
Chapter 4

Fractals, noise and agents with applications to

landscapes

Noor Shaker, Julian Togelius, and Mark J. Nelson

Abstract Most games include some form of terrain or landscape (other than a flat
floor) and this chapter is about how to effectively create the ground you (or the
characters in your game) are standing on. It starts by describing several fast but ef-
fective stochastic methods for terrain generation, including the classic and widely
used diamond-square and Perlin-noise methods. It then goes into agent-based meth-
ods for building more complex landscapes, and search-based methods for generating
maps that include particular gameplay elements.

4.1 Terraforming and making noise

This chapter is about terrains (or landscapes—we will use the words interchange-
ably) and noise, two types of content which have more in common than might be
expected. We will discuss three very different types of methods for generating such
content, but first we will discuss where and why terrains and noise are used.

Terrains are ubiquitous. Almost any three-dimensional game will feature some
ground to stand or drive on, and in most of them there will be some variety such
as different types of vegetation, differences in elevation etc. What changes is how
much you can interact directly with the terrains, and thus how they affect the game
mechanics.

At one extreme of the spectrum are flight simulators. In many cases, the terrain
has no game-mechanical consequences—you crash if your altitude is zero, but in
most cases the minor variations in the terrain are not enough to affect your perfor-
mance in the game. Instead, the role of the terrain is to provide a pretty backdrop
and help the player to orientate. Key demands on the terrain are therefore that it is
visually pleasing and believable, but also that it is huge: airplanes fly fast, are not
hemmed in by walls, and can thus cover huge areas. From 30,000 feet one might
not be able to see much detail and a low-resolution map might therefore be seen as
a solution, but preferably it should be possible to swoop down close to the ground

57� Springer International Publishing Switzerland 2016
N. Shaker et al., Procedural Content Generation in Games, Computational
Synthesis and Creative Systems, DOI 10.1007/978-3-319-42716-4_4

58 Noor Shaker, Julian Togelius, and Mark J. Nelson

and see hills, houses, creeks and cars. Therefore, a map where the larger features
were generated in advance but where details could be generated on demand would
be useful. Also, from a high altitude it is easy to see the kind of regularities that re-
sult from essentially copying and pasting the same chunks of landscape, so reusing
material is not trivial.

In open-world games such as Skyrim and the Grand Theft Auto series, terrains
sometimes have mechanical and sometimes aesthetic roles. This poses additional
demands on the design. When driving through a landscape in Grand Theft Auto, it
needs to be believable and visually pleasing, but it also needs to support the stretch
of road you are driving on. The mountains in Skyrim look pretty in the distance, but
also function as boundaries of traversable space and to break line of sight. To make
sure that these demands are satisfied, the generation algorithms need a high degree
of controllability.

At the other end of the spectrum are those games where the terrain severely
restricts and guides the player’s possible course of actions. Here we find first-person
shooters such as those in the Halo and Call of Duty series. In these cases, terrain
generation has more in common with the level-generation problems we discussed in
the previous chapter.

Like terrains, noise is a very common type of game content. Noise is useful
whenever small variations need to be added to a surface (or something that can
be seen as a surface). One example of noise is in skyboxes, where cloud cover
can be implemented as a certain kind of white-coloured noise on a blue-coloured
background. Other examples include dust that settles on the ground or walls, certain
aspects of water (though water simulation is a complex topic in its own right), fire,
plasma, skin and fur colouration etc. You can also see minor topological variations
of the ground as noise, which brings us to the similarity between terrains and noise.

4.1.1 Heightmaps and intensity maps

Both noise and most aspects of terrains can fruitfully be represented as two-
dimensional matrices of real numbers. The width and height of the matrix map to
the x and y dimensions of a rectangular surface. In the case of noise, this is called
an intensity map, and the values of cells correspond directly to the brightness of the
associated pixels. In the case of terrains, the value of each cell corresponds to the
height of the terrain (over some baseline) at that point. This is called a heightmap. If
the resolution with which the terrain is rendered is greater than the resolution of the
heightmap, intermediate points on the ground can simply be interpolated between
points that do have specified height values. Thus, using this common representa-
tion, any technique used to generate noise could also be used to generate terrains,
and vice versa—though they might not be equally suitable.

It should be noted that in the case of terrains, other representations are possi-
ble and occasionally suitable or even necessary. For example, one could represent
the terrain in three dimensions, by dividing the space up into voxels (cubes) and

4 Fractals, noise and agents with applications to landscapes 59

computing the three-dimensional voxel grid. An example is the popular open-world
game Minecraft, which uses unusually large voxels. Voxel grids allow structures
that cannot be represented with heightmaps, such as caves and overhanging cliffs,
but they require a much larger amount of storage.

4.2 Random terrain

Let’s say we want to generate completely random terrain. We won’t worry for the
moment about the questions in the previous chapter, such as whether the terrain we
generate would make a fair, balanced, and playable RTS map. All we want for now
is random terrain, with no constraints except that it looks like terrain.

If we encode terrain as a heightmap, then it’s represented by a two-dimensional
array of values, which indicate the height at each point. Can generating random
terrain be as simple as just calling a random-number generator to fill each cell of the
array? Alas, no. While this technically works—a randomly initialized heightmap is
indeed a heightmap that can be rendered as terrain—the result is not very useful. It
doesn’t look anything like random terrain, and isn’t very useful as terrain, even if
we’re being generous. A random heightmap generated this way looks like random
spikes, not random terrain: there are no flat portions, mountain ranges, hills, or other
features typically identifiable on a landscape.

The key problem with just filling a heightmap with random values is that every
random number is generated independently. In real terrain, heights at different points
on the terrain are not independent of each other: the elevation at a specific point on
the earth’s surface is statistically related to the elevation at nearby points. If you
pick a random point within 100 m of the peak of Mount Everest, it will almost
certainly have a high elevation. If you pick a random point within 100 m of central
Copenhagen, you are very unlikely to find a high elevation.

There are several alternative ways of generating random heightmaps to address
this problem. These methods were originally invented, not for landscapes, but for
textures in computer graphics, which had the same issue [3]. If we generate random
graphical textures by randomly generating each pixel of the texture, this produces
something that looks like television static, which isn’t appropriate for textures that
are going to represent the surfaces of “organic” patterns found in nature, such as the
texture of rocks. We can think of landscape heightmaps as a kind of natural pattern,
but a pattern that’s interpreted as a 3D elevation rather than a 2D texture. So it’s not
a surprise that similar problems and solutions apply.

4.2.1 Interpolated random terrain

One way of avoiding unrealistically spiky landscapes is to require that the land-
scapes we generate are smooth. That change does exclude some realistic kinds of

60 Noor Shaker, Julian Togelius, and Mark J. Nelson

landscapes, since discontinuities such as cliffs exist in real landscapes. But it’s a
change that will provide us with something much more landscape-like than the ran-
dom heightmap method did.

How do we generate smooth landscapes? We might start by coming up with a
formal definition of smoothness and then develop a method to optimise for that
criterion. A simpler way is to make landscapes smooth by construction: fill in the
values in such a way that the result is less spiky than the fully random generator.
Interpolated noise is one such method, in which we generate fewer random values,
and then interpolate between them.

With interpolated noise, instead of generating a random value at every point in the
heightmap, we generate random values on a coarser lattice. The heights in between
the generated lattice points are interpolated in a way that makes them smoothly
connect the random heights. Put differently, we randomly generate elevations for
peaks and valleys with a certain spacing, and then fill in the slopes between them.

That leaves one question: how do we do the interpolation, i.e. how do we connect
the slopes between the peaks and valleys? There are a number of standard interpo-
lation methods for doing so, which we’ll discuss in turn.

4.2.1.1 Bilinear interpolation

A simple method of interpolating is to calculate a weighted average in first the
horizontal, and then the vertical direction (or vice versa, which gives the same re-
sult). If we choose a lattice that’s one-tenth as finely detailed as our heightmap’s
resolution, then height[0,0] and height[0,10] will be two of the randomly gener-
ated values. To fill in what should go in height[0,1], then, we notice it’s 10% of
the way from height[0,0] to height[0,10]. Therefore, we use the weighted average,
height[0,1] = 0.9×height[0,0]+0.1×height[0,10]. Once we’ve finished this inter-
polation in the x direction, then we do it in the y direction. This is called bilinear
interpolation, because it does linear interpolation along two axes, and is both easy
and efficient to implement.

While it’s a simple procedure, coarse random generation on a lattice followed by
bilinear interpolation does have drawbacks. The most obvious one is that mountain
slopes become perfectly straight lines, and peaks and valleys are all perfectly sharp
points. This is to be expected, since a geometric interpretation of the process just
described is that we’re randomly generating some peaks and valleys, and then fill-
ing in the mountain slopes by drawing straight lines connecting peaks and valleys
to their neighbours. This produces a characteristically stylized terrain, like a child’s
drawing of mountains—perhaps what we want, but often not. For games in partic-
ular, we often don’t want these sharp discontinuities at peaks and valleys, where
collision detection can become wonky and characters can get stuck.

4 Fractals, noise and agents with applications to landscapes 61

4.2.1.2 Bicubic interpolation

Rather than having sharp peaks and valleys connected by straight slopes, we can
generate a different kind of stylized mountain profile. When a mountain rises from
a valley, a common way it does so is in an S-curve shape. First, the slope starts rising
slowly. It grows steeper as we move up the mountain; and finally it levels off at the
top in a round peak. To produce this profile, we don’t want to interpolate linearly:
when we’re 10% of the way between lattice points, we don’t want to be 10% of the
way up the slope’s vertical distance yet.

Therefore we don’t want to do a weighted average between the neighbouring
lattice points according to their distance, but according to a nonlinear function of
their distance. We introduce a slope function, s(x), specifying how far up the slope
(verically) we should be when we’re x of the way between the lattice points, in the
direction we’re interpolating. In the bilinear interpolation case, s(x) = x. But now
we want an s(x) whose graph looks like an S-curve. There are many mathematical
functions with that shape, but a common one used in computer graphics, because it’s
simple and fast to evaluate, is s(x) =−2x3+3x2. Now, when we are 10% of the way
along, i.e. x = 0.1, s(0.1) = 0.028, so we should be only 2.8% up the slope’s vertical
height, still in the gradual portion at the bottom. We use this as the weight for the in-
terpolation, and this time height[0,1] = 0.972×height[0,0]+0.028×height[0,10].

Since the s(x) we chose is a cubic (third-power) function of x, and we again
apply the interpolation in both directions along the 2D grid, this is called bicubic
interpolation.

4.2.2 Gradient-based random terrain

In the examples so far, we’ve generated random values to put into the heightmap.
Initially, we tried generating all the heightmap values directly, but that proved too
noisy. Instead, we generated values for a coarse lattice, and interpolated the slopes in
between the generated values. When done with bicubic interpolation, this produced
a smooth slope.

An alternate idea is to generate the slopes directly, and infer height values from
that, rather than generate height values and interpolate slopes. The random numbers
we’re going to generate will be interpreted as random gradients, i.e. the steepness
and direction of the slopes. This kind of random initialization of an array is called
gradient noise, rather than the value noise discussed in the previous section. It was
first done by Ken Perlin in his work on the 1982 film Tron, so is sometimes called
Perlin noise.

Generating gradients instead of height values has several advantages. Since
we’re interpolating gradients, i.e. rates of change in value, we have an extra level
of smoothness: rather than smoothing the change in heights with an interpola-
tion method, we smooth the rate of change in heights, so slopes grow shallower
or steeper smoothly. Gradient noise also allows us to use lattice-based generation

62 Noor Shaker, Julian Togelius, and Mark J. Nelson

(which is computationally and memory efficient) while avoiding the rectangular
grid effects produced by the interpolation-based methods. Since peaks and valleys
are not directly generated on the lattice points, but rather emerge from the rises and
falls of the slopes, they are arranged in a way that looks more organic.

As with interpolated value-based terrain, we generate numbers on a coarsely
spaced lattice, and interpolate between the lattice points. However, we now gen-
erate a 2D vector, (dx,dy), at each lattice point, rather than a single value. This is
the random gradient, and dx and dy can be thought of as the slope’s steepness in the
x and y directions. These gradient values can be positive or negative, for rising or
falling slopes.

Now we need a way of recovering the height values from the gradients. First, we
set the height to 0 at each lattice point. It might seem that this would produce no-
ticeable grid artifacts, but unlike with value noise, it doesn’t in practice. Since peaks
and valleys rise and fall to different heights and with different slopes away from the
h = 0 lattice points, the zero value is sometimes midway up a slope, sometimes near
the bottom, and sometimes near the top, rather than in any visually regular position.

To find the height values at non-lattice points, we look at the four neighbouring
lattice points. Consider first only the gradient to the top-left. What would the height
value be at the current point if terrain rose or fell from h = 0 only according to that
one of the four gradients? It would be simply that gradient’s value multiplied by the
distance we’ve traveled along it: the x-axis slope, dx, times the distance we are to
the right of the lattice point, added to the y-axis slope, dy, times the distance we are
down from the lattice point. In terms of vector arithmetic, this is the dot product
between the gradient vector and a vector drawn from the lattice point to our current
point.

Repeat this what-if process for each of the four surrounding lattice points. Now
we have four height values, each indicating the height of the terrain if only one of
the four neighbouring lattice points had influence on its height. Now to combine
them, we simply interpolate these values, as we did with the value-noise terrain.
We have four surrounding lattice points that now have four height values, and we
have already covered, in the previous section, how to interpolate height values, using
bilinear or bicubic interpolation.

4.3 Fractal terrain

While gradient noise looks more organic, there is still a rather unnatural aspect to it
when treated as terrain: terrain now undulates at a constant frequency, which is the
frequency chosen for the lattice point spacing. Real terrain has variation at multiple
scales. At the largest scale (i.e. lowest frequency), plains rise into mountain ranges.
But at smaller scales, mountain ranges have peaks and valleys, and valleys have
smaller hills and ravines. In fact, as you zoom in to many natural phenomena, you
see the same kind of variation that was seen at the larger scale, but reproduced at

4 Fractals, noise and agents with applications to landscapes 63

(a) Diamond step (b) Square step (c) Diamond step repeats

Fig. 4.1: The diamond-square algorithm. (Illustration credit: Amy Hoover)

a new, smaller scale [10]. This self-similarity is the basis of fractals, and generated
terrain with this property is called fractal terrain.

Fractal terrain can be produced through a number of methods, some of them
based directly on fractal mathematics, and others producing a similar effect via sim-
pler means.

A very easy way to produce fractal terrain is to take the single-scale random ter-
rain methods from the previous section and simply run them several times, at multi-
ple scales. We first generate random terrain with very large-scale features, then with
smaller-scale features, then even smaller, and add all the scales together. The larger-
scale features are added in at a larger magnitude than the smaller ones: mountains
rise from plains a larger distance than boulders rise from mountain slopes. A classic
way of producing multi-scale terrain in this way is to scale the generated noise layers
by the inverse of their frequency, which is called 1/ f noise. If we have a single-scale
noise-generation function, like those in the previous section, we can give it a param-
eter specifying the frequency; let’s call this function noise(f). Then starting from a
base for our lowest-frequency (largest-scale) features, f , we can define 1/ f noise as

noise(f)+
1
2

noise(2 f)+
1
4

noise(4 f)+ . . .

There are many other methods for fractal terrain generation, most of which are
beyond the scope of this book, as there exist other textbooks covering the subject
in detail [3]. Musgrave et al. [11] group them into five categories of technical ap-
proaches, all of which can be seen as implementation methods for the general con-
cept of fractional Brownian motion (fBm). In fBm, we can conceptually think of a
terrain as being generated by starting from a point and then taking a random walk
following specific statistical properties. Since actually taking millions of such ran-
dom walks is too computationally expensive, a similar end result is approximated
using a variety of techniques. One that is commonly used in games, because it is
relatively simple to implement and computationally efficient, is the diamond-square
algorithm, illustrated in Figure 4.1.

In the diamond-square algorithm, we start by setting the four corners of the
heightmap to seed values (possibly random). The algorithm then proceeds as fol-

64 Noor Shaker, Julian Togelius, and Mark J. Nelson

lows. First, find the point in the center of the square defined by these four corners,
and set it to the average of the four corners’ values plus a random value. This is
the “diamond” step. Then find the four midpoints of the square’s sides and set each
of them to the average of three values: the two neighbouring corners and the mid-
dle of the square (which we just set in the last step)—again, plus a random value.
This is the “square” step. The magnitude of the random values we use is called the
roughness, because larger values produce rougher terrain (likewise, smaller values
produce smoother terrain). Completing these two steps has subdivided the original
square into four squares. We then reduce the roughness value and repeat the two
steps, to fill in these smaller squares. Typically the process repeats until a specified
maximum number of iterations have been reached. The end result is an approxima-
tion of the terrain produced by fBm.

4.4 Agent-based landscape creation

In Chapter 1, we discussed the desired properties of a PCG algorithm. The previ-
ously discussed methods satisfy most of these properties, however they suffer from
uncontrollability. The results delivered by these methods are fairly random and they
offer very limited interaction with designers, who can only provide inputs on the
global level through modifying a set of unintuitive parameters [14]. Several varia-
tions of these methods have been introduced that grant more control over the out-
put [7, 1, 13, 16].

The main advantage of software-agent approaches to terrain generation over
fractal-based methods is that they offer a greater degree of control while maintain-
ing the other desirable properties of PCG methods. Similarly to the agent-based
approaches used in dungeon generation (Section 3.3), agent-based approaches for
landscape creation grow landscapes through the action of one or more software
agents. An example is the agent-based procedural city generation demonstrated by
Lechner et al. [9]. In this work, cities are divided into areas (such as squares, indus-
trial, commercial, residential, etc.) and agents construct the road networks. Different
types of agents do different jobs, such as extenders, which search for unconnected
areas in the city, and connectors, which add highways and direct connections be-
tween roads with long travel times. Later versions of this system introduced addi-
tional types of agents, for tasks such as constructing main roads and small streets [8].

But since this chapter is about terrain generation, we’ll look now at work on
agent-based terrain generation by Doran and Parberry [2], which focuses primarily
on the issue of controllability, especially on providing more control to a designer
than the dominant fractal-based terrain generation methods do. Because of the lack
of input and interaction with designers, fractal-based methods are usually evaluated
in term of efficiency rather than the aesthetic features of the terrains generated [2].
Agent-based approaches, on the other hand, offer the possibility of defining more
fine-grained measures of the goodness of the terrains according to the behaviour of

4 Fractals, noise and agents with applications to landscapes 65

the agents. By controlling how and how much the agent changes the environment,
one can vary the quality of the generated terrains.

4.4.1 Doran and Parberry’s terrain generation

Doran and Parberry’s terrain-generation approach starts with five different types of
agents that work concurrently in an environment to simulate natural phenomena.
The agents are allowed to sense the environment and change it at will. Designers
are provided with a number of ways to influence terrain generation: controlling the
number of agents of each type is one way to gain control, another is by limiting
the agent lifetime using a predefined number of actions that the agent can perform.
After the number of steps is consumed, the agent becomes inactive.

The agents can modify the environment by performing three main tasks:

• Coastline: in this phase, the outline or shape of the terrain is generated using
multiple agents.

• Landform: the detailed features of the land are defined in this phase employing
more agents than were used in the previous phase. The agents work simultane-
ously on the environment to set the details of the mountains, create beaches and
shape the lowlands.

• Erosion: this is the last phase of the generation and it constitutes the creation of
rivers through eroding the previously generated terrain. The number of river to
create is determined by the number of agents defined in this phase.

According to these phases, several types of agents can be identified to achieve the
several tasks defined in each phase. The authors focused their work on five different
types:

1. Coastline agents: these agents work in the coastline phase before any other
agents, to draw the outline of the landscape. The map is initially placed under
sea level and the agents work by raising points above sea level. The process
starts with a single agent working on the entire map. Depending on the size of
the map, this agent multiplies by creating many other coastline agents which sub-
divide themselves in turn until each agent is assigned a small part of the map. The
process undertaken by each agent to generate the coastline can be described as
follows:

• Each agent is assigned a single seed point at the edge of the map, a direction
to follow and a number of tokens to consume.

• The agent checks its surroundings and if it is already land (this might happen
since all the agents are working simultaneously on the map) the agent starts
searching in the assigned direction for another appropriate starting point.

• Once the starting point is located, the agent starts working on the environment
by changing the height of the points. This is done by

66 Noor Shaker, Julian Togelius, and Mark J. Nelson

a. generating two points at random in different directions: one works as an
attractor and the other as a repulser.

b. identifying the set of points for elevation above the sea level.
c. scoring the points according to their distance from the attractor and the

repulser points. The ones closer to the attractor are scored higher.
d. the point with the highest score is then elevated above sea level and it

becomes part of the coastline.
e. the agent then continues by moving to another point in the map.

This method allows multiple agents to work concurrently on the map while pre-
serving localization since each agent moves in its surroundings and has a prede-
fined number of tokens to consume. The number of tokens given to each agent
and the number of agents working on the map are directly related. The smaller
the number of tokens, the larger the number of agents since more agents will be
required to cover the whole map. These parameters also affect the level of detail
of the coastline. A map generated with a small number of tokens will feature
more fine details than one with a large number, since in the first case more agents
will be created, each influencing a small region.

2. Smoothing agents: after the shape of the landscape has been defined by the coast-
line agents, smoothing agents operate on the map to eliminate rapid elevation
changes. This is done by creating a number of agents each assigned a single pa-
rameter specifying the number of times that agent has to revisit its starting point.
The more visits, the smoother the area around this point.
The agents are scattered around the map, they move randomly and while wan-
dering they change the heights of arbitrary points according to the heights of
their neighbours. For each point chosen, a new height value is assigned taking
the weighted averages of the heights of its four orthogonal surrounding points
and the four points beyond these.

3. Beach agents: after the smoothing phase, the landscape is ready for the creation
of sandy beaches. This is the work assigned to beach agents. These agents tra-
verse the shoreline in random directions creating sandy areas close to water.
Beach generation is controlled by adjusting the agents’ parameters. These in-
clude the depth of the area the agent is allowed to flatten, the total number of
steps the agents can move, the altitude under which the agents are permitted to
work and the range of height values they can assign to the points they affect.
The agents are initially placed in a coastline area where they work on adjusting
the height of their surrounding points by lowering them as long as their height
is below the predefined altitude. This prevents the elevation of mountain areas
located close to the sea. The new values assigned to the points are randomly
chosen from the designer-specified range. This allows the creation of flat beaches
if the range is narrow and more bumpy beaches when the range is high.

4. Mountain agents: The coastline agents elevate areas of the map above sea level.
These areas are then smoothed by the smoothing agents and beaches along the
shoreline are then flattened via the beach agents. Regions above a certain thresh-

4 Fractals, noise and agents with applications to landscapes 67

old are kept untouched by the beach agents, and these are then modified by moun-
tain agents.
The agents are placed at random positions in the maps and are allowed to move in
random directions. While moving, if a V-shaped wedge of points is encountered,
the wedge is elevated, creating a ridge. Frequently, the agents might decide to
turn randomly within 45 degrees of their initial course, resulting in zigzag paths.
Mountain agents also periodically produce foothills perpendicular to their move-
ment direction.
The shape of the mountains can be controlled by designers via specifying the
range of the rate at which slopes can be dropped, the maximum mountain al-
titude and the width and slope of the mountain. Designers can also determine
the number of agents, the number of steps each one can perform, the length of
foothills and their frequency.
After mountain generation, a smoothing step is followed to blend nearby points.
This step is further followed by an addition of noise to regain some of the details
lost while smoothing.

5. Hill agents: these agents work in a similar way to the mountain agents but they
have three distinctive characteristics: they work on a lower altitude, they are as-
signed smaller ranges, and they are not allowed to generate foothills.

6. River agents: in the final phase of terrain generation, river agents walk through
the environment digging rivers near mountains and the ocean. To resemble natu-
ral rivers, a river agent works in the following steps:

a. initiate two random points, one on the coastline and another on the mountain
ridge line.

b. starting at the coastline, the agent moves uphill towards a mountain, guided
by the gradient. This determines the general path of the river.

c. as the agent reaches the mountain, it starts moving downwards while digging
the river. This is done by lowering a wedge of terrain, following a similar
method to the one implemented by mountain agents.

d. the agent increases the width of the wedge as it moves back towards the ocean.

Designers specify the initial width of the river, the frequency of widening and
the downhill slope. Designers also determine the shortest length possible for a
river. A river agent might make several attempts to place its starting and ending
positions before it satisfies the shortest-length threshold. If this condition is not
met after several attempts, the river will not be created.

The method followed for defining the agents and their set of parameters allows
the generation of endless variations of terrains through the use of different random
seed numbers. The technique can be used to generate landscapes on the fly, or it
can be employed by designers who can investigate different setups and tweak the
system’s parameters as desired.

68 Noor Shaker, Julian Togelius, and Mark J. Nelson

4.5 Search-based landscape generation

We have seen two families of methods for terrain and noise generation, which both
have several benefits. However, at least in the form presented here, these methods
suffer from a certain lack of controllability. It is not easy to specify constraints
or desirable properties, such that there must be an area with no more than a cer-
tain maximum variation in altitude, or that two points on a terrain should be easily
reachable from each other. This form of controllability is one of the strengths of
search-based methods. Unsurprisingly, there have been several attempts to apply
search-based methods to terrain generation.

4.5.1 Genetic terrain programming

Frade et al. developed a concept called genetic terrain programming (GTP). This is a
search-based method with an indirect encoding, where the phenotype representation
is a heightmap but the genotype representation is an expression tree evolved with
genetic programming [5, 6, 4].

Genetic programming is a method for creating runnable programs using evolu-
tionary computation [12]. The standard program representation in genetic program-
ming is an expression tree, which in the simplest case is nothing more than an alge-
braic expression in prefix form such as (+3(∗52)) (written in infix form as 3+5∗2).
This can be visualized as a tree with the + sign as the root node, and the 3 and ∗
in separate branches from the root. The plus and multiplier are arithmetical func-
tions, and the constants are called terminals. In genetic programming, a number of
additional functions are commonly employed, including if-then-else, trigonometric
functions, max, min etc. Additional types of terminals might include external inputs
to the program, random-number generators etc. The evolutionary search proceeds
through adding and exchanging functions and terminals, and by recombining parts
of different trees.

In GTP, the function set typically includes arithmetical and trigonometric func-
tions, as well as functions for exponentiation and logarithms. The terminal set in-
cludes x and y location, standard noise functions (such as Perlin noise) and functions
that are dependent on the distance from the centre of the map.

The core idea of GTP is that in the genotype-to-phenotype mapping, the algo-
rithm iterates over cells in the (initially empty) heightmap and queries the evolved
terrain program with the x and y parameters of each cell as input to the program. This
is therefore a highly indirect and compact representation of the map. The represen-
tation also allows for infinite scalability (or zooming), as increasing the resolution
or expanding the map simply means querying the program using new coordinates
as inputs.

Several different evaluation functions were tried. In initial experiments, interac-
tive evaluation was used: users selected which of several presented maps should be
used for generating the next generation. Later experiments explored various direct

4 Fractals, noise and agents with applications to landscapes 69

evaluation functions. One of these functions, accessibility, was motivated by game
design: the objective was to maximise the area which is smooth enough to support
vehicle movement. To avoid completely flat surfaces from being evolved, the ac-
cessibility metric had to be counterbalanced by other metrics, such as the sum of
the edge length of all obstacles in the terrain. See Figure 4.2 for some examples of
landscapes evolved with GTP.

Fig. 4.2: Landscapes generated by genetic terrain programming. From left to right:
cliffs, corals and mountains. Adapted from [4]

4.5.2 Simple RTS map generation

Another search-based landscape generation method was described by Togelius et
al. [15], to produce a map with smoothly varying height for a real-time strategy
game. The phenotype in this problem consists of a heightmap and the locations of
resources and base starting locations.

The representation is rather direct. Base and resource locations are represented
directly as polar coordinates (φ and θ coordinates for each location). The heightmap
is initially flat, and then a number of hills is added. These hills are modelled as sim-
ple Gaussian distributions, and encoded in the phenotype with their x and y posi-
tions, their heights z, and their standard distributions σx and σy (i.e. their widths).
Ten mountains were used in each run.

Three different evaluation functions were defined. Two of them relate to the
placements of bases and resources to create a fair game, whereas the third is the
topological asymmetry of the map. This is because the simplest way of satisfying

70 Noor Shaker, Julian Togelius, and Mark J. Nelson

Fig. 4.3: Four maps generated using search-based methods with the heightmap de-
termined by hills represented by Gaussians. The coloured dots represent locations
of resources and bases in an RTS game. Adapted from [15]

the first two evaluation functions is to create a completely symmetric map, but this
would be visually uninteresting for players. Given that the three fitness functions are
in partial conflict, a multiobjective evolutionary algorithm was used to optimise all
three evaluation functions simultaneously. Figure 4.3 show three different terrains
that resulted from the same evolutionary run.

4.6 Lab session: Generate a terrain with the diamond-square

algorithm

Implement the diamond-square method to generate terrain heightmaps. Have your
function take three parameters: seed, which specifies the initial values at the corners;
iterations, which specifies the number of diamond-square iterations to perform; and
roughness, which specifies the magnitude of the random components added in the
diamond and square steps.

Figure 4.4 presents three example heightmaps generated using different parame-
ters.

4 Fractals, noise and agents with applications to landscapes 71

Fig. 4.4: Three heightmaps generated using the diamond-square method. The pa-
rameters used are: iterations = 9 for all maps, seed = 12, 128, 128, and roughness =
256, 256, 128 for the first, second and third map, respectively

4.7 Summary

Terrain/landscape generation is a very important task for many games, and there are
a number of methods that are commonly used for this. The most basic representation
is the heightmap, where the number in each cell represents the height of the ground
at the corresponding location. Maps can be generated very simply by randomizing
these numbers, though this leads to unnatural and ugly maps. Interpolating between
these numbers helps a lot. Many different interpolation techniques exist, and there
is a tradeoff between the quality of the results and the computation time needed.
Instead of generating the height values, another family of methods generates the
gradients of slopes and then computes heights from those slopes. Fractal methods,
including various types of noise, generate heights at several different scales or res-
olutions, leading to more natural-looking terrain. The diamond-square algorithm
is a commonly used fractal method. For more complex environments, agent-based
methods can be used to construct terrains that have multiple types of features. If
there are constraints involved, for example having to do with traversability or other
gameplay considerations, search-based methods might be useful as well.

References

1. Belhadj, F.: Terrain modeling: A constrained fractal model. In: Proceedings of the 5th Inter-
national Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in
Africa, pp. 197–204 (2007)

2. Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents. IEEE
Transactions on Computational Intelligence and AI in Games 2(2), 111–119 (2010)

3. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texture and Modeling: A
Procedural Approach, 3rd edn. Morgan Kaufmann (2003)

4. Frade, M., de Vega, F.F., Cotta, C.: Modelling video games’ landscapes by means of genetic
terrain programming: A new approach for improving users’ experience. In: Applications of
Evolutionary Computing, pp. 485–490 (2008)

5. Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games based on
accessibility. Applications of Evolutionary Computation pp. 90–99 (2010)

6. Frade, M., de Vega, F.F., Cotta, C.: Automatic evolution of programs for procedural generation
of terrains for video games. Soft Computing 16(11), 1893–1914 (2012)

72 Noor Shaker, Julian Togelius, and Mark J. Nelson

7. Kamal, K.R., Uddin, Y.S.: Parametrically controlled terrain generation. In: Proceedings of the
5th International Conference on Computer Graphics and Interactive Techniques in Australia
and Southeast Asia, pp. 17–23 (2007)

8. Lechner, T., Ren, P., Watson, B., Brozefski, C., Wilenski, U.: Procedural modeling of urban
land use. In: ACM SIGGRAPH 2006 Research posters, p. 135. ACM (2006)

9. Lechner, T., Watson, B., Wilensky, U.: Procedural city modeling. In: Proceedings of the 1st
Midwestern Graphics Conference (2003)

10. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman (1982)
11. Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of eroded fractal terrains.

In: Proceedings of SIGGRAPH 1989, pp. 41–50 (1989)
12. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008).

http://www.gp-field-guide.org.uk
13. Schneider, J., Boldte, T., Westermann, R.: Real-time editing, synthesis, and rendering of infi-

nite landscapes on GPUs. In: Proceedings of the International Symposium on Vision, Model-
ing and Visualization, pp. 145–152 (2006)

14. Smelik, R.M., De Kraker, K.J., Tutenel, T., Bidarra, R., Groenewegen, S.A.: A survey of pro-
cedural methods for terrain modelling. In: Proceedings of the CASA Workshop on 3D Ad-
vanced Media in Gaming and Simulation (3AMIGAS) (2009)

15. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map genera-
tion. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games
(2010)

16. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE
Transactions on Visualization and Computer Graphics 13(4), 834–848 (2007)

	4Fractals, noise and agents with applications to landscapes
	Abstract
	4.1 Terraforming and making noise
	4.1.1 Heightmaps and intensity maps

	4.2 Random terrain
	4.2.1 Interpolated random terrain
	4.2.1.1 Bilinear interpolation
	4.2.1.2 Bicubic interpolation

	4.2.2 Gradient-based random terrain

	4.3 Fractal terrain
	4.4 Agent-based landscape creation
	4.4.1 Doran and Parberry’s terrain generation

	4.5 Search-based landscape generation
	4.5.1 Genetic terrain programming
	4.5.2 Simple RTS map generation

	4.6 Lab session: Generate a terrain with the diamond-square algorithm
	4.7 Summary
	References

