 ⌉ + 1. Let RDiag = RDiag2⌈

√
𝑚 ⌉+1 be a randomized

online algorithm that chooses a number 𝑖 uniformly at random, for −⌈
√
𝑚 ⌉ ≤ 𝑖 ≤

⌈
√
𝑚 ⌉, at the beginning (it can do so since 𝑚 is known) and follows the corresponding

diagonal strategy 𝐷𝑖, that is, for a fixed 𝑚,

strat(RDiag) = 𝒟2⌈
√
𝑚 ⌉+1 :=

{︀
𝐷−⌈

√
𝑚 ⌉, 𝐷−⌈

√
𝑚 ⌉+1, . . . , 𝐷⌈

√
𝑚 ⌉

}︀
.

We show that this algorithm achieves an expected competitive ratio that is
asymptotically the best possible.

Theorem 5.8. RDiag has a strict expected competitive ratio with an upper bound
that tends to 1 as 𝑚 tends to infinity for JSS.

Proof. RDiag chooses between exactly 2⌈
√
𝑚 ⌉ + 1 diagonal strategies. As a direct

consequence of Theorem 5.7, RDiag therefore has a strict expected competitive
ratio of at most

1 + 1
2⌈

√
𝑚 ⌉ + 1 + (2⌈

√
𝑚 ⌉ + 1)2 − 1

4𝑚(2⌈
√
𝑚 ⌉ + 1) ≤ 1 + 1

2
√
𝑚

+ (2⌈
√
𝑚 ⌉ + 1)2

4𝑚(2⌈
√
𝑚 ⌉ + 1)

= 1 + 1
2
√
𝑚

+ 2⌈
√
𝑚 ⌉ + 1
4𝑚 ,

which tends to 1 as 𝑚 tends to infinity. �

5.3.2 Bounds with Probability Tending to One
In Section 2.2, we have studied the randomized online algorithm RMark for paging
and showed that it is 2𝐻𝑘-competitive in expectation. Surprisingly, in Section 2.7
we could also prove that this algorithm achieves this bound with a probability that
tends to 1. In this subsection, we prove a similar statement for RDiag. In other
words, we want to show that this algorithm is also 1-competitive with a probability
that tends to 1 with an increasing number of jobs 𝑚.

Theorem 5.9. Let 𝑓 : N → R+ be some decreasing function with 1/𝑓(𝑚) ∈ 𝑜(
√
𝑚).

RDiag is strictly (1 + 𝑓(𝑚))-competitive with a probability that tends to 1 as 𝑚
tends to infinity for JSS.

Proof. Recall that Observation 5.1(v) states that any optimal solution has a cost of
at least 𝑚. Let 𝑙 be the number of considered diagonals that cause RDiag to have
a cost of more than 𝑚(1 + 𝑓(𝑚)). Then, the probability that the computed solution
has a cost of more than 𝑚(1 + 𝑓(𝑚)) is

𝑞 := 𝑙

2⌈
√
𝑚 ⌉ + 1 . (5.5)
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Let us have a closer look at RDiag. The delay of any solution it computes is
caused by two things; the number 𝑖 of horizontal (vertical, respectively) moves the
algorithm makes at the beginning to reach a diagonal with distance 𝑖 (that is, diag𝑖
or diag−𝑖) from the main diagonal, and the number of obstacles hit. Since every
obstacle that is hit is evaded by exactly one horizontal and one vertical move, this
causes an additional cost of exactly 1. Note that 𝑖 is at most ⌈

√
𝑚 ⌉ in any case.

Let 𝑙′ denote the number of diagonals that contain more than 𝑚𝑓(𝑚) − ⌈
√
𝑚 ⌉

obstacles; we call such diagonals expensive. By the above observation, any diagonal
that causes a cost of more than 𝑚+𝑚𝑓(𝑚) must have more than 𝑚𝑓(𝑚) − ⌈

√
𝑚 ⌉

obstacles on it. It follows that 𝑙 ≤ 𝑙′ and hence (5.5) implies

𝑞 ≤ 𝑙′

2⌈
√
𝑚 ⌉ + 1 .

We can now bound 𝑙′ from above as follows. It is easy to see that if 𝑙′ is max-
imally large, all of the 𝑚 obstacles are distributed on the expensive diagonals.
Conversely, since there cannot be more than 𝑚 obstacles for any instance, we have
𝑚 ≥ 𝑙′(𝑚𝑓(𝑚) − ⌈

√
𝑚 ⌉) and therefore

𝑙′ ≤ 𝑚

𝑚𝑓(𝑚) − ⌈
√
𝑚 ⌉

.

As a result, we get

𝑞 ≤ 𝑚

𝑚𝑓(𝑚) − ⌈
√
𝑚 ⌉

· 1
(2⌈

√
𝑚 ⌉ + 1)

= 𝑚

(2⌈
√
𝑚 ⌉ + 1)(𝑚𝑓(𝑚) − ⌈

√
𝑚 ⌉)

≤ 𝑚

(2
√
𝑚+ 1)(𝑚𝑓(𝑚) − 2

√
𝑚)

(since ⌈
√
𝑚 ⌉ ≤ 2

√
𝑚 for every 𝑚 ≥ 1)

= 1
(2

√
𝑚+ 1)(𝑓(𝑚) − 2/

√
𝑚)

≤ 1
𝑓(𝑚)(2

√
𝑚+ 1) − 6 .

(using that 2/
√
𝑚 ≤ 2 for every 𝑚 ≥ 1)

Finally, since 1/𝑓(𝑚) ∈ 𝑜(
√
𝑚), for instance, 𝑓(𝑚) = 1/ log2 𝑚, it immediately

follows that 𝑞 tends to 0 as 𝑚 tends to infinity, which finishes the proof. �

5.3.3 A Barely Random Algorithm
Now consider the randomized online algorithm RDiag𝑑 as defined above, but this
time, let 𝑑 be constant. Note that, in this case, the bound given by Theorem 5.7
tends to 1 + 1/𝑑 as 𝑚 tends to infinity. Moreover, as already discussed, RDiag𝑑 uses
Θ(log 𝑑) random bits. Therefore, RDiag𝑑 is a barely random algorithm for JSS.
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Figure 5.6. The strict expected competitive ratio of RDiag𝑑 depending on log2 𝑑 as
𝑚 tends to infinity.

Theorem 5.10. RDiag𝑑 has a strict expected competitive ratio with an upper bound
that tends to 1 + 1/𝑑 as 𝑚 tends to infinity for JSS. �

The strict expected competitive ratio is shown in Figure 5.6 (to reflect the asymp-
totic behavior, the plot assumes that log2 𝑑 random bits are used and that 𝑑 can
also be even). Later in this chapter, we will complement this bound with a lower
bound using results we obtain for the advice complexity of JSS.

5.4 Advice Complexity
Now that we have a good overview of what is and what is not possible deterministically
and with the help of randomness, we elaborate on the power of advice for JSS. To
this end, we use some of the results from previous sections. It is important to recall
that any online algorithm for this problem already knows 𝑚 from the start.

5.4.1 Optimality
First, let us discuss the amount of information that is both sufficient and necessary
for an online algorithm to produce an optimal solution for JSS. We start with a
straightforward upper bound.

Theorem 5.11. There is an optimal online algorithm with advice for JSS that uses
at most 2⌈

√
𝑚 ⌉ advice bits.

Proof. The idea is to construct an online algorithm with advice that uses one bit
of advice for every obstacle that is hit, indicating whether to move horizontally or
vertically to bypass it. Since we know from Theorems 5.2 and 5.3 that there is
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an ambitious optimal algorithm which makes at most ⌈
√
𝑚 ⌉ vertical and ⌈

√
𝑚 ⌉

horizontal moves, and thus hits at most 2⌈
√
𝑚 ⌉ obstacles, the claim follows. �

It is possible to improve this upper bound by compressing the advice strings. The
proof is left as an exercise for the reader.

Theorem 5.12. There is an optimal online algorithm with advice for JSS that uses
at most 2⌈

√
𝑚 ⌉ − (log2 𝑚)/4 advice bits.

Exercise 5.8. Prove Theorem 5.12.
Hint. Use that every solution makes the same number of horizontal and vertical moves.

Next, we give a lower bound on the advice complexity of any optimal online
algorithm with advice for JSS, which asymptotically matches the upper bound of
Theorems 5.11 and 5.12.

Theorem 5.13. Let 𝜀 > 0. Every optimal online algorithm with advice for JSS has
to use at least (1 − 𝜀)

√︀
𝑚/2 advice bits.

Proof. Let 𝜀 > 0, let 𝑘 be a positive integer, and let 𝑚 be a multiple of 4𝑘 + 13
such that 𝑚 ≥ 145(1 − 𝜀)2/𝜀2. Consider the instance shown in Figure 5.7 that
consists of three levels that are of sizes 2𝑘 + 1, 11, and 2𝑘. Additionally, we need
one more row and one more column to place spare obstacles. Suppose that exactly
one of the two black obstacles 𝑏1 and 𝑏2 is not present. This instance has a size of
(4𝑘 + 13) × (4𝑘 + 13).

Obviously, there is an optimal solution that starts at the upper left-hand corner
and follows the main diagonal until it hits the first obstacle 𝑐 that is in its way.
Depending on which one of the next two obstacles 𝑏1 and 𝑏2 is not present, it makes
a horizontal or a vertical move to avoid the present one. It then follows diag1
(diag−1, respectively) for exactly five moves after which it hits another obstacle,
which it bypasses by returning to the main diagonal. Thereafter, it does not hit any
other obstacle until it reaches the lower right-hand corner. In total, the number of
non-diagonal moves is exactly two (one horizontal and one vertical move as shown
in Figure 5.7).

We now construct an instance 𝐼 that consists of

𝑠 := 𝑚

4𝑘 + 13
such sub-instances, which we call widgets in what follows. All these widgets are
placed consecutively on the main diagonal (that is, for every widget, its main diagonal
is a part of the main diagonal of 𝐼) such that they do not overlap. For now, suppose
that no optimal solution can diverge from the main diagonal by more than 2𝑘 moves
(which means it cannot leave the gray field in Figure 5.7, which we call the active
zone). An optimal solution Opt(𝐼) for 𝐼 enters every widget at its upper left-hand
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Figure 5.7. The widget of size (4𝑘 + 13) × (4𝑘 + 13) used to prove Theorem 5.13 and
an optimal solution (in the absence of 𝑏1) making one horizontal and one vertical move.

corner and leaves it at its lower right-hand corner, acting as described above in
between. This solution has a delay of exactly 𝑠.

We now show that Opt(𝐼) is unique for every 𝐼. To this end, consider a feasible
solution 𝒮 that is different from Opt(𝐼); without loss of generality, 𝒮 is computed
by an ambitious algorithm. 𝒮 acts like Opt(𝐼) in the first 𝑖 widgets 𝑊1,𝑊2, . . . , 𝑊𝑖

after which, in 𝑊𝑖+1, it hits, without loss of generality, 𝑏1. This means that 𝒮 has
to make at least four non-diagonal moves in this widget. If 𝑖+ 1 = 𝑠, we are done.
Thus, assume 𝑖+ 1 < 𝑠. Recall that 𝒮 is not allowed to leave the active zone. It is
easy to see that the following invariant holds for all 𝑊𝑗 with 𝑗 ≥ 𝑖 + 2 as long as
𝒮 does not enter 𝑊𝑗 on the main diagonal diag0 (recall that, after leaving 𝑊𝑖+1, 𝒮
made two more non-diagonal moves than Opt(𝐼) so far).

• If 𝒮 both enters and leaves 𝑊𝑗 on a diagonal with an even index, it makes at
least two non-diagonal moves in 𝑊𝑗 .

• Likewise, if 𝒮 both enters and leaves 𝑊𝑗 on a diagonal with an odd index, it
makes at least two non-diagonal moves in 𝑊𝑗 .

• If 𝒮 enters 𝑊𝑗 on a diagonal with an even index and leaves 𝑊𝑗 on a diagonal
with an odd index, it makes at least three non-diagonal moves in 𝑊𝑗 .
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• If 𝒮 enters 𝑊𝑗 on a diagonal with an odd index and leaves 𝑊𝑗 on a diagonal
with an even index, it makes a least one non-diagonal move in 𝑊𝑗 . If this
happens for the first time, then, after leaving 𝑊𝑗 , 𝒮 still made more than
two non-diagonal moves on average per widget 𝑊𝑖+1,𝑊𝑖+2, . . . ,𝑊𝑗 . If this
happened before, then 𝒮 entered a widget 𝑊𝑗′ with 𝑖+1 < 𝑗′ < 𝑗 on a diagonal
with an even index and left it on a diagonal with an odd index. As seen above,
this caused at least three non-diagonal moves. Hence, 𝒮 again made more than
two non-diagonal moves on average in every widget.

Finally, if 𝒮 enters any widget 𝑊𝑗 with 𝑗 ≥ 𝑖+ 2 on diag0, it cannot be optimal
since it made more non-diagonal moves than Opt(𝐼) so far.

It remains to choose 𝑘 such that if any solution leaves the active zone, it cannot be
optimal, that is, it has a cost larger than 𝑠. Leaving the active zone means making
at least either 2𝑘 + 1 horizontal or 2𝑘 + 1 vertical moves. Hence, we get

𝑚

4𝑘 + 13 + 1 ≤ 2𝑘 + 1 ⇐⇒ 𝑚 ≤ 8𝑘2 + 26𝑘 ,

which is ensured if

𝑘 ≥

√︃
𝑚

8 +
(︂

13
8

)︂2
− 13

8 .

Since 𝑘 must be a natural number, we can safely set

𝑘 :=

⎡⎢⎢⎢
√︃
𝑚

8 +
(︂

13
8

)︂2
− 13

8

⎤⎥⎥⎥ .

Now we are ready to compute 𝑠 for this value of 𝑘. We get

𝑠 = 𝑚

4
⌈︁√︁

𝑚
8 +

(︀ 13
8
)︀2 − 13

8

⌉︁
+ 13

≥ 𝑚

4
(︁√︁

𝑚
8 +

(︀ 13
8
)︀2 − 5

8

)︁
+ 13

≥ 𝑚

4
√︀

𝑚
8 + 4

√︁(︀ 13
8
)︀2 − 5

2 + 13

(since, for any 𝑎, 𝑏 ∈ R+,
√
𝑎+ 𝑏 ≤

√
𝑎+

√
𝑏)

= 𝑚√
2𝑚+ 13

2 − 5
2 + 13

= 𝑚√
2𝑚+ 17

.

Finally, we must show that
𝑚√

2𝑚+ 17
≥ (1 − 𝜀)

√︂
𝑚

2 ,
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which follows from 𝑚 ≥ 145(1 − 𝜀)2/𝜀2.
Until now, we did not speak about algorithms with advice. To this end, suppose

that we consider the set ℐ of all possible inputs as constructed in the above way.
Since, for every widget, there are two possibilities (either 𝑏1 or 𝑏2 is missing), it
follows that |ℐ| = 2𝑠. Furthermore, for every 𝐼 ∈ ℐ, there is one unique optimal
solution, and, for every two different 𝐼, 𝐼 ′ ∈ ℐ, the corresponding optimal solutions
are never the same. Moreover, a fixed deterministic online algorithm cannot be
optimal for 𝐼 and 𝐼 ′, because for one of them some obstacle 𝑐 needs to be evaded by
a horizontal move, and for the other one a vertical move is necessary. This has to be
done (for the first time) in a time step where 𝐼 and 𝐼 ′ cannot be distinguished.

Therefore, as a direct consequence of the pigeonhole principle, an optimal online
algorithm needs to read 𝑠 bits of advice at least. �

We conclude that a rather large amount of advice, namely Θ(
√
𝑚) advice bits, is

necessary to perform optimally for JSS.

5.4.2 Small Competitive Ratio
Now we are interested in the question of what is possible with a constant number
of advice bits, that is, an advice complexity that does not depend on 𝑚. An upper
bound can easily be given since we already know what can be done with a constant
number of random bits for JSS. To this end, consider the online algorithm ADiag𝑑
with advice, which is the counterpart of the randomized online algorithm RDiag𝑑
introduced in Section 5.3, that is, ADiag𝑑 reads ⌈log2 𝑑⌉ advice bits to choose a
diagonal from 𝒟𝑑.

Theorem 5.14. ADiag𝑑 has a strict competitive ratio with an upper bound that
tends to 1 + 1/𝑑 as 𝑚 tends to infinity for JSS.

Proof. This is a direct consequence of Observation 3.2(i) and Theorem 5.10. �

Intuitively speaking, Theorem 5.14 implies that there is always a cheap solution
close to the main diagonal diag0, which is why ADiag𝑑 only needs a few bits to
achieve a good result. Using this idea, it is possible to give an alternative proof
of the upper bound that does not depend on the existence of a randomized online
algorithm. We leave this task as an exercise for the reader.

Exercise 5.9. Prove that there is at least one diagonal strategy in 𝒟𝑑 that has a delay of
at most⌈︂(︂

𝑑2

4 − 𝑑+𝑚

)︂
1
𝑑

⌉︂
.

Exercise 5.10. Using your result from Exercise 5.9, prove that, for every odd 𝑑, ADiag𝑑

uses ⌈log2 𝑑⌉ advice bits and achieves a competitive ratio of at most

1 + 1
𝑑

+ 𝑑

4(𝑚+ 1) − 𝑑+ 1
𝑑(𝑚+ 1) .
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Figure 5.6 shows how the competitive ratio of ADiag𝑑 behaves depending on
the number of advice bits (assuming that log2 𝑑 bits are read instead of ⌈log2 𝑑⌉
and that 𝑑 can also be even). From Theorem 5.5, we know that, for any 𝜀 > 0, no
deterministic online algorithm without advice is (4/3 − 𝜀)-competitive. On the other
hand, the bound on the competitive ratio of ADiag𝑑 tends to 1 + 1/7 (recall that 𝑑
is odd) with only three bits of advice, for 𝑚 tending to infinity. Hence, we can beat
deterministic strategies with only very little additional information.

It is not difficult to see that the analysis of ADiag𝑑 is almost tight for every 𝑑.
Since we will prove a more general result soon, we leave to the reader the proof that
this particular algorithm cannot obtain a competitive ratio that is better when 𝑚
tends to infinity.

Exercise 5.11. Show that, for any odd 𝑑 and any 𝜀 > 0, ADiag𝑑 is not (1 + 1/𝑑 − 𝜀)-
competitive.

So far, we did not care about the uniformity of ADiag𝑑 for different values of 𝑑.
It is, however, not difficult to avoid the non-uniformity, that is, to define a single
algorithm ADiag that reaches a competitive ratio tending to 1 + 1/𝑑, for any odd
𝑑. To do so, the oracle first encodes the number ⌈log2 𝑑⌉ on the advice tape; this
has to be done in a self-delimiting way. From Section 3.2, we know that at most
2⌈log2(⌈log2 𝑑⌉)⌉ additional advice bits are sufficient to do so.

Corollary 5.1. There is an online algorithm ADiag with advice for JSS that has
a strict competitive ratio with an upper bound that tends to 1 + 1/𝑑 as 𝑚 tends to
infinity, and that uses 2⌈log2(⌈log2 𝑑⌉)⌉ + ⌈log2 𝑑⌉ advice bits. �

Up to this point, we have shown that, with a small constant number of advice bits,
it is possible to perform very well. Additionally, in Theorem 5.13, we have proven
that, for any arbitrarily small 𝜀 > 0, (1 − 𝜀)

√︀
𝑚/2 advice bits are necessary to create

an optimal output.
This poses the question of whether we can be (1 + 𝑜(1))-competitive by reading a

constant number of advice bits, that is, whether it suffices to use a constant number
of bits to get arbitrarily close to the optimal solution. In the following, we disprove
this.

Theorem 5.15. Let 𝜀 > 0. No online algorithm with advice for JSS that uses 𝑏
advice bits is(︂

1 + 1
3 · 2𝑏 − 𝜀

)︂
-competitive.

Proof. In the proof of Theorem 5.4, we have seen that there is an adversary that can
make sure that, while some online algorithm Alg′ has not yet hit a border, every
second move of Alg′ is not a diagonal one, which results in a delay of at least 𝑚/3;
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𝐴1

𝐴2

𝐴3

⏟ ⏞ 
𝛿3

⏟ ⏞ 𝛿3

Figure 5.8. A hard instance for Alg as used in the proof of Theorem 5.15, which uses
the construction from the proof of Theorem 5.4 (see Figure 5.4) 2𝑏 times.

see Figure 5.4. Furthermore, we know from Theorem 5.3 that, for every instance of
JSS, there is an optimal solution with a cost of at most 𝑚+ ⌈

√
𝑚 ⌉.

Let 𝜀 > 0, and let Alg be some online algorithm with advice that reads 𝑏 advice
bits. In the following, let 𝑚 be a multiple of 2𝑏 such that 𝑚 > ((6 ·2𝑏+2)/(3 ·2𝑏 ·𝜀))2.
We construct an instance of size 𝑚×𝑚 such that Alg has a delay of at least

𝑚

3 · 2𝑏 .

We impose another virtual grid on the (𝑚 × 𝑚)-grid, where each virtual cell
consists of 𝑚′ ×𝑚′ original cells with

𝑚′ := 𝑚

2𝑏 .
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Let us now consider the 2𝑏 virtual cells on the main diagonal (as shown in Figure 5.8).
We call these cells blocks and label them 𝑆1, 𝑆2, . . . , 𝑆2𝑏 .

Furthermore, similarly to the proof of Theorem 5.13, we call all original cells that
have a deviation of at most 𝑚′ from the main diagonal the active zone (marked
gray in Figure 5.8). Any algorithm that leaves this zone at any point makes at
least 𝑚′ horizontal (vertical, respectively) moves and thus has a delay of at least
𝑚′ > 𝑚/(3 · 2𝑏). We may therefore assume that the given algorithm never leaves the
active zone.

Following Observation 3.1, we may think of Alg as a set strat(Alg) of 2𝑏 determin-
istic algorithms 𝐴1, 𝐴2, . . . , 𝐴2𝑏 we have to deal with. Without loss of generality, we
may assume that each of these algorithms is ambitious. We assign each deterministic
algorithm 𝐴𝑖 ∈ strat(Alg) to exactly one block 𝑆𝑖. Now we construct the input
instance sequentially in a way such that all obstacles are located in some block. Note
that 𝑆𝑖 spans the columns and the rows 𝑚′𝑖 + 1,𝑚′𝑖 + 2, . . . ,𝑚′𝑖 + 𝑚′. We thus
construct the input such that both

𝜋𝐴(𝑚′𝑖+ 1), 𝜋𝐴(𝑚′𝑖+ 2), . . . , 𝜋𝐴(𝑚′𝑖+𝑚′)
and

𝜋𝐵(𝑚′𝑖+ 1), 𝜋𝐵(𝑚′𝑖+ 2), . . . , 𝜋𝐵(𝑚′𝑖+𝑚′)
are permutations of the numbers 𝑚′𝑖+ 1,𝑚′𝑖+ 2, . . . ,𝑚′𝑖+𝑚′.

Assume that, so far, we have constructed the blocks 𝑆1, 𝑆2, . . . , 𝑆𝑖−1. We define
the block 𝑆𝑖 such that 𝐴𝑖 has a delay of at least 𝑚/(3 · 2𝑏), regardless of the content
of any block 𝑆𝑗 , for 𝑗 > 𝑖. Without loss of generality, assume that 𝐴𝑖 reaches the
right border of 𝑆𝑖−1 at distance 𝛿𝑖 above the main diagonal; the case that 𝐴𝑖 reaches
the bottom border of 𝑆𝑖−1 is analogous. Moreover, we define 𝛿1 := 0, since the first
algorithm 𝐴1 starts at the top-left point of the main diagonal. In the following, we
show how to ensure that 𝐴𝑖 has a delay that is sufficiently large in block 𝑆𝑖.

Since there are no obstacles outside the blocks and we assume that 𝐴𝑖 makes a
diagonal move whenever possible, 𝐴𝑖 makes 𝛿𝑖 diagonal moves after leaving 𝑆𝑖−1
until it reaches the top border of 𝑆𝑖, that is, the upper left-hand corner of the cell
(𝑚′𝑖+ 𝛿𝑖 + 1,𝑚′𝑖+ 1). We assign the first 𝛿𝑖 tasks to the first job sequentially, that
is,

𝜋𝐴(𝑚′𝑖+ 𝑗) := 𝑚′𝑖+ 𝑗 ,

for all 𝑗 with 1 ≤ 𝑗 ≤ 𝛿𝑖.
After 𝐴𝑖 reaches the upper left-hand corner of the cell (𝑚′𝑖+ 𝑥,𝑚′𝑖+ 𝑦), the first

𝑚′𝑖+ 𝑥 tasks of the first job and the first 𝑚′𝑖+ 𝑦 tasks of the second job must be
assigned. Similarly to the proof of Theorem 5.4, we maintain the invariant that, in
such a situation, only the numbers (that is, machines) up to 𝑚′𝑖 + max{𝑥, 𝑦} are
used for both jobs.

When 𝐴𝑖 reaches 𝑆𝑖, we employ the strategy of the proof of Theorem 5.4 to ensure
that every second move of 𝐴𝑖 is non-diagonal. At first, we assign

𝜋𝐴(𝑚′𝑖+ 𝛿𝑖 + 1) = 𝜋𝐵(𝑚′𝑖+ 1) := 𝑚′𝑖+ 𝛿𝑖 + 1 ,
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thus creating an obstacle; therefore, the next move of 𝐴𝑖 will be a non-diagonal one.
Whenever 𝐴𝑖 makes a horizontal (vertical, respectively) move, we assign the smallest
possible number as the next task of the first (second, respectively) job. When 𝐴𝑖
makes a diagonal move in cell (𝑚′𝑖+ 𝑥,𝑚′𝑖+ 𝑦), thus reaching the upper left-hand
corner of cell (𝑚′𝑖+ 𝑥+ 1,𝑚′𝑖+ 𝑦 + 1), we assign

𝜋𝐴(𝑚′𝑖+ 𝑥+ 1) = 𝜋𝐵(𝑚′𝑖+ 𝑦 + 1) := 𝑚′𝑖+ max{𝑥, 𝑦} + 1 .

Hence, we create an obstacle and force 𝐴𝑖 to make another non-diagonal move.
We use this strategy until 𝐴𝑖 reaches the right or bottom border of 𝑆𝑖. Assume that
𝐴𝑖 makes ℎ𝑖 horizontal moves, 𝑣𝑖 vertical moves, and 𝑑𝑖 diagonal moves in this part
of the computation (that is, in block 𝑆𝑖). Since every diagonal move is followed by a
non-diagonal one and the first move is non-diagonal, we have ℎ𝑖 + 𝑣𝑖 ≥ 𝑑𝑖. We now
give a lower bound on delay(𝐴𝑖(𝐼)) on the constructed instance. As already stated,
even though we have not yet constructed 𝑆𝑗 , for 𝑗 > 𝑖, we can proceed, because our
bound will not depend on them. Recall that the total number of horizontal and
vertical moves of 𝐴𝑖 over the whole input must be equal, and delay(𝐴𝑖(𝐼)) is defined
as exactly this number; see Observation 5.1(iv). We distinguish two cases depending
on the relation between ℎ𝑖 and 𝑣𝑖.

Case 1. Suppose that ℎ𝑖 ≥ 𝑣𝑖. In this case, 𝐴𝑖 reaches the right border of 𝑆𝑖 (possibly
at the lower right-hand corner of 𝑆𝑖). Since 𝐴𝑖 entered 𝑆𝑖 in column 𝑚′𝑖+ 𝛿𝑖 + 1,
there were 𝑚′ − 𝛿𝑖 non-vertical moves, hence

𝑚′ − 𝛿𝑖 = ℎ𝑖 + 𝑑𝑖 ≤ 2ℎ𝑖 + 𝑣𝑖 ≤ 3ℎ𝑖 .
Therefore, ℎ𝑖 ≥ (𝑚′ − 𝛿𝑖)/3. Since 𝐴𝑖 leaves 𝑆𝑖−1 at distance 𝛿𝑖 above the main
diagonal, it made at least 𝛿𝑖 horizontal moves before it entered 𝑆𝑖. Thus, we can
bound the total number of horizontal moves of 𝐴𝑖, which is equal to delay(𝐴𝑖(𝐼)),
by

𝛿𝑖 + ℎ𝑖 ≥ 𝑚′ + 2𝛿𝑖
3 ≥ 𝑚′

3 .

Case 2. Suppose that ℎ𝑖 < 𝑣𝑖. Assume that 𝐴𝑖 leaves 𝑆𝑖 at distance 𝛿′
𝑖 above the

bottom border of 𝑆𝑖; if 𝐴𝑖 reaches the bottom border (and again possibly the lower
right-hand corner of 𝑆𝑖), 𝛿′

𝑖 = 0. Since 𝐴𝑖 made 𝑚′ − 𝛿′
𝑖 non-horizontal moves in

𝑆𝑖, we have
𝑚′ − 𝛿′

𝑖 = 𝑣𝑖 + 𝑑𝑖 ≤ 2𝑣𝑖 + ℎ𝑖 ≤ 3𝑣𝑖 ,
and thus 𝑣𝑖 ≥ (𝑚′ − 𝛿′

𝑖)/3. After leaving 𝑆𝑖, 𝐴𝑖 must make at least 𝛿′
𝑖 vertical

moves to end up at the main diagonal. Hence, the total number of vertical moves
of 𝐴𝑖, which is equal to delay(𝐴𝑖(𝐼)), can be bounded by

𝛿′
𝑖 + 𝑣𝑖 ≥ 𝑚′ + 2𝛿′

𝑖

3 ≥ 𝑚′

3 .

In both cases, 𝐴𝑖 has a delay of at least 𝑚′/3. Therefore, after constructing all
blocks 𝑆𝑖 in the described way, we obtain an instance for which every 𝐴𝑗 ∈ strat(Alg)
has a cost of at least 𝑚+𝑚/(3 · 2𝑏) as we claimed.
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Hence, the makespan of this algorithm is at least

𝑚

(︂
1 + 1

3 · 2𝑏

)︂
.

Since any optimal solution has a cost of at most 𝑚+ ⌈
√
𝑚 ⌉, it remains to show that

𝑚
(︀
1 + 1

3·2𝑏

)︀
𝑚+ ⌈

√
𝑚 ⌉

> 1 + 1
3 · 2𝑏 − 𝜀 ,

which holds if

1 + 1
3 · 2𝑏 >

(︂
1 + 1

3 · 2𝑏 − 𝜀

)︂(︂
1 +

√
𝑚+ 1
𝑚

)︂
,

which is equivalent to
𝑚√
𝑚+ 1 >

1
𝜀

+ 1
3 · 2𝑏 · 𝜀

− 1 .

This is implied by

𝑚

2
√
𝑚
>

3 · 2𝑏 + 1
3 · 2𝑏 · 𝜀

,

which follows from 𝑚 > ((6 · 2𝑏 + 2)/(3 · 2𝑏 · 𝜀))2. �

Using this result, an easy calculation shows that the bound of Theorem 5.14 (and
Exercise 5.10) is tight up to a multiplicative constant of roughly

3 · 2𝑏 + 3
3 · 2𝑏 + 1 ,

which tends to 1 for increasing 𝑏.

5.5 Historical and Bibliographical Notes
Scheduling problems form a huge and important class of problems in computer
science and operations research, and we only dealt with a very special one in this
chapter. There is a lot of literature on scheduling, for instance, the textbooks of
Brucker [40], Pinedo [124], and Conway et al. [48]. The textbook of Hromkovič [81]
also gives a more detailed introduction to the variant that we studied here.

While the general offline job shop scheduling problem is well known to be 𝒩 𝒫-hard
(shown by Garey et al. [66]), it is obvious that the considered special case is efficiently
solvable in an offline scenario; indeed, we simply need to calculate a shortest path
on a sparse, directed, acyclic graph, which can be done in linear time [49]. The
graphical representation that we used to visualize instances of JSS is due to Akers [2],
and it was used since in many other publications [30, 39,76,81,83,137].
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The results on deterministic online algorithms and the randomized online algorithm
RDiag were introduced by Hromkovič et al. [83] together with an analysis of the
more general problem where the number of jobs is arbitrary. This generalization leads
to graphical representations of the instances that correspond to higher-dimensional
grids. Akveld and Bernhard [3] improved the randomized online algorithm from
Hromkovič et al. [83] for the case of three jobs; in this paper, the authors also answer
Exercise 5.7. Mömke [119] considered the case where the tasks may each have lengths
up to 𝑘 units, where 𝑘 ∈ N+. The observation that RDiag also performs well with
a probability that tends to 1 was first made by Komm [97]. Komm et al. [100] later
gave a similar result for an arbitrary number of jobs.

JSS was among the very first problems studied in the model of advice complexity.
Böckenhauer et al. [30] proved the upper bound on optimality from Theorem 5.11
together with an asymptotically matching lower bound; more details are found in the
technical report [31]. Komm [97] improved this lower bound by a factor of roughly√

2 (see Theorem 5.13), and also showed the upper bound of Theorem 5.12. Komm
and Královič [101,102] studied the connection between barely random algorithms
and online algorithms with small advice for both paging (see Section 2.6) and JSS. In
this paper, they proved Exercises 5.9 and 5.10, and they established the lower bounds
from Theorem 5.15 and Exercise 5.11. Wehner [141] showed that the lower bound of
Theorem 5.13 can also be adapted to JSS with three jobs. Theorem 5.2 was proven by
Böckenhauer et al. [30], and Theorem 5.12 was proven by Komm [97]. Wehner [142]
studied the advice complexity of job shop scheduling with two jobs against a more
powerful adversary that is allowed to randomly choose between different instances.
Besides that, Wehner [143] considered an alternative cost measure, namely the delay
of a given solution instead of the makespan.

There has also been research on online algorithms with advice for online makespan
scheduling. Dohrau [55] focused on what can be done for makespan scheduling where
only a sublinear number of advice bits are allowed. He showed that, surprisingly,
even a constant number of advice bits is sufficient to obtain a competitive ratio that
is arbitrarily close to 1. Renault et al. [126] considered scheduling problems with
advice where the objective is to minimize the makespan, to maximize the load of
the machine with smallest load (machine cover), or to minimize the ℓ𝑝-norm of the
loads; they gave a general framework that allows us to obtain online algorithms with
advice that use a linear number of advice bits and achieve a competitive ratio that
is also arbitrarily close to 1. Albers and Hellwig [7] followed a similar approach by
allowing an online algorithm to produce parallel schedules. The goal is that, for any
instance, at least one of these schedules performs well while minimizing their total
number; this can be seen as minimizing |strat(Alg, 𝑛)| for a given online algorithm
Alg with advice instead of its advice complexity, that is, log2(|strat(Alg, 𝑛)|).

182



6The Knapsack Problem

This chapter revisits a maximization problem that we already briefly studied in
Chapter 1 in the context of approximation algorithms. We are given a knapsack of
fixed capacity and we want to pack a number of objects into it; each object has both
a weight and a value (we start by assuming that both are the same, and speak of
the simple knapsack problem as we did before). The main difference is that this time
the objects are not known in advance, but arrive gradually in consecutive time steps.
In every such step, an online algorithm gets offered an object, and it must decide
whether to pack it into the knapsack; this decision is final.

We study this problem thoroughly, that is, we analyze what can and cannot be
done deterministically, randomized, or with advice. Our aim is to get a full picture.
An intriguing property of the simple knapsack problem is its threshold behavior with
respect to both advice and randomization. We start with an easy proof that shows
that any deterministic online algorithm has an arbitrarily bad competitive ratio.
Then we show that a linear number of advice bits is both sufficient and necessary to
obtain an optimal result. Next, using arguments that basically make use of cleverly
applying a greedy strategy, we prove that one advice bit allows for a 2-competitive
online algorithm. After that, we show that any increase does not help until a number
of advice bits is supplied that grows logarithmically with the input length. With this
many advice bits, we can even design an online algorithm that is (1 + 𝜀)-competitive,
for any 𝜀 > 0. However, to be “truly optimal” and not just “almost optimal,” we
need a further increase of the number of advice bits; specifically, as mentioned above,
we need a number that is linear in the input length. It turns out that, for the
simple knapsack problem, one single random bit is in expectation as powerful as one
advice bit. In other words, there is a randomized online algorithm (a barely random
algorithm) that uses only one random bit and achieves an expected competitive
ratio of 2. Surprisingly, this is where the power of randomness ends for this problem.
We prove that no number of random bits allows for a better algorithm; thus, a
logarithmic, linear, or even exponential number of random bits are as powerful as a
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single one. Next, we turn to resource augmentation, which means that we allow the
online algorithm to use a knapsack that is a little larger than the one the optimal
solution uses.

Last, we study the general online knapsack problem, where the weights and values
of the offered objects are different values in general. We prove that if the values of
the objects are not too large, there is an online algorithm with logarithmic advice
that also computes a solution that is almost optimal; however, the advice complexity
here is larger than for the simple variant of the problem. Moreover, we use Yao’s
principle (see Theorem 2.6 and the preceding discussion) to show that there is no
competitive randomized online algorithm at all for the general problem.

6.1 Introduction
As in Definition 1.3, we denote the capacity of the knapsack by a natural number 𝐵.
In our online setting, this parameter is known to any online algorithm in advance.
Note that, for any given 𝐵, we can scale down all weights of given objects by dividing
them by 𝐵, and set 𝐵 := 1. To make things easier, we will thus assume that we deal
with a class of online knapsack problems where the capacity is 1 without any loss of
generality. In contrast to Definition 1.3, the weights and values of the objects are
thus real numbers. We now define the general knapsack problem where the weights
and values of objects may be different. However, we start by studying the simple
version of the problem.

Definition 6.1 (Online Knapsack Problem). The online knapsack problem
is an online maximization problem. An instance 𝐼 = ((𝑤1, 𝑣1), (𝑤2, 𝑣2), . . . ,
(𝑤𝑛, 𝑣𝑛)) consists of a sequence of 𝑛 pairs, where we call 𝑤𝑖 ≤ 1 the weight and
𝑣𝑖 the value of the 𝑖th object, where 1 ≤ 𝑖 ≤ 𝑛. A feasible solution is a set of
indices 𝑂 ⊆ {1, 2, . . . , 𝑛} such that∑︁

𝑖∈𝑂
𝑤𝑖 ≤ 1 .

The objective is to choose 𝑂 such that∑︁
𝑖∈𝑂

𝑣𝑖

is maximized. The objects are offered to an online algorithm one after another,
one in every time step. In the corresponding time step, the algorithm must
decide whether to pack the object into the knapsack or not. This decision cannot
be changed afterwards.

Throughout this chapter, we simply speak of the “(simple) knapsack problem”
instead of the “online (simple) knapsack problem.” For the simple version of the
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1

OptAlg

1

𝜀

(a) Case 1. Object of weight 1 is offered

1

OptAlg

𝜀

(b) Case 2. No further object is offered

Figure 6.1. An adversary for the simple knapsack problem.

problem, we see that the gain of any solution is bounded from above by the knapsack
capacity 1. This implies that any online algorithm (even one that never chooses to
pack any object into the knapsack) is 1-competitive since we can always choose the
additive constant from Definition 1.6 to be 1. We therefore only speak about the
strict competitive ratio when dealing with the simple knapsack problem. Still the
situation is somewhat different to that of the job shop scheduling problem, which we
studied in Chapter 5; for the simple knapsack problem, no online algorithm knows
an upper bound on the length of the input in advance.

6.2 Deterministic Algorithms

We now investigate the strict competitive ratio of deterministic online algorithms
for the simple knapsack problem. First, we observe that the greedy algorithm we
studied in Chapter 1 for the offline version first sorted the objects. Obviously, we
cannot follow such a strategy in the online version since we never know which objects
are yet to be offered, and we need to make a definite decision in every time step.
This is bad news; and the following theorem formalizes this dilemma by showing
that every online algorithm has a strict competitive ratio that is arbitrarily large.

Theorem 6.1. Let 𝜀 > 0. No deterministic online algorithm for the simple knapsack
problem is better than strictly 1/𝜀-competitive.

Proof. Let Alg be any deterministic online algorithm for the simple knapsack
problem. We construct an adversary that first offers an object 𝑤 with a weight of 𝜀.
We can make a simple case distinction depending on whether Alg decides to pack
𝑤 into the knapsack or not; both cases are shown in Figure 6.1.
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Case 1. If Alg decides to pack 𝑤 into the knapsack, a second object of weight 1 is
offered in time step 𝑇2, which obviously does not fit into the knapsack anymore.
In this case, Alg has a performance of 1/𝜀.

Case 2. Conversely, if Alg decides not to pack 𝑤, no other object is offered. In this
case, the gain of Alg is 0 while the optimal gain is 𝜀.

The claim follows. �

Exercise 6.1. Suppose we change Definition 6.1 such that the capacity 𝐵 is some arbitrary
positive integer known in advance. Does this change anything in terms of the reachable
non-strict competitive ratio?

Exercise 6.2. Suppose 𝐵 becomes a part of the input and is given as the first request, as
it is in Definition 1.3. Does this change anything compared to Exercise 6.1?

Exercise 6.3.⋆ Again, suppose 𝐵 becomes a part of the input as in Definition 1.3. Prove
that, defined this way, the simple knapsack problem becomes a so-called scalable problem.
This means that if there is some 𝑐-competitive online algorithm with some additive constant
𝛼, then there also is a 𝑐-competitive online algorithm where the additive constant is
arbitrarily small (but positive).

Exercise 6.4. Suppose we consider an adversary that is not allowed to end the input after
at most two requests, but that is required to give an arbitrarily long sequence of objects,
where the weight of every object must be positive. More precisely, it must construct an
input of length 𝑛, for any 𝑛 ∈ N+. What is the best lower bound you can prove now?

Exercise 6.5. Consider the following variant of the problem, which we call the simple
removable knapsack problem. Here, an online algorithm is allowed to remove objects it
already packed into the knapsack. However, once an object is removed, it cannot be packed
again. We see that there is a simple online algorithm for this problem that is optimal on
the instances from the proof of Theorem 6.1. Show that this does not hold in general. More
precisely, prove that any online algorithm for the simple removable knapsack problem has a
strict competitive ratio of at least 3/2.

We have just seen that every deterministic online algorithm performs very poorly
and this of course includes the greedy algorithm KnGreedy. However, this strategy
is not that bad if we restrict ourselves to a specific subclass of instances.

Theorem 6.2. For every instance of the simple knapsack problem for which all
objects have a weight of at most 𝛽, KnGreedy obtains a gain of at least 1 − 𝛽 or it
is optimal.

Proof. We distinguish two cases depending on the total weight of all objects in the
given instance.

Case 1. If the total weight is at most 1, KnGreedy is optimal as it packs every
object into the knapsack.
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Case 2. If the total weight is larger, the space that is unused in KnGreedy’s
solution must be smaller than 𝛽. Otherwise, there would be space for another
object. Thus, the knapsack is filled up to a fraction that is larger than 1 − 𝛽.

The claim follows. �

For another subclass, KnGreedy is even optimal.

Theorem 6.3. For every instance of the simple knapsack problem for which an
optimal solution has a gain of at most 1/2, KnGreedy is optimal.

Proof. Let 𝐼 be such an instance. If gain(Opt(𝐼)) ≤ 1/2, we clearly also have
gain(KnGreedy(𝐼)) ≤ 1/2. Now, if gain(KnGreedy(𝐼)) < gain(Opt(𝐼)), this
must be due to the fact that KnGreedy did not pack an object into the knapsack
that has a weight larger than 1/2. But this is a direct contradiction as it implies the
existence of an optimal solution with a gain that is larger than 1/2. �

In the following section, we will design online algorithms with advice for the simple
knapsack problem, and (to this end) we will make use of Theorems 6.2 and 6.3.

6.3 Advice Complexity
Now that we have seen that deterministic online algorithms for the simple knapsack
problem perform very badly, we want to investigate what can be done with advice.

6.3.1 Optimality
We start with the number of advice bits that are sufficient and necessary to compute
an optimal solution. The following upper bound is easy to prove.

Theorem 6.4. There is an optimal online algorithm with advice for the simple
knapsack problem that uses 𝑛 advice bits.

Proof. For each of the 𝑛 objects the algorithm gets offered, it reads a bit from the
advice tape that tells it whether the current object is part of an arbitrary fixed
optimal solution. As a consequence, the algorithm computes this solution. �

Things get more interesting if we complement this result with the following
theorem, which shows that the upper bound is essentially tight. The central idea of
the following proof is that no power of 2 is the sum of any other distinct powers of 2.

Theorem 6.5. Every optimal online algorithm with advice for the simple knapsack
problem has to use at least 𝑛− 1 advice bits.
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Proof. For every 𝑛 ≥ 2, we construct a set ℐ (𝑛) of instances of the simple knapsack
problem as follows. Consider an instance that consists of the requests

1
2 ,

1
4 , . . . ,

1
2𝑛−1 , 𝑤𝑠 ,

where 𝑤𝑠 is defined as

𝑤𝑠 := 1 −
𝑛−1∑︁
𝑖=1

𝑠𝑖2−𝑖 ,

for a binary string 𝑠 = 𝑠1𝑠2 . . . 𝑠𝑛−1; see Example 6.1. Now consider the first
𝑛 − 1 objects, which are the same for any fixed 𝑛. Two different subsets of these
objects obviously lead to two different partial weights. Thus, for every value of 𝑤𝑠
(equivalently, 𝑠), there is a unique optimal solution. To be able to compute this
solution, an online algorithm must accept the correct objects in the first 𝑛− 1 time
steps. Only then packing the object 𝑤𝑠 into the knapsack fills it up to 1.

If some online algorithm uses fewer than 𝑛− 1 advice bits, it can only distinguish
between fewer than 2𝑛−1 different instances. Thus, following the pigeonhole principle,
it behaves identically on two of them and cannot be optimal for both since these
two instances have different optimal solutions. �

Example 6.1. For an input length 𝑛 = 8 and a binary string 𝑠 = 1101101, we get
an instance 𝐼 that consists of the requests

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 , and 𝑤𝑠 = 1 −

(︂
1
2 + 1

4 + 1
16 + 1

32 + 1
128

)︂
= 109

128 ,

in this order. 𝐼 has a unique optimal solution
1
2 ,

1
4 ,

1
16 ,

1
32 ,

1
128 , 𝑤𝑠

of gain 1. ♢

Exercise 6.6. Give an alternative proof of Theorem 6.5 using partition trees (see Defini-
tion 3.3).

6.3.2 Small Advice
It follows that we need a lot of additional information to be optimal for the simple
knapsack problem. On the other hand, as we have seen before, we are arbitrarily
bad without any advice. What happens between these two extrema? Surprisingly,
even one bit of information enables us to design a 2-competitive online algorithm.
Consider the online algorithm KnOne with advice that reads one advice bit at the
beginning; depending on its value the algorithm either follows a greedy strategy or
waits for an object with a weight of more than 1/2.
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Theorem 6.6. KnOne is strictly 2-competitive for the simple knapsack problem.

Proof. Again, we make an easy case distinction; this time depending on whether
there is an object with a weight of more than 1/2 in the input.
Case 1. If such an object exists, the oracle tells KnOne by setting the first bit on

the advice tape to 1. Then the first object with a weight of more than 1/2 gets
packed into the knapsack. Since any optimal algorithm has a gain of at most 1,
KnOne’s gain is at least half as good as the optimal one.

Case 2. If there is no such object in the input, the first bit on the advice tape is
set to zero. In this case, KnOne follows a greedy strategy, and the claim follows
immediately from Theorem 6.2.

In both cases, the optimal gain is at most twice as large as that of KnOne. �

6.3.3 Logarithmic Advice
So one bit is all that is missing to get from an arbitrarily bad solution to a 2-
competitive one. The next question we should try to answer is how much it helps
to slightly increase the number of advice bits. Are two bits more powerful than
one? How about three, 10, or 100? Almost as surprising as the preceding result is
the following theorem, which basically states that it does not help at all to further
increase the number of advice bits until a logarithmic number is reached.
Theorem 6.7. Let 𝜀 > 0. No online algorithm with advice for the simple knapsack
problem that uses fewer than log2(𝑛− 1) advice bits is better than strictly (2 − 𝜀)-
competitive.

Proof. In what follows, let

𝛿 := 𝜀

4 − 2𝜀 ,

and let Alg be some online algorithm with advice for the simple knapsack problem
that reads 𝑏(𝑛) < log2(𝑛− 1) advice bits for inputs of length 𝑛. We construct a set
ℐ (𝑛) that contains instances 𝐼𝑗 with 1 ≤ 𝑗 ≤ 𝑛− 1 that consist of the requests

1
2 + 𝛿2,

1
2 + 𝛿3, . . . ,

1
2 + 𝛿𝑗+1,

1
2 − 𝛿𝑗+1,

1
2 + 𝛿, . . . ,

1
2 + 𝛿⏟  ⏞  

𝑛−𝑗−1 times

.

We immediately observe that
|ℐ (𝑛)| = 𝑛− 1 = 2log2(𝑛−1) > 2𝑏(𝑛) ,

which means that in ℐ (𝑛) there are more instances than there are different advice
strings for Alg. Now we can again use the pigeonhole principle and argue that there
are two different instances for which Alg gets the same advice. To be optimal for an
input 𝐼𝑗 , Alg must pack exactly the 𝑗th and the (𝑗 + 1)th object into the knapsack
and this solution is unique. This is easy to see by the following case distinction.

189



Chapter 6. The Knapsack Problem

⏟  ⏞  
𝑠1

1

⏟  ⏞  
𝑠2

ℎ𝛿⏞  ⏟  

Figure 6.2. The knapsack as it is packed by an optimal solution using heavy and light
objects.

Case 1. If Alg packs the 𝑖th object, where 𝑖 < 𝑗, then no other object can be packed
into the knapsack afterwards; in particular, there is no space left in the knapsack
for the (𝑗 + 1)th object since

1
2 + 𝛿𝑖+1 + 1

2 − 𝛿𝑗+1 > 1 .

Case 2. Conversely, if Alg packs the 𝑖th object, where 𝑖 > 𝑗, then there is also no
space for any of the subsequent objects, which all have a weight of 1/2 + 𝛿.

It follows that if Alg gets the same advice for two different instances from ℐ (𝑛), its
gain on one of them is at most 1/2 + 𝛿; therefore, the achievable strict competitive
ratio is not better than

1
1
2 + 𝛿

= 2 − 𝜀

as we claimed. �

Next, we prove an upper bound that asymptotically matches the preceding one
with respect to the number of advice bits used. Even better, we show that with a
number of advice bits that is logarithmic in the input length, we can get arbitrarily
close to an optimal solution; this is rather surprising as in Theorem 6.5 we have
already seen that we need a linear number of advice bits to be “really optimal”
and not just “almost optimal.” To prove the following theorem, we make use of
self-delimiting strings, which we discussed in Chapter 3.

Theorem 6.8. Let 𝜀 > 0. There is a strictly (1 + 𝜀)-competitive online algorithm
KnLog with advice for the simple knapsack problem that uses 𝒪(log 𝑛) advice bits.

Proof. In the following, let

𝛿 := 𝜀

3 + 3𝜀 ,

and note that KnLog can compute 𝛿 without any advice since it knows 𝜀. Further-
more, let 𝐼 be an arbitrary instance of the simple knapsack problem.

We make a case distinction depending on the objects that an arbitrary but fixed
optimal solution Opt(𝐼) for 𝐼 packs into the knapsack.
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Case 1. First, we assume that there is no object with a weight larger than 𝛿 in 𝐼;
obviously, this can be communicated with one bit of advice at the beginning. In
this case, KnLog simply implements a greedy strategy; following Theorem 6.2,
the algorithm achieves a strict competitive ratio of at most

1
1 − 𝛿

= 1 + 𝛿

1 − 𝛿
= 1 + 𝜀

3 + 2𝜀 ≤ 1 + 𝜀

in this case and we are done.
Case 2. Now we suppose that there is at least one object with a weight larger than
𝛿 in 𝐼. As a consequence, Opt(𝐼) consists of two disjoint sets of objects, say 𝑆1
and 𝑆2 (𝑆1 or 𝑆2 may be empty). 𝑆1 contains all objects with a weight of more
than 𝛿 (we call these objects “heavy”), and 𝑆2 contains objects that have a weight
of at most 𝛿 (we call those objects “light”). Let |𝑆1| = 𝑘, and let 𝑠1 denote the
sum of all weights of objects in 𝑆1; 𝑠2 is defined analogously. The indices of the
heavy objects (with respect to 𝐼) are written on the advice tape such that KnLog
packs all objects from 𝑆1 into the knapsack when they are offered.
Next, we need to take care of the light objects, but we cannot spend as much
advice as would be necessary to encode their positions. Instead, the idea is to
encode a lower bound on the part of the knapsack that is filled in Opt(𝐼) with
light objects, and to make KnLog pack light objects using the greedy strategy as
long as their total weight is smaller than this bound. More precisely, the oracle
writes a number ℎ on the advice tape such that

ℎ𝛿 ≤ 𝑠2 < (ℎ+ 1)𝛿 . (6.1)

Obviously, ℎ ≤ 1/𝛿 since 𝑠2 ≤ 1. KnLog is then able to compute ℎ𝛿 as the
abovementioned lower bound for the part of the knapsack that is filled with light
objects in Opt(𝐼). Therefore, every light object that is offered to the algorithm is
packed into the knapsack as long as the total weight of all light objects that are
already packed is at most ℎ𝛿; see Figure 6.2.
Now we make a further case distinction that again depends on Opt(𝐼).
Case 2.1. If Opt does not pack any light objects into the knapsack, then KnLog

is clearly optimal, because it packs all heavy objects.
Case 2.2. Suppose that Opt packs at least one light object into the knapsack

and has a gain smaller than 1 − 𝛿. In this case, it follows that Opt packs all
light objects into the knapsack. The oracle then simply writes ℎ = ⌈1/𝛿⌉ on the
advice tape and KnLog is again optimal.

Case 2.3. So suppose that Opt packs at least one light object and its solution
has a gain of at least 1 − 𝛿. Now we bound what we lose (compared to Opt(𝐼))
due to the fact that KnLog does not necessarily pack “the best selection” of
light objects.
When restricting ourselves to light objects, we can think of KnLog as a greedy
algorithm that works on an instance 𝐼ℎ𝛿 for a knapsack of capacity ℎ𝛿, where
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every object has a weight of at most 𝛿. Again, we can make use of Theorem 6.2,
which states that KnLog has a gain of at least ℎ𝛿− 𝛿 on 𝐼ℎ𝛿, or is even optimal.
In the former case, (6.1) implies that the gain of KnLog on 𝐼ℎ𝛿 is at least
𝑠2 − 2𝛿.
To conclude, KnLog has a gain of at least 𝑠1 +𝑠2 −2𝛿 and Opt’s gain is exactly
𝑠1 + 𝑠2, and is furthermore bounded by 1 − 𝛿 ≤ gain(Opt(𝐼)) ≤ 1. For the
strict competitive ratio of KnLog we therefore get

𝑠1 + 𝑠2

𝑠1 + 𝑠2 − 2𝛿 ≤ 1
1 − 3𝛿 = 1 + 3𝛿

1 − 3𝛿 = 1 + 𝜀

in this case.

To finish the proof, we bound the number of advice bits from above.

• First, KnLog needs to read one bit that indicates whether 𝐼 contains at least
one heavy object.

• As already mentioned, ℎ ≤ 1/𝛿 since 𝑠2 ≤ 1. Thus, ℎ is a natural number
between 0 and ⌈1/𝛿⌉, which can be encoded with ⌈log2(⌈1/𝛿⌉ + 1)⌉ bits.

• Furthermore, we note that no solution can pack more than 1/𝛿 heavy objects
since the total weight of these objects would be larger than 1. Thus, 𝑘 is also
a natural number between 0 and ⌈1/𝛿⌉.

• Note that the encoding of 𝑘 and ℎ does not need to be self-delimiting since
KnLog knows 𝛿 and can therefore compute upper bounds on these values on
its own. The actual encodings of these two numbers are padded with leading
zeros by the oracle to obtain the correct length.

• The index of each of the 𝑘 heavy objects is encoded using ⌈log2 𝑛⌉ bits.
• To be able to decode the advice, KnLog has to know the number ⌈log2 𝑛⌉,

which needs to be encoded in a self-delimiting form; according to the ob-
servations made in Section 3.2, this can be achieved using 2⌈log2(⌈log2 𝑛⌉)⌉
bits.

Altogether, we can bound the number of advice bits from above by

1 + 2 ·
⌈︂

log2

(︂⌈︂
1
𝛿

⌉︂
+ 1

)︂⌉︂
+ 𝑘 · ⌈log2 𝑛⌉ + 2 · ⌈log2(⌈log2 𝑛⌉)⌉

≤ 1 + 2 ·
⌈︂

log2

(︂⌈︂
3𝜀+ 3
𝜀

⌉︂
+ 1

)︂⌉︂
+

⌈︂
3𝜀+ 3
𝜀

⌉︂
· ⌈log2 𝑛⌉ + 2 · ⌈log2(⌈log2 𝑛⌉)⌉ ,

which is in 𝒪(log 𝑛) since 𝜀 is constant. �

Let us summarize what we have learned up to this point. Without advice, every
online algorithm for the (simple) knapsack problem is arbitrarily bad. However,
already one advice bit allows for a strict competitive ratio of 2. Every further advice
bit, on the other hand, does not help to improve the strict competitive ratio until a
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Figure 6.3. The schematic behavior of the advice complexity of the simple knapsack
problem.

logarithmic number (with respect to the input length) is reached. If this threshold is
crossed (asymptotically), we can design an online algorithm that is almost optimal.
Then again, to be truly optimal and not just almost optimal, we need to increase
the number of advice bits exponentially; a schematic view of this behavior is shown
in Figure 6.3.

6.4 Randomized Algorithms
In this section, we investigate how powerful randomization is for the simple knapsack
problem. Doing this, we will observe some more surprising characteristics of this
knapsack problem; in particular, when comparing advice bits and random bits.

6.4.1 A Barely Random Algorithm
So far, we know that one advice bit is extremely powerful. Now we want to ask how
much one random bit may help us. As we have already discussed in Section 2.6,
we call a randomized online algorithm that uses a constant number of random bits
a barely random algorithm. First, consider RKnOne′, which works analogously to
the previously introduced online algorithm KnOne with advice, but guesses the bit
that states whether to wait for an object with a weight of more than 1/2 instead of
having an oracle tell it.

Theorem 6.9. RKnOne′ is strictly 4-competitive in expectation for the simple
knapsack problem.

Proof. We make a similar case distinction to the proof of Theorem 6.6.
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Case 1. If there is an object in the input that has a weight of more than 1/2,
this object is packed with a probability of 1/2 since this is the probability that
RKnOne′ waits for it. If, on the other hand, the algorithm uses a greedy strategy,
it might only pack a very small object of size 𝜀 > 0 into the knapsack. The
expected gain is thus larger than 1/2 · 1/2 = 1/4.

Case 2. If there is no such object, the gain of RKnOne′ is 0 with a probability of
1/2. With probability of 1/2 its gain is at least 1/2 of the optimal gain following
Theorem 6.2. Hence, also in this case 1/4 is a lower bound on the expected gain.

As a result, the strict expected competitive ratio of RKnOne′ is at most 4. �

The subsequent theorem proves that this bound is tight for RKnOne′; in the
proof we use a very simple instance that consists of three objects only.

Theorem 6.10. Let 1/6 > 𝜀 > 0. RKnOne′ is not better than strictly (4 − 𝜀)-
competitive in expectation for the simple knapsack problem.

Proof. In what follows, let

𝛿 := 𝜀

4(6 − 𝜀) .

Consider the instance of the simple knapsack problem that consists of three objects
of weights

1
2 − 𝛿, 3𝛿, 1

2 − 𝛿 .

Clearly, a unique optimal solution is to pack the first and the third object into the
knapsack; the gain is 1 − 2𝛿. Again, we distinguish two cases depending on which
strategy RKnOne′ picks.

Case 1. A greedy strategy accepts the first two objects and, as a consequence, has a
gain of 1/2 + 2𝛿.

Case 2. Since no object has a weight of more than 1/2, the strategy to wait for an
object of this weight leads to a gain of 0.

It follows that the strict expected competitive ratio of RKnOne′ is not better than
1 − 2𝛿

1
2
(︀ 1

2 + 2𝛿
)︀

+ 1
2 · 0

= 4 · 1 − 2𝛿
1 + 4𝛿 = 4 − 𝜀 .

�

Intuitively, this is what we expected. One advice bit that always tells us the
best strategy is twice as powerful as a random bit that only allows for such a
strategy with a probability of 1/2; the next result is thus quite surprising. In the
following, consider the randomized online algorithm RKnOne that chooses uniformly
at random between the strategies from

strat(RKnOne) = {Greedy1,Greedy2} .
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(a) The instance

Greedy1 Greedy2

1

(b) The two solutions

Figure 6.4. The two deterministic online algorithms Greedy1 and Greedy2.

Here, Greedy1 is the straightforward greedy strategy. Conversely, Greedy2 starts
by simulating Greedy1 without accepting any objects; but as soon as the algorithm
realizes that the object offered in the current time step does not fit into the knapsack
as Greedy1 packed it, it starts accepting objects and again acts greedily from now
on; see Figure 6.4.

Theorem 6.11. RKnOne is strictly 2-competitive in expectation for the simple
knapsack problem.

Proof. We distinguish two cases depending on the total weight of the objects in the
given input 𝐼.

Case 1. If the total weight of all objects that are offered is at most 1, Greedy1 is
clearly optimal (since it packs all objects), while Greedy2 has a gain of 0. The
expected gain of RKnOne is therefore 1/2 · gain(Opt(𝐼)).

Case 2. If, on the other hand, the total weight is larger than 1, then the sum of the
gains of both algorithms must also be larger than 1; therefore, the expected gain
of RKnOne is

1
2 gain(Greedy1(𝐼)) + 1

2 gain(Greedy2(𝐼))

= 1
2 (gain(Greedy1(𝐼)) + gain(Greedy2(𝐼)))

≥ 1
2 .

Since the gain of an optimal solution cannot be larger than 1, the expected gain
of RKnOne is at least 1/2 · gain(Opt(𝐼)).

Consequently, the strict expected competitive ratio of RKnOne is at most 2. �
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As a result, we get that one bit of advice is as powerful as one random bit (in
expectation). In Theorem 6.7, we showed that a constant number of advice bits
does not allow us to be better than 2-competitive; following Observation 3.2 this
also holds for random bits. In Theorem 6.8, we also showed that logarithmic advice
allows us to be (1 + 𝜀)-competitive, for any 𝜀 > 0. In the next subsection, we will
see that this is not the case for randomness.

6.4.2 A Lower Bound for Randomized Algorithms
The following theorem shows that one random bit is as powerful as any number of
random bits. This means that the threshold we observed in Section 6.3 does not
exist for a randomized setting. Here, we gain nothing by increasing the number of
bits.

Theorem 6.12. Let 𝜀 > 0. No randomized online algorithm for the simple knapsack
problem is better than strictly (2 − 𝜀)-competitive in expectation.

Proof. Consider the following set ℐ that contains two instances. For both, first an
object of weight 𝜀 is offered. After that, either nothing is offered or another object
with a weight of 1 is offered. Now let Rand be any randomized online algorithm for
the simple knapsack problem; Rand accepts the first object with some probability 𝑞.
Obviously, 𝑞 is not 0 since, otherwise, Rand has a gain of 0 on the instance that
only consists of the first object. We now distinguish two cases depending on whether
the second object is offered.

Case 1. If the second object is offered, this leads to an optimal gain of 1. If Rand
accepts the first object, it does not have any space left in the knapsack for the
second one. The strict expected competitive ratio of Rand is hence bounded by

1
𝑞 · 𝜀+ (1 − 𝑞) · 1 = 1

(𝜀− 1) · 𝑞 + 1 .

Case 2. If the second object is not offered, an optimal solution has a gain of 𝜀. In
this case, Rand’s gain is 0 if it does not accept the first object. Thus, the strict
competitive ratio of Rand can be bounded by

𝜀

𝑞 · 𝜀+ (1 − 𝑞) · 0 = 1
𝑞
.

Through the concrete instance that is given, the adversary can always make sure
that the strict expected competitive ratio of Rand is the maximum of these two
values. Consequently, Rand wants to choose 𝑞 such that this maximum is minimized.
Since ((𝜀− 1)𝑞 + 1)−1 is monotonically increasing in 𝑞 while 1/𝑞 is monotonically
decreasing in 𝑞, the best strategy for Rand is to choose 𝑞 such that the two strict
competitive ratios are equal; this “equalizing of expectations” is shown in Figure 6.5.

We conclude that
1

(𝜀− 1) · 𝑞 + 1 = 1
𝑞

⇐⇒ 𝑞 = 1
2 − 𝜀

,
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Figure 6.5. The two different strict expected competitive ratios for Rand depending
on the probability that the first object is chosen.

and, if we plug this value into either of the formulas that bound the strict expected
competitive ratio, we get that it is at least 2 − 𝜀. �

Exercise 6.7. The proof of Theorem 6.12 uses a direct argumentation over the probability
distribution used by a given randomized online algorithm. Give an alternative proof using
Yao’s principle.

6.5 Resource Augmentation
In Section 1.6 and Exercise 4.5, we learned about resource augmentation as a possible
way to give an online algorithm an advantage over the adversary; it turned out
that this indeed helps for paging and 𝑘-server. In this section, we allow an online
algorithm for the simple knapsack problem to use more resources. In this context,
this means that the algorithm uses a knapsack that has a larger capacity than the
one an optimal algorithm has available. Specifically, we consider an environment
where the online algorithm uses a knapsack of capacity 1 + 𝛾 with 0 < 𝛾 ≤ 1 and
an optimal solution must use a knapsack with a capacity of 1. Furthermore, we
still assume that all objects in the input have a weight (value) of at most 1. We
call this problem the simple 𝛾-knapsack problem. If we consider deterministic online
algorithms, we note that a greedy strategy achieves a best possible result.

Theorem 6.13. KnGreedy is strictly 1/𝛾-competitive for the simple 𝛾-knapsack
problem.

Proof. If KnGreedy has no space left in the knapsack to pack an object, this means
that it is already filled with objects that have a total weight of at least 𝛾 since all
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objects have a weight of at most 1. Due to the fact that Opt(𝐼) has a gain of at
most 1 for any instance 𝐼, the claim follows. �

As a consequence, if 𝛾 = 1, KnGreedy is optimal for the simple 𝛾-knapsack
problem. The following theorem states that the bound from Theorem 6.13 is tight;
we leave its proof as an exercise for the reader.

Theorem 6.14. Let 𝜀 > 0. No deterministic online algorithm for the simple 𝛾-
knapsack problem is better than strictly 1/(𝛾 + 𝜀)-competitive.

Exercise 6.8. Prove Theorem 6.14.

Exercise 6.9. Show that no randomized online algorithm for the simple 𝛾-knapsack prob-
lem is better than strictly (2 − 𝜀− 𝛾)-competitive in expectation. Your proof should work
for any number of random bits.

As a consequence, for small values of 𝛾 resource augmentation does not help a lot
in a deterministic or randomized setting. However, things change drastically if we
consider online algorithms with advice instead. If we combine these two concepts,
we are able to design an online algorithm with advice that uses a constant number
(depending on 𝛾) of advice bits, and that computes a solution with a gain that is very
close to that of an optimal solution; the attainable competitive ratio also depends
on 𝛾.

Theorem 6.15. Let 1/4 > 𝛾 > 0. There is an online algorithm Aug with advice
for the simple 𝛾-knapsack problem that is strictly(︂

1 + 3𝛾
1 − 4𝛾

)︂
-competitive

and that uses at most

1 +
⌈︂

1
𝛾

log2

(︂⌈︂
1
𝛾2

⌉︂)︂⌉︂
+

⌈︂
log2

(︂⌈︂
1
𝛾

⌉︂
+ 1

)︂⌉︂
advice bits.

Proof. Let 𝐼 be a fixed instance of the simple 𝛾-knapsack problem. First, we bound
the gain of an optimal solution Opt(𝐼) from below. Using Theorem 6.3, we assume
that Opt’s gain is at least 1/2; otherwise, Aug follows a greedy approach and is
optimal. This is communicated with the first bit on the advice tape.

As in the proof of Theorem 6.8, we subdivide the objects that Opt packs into
the knapsack into “heavy” and “light” ones. The heavy objects are denoted by
𝑥1, 𝑥2, . . . , 𝑥𝑘 and the light ones by 𝑦1, 𝑦2, . . . , 𝑦𝑚. Objects are considered heavy if
they have a weight of at least 𝛾; if they have a weight smaller than 𝛾, they are called
light. For any instance 𝐼 we thus have

Opt(𝐼) = {𝑥1, 𝑥2, . . . , 𝑥𝑘} ∪̇ {𝑦1, 𝑦2, . . . , 𝑦𝑚} .
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Clearly, for the number 𝑘 of heavy objects, we have 𝑘 ≤ 1/𝛾.
We design Aug such that it works as follows. The algorithm knows 𝛾 and it

computes the approximate weights of the heavy objects. The weights of these objects
are rounded down to a multiple of 𝛾2. Apart from that, Aug computes a bound for
the part of the knapsack that Opt fills with light objects. As long as this bound
is not exceeded by the light objects packed by Aug so far, it accepts light objects
following a greedy strategy.

Next, we need to show how the weights of the heavy objects are encoded. To this
end, let

𝑥𝑖 := 𝑗 ∈ N, such that 𝑗𝛾2 ≤ 𝑥𝑖 < (𝑗 + 1)𝛾2 , (6.2)

for every heavy object 𝑥𝑖, where 1 ≤ 𝑖 ≤ 𝑘. All 𝑥𝑖s are written on the advice tape
and read by Aug at the beginning. Now, if an object 𝑤′ is offered, Aug checks
whether the corresponding 𝑥𝑖 is part of the advice. In other words, the algorithm
checks whether there is some 𝑥𝑖 encoded on the advice tape such that

𝑥𝑖𝛾
2 ≤ 𝑤′ < (𝑥𝑖 + 1)𝛾2 . (6.3)

If this is the case, 𝑤′ is accepted; we denote this object by 𝑥′
𝑖 as it corresponds

to 𝑥𝑖 in Opt(𝐼) (although 𝑥𝑖 and 𝑥′
𝑖 may of course be different). Otherwise, 𝑤′ is

discarded.
Now if we compare 𝑥𝑖 and 𝑥′

𝑖, we note that due to the rounding, we have from
(6.2) and (6.3) that

𝑥′
𝑖 < 𝑥𝑖𝛾

2 + 𝛾2 ≤ 𝑥𝑖 + 𝛾2 (6.4)

and

𝑥𝑖 − 𝛾2 < 𝑥𝑖𝛾
2 ≤ 𝑥′

𝑖 ,

which together give

𝑥𝑖 − 𝛾2 < 𝑥′
𝑖 < 𝑥𝑖 + 𝛾2 ,

for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑘. If we add all these values using 𝑘 ≤ 1/𝛾, we get

𝑘∑︁
𝑖=1

𝑥′
𝑖 <

𝑘∑︁
𝑖=1

(𝑥𝑖 + 𝛾2) =
(︃

𝑘∑︁
𝑖=1

𝑥𝑖

)︃
+ 𝑘𝛾2 ≤

(︃
𝑘∑︁
𝑖=1

𝑥𝑖

)︃
+ 𝛾 (6.5)

and (︃
𝑘∑︁
𝑖=1

𝑥𝑖

)︃
− 𝛾 ≤

(︃
𝑘∑︁
𝑖=1

𝑥𝑖

)︃
− 𝑘𝛾2 =

𝑘∑︁
𝑖=1

(𝑥𝑖 − 𝛾2) <
𝑘∑︁
𝑖=1

𝑥′
𝑖 . (6.6)

Intuitively, (6.5) means that, for every heavy object in Opt(𝐼), Aug packs a
(possibly different) object such that the sum of all weights of these objects needs
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⏟  ⏞  
𝑥1,𝑥2,...,𝑥𝑘

𝑥′
1,𝑥

′
2,...,𝑥

′
𝑘⏞  ⏟  𝑔+𝛾−𝑘𝛾2⏞  ⏟  

⏟  ⏞  
𝑔

𝛾𝑘𝛾2

1

Figure 6.6. The knapsack as it is packed by Aug and Opt, respectively.

less than 𝛾 more capacity than the heavy objects in the knapsack packed by Opt(𝐼).
Moreover, (6.6) states that not more than a space of 𝛾 stays unused in the computed
solution compared to Opt(𝐼).

Next, we compare Aug and Opt(𝐼) with respect to the objects of weight less than
𝛾. To this end, we distinguish two cases concerning the gain of Opt(𝐼).

Case 1. Assume that gain(Opt(𝐼)) < 1 − 𝛾. This means that Opt(𝐼) packs all
objects with a weight of less than 𝛾 into the knapsack, because otherwise it would
not be optimal. In (6.5), we just saw that by packing the 𝑥′

𝑖s Aug uses at most
𝛾 more space of the knapsack. Since we are dealing with the simple 𝛾-knapsack
problem, this means that Aug has at least as much space in the knapsack as
Opt(𝐼), and therefore also packs all light objects due to the greedy strategy. On
the other hand, due to (6.6) we know that the total gain of Aug on 𝐼 is at least
gain(Opt(𝐼)) − 𝛾. We conclude that

gain(Opt(𝐼))
gain(Opt(𝐼)) − 𝛾

= 1 + 𝛾

gain(Opt(𝐼)) − 𝛾
≤ 1 + 2𝛾

1 − 2𝛾 ≤ 1 + 3𝛾
1 − 4𝛾 ,

where we used gain(Opt(𝐼)) ≥ 1/2 for the first inequality.
Case 2. Now assume that 1 − 𝛾 ≤ gain(Opt(𝐼)) ≤ 1. Let

𝑔 := 1 −
𝑘∑︁
𝑖=1

𝑥𝑖

denote the space in the knapsack that is left for objects with a weight less than 𝛾
in Opt(𝐼); see Figure 6.6. The ones that Opt(𝐼) packs into the knapsack become
the light objects 𝑦1, 𝑦2, . . . , 𝑦𝑚. Aug does not know 𝑔, but it can compute an
approximation

𝑔′ := 1 −
𝑘∑︁
𝑖=1

(𝑥𝑖 + 1)𝛾2 .

Due to (6.4) and again using 𝑘 ≤ 1/𝛾, we have

𝑔′ ≥ 1 −
𝑘∑︁
𝑖=1

(𝑥𝑖 + 𝛾2) = 1 −

(︃
𝑘∑︁
𝑖=1

𝑥𝑖

)︃
− 𝑘𝛾2 ≥ 1 −

(︃
𝑘∑︁
𝑖=1

𝑥𝑖

)︃
− 𝛾 ,

200



6.5. Resource Augmentation

and therefore

𝑔 − 𝛾 ≤ 𝑔′ ≤ 𝑔 . (6.7)

Both Aug and Opt(𝐼) have all objects with a weight less than 𝛾 available. Now
let 𝐼𝑔 be the instance 𝐼 restricted to a knapsack of capacity 𝑔 and only objects
with a weight of less than 𝛾. Furthermore, let Opt(𝐼𝑔) be a fixed optimal solution
for 𝐼𝑔. We define 𝐼𝑔′ and Opt(𝐼𝑔′) analogously. Since Aug implements a greedy
strategy on 𝐼𝑔′ , following Theorem 6.2 it is either optimal or it has a gain of at
least 𝑔′ − 𝛾. On the other hand, Opt(𝐼) has a gain of gain(Opt(𝐼𝑔)) ≤ 𝑔 on 𝐼𝑔.
From this, we can finally bound the strict competitive ratio of Aug by

gain(Opt(𝐼))(︁∑︀𝑘
𝑖=1 𝑥

′
𝑖

)︁
+ 𝑔′ − 𝛾

≤ gain(Opt(𝐼))(︁∑︀𝑘
𝑖=1 𝑥

′
𝑖

)︁
+ 𝑔 − 2𝛾

(as a consequence of (6.7))

≤ gain(Opt(𝐼))(︁∑︀𝑘
𝑖=1 𝑥𝑖

)︁
+ 𝑔 − 3𝛾

(which follows from (6.6))

≤ gain(Opt(𝐼))(︁∑︀𝑘
𝑖=1 𝑥𝑖

)︁
+ gain(Opt(𝐼𝑔)) − 3𝛾

(since gain(Opt(𝐼𝑔)) ≤ 𝑔)

= gain(Opt(𝐼))
gain(Opt(𝐼)) − 3𝛾
(due to the definition of Opt(𝐼))

≤ 1 + 3𝛾
1 − 4𝛾 .

To finish the proof, we bound the number of advice bits Aug reads from above.

• The first advice bit tells Aug whether gain(Opt(𝐼)) ≥ 1/2 or not.
• There are at most 𝑘 different 𝑥𝑖s (namely as many as there are heavy objects

in Opt(𝐼)).
• Due to (6.2) and since every object in the input has a weight of at most 1,

every 𝑥𝑖 is at most 1/𝛾2.
• To encode all 𝑥𝑖s on the advice tape, we thus need

𝑘 log2

(︂⌈︂
1
𝛾2

⌉︂)︂
≤

⌈︂
1
𝛾

log2

(︂⌈︂
1
𝛾2

⌉︂)︂⌉︂
bits.
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Figure 6.7. The strict competitive ratio of Aug and the number of advice bits depending
on 𝛾.

• To be able to decode the advice, Aug has to know 𝑘, which can be encoded
using ⌈log2(𝑘 + 1)⌉ ≤ ⌈log2(⌈1/𝛾⌉ + 1)⌉ advice bits.

• An upper bound on the length of the binary encoding of the 𝑥𝑖s can be computed
by Aug without any further information. Likewise, Aug can compute 𝑔′ based
on the 𝑥𝑖s and 𝛾.

Summing up, Aug uses at most

1 +
⌈︂

1
𝛾

log2

(︂⌈︂
1
𝛾2

⌉︂)︂⌉︂
+

⌈︂
log2

(︂⌈︂
1
𝛾

⌉︂
+ 1

)︂⌉︂
advice bits as we claimed. �

Note that the number of advice bits decreases monotonically in 𝛾 while the obtained
strict competitive ratio grows in 𝛾; this is shown in Figure 6.7. This concludes our
study of the simple online knapsack problem. In the remainder of this chapter, we
look at the general case, where the weights and the values of the objects that are
offered are not necessarily equal.

6.6 The General Case
In this section, we now consider the general knapsack problem from Definition 6.1,
where every object has both a weight and a value. This fact makes the situation
a lot harder for an online algorithm. The next exercise shows that this is even the
case if we change the problem definition in its favor.
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Exercise 6.10. In Exercise 6.5, we introduced the simple removable knapsack problem, for
which there is no deterministic online algorithm that is better than 3/2-competitive. Now
consider the corresponding variant where the weights and values of objects may be different.
Prove that no deterministic online algorithm is competitive for this general removable
knapsack problem.

⋆6.6.1 Advice Complexity
The results presented in what follows only hold if we restrict ourselves to instances
where the values and weights can be represented within polynomial space. More
formally, recall that, for any object 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑛, 𝑤𝑖 denotes the weight of 𝑥𝑖
and 𝑣𝑖 is the value of 𝑥𝑖; moreover, the knapsack’s capacity is still 1, and also 𝑤𝑖 ≤ 1
is true for all objects. Later, we will sometimes use two functions 𝑤 and 𝑣 with
𝑤(𝑥𝑖) = 𝑤𝑖 and 𝑣(𝑥𝑖) = 𝑣𝑖 to have an easier notation. Throughout this subsection,
let

𝑟(𝑥𝑖) := 𝑣𝑖
𝑤𝑖

= 𝑣(𝑥𝑖)
𝑤(𝑥𝑖)

be the value/weight ratio of 𝑥𝑖. We assume that, for every 𝑥𝑖, both 𝑣𝑖 and 𝑤𝑖 are
rational numbers, and their numerators and denominators are bounded by 2𝑝(𝑛) for
some fixed polynomial 𝑝, where 𝑛 is the input length. We assume that 𝑝 is known to
any online algorithm for the problem.

First of all, we note that the lower bounds for the simple knapsack problem from
Section 6.3 carry over immediately since we are now dealing with a generalization of
the above problem. Indeed, we can always choose 𝑣𝑖 = 𝑤𝑖, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.
Second, Theorem 6.4, which states that 𝑛 advice bits allow for optimality, obviously
also applies for the general knapsack problem. However, for this problem, small
advice is a lot less powerful.

Theorem 6.16. No online algorithm with advice for the knapsack problem that uses
fewer than log2 𝑛 advice bits is competitive.

Proof. Let Alg be some online algorithm with advice that reads 𝑏(𝑛) < log2 𝑛 advice
bits for inputs of length 𝑛, which allows it to distinguish at most 2𝑏(𝑛) different
inputs. For every 𝑛, we construct a set ℐ (𝑛) of 𝑛 different instances as follows. Let
𝛽 := 2𝑛, and let

𝐼𝑠 = ((1, 𝛽), (1, 𝛽2), . . . , (1, 𝛽𝑠), (1, 1), (1, 1), . . . , (1, 1)⏟  ⏞  
𝑛−𝑠 times

) ,

for every 𝑠 with 1 ≤ 𝑠 ≤ 𝑛. We set ℐ (𝑛) := {𝐼𝑠 | 1 ≤ 𝑠 ≤ 𝑛}. Since |ℐ (𝑛)| = 2log2 𝑛 >
2𝑏(𝑛), there are more inputs than strategies to choose from, and thus there are at
least two different inputs for one advice string. Let these two instances be 𝐼𝑖 and
𝐼𝑗 and assume, without loss of generality, that 𝑖 > 𝑗. The unique optimal solution
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for 𝐼𝑖 (𝐼𝑗 , respectively) packs the knapsack with the 𝑖th (𝑗th, respectively) object,
yielding a gain of 𝛽𝑖 (𝛽𝑗 , respectively).

Clearly, if Alg does not choose the 𝑗th object when given the instance 𝐼𝑗 , its gain
is at least a factor of 𝛽 away from gain(Opt(𝐼𝑗)). Since Alg cannot distinguish
between 𝐼𝑗 and 𝐼𝑖 in the first 𝑗 time steps (and it is given the same fixed advice
string), it also packs the 𝑗th object when given 𝐼𝑖. This results in a competitive
ratio of at least 𝛽𝑖/𝛽𝑗 ≥ 𝛽. �

It seems reasonable that, for the general knapsack problem, logarithmic advice is
less powerful than for the simple one. The next question is whether we need much
more advice to have any satisfying result; for instance, what do we need to get any
constant competitive ratio? Surprisingly, logarithmic advice suffices (when obeying
the restrictions on the value/weight ratio as described above). In the following, we
even show how to solve the general knapsack problem almost optimally when using
logarithmic advice. This implies that the bound of Theorem 6.16 is asymptotically
tight.

The algorithm achieving this is called GLog, and it works in a far more complex
way than the ones presented so far for the simple knapsack problem. On an intuitive
level, the strategy of GLog can be outlined as follows. According to their values,
some objects of a fixed optimal solution are called “expensive.” The algorithm packs
all the expensive objects that are part of a fixed optimal solution; other expensive
objects are discarded. Moreover, GLog uses all objects that have a large value/weight
ratio as long as this ratio is larger than some lower bound. However, this lower
bound cannot be communicated with absolute accuracy; objects that are part of the
optimal solution, but whose ratio is too small, are explicitly communicated to GLog
if their weight is larger than some specific threshold. Finally, GLog calculates a
bound on the space that it fills greedily with objects that are not too heavy and that
have a good value/weight ratio.

Theorem 6.17. Let 𝜀 > 0. GLog is strictly (1 + 𝜀)-competitive for the knapsack
problem and uses 𝒪(log 𝑛) advice bits. Here, the 𝒪-notation hides a multiplicative
constant depending on 𝜀 and on the degree 𝑑 of the polynomial 𝑝(𝑛).

Proof. Let 𝐼 be any instance of the knapsack problem, and let

𝛿 :=
√

1 + 𝜀− 1
2
√

1 + 𝜀+ 1
.

Consider any optimal solution Opt(𝐼) for 𝐼, and let 𝑐′ be such that

gain(Opt(𝐼))
1 + 𝛿

< 𝑐′ ≤ gain(Opt(𝐼)) . (6.8)

Next, let 𝑥1, 𝑥2, . . . , 𝑥𝑘 be all objects in Opt(𝐼) with a value of at least 𝛿𝑐′; we call
these objects expensive. Since there are at most gain(Opt(𝐼))/(𝛿𝑐′) such objects, we
immediately get 𝑘 ≤ (1 + 𝛿)/𝛿.
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Let 𝒮1 be an (offline) solution for 𝐼 constructed as follows. At first, all expensive
objects 𝑥1, 𝑥2, . . . , 𝑥𝑘 are packed; then, the rest of the knapsack is filled using objects
that have values of less than 𝛿𝑐′ greedily by their value/weight ratio in descending
order. Consider 𝒮1 plus the object 𝑥 that is the first one that did not fit into the
knapsack in the greedy phase of 𝒮1’s construction. Clearly, we have

gain(𝒮1) + 𝑣(𝑥) ≥ gain(Opt(𝐼)) . (6.9)

Since 𝑣(𝑥) ≤ 𝛿𝑐′ ≤ 𝛿 · gain(Opt(𝐼)), (6.9) implies

gain(𝒮1) ≥ gain(Opt(𝐼)) − 𝑣(𝑥)
≥ gain(Opt(𝐼)) − 𝛿 · gain(Opt(𝐼))
= (1 − 𝛿) · gain(Opt(𝐼)) .

Let 𝑦1, 𝑦2, . . . , 𝑦𝑙 denote the objects of 𝒮1 added in the greedy phase. Without loss
of generality, assume that 𝑟(𝑦1) ≥ 𝑟(𝑦2) ≥ . . . ≥ 𝑟(𝑦𝑙), and let 𝑟′ be such that

𝑟(𝑦𝑙) ≤ 𝑟′ < (1 + 𝛿) · 𝑟(𝑦𝑙) .

Let 𝑚 be the largest number such that 𝑟(𝑦𝑚) ≥ 𝑟′, that is, the objects 𝑦1, 𝑦2, . . . , 𝑦𝑚
have ratios of at least 𝑟′ and all other objects 𝑦𝑚+1, 𝑦𝑚+2, . . . , 𝑦𝑙 have ratios between
𝑟′ and 𝑟′/(1 + 𝛿). Let 𝑔 be the space not occupied by 𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑦1, 𝑦2, . . . , 𝑦𝑚 in
𝒮1, that is,

𝑔 := 1 −
𝑘∑︁
𝑖=1

𝑤(𝑥𝑖) −
𝑚∑︁
𝑖=1

𝑤(𝑦𝑖) .

Intuitively speaking, if we consider the part of the solution 𝒮1 that consists of the
objects 𝑦𝑖 with 𝑖 > 𝑚, we see that this is a solution of an “almost simple” knapsack
instance with knapsack capacity 𝑔. Therefore, we can approximate it by a solution
for the simple knapsack problem without doing much harm. To this end, let 𝑔′ be
such that

𝑔

1 + 𝛿
< 𝑔′ ≤ 𝑔 . (6.10)

Furthermore, let

{𝑧1, 𝑧2, . . . , 𝑧𝑝} := {𝑦𝑖 | 𝑦𝑖 ∈ {𝑦𝑚+1, 𝑦𝑚+2, . . . , 𝑦𝑙}, 𝑤(𝑦𝑖) ≥ 𝛿𝑔′} ,

that is, 𝑧1, 𝑧2, . . . , 𝑧𝑝 are all objects from 𝒮1 that have a value/weight ratio of roughly
𝑟′ and whose weights are at least a 𝛿-fraction of 𝑔′. Due to (6.10), there are at most
(1 + 𝛿)/𝛿 such objects.

Let

𝑢 := 𝑔 −
𝑝∑︁
𝑖=1

𝑤(𝑧𝑖) , (6.11)
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that is, the space not occupied by 𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑦1, 𝑦2, . . . , 𝑦𝑚, 𝑧1, 𝑧2, . . . , 𝑧𝑝, and let
𝑢′ be such that

𝑢

1 + 𝛿
< 𝑢′ ≤ 𝑢 .

Again, we consider an (offline) solution 𝒮2 that is constructed as follows. At
first, all objects 𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑦1, 𝑦2, . . . , 𝑦𝑚, 𝑧1, 𝑧2, . . . , 𝑧𝑝 are packed. After that, we
consider all remaining objects of weight less than 𝛿𝑔′ and with a ratio of at least
𝑟′/(1 + 𝛿); each of these objects is added greedily to 𝒮2 if it fits into a reserved space
of size 𝑢′. GLog will compute 𝒮2.

We now show that

gain(𝒮2) ≥ 1 − 2𝛿
(1 + 𝛿)2 · gain(𝒮1) . (6.12)

To this end, consider two cases.

Case 1. Assume that the greedy construction of 𝒮2 packs all possible objects. In this
case, 𝒮2 contains all objects included in 𝒮1, and therefore (6.12) follows trivially.

Case 2. Assume there is at least one object not packed by the greedy strategy. Since
the objects 𝑦𝑚+1, 𝑦𝑚+2, . . . , 𝑦𝑙 have a ratio of at most 𝑟′ and weights of at most 1,
it follows that the value of each such object is at most 𝑟′ as well. Hence, due to
(6.10), we get

gain(𝒮1) ≤
𝑘∑︁
𝑖=1

𝑣(𝑥𝑖) +
𝑚∑︁
𝑖=1

𝑣(𝑦𝑖) + 𝑔𝑟′ ≤
𝑘∑︁
𝑖=1

𝑣(𝑥𝑖) +
𝑚∑︁
𝑖=1

𝑣(𝑦𝑖) + 𝑔′(1 + 𝛿)𝑟′ .

Now we bound the gain of 𝒮2. To this end, note that, as a consequence of (6.11),
the total weight of all 𝑧𝑖s is 𝑔 − 𝑢. Additionally, the greedy step packs objects of
total weight at least 𝑢′ − 𝛿𝑔′. Together, this gives a space of at least

𝑢′ − 𝛿𝑔′ + 𝑔 − 𝑢 ≥ (1 − 𝛿)𝑔′ + 𝑢′ − 𝑢 ≥ (1 − 2𝛿)𝑔′ .

All the corresponding objects have a value/weight ratio of at least 𝑟′/(1 + 𝛿), and
we therefore get

gain(𝒮2) ≥
𝑘∑︁
𝑖=1

𝑣(𝑥𝑖) +
𝑚∑︁
𝑖=1

𝑣(𝑦𝑖) + 𝑔′(1 − 2𝛿) · 𝑟′

1 + 𝛿
.

Since the gains of 𝒮1 and 𝒮2 only differ in the last summand by at most (1 −
2𝛿)/(1 + 𝛿)2, it follows that (6.12) also holds in this case.

Putting it all together, we finally get

gain(𝒮2) ≥ 1 − 2𝛿
(1 + 𝛿)2 · gain(𝒮1) ≥ (1 − 2𝛿)2

(1 + 𝛿)2 · gain(Opt(𝐼)) = gain(Opt(𝐼))
1 + 𝜀

as claimed.
It remains to bound the number of advice bits that are used by GLog.
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• At first, the oracle needs to encode 𝑛 and 𝑘, which can be done using no more
than 2⌈log2 𝑛⌉ + 2⌈log2(⌈log2 𝑛⌉)⌉ bits.

• The indices of the expensive objects 𝑥1, 𝑥2, . . . , 𝑥𝑘 can be specified using
𝑘⌈log2 𝑛⌉ ≤ (1 + 𝛿)/𝛿 · log2 𝑛+ 1 additional bits.

• Similarly, the indices of the objects 𝑧𝑖 can be communicated using 𝑝⌈log2 𝑛⌉ ≤
(1 + 𝛿)/𝛿 log2 𝑛+ 1 bits.

• To make sure that (6.8) holds for 𝑐′, we set
𝑐′ := (1 + 𝛿)⌊log1+𝛿(gain(Opt(𝐼)))⌋ .

Since GLog knows 𝛿, only ⌊log1+𝛿(gain(Opt(𝐼)))⌋ must be encoded on the
advice tape. Recall that the value 𝑣𝑖 of any object in the input is a rational
number whose numerator and denominator are both at most 2𝑝(𝑛), where 𝑝
is a fixed polynomial with degree, say, 𝑑; recall that 𝑝 is known to GLog.
Therefore, we have 1/2𝑝(𝑛) ≤ 𝑣𝑖 ≤ 2𝑝(𝑛) for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. As there are
𝑛 objects in the input, we obtain 𝑛/2𝑝(𝑛) ≤ gain(Opt(𝐼)) ≤ 𝑛2𝑝(𝑛). Note that
⌊log1+𝛿(gain(Opt(𝐼)))⌋ may be negative if the optimal gain on 𝐼 is smaller
than 1.
So far, we did not have to deal with encoding negative numbers on the
advice tape. We take an easy approach. The sign is communicated with one
additional bit. If it is positive, ⌊log1+𝛿(gain(Opt(𝐼)))⌋ is encoded onto the
advice tape. Otherwise, ⌊log1+𝛿(1/gain(Opt(𝐼)))⌋ is encoded instead, since
− log1+𝛿 𝑥 = log1+𝛿(1/𝑥) for any 𝑥. Using that 2𝑝(𝑛)/𝑛 ≤ 𝑛2𝑝(𝑛), the number
of advice bits needed is at most⌈︁

log2

(︁⌊︁
log1+𝛿

(︁
𝑛2𝑝(𝑛)

)︁⌋︁)︁⌉︁
+ 1 ≤ log2

(︃
log2 𝑛+ log2

(︀
2𝑝(𝑛))︀

log2(1 + 𝛿)

)︃
+ 2

≤ log2

(︂
log2 𝑛+ 𝑛𝑑

log2(1 + 𝛿)

)︂
+ 2

≤ log2

(︂
𝑛𝑑+1

log2(1 + 𝛿)

)︂
+ 2 ,

which is in 𝒪(log(𝑛𝑑+1)) = 𝒪(log 𝑛).
• Likewise, we set

𝑟′ := (1 + 𝛿)⌈log1+𝛿(𝑟(𝑦𝑙))⌉ ,

𝑔′ := (1 + 𝛿)⌊log1+𝛿 𝑔⌋ , and
𝑢′ := (1 + 𝛿)⌊log1+𝛿 𝑢⌋ ,

and therefore ⌈log1+𝛿(𝑟(𝑦𝑙))⌉, ⌊log1+𝛿 𝑔⌋, and ⌊log1+𝛿 𝑢⌋ must be written on the
advice tape (note that the latter two will be negative). By similar arguments
to those above, we verfiy that 𝒪(log 𝑛) advice bits suffice to do that.
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ℎ := 0; // Initialize space that is filled greedily
for every request 𝑥 do

𝑟(𝑥) := 𝑣(𝑥)/𝑤(𝑥); // Compute value/weight ratio of 𝑥
if 𝑥 = 𝑥𝑖 for some 𝑖 // 𝑣(𝑥) ≥ 𝛿𝑐′ and Opt(𝐼) packs 𝑥; thus, 𝑥 is expensive

pack 𝑥;
elsif 𝑣(𝑥) ≥ 𝛿𝑐′ // 𝑣(𝑥) ≥ 𝛿𝑐′, but Opt(𝐼) does not pack 𝑥

discard 𝑥;
elsif 𝑟(𝑥) ≥ 𝑟′ // 𝑥 is one of 𝑦1, 𝑦2, . . . , 𝑦𝑚

pack 𝑥;
elsif 𝑥 = 𝑧𝑖 for some 𝑖 // 𝑥 is one of 𝑧1, 𝑧2, . . . , 𝑧𝑝

pack 𝑥;
elsif 𝑟(𝑥) < 𝑟′/(1 + 𝛿) or 𝑤(𝑥) ≥ 𝛿𝑔′

discard 𝑥;
elsif ℎ ≤ 𝑢′ // Pack 𝑥 greedily if there is space

ℎ := ℎ+ 𝑤(𝑥);
pack 𝑥;

else
discard 𝑥;

end

Algorithm 6.1. The algorithm GLog for the (general) knapsack problem.

We conclude that at most 𝒪(log(𝑛𝑑)) = 𝒪(log 𝑛) bits are needed in total to commu-
nicate the 𝑥𝑖s with 1 ≤ 𝑖 ≤ 𝑘, the 𝑧𝑖s with 1 ≤ 𝑖 ≤ 𝑝, together with 𝑐′, 𝑟′, 𝑔′, and 𝑢′.
Using this knowledge, GLog works as shown in Algorithm 6.1 to construct 𝒮2, and
is therefore (1 + 𝜀)-competitive. �

6.6.2 Randomized Online Algorithms
Next, we show that no randomized online algorithm for the general knapsack problem,
independent of the number of random bits it reads, is competitive. We will prove
this claim using Yao’s principle (see Exercise 6.7 for a warm-up).

Theorem 6.18. No randomized online algorithm for the knapsack problem is com-
petitive (independent of the number of random bits).

Proof. We construct sets ℐ1, ℐ2, . . . of instances as follows. ℐ𝑖 consists of all instances

𝐼𝑠 = ((1, 2), (1, 22), . . . , (1, 2𝑠), (1, 1), (1, 1), . . . , (1, 1)⏟  ⏞  
𝑖+1−𝑠 times

)

of length 𝑖 + 1, for every 𝑠 with 1 ≤ 𝑠 ≤ 𝑖 + 1. For each 𝐼𝑠, the optimal solution
packs the last object with a value larger than 1, and therefore has a gain of 2𝑠; there
is space for exactly one object in the knapsack.
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Clearly, ℐ𝑖 is finite for any fixed 𝑖 (more precisely, |ℐ𝑖| = 𝑖 + 1). Now consider
a probability distribution PrAdv,𝑖 over ℐ𝑖 such that each instance is drawn with
probability 1/(𝑖+ 1).

Moreover, for any fixed 𝑖, there is only a finite number of generic algorithms for ℐ𝑖.
Any deterministic online algorithm that has any gain larger than 1 on these instances
chooses exactly one object it packs into the knapsack (if it should be offered). Let
Alg𝑘 with 1 ≤ 𝑘 ≤ 𝑖 + 1 denote such an algorithm that decides to wait until the
𝑘th object is offered and to pack it. We can thus apply Yao’s principle for infinite
maximization problems. In what follows, we will show that(︂

EAdv,𝑖

[︂
gain(Alg𝑘(ℐ𝑖))
gain(Opt(ℐ𝑖))

]︂)︂−1
≥ 𝑖+ 1

3 . (6.13)

Since the lower bound on the competitive ratio grows with the input length 𝑖+ 1, we
do not need to show that the optimal gain increases unboundedly (see Exercise 2.4).

If the concrete input is 𝐼𝑘, the gain of Alg𝑘 and the optimal gain are both 2𝑘,
which happens with probability 1/(𝑖+ 1). If the randomly chosen instance is 𝐼𝑗 with
𝑗 < 𝑘 (that is, if 𝑘 is too large) Alg𝑘’s gain is at most 1. Conversely, if the instance
is 𝐼𝑗 with 𝑘 < 𝑗 (that is, if 𝑘 is too small) Alg𝑘’s gain is again 2𝑘 while the optimal
gain is 2𝑗 . Summing up, we get

EAdv,𝑖

[︂
gain(Alg𝑘(ℐ𝑖))
gain(Opt(ℐ𝑖))

]︂
≤ 1
𝑖+ 1

𝑘−1∑︁
𝑗=1

1
2𝑗 + 1

𝑖+ 1 · 2𝑘
2𝑘 + 1

𝑖+ 1

𝑖+1∑︁
𝑗=𝑘+1

2𝑘
2𝑗

≤ 1
𝑖+ 1 + 1

𝑖+ 1

𝑖+1∑︁
𝑗=𝑘

2𝑘−𝑗 ,

for any fixed 𝑘, and hence the expected competitive ratio of Alg𝑘 is at least

𝑖+ 1
1 +

∑︀𝑖+1
𝑗=𝑘 2𝑘−𝑗

= 𝑖+ 1
1 + 20 + 2−1 + . . .+ 2𝑘−𝑖−1 ≥ 𝑖+ 1

3 ,

which proves (6.13). Therefore, (i) of Theorem 2.6 is satisfied. Consequently, no
randomized online algorithm is competitive for the general knapsack problem. �

6.6.3 Resource Augmentation
Note that all objects which we used in the proof of Theorem 6.18 have a weight of 1
each. It thus follows immediately that resource augmentation does not help at all for
randomized online algorithms as long as 𝛿 < 1. We call this problem the 𝛾-knapsack
problem.

Theorem 6.19. No randomized online algorithm for the 𝛾-knapsack problem is
competitive (independent of the number of random bits). �
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6.7 Historical and Bibliographical Notes
As already mentioned in the notes of Chapter 1, the offline version of the knapsack
problem has both a long history and a rich literature [94]. The lower bound on the
competitive ratio of deterministic online algorithms is due to Marchetti-Spaccamela
and Vercellis [115], who were the first to study an online version of the knapsack
problem. The results presented in this chapter about randomization and the advice
complexity of the problem are from Böckenhauer et al. [32, 33].

The concept of scalable problems is described by Borodin and El-Yaniv [34].
Furrer [65] showed that the simple knapsack problem is scalable (see Exercise 6.3).

The simple removable knapsack problem, which was described in Exercise 6.5,
was introduced by Iwama and Taketomi [87]; the authors showed a tight bound of
(1 +

√
5)/2 on the strict competitive ratio for deterministic online algorithms. Iwama

and Zhang [88] proved that there is no competitive deterministic online algorithm
for the general removable knapsack problem (see Exercise 6.10). Randomized online
algorithms for the removable knapsack problem were studied by Han et al. [74].

It was also mentioned in the notes of Chapter 1 that resource augmentation was
introduced by Kalyanasundaram and Pruhs [90]. This concept was used for the
removable knapsack problem by Iwama and Zhang [88]. The latter authors also
showed the bounds for deterministic online algorithms which are not allowed to
remove objects in this setting (see Theorems 6.13 and 6.14). Han and Makino [75]
studied resource augmentation for a variant of the problem where each object can be
cut 𝑘 times; the part that is cut off is then discarded. The presented results on using
both resource augmentation and advice are also due to Böckenhauer et al. [33].

The advice complexity of the online bin packing problem, which is related to the
knapsack problem, was investigated by Angelopoulos et al. [10], Boyar et al. [37],
Renault et al. [126], and Zhao and Shen [146].
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7The Bit Guessing Problem

In this chapter, we describe a very generic online problem, called the bit guessing
problem, which captures the very essence of online computation. This problem is
of great importance for analyzing online algorithms with advice, in particular with
respect to lower bounds. Essentially, in the bit guessing problem an online algorithm
has to guess 0 or 1 in every time step. If the guess was incorrect, it pays a penalty
of 1 in the corresponding time step; otherwise, it has no cost in this step. We define
two versions of this problem. In the first one, the algorithm is not told whether
its guesses were correct until the very end. In the second one, the algorithm gets
feedback after every time step whether the preceding guess was correct or incorrect;
we refer to this feedback as the history of the input. We are not interested in the
competitive ratio that can be achieved for this problem, but in the solution quality
in an absolute sense, that is, in the number of correct guesses that are obtained.
We actually define the problem in a more general way such that the characters of
a 𝜎-ary string need to be guessed, where 𝜎 ≥ 2. This problem is called the string
guessing problem over an alphabet of size 𝜎; however, we will mostly focus on a
binary alphabet.

We first analyze the problem in both a deterministic and a randomized setting.
While deterministic online algorithms perform extremely poorly for the problem
with both known and unknown history, it turns out that one random bit is very
powerful as it allows us to guess half of any instance correctly in expectation. Next,
we study the advice complexity and prove lower bounds on the number of advice
bits that are necessary in order to obtain a given number of correct guesses. We
give two separate proofs for either knowing or not knowing the history, which follow
different approaches and involve some arguments from coding theory. Moreover, we
give an idea of how the known history can be exploited when using advice.

Then, we turn to our main reason for studying these problems. Since we can find
the concept of guessing certain characters (in many cases, bits) in a large number
of online problems, we can use the bounds on the advice complexity of the string
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guessing problem to obtain lower bounds for other online problems by using certain
kinds of reductions. After describing this concept in more detail, we apply concrete
reductions to three problems, namely the 𝑘-server problem, the online set cover
problem, and the disjoint path allocation problem. By doing so, we get strong lower
bounds on the number of advice bits necessary to achieve competitive ratios that
are close to 1.

7.1 Introduction

On a very high level, an online algorithm has the task to output some answer to some
request in every given time step. In some sense, these answers can be interpreted as
natural numbers. For instance, according to Definition 1.7, in the paging problem,
the algorithm needs either to output a 0 if no page fault occurs, or to specify which
page in the current cache gets replaced; clearly, the latter operation is equivalent to
specifying the index of that page. Likewise, in the 𝑘-server problem, in every time
step, the index of a server is specified that is to be moved to the requested point in
the metric space. Since, in a deterministic or randomized setting, these answers are
given without knowing what comes next, we can call such an answer a “guess” of
the algorithm. If we concatenate all the answers of an online algorithm, we obtain a
string of length 𝑛 over an alphabet (that is, a finite set) Σ, and may therefore speak
of “string guessing.”

Of course, an important point is how the cost or gain function of the given online
problem is defined. We speak of the string guessing problem when we have a cost
function where an incorrect guess induces a penalty of 1 for the current time step,
while a correct guess leads to cost 0. Observe that an optimal solution for every
given instance has cost 0 as a consequence. The overall cost is therefore the number
of time steps in which the algorithm’s guess is different from the optimal answer.
For the formal definition of the problem we use the Hamming distance ham(𝑎, 𝑏) for
two 𝜎-ary strings 𝑎1𝑎2 . . . 𝑎𝑛 and 𝑏1𝑏2 . . . 𝑏𝑛. We define two versions that differ in
whether the algorithm is given feedback (called the “history” of the instance).

Definition 7.1 (String Guessing, Known History). The string guessing
problem with known history over an alphabet Σ of size 𝜎 ≥ 2 is an online
minimization problem. The input 𝐼 = (𝑛, 𝑠1, 𝑠2, . . . , 𝑠𝑛) consists of a natural
number 𝑛 and the characters 𝑠1, 𝑠2, . . . , 𝑠𝑛 with 𝑠𝑖 ∈ Σ for 1 ≤ 𝑖 ≤ 𝑛. The
characters are revealed one by one. An online algorithm Alg for the problem
computes the output sequence Alg(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛) where 𝑦𝑖 ∈ Σ. The
algorithm is not required to respond with any output in the last time step. If
𝑦𝑖 = 𝑠𝑖 with 1 ≤ 𝑖 ≤ 𝑛, then Alg made the correct guess in the corresponding
time step; otherwise it made an incorrect guess. The cost of a solution Alg(𝐼)
is the number of incorrectly guessed characters, that is, the Hamming distance
ham(𝑠,Alg(𝐼)) between 𝑠 = 𝑠1𝑠2 . . . 𝑠𝑛 and Alg(𝐼).
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Next, we give an analogous definition for the string guessing problem where the
history is not known, which means that the algorithm is not supplied with any
feedback until the very end.

Definition 7.2 (String Guessing, Unknown History). The string guess-
ing problem with unknown history over an alphabet Σ of size 𝜎 ≥ 2 is an online
minimization problem. The input 𝐼 = (𝑛, ?, ?, . . . , ?, 𝑠) consists of the string
length 𝑛 in the first request, 𝑛− 1 subsequent requests “?” carrying no extra
information, and the string 𝑠 = 𝑠1𝑠2 . . . 𝑠𝑛 ∈ Σ𝑛. In each of the first 𝑛 time steps,
an online algorithm Alg for the problem is required to output one character
from Σ, forming the output sequence Alg(𝐼) = (𝑦1, 𝑦2, . . . , 𝑦𝑛). As above, the
algorithm is not required to respond with any output in the last time step,
in which the string 𝑠 is revealed. The cost of a solution Alg(𝐼) is again the
Hamming distance between 𝑠 and Alg(𝐼).

If an algorithm for the string guessing problem makes an incorrect guess in some
time step, we will simply speak of it “making an error.” Note that, for both problems,
the input length is actually 𝑛+ 1. For all of our subsequent investigations, however,
we will take 𝑛 as a measurement; we will interchangeably speak of “inputs of length
𝑛+ 1” and “guessing a string of length 𝑛.”

Most of the time, we will consider the string guessing problem with an alphabet
size of 2 and the two letters 0 and 1, which is why we subsequently speak of the “bit
guessing problem,” or of “bit guessing,” for simplicity. In other words, we consider
the problem of guessing a binary string of length 𝑛. The results obtained in this
chapter can easily be generalized to larger alphabets; we leave this to the reader.

7.2 Deterministic and Randomized Algorithms
If we think about deterministic online algorithms, it seems pretty obvious that there
is no difference between knowing and not knowing the history; such an algorithm
will make an error in every time step.

Theorem 7.1. Every deterministic online algorithm has cost 𝑛 for bit guessing with
either known or unknown history.

Proof. Let Alg be any online algorithm for the bit guessing problem with either
known or unknown history. In every time step, the adversary knows the guess of
Alg, no matter whether it is based on the history or not. Therefore, it can always
choose the complement to be the correct answer, regardless of when this answer is
supplied. �

If we consider randomization, we can easily improve this bound by a factor of two.
Let Half be a randomized online algorithm that guesses 0 or 1 with probability 1/2
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each in every time step. In doing so, Half ignores the history (if it is supplied),
that is, which of its guesses were correct so far. Clearly, it guesses 𝑛/2 bits correctly
in expectation, no matter which instance the adversary chooses. Moreover, Half
uses exactly 𝑛 random bits. If we think about it, we can achieve the same result
with one random bit, that is, there is a barely random algorithm BGROne that has
cost 𝑛/2 in expectation as well.

Theorem 7.2. BGROne has an expected cost of at most 𝑛/2 for bit guessing with
both known and unknown history.

Proof. BGROne reads one random bit before processing the input. If this random
bit is 1, it guesses 1 in every time step; otherwise, it guesses 0 in every time step. The
important thing is that the adversary cannot foresee which of the two cases occurs
(recall that we deal with an oblivious adversary). Therefore, no matter which input
𝐼 the adversary chooses, at every position of 𝐼, BGROne is correct with probability
1/2, which leads to a total cost of 𝑛/2 in expectation. �

Exercise 7.1. BGROne outputs a string that consists of either 1s only or 0s only. Are
there other strategies that also lead to a randomized online algorithm that has an expected
cost of 𝑛/2 and uses one random bit?

Exercise 7.2. What can be achieved with one random bit when considering the general
string guessing problem? In particular, what is doable for an alphabet size larger than 2?

Exercise 7.3. In Example 3.9, we defined a similar problem and designed a randomized
online algorithm for it that uses 𝑛−1 random bits and is strictly (2−1/(2𝑛−1))-competitive
in expectation. Is it possible to achieve this strict expected competitive ratio with fewer
random bits?

BGROne does not make use of the history. It is not difficult to prove that, for
randomization, it also does not help to know the history, that is, the bound of
Theorem 7.2 is tight independent of whether the history is known or not. We leave
the proof as an exercise for the reader.

Theorem 7.3. Every randomized online algorithm has an expected cost of at least
𝑛/2 for bit guessing with either known or unknown history.

Exercise 7.4. Prove Theorem 7.3.

7.3 Advice Complexity
So far, it did not seem very meaningful to study bit guessing either with known or
with unknown history; in general, the problem does not behave very surprisingly.
Now what happens when advice comes into play? First off, it is straightforward to
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verify that there are optimal online algorithms with advice that use 𝑛 advice bits;
the advice simply encodes the input (more specifically, the string 𝑠). We do not need
any self-delimiting strings; for every request, exactly one bit is read (and 𝑛 is given
as part of the input before any guess has to be made, anyway).

Theorem 7.4. There are optimal online algorithms with advice for bit guessing with
both known and unknown history that use 𝑛 advice bits. �

Next, we show that this bound is tight. The proof of the following theorem uses
the pigeonhole principle as we usually do when proving lower bounds on the number
of advice bits necessary to perform optimally.

Theorem 7.5. Every optimal online algorithm with advice for bit guessing with
either known or unknown history has to use at least 𝑛 advice bits.

Proof. For a contradiction, suppose there are optimal online algorithms with advice
for the two problems that read at most 𝑛 − 1 advice bits. Let Alg be such an
algorithm for either of the two. Therefore, there are two instances 𝐼1 and 𝐼2 of length
𝑛+ 1 (and therefore two strings of length 𝑛) for which Alg gets the same advice.
Let 𝑖 with 2 ≤ 𝑖 ≤ 𝑛+ 1 denote the position at which 𝐼1 and 𝐼2 differ for the first
time; this is equal to the (𝑖− 1)th bit of the string 𝑠, which must be guessed in time
step 𝑇𝑖−1. We distinguish two cases depending on which of the two problem variants
we are dealing with.

Case 1. If the history is unknown, Alg’s guess in 𝑇𝑖−1 can only be based on the
advice, which is identical for both instances.

Case 2. If the history is known, Alg’s guess can additionally depend on the feedback
it received so far. However, 𝐼1 and 𝐼2 are not distinguishable in the first 𝑖− 1 time
steps, because the feedback is the same up to this point.

As a result, Alg makes the same guess for both 𝐼1 or 𝐼2 in time step 𝑇𝑖−1, which
means it cannot be optimal for both instances. �

Exercise 7.5. Give an alternative proof of Theorem 7.5 using partition trees (see Defini-
tion 3.3).

Again, this does not seem very surprising. Our next question is what can be done
with very small advice. We already know from Theorem 7.2 that one random bit
allows us to make at most 𝑛/2 errors in expectation. If we define a corresponding
online algorithm BGOne with advice that outputs (based on one advice bit) in
every time step the bit that appears in at least half of the positions of the string 𝑠,
we immediately get the following result.

Theorem 7.6. BGOne has a cost of at most 𝑛/2 for bit guessing with both known
and unknown history. �
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Exercise 7.6. Prove an analogous result for the general string guessing problem when
⌈log2 𝜎⌉ advice bits are used.

From Theorem 7.3 we know that we cannot guess more than 𝑛/2 bits correctly
in expectation, no matter how much we increase the number of random bits. For
advice, on the other hand, we know that we can be optimal with 𝑛 advice bits.

While knowing the history (that is, getting feedback about the decisions made so
far) does not help in purely deterministic and randomized settings, this knowledge
might suddenly be of some help when advice comes into play. Let us give an example
of how an online algorithm with advice can use this knowledge. More specifically,
the following idea is to give advice only for the first 𝑛− 4 bits such that an incorrect
bit is supplied on purpose at exactly one position; the position encodes the last four
bits.
Example 7.1. Let 𝐼 be an instance of the bit guessing problem with known history
of length 𝑛+ 1 (that is, there is a string 𝑠 with 𝑛 bits to be guessed). Assume that
we allow our algorithm to make one error. Moreover, we want to do this while using
at most 𝑛− 4 advice bits. If 𝑠 is the 20-bit string given by the bits

1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1 ,
the oracle reads the last four bits and interprets them as the binary representation
of the number 13. This number will be communicated to the online algorithm with
advice in the following way. The first 𝑛− 4 bits of 𝑠 are copied to the advice tape.
However, an incorrect bit is written at position 14 (since with four bits, we can
encode the numbers from 0 to 15). This leads to an advice string

1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 . . . .

The online algorithm will then read these 𝑛− 4 bits, and guess accordingly. After
it guessed the 14th bit, it will be told that it just made an error. It continues until
𝑛− 4 bits are guessed; then, the last four bits are guessed according to the binary
representation (with four bits) of 13. Note that this strategy can always be followed
for 𝑛 ≥ 24 + 4 (which gives enough space on the tape).

In general, for every 𝑡 ∈ N+ and 𝑛 ≥ 2𝑡 + 𝑡, we can follow the same approach and
make at most one error while reading 𝑛− 𝑡 bits of advice.

We can even use this idea to save a number of bits that grows with 𝑛. Suppose
that, instead of a constant number, we take the last ⌊log2 𝑛⌋ − 1 bits of the string
and encode them the way described above. Due to

2⌊log2 𝑛⌋−1 + ⌊log2 𝑛⌋ − 1 ≤ 2log2 𝑛−1 + log2 𝑛 = 𝑛

2 + log2 𝑛 ,

which is smaller than 𝑛 for every 𝑛 ≥ 4, there is an online algorithm with advice for
bit guessing with known history that makes one error and uses

𝑛− ⌊log2 𝑛⌋ + 1
advice bits to guess strings of length at least 4. ♢

216



7.3. Advice Complexity

Exercise 7.7. Now consider bit guessing with unknown history. Show that there is an
online algorithm that makes at most one error but uses at most 𝑛− 2 advice bits.

Exercise 7.8. Generalize this idea to an arbitrary number of errors.

Next, we are interested in the number of advice bits that are necessary to guarantee
that a specific number of errors is not exceeded. We start by analyzing the bit
guessing problem with unknown history. If we allow errors, the arguments for lower
bounds get more involved than for lower bounds on the number of advice bits
necessary to compute optimal solutions. In the proof of Theorem 7.5, we used our
standard approach involving the pigeonhole principle, which states that we need
a unique advice string for every instance in order to make no errors. Now the
situation changes. As an example, again suppose that one error is allowed (recall
that Exercise 7.7 gives an upper bound of 𝑛 − 2 for bit guessing with unknown
history in this case). Then the advice may tell the online algorithm to guess 0 in
every time step, thus “covering” 𝑛+ 1 instances, namely every instance that consists
of 0s only except for one 1 and of course the instance that consists of 0s only.

Generalizing this idea leads to the following situation. There are 2𝑛 different strings,
and the online algorithm can partition them into 2𝑏(𝑛) groups 𝒢1,𝒢2, . . . ,𝒢2𝑏(𝑛) ; the
adversary cannot influence this partitioning. For every group, there is a center string
𝑠𝑖, which is the string that the online algorithm outputs when the adversary picks
an instance from the group 𝒢𝑖 with 1 ≤ 𝑖 ≤ 2𝑏(𝑛). In general, of course, the center
string is not necessarily within “its” group; if it is not, the algorithm always makes
some errors when given an instance from the group. In what follows, however, we
will assume that the center string is contained in its group. This way, if this string
is the one to be guessed, the algorithm has no cost; clearly, this does not weaken
the algorithm. The adversary then tries to pick a string 𝑠 as the input string such
that the Hamming distance between 𝑠 and 𝑠𝑖 is maximized. Therefore, the online
algorithm tries to create the groups such that the Hamming distance from 𝑠𝑖 to any
string contained in 𝒢𝑖 is minimized; an example of such a partitioning is shown in
Figure 7.1.

The crucial thing is that, since we consider the bit guessing problem with unknown
history (in which no feedback is supplied), the algorithm is completely “blind” with
respect to which string is actually chosen by the adversary. The idea of the subsequent
proof is therefore to analyze a best way of choosing the groups and center strings.
Since guessing 𝑛/2 bits correctly can be done with one advice bit (see Theorem 7.6),
we are only interested in how much information is needed to do better than that.

For the following analysis, we need the subsequent technical lemma, which involves
the binary entropy function

ℋ2(𝑥) := −𝑥 log2 𝑥− (1 − 𝑥) log2(1 − 𝑥) ,

which is depicted in Figure 7.2.
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Figure 7.1. Example of groups that allow for a maximal error of 1.

Furthermore, we need the binomial theorem, which states that, for all 𝑥, 𝑦 ∈ R

and 𝑚 ∈ N, we have
𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
𝑥𝑖𝑦𝑚−𝑖 = (𝑥+ 𝑦)𝑚 .

Lemma 7.1. For any 𝑘 ≤ 1/2, we have
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 2ℋ2(𝑘)𝑛 .

Proof. To prove the claim, we need to show that

2−ℋ2(𝑘)𝑛
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 1 . (7.1)

First, we rewrite the first factor of the left-hand side as

2−ℋ2(𝑘)𝑛 = 2(𝑘 log2 𝑘+(1−𝑘) log2(1−𝑘))𝑛

= 2log2(𝑘𝑘𝑛) · 2log2((1−𝑘)(1−𝑘)𝑛)

= 𝑘𝑘𝑛(1 − 𝑘)(1−𝑘)𝑛

=
(︂

𝑘

1 − 𝑘

)︂𝑘𝑛
(1 − 𝑘)𝑛 .

(by multiplying by (1 − 𝑘)𝑘𝑛/(1 − 𝑘)𝑘𝑛)

With this, the left-hand side of (7.1) can be bounded by

2−ℋ2(𝑘)𝑛
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
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Figure 7.2. The binary entropy function. For us, this function is only interesting for
𝑥 ≥ 1/2 (that is, the part that is not hatched).

≤
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂(︂
𝑘

1 − 𝑘

)︂𝑘𝑛
(1 − 𝑘)𝑛

≤
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂(︂
𝑘

1 − 𝑘

)︂𝑖
(1 − 𝑘)𝑛

(since 𝑘/(1 − 𝑘) ≤ 1 due to 𝑘 ≤ 1 − 𝑘, which follows from 𝑘 ≤ 1/2)

=
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑘𝑖(1 − 𝑘)𝑛−𝑖

≤
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑘𝑖(1 − 𝑘)𝑛−𝑖 +

𝑛∑︁
𝑖=𝑘𝑛+1

(︂
𝑛

𝑖

)︂
𝑘𝑖(1 − 𝑘)𝑛−𝑖

=
𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑘𝑖(1 − 𝑘)𝑛−𝑖

= (𝑘 + (1 − 𝑘))𝑛 ,
(using the binomial theorem)

which is equal to 1 and therefore proves the claim. �

Now we are ready to prove the following theorem, which allows us to bound the
number of advice bits necessary to guarantee we do not exceed a given fraction of
errors.
Theorem 7.7. Every online algorithm with advice that guesses at least 𝛾𝑛 bits
correctly of every instance of bit guessing with unknown history has to use at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛
advice bits, where 1/2 ≤ 𝛾 ≤ 1.
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Proof. Let Alg be an online algorithm with advice for the bit guessing problem
with unknown history; we assume that Alg guesses 𝛾𝑛 bits correctly, that is, makes
at most (1 − 𝛾)𝑛 errors on every input of length 𝑛+ 1. As always, Alg uses 𝑏(𝑛)
advice bits to guess strings of length 𝑛. Thus, by the pigeonhole principle, there are
2𝑛/2𝑏(𝑛) instances that get the same advice. Let 𝜑 be one such advice string, and let
ℐ𝜑 be the corresponding set of instances. Thus,

|ℐ𝜑| ≥ 2𝑛
2𝑏(𝑛) . (7.2)

There is one string 𝑠𝜑, called the center string, for ℐ𝜑 that is the output of Alg
whenever a string from ℐ𝜑 is the input; as noted above, we assume that 𝑠𝜑 is contained
in ℐ𝜑.

Next, we want to give an upper bound on |ℐ𝜑|. To this end, we need some
combinatorial ideas from coding theory. Consider a fixed binary string 𝑠′ of length
𝑛. There are exactly(︂

𝑛

𝑖

)︂
binary strings that are different from 𝑠′ at exactly 𝑖 positions, that is, that have
Hamming distance 𝑖 from 𝑠′. If we allow a maximum of (1 − 𝛾)𝑛 positions at which
the strings are allowed to be different from 𝑠′, we get a total of

(1−𝛾)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
binary strings. This is exactly the maximum size that is allowed for a group of
strings with center string 𝑠′.

In order to be able to guarantee that Alg makes at most (1 − 𝛾)𝑛 errors, it must
therefore hold that

|ℐ𝜑| ≤
(1−𝛾)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 2ℋ2(1−𝛾)𝑛 , (7.3)

where we used Lemma 7.1 (note that 1 − 𝛾 ≤ 1/2 since 𝛾 ≥ 1/2). Otherwise, there
is at least one string contained in ℐ𝜑 that has a Hamming distance of more than
(1 − 𝛾)𝑛 to 𝑠𝜑. The adversary could choose this string as the input string and Alg
would make more than (1 − 𝛾)𝑛 errors.

From (7.2) and (7.3), we obtain

2𝑛
2𝑏(𝑛) ≤ 2−𝛾𝑛 log2 𝛾−(1−𝛾)𝑛 log2(1−𝛾)

⇐⇒ 2𝑛 ≤ 2𝑏(𝑛) · 2log2(𝛾−𝛾𝑛) · 2log2((1−𝛾)−(1−𝛾)𝑛)
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⇐⇒ 2𝑛 ≤ 2𝑏(𝑛) ·
(︂

1
𝛾

)︂𝛾𝑛
·
(︂

1
1 − 𝛾

)︂(1−𝛾)𝑛

⇐⇒ 2𝑏(𝑛) ≥ 2𝑛 · 𝛾𝛾𝑛 · (1 − 𝛾)(1−𝛾)𝑛

⇐⇒ 𝑏(𝑛) ≥ 𝑛+ 𝛾𝑛 log2 𝛾 + (1 − 𝛾)𝑛 log2(1 − 𝛾)
⇐⇒ 𝑏(𝑛) ≥ (1 + 𝛾 log2 𝛾 + (1 − 𝛾) log2(1 − 𝛾))𝑛 ,

which proves the claim. �

Note that the groups 𝒢𝑖 with 1 ≤ 𝑖 ≤ 2𝑏(𝑛) are nothing else than so-called Hamming
balls with radius (1 − 𝛾)𝑛, and that the number of strings they maximally contain
coincides with their volume.

Exercise 7.9. Prove the following generalization of Lemma 7.1. For every natural number
𝜎 ≥ 2 and 𝑘 with 𝑘 ≤ 1 − 1/𝜎, we have

𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖 ≤ 𝜎ℋ𝜎(𝑘)𝑛 ,

where
ℋ𝜎(𝑥) = 𝑥 log𝜎(𝜎 − 1) − 𝑥 log𝜎 𝑥− (1 − 𝑥) log𝜎(1 − 𝑥) .

is the 𝜎-ary entropy function.

Exercise 7.10. Use the statement of Exercise 7.9 to prove the following generalization
of Theorem 7.7. Every online algorithm with advice that guesses at least 𝛾𝑛 characters
correctly of every instance of string guessing with unknown history with an alphabet size of
𝜎 ≥ 2 has to use at least(︁

1 + (1 − 𝛾) log𝜎

(︁1 − 𝛾

𝜎 − 1

)︁
+ 𝛾 log𝜎 𝛾

)︁
𝑛 log2 𝜎

advice bits, where 1/𝜎 ≤ 𝛾 ≤ 1.

The proof of Theorem 7.7 uses the fact that, in the case of an unknown history,
the online algorithm can only base its guesses on the advice. When the algorithm is
provided with feedback, it may be able to single out some potential instances using
what it knows about the history. Therefore, we need to be more careful when proving
the subsequent theorem that bounds the number of advice bits for this version of
the problem.

This time, let Alg be an online algorithm with advice for the bit guessing problem
with known history; we again assume that Alg guesses 𝛾𝑛 bits correctly, where
1/2 ≤ 𝛾 ≤ 1. We represent the 2𝑛 different strings of length 𝑛 by a binary tree
𝒯 = (𝑉,𝐸) of height 𝑛 (that is, with 𝑛+ 1 levels). We label the vertices and edges
of 𝒯 as follows; see Figure 7.3 for an example with 𝑛 = 4.

• For 𝑗 with 1 ≤ 𝑗 ≤ 2𝑛, 𝑣0,𝑗 is the leaf that represents the 𝑗th binary string of
length 𝑛 in canonical order (all these strings are feasible inputs of length 𝑛).
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𝑣0,1 𝑣0,2 𝑣0,3 𝑣0,4 𝑣0,5 𝑣0,6 𝑣0,7 𝑣0,8 𝑣0,9 𝑣0,10 𝑣0,11 𝑣0,12 𝑣0,13 𝑣0,14 𝑣0,15 𝑣0,16

𝑣1,1 𝑣1,2 𝑣1,3 𝑣1,4 𝑣1,5 𝑣1,6 𝑣1,7 𝑣1,8

𝑣2,1 𝑣2,2 𝑣2,3 𝑣2,4

𝑣3,2𝑣3,1

𝑣4,1

Figure 7.3. The binary tree 𝒯 representing the strings of length 4 of bit guessing with
known history.

• In general, the vertex 𝑣𝑖,𝑗 with 0 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 2𝑛−𝑖 represents the
string 𝑠𝑖,𝑗 , which is the 𝑗th binary string in canonical order of length 𝑛 − 𝑖.
Note that the index 𝑖 increases from the bottom to the top; for instance, a
vertex on level 0 is a leaf and the unique vertex 𝑣𝑛,1 on level 𝑛 is the root of 𝒯 .

• We may think of the vertex 𝑣𝑖,𝑗 as representing all instances that have the
prefix 𝑠𝑖,𝑗 . Let 𝑣𝑖−1,𝑗′ and 𝑣𝑖−1,𝑗′′ be the two children of 𝑣𝑖,𝑗 with 1 ≤ 𝑖 ≤ 𝑛,
1 ≤ 𝑗 ≤ 2𝑛−𝑖, and 1 ≤ 𝑗′, 𝑗′′ ≤ 2𝑛−𝑖−1. The strings 𝑠𝑖−1,𝑗′ and 𝑠𝑖−1,𝑗′′ that are
represented by these children have a common prefix, namely 𝑠𝑖,𝑗 . The edge
from 𝑣𝑖,𝑗 to 𝑣𝑖,𝑗′ (𝑣𝑖,𝑗′′ , respectively) is labeled by the bit that extends 𝑠𝑖,𝑗 to
𝑠𝑖,𝑗′ (𝑠𝑖,𝑗′′ , respectively).
Without loss of generality, we assume that if 𝑗′ < 𝑗′′, 𝑠𝑖−1,𝑗′ extends 𝑠𝑖,𝑗 by
appending a 0, and 𝑠𝑖−1,𝑗′′ extends 𝑠𝑖,𝑗 by appending a 1.

Note that trees constructed this way are actually special kinds of partition trees,
which we introduced in Section 3.3 (see also Exercise 7.5).6 A similar idea was also
followed in the proof of Theorem 3.6, where we gave a lower bound on the number
of advice bits necessary to be 𝑐-competitive for paging.

Let us get back to the analysis of Alg. As always, due to the pigeonhole principle,
there is an advice string that is used for at least 2𝑛/2𝑏(𝑛) instances of length 𝑛;
as above, let 𝜑 be one such advice string, and let ℐ𝜑 be the corresponding set of
instances. We can view the computation of Alg when given an instance from ℐ𝜑 as
traversing 𝒯 as follows. Alg starts at the root vertex 𝑣𝑛,1. The instances from ℐ𝜑
correspond to some of the leaves; we assume that these leaves are known to Alg.
However, the adversary can decide which instance from ℐ𝜑 is given, and thus which is
the actual leaf. In 𝑇1, Alg makes a guess, and corresponding to that guess chooses
one of the two subtrees rooted at 𝑣𝑛−1,1 or 𝑣𝑛−1,2, respectively; for instance, if it
6However, the order of the levels is different from the one we sometimes use to describe partition
trees, which makes the analysis easier.

222



7.3. Advice Complexity

guesses 0, it chooses the subtree rooted at 𝑣𝑛−1,1. After that, in 𝑇2, the adversary
must reveal which would have been the correct guess. If it says the correct bit is 1,
Alg made an error, but now knows that the instance must correspond to a leaf that
is rooted at 𝑣𝑛−1,2; it therefore continues the traversal of 𝒯 from this vertex.

For ease of notation, if there is an instance 𝐼 ∈ ℐ𝜑 in a subtree rooted at some
inner vertex 𝑣 such that, when given 𝐼, Alg makes 𝑚 errors, we just say that the
subtree rooted at 𝑣 “contains 𝑚 errors.” Note that these errors are made in addition
to the errors already made on the prefix of the input (on the path from 𝑣𝑛,1 to 𝑣).

In what follows, let the function size : N × N → N be defined such that size(ℎ, 𝑟)
is equal to the maximum number of strings from ℐ𝜑 that can be represented by
a vertex on level ℎ in 𝒯 such that Alg makes at most 𝑟 errors on each of these
instances. This bound is tight in the sense that increasing size(ℎ, 𝑟) by one enables
the adversary to force Alg to make more than 𝑟 errors.

Since the instances are represented by the leaves of 𝒯 , we are interested in size(𝑛, 𝑟),
which tells us how many instances can maximally be contained in ℐ𝜑 such that Alg
makes at most 𝑟 errors. In what follows, we prove three technical lemmata; we
start by showing how the maximum number of errors contained in a subtree can be
computed recursively.

Lemma 7.2. For every vertex 𝑢 of 𝒯 , let error : 𝑉 → N be a function such that
error(𝑢) is equal to the number of errors that are contained in the subtree rooted at
𝑢. Let 𝑣 be any inner vertex of 𝒯 such that the subtree rooted at 𝑣 contains at least
one leaf that represents an instance from ℐ𝜑, and let the children of 𝑣 be 𝑣′ and 𝑣′′.
Denoting

𝑚 := max{error(𝑣′), error(𝑣′′)} ,

we have

error(𝑣) ≥

{︃
𝑚+ 1 if error(𝑣′) = error(𝑣′′) = 𝑚 ,

𝑚 else .

Proof. We distinguish between the above two cases to prove the lemma.

Case 1. Suppose both the subtree rooted at 𝑣′ and the one rooted at 𝑣′′ contain 𝑚
errors. In this case, the adversary can always choose the subtree that Alg did
not choose, and therefore cause one error in the current time step and another 𝑚
errors in the subtree that should have been entered.

Case 2. Without loss of generality, suppose the subtree rooted at 𝑣′ contains 𝑚
errors; the other subtree (rooted at 𝑣′′) contains fewer errors. The adversary
chooses the subtree rooted at 𝑣′, and therefore Alg makes at least 𝑚 errors in
the subtree rooted at 𝑣. If Alg also chooses the subtree rooted at 𝑣′, it does not
make an error in the current time step; if it chooses the other one, it even makes
an additional error.

This proves the claim. �
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Next, we show how size(𝑛, 𝑟) can be computed recursively using Lemma 7.2.

Lemma 7.3. For 𝑟 and ℎ with 𝑟 ≤ ℎ ≤ 𝑛, we have

size(1, 0) = 1 , (7.4)
size(1, 1) = 2 , (7.5)
size(ℎ, 𝑟) = size(ℎ− 1, 𝑟) + size(ℎ− 1, 𝑟 − 1), for 𝑟 ≥ 2 . (7.6)

Proof. We first prove (7.4) and (7.5). Note that both equations speak about vertices
on level 1. In other words, Alg guesses the last position of the binary string on this
level, and chooses one of the leaves. Clearly, if both instances are in ℐ𝜑, the adversary
can always choose the leaf that Alg does not choose. Thus, there can only be one
instance from ℐ𝜑 if Alg makes no error with this guess (that is, size(1, 0) = 1), and
if the maximum number of errors is 1, then both leaves can represent instances (that
is, size(1, 1) = 2).

It remains to prove (7.6); let 2 ≤ 𝑟 ≤ ℎ ≤ 𝑛. We know from Lemma 7.2 that
if there is a subtree rooted at some vertex on level ℎ that contains 𝑟 errors, the
maximum number of errors contained in each of the subtrees rooted at its two
children cannot be larger than 𝑟. Moreover, we know that it cannot be the case
that both these subtrees contain 𝑟 errors. Since the function size clearly does not
decrease with 𝑟, it is maximized if one subtree contains 𝑟 errors and the other one
contains 𝑟 − 1 errors, which yields

size(ℎ, 𝑟) = size(ℎ− 1, 𝑟) + size(ℎ− 1, 𝑟 − 1)

as stated by (7.6). �

Finally, we give a closed form for size(ℎ, 𝑟), which seems familiar.

Lemma 7.4. For 𝑟 and ℎ with 𝑟 ≤ ℎ ≤ 𝑛, we have

size(ℎ, 𝑟) =
𝑟∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
.

Proof. We prove the claim by induction on ℎ.

Base Case. Let ℎ = 1. Since 𝑟 ≤ ℎ, it follows that either 𝑟 = 0 or 𝑟 = 1. Due to
(7.4) and (7.5), we have

size(1, 0) = 1 =
0∑︁
𝑖=0

(︂
1
𝑖

)︂
and size(1, 1) = 2 =

1∑︁
𝑖=0

(︂
1
𝑖

)︂
,

and thus the base case is covered.
Induction Hypothesis. The claim holds for every ℎ′ ≤ ℎ, that is,

size(ℎ′, 𝑟) =
𝑟∑︁
𝑖=0

(︂
ℎ′

𝑖

)︂
.
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Induction Step. We obtain

size(ℎ+ 1, 𝑟) = size(ℎ, 𝑟) + size(ℎ, 𝑟 − 1)
(as a consequence of Lemma 7.3)

=
𝑟∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
+
𝑟−1∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
(using the induction hypothesis)

=
(︂
ℎ

0

)︂
+

𝑟∑︁
𝑖=1

(︂
ℎ

𝑖

)︂
+

𝑟∑︁
𝑖=1

(︂
ℎ

𝑖− 1

)︂

=
(︂
ℎ

0

)︂
+

𝑟∑︁
𝑖=1

(︂(︂
ℎ

𝑖

)︂
+

(︂
ℎ

𝑖− 1

)︂)︂

=
(︂
ℎ+ 1

0

)︂
+

𝑟∑︁
𝑖=1

(︂
ℎ+ 1
𝑖

)︂

=
𝑟∑︁
𝑖=0

(︂
ℎ+ 1
𝑖

)︂
.

The claim follows. �

Theorem 7.8. Every online algorithm with advice that guesses at least 𝛾𝑛 bits
correctly of every instance of bit guessing with known history has to use at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛

advice bits, where 1/2 ≤ 𝛾 ≤ 1.

Proof. With the above considerations, we get that

2𝑛
2𝑏(𝑛) ≤ size(𝑛, (1 − 𝛾)𝑛)

has to be true if Alg makes at most (1 − 𝛾)𝑛 errors. Using Lemma 7.4 with
𝑟 = (1 − 𝛾)𝑛 and ℎ = 𝑛, and then Lemma 7.1, yields

2𝑛
2𝑏(𝑛) ≤

(1−𝛾)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
≤ 2−𝛾𝑛 log2 𝛾−(1−𝛾)𝑛 log2(1−𝛾) .

By the same calculations as in the proof of Theorem 7.7, we conclude that

𝑏(𝑛) ≥ (1 + 𝛾 log2 𝛾 + (1 − 𝛾) log2(1 − 𝛾))𝑛 ,

which finishes the proof. �
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Figure 7.4. The average number of advice bits necessary per time step to guess a
fraction 𝛾 of all bits correctly.

The number of advice bits necessary per time step on average to guess a fraction
𝛾 of all bits correctly is depicted in Figure 7.4. In this section, we gave two lower-
bound proofs, which use different approaches; one for the case of unknown history
(Theorem 7.7) and one for the case of known history (Theorem 7.8). However, note
that a lower bound for the case with known history of course implies the same lower
bound for the case of an unknown history.

Exercise 7.11.⋆ Prove the following generalization of Theorem 7.8. Every online algorithm
with advice that guesses at least 𝛾𝑛 bits correctly of every instance of string guessing with
known history with an alphabet size of 𝜎 ≥ 2 has to use at least(︁

1 + (1 − 𝛾) log𝜎

(︁1 − 𝛾

𝜎 − 1

)︁
+ 𝛾 log𝜎 𝛾

)︁
𝑛 log2 𝜎

advice bits, where 1/𝜎 ≤ 𝛾 ≤ 1.

7.4 Advice-Preserving Reductions
In many areas of theoretical computer science, we use the concept of reductions to
show that a certain problem is hard (where the concept of “hardness” reflects what
we are investigating) under the assumption that a second problem is hard. The two
best-known examples are from the field of computability and classical complexity
theory where we classify problems as 𝒩 𝒫-hard (both of which we briefly mentioned
in Section 1.1).

The bit guessing problem can be used to give lower bounds on the advice complexity
of other online problems by means of a special kind of reduction. In doing so, we
can use the lower bounds on the number of advice bits needed to guess a certain
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number of bits correctly (that is, Theorems 7.7 and 7.8) to obtain lower bounds on
the number of advice bits needed to achieve some specific competitive ratio for the
given problem; we call such a reduction an advice-preserving reduction. Our focus is
not on formalizing this idea in every detail, but on describing this technique on an
intuitive, yet precise level.

The general scheme is as follows. Consider some online problem Π, and assume
there is some online algorithm BB (“black box”) with advice for Π. Now we construct
an online algorithm BGuess with advice for the bit guessing problem that uses BB
as follows. Let 𝐼 ′ be an input of bit guessing with either known or unknown history;
let 𝑛′ denote the length of the string that is to be guessed (recall that the length
of 𝐼 ′ is actually 𝑛′ + 1). BGuess simulates BB, and thus creates its input 𝐼, may
read its output, and is additionally able to write on its advice tape. BGuess bases
its own output on the output of BB. Whenever BB wants to read an advice bit,
BGuess copies a bit from its own tape and writes it to the corresponding position
of BB’s advice tape. As a result, the two algorithms use the same number of advice
bits.7 BGuess creates the input for BB such that BB is forced to have a larger cost
when the guess of BGuess was incorrect. In the case of known history, this can be
done right after the guess; for an unknown history, it is done at the end, when the
correct bit string is revealed to BGuess. This way, we get an equivalence of the type

BB’s performance on 𝐼 is 𝑐 ⇐⇒ BGuess guesses 𝛾𝑛′ bits correctly on 𝐼 ′ .

Note that in essence all BGuess does is to map its input to an input for BB, and
map BB’s output to its own output. Depending on the problem variant we consider,
we know from Theorem 7.7 or 7.8, respectively, that any online algorithm for bit
guessing needs to use at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′

advice bits to guess a fraction 𝛾 of all bits correctly. This implies that BB must
use at least this many advice bits as well; otherwise, BGuess would also use fewer
advice bits, which is a direct contradiction.

In the three subsequent subsections, we will use reductions from bit guessing to
give lower bounds for three different online problems. These reductions always follow
the above idea. The challenge is usually to build independent widgets that form the
input of BB, and that allow us to map a guess to a number of decisions of BB such
that the above equivalence holds.

7.4.1 The k-Server Problem
We already studied the advice complexity of 𝑘-server in Section 4.6. So far, the only
lower bound we gave dealt with the number of advice bits that are necessary to
produce an optimal output. Now we want to use a reduction from the bit guessing
7In principle, we could allow BGuess to read additional advice, but we will not need this for the
examples presented in this chapter.
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problem with known history to get a lower bound on the number of advice bits that
are necessary to obtain a small competitive ratio. This time, we will consider 2-server
on a path with three points 𝑝1, 𝑝2, and 𝑝3 with dist(𝑝1, 𝑝2) = dist(𝑝2, 𝑝3) = 1. There
are two servers 𝑠1 and 𝑠2. Initially, 𝑠1 is positioned on 𝑝1, and 𝑠2 is positioned on 𝑝3.

Following Theorem 4.1, we know that we can restrict ourselves to lazy algorithms
for 𝑘-server. For the metric spaces we consider here, we can additionally assume
that the initial order of the servers is never changed. Algorithms that follow this
principle are called non-swapping.

Definition 7.3 (Non-Swapping Online Algorithm). An online algorithm
for 2-server on the line is called non-swapping if it never positions the server 𝑠2
to the left of 𝑠1.

We leave the proof that Definition 7.3 does not cause any restriction (for paths of
length 2) as an exercise for the reader.

Theorem 7.9. Every 𝑐-competitive online algorithm for 2-server on a path of length
2 can be transformed into a lazy non-swapping online algorithm for 2-server on a
path of length 2 that is also 𝑐-competitive.

Exercise 7.12. Prove Theorem 7.9.

We now prove the following theorem by reducing the bit guessing problem with
known history to 𝑘-server (more specifically, to 2-server on a path of length 2). The
general idea is as described at the beginning of this section. We suppose we are
given an online algorithm BBks with advice for 2-server that achieves some specific
competitive ratio. Then we show that BBks needs to use at least a certain number
of advice bits since otherwise it would allow us to design an online algorithm with
advice for bit guessing that contradicts the lower bound of Theorem 7.8.

Theorem 7.10. For every 𝑐 with 𝑐 ≤ 3/2, every 𝑐-competitive online algorithm with
advice for 2-server on a path of length 2 has to use at least

(1 + (𝑐− 1) log2(𝑐− 1) + (2 − 𝑐) log2(2 − 𝑐)) · 𝑛5
advice bits.

Proof. We reduce bit guessing with known history to 2-server on a path of length
2. Let BBks be some online algorithm with advice for 2-server. We construct an
online algorithm BGuess with advice for bit guessing with known history that uses
BBks as a black box. Whenever BBks asks for advice, BGuess simply copies it
from its own tape. Due to Theorem 7.9, we assume without loss of generality that
BBks is a lazy non-swapping algorithm.
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In the first time step 𝑇 ′
1, BGuess is given the length 𝑛′ of the string it is supposed

to guess as part of the input 𝐼 ′. BGuess creates an input 𝐼 for BBks of length
𝑛 = 5𝑛′; in particular, BGuess simulates the first five time steps 𝑇1, 𝑇2, . . . , 𝑇5 of
BBks as follows. Initially, BGuess requests the point 𝑝2, that is, the point in the
middle that is not occupied by any server. BBks has to answer this request by
either moving 𝑠1 to the right or 𝑠2 to the left. If BBks chooses 𝑠1, BGuess guesses
the first bit to be 0; if BBks chooses 𝑠2, BGuess outputs 1. After that, BGuess
is told whether its guess was correct in 𝑇 ′

2. Depending on this feedback, BGuess
extends the input that is given to BBks. This is done before the next guess is made.
We distinguish two cases; the corresponding sequences are depicted in Figure 7.5.

Case 1. Suppose the correct guess is 0. In this case, after the first request 𝑝2 is sent
in 𝑇1, the points 𝑝3, 𝑝2, 𝑝3, and 𝑝1 are requested in this order. The five requests
are shown in Figure 7.5a. We distinguish two subcases.

Case 1.1. Suppose BBks uses 𝑠1 to serve the first request 𝑝2. Then it pays 1
in 𝑇1. After that, the next three requests 𝑝3, 𝑝2, and 𝑝3 do not require any
movement. Finally, 𝑝1 is requested. Since BBks is non-swapping, it serves this
request with 𝑠1 and has cost 2 in total.
Since BGuess guesses 0 in this case, it has cost 0 in 𝑇 ′

1.
Case 1.2. Suppose BBks uses 𝑠2 to serve 𝑝2. Then it again pays 1 in 𝑇1. After

that, the second request 𝑝3 must be served by moving 𝑠2 (since BBks is non-
swapping). Next, 𝑝2 is requested, and BBks has to move one of the servers. No
matter which one it picks, in the last two requests, this server has to be moved
again. Therefore, it has cost 4 in total.
Since BGuess guesses 1 in this case, it has cost 1 in 𝑇 ′

1.

Case 2. Suppose the correct guess is 1. In this case, 𝑝1, 𝑝2, 𝑝1, and 𝑝3 are requested
in this order in time steps 𝑇2, 𝑇3, 𝑇4, and 𝑇5. The five requests are shown in
Figure 7.5b. Analogously to the first case, it can be shown that using 𝑠2 causes
cost 2, while moving 𝑠1 causes cost 4. If BBks has cost 2, BGuess has cost 0,
and if BBks has cost 4, BGuess has cost 1.

It is crucial to note that, since BBks is lazy and non-swapping, the server 𝑠1 is
positioned on 𝑝1, and the server 𝑠2 is positioned on 𝑝3 afterwards. As a result, we
have the same situation as at the beginning of 𝑇 ′

1, and BGuess can continue in
the above fashion. In every time step, BGuess guesses the correct bit if and only
if BBks has cost 2 in the corresponding five time steps. If BGuess guesses the
incorrect bit, BBks has cost 4.

Clearly, the optimal cost for 𝐼 is (2𝑛)/5. Now suppose BGuess guesses 𝛾𝑛′ =
(𝛾𝑛)/5 bits correctly. For the competitive ratio 𝑐 of BBks, it follows that

𝑐 ≥ cost(BBks(𝐼))
cost(Opt(𝐼)) = 2𝛾 · 𝑛/5 + 4(1 − 𝛾) · 𝑛/5

(2𝑛)/5 ,
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(a) The correct guess is 0 (b) The correct guess is 1

Figure 7.5. The two possible request sequences that are used by BGuess.

and therefore 𝛾 ≥ 2 − 𝑐. Recall that 𝛾 ≥ 1/2 has to be satisfied in order to
apply Theorem 7.8. This is ensured by requiring 2 − 𝑐 ≥ 1/2, which yields 𝑐 ≤
3/2. Then again, BBks being 𝑐-competitive means that BGuess guesses 𝛾𝑛′ bits
correctly. From Theorem 7.8 we know that this requires that BGuess uses at least
(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′ advice bits, which increases in 𝛾 for 𝛾 ≥ 1/2.
Therefore, BGuess has to read at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′

= (1 + (𝑐− 1) log2(𝑐− 1) + (2 − 𝑐) log2(2 − 𝑐)) · 𝑛5

advice bits. Finally, note that the optimal cost of the instances constructed increases
with 𝑛, which finishes the proof. �

7.4.2 The Set Cover Problem

In this subsection, we introduce another online problem, which will serve as a second
example of how to apply a reduction from bit guessing to bound the number of
advice bits needed in order to achieve a small competitive ratio from below. In the
online set cover problem, we are given a set 𝑋 of 𝑘 objects8 together with a set
family 𝒮 consisting of sets of objects from 𝑋; both are given to an online algorithm
with the first request. Some of the elements of 𝑋 are then requested in consecutive
time steps. An online algorithm must select sets from 𝒮 such that all requests are
contained in at least one of them. The goal is to do so while using as few sets as
possible.

For ease of presentation, we will simply refer to the problem as “set cover.” Let us
define the problem formally and then give a simple example.

8Usually, these objects are simply natural numbers, that is, 𝑋 = {1, 2, . . . , 𝑘}; however, for our
studies, it is easier to use the more abstract notion of “objects.”
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Definition 7.4 (Set Cover). The online set cover problem is an online mini-
mization problem. The first request contains a ground set 𝑋 = {𝑠1, 𝑠2, . . . , 𝑠𝑘}
and a set family 𝒮 ⊆ 𝒫(𝑋) of size 𝑚; without loss of generality, ∅ ̸∈ 𝒮. In
every time step (including the first one), an object (that is, an element of 𝑋) is
requested. Immediately after each request 𝑠, an online algorithm for set cover
has to specify a set 𝑆𝑖 ∈ 𝒮 such that 𝑠 ∈ 𝑆𝑖 unless 𝑠 is contained in a set that was
taken in an earlier time step. The set of requested objects is denoted by 𝑋 ′ ⊆ 𝑋.
A feasible solution for the problem is any set family {𝑆1, 𝑆2, . . . , 𝑆𝑡} ⊆ 𝒮 such
that

𝑋 ′ ⊆
𝑡⋃︁
𝑖=1

𝑆𝑖 .

The objective is to minimize 𝑡, that is, to use as few sets as possible.

Example 7.2. Let Alg be some online algorithm for set cover, and consider the
ground set

𝑋 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8}

and the set family

𝒮 = {{𝑠1, 𝑠3, 𝑠6}, {𝑠2, 𝑠3, 𝑠5, 𝑠8}, {𝑠4, 𝑠7}, {𝑠6, 𝑠7, 𝑠8}} ,

which are given to Alg with the first request. The first object that is requested is
𝑠4. Since there is only one set contained in 𝒮 that contains 𝑠4, any online algorithm
answers by taking the set {𝑠4, 𝑠7}. The next request is 𝑠3, and Alg may decide to
take the set {𝑠2, 𝑠3, 𝑠5, 𝑠8} since it contains more objects than the other set that
contains 𝑠3. However, if the next request is 𝑠6, Alg has to take an additional set;
suppose it chooses the set {𝑠6, 𝑠7, 𝑠8}. In the case that the last request is 𝑠1, Alg
has to take yet another set. All in all, we have

𝐼 = ((𝑋,𝒮, 𝑠4), 𝑠3, 𝑠6, 𝑠1) and 𝑋 ′ = {𝑠4, 𝑠3, 𝑠6, 𝑠1} ,

and an optimal solution uses the two sets {𝑠4, 𝑠7} and {𝑠1, 𝑠3, 𝑠6}, while Alg chooses
the four sets {𝑠4, 𝑠7}, {𝑠2, 𝑠3, 𝑠5, 𝑠8}, {𝑠6, 𝑠7, 𝑠8}, and {𝑠1, 𝑠3, 𝑠6}; thus Alg has cost
4, while the optimal cost is 2. ♢

Note that the input length 𝑛 is bounded from above by the size 𝑘 of the set 𝑋; we
had a similar situation for JSS, which we studied in Chapter 5. However, there are
now two parameters in the game, namely 𝑘 and 𝑚. Thus, the first question is which
of the two we choose to measure the achievable competitive ratio and the advice
complexity; throughout this subsection, we will give bounds with respect to both 𝑘
and 𝑚. An upper bound on the advice needed to compute an optimal solution can
easily be obtained.
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Theorem 7.11. There are optimal online algorithms SCLin1 and SCLin2 with
advice for set cover that use 𝑘 − 1 or 𝑚 advice bits, respectively.

Proof. Recall that any online algorithm for set cover knows both 𝑋 and 𝒮 in advance.
The online algorithm SCLin1 reads one bit for every element of 𝑋, and that bit
is 1 if and only if the corresponding object is contained in the input. After that,
SCLin1 can compute an optimal solution and only include sets that are part of it.
For the first request, however, the algorithm does not need to use any advice. Thus,
𝑘− 1 advice bits are sufficient. SCLin2 reads one advice bit for every set in 𝒮. This
way, it gets information about some fixed optimal solution of the instance. It only
chooses sets according to this solution. Note that the two bounds are incomparable
in the sense that the relationship between 𝑘 and 𝑚 can be (almost) arbitrary. �

Note that SCLin1 gets advice about the input, and has to compute the solution
on its own. Conversely, SCLin2 gets information about an optimal solution and only
needs to choose the sets from 𝒮 accordingly. Next, we complement these bounds
with lower bounds. To this end, we construct a set of instances that already reminds
us of guessing bits. Let us first give an example.

Example 7.3. Let Alg be some online algorithm for set cover, and consider the
ground set

𝑋 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} ∪ {𝑏1,1, 𝑏2,1, 𝑏3,1, 𝑏4,1} ∪ {𝑏1,2, 𝑏2,2, 𝑏3,2, 𝑏4,2}

and the set family

𝒮 = {{𝑎1, 𝑏1,1}, {𝑎1, 𝑏1,2}, {𝑎2, 𝑏2,1}, {𝑎2, 𝑏2,2},
{𝑎3, 𝑏3,1}, {𝑎3, 𝑏3,2}, {𝑎4, 𝑏4,1}, {𝑎4, 𝑏4,2}} ,

which are given to Alg with the first request. The first object that is requested is
𝑎1. Alg has exactly two possible answers; the requested object is uncovered, and
there are two sets in 𝒮 in which it is contained. Both these sets cover an additional
object, namely 𝑏1,1 or 𝑏1,2, respectively. In the next time step, exactly one of these
two objects is requested. Depending on its previous choice, Alg might have to
take another set. Inputs from this set continue in this fashion until every 𝑎𝑖 with
1 ≤ 𝑖 ≤ 𝑘/3 is requested together with either 𝑏𝑖,1 or 𝑏𝑖,2 for every 𝑖. Clearly, an
optimal solution for such an instance uses exactly 𝑘/3 sets. ♢

Note that, for any instance from the set described above, there are exactly
𝑛 = (2/3)𝑘 requests and the size of 𝒮 is 𝑚 = (2/3)𝑘. We use this set of instances
in the remainder of this chapter. We start by showing that every optimal online
algorithm with advice needs a number of advice bits that is linear in both 𝑘 and 𝑚.

Theorem 7.12. Every optimal online algorithm with advice for set cover has to use
at least max{𝑘/3,𝑚/2} advice bits.
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Proof. Let 𝑘 be any multiple of 3; consider the ground set

𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑘/3} ∪ {𝑏1,1, 𝑏2,1, . . . , 𝑏𝑘/3,1} ∪ {𝑏1,2, 𝑏2,2, . . . , 𝑏𝑘/3,2}

and the set family

𝒮 = {{𝑎1, 𝑏1,1}, {𝑎1, 𝑏1,2}, {𝑎2, 𝑏2,1}, {𝑎2, 𝑏2,2}, . . . , {𝑎𝑘/3, 𝑏𝑘/3,1}, {𝑎𝑘/3, 𝑏𝑘/3,2}} .

We construct a set ℐ of instances of set cover as suggested in Example 7.3. There are
(2/3)𝑘 time steps. In odd time steps, the objects 𝑎𝑖 with 1 ≤ 𝑖 ≤ 𝑘/3 are requested
in ascending order. In the 𝑗th even time step, either 𝑏𝑗,1 or 𝑏𝑗,2 is requested; ℐ covers
all possibilities. It is immediate that there is an optimal solution that uses exactly
𝑘/3 sets from 𝒮 for any 𝐼 ∈ ℐ.

Now we claim that any online algorithm with advice that is optimal for set cover
needs to use at least 𝑘/3 advice bits. For a contradiction, assume there is an online
algorithm Alg that uses fewer advice bits, but is still optimal. There are exactly
2𝑘/3 instances in ℐ. Since Alg uses fewer than 𝑘/3 advice bits, by the pigeonhole
principle, it uses the same advice string for two instances, say 𝐼1 and 𝐼2. Consider
the time step 𝑇𝑖, in which 𝐼1 and 𝐼2 differ for the first time. Since all instances in
ℐ are identical for the odd time steps, without loss of generality, we assume that
in 𝐼1, the object 𝑏𝑖/2,1 is requested, while 𝑏𝑖/2,2 is requested in 𝐼2. In order to be
optimal, the set {𝑎𝑖/2, 𝑏𝑖/2,1} has to be chosen for 𝐼1, and {𝑎𝑖/2, 𝑏𝑖/2,2} has to be
chosen for 𝐼2. However, when 𝑎𝑖/2 was requested in the preceding time step 𝑇𝑖−1,
Alg was not able to distinguish between the two instances, because it so far only
saw their common prefix. Since the advice was the same, Alg chooses the same set
for both instances and consequently needs to take an additional set in 𝑇𝑖 for one of
the instances. Therefore, on one of the two instances, Alg’s cost is at least 𝑘/3 + 1,
which contradicts its optimality. Thus, every optimal online algorithm with advice
needs to use at least 𝑘/3 bits of advice.

Since 𝑚 = (2/3)𝑘, the second claim of the theorem (that is, the second argument
of the max-expression) follows immediately from the same set of instances. �

Exercise 7.13. Improve the bound of Theorem 7.12 by increasing the sets within 𝒮.

Now that we have (asymptotically) tight bounds on the number of advice bits that
allow us to produce an optimal output for set cover, we ask how much information is
needed to obtain an “almost optimal” solution. To this end, we again use a reduction
from bit guessing with known history. The idea of the following proof is rather
similar to the proof of Theorem 7.12. The basic difference is that, instead of simply
arguing about optimality, we can use our knowledge about bit guessing.

Theorem 7.13. For every 𝑐 with 𝑐 ≤ 3/2, every 𝑐-competitive online algorithm with
advice for set cover has to use at least

(1 + (𝑐− 1) log2(𝑐− 1) + (2 − 𝑐) log2(2 − 𝑐)) · max
{︂
𝑘

3 ,
𝑚

2

}︂
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advice bits.

Proof. We reduce bit guessing with known history to set cover. Let BBsc be some
online algorithm with advice for set cover. We construct an online algorithm BGuess
with advice for bit guessing with known history that uses BBsc as a black box.
Whenever BBsc asks for advice, BGuess simply copies it from its own tape.

In 𝑇 ′
1, BGuess is given the length 𝑛′ of the string it should guess as the first

request of 𝐼 ′. BGuess creates an input 𝐼 for BBsc of length 𝑛 = 2𝑛′ by first
constructing a set 𝑋 of size 𝑘 = (3/2)𝑛 and a set family 𝒮 of size 𝑚 = 𝑛 as in the
proof of Theorem 7.12. Then it gives the first request (𝑋,𝒮, 𝑎1) to BBsc. BBsc has
to answer this request by selecting either {𝑎1, 𝑏1,1} or {𝑎1, 𝑏1,2}. In the former case,
BGuess guesses 0 in 𝑇 ′

1, otherwise it guesses 1. In 𝑇 ′
2, the correct guess is revealed

to BGuess. Depending on this feedback, BGuess requests 𝑏1,1 if the correct bit
was 0 and 𝑏1,2 if it was 1. We again distinguish two cases.

Case 1. Suppose the correct guess is 0. Then BGuess requests 𝑏1,1 in 𝑇2.
Case 1.1. If BBsc used the set {𝑎1, 𝑏1,1} in 𝑇1, it does not have to use another

set and therefore has cost 1 in the first two time steps.
Since BGuess guesses 0 in this case, it has cost 0 in 𝑇 ′

1.
Case 1.2. If BBsc used the set {𝑎1, 𝑏1,2} in 𝑇1, it must use another set in 𝑇2

(namely the set {𝑎1, 𝑏1,1}) in order to cover the request 𝑏1,1. Therefore, it has
cost 2 in the first two time steps.
Since BGuess guesses 1 in this case, it has cost 1 in 𝑇 ′

1.
Case 2. Suppose the correct guess is 1. Analogously to the first case, it can be

shown that BGuess has cost 0 in 𝑇 ′
1 if and only if BBsc has cost 1 in the first

two time steps; otherwise, BGuess has cost 1 in 𝑇 ′
1.

None of the objects involved so far is requested in any of the remaining time steps;
hence, we can analyze them independently. BGuess proceeds as above, and thus
whenever BGuess guesses a bit correctly, BBsc has cost 1 in the corresponding two
time steps.

Clearly, the optimal cost on 𝐼 is 𝑛′ = 𝑛/2. Now suppose BGuess guesses
𝛾𝑛′ = 𝛾𝑛/2 bits correctly. For the competitive ratio 𝑐 of BBsc, we have

𝑐 ≥ cost(BBsc(𝐼))
cost(Opt(𝐼)) = 𝑛′ + (1 − 𝛾)𝑛′

𝑛′ ,

and therefore 𝛾 ≥ 2 − 𝑐. Since 𝛾 ≥ 1/2, this again requires that 𝑐 ≤ 3/2. We know
that BGuess needs to read at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′

= (1 + (𝑐− 1) log2(𝑐− 1) + (2 − 𝑐) log2(2 − 𝑐)) · 𝑛2
advice bits to guess a fraction 𝛾 of all bits correctly.
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The claims of the theorem follow from 𝑛 = (2/3)𝑘 and 𝑛 = 𝑚. Moreover, we again
note that the optimal cost increases with 𝑛. �

Note that if 𝑐 tends to 1, the bound from Theorem 7.13 tends to the bound given
in Theorem 7.12.

Exercise 7.14. Give a reduction from bit guessing with unknown history to obtain the
same bound as in Theorem 7.13; use the same 𝑋 and 𝒮.

Exercise 7.15. In Exercise 7.13, we gave a better bound on the number of advice bits
necessary to compute optimal solutions by increasing the sets in 𝒮. By doing so, generalize
Theorem 7.13 by giving a reduction from string guessing with known history and alphabet
size 𝜎 ≥ 2. To this end, use the result of Exercise 7.11.

7.4.3 The Disjoint Path Allocation Problem
The third problem that we study as an example of using reductions from bit guessing
is called the disjoint path allocation problem. This problem is concerned with
establishing connections in a network; we assume the network topology is a very simple
one, namely a path. Unlike the previous examples, this problem is a maximization
problem. Although bit guessing is a minimization problem, it is still possible to
reduce from it. As always, we start with a formal definition of the problem.

Definition 7.5 (Disjoint Path Allocation). The disjoint path allocation
problem (DPA for short) is an online maximization problem. The first re-
quest contains the length ℓ of the underlying path 𝑃 ; the vertices of the path are
denoted by 𝑣0, 𝑣1, . . . , 𝑣ℓ. In every time step (including the first one), a subpath
of 𝑃 is requested; we assume that such a subpath is represented by a pair (𝑣𝑖, 𝑣𝑗)
containing its end vertices 𝑣𝑖 and 𝑣𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ ℓ. If such a path does not
share any edge with a previously granted connection (accepted path), an online
algorithm for DPA has to decide whether to grant this connection; this decision
is final. If the subpath does share an edge with a previously accepted one, it
cannot be granted (we call such a subpath “blocked”). The objective is to grant
as many requests as possible.

Let us again start with an example to get a better feeling for the problem.

Example 7.4. Let Alg be some online algorithm for DPA and suppose we are
given a path of length 20 with the first request. The complete instance is depicted in
Figure 7.6. The first request contains the subpath (𝑣0, 𝑣6). If Alg decides to grant
this request, and also the next one (𝑣9, 𝑣14), it cannot grant any of the subsequent
requests (𝑣4, 𝑣7), (𝑣13, 𝑣16), (𝑣6, 𝑣12), (𝑣14, 𝑣20), (𝑣1, 𝑣4), and (𝑣12, 𝑣14). The gain of
Alg is therefore 2. An optimal solution has twice the gain by granting, for instance,
the requests (𝑣0, 𝑣6), (𝑣6, 𝑣12), (𝑣14, 𝑣20), and (𝑣12, 𝑣14). ♢
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0 5 10 15 20

𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6
𝑇7
𝑇8

Figure 7.6. An instance on a path of length 20. The given path 𝑃 contains black
vertices, while the requests contain white vertices.

In principle, we could measure the advice complexity of DPA in either the number
of requests 𝑛 or the length ℓ of the path 𝑃 . For our studies, we mostly consider ℓ.

Exercise 7.16. Show that there is no competitive online algorithm for DPA.

While it is easy to get an upper bound of 𝑛 on the number of advice bits sufficient
to compute an optimal solution for DPA, it is a little more tricky to get a bound of ℓ.

Theorem 7.14. There are optimal online algorithms DLin1 and DLin2 with advice
for DPA that use 𝑛 or ℓ advice bits, respectively.

Proof. As already mentioned, it is straightforward to give an upper bound of 𝑛; for
every request, simply encode whether it is part of some fixed optimal solution or
not. DLin1 can simply read one bit per time step, and therefore no self-delimiting
encoding is needed.

In order to prove that it is also sufficient to use ℓ advice bits, consider the following
advice string. At position 𝑖+ 1 (recall that the vertices of 𝑃 start with 𝑣0), a 1 is
written if and only if, in some fixed optimal solution, vertex 𝑣𝑖 is the left end vertex
of a granted request. This way, ℓ+ 1 bits are used. Since DLin2 knows ℓ, it knows
how many bits to read. Now when a request (𝑣𝑖, 𝑣𝑗) is given, DLin2 accepts it only
if position 𝑖+ 1 on the advice tape is 1 and there is no 1 on the advice tape for any
other vertex between 𝑣𝑖 and 𝑣𝑗 ; whether position 𝑗 + 1 contains a 0 or 1 does not
matter. This way, DLin2 never grants a request that blocks any other requests that
are granted by the fixed optimal solution. Furthermore, it will always find a request
to accept for every position on the tape that is 1.

Finally, we note that the last position ℓ+ 1 on the advice tape cannot be 1 since
no request has its left end vertex at the last vertex 𝑣ℓ. DLin2 can therefore assume
that this bit is 0. Hence, reading ℓ advice bits is sufficient. �
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0 4 8 12

⏟ ⏞ ⏟ ⏞ 

𝑃1

𝑃2

Figure 7.7. An instance from ℐ on a path of length 12. In 𝑃1, the second, fourth, and
fifth requests should be granted, in order to grant as many requests as possible.

Next, we complement this upper bound with a lower bound. Similarly to the set
cover problem, we use a set of instances that will come in handy later, when we
apply a reduction from bit guessing.
Theorem 7.15. Every optimal online algorithm with advice for DPA has to use at
least ℓ/2 advice bits.

Proof. Let ℓ be even, and consider the following set ℐ of instances on paths of length
ℓ. Every instance from ℐ is divided into two phases 𝑃1 and 𝑃2. Phase 𝑃1 always
contains the same requests

(𝑣0, 𝑣2), (𝑣2, 𝑣4), . . . , (𝑣ℓ−2, 𝑣ℓ) ,
which are offered in this order in the first ℓ/2 time steps. Then, in 𝑃2, for some of
the above requests, two consecutive intersecting requests are given. An example of
such an instance is shown in Figure 7.7.

We call a request from 𝑃1 “open” if there are two requests intersecting with it in
𝑃2; otherwise, it is called “closed.” ℐ contains every instance that corresponds to a
possible way to open the requests of 𝑃1. As a result, there are 2ℓ/2 instances in ℐ.
For any given instance 𝐼 ∈ ℐ, there is a unique optimal solution Opt(𝐼) that grants
exactly the closed requests in 𝑃1, and is therefore able to grant all requests from 𝑃2
as well.

For a contradiction, let Alg be some optimal online algorithm with advice for
DPA that uses fewer than ℓ/2 advice bits. Then there are two instances 𝐼1 and 𝐼2 in
ℐ that get the same advice. This implies that Alg grants the same requests in 𝑃1.
However, there is at least one request in 𝑃1 that is open in one of the two instances,
but closed in the other (otherwise 𝐼1 and 𝐼2 would not be different). Without loss
of generality, assume the request is open in 𝐼1. If Alg grants the request, it is not
optimal for 𝐼1; if it does not grant the request, it is not optimal for 𝐼2. As a result,
we get a contradiction, and Alg cannot be optimal. �

Now we give a lower bound on the advice complexity to obtain a small competitive
ratio. This time, we use bit guessing with unknown history in our reduction. In
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doing so, we need to be a little more careful since the size of an optimal solution
may be different for different instances of the constructed set.

Theorem 7.16. For every 𝑐 with 𝑐 ≤ 4/3, every 𝑐-competitive online algorithm with
advice for DPA has to use at least(︂

1 +
(︂

2 − 2
𝑐

)︂
log2

(︂
2 − 2

𝑐

)︂
+

(︂
2
𝑐

− 1
)︂

log2

(︂
2
𝑐

− 1
)︂)︂

· ℓ2

advice bits.

Proof. We reduce bit guessing with unknown history to DPA. Let BBdpa be some
online algorithm with advice for DPA. As before, BGuess uses BBdpa as a black
box.

In 𝑇 ′
1, as the first request of an instance 𝐼 ′, BGuess is given the length 𝑛′ of the

string it should guess and sets ℓ = 2𝑛′. The idea is to use the same set of instances
as in the proof of Theorem 7.15. Thus, BGuess first creates the input by setting
the first request to (ℓ, (𝑣0, 𝑣2)). If BBdpa grants (𝑣0, 𝑣2), BGuess guesses 1 in 𝑇 ′

1;
otherwise it guesses 0. It proceeds by requesting all remaining subpaths from 𝑃1 in
time steps 𝑇2, 𝑇3, . . . , 𝑇ℓ/2 and guessing accordingly.

In the last time step 𝑇 ′
𝑛′+1, BGuess is told which guesses were correct. With

this knowledge, it starts 𝑃2 of the instance 𝐼 for BBdpa. If the 𝑖th bit of 𝐼 ′ is 0,
BGuess requests two consecutive subpaths of length 1 that intersect with the 𝑖th
request of 𝑃1. If the correct guess was 1, BGuess does not request anything that
intersects with this request. We distinguish two cases depending on the correct guess
of the 𝑖th bit.

Case 1. Suppose the correct guess is 0. In this case, an optimal solution does not
grant the 𝑖th request from 𝑃1, but the two requests of length 1 that are given in
𝑃2 and that both intersect with the 𝑖th request.
Case 1.1. Suppose BBdpa does not grant the 𝑖th request from 𝑃1. Then it can

grant the two requests in 𝑃2, which is optimal.
Since BGuess guesses 0 in this case, it has cost 0 in 𝑇 ′

𝑖 .
Case 1.2. Suppose BBdpa grants the 𝑖th request from 𝑃1. Then it has gain 1 in
𝑇𝑖, but it cannot grant either of the requests of length 1 in 𝑃2.
Since BGuess guesses 1 in this case, it has cost 1 in 𝑇 ′

𝑖 .
Case 2. Suppose the correct guess is 1. In this case, an optimal solution grants the
𝑖th request from 𝑃1. Analogously to the first case, it can easily be shown that if
BBdpa has gain 1, BGuess has cost 0, and if BBdpa has gain 0, BGuess has
cost 1.

It follows that, for every bit BGuess guesses incorrectly, BBdpa is able to grant
one fewer subpath compared to the optimal solution of 𝐼. Now suppose BGuess
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guesses 𝛾𝑛′ bits correctly, and therefore makes (1 − 𝛾)𝑛′ incorrect guesses. By the
above reasoning, we have

gain(BBdpa(𝐼)) = gain(Opt(𝐼)) − (1 − 𝛾)𝑛′ . (7.7)

Moreover, we can bound the optimal gain by

𝑛′ ≤ gain(Opt(𝐼)) ≤ 2𝑛′ . (7.8)

For the competitive ratio 𝑐 of BBdpa we have

𝑐 ≥ gain(Opt(𝐼))
gain(BBdpa(𝐼))

≥ gain(Opt(𝐼))
gain(Opt(𝐼)) − (1 − 𝛾)𝑛′

(as a consequence of (7.7))

= 1 + (1 − 𝛾)𝑛′

gain(Opt(𝐼)) − (1 − 𝛾)𝑛′

≥ 1 + 1 − 𝛾

1 + 𝛾
,

(due to the right-hand side of (7.8))

and with this we obtain

𝛾 ≥ 2
𝑐

− 1 , (7.9)

and thus, to satisfy 𝛾 ≥ 1/2, it must hold that 𝑐 ≤ 4/3. We know from Theorem 7.7
that BGuess needs to read at least (1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′ advice
bits to guess a fraction 𝛾 of all bits correctly. Due to (7.9), we conclude that any
𝑐-competitive online algorithm for DPA needs to read at least(︂

1 +
(︂

2 − 2
𝑐

)︂
log2

(︂
2 − 2

𝑐

)︂
+

(︂
2
𝑐

− 1
)︂

log2

(︂
2
𝑐

− 1
)︂)︂

𝑛′

=
(︂

1 +
(︂

2 − 2
𝑐

)︂
log2

(︂
2 − 2

𝑐

)︂
+

(︂
2
𝑐

− 1
)︂

log2

(︂
2
𝑐

− 1
)︂)︂

· ℓ2
advice bits. Finally, note that the optimal gain grows with ℓ. �

Exercise 7.17. Give a reduction from bit guessing with known history to obtain the same
bound as in Theorem 7.16.

Exercise 7.18. As a means to give an online algorithm more power, we can reformulate
DPA to allow for preemption, which means that an online algorithm is allowed to remove
subpaths it granted before. It is, however, not allowed to grant a connection it discarded
before. Also, we demand that the online algorithm has a feasible solution in every time
step (that is, it never grants two overlapping requests at any time). Give a reduction from
bit guessing with unknown history to this problem.
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7.5 Historical and Bibliographical Notes
Emek et al. [58, 60] introduced a problem they called “general matching pennies,”
which they used within a reduction to prove lower bounds on the competitive ratio
of online algorithms with advice for metrical task systems. The string guessing
problem as we defined it in this chapter was introduced by Böckenhauer et al. [26,27].
Although the concept of reductions already appeared in the aforementioned papers,
a first attempt to formalize this concept was made by Sprock [134] and later refined
by Hammann [73].

Example 7.1 is due to Gebauer [67]. Krug showed that it indeed helps to know
the history for the bit guessing problem if one error is allowed [108]. Smula [132]
studied the advice complexity of the bit guessing problem when the adversary is
allowed to use randomization, that is, the oracle does not know the exact input, but
a set of instances such that each instance from this set is chosen by the adversary
with a certain probability. Moreover, she showed a reduction to the online set cover
problem in this probabilistic setting [132].

The 𝑘-server problem was already introduced in Chapter 4. The reduction we
presented is due to Smula [132]. The studied version of the online set cover problem
was introduced by Alon et al. [8, 9] (in this paper, the authors studied a weighted
version of the problem). Komm et al. [103] first studied the advice complexity of the
set cover problem. A reduction from the string guessing problem to the online set
cover problem was given by Böckenhauer et al. [27] together with a reduction to the
online clique problem.

As already mentioned, DPA was one of the first problems that were studied within
our model of advice complexity [30] (together with paging and JSS). In this paper,
most bounds were given with respect to the input length. The proof of Theorem 7.15
can be found in the corresponding technical report [31]. An improved analysis with
bounds with respect to the path length ℓ was made by Barhum et al. [16]. They
showed that the bound of ℓ/2 of Theorem 7.15 can be improved by a factor of roughly
2, and thus the bound of Theorem 7.14 is tight. Together with the results of Gebauer
et al. [68], the investigations of Barhum et al. [16] show that the problem has a very
interesting threshold behavior.

Dietiker [52] reduced the bit guessing problem to a variant of DPA where every
request has the same length. The reduction presented in this chapter is due to
Smula [132]. Selečéniová [129] studied DPA with preemption, and she showed the
linear lower bound of Exercise 7.18.

In order to make the reductions from bit guessing more uniform, we slightly
redefined set cover and DPA; for the former problem 𝑋 and 𝒮 are usually known
from the start and thus problem parameters. To have a reduction that works for
arbitrary sizes of 𝑋 and 𝒮, we made them part of the first request. Likewise, the
length of the path ℓ for DPA is usually fixed. Moreover, DPA is often defined on
general graphs instead of paths; however, since we mostly considered lower bounds,
restricting ourselves to path networks makes our results only stronger.

The proofs of Lemma 7.1 and Exercise 7.9 are taken from the textbook of Gu-
ruswami et al. [70].
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8Problems on Graphs

In this chapter, we deal with a large class of computational problems, namely graph
problems. We already described two prominent examples of graph problems at the
beginning of this book. The difference is that, here, the graph is not known in
advance; not even its size. In every time step, a vertex is revealed together with all
edges to previously revealed vertices; an online algorithm has to base its answer for
the current time step on the knowledge of the part of the graph that is known so
far (and of course on its previous answers). In this chapter, we basically study two
online graph problems.

The first problem we investigate is graph coloring in an online setting. We start
by showing that this problem does not allow for a competitive deterministic online
algorithm, even if the input graph is a tree. The given lower bound on the competitive
ratio is roughly log2 𝑛 for graphs with 𝑛 vertices (that is, instances with 𝑛 requests);
this bound is tight. For bipartite graphs, there is an online algorithm that has a
competitive ratio of at most 2 log2 𝑛. Moreover, we study a “first fit” strategy. It
turns out that this approach is bad for general bipartite graphs, but gives a best
possible online coloring on trees. Next, we study online algorithms with advice on
bipartite graphs; here, we show an almost matching linear upper and lower bound.

As the second problem, we look at the minimum spanning tree problem (MSTP),
which was already briefly discussed in Chapter 1; more precisely, in Exercise 1.3,
we have seen that a greedy approach (the algorithm Kruskal) is very successful
for MSTP in the offline case. This result will be very valuable also for the online
setting, in particular when we consider restricted classes of input graphs. We show
that a greedy approach is rather successful also in the online setting if the input
graph is complete and has a cost function that satisfies the triangle inequality. As a
part of our investigation, we also revisit another graph problem that we had a brief
look at in Chapter 1, namely the traveling salesman problem. If the graph does not
have these properties, both deterministic and randomized online algorithms perform
very poorly. We also study online algorithms with advice for the MSTP. First, we
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show that roughly 𝑛 log2 𝑛 advice bits are both necessary and sufficient to produce
an optimal output. Then we establish a lower bound on small competitive ratios
by a reduction from the bit guessing problem, which we studied in the preceding
chapter. Finally, we again use the analysis of Kruskal to obtain some simple online
algorithms with advice for certain graph classes. We also briefly touch a couple
of other online problems, namely the online vertex cover problem, and the online
independent set problem.

8.1 Introduction
Many computational problems are graph problems, that is, the input consists of a
finite set of vertices and a finite set of edges, possibly with some associated edge
weights. In Chapter 1, we already briefly discussed two offline graph problems,
namely the traveling salesman problem and the minimum spanning tree problem.
Moreover, some of the online problems we have dealt with so far were defined
using graphs, such as the 𝑘-server problem and the disjoint path allocation problem.
However, for these problems, the graphs were usually, at least in parts, known in
advance. In the online setting used in this chapter, the graph is presented vertex by
vertex; together with every vertex that is revealed, all edges to previously presented
vertices are given. Essentially, online graph problems are just those online problems
where the input has this particular form. Throughout this chapter, graphs are always
undirected. Let us continue with a formal definition.

Definition 8.1 (Online Graph Problem). Let 𝐺 = (𝑉,𝐸) be an undirected
graph with vertex set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and edge set 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}; if 𝐺
is weighted, then additionally there is a weight function weight : 𝐸 → R+. Let ≺
be a total ordering on 𝑉 such that, without loss of generality, 𝑣1 ≺ 𝑣2 ≺ . . . ≺ 𝑣𝑛.
An online graph problem is an online problem where the input corresponds to
the vertices 𝑉 , which are presented gradually such that, in time step 𝑇𝑖 with
1 ≤ 𝑖 ≤ 𝑛, the vertex 𝑣𝑖 (that is, the 𝑖th vertex according to ≺) is presented
together with all edges {𝑣𝑗 , 𝑣𝑖} for 𝑣𝑗 ≺ 𝑣𝑖 (that is, all edges that connect 𝑣𝑖 to
vertices that were presented earlier). In the deterministic setting, the answer
𝑦𝑖 only depends on 𝑣1, 𝑣2, . . . , 𝑣𝑖, the edges between these vertices (that is, the
part of the graph that is known in 𝑇𝑖), and 𝑦1, 𝑦2, . . . , 𝑦𝑖−1.

For most of the problems studied in this chapter, the input is given by an online
graph as in Definition 8.1. The terms online graph maximization problem and online
graph minimization problem are defined in the obvious way.

An example of how a graph can be presented is depicted in Figure 8.1. For ease of
presentation, we will usually define ≺ implicitly by describing how the vertices are
revealed. If the graph is weighted, then the cost function (gain function, respectively)
depends on the associated weight function. Whenever we speak of “𝐺” in this
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𝑣1

(a)

𝑣1 𝑣2

(b)

𝑣1 𝑣2 𝑣3

(c)

𝑣1 𝑣2 𝑣3 𝑣4

(d)

𝑣1 𝑣2 𝑣3 𝑣4

𝑣5

(e)

Figure 8.1. Online presentation of a graph. The most recently presented vertex is
filled. The corresponding instance consists of five time steps.

chapter, this means the whole graph that represents the input. For convenience, we
sometimes write, for instance, Alg(𝐺) instead of Alg(𝐼).

One thing that makes many online graph problems hard is that many of the
vertices may appear as isolated vertices, that is, as vertices that do not have an edge
at the point in time when they are revealed, but may have edges in 𝐺 that are shown
later (see, for instance, Example 8.1). Throughout this chapter, 𝐺 is connected.

8.2 The Coloring Problem

We start with a famous graph problem where the goal is to color the vertices of a
given graph. The crucial restriction is that any two vertices that are connected by
an edge must not have the same color. Let us give a formal definition.

Definition 8.2 (Online Coloring). The online coloring problem is an online
graph minimization problem on unweighted graphs. An online algorithm for
online coloring has to assign a natural number (a color) to each revealed vertex
such that no two vertices that are connected by an edge have the same color.
The goal is to minimize the total number of colors used.

We will simply speak of coloring in this context. For any graph 𝐺, 𝜒(𝐺) denotes
the chromatic number of 𝐺, which is the smallest number of colors with which 𝐺
can be colored. Let us start with an example that already suggests that the problem
is hard in an online setting. In fact, the underlying idea of the following example
will be used to obtain some of the subsequent results.

Example 8.1. Let Alg be an online algorithm for coloring; when the vertex 𝑣1 is
presented in the first time step, Alg starts by assigning color 1 to it, such that we
get

1
𝑣1
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as a result. In the next two time steps, two more vertices 𝑣2 and 𝑣3 are given that
are connected by an edge without any further edges, that is, with no edges to 𝑣1.
Alg can thus color them as

1
𝑣1

1
𝑣2

2
𝑣3

and has used two colors so far. At this point, this is an optimal coloring, since any
solution clearly needs to use two colors at least.

Next, however, the adversary requests a vertex 𝑣4 that is connected to both 𝑣1
and 𝑣3, which forces Alg to use a third color, and thus to produce

1
𝑣1

1
𝑣2

2
𝑣3

3
𝑣4

as a result. It is easy to see that

1
𝑣1

2
𝑣2

1
𝑣3

2
𝑣4

is an optimal solution that uses two colors instead of three. ♢

8.2.1 Deterministic Algorithms
Coloring is hard for deterministic online algorithms; in particular, there is no
competitive algorithm. This is already true for bipartite graphs, that is, graphs for
which we can partition the vertices into two groups (so-called shores) such that there
is no edge between any two vertices within one shore.

Observation 8.1. Bipartite graphs are exactly the graphs that are 2-colorable (in
other words, bipartite graphs have chromatic number 2).

Indeed, if a graph is bipartite, we can simply assign color 1 to the first shore
and color 2 to the second one. Conversely, if a graph is 2-colorable, we can define
the shores with respect to a valid 2-coloring. The following theorem is proven by
applying the idea from Example 8.1 and iterating it. The resulting instance is even
more restricted than general bipartite graphs; it is a tree.

Theorem 8.1. Every deterministic online algorithm for coloring uses at least
log2 𝑛+ 1 colors.

Proof. Let Alg be some deterministic online algorithm for coloring. In what follows,
we show that, for any natural number 𝑘, there is a tree 𝒯𝑘 and a total ordering ≺𝑘

on its vertices such that Alg has to use at least 𝑘 colors to color it. To this end,
we start as in Example 8.1, and then construct larger and larger trees. Essentially,
every tree 𝒯𝑖 is composed of smaller trees 𝒯1, 𝒯2, . . . , 𝒯𝑖−1. We construct the trees as
follows.
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𝑤4

𝑢1 𝑢2 𝑢3

(a) The tree 𝒯4

𝑤5

𝑢1 𝑢2 𝑢3

𝑢4

(b) The tree 𝒯5

Figure 8.2. The construction of 𝒯4 and 𝒯5 by adding 𝑤4 or 𝑤5, respectively, to the
already revealed trees.

• 𝒯1 consists of one single vertex 𝑤1.
• 𝒯2 consists of two vertices 𝑣 and 𝑤2 that are connected by an edge.
• For 𝑖 ≥ 3, 𝒯𝑖 consists of a vertex 𝑤𝑖 that is connected to some specific vertices
𝑢1, 𝑢2, . . . , 𝑢𝑖−1; every 𝑢𝑗 with 1 ≤ 𝑗 ≤ 𝑖 − 1 is chosen from the tree 𝒯𝑗 in a
specific way that will be explained shortly.
The vertices are presented such that vertices from 𝒯1 are given first according
to ≺1, then the vertices from 𝒯2 according to ≺2, and so on; finally, the vertex
𝑤𝑘 is presented; this defines ≺𝑘.

An example of how the trees are constructed is depicted in Figure 8.2. First, we
prove by induction that 𝒯𝑘 has exactly 2𝑘−1 vertices.

Base Case. Since 𝒯1 contains a single vertex and 𝒯2 contains two vertices, the base
case is covered.

Induction Hypothesis. The claim holds for 𝒯1, 𝒯2, . . . , 𝒯𝑖−1.
Induction Step. Now consider 𝒯𝑖. By the induction hypothesis, we have that 𝒯𝑗

contains 2𝑗−1 vertices, where 1 ≤ 𝑗 ≤ 𝑖−1. Since 𝒯𝑖 also contains all these vertices
and an additional vertex 𝑤𝑖, the total number of vertices of 𝒯𝑖 is exactly

1 +
𝑖−1∑︁
𝑗=1

2𝑗−1 = 1 +
𝑖−2∑︁
𝑗=0

2𝑗 = 2𝑖−1 ,

as claimed.

Now we show that Alg needs to use at least 𝑘 colors for 𝒯𝑘. This can be done by
an easy induction as well.

Base Case. Without loss of generality, suppose Alg colored the vertices of 𝒯2, that
is, 𝑣 and 𝑤2, such that 𝑣 gets color 1 and 𝑤2 gets color 2. If a third color was
used to color 𝑤1, then 𝑤3 can be connected to 𝒯1 and 𝒯2 in any way such that the
result is a tree, and we are done. Thus assume, again without loss of generality,
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that 𝑤1 is colored with 1. The adversary adds 𝑤3 (resulting in 𝒯3) such that it is
connected to both 𝑤1 and 𝑤2. Consequently, Alg is forced to use a third color
for 𝑤3, which covers the base case.

Induction Hypothesis. The claim holds for 𝒯1, 𝒯2, . . . , 𝒯𝑖−1.
Induction Step. Recall that 𝑤𝑖 is revealed after all vertices of 𝒯1, 𝒯2, . . . , 𝒯𝑖−1 have

been presented. Since, by the induction hypothesis, at least 𝑗 colors have been
used to color 𝒯𝑗 with 1 ≤ 𝑗 ≤ 𝑖− 1, the adversary can identify a vertex 𝑢𝑗 in 𝒯𝑗
with a color that is different from all colors that were used for 𝑢1, 𝑢2, . . . , 𝑢𝑗−1;
it does so in ascending order of 𝑗. This way, 𝑖 − 1 vertices 𝑢1, 𝑢2, . . . , 𝑢𝑖−1 are
identified that have pairwise distinct colors, and they can all be connected to 𝑤𝑖.
Therefore, 𝑤𝑖 has to get a different color, which results in a total of at least 𝑖
colors.

It follows that Alg uses at least 𝑘 colors to color 𝒯𝑘; since we have already
shown that the number 𝑛 of vertices of 𝒯𝑘 is 2𝑘−1, we get that Alg uses at least
𝑘 = log2 𝑛+ 1 colors, which proves the claim. �

Theorem 8.1 and Observation 8.1 imply the following corollary.

Corollary 8.1. No deterministic online algorithm for coloring is competitive. �

Next, we show that the bound of Theorem 8.1 is tight up to a factor of 2, even for
general bipartite graphs. Consider the online algorithm CBip that does the following.
Whenever a vertex 𝑣 is revealed, it investigates the component (that is, the connected
subgraph) that 𝑣 belongs to, with respect to the part of the graph it already knows.
The vertices of this component can be partitioned into two independent sets (each
of which is a subset of one shore of the whole graph). Then, 𝑣 is given the smallest
color that is not present in the independent set 𝑣 does not belong to.

Theorem 8.2. CBip is strictly 2 log2 𝑛-competitive for coloring on bipartite graphs.

Proof. In the following, let num: N+ → N+ be a function that is defined such that
num(𝑖) gives the minimum number of vertices required so that CBip uses color 𝑖.
We now show by induction on 𝑖 that, for 𝑖 ≥ 2, num(𝑖) ≥ ⌈2𝑖/2⌉.

Base Case. In order to force CBip to use two colors, clearly at least two vertices
are needed; to make sure CBip uses three colors, more than three vertices are
necessary (a bipartite graph does not contain a triangle, thus three vertices are
not sufficient). Since num(2) = 2 = ⌈22/2⌉ and num(3) > 3 = ⌈2.828⌉ = ⌈23/2⌉,
the base case is covered.

Induction Hypothesis. The claim holds for num(𝑖− 2).
Induction Step. Consider an arbitrary time step in which a vertex 𝑣 is revealed. If 𝑣

is not connected to any other already known vertex, it gets color 1, which does
not increase the overall number of colors. Otherwise, let 𝐶𝑣 denote the component
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𝑆𝑣2

𝑆𝑣2

1𝑣1
2 𝑣2

(a)

𝑆𝑣4

𝑆𝑣4

1𝑣1
2 𝑣2

2 𝑣4
1𝑣3

(b)

1𝑣1
2 𝑣2

2 𝑣4
1𝑣3

𝑣5

(c)

𝑆𝑣5

𝑆𝑣5

1 𝑣1
2𝑣2

2 𝑣4
1𝑣3

3𝑣5

(d)

1 𝑣1
2𝑣2

2 𝑣4
1𝑣3

3𝑣5

𝑣6

(e)

𝑆𝑣6 𝑆𝑣6

1 𝑣1
2𝑣2

2 𝑣4
1𝑣3

3𝑣5 4 𝑣6

(f)

Figure 8.3. Six time steps and the intermediate solutions computed by CBip.

that contains 𝑣 with respect to the subgraph of the whole graph 𝐺 that CBip
already knows in the current time step. Since 𝐺 is bipartite, 𝐶𝑣 is bipartite as
well, and CBip partitions the vertices into two independent sets; let 𝑆𝑣 denote
the independent set 𝑣 belongs to, and let 𝑆𝑣 be the other one.

CBip then inspects 𝑆𝑣 and colors 𝑣 with the smallest color not used for the vertices
of 𝑆𝑣. If this is color 𝑖, it follows that 𝑆𝑣 is colored using all colors from 1 to
𝑖− 1. Let 𝑣′ be a vertex in 𝑆𝑣 that has color 𝑖− 1. In the time step where 𝑣′ was
revealed, it was in some component 𝐶𝑣′ such that the vertices in the independent
set not containing 𝑣′ were assigned all colors from 1 to 𝑖− 2. All these vertices are
in 𝐶𝑣, and must belong to 𝑆𝑣; therefore, 𝑆𝑣 is colored with all colors from 1 to
𝑖− 2. An example is shown in Figure 8.3.
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1
𝑣1

1
𝑣2

(a)

1
𝑣1

1
𝑣2

2
𝑣3

(b)

1
𝑣1

1
𝑣2

2
𝑣3

2
𝑣4

(c)

1
𝑣1

1
𝑣2

2
𝑣3

2
𝑣4

3
𝑣5

(d)

1
𝑣1

1
𝑣2

2
𝑣3

2
𝑣4

3
𝑣5

3
𝑣6

(e)

1
𝑣1

1
𝑣2

2
𝑣3

2
𝑣4

3
𝑣5

3
𝑣6

4
𝑣7

(f)

Figure 8.4. The construction of instances as used in the proof of Theorem 8.3.

As a consequence, there are two vertices 𝑣𝑗 ∈ 𝑆𝑣 and 𝑣𝑙 ∈ 𝑆𝑣 that are given the
same color 𝑖− 2 by CBip. Without loss of generality, assume 𝑣𝑗 ≺ 𝑣𝑙, that is, 𝑣𝑙
gets revealed after 𝑣𝑗 . In the corresponding time step 𝑇𝑙, 𝑣𝑗 and 𝑣𝑙 must have
been in different components; otherwise they would not have been assigned the
same color.
By the induction hypothesis, we have num(𝑖− 2) ≥ ⌈2(𝑖−2)/2⌉, and thus

num(𝑖) ≥ 2 ·
⌈︀
2(𝑖−2)/2⌉︀ ≥

⌈︀
2𝑖/2⌉︀ .

As a result, if CBip uses 𝑘 colors, the number of vertices 𝑛 has to satisfy 𝑛 ≥
num(𝑘) ≥ ⌈2𝑘/2⌉ ≥ 2𝑘/2, and thus we have 𝑘 ≤ 2 log2 𝑛 as claimed. �

A straightforward strategy to color a graph in an online fashion would be to
follow a somewhat greedy approach. FirstFit is such an algorithm; for every vertex
presented, it uses the smallest color possible. However, in general, this strategy is
not successful; in particular, it is exponentially worse than CBip on bipartite graphs.

Theorem 8.3. FirstFit uses at least 𝑛/2 colors for coloring on bipartite graphs.

Proof. We construct a set ℐ (𝑛) of instances of even length 𝑛 as follows. For every
even 𝑛, consider the following bipartite graph where all vertices with odd index
are part of the first shore, and all vertices with even index are in the second shore.
In the first two time steps, two vertices 𝑣1 and 𝑣2 are presented without any edge
between them; in other words, these vertices are isolated. By definition, FirstFit
assigns to both of them the smallest color 1. Then, 𝑣3 is presented in time step
𝑇3 together with an edge to 𝑣2, and afterwards 𝑣4 is presented with an edge to 𝑣1
in 𝑇4; since color 1 is not available, again, by definition, FirstFit gives both new
vertices color 2. Next, in 𝑇5, the vertex 𝑣5 is presented with edges to both 𝑣2 and
𝑣4; FirstFit is now forced to color 𝑣5 with color 3. The adversary continues in
this fashion; the idea of the construction is depicted in Figure 8.4. More precisely,
in every odd time step, a vertex 𝑣2𝑖−1 with 2 ≤ 𝑖 ≤ 𝑛/2 is given with edges to
all vertices 𝑣2, 𝑣4, . . . , 𝑣2𝑖−2, which means it is connected to all previously revealed
vertices with an even index. Likewise, in every even time step, a vertex 𝑣2𝑖 with
2 ≤ 𝑖 ≤ 𝑛/2 is presented together with edges to the vertices 𝑣1, 𝑣3, . . . , 𝑣2𝑖−3, which
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means it is connected to all previously revealed vertices with an odd index, except
for the one presented just beforehand. We now prove by induction on the number of
vertices that FirstFit needs to use 𝑛/2 colors. More specifically, we show that if a
vertex 𝑣2𝑖−1 is given, the assigned color is 𝑖; if a vertex 𝑣2𝑖 is given, the algorithm
also assigns color 𝑖 to it.

Base Case. For the first odd vertex 𝑣1 = 𝑣2·1−1, color 1 is assigned and, for the first
even vertex 𝑣2 = 𝑣2·1, color 1 is assigned as well. This covers the base case.

Induction Hypothesis. The claim holds for 𝑣1, 𝑣2, . . . , 𝑣𝑗−1.
Induction Step. We now consider two cases depending on whether the index of the

current vertex is odd or even.
Case 1. Suppose 𝑗 is odd, that is, 𝑗 = 2𝑖 − 1 for some 𝑖 with 2 ≤ 𝑖 ≤ 𝑛/2. Let
𝑣2, 𝑣4, . . . , 𝑣2𝑖−2 be the 𝑖− 1 vertices with even index that were presented before
𝑣𝑗 . By the construction of the instances in ℐ (𝑛), 𝑣𝑗 is connected to all of these
vertices, and by induction (note that 𝑣2𝑖−2 = 𝑣𝑗−1), they are colored with
1, 2, . . . , 𝑖− 1. As a result, FirstFit uses color 𝑖 to color 𝑣𝑗 = 𝑣2𝑖−1.

Case 2. Suppose 𝑗 is even, that is, 𝑗 = 2𝑖 for some 𝑖 with 2 ≤ 𝑖 ≤ 𝑛/2. Then 𝑣𝑗
is connected to the 𝑖− 1 vertices 𝑣1, 𝑣3, . . . , 𝑣2𝑖−3, and the claim again follows
from the induction hypothesis (this time, 𝑣2𝑖−3 = 𝑣𝑗−3).

The claim of the theorem finally follows for 𝑖 = 𝑛. �

Exercise 8.1. Surprisingly, FirstFit performs as good as possible if the input is a tree.
Prove that it obtains a competitive ratio of log2 𝑛+ 1 in this case.
Hint. Use an approach similar to the proof of Theorem 8.2 by defining a function num.

8.2.2 Advice Complexity
Now let us investigate what can be done with advice. To color a graph optimally,
it is obviously sufficient to tell an online algorithm with advice which color to use
for every vertex; this amounts to 𝑛⌈log2(𝜒(𝐺))⌉ advice bits for any graph 𝐺 plus
logarithmic advice to encode 𝜒(𝐺) and 𝑛 as shown in Section 3.2. Since 𝜒(𝐺) is at
most 𝑛 (in the case of complete graphs), we get an upper bound of 𝒪(𝑛 log 𝑛) advice
bits.

Let us again focus on bipartite graphs. The considerations above immediately
imply that 𝑛 bits of advice are sufficient. Using a simple idea, we can save one advice
bit (this is true for any graph).

Theorem 8.4. There is an optimal online algorithm CLin1 with advice for coloring
on bipartite graphs that uses 𝑛− 1 advice bits.

Proof. CLin1 always assigns color 1 to the first vertex presented. For each other
vertex, it reads one advice bit that indicates its color. �
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𝑣1

𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣7

𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝑣13

𝑣14

Figure 8.5. An instance 𝐼𝑠 as used in the proof of Theorem 8.5 corresponding to the
string 𝑠 = 010011011000.

Exercise 8.2. Show the existence of an algorithm CLin2 that improves the bound of
Theorem 8.4 to 𝑛− 2 advice bits.
Hint. Distinguish the instances depending on how many isolated vertices they contain.

Next, we prove that the bound of Exercise 8.2 is tight up to one bit.

Theorem 8.5. Every optimal online algorithm with advice for coloring on bipartite
graphs has to use at least 𝑛− 3 advice bits.

Proof. We construct a set ℐ (𝑛) of instances of length 𝑛 as follows. Every instance starts
by requesting 𝑛− 2 vertices that are all isolated. For every 𝑛, let 𝑠 = 𝑠1𝑠2 . . . 𝑠𝑛−2
denote a binary string. In the instance 𝐼𝑠 ∈ ℐ (𝑛), vertex 𝑣𝑖 is part of the first shore if
and only if 𝑠𝑖 = 0, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛− 2. This is revealed only in the last two
time steps. More precisely, 𝑣𝑛−1 is connected to all vertices from the first shore, and
𝑣𝑛 is connected to all vertices from the second shore. Furthermore, 𝑣𝑛−1 is connected
to 𝑣𝑛 (to ensure that the graph is connected); see Figure 8.5. Consequently, for every
instance 𝐼𝑠, there is an optimal solution that assigns, say, color 1 to all vertices that
correspond to a bit that is 0, and color 2 to all vertices that correspond to a bit that
is 1. As usual, we can now apply the pigeonhole principle to argue that an online
algorithm needs a different advice string for every 𝐼𝑠. However, we need to be careful
due to the symmetry of the solutions. It is easy to see that, for every 𝐼𝑠, there are in
fact two optimal solutions (one that assigns color 1 to the vertices of the first shore,
and one that assigns color 2 to them); thus, the optimal solutions are not unique.

To take this into account, without loss of generality, we assume that the vertex
presented first always gets color 1; in this case, there are 2𝑛−3 strings 0𝑠2𝑠3 . . . 𝑠𝑛−2 to
consider. If an online algorithm Alg with advice uses the same advice string for two
instances 𝐼𝑠 and 𝐼𝑠′ , it will assign the first 𝑛− 2 vertices to the same shores. Finally,
the last two vertices are revealed and they are connected in 𝐼𝑠 (𝐼𝑠′ , respectively)
according to 𝑠 (𝑠′, respectively). Since Alg computed the same solution for both
instances until 𝑇𝑛−2, for one of them there is a vertex 𝑣 among the last two vertices
that needs to get a third color. Hence, this solution is not optimal, and it follows
that every optimal online algorithm with advice needs to use at least 𝑛− 3 advice
bits. �
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8.3 The Minimum Spanning Tree Problem
In Chapter 1, we already mentioned the minimum spanning tree problem. Here, we
want to look at what can be done if the graph is not known in advance. With every
vertex revealed, an online algorithm has to choose a number of edges that should be
part of the resulting spanning tree. The formal definition is as follows.

Definition 8.3 (Online Minimum Spanning Tree). The online minimum
spanning tree problem is an online graph minimization problem on weighted
graphs. In every time step, an online algorithm must decide, for each newly
presented edge, whether it is part of the computed solution or not, unless taking
this edge would close a cycle.

As in Section 1.1, we will use the abbreviation MSTP in what follows. For this
problem, it can theoretically happen that an online algorithm does not output a
feasible solution. In this case, we say that the solution has an arbitrarily large
penalty cost 𝜆. No algorithm that has cost 𝜆 is competitive. Also note that the
input graph is not necessarily complete (in contrast to the offline version we defined
in Section 1.1). In general, this makes it very hard for any deterministic online
algorithm for the MSTP; as soon as the partial solution that is computed is not
connected, the adversary can end the input. When given advice, however, this
changes; therefore, our main interest is to study online algorithms with advice for
the problem.

8.3.1 Deterministic and Randomized Algorithms
First, let us show that the strict competitive ratio of any deterministic online
algorithm is arbitrarily large. To this end, we use an idea that is closely related to
the hard instances of the simple knapsack problem used in the proof of Theorem 6.1.
Let Alg be some deterministic online algorithm for the MSTP. Let 𝜀 > 0, and
consider the following set of two instances. In the first two time steps, two vertices
𝑣1 and 𝑣2 are revealed that are connected by an edge of weight 1/𝜀. We distinguish
two cases.

Case 1. Suppose Alg decides not to take the edge {𝑣1, 𝑣2}. Then the input ends,
and Alg did not compute a feasible solution. Therefore, it has to pay the penalty
𝜆 and thus is not competitive by definition.

Case 2. Suppose Alg takes the edge. Then a third vertex 𝑣3 is revealed that has
edges to both 𝑣1 and 𝑣2; each edge has a weight of 1/2. As a result, the optimal
cost is 1, while Alg’s cost is 1/𝜀.

The corresponding two instances 𝐼1 and 𝐼2 are shown in Figures 8.6a and 8.6b.
Next, we generalize this idea by constructing widgets that are similar to 𝐼1 and 𝐼2.
However, we want to be a little less “unfair” and therefore assume in what follows
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𝑣1 𝑣2
1/𝜀

(a) Case 1

𝑣1 𝑣2

𝑣3

1/𝜀

1/21/2

(b) Case 2

𝑣𝑖,1 𝑣𝑖,2

𝑣𝑖,3

𝑛 − 1/2

1/2𝑛2 − 1/2

(c) Case 1

𝑣𝑖,1 𝑣𝑖,2

𝑣𝑖,3

𝑛 − 1/2

1/21/2

(d) Case 2

Figure 8.6. (a) and (b) show the instances used to prove that the strict competitive
ratio of any deterministic online algorithm for the MSTP is arbitrarily large; (c) and
(d) show the instances 𝐼1 and 𝐼2 used in the proof of Theorem 8.6. The thick gray lines
mark optimal solutions.

that we are given a deterministic algorithm that always computes a feasible solution,
and that thus never pays 𝜆 in any time step.

Theorem 8.6. No deterministic online algorithm for the MSTP is competitive.

Proof. Let 𝑛 = 3𝑘 + 1 for some natural number 𝑘, and let Alg be a deterministic
online algorithm for the MSTP that always produces some feasible solution. We
construct an instance 𝐼 of length 𝑛 that consists of 𝑘 widgets. A widget 𝑊𝑖 with
1 ≤ 𝑖 ≤ 𝑘 has three vertices 𝑣𝑖,1, 𝑣𝑖,2, and 𝑣𝑖,3 as depicted in Figures 8.6c and 8.6d;
which one is chosen depends on whether Alg takes the first edge {𝑣𝑖,1, 𝑣𝑖,2} of weight
𝑛 − 1/2 of 𝑊𝑖 or not. The last request is a vertex 𝑤 that is connected to exactly
the vertex 𝑣𝑖,3 of every widget 𝑊𝑖 by edges of weight 1/𝑘 each. We distinguish two
cases for any given widget.

Case 1. Suppose Alg does not take the edge of weight 𝑛− 1/2. Then it has to take
the next two edges, which gives a total cost of 𝑛2, while an optimal solution has
cost 𝑛; see Figure 8.6c.

Case 2. Suppose Alg takes this edge. Then it has to take another edge of weight
1/2, and its total cost for the current widget is thus 𝑛. Conversely, an optimal
solution has cost 1; see Figure 8.6d.

In both cases, the cost of Alg is 𝑛 times larger than the optimal cost. Finally,
both Alg’s solution and the optimal one have to take 𝑘 edges of weight 1/𝑘 each to
connect 𝑤 to the widgets. Let 𝛿 denote the number of widgets where Alg took the
first edge; we obtain

cost(Alg(𝐼)) = 𝛿𝑛+ (𝑘 − 𝛿)𝑛2 + 1 = 𝑛(𝛿 + (𝑘 − 𝛿)𝑛) + 1 ,

and, since cost(Opt(𝐼)) = 𝛿 + (𝑘 − 𝛿)𝑛+ 1, it follows that

cost(Alg(𝐼)) ≥ 𝑛(cost(Opt(𝐼)) − 1) .
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This way, we construct instances for infinitely many 𝑛. As a result, the competitive
ratio of Alg cannot be constant. �

It does not look much brighter for randomized online algorithms. We leave the
proof of this fact as an exercise for the reader.

Exercise 8.3. Show that randomized online algorithms for the MSTP are also not strictly
competitive in expectation.

Exercise 8.4. Generalize Exercise 8.3 to general competitiveness.

8.3.2 Advice Complexity
Now we consider online algorithms with advice. As usual, a first question deals with
how much additional information is necessary and sufficient to obtain an optimal
solution. It turns out that the number of advice bits is superlinear in the number of
requests. An upper bound can be given rather easily.

Theorem 8.7. There is an optimal online algorithm Parent with advice for the
MSTP that uses 𝑛⌈log2 𝑛⌉ + 2⌈log2(⌈log2 𝑛⌉)⌉ advice bits.

Proof. Using a self-delimiting encoding (see Section 3.2), the first 2⌈log2(⌈log2 𝑛⌉)⌉
bits give the number ⌈log2 𝑛⌉; Parent does not need to know 𝑛. Recall that we
ignore the cases where 𝑛 is smaller than 3. Then, for every vertex 𝑣 revealed, Parent
reads the index of the parent vertex of 𝑣 in a fixed optimal solution; this needs
⌈log2 𝑛⌉ advice bits in every time step (as the maximum degree of any graph is 𝑛−1).
If the current vertex is the root, the advice is just the index of this vertex. Note that
if the parent vertex is already revealed, the edge to the current vertex is still only
revealed in the current time step. If the parent vertex is not yet revealed, Parent
stores the information to take the corresponding edge in a later time step. This way,
Parent can take exactly the edges that belong to the optimal solution. �

The online algorithm Parent follows a very simple strategy; still, it uses a number
of advice bits that is asymptotically best possible.

Theorem 8.8. Every optimal online algorithm with advice for the MSTP has to
use Ω(𝑛 log 𝑛) advice bits.

Proof. Let 𝑛 = 2𝑘+ 1 for some natural number 𝑘; we construct a set ℐ (𝑛) of instances
of length 𝑛 with vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘, 𝑢1, 𝑢2, . . . , 𝑢𝑘, 𝑤. For every 𝐼 ∈ ℐ (𝑛), the
first 𝑘 vertices (the 𝑣-vertices) are presented according to a permutation of their
indices; more precisely, for an instance 𝐼 ∈ ℐ (𝑛), there is a permutation 𝜋𝐼 such that
𝑣𝜋𝐼 (1) ≺ 𝑣𝜋𝐼 (2) ≺ . . . ≺ 𝑣𝜋𝐼 (𝑘). Of course, the “real” indices are hidden; for any online
algorithm, the first 𝑘 vertices are just identified by the time step in which they are
revealed. Every vertex 𝑢𝑖 with 1 ≤ 𝑖 ≤ 𝑘 is connected to exactly the 𝑘− 𝑖+ 1 vertices
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𝑤

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

(a) The instance

(b) The optimal solution

(c) An infeasible solution

Figure 8.7. A sample instance as used in the proof of Theorem 8.8 for 𝑘 = 5. The
indices of the 𝑣-vertices are not known to an online algorithm, that is, they are presented
in some arbitrary ordering (according to a permutation). Depending on their thickness,
the edges connecting the 𝑢-vertices to the 𝑣-vertices have weights 5, 4, 3, 2, and 1. (b)
An optimal solution takes the edges {𝑤, 𝑢𝑖} and {𝑢𝑖, 𝑣𝑖} for 1 ≤ 𝑖 ≤ 5. (c) The online
algorithm picks the edge {𝑢3, 𝑣4}, which leads to an infeasible solution.

𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑘 by edges each of weight 𝑘 − 𝑖 + 1; 𝑢𝑖 is revealed in time step 𝑇𝑘+𝑖.
Finally, a vertex 𝑤 is presented, which is connected to every vertex 𝑢𝑖 by an edge of
weight 1; an example for 𝑘 = 5 is shown in Figure 8.7. Note that, for every instance
from ℐ (𝑛), there is a unique optimal solution that takes exactly the edges {𝑣𝑖, 𝑢𝑖}
and {𝑤, 𝑢𝑖}, for 1 ≤ 𝑖 ≤ 𝑘. This way, it takes one edge of every weight between 1
and 𝑘; together with the 𝑘 edges {𝑤, 𝑢𝑖} of weight 1 each, we get

cost(Opt(𝐼)) = 𝑘 +
𝑘∑︁
𝑖=1

𝑖 = 𝑘(𝑘 + 3)
2 ,

for every 𝐼 ∈ ℐ (𝑛). Every other feasible solution for a given 𝐼 is more expensive.
Without loss of generality, we will always assume that no online algorithm takes two
edges with the same weight (except the 𝑘 + 1 edges each of weight 1); otherwise, it
cannot compute an optimal solution.

We now use the usual approach employing the pigeonhole principle in order to
show that every online algorithm with advice needs to use at least log2(𝑘!) advice
bits to be optimal. For a contradiction, assume that Alg is an optimal online
algorithm with advice that uses fewer than log2(𝑘!) advice bits. Then, there are two
instances 𝐼1 and 𝐼2 contained in ℐ (𝑛) that get the same advice string. Suppose that
the corresponding permutations 𝜋𝐼1 and 𝜋𝐼2 differ for the first time for the index 𝑖,
that is, the vertex 𝑣𝑖 is at two different positions for the two instances. This means
that the 𝑣-vertex revealed in time step 𝑇𝑖 (that is, either 𝑣𝜋𝐼1 (𝑖) or 𝑣𝜋𝐼2 (𝑖), depending
on the given instance) needs to be connected to the corresponding 𝑢-vertex (that
is, either 𝑢𝜋𝐼1 (𝑖) or 𝑢𝜋𝐼2 (𝑖), depending on the given instance) in order to get an
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optimal solution; without loss of generality, let 𝜋𝐼1(𝑖) < 𝜋𝐼2(𝑖). However, up to the
𝑖th 𝑢-vertex, both instances 𝐼1 and 𝐼2 look the same to Alg. Thus, the algorithm
connects it to the same 𝑣-vertex, which cannot be optimal for both instances and
thus contradicts the optimality of Alg.

Finally, using Stirling’s approximation and the same calculations as in the proof
of Theorem 4.9, we conclude that

log2(𝑘!) ≥ 𝑘(log2 𝑘 − 𝛽) ,

where e = 2.718 . . . is Euler’s number and 𝛽 = log2 e < 1.443. The claim follows
from 𝑘 = (𝑛− 1)/2. �

Next, we show that a linear number of advice bits is necessary to obtain a
competitive ratio close to 1; to this end, we give a reduction from the bit guessing
problem (see Chapter 7).

Theorem 8.9. For every 𝑐 with 𝑐 ≤ 1.125, every 𝑐-competitive online algorithm
with advice for the MSTP has to use at least

(1 + (3𝑐− 3) log2(3𝑐− 3) + (4 − 3𝑐) log2(4 − 3𝑐)) · 𝑛− 1
3

advice bits.

Proof. We reduce bit guessing with known history to the MSTP. Let BBmst be
some online algorithm with advice for the MSTP. We again assume that BBmst
always creates a feasible output, and design an online algorithm BGuess with advice
for bit guessing with known history that uses BBmst as a black box. As in the
reductions given in Section 7.4, whenever BBmst asks for advice, BGuess simply
copies it from its own tape.

In the first time step 𝑇 ′
1, BGuess is given the length 𝑛′ of the string it is supposed

to guess. BGuess creates an input 𝐼 for BBmst of length 𝑛 = 3𝑛′ + 1. More
precisely, for every bit that is to be guessed, BBmst is given three vertices. The
vertices associated with time step 𝑇 ′

𝑖 with 1 ≤ 𝑖 ≤ 𝑛′ are called 𝑣𝑖,1, 𝑣𝑖,2, and 𝑣𝑖,3,
and they form a widget 𝑊𝑖 similar to those in the proof of Theorem 8.6.

Initially, BGuess generates two vertices 𝑣𝑖,1 and 𝑣𝑖,2 that are connected by an
edge of weight 2 in two consecutive time steps. If BBmst chooses to take this edge,
BGuess guesses the corresponding bit to be 0; if BBmst does not take the edge,
BGuess outputs 1. Next, BGuess is told whether its guess was correct. Depending
on this feedback, BGuess extends the input that is given to BBmst as shown in
Figure 8.8a if the correct guess was 0, and as depicted in Figure 8.8b if it was 1. We
can make a simple case distinction.

Case 1. Suppose the correct guess is 0. In this case, 𝑣𝑖,3 is connected by an edge of
weight 1 and an edge of weight 3. The optimal solution therefore takes the first
edge {𝑣𝑖,1, 𝑣𝑖,2} and additionally {𝑣𝑖,2, 𝑣𝑖,3}, amounting to a cost of 3 for 𝑊𝑖; if
BBmst did not take this edge, it pays an extra cost of 1.
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𝑣𝑖,1 𝑣𝑖,2

𝑣𝑖,3
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(a)
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(b)

𝑤

2
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1/4

2

11

1/4

2

11

1/4

2

31

1/4

(c)

Figure 8.8. The widgets used in the reduction given in the proof of Theorem 8.9.

Case 2. Suppose the correct guess is 1. Then 𝑣𝑖,3 is connected by two edges each of
weight 1. The optimal solution takes these two new edges and has cost 2 for 𝑊𝑖;
if BBmst did take the edge {𝑣𝑖,1, 𝑣𝑖,2}, its cost is again larger by 1.

To sum up, for every time step where BGuess guesses incorrectly, the cost of
BBmst increases by 1 compared to the optimal cost. Finally, again a vertex 𝑤 is
revealed in time step 𝑇𝑛 that is connected to all widgets by edges each of weight 1/𝑛′.

Now suppose BGuess guesses 𝛾𝑛′ = 𝛾(𝑛 − 1)/3 bits correctly. Then it follows
that

cost(BBmst(𝐼)) = cost(Opt(𝐼)) + (1 − 𝛾)𝑛′ , (8.1)

and

2𝑛′ + 1 ≤ cost(Opt(𝐼)) ≤ 3𝑛′ + 1 . (8.2)

We can bound the competitive ratio 𝑐 of BBmst from below by

𝑐 ≥ cost(BBmst(𝐼))
cost(Opt(𝐼)) ≥ 1 + (1 − 𝛾)𝑛′

cost(Opt(𝐼))

as a consequence of (8.1), and thus

𝛾 ≥ 1 − (𝑐− 1) · cost(Opt(𝐼))
𝑛′ .

Together with (8.2), we obtain

𝛾 ≥ 1 − (𝑐− 1)(3𝑛′ + 1)
𝑛′ ≥ 1 − (𝑐− 1)4𝑛′

𝑛′ ≥ 5 − 4𝑐 ,

and, since 𝛾 ≥ 1/2 needs to be satisfied, we require that 𝑐 ≤ 1.125.
From Theorem 7.8, we know that BGuess needs to read at least

(1 + (1 − 𝛾) log2(1 − 𝛾) + 𝛾 log2 𝛾)𝑛′
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advice bits in order to guess a fraction 𝛾 of all bits correctly. Since this function
grows with 𝛾 for 𝛾 ≥ 1/2, and since 𝛾 ≥ 4 − 3𝑐, we get that at least

(1 + (1 − (4 − 3𝑐)) log2(1 − (4 − 3𝑐)) + (4 − 3𝑐) log2(4 − 3𝑐))𝑛′

= (1 + (3𝑐− 3) log2(3𝑐− 3) + (4 − 3𝑐) log2(4 − 3𝑐)) · 𝑛− 1
3

advice bits are needed. Finally, note that the optimal cost of the instances constructed
increases with 𝑛, which finishes the proof. �

Exercise 8.5. Still assuming we consider online algorithms that compute feasible solutions,
how does the bound of Theorem 8.9 change if we only consider graphs of degree at most 3?
What about if we allow degree 4?

Exercise 8.6. The online minimum vertex cover problem (MVCP) is an online minimiza-
tion problem where the objective is to find a smallest set 𝐶 ⊆ 𝑉 for a given graph 𝐺 = (𝑉,𝐸)
such that, for each edge in 𝐸, at least one of its endpoints is in 𝐶. Using a bit guessing
reduction, show that a linear number of advice bits is necessary for any online algorithm
with advice to achieve a small competitive ratio.

Exercise 8.7.⋆ The online maximum independent set problem (MISP) is an online graph
maximization problem. In every time step, an online algorithm either accepts or discards
the presented vertex. The goal is to compute a set of vertices such that there is no edge
between any pair of them in the graph 𝐺. We want to study online algorithms for this
problem that are allowed to use preemption; the idea is analogous to that from Exercise 7.18.
More precisely, an online algorithm is allowed to remove vertices from its solution that it
previously accepted, but it cannot accept vertices that were already discarded. We demand
that the given algorithm has a feasible solution in every time step; thus, it cannot accept
two vertices that are connected by an edge and later preempt one of them. Use a string
guessing reduction (that is, we allow an arbitrary alphabet size 𝜎 ≥ 2) to give a linear
lower bound on the number of advice bits necessary to compute solutions with a small
competitive ratio.

8.3.3 Special Graph Classes
In this subsection, we want to investigate graphs with particular properties. Moreover,
our aim is to observe some interesting connections between algorithms for the offline
version of the problem and online environments. First, recall that the definition of
the MSTP diverges from that given in Exercise 1.3 in that, in the classical version,
we consider complete graphs. Second, we want to restrict the weight function such
that it satisfies the triangle inequality, that is, for any three vertices 𝑣𝑖, 𝑣𝑗 , and 𝑣𝑘,
we have

weight({𝑣𝑖, 𝑣𝑗}) ≤ weight({𝑣𝑖, 𝑣𝑘}) + weight({𝑣𝑘, 𝑣𝑗})

(analogously to Definition 4.1). From now on, we consider metric graphs, which
are complete undirected graphs with a weight function that satisfies the triangle
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inequality. We now leave the MSTP for a while and return to another classical
problem that we already discussed in Section 1.1, namely the traveling salesman
problem. We start by proving the following technical lemma, which we will need to
analyze the MSTP.

Lemma 8.1. Let 𝐺 = (𝑉,𝐸) be a metric graph with a weight function weight : 𝐸 →
R+; let 𝐻opt := Opt(𝐺) be a minimum Hamiltonian cycle in 𝐺. If there is a
function lab: 𝑉 → R+ such that

(i) min{lab(𝑣𝑖), lab(𝑣𝑗)} ≤ weight({𝑣𝑖, 𝑣𝑗}), for all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , and
(ii) lab(𝑣) ≤ cost(𝐻opt)/2, for all 𝑣 ∈ 𝑉 ,

then ∑︁
𝑣∈𝑉

2 · lab(𝑣) ≤ (⌈log2 𝑛⌉ + 1) · cost(𝐻opt) .

Proof. Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and, without loss of generality, suppose lab(𝑣1) ≥
lab(𝑣2) ≥ . . . ≥ lab(𝑣𝑛).9 For any 𝑘 with 1 ≤ 𝑘 ≤ 𝑛, we consider the induced
subgraph 𝐺𝑘 of 𝐺 with vertices {𝑣𝑖 | 1 ≤ 𝑖 ≤ min{2𝑘, 𝑛}}. Let 𝐻𝑘 denote a
Hamiltonian cycle in 𝐺𝑘 that visits all vertices of 𝐺𝑘 in the same order as they are
visited in 𝐻opt. For every edge {𝑣𝑖, 𝑣𝑗} in 𝐻𝑘, 𝐻opt connects 𝑣𝑖 and 𝑣𝑗 by a path
in 𝐺 that is at least as expensive as the direct edge due to the triangle inequality.
Thus, we have

cost(𝐻opt) ≥ cost(𝐻𝑘) . (8.3)

Due to (i), we obtain

cost(𝐻𝑘) =
∑︁

{𝑣𝑖,𝑣𝑗}∈𝐻𝑘

weight({𝑣𝑖, 𝑣𝑗}) ≥
∑︁

{𝑣𝑖,𝑣𝑗}∈𝐻𝑘

min{lab(𝑣𝑖), lab(𝑣𝑗)} . (8.4)

Now let us have a look at the right-hand side of (8.4). Every 𝑣 ∈ 𝑉 appears at most
twice as a summand; moreover, the number of summands is equal to the number
of edges in 𝐻𝑘, that is, min{2𝑘, 𝑛}. Since the labels are decreasing with increasing
indices, we get

∑︁
{𝑣𝑖,𝑣𝑗}∈𝐻𝑘

min{lab(𝑣𝑖), lab(𝑣𝑗)} ≥
min{2𝑘,𝑛}∑︁
𝑖=𝑘+1

2 · lab(𝑣𝑖) . (8.5)

All in all, (8.3) to (8.5) imply

cost(𝐻opt) ≥
min{2𝑘,𝑛}∑︁
𝑖=𝑘+1

2 · lab(𝑣𝑖) . (8.6)

9Keep in mind that we are dealing with an offline problem now, and that the labeling of the vertices
has nothing to do with any presentation order.
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Next, we sum (8.6) for all values of 𝑘 that are a power of two and smaller than 𝑛,
that is, 1, 2, 4, . . . , 2⌈log2 𝑛⌉−1, yielding

⌈log2 𝑛⌉−1∑︁
𝑗=0

cost(𝐻opt) ≥
⌈log2 𝑛⌉−1∑︁

𝑗=0

min{2𝑗+1,𝑛}∑︁
𝑖=2𝑗+1

2 · lab(𝑣𝑖) .

Simplifying this inequality, we finally get

⌈log2 𝑛⌉ · cost(𝐻opt) ≥
𝑛∑︁
𝑖=2

2 · lab(𝑣𝑖)

⇐⇒ ⌈log2 𝑛⌉ · cost(𝐻opt) + 2 · lab(𝑣1) ≥
∑︁
𝑣∈𝑉

2 · lab(𝑣)

(by adding 2 · lab(𝑣1) on both sides)

⇐⇒ ⌈log2 𝑛⌉ · cost(𝐻opt) + 2 · max
1≤𝑖≤𝑛

(lab(𝑣𝑖)) ≥
∑︁
𝑣∈𝑉

2 · lab(𝑣) . (8.7)

(due to the definition of lab)

Note that, until this point, we did not use (ii). Together with (8.7), this assumption
now finally implies that

(⌈log2 𝑛⌉ + 1) · cost(𝐻opt) ≥
∑︁
𝑣∈𝑉

2 · lab(𝑣)

as claimed. �

We now use this result to prove an upper bound for the MSTP on metric graphs. To
this end, we need to establish a connection between spanning trees and Hamiltonian
cycles. We leave the proof of the following lemma as an exercise for the reader.

Lemma 8.2. Let 𝐺 be some metric graph, and let 𝑆 be a spanning tree of 𝐺. Then,
there is a Hamiltonian cycle in 𝐺 such that cost(𝐻) ≤ 2 · cost(𝑆).

Exercise 8.8. Prove Lemma 8.2.

Exercise 8.9. Show that Exercise 8.8 implies a 2-approximation algorithm Double for
the TSP on metric graphs.

Consider the online algorithm MSTGreedy that chooses, in every time step, the
cheapest edge that connects the vertex that was just revealed to the tree that was
computed so far.

Theorem 8.10. MSTGreedy is strictly ⌈log2 𝑛⌉-competitive for the MSTP on
metric graphs.
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Proof. Let 𝐼 be an instance of the MSTP on a metric graph 𝐺 = (𝑉,𝐸) with
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a weight function weight : 𝐸 → R+; let 𝑣1 ≺ 𝑣2 ≺ . . . ≺ 𝑣𝑛,
that is, vertex 𝑣𝑖 is presented in time step 𝑇𝑖 together with an edge to each 𝑣𝑗 with
1 ≤ 𝑗 < 𝑖. In every time step 𝑇𝑖, MSTGreedy constructs a tree on the vertices
of the graph revealed so far by connecting 𝑣𝑖 to the tree constructed in 𝑇𝑖−1 using
the cheapest edge that is already known. Note that MSTGreedy’s solution is
therefore valid in every time step. For the sake of an easier notation, let 𝐺𝑖 denote
the graph that is revealed up to 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛, and let 𝑆𝑖 := MSTGreedy(𝐺𝑖)
(𝑆opt,𝑖 := Opt(𝐺𝑖), respectively) be the solutions computed until 𝑇𝑖. We now show
that 𝑆𝑖 is at most ⌈log2 𝑛⌉ times more expensive than 𝑆opt,𝑖 for every 𝐺𝑖. In the
following, let 𝐻opt,𝑖 be a minimum Hamiltonian cycle in 𝐺𝑖.

For every vertex 𝑣𝑖 with 2 ≤ 𝑖 ≤ 𝑛, we define

lab(𝑣𝑖) := min
1≤𝑗<𝑖

(weight({𝑣𝑗 , 𝑣𝑖})) ,

that is, the weight of a cheapest edge connecting 𝑣𝑖 to some vertex 𝑣𝑗 that is presented
before 𝑣𝑖. As a consequence, the edge used by MSTGreedy in 𝑇𝑖 has a weight of
exactly lab(𝑣𝑖). Furthermore, we set

lab(𝑣1) := max
1≤𝑗≤𝑛

(weight({𝑣1, 𝑣𝑗})) ,

which implies

lab(𝑣1) ≥ max
1≤𝑗≤𝑛

(lab(𝑣𝑗)) ≥ max
1≤𝑗≤𝑖

(lab(𝑣𝑗)) , (8.8)

for every 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. It follows that

cost(𝑆𝑖) ≤
𝑖∑︁

𝑗=2
lab(𝑣𝑗)

=

⎛⎝ 𝑖∑︁
𝑗=1

lab(𝑣𝑗)

⎞⎠ − lab(𝑣1)

≤

⎛⎝ 𝑖∑︁
𝑗=1

lab(𝑣𝑗)

⎞⎠ − max
1≤𝑗≤𝑖

(lab(𝑣𝑗)) (8.9)

(due to (8.8))

Now consider any two vertices 𝑣𝑗 and 𝑣𝑗′ in 𝑆𝑖 with 𝑗 < 𝑗′. By the definition of
lab, we have lab(𝑣𝑗′) ≤ weight({𝑣𝑗 , 𝑣𝑗′}), which satisfies (i) of Lemma 8.1 for 𝐺𝑖.
Thus, we can apply an intermediate result from the proof of Lemma 8.1. We get

cost(𝑆𝑖) ≤

⎛⎝ 𝑖∑︁
𝑗=1

lab(𝑣𝑗)

⎞⎠ − max
1≤𝑗≤𝑖

(lab(𝑣𝑗))

(shown in (8.9))

260



8.3. The Minimum Spanning Tree Problem

≤ ⌈log2 𝑖⌉ · cost(𝐻opt,𝑖)/2
(due to (8.7) in the proof of Lemma 8.1)

≤ ⌈log2 𝑖 ⌉ · cost(𝑆opt,𝑖) ,
(which follows from Lemma 8.2)

which proves the claim for 𝑖 = 𝑛 and 𝑆opt,𝑖 = Opt(𝐺). �

Recall that TSPGreedy performs very poorly for the TSP on general graphs. The
algorithm is a lot better on metric graphs, although still worse than the algorithm
Double from Exercise 8.9.

Exercise 8.10. In Exercise 1.2, we have shown that TSPGreedy, that is, the greedy
algorithm for the TSP that starts at some vertex and always chooses the cheapest edge, has
an approximation ratio that is arbitrarily bad. Use Lemma 8.1 to show that TSPGreedy
is a (⌈log2 𝑛⌉ + 1)-approximation algorithm for the TSP on metric graphs.

After reviewing the offline version of the TSP, let us now look at the offline version
of the MSTP for a second. We already know (see Exercise 1.3) that the decision
version of the classical MSTP is in 𝒫 due to the algorithm Kruskal (among others).
This enables us to deduce some interesting results for the online version. However,
we first need another online model in order to analyze the algorithm. In the following
model, the underlying graph 𝐺 is known to the online algorithm and the edge weights
appear online, one per time step; we call this the edge-by-edge model.

Consider a deterministic online algorithm OnKruskal for this setting where
the edge weights are restricted to two values 𝑎 and 𝑏 with 𝑎 < 𝑏. This algorithm
computes a greedy solution by taking all edges of weight 𝑎 if this does not close a
cycle. Edges of weight 𝑏 are only taken if otherwise the algorithm could not compute
a feasible solution; see Algorithm 8.1.

Theorem 8.11. OnKruskal is optimal for the MSTP on graphs with edge weights
𝑎 and 𝑏 in the edge-by-edge model.

Proof. Consider any graph 𝐺 with edge weights 𝑎 and 𝑏 only, and a minimum
spanning tree 𝑆opt := Opt(𝐺). Recall that every spanning tree contains exactly
𝑛 − 1 edges. Suppose 𝑆opt contains 𝛿 edges of weight 𝑎 and (𝑛 − 1) − 𝛿 edges of
weight 𝑏. What we need to prove is thus that 𝑆 := OnKruskal(𝐺) also contains 𝛿
edges of weight 𝑎, and we are done.

To this end, we show that 𝑆 can be transformed into 𝑆opt without increasing
its cost. Consider any ordering of the edges in 𝑆opt, and let 𝑒 be the first edge
in 𝑆opt of weight 𝑎 that is not contained in 𝑆. If there is no such edge, the claim
follows immediately. If OnKruskal did not take 𝑒 when it was offered, the only
possible reason could have been that this would close a cycle 𝐶 in 𝑆. If 𝐶 does not
contain an edge of weight 𝑏, we can remove an arbitrary edge that is not contained

261



Chapter 8. Problems on Graphs

for every request 𝑥 do
if taking 𝑥 closes a cycle

discard 𝑥;
elsif weight(𝑥) = 𝑎

use 𝑥;
else

𝑆1 := First subtree that contains a vertex of 𝑥;
𝑆2 := Second subtree that contains a vertex of 𝑥;
if there is no yet unrevealed path that connects 𝑆1 and 𝑆2

use 𝑥;
else

discard 𝑥;
end

Algorithm 8.1. The online version of Kruskal.

in 𝑆opt (clearly, such an edge must exist) from 𝐶 and insert 𝑒 instead. This does not
change the cost of the computed solution; also, it does not influence which edges the
algorithm takes in subsequent time steps, because the subtrees of the intermediate
solution of OnKruskal contain the same vertices. If 𝐶 contains at least one edge
of weight 𝑏, let 𝑒′ denote the last such edge that was revealed. Removing 𝑒′ from 𝑆
results in two subtrees. When 𝑒′ was presented, the edge 𝑒 was not yet presented
(otherwise, OnKruskal would have chosen it since it takes all edges of weight 𝑎 that
do not close a cycle); thus, there was a so far unrevealed path that connected the
two subtrees, and OnKruskal would not have chosen 𝑒′, which is a contradiction.
We can continue this way to transform 𝑆 without increasing its cost. �

Now we return to online graph problems as defined in Definition 8.1, that is, the
vertices are revealed online together with edges to known vertices. Theorem 8.11 has
some interesting consequences for online algorithms with advice for particular graph
classes if the given algorithm knows that it is dealing with a graph from this class.

Theorem 8.12. There is an optimal online algorithm Emb with advice for the
MSTP on complete graphs with edge weights 𝑎 and 𝑏 that uses 𝒪(log 𝑛) advice bits.

Proof. Let 𝐺 be a complete graph with 𝑛 vertices and edge weights 𝑎 and 𝑏 only.
First, Emb reads ⌈log2 𝑛⌉ + 2⌈log2(⌈log2 𝑛⌉)⌉ advice bits to obtain 𝑛. After that, the
algorithm knows the structure of the underlying graph. Let 𝐺′ be an unweighted
complete graph with 𝑛 vertices; Emb successively “embeds” 𝐺 into 𝐺′. Since all
vertices have edges to all other vertices, Emb can assign any given vertex 𝑣 of 𝐺 to
any unused vertex 𝑣′. Together with 𝑣, some edges are revealed. Emb simulates the
behavior of OnKruskal when these edges are given one after the other (that is, in
the edge-by-edge model). It follows that Emb computes an optimal solution. �
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𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

(a) The instance 𝐾8

{𝐾2, 𝐾4, 𝐾6, 𝐾8, 𝐾10}, 2

{𝐾2}, 2 {𝐾4, 𝐾6, 𝐾8, 𝐾10}, 4

{𝐾4}, 4 {𝐾6, 𝐾8, 𝐾10}, 6

{𝐾6}, 6 {𝐾8, 𝐾10}, 8

{𝐾8}, 8 {𝐾10}, 10

(b) The partition tree ̂︀𝒯 for 𝑛 = 10

Figure 8.9. (a) shows a sample instance 𝐾8; edges of weight 𝑎 are dashed, while edges
of weight 𝑏 are solid; (b) shows the partition tree ̂︀𝒯 for 𝑛 = 10.

For complete graphs with two edge weights, we can give a complementing lower
bound. The idea behind the following theorem is that an online algorithm needs to
know the input length in order to be optimal.

Theorem 8.13. Every optimal online algorithm with advice for the MSTP on
complete graphs with edge weights 𝑎 and 𝑏 has to use at least log2 𝑛− 1 advice bits.

Proof. We prove the claim using partition trees, which we introduced in Section 3.3
(see Definition 3.3). For any even 𝑛, consider the following set of instances ℐ (≤𝑛) that
consists of the graphs 𝐾2,𝐾4, . . . ,𝐾𝑛; 𝐾𝑖 with 2 ≤ 𝑖 ≤ 𝑛 is a complete graph with
an even number 𝑖 of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑖, and we set 𝑣1 ≺ 𝑣2 ≺ . . . ≺ 𝑣𝑖. For every
𝑗 with 1 < 𝑗 ≤ 𝑖, the vertex 𝑣𝑗 is connected to all vertices 𝑣𝑗′ with 1 ≤ 𝑗′ < 𝑗 by
edges of weight 𝑎 if 𝑗 is odd, and by edges of weight 𝑏 if 𝑗 is even. 𝐾8 is shown in
Figure 8.9a.

Next, we construct a partition tree ̂︀𝒯 for ℐ (≤𝑛). Every instance starts with the
two vertices 𝑣1 and 𝑣2, which are connected by an edge of weight 𝑏. Therefore, we
label the root 𝑟 with ℐ (≤𝑛) and 2. For every vertex 𝑣 of ̂︀𝒯 that is labeled by a set
of instances ℐ (≤𝑛)

𝑣 with more than one element and a natural number 𝜌𝑣, we label
its two children such that the left one contains the smallest graph from ℐ (≤𝑛)

𝑣 and
𝜌𝑣, and the right one contains the other graphs from ℐ (≤𝑛)

𝑣 and 𝜌𝑣 + 2. This clearly
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satisfies the conditions (i) to (iii) of Definition 3.3; an example for ℐ (≤10) is shown in
Figure 8.9b.

It remains to show that the conditions of Lemma 3.1 are also satisfied. To this
end, consider two vertices 𝑣1 and 𝑣2, neither one being an ancestor of the other, and
with lowest common ancestor 𝑣. One of the two vertices 𝑣1 and 𝑣2 must be a leaf of̂︀𝒯 . Without loss of generality, assume 𝑣1 is a leaf, and thus ℐ (≤𝑛)

𝑣1
contains a single

graph 𝐾𝑖. Since 𝑣2 is not an ancestor of 𝑣1, ℐ (≤𝑛)
𝑣2

contains graphs with more than
𝑖 vertices each. Now consider an optimal solution for 𝐾𝑖. The last vertex 𝑣𝑖 (with
even degree) has to be connected by an edge of weight 𝑏. All other vertices can be
connected by edges of weight 𝑎. However, for all instances in ℐ (≤𝑛)

𝑣2
, at least one other

vertex of odd index is presented after 𝑣𝑖, and thus 𝑣𝑖 must not be connected by an
edge of weight 𝑏 in order to be optimal for these instances.

Finally, we note that ̂︀𝒯 has 𝑛/2 leaves, and therefore log2(𝑛/2) = log2 𝑛− 1 advice
bits are necessary as a result of Theorem 3.1. �

Similar results can be obtained for complete bipartite graphs. Of course, this only
works since there are just two possible edge weights.

Exercise 8.11. Prove that there is an optimal online algorithm EmbBip with advice for
the MSTP on complete bipartite graphs with edge weights 𝑎 and 𝑏 that uses 𝒪(log 𝑛) advice
bits.

Exercise 8.12. Prove that log2(𝑛− 1) − 1 advice bits are necessary to be optimal for the
MSTP on complete bipartite graphs with edge weights 𝑎 and 𝑏.

Finally, let us consider the case that there are three possible weights. To keep
the calculations simple, let these weights be 1, 2, and 3. We prove in the following
that we can at least obtain a small competitive ratio with logarithmic advice. The
following algorithm is called MSTOne since it uses one advice bit to distinguish
between two deterministic strategies; the additional logarithmic number of bits is
only used to communicate the size of the input graph.

The idea of the following proof once again relies on the optimality of Kruskal.
In the offline setting with weights 1, 2, and 3, all edges of weight 1 can be taken (as
long as they do not close a cycle). After that, we can take edges of weight 2 and
finally those of weight 3. Surely, taking edges of weight 1 should also be done in
the online setting. However, it is not clear whether taking an edge of weight 2 is
a good idea (maybe otherwise we would have to take an edge of weight 3 later) or
a bad idea (maybe this prevents us from taking an edge of weight 1). Essentially,
the single advice bit tells MSTOne whether it should take edges of weight 2 or not
(except for the last time step).

Theorem 8.14. There is a strictly 1.4-competitive online algorithm MSTOne with
advice for the MSTP on complete graphs with edge weights 1, 2, and 3 that uses
𝒪(log 𝑛) advice bits.
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Proof. With ⌈log2 𝑛⌉+2⌈log2(⌈log2 𝑛⌉)⌉ advice bits, the input length 𝑛 is encoded in
a self-delimiting way. Then, one additional bit is read to choose one of the following
two strategies.

Case 1. If the bit is 0, MSTOne takes all edges of weight 1 greedily in the first 𝑛−1
time steps unless a cycle is closed. In the last time step, the remaining edges are
taken in order to compute a feasible solution, that is, to connect all components it
computed so far; this is always possible since the input graph is complete.

Case 2. If the bit is 1, MSTOne follows a similar strategy, but takes edges of weights
either 1 or 2 in the first 𝑛− 1 time steps.

Let us analyze how the oracle should choose the value of the bit. For the second
strategy, we define so-called suboptimal edges. Suppose that, in some time step, an
edge of weight 1 is presented, but MSTOne cannot take it since it closes a cycle
and this cycle contains an edge of weight 2 that was taken earlier. For each such
cycle, we pick one arbitrary but fixed edge of weight 2 and call it suboptimal. Since
no edge of weight 1 can close two cycles (otherwise, there would have been a larger
cycle already), it follows that there are at least as many edges of weight 1 as there
are suboptimal edges. In what follows, let 𝛿 be such that the oracle tells MSTOne
to use the second strategy if the number of suboptimal edges that it would choose is
less than 𝛿(𝑛− 1).

We know from Exercise 1.3 that the offline algorithm Kruskal is optimal for the
MSTP. For the given instance 𝐼, we will therefore compare MSTOne’s solution to
Kruskal(𝐼).

Now suppose MSTOne uses the first strategy on 𝐼. By construction, there must
be more than 𝛿(𝑛− 1) suboptimal edges and therefore at least that many edges of
weight 1. Clearly, MSTOne chooses all these edges of weight 1, and, in the worst
case, all remaining edges that are taken in the last time step have weight 3, while
Kruskal(𝐼) takes edges of weight 2 instead. Thus, the performance of MSTOne
on 𝐼 in this case can be bounded from above by

𝛿(𝑛− 1) + (1 − 𝛿)(𝑛− 1) · 3
𝛿(𝑛− 1) + (1 − 𝛿)(𝑛− 1) · 2 = 3 − 2𝛿

2 − 𝛿
. (8.10)

Conversely, if MSTOne uses the second strategy, there are fewer than 𝛿(𝑛− 1)
suboptimal edges in 𝐼. Since MSTOne never takes an edge of weight 3 to connect
two components unless there is no other choice (that is, in the last time step), the only
edges that contribute to MSTOne’s solution being larger than cost(Kruskal(𝐼))
are the suboptimal edges. With this, we get an upper bound on the performance on
𝐼 of

𝛿(𝑛− 1) · 2 + Δ
𝛿(𝑛− 1) + Δ , (8.11)
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where Δ is the cost of the other edges (which is the same for both solutions). Note
that (8.11) is maximized if Δ is minimized, and thus we get an upper bound of

𝛿(𝑛− 1) · 2 + (1 − 𝛿)(𝑛− 1)
𝛿(𝑛− 1) + (1 − 𝛿)(𝑛− 1) = 1 + 𝛿 . (8.12)

It remains to choose 𝛿. To this end, note that (8.10) decreases with 𝛿, while (8.12)
increases with 𝛿 (we had a similar situation for the simple knapsack problem; see
Figure 6.5). Thus, a best strategy is to choose 𝛿 such that the two performances are
equal, which results in

3 − 2𝛿
2 − 𝛿

= 1 + 𝛿 ⇐⇒ 𝛿 = 1
2

(︁
3 −

√
5
)︁
.

Plugging this value into one of the two functions finally yields an upper bound of
(5 −

√
5)/2 ≤ 1.4 on the strict competitive ratio. �

The results of this subsection show an interesting interplay between the online
and offline formulations of the problem, and how advice can help to build a bridge
between them.

8.4 Historical and Bibliographical Notes
An introduction to graph theory is, for instance, given in the books by Diestel [51]
and West [144]. Graph coloring is certainly one of the oldest and best-studied
problems on graphs; the decision problem of the offline version is also among “Karp’s
21 𝒩 𝒫-complete problems” [93].

The online algorithm CBip is due to Lovász et al. [113]; the proof presented
here that this algorithm is strictly log2 𝑛-competitive (see Theorem 8.2) follows that
given by Kierstead and Trotter [95]. The lower bound for trees (see Theorem 8.1) is
due to Bean [17]; it was independently discovered by Gyárfás and Lehel [72]. For
bipartite graphs, Bianchi et al. [22] improved this bound from log2 𝑛+ 1 to roughly
1.137 log2 𝑛− 0.499, which was then improved to 2 log2 𝑛− 10 by Gutowski et al. [71];
note that this most recent bound matches the upper bound (see Theorem 8.2) up to
the small additive constant of 10.

The lower bound for FirstFit on bipartite graphs can be found in the overview
by Kierstead and Trotter [95]. To the best of our knowledge, Steffen [135] was the
first to prove the statement from Exercise 8.1.

Bianchi et al. [22] studied the advice complexity of coloring on bipartite graphs.
Forišek et al. [64] studied coloring with advice on paths. Seibert et al. [128] considered
coloring 3-colorable graphs with advice, and in particular how much information is
needed to color them with at most four colors. Burjons et al. [43] considered coloring
with advice against a randomized adversary.

The polynomial-time (⌈log2 𝑛⌉ + 1)-approximation algorithm TSPGreedy (and
thus Lemma 8.1 and Exercise 8.10) is due to Rosenkrantz et al. [127]. The
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2-approximation algorithm Double (see Exercise 8.9) was also mentioned by
Rosenkrantz et al. [127], but it was known beforehand. Also recall that the
Christofides algorithm, which has an approximation ratio of 3/2, was introduced in
1976 [44]. The strictly ⌈log2 𝑛⌉-competitive online algorithm MSTGreedy is due to
Imase and Waxman [85]; their bound originally works in a slightly different setting,
which they called the dynamic Steiner tree problem. Here, the underlying graph is
known and only the terminals are revealed online; however, the greedy approach also
works for our setting since it only considers vertices that were presented earlier.

Online algorithms with advice for the MSTP were studied by Bianchi et al. [21]; the
results given in this chapter are mainly based on this publication (see also Brülisauer
[41], on which especially the usage of Kruskal’s algorithm in Subsection 8.3.3 is
based). Barhum [15] studied the Steiner tree problem in an online model where the
graph is known in advance and the terminal vertices are revealed online; an online
algorithm for the problem must have a feasible Steiner tree in every time step. For 𝑛
vertices and 𝑡 terminals, he showed that using 𝑞 log2 𝑛 advice bits with 0 ≤ 𝑞 ≤ 𝑛− 1
allows for an 𝒪(log(𝑡/𝑞))-competitive online algorithm with advice and that this
bound is tight.

Boyar et al. [36] introduced the asymmetric string guessing problem, which allowed
them to do reductions to a large number of online problems. For many problems on
graphs, this variant of string guessing is better suited for proving hardness results
than the variant we introduced in Chapter 7. Moreover, they identified a class of
“hard” online problems they called AOC-complete; these problems, which include
DPA and the MISP, have the same advice complexity as asymmetric string guessing.
Komm et al. [99] studied a large class of graph problems that are characterized by
hereditary graph properties. They used reductions from both classical and asymmetric
string guessing to establish different results with and without preemption; one of
their results is a generalization of Exercise 8.7.
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Exercise 1.1. It does not help in general to modify KnGreedy as proposed in the
exercise statement. The algorithm still has an approximation ratio that converges
to 2 on the worst-case instance constructed in (1.1) as, after packing the object of
weight 𝐵/2 + 1, there is no more room for any of the other objects. The only change
necessary in the analysis is to give this statement.

Exercise 1.2. Let 𝛾 be a given positive integer. For any even 𝑛 ≥ 4, we construct
a graph with 𝑛 vertices such that the cost of TSPGreedy’s solution is 𝛾 times
larger than the optimal cost; the idea is shown in Figure 9.1. All edges of the zigzag
path starting at the vertex 𝑣 at the lower left-hand corner and ending at 𝑤 have
weight 1; the edge back from 𝑤 to 𝑣 has weight (2𝛾 − 1)𝑛+ 1. The horizontal edges
have weight 2. Of course, this is not yet an instance of the TSP as the graph has
to be complete. We simply define all remaining edges to have a weight of 2𝛾𝑛. For
convenience, they are not shown in the figure.

First, assume TSPGreedy starts at 𝑣. Then, it is lured into following the zigzag
path until it ends up at 𝑤. Now it must close the cycle by taking the edge of weight
(2𝛾 − 1)𝑛 + 1 from 𝑤 back to 𝑣; see Figure 9.1a. On the other hand, there is an
optimal solution that starts at 𝑣, takes the horizontal path, followed by a vertical
edge to arrive at 𝑤. After that, it returns to 𝑣 again following the upper horizontal
path and finally the vertical edge on the left; see Figure 9.1b. The total cost is
2(𝑛− 1) + 2 = 2𝑛, and thus we obtain a lower bound of

(2𝛾 − 1)𝑛+ 1 + 𝑛− 1
2𝑛 = 𝛾

on the approximation ratio as claimed. It is easy to see that a similar argumentation
is possible if TSPGreedy starts at any other vertex, which may even result in a
more expensive solution.

Finally, note that we could also choose 𝛾 to be some function of 𝑛.

� Springer International Publishing Switzerland 2016
D. Komm, An Introduction to Online Computation,
Texts in Theoretical Computer Science. An EATCS Series,
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(a) TSPGreedy’s solution
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(b) An optimal solution

Figure 9.1. A hard instance for TSPGreedy as used in the solution of Exercise 1.2.

Exercise 1.3. First, we argue that Kruskal is consistent for MSTP. To this end,
we use the fact that any spanning tree contains exactly 𝑛 − 1 edges. For a given
instance 𝐺, let 𝑆 := Kruskal(𝐺) denote the solution that is computed by Kruskal.
𝑆 contains 𝑛 − 1 edges as well, as there are 𝑛 − 1 rounds and exactly one edge is
added to 𝑆 in any of them. Clearly, 𝑆 does not contain a cycle since Kruskal never
picks an edge that closes one. For a contradiction, suppose that 𝑆 is not connected;
then 𝑆 is a forest, and consequently contains fewer than 𝑛 − 1 edges, which is a
direct contradiction. On the other hand, 𝑆 must contain every vertex of 𝐺 by the
same reasoning.

Now we prove that 𝑆 is optimal. We do this by showing that there is an optimal
solution for 𝐺 that contains all the edges that are chosen in the 𝑛 − 1 rounds
𝑅1, 𝑅2, . . . , 𝑅𝑛−1 by induction on the round number 𝑖.

Base Case. In round 𝑅1, an edge 𝑒1 that has the smallest weight in 𝐺 is chosen
to be part of 𝑆. Now consider any optimal solution 𝑆opt := Opt(𝐺) for 𝐺. If
𝑆opt contains 𝑒1, the claim follows immediately. If 𝑆opt does not contain 𝑒1, then
adding 𝑒1 to 𝑆opt creates a graph that contains a cycle. All other edges in this
cycle have at least the same weight as 𝑒1. Thus, removing one of them leads to a
spanning tree that contains 𝑒1, and that has a weight which is not larger than the
weight of 𝑆opt.

Induction Hypothesis. The claim holds for 𝑖− 1.
Induction Step. Let 𝑆𝑖−1 denote the subtree of 𝑆 that contains the 𝑖− 1 edges that

have been added to 𝑆 in the previous rounds 𝑅1, 𝑅2, . . . , 𝑅𝑖−1, and let 𝑒𝑖 denote
the edge that is chosen in round 𝑅𝑖 resulting in a tree 𝑆𝑖. Now consider an optimal
solution 𝑆opt that has 𝑆𝑖−1 as a subgraph. By the induction hypothesis, such a
solution exists. If 𝑆opt contains 𝑒𝑖, we are again done; otherwise, adding 𝑒𝑖 to 𝑆opt
closes a cycle. At least one of the edges in this cycle is not contained in 𝑆𝑖. As a
consequence, this edge cannot have a weight smaller than that of 𝑒𝑖, and removing
it results in a spanning tree that has a weight which is not larger than that of 𝑆opt.

The claim follows.
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Exercise 1.4. Suppose there is a 𝑐-competitive online algorithm Alg for paging
that starts with the same cache content as Opt as in Definition 1.7. We then easily
design an online algorithm Alg′ that may start with any cache content, and imitates
the original algorithm. In the worst case, the pages that are originally in the caches
of Alg and Opt get requested before Alg removes them. This causes a page fault
for Alg′ but not for Alg or Opt. However, this can happen at most 𝑘 times; thus
we have cost(Alg′(𝐼)) ≤ cost(Alg(𝐼)) + 𝑘 for every instance 𝐼. Now, if Alg is
𝑐-competitive, there is some constant 𝛼 such that cost(Alg(𝐼)) ≤ 𝑐·cost(Opt(𝐼))+𝛼
for all 𝐼, and therefore cost(Alg′(𝐼)) ≤ 𝑐 · cost(Opt(𝐼)) + 𝛼 + 𝑘 for all 𝐼. Since
𝛼+ 𝑘 is also constant with respect to |𝐼|, the claim follows.

Of course, if we speak about the strict competitive ratio, things change. Suppose a
page that is initially in the cache of Alg but not in that of Alg′ is requested 𝑛 times;
call this instance 𝐼 ′. Then Alg is optimal since cost(Alg(𝐼 ′)) = cost(Opt(𝐼 ′)) = 0,
but the strict competitive ratio of Alg′ is unbounded (it is not even defined, to be
precise).

Exercise 1.5. Let Alg be any online algorithm for paging that replaces an arbitrary
number of pages in every time step. We design another online algorithm Alg′ for
paging that imitates Alg, but only replaces pages if a page fault occurs. Suppose a
page 𝑝 is requested that is not in the cache of Alg′ in the corresponding time step;
we distinguish two cases depending on whether 𝑝 also causes a page fault for Alg.

Case 1. Suppose 𝑝 is also missing in the cache of Alg in this time step, and Alg
removes some page 𝑝′. If 𝑝′ is also in the cache of Alg′, it also replaces 𝑝′. If 𝑝′ is
not in the cache of Alg′, then Alg′ replaces a page 𝑝′′ that is not in Alg’s cache
(such a page must always exist). Thus, the overall cost increases by 1 for both
algorithms.

Case 2. Conversely, if 𝑝 is in Alg’s cache, it must have been loaded into it in some
preceding time step, because both algorithms started with the same cache content.
In the time step where Alg loaded 𝑝 into the cache for the last time, this was
not to replace a page due to a page fault, because otherwise 𝑝 would also be in
the cache of Alg′ (due to case 1). As a consequence, Alg already caused an
additional cost of 1 compared to Alg′.

It follows that Alg′ never pays more than Alg.

Exercise 1.6. Let Alg be any online algorithm for paging that removes an arbitrary
number of pages in every time step. We design an algorithm Alg′ that imitates
Alg, but whenever Alg removes a page just marks this page as removed instead.
If, on a page fault, Alg loads some page 𝑝 into an empty cache cell and 𝑝 is also
not in the cache of Alg′, Alg′ replaces a page that is marked as removed with 𝑝.
Such a page must always exist. This way, the set of pages in the cache of Alg′ is a
superset of the pages that Alg has in its cache, and Alg′ does not cause more page
faults than Alg.
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Exercise 1.7. We can prove that Lru is 𝑘-competitive analogously to the proof of
Theorem 1.4; consider a fixed input together with its 𝑘-phase partition. We already
know that Opt has to make at least 𝑁 page faults in total, so it only remains to
show that Lru makes at most 𝑘 page faults per phase 𝑃𝑖.

Since at most 𝑘 different pages are requested during 𝑃𝑖, we are again done if we
can show that no single page causes two page faults in this phase. Let 𝑝 be the first
page that causes a page fault during 𝑃𝑖. After that, 𝑝 is the most recently used page
in the cache, and it does not get removed for the next 𝑘 − 1 distinct requests. Since
there are at most 𝑘 distinct pages requested during 𝑃𝑖, 𝑝 does not cause a second
page fault in this phase.

Exercise 1.8. Again we consider an input and its 𝑘-phase partition according to
Definition 1.8. Recall that the first phase starts with the first page fault. In general,
a phase 𝑃𝑖 always starts with Fwf emptying its cache, and then filling it up with
every page fault that is encountered. Since the cache is full after exactly 𝑘 different
pages were requested, no single page can cause more than one page fault, because a
page that is loaded into the cache during 𝑃𝑖 is not removed as there is always enough
free space. Together with the same reasoning as in the proof of Theorem 1.4 about
Opt, the claim follows.

Exercise 1.9. Let 𝐼 be any instance of paging, and consider the phase partition as
defined in the exercise statement; suppose there are 𝑁 phases in total. Let 𝑃Fifo,𝑖
be an arbitrary phase with 1 ≤ 𝑖 ≤ 𝑁 − 1; our goal is to show that Opt also has to
make at least one page fault in it. For 𝑃Fifo,1, we immediately see that both Fifo
and Opt make exactly one page fault.

For every 𝑖 with 2 ≤ 𝑖 ≤ 𝑁 − 1, let 𝑝 denote the page that caused the last page
fault for Fifo in phase 𝑃Fifo,𝑖−1. All pages that cause a page fault for Fifo during
𝑃Fifo,𝑖 are not removed before the end of phase 𝑃Fifo,𝑖. It follows that the cost of
Fifo during 𝑃Fifo,𝑖 is not increased by requesting the same page multiple times. In
other words, no page causes more than one page fault during 𝑃Fifo,𝑖. The page 𝑝
is evicted by Fifo with the 𝑘th page fault in 𝑃Fifo,𝑖; requesting it during 𝑃Fifo,𝑖
therefore does not cause any additional cost. Since 𝑝 caused the last page fault in
𝑃Fifo,𝑖−1 for Fifo and this phase was ended right afterwards, 𝑝 must also be in the
cache of Opt at the beginning of 𝑃Fifo,𝑖. Accordingly, there are 𝑘− 1 pages (namely
at most all other ones in the cache of Opt at the beginning of phase 𝑃Fifo,𝑖) that
can be requested and cause a page fault for Fifo, but no page fault for Opt. Thus,
Opt has to make at least one page fault during phase 𝑃Fifo,𝑖; in general, Opt causes
at least one page fault for every 𝑘 page faults of Fifo.

The only exception is the last phase 𝑃Fifo,𝑁 since it may not be complete. Then
again, if this is the case, Fifo causes fewer than 𝑘 page faults in 𝑃Fifo,𝑁 ; it follows
that the number of page faults caused by Fifo in 𝑃Fifo,1 and 𝑃Fifo,𝑁 is at most
𝑘. Recall that Opt also causes one page fault in 𝑃Fifo,1. Conversely, if 𝑃Fifo,𝑁 is
complete, Opt causes one page fault per phase. Thus, it even follows that Fifo is
strictly 𝑘-competitive.
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Exercise 1.10. We consider Fifo for two cache sizes 3 and 4. As always, the cache
is initialized as (𝑝1, 𝑝2, 𝑝3) or (𝑝1, 𝑝2, 𝑝3, 𝑝4), respectively. Suppose we are given the
instance

(𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝5, 𝑝6, 𝑝9, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9) .

First, consider Fifo with cache size 3. Independently of how the three pages that
are initially in the cache are removed, Fifo’s cache has the form

𝑝5 𝑝6 𝑝7

after the first three requests; so far, Fifo made three page faults. On the next four
requests 𝑝8, 𝑝5, 𝑝6, 𝑝9, the cache contents are

𝑝8 𝑝6 𝑝7 , 𝑝8 𝑝5 𝑝7 , 𝑝8 𝑝5 𝑝6 , 𝑝9 𝑝5 𝑝6

causing a page fault in every time step. The next two requests 𝑝5 and 𝑝6 do not cause
page faults. Finally, when 𝑝7 and 𝑝8 are requested, Fifo’s cache content changes to

𝑝9 𝑝7 𝑝6 and 𝑝9 𝑝7 𝑝8

and the last request 𝑝9 does not cause any page fault. This sums up to nine page
faults in total.

Now consider Fifo with cache size 4 on the same instance. After the first four
requests, the cache content is

𝑝5 𝑝6 𝑝7 𝑝8 ,

and there were four page faults so far. The next two requests 𝑝5 and 𝑝6 do not cause
page faults. However, the subsequent requests 𝑝9, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9 cause one page
fault each, and the cache contents are

𝑝9 𝑝6 𝑝7 𝑝8 , 𝑝9 𝑝5 𝑝7 𝑝8 , 𝑝9 𝑝5 𝑝6 𝑝8 ,

𝑝9 𝑝5 𝑝6 𝑝7 , 𝑝8 𝑝5 𝑝6 𝑝7 , 𝑝8 𝑝9 𝑝6 𝑝7 .

Thus, in total there are 10 page faults, although the cache size is larger.

Exercise 1.11. In this case, we can indeed prove a stronger lower bound that is
closer to the one for Lifo. For any 𝑛 that is larger than 2𝑘 and a multiple of 2, the
adversary creates the instance

𝐼 = (𝑝1, 𝑝1, 𝑝2, 𝑝2, . . . , 𝑝𝑘−1, 𝑝𝑘−1, 𝑝𝑘+1, 𝑝𝑘, 𝑝𝑘+1, 𝑝𝑘, . . . , 𝑝𝑘+1, 𝑝𝑘⏟  ⏞  
𝑛−2(𝑘−1) requests

)

on which Opt(𝐼) causes one page fault by replacing any page different from 𝑝𝑘 in
time step 2(𝑘 − 1) + 1. Lfu as defined in the exercise statement, however, causes a
page fault in every of the last 𝑛 − 2(𝑘 − 1) time steps. Therefore, its competitive
ratio is at least 𝑛− 2(𝑘 − 1).

273



Solutions to Exercises

Exercise 1.12. The online algorithm Max is not competitive and the argument
is very similar to the one for Lifo. If the request sequence is given by 𝐼 =
(𝑝𝑘+1, 𝑝𝑘, 𝑝𝑘+1, 𝑝𝑘, . . .), the cost of Max grows linearly in the input length 𝑛, because
it evicts the pages 𝑝𝑘, 𝑝𝑘+1, 𝑝𝑘, 𝑝𝑘+1, . . . while Opt(𝐼) simply removes an arbitrary
page different from 𝑝𝑘 in time step 𝑇1. Obviously, we can construct an analogous
hard instance (𝑝𝑘+1, 𝑝1, 𝑝2, 𝑝1, 𝑝2, . . .) for Min.

Exercise 1.13. The algorithm Walk implements a FIFO strategy where we have
a special strategy to evict the first 𝑘 pages in the cache, namely in the order
𝑝1, 𝑝2, . . . , 𝑝𝑘. After that, the cache is just treated like a queue and Walk’s compet-
itive ratio is 𝑘 according to Theorem 1.4.

Exercise 1.14. From the theoretical point of view that we take, this approach
does not help at all. Local is clearly not competitive and we can easily show
this analogously as for Lifo. The adversary simply constructs the input 𝐼 =
(𝑝𝑘+1, 𝑝1, 𝑝𝑘+1, 𝑝1, . . .); again, Opt(𝐼) makes one page fault by, for instance, removing
page 𝑝2 at the beginning, while Local makes 𝑛 page faults in total.

Exercise 1.15. At the beginning of each phase 𝑃𝑖, Fwf empties the cache and
loads the requested page. All pages that are requested during 𝑃𝑖 with 1 ≤ 𝑖 ≤ 𝑁 are
not removed during this phase until there are 𝑘 requests to different pages in total
and the cache is full. If a (𝑘 + 1)th distinct page is requested, a marking algorithm
starts a new phase 𝑃𝑖+1, and only then Fwf empties its cache again. It follows that
the pages in the cache of Fwf at any given time step are exactly those that would be
marked, and since none of them are removed in the same phase, Fwf is a marking
algorithm.

Exercise 1.16. According to Theorem 1.8, every marking algorithm is (strictly)
𝑘-competitive and according to Theorem 1.6, Lifo is not competitive. Thus, Lifo
cannot be a marking algorithm.

Neither is Fifo, as we can show using the input

(𝑝𝑘+1, 𝑝𝑘+2, . . . , 𝑝2𝑘, 𝑝2𝑘+1, 𝑝𝑘+2, 𝑝2𝑘+2) .

The first phase 𝑃1 starts with the first request; 𝑃1 ends after the request 𝑝2𝑘 and
all requested pages are now in the cache. At the beginning of the second phase 𝑃2,
Fifo removes 𝑝𝑘+1, which has now been in the cache for the longest time. When
𝑝2𝑘+2 is requested, Fifo removes 𝑝𝑘+2. A marking algorithm, on the other hand,
does not remove 𝑝𝑘+2 as it was requested in 𝑃2 and thus marked.

Exercise 1.17. If we consider (ℎ, 𝑘)-paging for 𝑘 < ℎ, the situation becomes hope-
less for any online algorithm Alg. Suppose that 𝑚 = ℎ = 𝑘 + 1. For any instance 𝐼,
Opt(𝐼) has all pages available in its memory from the start, so it never causes any
page fault, whereas Alg can again be forced to make a page fault in every time step.
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Exercise 1.18. We use the same idea as in the proof of Theorem 1.5. Let 𝑛 = 𝑁 ·𝑘,
for some 𝑁 ∈ N+. Recall that 𝑘 is the size of Alg’s cache and ℎ is the size of Opt’s
cache; the caches are initialized as (𝑝1, 𝑝2, . . . , 𝑝𝑘) and (𝑝1, 𝑝2, . . . , 𝑝ℎ), respectively.
This time, let 𝑚 = 2𝑘 + 1, which means that, at any given time step, there are
always 𝑘 − ℎ+ 1 pages that are neither in Alg’s cache nor in Opt’s cache, even in
cases where their contents are disjoint.

The input 𝐼 is again subdivided into 𝑁 phases of 𝑘 requests each, and the adversary
makes sure that Alg causes a page fault in every time step. Consider phase 𝑃1; 𝐼
starts with the 𝑘− ℎ+ 1 pages 𝑝𝑘+1, 𝑝𝑘+2, . . . , 𝑝2𝑘−ℎ+1, which causes 𝑘− ℎ+ 1 page
faults for both Alg and Opt. Now let 𝑆 denote the set of 𝑘+ 1 different pages that
were in Opt’s cache at the beginning of the phase or that were requested during
the first 𝑘 − ℎ+ 1 time steps. At this point, Opt can have any arbitrary subset of
size ℎ− 1 of 𝑆 in its cache; on the other hand, there is at least one page in 𝑆 that is
not in Alg’s cache. Thus, the adversary can ensure that Alg causes a page fault in
each of the ℎ− 1 subsequent time steps. Doing so, it requests at most ℎ− 1 different
pages, and these are all in Opt’s cache. Therefore, Alg causes 𝑘 page faults, and
Opt causes 𝑘 − ℎ+ 1.

This procedure is iterated 𝑁 times, where every phase starts with the adversary
requesting 𝑘 − ℎ + 1 pages that are in neither of the two caches. Of course, at
the beginning of any phase 𝑃𝑖 with 2 ≤ 𝑖 ≤ 𝑁 , the cache content of Opt is not
necessarily a subset of Alg’s cache content.

Exercise 2.1. Let 𝜎 be the size of the alphabet of the random tape of some ran-
domized algorithm Alg𝜎. Moreover, let 𝑝 be the smallest prime number which is
larger than 𝜎. We now define a problem Π𝑝 where the only task is to output a
number between 1 and 𝑝 with equal probability, that is, with probability 1/𝑝.

We can now argue in exactly the same way as for the algorithm Three′. If there
were a number 𝑛′ ∈ N such that Alg𝜎 were able to output the numbers with the
same probability, we would have to evenly distribute the 𝜎𝑛′ different behaviors of
Rand𝜎 among the 𝑝 different outputs; but since 𝑝 is not a prime factor of 𝜎, nor is
𝑝 a prime factor of any power of 𝜎, and thus does not divide 𝜎𝑛′ .

Exercise 2.2. If we count as the exercise suggests, we distinguish the cases in
which one random string is a proper prefix of another one. Suppose we are given
a randomized online algorithm Rand for which the following holds. There is
some random string 𝑠 and a proper prefix 𝑠′ of 𝑠 such that the two corresponding
deterministic online algorithms 𝐴𝑠 and 𝐴𝑠′ are different. This means that there is at
least one instance 𝐼 such that 𝐴𝑠 works differently than 𝐴𝑠′ . However, this leads to
a contradiction. If Rand has read 𝑠′, its behavior is fully determined by 𝐼 and 𝑠′.
Thus, it will either always continue reading random bits and act like 𝐴𝑠 or read no
further random bits and act like 𝐴𝑠′ .
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Exercise 2.3. We start by proving the first part of the inequality, which can be
done analogously to the proof of Lemma 2.1. In particular, for every deterministic
online algorithm 𝐴𝑗 , we have

EAdv[gain(𝐴𝑗(ℐ))] =
𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · gain(𝐴𝑗(𝐼𝑖))

and

EAdv[ERand[gain(Rand(ℐ))]] =
𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · ERand[gain(Rand(𝐼𝑖))]

=
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv[gain(𝐴𝑗(ℐ))] .

Now suppose that the expected optimal gain is at least 𝑐 times larger than the
expected gain of every deterministic online algorithm. Then,

EAdv[ERand[gain(Rand(ℐ))]] =
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv[gain(𝐴𝑗(ℐ))]

≤
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · 1
𝑐

· EAdv[gain(Opt(ℐ))]

= 1
𝑐

· EAdv[gain(Opt(ℐ))] .

By the same arguments as in the proof of Lemma 2.1, we can again “derandomize”
the adversary, and get the result that there is some 𝐼 ∈ ℐ such that

𝑐 ≤ gain(Opt(𝐼))
ERand[gain(Rand(𝐼))] ,

which proves the statement if the maximum is given by the first argument of the
max-expression.

Now we look at the second part. To this end, following the hint from the exercise
statement, we consider the reciprocal strict competitive ratio, that is,

gain(𝐴𝑗(𝐼))
gain(Opt(𝐼)) ,

for any online algorithm 𝐴𝑗 and instance 𝐼. Note that this expression always has a
value between 0 and 1, and 𝐴𝑗 is better the larger it gets. We can now compute a
bound on the reciprocal strict competitive ratio of Rand with respect to PrAdv; the
important thing is that, in this case, we can again change the order of summation.

EAdv

[︂
ERand[gain(Rand(ℐ))]

gain(Opt(ℐ))

]︂
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= EAdv

[︃∑︀ℓ
𝑗=1 PrRand[𝐴𝑗 ] · gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︃

=
ℓ∑︁
𝑗=1

(︃
PrRand[𝐴𝑗 ]

𝜇∑︁
𝑖=1

PrAdv[𝐼𝑖] · gain(𝐴𝑗(𝐼𝑖))
gain(Opt(𝐼𝑖))

)︃

=
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv

[︂
gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︂
.

Now suppose that(︂
EAdv

[︂
gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︂)︂−1
≥ 𝑐 ,

and therefore

EAdv

[︂
gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︂
≤ 1
𝑐
,

for any deterministic online algorithm 𝐴𝑗 . As a consequence, it follows that

EAdv

[︂
ERand[gain(Rand(ℐ))]

gain(Opt(ℐ))

]︂
=

ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · EAdv

[︂
gain(𝐴𝑗(ℐ))

gain(Opt(ℐ))

]︂

≤
ℓ∑︁
𝑗=1

PrRand[𝐴𝑗 ] · 1
𝑐

= 1
𝑐
.

Hence, there is an instance 𝐼 ∈ ℐ such that

ERand[gain(Rand(𝐼))]
gain(Opt(𝐼)) ≤ 1

𝑐
,

and thus

𝑐 · ERand[gain(Rand(𝐼))] ≤ gain(Opt(𝐼)) .

This concludes the second part of the claim, and thus proves Yao’s principle for
finite maximization problems.

Exercise 2.4. Suppose we can construct ℐ1, ℐ2, . . . as before, and are able to show

max
{︃

EAdv,𝑖[gain(Opt(ℐ𝑖))]
max𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])

,min
𝑗

(︃(︂
EAdv,𝑖

[︂
gain(𝐴𝑗(ℐ𝑖))

gain(Opt(ℐ𝑖))

]︂)︂−1
)︃}︃

≥ 𝑐 ,
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for every 𝑖 ∈ N+. Then it follows that there are instances 𝐼𝑖 ∈ ℐ𝑖 with
gain(Opt(𝐼𝑖))

ERand[gain(Rand(𝐼𝑖))]
≥ 𝑐 .

The remainder of the discussion is analogous to the proof of Theorem 1.3.

Exercise 2.5. Again, for a contradiction, suppose that both conditions (i) and (ii)
are true, but there still is a randomized online algorithm Rand that is (𝑐 − 𝜀)-
competitive in expectation for Π, where 𝜀 > 0. By the same reasoning as in the
proof of Theorem 2.5, we get the counterpart of (2.7) as

EAdv,𝑖[gain(Opt(ℐ𝑖))] ≤ (𝑐− 𝜀) · ERand[EAdv,𝑖[gain(Rand(ℐ𝑖))]] + 𝛼 . (9.1)

Moreover, we easily obtain

max
𝑗

(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) ≥ ERand[EAdv,𝑖[gain(Rand(ℐ𝑖))]] . (9.2)

With (9.1) and (9.2), we get

EAdv,𝑖[gain(Opt(ℐ𝑖))] ≤ (𝑐− 𝜀) · max
𝑗

(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) + 𝛼 ,

which is equivalent to (assuming that the maximum of the expected gain achievable
by any deterministic online algorithm is not zero)

EAdv,𝑖[gain(Opt(ℐ𝑖))]
max𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])

− 𝛼

max𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])
≤ 𝑐− 𝜀 . (9.3)

In the last step, the argument is a little different from that in the proof of
Theorem 2.5. Due to (i), the first term of (9.3) is again at least 𝑐. From (ii), it
follows that the expected optimal gain increases unboundedly as 𝑛 increases; but
this means that also the expected gain of Rand has to increase unboundedly in 𝑛,
since otherwise Rand would not be (𝑐− 𝜀)-competitive (recall that 𝑐 is a constant).
Consequently, also max𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) increases unboundedly. Hence, there
are infinitely many sets of instances such that the second term of (9.3) is smaller
than 𝜀, which is a contradiction.

Exercise 2.6. Again, for a contradiction, suppose that both conditions (i) and (ii)
are true for all randomized online algorithms for Π, and there still is a randomized
online algorithm Rand that is (𝑐− 𝜀)-competitive for Π, where 𝜀 > 0. By the same
reasoning as in the proof of Theorem 2.8, we get the counterpart of (2.11) as

EAdv,𝑖[gain(Opt(ℐ𝑖))] ≤ (𝑐− 𝜀) · ERand[EAdv,𝑖[gain(Rand(ℐ𝑖))]] + 𝛼 . (9.4)

Furthermore, we have

sup
𝑗

(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) ≥ ERand[EAdv,𝑖[gain(Rand(ℐ𝑖))]] . (9.5)
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With (9.4) and (9.5), we get

EAdv,𝑖[gain(Opt(ℐ𝑖))] ≤ (𝑐− 𝜀) · sup
𝑗

(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) + 𝛼 ,

which is equivalent to (assuming that the supremum of the expected gain achievable
by any deterministic online algorithm is not zero)

EAdv,𝑖[gain(Opt(ℐ𝑖))]
sup𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])

− 𝛼

sup𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))])
≤ 𝑐− 𝜀 . (9.6)

Now we can argue similarly to the proof of Theorem 2.8. From (ii), it follows
that there is an infinite increasing sequence 𝑖1, 𝑖2, . . . for which the expected optimal
gain increases unboundedly; but this means that also the expected gain of Rand
must increase unboundedly for this sequence, since otherwise Rand would not be
(𝑐−𝜀)-competitive. Then again, in this case sup𝑗(EAdv,𝑖[gain(𝐴𝑗(ℐ𝑖))]) must increase
unboundedly as well, and thus the second term of (9.6) is smaller than 𝜀 for infinitely
many 𝑖. Hence, for infinitely many 𝑖, we get a contradiction to (i).

Exercise 2.7. Such an instance is given by (𝑝8, 𝑝2, 𝑝3, 𝑝4, 𝑝5). After 𝑝8 is requested,
the cache contents look as follows.

Mark1 : 𝑝8 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark2 : 𝑝1 𝑝8 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝4 𝑝5 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝5 𝑝6 𝑝7

The next requests are all unmarked old pages. First, 𝑝2 is requested and Mark2
evicts 𝑝7 to make sure its cache content is different from all other algorithms in
strat(RMarkBarely).

Mark1 : 𝑝8 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

Mark2 : 𝑝1 𝑝8 𝑝3 𝑝4 𝑝5 𝑝6 𝑝2

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝4 𝑝5 𝑝6 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝5 𝑝6 𝑝7

Then, 𝑝3 and 𝑝4 are requested, and Mark3 and Mark4 remove 𝑝6 and 𝑝5 respectively
to load them.

Mark1 : 𝑝8 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7
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Mark2 : 𝑝1 𝑝8 𝑝3 𝑝4 𝑝5 𝑝6 𝑝2

Mark3 : 𝑝1 𝑝2 𝑝8 𝑝4 𝑝5 𝑝3 𝑝7

Mark4 : 𝑝1 𝑝2 𝑝3 𝑝8 𝑝4 𝑝6 𝑝7

Last, 𝑝5 is requested, and there is no possibility left for Mark4 to replace a page
such that its cache content stays different from all other ones.

Exercise 2.8. Let 𝜀 > 0, and consider a constant 𝑐 < (1 − 𝜀)𝑘. We use the same
argumentation as in the proof of Theorem 2.13, but we need to pay a bit more
attention at some places. Let 𝑛0 and 𝑓 be defined as above, and suppose there is
a randomized online algorithm Rand that has a performance of 𝑐 on instances of
length 𝑛 ≥ 𝑛0 with a probability of 1 − 1/𝑓(𝑛). In other words, there is a constant
𝛼 such that, for every instance 𝐼 of paging with |𝐼| = 𝑛 ≥ 𝑛0, the cost of Rand on
𝐼 is at most 𝑐 · cost(Opt(𝐼)) + 𝛼 with a probability of 1 − 1/𝑓(𝑛).

Now let 𝛽 be the smallest constant with 𝛽 ≥ 𝛼 such that 𝛽/𝜀 is a multiple of 𝑘;
furthermore, let 𝑛′ ≥ 𝑛0 be a natural number that is a large multiple of 𝛽/𝜀 such
that

1
𝑘𝛽/𝜀−1 >

1
𝑓(𝑛′) .

Similarly to the proof of Theorem 2.13, we design a randomized online algorithm
Rand′. For every instance of length 𝛽/𝜀, Rand′ simulates Rand on an instance
of length 𝑛′ by repeating each request 𝑛′/(𝛽/𝜀) times. It follows that Rand′ has a
performance of 𝑐 on inputs of length 𝛽/𝜀 with probability 1 − 1/𝑓(𝑛′).

Now consider an instance 𝐼 ′ of length 𝛽/𝜀 that is constructed the same way as the
instance of length 𝑘 in the proof of Theorem 2.13. Rand′ has cost 𝛽/𝜀 on 𝐼 ′ with a
constant probability of at least 1/𝑘𝛽/𝜀−1. We also know that

cost(Opt(𝐼 ′)) ≤ 𝛽

𝑘𝜀
,

because 𝛽/𝜀 is a multiple of 𝑘 and Opt(𝐼 ′) makes at most one page fault every 𝑘
requests (by the same arguments as in the proof of Theorem 1.5).

This is a contradiction as the performance of Rand′ on 𝐼 ′ can be bounded from
below by

𝛽/𝜀− 𝛼

𝛽/(𝑘𝜀) ≥ 𝛽/𝜀− 𝛽

𝛽/(𝑘𝜀) = (1 − 𝜀)𝑘 > 𝑐

with a probability of at least 1/𝑘𝛽/𝜀−1.

Exercise 2.9. This does not change the asymptotic statement of Theorem 2.14. In
this case, the only difference is that, when bounding the probability that RMark
has a cost that is larger than its expected cost, we use

E[cost(RMark(𝐼))] ≤ 2𝐻𝑘 · cost(Opt(𝐼)) + 𝛼
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instead of (2.28). This gives

Pr[cost(RMark(𝐼)) ≥ (2𝐻𝑘 + 𝜀) · cost(Opt(𝐼))]

≤ Pr
[︂
cost(RMark(𝐼)) ≥ (2𝐻𝑘 + 𝜀) · (E[cost(RMark(𝐼))] − 𝛼)

2𝐻𝑘

]︂
= Pr

[︃
𝑁∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖]) ≥ 𝜀 · (E[cost(RMark(𝐼))] − 𝛼)
2𝐻𝑘

− 𝛼

]︃
.

Now we can again use Hoeffding’s inequality together with the bounds of 𝑎𝑖 and 𝑏𝑖
from (2.27) and the lower bound of 𝑁 for RMark’s expected cost. This yields

Pr
[︃
𝑁∑︁
𝑖=1

(𝐶𝑖 − E[𝐶𝑖]) ≥ 𝜀 · (E[cost(RMark(𝐼))] − 𝛼) − 2𝐻𝑘𝛼

2𝐻𝑘

]︃

≤ exp
(︃

− (𝜀 · (E[cost(RMark(𝐼))] − 𝛼) − 2𝐻𝑘𝛼)2

4𝐻2
𝑘

∑︀𝑁
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︃

≤ exp
(︂

− (𝜀𝑁 − 𝛼(𝜀+ 2𝐻𝑘))2

4𝐻2
𝑘𝑁𝑘

2

)︂
,

which again can be bounded by
1

eΩ(𝑁)

since 𝜀, 𝛼, and 𝑘 are constant.

Exercise 2.10. In this case, we cannot follow similar reasoning to the case when
the parameter 𝑘 was fixed. We show that BreakEven cannot be better than
(2 − 1/𝑘)-competitive. For a contradiction, suppose there are constants 𝜀 > 0 and
𝛼 > 0 such that, for every instance 𝐼 of the ski rental problem, we have

cost(BreakEven(𝐼)) ≤ (1 − 𝜀)
(︂

2 − 1
𝑘

)︂
· cost(Opt(𝐼)) + 𝛼 . (9.7)

Consider the following instance 𝐼 of length 𝑘 + 1. The first request is

𝑘 :=
⌊︂
𝛼+ 𝜀

2𝜀

⌋︂
+ 1 (9.8)

and corresponds to the cost of buying the skis; the subsequent requests are “good.”
From Theorem 2.15, we know that

cost(BreakEven(𝐼)) = 2𝑘 − 1 and cost(Opt(𝐼)) = 𝑘 . (9.9)

Together, (9.7) and (9.9) imply

2𝑘 − 1 ≤ (1 − 𝜀)
(︂

2 − 1
𝑘

)︂
𝑘 + 𝛼 ⇐⇒ 𝑘 ≤ 𝛼+ 𝜀

2𝜀 ,

which is a contradiction to (9.8).
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Exercise 3.1. We give two ideas. One possible alternative is to first encode the
length of 𝑚 in unary with, for instance, a sequence of this many 1s followed by one
0. To save a bit, the 0 can be written at position 𝑚. This is basically the same
approach as the one we followed before; the only difference is that we now write in
front the bits that were previously written at even positions, followed by the bits
that were written at odd positions.

The second idea is to map all strings of length 𝑛 over an alphabet {0, 1,#} to
binary strings of length 2𝑛 by a mapping ℎ. One possible way is to define

ℎ(0) = 00, ℎ(1) = 11, and ℎ(#) = 01 ,
which can be decoded in straightforward fashion, and to use this mapping for encoding
the length of 𝑚; here, # serves as a delimiter.

Exercise 3.2. For ease of presentation, for any 𝑥 ∈ N+, let
𝑓(𝑥) := ⌈log2 𝑥⌉ and 𝑓𝑖(𝑥) := 𝑓(𝑓(. . . 𝑓⏟  ⏞  

𝑖

(𝑥) . . .)) .

To encode a natural number 𝑚, we can simply iterate the procedure we have used
before as suggested by the exercise statement. This leads to an upper bound of

𝑓(𝑚) + 𝑓2(𝑚) + . . .+ 2𝑓𝑘(𝑚)
for 𝑘 iterations.

Of course, the algorithm must know the value of 𝑘 in advance. Moreover, the
leading term stays ⌈log2 𝑚⌉. We see that the number of “reasonable” iterations
depends on the size of 𝑚; for instance, to encode the number 43 as in Example 3.2,
we obtain

1 1 0 0 1 0 1 1 0 1 0 1 0 . . .⏟  ⏞  
2 (self-delim.)

⏟  ⏞  
5

⏟  ⏞  
42

for 𝑘 = 3. The algorithm now first reads the self-delimiting encoding of 2 without
having further information. Then it reads the next three bits and decodes them,
which gives 5. Finally, it reads the next six bits yielding 42. We observe that this
requires more bits than the original approach from Example 3.2.

Exercise 3.3. With three bits, we can encode 23 = 8 different numbers. However,
since one combination is reserved as the delimiter, there only remain seven different
possibilities. Consider an arbitrary string of length 𝑛 that is a multiple of 3. The
first 𝑛 − 3 bits encode information and thus there are 7(𝑛−3)/3 < 1.92𝑛 different
possibilities. Now consider our approach. We need at most 2⌈log2 𝑛⌉ bits to encode
the length of the part of the string that carries the actual information in a self-
delimiting way. Thus, there remain at least 𝑛− 2⌈log2 𝑛⌉ bits to encode the actual
information. Therefore, we have 2𝑛−2⌈log2 𝑛⌉ possibilities in this case. It remains to
verify that

2𝑛−2⌈log2 𝑛⌉ > 1.92𝑛
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holds for 𝑛 tending to infinity. To this end, observe that 𝑛− 2⌈log2 𝑛⌉ is larger than
𝑛− 𝜀𝑛 as 𝑛 tends to infinity, for any 𝜀 > 0, and

2(1−𝜀)𝑛 > 1.92𝑛 ,

which finishes the proof.

Exercise 3.4. The algorithm PLin3 already fulfills this condition if the initialization
is skipped at the beginning. This can cause at most 𝑘 additional page faults, which
can be hidden in the additive constant 𝛼 from Definition 3.2. Since one advice bit is
read for each of the 𝑛 requests, we are done.

Exercise 3.5. In the case that the cache is empty at the beginning, we do not need
to initialize the cache and consequently get an upper bound of 𝑛 on the advice
complexity to compute an optimal solution.

If the caches are initialized differently, however, there is no optimal online algorithm,
not even with advice, since the adversary can always request a page at the beginning
that is only in the cache of Opt but not in that of the algorithm. This causes at
least one page fault the algorithm cannot make up for.

Exercise 3.6. If there are only 𝑘+1 pages in total, then there is an optimal solution
that only makes a page fault in at most every 𝑘th time step; the corresponding
algorithm is the aforementioned offline algorithm Lfd. Let PLin4 be an online
algorithm that reads ⌈log2 𝑘⌉ advice bits whenever it causes a page fault. These
advice bits encode the index of the page Lfd replaces in the cache. For the next
𝑘 − 1 time steps, Lfd does not cause any other page fault. Since the input length 𝑛
is not necessarily a multiple of 𝑘, ⌈log2 𝑘⌉ advice bits must be read at most ⌈𝑛/𝑘⌉
times.

Exercise 3.7. We use the same set ℐ (𝑛) of instances as in the proof of Theorem 3.3,
and construct a partition tree ̂︀𝒯 of ℐ (𝑛) such that its levels roughly correspond to
the phases; an example is shown in Figure 9.2. The root 𝑟 of ̂︀𝒯 is labeled by ℐ (𝑛)

and 1 (since the same page 𝑝1 is requested initially and is therefore the common
prefix of all instances), according to condition (iii) of Definition 3.3. ̂︀𝒯 is 𝑘-ary;
the 𝑘 children of 𝑟 correspond to the 𝑘 different possibilities to choose the page
𝑝′

1 that is not requested during 𝑃1. We denote the corresponding children of 𝑟 by
𝑣1,1, 𝑣1,2, . . . , 𝑣1,𝑘, and the corresponding sets are therefore ℐ (𝑛)

1,1, ℐ
(𝑛)
1,2, . . . , ℐ

(𝑛)
1,𝑘. The

sets clearly partition ℐ (𝑛), and all instances in one set have the same prefix of length
𝑘 + 1 (𝑝1 followed by the same 𝑘 − 1 pages that were initially in the cache and the
second new page 𝑝2). Thus, we can define 𝜌𝑣1,1 = 𝜌𝑣1,2 = . . . = 𝜌𝑣1,𝑘

:= 𝑘 + 1. We
can continue in this fashion to describe the vertices 𝑣2,1, 𝑣2,2, . . . , 𝑣2,𝑘2 on the next
level. The instances that correspond to these vertices all start with the first 𝑘 + 1
requests of their parent; then, all instances belonging to the same vertex request the
same 𝑘 − 1 pages that are in the optimal cache at the beginning of this phase and
the third new page 𝑝3. Therefore, we have 𝜌𝑣2,1 = 𝜌𝑣2,2 = . . . = 𝜌𝑣2,𝑘2 := 2𝑘+ 1, and
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ℐ(𝑛), 1
𝑟

ℐ(𝑛)
1,1, 𝑘 + 1𝑣1,1

...

ℐ(𝑛)
1,2, 𝑘 + 1𝑣1,2

...

ℐ(𝑛)
1,𝑘
, 𝑘 + 1𝑣1,𝑘

...

ℐ(𝑛)
2,1, 2𝑘 + 1𝑣2,1

...

ℐ(𝑛)

2,𝑘2 , 2𝑘 + 1𝑣2,𝑘2

...

. . .

. . . . . .

Figure 9.2. The partition tree constructed in the solution of Exercise 3.7.

so on. It follows that (i) and (ii) of Definition 3.3 are also satisfied. The leaves of ̂︀𝒯
are labeled by (sets of) single instances and 𝑛.

Now consider any two vertices 𝑣1 and 𝑣2, neither one being an ancestor of the
other and with lowest common ancestor 𝑣. This means that both instances have the
same common prefix of length 𝜌𝑣. The last request of this prefix was a request for a
page that was never requested before. Since 𝑣1 and 𝑣2 are in two different subtrees of
𝑣, there were two different pages that needed to be replaced by this page in order to
compute an optimal solution. Therefore, [𝑂1]𝜌𝑣

and [𝑂2]𝜌𝑣
must be different, which

shows that the condition of Lemma 3.1 is satisfied.
Since there are 𝑛/𝑘 phases, ̂︀𝒯 has a height of 𝑛/𝑘. With this and the fact that ̂︀𝒯

is 𝑘-ary, we get 𝑤 = 𝑘𝑛/𝑘 for the number 𝑤 of leaves of ̂︀𝒯 . As a result, Theorem 3.1
implies the claimed lower bound.

Exercise 3.8. In this case, the single deterministic strategies are not necessarily
all chosen with the same probability. In the proof of Theorem 3.7, we were able to
bound

1
2𝑏(𝑛)

2𝑏(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗 = E[cost(Rand(𝐼𝑖))] − 𝛼

cost(Opt(𝐼𝑖))

by summing over all columns of a fixed row.
An analogous computation is not possible in this case, because the different

columns of the new (𝜇(𝑛)×ℓ(𝑛))-matrix ℳ′ are not all equally likely. Consequently,

1
ℓ(𝑛)

ℓ(𝑛)∑︁
𝑖=1

𝑐𝑖,𝑗 =

∑︀ℓ(𝑛)
𝑗=1

(︁
1
ℓ(𝑛) · cost(𝐴𝑗(𝐼𝑖)) − 𝛼

)︁
cost(Opt(𝐼𝑖))

̸=
∑︀ℓ(𝑛)
𝑗=1 (Pr[𝐴𝑗 ] · cost(𝐴𝑗(𝐼𝑖)) − 𝛼)

cost(Opt(𝐼𝑖))
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= E[cost(Rand(𝐼𝑖))] − 𝛼

cost(Opt(𝐼𝑖))
in general.

Exercise 4.1. Let 𝐺 be an arbitrary graph with edge weights of 1 and 2 only. If 𝐺
has only one or two vertices, the claim follows trivially. So let there be at least three
vertices. For any two vertices 𝑝1 and 𝑝2 we have dist(𝑝1, 𝑝2) ≤ 2 by the definition
of 𝐺. No path via any vertex 𝑝3 can be cheaper since, also by definition, both
dist(𝑝1, 𝑝3) ≥ 1 and dist(𝑝3, 𝑝2) ≥ 1. As a result, the triangle inequality holds for
every such graph.

Exercise 4.2. Let Alg be some non-lazy online algorithm for 𝑘-server. We construct
a lazy online Alg′ as follows. For an input of length 𝑛, a solution of Alg can be
represented by a sequence (𝑆1, 𝑆2, . . . , 𝑆𝑛), where 𝑆𝑖 with 1 ≤ 𝑖 ≤ 𝑛 is a set of pairs
(𝑗, 𝑝𝑖,𝑗) with 1 ≤ 𝑗 ≤ 𝑘. Each such pair corresponds to the index of a server and
a point to which this server is moved in the 𝑖th time step. If a server is already
positioned on the requested point in time step 𝑇𝑖, the corresponding pair is contained
in 𝑆𝑖 as well.

The output of Alg′ is a sequence of 𝑛 server indices; if a server is already positioned
on the requested point, the corresponding index is also part of this sequence. Alg′

now simulates Alg as follows. For every request 𝑥𝑖, Alg′ outputs an index from
a pair from 𝑆𝑖 such that the corresponding server is moved to 𝑥𝑖 and the cost is
minimized. Obviously, such a pair must always exist. Therefore, Alg′ is consistent
for 𝑘-server as a direct consequence of the consistency of Alg.

Now we argue why the cost of Alg′ cannot be larger than that of Alg. The two
algorithms start with their servers at the same positions. If we consider a fixed server
𝑠𝑗 with 1 ≤ 𝑗 ≤ 𝑘, we see that the sum of the distances that this server travels in
the solution of Alg′ cannot be larger than in that of Alg. This follows from the
fact that 𝑠𝑗 is positioned successively at points at which it is also positioned by Alg
in the same order. However, Alg may also move 𝑠𝑗 to other points in between; due
to the triangle inequality, this cannot lead to a smaller cost.

Exercise 4.3. In principle, a similar argumentation as in the solution of Exercise 4.2
would be possible. However, there is a difference when it comes to the complexity of
the algorithm since the triangle inequality does not hold anymore. More specifically,
suppose that Alg uses a server 𝑠𝑗 with 1 ≤ 𝑗 ≤ 𝑘 in some time step to answer a
request, and Alg′ also wants to use 𝑠𝑗 , but it is located at some other point. In this
case, Alg′ must either make sure that 𝑠𝑗 moves exactly the same way as this server
moved in Alg’s solution so far, or it must compute the shortest way to the new
position. As a consequence, Alg′ may use a lot more memory than in Exercise 4.2,
or its time complexity is a lot worse.

Exercise 4.4. A first attempt to improve the bound is to set dist(𝑝1, 𝑝2) to 1 + 𝜀
instead of 2 for a given 𝜀 > 0. Using the same construction of an instance as in the
proof of Theorem 4.2, this gives a bound of 𝑛/(1 + 𝜀).
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A further improvement, however, is not possible. Of course, we could simply set
dist(𝑝1, 𝑝2) = 1; after the first request, KSGreedy again has to choose some server
to move to 𝑝2. Since the adversary knows which server KSGreedy uses in such
a case, it can now request that server’s previous position to force KSGreedy to
move another server. Without loss of generality, assume KSGreedy first uses 𝑠2,
which is then positioned on 𝑝3 after the second time step 𝑇2. Next, the adversary
requests 𝑝2 again, but this time KSGreedy might use 𝑠1, which also corresponds
to a greedy move. Now the adversary must request 𝑝1 in order to make KSGreedy
move another server. This again leads to 𝑠1 and 𝑠2 being positioned on 𝑝1 and 𝑝3
as at the beginning. In total, the algorithm paid 4 so far, but Opt also had to
pay 2. In general, all three vertices are requested every four requests if KSGreedy
always uses the two servers alternatingly to serve requests in which it may choose
between them. Since there are only two servers, Opt also has to move at least one
server every four requests. Thus, in this case, the competitive ratio of KSGreedy
is constant (it is at most 4).

Exercise 4.5. Let ℳ be any metric space with at least 𝑘+1 points 𝑝1, 𝑝2, . . . , 𝑝𝑘+1,
and let the initial positions of the servers be 𝑝1, 𝑝2, . . . , 𝑝𝑘. Moreover, the servers
of an optimal algorithm are positioned on the points 𝑝1, 𝑝2, . . . , 𝑝ℎ. Let Alg be
any deterministic online algorithm for (ℎ, 𝑘)-server. Following the hint from the
exercise statement, we consider inputs 𝐼 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) where the adversary
always requests exactly the one point not covered by Alg in every time step.

Now we again consider a set of different algorithms with ℎ servers each that work
as follows. Every algorithm begins with a couple of non-greedy moves before the
first request is processed. This time, every such algorithm moves one server to 𝑝𝑘+1;
additionally, every algorithm covers a unique set of ℎ− 1 points from the remaining
𝑘 points. Thus, there are(︂

𝑘

ℎ− 1

)︂
such algorithms in total. If some algorithm Alg𝑗 with 1 ≤ 𝑗 ≤

(︀
𝑘
ℎ−1

)︀
does not

cover some requested point 𝑥𝑖, Alg𝑗 moves the server located at 𝑥𝑖−1 to serve 𝑥𝑖.
Similarly to the proof of Theorem 4.4, we are now going to show that, after the
first moves in 𝑇1, there are never two algorithms with the same 𝑘 + 1 − ℎ uncovered
points. The proof is again done by induction.

Base Case. The claim holds by construction after the first time step.
Induction Hypothesis. The claim holds for 𝑇𝑖−1.
Induction Step. Let us consider any two algorithms Alg𝑗′ and Alg𝑗′′ in some time

step 𝑇𝑖 with 𝑖 ≥ 2. We can do a case distinction as in the proof of Theorem 4.4.
The two cases that 𝑥𝑖 is covered by both algorithms or only by one can be handled
completely analogously. However, we need to take care of one additional case if
ℎ < 𝑘.
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Case 3. If both algorithms do not have a server placed on 𝑥𝑖, they both move
the server placed at 𝑥𝑖−1. As a consequence of the induction hypothesis, the
algorithms covered different sets of points before; thus this identical movement
leads to two different sets of covered points.

We conclude that all algorithms cover different sets of points. Now we need to
compute how many of the above algorithms have the point 𝑥𝑖 uncovered in time
step 𝑇𝑖 for 𝑖 ≥ 2. In time step 𝑇𝑖−1, the point 𝑥𝑖−1 was requested; thus, every
algorithm has a server placed on 𝑥𝑖−1 at the beginning of 𝑇𝑖. Therefore, the number
of algorithms that have no server placed on 𝑥𝑖 at the beginning of 𝑇𝑖 is equal to the
number of possibilities to place ℎ− 1 servers on the 𝑘 − 1 points that are neither 𝑥𝑖
nor 𝑥𝑖−1, which means that there are at most(︂

𝑘 − 1
ℎ− 1

)︂
algorithms that move a server from 𝑥𝑖−1 to 𝑥𝑖. For ease of presentation, let us denote
the sum of the distances that all algorithms move the serves at the beginning of 𝑇1
by 𝛽; clearly, 𝛽 is constant with respect to 𝑛. With a calculation similar to the one
in the proof of Theorem 4.4, we get

( 𝑘
ℎ−1)∑︁
𝑗=1

cost(Alg𝑗(𝐼)) = 𝛽 +
(︂
𝑘 − 1
ℎ− 1

)︂
·
𝑛∑︁
𝑖=2

dist(𝑥𝑖−1, 𝑥𝑖)

≤ 𝛽 +
(︂
𝑘 − 1
ℎ− 1

)︂
· cost(Alg(𝐼)) .

The average cost of an algorithm is thus at most(︂
𝛽 +

(︂
𝑘 − 1
ℎ− 1

)︂
· cost(Alg(𝐼))

)︂⧸︂(︂
𝑘

ℎ− 1

)︂
= (𝑘 − 1)!

(ℎ− 1)!(𝑘 − ℎ)! · (ℎ− 1)!(𝑘 − ℎ+ 1)!
𝑘! · cost(Alg(𝐼)) + 𝛽

⧸︂(︂
𝑘

ℎ− 1

)︂
= 𝑘 − ℎ+ 1

𝑘
· cost(Alg(𝐼)) + 𝛽

⧸︂(︂
𝑘

ℎ− 1

)︂
.

The remainder of the proof can be done analogously to the proof of Theorem 4.4.

Exercise 4.6. No, it does not, as it does not help for paging. In fact, we can follow
the same strategy as described in Subsection 1.6.1 for paging in the obvious way.
Instead of once, every point is requested ℓ+ 1 times. The request sequence is thus
given by

(𝑝𝑘+1, 𝑝𝑘+1, . . . , 𝑝𝑘+1⏟  ⏞  
ℓ requests

, 𝑝𝑖, 𝑝𝑖, . . . , 𝑝𝑖⏟  ⏞  
ℓ requests

, . . .)

This way, no online algorithm can be better than 𝑘-competitive.
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Exercise 4.7. There are 𝑚 pages in total, and the cache has a size of 𝑘. As we
have defined paging, the cache cannot be empty. By an easy counting argument, we
get that there are

𝑚 · (𝑚− 1) · . . . · (𝑚− 𝑘 + 1)

possible configurations. For 𝑘-server, we basically get the same number, where 𝑘
and 𝑚 are the number of servers and points of the metric space, respectively; but
here, we also need to mention the case 𝑚 = ∞, in which there is an infinite number
of configurations.

Exercise 4.8. It is easy to change the definition and verify that a slight adaptation
of the proof of Theorem 4.5 works; recall that Φ(𝑥0) = 𝛽, for some 𝛽 ∈ R. So
suppose we are dealing with an online minimization problem Π, but instead of (i)
from Theorem 4.5, we have

(i) there is a constant 𝛾 ∈ R+ such that Φ(𝑥𝑖) ≥ −𝛾, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.

For a given online algorithm Alg, the same calculation as above gives

cost(Alg(𝐼)) =
𝑛∑︁
𝑖=1

cost(Alg(𝑥𝑖))

= Φ(𝑥0) − Φ(𝑥𝑛) + 𝑐 · cost(Opt(𝐼))
≤ 𝑐 · cost(Opt(𝐼)) + 𝛽 + 𝛾 ,

and therefore Alg is 𝑐-competitive, where we set 𝛼 := 𝛽+𝛾 for the additive constant
𝛼 of Definition 1.6.

Exercise 4.9. Again, we only need to make some slight modifications. Both the
real cost and the amortized cost are random variables with respect to the random
decisions made by the given randomized online algorithm Rand. Then, we define
the potential function Φ analogously to the deterministic case. Recall that, for
a randomized online algorithm for an online minimization problem, we compute
(bounds on) the expected cost on a given instance. We also study both the expected
real cost and the expected amortized cost on single requests. We replace the two
conditions of Theorem 4.5 with

(i) E[Φ(𝑥𝑖)] ≥ 0, for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛, and
(ii) E[amcost(Rand(𝑥𝑖))] ≤ 𝑐 · cost(Opt(𝑥𝑖)), for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛.

Note that again Φ(𝑥0) = 𝛽 for some 𝛽 ∈ R; since the initial configurations do not
depend on any random decision of Alg, we have E[Φ(𝑥0)] = Φ(𝑥0). We obtain

E[cost(Rand(𝐼))] = E

[︃
𝑛∑︁
𝑖=1

cost(Rand(𝑥𝑖))
]︃
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𝑠𝑠left 𝑠right

(a) Matching 𝑠 with 𝑠right

𝑠𝑠left 𝑠right

(b) Matching 𝑠 with 𝑠left

Figure 9.3. Two different matchings for the same configurations as described in the
solution of Exercise 4.10; again, the servers of Opt are filled squares, those of DCov are
not filled.

=
𝑛∑︁
𝑖=1

(E[amcost(Rand(𝑥𝑖))] + E[Φ(𝑥𝑖−1)] − E[Φ(𝑥𝑖)])

(due to linearity of expectation)

= E[Φ(𝑥0)] − E[Φ(𝑥𝑛)] +
𝑛∑︁
𝑖=1

E[amcost(Rand(𝑥𝑖))]

≤ Φ(𝑥0) + 𝑐 · cost(Opt(𝐼))
(due to the new conditions (i) and (ii))

≤ 𝑐 · cost(Opt(𝐼)) + 𝛽 ,

which proves that Rand is 𝑐-competitive in expectation.
Note that we can easily modify Φ to prove that Rand is strictly 𝑐-competitive

similarly to Corollary 4.1; also, we can extend the notion of potential functions for
randomized online algorithms to work for negative values of the potential similarly
to Exercise 4.8.

Exercise 4.10. Consider two configurations as shown in Figure 9.3 after Opt made
its move. There are two servers 𝑠left and 𝑠right next to 𝑠. Note that 𝑠left is actually
closer to 𝑠 than 𝑠right. All other distances between two consecutive servers are equal.
A minimum-weight matching matches 𝑠 and 𝑠right as shown in Figure 9.3a. If it is
required that we match 𝑠 with 𝑠left, this must lead to a more expensive matching.
The reason is that there are more servers of Opt left of 𝑠left than there are servers of
DCov. Conversely, there are more servers of DCov right of 𝑠 than there are servers
of Opt. Consequently, one of the servers of Opt left of 𝑠left must be matched to one
of the servers of DCov right of 𝑠. It is easy to see that a minimum-weight matching
under the above condition is the one shown in Figure 9.3b, which is more expensive
than that in Figure 9.3a.
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Exercise 4.11. Let 𝐶 = 𝐶Lru ∖𝐶Opt and Φ be defined as in the exercise statement.
First, we observe that the potential is never negative, that is,

Φ(𝐶Lru, 𝐶Opt) ≥ 0 ,

and thus condition (i) of Theorem 4.5 is satisfied.
Now consider any time step 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛. We again suppose Opt first serves

the request 𝑥𝑖. We start with a case distinction depending on whether Opt causes a
page fault on 𝑥𝑖; then, we analyze the two analogous cases for Lru.

Case 1. If Opt does not cause a page fault in 𝑇𝑖, 𝐶Opt and thus 𝐶 do not change.
The potential therefore also stays the same.

Case 2. Suppose Opt causes a page fault. If it replaces a page that is not in 𝐶Lru,
the potential again does not change. Conversely, if the replaced page is also in
𝐶Lru, the potential can increase by at most 𝑘 · cost(Opt(𝑥𝑖)) since 𝑘 is the largest
value assigned by 𝑤 and cost(Opt(𝑥𝑖)) = 1.

Now we make another case distinction in order to bound the change in potential
in 𝑇𝑖 that is a consequence of Lru’s actions.

Case 1. If Lru does not cause a page fault, then 𝐶Lru and 𝐶 do not change, and
neither does the potential.

Case 2. The interesting case is when Lru causes a page fault. Since Opt already
served the request 𝑥𝑖, the requested page 𝑝 = 𝑥𝑖 is already in Opt’s cache, but
not in that of Lru. Note that there must be a page 𝑝′ that is in Lru’s cache,
but not in that of Opt, that is, 𝑝′ ∈ 𝐶. If Lru replaces 𝑝′ with 𝑝, then, after
serving 𝑥𝑖, the size of 𝐶 is decreased by 1, and thus Φ is decreased by 𝑤(𝑝′) ≥ 1.
Conversely, if Lru replaces a page that is different from 𝑝′, then 𝑤(𝑝′) decreases
by 1 since the page 𝑝 is loaded into the cache. Thus, the potential decreases by at
least cost(Lru(𝑥𝑖)) due to Lru.

It follows that

Φ(𝑥𝑖) − Φ(𝑥𝑖−1) ≤ 𝑘 · cost(Opt(𝑥𝑖)) − cost(Lru(𝑥𝑖)) ,

and hence (ii) of Theorem 4.5 is also satisfied; as a consequence, Lru is 𝑘-competitive.
Note that, since both algorithms start with the same cache content, we have

Φ(𝑥0) = 0. Together with Corollary 4.1, it therefore immediately follows that Lru is
even strictly 𝑘-competitive.

Exercise 4.12. Suppose we are given any weighted tree, where the weights are
positive integers. An online algorithm DCovT′ for such metric spaces works as
follows. For any edge {𝑝1, 𝑝2} with a weight dist(𝑝1, 𝑝2) larger than 1, DCovT′

inserts dist(𝑝1, 𝑝2) − 1 vertices between 𝑝1 and 𝑝2 such that these two vertices are
now connected by a path of length dist(𝑝1, 𝑝2). After that, all weights are removed
from the tree and DCovT′ simulates DCovT on the constructed tree. DCovT′
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𝑝𝑎𝑝𝑐
𝑥 · 𝑑 (1 − 𝑥) · 𝑑

𝑝𝑑

𝛽

ℎ

𝑎
𝑐

Figure 9.4. The triangle defined by 𝑝𝑎, 𝑝𝑐, and 𝑝𝑑 used in the solution of Exercise 4.13.

keeps track of all the server positions of DCovT. If DCovT positions a server 𝑠 at
a vertex that does not exist in the weighted tree, DCovT′ keeps 𝑠 at its original
position. If, on the other hand, 𝑠 is moved to a vertex in the unweighted tree that
corresponds to a vertex in the weighted tree, DCovT′ moves 𝑠 to this vertex. Clearly,
DCovT′ is also 𝑘-competitive.

Exercise 4.13. Consider the triangle defined by 𝑝𝑎, 𝑝𝑐, and 𝑝𝑑 as depicted in
Figure 9.4. Let ℎ denote the altitude of the triangle that divides 𝑑 into two parts of
length 𝑥𝑑 and (1 − 𝑥)𝑑, for some 𝑥 with 0 ≤ 𝑥 ≤ 1, which results in two new right
triangles. Easily, 𝑥𝑑 = 𝑎 cos𝛽 and, from 𝑐2 = ℎ2 + (1 − 𝑥)2𝑑2 and 𝑎2 = ℎ2 + 𝑥2𝑑2,
we get 𝑐2 − 𝑎2 = 𝑑2(1 − 2𝑥), which implies

𝑐2 − 𝑎2

𝑑2 = 1 − 2
(︂
𝑎 cos𝛽
𝑑

)︂
,

and thus
𝑐2 = 𝑎2 + 𝑑2 − 2𝑎𝑑 cos𝛽 ,

which proves the law.

Exercise 4.14. From the Pythagorean trigonometric identity, we know that

(sin𝜓)2 + (cos𝜓)2 = 1 . (9.10)

Together with the addition theorem from the hint of the exercise statement, we
therefore obtain

cos(2𝜓) = (cos𝜓)2 − (sin𝜓)2 = 1 − 2(sin𝜓)2

as claimed.

Exercise 5.1. Let Alg be any online algorithm for JSS and suppose Alg makes
ℎAlg horizontal, 𝑣Alg vertical, and 𝑑Alg diagonal moves on some given instance 𝐼.
Thus, by Observation 5.1(iv), the delay of this schedule is ℎAlg = 𝑣Alg. The sum
of 𝑑Alg and ℎAlg must be exactly 𝑚, because otherwise this solution would “leave
the grid” on the right-hand side. As a result, cost(Alg(𝐼)) = 𝑑Alg + ℎAlg + 𝑣Alg =
𝑚+ 𝑣Alg.
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Figure 9.5. The instance from Exercise 5.3 together with an optimal solution.

Exercise 5.2. We relabel 𝜋𝐴 to be the identity and obtain

𝜋𝐴 = ( 1 , 2, 3 , 4 , 5 , 6 , 7, 8 , 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20) ,
𝜋𝐵 = (13, 3, 10, 18, 14, 17, 6, 11, 2, 12, 8 , 7 , 15, 5 , 19, 9 , 20, 4 , 1 , 16)

as a result.

Exercise 5.3. At first sight, it may seem that an optimal solution for the given
instance has to make many delays since there are many positions where the two
permutations are equal. However, if we take a closer look, we see that one delay is
sufficient to schedule each task of each job, that is, we get an optimal solution

ScheduleOpt(𝜋𝐴) = (1, 2, 3, 4, 5, 6, , 7, 8, 9 , 10, 11, 12, 13, 14, 15) ,
ScheduleOpt(𝜋𝐵) = ( , 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6 ) .

Indeed, the optimality of this schedule is immediate since there is a collision in the
first time step, which means that no solution can have a cost smaller than 𝑚+ 1.
Both the instance and the described optimal solution are depicted in Figure 9.5.

Exercise 5.4. Let 𝐼 be an instance of JSS such that there is an online algorithm
Alg with delay 𝑑 that makes at least one non-diagonal move without directly facing
an obstacle in the current time step or having arrived at the border of the grid; we
call such a move an “unambitious move.”

We show how we can iteratively modify Alg to an ambitious online algorithm
without increasing the delay. Consider the last unambitious move of Alg. Without
loss of generality, let this move be horizontal. We change this move to a diagonal one;
all following moves are also diagonal until an obstacle or the border is hit. In the
former case, the obstacle is evaded by a horizontal move. After that, the new online
algorithm continues as Alg does. We call this algorithm Alg′. We distinguish four
cases on the subsequent moves of Alg′.
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Case 1. If Alg′ arrives at the lower right-hand corner without hitting any obstacle
or border, its cost on 𝐼 is smaller than that of Alg, because instead of making an
unnecessary horizontal move, it followed the main diagonal without encountering
any obstacle.

Case 2. If Alg′ hits the right border without encountering another obstacle before-
hand, the cost of Alg′ on 𝐼 is again smaller than that of Alg.

Case 3. If Alg′ hits the bottom border, then the cost of Alg′ does not increase
compared to that of Alg (note that, in this case, we cannot assume that the cost
decreases; for instance, if the last two moves of Alg before hitting the border were
horizontal and diagonal, the corresponding moves of Alg′ are now diagonal and
horizontal, which does not change the cost).

Case 4. If Alg′ hits an obstacle, the cost does not increase. After the horizontal
move of Alg′, both algorithms act identically.

As a result, we modified Alg such that it makes one fewer unambitious move
without increasing its cost. If the modified algorithm Alg′ still makes some unam-
bitious moves, we can obviously change it to an online algorithm Alg′′ using the
same approach. Again, the cost does not increase. This procedure is iterated until
we finally get an ambitious online algorithm that has a delay of at most 𝑑.

Exercise 5.5. Let Alg be a deterministic online algorithm (that is, a strategy) from
𝒟2⌈

√
𝑚 ⌉+1, that is, Alg follows a fixed diagonal diag𝑖, for some 𝑖 with −⌈

√
𝑚 ⌉ ≤

𝑖 ≤ ⌈
√
𝑚 ⌉. The adversary simply blocks the whole diagonal diag𝑖. Thus, Alg does

not make any diagonal move at all. At first, it makes a (possibly empty) number
of non-diagonal moves to its starting position, then it encounters an obstacle in
every time step and bypasses it with two non-diagonal moves, and finally it makes
non-diagonal moves to get to the lower right-hand corner of the grid. This way, the
cost of Alg is always 2𝑚. To bound the cost of an optimal solution, we distinguish
two cases depending on the diagonal Alg chooses.

Case 1. If Alg uses the main diagonal diag0, there is an optimal solution that has
cost 𝑚+ 1 by making a horizontal move at the beginning, a vertical move at the
end, and only diagonal moves in between.

Case 2. If Alg chooses any other diagonal, the adversary places all obstacles that
are not used to block diag𝑖 on diag−𝑖. In this case, diag0 does not contain any
obstacle, and an optimal solution even has cost 𝑚.

Consequently, the competitive ratio of Alg is at least 2𝑚/(𝑚 + 1), which is in
essence as bad as it gets.

Exercise 5.6. In this case, the adversary needs to block two diagonals instead of
one. With the same ideas as in the proof of Theorem 5.4, this results in a situation
where the adversary can make sure that every second move of Alg is non-diagonal.
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However, if Alg chooses the diagonal diag𝑖 for any 𝑖 ̸= 0, it even makes a non-
diagonal move in each of the first and last 𝑖 time steps. Thus, a best strategy Alg can
choose in this case is to follow diag0, which results in the online algorithm MDiag.
We know from Theorems 5.5 and 5.6 that this algorithm achieves a competitive ratio
that is best possible.

Exercise 5.7. Let 𝑚𝐴 denote the number of machines the first job uses, and let 𝑚𝐵

be the number of machines used by 𝐵; without loss of generality, assume 𝑚𝐴 = 2𝑚𝐵 .
The total number of machines is 𝑚 = 𝑚𝐴 and 𝐵 uses half of them; it is not necessary
to know in advance which ones. If we think about the graphical representation of
instances of this modified version of JSS, we see that they contain twice as many
columns as they contain rows.

Now consider an online algorithm Alg that simply evades every obstacle it hits
with a horizontal move. As in the proof of Theorem 5.6, we note that at least every
second move of Alg is diagonal. As a consequence, Alg hits the right border after
𝑚𝐴 moves, that is, after 𝑚𝐴 time steps. Note that 𝑚𝐴 is even, thus the number of
diagonal moves so far is at least as large as the number of horizontal moves, and
thus it immediately follows that the algorithm arrives at the lower right-hand corner
of the grid.

The overall cost of Alg is therefore 𝑚𝐴. Since every solution needs to make at
least 𝑚𝐴 moves in total, it follows that Alg is optimal.

Exercise 5.8. There are 22⌈
√
𝑚 ⌉ possible binary strings of length 2⌈

√
𝑚 ⌉ out of

which the oracle provides one to the online algorithm, thus using at most 2⌈
√
𝑚 ⌉

bits in the proof of Theorem 5.11. The crucial part is that all of these strings have a
very nice structural property, as noted in the hint of the exercise statement; due to
Observation 5.1(iv), they contain as many ones as they contain zeros. If the solution
can be represented by a shorter string, we just append zeros and ones alternatingly
to obtain a string of length 2⌈

√
𝑚 ⌉ that still has this property. Recall that the

algorithm knows 𝑚 and therefore ⌈
√
𝑚 ⌉. It immediately follows that, for a fixed 𝑚,

there exist(︂
2⌈

√
𝑚 ⌉

⌈
√
𝑚 ⌉

)︂
<

4⌈
√
𝑚 ⌉√︀

𝜋⌈
√
𝑚 ⌉

such strings. Enumerating all possible strings in canonical order and then merely
communicating the index of the string representing the instance at hand gives that
it suffices to use

log2

(︃
4⌈

√
𝑚 ⌉√︀

𝜋⌈
√
𝑚 ⌉

)︃
= ⌈

√
𝑚 ⌉ · log2 4 − log2

(︂√︁
𝜋⌈

√
𝑚 ⌉

)︂
≤ 2⌈

√
𝑚 ⌉ − 1

4 log2 𝑚

bits of advice.
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Exercise 5.9. Let 𝑑 be an odd constant, and let 𝛾 := 𝑑2/4 − 𝑑; note that 𝛾 > −1.
As we have seen in Observation 5.1(iii), there are exactly 𝑚 obstacles in the whole
grid that represents the instance at hand. For a contradiction, suppose that each of
the considered strategies has a cost of at least 𝑚+ ⌈(𝛾+𝑚)/𝑑⌉ + 1. This means that
at least ⌈(𝛾 +𝑚)/𝑑⌉ + 1 obstacles are on the main diagonal, at least ⌈(𝛾 +𝑚)/𝑑⌉
obstacles are on diag−1 and diag1, in general, at least⌈︂

𝛾 +𝑚

𝑑

⌉︂
+ 1 − 𝑖

obstacles have to be on diag−𝑖 and diag𝑖, and finally⌈︂
𝛾 +𝑚

𝑑

⌉︂
− 𝑑− 3

2
obstacles are on diag−(𝑑−1)/2 and diag(𝑑−1)/2. Hence, we get a total of

⌈︂
𝛾 +𝑚

𝑑

⌉︂
+ 1 + 2

(𝑑−1)/2∑︁
𝑖=1

(︂⌈︂
𝛾 +𝑚

𝑑

⌉︂
+ 1 − 𝑖

)︂

≥ 𝛾 +𝑚

𝑑
+ 1 +

(︂
𝛾 +𝑚

𝑑
+ 1

)︂
(𝑑− 1) − 2

(𝑑−1)/2∑︁
𝑖=1

𝑖

=
(︂
𝛾 +𝑚

𝑑
+ 1

)︂
𝑑− 𝑑2 − 1

4

= 𝑚+ 𝑑+ 𝑑2

4 − 𝑑− 𝑑2 − 1
4

= 𝑚+ 1
4

obstacles, which is strictly more than 𝑚 and thus contradicts our assumption.

Exercise 5.10. Let ADiag𝑑 know 𝑑 and read ⌈log2 𝑑⌉ bits in total that tell the
algorithm which of the diagonal strategies from 𝒟𝑑 to follow. As we have shown
in Exercise 5.9, one of these strategies has a delay of at most ⌈(𝛾 + 𝑚)/𝑑⌉, for
𝛾 = 𝑑2/4 − 𝑑. Note that if the optimal solution has cost 𝑚, this solution must take
the main diagonal. But in this case, ADiag𝑑 is always optimal, because there are
no obstacles on diag0 and the corresponding delay is therefore 0. Hence, without
loss of generality, we may assume a lower bound of 𝑚+ 1 on the cost of the optimal
solution. To conclude from the above, we get a competitive ratio of ADiag𝑑 of at
most

𝑚+
⌈︁
𝑑2/4−𝑑+𝑚

𝑑

⌉︁
𝑚+ 1 ≤

𝑚+ 𝑑2/4−𝑑+𝑚
𝑑 + 1

𝑚+ 1

=
𝑚+ 𝑚

𝑑 + 𝑑
4

𝑚+ 1
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= 1 + 1
𝑑

+ 𝑑

4(𝑚+ 1) − 𝑑+ 1
𝑑(𝑚+ 1)

as we claimed.

Exercise 5.11. Let 𝑚 and 𝑙 be even. We now describe how to sufficiently delay
every possible diagonal strategy. Suppose we want to make sure that every strategy
has a delay of at least 𝑙. At first, we place 𝑙 obstacles in the center of the main
diagonal, that is, in the cells (𝑚/2 − 𝑙/2 + 1,𝑚/2 − 𝑙/2 + 1) to (𝑚/2 + 𝑙/2,𝑚/2 + 𝑙/2).
For now, let us focus on the cells that are in the lower right-hand quadrant of the
(𝑚 × 𝑚)-grid. For each 𝑖 with 1 ≤ 𝑖 ≤ (𝑑 − 1)/2, we create one block of obstacles.
Block 𝑖 consists of 𝑙 − 𝑖 obstacles. All of these obstacles are put on the 𝑖th diagonal
above the main one (that is, diag𝑖), in consecutive rows, just below the rows used by
block 𝑖− 1. In particular, the obstacles of block 1 are located in the cells(︂

𝑚+ 𝑙

2 + 2, 𝑚+ 𝑙

2 + 1
)︂
, . . . ,

(︂
𝑚+ 𝑙

2 + 𝑙,
𝑚+ 𝑙

2 + 𝑙 − 1
)︂
,

the obstacles of block 2 are located in the cells(︂
𝑚+ 𝑙

2 + 𝑙 + 2, 𝑚+ 𝑙

2 + 𝑙

)︂
, . . . ,

(︂
𝑚+ 𝑙

2 + 2𝑙 − 1, 𝑚+ 𝑙

2 + 2𝑙 − 3
)︂
,

etc. Hence, we need to use 𝑙 − 𝑖 rows and 𝑙 − 𝑖 + 1 columns to build block 𝑖 (the
first column of the block is empty since block 𝑖 is on a different diagonal than block
𝑖− 1).

To be able to successfully build all of the blocks, we need at least

𝑙

2 + 1 + (𝑙 − 1) + 1 + (𝑙 − 2) + . . .+ 1 +
(︂
𝑙 − 𝑑− 1

2

)︂
columns. Clearly, if there are enough columns available, there are enough rows
available as well. Since we have exactly 𝑚/2 columns, we have to make sure that

𝑚

2 ≥ 𝑙

2 +
(𝑑−1)/2∑︁
𝑖=1

(1 + 𝑙 − 𝑖)

⇐⇒ 𝑚

2 ≥ 𝑙

2 + 𝑑− 1
2 (1 + 𝑙) − 𝑑2 − 1

8

⇐⇒ 𝑙 ≤
𝑚+ 𝑑2+3

4 − 𝑑

𝑑
.

We can ensure this by taking 𝑙 to be the smallest even integer such that

𝑙 ≥
𝑚+ 𝑑2+3

4 − 𝑑

𝑑
− 2 .
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Figure 9.6. A hard instance for 𝒟5 from the solution of Exercise 5.11.

The same construction can be performed in the upper left-hand quadrant in a
symmetric way. In every block, there is one free column. It remains to use the rows
not used by any block (nor by the obstacles on the main diagonal) to put a single
obstacle in every such free column. To do so, we use the upper right-hand and lower
left-hand quadrant. It is straightforward to observe that this is always possible, even
without using any diagonal neighboring the main one.

An example of this construction for 𝑚 = 20, 𝑙 = 4, and 𝒟5 is shown in Figure 9.6.
It is clear that any optimal solution has a cost of exactly 𝑚+ 1; an optimal solution
follows the main diagonal until the first obstacle is hit. Afterwards, it makes one
vertical move and follows the first diagonal below the main one (that is, diag−1).

ADiag𝑑 computes a solution with a delay of at least 𝑙, that is, with a cost of at
least

𝑚+ 𝑙 ≥ 𝑚+
𝑚+ 𝑑2+3

4 − 𝑑

𝑑
− 2 = (𝑚+ 1)

(︂
1 + 1

𝑑

)︂
− 4 − 1

𝑑
+ 𝑑2 + 3

4𝑑 .

Therefore, the competitive ratio of ADiag𝑑 can be bounded from below by

(𝑚+ 1)
(︀
1 + 1

𝑑

)︀
− 4 − 1

𝑑 + 𝑑2+3
4𝑑

𝑚+ 1 = 1 + 1
𝑑

+ 𝑑2 − 16𝑑− 1
4𝑑(𝑚+ 1) .
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For 𝑑 ≥ 17, this expression is always larger than 1 + 1/𝑑. For smaller values of 𝑑,
we can choose

𝑚 > −𝑑2 − 16𝑑− 1
4𝑑𝜀 − 1

so that, for any given 𝜀 > 0,

1 + 1
𝑑

+ 𝑑2 − 16𝑑− 1
4𝑑(𝑚+ 1) > 1 + 1

𝑑
− 𝜀

is ensured.

Exercise 6.1. No, it does not, because we can always choose the additive constant
𝛼 from Definition 1.6 to be 𝐵. Therefore, we can still claim that any online algorithm
for the problem is 1-competitive.

Exercise 6.2. In this case, things do indeed change; we already faced a similar
situation when dealing with the ski rental problem in Section 2.8 (more precisely, in
Exercise 2.10). We show that still, for any 𝜀 > 0, no online algorithm is better than
1/𝜀-competitive.

For a contradiction, suppose that there is a constant 𝛼 > 0 such that there
is an online algorithm Alg for the simple knapsack problem that is better than
1/𝜀-competitive with additive constant 𝛼, that is, for every instance 𝐼, we have

gain(Opt(𝐼)) < 1
𝜀

· gain(Alg(𝐼)) + 𝛼 . (9.11)

Now consider an instance 𝐼 where the first request is a capacity

𝐵 := 𝛼+ 1
𝜀

+ 𝛼 ,

after which an object 𝑥 of weight 𝛼+ 1 is offered. We again make a case distinction
depending on whether Alg packs this object or not.

Case 1. If Alg does not pack 𝑥, no second object is offered. It follows that
gain(Alg(𝐼)) = 0 and gain(Opt(𝐼)) = 𝛼+ 1 ,

which immediately contradicts (9.11).
Case 2. If Alg packs 𝑥, a second object of weight 𝐵 is offered, which implies that

gain(Alg(𝐼)) = 𝛼+ 1 and gain(Opt(𝐼)) = 𝛼+ 1
𝜀

+ 𝛼

yielding

gain(Opt(𝐼)) ≥ 1
𝜀

· gain(Alg(𝐼)) + 𝛼

again contradicting (9.11).
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As a result, Alg is not better than 1/𝜀-competitive.

Exercise 6.3. Let 𝜀 > 0, and let Alg be some 𝑐-competitive online algorithm for
the simple knapsack problem defined as in the exercise statement; thus, for every
instance 𝐼, we have

gain(Opt(𝐼)) ≤ 𝑐 · gain(Alg(𝐼)) + 𝛼 . (9.12)

Now let 𝐼 ′ be some fixed instance, and consider the online algorithm Alg′ that
constructs an instance 𝐼 from 𝐼 ′ by multiplying every request (thus, the capacity
and all weights) by a constant 𝛽 := 𝛼/𝜀. Alg′ simulates Alg on 𝐼 and packs the
unscaled objects for 𝐼 ′ corresponding to those that Alg packs for 𝐼. This way, if the
solution of Alg is feasible for 𝐼, then the solution of Alg′ is feasible for 𝐼 ′, and we
have

𝛽 · gain
(︀
Alg′(𝐼 ′)

)︀
= gain(Alg(𝐼)) (9.13)

and also

𝛽 · gain(Opt(𝐼 ′)) = gain(Opt(𝐼)) . (9.14)

From (9.12) to (9.14), we conclude

gain(Opt(𝐼 ′)) = gain(Opt(𝐼))
𝛽

≤ 𝑐 · gain(Alg(𝐼)) + 𝛼

𝛽

= 𝑐 · gain
(︀
Alg′(𝐼 ′)

)︀
+ 𝛼

𝛽
.

Consequently, Alg′ is 𝑐-competitive with an arbitrarily small constant 𝜀.
Of course, with our considerations from Exercise 6.2, one may ask how meaningful

this statement is. However, we could make the simple knapsack problem “fairer” by,
for instance, disallowing arbitrarily small objects in the input. This way, there are
𝑐-competitive online algorithms for the problem whose competitive ratio depends on
the weight of the smallest object in the input.

Exercise 6.4. The condition from the exercise statement does not really change
much. Let 𝑛 be some natural number. The adversary starts by offering a sequence
of objects of weight 𝜀, for some arbitrary 𝜀 > 0. For every deterministic online
algorithm Alg, the adversary knows the time step (if it exists) in which Alg will
pack the corresponding object into the knapsack. If there is such a time step 𝑇𝑖, it
requests 𝑛 − 𝑖 more objects of weight 1. If not, all 𝑛 requests will offer objects of
weight 𝜀 only. Then, by similar reasoning to the proof of Theorem 6.1, it follows that
Alg cannot be better than 1/𝜀-competitive. In the case that Alg does not pack
any object into the knapsack, the optimal gain can in general even be larger than 𝜀.
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Exercise 6.5. Let 𝜀 > 0, and consider an instance that starts by offering two objects
of weight 1/3 + 𝜀 and 2/3. Since the objects do not both fit into the knapsack, any
online algorithm Alg for the simple removable knapsack problem has at most one
of the two packed in its knapsack at the beginning of time step 𝑇3. We distinguish
two cases depending on which it is.

Case 1. Suppose Alg packs the first object. Then, no other object is offered and
the strict performance of Alg is

2
3

1
3 + 𝜀

= 2
1 + 3𝜀 ,

which is larger than 3/2, for any 𝜀 < 1/9.
Case 2. Suppose Alg packs the second object (possible after removing the first one).

Then, another object of weight 2/3 − 𝜀 is offered. Alg may either keep the second
object or (implying a smaller gain) remove it and pack the third one. In any case,
its strict performance is at least 3/2.

The claim follows.

Exercise 6.6. We use the same set ℐ of instances as in the proof of Theorem 6.5,
and construct a partition tree ̂︀𝒯 of ℐ (𝑛) with two levels. The root 𝑟 is labeled by
ℐ (𝑛) and 𝑛− 1 since all instances have the same prefix of length 𝑛− 1 according to
condition (iii) of Definition 3.3; 𝑟 has 2𝑛−1 children that correspond to the different
binary strings, as in the proof of Theorem 6.5. The children, which are all leaves, are
labeled accordingly, and they clearly partition ℐ (𝑛). Now consider any two vertices
𝑣1 and 𝑣2, neither one being an ancestor of the other. By the construction of ̂︀𝒯 , the
two vertices must be leaves with lowest common ancestor 𝑟. Therefore, [𝑂1]𝜌𝑟

and
[𝑂2]𝜌𝑟

must be different, which shows that the condition of Lemma 3.1 is satisfied.
Since the number 𝑤 of leaves of ̂︀𝒯 is 2𝑛−1, Theorem 3.1 implies the claimed lower
bound.

Exercise 6.7. Let 𝜀 > 0, let

𝛿 := 𝜀

2 − 𝜀
,

and let ℐ be the same set of instances as in the proof of Theorem 6.12, but substitute
𝜀 by 𝛿. Consider a probability distribution PrAdv over ℐ such that each instance is
drawn with probability 1/2. In other words, the first object of weight 𝛿 is always
offered, and the second one of weight 1 is offered in half of the cases. Obviously, ℐ
is finite. Moreover, there is also only a finite number of generic algorithms for ℐ;
one that packs nothing, one that packs the first object and nothing else, one that
packs the first object and possibly the second, and one that packs only the second
if it is offered. Clearly, it suffices to consider the last two algorithms. We can thus
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apply Yao’s principle for finite maximization problems, that is, Theorem 2.4. More
specifically, we want to show that(︂

EAdv

[︂
gain(Alg(ℐ))
gain(Opt(ℐ))

]︂)︂−1
≥ 2 − 𝜀 (9.15)

for any deterministic online algorithm Alg for the simple knapsack problem.
So let Alg denote one of the above two deterministic online algorithms. This

time, we make a case distinction depending on Alg’s actions.

Case 1. Suppose that Alg packs the first object. Then, it cannot pack the second
one if it is offered, which in turn happens with a probability of 1/2; the gain of an
optimal solution is 𝛿 or 1, respectively. Therefore, the strict expected competitive
ratio of Alg is at least(︂

1
2 · 𝛿

𝛿
+ 1

2 · 𝛿1

)︂−1
=

(︂
1 + 𝛿

2

)︂−1
= 2 − 2𝛿

1 + 𝛿
= 2 − 𝜀 .

Case 2. Suppose that Alg does not pack the first object. Then, we have that Alg’s
gain is 0 if the second object is not offered. If the second object is offered, Alg’s
gain is 1. Thus, we get(︂

1
2 · 0

𝛿
+ 1

2 · 1
1

)︂−1
= 2 ≥ 2 − 𝜀 .

Consequently, (9.15) follows, and we can use Yao’s principle to conclude that every
randomized online algorithm has a strict expected competitive ratio of at least 2 − 𝜀.

Exercise 6.8. The proof can be done analogously to that of Theorem 6.1. Let
𝜀 > 0, and let Alg be any deterministic online algorithm for the simple 𝛾-knapsack
problem. At first, an object of weight 𝛾 + 𝜀 is offered. If it is not packed, no further
object is offered. If it is packed, a second object of weight 1 is offered and Alg has
a performance of 1/(𝛾 + 𝜀) on this instance.

Exercise 6.9. This time, the proof can be done analogously to that of Theorem 6.12
or the solution of Exercise 6.7. Here, let us do the former. An object of weight
𝜀′ := 𝜀 + 𝛾 is offered first, and then possibly another one of weight 1. Let Rand
be any randomized online algorithm for the simple 𝛾-knapsack problem, and let 𝑞
denote the probability that Rand accepts the first object. By exactly the same
arguments as in the proof of Theorem 6.12, it follows that it is a best strategy for
Rand to set 𝑞 = 1/(2 − 𝜀′), and that its strict expected competitive ratio is, as a
consequence, at least 2 − 𝜀′ = 2 − 𝛾 − 𝜀.

As mentioned above, we can again alternatively use Yao’s principle as in the
solution of Exercise 6.7 to get the same lower bound.
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Exercise 6.10. Let Alg be any deterministic online algorithm for the general
removable knapsack problem. For every 𝑛, consider the objects

(1, 4
√
𝑛− 1),

(︂
1

𝑛− 1 ,
1√
𝑛− 1

)︂
,

(︂
1

𝑛− 1 ,
1√
𝑛− 1

)︂
, . . . ,

(︂
1

𝑛− 1 ,
1√
𝑛− 1

)︂
⏟  ⏞  

𝑛−1 times

.

We can make an easy case distinction depending on how Alg chooses to pack them.

Case 1. Suppose Alg does not accept the first object. Then, 𝑛 − 1 objects are
offered that each have a weight and a value of 1.

Case 2. Suppose Alg accepts the first object, and eventually it accepts another one
from the sequence above. In order to do this, it must remove the first object. If
this happens, again only objects of weight and value 1 are offered. Thus, the gain
of Alg is again at most 1 and the optimal gain is 4

√
𝑛− 1.

Case 3. Last, suppose Alg accepts the first object and no other one from the
sequence above. Then, all 𝑛 objects are offered, which leads to an optimal solution
that accepts all objects except the first one and has a gain of

√
𝑛− 1.

In any case, the competitive ratio is at least 4
√
𝑛− 1.

Exercise 7.1. The same argument as in the proof of Theorem 7.2 can be applied
to any randomized online algorithm that chooses two complementary strings with
probability 1/2 each.

Exercise 7.2. No randomized online algorithm that uses one random bit can do
better than making an incorrect guess in every time step. Such an algorithm can
only choose between two deterministic strategies. This implies that, in every time
step, there always is a character that this algorithm does not output, and which is
known to the adversary.

Note that this argument can easily be generalized. As long as 𝜎 > 2𝑏, where 𝜎
denotes the alphabet size and 𝑏 is the number of random bits, any online algorithm
reading at most 𝑏 random bits has cost 𝑛.

Exercise 7.3. Due to the cost function, this does not work. The proof follows
directly from the fact that fewer than 𝑛− 1 advice bits are not sufficient to achieve
this strict competitive ratio.

Exercise 7.4. Let Rand be any randomized online algorithm for the bit guessing
problem either with or without history. In every time step, Rand guesses either
0 or 1 with some probability. Recall that the adversary knows these probabilities.
When considering the known-history scenario, each of the concrete probabilities may
depend on the previous guesses, the time step, and also on whether the preceding
guesses were right or wrong. Still, the adversary can easily construct an instance
such that the correct guess has a probability of at most 1/2.
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As an example, suppose that Rand guesses 1 in time step 𝑇1 with probability
2/3. The adversary therefore chooses the answer 0, and Rand will guess right
with probability 1/3. In time step 𝑇2, Rand might make a guess depending on the
outcome in 𝑇1; for instance, if the guess turned out to be correct, it guesses 0 or 1
with probability 1/2 each, and if the guess was wrong, it guesses 0 with probability
1/4 and 1 with probability 3/4. The probability to guess 0 is therefore

1
3 · 1

2 + 2
3 · 1

4 = 1
3

and the probability to guess 1 is

1
3 · 1

2 + 2
3 · 3

4 = 2
3 .

Consequently, the adversary chooses the answer 0 in 𝑇2.
This way, Rand never guesses right with a probability larger than 1/2, and

therefore has an expected number of at most 𝑛/2 correct guesses in total. Note that
this implies that it is a best strategy for Rand to guess 0 or 1 in every time step
with probability 1/2, which results in the online algorithm BGROne.

Exercise 7.5. The construction of a partition tree ̂︀𝒯 for the set ℐ (𝑛) of all instances
of length 𝑛+ 1 (that is, binary strings of length 𝑛) is straightforward. ̂︀𝒯 is a binary
tree, and its root 𝑟 gets labeled with ℐ (𝑛) and 1 (since all instances from ℐ (𝑛) start
with the length 𝑛 of the string to be guessed). ̂︀𝒯 has 𝑛+ 1 levels; 𝑟 is on level 0 and
the leaves are on level 𝑛. For every inner vertex 𝑣 on level 𝑖 with 0 ≤ 𝑖 ≤ 𝑛, its two
children correspond to a correct guess 0 or 1 in time step 𝑇𝑖, respectively. Thus, all
properties of a partition tree according to Definition 3.3 are satisfied. This way, the
2𝑛 leaves of ̂︀𝒯 correspond to all possible binary strings of length 𝑛. Consider two
vertices 𝑣1 and 𝑣2 with lowest common ancestor 𝑣, neither one being an ancestor of
the other. In the first 𝜌𝑣 time steps, all instances of both ℐ (𝑛)

𝑣1 and ℐ (𝑛)
𝑣2 are identical,

but the next guess must be different in order to be optimal since 𝑣 is the lowest
common ancestor. Therefore, the conditions for Lemma 3.1 are satisfied. Hence,
following Theorem 3.1, log2(2𝑛) = 𝑛 advice bits are necessary to be optimal.

Exercise 7.6. With ⌈log2 𝜎⌉ advice bits, the character that appears most frequently
in the input can be encoded. If an online algorithm with advice always guesses this
character, it guesses at least 𝑛/𝜎 characters correctly.

Exercise 7.7. Consider the following online algorithm that reads one advice bit
that is equal to the bit that appears most frequently (that is, the majority bit) in
the first three positions of the string. Thus, this algorithm makes at most one error
while reading one bit. After that, it reads 𝑛− 3 advice bits to guess the rest of the
string without making another error; in total it uses 𝑛− 2 advice bits.
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Exercise 7.8. Suppose we want to make at most 𝑟 ∈ N+ errors. Following the
same idea as in the solution of Exercise 7.7, the online algorithm with advice reads
one advice bit for the first 2𝑟 + 1 bits of the string 𝑠 it should guess. It will always
guess the majority bit, and therefore, it will make at most 𝑟 errors on this prefix.
For the remaining bits of 𝑠, it reads one bit each, which means no more errors are
made and 𝑛− (2𝑟 + 1) + 1 = 𝑛− 2𝑟 advice bits are used in total.

Exercise 7.9. The proof can be done identically to that of Lemma 7.1. Analogously
to (7.1), in the following, we show that

𝜎−ℋ𝜎(𝑘)𝑛
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖 ≤ 1 . (9.16)

We again start with the first factor of the left-hand side and obtain

𝜎−ℋ𝜎(𝑘)𝑛 = 𝜎(−𝑘 log𝜎(𝜎−1)+𝑘 log𝜎 𝑘+(1−𝑘) log𝜎(1−𝑘))𝑛

= 𝜎log𝜎(𝜎−1)−𝑘𝑛

· 𝜎log𝜎(𝑘𝑘𝑛) · 𝜎log𝜎((1−𝑘)(1−𝑘)𝑛)

=
(︂

𝑘

𝜎 − 1

)︂𝑘𝑛
(1 − 𝑘)(1−𝑘)𝑛

=
(︂

𝑘

(𝜎 − 1)(1 − 𝑘)

)︂𝑘𝑛
(1 − 𝑘)𝑛 . (9.17)

(again by multiplying by (1 − 𝑘)𝑘𝑛/(1 − 𝑘)𝑘𝑛)

Recall that, due to our assumptions, we have 𝑘 ≤ 1 − 1/𝜎. Now note that

𝑘 ≤ 1 − 1
𝜎

⇐⇒ 1 − 𝑘 ≥ 1
𝜎

⇐⇒ 𝜎 ≥ 1
1 − 𝑘

⇐⇒ 𝜎 ≥ 1 + 𝑘

1 − 𝑘

(by adding and subtracting 𝑘 in the numerator)

⇐⇒ 1 ≥ 𝑘

(1 − 𝑘)(𝜎 − 1) . (9.18)

Using (9.17), the left-hand side of (9.16) is equal to

𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖

(︂
𝑘

(𝜎 − 1)(1 − 𝑘)

)︂𝑘𝑛
(1 − 𝑘)𝑛
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≤
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖

(︂
𝑘

(𝜎 − 1)(1 − 𝑘)

)︂𝑖
(1 − 𝑘)𝑛

(as a consequence of (9.18))

=
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂(︂
𝑘

1 − 𝑘

)︂𝑖
(1 − 𝑘)𝑛

=
𝑘𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑘𝑖(1 − 𝑘)𝑛−𝑖

≤ 1 ,
(due to the same arguments as in the proof of Lemma 7.1)

which finishes the proof.

Exercise 7.10. This proof can be done identically to that of Theorem 7.7; in essence,
we again have to bound |ℐ𝜑| from above. This time, consider a 𝜎-ary fixed binary
string 𝑠 of length 𝑛. There are exactly(︂

𝑛

𝑖

)︂
(𝜎 − 1)𝑖

𝜎-ary strings that are different from 𝑠 at exactly 𝑖 positions (the first factor gives
the number of possibilities to pick 𝑖 positions; for each such possibility, each of these
𝑖 positions has one of the 𝜎 − 1 characters that are different from that of 𝑠 at this
position). Since there are 𝜎𝑛 different strings of length 𝑛 that are feasible instances,
we get

𝜎𝑛

2𝑏(𝑛) ≤
(1−𝛾)𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖 ≤ 𝜎ℋ𝜎(1−𝛾)𝑛 ,

where we used the generalization of Lemma 7.1 from Exercise 7.9 (note that 1 − 𝛾 ≤
1 − 1/𝜎 since 𝛾 ≥ 1/𝜎). Solving for 𝑏(𝑛), we obtain

𝜎𝑛

2𝑏(𝑛) ≤ 𝜎(1−𝛾)𝑛 log𝜎(𝜎−1)−𝛾𝑛 log𝜎 𝛾−(1−𝛾)𝑛 log𝜎(1−𝛾)

⇐⇒ 𝜎𝑛 ≤ 2𝑏(𝑛) · 𝜎log𝜎((𝜎−1)(1−𝛾)𝑛) · 𝜎log𝜎(𝛾−𝛾𝑛) · 𝜎log𝜎((1−𝛾)−(1−𝛾)𝑛)

⇐⇒ 𝜎𝑛 ≤ 2𝑏(𝑛) · (𝜎 − 1)(1−𝛾)𝑛 ·
(︂

1
𝛾

)︂𝛾𝑛
·
(︂

1
1 − 𝛾

)︂(1−𝛾)𝑛

⇐⇒ 2𝑏(𝑛) ≥ 𝜎𝑛 ·
(︂

1 − 𝛾

𝜎 − 1

)︂(1−𝛾)𝑛
· 𝛾𝛾𝑛

⇐⇒ 𝑏(𝑛) ≥
(︂

1 + (1 − 𝛾) log𝜎
(︂

1 − 𝛾

𝜎 − 1

)︂
+ 𝛾 log𝜎 𝛾

)︂
𝑛 log2 𝜎 ,

which proves the claim.
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Exercise 7.11. We take the same steps that we made when dealing with the special
case of 𝜎 = 2. In general, we can represent all 𝜎𝑛 instances of length 𝑛 by a 𝜎-ary
tree 𝒯 = (𝑉,𝐸) of height 𝑛; moreover, ℐ𝜑 now contains 𝜎𝑛/2𝑏(𝑛) instances. In
essence, Alg traverses 𝒯 the same way; it starts at the root 𝑣𝑛,1, and when guessing
a character between 1 and 𝜎, it chooses one of the 𝜎 subtrees of the current vertex.
Then we can define the function size : N × N → N as above.

Next, we prove a more general version of Lemma 7.2. Let error : 𝑉 → N be defined
as above, and again let 𝑣 be an inner vertex of 𝒯 . If

𝑚 := max{error(𝑢) | 𝑢 is a child of 𝑣} ,

then, by the same arguments as in the proof of Lemma 7.2, it follows that

error(𝑣) ≥

⎧⎨⎩𝑚+ 1 if, for at least two children 𝑣′ and 𝑣′′ of 𝑣, it
holds that error(𝑣′) = error(𝑣′′) = 𝑚 ,

𝑚 else .

Using this result, we can prove a generalization of Lemma 7.3; more precisely, we
can show that, for 𝑟 and ℎ with 𝑟 ≤ ℎ ≤ 𝑛, we have

size(1, 0) = 1 , (9.19)
size(1, 1) = 𝜎 , (9.20)
size(ℎ, 𝑟) = size(ℎ− 1, 𝑟) + (𝜎 − 1) · size(ℎ− 1, 𝑟 − 1), for 𝑟 ≥ 2 . (9.21)

As before, note that (9.19) and (9.20) speak about the vertices of 𝒯 on level 1, and
thus follow from the same considerations as in the proof of Lemma 7.3 (this time,
there are 𝜎 leaves out of which Alg chooses one). Furthermore, (9.21) follows since
the value gets maximized if there are 𝑟 errors in one subtree and 𝑟 − 1 errors in the
other 𝜎 − 1 subtrees; an increase would result in a contradiction to the number of
errors 𝑟 due to the above generalization of Lemma 7.2.

Finally, for 𝑟 and ℎ with 𝑟 ≤ ℎ ≤ 𝑛, we show the closed form

size(ℎ, 𝑟) =
𝑟∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
(𝜎 − 1)𝑖

analogously to Lemma 7.4 by induction on ℎ.
Base Case. Let ℎ = 1. Again, it follows that either 𝑟 = 0 or 𝑟 = 1. Due to (9.19)

and (9.20), we have

size(1, 0) = 1 =
0∑︁
𝑖=0

(︂
1
𝑖

)︂
(𝜎 − 1)𝑖 and size(1, 1) = 𝜎 =

1∑︁
𝑖=0

(︂
1
𝑖

)︂
(𝜎 − 1)𝑖 ,

which covers the base case.
Induction Hypothesis. The claim holds for every ℎ′ ≤ ℎ, that is,

size(ℎ′, 𝑟) =
𝑟∑︁
𝑖=0

(︂
ℎ′

𝑖

)︂
(𝜎 − 1)𝑖 .
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Induction Step. We obtain

size(ℎ+ 1, 𝑟) = size(ℎ, 𝑟) + (𝜎 − 1) · size(ℎ, 𝑟 − 1)
(as a consequence of the generalization of Lemma 7.3)

=
𝑟∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
(𝜎 − 1)𝑖 + (𝜎 − 1)

𝑟−1∑︁
𝑖=0

(︂
ℎ

𝑖

)︂
(𝜎 − 1)𝑖

(using the induction hypothesis)

=
(︂
ℎ

0

)︂
(𝜎 − 1)0 +

𝑟∑︁
𝑖=1

(︂
ℎ

𝑖

)︂
(𝜎 − 1)𝑖 +

𝑟∑︁
𝑖=1

(︂
ℎ

𝑖− 1

)︂
(𝜎 − 1)𝑖

=
(︂
ℎ

0

)︂
(𝜎 − 1)0 +

𝑟∑︁
𝑖=1

(︂(︂
ℎ

𝑖

)︂
+

(︂
ℎ

𝑖− 1

)︂)︂
(𝜎 − 1)𝑖

=
(︂
ℎ+ 1

0

)︂
(𝜎 − 1)0 +

𝑟∑︁
𝑖=1

(︂
ℎ+ 1
𝑖

)︂
(𝜎 − 1)𝑖

=
𝑟∑︁
𝑖=0

(︂
ℎ+ 1
𝑖

)︂
(𝜎 − 1)𝑖 .

As a result, we obtain

2𝑛
2𝑏(𝑛) ≤ size(𝑛, (1 − 𝛾)𝑛) =

𝑟∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝜎 − 1)𝑖 ,

and by the same calculations as in the solution of Exercise 7.10, which make use of
the statement proven in Exercise 7.9,

𝑏(𝑛) ≥
(︂

1 + (1 − 𝛾) log𝜎
(︂

1 − 𝛾

𝜎 − 1

)︂
+ 𝛾 log𝜎 𝛾

)︂
𝑛 log2 𝜎

follows.

Exercise 7.12. Let Alg be some swapping algorithm for 2-server on a path of
length 2. Without loss of generality, assume that Alg is lazy; this implies that Alg
never positions the two servers on the same point. We construct a non-swapping
algorithm Alg′ as follows. At the beginning, 𝑠1 is positioned to the left of 𝑠2. Now
let 𝑇𝑖 with 1 ≤ 𝑖 ≤ 𝑛 be the first time step in which Alg swaps the order of 𝑠1 and
𝑠2; we call such a move a “swapping move.” Note that it is impossible that, at the
beginning of 𝑇𝑖, 𝑠1 is positioned on 𝑝1 and 𝑠2 is positioned on 𝑝3. This is due to the
fact that, since Alg is lazy, the only situation when it then moves a server is when
𝑝2 is requested. No matter which server Alg moves (it only moves one, again due to
being lazy), 𝑠1 is still positioned to the left of 𝑠2 afterwards. We can make a simple
case distinction depending on the positions of the servers before the move (that is,
at the beginning of 𝑇𝑖).
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1 1𝑝1 𝑝2 𝑝3

(a) The path

1 1
𝑠1 𝑠2

(b) A swapping move of Alg

1 1
𝑠1 𝑠2

(c) The non-swapping move of Alg′

Figure 9.7. Converting a swapping move to two non-swapping moves as in the solution
of Exercise 7.12.

Case 1. Suppose 𝑠1 is positioned on 𝑝1, 𝑠2 is positioned on 𝑝2, and 𝑝3 is requested.
The only swapping move is to move 𝑠1 to 𝑝3, which induces a cost of 2. Instead,
Alg′ moves 𝑠2 to 𝑝3, which leads to cost 1 for this time step; see Figure 9.7. After
that, there is a (possibly empty) sequence of requests for either 𝑝1 or 𝑝3. These
requests do not induce any cost for Alg′. Let 𝑇𝑗 with 𝑗 > 𝑖 be the first time step
in which 𝑝2 is requested. If 𝑇𝑗 does not exist, we are done; otherwise, after serving
the request in 𝑇𝑗 , Alg has its two servers positioned on either 𝑝1 and 𝑝2 or 𝑝2
and 𝑝3. Moving either 𝑠1 or 𝑠2 to 𝑝2, Alg′ has its two servers positioned on the
same points as Alg after serving the request. Moreover, after 𝑇𝑗 , the servers of
Alg′ are still not swapped, and its cost up to now is at most as large as the cost
of Alg. Clearly, Alg′ can now continue to answer requests in a way that induces
a cost which is not larger than that of Alg.

Case 2. Suppose 𝑠1 is positioned on 𝑝2, 𝑠2 is positioned on 𝑝3, and 𝑝1 is requested.
This case can be handled completely analogously to case 1.

This construction can be applied iteratively to all remaining swapping moves.
Note that Alg′ is lazy as result of the laziness of Alg and the above construction.

Exercise 7.13. The general idea is to make the given online algorithm with advice
choose between more than two sets in every time step. For instance, this time, let 𝑘
be any multiple of 4; consider the ground set

𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑘/4}
∪ {𝑏1,1, 𝑏2,1, . . . , 𝑏𝑘/4,1} ∪ {𝑏1,2, 𝑏2,2, . . . , 𝑏𝑘/4,2} ∪ {𝑏1,3, 𝑏2,3, . . . , 𝑏𝑘/4,3}

and the set family

𝒮 = {{𝑎1, 𝑏1,1}, {𝑎1, 𝑏1,2}, {𝑎1, 𝑏1,3},
{𝑎2, 𝑏2,1}, {𝑎2, 𝑏2,2}, {𝑎2, 𝑏2,3},
. . . ,

{𝑎𝑘/4, 𝑏𝑘/4,1}, {𝑎𝑘/4, 𝑏𝑘/4,2}, {𝑎𝑘/4, 𝑏𝑘/4,3}} .

In odd time steps, the objects 𝑎𝑖 with 1 ≤ 𝑖 ≤ 𝑘/4 are requested. In the 𝑗th even time
step, either 𝑏𝑗,1, 𝑏𝑗,2, or 𝑏𝑗,3 is requested; ℐ covers all instances constructed in this way,
and therefore has size 3𝑘/4. By the same arguments as in the proof of Theorem 7.12,
any optimal online algorithm with advice needs to use log2(3𝑘/4) = (𝑘 log2 3)/4
advice bits.
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Generally, for some 𝑙 ≥ 2, for every 𝑎𝑖, we can put objects 𝑏𝑖,1, 𝑏𝑖,2, . . . , 𝑏𝑖,𝑙 into 𝒮.
We then obtain the general bound

log2 𝑙

𝑙 + 1 · 𝑘

on the number of advice bits, which is maximized for 𝑙 = 5, yielding a lower bound
of 0.4𝑘 advice bits.

For the instances constructed above, we have 𝑚 = (𝑘/(𝑙 + 1)) · 𝑙, and thus obtain
a lower bound of

log2 𝑙

𝑙
·𝑚 ,

which is maximized for 𝑙 = 3, giving a lower bound of roughly 0.528𝑚.

Exercise 7.14. The reduction given in the proof of Theorem 7.13 can easily be
adapted to work for bit guessing with unknown history. To this end, we define 𝑋 and
𝒮 in the same way. However, in the first 𝑘/3 time steps, the objects 𝑎1, 𝑎2, . . . , 𝑎𝑘/3
are requested. BGuess makes its guesses according to the sets BBsc chooses, just
as in the original proof. After it has guessed the 𝑛′ bits, the correct string is revealed
to BGuess. Depending on this string, BGuess requests the object 𝑏𝑖,1, for all 𝑖
with 1 ≤ 𝑖 ≤ 𝑘/3, if and only if the correct guess for the 𝑖th bit was 0; otherwise,
it requests 𝑏𝑖,2. This way, BBsc has to pick an additional set from 𝒮 in the last
𝑘/3 time steps for every incorrect guess of BGuess. The proof can then be finished
analogously to that of Theorem 7.13.

Exercise 7.15. We again consider the instances from the solution of Exercise 7.13,
but this time, there are 𝜎 different choices in every odd time step, where 𝜎 ≥ 2 is
the alphabet size of the given string guessing instance. More precisely, we construct
an online algorithm SGuess with advice, which, given an instance 𝐼 ′ asking to guess
a 𝜎-ary string of length 𝑛′, creates an instance 𝐼 of length 𝑛 = 2𝑛′ with

𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑛′}
∪ {𝑏1,1, 𝑏2,1, . . . , 𝑏𝑛′,1}
∪ {𝑏1,2, 𝑏2,2, . . . , 𝑏𝑛′,2}
∪ . . .

∪ {𝑏1,𝜎, 𝑏2,𝜎, . . . , 𝑏𝑛′,𝜎}

and the set family

𝒮 = {{𝑎1, 𝑏1,1}, {𝑎1, 𝑏1,2}, . . . , {𝑎1, 𝑏1,𝜎},
{𝑎2, 𝑏2,1}, {𝑎2, 𝑏2,2}, . . . , {𝑎2, 𝑏2,𝜎},
. . . ,

{𝑎𝑛′ , 𝑏𝑛′,1}, {𝑎𝑛′ , 𝑏𝑛′,2}, . . . , {𝑎𝑛′ , 𝑏𝑛′,𝜎}} .
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Figure 9.8. Lower bound on the average number of advice bits necessary per time
step to be 𝑐-competitive for set cover with respect to 𝑛 as shown in the solution of
Exercise 7.15.

The reduction from string guessing with alphabet size 𝜎 works analogously to the
proof of Theorem 7.13; note that 𝑘 = (𝜎 + 1)𝑛′ and 𝑚 = 𝜎𝑛′.

SGuess requests the objects 𝑎1, 𝑎2, . . . , 𝑎𝑛′ in odd time steps and one of the objects
𝑏𝑖,1, 𝑏𝑖,2, . . . , 𝑏𝑖,𝜎 in the 𝑖th even time step. It guesses according to the concrete choice
of the black box BBsc for set cover, and requests the objects according to the correct
guesses. The optimal cost is obviously 𝑛′. If SGuess guesses a fraction 𝛾 of all
characters correctly, it follows for the competitive ratio 𝑐 of BBsc that

𝑐 ≥ cost(BBsc(𝐼))
cost(Opt(𝐼)) = 𝑛′ + (1 − 𝛾)𝑛′

𝑛′ ,

and therefore 𝛾 ≥ 2 − 𝑐. This time, since 𝛾 ≥ 1/𝜎 has to be satisfied, it must hold
that 𝑐 ≤ 2 − 1/𝜎. We know from Exercise 7.11 that SGuess needs to read at least(︂

1 + (1 − 𝛾) log𝜎
(︂

1 − 𝛾

𝜎 − 1

)︂
+ 𝛾 log𝜎 𝛾

)︂
𝑛′ log2 𝜎

≥
(︂

1 + (𝑐− 1) log𝜎
(︂
𝑐− 1
𝜎 − 1

)︂
+ (2 − 𝑐) log𝜎(2 − 𝑐)

)︂
· 𝑛2 log2 𝜎

advice bits to guess 𝛾𝑛′ characters correctly; this expression can easily be rewritten
as a function of 𝑘 or 𝑚, respectively. Lower bounds for different values of 𝜎 are
shown in Figure 9.8.

Exercise 7.16. Let Alg be some online algorithm for DPA. Let ℓ be a square
number, and consider the following set ℐ of instances. The first request contains the
length ℓ of 𝑃 and a request (𝑣0, 𝑣√

ℓ). If Alg grants this request,
√
ℓ consecutive

requests of length 1 each are given. After that, the input ends. If Alg does not grant
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0 4 8 12 16

Figure 9.9. An instance from ℐ on a path of length 16 as used in the solution of
Exercise 7.16. In this example, Alg decides to grant the third request of length 4, which
is followed by the adversary giving four requests each of length 1 that all intersect with
the previously granted one.

the first request, another request (𝑣√
ℓ, 𝑣2

√
ℓ) of length

√
ℓ is sent, and the adversary

continues in this manner until either
√
ℓ requests of length

√
ℓ have been offered or

Alg accepts one of them. In the latter case,
√
ℓ requests each of length 1 are offered

subsequently, which all intersect the subpath just granted; an example is shown in
Figure 9.9. We make a case distinction depending on whether Alg grants a request
of length

√
ℓ.

Case 1. If Alg does not grant any of the
√
ℓ requests of length

√
ℓ each, its gain is

0, while the optimal gain is
√
ℓ.

Case 2. Conversely, if Alg grants one of the requests of length
√
ℓ, it cannot grant

any of the
√
ℓ requests of length 1. Thus, its gain is 1, while the optimal gain is at

least
√
ℓ.

Since the gain of Opt(𝐼) increases with ℓ, but the gain of Alg is at most 1, it follows
that Alg is not competitive.

Exercise 7.17. The idea is to interleave the phases in the following way. After
every request from 𝑃1, BGuess guesses the corresponding bit just as in the proof of
Theorem 7.16. In the next time step, BGuess gets feedback as to the correctness of
this guess. If the correct guess was 0, BGuess requests the two requests from 𝑃2
that intersect with the previous request. If the correct guess was 1, it continues with
the next request from 𝑃1 (if there is any). Clearly, we have the same relationship
between 𝑐 and 𝛾 as in the proof of Theorem 7.16 and are able to conclude the same
bound by the same reasoning.

Another possibility is to leave the phases as in the proof of Theorem 7.16, but
have BGuess store the feedback during 𝑃1 and construct 𝑃2 after all guesses have
been made.

Exercise 7.18. We use the following set ℐ of instances, which is different from the
one used in the proofs of Theorems 7.15 and 7.16. There are again two phases 𝑃1
and 𝑃2. This time, the requests in 𝑃1 are of length 3, and the consecutive requests
of even time steps overlap the requests of odd time steps. In 𝑃2, two requests of

311



Solutions to Exercises

0 5 10 15

⏟ ⏞ ⏟ ⏞ 

𝑃1

𝑃2

Figure 9.10. An instance from ℐ on a path of length 15 when preemption is allowed as
used in the solution of Exercise 7.18. In 𝑃1, the second, third, and fifth requests should
be granted, in order to grant as many requests as possible.

length 1 that intersect either with the first request or the second one are given; an
example is shown in Figure 9.10.

For a given online algorithm BBdpaPreemp, we again construct an online algo-
rithm BGuess as in the proof of Theorem 7.16. The difference is that, to guess a
string of length 𝑛′, instances on a path of length ℓ = 5𝑛′ are constructed, which
weakens the lower bound. Consider two consecutive time steps 𝑇𝑖 and 𝑇𝑖+1 with 𝑖
being odd and 1 ≤ 𝑖 ≤ 2𝑛′ − 1 (that is, within 𝑃1). After 𝑇𝑖+1, BBdpaPreemp can
have accepted at most one of the two requests given in 𝑇𝑖 and 𝑇𝑖+1. BGuess guesses
0 in time step 𝑇 ′

(𝑖+1)/2 if and only if BBdpaPreemp grants the first subpath. Note
that we can assume without loss of generality that BBdpaPreemp always grants
one of the two, since it is never better off by granting neither (due to the preemption).
If a correct guess is made, BBdpaPreemp can grant one of the requests in 𝑇𝑖 and
𝑇𝑖+1 and two additional requests in 𝑃2. On an incorrect guess, it can grant at most
two requests. Note that, in contrast to the proof of Theorem 7.16, the gain of an
optimal solution is fixed for a fixed ℓ, namely 3𝑛′.

For the competitive ratio 𝑐 of BBdpaPreemp, we have

𝑐 ≥ gain(Opt(𝐼))
gain(BBdpaPreemp(𝐼)) ≥ 3𝑛′

3𝑛′ − (1 − 𝛾)𝑛′ ,

where BGuess guesses 𝛾𝑛′ bits correctly; hence, 𝛾 ≥ 3/𝑐 − 2. Since 𝛾 ≥ 1/2, we
require 𝑐 ≤ 6/5. This way, we obtain(︂

1 +
(︂

3 − 3
𝑐

)︂
log2

(︂
3 − 3

𝑐

)︂
+

(︂
3
𝑐

− 2
)︂

log2

(︂
3
𝑐

− 2
)︂)︂

· ℓ5

as a lower bound on the number of advice bits required. Finally, we again note that
the optimal gain grows with ℓ.

Exercise 8.1. As suggested in the hint of the exercise statement, we again define a
function num: N+ → N+ such that num(𝑖) gives the minimum number of vertices
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required so that FirstFit uses color 𝑖. This time, we show num(𝑖) ≥ 2𝑖−1 for 𝑖 ≥ 2
by induction on 𝑖.

Base Case. Since one vertex is clearly necessary to make FirstFit use one color,
and two vertices are needed to force FirstFit to use two colors, we obtain
num(1) = 1 = 20 and num(2) = 2 = 21, which covers the base case.

Induction Hypothesis. The claim holds for num(1), num(2), . . . , num(𝑖− 1).
Induction Step. Consider some time step in which a vertex 𝑣 is given such that

FirstFit has to use color 𝑖. It follows that 𝑣 is connected to at least 𝑖− 1 vertices
that were presented earlier such that these vertices are colored using colors 1 to
𝑖− 1. Every such vertex needs to be in a different subtree of the whole graph 𝐺,
because otherwise 𝐺 contains a cycle and is therefore no tree.
Let 𝒯1, 𝒯2, . . . , 𝒯𝑖−1 be such trees, that is, 𝒯𝑗 is colored with colors 1 to 𝑗 with
1 ≤ 𝑗 ≤ 𝑖−1; it follows that 𝒯𝑗 contains at least num(𝑗) vertices. By the induction
hypothesis, we have that num(𝑗) ≥ 2𝑗−1. Since 𝑣 is connected to all these trees, it
follows that

num(𝑖) ≥ 1 +
𝑖−1∑︁
𝑗=1

2𝑗−1 = 2𝑖−1 .

Observe that this is the same calculation as in the proof of Theorem 8.1. Indeed,
we seem to be analyzing the same class of instances from another perspective.

As a result, if FirstFit uses 𝑘 colors, the number 𝑛 of vertices has to satisfy
𝑛 ≥ 2𝑘−1, and thus we have 𝑘 ≤ log2 𝑛+ 1 as claimed.

Exercise 8.2. Consider the following online algorithm CLin2 with advice. Again,
the first vertex presented gets color 1, and thus no advice bit has to be read in the
first time step. Next, one advice bit is read that is 1 if and only if the whole graph
𝐺 is revealed such that there are at least 𝑛− 1 isolated vertices. We distinguish two
cases depending on the value of this bit.

Case 1. Suppose the bit is 1. Then the 𝑛− 1 isolated vertices are all assigned the
same color, say color 1. Since there is no edge between these vertices, this is
optimal. At some point, a vertex may be presented that is not isolated. CLin2
assigns this vertex color 2; clearly, this is also optimal. If no such vertex appears,
the algorithm uses one color only. No further advice is needed to do this.

Case 2. Suppose the bit is 0. Then there at most 𝑛− 2 isolated vertices. The idea
is that CLin2 only uses advice for isolated vertices; indeed, if these are colored
correctly, non-isolated vertices can be colored optimally without advice. Since the
first vertex is isolated and CLin2 does not need any advice for it, it uses at most
𝑛− 3 advice bits to color all isolated vertices optimally. In total, CLin2 uses at
most 𝑛− 2 advice bits.

It follows that CLin2 uses at most 𝑛−2 advice bits and produces an optimal solution
on any instance.
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Exercise 8.3. We again prove the claim using an idea we got from the simple
knapsack problem. More specifically, we consider a probability distribution PrAdv
over the (finite) set ℐ that we used for the deterministic case (see Figures 8.6a
and 8.6b), such that each instance is picked with probability 1/2. This time, there
are two generic algorithms for these instances; one takes the first edge {𝑣1, 𝑣2} and
the other one does not. Without loss of generality, we assume that the algorithm
that does not take the first edge always takes the two edges {𝑣1, 𝑣3} and {𝑣2, 𝑣3} if
they are presented and thus computes a feasible solution in this case. Let Alg be
one of these two algorithms; we distinguish two cases.

Case 1. Suppose that Alg takes the first edge. If the vertex 𝑣3 is not presented, it
has the optimal cost 1/𝜀. If it is presented, however, Alg needs to use one of the
edges that connect 𝑣3 to 𝑣1 and 𝑣2, which leads to a cost of 1/𝜀+ 1/2, while the
optimal cost is 1. Thus, its strict expected competitive ratio can be bounded from
below by

1
2 · 1 + 1

2 · 1/𝜀+ 1/2
1 >

1
2𝜀 ,

which tends to infinity as 𝜀 tends to zero.
Case 2. Suppose that Alg does not take the first edge. If 𝑣3 is not presented, it

therefore does not compute a feasible solution and pays 𝜆, while the optimal cost
is 1/𝜀. If 𝑣3 is given, Alg pays the optimal cost 1. Hence, we obtain a bound of

1
2 · 𝜆

1/𝜀 + 1
2 · 1 > 𝜀 · 𝜆

2 ,

which tends to infinity for increasing 𝜆 (recall that 𝜆 is unbounded and can, for
instance, be chosen as 21/𝜀).

Following Yao’s principle (more precisely, Theorem 2.3), we conclude that no
randomized online algorithm is strictly competitive in expectation.

Exercise 8.4. We again use Yao’s principle. Since we are dealing with an infinite
number of instances, we apply Theorem 2.5; more specifically, as we will prove a
lower bound on the expected competitive ratio that grows with 𝑛, we only need to
show that (i) of Theorem 2.5 is satisfied (recall the discussion preceding the theorem).
We construct sets of instances ℐ1, ℐ2, . . . as follows. Every instance in ℐ𝑖 has a length
of 𝑛 = 3𝑖 + 1. We take 𝑖 widgets 𝑊1,𝑊2, . . . ,𝑊𝑖 such that every widget is either
as in Figure 8.6c, which happens with probability 1/𝑛, or as in Figure 8.6d, which
has probability (𝑛− 1)/𝑛. These widgets are connected to an additional vertex via
edges each of weight 1/𝑖 as in the proof of Theorem 8.6. Therefore, ℐ𝑖 is finite and
contains 2𝑖 instances.

Moreover, there are 2𝑖 generic algorithms that, for each widget, either take the
first edge or not. We assume that all these algorithms compute feasible solutions and
hence take all 𝑖 edges of weight 1/𝑖 each that connect the graph. Now consider any
fixed deterministic algorithm Alg and a randomly chosen instance from ℐ𝑖. Suppose
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Figure 9.11. The widgets used in the solution of Exercise 8.5.

Alg takes the first edge {𝑣𝑗,1, 𝑣𝑗,2} with 1 ≤ 𝑗 ≤ 𝑖 for 𝛿 widgets. For every 𝑊𝑗 , the
edge {𝑣𝑗,1, 𝑣𝑗,3} has a weight of 1/2 with probability 1/𝑛 and a weight of 𝑛2 − 1/2
with probability (𝑛− 1)/𝑛. Thus, Alg has cost 𝑛 on 𝛿 widgets. On the other 𝑖− 𝛿
widgets, it has cost 1 with probability (𝑛− 1)/𝑛 and cost 𝑛2 with probability 1/𝑛.

Summing up, we can bound the expected cost of Alg from below by

EAdv[cost(Alg(ℐ𝑖))] = 𝛿𝑛+
𝑖∑︁

𝑗=𝛿+1

(︂
𝑛− 1
𝑛

· 1 + 1
𝑛

· 𝑛2
)︂

+ 1

≥ 𝛿𝑛+ (𝑖− 𝛿)𝑛
= 𝑖 · 𝑛 .

The expected optimal cost on every widget is

EAdv[cost(Opt(ℐ𝑖))] ≤ 𝑛− 1
𝑛

· 1 + 1
𝑛

· 𝑛 ≤ 2 ,

and thus the total optimal cost is at most 2𝑖+ 1 in expectation. As a consequence,
the expected competitive ratio of Alg can be bounded from below by a function
that grows with 𝑛.

Exercise 8.5. Instead of having one vertex 𝑤 revealed in the last time step, we can
connect the tree by a path that consists of 𝑘 vertices and 2𝑘− 1 edges each of weight
1/(2𝑘 − 1), which all need to be part of any feasible solution; an example is shown
in Figure 9.11a. Note that this makes the resulting lower bound weaker, because
we increase the instances by a linear number of vertices that are not mapped to
any guess. More precisely, we can do a reduction similar to the one in the proof of
Theorem 8.9 with 𝑛 = 4𝑛′ + 1. This is the only difference, however, since connecting
all the widgets together to form a tree still only induces an additional cost of 1. As
a result, the factor (𝑛− 1)/3 in the original theorem changes to (𝑛− 1)/4.

If we allow a degree of 4, we can even shrink the original instances by one vertex
and directly connect the vertices 𝑣𝑖,3 with 1 ≤ 𝑖 ≤ 𝑛 by 𝑘 − 1 edges each of weight
1/(𝑘 − 1); an example is depicted in Figure 9.11b. In this case, 𝑛′ = 3𝑛, and the
bound even improves such that the aforementioned factor is replaced by 𝑛/3.
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Exercise 8.6. We reduce bit guessing with known history to the MVCP. We design
an online algorithm BGuess with advice for bit guessing, given an online algorithm
BBmvc with advice for the MVCP; we assume that BBmvc always computes a
feasible solution.

In the first time step 𝑇 ′
1, BGuess gets the length 𝑛′ of the string to guess; it

constructs an instance 𝐼 for BBmvc of length 𝑛 = 3𝑛′ + 2 that consists of widgets
𝑊1,𝑊2, . . . ,𝑊𝑛′ of size 3 each. 𝑊𝑖 contains three vertices 𝑣𝑖,1, 𝑣𝑖,2, and 𝑣𝑖,3, for
every 𝑖 with 1 ≤ 𝑖 ≤ 𝑛′. There is always an edge between 𝑣𝑖,1 and 𝑣𝑖,2. If BBmvc
takes the vertex 𝑣𝑖,1, BGuess guesses 0 in 𝑇 ′

𝑖 ; otherwise it guesses 1. After that, a
vertex 𝑣𝑖,3 is revealed together with either an edge {𝑣𝑖,1, 𝑣𝑖,3} if the correct guess of
the 𝑖th bit is 0, or {𝑣𝑖,2, 𝑣𝑖,3} if the correct guess is 1. In the last two time steps 𝑇𝑛−1
and 𝑇𝑛, two vertices 𝑤′ and 𝑤 are given; 𝑤 is connected to all 𝑣𝑖,3 with 1 ≤ 𝑖 ≤ 𝑛′

and to 𝑤′, which is only connected to 𝑤; see Figure 9.12. We distinguish two cases
for every widget 𝑊𝑖.

Case 1. Suppose the correct guess is 0. In this case, an optimal solution takes the
vertex 𝑣𝑖,1 and covers {𝑣𝑖,1, 𝑣𝑖,2} and {𝑣𝑖,1, 𝑣𝑖,3}. This means it has cost 1 for 𝑊𝑖.
Case 1.1. Suppose BBmvc also takes 𝑣𝑖,1. Then it also has cost 1 for 𝑊𝑖.

Since BGuess guesses 0 in this case, it has cost 0 in 𝑇 ′
𝑖 .

Case 1.2. Suppose BBmvc does not take 𝑣𝑖,1. Then it has to take 𝑣𝑖,2 since
otherwise the first edge presented in 𝑊𝑖 is not covered. When 𝑣𝑖,3 is revealed, it
also has to take this vertex to cover the edge {𝑣𝑖,1, 𝑣𝑖,3}. Therefore, its cost is 2.
Since BGuess guesses 1 in this case, it has cost 1 in 𝑇 ′

𝑖 .
Case 2. Suppose the correct guess is 1. Then an optimal solution takes 𝑣𝑖,2 and has

cost 1 in 𝑊𝑖. Similarly to the first case, it can easily be shown that if BBmvc has
cost 1, BGuess has cost 0, and if BBmvc has cost 2, BGuess has cost 1.

When 𝑤′ and 𝑤 are finally revealed, both the optimal solution and BBmvc take
𝑤 (unless BBmvc took all 𝑣𝑖,3 with 1 ≤ 𝑖 ≤ 𝑛′, in which case it can take 𝑤′ instead).
Suppose BGuess guesses 𝛾𝑛′ bits correctly. Since the optimal cost is 𝑛′ + 1, the
competitive ratio 𝑐 of BBmvc can be bounded from below by

𝑐 ≥ cost(BBmvc(𝐼))
cost(Opt(𝐼))

= cost(Opt(𝐼)) + (1 − 𝛾)𝑛′

cost(Opt(𝐼))

= (2 − 𝛾)𝑛′ + 1
𝑛′ + 1

≥ (2 − 𝛾)𝑛′ + 𝑛′

2𝑛′

= 3 − 𝛾

2 ,
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𝑣1,2 𝑣2,2 𝑣3,2 𝑣4,2 𝑣5,2 𝑣6,2

𝑣1,1 𝑣2,1 𝑣3,1 𝑣4,1 𝑣5,1 𝑣6,1

𝑣1,3 𝑣2,3 𝑣3,3 𝑣4,3 𝑣5,3 𝑣6,3

𝑤

𝑤′

Figure 9.12. An instance used in the solution of Exercise 8.6. The optimal solution is
marked by filled vertices.

and hence 𝛾 ≥ 3 − 2𝑐. Since 𝛾 ≥ 1/2, we get 𝑐 ≤ 5/4, and from Theorem 7.8 it
follows that at least

(1 + (1 − (3 − 2𝑐)) log2(1 − (3 − 2𝑐)) + (3 − 2𝑐) log2(3 − 2𝑐))𝑛′

= (1 + 2(𝑐− 1) log2(2(𝑐− 1)) + (3 − 2𝑐) log2(3 − 2𝑐)) · 𝑛− 2
3

bits of advice are necessary to be 𝑐-competitive. Finally, note that the optimal cost
clearly grows with 𝑛.

Exercise 8.7. We reduce string guessing with known history and an alphabet size
𝜎 with 𝜎 ≥ 2 to the MISP with preemption. We design an online algorithm SGuess
with advice that needs to guess a string of length 𝑛′ over an alphabet of size 𝜎;
without loss of generality, let the alphabet be {1, 2, . . . , 𝜎}. The input 𝐼 of length
𝑛 = 𝜎(𝑛′ + 1) given to an online algorithm BBmis with advice for the MISP consists
of 𝑛′ + 1 widgets 𝑊1,𝑊2, . . . ,𝑊𝑛′+1 that are each cliques of size 𝜎. In every 𝑊𝑖 with
1 ≤ 𝑖 ≤ 𝑛′, there is a correct vertex ; the other vertices are called incorrect vertices.
Every vertex from every subsequent widget is connected to all previously revealed
incorrect vertices, but not to the correct ones. When 𝑊𝑖+1 is revealed, BBmis gets
to know which vertex from 𝑊𝑖 is the correct one; yet, since all vertices from 𝑊𝑖+1 are
connected to the same vertices that were previously revealed, there is no information
about which is the correct vertex of 𝑊𝑖+1. This way, the correct vertices form an
independent set of size 𝑛′ in 𝐼, and every independent set that contains an incorrect
vertex in some widget cannot take any other vertices of the following widgets. Note
that also all incorrect vertices are connected to all vertices from 𝑊𝑛′+1; an example
for 𝑛′ = 3 is shown in Figure 9.13.

BBmis is allowed to use preemption. However, it is not allowed to have any two
vertices in its intermediate solution that are connected by an edge. Thus, after
the last vertex of some 𝑊𝑖 is presented, BBmis took at most one vertex from 𝑊𝑖;
without loss of generality, we assume that the algorithm takes one such vertex.
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Figure 9.13. An instance used in the solution of Exercise 8.7. A maximum independent
set contains a vertex from every widget; the vertices belonging to it are filled. Note that
for the last widget, any vertex can be chosen.

In time step 𝑇 ′
𝑖 , SGuess presents 𝑊𝑖 to BBmis. The vertices of 𝑊𝑖 are labeled

𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝜎; afterwards, SGuess guesses “𝑗” in 𝑇 ′
𝑖 if and only if BBmis chooses

𝑣𝑖,𝑗 with 1 ≤ 𝑗 ≤ 𝜎 for 𝑊𝑖 with 1 ≤ 𝑖 ≤ 𝑛′.
Now consider any widget 𝑊𝑖 with 1 ≤ 𝑖 ≤ 𝑛′. If the correct guess for 𝑇 ′

𝑖 was 𝑗
with 1 ≤ 𝑗 ≤ 𝜎, SGuess connects all vertices 𝑣𝑖,𝑗′ with 𝑗′ ̸= 𝑗 (that is, the incorrect
vertices of 𝑊𝑖) to all incorrect vertices of subsequent widgets. If BBmis chooses the
correct vertex, its gain increases by 1, and SGuess has cost 0 in 𝑇 ′

𝑖 . Conversely, if
BBmis chooses an incorrect vertex, it has two options. It can decide not to preempt
the vertex chosen for 𝑊𝑖. In this case, it cannot take any other vertex in subsequent
widgets (including 𝑊𝑛′+1). The algorithm can alternatively choose to preempt the
incorrect vertex. In this case, it has no gain for 𝑊𝑖, but it can gain something for
the following widget, and there is at least one widget remaining. Thus, this second
option is always at least as promising as the first one.

The last 𝑊𝑛′ is an exception, where BBmis can choose any vertex; by definition,
no vertex from this widget is connected to any correct vertex. Since the optimal
gain is 𝑛′ + 1, we get for the competitive ratio 𝑐 of BBmis that

𝑐 ≥ gain(Opt(𝐼))
gain(BBmis(𝐼)) = 𝑛′ + 1

𝛾𝑛′ + 1 ≥ 2𝑛′

𝛾𝑛′ + 𝑛′ ≥ 2
1 + 𝛾

,

and thus 𝛾 ≥ 2/𝑐− 1. Since 𝛾 ≥ 1/𝜎, we obtain 𝑐 ≤ 2𝜎/(𝜎 + 1). Using the result of
Exercise 7.11, it follows that at least(︂

1 +
(︂

2 − 2
𝑐

)︂
log𝜎

(︂2 − 2
𝑐

𝜎 − 1

)︂
+

(︂
2
𝑐

− 1
)︂

log𝜎
(︂

2
𝑐

− 1
)︂)︂

· (𝑛− 𝜎) · log2 𝜎

𝜎

advice bits are necessary. The optimal gain again grows with 𝑛.
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(a) The spanning tree 𝑆 (b) The Eulerian cycle 𝐶 (c) The Hamiltonian cycle 𝐻

Figure 9.14. Constructing a Hamiltonian cycle from a spanning tree as in the solution
of Exercise 8.8; first, a spanning tree is computed, which is then converted to an Eulerian
cycle, which is then again shortened to the Hamiltonian cycle.

Exercise 8.8. Consider the root 𝑣 of the spanning tree 𝑆 of the metric graph 𝐺.
Suppose we perform a depth-first search on 𝑆, which leads to a directed Eulerian
cycle 𝐶 in the graph that is obtained from 𝑆 by replacing the undirected edges of 𝑆
by two directed ones that are in opposite directions. It follows that

cost(𝐶) = 2 · cost(𝑆) .

Now we shorten 𝐶 to a Hamiltonian cycle 𝐻 in 𝐺. This is done by again starting at
𝑣 and following 𝐶. Whenever we visit a vertex that we already visited before, we
“jump” over it, that is, we remove it from the cycle and continue with the next vertex
according to 𝐶. Shortening 𝐶 this way does not increase the cost, due to the triangle
inequality. The three steps to create 𝐻 are shown in Figure 9.14. By applying this
procedure, the resulting Hamiltonian cycle 𝐻 is at most twice as expensive as the
spanning tree 𝑆.

Exercise 8.9. Let Double be an offline algorithm which first computes a mini-
mum spanning tree 𝑆opt, which can be done in polynomial time as we know (see
Exercise 1.3). After that, Double does a depth-first search on the metric input
graph 𝐺 and constructs a Hamiltonian cycle as in the solution of Exercise 8.8; this
is the algorithm’s output and we have

cost(Double(𝐺)) ≤ 2 · cost(𝑆opt) . (9.22)

Constructing Double(𝐺) from 𝑆opt can be done in polynomial time as well. Now
let 𝐻opt be a minimum Hamiltonian cycle in 𝐺. When removing an edge from 𝐻opt,
we obtain a path, and thus a tree 𝑆 in 𝐺. As a result, we have

cost(𝐻opt) ≥ cost(𝑆) ≥ cost(𝑆opt) ,

and together with (9.22), this proves that Double is a 2-approximation algorithm.
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Exercise 8.10. Let 𝐺 = (𝑉,𝐸) with 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a metric graph with a
weight function weight : 𝐸 → R+. Recall that TSPGreedy starts with an arbitrary
vertex, and creates a Hamiltonian cycle by always following cheapest edges. We
define a function lab: 𝑉 → R+ according to 𝐻 := TSPGreedy(𝐺), that is, if the
algorithm chooses the vertex 𝑣𝑗 right after 𝑣𝑖, we set

lab(𝑣𝑖) := weight({𝑣𝑖, 𝑣𝑗}) .

Hence, we have

cost(𝐻) =
∑︁
𝑣∈𝑉

lab(𝑣) . (9.23)

This time, we show that both conditions of Lemma 8.1 are met. Consider two
vertices 𝑣𝑖 and 𝑣𝑗 such that, without loss of generality, TSPGreedy chooses 𝑣𝑖
before 𝑣𝑗 . This means that, right after 𝑣𝑖 was chosen, 𝑣𝑗 was a candidate for the
next vertex. Therefore, the edge {𝑣𝑖, 𝑣𝑗} has a weight that is at least as large as the
one followed by TSPGreedy, and thus

weight({𝑣𝑖, 𝑣𝑗}) ≥ lab(𝑣𝑖) ≥ min{lab(𝑣𝑖), lab(𝑣𝑗)} ,

which satisfies (i) of Lemma 8.1. Moreover, note that, for any such two vertices 𝑣𝑖
and 𝑣𝑗 , 𝐻opt can be regarded as two disjoint paths that both connect them. Due to
the triangle inequality, both these paths have a cost that is at least weight({𝑣𝑖, 𝑣𝑗}),
and thus

cost(𝐻opt) ≥ 2 · weight({𝑣𝑖, 𝑣𝑗}) ≥ 2 · lab(𝑣𝑖) ,

using the same argument as above and that 𝑣𝑗 was chosen after 𝑣𝑖. This implies that
(ii) of the lemma is also satisfied.

Thus, we can use (9.23) and Lemma 8.1 to conclude that

cost(𝐻) ≤ (⌈log2 𝑛⌉ + 1) · cost(𝐻opt)

as claimed.

Exercise 8.11. The proof can be done analogously to that of Theorem 8.12. The
only difference is that the algorithm EmbBip with advice cannot immediately
extrapolate the graph structure from knowing 𝑛. However, with another 𝒪(log 𝑛)
advice bits, the size of one of the shores can be communicated to the algorithm.
Additionally, one bit encodes to which of the shores the first vertex belongs. If this
is known, EmbBip can embed the input graph and simulate OnKruskal in exactly
the same way as in the proof of Theorem 8.12.
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𝑣1 𝑣2

𝑣3 𝑣4

𝑣5 𝑣6

𝑣7 𝑣8

𝑣9

(a) The instance 𝐵9

{𝐵3, 𝐵5, 𝐵7, 𝐵9, 𝐵11}, 3

{𝐵3}, 3 {𝐵5, 𝐵7, 𝐵9, 𝐾11}, 5

{𝐵5}, 5 {𝐵7, 𝐵9, 𝐵11}, 7

{𝐵7}, 7 {𝐵9, 𝐵11}, 9

{𝐵9}, 9 {𝐵11}, 11

(b) The partition tree ̂︀𝒯 for 𝑛 = 11

Figure 9.15. The graph 𝐵9 and a partition tree used in the solution of Exercise 8.12;
again, edges of weight 𝑎 are dashed and edges of weight 𝑏 are solid.

Exercise 8.12. The claim can be shown using partition trees analogously to the
proof of Theorem 8.13. For any odd 𝑛, consider the set of instances ℐ (≤𝑛) that consists
of complete bipartite graphs 𝐵3, 𝐵5, . . . , 𝐵𝑛. Every 𝐵𝑖 with 3 ≤ 𝑖 ≤ 𝑛 consists of
an odd number 𝑖 of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑖 and 𝑣1 ≺ 𝑣2 ≺ . . . ≺ 𝑣𝑖. In the proof of
Theorem 8.13, an algorithm essentially needed to know when the input ends to
connect the last vertex with an expensive edge. Here, we follow a similar idea. The
shore 𝑆1 contains all vertices with an odd index, and the shore 𝑆2 contains those
with an even index. For every odd 𝑗 with 1 ≤ 𝑗 ≤ 𝑖, the vertex 𝑣𝑗 is connected to all
vertices 𝑣𝑗′ with 2 ≤ 𝑗′ < 𝑗 and 𝑗′ even by edges each of weight 𝑏. Likewise, every
vertex with an even index 𝑗 is connected to all vetices 𝑣𝑗′ with 1 ≤ 𝑗′ < 𝑗 and 𝑗′ odd
by edges each of weight 𝑎. 𝐵9 is shown in Figure 9.15a.

The partition tree ̂︀𝒯 for ℐ (≤𝑛) can be constructed analogously to the proof of
Theorem 8.13; an example is shown in Figure 9.15b. This way, an online algorithm
needs to know which one is the last vertex with odd index. The remainder of the
proof can be done in an analogous way.
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General Symbols

𝛼 . . . . . . . . . . . . . . . . . . . . . additive constant of the competitive ratio
Alg . . . . . . . . . deterministic online algorithm, online algorithm with advice
amcost(·) . . . . . . . . . . . . amortized cost function of a minimization problem
𝐵 in the knapsack problem . . . . . . . . . . . . . . . . . . . . knapsack capacity
𝑏, 𝑏(·) . . . . . . . . . . . . . . . . . . . . . number of advice bits or random bits
𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . competitive ratio
𝑐𝑖,𝑗 in games . . . . . . . . . . . . . . . . . . . . . . . the payoff of the adversary
𝐶Alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . configuration of Alg
𝒞Alg . . . . . . . . . . . . . . . . . . . . . . . . . . . set of configurations of Alg
cost(·) . . . . . . . . . . . . . . . . . . . cost function of a minimization problem
𝑑Alg in JSS . . . . . . . . . . . . . . . . . . . . number of diagonal moves of Alg
dist(·) . . . . . . . . . . . . . . . . . . . . . . . distance function of a metric space
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Euler’s constant
E[·] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . expected value
exp(·) . . . . . . . . . . . . . . . . . . . . . . . . . . natural exponential function
gain(·) . . . . . . . . . . . . . . . . . . gain function of a maximization problem
𝛾 in bit guessing . . . . . . . . . . . fraction of the input that is guessed correctly
𝛾 in resource-augmented knapsack problem . . additive constant for overpacking
ℎ in resource-augmented paging . . . . . . . cache size of the optimal algorithm
𝐻opt . . . . . . . . . . . . . . . . . . . . . . . . . . minimum Hamiltonian cycle
ℎAlg in JSS . . . . . . . . . . . . . . . . . . number of horizontal moves of Alg
𝐼 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input of current problem
ℐ . . . . . . . . . . . . . . . . . . . . . . . . . set of instances of current problem
ℐ (𝑛) . . . . . . . . . . . . . . . . . set of instances of current problem of length 𝑛
ℐ𝜑 . . . . . . . . . . . . . . . . . . instances that induce the same advice string 𝜑
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𝑘 in 𝑘-server . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of servers
𝑘 in paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . size of the cache
𝑘 in set cover . . . . . . . . . . . . . . . . . . . . . . . . size of the ground set 𝑋
𝑘 in ski rental . . . . . . . . . . . . . . . . . . . . . . . . . . price to buy the skis
𝜇, 𝜇(·) . . . . . . . . . . . . . . . . . . . . number of instances of given problem
𝑙𝑖 in paging . . . . . . . . . . . . . . . . . . number of new pages in current phase
ℓ . . . . . . . . . . . . . . . . . . . . . size of strat(Alg) and strat(Rand) if finite
ℓ in paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lookahead
𝜆 in MSTP . . . . . . . . . . . . . . . . . . . . . . . penalty for infeasible solution
ℳ in games . . . . . . . . . . . . . matrix representing the payoff of the players
ℳ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . metric space
ℳ[0,1] . . . . . . . . . . . . . . metric space induced by real line between 0 and 1
𝑚 in JSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of machines
𝑚 in 𝑘-server . . . . . . . . . . . . . . . . . . . . number of points of metric space
𝑚 in paging . . . . . . . . . . . . . . . . . . . . . . . size of the physical memory
𝑚 in set cover . . . . . . . . . . . . . . . . . . . . . . . . size of the set family 𝒮
𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input length
𝑛 in string guessing . . . . . . . . . . . . . . . . . . length of string to be guessed
𝑁 in paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of phases
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . natural numbers including 0
N+ . . . . . . . . . . . . . . . . . . . . . . . . . . . natural numbers excluding 0
𝑂 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output for current problem
𝒪(·) . . . . . . . . class of functions that grow asymptotically at most as fast as ·
Ω(·) . . . . . . . . class of functions that grow asymptotically at least as fast as ·
Θ(·) . . . . . . . . . . . . . class of functions that grow asymptotically as fast as ·
Opt . . . . . . . . . . . . . . . . optimal (offline) algorithm for the given problem
𝜑 . . . . . . . . . . . . . content of the random tape, content of the advice tape
Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimization problem
𝜋(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . permutation
Φ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . potential
𝑃 in 𝑘-server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of points
𝑝𝑖 in paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th page
𝑝𝑖 in 𝑘-server . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th point of metric space
𝑃𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th phase of the input
𝑃Alg,𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th phase induced by Alg
𝒫(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . powerset of ·
Pr[·] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability of the event ·
𝑞 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability
𝑅𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th round
Rand . . . . . . . . . . . . . . . . . . . . . . . . . . randomized online algorithm
𝑠 in string guessing . . . . . . . . . . . . . . . . . . . . . . . string to be guessed
𝑠𝑖 in 𝑘-server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th server
sol(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of solutions for ·
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solOpt(·) . . . . . . . . . . . . . . . . . . . . . . . . set of optimal solutions for ·
𝑆opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . minimum spanning tree
strat(Alg) . . . . . . . . set of deterministic online algorithms Alg chooses from
strat(Rand) . . . . . . set of deterministic online algorithms Rand chooses from
𝑇𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th time step
𝒯 , 𝒯𝑣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . treê︀𝒯 , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . partition tree
𝑣Alg in JSS . . . . . . . . . . . . . . . . . . . . . number of vertical moves of Alg
𝑥𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th request
𝑋, 𝑋𝑖, 𝑌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random variables
𝑦𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑖th answer

Algorithms
ADiag . . . . . . . . . . . . . . . (1 + 1/𝑑)-competitive for JSS; 𝑏(𝑛) ∈ 𝒪(log2 𝑑)
Aug (1 + 3𝛾/(1 − 4𝛾))-competitive for the simple 𝛾-knapsack problem; 𝑏(𝑛) ∈ 𝒪(1)
BGOne . . . . . . . . . . . . . . . . . . . . . cost 𝑛/2 for bit guessing; 𝑏(𝑛) = 1
BGROne . . . . . . . . . . . . . . . expected cost 𝑛/2 for bit guessing; 𝑏(𝑛) = 1
BreakEven . . . . . . . . . . . . . . . . . . (2 − 1/𝑘)-competitive for ski rental
CBip . . . . . . . . . . . . . 2 log2 𝑛-competitive for coloring on bipartite graphs
Chase . . . . . . . . . . . ⌈⌈log2 𝑘⌉/(𝑏′ − 2)⌉-competitive for 𝑘-server; 𝑏(𝑛) = 𝑏′𝑛
Cmp . . . . . . . optimal for 𝑘-server on the real line between 0 and 1; 𝑏(𝑛) = 𝑛
CLin1 . . . . . . . . . . . optimal for coloring on bipartite graphs; 𝑏(𝑛) = 𝑛− 1
CLin2 . . . . . . . . . . . optimal for coloring on bipartite graphs; 𝑏(𝑛) = 𝑛− 2
DCov . . . . . . . . 𝑘-competitive for 𝑘-server on the real line between 0 and 1
DCovP . . . . . . . . . . . . . . . . . . . . 𝑘-competitive for 𝑘-server on paths
DCovT . . . . . . . . . . . . . . . . . . . . . 𝑘-competitive for 𝑘-server on trees
Double . . . . . . . . . . . . . . 2-approximation for the TSP on metric graphs
DLin1 . . . . . . . . . . . . . . . . . . . . . . . . . . optimal for DPA; 𝑏(𝑛) = 𝑛
DLin2 . . . . . . . . . . . . . . . . . . . . . . . . . . . optimal for DPA; 𝑏(ℓ) = ℓ
Emb optimal for the MSTP on complete graphs with two weights; 𝑏(𝑛) ∈ 𝒪(log2 𝑛)
Fifo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑘-competitive for paging
FirstFit . . . . . . . . . . . . . . . (log2 𝑛+ 1)-competitive for coloring on trees
Fwf . . . 𝑘-competitive for paging; 𝑘/(𝑘 − ℎ+ 1)-competitive for (ℎ, 𝑘)-paging
GLog (1 + 𝜀)-competitive for the (general) knapsack problem; 𝑏(𝑛) ∈ 𝒪(log2 𝑛)
Half . . . . . . . . . . . . 𝑛/2 correct guesses for bit guessing in expt.; 𝑏(𝑛) = 𝑛
KnGreedy . . . . . . . . . . . . . . . not competitive for the knapsack problem
KnOne . . . . . . . . . 2-competitive for the simple knapsack problem; 𝑏(𝑛) = 1
KnLog . . (1 + 𝜀)-competitive for the simple knapsack problem; 𝑏(𝑛) ∈ 𝒪(log2 𝑛)
KSGreedy . . . . . . . . . . . . . . . . . . . . . . not competitive for 𝑘-server
Kruskal . . . . . . . . . . . . . . . . . . . . . . . . optimal for the offline MSTP
MSTGreedy . . . . . . . . ⌈log2 𝑛⌉-competitive for the MSTP on metric graphs
MSTOne . . 1.4-competitive for the MSTP on metric graphs; 𝑏(𝑛) ∈ 𝒪(log2 𝑛)
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Lfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimal for paging
Lfu . . . . . . . . . . . . . . . . . . . . . . . . . . . . not competitive for paging
Lifo . . . . . . . . . . . . . . . . . . . . . . . . . . . not competitive for paging
Lru . . . . 𝑘-competitive for paging; 𝑘/(𝑘 − ℎ+ 1)-competitive for (ℎ, 𝑘)-paging
Mark . . 𝑘-competitive for paging; 𝑘/(𝑘 − ℎ+ 1)-competitive for (ℎ, 𝑘)-paging
MDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/3-competitive for JSS
Parent . . . . . . . . . . . . . . . optimal for spanning tree; 𝑏(𝑛) ∈ 𝒪(𝑛 log2 𝑛)
PLin1 . . . . . . . . . . . . . . optimal for paging; 𝑏(𝑛) = 2⌈log2 𝑛⌉ + 𝑛⌈log2 𝑚⌉
PLin2 . . . . . . . . . . . . . . . . . . . . . optimal for paging; 𝑏(𝑛) = 𝑛⌈log2 𝑘⌉
PLin3 . . . . . . . . . . . . . . . . . . . . . . . optimal for paging; 𝑏(𝑛) = 𝑛+ 𝑘
PLin4 . . . . . . . . . . optimal for paging with 𝑚 = 𝑘 + 1; 𝑏(𝑛) = 𝑛⌈log2 𝑘⌉/𝑘
RDiag . . . . . . . 1-competitive in expt. (and with prob. tending to 1) for JSS
RDiag𝑑 . . . . . . . . . (1 + 1/𝑑)-competitive in expt. for JSS; 𝑏(𝑛) = Θ(log2 𝑑)
RKnOne . . . . 2-competitive in expt. for the simple knapsack problem; 𝑏(𝑛) = 1
RKnOne′ . . . 4-competitive in expt. for the simple knapsack problem; 𝑏(𝑛) = 1
RMark . . . 2𝐻𝑘-competitive in expt. (and with prob. tending to 1) for paging
RMarkBarely . . . . . . . . . . . . . 𝒪(log2 𝑘)-competitive in expt. for paging
RSki . . . . . . . . . . . . . . . . . . e/(e − 1)-competitive in expt. for ski rental
SCLin1 . . . . . . . . . . . . . . . . . . . . . . optimal for set cover; 𝑏(𝑘) = 𝑘 − 1
SCLin2 . . . . . . . . . . . . . . . . . . . . . . . optimal for set cover; 𝑏(𝑚) = 𝑚
Seg . . . . . 1/(1 − 2 sin(𝜋/2𝑏′))-competitive for 𝑘-server on the plane; 𝑏(𝑛) = 𝑏′𝑛
TSPGreedy . . . . . . . . . . . . (⌈log2 𝑛⌉ + 1)-approximation on metric graphs
Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑘-competitive for paging
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