
Chapter 6

Rules and mechanics

Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

Abstract Rules are at the core of many games. So how about generating them? This
chapter discusses various ways to encode and generate game rules, and occasionally
game entities that are strongly tied to rules. The first part discusses ways of generat-
ing rules for board games, including Ludi, perhaps the most successful example of
automatically generated game rules. The second part discusses some more tentative
attempts to generate rules for video games, in particular 2D games with graphical
logic. Most approaches to generating game rules have used search-based methods
such as evolution, but there are also some solver-based approaches.

6.1 Rules of the game

So far in this book, we have seen a large number of methods for generating content
for existing games. If you have a game already, that means you can now gener-
ate many things for it: maps, levels, terrain, vegetation, weapons, dungeons, racing
tracks. But what if you don’t already have a game, and want to generate the game
itself? What would you generate, and how? At the heart of many types of games
is a system of game rules. This chapter will discuss representations for game rules
of different kinds, along with methods to generate them, and evaluation functions
and constraints that help us judge complete games rather than just isolated content
artefacts.

Our main focus here will be on methods for generating interesting, fun, and/or
balanced game rules. However, an important perspective that will permeate the
chapter is that game rule encodings and evaluation functions can encode game de-
sign expertise and style, and thus help us understand game design. By formalising
aspects of the game rules, we define a space of possible rules more precisely than
could be done through writing about rules in qualitative terms; and by choosing
which aspects of the rules to formalise, we define what aspects of the game are
interesting to explore and introduce variation in. In this way, each game generator
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can be thought of as an executable micro-theory of game design, though often a
simplified, and sometimes even a caricatured one [32].

6.2 Encoding game rules

To generate game rules, we need some way of representing or encoding them in a
machine-readable format that some software system can work with.1 An ambitious
starting point for a game encoding might be one that can encode game rules in
general: an open-ended way to represent any possible game. The game generator
would then work on games in this encoding, looking for variants or entirely new
games in this space. But such a fully general encoding provides a quite unhelpful
starting point. A completely general representation for games cannot say very much
that is specific about games at all. Some kinds of games have turns, but some don’t.
Some games are primarily about graphics and movement, while others take place
in an abstract mathematical space. The only fully general encoding of a computer
game would be simply a general encoding for all software. Something like “C source
code” would suffice, but it produces an extremely sparse search space. Although all
computer games could in principle be represented in the C programming language,
almost all things that can be represented in C’s syntax are not in fact games, and
indeed many of them are not even working programs, making a generator’s job
quite difficult.2

Instead of having a generator search through the extremely sparse space of all
computer programs to find interesting games, a more fruitful starting point is to
pick an encoding where the space includes a more dense distribution of things that
are games and meet some basic criteria of playability. That way, our generator can
spend most of its time attempting to design interesting game variants. Furthermore,
it’s helpful for game encodings to start with a specific genre. Once we restrict focus
to a particular genre, it’s possible to abstract meaningful elements common to games
in the genre, which the generator can take as given. For example, an encoding for
turn-based board games can assume that the game’s time advances in alternating
discrete turns, that there are pieces on spaces arranged in some configuration, and
that play is largely based on moving pieces around. This means the game generator
does not have to invent the concept of a “turn”, but instead can focus on finding
interesting rules for turn-based board games. An encoding for a side-scrolling space
shooter would be very different: here the encoding would include continuous time;

1 There are many other uses for machine-readable game rules, such as for use in game-playing AI
competitions [12, 6] and in game-design assistants targeted at human game designers [20, 9]. This
chapter focuses on encodings for generating rules, but multi-use encodings are often desirable.
2 This is not to say generating games encoded as raw programs would be impossible: genetic-
programming techniques evolve programs encoded in fairly general representations [29], and ap-
plying genetic programming to videogame design could produce interesting results. But the tech-
niques in this chapter focus on higher-level representations, which allow the generators to work on
more familiar game-design elements rather than on low-level source code.
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entities such as terrain, enemies, physics, lives, and spawn points; and events such
as shooting, object collision, and scrolling. Of course, the encoding cannot be too
narrow: at the limit, an encoding that specifies exactly one game (or only a few)
is not very interesting for a game-generation system. The most productive point on
the spectrum between complete generality and complete specificity is one of the
key tradeoffs in designing an encoding for game generators to use: smaller spaces
typically are more dense in playable, interesting candidates, but larger spaces may
allow for more interesting variation [27].3

In addition to being a more fruitful space for game generators to work in, genre-
specific encodings also make it easier to produce playable games. Whereas a com-
puter could generate purely abstract rule systems, making interesting games that are
playable by humans requires connecting those abstract rules to concrete audiovi-
sual representations [18]. For example, the abstract notion of a “capture” in board
games is often represented by physically removing a piece from the board. The idea
of “hidden information” in card games is represented by how players hold their
cards, and which cards on the table are face up versus face down. Concepts such
as “health” can be represented in any number of ways, ranging from numerical dis-
play of hitpoints or health percentage on the screen, to more indirect methods such
as changing a character’s colour, or even varying the music when a player’s health
drops below a threshold. Matching generated rules to these concrete representations
can be a challenging research problem in itself [25], but working with encodings
of specific genres allows us to sidestep the issue, by having a standard concrete
representation for the genre being considered.

Finally, using a genre-specific encoding provides a first step towards answering
a key question: how do we evaluate what constitutes a good set of game rules?
Rather than the extremely general question of what makes a good game, we can
ask what makes a good two-player board game, a good real-time strategy game, or
a good first-person shooter. That lets us take advantage of existing genre-specific
design knowledge, which is usually better developed and more amenable to being
formalised. Design of new board games may focus on properties such as balance,
availability of multiple nontrivial strategies, etc. Criteria for designing a good side-
scrolling shooter, meanwhile, may instead focus on the pace of the action, patterns
of enemy waves, and the difficulty progression—very different kinds of criteria.
When we generate the rules for games using encodings of these well-defined genres,
we can use a wide variety of existing design knowledge to made our playability and
quality judgements. This allows rule-generating PCG systems to start from the basis
of being domain experts in a specific genre, to use Khaled et al.’s terms for PCG
system roles [14].

The two sections that follow describe game-generator experiments that a number
of researchers have undertaken in those two domains that have seen the most study:
board games, and 2D graphical-logic games.

3 Some interesting future work lies in modular encodings: instead of choosing a specific genre,
a generator might pick and choose a generative space consisting of a combat system, 2D grid
movement, an inventory system, etc. [19].
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6.3 Board games

Board games were the first domain in which systems were built to procedurally
generate game rules. They have several features that make them a natural place
to start. For one, there is a discrete, finite structure to the games that simplifies
encoding; unlike computer games, which are defined by an often complex body of
code, games like chess are defined by simple sets of rules. Secondly, there is already
a culture of inventing board-game variants, so automatic invention of game variants
can draw from existing investigations into manual generation of game variants, and
the design books that have been written about those investigations [8, 2].

6.3.1 Symmetric, chess-like games

The earliest rule-generating system, predating the more recent resurgence in PCG
research, was METAGAME [27], which generated “symmetric, chess-like games”.
The chess-like part means that the games take place on a grid, and are structured
around two players taking turns moving pieces according to certain rules; these
pieces can also be removed from the board in certain circumstances. The symmetric
part means that the two players start on opposite ends of the board with symmetric
starting configurations, and all game rules are identical for each player, just flipped
to the other side of the board. For example, if METAGAME invented a chess vari-
ant in which pawns could capture sideways, this would always be true for both the
black and white player; the space of games METAGAME represents doesn’t in-
clude asymmetric games where players start with different pieces, or make moves
according to differing rules.

The symmetric aspect of the game rules is enforced by construction: only one set
of rules is encoded in the generator, and those rules are applied to both players, so
any change to an encoded rule automatically changes the rules for both sides. The
space of possible rules is encoded in a hierarchical game grammar that specifies
options for the board layout, how pieces can move, how they can capture, winning
conditions, and so on. Specific games are generated by simply stochastically sam-
pling from that grammar, and then imposing some checks for basic game playability.
Note that this is a constructive rather than a search-based approach; the system does
not test the quality of generated games as part of the generation process, and does
not search the space of games it can express as much as it randomly samples it.
The generator also has a few parameter knobs available, allowing the user to tweak
some aspects of what’s likely to be generated, such as the average complexity of
movement rules.

Pell’s motivation for building METAGAME was not game generation itself, but
testing AI systems on the problem of general game playing. By the early 1990s,
there was a worry that computer chess competitions were causing researchers to
produce systems so specifically engineered to play chess and only chess, that they
might no longer be advancing artificial intelligence in general. Pell proposed that
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more fundamental advances in AI would be better served by forcing game-playing
AI systems to play a wider space of games, where they wouldn’t know all the rules
in advance, and couldn’t hard-code as many details of each specific game [26]. To
actually set up such a competition, he needed a way to define a large space of games,
and a generator that could produce specific games from that space, to send to the
competing systems. METAGAME was created to provide that more general space
of test games, and as a result, also became the first PCG system for game rules.

6.3.2 Balanced board games

While METAGAME generated a fairly wide range of games, the end result was
controllable only implicitly: games were not selected for specific properties, but
chosen randomly from the game grammar.

One property that is frequently desired in symmetric games is game balance:
there shouldn’t be a large advantage for one side or the other, such that the outcome
is too strongly determined by who starts with the white pieces versus the black
pieces. METAGAME produces games that are often balanced by virtue of having
symmetric rule sets, which tend to produce balanced gameplay. But a symmetric
rule set does not automatically mean a game will be balanced: moving first can often
be a large advantage, or it might even in some cases be a disadvantage. Hom and
Marks [13] decided to address the goal of balance directly. They first took a much
smaller space of chess variants, to allow the space to be more exhaustively searched.
Then, they evaluated candidate games for balance by having computer players play
against each other a number of times, and rejected games with simulated win rates
that deviated too far from 50/50.

This process ends up feeding the original motivating application of METAGAME
back into the generation of game rules. METAGAME had been designed to test
general game-playing agents, which were new at the time. Over the years, a number
of research and commercial systems were developed, which could take an arbitrary
game encoded in a description language, and attempt to play it. Hom and Marks
took one such general game-playing system, Zillions of Games, and set it to play
their generated games as a way of evaluating them.

The changes from METAGAME introduced here are fairly general ones which
are seen in other PCG systems: the idea of an evaluation function to decide what
constitutes a good example, and simulation as a way of specifying an evaluation
function in a complex domain, where it’s difficult to specify one directly. Here, sim-
ulation is done by the computer playing the game against itself, and the evaluation
function is how close its win rate comes to being 50/50 from each side of the board.
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6.3.3 Evolutionary game design

The obvious next step is to use this ability to simulate and evaluate general games
to guide the automated search for new games. For example, the evaluation function
(also known as the fitness function) can be used to direct the evolution of rule sets, to
search for new combinations of mechanics that produce fit, interesting games. This
section describes an experiment in evolutionary board game design called Ludi,
which produced the first fully computer-invented games to be commercially pub-
lished [3].

6.3.3.1 Representation

Games are described in the Ludi system as symbolic expressions in simple ludemic
form (a ludeme is a unit of game information). For example, Tic-Tac-Toe is de-
scribed as follows:

(game Tic-Tac-Toe
(players White Black)
(board (tiling square i-nbors) (shape square) (size 3 3))
(end (All win (in-a-row 3)))

)

This game is played by two players, White and Black, on a square 3×3 board
including diagonals (i-nbors), and is won by the first player to form three-in-a-row
of their colour. By default, players take turns placing a piece of their colour on an
empty board cell per turn.

The Ludi language is procedural rather than declarative in nature, being com-
posed of high-level rule concepts rather than low-level machine instructions or logic
operations, as per the Stanford GDL. This makes the language less general as every
rule must be predefined by the programmer, but has the advantages of simplicity
and clarity; most readers should be able to recognise the game described above de-
spite having no prior knowledge of the system. Further, it allows rule sets to be
described and manipulated as high-level conceptual units, much as humans concep-
tualise games when playing and designing them.

6.3.3.2 Evaluation

The Ludi system evaluates a rule set by playing the game against itself over a num-
ber of self-play trials. A rule set is deemed to be “fit” in this context if it produces
a non-trivial and interesting contest for the players. The basic approach is similar to
that used by Althöfer [1] and Hom and Marks [13], but in this case a much broader
range of 57 aesthetic measurements are made, divided into
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• Intrinsic criteria based directly on the rule set.
• Playability criteria based on the outcomes of the self-play trials.
• Quality criteria based on trends in play.

The intrinsic criteria measure the game at rest directly from its rule set. However,
the true nature of a game does not emerge until the game is actually played, so it was
not surprising that no intrinsic criteria ultimately proved useful when these criteria
were correlated with human player rankings for a suite of test games.

It was found that the playability criteria, based on the game outcomes, provided
a useful and robust estimate of the basic playability of a game. Four of these criteria
proved particularly good at identifying unfit rule sets, constituting a playability filter
that formed the first line of defense to quickly weed out games that

• result in draws more often than not,
• are too unbalanced towards either player,
• have a serious first- or second-move advantage, or
• are too short or too long on average.

Games that pass the playability filter are then subject to a number of more subtle
and time-intensive quality measurements, based on the lead histories of the simu-
lated games. The lead history of a game is a record of the difference between the
estimated strength of the board position of the eventual winner and the eventual
loser at each turn. Such quality measurements are more subtle and less reliable than
the playability measurements, but offer the potential to capture a richer snapshot of
the player experience.
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Fig. 6.1: Lead history showing drama in a game. Adapted from [5]

For example, Figure 6.1 shows the lead history of a game lasting 27 moves. The
white and black dots show the players’ estimated fortunes, respectively, while the
red line shows the difference between them at each move. This example demon-
strates a dramatic game, in which the ultimate winner (White) spends several moves
in a relatively negative (losing) position before recovering to win the game. Such
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drama is a key indicator of interesting play that human designers typically strive to
achieve when designing board games.

6.3.3.3 Generation

Rule sets are evolved using a genetic programming (GP) approach, summarised
in Figure 6.2. A population of games is maintained, ordered by fitness, then for
each generation a pair of relatively fit parents are selected and mated using standard
crossover and mutation operations to produce a child rule set. The symbolic expres-
sions used to describe games constitute rule trees that are ideal for this purpose.

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too
Slow?

Y

NChoose
Policy

Drawish?

N
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Inbred?

N
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Bin

Population

Select

Fig. 6.2: Evolutionary game design process. Adapted from [5]

Each child rule set is checked for correctness according to the Ludi language,
playability, performance and similarity to other rule sets in the population. Rule sets
that pass these checks are given a unique name, officially making them a game, and
are then measured for fitness and added to the population. The name for each game
is also generated by the system, based on letter frequencies in a list of Tolkien-style
names.
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6.3.3.4 Evolved Games

Ludi evolved 1,389 new games over a week, of which 19 where deemed “playable”
and two have proven to be of exceptional quality. The best of these, Yavalath, is
described below:

(game Yavalath
(players White Black)
(board (tiling hex) (shape hex) (size 5))
(end (All win (in-a-row 4)) (All lose (in-a-row 3)))

)

Yavalath is similar to Tic-Tac-Toe played on a hexagonal board, except that play-
ers win by making four-in-a-row (or more) of their colour but lose by making three-
in-a-row beforehand. This additional condition may at first seem a redundant af-
terthought, but players soon discover that it allows some interesting tactical devel-
opments in play.

12

Fig. 6.3: White forces a win in Yavalath. Adapted from [4]

For example, Figure 6.3 shows a position in which White move 1 forces Black to
lose with blocking move 2. Such forcing moves allow players to dictate their oppo-
nent’s moves to some extent and set up clever forced sequences. This emergence of
complex behaviour from such simple rules provides an “aha!” moment that players
find quite compelling, and is exactly what is hoped for from an evolutionary search.

The other interesting game evolved by Ludi is called Ndengrod:

(game Ndengrod
(players White Black)
(board (tiling hex) (shape trapezium) (size 7 7))
(pieces (Piece All (moves (move
(pre (empty to)) (action (push)) (post (capture surround))
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))))
(end (All win (in-a-row 5)))

)

This is also an n-in-a-row game—this rule dominated the rule sets of evolved
games—but in this case players capture enemy groups that are surrounded to have
no freedom, as per Go. This rule set also demonstrates the emergence of interesting
and unexpected behaviour, due to an inherent conflict between the “capture sur-
round” and “five-in-a-row” rules, as shown in Figure 6.4.

2
4
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3

5 a
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7

Fig. 6.4: Ladders don’t work as planned in Ndengrod. Adapted from [4]

White squeezes Black against the edge to force a ladder (left), which Black
must extend each turn to keep their group alive (middle). However, once the lad-
der reaches four pieces long after move 5, then White cannot continue the attack
at point a but must instead block the line at point b, allowing Black to escape with
move 7, and the game continues with White piece 6 now under threat.

6.3.3.5 Legacy

Yavalath and Ndengrod (renamed Pentalath) were the first fully computer-invented
games to be commercially published. Yavalath was the first game released by Span-
ish publisher Nestorgames, and continues to be the flagship product in its catalogue
of over 100 games.

Ndengrod is actually the better game of the two; it is deeper, involving a complex
underlying friction between enclosure and connectivity, and is definitely more of a
brain-burner. However, the more complex rules create a higher barrier to entry for
beginners, hence it is destined to remain second choice. Conversely, the rules of
Yavalath are intuitively obvious to any new player, and it has since been ranked in
the top 100 abstract board games ever invented [4].4

The successful invention of board games by computer did not cause the expected
backlash from players and designers. The most common response from players is

4 BoardGameGeek database, August 2016 (http://www.boardgamegeek.com).
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simply that they’re surprised that a computer-designed game could be this simple
and fun to play, while designers have so far dismissed this automated incursion into
the very human art of game design as not much of a threat, as long as it produces
such lightweight games. However, this attitude may change as PCG techniques—
and their output—become increasingly sophisticated and challenge human experts
in the field of design as well as play.

One near-miss produced by Ludi, called Lammothm, is worth mentioning to
highlight a pitfall of the evolutionary approach. Lammothm is played as per Go
(i.e. surround capture on a square grid) except that the aim is to connect opposite
sides of the board with a chain of your pieces. Unfortunately, the evolved rule set
contained the i-nbors attribute, meaning that pieces connect diagonally which all but
ruins the game, but if this attribute is removed then the rule set suddenly becomes
equivalent to that of Gonnect, one of the very best connection games [2]. Ludi was
one mutation away from rediscovering a great game, but the very nature of the evo-
lutionary process means that this mutation is not guaranteed to ever be tried for this
rule set. It is possible that alternative approaches with stronger inherent local search,
including Monte Carlo tree search (MCTS), can help address this issue.

6.3.4 Card games

Traditional card games—Poker, Uno, Blackjack, Canasta, Bridge etc.—have many
features in common with board games. In particular, they are turn based and deal
in discrete units (cards) which are in limited supply and can exist at any of a lim-
ited number of positions (player hands, piles etc). They also have some features that
distinguish them from most board games, including not typically relying on a board
and the often central importance of imperfect information (a player does not know
which cards their opponents have). The limited ontology and relative ease of auto-
mated playing (due to the limited branching factor) make the domain of card games
appealing for research in game generation.

Font et al. developed a description language for card games and attempted to
generate card games using evolutionary search in the space defined by this lan-
guage [11]. The language was defined so as to include three well-known card
games—Texas Hold’em Poker, Uno and Blackjack—and implicitly games posi-
tioned between these in the game space. Initial attempts to evolve new card games
in this language were made, but it was discovered that unexpectedly many of the
generated games were unplayable. Efforts continue to refine the language and eval-
uation functions to direct the search towards playable games.
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6.4 Video games

In the last few years, a small number of researchers have worked on representing
and generating simple 2D graphical-logic games. By 2D graphical-logic games we
mean those games in which gameplay is based on 2D elements moving around,
colliding with each other, appearing and disappearing, and the like.5 While 2D ele-
ments moving around and colliding with each other constitutes a rather simple set
of primitives out of which to build game rules, a quite large range of games can be
built out of them, including such classics as Pong, Pac-Man, Space Invaders, Mis-
sile Command, and Tetris. These games have a different set of properties from those
typically seen in board games. They are usually characterised by featuring more
complex game-agent or agent-agent interaction that could easily be handled by hu-
man calculation in a board game, including semi-continuous positioning, timesteps
that advance much faster than board-game turns, multiple moving NPCs, hidden
state, and physics-based movement that continues even without player input. Many
such games feature an avatar which the player assumes the role of and controls more
or less directly, rather than selecting pieces from a board: the player “is” the Pac-
Man in Pac-Man, which adds a new layer of interpretation [36] and experiential
feeling to such games, and in turn a new axis of opportunity and challenge for rule
generators.

6.4.1 “Automatic Game Design”: Pac-Man-like grid-world games

In a 2008 paper, Togelius and Schmidhuber describe a search-based method for
generating simple two-dimensional computer games [35]. The design principles of
this system were that it should be able to represent a simplified discrete version of
Pac-Man, that other games should be easy to find through simple mutations, and
that the descriptions should be compact and human-readable.

The games that this system can represent all take place on a grid with dimensions
15×15 (see Figure 6.5). The grid has free space and walls, and never changes. On
the grid, there is a player agent (represented in cyan in the screenshot) and things of
three different colours (red, blue and green). Whether the things are enemies, food,
helpers etc is up to the rules to define. The player agent and the things can move in
discrete steps of one grid cell up, down, left or right. Each game runs for a certain
number of time steps, and is won if the player reaches a score equal to or above a
score threshold.

Representation: The game representation consists of a few variables and two ma-
trices. The variables define the length of the game, the score limit, and the number
of things of each colour. They also define the movement pattern of each colour. All
things of a particular colour move in the same way, and the available movement
patterns are standing still, moving randomly with frequent direction changes, mov-

5 We borrow the term from Wardrip-Fruin [36].
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Fig. 6.5: The Automatic Game Design system by Togelius and Schmidhuber [35]

ing randomly with infrequent direction changes, moving clockwise along walls and
moving counterclockwise along walls. The first of the the two matrices determines
the effects of collisions between things, and between things and the agent. There is
a cell for each combination of thing colours, and a cell for the combination of each
colour with the player agent. The possible effects are that nothing happens, one or
both things die, or one or both things teleport to a random location. For example,
the matrix could specify that when a blue and a red thing collide, the blue thing dies
and the red thing teleports. The other matrix is the score effects matrix. It has the
same structure as the collision effects matrix, but the cells instead contain negative
or positive changes to the score: for example, the player agent colliding with a blue
thing might mean a score increment.

Evaluation: In the experiments described in the paper, the aim was to make
games that were learnable. The motivation for this is the theory, introduced in vari-
ous forms by psychologists such as Piaget and game designers such as Koster, that
playing is learning and that a large part of the fun in games comes from learning
to play them better [28, 15]. Translated to an evaluation function for game rules,
the evaluation should reward games that are hard initially, but which are possible
to rapidly learn to play better. Under the assumption that learnability for a machine
somehow reflects learnability for a human, the evaluation function uses an evolu-
tionary learning mechanism to learn to play games. Games that are possible to win
for random players receive low fitness, whereas games that can be learnt (where the
agent increases its score as much as possible) receive high fitness.6

6 Later research has further investigated this class of fitness functions for automated game design,
based on the idea that good games should be possible for intelligent agents—but not for random
agents—to play well [23, 24].
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6.4.2 Sculpting rule spaces: Variations Forever

All of the possible games that can be specified in a particular rule encoding make up
a generative space of games. We’ve just looked at one way to explore a generative
space of games and pick out interesting games from the large sea of uninteresting
or even unplayable games. If we define an evaluation function to rate games from
the space, we can use evolutionary computation to find games that rate highly. A
different approach is to carve out interesting subsets of the space, not by rating each
individual game, but by specifying properties that we want games to have, or want
games to avoid. This leaves a smaller generative space with only games that satisfy
the desired properties; iterative refinement can then let us zoom in on interesting
areas of the generative space.

Variations Forever [31] is a game generator turned into a game, built with Answer
Set Programming (ASP, see Chapter 8). In this game, the player explores different
variations of game rules through playing games. The ontology and rule space is sim-
ilar to but expanded compared to the rule space used in the Togelius and Schmidhu-
ber experiment above. The games all contain things moving in a two-dimensional
space, and the bulk of rules are defined by the graphical-logic effects of various
types of interactions between the moving and stationary elements. However, the
search mechanic is radically different. Instead of searching for rule sets that score
highly on certain evaluation functions, the constraint solver finds rule sets which
satisfy certain constraints. Examples of constraints include: it should be possible
to win the game by pushing a red thing onto a yellow thing, or it should not be
possible to lose all blue things in the game while there are still green things. These
constraints are specified by the game designer, and different choices of constraints
will produce larger or smaller sets of games, with different properties. The player
then gets a specific game randomly chosen from that constrained space (and then
another one, and then another one), and part of the game is for them to try to figure
out how the rules work, and what the sequence of games have in common.

The aim of Variations Forever is not to produce a specific game deemed to be
good, but to provide a way for game designers to define and “sculpt” generative
spaces of games, where games can be included in or excluded from the space based
on specific criteria. Players then explore these designer-carved generative spaces,
seeing a series of games that differ in specifics but all share the specified properties.

6.4.3 Angelina

Angelina is an ongoing project by Cook and Colton to create a complete system for
automatically generating novel videogames. The system has gone through several
iterations, each focusing on developing a different kind of game. In the first iteration,
the focus was on discrete arcade-style 2D games, and the encoding system was along
the lines of the Togelius and Schmidhuber experiment above [7]. The main change
is that rather than keeping the map fixed and placing the agent randomly, Angelina
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sees the rule set, the map, and the initial placement as three separate entities, and
evolves all three of them using a form of cooperative co-evolution. This means that
each different design element is evaluated partly in isolation, according to objectives
which are independent of the rest of the game. However, these individual elements
are also combined into full games, which are then evaluated through automated
playouts to assess how well the different elements cooperate with one another. For
example, a level design might show individual fitness by exhibiting a certain amount
of branching or dead-ends, but be a bad fit for an object layout because it places
walls over the start point for the player.

Representation: The representation of rules and mechanics in Angelina has
changed through the different iterations of the software, in an attempt to increase
the expressivity of the system and remove constraints on its exploration of the de-
sign space. In the first iteration of Angelina, rules were composed from a grammar-
like representation of rule chunks, which produces good sets of rules, but is very
dependent on the starting grammar. This is in turn dependent on the human that
wrote the grammar. For Angelina, this is important because the research is partly
motivated by questions of computational creativity. It’s a good idea to think about
issues like this when building a procedural content generator, however—if we want
our systems to create things that are surprising and new, things that we could not
have thought of ourselves, then it helps to consider whether our representation is
constraining our systems with too many of our own preconceptions. Deciding how
general or how specific your representation needs to be is a very important step in
designing a generator of this kind.

To provide Angelina with more responsibility in designing the game’s mechan-
ics and rules, the second iteration of the software provided a less discrete do-
main for Angelina to explore. This version was focused on the design of simple
Metroidvania-style platform games, where players incrementally gain powers that
allow them to explore new areas of the world. Powerups are scattered through the
game which change the value of one of a few hand-chosen variables in the game
engine—such as the player’s jump height, or the state of locked doors. The precise
value associated with a given powerup was evolved as a design element in the co-
evolutionary system of this version of Angelina. This meant that Angelina could
make fine-grained distinctions between the player’s jump height being 120 pixels or
121 pixels, which in some cases was the difference between making the player sud-
denly able to access the entire game world, or carefully allowing access to a small
part that would provide a more natural game progression.

This notion of game mechanics as data modifiers was carried through to the next
iteration of Angelina, which took the idea a step further and opened up the codebase
of the underlying game engine to Angelina. This time, instead of being given a fixed
set of obvious variables to choose from, Angelina was responsible for choosing both
the target value and the target variable, out of all the variables hidden away in the
entire game’s code. Below is an example mechanic designed by the system. It finds
the acceleration variable in the player object, and inverts the sign on its y
component.

player.acceleration.y *= -1
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In the Java-based game engine Flixel-GDX,7 which Angelina uses, this is equiv-
alent to inverting the gravitational pull on an object, similar to the gravity-flipping
mechanic in Terry Cavanagh’s VVVVVV [21]. To generate this, Angelina searched
through available data fields within a sample game, and generated a type-specific
modifier for it (in this case, multiplying by a negative number). This exploration of
a codebase was made possible by using Java’s Reflection API—a metaprogramming
library that allows for the inspection, modification and execution of code at runtime.
Code generation and modification is a risky business, in general—the state space can
very quickly become too large to explore in any reasonable timeframe, and modi-
fying code at runtime is similarly perilous, particularly when using something so
potentially destructive as evolutionary computation.

Angelina tries to mitigate these problems in two ways: firstly, using Java as a
basis for the system means that it has robust error handling. Generating and execut-
ing arbitrary code is liable to throw every kind of error imaginable. A typical run of
Angelina will throw OutOfMemoryExceptions (by modifying data which trig-
gers an infinite loop), ArrayIndexExceptions (by modifying variables which
act as indexes into data structures) and ArithmeticExceptions (by modifying
variables used in calculations, causing problems such as division by zero). However,
none of these errors cause the top-level execution of Angelina to fail. Instead, they
can be caught as runtime errors, and suppressed. The mechanic which caused these
errors is given a low or zero fitness score, and the system then proceeds to test the
next mechanic.

The second and more important way that Angelina’s design overcomes issues
with code generation is the evaluation criteria used to assess whether a mechanic
is good or not. Figure 6.6 shows the outline for a simple level from a Mario-like
platform game. The player starts the level in the red square on the left, and can run
and jump. The aim is to reach the blue square on the right. We can verify that this
level is unsolvable for a given jump height—the player is simply unable to scale the
wall in the center of the level. This is the game configuration that Angelina begins
with when evaluating a new game mechanic. The system can then add this new
game mechanic to the game’s codebase, and try to solve the level by reaching the
exit. If Angelina is able to make progress and get to the exit, since we know the level
was previously unsolvable and only the mechanic has been added we can conclude
that the mechanic adds some affordance which we did not previously have. In other
words, it provides some utility for the player.

This constraint-like evaluation approach (either the simulation reaches the exit,
or it does not) is helpful in directing search through this kind of unpredictable state
space. There are a few things to note about this kind of evaluation, however. Firstly,
because we are generating arbitrary code modifiers, we can’t give Angelina any
heuristics to help it test the mechanic out. We have no idea whether a given me-
chanic will affect the player, enemies, the level geometry, the physics system, or
whether it will outright crash the game. This means that Angelina’s approach to
simulating gameplay with the new mechanic is to attempt a breadth-first exhaustive

7 http://www.flixel-gdx.com
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Fig. 6.6: A test level used by Angelina to evaluate generated game mechanics. The
player starts in the red square on the left-hand side. They must reach the blue square
on the right

simulation of gameplay. While this is almost tenable for a small example level and
a restrictive move set (left, right, jump and ‘special mechanic’), it’s hard to imagine
expanding this to a game with the complexity and scale of Skyrim, for example, or
even Spelunky.

The other thing to bear in mind is that how useful a mechanic is does not nec-
essarily relate to whether it is a good idea or not. We could imagine a very useful
mechanic which automatically teleports the player to the exit, but which trivialises
the rest of the game’s systems entirely. Similarly, many game mechanics are specif-
ically designed to balance utility with risk (enchanting items in Torchlight might re-
sult in the item being destroyed, for example) or simply exist to entertain the player.
This last category is very important—mechanics such as the infinite parachute in
Just Cause 2 certainly add utility to the player’s mechanical toolkit, but it is clearly
designed to be enjoyable to interact with. Feelings like flow, tactility or immersion
are difficult to quantify at the best of times, and are certainly not captured by the
extremely utilitarian approach taken by Angelina.

Despite these shortcomings, the use of code as a domain for procedural content
generation is exciting, and holds much promise. Angelina was able to rediscover
many popular game mechanics, such as gravity inversion (as seen in VVVVVV), and
bouncing (as seen in NightSky [22]). The purely simulation-based approach also
enabled Angelina to discover obscure and nuanced emergent effects in the gener-
ated code. In one case, Angelina developed a mechanic for simple teleportation, in
which the player is moved a fixed distance in a particular direction when a button
is pressed. This mechanic can be used for bypassing walls, but Angelina’s breadth-
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first simulation of gameplay also discovered that by teleporting inside a wall, it was
possible to jump up out of the wall, teleport back inside, and repeat the process. This
technique could be used to wall-climb—even though the game had no code relating
to this feature—all made possible by a single line of code modified by Angelina.

Evaluating Angelina as an autonomous game designer has proven difficult for a
number of reasons. During the development of Angelina many of the games features
were static and coded by hand, such as the control schemes or (in earlier versions of
the software) the game’s artwork. Focusing player surveys on the aspects of games
which change is difficult. Comparative testing is also difficult when the expressive
range of the software is as low as it has been in some versions of Angelina. The out-
put of the system varies within a small subgenre, which means it is difficult to make
strong value judgements on whether one game is better than another, particularly
mechanically. However, survey-based studies might still be the best way of getting
meaningful information about the system’s performance.

6.4.4 The Video Game Description Language

The Video Game Description Language (VGDL) is an effort to create a generic and
flexible but compact description language for video games of the types that were
seen on early home game consoles such as the Atari 2600. In this sense, it is a direct
follow-up to the efforts described above (in particular Togelius and Schmidhuber),
and its conceptual structure is similar. However, it is intended to be more general in
that it can encode a larger range of games, and more flexible in that it decouples the
description language from the game engine, the game evaluation metrics, and the
generation method.

The basic design of VGDL was outlined in [10], and a first implementation of a
working game engine for the language (together with several improvements to the
design) was published in [30]. One of the design goals for VGDL is to be usable for
general video game playing competitions, where artificial intelligence agents are
tested on their capacity to play a number of games which neither the agent nor the
designer of the agent has seen before [6]. These games could be manually or auto-
matically generated, and for the idea to be viable in the long run, automatic game
generation will need to be implemented at some point. The language is thus designed
with ease of automatic generation in mind, though the initial stages of development
have rather focused on re-implementing a range of classic games in VGDL to show
the viability of doing this and test the limits of the game engine. A first iteration of
the General Video Game Playing Competition8 was run in 2014. This competition
tests submitted agents against several unseen games defined in VGDL, and uses a
Java-based implementation of the VGDL game engine. For future iterations, there
are plans to use generated games to test agents, and to include competition tracks
focused on game generation and on level generation.

8 http://www.gvgai.net
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A VGDL game is written in a syntax derived from Python, and is therefore rel-
atively readable. There are four parts to a VGDL game: level mapping, sprite set,
interaction set and termination set. In addition, there are level descriptions for an ar-
bitrary positive number of levels. A level description describes a level for the game
as a two-dimensional matrix of standard ASCII characters, where the level map-
ping defines which character maps to which type of sprite. The sprite set defines
what types of sprites there are in the game and their movement behaviour, for ex-
ample wall (stands still), guard robot (moves around the walls) and missile (chases
the avatar). A special case is the player avatar, which the player controls directly.
All sprites can obey different types of physics, such as grid-based movement or
continuous movement with or without gravity. The interaction set defines most of
what we call operational rules in the game, as it describes what happens when two
sprites collide—similarly to the previous graphical game description efforts above,
the list of possible interaction effects include death, teleportation, score increase or
decrease and several others. The termination set describes various ways of ending
the game, such as all sprites of a particular type disappearing, a particular sprite
colliding with another etc.

6.4.5 Rulearn: Mixed-initiative game level creation

All the game generators described above have been non-interactive content genera-
tors, in that they generate a complete rule set without any human contribution. The
Rulearn system by Togelius instead tries to realise interactive generation of game
rules [33]. The system starts with the player controlling an agent obeying simple
car physics in a 2D space containing agents of three other colours, moving ran-
domly. Collisions will happen, but have no consequences. The player is also given
an array of buttons which will effect consequences, such as “kill red”, “increase
score”, “chase blue” and “split green”. Every time the player presses a button, that
consequence will happen. However, the system will also try to figure out why the
player pressed that button. Using machine-learning methods on the whole history of
past actions, the system will try to figure out which game the player is playing, and
induce the rules behind it. The result is a mixed-initiative system for game rules,
which in early testing has proved far from easy to use.

6.4.6 Strategy games

A project by Mahlmann et al. experimented with evolving key parts of strategy
games [16, 17]. Strategy games are games, typically adversarial and themed on mil-
itary conflict, where the player manages resources and moves units (representing
e.g. tanks, soldiers and planes) around on a board. Examples include the Civiliza-
tion series, Advance Wars and Europa Universalis; this genre of games is closely
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related to real-time strategy games such as Dune II and StarCraft, except for being
turn based. They share characteristics with both traditional board games, such as
typically being turn based and playing out on a discrete board/map, and with graph-
ical games in the relatively complex interactions between units and in the world,
more complex than could be comfortably simulated in a non-digital game.

In order to be able to generate strategy games, they developed a description
language for such games, aptly called the Strategy Game Description Language
(SGDL). They also developed a game engine that allows a human or a computer
player to play any game described in this language. In a series of experiments,
different parts of strategy games represented in this language were evolved using
genetic programming. In initial experiments, the focus was on evolving how much
damage each type of unit could inflict on the others in a simple strategy game with
the aim of creating balanced sets of units [16]. In a later set of experiments, the
complete logics for the strategy game units were evolved, with the goal of finding
sets of units of balanced strengths but which were functionally different between
players [17]. In these experiments several new strategy game mechanics (previously
unseen to the experimenters) emerged from the experiments, including units that
modified the shooting range of other units based on their proximity.

6.4.7 The future: Better languages? Better games? 3D games?

As we can see, existing work on generating graphical game has targeted games in
the style of classic arcade games and home console games from the early 1980s,
or simple arcade games. There is still considerable work to be done here, and no-
body has yet constructed a system that can generate novel graphical games of high
quality, comparable to the novel high-quality board games produced by Cameron
Browne’s Ludi system. One of the important open questions is how to best balance
expressivity of the game description language with locality of search and density of
good games; we want a representation which can represent truly novel games, but
we also want that representation to be searchable. However, there are also consid-
erable opportunities in developing game description languages that can effectively
and economically describe other types of games, and game generators that take into
account the specific game-design affordances and challenges that come with such
games. For example, what would it take to generate playable, interesting and orig-
inal FPS games? Which characteristics make games more or less easily “generat-
able” [34], and what techniques will best succeed at generating them, remains a
wide-open research question, waiting for new experiments to push its boundaries.
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6.5 Exercise: VGDL

The main theme of this chapter has been that generating rules depends heavily on
how we encode rules for a particular kind of game, since these encodings define a
space of games. The Video Game Description Language (VGDL) provides a fairly
straightforward encoding for a set of graphical-logic games, allowing for some vari-
ation in gameplay styles, without going all the way to the intractable complexity of
trying to encode every possible kind of game. In addition, it includes an interpreter
and simulator in Python (pyVGDL) and another in Java (jVGDL), so that games
produced in the encoding can easily be played.

This exercise is in two parts, with an open research question suggested as an
optional third.

Part 1: Understanding a VGDL game. Download pyVGDL9 or jVGDL.10 Both
packages come with a number of example games in the examples directory. Choose
a game, and understand its encoding. You may do this by first playing it, and trying
to figure out what its rules are. Then look at the rules as they’re encoded in its
definition file: are they the rules you figured out? Were there other rules you didn’t
notice? Play it again, this time with the rules in mind. Go back and forth between
the written rules and the gameplay experience until you’re confident you understand
what happens in the game, and how that relates to what’s written in the VGDL
definition.

Part 2: Write a new game in VGDL. Choose a graphical-logic game suitable
for representation using VGDL’s vocabulary. (Many traditional arcade games of the
Atari 2600 era or early Nintendo or Commodore 64 era are in their essence im-
plementable in VGDL.) What are the objects in the game, and what rules can be
written to specify the game’s mechanics? You may want to start by first listing these
on paper in natural language or as a set of bullet points, and then figuring out how
to encode them in VGDL. You may make up your own game, or choose an existing
arcade-style game to translate to VGDL.

Part 3 (optional): Write a generator that outputs VGDL games. At the time of
writing, there were some preliminary experiments in doing so [23, 24], but they
were not yet at the level of producing good games for humans to play. Most methods
have not yet been tried; how would you approach the problem?

6.6 Summary

In order to generate game rules, you first need to devise a good representation for
these rules. Several description languages for game rules have been invented. There
is usually some tradeoff between the expressivity of the encoding (the range of
games it can represent), the density of allowable or feasible game rules, compactness

9 https://github.com/schaul/py-vgdl
10 https://github.com/EssexUniversityMCTS/gvgai



120 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

and human readability. Once you have an encoding, you will want to find good game
rules. Search-based methods have been applied in various different forms, for ex-
ample by the board-game-generating Ludi system and the arcade-game-generating
Angelina system. A key problem here is evaluating the quality of the rules, which
is generally much harder than evaluating the quality of other kinds of game con-
tent, as the evaluation function needs to go beyond mere correctness and into some
quantification of the game-theoretic and aesthetic qualities of the game. Constraint
satisfaction approaches have also been used to search for good rule sets; for example
Answer Set Programming was used in Variations Forever.
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