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Preface

Welcome to the Procedural Content Generation in Games book.1 This is, as far as
we know, the first textbook about procedural content generation in games. As far as
we know it is also the first book-length overview of the research field. We hope you
find it useful, whether you are studying in a course, on your own, or are a researcher.

We wrote this book for two reasons. The first reason was that all three of us were
doing research on PCG in games, and we wanted a good overview. As we come from
somewhat different methodological backgrounds, we realized that many researchers
did not know about methods that had been developed in other communities. For ex-
ample, researchers using logic programming and those using evolutionary compu-
tation might not know that the other type of algorithms was applicable to the same
problem; and researchers coming from computer graphics might not even know that
artificial intelligence methods are being used for PCG problems. As PCG in games
has just recently started to be seen as its own research field, this was not surprising,
but pointed to the need for a book such as this one.

The second reason was that we were teaching a course on PCG (in fact, entitled
simply “Procedural Content Generation in Games”) at the IT University of Copen-
hagen, where at the time the three of us were faculty members. When this course
was started in 2010, it was probably the first of its kind in the world. Naturally, there
was no textbook to teach it from, so we assembled a syllabus out of academic pa-
pers, mostly recent ones. As we taught the course in subsequent years, the syllabus
matured, and we felt that we were ready to turn the content of our lectures into a
textbook.

In writing the book, we based it on the structure of the existing course. In fact the
first draft of this textbook was written quite literally as part of the fourth iteration
of the course in autumn 2013. A draft of each chapter was completed in advance
of the corresponding lecture, and given out as a handout to accompany the lecture.
This ensured that a complete draft of the textbook was written within one semester,
and perhaps more importantly ensures that the book is designed to be used as a
textbook. Unfortunately, adding polish and finalising each chapter took a lot longer,

1 Throughout the book, we will often use PCG as an acronym for procedural content generation.
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which explains why the book did not come out in 2014. We believe however that
the added time to work on the book was worth it, as the final product is much better
than those early drafts were.

As you will see, the book is not strictly divided according to either methods
or application domains. Most chapters introduce both a domain and method. This
follows how we structured our PCG course, which we did in order to make the
course more engaging and easier to teach: new methods are introduced together with
interesting and relevant domains that demonstrate why they are practically useful,
and can be used as settings for lab exercises to further experiment with the methods.

We decided early on that we wanted to involve many of the most active people
in the research field, in particular those who had written the papers we relied on
when teaching the course initially. Therefore, most chapters are coauthored with
other researchers. This ensures that we have the most relevant expertise for the topic
of each chapter.

As mentioned above, one of the main purposes of this book is as a textbook. Its
origins as a set of course notes has also helped ensure that the book is “battle-tested”
and ready to teach from. In particular, the book can be used as the main course text
for a graduate-level or advanced undergraduate-level course on Procedural Content
Generation in Games. It is assumed that students are familiar with basic artificial
intelligence concepts (in particular heuristic search and basic concepts of logic and
machine learning) and it is very beneficial (though not strictly necessary) that stu-
dents have some experience of game development and using a game engine.

This book could be used as course literature in several ways. One is to base each
lecture on a specific chapter, and assign a few recent papers from the literature re-
lated to that chapter as additional reading for that week. The assignment at the end
of each chapter could then be used as that week’s assignment, and a conventional
pen-and-paper exam could be held at the end of the course. Another way of organiz-
ing such a course, more closely aligning with the way the original course at the IT
University of Copenhagen is taught, could be to use the first half of the semester for
intensive lectures, covering two chapters per week. The second half of the semester
is then used for group projects.2 Finally, you can always use parts of the book, for
example if you want to teach PCG as part of a larger course in AI for games. Most
chapters are reasonably self-contained, with the most important dependencies being
on the first two chapters, which establish core concepts and terminology. Therefore
it is advisable to start with chapters 1 and 2 even if only using parts of the book.

The book is accompanied by a webpage, pcgbook.com, which contains digital
versions of the book chapters, along with example lecture slides, links to relevant
mailing groups and conferences, and other supplemental material. We welcome sug-
gestions for new supplemental material (e.g. your own lecture slides) to add to the
website. Our updated contact information can also be found there.

Of course, in any book-sized effort, one relies on the help of a large number of
other people. Our first and foremost thanks go to our collaborators and co-authors
on the various chapters of the book. We are also very grateful to our students in the

2 Many good papers came out of the group projects from that course.
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PCG course who endured various draft versions of the book, as well as our actual
lectures, and in many cases provided very useful feedback. Several other colleagues
have provided useful feedback or helped out in other ways; the list includes Steve
Dahlskog, Amy Hoover and Aaron Isaksen.

Noor Shaker, Julian Togelius, and Mark Nelson
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Chapter 1

Introduction

Julian Togelius, Noor Shaker, and Mark J. Nelson

Abstract This chapter introduces the field of procedural content generation (PCG),
as well as the book. We start by defining key terms, such as game content and pro-
cedural generation. We then give examples of games that use PCG, outline desirable
properties, and provide a taxonomy of different types of PCG. Applications of and
approaches to PCG can be described in many different ways, and another section is
devoted to seeing PCG through the lens of design metaphors. The chapter finishes
by providing an overview of the rest of the book.

1.1 What is procedural content generation?

You have just started reading a book about Procedural Content Generation in Games.
This book will contain quite a lot of algorithms and other technical content, and
plenty of discussion of game design. But before we get to the meat of the book,
let us start with something a bit more dry: definitions. In particular, let us define
Procedural Content Generation, which we will frequently abbreviate as PCG. The
definition we will use is that PCG is the algorithmic creation of game content with
limited or indirect user input [32]. In other words, PCG refers to computer software
that can create game content on its own, or together with one or many human players
or designers.

A key term here is “content”. In our definition, content is most of what is con-
tained in a game: levels, maps, game rules, textures, stories, items, quests, music,
weapons, vehicles, characters, etc. The game engine itself is not considered to be
content in our definition. Further, non-player character behaviour—NPC AI—is not
considered to be content either. The reason for this narrowing of the definition of
content is that within the field of artificial and computational intelligence in games,
there is much more research done in applying CI and AI methods to character be-
haviour than there is on procedural content generation. While the field of PCG is
mostly based on AI methods, we want to set it apart from the more “mainstream”

1� Springer International Publishing Switzerland 2016
N. Shaker et al., Procedural Content Generation in Games, Computational
Synthesis and Creative Systems, DOI 10.1007/978-3-319-42716-4_1
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use of game-based tasks to test AI algorithms, where AI is most often used to learn
to play a game. Like all definitions (except perhaps those in mathematics), our def-
inition of PCG is somewhat arbitrary and rather fuzzy around the edges. We will
treat it as such, and are mindful that other people define the term differently. In par-
ticular, some would rather use the term “generative methods” for a superset of what
we call PCG [8].

Another important term is “games”. Games are famously hard to define (see
Wittgenstein’s discussion of the matter [36]), and we will not attempt this here. Suf-
fice it to say that by games we mean such things as videogames, computer games,
board games, card games, puzzles, etc. It is important that the content generation
system takes the design, affordances and constraints of the game that it is being
generated for into account. This sets PCG apart from such endeavours as gener-
ative art and many types of computer graphics, which do not take the particular
constraints and affordances of game design into account. In particular, a key re-
quirement of generated content is that it must be playable—it should be possible
to finish a generated level, ascend a generated staircase, use a generated weapon or
win a generated game.

The terms “procedural” and “generation” imply that we are dealing with com-
puter procedures, or algorithms, that create something. A PCG method can be run
by a computer (perhaps with human help), and will output something. A PCG system
refers to a system that incorporates a PCG method as one of its parts, for example
an adaptive game or an AI-assisted game design tool. This book will contain plenty
of discussion of algorithms and quite a lot of pseudocode, and most of the exercises
that accompany the chapters will involve programming.

To make this discussion more concrete, we will list a few things we consider to
be PCG:

• A software tool that creates dungeons for an action adventure game such as The
Legend of Zelda without any human input—each time the tool is run, a new level
is created;

• a system that creates new weapons in a space shooter game in response to what
the collective of players do, so that the weapons that a player is presented with
are evolved versions of weapons other players found fun to use;

• a program that generates complete, playable and balanced board games on its
own, perhaps using some existing board games as starting points;

• game engine middleware that rapidly populates a game world with vegetation;
• a graphical design tool that lets a user design maps for a strategy game, while

continuously evaluating the designed map for its gameplay properties and sug-
gesting improvements to the map to make it better balanced and more interesting.

In the upcoming chapters, you will find descriptions of all of those things de-
scribed above. Let us now list a few things that we do not consider to be PCG:

• A map editor for a strategy game that simply lets the user place and remove items,
without taking any initiative or doing any generation on its own;

• an artificial player for a board game;
• a game engine capable of integrating automatically generated vegetation.
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Several other authors have tackled the issue of surveying PCG or part of the field
we call PCG, though the overlap is far from complete [12, 25].

1.2 Why use procedural content generation?

Now that we know what PCG is, let us discuss the reasons for using and developing
such methods. It turns out there are a number of different reasons.

Perhaps the most obvious reason to generate content is that it removes the need
to have a human designer or artist generate that content. Humans are expensive and
slow, and it seems we need more and more of them all the time. Ever since computer
games were invented, the number of person-months that go into the development of
a successful commercial game has increased more or less constantly.1 It is now com-
mon for a game to be developed by hundreds of people over a period of a year or
more. This leads to a situation where fewer games are profitable, and fewer develop-
ers can afford to develop a game, leading in turn to less risk-taking and less diversity
in the games marketplace. Many of the costly employees necessary in this process
are designers and artists rather than programmers. A game development company
that could replace some of the artists and designers with algorithms would have a
competitive advantage, as games could be produced faster and cheaper while pre-
serving quality. (This argument was made forcefully by legendary game designer
Will Wright in his talk “The Future of Content” at the 2005 Game Developers Con-
ference, a talk which helped reinvigorate interest in procedural content generation.)

Of course, threatening to put them out their jobs is no way to sell PCG to design-
ers and artists. We could therefore turn the argument around: content generation,
especially embedded in intelligent design tools, can augment the creativity of in-
dividual human creators. This could make it possible for small teams without the
resources of large companies, and even for hobbyists, to create content-rich games
by freeing them from worrying about details and drudge work while retaining over-
all directorship of the games.

Both of these arguments assume that what we want to make is something like the
games we have today. But PCG methods could also enable completely new types
of games. To begin with, if we have software that can generate game content at the
speed it is being “consumed” (played), there is in principle no reason why games
need to end. For everyone who has ever been disappointed by their favourite game
not having any more levels to clear, characters to meet, areas to explore, etc., this is
an exciting prospect.

Even more excitingly, the newly generated content can be tailored to the tastes
and needs of the player playing the game. By combining PCG with player mod-
elling, for example through measuring and using neural networks to model the re-
sponse of players to individual game elements, we can create player-adaptive games

1 At least, this is true for “AAA” games, which are boxed games sold at full price worldwide. The
recent rise of mobile games seems to have made single-person development feasible again, though
average development costs are rising on that front too.
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that seek to maximise the enjoyment of players. The same techniques could be used
to maximise the learning effects of a serious game, or perhaps the addictiveness of
a “casual” game.

Another reason for using PCG is that it might help us to be more creative. Hu-
mans, even those of the “creative” vein, tend to imitate each other and themselves.
Algorithmic approaches might come up with radically different content than a hu-
man would create, through offering an unexpected but valid solution to a given
content generation problem. Outside of games, this is a well-known phenomenon in
e.g. evolutionary design.

Finally, a completely different but no less important reason for developing PCG
methods is to understand design. Computer scientists are fond of saying that you
don’t really understand a process until you have implemented it in code (and the
program runs). Creating software that can competently generate game content could
help us understand the process by which we “manually” generate the content, and
clarify the affordances and constraints of the design problem we are addressing. This
is an iterative process, whereby better PCG methods can lead to better understanding
of the design process, which in turn can lead to better PCG algorithms.

1.3 Games that use PCG

Overcoming the storage limitations of computers was one of the main driving forces
behind the development of PCG techniques. The limited capabilities of home com-
puters in the early 1980s constrained the space available to store game content,
forcing designers to pursue other methods for generating and saving content. Elite
[4] is one of the early games that solved this problem by storing the seed numbers
used to procedurally generate eight galaxies each with 256 planets each with unique
properties. Another classical example of the early use of PCG is the early-1980s
game Rogue, a dungeon-crawling game in which levels are randomly generated ev-
ery time a new game starts. Automatic generation of game content, however, often
comes with tradeoffs; roguelike games can automatically generate compelling ex-
periences, but most of them (such as Dwarf Fortress [1]) lack visual appeal.

Procedural content generation has received increasing attention in commercial
games. Diablo [2] is an action role-playing hack-and-slash videogame featuring
procedural generation for creating the maps, and the type, number and placement
of items and monsters. PCG is a central feature in Spore [15] where the designs the
players create are animated using procedural animation techniques. These person-
alised creatures are then used to populate a procedurally generated galaxy. Civiliza-
tion IV [10] is a turn-based strategy game that allows unique gameplay experience
by generating random maps. Minecraft [19] is a massively popular game featur-
ing extensive use of PCG techniques to generate the whole world and its content.
Spelunky [39, 38] is another notable 2D platform roguelike indie game that utilizes
PCG to automatically generate variations of game levels (Figure 1.1). Tiny Wings
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Fig. 1.1: Screenshot from Spelunky

[13] is yet another example of a mobile 2D game featuring a procedural terrain and
texture generation system giving the game a different look with each replay.

1.4 Visions for PCG

As we have seen, procedural content generation has been a part of some published
games for three decades. In the past few years, there has also been a surge in aca-
demic research on PCG, where researchers from very different academic back-
grounds have brought their perspectives and methods to bear on the problems of
game content generation. This has resulted in a number of new methods, and vari-
ations and combinations of old methods, some of which are in need of further re-
search and development before being useful in actual games. The chapters of this
book will present many of the most significant contributions of recent years’ re-
search.

To guide the research being done, it is useful to have some visions of where we
might be going; this is analogous to lists of “unsolved problems” in some research
fields such as mathematics and physics. The authors of a recent survey paper defined
three such visions for procedural content generation [31]. These are things that we
cannot do with current technology, and might never be possible to achieve exactly
as stated, but serve to point out limitations of the state of the art and by extension
interesting problems to work on.

1. Multi-level, multi-content PCG refers to a content generator that, for a given
game engine and set of game rules, would be able to generate all of the content
for the game such that the content is of high quality and fits together perfectly.
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For example, given the engine and ruleset for the popular computer role-playing
game Skyrim, this imaginary software would generate backstory, quests, charac-
ters, items, weapons, vegetation, terrain, graphics, etc. in such a fashion that it all
becomes a coherent, believable new world and an enjoyable game to play.

2. PCG-based game design refers to creating games that do not only rely on proce-
dural content generation, but for which PCG is an absolutely central part of the
gameplay, so that if you took the content generation part away there would not
be anything recognisable left of the game. Some progress has been made towards
this, notably in games such as Galactic Arms Race [11] and Endless Web [28],
but these games are still based on established game genres and core parts of the
games could function without PCG.

3. Generating complete games refers to a generator capable of generating not only
content for a given game, but the game itself. This means the rules, reward struc-
tures and graphical representation as well as the levels, characters, etc. Some
work has been done in this direction, mainly to generate rules for different kinds
of games [33, 7, 20, 9], but the rules generated are so far rather simplistic.

Much of the work described in the upcoming chapters can be seen as making
progress towards one or several of these visions, but, as you will see, there is much
work to be done. At the same time, it is important to keep in mind that it is equally
worthwhile to develop generators for more narrowly defined tasks.

1.5 Desirable properties of a PCG solution

We can think of implementations of PCG methods as solutions to content genera-
tion problems. A content generation problem might be to generate new grass with
a low level of detail which does not look completely weird within 50 milliseconds.
It might also be to generate a truly original idea for a game mechanic after days of
computing time, or it might be to polish in-game items to a perfect sheen in a back-
ground thread as they are being edited by a designer. The desirable—or required—
properties of a solution are different for each application. The only constant is that
there are usually tradeoffs involved, e.g. between speed and quality, or expressiv-
ity/diversity and reliability. Here is a list of common desirable properties of PCG
solutions:

• Speed: Requirements for speed vary wildly, from a maximum generation time of
milliseconds to months, depending on (amongst other things) whether the content
generation is done during gameplay or during development of the game.

• Reliability: Some generators shoot from the hip, whereas others are capable of
guaranteeing that the content they generate satisfies some given quality criteria.
This is more important for some types of content than others, for example a
dungeon with no exit or entrance is a catastrophic failure, whereas a flower that
looks a bit weird just looks a bit weird without this necessarily breaking the
game.
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• Controllability: There is frequently a need for content generators to be control-
lable in some sense, so that a human user or an algorithm (such as a player-
adaptive mechanism) can specify some aspects of the content to be generated.
There are many possible dimensions of control, e.g. one might ask for a smooth
oblong rock, a car that can take sharp bends and has multiple colours, a level that
induces a sense of mystery and rewards perfectionists, or a small ruleset where
chance plays no part.

• Expressivity and diversity: There is often a need to generate a diverse set of con-
tent, to avoid the content looking like it’s all minor variations on a tired theme.
At an extreme of non-expressivity, consider a level “generator” that always out-
puts the same level but randomly changes the colour of a single stone in the
middle of the level; at the other extreme, consider a “level” generator that assem-
bles components completely randomly, yielding senseless and unplayable levels.
Measuring expressivity is a non-trivial topic in its own right, and designing level
generators that generate diverse content without compromising on quality is even
less trivial.

• Creativity and believability: In most cases, we would like our content not to look
like it has been designed by a procedural content generator. There is a number
of ways in which generated content can look generated as opposed to human-
created.

1.6 A taxonomy of PCG

With the variety of content generation problems and methods that are now available,
it helps to have a structure that can highlight the differences and similarities between
approaches. In the following, we introduce a revised version of the taxonomy of
PCG that was originally presented by Togelius et al. [34]. It consists of a number of
dimensions, where an individual method or solution should usually be thought of as
lying somewhere on a continuum between the ends of that dimension.

1.6.1 Online versus offline

PCG techniques can be used to generate content online, as the player is playing the
game, allowing the generation of endless variations, making the game infinitely re-
playable and opening the possibility of generating player-adapted content, or offline
during the development of the game or before the start of a game session. The use of
PCG for offline content generation is particularly useful when generating complex
content such as environments and maps. An example of the use of online content
generation can be found in the game Left 4 Dead [35], a recently released first-
person shooter game that provides dynamic experience for each player by analysing
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player behaviour on the fly and altering the game state accordingly using PCG tech-
niques [3].

NERO [30] is an example of the use of AI techniques to allow the players to
evolve real-time tactics for a squad of virtual soldiers. Forza Motorsport [17] is a
car racing game where the Non-Player Characters (NPCs) can be trained offline to
imitate the player’s driving style and can later be used to drive on behalf of the
player. Another important use of offline content generation is the creation and shar-
ing of content. Some games such as LittleBigPlanet [16] and Spore [15] provide
a content editor (level editor in the case of LittleBigPlanet and the Spore Creature
Creator) that allows the players to edit and upload complete creatures or levels to a
central online server where they can be downloaded and used by other players.

1.6.2 Necessary versus optional

PCG can be used to generate necessary game content that is required for the comple-
tion of a level, or it can be used to generate auxiliary content that can be discarded or
exchanged for other content. The main distinctive feature between necessary and op-
tional content is that necessary content should always be correct while this condition
does not hold for optional content. An example of optional content is the generation
of different types of weapons in first-person shooter games or the auxiliary reward
items in Super Mario Bros. [21]. Necessary content can be the main structure of the
levels in Super Mario Bros., or the collection of certain items required to pass to the
next level.

1.6.3 Degree and dimensions of control

The generation of content by PCG can be controlled in different ways. The use of
a random seed is one way to gain control over the generation space; another way
is to use a set of parameters that control the content generation along a number of
dimensions. Random seeds were used when generating the world in Minecraft [19],
which means the same world can be regenerated if the same seed is used [18]. A
vector of content features was used in [24] to generate levels for Infinite Mario
Bros. [22] that satisfy a set of feature specifications.

1.6.4 Generic versus adaptive

Generic content generation refers to the paradigm of PCG where content is gener-
ated without taking player behaviour into account, as opposed to adaptive, person-
alised or player-centred content generation where player interaction with the game
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Fig. 1.2: Three example weapons created in the Galactic Arms Race game for dif-
ferent players. Adapted from [11]

is analysed and content is created based on a player’s previous behaviour. Most
commercial games tackle PCG in a generic way, while adaptive PCG has been re-
ceiving increasing attention in academia recently. A recent extensive review of PCG
for player-adaptive games can be found in [37].

Left 4 Dead [35] is an example of the use of adaptive PCG in a commercial game
where an algorithm is used to adjust the pacing of the game on the fly based on the
player’s emotional intensity. In this case, adaptive PCG is used to adjust the diffi-
culty of the game in order to keep the player engaged [3]. Adaptive content genera-
tion can also be used with another motive such as the generation of more content of
the kind the player seems to like. This approach was followed in the Galactic Arms
Race [11] game where the weapons presented to the player are evolved based on
her previous weapon use and preferences. Figure 1.2 presents examples of evolved
weapons for different players.

1.6.5 Stochastic versus deterministic

Deterministic PCG allows the regeneration of the same content given the same start-
ing point and method parameters as opposed to stochastic PCG where recreating the
same content is usually not possible. The regeneration of the galaxies in Elite [4] is
an example of the deterministic use of PCG.

1.6.6 Constructive versus generate-and-test

In constructive PCG, the content is generated in one pass, as commonly done in
roguelike games. Generate-and-test PCG techniques, on the other hand, alternate
generating and testing in a loop, repeating until a satisfactory solution is generated.
Yavalath [5] is a two-player board game generated completely by a computer pro-
gram using the generate-and-test paradigm [7].
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1.6.7 Automatic generation versus mixed authorship

Until recently, PCG has allowed limited input from game designers, who usually
tweak the algorithm parameters to control and guide content generation while the
main purpose of PCG remains the generation of infinite variations of playable con-
tent [39, 7, 1, 2]. However, a new interesting paradigm, has emerged that focuses
on incorporating designer and/or player input through the design process. In this
mixed-initiative paradigm, a human designer or player cooperates with the algo-
rithm to generate the desired content.

Tanagra [29] is an example of a system where the designer draws part of a 2D
level and a constraint satisfaction algorithm is used to generate the missing parts
while retaining playability. Another example is the SketchaWorld framework [26],
an interactive procedural sketching system for creating landscapes and cityscapes
where designers can manually edit and tune the generated results while the virtual
world model is kept consistent. Ropossum [23] is yet another recent example of
the use of PCG for completing unfinished designs, suggesting modifications, han-
dling constraints and testing for playability for the 2D physics-based game Cut the
Rope [40].

1.7 Metaphors for PCG

In the phrase “procedural content generation system”, we have discussed what the
words “procedural”, “content”, and “generation” mean. But what about the word
system? A PCG system is the generic term for any piece of software that does PCG.
But these systems do different things, are used in different ways, and have quite
different relationships to the overall game-design process. Some PCG systems try
to help a designer out with a small part of the design process. Others try to provide
a new way of working with game content. Some are interactive; others aren’t. Some
aim to do fully autonomous, creative game design; others aim to automate routine
or common aspects of design.

To break this broad term, PCG system, into more specific kinds of systems,
Khaled et al. [14] proposed four metaphors for thinking about how PCG systems
relate to the game-design process. Some PCG systems are tools: instruments that
give designers enhanced capabilities, in the way that a programmer’s development
environment or an architect’s CAD system do. Others define new kinds of materials,
allowing a designer to work in a new medium, the way stone, clay, and laser instal-
lations are different materials for an artist. Some PCG systems are intended to be
designers themselves, carrying out fully autonomous design of parts or even entire
games, rather than assisting game designers. Finally, some systems are primarily
domain experts, carrying with them extensive knowledge of game design that can
be used to critique or improve designs. Many systems can be viewed through more
than one of these lenses, though few will exhibit all of them equally.
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PCG tools, like non-PCG design tools, aim to improve a designer’s workflow,
but PCG tools do it by adding a generative component. A common example is a
PCG-enhanced level editor. The level-editing tools included with many game en-
gines already improve the level-design process by providing specialised ways of
editing and laying out levels, rather than the designer having to do level design in a
more generic tool, or entirely in code. A PCG-enhanced level editor adds a genera-
tive component to the traditional passive level editor. The Tanagra [29] level editor
generates levels that fit a theory of rhythmic patterns in platformer games, which the
designer can modify and add more constraints to, followed by re-generation of the
relevant portions. This back-and-forth pattern, alternating procedural content gen-
eration and human editing, is called mixed-initiative generation, and is covered in
Chapter 11. Among the visions for PCG discussed earlier in this chapter, “multi-
level multi-content PCG” can be seen as using a tool metaphor.

PCG systems can also create new generative materials that a game designer
manipulates and sculpts to produce content. A popular commercial example is
SpeedTree. In one sense it’s a tool for designing trees to place as scenery in
videogames. But the way it does this is by turning trees into an interactive generative
material: the designer can click and drag them around, add and remove branches,
etc., and they always look like a tree, because the trees are procedurally generated
in real time as the designer manipulates them. The fractal landscapes discussed in
Chapter 4 are also a kind of procedurally generative material, which a designer ma-
nipulates to produce their desired landscapes. For the PCG vision of “PCG-based
game design”, the appropriate metaphor is material.

A procedural content designer has less interaction with the human designer, and
instead has ambitions of designing content all on its own. In the limit case, a PCG
designer turns into a fully autonomous game generator that creates new games, usu-
ally in a specific genre. Work on automatic game design is still at an exploratory
stage, but promising prototype systems exist [20, 33, 7, 9]. A key challenge for a
lead designer is that it must design not only the content in a game, but the rules
of the game itself. Chapter 6 looks at these systems that generate rules and game
mechanics. The PCG vision of “generating complete games” relies on a designer
metaphor.

A procedural domain expert is a slightly different kind of system, full of knowl-
edge about games or players, and able to apply it to critique and modify content.
Often it will apply that expertise by being part of a system that also serves as a
tool or a designer. A domain expert may have purely formal knowledge of games,
such as what makes a particular set of rules elegant [6]. Or it may have extensive
knowledge of human players, being able to predict what people will do in a game,
and what they will find challenging, fun, or boring. For a PCG-based educational
game, the domain expert may have pedagogical knowledge. For example, the pro-
cedural level generation in the fraction-teaching game Refraction is constrained so
that generated levels meet the system’s pedagogical goals [27]. Chapter 10 discusses
the experience-driven PCG approach, which builds PCG systems that are experts in
player behaviour and reactions.
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1.8 Outline of the book

This book is structured as a series of chapters, co-written by the main authors of the
book and the leading experts on the topic of each chapter. Most chapters are organ-
ised so that they introduce both a family of methods (e.g. fractals or grammars) and
an application domain (e.g. plants or dungeons). The method is typically introduced
through an example in the application domain, and the chapter then also discusses
how the same method could be used for other domains or how different methods
could be used for that domain. This structure is partly motivated by the interdisci-
plinary nature of PCG research and practice, where the algorithms used come from
numerous different fields (and thus rarely build on each other) and game design
knowledge is vital in all cases. Each chapter ends with a summary and typically
also with a proposed lab exercise.

In Chapter 2 we present the search-based approach to procedural content gener-
ation, which is very versatile and which has recently been used in a large number
of academic research projects as well as some released games. In the search-based
approach, evolutionary algorithms are used to search for good game content us-
ing principles from Darwinian evolution. The two main challenges when building a
search-based content generator are the evaluation function, which evaluates candi-
date content artefacts, and the content representation, which defines the search space
for the algorithm. While this chapter contains several examples of content genera-
tors based on artificial evolution, there are further such examples scattered in the
upcoming chapters.

Chapter 3 discusses the specific example of creating dungeons for roguelike
games, and similar levels based on navigating a mostly two-dimensional space—
for example, levels for platform games or first-person shooters. A number of fast
and constructive algorithms for generating such levels are described. Some of these
algorithms come from the game development community and are widely used in
roguelikes such as Diablo. Others, such as cellular automata, have their origin in
physics. We also describe the Mario AI framework, a common testbed for level
generation algorithms based on a clone of Super Mario Bros.

Chapter 4 describes several algorithms with a background in computer graphics
research, namely simple fractal algorithms and other noise algorithms. These are
commonly used to produce terrains and complete landscapes, as well as textures and
features such as clouds. While these algorithms are fast and reliable, they lack some
forms of controllability. Therefore two other approaches to generating landscapes
are presented, one search-based and one based on collections of agents.

Chapter 5 is about grammars. Grammars, common to computer science and lin-
guistics, prove to be very useful for creating many types of game content. The chap-
ter starts with the example of creating lifelike plants, which is a very common form
of PCG; in fact, hundreds of AAA games from recent years feature procedurally
generated vegetation based on grammars. But grammars can also be used for e.g.
level generation; the rest of the chapter details how to use grammars for generat-
ing levels and missions for Zelda-style action-adventure games, and how to evolve
grammars that generate Super Mario Bros. levels.
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While some of the application domains of the previous chapters may be seen as
somewhat peripheral, Chapter 6 addresses the problems of generating the absolutely
most central part of any game: its rules. We describe a number of different attempts
at generating rules for games, from board games to card games and arcade games.
Some of these attempts are constructive, but most of them are search-based in one
way or another. The chapter also describes the Video Game Description Language,
a way of encoding game rules for simple arcade games of the kind you would find
in the early 1980s—one of the purposes of this language is to enable automatic
generation of complete games.

Most games feature stories of some kind, either backstories or interactive stories
that the player can affect; stories can be seen as content, so Chapter 7 is devoted to
the generation of game stories. It turns out that almost all methods of story gener-
ation are based on planning algorithms; planning is a classic AI method originally
developed for robot control and now widely used in various domains. The chapter
also discusses how story generation can be combined with map generation, so that
game maps are generated that fit with the generated story.

Chapter 8 is focused on a single method, namely Answer Set Programming
(ASP). This is a form of logic programming plus constraint satisfaction: a content
generation method plus conditions are specified in a language called AnsProlog, and
a solver produces all configurations of content that are compatible with the specified
conditions. While this might seem rather abstract and mathematical, it has recently
been demonstrated that certain PCG problems can be easily stated in AnsProlog
form, and the results of the solver interpreted as game content. This yields a highly
efficient method for creating some form of game content, for example levels for
puzzle-like games.

Chapter 9 returns to the topic of Chapter 2, search-based PCG, and dwells on
the question of how to represent the game content. Representation is important as
it defines the shape of the search space and the ways in which it can be explored.
This chapter demonstrates how a wise choice of representation can alter the style of
the generated content as well as enable more effective search for content that better
satisfies the evaluation function. Examples include flowers represented as neural
networks and level generators represented as collections of agents.

One of the motivations for PCG is that it can enable player-adaptive games.
Chapter 10 describes a framework for adapting games to the player, namely that
of experience-driven PCG. We describe different methods for creating models of
player experience based on data collected from players.

A theme throughout much of the book is that the relationship between procedural
content generation and human game designers can be quite varied. PCG can be
used in a highly automated way, but it can also be used in close coupling with the
designer’s own design choices. Chapter 11 looks at this close coupling explicitly,
considering mixed-initiative systems, in which a human designer and a procedural
content generation system collaborate to produce content.

Finally, Chapter 12 discusses how the quality of a PCG solution can be evaluated
once it has been implemented.
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1.9 Summary

Procedural content generation (PCG) in games is the algorithmic creation of game
content with limited or indirect user input. PCG methods are developed and used
for a number of different reasons, including saving development time and costs, in-
creasing replayability, allowing for adaptive games, assisting designers and studying
creativity and game design. While PCG algorithms have been used in some com-
mercial games since the early 1980s, they are typically either used in a peripheral
role or their scope is highly limited; current research in academia is trying to push
the boundaries of what can be generated and with what quality it can be generated.
Ideally, a PCG solution should be fast, reliable, controllable, expressive and cre-
ative, but in practice there are certain tradeoffs that need to be made between these
properties. PCG solutions can be classified according to a relatively extensive tax-
onomy, which might help to identify their strengths and weaknesses. Another lens
through which to understand a PCG system is the metaphor according to which it
is used; here we can differentiate between using a system as tool, material, designer
or domain expert. PCG algorithms are drawn from a variety of different fields, and
this methodological diversity is evident from the table of contents of this book.
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Chapter 2

The search-based approach

Julian Togelius and Noor Shaker

Abstract Search-based procedural content generation is the use of evolutionary
computation and similar methods to generate game content. This chapter gives an
overview of this approach to PCG, and lists a number of core considerations for
developing a search-based PCG solution. In particular, we discuss how to best rep-
resent content so that the content space becomes searchable, and how to create an
evaluation function that allows for effective search. Three longer examples of using
search-based PCG to evolve content for specific games are given.

2.1 What is the search-based approach to procedural content

generation?

There are many different approaches to generating content for games. In this chap-
ter, we will introduce the search-based approach, which has been intensively in-
vestigated in academic PCG research in recent years. In search-based procedural
content generation, an evolutionary algorithm or some other stochastic search/op-
timisation algorithm is used to search for content with the desired qualities. The
basic metaphor is that of design as a search process: a good enough solution to the
design problem exists within some space of solutions, and if we keep iterating and
tweaking one or many possible solutions, keeping those changes which make the
solution(s) better and discarding those that are harmful, we will eventually arrive
at the desired solution. This metaphor has been used to describe the design process
in many different disciplines: for example, Will Wright (designer of SimCity and
The Sims) described the game design process as search in his talk at the 2005 Game
Developers Conference [30]. Others have previously described the design process
in general, and in other specialised domains such as architecture, the design process
can be conceptualised as search and implemented as a computer program [29, 2].

The core components of the search-based approach to solving a content genera-
tion problem are the following:

17� Springer International Publishing Switzerland 2016
N. Shaker et al., Procedural Content Generation in Games, Computational
Synthesis and Creative Systems, DOI 10.1007/978-3-319-42716-4_2
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• A search algorithm. This is the “engine” of a search-based method. As we will
see, often relatively simple evolutionary algorithms work well enough, though
sometimes there are substantial benefits to using more sophisticated algorithms
that take e.g. constraints into account, or that are specialised for a particular con-
tent representation.

• A content representation. This is the representation of the artefacts you want to
generate, e.g. levels, quests or winged kittens. The content representation could
be anything from an array of real numbers to a graph to a string. The content
representation defines (and thus also limits) what content can be generated, and
determines whether effective search is possible.

• One or more evaluation functions. An evaluation function is a function from an
artefact (an individual piece of content) to a number indicating the quality of the
artefact. The output of an evaluation function could indicate e.g. the playability of
a level, the intricacy of a quest or the aesthetic appeal of a winged kitten. Crafting
an evaluation function that reliably measures the aspect of game quality that it is
meant to measure is often among the hardest tasks in developing a search-based
PCG method.

This chapter will describe each of these components in turn. It will also discuss
several examples of search-based methods for generating different types of content
for different types of games.

2.2 Evolutionary search algorithms

An evolutionary algorithm is a stochastic search algorithm loosely inspired by Dar-
winian evolution through natural selection. The core idea is to keep a population of
individuals (also called chromosomes or candidate solutions), which in each gener-
ation are evaluated, and the fittest (highest evaluated) individuals get the chance to
reproduce and the least fit are removed from the population. A generation can thus
be seen as divided into selection and reproduction phases. In your backyard, a gen-
eration of newly born rabbits may be subject to selection by the hungry wolf who
eats the slowest of the litter, with the surviving rabbits being allowed to reproduce.
The next generation of rabbits is likely to, on average, be better at running from
the wolf. Similarly, in a search-based PCG implementation, a generation of strat-
egy game units might be subject to selection by an evaluation function that grades
them based on how complementary they are, and then mixed with each other (re-
combination or crossover) or copied with small random changes (mutation). The
next generation of strategy game units is likely to, on average, be more complemen-
tary. It is important to note that this process works even when the initial generation
consists of randomly generated individuals which are all very unfit for the purpose;
some individuals will be less worthless than others, and a well-designed evaluation
function will reflect these differences.

To make matters more concrete, let us describe a simple but fully usable evolu-
tionary algorithm, the μ + λ evolution strategy (ES). The parameter μ represents
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the size of the part of the population that is kept between generations, the elite;
the parameter λ represents the size of the part of the population that is generated
through reproduction in each generation. For simplicity, imagine that μ = λ = 50
while reading the following description.

1. Initialise the population of μ +λ individuals. The individuals could be randomly
generated, or include some individuals that were hand-designed or the result of
previous evolutionary runs.

2. Shuffle the population (permute it randomly). This phase is optional but helps in
escaping loss-of-gradient situations.

3. Evaluate all individuals with the evaluation function, or some combination of
several evaluation functions, so that each individual is assigned a single numeric
value indicating its fitness.

4. Sort the population in order of ascending fitness.
5. Remove the λ worst individuals.
6. Replace the λ removed individuals with copies of the μ remaining individuals.

The newly made copies are called the offspring. If μ = λ , each individual in the
elite is copied once; otherwise, it could be copied fewer or more times.

7. Mutate the λ offspring, i.e. perturb them randomly. The most suitable mutation
operator depends on the representation and to some extent on the fitness land-
scape. If the representation is a vector of real numbers, an effective mutation
operator is Gaussian mutation: add random numbers drawn from a Gaussian dis-
tribution with a small standard deviation to all numbers in the vector.

8. If the population contains an individual of sufficient quality, or the maximum
number of generations is reached, stop. Otherwise, go to step 2 (i.e. start the next
generation).

Despite the simplicity of this algorithm (it can be implemented in 10–20 lines of
code), the μ +λ ES can be remarkably effective; even degenerate versions such as
the 1+ 1 ES can work well. However, the evolution strategy is just one of several
types of evolutionary algorithms; another commonly used type is the genetic al-
gorithm, which relies more on recombination and less on mutation, and which uses
different selection mechanisms. There are also several types of stochastic search/op-
timisation algorithms that are not strictly speaking evolutionary algorithms but can
be used for the same purpose, e.g. swarm intelligence algorithms such as particle
swarm optimisation and ant colony optimisation. A good overview of evolutionary
algorithms and some related approaches can be found in Eiben and Smith’s book [8].

Some evolutionary algorithms are especially well suited to particular types of
representation. For example, numerous variations on evolutionary algorithms have
been developed especially for evolving runnable computer programs, often repre-
sented as expression trees [18]. If the artefacts are represented as vectors of real
numbers of relatively short length (low dimensionality), a particularly effective al-
gorithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), for
which several open source implementations are available [9].

In many cases we want to use more than one evaluation function, as it is hard
to capture all aspects of an artefact’s quality in one number. In a standard single-
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objective evolutionary algorithm such as the evolution strategy, the evaluation func-
tions could be combined as a weighted sum. However, this comes with its own set
of problems, particularly that some functions tend to be optimised at the expense
of others. Instead, one could use a multiobjective evolutionary algorithm, that op-
timises for several objectives at the same time and finds the set of nondominated
individuals which have unique combinations of strengths. The most popular multi-
objective evolutionary algorithm is perhaps the NSGA-II [7].

2.2.1 Other types of search algorithms

It could be argued that an evolutionary algorithm is “overkill” for some content gen-
eration problems. If your search space is very small and/or you have lots of time at
hand to produce your content, you could try an exhaustive search algorithm that
simply iterates through all possible configurations. In other cases, when it is easy to
find good solutions and it is more important to maintain high diversity in the gener-
ated content, random search—simply sampling random points in the search space—
could work well. Even when using exhaustive or random search the content needs
to be represented in such a way that the space can be effectively searched/sampled
and an evaluation function is necessary to tell the bad content from the good.

Another approach to content generation that can also be seen as search in content
space is the solver-based approach, where e.g. Answer Set Programming is used to
specify the logical conditions on game content. That approach will be discussed in
Chapter 8.

2.3 Content representation

Content representation is a very important issue when evolving game content. The
representation chosen plays an important role in the efficiency of the generation
algorithm and the space of content the method will be able to cover. In evolutionary
algorithms, the solutions in the generation space are usually encoded as genotypes,
which are used for efficient searching and evaluation. Genotypes are later converted
into phenotypes, the actual entities being evolved. In a game content generation
scenario, the genotype might be the instructions for creating a game level, and the
phenotype is the actual game level.

Examples of content representation in the game domain include the work done by
Togelius et al. [26] who used an indirect representation to evolve maps for the real-
time strategy game StarCraft [1]. In this experiment, the genotypes of maps were
simply arrays of real numbers, whereas the phenotypes were complete StarCraft
maps including passable/impassable areas, positions of bases and resources, etc.
This experiment will be discussed in more detail in Section 2.5.



2 The search-based approach 21

Fig. 2.1: A track evolved based on sequences of Bézier curves. Adapted from [24]

In another game genre, Cardamone et al. [4] evolved tracks for a car racing game.
The tracks were represented as a set of control points the track has to cover and
Bézier curves were employed to connect these points and ensure smoothness, a
method inspired by the work done by Togelius et al. [24] on the same game genre.
An example track evolved following this method is presented in Figure 2.1. This
work will be discussed further in Section 2.6

As a concrete example of different representations, a level in Super Mario Bros.
might be represented in any of the following ways.

1. Directly, as a level map, where each variable in the genotype corresponds to one
“block” in the phenotype (e.g. bricks, question mark blocks, etc.).

2. More indirectly, as a list of the positions and properties of the different game
entities such as enemies, platforms, gaps and hills (an example of this can be
found in [19]).

3. Even more indirectly, as a repository of different reusable patterns (such as col-
lections of coins or hills), and a list of how they are distributed (with various
transforms such as rotation and scaling) across the level map (an example of this
can be found in [23]).

4. Very indirectly, as a list of desirable properties such as number of gaps, enemies,
coins, width of gaps, etc. (an example of this can be found in [20]).

5. Most indirectly, as a random number seed.

These representations yield very different search spaces. It’s easy to think that the
best representation would be the most direct one, which gives the evolutionary pro-
cess most control over the phenotype. One should be aware, however, of the “curse
of dimensionality” associated with representations that yield large search spaces:
the larger the search space, the harder it is (in general) to find a certain solution. An-
other useful principle is that the representation should have a high locality, meaning
that a small change to the genotype should on average result in a small change to
the phenotype and a small change to the fitness value. In that sense, the last repre-
sentation is unsuitable for search-based PCG because there is no locality, in which
case all search methods perform as badly (or as well) as random search.
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The choice of proper representation depends on the type of problem one is trying
to solve. In the work done by Shaker et al. [20], the levels of Infinite Mario Bros.
[17], a public clone of the popular game Super Mario Bros. [14], are represented
according to option 4 as a vector of integers; each level is parametrized by four se-
lected content features with the intention of finding the best combination of these
features that can be used to generate content that optimises a specific player’s expe-
rience. In a later study by the same authors [19], a more expressive representation
is used following option 2, in which the structure of the levels of the same game
is described in a design grammar that specifies the type, position, and properties of
each item to be placed in the level map. Grammatical evolution is then applied to the
design grammar in order to evolve new level designs [15]. A set of design elements,
following option 3, was proposed in [23], also on the same game, where levels were
described as a list of design elements placed in 2D maps; in this study a standard
genetic algorithm was used to evolve content.

An issue closely related to the representation on the direct–indirect continuum is
the expressive range of the chosen representation. The expressive range is relative
to a particular measure of it: one could measure the expressivity of a platform game
level generator in terms of how many different configurations of blocks it could
produce, but it would make more sense to measure some quality that is more relevant
to the experience of playing the game as a human. For example, the four-feature
vector representation used to represent Infinite Mario Bros. levels allows control of
the generation over only the four dimensions chosen, and consequently the search
space is bounded by the range of these four features. On the other hand, a generator
with a wider expressive range was built when representing the possible level designs
in a design grammar which imposes fewer constraints on the structures evolved.

Chapter 9 further discusses the issue of representation in search-based PCG, and
gives additional examples of representations tailored to particular content generation
needs.

2.4 Evaluation functions

Candidate solutions, encoded in a represention, are evaluated by an evaluation func-
tion, which assigns a score (a fitness value or evaluation value) to each candidate.
This is essential for the search process; if we do not have a good evaluation function,
the evolutionary process will not work as intended and will not find good content. In
general, the evaluation function should be designed to model some desirable quality
of the artefact, e.g. its playability, regularity, entertainment value, etc. The design of
an evaluation function depends to a great extent on the designer and what she thinks
are the important aspects that should be optimised and how to formulate that.

For example, there are many studies on evolving game content that is “fun” [25,
24, 20, 4]. This term, however, is not well defined, and is hard to measure and
formalise. This problem has been approached by many authors from different per-
spectives. In some studies, fun is considered a function of player behaviour and is
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measured accordingly. An example of such a method can be found in the work done
by Togelius et al. [25] for evolving entertaining car racing tracks. In this study, in-
dicators of player performance, such as the average speed achieved, were used as
a measure of the suitability of each evolved track for individual players. In another
study by Shaker et al. [20], fun is measured through self reports by directly ask-
ing the players about their experience. In other studies [22], a game is considered
fun if the content presented follows predefined patterns that specify regions in the
game and alternate between segments of varying challenge. In this case, challenge
is considered the primary cause of a fun experience.

In search-based PCG, we can distinguish between three classes of evaluation
functions: direct, simulation-based, and interactive.

2.4.1 Direct evaluation functions

Direct evaluation functions map features extracted from the generated content to a
content quality value and, in that sense, they base their fitness calculations directly
on the phenotype representation of the content. Direct evaluation functions are fast
to compute and often relatively easy to implement, but it is sometimes hard to devise
a direct evaluation function for some aspects of game content. Example features
include the placement of bases and resources in real-time strategy games [26] or
the size of the ruleset in strategy games [12]. The mapping between features and
fitness might be contingent on a model of the playing style, preferences or affective
state of players. An example of this form of fitness is the study done by Shaker et
al. [20, 21] for personalising player experience using models of players to give a
measure of content quality.

Within direct evaluation functions, two major types are theory-driven and data-
driven functions. Theory-driven functions are guided by intuition and/or qualitative
theories of player experience. Togelius et al. [24] used this method to evaluate the
tracks in a car racing game. The evaluation function derived is based on several
theoretical studies of fun in games [6, 11] combined with the authors’ intuition of
what makes an entertraining track. Data-driven functions, on the other hand, are
based on quantitative measures of player experience that approximate the mapping
between the content presented and players’ affective or cognitive states collected
via questionnaires or physiological measurements [21, 31].

2.4.2 Simulation-based evaluation functions

Simulation-based evaluation functions use AI agents that play through the content
generated and estimate its quality. Statistics are usually calculated about the agents’
behaviour and playing style and used to score game content. The type of the evalu-
ation task determines the area of proficiency of the AI agent. If content is evaluated
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on the basis of playability, e.g. the existence of a path from the start to the end in a
maze or a level in a 2D platform game, then AI agents should be designed that excel
in reaching the end of the game. On the other hand, if content is optimised to max-
imise particular player experience, then an AI agent that imitates human behaviour
is usually adopted. An example study that implements a human-like agent for as-
sessing content quality is presented in [24] where neural-network-based controllers
are trained to drive like human players in a car racing game and then used to eval-
uate the generated tracks. Each track generated is given a fitness value according to
playing-behaviour statistics calculated while the AI controller is playing. Another
example of a simulation-based evaluation function is measuring the average fighting
time of bots in a first-person shooter game [5].

An important distinction within simulation-based evaluation functions is between
static and dynamic functions. Static evaluation functions assume that the agent be-
haviour is maintained during gameplay. A dynamic evaluation function, on the other
hand, uses an agent that adapts during gameplay. In such agents, the fitness value
can be dependent on learnability: how well and/or fast the agent learns to play the
content that is being evaluated.

2.4.3 Interactive evaluation functions

Interactive functions evaluate content based on interaction with a human, so they re-
quire a human “in the loop”. Examples of this method can be found in the work done
by Hastings et al. [10], who implemented this approach by evaluating the quality of
the personalised weapons evolved implicitly based on how often and how long the
player chooses to use these weapons. Cardamone et al. [4] also used this form of
evaluation to score racing tracks according to the users’ reported preferences. The
first case is an example of an implicit collection of data while players’ preferences
were collected explicitly in the second. The problem with explicit data collection
is that, if not well integrated, it requires the gameplay session to be interrupted.
This method however provides a reliable and accurate estimator of player expe-
rience, as opposed to implicit data collection, which is usually noisy and based on
assumptions. Hybrid approaches are sometimes employed to mitigate the drawbacks
of these two methods by collecting information across multiple modalities such as
combining player behaviour with eye gaze and/or skin conductance. Example stud-
ies that use this approach can be found in [13, 21, 31].

2.5 Example: StarCraft maps

In two recent papers, Togelius et al. presented a search-based approach to generating
maps for the classic real-time strategy game (RTS) StarCraft [26, 27]. Despite being
released in the previous millennium, this game is still widely played and was until
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recently the focus of large tournaments broadcast on national TV in countries such
as South Korea. The focus of the game is on building bases, collecting resources, and
waging war with armies of units built using these bases. The maps of the game play a
crucial role, as they constrain what strategies are possible through their distribution
of paths, obstacles, resources, etc. Given the competitive nature of the game, it is
very important that the maps are fair. Therefore, evaluation functions were designed
to measure the fairness of the maps as well as their affordances for interesting and
diverse strategies.

Representation: The maps are represented as vectors of real numbers (of around
100 dimensions). In the genotype-to-phenotype process, some of these numbers are
interpreted directly as the positions of resources or base starting locations. Other
numbers are interpreted as starting positions and parameters for a turtle-graphics-
like procedure that “draws” impassable regions (walls, rocks, etc.) on the initially
empty map. The result of the transformation is a two-dimensional array where each
cell corresponds to a block in the StarCraft map format; this can then be automati-
cally converted into a valid StarCraft map.

Evaluation: Eight different evaluation functions were developed that address
base placement, resource placement and paths between bases. These evaluation
functions are based mostly on calculations of free space in different areas of the
map and on the shortest paths between different points as calculated by the A* al-
gorithm, and the functions are thus direct (though, if you see the path calculations
as abstract simulations of unit behaviour in the game, the functions can be seen as
simulation-based). There are functions for evaluating whether bases are sufficiently
fair from each other, whether there is enough space to grow a base, and whether
there is equal access to nearby resources. One particularly complicated function is
the choke-point function, which returns a higher value if the shortest path between
two bases has a choke point, a narrow area a tactically skilled player can use to
defend against superior attacking forces by using level geometry.

Algorithm: Given the number of evaluation functions, it seemed very compli-
cated to combine all of them into a single objective. SMS-EMOA, a state-of-the-art
multiobjective evolutionary algorithm, was therefore used to evolve combinations
of two or three objectives (some additional objectives were also converted to con-
straints). It was found that there are partial conflicts between several objectives,
meaning that it is impossible to find a map that maximises all of them, but certain
combinations of objectives yield interesting and reasonably fair maps.

2.6 Example: Racing tracks

Togelius et al. evolved racing tracks to fit particular players’ playing styles in a
simple two-dimensional racing game [24]. This particular game had already been
used for a series of experiments investigating how evolutionary algorithms could
best be used to create neural networks that could play the game well, when the
authors decided to see whether the same technique could be applied to evolve the
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tracks the car was racing on. The reasoning was that creating challenging opponent
drivers for commercial racing games is actually quite easy, especially if you are
allowed to “cheat” by giving the computer-controlled cars superior performance
(and who would stop you?)—on the other hand, creating an interesting racing track
is not trivial at all.

Representation: The tracks are represented as vectors of real numbers, which
are interpreted as control points for b-splines, i.e. sequences of Bézier curves.

Evaluation: The tracks are meant to be personalised for individual players.
Therefore, the first stage in evolving a track for a given player is to model the playing
style of that player. This is done by teaching a neural network (via another evolu-
tionary process) to drive like that player. Then a candidate track is evaluated in a
simulation-based manner by letting the neural network driver drive on that track in
lieu of the human player and investigate its performance. This information is used by
three different evaluation functions that measure whether the track has appropriate
challenge and diversity for the player.

Algorithm: Given that there are three different evaluation functions, there re-
mains the problem of combining them. The algorithm used, cascading elitism, is
similar to μ +λ ES but has several stages of selection to ensure appropriate selec-
tion pressure on all objectives.

2.7 Example: Board game rules

Browne and Maire demonstrated that it is possible to automatically generate com-
plete board games of such quality that they can be sold as commercial products [3].
The system described, Ludi, is restricted to simple board games similar to Go, Oth-
ello and Connect Four, but does a remarkable job of exploring this search space.
This example will be discussed further in Chapter 6.

Representation: The board games, including board layouts and rules, were rep-
resented as strings (which can be interpreted as expression trees) in a special-
purpose game description language. This is a relatively high-level language, de-
scribing entire games in just a few lines.

Evaluation: The games were evaluated by playing them with a version of the
minimax game-tree search algorithm, with an evaluation function that had been au-
tomatically tuned for each game. A number of values were extracted from the per-
formance of the algorithm on the game, e.g. how long it took to finish the game,
how often the game ended in a draw, how many of the rules were used etc. These
values were combined using a weighted sum based on empirical investigations of
the properties of successful board games.

Algorithm: A relatively standard genetic algorithm was used.
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2.8 Example: Galactic Arms Race

Galactic Arms Race (GAR) is a space shooter video game where the player traverses
the space in a space ship, shoots enemies, collects items and upgrades their ship. The
game was first released in 2010 as a free research game and a commercial version of
the game was released in 2012. The game is interesting from a research perspective
because it incorporates online automatic personalised content generation in a well-
chosen playable context. The main innovation of the game is in personalising the
weapons used by the player through evolution. As the game is played, new particle
weapons are automatically generated based on player behaviour.

Representation: Particle system weapons are controlled by neural networks
evolved by a method called NeuroEvolution of Augmenting Topologies (NEAT) [10].
NEAT evolves the networks through complexification, meaning that it starts with
a population of simple, small networks, and increases the complexity of network
topologies over generations. Each weapon in the game is represented as a single
network that controls the motion (velocity) and appearance (colour) of the particles
given the particle’s current position in the space. The evolution starts with a set of
simple weapons that shoot only in a straight line.

Evaluation: During the game, a fitness value is assigned to each weapon based
on how much the particular weapon is used by the player; weapons used by the
player more often are assigned higher fitness values, and thus have higher probabil-
ity of being evolved. The newly evolved weapons are then spawned into space for
the player to pick up.

Algorithm: The whole game thus represents a collective, distributed evolution-
ary algorithm. This process allows the generation of unique weapons for each player,
increasingly personalised as they play the game.

2.9 Lab exercise: Evolve a dungeon

Roguelike games are a type of games that use PCG for level generation; in fact,
the runtime generation and thereafter the infinite supply of levels is a key feature of
this genre. As in the original game Rogue from 1980, a roguelike typically lets you
control an agent in a labyrinthine dungeon, collecting treasures, fighting monsters
and levelling up. A level in such a game thus consists of rooms of different sizes
containing monsters and items and connected by corridors. There are a number of
standard constructive algorithms for generating roguelike dungeons [16], such as:

• Create the rooms first and then connect them by corridors; or
• Use maze generation methods to create the corridors and then connect adjacent

sections to create rooms.

The purpose of this exercise is to allow you to understand the search-based ap-
proach through implementing a search-based dungeon generator. Your generator
should evolve playable dungeons for an imaginary roguelike. The phenotype of the
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dungeons should be 2D matrices (e.g. size 50× 50) where each cell is one of the
following: free space, wall, starting point, exit, monster, treasure. It is up to you
whether to add other possible types of cell content, such as traps, teleporters, doors,
keys, or different types of treasures and monsters. One of your tasks is to explore
different content representations and quality measures in the context of dungeon
generation. Possible content representations include [28]:

• A grid of cells that can contain one of the different items including: walls, items,
monsters, free spaces and doors;

• A list of walls with their properties including their position, length and orienta-
tion;

• A list of different reusable patterns of walls and free space, and a list of how they
are distributed across the grid;

• A list of desirable properties (number of rooms, doors, monsters, length of paths
and branching factor); or

• A random number seed.

There are a number of advantages and disadvantages to each of these representa-
tions. In the first representation, for example, a grid of size 100×100 would need to
be encoded as a vector of length 10,000, which is more than many search algorithms
can effectively handle. The last option, on the other hand, explores one-dimensional
space but it has no locality.

Content quality can be measured directly by counting the number of unreachable
rooms or undesired properties such as a corridor connected to a corner in a room or
a room connected to too many corridors.

2.10 Summary

In search-based PCG, evolutionary computation or other stochastic search/optimisa-
tion algorithms are used to create game content. The content creation can be seen as
a search for the content that best satisfies an evaluation function in a content space.
When designing a search-based PCG solution, the two main issues are the content
representation and the evaluation function. The same space of content phenotypes
can be represented in several different ways in genotype space; in general, we can
talk about the continuum from direct representations (where genotypes are similar
to phenotypes) to indirect representations (where genotypes are much smaller than
phenotypes). Indirect representations yield less control and potentially sparser cov-
erage of content space, but often cope better with the curse of dimensionality. There
are three types of evaluation functions: direct, simulation-based, and interactive. Di-
rect evaluation functions are fast, simulation-based evaluation functions require an
AI to play through part of the game and interactive evaluation functions require a
human in the loop. Search-based PCG is currently very popular in academia and
there are multiple published studies; a few complete games have been released in-
corporating this approach to PCG.
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Chapter 3

Constructive generation methods for dungeons

and levels

Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

Abstract This chapter addresses a specific type of game content, the dungeon, and
a number of commonly used methods for generating such content. These methods
are all “constructive”, meaning that they run in fixed (usually short) time, and do
not evaluate their output in order to re-generate it. Most of these methods are also
relatively simple to implement. And while dungeons, or dungeon-like environments,
occur in a very large number of games, these methods can often be made to work
for other types of content as well. We finish the chapter by talking about some
constructive generation methods for Super Mario Bros. levels.

3.1 Dungeons and levels

A dungeon, in the real world, is a cold, dark and dreadful place where prisoners
are kept. A dungeon, in a computer game, is a labyrinthine environment where ad-
venturers enter at one point, collect treasures, evade or slay monsters, rescue noble
people, fall into traps and ultimately exit at another point. This conception of dun-
geons probably originated with the role-playing board game Dungeons and Drag-
ons, and has been a key feature of almost every computer role-playing game (RPG),
including genre-defining games such as the Legend of Zelda series and the Final
Fantasy series, and recent megahits such as The Elder Scrolls V: Skyrim. Of par-
ticular note is the “roguelike” genre of games which, following the original Rogue
from 1980, features procedural runtime dungeon generation; the Diablo series is a
high-profile series of games in this tradition. Because of this close relationship with
such successful games, and also due to the unique control challenges in their design,
dungeons are a particularly active and attractive PCG subject.

For the purposes of this chapter, we define adventure and RPG dungeon levels
as labyrinthic environments, consisting mostly of interrelated challenges, rewards
and puzzles, tightly paced in time and space to offer highly structured gameplay
progressions [9]. An aspect which sets dungeons apart from other types of levels
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is a sophisticated notion of gameplay pacing and progression. Although dungeon
levels are open for free player exploration (more than, say, platform levels), this
exploration has a tight bond with the progression of challenges, rewards, and puz-
zles, as designed by the game’s designer. And in contrast to platform levels or race
tracks, dungeon levels encourage free exploration while keeping strict control over
gameplay experience, progression and pacing (unlike open worlds, where the player
is more independent). For example, players may freely choose their own dungeon
path among different possible ones, but never encounter challenges that are impos-
sible for their current skill level (since the space to backtrack is not as open as, for
example, a sandbox city). Designing dungeons is thus a sophisticated exercise of
emerging a complex game space from predetermined desired gameplay, rather than
the other way around.

In most adventure games and RPGs, dungeons structurally consist of several
rooms connected by hallways. While originally the term ‘dungeon’ refers to a
labyrinth of prison cells, in games it may also refer to caves, caverns, or human-
made structures. Beyond geometry and topology, dungeons include non-player char-
acters (e.g. monsters to slay, princesses to save), decorations (typically fantasy-
based) and objects (e.g. treasures to loot).

Procedural generation of dungeons refers to the generation of the topology, ge-
ometry and gameplay-related objects of this type of level. A typical dungeon gener-
ation method consists of three elements:

1. A representational model: an abstract, simplified representation of a dungeon,
providing a simple overview of the final dungeon structure.

2. A method for constructing that representational model.
3. A method for creating the actual geometry of a dungeon from its representational

model.

Above, we distinguished dungeons from platform levels. However, there are also
clear similarities between these two types of game level. Canonical examples of
platform game levels include those in Super Mario Bros. and Sonic the Hedgehog; a
modern-day example of a game in this tradition that features procedural level gener-
ation is Spelunky, discussed in the first chapter. Like dungeons, platform game levels
typically feature free space, walls, treasures or other collectables, enemies and traps.
However, in the game mechanics of platformers, the player agent is typically con-
strained by gravity: the agent can move left or right and fall down, but can typically
only jump a small distance upwards. As a result, the interplay of platforms and gaps
is an essential element in the vocabulary of platform game levels.

In this chapter, we will study a variety of methods for procedurally creating dun-
geons and platform game levels. Although these methods may be very disparate,
they have one feature in common: they are all constructive, producing only one out-
put instance per run, in contrast with e.g. search-based methods. They also have in
common that they are fast; some are even successful in creating levels at runtime. In
general, these methods provide (rather) limited control over the output and its prop-
erties. The degree of control provided is nowadays a very important characteristic
of any procedural method. By “control” we mean the set of options that a designer
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(or programmer) has in order to purposefully steer the level-generation process, as
well as the amount of effort that steering takes. Control also determines whether
editing those options and parameters causes sensible output changes, i.e. the intu-
itive responsiveness of a generator. Proper control assures that a generator creates
consistent results (e.g. playable levels), while maintaining both the set of desired
properties and variability.

We will discuss several families of procedural techniques. For simplicity, each
of these techniques will be presented in the context of a single content type, either
dungeons or platform game levels. The first family of algorithms to be discussed
in this chapter is space partitioning. Two different examples of how dungeons can
be generated by space partitioning are given; the core idea is to recursively divide
the available space into pieces and then connect these pieces to form the dungeon.
This is followed by a discussion of agent-based methods for generating dungeons,
with the core idea that agents dig paths into a primeval mass of matter. The next
family of algorithms to be introduced is cellular automata, which turn out to be a
simple and fast means of generating structures such as cave-like dungeons. Genera-
tive grammars, yet another family of procedural methods, are discussed next, as they
can naturally capture higher-level dungeon design aspects. We then turn our atten-
tion to several methods that were developed for generating platform levels, some of
which are applicable to dungeons as well. The chapter ends with a discussion of the
platform level generation methods implemented in the commercial game Spelunky
and the open-source framework Infinite Mario Bros., and its recent offshoot Infini-
Tux. The lab exercise will have you implement at least one method from the chapter
using the InfiniTux API.

3.2 Space partitioning for dungeon generation

True to its name, a space-partitioning algorithm yields a space partition, i.e. a subdi-
vision of a 2D or 3D space into disjoint subsets, so that any point in the space lies in
exactly one of these subsets (also called cells). Space-partitioning algorithms often
operate hierarchically: each cell in a space partition is further subdivided by apply-
ing the same algorithm recursively. This allows space partitions to be arranged in a
so-called space-partitioning tree. Furthermore, such a tree data structure allows for
fast geometric queries regarding any point within the space; this makes space par-
titioning trees particularly important for computer graphics, enabling, for example,
efficient raycasting, frustum culling and collision detection.

The most popular method for space partitioning is binary space partitioning
(BSP), which recursively divides a space into two subsets. Through binary space
partitioning, the space can be represented as a binary tree, called a BSP tree.

Different variants of BSP choose different splitting hyperplanes based on specific
rules. Such algorithms include quadtrees and octrees: a quadtree partitions a two-
dimensional space into four quadrants, and an octree partitions a three-dimensional
space into eight octants. We will be using quadtrees on two-dimensional images as
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(a) Image and partition (b) Quadtree

Fig. 3.1: Example quadtree partition of a binary image (0 shown as red, 1 as black).
Large areas of a single colour, such as those on the right edge of the image, are not
further partitioned. The image is 16 by 16 pixels, so the quadtree has a depth of
4. While a fully expanded quadtree (with leaf nodes containing information about
a single pixel) would have 256 leaf nodes, the large areas of a single colour result
in a quadtree with 94 leaf nodes. The first layers of the tree are shown in (b): the
root node contains the entire image, with the four children ordered as: top left quad-
rant, top right quadrant, bottom left quadrant, bottom right quadrant (although other
orderings are possible)

the simplest example. While a quadtree’s quadrants can have any rectangular shape,
they are usually equal-sized squares. A quadtree with a depth of n can represent any
binary image of 2n by 2n pixels, although the total number of tree nodes and depth
depends on the structure of the image. The root node represents the entire image,
and its four children represent the top left, top right, bottom left, and bottom right
quadrants of the image. If the pixels within any quadrant have different colours, that
quadrant is subdivided; the process is applied recursively until each leaf quadrant
(regardless of size) contains only pixels of the same colour (see Figure 3.1).

When space-partitioning algorithms are used in 2D or 3D graphics, their purpose
is typically to represent existing elements such as polygons or pixels rather than to
create new ones. However, the principle that space partitioning results in disjoint
subsets with no overlapping areas is particularly suitable for creating rooms in a
dungeon or, in general, distinct areas in a game level. Dungeon generation via BSP
follows a macro approach, where the algorithm acts as an all-seeing dungeon archi-
tect rather than a “blind” digger as is often the case with the agent-based approaches
presented in Section 3.3. The entire dungeon area is represented by the root node of
the BSP tree and is partitioned recursively until a terminating condition is met (such
as a minimum size for rooms). The BSP algorithm guarantees that no two rooms
will be overlapping, and allows for a very structured appearance of the dungeon.

How closely the generative algorithms follow the principles of traditional par-
titioning algorithms affects the appearance of the dungeon created. For instance,
a dungeon can be created from a quadtree by selecting quadrants at random and
splitting them; once complete, each quadrant can be assigned a value of 0 (empty)
or 1 (room), taking care that all rooms are connected. This creates very symmet-
ric, ‘square’ dungeons such as those seen in Figure 3.2a. Furthermore, the principle
that a leaf quadrant must consist of a uniform element (or of same-colour pixels,
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(a) (b)

Fig. 3.2: (a) A dungeon created using a quadtree, with each cell consisting entirely
of empty space (black) or rooms (white). (b) A dungeon created using a quadtree,
but with each quadrant containing a single room (placed stochastically) as well as
empty space; corridors are added after the partitioning process is complete

in the case of images) can be relaxed for the purposes of dungeon generation; if
each leaf quadrant contains a single room but can also have empty areas, this per-
mits for rooms of different sizes, as long as their dimensions are smaller than the
quadrant’s bounds. These rooms can then be connected with each other, using ran-
dom or rule-based processes, without taking the quadtree into account at all. Even
with this added stochasticity, dungeons are still likely to be very neatly ordered (see
Figure 3.2b).

We now describe an even more stochastic approach loosely based on BSP tech-
niques. We consider an area for our dungeon, of width w and height h, stored in the
root node of a BSP tree. Space can be partitioned along vertical or horizontal lines,
and the resulting partition cells do not need to be of equal size. While generating the
tree, in every iteration a leaf node is chosen at random and split along a randomly
chosen vertical or horizontal line. A leaf node is not split any further if it is below a
minimum size (we will consider a minimal width of w/4 and minimal height of h/4
for this example). In the end, each partition cell contains a single room; the corners
of each room are chosen stochastically so that the room lies within the partition and
has an acceptable size (i.e. is not too small). Once the tree is generated, corridors
are generated by connecting children of the same parent with each other. Below is
the high-level pseudocode of the generative algorithm, and Figures 3.3 and 3.4 show
the process of generating a sample dungeon.

1: start with the entire dungeon area (root node of the BSP tree)
2: divide the area along a horizontal or vertical line
3: select one of the two new partition cells
4: if this cell is bigger than the minimal acceptable size:
5: go to step 2 (using this cell as the area to be divided)
6: select the other partition cell, and go to step 4
7: for every partition cell:
8: create a room within the cell by randomly

choosing two points (top left and bottom right)
within its boundaries

9: starting from the lowest layers, draw corridors to connect
rooms corresponding to children of the same parent
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in the BSP tree
10:repeat 9 until the children of the root node are connected

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3.3: Stochastically partitioning the dungeon area A, which is contained in the
root node of the BSP tree. Initially the space is split into B and C via a vertical
line (its x-coordinate is determined randomly). The smaller area B is split further
with a vertical line into D and E; both D and E are too small to be split (in terms
of width) so they remain leaf nodes. The larger area C is split along a horizontal
line into F and G, and areas F and G (which have sufficient size to be split) are split
along a vertical and a horizontal line respectively. At this point, the partition cells
of G (J and K) are too small to be split further, and so is partition cell I of F. Cell
H is still large enough to be split, and is split along a horizontal line into L and M.
At this point all partitions are too small to be split further and dungeon partitioning
is terminated with 7 leaf nodes on the BSP tree. Figure 3.4 demonstrates room and
corridor placement for this dungeon
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.4: Room and corridor placement in the partitioned dungeon of Figure 3.3. (a)
For each leaf node in the BSP tree, a room is placed by randomly choosing coor-
dinates for top left and bottom right corners, within the boundaries of the partition
cell. (b) A corridor is added to connect the leaf nodes of the lowest layer of the
tree (L and M); for all purposes, the algorithm will now consider rooms L and M
as joined, grouping them together as their parent H. (c) Moving up the tree, H (the
grouping of rooms L and M) is joined via a corridor with room I, and rooms J and
K are joined via a corridor into their parent G. (d) Further up, rooms D and E of the
same parent are joined together via a corridor, and the grouping of rooms L, M and
I are joined with the grouping of rooms J and K. (e) Finally, the two subtrees of the
root node are joined together and (f) the dungeon is fully connected

While binary space partitioning was primarily used here to create non-overlapping
rooms, the hierarchy of the BSP tree can be used for other aspects of dungeon gen-
eration as well. The example of Figure 3.4 demonstrates how room connectivity
can be determined by the BSP tree: using corridors to connect rooms correspond-
ing to children of the same parent reduces the chances of overlapping or intersect-
ing corridors. Moreover, non-leaf partition cells can be used to define groups of
rooms following the same theme; for instance, a section of the dungeon may con-
tain higher-level monsters, or monsters that are more vulnerable to magic. Coupled
with corridor connectivity based on the BSP tree hierarchy, these groups of rooms
may have a single entrance from the rest of the dungeon; this allows such a room
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to be decorated as a prison or as an area with dimmer light, favouring players who
excel at stealthy gameplay. Some examples of themed dungeon partitions are shown
in Figure 3.5.

Fig. 3.5: The example dungeon from Figure 3.4, using the partitions to theme the
room contents. Partition cells B and C are only connected by a single corridor;
this allows the rooms of partition B to be locked away (green lock), requiring a key
from cell C in order to be accessed (room L). Similarly, rooms of cell B contain only
treasures and rewards, while rooms of partition C contain predominantly monsters.
Moreover, the challenge rating of monsters in cell C is split between its child nodes:
partition G contains weak goblins while cell F contains challenging monsters with
magical powers. Further enhancements could increase the challenge of cell G by
making it darker (placing fewer light sources), using different textures for the floor
and walls of cell B, or changing the shape of rooms in cell C to circular

3.3 Agent-based dungeon growing

Agent-based approaches to dungeon generation usually amount to using a sin-
gle agent to dig tunnels and create rooms in a sequence. Contrary to the space-
partitioning approaches of Section 3.2, an agent-based approach such as this fol-
lows a micro approach and is more likely to create an organic and perhaps chaotic
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dungeon instead of the neatly organised dungeons of Section 3.2. The appearance
of the dungeon largely depends on the behaviour of the agent: an agent with a high
degree of stochasticity will result in very chaotic dungeons while an agent with
some “look-ahead” may avoid intersecting corridors or rooms. The impact of the AI
behaviour’s parameters on the generated dungeons’ appearance is difficult to guess
without extensive trial and error; as such, agent-based approaches are much more
unpredictable than space partitioning methods. Moreover, there is no guarantee that
an agent-based approach will not create a dungeon with rooms overlapping each
other, or a dungeon which spans only a corner of the dungeon area rather than its
entirety. The following paragraphs will demonstrate two agent-based approaches for
generating dungeons.

There is an infinite number of AI behaviours for digger agents when creating
dungeons, and they can result in vastly different results. As an example, we will
first consider a highly stochastic, ‘blind’ method. The agent is considered to start
at some point of the dungeon, and a random direction is chosen (up, down, left
or right). The agent starts digging in that direction, and every dungeon tile dug is
replaced with a ‘corridor’ tile. After making the first ‘dig’, there is a 5% chance that
the agent will change direction (choosing a new, random direction) and another 5%
chance that the agent will place a room of random size (in this example, between
three and seven tiles wide and long). For every tile that the agent moves in the same
direction as the previous one, the chance of changing direction increases by 5%. For
every tile that the agent moves without a room being added, the chance of adding a
room increases by 5%. When the agent changes direction, the chance of changing
direction again is reduced to 0%. When the agent adds a room, the chance of adding
a room again is reduced to 0%. Figure 3.6 shows an example run of the algorithm,
and its pseudocode is below.

1: initialize chance of changing direction Pc=5
2: initialize chance of adding room Pr=5
3: place the digger at a dungeon tile and randomize its direction
4: dig along that direction
5: roll a random number Nc between 0 and 100
6: if Nc below Pc:
7: randomize the agent’s direction
8: set Pc=0
9: else:
10: set Pc=Pc+5
11:roll a random number Nr between 0 and 100
12:if Nr below Pr:
13: randomize room width and room length between 3 and 7
14: place room around current agent position
14: set Pr=0
15:else:
16: set Pr=Pr+5
17:if the dungeon is not large enough:
18: go to step 4

In order to avoid the lack of control of the previous stochastic approach, which
can result in overlapping rooms and dead-end corridors, the agent can be a bit more
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Fig. 3.6: A short run of the stochastic, “blind” digger. The digger starts at a random
tile on the map (1st image), and starts digging downwards. After digging 5 tiles
(3rd image), the chance of adding a room is 25%, and it is rolled, resulting in the
4th image. The agent continues moving downwards (4th image) with the chance of
adding a room at 5% and the chance of changing direction at 30%: it is rolled, and
the new direction is right (6th image). After moving another 5 tiles (7th image), the
chance of adding a room is at 30% and the chance of changing direction is at 25%.
A change of direction is rolled, and the agent starts moving left (8th image). After
another tile is dug (9th image), the chance of adding a room is 40% and it is rolled,
causing a new room to be added (10th image). Already, from this very short run, the
agent has created a dead-end corridor and two overlapping rooms

informed about the overall appearance of the dungeon and look ahead to see whether
the addition of a room would result in room–room or room–corridor intersections.
Moreover, the change of direction does not need to be rolled in every step, to avoid
winding pathways.

We will consider a less stochastic agent with look-ahead as a second example. As
above, the agent starts at a random point in the dungeon. The agent checks whether
adding a room in the current position will cause it to intersect existing rooms. If
all possible rooms result in intersections, the agent picks a direction and a digging
distance that will not result in the potential corridor intersecting with existing rooms
or corridors. The algorithm stops if the agent stops at a location where no room
and no corridor can be added without causing intersections. Figure 3.7 shows an
example run of the algorithm, and below is its pseudocode.

1: place the digger at a dungeon tile
2: set helper variables Fr=0 and Fc=0
3: for all possible room sizes:
3: if a potential room will not intersect existing rooms:
4: place the room
5: Fr=1
6: break from for loop
7: for all possible corridors of any direction and length 3 to 7:
8: if a potential corridor will not intersect existing rooms:
9: place the corridor
10: Fc=1
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Fig. 3.7: A short run of the informed, “look ahead” digger. The digger starts at a
random tile on the map (1st image), and places a room (2nd image) and a corridor
(3rd image) since there can’t be any overlaps in the empty dungeon. After placing
the first corridor, there is no space for a room (provided rooms must be at least 3 by
3 tiles) which doesn’t overlap with the previous room, so the digger makes another
corridor going down (4th image). At this point, there is space for a small room which
doesn’t overlap (5th image) and the digger carries on placing corridors (6th image
and 8th image) and rooms (7th image and 9th image) in succession. After the 9th
image, the digger can’t add a room or a corridor that doesn’t intersect with existing
rooms and corridors, so generation is halted despite a large part of the dungeon area
being empty

11: break from for loop
12:if Fr=1 or Fc=1:
13: go to 2

The examples provided with the “blind” and “look-ahead” digger agents show
naive, simple approaches; Figures 3.6 and 3.7 show to a large degree worst-case
scenarios of the algorithm being run, with resulting dungeons either overlapping or
being prematurely terminated. While simpler or more complex code additions to the
provided digger behaviour can avert many of these problems, the fact still remains
that it is difficult to anticipate such problems without running the agent’s algorithm
on extensive trials. This may be a desirable attribute, as the uncontrollability of the
algorithm may result in organic, realistic caves (simulating human miners trying to
tunnel their way towards a gold vein) and reduce the dungeon’s predictability to a
player, but it may also result in maps that are unplayable or unentertaining. More
than most approaches presented in this chapter, the digger agent’s parameters can
have a very strong impact on the playability and entertainment value of the generated
artefact and tweaking such parameters to best effect is not a straightforward or easy
task.
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(a) Moore neighbourhood (b) von Neumann neighbourhood

Fig. 3.8: Two types of neighbourhoods for cellular automata. Adapted from
Wikipedia

3.4 Cellular automata

A cellular automaton (plural: cellular automata) is a discrete computational model.
Cellular automata are widely studied in computer science, physics and even some
branches of biology, as models of computation, growth, development, physical phe-
nomena, etc. While cellular automata have been the subject of many publications,
the basic concepts are actually very simple and can be explained in a few paragraphs
and a picture or two.

A cellular automaton consists of an n-dimensional grid, a set of states and a set of
transition rules. Most cellular automata are either one-dimensional (vectors) or two-
dimensional (matrices). Each cell can be in one of several states; in the simplest
case, cells can be on or off. The distribution of cell states at the beginning of an
experiment (at time t0) is the initial state of the cellular automaton. From then on, the
automaton evolves in discrete steps based on the rules of that particular automaton.
At each time t, each cell decides its new state based on the state of itself and all of
the cells in its neighbourhood at time t −1.

The neighbourhood defines which cells around a particular cell c affect c’s future
state. For one-dimensional cellular automata, the neighbourhood is defined by its
size, i.e. how many cells to the left or right the neighbourhood stretches. For two-
dimensional automata, the two most common types of neighbourhoods are Moore
neighbourhoods and von Neumann neighbourhoods. Both neighbourhoods can have
a size of any whole number, one or greater. A Moore neighbourhood is a square: a
Moore neighbourhood of size 1 consists of the eight cells immediately surrounding
c, including those surrounding it diagonally. A von Neumann neighbourhood is like
a cross centred on c: a von Neumann neighbourhood of size 1 consists of the four
cells surrounding c above, below, to the left and to the right (see Figure 3.8).



3 Constructive generation methods for dungeons and levels 43

The number of possible configurations of the neighbourhood equals the num-
ber of states for a cell to the power of the number of cells in the neighbourhood.
These numbers can quickly become huge, for example a two-state automaton with
a Moore neighbourhood of size 2 has 225 = 33,554,432 configurations. For small
neighbourhoods, it is common to define the transition rules as a table, where each
possible configuration of the neighbourhood is associated with one future state, but
for large neighbourhoods the transition rules are usually based on the proportion of
cells that are in each state.

Cellular automata are very versatile, and several types have been shown to be
Turing complete. It has even been argued that they could form the basis for a new
way of understanding nature through bottom-up modelling [28]. However, in this
chapter we will mostly concern ourselves with how they can be used for procedural
content generation.

Johnson et al. [4] describe a system for generating infinite cave-like dungeons us-
ing cellular automata. The motivation was to create an infinite cave-crawling game,
with environments stretching out endlessly and seamlessly in every direction. An
additional design constraint is that the caves are supposed to look organic or eroded,
rather than having straight edges and angles. No storage medium is large enough
to store a truly endless cave, so the content must be generated at runtime, as play-
ers choose to explore new areas. The game does not scroll but instead presents the
environment one screen at a time, which offers a time window of a few hundred
milliseconds in which to create a new room every time the player exits a room.

This method uses the following four parameters to control the map generation
process:

• A percentage of rock cells (inaccessible areas);
• The number of cellular automata generations;
• A neighbourhood threshold value that defines a rock (T=5);
• The number of neighbourhood cells.

Each room is a 50×50 grid, where each cell can be in one of two states: empty or
rock. Initially, the grid is empty. The generation of a single room works as follows.

• The grid is “sprinkled” with rocks: for each cell, there is probability r (e.g. 0.5)
that it is turned into rock. This results in a relatively uniform distribution of rock
cells.

• A cellular automaton is applied to the grid for n (e.g. 2) steps. The single rule of
this cellular automaton is that a cell turns into rock in the next time step if at least
T (e.g. 5) of its neighbours are rock, otherwise it will turn into free space.

• For aesthetic reasons the rock cells that border on empty space are designated as
“wall” cells, which are functionally rock cells but look different.

This simple procedure generates a surprisingly lifelike cave-room. Figure 3.9
shows a comparison between a random map (sprinkled with rocks) and the results
of a few iterations of the cellular automaton.

But while this generates a single room, the game requires a number of connected
rooms. A generated room might not have any openings in the confining rocks, and
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(a) Random map (b) CA map

Fig. 3.9: Cave generation: Comparison between a CA and a randomly generated
map (r = 0.5 in both maps); CA parameters: n = 4, M = 1, T = 5. Rock and wall
cells are represented by white and red colour respectively. Coloured areas represent
different tunnels (floor clusters). Adapted from [4]

there is no guarantee that any exits align with entrances to the adjacent rooms.
Therefore, whenever a room is generated, its immediate neighbours are also gen-
erated. If there is no connection between the largest empty spaces in the two rooms,
a tunnel is drilled between those areas at the point where they are least separated.
Two more iterations of the cellular automaton are then run on all nine neighbouring
rooms together, to smooth out any sharp edges. Figure 3.10 shows the result of this
process, in the form of nine rooms that seamlessly connect. This generation process
is extremely fast, and can generate all nine rooms in less than a millisecond on a
modern computer.

We can conclude that the small number of parameters, and the fact that they are
relatively intuitive, is an asset of cellular automata approaches like Johnson et al.’s.
However, this is also one of the downsides of the method: for both designers and
programmers, it is not easy to fully understand the impact that a single parameter
has on the generation process, since each parameter affects multiple features of the
generated maps. It is not possible to create a map that has specific requirements,
such as a given number of rooms with a certain connectivity. Therefore, gameplay
features are somewhat disjoint from these control parameters. Any link between
this generation method and gameplay features would have to be created through a
process of trial and error.
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Fig. 3.10: Cave generation: a 3× 3 base grid map generated with CA. Rock and
wall cells are represented by white and red colour respectively. Grey areas represent
floor. (M = 2;T = 13;n = 4;r = 50%). Adapted from [4]

3.5 Grammar-based dungeon generation

Generative grammars were originally developed to formally describe structures in
natural language. These structures—phrases, sentences, etc.—are modelled by a fi-
nite set of recursive rules that describe how larger-scale structures are built from
smaller-scale ones, grounding out in individual words as the terminal symbols. They
are generative because they describe linguistic structures in a way that also describes
how to generate them: we can sample from a generative grammar to produce new
sentences featuring the structures it describes. Similar techniques can be applied to
other domains. For example, graph grammars [15] model the structure of graphs
using a similar set of recursive rules, with individual graph nodes as the terminal
symbols.

Back to our topic of dungeon generation, Adams [1] uses graph grammars to gen-
erate first-person shooter (FPS) levels. FPS levels may not obviously be the same as
dungeons, but for our purposes his levels qualify as dungeons, because they share the
same structure, a maze of interconnected rooms. He uses the rules of a graph gram-
mar to generate a graph that describes a level’s topology: nodes represent rooms,
and an edge between two rooms means that they are adjacent. The method doesn’t
itself generate any further geometric details, such as room sizes. An advantage of
this high-level, topological representation of a level is that graph generation can
be controlled through parameters such as difficulty, fun, and global size. A search
algorithm looks for levels that match input parameters by analyzing all results of
a production rule at a given moment, and selecting the rule that best matches the
specified targets.

One limit of Adams’ work is the ad-hoc and hard-coded nature of its grammar
rules, and especially the parameters. It is a sound approach for generating the topo-
logical description of a dungeon, but generalizing it to a broader set of games and
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goals would require creating new input parameters and rules each time. Regardless,
Adams’ results showcase the motivation and importance of controlling dungeon
generation through gameplay.

Dormans’ work [3] is more extensively covered in Chapter 5, so here we only
briefly refer to his use of generative grammars to generate dungeon spaces for ad-
venture games. Through a graph grammar, missions are first generated in the form
of a directed graph, as a model of the sequential tasks that a player needs to perform.
Subsequently, each mission is abstracted to a network of nodes and edges, which is
then used by a shape grammar to generate a corresponding game space.

This was the first method to successfully introduce gameplay-based control, most
notably with the concept of a mission grammar. Still, the method does not offer real
control parameters, since control is actually exerted by the different rules in the
graph and shape grammars, which are far from intuitive for most designers.

Inspired by the work of Dormans, van der Linden et al. [8] proposed the use of
gameplay grammars to generate dungeon levels. Game designers express a-priori
design constraints using a gameplay-oriented vocabulary, consisting of player ac-
tions to perform in-game, their sequencing and composition, inter-relationships and
associated content. These designer-authored constraints directly result in a gener-
ative graph grammar, a so-called gameplay grammar, and multiple grammars can
be expressed through different sets of constraints. A grammar generates graphs of
player actions, which subsequently determine layouts for dungeon levels. For each
generated graph, specific content is synthesized by following the graph’s constraints.
Several proposed algorithms map the graph into the required game space and a sec-
ond procedural method generates geometry for the rooms and hallways, as required
by the graph.

This approach aims at improving gameplay-based control on a generic basis, as it
provides designers with the tools to effectively create, from scratch, grammar-based
generators of graphs of player actions. The approach is generic, in the sense that
such tools are not connected to any domain, and player actions and related design
constraints can be created and manipulated across different games. However, inte-
gration of graphs of player actions in an actual game requires a specialized genera-
tor, able to transform such a graph into a specific dungeon level for that game. Van
der Linden et al. demonstrated such a specialized generator for only one case study,
yielding fully playable 3D dungeon levels for the game Dwarf Quest [27]. Fig-
ure 3.11 show (a) a gameplay graph and (b) a dungeon generated from this method.

As for gameplay-based control, this approach empowers designers to specify and
control dungeon generation with a more natural design-oriented vocabulary. Design-
ers can create their own player actions and use them as the vocabulary to control and
author the dungeon generator. For this, they specify the desired gameplay which
then constrains game-space creation. Furthermore, designers can express their own
parameters (e.g. difficulty), which control rule rewriting in the gameplay grammar.
Setting such gameplay-based parameters allows for even more fine-grained control
over generated dungeons.
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(a)

(b)

Fig. 3.11: (a) A gameplay graph created by van der Linden et al. [8] and (b) a
corresponding dungeon layout generated for it

3.6 Advanced platform generation methods

In this section, we turn our attention to platform generation methods, by discussing
two recent methods that were originally proposed for generating platform levels.
Unlike the previous sections, there is no single category or family to characterize
these methods. Interestingly, as we will point out, the central concepts of each of
them could very well contribute to improve the generation of dungeons as well.

The first method, proposed by Smith et al. [23], is rhythm-based platform gen-
eration. It proposes level generation based on the notion of rhythm, linked to the
timing and repetition of user actions. They first generate small pieces of a level,
called rhythm groups, using a two-layered grammar-based approach. In the first
layer, a set of player actions is created, after which this set of actions is converted
into corresponding geometry. Many levels are created by connecting rhythm groups,
and a set of implemented critics selects the best level.

Smith et al. propose a set of ‘knobs’ that a designer can manipulate to control the
generation process, including (i) a general path through the level (i.e. start, end, and
intermediate line segments), (ii) the kinds of rhythms to be generated, (iii) the types
and frequencies of geometry components, and (iv) the way collectables (coins) are
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divided over the level (e.g. coins per group, probability for coins above gaps, etc.).
There are also some parameters per created rhythm group, such as the frequency of
jumps per rhythm group, and how often specific geometry (springs) should occur for
a jump. Another set of parameters provides control over the rhythm length, density,
beat type, and beat pattern.

The large number of parameters at different levels of abstraction provides many
control options, and allows for the versatile generation of very disparate levels.
Furthermore, they relate quite seamlessly to gameplay, especially in the platformer
genre. However, this approach could nicely tie in with dungeon generation as well.
As with Dormans, a two-layered grammar is used, where the first layer considers
gameplay (in this case, player actions) and the second game space (geometry). The
notion of rhythm as defined by Smith et al. is not directly applicable to dungeons,
but the pacing or tempo of going through rooms and hallways could be of simi-
lar value in dungeon-based games. The decomposition of a level into rhythm groups
also connects very well with the possible division of a dungeon into dungeon-groups
with distinct gameplay features such as pacing.

Our second method, proposed by Mawhorter et al. [11] is called Occupancy-
Regulated Extension (ORE), and it directly aims at procedurally generating 2D
platform levels. ORE is a general geometry assembly algorithm that supports
human-design-based level authoring at arbitrary scales. This approach relies on pre-
authored chunks of level as a basis, and then assembles a level using these chunks
from a library. A chunk is referred to as level geometry, such as a single ground
element, a combination of ground elements and objects, interact-able objects, etc.
This differs from the rhythm groups introduced by Smith et al. [23], because rhythm
groups are separately generated by a PCG method whilst the ORE chunks are pieces
of manually created content in a library. The algorithm takes the following steps: (i)
a random potential player location (occupancy) is chosen to position a chunk; (ii)
a chunk is selected from a list of context-based compatible chunks; (iii) the new
chunk is integrated with the existing geometry. This process continues until there
are no potential player locations left, after which post-processing takes care of plac-
ing objects such as power-ups.

This framework is meant for general 2D platform games, so specific game ele-
ments and mechanics need to be filled in, and chunks need to be designed and added
to a library. Versatile levels can only be generated given that a minimally interesting
chunk library is used.

Mawhorter et al. do not mention specific control parameters for their ORE al-
gorithm, but a designer still has some control. Firstly, the chunks in the library and
their probability of occurrence are implicit parameters, i.e. they actually determine
the level geometry and versatility, and possible player actions need to be defined and
incorporated in the design of chunks. And above all, their mixed-initiative approach
provides the largest amount of control one can offer, even from a gameplay-based
perspective. However, taken too far, this approach could come too close to manu-
ally constructing a level, decreasing the benefits of PCG. In summary, much control
can be provided by this method, but the generation process may still be not very
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efficient, as a lot of manual work seems to still be required for specific levels to be
generated.

This ORE method proposes a mixed-initiative approach, where a designer has
the option to place content before the algorithm takes over and generates the rest of
the level. This approach seems very interesting also for dungeon generation, where
an algorithm that can fill in partially designed levels would be of great value. Imag-
ine a designer placing special event rooms and then having an algorithm add the
other parts of the level that are more generic in nature. This mixed-initiative ap-
proach would increase both level versatility, and control for designers, while still
taking work off their hands. Additionally, it would fit the principles of dungeon de-
sign, where special rooms are connected via more generic hallways. Also, using a
chunk library fits well in the context of dungeon-level generation (e.g. combining
sets of template rooms, junctions and hallways). However, 3D dungeon levels would
typically require a much larger and more complex chunk library than 2D platform
levels, which share a lot of similar ground geometry.

3.7 Example applications to platform generation

3.7.1 Spelunky

Spelunky is a 2D platform indie game originally created by Derek Yu in 2008 [29].
The PC version of the game is available for free. An updated version of the game
was later released in 2012 for the Xbox Live Arcade with better graphics and more
content. An enhanced edition was also released on PC in 2013. The gameplay in
Spelunky consists of traversing the 2D levels, collecting items, killing enemies and
finding your way to the end. To win the game, the player needs to have good skills
in managing different types of resources such as ropes, bumps and money. Losing
the game at any level requires the game to be restarted from the beginning.

The game consists of four groups of maps of increasing level of difficulty. Each
set of levels has a distinguished layout and introduces new challenges and new types
of enemies. An example level from the second set is presented in Figure 3.12.

The standout feature of Spelunky is the procedural generation of game content.
The use of PCG allows the generation of endless variations of content that are unique
in every playthrough.

Each level in Spelunky is divided into a 4× 4 grid of 16 rooms with two rooms
marking the start and the end of the level (see Figure 3.13) and corridors connecting
adjacent rooms. Not all the rooms are necessarily connected; in Figure 3.13 there
are some isolated rooms such as the ones at the top left and bottom left corners.
In order to reach these rooms, the player needs to use bombs, which are a limited
resource, to destroy the walls.

The layout of each room is selected from a set of predefined templates. An ex-
ample template for one of the rooms presented in Figure 3.13 can be seen in Fig-
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Fig. 3.12: Snapshot from Spelunky

Fig. 3.13: Level generation in Spelunky. Adapted from [10]

Fig. 3.14: Example room design in Spelunky. Adapted from [10]

ure 3.14. In each template, a number of chunks are marked in which randomisation
can occur. Whenever a level is being generated, these chunks are replaced by dif-
ferent types of obstacle according to a set of randomised number generators [10].
Following this method, a new variation of the level can be generated with each run
of the algorithm.



3 Constructive generation methods for dungeons and levels 51

More specifically, each room in Spelunky consists of 80 tiles arranged in an 8×10
matrix [6]. An example room template can be:

0000000011
0060000L11
0000000L11
0000000L11
0000000L11
0000000011
0000000011
1111111111

Where 0 represents an empty cell, 1 stands for walls or bricks, L for ladders. The
6 in this example can be replaced by random obstacles permitting the generation of
different variations. The obstacles, or traps, are usually of 5×3 blocks of tiles that
overwrite the original tiles. Example traps included in the game can be spikes, webs
or arrow traps, to name some.

While the basic layout of the level is partially random, with the presence of op-
portunities for variations, the placement of monsters and traps is 100% random.
After generating the physical layout, the level map is scanned for potential places
where monsters can be generated. These include, for example, a brick with empty
tiles behind that offer enough space for generating a spider. There is another set of
random numbers that controls the generation of monsters. These numbers control
the type and the frequency of generation. For example, there is a 20% chance of
creating a giant spider and once a spider is generated, this probability is set to 0
preventing the existence of more than one giant spider in a level.

In this sense, level generation in Spelunky can be seen as a composition of three
main phases: in the first phase, the main layout of the level is generated by choosing
the rooms from the templates available and defining the entrance and exit points.
The second phase is obstacle generation, which can be thought of as an agent going
through the level and placing obstacles in predefined spaces according to a set of
heuristics. The final phase is the monster-generation phase, where another agent
searches the level and places a monster when enough space is found and a set of
conditions is satisfied.

3.7.2 Infinite Mario Bros.

Super Mario Bros. is a very popular 2D platform game developed by Nintendo and
released in the mid 1980s [12]. A public domain clone of the game, named Infinite
Mario Bros. (IMB) [14] was later published by Markus Persson. IMB features the
art assets and general game mechanics of Super Mario Bros. but differs in level con-
struction. IMB is playable on the web, where the Java source code is also available.1

While implementing most features of Super Mario Bros., the standout feature of
IMB is the automatic generation of levels. Every time a new game is started, levels

1 http://www.mojang.com/notch/mario/
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are randomly generated by traversing the level map and adding features according
to certain heuristics.

The internal representation of levels in IMB is a two-dimensional array of game
elements. In “small” state, Mario is one block wide and one block high. Each po-
sition in the array can be filled with a brick block, a coin, an enemy or nothing.
The levels are generated by placing the game elements in the two-dimensional level
map.

Different approaches can be followed to generate the levels for this game [21, 19,
16, 24]. In the following we describe one possible approach.

The Probabilistic Multi-pass Generator (PMPG) was created by Ben Weber [21]
as an entry for the level generation track of the Mario AI Championship [17]. The
generator is agent-based and works by first creating the base level and then per-
forming a number of passes through it. Level generation consists of six passes from
left to right and adding one of the different types of game elements. Each pass is
associated with a number of events (14 in total) that may occur according to prede-
fined uniform probability distributions. These distributions are manually weighted
and by tweaking these weights one can gain control over the frequency of different
elements such as gaps, hills and enemies.

The six passes considered are:

1. An initial pass that changes the basic structure of the level by changing the height
of the ground and starting or ending a gap;

2. the second pass adds the hills in the background;
3. the third pass adds the static enemies such as pipes and cannons based on the

basic platform generated;
4. moving enemies such as koopas and goombas are added in the fourth pass;
5. the fifth pass adds the unconnected horizontal blocks, and finally,
6. the sixth pass places coins throughout the level.

Playability, or the existence of a path from the starting to the ending point, is
guaranteed by imposing constraints on the items created and placed. For example,
the width of generated gaps is limited by the maximum number of blocks that the
player can jump over, and the height of pipes is limited to ensure that the player can
pass through.

3.8 Lab session: Level generator for InfiniTux (and Infinite
Mario)

InfiniTux, short for Infinite Tux, is a 2D platform game built by combining the un-
derlying software used to generate the levels for Infinite Mario Bros. (IMB) with the
art and sound assets of Super Tux [26]. The game was created to replace IMB, and
is used in research [13, 22, 25, 7, 2] and the Mario AI Championship [20, 21, 5].
Since the level generator for InfiniTux is the same as the one used for IMB, the game



3 Constructive generation methods for dungeons and levels 53

features infinite variations of levels by the use of a random seed. The level of diffi-
culty can also be tuned using different difficulty values, which control the number,
frequency and types of the obstacles and monsters.

The purpose of this exercise is to use one or more of the methods presented in
this chapter to implement your own generator that creates content for the game.
The software you will be using is that used for the Level Generation Track of the
Platformer AI Competition [18], a successor to the Mario AI Championship that is
based on InfiniTux. The software provides an interface that eases interaction with
the system and is a good starting point. You can either modify the original level
generator, or use it as an inspiration. In order to help you to start with the software,
we describe the main components of the interface provided and how it can be used.

As the software is developed for the Level Generation track of the competition,
which invites participants to submit level generators that are fun for specific play-
ers, the interface incorporates information about player behaviour that you could
use while building your generator. This information is collected while the player is
playing a test level and stored in a gameplay matrix that contains statistical features
extracted from a gameplay session. The features include, for example, the number
of jumps, the time spent running, the number of items collected and the number of
enemies killed.

For your generator to work properly, your level should implement the LevelIn-
terface, which specifies how the level is constructed and how different types of
elements are scattered around the level:

public byte[][] getMap();
public SpriteTemplate[][] getSpriteTemplates()

The size of the level map is 320× 15 and you should implement a method of
your choice to fill in the map. Note that the basic structure of the level is saved in a
different map than the one used to store the placement of enemies.

The level generator, which passes the gameplay matrix to your level and commu-
nicates with the simulator, should implement the LevelGenerator interface:

public LevelInterface generateLevel(GamePlay playerMat);

There are quite a few examples reported in the literature that use this software
for content creation; some of them are part of the Mario AI Championship and their
implementation is open source and freely available at the competition website [17].

3.9 Summary

Constructive methods are commonly used for generating dungeons and levels in
roguelike games and certain platformers, because such methods run in predictable,
often short time. One family of such methods is based on binary space partitioning:
recursively subdivide an area into ever smaller units, and then construct a dungeon
by connecting these units in order. Another family of methods is based on agents
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that “dig out” a dungeon by traversing it in some way. While these methods orig-
inate in game development and might be seen as somewhat less principled, other
methods for dungeon or level generation are applications of well-known computer-
science techniques. Grammar-based methods, which are more extensively covered
in Chapter 5, build dungeons by expanding from an axiom using production rules.
Cellular automata are stochastic, iterative methods that can be used on their own or
in combination with other methods to create smooth, organic-looking designs. Fi-
nally, several related methods work by going through a level in separate passes and
adding content of different types according to simple rules with probabilities. Such
methods have been used for the iconic roguelike platformer Spelunky and also for
the Mario AI framework, but could easily be adapted to work for dungeons.
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Chapter 4

Fractals, noise and agents with applications to

landscapes

Noor Shaker, Julian Togelius, and Mark J. Nelson

Abstract Most games include some form of terrain or landscape (other than a flat
floor) and this chapter is about how to effectively create the ground you (or the
characters in your game) are standing on. It starts by describing several fast but ef-
fective stochastic methods for terrain generation, including the classic and widely
used diamond-square and Perlin-noise methods. It then goes into agent-based meth-
ods for building more complex landscapes, and search-based methods for generating
maps that include particular gameplay elements.

4.1 Terraforming and making noise

This chapter is about terrains (or landscapes—we will use the words interchange-
ably) and noise, two types of content which have more in common than might be
expected. We will discuss three very different types of methods for generating such
content, but first we will discuss where and why terrains and noise are used.

Terrains are ubiquitous. Almost any three-dimensional game will feature some
ground to stand or drive on, and in most of them there will be some variety such
as different types of vegetation, differences in elevation etc. What changes is how
much you can interact directly with the terrains, and thus how they affect the game
mechanics.

At one extreme of the spectrum are flight simulators. In many cases, the terrain
has no game-mechanical consequences—you crash if your altitude is zero, but in
most cases the minor variations in the terrain are not enough to affect your perfor-
mance in the game. Instead, the role of the terrain is to provide a pretty backdrop
and help the player to orientate. Key demands on the terrain are therefore that it is
visually pleasing and believable, but also that it is huge: airplanes fly fast, are not
hemmed in by walls, and can thus cover huge areas. From 30,000 feet one might
not be able to see much detail and a low-resolution map might therefore be seen as
a solution, but preferably it should be possible to swoop down close to the ground
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and see hills, houses, creeks and cars. Therefore, a map where the larger features
were generated in advance but where details could be generated on demand would
be useful. Also, from a high altitude it is easy to see the kind of regularities that re-
sult from essentially copying and pasting the same chunks of landscape, so reusing
material is not trivial.

In open-world games such as Skyrim and the Grand Theft Auto series, terrains
sometimes have mechanical and sometimes aesthetic roles. This poses additional
demands on the design. When driving through a landscape in Grand Theft Auto, it
needs to be believable and visually pleasing, but it also needs to support the stretch
of road you are driving on. The mountains in Skyrim look pretty in the distance, but
also function as boundaries of traversable space and to break line of sight. To make
sure that these demands are satisfied, the generation algorithms need a high degree
of controllability.

At the other end of the spectrum are those games where the terrain severely
restricts and guides the player’s possible course of actions. Here we find first-person
shooters such as those in the Halo and Call of Duty series. In these cases, terrain
generation has more in common with the level-generation problems we discussed in
the previous chapter.

Like terrains, noise is a very common type of game content. Noise is useful
whenever small variations need to be added to a surface (or something that can
be seen as a surface). One example of noise is in skyboxes, where cloud cover
can be implemented as a certain kind of white-coloured noise on a blue-coloured
background. Other examples include dust that settles on the ground or walls, certain
aspects of water (though water simulation is a complex topic in its own right), fire,
plasma, skin and fur colouration etc. You can also see minor topological variations
of the ground as noise, which brings us to the similarity between terrains and noise.

4.1.1 Heightmaps and intensity maps

Both noise and most aspects of terrains can fruitfully be represented as two-
dimensional matrices of real numbers. The width and height of the matrix map to
the x and y dimensions of a rectangular surface. In the case of noise, this is called
an intensity map, and the values of cells correspond directly to the brightness of the
associated pixels. In the case of terrains, the value of each cell corresponds to the
height of the terrain (over some baseline) at that point. This is called a heightmap. If
the resolution with which the terrain is rendered is greater than the resolution of the
heightmap, intermediate points on the ground can simply be interpolated between
points that do have specified height values. Thus, using this common representa-
tion, any technique used to generate noise could also be used to generate terrains,
and vice versa—though they might not be equally suitable.

It should be noted that in the case of terrains, other representations are possi-
ble and occasionally suitable or even necessary. For example, one could represent
the terrain in three dimensions, by dividing the space up into voxels (cubes) and
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computing the three-dimensional voxel grid. An example is the popular open-world
game Minecraft, which uses unusually large voxels. Voxel grids allow structures
that cannot be represented with heightmaps, such as caves and overhanging cliffs,
but they require a much larger amount of storage.

4.2 Random terrain

Let’s say we want to generate completely random terrain. We won’t worry for the
moment about the questions in the previous chapter, such as whether the terrain we
generate would make a fair, balanced, and playable RTS map. All we want for now
is random terrain, with no constraints except that it looks like terrain.

If we encode terrain as a heightmap, then it’s represented by a two-dimensional
array of values, which indicate the height at each point. Can generating random
terrain be as simple as just calling a random-number generator to fill each cell of the
array? Alas, no. While this technically works—a randomly initialized heightmap is
indeed a heightmap that can be rendered as terrain—the result is not very useful. It
doesn’t look anything like random terrain, and isn’t very useful as terrain, even if
we’re being generous. A random heightmap generated this way looks like random
spikes, not random terrain: there are no flat portions, mountain ranges, hills, or other
features typically identifiable on a landscape.

The key problem with just filling a heightmap with random values is that every
random number is generated independently. In real terrain, heights at different points
on the terrain are not independent of each other: the elevation at a specific point on
the earth’s surface is statistically related to the elevation at nearby points. If you
pick a random point within 100 m of the peak of Mount Everest, it will almost
certainly have a high elevation. If you pick a random point within 100 m of central
Copenhagen, you are very unlikely to find a high elevation.

There are several alternative ways of generating random heightmaps to address
this problem. These methods were originally invented, not for landscapes, but for
textures in computer graphics, which had the same issue [3]. If we generate random
graphical textures by randomly generating each pixel of the texture, this produces
something that looks like television static, which isn’t appropriate for textures that
are going to represent the surfaces of “organic” patterns found in nature, such as the
texture of rocks. We can think of landscape heightmaps as a kind of natural pattern,
but a pattern that’s interpreted as a 3D elevation rather than a 2D texture. So it’s not
a surprise that similar problems and solutions apply.

4.2.1 Interpolated random terrain

One way of avoiding unrealistically spiky landscapes is to require that the land-
scapes we generate are smooth. That change does exclude some realistic kinds of
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landscapes, since discontinuities such as cliffs exist in real landscapes. But it’s a
change that will provide us with something much more landscape-like than the ran-
dom heightmap method did.

How do we generate smooth landscapes? We might start by coming up with a
formal definition of smoothness and then develop a method to optimise for that
criterion. A simpler way is to make landscapes smooth by construction: fill in the
values in such a way that the result is less spiky than the fully random generator.
Interpolated noise is one such method, in which we generate fewer random values,
and then interpolate between them.

With interpolated noise, instead of generating a random value at every point in the
heightmap, we generate random values on a coarser lattice. The heights in between
the generated lattice points are interpolated in a way that makes them smoothly
connect the random heights. Put differently, we randomly generate elevations for
peaks and valleys with a certain spacing, and then fill in the slopes between them.

That leaves one question: how do we do the interpolation, i.e. how do we connect
the slopes between the peaks and valleys? There are a number of standard interpo-
lation methods for doing so, which we’ll discuss in turn.

4.2.1.1 Bilinear interpolation

A simple method of interpolating is to calculate a weighted average in first the
horizontal, and then the vertical direction (or vice versa, which gives the same re-
sult). If we choose a lattice that’s one-tenth as finely detailed as our heightmap’s
resolution, then height[0,0] and height[0,10] will be two of the randomly gener-
ated values. To fill in what should go in height[0,1], then, we notice it’s 10% of
the way from height[0,0] to height[0,10]. Therefore, we use the weighted average,
height[0,1] = 0.9×height[0,0]+0.1×height[0,10]. Once we’ve finished this inter-
polation in the x direction, then we do it in the y direction. This is called bilinear
interpolation, because it does linear interpolation along two axes, and is both easy
and efficient to implement.

While it’s a simple procedure, coarse random generation on a lattice followed by
bilinear interpolation does have drawbacks. The most obvious one is that mountain
slopes become perfectly straight lines, and peaks and valleys are all perfectly sharp
points. This is to be expected, since a geometric interpretation of the process just
described is that we’re randomly generating some peaks and valleys, and then fill-
ing in the mountain slopes by drawing straight lines connecting peaks and valleys
to their neighbours. This produces a characteristically stylized terrain, like a child’s
drawing of mountains—perhaps what we want, but often not. For games in partic-
ular, we often don’t want these sharp discontinuities at peaks and valleys, where
collision detection can become wonky and characters can get stuck.



4 Fractals, noise and agents with applications to landscapes 61

4.2.1.2 Bicubic interpolation

Rather than having sharp peaks and valleys connected by straight slopes, we can
generate a different kind of stylized mountain profile. When a mountain rises from
a valley, a common way it does so is in an S-curve shape. First, the slope starts rising
slowly. It grows steeper as we move up the mountain; and finally it levels off at the
top in a round peak. To produce this profile, we don’t want to interpolate linearly:
when we’re 10% of the way between lattice points, we don’t want to be 10% of the
way up the slope’s vertical distance yet.

Therefore we don’t want to do a weighted average between the neighbouring
lattice points according to their distance, but according to a nonlinear function of
their distance. We introduce a slope function, s(x), specifying how far up the slope
(verically) we should be when we’re x of the way between the lattice points, in the
direction we’re interpolating. In the bilinear interpolation case, s(x) = x. But now
we want an s(x) whose graph looks like an S-curve. There are many mathematical
functions with that shape, but a common one used in computer graphics, because it’s
simple and fast to evaluate, is s(x) =−2x3+3x2. Now, when we are 10% of the way
along, i.e. x = 0.1, s(0.1) = 0.028, so we should be only 2.8% up the slope’s vertical
height, still in the gradual portion at the bottom. We use this as the weight for the in-
terpolation, and this time height[0,1] = 0.972×height[0,0]+0.028×height[0,10].

Since the s(x) we chose is a cubic (third-power) function of x, and we again
apply the interpolation in both directions along the 2D grid, this is called bicubic
interpolation.

4.2.2 Gradient-based random terrain

In the examples so far, we’ve generated random values to put into the heightmap.
Initially, we tried generating all the heightmap values directly, but that proved too
noisy. Instead, we generated values for a coarse lattice, and interpolated the slopes in
between the generated values. When done with bicubic interpolation, this produced
a smooth slope.

An alternate idea is to generate the slopes directly, and infer height values from
that, rather than generate height values and interpolate slopes. The random numbers
we’re going to generate will be interpreted as random gradients, i.e. the steepness
and direction of the slopes. This kind of random initialization of an array is called
gradient noise, rather than the value noise discussed in the previous section. It was
first done by Ken Perlin in his work on the 1982 film Tron, so is sometimes called
Perlin noise.

Generating gradients instead of height values has several advantages. Since
we’re interpolating gradients, i.e. rates of change in value, we have an extra level
of smoothness: rather than smoothing the change in heights with an interpola-
tion method, we smooth the rate of change in heights, so slopes grow shallower
or steeper smoothly. Gradient noise also allows us to use lattice-based generation
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(which is computationally and memory efficient) while avoiding the rectangular
grid effects produced by the interpolation-based methods. Since peaks and valleys
are not directly generated on the lattice points, but rather emerge from the rises and
falls of the slopes, they are arranged in a way that looks more organic.

As with interpolated value-based terrain, we generate numbers on a coarsely
spaced lattice, and interpolate between the lattice points. However, we now gen-
erate a 2D vector, (dx,dy), at each lattice point, rather than a single value. This is
the random gradient, and dx and dy can be thought of as the slope’s steepness in the
x and y directions. These gradient values can be positive or negative, for rising or
falling slopes.

Now we need a way of recovering the height values from the gradients. First, we
set the height to 0 at each lattice point. It might seem that this would produce no-
ticeable grid artifacts, but unlike with value noise, it doesn’t in practice. Since peaks
and valleys rise and fall to different heights and with different slopes away from the
h = 0 lattice points, the zero value is sometimes midway up a slope, sometimes near
the bottom, and sometimes near the top, rather than in any visually regular position.

To find the height values at non-lattice points, we look at the four neighbouring
lattice points. Consider first only the gradient to the top-left. What would the height
value be at the current point if terrain rose or fell from h = 0 only according to that
one of the four gradients? It would be simply that gradient’s value multiplied by the
distance we’ve traveled along it: the x-axis slope, dx, times the distance we are to
the right of the lattice point, added to the y-axis slope, dy, times the distance we are
down from the lattice point. In terms of vector arithmetic, this is the dot product
between the gradient vector and a vector drawn from the lattice point to our current
point.

Repeat this what-if process for each of the four surrounding lattice points. Now
we have four height values, each indicating the height of the terrain if only one of
the four neighbouring lattice points had influence on its height. Now to combine
them, we simply interpolate these values, as we did with the value-noise terrain.
We have four surrounding lattice points that now have four height values, and we
have already covered, in the previous section, how to interpolate height values, using
bilinear or bicubic interpolation.

4.3 Fractal terrain

While gradient noise looks more organic, there is still a rather unnatural aspect to it
when treated as terrain: terrain now undulates at a constant frequency, which is the
frequency chosen for the lattice point spacing. Real terrain has variation at multiple
scales. At the largest scale (i.e. lowest frequency), plains rise into mountain ranges.
But at smaller scales, mountain ranges have peaks and valleys, and valleys have
smaller hills and ravines. In fact, as you zoom in to many natural phenomena, you
see the same kind of variation that was seen at the larger scale, but reproduced at
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(a) Diamond step (b) Square step (c) Diamond step repeats

Fig. 4.1: The diamond-square algorithm. (Illustration credit: Amy Hoover)

a new, smaller scale [10]. This self-similarity is the basis of fractals, and generated
terrain with this property is called fractal terrain.

Fractal terrain can be produced through a number of methods, some of them
based directly on fractal mathematics, and others producing a similar effect via sim-
pler means.

A very easy way to produce fractal terrain is to take the single-scale random ter-
rain methods from the previous section and simply run them several times, at multi-
ple scales. We first generate random terrain with very large-scale features, then with
smaller-scale features, then even smaller, and add all the scales together. The larger-
scale features are added in at a larger magnitude than the smaller ones: mountains
rise from plains a larger distance than boulders rise from mountain slopes. A classic
way of producing multi-scale terrain in this way is to scale the generated noise layers
by the inverse of their frequency, which is called 1/ f noise. If we have a single-scale
noise-generation function, like those in the previous section, we can give it a param-
eter specifying the frequency; let’s call this function noise( f ). Then starting from a
base for our lowest-frequency (largest-scale) features, f , we can define 1/ f noise as

noise( f )+
1
2

noise(2 f )+
1
4

noise(4 f )+ . . .

There are many other methods for fractal terrain generation, most of which are
beyond the scope of this book, as there exist other textbooks covering the subject
in detail [3]. Musgrave et al. [11] group them into five categories of technical ap-
proaches, all of which can be seen as implementation methods for the general con-
cept of fractional Brownian motion (fBm). In fBm, we can conceptually think of a
terrain as being generated by starting from a point and then taking a random walk
following specific statistical properties. Since actually taking millions of such ran-
dom walks is too computationally expensive, a similar end result is approximated
using a variety of techniques. One that is commonly used in games, because it is
relatively simple to implement and computationally efficient, is the diamond-square
algorithm, illustrated in Figure 4.1.

In the diamond-square algorithm, we start by setting the four corners of the
heightmap to seed values (possibly random). The algorithm then proceeds as fol-
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lows. First, find the point in the center of the square defined by these four corners,
and set it to the average of the four corners’ values plus a random value. This is
the “diamond” step. Then find the four midpoints of the square’s sides and set each
of them to the average of three values: the two neighbouring corners and the mid-
dle of the square (which we just set in the last step)—again, plus a random value.
This is the “square” step. The magnitude of the random values we use is called the
roughness, because larger values produce rougher terrain (likewise, smaller values
produce smoother terrain). Completing these two steps has subdivided the original
square into four squares. We then reduce the roughness value and repeat the two
steps, to fill in these smaller squares. Typically the process repeats until a specified
maximum number of iterations have been reached. The end result is an approxima-
tion of the terrain produced by fBm.

4.4 Agent-based landscape creation

In Chapter 1, we discussed the desired properties of a PCG algorithm. The previ-
ously discussed methods satisfy most of these properties, however they suffer from
uncontrollability. The results delivered by these methods are fairly random and they
offer very limited interaction with designers, who can only provide inputs on the
global level through modifying a set of unintuitive parameters [14]. Several varia-
tions of these methods have been introduced that grant more control over the out-
put [7, 1, 13, 16].

The main advantage of software-agent approaches to terrain generation over
fractal-based methods is that they offer a greater degree of control while maintain-
ing the other desirable properties of PCG methods. Similarly to the agent-based
approaches used in dungeon generation (Section 3.3), agent-based approaches for
landscape creation grow landscapes through the action of one or more software
agents. An example is the agent-based procedural city generation demonstrated by
Lechner et al. [9]. In this work, cities are divided into areas (such as squares, indus-
trial, commercial, residential, etc.) and agents construct the road networks. Different
types of agents do different jobs, such as extenders, which search for unconnected
areas in the city, and connectors, which add highways and direct connections be-
tween roads with long travel times. Later versions of this system introduced addi-
tional types of agents, for tasks such as constructing main roads and small streets [8].

But since this chapter is about terrain generation, we’ll look now at work on
agent-based terrain generation by Doran and Parberry [2], which focuses primarily
on the issue of controllability, especially on providing more control to a designer
than the dominant fractal-based terrain generation methods do. Because of the lack
of input and interaction with designers, fractal-based methods are usually evaluated
in term of efficiency rather than the aesthetic features of the terrains generated [2].
Agent-based approaches, on the other hand, offer the possibility of defining more
fine-grained measures of the goodness of the terrains according to the behaviour of
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the agents. By controlling how and how much the agent changes the environment,
one can vary the quality of the generated terrains.

4.4.1 Doran and Parberry’s terrain generation

Doran and Parberry’s terrain-generation approach starts with five different types of
agents that work concurrently in an environment to simulate natural phenomena.
The agents are allowed to sense the environment and change it at will. Designers
are provided with a number of ways to influence terrain generation: controlling the
number of agents of each type is one way to gain control, another is by limiting
the agent lifetime using a predefined number of actions that the agent can perform.
After the number of steps is consumed, the agent becomes inactive.

The agents can modify the environment by performing three main tasks:

• Coastline: in this phase, the outline or shape of the terrain is generated using
multiple agents.

• Landform: the detailed features of the land are defined in this phase employing
more agents than were used in the previous phase. The agents work simultane-
ously on the environment to set the details of the mountains, create beaches and
shape the lowlands.

• Erosion: this is the last phase of the generation and it constitutes the creation of
rivers through eroding the previously generated terrain. The number of river to
create is determined by the number of agents defined in this phase.

According to these phases, several types of agents can be identified to achieve the
several tasks defined in each phase. The authors focused their work on five different
types:

1. Coastline agents: these agents work in the coastline phase before any other
agents, to draw the outline of the landscape. The map is initially placed under
sea level and the agents work by raising points above sea level. The process
starts with a single agent working on the entire map. Depending on the size of
the map, this agent multiplies by creating many other coastline agents which sub-
divide themselves in turn until each agent is assigned a small part of the map. The
process undertaken by each agent to generate the coastline can be described as
follows:

• Each agent is assigned a single seed point at the edge of the map, a direction
to follow and a number of tokens to consume.

• The agent checks its surroundings and if it is already land (this might happen
since all the agents are working simultaneously on the map) the agent starts
searching in the assigned direction for another appropriate starting point.

• Once the starting point is located, the agent starts working on the environment
by changing the height of the points. This is done by
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a. generating two points at random in different directions: one works as an
attractor and the other as a repulser.

b. identifying the set of points for elevation above the sea level.
c. scoring the points according to their distance from the attractor and the

repulser points. The ones closer to the attractor are scored higher.
d. the point with the highest score is then elevated above sea level and it

becomes part of the coastline.
e. the agent then continues by moving to another point in the map.

This method allows multiple agents to work concurrently on the map while pre-
serving localization since each agent moves in its surroundings and has a prede-
fined number of tokens to consume. The number of tokens given to each agent
and the number of agents working on the map are directly related. The smaller
the number of tokens, the larger the number of agents since more agents will be
required to cover the whole map. These parameters also affect the level of detail
of the coastline. A map generated with a small number of tokens will feature
more fine details than one with a large number, since in the first case more agents
will be created, each influencing a small region.

2. Smoothing agents: after the shape of the landscape has been defined by the coast-
line agents, smoothing agents operate on the map to eliminate rapid elevation
changes. This is done by creating a number of agents each assigned a single pa-
rameter specifying the number of times that agent has to revisit its starting point.
The more visits, the smoother the area around this point.
The agents are scattered around the map, they move randomly and while wan-
dering they change the heights of arbitrary points according to the heights of
their neighbours. For each point chosen, a new height value is assigned taking
the weighted averages of the heights of its four orthogonal surrounding points
and the four points beyond these.

3. Beach agents: after the smoothing phase, the landscape is ready for the creation
of sandy beaches. This is the work assigned to beach agents. These agents tra-
verse the shoreline in random directions creating sandy areas close to water.
Beach generation is controlled by adjusting the agents’ parameters. These in-
clude the depth of the area the agent is allowed to flatten, the total number of
steps the agents can move, the altitude under which the agents are permitted to
work and the range of height values they can assign to the points they affect.
The agents are initially placed in a coastline area where they work on adjusting
the height of their surrounding points by lowering them as long as their height
is below the predefined altitude. This prevents the elevation of mountain areas
located close to the sea. The new values assigned to the points are randomly
chosen from the designer-specified range. This allows the creation of flat beaches
if the range is narrow and more bumpy beaches when the range is high.

4. Mountain agents: The coastline agents elevate areas of the map above sea level.
These areas are then smoothed by the smoothing agents and beaches along the
shoreline are then flattened via the beach agents. Regions above a certain thresh-
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old are kept untouched by the beach agents, and these are then modified by moun-
tain agents.
The agents are placed at random positions in the maps and are allowed to move in
random directions. While moving, if a V-shaped wedge of points is encountered,
the wedge is elevated, creating a ridge. Frequently, the agents might decide to
turn randomly within 45 degrees of their initial course, resulting in zigzag paths.
Mountain agents also periodically produce foothills perpendicular to their move-
ment direction.
The shape of the mountains can be controlled by designers via specifying the
range of the rate at which slopes can be dropped, the maximum mountain al-
titude and the width and slope of the mountain. Designers can also determine
the number of agents, the number of steps each one can perform, the length of
foothills and their frequency.
After mountain generation, a smoothing step is followed to blend nearby points.
This step is further followed by an addition of noise to regain some of the details
lost while smoothing.

5. Hill agents: these agents work in a similar way to the mountain agents but they
have three distinctive characteristics: they work on a lower altitude, they are as-
signed smaller ranges, and they are not allowed to generate foothills.

6. River agents: in the final phase of terrain generation, river agents walk through
the environment digging rivers near mountains and the ocean. To resemble natu-
ral rivers, a river agent works in the following steps:

a. initiate two random points, one on the coastline and another on the mountain
ridge line.

b. starting at the coastline, the agent moves uphill towards a mountain, guided
by the gradient. This determines the general path of the river.

c. as the agent reaches the mountain, it starts moving downwards while digging
the river. This is done by lowering a wedge of terrain, following a similar
method to the one implemented by mountain agents.

d. the agent increases the width of the wedge as it moves back towards the ocean.

Designers specify the initial width of the river, the frequency of widening and
the downhill slope. Designers also determine the shortest length possible for a
river. A river agent might make several attempts to place its starting and ending
positions before it satisfies the shortest-length threshold. If this condition is not
met after several attempts, the river will not be created.

The method followed for defining the agents and their set of parameters allows
the generation of endless variations of terrains through the use of different random
seed numbers. The technique can be used to generate landscapes on the fly, or it
can be employed by designers who can investigate different setups and tweak the
system’s parameters as desired.
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4.5 Search-based landscape generation

We have seen two families of methods for terrain and noise generation, which both
have several benefits. However, at least in the form presented here, these methods
suffer from a certain lack of controllability. It is not easy to specify constraints
or desirable properties, such that there must be an area with no more than a cer-
tain maximum variation in altitude, or that two points on a terrain should be easily
reachable from each other. This form of controllability is one of the strengths of
search-based methods. Unsurprisingly, there have been several attempts to apply
search-based methods to terrain generation.

4.5.1 Genetic terrain programming

Frade et al. developed a concept called genetic terrain programming (GTP). This is a
search-based method with an indirect encoding, where the phenotype representation
is a heightmap but the genotype representation is an expression tree evolved with
genetic programming [5, 6, 4].

Genetic programming is a method for creating runnable programs using evolu-
tionary computation [12]. The standard program representation in genetic program-
ming is an expression tree, which in the simplest case is nothing more than an alge-
braic expression in prefix form such as (+3(∗52)) (written in infix form as 3+5∗2).
This can be visualized as a tree with the + sign as the root node, and the 3 and ∗
in separate branches from the root. The plus and multiplier are arithmetical func-
tions, and the constants are called terminals. In genetic programming, a number of
additional functions are commonly employed, including if-then-else, trigonometric
functions, max, min etc. Additional types of terminals might include external inputs
to the program, random-number generators etc. The evolutionary search proceeds
through adding and exchanging functions and terminals, and by recombining parts
of different trees.

In GTP, the function set typically includes arithmetical and trigonometric func-
tions, as well as functions for exponentiation and logarithms. The terminal set in-
cludes x and y location, standard noise functions (such as Perlin noise) and functions
that are dependent on the distance from the centre of the map.

The core idea of GTP is that in the genotype-to-phenotype mapping, the algo-
rithm iterates over cells in the (initially empty) heightmap and queries the evolved
terrain program with the x and y parameters of each cell as input to the program. This
is therefore a highly indirect and compact representation of the map. The represen-
tation also allows for infinite scalability (or zooming), as increasing the resolution
or expanding the map simply means querying the program using new coordinates
as inputs.

Several different evaluation functions were tried. In initial experiments, interac-
tive evaluation was used: users selected which of several presented maps should be
used for generating the next generation. Later experiments explored various direct
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evaluation functions. One of these functions, accessibility, was motivated by game
design: the objective was to maximise the area which is smooth enough to support
vehicle movement. To avoid completely flat surfaces from being evolved, the ac-
cessibility metric had to be counterbalanced by other metrics, such as the sum of
the edge length of all obstacles in the terrain. See Figure 4.2 for some examples of
landscapes evolved with GTP.

Fig. 4.2: Landscapes generated by genetic terrain programming. From left to right:
cliffs, corals and mountains. Adapted from [4]

4.5.2 Simple RTS map generation

Another search-based landscape generation method was described by Togelius et
al. [15], to produce a map with smoothly varying height for a real-time strategy
game. The phenotype in this problem consists of a heightmap and the locations of
resources and base starting locations.

The representation is rather direct. Base and resource locations are represented
directly as polar coordinates (φ and θ coordinates for each location). The heightmap
is initially flat, and then a number of hills is added. These hills are modelled as sim-
ple Gaussian distributions, and encoded in the phenotype with their x and y posi-
tions, their heights z, and their standard distributions σx and σy (i.e. their widths).
Ten mountains were used in each run.

Three different evaluation functions were defined. Two of them relate to the
placements of bases and resources to create a fair game, whereas the third is the
topological asymmetry of the map. This is because the simplest way of satisfying
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Fig. 4.3: Four maps generated using search-based methods with the heightmap de-
termined by hills represented by Gaussians. The coloured dots represent locations
of resources and bases in an RTS game. Adapted from [15]

the first two evaluation functions is to create a completely symmetric map, but this
would be visually uninteresting for players. Given that the three fitness functions are
in partial conflict, a multiobjective evolutionary algorithm was used to optimise all
three evaluation functions simultaneously. Figure 4.3 show three different terrains
that resulted from the same evolutionary run.

4.6 Lab session: Generate a terrain with the diamond-square

algorithm

Implement the diamond-square method to generate terrain heightmaps. Have your
function take three parameters: seed, which specifies the initial values at the corners;
iterations, which specifies the number of diamond-square iterations to perform; and
roughness, which specifies the magnitude of the random components added in the
diamond and square steps.

Figure 4.4 presents three example heightmaps generated using different parame-
ters.
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Fig. 4.4: Three heightmaps generated using the diamond-square method. The pa-
rameters used are: iterations = 9 for all maps, seed = 12, 128, 128, and roughness =
256, 256, 128 for the first, second and third map, respectively

4.7 Summary

Terrain/landscape generation is a very important task for many games, and there are
a number of methods that are commonly used for this. The most basic representation
is the heightmap, where the number in each cell represents the height of the ground
at the corresponding location. Maps can be generated very simply by randomizing
these numbers, though this leads to unnatural and ugly maps. Interpolating between
these numbers helps a lot. Many different interpolation techniques exist, and there
is a tradeoff between the quality of the results and the computation time needed.
Instead of generating the height values, another family of methods generates the
gradients of slopes and then computes heights from those slopes. Fractal methods,
including various types of noise, generate heights at several different scales or res-
olutions, leading to more natural-looking terrain. The diamond-square algorithm
is a commonly used fractal method. For more complex environments, agent-based
methods can be used to construct terrains that have multiple types of features. If
there are constraints involved, for example having to do with traversability or other
gameplay considerations, search-based methods might be useful as well.
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Chapter 5

Grammars and L-systems with applications to

vegetation and levels

Julian Togelius, Noor Shaker, and Joris Dormans

Abstract Grammars are fundamental structures in computer science that also have
many applications in procedural content generation. This chapter starts by describ-
ing a classic type of grammar, the L-system, and its application to generating plants
of various types. It then describes how rules and axioms for L-systems can be cre-
ated through search-based methods. But grammars are not only useful for plants.
Two longer examples discuss the generation of action-adventure levels through
graph grammars, and the generation of Super Mario Bros. levels through gram-
matical evolution.

5.1 Plants are everywhere

In the previous chapter we discussed generating terrain. Almost as ubiquitous as
terrain itself is vegetation of some form: grass, trees, bushes, and other such plants
that populate a landscape. Procedurally generating vegetation is a great fit: we need
to create a huge number of artefacts (there are many trees in the forest and many
blades of grass in the lawn) that are similar to each other, recognisable, but also
slightly different from each other. Just copy-pasting trees won’t cut it,1 because
players will quickly spot that every tree is identical. An easy aspect of generating
vegetation is that, in most games, it is of little functional significance, meaning that
a botched plant will not make the game unplayable, just look a bit weird.

And in fact, vegetation is one of the success stories of PCG. Many games use pro-
cedurally generated vegetation, and there are many software frameworks available.
For example, the SpeedTree middleware has been used in dozens of AAA games.

One of the simplest and best ways to generate a tree or bush is to use a particular
form of formal grammar called an L-system, and interpret its results as drawing
instructions. This fact is intimately connected to the “self-similar” nature of plants,

1 In William Gibson’s Neuromancer, one of the main characters is busy copy-pasting trees in one
of the early chapters; Gibson seems not to have anticipated PCG.
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i.e. that the same structures can be found on both micro and macro levels. For an
example of this, take a look at a branch of a fern, and see how the shape of the branch
repeats in each sub-branch, and then in each branch of the sub-branch. Or look at a
Romanesco broccoli, which consists of cones on top of cones on top of cones, etc.
(see Figure 5.1). As we will see, L-systems are naturally suited to reproducing such
self-similarity.

Fig. 5.1: Romanesco broccoli. Note the self-similarity. (Photo credit: Jon Sullivan)

In this chapter, we will introduce formal grammars in general, L-systems in par-
ticular and how to use a graphical interpretation of L-systems to generate plants.
We will also give examples of how L-systems can be used as a representation in
search-based PCG, allowing you to evolve plants. However, it turns out that plants
are not the only thing for which formal grammars are useful. In the rest of the chap-
ter, we will explain how grammar-based systems can be used to generate quests
and dungeon-like environments for adventure games such as Zelda, and levels for
platform games such as Super Mario Bros.

5.2 Grammars

A (formal) grammar is a set of production rules for rewriting strings, i.e. turning
one string into another. Each rule is of the form (symbol(s)) → (other symbol(s)).
Here are some example production rules:

1. A → AB
2. B → b

Using a grammar is as simple as going through a string, and each time a symbol or
sequence of symbols that occurs in the left-hand side (LHS) of a rule is found, those
symbols are replaced by the right-hand side (RHS) of that rule. For example, if the
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initial string is A, in the first rewriting step the A would be replaced by AB by rule 1,
and the resulting string will be AB. In the second rewriting step, the A would again
be transformed to AB and the B would be transformed to b using rule 2, resulting
in the string ABb. The third step yields the string ‘ABbb and so on. A convention
in grammars is that upper-case characters are nonterminal symbols, which are on
the LHS of rules and therefore rewritten further, whereas lower-case characters are
terminal symbols which are not rewritten further.

Formal grammars were originally introduced in the 1950s by the linguist Noam
Chomsky as a way to model natural language [3]. However, they have since found
widespread application in computer science, since many computer science problems
can be cast in terms of generating and understanding strings in a formal language.
Many results in theoretical computer science and complexity theory are therefore
expressed using grammar formalisms. There is a rich taxonomy of grammars which
we can only hint at here.2 Two key distinctions that are relevant for the applica-
tion of grammars in procedural content generation are whether the grammars are
deterministic, and the order in which they are expanded.

Deterministic grammars have exactly one rule that applies to each symbol or
sequence of symbols, so that for a given string, it is completely unambiguous which
rules to use to rewrite it. In nondeterministic grammars, several rules could apply to
a given string, yielding different possible results of a given rewriting step. So, how
would you decide which rule to use? One way is to simply choose randomly. In such
cases, the grammar might even include probabilities for choosing each rule. Another
way is to use some parameters for deciding which way to expand the grammar—we
will see an example of this in the section on grammatical evolution towards the end
of the chapter.

5.3 L-systems

The other distinction of interest here is in which order the rewriting is done. Sequen-
tial rewriting goes through the string from left to right and rewrites the string as it
is reading it; if a production rule is applied to a symbol, the result of that rule is
written into the very same string before the next symbol is considered. In parallel
rewriting, on the other hand, all the rewriting is done at the same time. Practically,
this is implemented as the insertion of a new string at a separate memory location
containing only the effects of applying the rules, while the original string is left un-
changed. Sometimes, the difference between parallel and sequential rewriting can
be major.

L-systems are a class of grammars whose defining feature is parallel rewriting,
and which was introduced by the biologist Aristid Lindenmayer in 1968 explicitly
to model the growth of organic systems such as plants and algae [9]. The following
is a simple L-system defined by Lindenmayer to model yeast growth:

2 For a detailed treatment of formal grammars, and their application to domains other than lan-
guage, see [16].
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1. A → AB
2. B → A

Starting with the axiom A (in L-systems the seed strings are called axioms) the
first few expansions look as follows:

1. A
2. AB
3. ABA
4. ABAAB
5. ABAABABA
6. ABAABABAABAAB
7. ABAABABAABAABABAABABA
8. ABAABABAABAABABAABABAABAABABAABAAB

There are several interesting things about this sequence. One is the obvious reg-
ularity, which is more complex than simply repeating the same string over and over,
and certainly seems more complex than is warranted by the apparent simplicity of
the system that generates it. But also note that the rate of growth of the strings in
each iteration is increasing. In fact, the length of the strings is a Fibonacci sequence:
1 2 3 5 8 13 21 34 55 89... This can be explained by the fact that the string of step n
is a concatenation of the string of step n−1 and the string of step n−2.

Clearly, even simple L-systems have the capacity to give rise to highly complex
yet regular results. This seems like an ideal fit for PCG. But how can we move
beyond simple strings?

5.3.1 Graphical interpretation of L-systems

One way of using the power of L-systems to generate 2D (and 3D) artefacts is to
interpret the generated strings as instructions for a turtle in turtle graphics. Think
of the turtle as moving across a plane holding a pencil, and simply drawing a line
that traces its path. We can give commands to the turtle to move forwards, or to turn
left or right. For example, we could use the following key to interpret the generated
strings:

• F: move forward a certain distance (e.g. 10 pixels)
• +: turn left 90 degrees
• -: turn right 90 degrees

Such an interpretation can be used in conjunction with a simple L-system to give
some rather remarkable results. Consider the following system, consisting only of
one rule:

1. F → F +F −F −F +F
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Starting this system with the axiom F , it would expand into F +F −F −F +F
and then into F +F −F −F +F +F +F −F −F +F −F +F −F −F +F −F +
F −F −F +F +F +F −F −F +F etc. Interpreting these strings as turtle graphics
instructions, we get the sequence of rapidly complexifying pyramid-like structures
shown in Figure 5.2, known as the Koch curve.

Fig. 5.2: Koch curve generated by the L-system F → F +F −F −F +F after 0, 1,
2 and 3 expansions

5.3.2 Bracketed L-systems

While interpreting L-system-generated strings as turtle instructions allows us to
draw complex fractal shapes, we are fundamentally limited by the constraint that the
figures must be drawable in one continuous line—the whole shape must be drawn
“without lifting the pencil”. However, many interesting shapes cannot be drawn this
way. For example, plants are branching and require you to finish drawing a branch
before returning to the stem to draw the next line. For this purpose, bracketed L-
systems were invented. These L-systems have two extra symbols, [ and ], which
behave like any other symbols when rewriting the strings, but act as “push” and
“pop” commands to a stack when interpreting the string graphically. (The stack is
simply a first-in, last-out list.) Specifically, [ saves the current position and orienta-
tion of the turtle onto the stack, and ] retrieves the last saved position from the stack
and resets the turtle to that position—in effect, the turtle “jumps back” to a position
it has previously been at.

Bracketed L-systems can be used to generate surprisingly plant-like structures.
Consider the L-system defined by the single rule F → F [−F ]F [+F ][F ]. This is in-
terpreted as above, except that the turning angles are only 30 degrees rather than 90
degrees as in the previous example. Figure 5.3 shows the graphical interpretation of
the L-system after 1, 2, 3 and 4 rewrites starting from the single symbol F . Minor
variations of the rule in this system generate different but still plant-like structures,
and the general principle can easily be extended to three dimensions by introducing
symbols that represent rotation along the axis of drawing. For a multitude of beauti-
ful examples of plants generated by L-systems see the book The Algorithmic Beauty
of Plants by Prusinkiewicz and Lindenmayer [14].
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n = 1 n = 2 n = 3 n = 4

Fig. 5.3: Four rewrites of the bracketed L-system F → F [−F ]F [+F ][F ]

5.4 Evolving L-systems

As with other parameterized representations for procedural content, L-system ex-
pansions can be used as genotype-to-phenotype mappings in search-based PCG. An
early paper by Ochoa presents a method for evolving L-systems to attain particular
2D shapes [10]. She restricts herself to L-systems with the simple alphabet used
above (F +−[]), the axiom F , and a single rule with the LHS F . The genotype is
the RHS of the single rule. Ochoa used a canonical genetic algorithm with crossover
and mutation together with a combination of several evaluation functions. The fit-
ness functions relate to the shape of the phenotype: the height (“phototropism”),
symmetry, exposed surface area (“light-gathering ability”), structural stability, and
proportion of branching points. By varying the contributions of each fitness func-
tion, she showed that it is possible to control the type of the plants generated with
some precision. Figure 5.4 shows some examples of plants evolved with a combi-
nation of fitness functions, and Figure 5.5 shows some examples of organism-like
structures evolved with the same representation but a fitness function favouring sym-
metry.

5.5 Generating missions and spaces with grammars

A game level is not a singular construction, but rather a combination of two interact-
ing structures: a mission and a space [4]. A mission describes the things a player can
or must do to complete a level, while the space describes the geometric layout of the
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Fig. 5.4: Some evolved L-system plants. Adapted from [10]

Fig. 5.5: Some L-system structures evolved for symmetry. Adapted from [10]

environment. Both mission and space have their own structural qualities. For mis-
sions it is important to keep track of flow, pacing and causality, while for the space
connectedness, distance and sign posting are critical dimensions. To successfully
generate levels that feel consistent and coherent, it is important to use techniques
that can generate each structure in a way that strengthens its individual qualities
while making sure that the two structures are interrelated and work together. This
section discusses how different types of generative or transformative grammars can
be used to achieve this.

5.5.1 Graph grammars

Generative grammars typically operate on strings, but they are not restricted to that
type of representation. Grammars can be used to generate many different types of
structures: graphs, tile maps, two- or three-dimensional shapes, and so on. In this
section and the following section, we will explore how grammars can be used to
generate graphs and tile maps. These structures are useful ways to represent game
missions and game spaces that combine to make game levels.

Graphs are more useful than strings to represent missions and spaces for games,
especially when these missions and spaces need to have a certain level of sophisti-
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Fig. 5.6: A mission structure with two paths

cation. For example, a completely linear mission (which might be represented by a
string) might be suitable for simple and linear games, but for explorative adventure
games such as RPG dungeons you would want missions to contain lock and key puz-
zles, bonus objectives, and possibly multiple paths to lead to the level goal. Graphs
can express this type of structure more easily. For example, Figure 5.6 contains a
mission that can be solved in two different ways.

Graph grammars work quite similarly to string grammars; graph grammar rules
also have a left-hand part that identifies a particular graph construction that can be
replaced by one of the constructions in the right-hand part of the rule. However,
to make the transformation, it is important to identify each node on the left-hand
part individually and to match them with individual nodes in each right-hand part.
Figure 5.7 represents a graph grammar rule and uses numbers to identify each indi-
vidual node. When using this rule to transform a graph, the following five steps are
performed (as illustrated by Figure 5.8)3 [15]:

1. Find a subgraph in the target graph that matches the left-hand part of the rule and
mark that subgraph by copying the identifiers of the nodes.

2. Remove all edges between the marked nodes.
3. Transform the graph by transforming marked nodes into their corresponding

nodes on the right-hand side, adding a node for each node on the right-hand

3 In simple graph transformations there is no need to identify and transform individual edges in the
same way as nodes are identified and transformed. However, a more sophisticated implementation
that requires edges to be transformed rather than removed and added for each transformation can
be realised by identifying and replacing edges in the same way as nodes.
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Fig. 5.7: A graph grammar rule

Fig. 5.8: Graph grammar transformation

side that has no match in the target graph, and removing any nodes that have no
corresponding node on the right-hand side.4

4. Copy the edges as specified by the right-hand side.
5. Remove all marks.

5.5.2 Using graph grammars to generate missions

To generate a simple mission using graph grammars, it is best to start by defining
the alphabet the grammar is designed to work with. In this case the alphabet consists
of the following nodes and edges:

• Start (node marked S): the start symbol from which the grammar generates a
mission (the axiom).

• Entrance (nodes marked e): the starting place of the player.

4 The removal of nodes only works when the node to be removed is only connected to nodes that
have been marked. This is something to take into account when designing graph grammar rules.
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• Tasks (nodes marked t): arbitrary, unspecified tasks (here be monsters!).
• Goals (nodes marked g): a task that finishes the level when successfully com-

pleted.
• Locks (nodes marked l): a task that requires a key to perform successfully.
• Keys (nodes marked k).
• Non-terminal task nodes (nodes marked T).
• Normal edges (represented as solid arrows) connecting nodes and identifying

which task follows which.
• Unlock edges (represented as solid arrows marked with a dash) connecting keys

to locks.

With this alphabet we can construct rules that generate missions. For example,
the rules in Figure 5.9 were used to generate the sample missions in Figure 5.10.5

One thing you might notice from studying these rules is that graph grammars can
be hard to control. In the case of the rule set represented in Figure 5.9, the number
of tasks generated (by the application of the “add task” rule) can be as low as one
and has no upper limit. As soon as the Start node is removed from the graph, the
number of tasks no longer grows. One way to get a better grip on the generated
structures is not to apply rules indiscriminately, but to specify a sequence of rules so
that each rule in the sequence is applied once to one possible location in the graph.
For example, if we split up the “add task” rule from Figure 5.9 into two rules (see
Figure 5.11), the missions in Figure 5.12 are generated by applying the following
sequence of rules:6

• start rule (x1),
• add task (x6),
• add boss (x1),
• define task (x6),
• move lock (x5).

5.5.3 Breaking the process down into multiple generation steps

So far, the graph grammars are relatively simple. However, to generate anything
resembling the complexity of the mission in Figure 5.6, many more rules are re-
quired. Designing the grammars to achieve such results takes practice and patience.
A key strategy for designing successful grammars is to break the process down into

5 The rules use a special wildcard node (marked with a *) to indicate a match with any node.
Wildcards on the right-hand side of a rule never change the corresponding node in the graph being
transformed. An alternative to these wildcards is to allow rules to have edges without origin or
target node.
6 Obviously, the sequence of rules might be generated by a string grammar.
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Fig. 5.9: Mission rules

multiple steps. Trying to generate everything at once using only one grammar is a
daunting task, and next to impossible to debug and maintain.7

7 Breaking the generation down into multiple steps is in line with the approach to software en-
gineering and code generation suggested by model-driven engineering. When done right, this ap-
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Fig. 5.10: Generated missions

Fig. 5.11: Two new rules to replace the old “add task”

When breaking the generation process down into multiple steps, it is useful to
think of each step as a simulation of the design process. One step might generate the
overall specifications of the mission, while the next might flesh out those specifica-
tions. In game design, a successful design strategy is to start from a random set of
requirements and use your creativity to shape that random collection into a coherent
whole. Following a similar approach for breaking down the generation procedure
and designing individual grammars yields good results. In particular, designing one
simple step to create a highly randomised graph and using a second step to restruc-
ture that graph into something that makes sense from the game’s perspective is an
effective strategy to create expressive generation procedures [6].

proach leads to a flexible generation process that allows you to generate spaces from missions or
vice versa, and creates opportunities to design generic, reusable generation steps [1, 5].
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Fig. 5.12: Missions generated from the same sequence of rules

For example, we can use a single step to generate a mission of a specified length
and randomly choose between locks, keys and other tasks to fill in the spaces be-
tween the entrance and the goal. In this case we also make sure that the first task is
always a key and the last task is always a lock. Figure 5.13 and Figure 5.14 represent
the rules and a sample mission built using those rules. Note that although locks and
keys are placed, no relationship between them is established.

The next step is to extract lock and key relationships. Based on the spread of
the locks and keys over the tasks, multiple keys can be assigned to a single lock,
and vice versa. This would represent multiple levers that need to be activated to
open a single door, or a special weapon that can be used multiple times to get past
a special type of barrier. Figure 5.15 represents the rules to add these relationships,
and Figure 5.16 is a sample configuration created from the sample set in Figure 5.14.

Subsequent steps could include the movement of locks through the graph (as
we have seen in the example above), generating more details of the nature of the
locks and keys, or adding tasks of a different type. One of the advantages of using
these two steps is that two relatively simple grammars can create a large variety of
different relationships (two keys to a single lock, or keys that are reused). Getting
the same level of variation using explicit rules that create X number of keys to a
single lock would require many more rules, which are much harder to maintain.
In addition, the second step can also be executed on graphs that have been built to
different specifications. For example, the same rules can be used to create lock and
key relationships for a dungeon that has two separate paths (see Figure 5.17).

5.5.4 Generating spaces to accommodate a mission

Having a representation of a mission itself is only one step towards the generation
of levels for a game. Missions need to be transformed into spaces that the player can
actually traverse. Transforming from mission to space is one of the hardest steps in
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Fig. 5.13: Rules to create a random set

Fig. 5.14: Sample random set

this process. The problem comes down to generating two different, independent but
linked structures: an abstract mission that details the things a player needs to do, and
a concrete space that creates the world where the player can do these things. Below
are three strategies to deal with the problem of generating the two structures:

1. Transform from mission to space. The transition from Figure 5.14 to Figure 5.16
reflects the gradual transition from an abstract mission to a more concrete repre-
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Fig. 5.15: Rules to add lock and key relationships
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Fig. 5.16: Generated lock and key relationships

Fig. 5.17: Two paths to a single goal

sentation of a game space, although, in this case, the game space is still highly
abstract. However, by using automatic graph layout algorithms and sampling the
results into a tile map, it is possible to generate usable level geometry. This ap-
proach works well for games such as action-adventure games or games with a
strong narrative, where mission coherence and pacing is important. The disad-
vantage of this approach is that the difficulty of going from mission to space is
most pronounced.

2. Transform a mission into a set of instructions to build a space. Instead of di-
rectly transforming a mission structure into a space, it is possible to transform
the mission into a set of building instructions that can be used to build a space
to match the requirements. This approach has the advantage that the transition
from graphs to tiles or shapes is much easier. It also comes at a cost: it is very
difficult to generate spaces that have multiple paths leading to the same goal or
location. So this approach works best for very linear games like platformers or
certain story-driven games.

3. Build level geometry and distill a more abstract representation of the game space
from which to generate the missions. This approach inverts the problem by gen-
erating level geometry first and then setting up missions for that geometry. This
can be done by generating geometry using cellular automata, grammars, evolu-
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tion, or any other technique, then analysing the geometry to create an abstract
graph representation of the same space, which can be transformed into suitable
mission structures. This approach works well for strategic games, levels that take
place in locations that require some consistent architecture (such as castles, dwarf
fortresses, police stations, or space ships) and for levels that the player is going
to visit multiple times. The downside of this approach is that it is critical that
the geometry is generated with enough mission potential (are there doors to be
locked, bottlenecks suitable for traps, and so on?). There is also less control over
the mission than with the other two approaches.

When choosing between these strategies, or when trying to come up with another
strategy, it is important to think like a designer. The most effective way of generating
levels using a multistep process and different representations of missions and spaces
is to model the real design process. Ask yourself, how would you go about designing
a level by hand? Would you start by listing mission goals, or by sketching out a
map? What sort of changes do you make and can those changes be captured by
transformational grammars?

5.5.5 Extended example: ‘Dules

An extended example following the third strategy concludes this section. This exam-
ple details part of the PCG for the game ‘Dules, which is currently in development.
In this game, players control futuristic combat vehicles (tanks, hovercraft, and so on)
in a post-apocalyptic, alien-infested world. The players can choose missions from
a world map, after which the game generates an environment to match the location
on the map and sets up a mission based on the affordances of the environment and
specifications dictated by the current game state (who controls the environment, is
the player trying to take over or defending from alien incursion, and so on).

The content generation of ‘Dules makes use of transformation grammars that
operate on strings, graphs, and tiles. Tile grammars are very simple. They also con-
sist of rules with one left and one or more right hands where the left hand can
be replaced by one of the right-hand constructions. Like graph grammars, the tile
grammars used in ‘Dules can work with wildcards to indicate that certain tiles can
be ignored. In contrast to string and graph grammars, tile grammars cannot change
the number of tiles. In addition, tile grammars can be made to stack tiles onto each
other instead of replacing them.

The procedural content generation procedure roughly follows the steps outlined
Figure 5.18. The tile-based world map is taken as input (1), and the particular loca-
tion is selected (2). Based on the presence of particular tiles indicating vegetation,
elevation, buildings, and so on, a combination of tile grammars and cellular au-
tomata are used to create the terrain (3-7). The terrain is analysed and transformed
into an abstract representation (8). At the same time, mission specifications are gen-
erated using a string grammar (9), and these are used as building instructions to plot



90 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.18: The generation steps to create a level for ‘Dules

a mission onto the space graph (10).8 Finally, some extra enemies are added to the
mission (11), and all the mission-specific game objects are placed onto the same tile
map (12) and combined with the terrain to create the complete mission (13).

Almost all steps in the process are handled by grammars. Tile grammars are
used to generate the terrain; tile grammars are even used to specify different cellular
automata. String grammars are used to create the mission specification and graph
grammars are used to create the mission itself. The translation of the terrain into
the space graph is done using a specialised algorithm that distinguishes between
walkable terrain, impassible terrain, and bodies of water. Each node in (8) represents
around 100 tiles, and a reference between the node and the tiles is kept so that the
game objects may be placed in the right area during (12).

5.6 Grammatical evolution for Infinite Mario Bros. level

generation

Grammatical evolution (GE) is an evolutionary algorithm based on genetic pro-
gramming (GP) [12]. The main difference between GE and GP is in the genome

8 In this case certain graph nodes are depicted as containing other nodes. This is just a depiction:
for the implementation and the grammars, containment is simply a special type of edge that is
rendered differently.
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representation; while a tree-based structure is used in GP, GE relies on a linear
genome representation. Like general genetic algorithms (GAs), GE applies fitness
calculations for every individual and then applies genetic operators to produce the
next generation.

The population of the evolutionary algorithm consists of variable-length integer
vectors, initialised randomly. The syntax of possible solutions is specified through
a context-free grammar. GE uses the grammar to guide the construction of the phe-
notype output. The context-free grammar employed by GE is usually written in
Backus-Naur form (BNF). Because of the use of a grammar, GE is capable of gen-
erating anything that can be described as a set of rules such as mathematical for-
mulas [18], programming code, game levels [17] and physical and architectural de-
signs [2, 13]. GE has been used intensively for automatic design [8, 2, 13, 7, 11], a
domain where it has been shown to have a number of advantages over more tradi-
tional optimisation methods.

5.6.1 Backus-Naur form

Backus-Naur form (BNF) is common format for expressing grammars. A BNF
grammar G = {N,T,P,S} consists of terminals, T , non-terminals, N, production
rules, P, and a start symbol, S. As in any grammar, non-terminals can be expanded
into one or more terminals and non-terminals through applying the production rules.
An example BNF to generate valid mathematical expressions is given in Figure 5.19.

(1) <exp> ::= <exp> <op> <exp>
| ( <exp> <op> <exp> )
| <var>

(2) <op> :: = + | - | * | /
(3) <var> ::= X

Fig. 5.19: Illustrative grammar for generating mathematical expressions

Each chromosome in GE is a vector of codons. Each codon is an integer used
to select a production rule from the BNF grammar in the genotype-to-phenotype
mapping. A complete program is generated by selecting production rules from the
grammar until all non-terminals are replaced. The resulting string is evaluated ac-
cording to a fitness function to give a score to the genome. To better understand the
genotype-to-phenotype mapping, we will give a brief example.

Consider the grammar in Figure 5.19 and the individual genotype integer string
(4,5,8,11). We begin the processing of the mapping from the start symbol < exp >.
There are three possible productions; to decide which production to choose, we use
the first value in the input genome and apply the mapping function 4%3 = 1, where
3 is the number of possible productions. The result from this operation indicates
that the second production should be chosen, and < exp > is replaced with (<
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exp >< op >< exp >). The mapping continues by using the next integer with the
first unmapped symbol in the mapping string; the mapping string then becomes (<
var >< op >< exp >) through the formula 5%3 = 2. At this step < var > has only
one possible outcome and there is no choice to be made, hence, X is inserted without
reading any number from the genome. The expression becomes (X < op>< exp>).
Continuing to read the codon values from the example individual’s genome, < op >
is mapped to + and < exp > is mapped to X through the two formulas, 8%4 = 0
and 11%3 = 2, respectively. This results in the expansion (X +X).

During the mapping process, it is possible for individuals to run out of genes, in
which case GE either declares the individual invalid by assigning it a penalty fitness
value, or it wraps around and reuses the genes.

5.6.2 Grammatical evolution level generator

Shaker et al. [17] used grammatical evolution to generate content for Infinite Mario
Bros. It has a number of advantages for this task: it provides a simple way of de-
scribing the structure of the levels; it enables an open-ended structure where the
design and model size are not known a priori; it enables the design of aesthetically
pleasing levels by exploring a wide space of possibilities since the exploratory pro-
cess is not constrained or biased by imagination or known solutions; it allows easy
incorporation of domain knowledge through its underlying grammatical representa-
tion, which permits level designers to maintain greater control of the output; finally,
it is easily generalised to different types of games.

The following section summarises the work of Shaker et al. [17]. We start by
presenting the design grammar used by GE to specify the structure of IMB levels;
after that we present how GE was employed to evolve playable levels for the game.

5.6.2.1 Design grammar for content representation

As mentioned earlier, GE uses a design grammar (DG), written in BNF, to represent
solutions (in our case a level design). Several methods can be followed to specify
the structure of the levels in a design grammar, but since the grammar employed
by GE is a context-free grammar, this limits the possible solutions available. To
accommodate this constraint, and to keep the grammar as simple as possible, the
work here adds game elements to the 2D level array regardless of the positioning
of other elements. With this solution, however, arise a number of conflicts in level
design that must be resolved. The next section will discuss this conflict-resolution
issue and a solution in detail.

The internal representation of the levels in IMB is a two-dimensional array of
objects, such as brick blocks, coins and enemies. The levels are generated by plac-
ing a number of chunks in the two-dimensional level map. The list of chunks that
was considered includes platforms, gaps, stairs, piranha plants, bill blasters, boxes
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(a) Flat platform (b) Hills (c) Gap (d) Bill blaster (e) Piranha plant

(f) Koopa (g) Goomba (h) Boxes (i) Coins

Fig. 5.20: The chunks used to construct Infinite Mario Bros. levels

(blocks and brick blocks), coins, goombas and koopas. Each of these chunks has a
distinguishable geometry and properties. Figure 5.20 presents the different chunks
that collectively constitute a level. The level initially contains a flat platform that
spans the whole x-axis; this explains the need to define a gap as one of the chunks.

A design grammar was specified that takes into account the different chunks. In
order to allow more variations in the design, platforms and hills of different types
were considered such as a blank platform/hill, a platform/hill with a bill blaster, and
a platform/hill with a piranha plant.

Variations in enemy placements were achieved by (1) constructing the physical
structure of the level, (2) calculating the possible positions at which an enemy can be
placed (this includes all positions where a platform was generated) and (3) placing
each generated enemy in one of the possible positions.

The design grammar constructed can be seen in Figure 5.21. A level is con-
structed by placing a number of chunks, each assigned two or more properties; the
x and y parameters specify the coordinates of the chunk starting position in the 2D
level array and are limited to the ranges [5, 95] and [3, 5], respectively. These ranges
are constrained by the dimensions of the level map. The first and last five blocks in
the x dimension are reserved for the starting platform and the ending gate, while
the y values have been constrained in a way that ensures playability (the existence
of a path from the start to the end position) by placing all items in areas reachable
by jumping. The wg parameter specifies the width of gaps that ensures the ability
to reach the other edge, w stands for the width of a platform or a hill, wc defines
the number of coins, and h indicates the height of tubes, piranha plants, or the bill
blaster. This height is also constrained to the range [3, 4], ensuring that tubes and
bill blasters can be jumped over.

5.6.2.2 Conflict resolution and content quality

There are a number of conflicts inherent in the design grammar. Each generated
chunk can be assigned any x and y values from the ranges [5, 95] and [3, 5], re-
spectively, depending on the genotype. This means it is likely there will be an over-
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<level> ::= <chunks> <enemy>
<chunks> ::= <chunk> |<chunk> <chunks>
<chunk> ::= gap(<x>,<y>, <wg>,<wbe f ore>,<wa f ter>)

| platform(<x>,<y>,<w>)
| hill(<x>,<y>,<w>)
| blaster_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| tube_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| coin(<x>,<y>,<wc>)
| blaster(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| tube(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)
| <boxes>

<boxes> ::= <box_type> (<x>,<y>)2 | ...
| <box_type> (<x>,<y>)6

<box_type> ::= blockcoin | blockpowerup
| brickcoin | brickempty

<enemy> ::= (koopa | goomba)(<pos>) 2 | ...
| (koopa | goomba)(<pos>) 10

<x> ::= [5..95]
<y> ::= [3..5]
<wg> ::= [2..5]
<wbe f ore> ::= [2..5]
<wa f ter> ::= [2..5]
<w> ::= [2..6]
<wc> ::= [2..6]
<h> ::= [3..4]
<pos> ::= [0..100000]

Fig. 5.21: The design grammar employed to specify the design of the level. The
superscripts (2, 6 and 10) are shortcuts specifying the number of repetition

lap between the coordinates of the generated chunks. For example, hill(65,4,5)
hill(25,4,4) blaster hill(67,4,4,4,3) coin(22,4,6) plat f orm(61,4,4) is a phe-
notype that has been generated by the grammar and contains a number of con-
flicts: e.g. hill(65,4,5) and blaster hill(67,4,4,4,3) were assigned the same y
value, and overlapping x values; another conflict occurs between hill(25,4,4) and
coin(22,4,6) as the two chunks also overlap.

To resolve these conflicts, a manually defined priority value is assigned to each
chunk. Hills with bill blasters or piranha plants are given the highest priority, fol-
lowed by blank hills, platforms with enemies (bill blasters or piranha plants) come
next then blank platforms and finally come coins and blocks with the lowest pri-
ority. After generating a genotype (with possible conflicts), a post-processing step
is applied in which the chunks are arranged in descending order according to their
priorities, coordinates and type. The resulting ordered phenotype is then scanned
and whenever two overlapping chunks are detected, the one with the higher priority
value is maintained and the other is removed. Nevertheless, to allow more diver-
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(a)

(b)

(c)

Fig. 5.22: Example levels generated by the GE-generator using the design grammar
in Figure 5.21

sity, some of the chunks are allowed to overlap such as hills of different heights
(Figure 5.20b), and coins or boxes with hills. Without this refinement, most levels
would look rather flat and uninteresting.

A relatively simple fitness function is used to measure content quality. The main
objective of the fitness function is to allow exploration of the design space by creat-
ing levels with an acceptable number of chunks, giving rich design and variability.
Thus, the fitness function used is a weighted sum of two normalised measures: the
first one, fp, is the difference between the number of chunks placed in the level
and a predefined threshold that specifies the maximum number of chunks that can
be placed. The second, fc, is the number of different conflicting chunks found in
the design. Apparently, the two fitness functions partially conflict since optimising
fp by placing more chunks implicitly increases the chance of creating conflicting
chunks ( fc). Some example levels generated are presented in Figure 5.22.

5.7 Lab exercise: Create plants with L-systems

In this lab exercise, you will implement a simple bracketed L-system to generate
plants. Use an L-system to generate your plants and a turtle graphics program to
draw them. You will be given a software package that contains three main classes:
LSystem, State and Canvas. Your main work will be to implement the two main
methods in the LSystem class:

public void expand(int depth)
public void interpret(String expression)

The L-system has an alphabet, axioms, production rules, a starting point, a start-
ing angle, a turning angle and a length for each step. The expand method is used to



96 Julian Togelius, Noor Shaker, and Joris Dormans

Fig. 5.23: Example trees generated with an L-system using different instantiation
parameters

expand the axiom of the L-system a number of times specified by the depth param-
eter. After expansion, the system processes the expansion and visualises it through
the interpret method. The result of each step is drawn on the canvas. Since the L-
system will be in a number of different states during expansion, a State class is
defined to represent each state. An instance of this class is made for each state of
the L-system and the variables required for defining the state are passed on from the
L-system to the state; these include the x and y coordinates, the starting and turning
angles and the length of the step. The L-system is visualised by gradually drawing
each of its states.

The State and the Canvas classes are helpers, and therefore there is no need
to modify them. The Canvas class has the methods required for simple drawing
on the canvas and it contains the main method to run your program. In the main
method, you can instantiate your L-system, define your axiom and production rules
and the number of expansions. Figure 5.23 presents example L-systems generated
using the following rules: (F,F,F → FF − [−F +F +F ]+[+F −F −F ]) (left) and
(F, f ,(F → FF, f → F − [[ f ] + f ] +F [+F f ]− f )) (right). Note that the rules are
written in the form G = (A,S,P), where A is the alphabet, S is the axiom or starting
point and P is the set of production rules.

You can use the same software to draw fractal-like forms such as the ones pre-
sented in Figure 5.24. Some simple example rules that can be used to create rel-
atively complex shapes are the following: (F,F + F + F + F,(F + F + F + F →
F +F +F +F,F → F +F −F −FF +F +F −F)) (left), (F,F ++F ++F,F →
F −F ++F −F) (middle) and (F, f ,( f → F − f −F,F → f +F + f )) (right).



5 Grammars and L-systems with applications to vegetation and levels 97

Fig. 5.24: Example fractals generated with an L-system using different production
rules

5.8 Summary

Grammars can be useful for creating a number of different types of game content.
Perhaps most famously, they can be used to create plant structures; plants gener-
ated by grammars are now commonplace in commercial games and game engines.
But grammars can also be used to generate levels and physical structures of var-
ious kinds and mission structures. Grammars are characterised by expanding an
axiom through production rules. The L-system is a simple grammar characterised
by simultaneous expansion of symbols, which can generate strings with repeating
structure. If the symbols in the string are interpreted as instructions for a movable
“pen”, the results of the grammar can be interpreted as geometrical patterns. Adding
bracketing to a grammar makes it possible to create strings that can be interpreted
as branching structures, e.g. trees. Both grammars and rules can be created through
search-based methods such as evolution, making automatic grammar design possi-
ble. Graph grammars and space grammars extend the basic idea of grammars beyond
strings, and can be useful for generating level structures or quest structures.
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Chapter 6

Rules and mechanics

Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

Abstract Rules are at the core of many games. So how about generating them? This
chapter discusses various ways to encode and generate game rules, and occasionally
game entities that are strongly tied to rules. The first part discusses ways of generat-
ing rules for board games, including Ludi, perhaps the most successful example of
automatically generated game rules. The second part discusses some more tentative
attempts to generate rules for video games, in particular 2D games with graphical
logic. Most approaches to generating game rules have used search-based methods
such as evolution, but there are also some solver-based approaches.

6.1 Rules of the game

So far in this book, we have seen a large number of methods for generating content
for existing games. If you have a game already, that means you can now gener-
ate many things for it: maps, levels, terrain, vegetation, weapons, dungeons, racing
tracks. But what if you don’t already have a game, and want to generate the game
itself? What would you generate, and how? At the heart of many types of games
is a system of game rules. This chapter will discuss representations for game rules
of different kinds, along with methods to generate them, and evaluation functions
and constraints that help us judge complete games rather than just isolated content
artefacts.

Our main focus here will be on methods for generating interesting, fun, and/or
balanced game rules. However, an important perspective that will permeate the
chapter is that game rule encodings and evaluation functions can encode game de-
sign expertise and style, and thus help us understand game design. By formalising
aspects of the game rules, we define a space of possible rules more precisely than
could be done through writing about rules in qualitative terms; and by choosing
which aspects of the rules to formalise, we define what aspects of the game are
interesting to explore and introduce variation in. In this way, each game generator
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can be thought of as an executable micro-theory of game design, though often a
simplified, and sometimes even a caricatured one [32].

6.2 Encoding game rules

To generate game rules, we need some way of representing or encoding them in a
machine-readable format that some software system can work with.1 An ambitious
starting point for a game encoding might be one that can encode game rules in
general: an open-ended way to represent any possible game. The game generator
would then work on games in this encoding, looking for variants or entirely new
games in this space. But such a fully general encoding provides a quite unhelpful
starting point. A completely general representation for games cannot say very much
that is specific about games at all. Some kinds of games have turns, but some don’t.
Some games are primarily about graphics and movement, while others take place
in an abstract mathematical space. The only fully general encoding of a computer
game would be simply a general encoding for all software. Something like “C source
code” would suffice, but it produces an extremely sparse search space. Although all
computer games could in principle be represented in the C programming language,
almost all things that can be represented in C’s syntax are not in fact games, and
indeed many of them are not even working programs, making a generator’s job
quite difficult.2

Instead of having a generator search through the extremely sparse space of all
computer programs to find interesting games, a more fruitful starting point is to
pick an encoding where the space includes a more dense distribution of things that
are games and meet some basic criteria of playability. That way, our generator can
spend most of its time attempting to design interesting game variants. Furthermore,
it’s helpful for game encodings to start with a specific genre. Once we restrict focus
to a particular genre, it’s possible to abstract meaningful elements common to games
in the genre, which the generator can take as given. For example, an encoding for
turn-based board games can assume that the game’s time advances in alternating
discrete turns, that there are pieces on spaces arranged in some configuration, and
that play is largely based on moving pieces around. This means the game generator
does not have to invent the concept of a “turn”, but instead can focus on finding
interesting rules for turn-based board games. An encoding for a side-scrolling space
shooter would be very different: here the encoding would include continuous time;

1 There are many other uses for machine-readable game rules, such as for use in game-playing AI
competitions [12, 6] and in game-design assistants targeted at human game designers [20, 9]. This
chapter focuses on encodings for generating rules, but multi-use encodings are often desirable.
2 This is not to say generating games encoded as raw programs would be impossible: genetic-
programming techniques evolve programs encoded in fairly general representations [29], and ap-
plying genetic programming to videogame design could produce interesting results. But the tech-
niques in this chapter focus on higher-level representations, which allow the generators to work on
more familiar game-design elements rather than on low-level source code.
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entities such as terrain, enemies, physics, lives, and spawn points; and events such
as shooting, object collision, and scrolling. Of course, the encoding cannot be too
narrow: at the limit, an encoding that specifies exactly one game (or only a few)
is not very interesting for a game-generation system. The most productive point on
the spectrum between complete generality and complete specificity is one of the
key tradeoffs in designing an encoding for game generators to use: smaller spaces
typically are more dense in playable, interesting candidates, but larger spaces may
allow for more interesting variation [27].3

In addition to being a more fruitful space for game generators to work in, genre-
specific encodings also make it easier to produce playable games. Whereas a com-
puter could generate purely abstract rule systems, making interesting games that are
playable by humans requires connecting those abstract rules to concrete audiovi-
sual representations [18]. For example, the abstract notion of a “capture” in board
games is often represented by physically removing a piece from the board. The idea
of “hidden information” in card games is represented by how players hold their
cards, and which cards on the table are face up versus face down. Concepts such
as “health” can be represented in any number of ways, ranging from numerical dis-
play of hitpoints or health percentage on the screen, to more indirect methods such
as changing a character’s colour, or even varying the music when a player’s health
drops below a threshold. Matching generated rules to these concrete representations
can be a challenging research problem in itself [25], but working with encodings
of specific genres allows us to sidestep the issue, by having a standard concrete
representation for the genre being considered.

Finally, using a genre-specific encoding provides a first step towards answering
a key question: how do we evaluate what constitutes a good set of game rules?
Rather than the extremely general question of what makes a good game, we can
ask what makes a good two-player board game, a good real-time strategy game, or
a good first-person shooter. That lets us take advantage of existing genre-specific
design knowledge, which is usually better developed and more amenable to being
formalised. Design of new board games may focus on properties such as balance,
availability of multiple nontrivial strategies, etc. Criteria for designing a good side-
scrolling shooter, meanwhile, may instead focus on the pace of the action, patterns
of enemy waves, and the difficulty progression—very different kinds of criteria.
When we generate the rules for games using encodings of these well-defined genres,
we can use a wide variety of existing design knowledge to made our playability and
quality judgements. This allows rule-generating PCG systems to start from the basis
of being domain experts in a specific genre, to use Khaled et al.’s terms for PCG
system roles [14].

The two sections that follow describe game-generator experiments that a number
of researchers have undertaken in those two domains that have seen the most study:
board games, and 2D graphical-logic games.

3 Some interesting future work lies in modular encodings: instead of choosing a specific genre,
a generator might pick and choose a generative space consisting of a combat system, 2D grid
movement, an inventory system, etc. [19].
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6.3 Board games

Board games were the first domain in which systems were built to procedurally
generate game rules. They have several features that make them a natural place
to start. For one, there is a discrete, finite structure to the games that simplifies
encoding; unlike computer games, which are defined by an often complex body of
code, games like chess are defined by simple sets of rules. Secondly, there is already
a culture of inventing board-game variants, so automatic invention of game variants
can draw from existing investigations into manual generation of game variants, and
the design books that have been written about those investigations [8, 2].

6.3.1 Symmetric, chess-like games

The earliest rule-generating system, predating the more recent resurgence in PCG
research, was METAGAME [27], which generated “symmetric, chess-like games”.
The chess-like part means that the games take place on a grid, and are structured
around two players taking turns moving pieces according to certain rules; these
pieces can also be removed from the board in certain circumstances. The symmetric
part means that the two players start on opposite ends of the board with symmetric
starting configurations, and all game rules are identical for each player, just flipped
to the other side of the board. For example, if METAGAME invented a chess vari-
ant in which pawns could capture sideways, this would always be true for both the
black and white player; the space of games METAGAME represents doesn’t in-
clude asymmetric games where players start with different pieces, or make moves
according to differing rules.

The symmetric aspect of the game rules is enforced by construction: only one set
of rules is encoded in the generator, and those rules are applied to both players, so
any change to an encoded rule automatically changes the rules for both sides. The
space of possible rules is encoded in a hierarchical game grammar that specifies
options for the board layout, how pieces can move, how they can capture, winning
conditions, and so on. Specific games are generated by simply stochastically sam-
pling from that grammar, and then imposing some checks for basic game playability.
Note that this is a constructive rather than a search-based approach; the system does
not test the quality of generated games as part of the generation process, and does
not search the space of games it can express as much as it randomly samples it.
The generator also has a few parameter knobs available, allowing the user to tweak
some aspects of what’s likely to be generated, such as the average complexity of
movement rules.

Pell’s motivation for building METAGAME was not game generation itself, but
testing AI systems on the problem of general game playing. By the early 1990s,
there was a worry that computer chess competitions were causing researchers to
produce systems so specifically engineered to play chess and only chess, that they
might no longer be advancing artificial intelligence in general. Pell proposed that
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more fundamental advances in AI would be better served by forcing game-playing
AI systems to play a wider space of games, where they wouldn’t know all the rules
in advance, and couldn’t hard-code as many details of each specific game [26]. To
actually set up such a competition, he needed a way to define a large space of games,
and a generator that could produce specific games from that space, to send to the
competing systems. METAGAME was created to provide that more general space
of test games, and as a result, also became the first PCG system for game rules.

6.3.2 Balanced board games

While METAGAME generated a fairly wide range of games, the end result was
controllable only implicitly: games were not selected for specific properties, but
chosen randomly from the game grammar.

One property that is frequently desired in symmetric games is game balance:
there shouldn’t be a large advantage for one side or the other, such that the outcome
is too strongly determined by who starts with the white pieces versus the black
pieces. METAGAME produces games that are often balanced by virtue of having
symmetric rule sets, which tend to produce balanced gameplay. But a symmetric
rule set does not automatically mean a game will be balanced: moving first can often
be a large advantage, or it might even in some cases be a disadvantage. Hom and
Marks [13] decided to address the goal of balance directly. They first took a much
smaller space of chess variants, to allow the space to be more exhaustively searched.
Then, they evaluated candidate games for balance by having computer players play
against each other a number of times, and rejected games with simulated win rates
that deviated too far from 50/50.

This process ends up feeding the original motivating application of METAGAME
back into the generation of game rules. METAGAME had been designed to test
general game-playing agents, which were new at the time. Over the years, a number
of research and commercial systems were developed, which could take an arbitrary
game encoded in a description language, and attempt to play it. Hom and Marks
took one such general game-playing system, Zillions of Games, and set it to play
their generated games as a way of evaluating them.

The changes from METAGAME introduced here are fairly general ones which
are seen in other PCG systems: the idea of an evaluation function to decide what
constitutes a good example, and simulation as a way of specifying an evaluation
function in a complex domain, where it’s difficult to specify one directly. Here, sim-
ulation is done by the computer playing the game against itself, and the evaluation
function is how close its win rate comes to being 50/50 from each side of the board.
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6.3.3 Evolutionary game design

The obvious next step is to use this ability to simulate and evaluate general games
to guide the automated search for new games. For example, the evaluation function
(also known as the fitness function) can be used to direct the evolution of rule sets, to
search for new combinations of mechanics that produce fit, interesting games. This
section describes an experiment in evolutionary board game design called Ludi,
which produced the first fully computer-invented games to be commercially pub-
lished [3].

6.3.3.1 Representation

Games are described in the Ludi system as symbolic expressions in simple ludemic
form (a ludeme is a unit of game information). For example, Tic-Tac-Toe is de-
scribed as follows:

(game Tic-Tac-Toe
(players White Black)
(board (tiling square i-nbors) (shape square) (size 3 3))
(end (All win (in-a-row 3)))

)

This game is played by two players, White and Black, on a square 3×3 board
including diagonals (i-nbors), and is won by the first player to form three-in-a-row
of their colour. By default, players take turns placing a piece of their colour on an
empty board cell per turn.

The Ludi language is procedural rather than declarative in nature, being com-
posed of high-level rule concepts rather than low-level machine instructions or logic
operations, as per the Stanford GDL. This makes the language less general as every
rule must be predefined by the programmer, but has the advantages of simplicity
and clarity; most readers should be able to recognise the game described above de-
spite having no prior knowledge of the system. Further, it allows rule sets to be
described and manipulated as high-level conceptual units, much as humans concep-
tualise games when playing and designing them.

6.3.3.2 Evaluation

The Ludi system evaluates a rule set by playing the game against itself over a num-
ber of self-play trials. A rule set is deemed to be “fit” in this context if it produces
a non-trivial and interesting contest for the players. The basic approach is similar to
that used by Althöfer [1] and Hom and Marks [13], but in this case a much broader
range of 57 aesthetic measurements are made, divided into
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• Intrinsic criteria based directly on the rule set.
• Playability criteria based on the outcomes of the self-play trials.
• Quality criteria based on trends in play.

The intrinsic criteria measure the game at rest directly from its rule set. However,
the true nature of a game does not emerge until the game is actually played, so it was
not surprising that no intrinsic criteria ultimately proved useful when these criteria
were correlated with human player rankings for a suite of test games.

It was found that the playability criteria, based on the game outcomes, provided
a useful and robust estimate of the basic playability of a game. Four of these criteria
proved particularly good at identifying unfit rule sets, constituting a playability filter
that formed the first line of defense to quickly weed out games that

• result in draws more often than not,
• are too unbalanced towards either player,
• have a serious first- or second-move advantage, or
• are too short or too long on average.

Games that pass the playability filter are then subject to a number of more subtle
and time-intensive quality measurements, based on the lead histories of the simu-
lated games. The lead history of a game is a record of the difference between the
estimated strength of the board position of the eventual winner and the eventual
loser at each turn. Such quality measurements are more subtle and less reliable than
the playability measurements, but offer the potential to capture a richer snapshot of
the player experience.

0 1( ) 2( ) 3( ) 4( ) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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0
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Fig. 6.1: Lead history showing drama in a game. Adapted from [5]

For example, Figure 6.1 shows the lead history of a game lasting 27 moves. The
white and black dots show the players’ estimated fortunes, respectively, while the
red line shows the difference between them at each move. This example demon-
strates a dramatic game, in which the ultimate winner (White) spends several moves
in a relatively negative (losing) position before recovering to win the game. Such
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drama is a key indicator of interesting play that human designers typically strive to
achieve when designing board games.

6.3.3.3 Generation

Rule sets are evolved using a genetic programming (GP) approach, summarised
in Figure 6.2. A population of games is maintained, ordered by fitness, then for
each generation a pair of relatively fit parents are selected and mated using standard
crossover and mutation operations to produce a child rule set. The symbolic expres-
sions used to describe games constitute rule trees that are ideal for this purpose.

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too
Slow?

Y

NChoose
Policy

Drawish?

N

Y

Inbred?

N

Y

Evaluate

Bin

Population

Select

Fig. 6.2: Evolutionary game design process. Adapted from [5]

Each child rule set is checked for correctness according to the Ludi language,
playability, performance and similarity to other rule sets in the population. Rule sets
that pass these checks are given a unique name, officially making them a game, and
are then measured for fitness and added to the population. The name for each game
is also generated by the system, based on letter frequencies in a list of Tolkien-style
names.
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6.3.3.4 Evolved Games

Ludi evolved 1,389 new games over a week, of which 19 where deemed “playable”
and two have proven to be of exceptional quality. The best of these, Yavalath, is
described below:

(game Yavalath
(players White Black)
(board (tiling hex) (shape hex) (size 5))
(end (All win (in-a-row 4)) (All lose (in-a-row 3)))

)

Yavalath is similar to Tic-Tac-Toe played on a hexagonal board, except that play-
ers win by making four-in-a-row (or more) of their colour but lose by making three-
in-a-row beforehand. This additional condition may at first seem a redundant af-
terthought, but players soon discover that it allows some interesting tactical devel-
opments in play.

12

Fig. 6.3: White forces a win in Yavalath. Adapted from [4]

For example, Figure 6.3 shows a position in which White move 1 forces Black to
lose with blocking move 2. Such forcing moves allow players to dictate their oppo-
nent’s moves to some extent and set up clever forced sequences. This emergence of
complex behaviour from such simple rules provides an “aha!” moment that players
find quite compelling, and is exactly what is hoped for from an evolutionary search.

The other interesting game evolved by Ludi is called Ndengrod:

(game Ndengrod
(players White Black)
(board (tiling hex) (shape trapezium) (size 7 7))
(pieces (Piece All (moves (move
(pre (empty to)) (action (push)) (post (capture surround))
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))))
(end (All win (in-a-row 5)))

)

This is also an n-in-a-row game—this rule dominated the rule sets of evolved
games—but in this case players capture enemy groups that are surrounded to have
no freedom, as per Go. This rule set also demonstrates the emergence of interesting
and unexpected behaviour, due to an inherent conflict between the “capture sur-
round” and “five-in-a-row” rules, as shown in Figure 6.4.

2
4

1
3

5 a
b 6

7

Fig. 6.4: Ladders don’t work as planned in Ndengrod. Adapted from [4]

White squeezes Black against the edge to force a ladder (left), which Black
must extend each turn to keep their group alive (middle). However, once the lad-
der reaches four pieces long after move 5, then White cannot continue the attack
at point a but must instead block the line at point b, allowing Black to escape with
move 7, and the game continues with White piece 6 now under threat.

6.3.3.5 Legacy

Yavalath and Ndengrod (renamed Pentalath) were the first fully computer-invented
games to be commercially published. Yavalath was the first game released by Span-
ish publisher Nestorgames, and continues to be the flagship product in its catalogue
of over 100 games.

Ndengrod is actually the better game of the two; it is deeper, involving a complex
underlying friction between enclosure and connectivity, and is definitely more of a
brain-burner. However, the more complex rules create a higher barrier to entry for
beginners, hence it is destined to remain second choice. Conversely, the rules of
Yavalath are intuitively obvious to any new player, and it has since been ranked in
the top 100 abstract board games ever invented [4].4

The successful invention of board games by computer did not cause the expected
backlash from players and designers. The most common response from players is

4 BoardGameGeek database, August 2016 (http://www.boardgamegeek.com).
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simply that they’re surprised that a computer-designed game could be this simple
and fun to play, while designers have so far dismissed this automated incursion into
the very human art of game design as not much of a threat, as long as it produces
such lightweight games. However, this attitude may change as PCG techniques—
and their output—become increasingly sophisticated and challenge human experts
in the field of design as well as play.

One near-miss produced by Ludi, called Lammothm, is worth mentioning to
highlight a pitfall of the evolutionary approach. Lammothm is played as per Go
(i.e. surround capture on a square grid) except that the aim is to connect opposite
sides of the board with a chain of your pieces. Unfortunately, the evolved rule set
contained the i-nbors attribute, meaning that pieces connect diagonally which all but
ruins the game, but if this attribute is removed then the rule set suddenly becomes
equivalent to that of Gonnect, one of the very best connection games [2]. Ludi was
one mutation away from rediscovering a great game, but the very nature of the evo-
lutionary process means that this mutation is not guaranteed to ever be tried for this
rule set. It is possible that alternative approaches with stronger inherent local search,
including Monte Carlo tree search (MCTS), can help address this issue.

6.3.4 Card games

Traditional card games—Poker, Uno, Blackjack, Canasta, Bridge etc.—have many
features in common with board games. In particular, they are turn based and deal
in discrete units (cards) which are in limited supply and can exist at any of a lim-
ited number of positions (player hands, piles etc). They also have some features that
distinguish them from most board games, including not typically relying on a board
and the often central importance of imperfect information (a player does not know
which cards their opponents have). The limited ontology and relative ease of auto-
mated playing (due to the limited branching factor) make the domain of card games
appealing for research in game generation.

Font et al. developed a description language for card games and attempted to
generate card games using evolutionary search in the space defined by this lan-
guage [11]. The language was defined so as to include three well-known card
games—Texas Hold’em Poker, Uno and Blackjack—and implicitly games posi-
tioned between these in the game space. Initial attempts to evolve new card games
in this language were made, but it was discovered that unexpectedly many of the
generated games were unplayable. Efforts continue to refine the language and eval-
uation functions to direct the search towards playable games.



110 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

6.4 Video games

In the last few years, a small number of researchers have worked on representing
and generating simple 2D graphical-logic games. By 2D graphical-logic games we
mean those games in which gameplay is based on 2D elements moving around,
colliding with each other, appearing and disappearing, and the like.5 While 2D ele-
ments moving around and colliding with each other constitutes a rather simple set
of primitives out of which to build game rules, a quite large range of games can be
built out of them, including such classics as Pong, Pac-Man, Space Invaders, Mis-
sile Command, and Tetris. These games have a different set of properties from those
typically seen in board games. They are usually characterised by featuring more
complex game-agent or agent-agent interaction that could easily be handled by hu-
man calculation in a board game, including semi-continuous positioning, timesteps
that advance much faster than board-game turns, multiple moving NPCs, hidden
state, and physics-based movement that continues even without player input. Many
such games feature an avatar which the player assumes the role of and controls more
or less directly, rather than selecting pieces from a board: the player “is” the Pac-
Man in Pac-Man, which adds a new layer of interpretation [36] and experiential
feeling to such games, and in turn a new axis of opportunity and challenge for rule
generators.

6.4.1 “Automatic Game Design”: Pac-Man-like grid-world games

In a 2008 paper, Togelius and Schmidhuber describe a search-based method for
generating simple two-dimensional computer games [35]. The design principles of
this system were that it should be able to represent a simplified discrete version of
Pac-Man, that other games should be easy to find through simple mutations, and
that the descriptions should be compact and human-readable.

The games that this system can represent all take place on a grid with dimensions
15×15 (see Figure 6.5). The grid has free space and walls, and never changes. On
the grid, there is a player agent (represented in cyan in the screenshot) and things of
three different colours (red, blue and green). Whether the things are enemies, food,
helpers etc is up to the rules to define. The player agent and the things can move in
discrete steps of one grid cell up, down, left or right. Each game runs for a certain
number of time steps, and is won if the player reaches a score equal to or above a
score threshold.

Representation: The game representation consists of a few variables and two ma-
trices. The variables define the length of the game, the score limit, and the number
of things of each colour. They also define the movement pattern of each colour. All
things of a particular colour move in the same way, and the available movement
patterns are standing still, moving randomly with frequent direction changes, mov-

5 We borrow the term from Wardrip-Fruin [36].
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Fig. 6.5: The Automatic Game Design system by Togelius and Schmidhuber [35]

ing randomly with infrequent direction changes, moving clockwise along walls and
moving counterclockwise along walls. The first of the the two matrices determines
the effects of collisions between things, and between things and the agent. There is
a cell for each combination of thing colours, and a cell for the combination of each
colour with the player agent. The possible effects are that nothing happens, one or
both things die, or one or both things teleport to a random location. For example,
the matrix could specify that when a blue and a red thing collide, the blue thing dies
and the red thing teleports. The other matrix is the score effects matrix. It has the
same structure as the collision effects matrix, but the cells instead contain negative
or positive changes to the score: for example, the player agent colliding with a blue
thing might mean a score increment.

Evaluation: In the experiments described in the paper, the aim was to make
games that were learnable. The motivation for this is the theory, introduced in vari-
ous forms by psychologists such as Piaget and game designers such as Koster, that
playing is learning and that a large part of the fun in games comes from learning
to play them better [28, 15]. Translated to an evaluation function for game rules,
the evaluation should reward games that are hard initially, but which are possible
to rapidly learn to play better. Under the assumption that learnability for a machine
somehow reflects learnability for a human, the evaluation function uses an evolu-
tionary learning mechanism to learn to play games. Games that are possible to win
for random players receive low fitness, whereas games that can be learnt (where the
agent increases its score as much as possible) receive high fitness.6

6 Later research has further investigated this class of fitness functions for automated game design,
based on the idea that good games should be possible for intelligent agents—but not for random
agents—to play well [23, 24].
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6.4.2 Sculpting rule spaces: Variations Forever

All of the possible games that can be specified in a particular rule encoding make up
a generative space of games. We’ve just looked at one way to explore a generative
space of games and pick out interesting games from the large sea of uninteresting
or even unplayable games. If we define an evaluation function to rate games from
the space, we can use evolutionary computation to find games that rate highly. A
different approach is to carve out interesting subsets of the space, not by rating each
individual game, but by specifying properties that we want games to have, or want
games to avoid. This leaves a smaller generative space with only games that satisfy
the desired properties; iterative refinement can then let us zoom in on interesting
areas of the generative space.

Variations Forever [31] is a game generator turned into a game, built with Answer
Set Programming (ASP, see Chapter 8). In this game, the player explores different
variations of game rules through playing games. The ontology and rule space is sim-
ilar to but expanded compared to the rule space used in the Togelius and Schmidhu-
ber experiment above. The games all contain things moving in a two-dimensional
space, and the bulk of rules are defined by the graphical-logic effects of various
types of interactions between the moving and stationary elements. However, the
search mechanic is radically different. Instead of searching for rule sets that score
highly on certain evaluation functions, the constraint solver finds rule sets which
satisfy certain constraints. Examples of constraints include: it should be possible
to win the game by pushing a red thing onto a yellow thing, or it should not be
possible to lose all blue things in the game while there are still green things. These
constraints are specified by the game designer, and different choices of constraints
will produce larger or smaller sets of games, with different properties. The player
then gets a specific game randomly chosen from that constrained space (and then
another one, and then another one), and part of the game is for them to try to figure
out how the rules work, and what the sequence of games have in common.

The aim of Variations Forever is not to produce a specific game deemed to be
good, but to provide a way for game designers to define and “sculpt” generative
spaces of games, where games can be included in or excluded from the space based
on specific criteria. Players then explore these designer-carved generative spaces,
seeing a series of games that differ in specifics but all share the specified properties.

6.4.3 Angelina

Angelina is an ongoing project by Cook and Colton to create a complete system for
automatically generating novel videogames. The system has gone through several
iterations, each focusing on developing a different kind of game. In the first iteration,
the focus was on discrete arcade-style 2D games, and the encoding system was along
the lines of the Togelius and Schmidhuber experiment above [7]. The main change
is that rather than keeping the map fixed and placing the agent randomly, Angelina
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sees the rule set, the map, and the initial placement as three separate entities, and
evolves all three of them using a form of cooperative co-evolution. This means that
each different design element is evaluated partly in isolation, according to objectives
which are independent of the rest of the game. However, these individual elements
are also combined into full games, which are then evaluated through automated
playouts to assess how well the different elements cooperate with one another. For
example, a level design might show individual fitness by exhibiting a certain amount
of branching or dead-ends, but be a bad fit for an object layout because it places
walls over the start point for the player.

Representation: The representation of rules and mechanics in Angelina has
changed through the different iterations of the software, in an attempt to increase
the expressivity of the system and remove constraints on its exploration of the de-
sign space. In the first iteration of Angelina, rules were composed from a grammar-
like representation of rule chunks, which produces good sets of rules, but is very
dependent on the starting grammar. This is in turn dependent on the human that
wrote the grammar. For Angelina, this is important because the research is partly
motivated by questions of computational creativity. It’s a good idea to think about
issues like this when building a procedural content generator, however—if we want
our systems to create things that are surprising and new, things that we could not
have thought of ourselves, then it helps to consider whether our representation is
constraining our systems with too many of our own preconceptions. Deciding how
general or how specific your representation needs to be is a very important step in
designing a generator of this kind.

To provide Angelina with more responsibility in designing the game’s mechan-
ics and rules, the second iteration of the software provided a less discrete do-
main for Angelina to explore. This version was focused on the design of simple
Metroidvania-style platform games, where players incrementally gain powers that
allow them to explore new areas of the world. Powerups are scattered through the
game which change the value of one of a few hand-chosen variables in the game
engine—such as the player’s jump height, or the state of locked doors. The precise
value associated with a given powerup was evolved as a design element in the co-
evolutionary system of this version of Angelina. This meant that Angelina could
make fine-grained distinctions between the player’s jump height being 120 pixels or
121 pixels, which in some cases was the difference between making the player sud-
denly able to access the entire game world, or carefully allowing access to a small
part that would provide a more natural game progression.

This notion of game mechanics as data modifiers was carried through to the next
iteration of Angelina, which took the idea a step further and opened up the codebase
of the underlying game engine to Angelina. This time, instead of being given a fixed
set of obvious variables to choose from, Angelina was responsible for choosing both
the target value and the target variable, out of all the variables hidden away in the
entire game’s code. Below is an example mechanic designed by the system. It finds
the acceleration variable in the player object, and inverts the sign on its y
component.

player.acceleration.y *= -1
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In the Java-based game engine Flixel-GDX,7 which Angelina uses, this is equiv-
alent to inverting the gravitational pull on an object, similar to the gravity-flipping
mechanic in Terry Cavanagh’s VVVVVV [21]. To generate this, Angelina searched
through available data fields within a sample game, and generated a type-specific
modifier for it (in this case, multiplying by a negative number). This exploration of
a codebase was made possible by using Java’s Reflection API—a metaprogramming
library that allows for the inspection, modification and execution of code at runtime.
Code generation and modification is a risky business, in general—the state space can
very quickly become too large to explore in any reasonable timeframe, and modi-
fying code at runtime is similarly perilous, particularly when using something so
potentially destructive as evolutionary computation.

Angelina tries to mitigate these problems in two ways: firstly, using Java as a
basis for the system means that it has robust error handling. Generating and execut-
ing arbitrary code is liable to throw every kind of error imaginable. A typical run of
Angelina will throw OutOfMemoryExceptions (by modifying data which trig-
gers an infinite loop), ArrayIndexExceptions (by modifying variables which
act as indexes into data structures) and ArithmeticExceptions (by modifying
variables used in calculations, causing problems such as division by zero). However,
none of these errors cause the top-level execution of Angelina to fail. Instead, they
can be caught as runtime errors, and suppressed. The mechanic which caused these
errors is given a low or zero fitness score, and the system then proceeds to test the
next mechanic.

The second and more important way that Angelina’s design overcomes issues
with code generation is the evaluation criteria used to assess whether a mechanic
is good or not. Figure 6.6 shows the outline for a simple level from a Mario-like
platform game. The player starts the level in the red square on the left, and can run
and jump. The aim is to reach the blue square on the right. We can verify that this
level is unsolvable for a given jump height—the player is simply unable to scale the
wall in the center of the level. This is the game configuration that Angelina begins
with when evaluating a new game mechanic. The system can then add this new
game mechanic to the game’s codebase, and try to solve the level by reaching the
exit. If Angelina is able to make progress and get to the exit, since we know the level
was previously unsolvable and only the mechanic has been added we can conclude
that the mechanic adds some affordance which we did not previously have. In other
words, it provides some utility for the player.

This constraint-like evaluation approach (either the simulation reaches the exit,
or it does not) is helpful in directing search through this kind of unpredictable state
space. There are a few things to note about this kind of evaluation, however. Firstly,
because we are generating arbitrary code modifiers, we can’t give Angelina any
heuristics to help it test the mechanic out. We have no idea whether a given me-
chanic will affect the player, enemies, the level geometry, the physics system, or
whether it will outright crash the game. This means that Angelina’s approach to
simulating gameplay with the new mechanic is to attempt a breadth-first exhaustive

7 http://www.flixel-gdx.com
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Fig. 6.6: A test level used by Angelina to evaluate generated game mechanics. The
player starts in the red square on the left-hand side. They must reach the blue square
on the right

simulation of gameplay. While this is almost tenable for a small example level and
a restrictive move set (left, right, jump and ‘special mechanic’), it’s hard to imagine
expanding this to a game with the complexity and scale of Skyrim, for example, or
even Spelunky.

The other thing to bear in mind is that how useful a mechanic is does not nec-
essarily relate to whether it is a good idea or not. We could imagine a very useful
mechanic which automatically teleports the player to the exit, but which trivialises
the rest of the game’s systems entirely. Similarly, many game mechanics are specif-
ically designed to balance utility with risk (enchanting items in Torchlight might re-
sult in the item being destroyed, for example) or simply exist to entertain the player.
This last category is very important—mechanics such as the infinite parachute in
Just Cause 2 certainly add utility to the player’s mechanical toolkit, but it is clearly
designed to be enjoyable to interact with. Feelings like flow, tactility or immersion
are difficult to quantify at the best of times, and are certainly not captured by the
extremely utilitarian approach taken by Angelina.

Despite these shortcomings, the use of code as a domain for procedural content
generation is exciting, and holds much promise. Angelina was able to rediscover
many popular game mechanics, such as gravity inversion (as seen in VVVVVV), and
bouncing (as seen in NightSky [22]). The purely simulation-based approach also
enabled Angelina to discover obscure and nuanced emergent effects in the gener-
ated code. In one case, Angelina developed a mechanic for simple teleportation, in
which the player is moved a fixed distance in a particular direction when a button
is pressed. This mechanic can be used for bypassing walls, but Angelina’s breadth-
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first simulation of gameplay also discovered that by teleporting inside a wall, it was
possible to jump up out of the wall, teleport back inside, and repeat the process. This
technique could be used to wall-climb—even though the game had no code relating
to this feature—all made possible by a single line of code modified by Angelina.

Evaluating Angelina as an autonomous game designer has proven difficult for a
number of reasons. During the development of Angelina many of the games features
were static and coded by hand, such as the control schemes or (in earlier versions of
the software) the game’s artwork. Focusing player surveys on the aspects of games
which change is difficult. Comparative testing is also difficult when the expressive
range of the software is as low as it has been in some versions of Angelina. The out-
put of the system varies within a small subgenre, which means it is difficult to make
strong value judgements on whether one game is better than another, particularly
mechanically. However, survey-based studies might still be the best way of getting
meaningful information about the system’s performance.

6.4.4 The Video Game Description Language

The Video Game Description Language (VGDL) is an effort to create a generic and
flexible but compact description language for video games of the types that were
seen on early home game consoles such as the Atari 2600. In this sense, it is a direct
follow-up to the efforts described above (in particular Togelius and Schmidhuber),
and its conceptual structure is similar. However, it is intended to be more general in
that it can encode a larger range of games, and more flexible in that it decouples the
description language from the game engine, the game evaluation metrics, and the
generation method.

The basic design of VGDL was outlined in [10], and a first implementation of a
working game engine for the language (together with several improvements to the
design) was published in [30]. One of the design goals for VGDL is to be usable for
general video game playing competitions, where artificial intelligence agents are
tested on their capacity to play a number of games which neither the agent nor the
designer of the agent has seen before [6]. These games could be manually or auto-
matically generated, and for the idea to be viable in the long run, automatic game
generation will need to be implemented at some point. The language is thus designed
with ease of automatic generation in mind, though the initial stages of development
have rather focused on re-implementing a range of classic games in VGDL to show
the viability of doing this and test the limits of the game engine. A first iteration of
the General Video Game Playing Competition8 was run in 2014. This competition
tests submitted agents against several unseen games defined in VGDL, and uses a
Java-based implementation of the VGDL game engine. For future iterations, there
are plans to use generated games to test agents, and to include competition tracks
focused on game generation and on level generation.

8 http://www.gvgai.net
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A VGDL game is written in a syntax derived from Python, and is therefore rel-
atively readable. There are four parts to a VGDL game: level mapping, sprite set,
interaction set and termination set. In addition, there are level descriptions for an ar-
bitrary positive number of levels. A level description describes a level for the game
as a two-dimensional matrix of standard ASCII characters, where the level map-
ping defines which character maps to which type of sprite. The sprite set defines
what types of sprites there are in the game and their movement behaviour, for ex-
ample wall (stands still), guard robot (moves around the walls) and missile (chases
the avatar). A special case is the player avatar, which the player controls directly.
All sprites can obey different types of physics, such as grid-based movement or
continuous movement with or without gravity. The interaction set defines most of
what we call operational rules in the game, as it describes what happens when two
sprites collide—similarly to the previous graphical game description efforts above,
the list of possible interaction effects include death, teleportation, score increase or
decrease and several others. The termination set describes various ways of ending
the game, such as all sprites of a particular type disappearing, a particular sprite
colliding with another etc.

6.4.5 Rulearn: Mixed-initiative game level creation

All the game generators described above have been non-interactive content genera-
tors, in that they generate a complete rule set without any human contribution. The
Rulearn system by Togelius instead tries to realise interactive generation of game
rules [33]. The system starts with the player controlling an agent obeying simple
car physics in a 2D space containing agents of three other colours, moving ran-
domly. Collisions will happen, but have no consequences. The player is also given
an array of buttons which will effect consequences, such as “kill red”, “increase
score”, “chase blue” and “split green”. Every time the player presses a button, that
consequence will happen. However, the system will also try to figure out why the
player pressed that button. Using machine-learning methods on the whole history of
past actions, the system will try to figure out which game the player is playing, and
induce the rules behind it. The result is a mixed-initiative system for game rules,
which in early testing has proved far from easy to use.

6.4.6 Strategy games

A project by Mahlmann et al. experimented with evolving key parts of strategy
games [16, 17]. Strategy games are games, typically adversarial and themed on mil-
itary conflict, where the player manages resources and moves units (representing
e.g. tanks, soldiers and planes) around on a board. Examples include the Civiliza-
tion series, Advance Wars and Europa Universalis; this genre of games is closely
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related to real-time strategy games such as Dune II and StarCraft, except for being
turn based. They share characteristics with both traditional board games, such as
typically being turn based and playing out on a discrete board/map, and with graph-
ical games in the relatively complex interactions between units and in the world,
more complex than could be comfortably simulated in a non-digital game.

In order to be able to generate strategy games, they developed a description
language for such games, aptly called the Strategy Game Description Language
(SGDL). They also developed a game engine that allows a human or a computer
player to play any game described in this language. In a series of experiments,
different parts of strategy games represented in this language were evolved using
genetic programming. In initial experiments, the focus was on evolving how much
damage each type of unit could inflict on the others in a simple strategy game with
the aim of creating balanced sets of units [16]. In a later set of experiments, the
complete logics for the strategy game units were evolved, with the goal of finding
sets of units of balanced strengths but which were functionally different between
players [17]. In these experiments several new strategy game mechanics (previously
unseen to the experimenters) emerged from the experiments, including units that
modified the shooting range of other units based on their proximity.

6.4.7 The future: Better languages? Better games? 3D games?

As we can see, existing work on generating graphical game has targeted games in
the style of classic arcade games and home console games from the early 1980s,
or simple arcade games. There is still considerable work to be done here, and no-
body has yet constructed a system that can generate novel graphical games of high
quality, comparable to the novel high-quality board games produced by Cameron
Browne’s Ludi system. One of the important open questions is how to best balance
expressivity of the game description language with locality of search and density of
good games; we want a representation which can represent truly novel games, but
we also want that representation to be searchable. However, there are also consid-
erable opportunities in developing game description languages that can effectively
and economically describe other types of games, and game generators that take into
account the specific game-design affordances and challenges that come with such
games. For example, what would it take to generate playable, interesting and orig-
inal FPS games? Which characteristics make games more or less easily “generat-
able” [34], and what techniques will best succeed at generating them, remains a
wide-open research question, waiting for new experiments to push its boundaries.
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6.5 Exercise: VGDL

The main theme of this chapter has been that generating rules depends heavily on
how we encode rules for a particular kind of game, since these encodings define a
space of games. The Video Game Description Language (VGDL) provides a fairly
straightforward encoding for a set of graphical-logic games, allowing for some vari-
ation in gameplay styles, without going all the way to the intractable complexity of
trying to encode every possible kind of game. In addition, it includes an interpreter
and simulator in Python (pyVGDL) and another in Java (jVGDL), so that games
produced in the encoding can easily be played.

This exercise is in two parts, with an open research question suggested as an
optional third.

Part 1: Understanding a VGDL game. Download pyVGDL9 or jVGDL.10 Both
packages come with a number of example games in the examples directory. Choose
a game, and understand its encoding. You may do this by first playing it, and trying
to figure out what its rules are. Then look at the rules as they’re encoded in its
definition file: are they the rules you figured out? Were there other rules you didn’t
notice? Play it again, this time with the rules in mind. Go back and forth between
the written rules and the gameplay experience until you’re confident you understand
what happens in the game, and how that relates to what’s written in the VGDL
definition.

Part 2: Write a new game in VGDL. Choose a graphical-logic game suitable
for representation using VGDL’s vocabulary. (Many traditional arcade games of the
Atari 2600 era or early Nintendo or Commodore 64 era are in their essence im-
plementable in VGDL.) What are the objects in the game, and what rules can be
written to specify the game’s mechanics? You may want to start by first listing these
on paper in natural language or as a set of bullet points, and then figuring out how
to encode them in VGDL. You may make up your own game, or choose an existing
arcade-style game to translate to VGDL.

Part 3 (optional): Write a generator that outputs VGDL games. At the time of
writing, there were some preliminary experiments in doing so [23, 24], but they
were not yet at the level of producing good games for humans to play. Most methods
have not yet been tried; how would you approach the problem?

6.6 Summary

In order to generate game rules, you first need to devise a good representation for
these rules. Several description languages for game rules have been invented. There
is usually some tradeoff between the expressivity of the encoding (the range of
games it can represent), the density of allowable or feasible game rules, compactness

9 https://github.com/schaul/py-vgdl
10 https://github.com/EssexUniversityMCTS/gvgai
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and human readability. Once you have an encoding, you will want to find good game
rules. Search-based methods have been applied in various different forms, for ex-
ample by the board-game-generating Ludi system and the arcade-game-generating
Angelina system. A key problem here is evaluating the quality of the rules, which
is generally much harder than evaluating the quality of other kinds of game con-
tent, as the evaluation function needs to go beyond mere correctness and into some
quantification of the game-theoretic and aesthetic qualities of the game. Constraint
satisfaction approaches have also been used to search for good rule sets; for example
Answer Set Programming was used in Variations Forever.
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Chapter 7

Planning with applications to quests and story

Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

Abstract Most games include some form of narrative. Like other aspects of game
content, stories can be generated. In this chapter, we discuss methods for generating
stories, mostly using planning algorithms. Algorithms that search in plan space and
those that search in state space can both be useful here. We also present a method
for generating stories and corresponding game worlds together.

7.1 Stories in games

Games often have storylines. In some games, they are short backstories, serving to
set up the action. The first-person shooter game Doom’s storyline, about a military
science experiment that accidentally opens a portal to hell, is perhaps the canonical
example of this kind of story: its main purpose is to set the mood and general theme
of the game, and motivate why the player is navigating levels and shooting demons.
The level progression and game mechanics have very little to do with the storyline
after the game starts. In other games, the storyline structures the progression of the
game more pervasively, providing a narrative arc within which the gameplay takes
place. The Final Fantasy games are a prominent representative of this style of game
storyline.

Since the theme of this book is to procedurally generate anything that goes into
a game, it will not surprise the reader that we will now look at procedurally gen-
erating game storylines. As with procedural generation of game rules, discussed in
the previous chapter, procedural generation of storylines is somewhat different from
generation of other kinds of procedural content, because storylines are an unusual
kind of content. They often intertwine pervasively with gameplay, and their role in
a game can depend heavily on a game’s genre and mechanics.

A common way of integrating a game’s storyline with its gameplay, especially
in adventure games and role-playing games, is the quest [23, 1]. In a quest, a player
is given something to do in the game world, which usually is both motivated by the
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current state of the storyline, and upon completion will advance it in some way. For
example, the player may be tasked with retrieving an item, helping an NPC, defeat-
ing a monster, or transporting some goods to another town. Some games (especially
RPGs) may be structured as one large quest, broken down into smaller sub-quests
that interleave gameplay and story progression.

There are several reasons a game designer might want to procedurally generate
game stories, beyond the general arguments for procedural content generation dis-
cussed in Chapter 1. One reason is that procedurally generated game worlds can
lack meaning or motivation to the player, unless they are tied into the game story by
procedurally generating relevant parts of the story along with the worlds. As Ash-
more and Nitsche [2] argue, “without context and goals, the generated behaviours,
graphics, and game spaces run the danger of becoming insubstantial and tedious.”
A second reason is that proceduralizing quests can make them truly playable. Sul-
livan et al. [21] note that computer RPGs often have a particularly degenerate form
of quest, “generally structured as a list of tasks or milestones,” rather than open-
ended goals the player can creatively satisfy. Table-top RPGs have more complex
and open-ended quests, since in those games, quests can be dynamically gener-
ated and adapted during gameplay by the human game-master, rather than being
prewritten. Procedural quest generation gives a way to bring that flexibility back
into videogame quests.

7.2 Procedural story generation via planning

One way to think about procedurally generating stories is to consider them to be
a planning problem. In artificial intelligence, planning algorithms search for se-
quences of actions that satisfy a goal. A robot, for example, plans out the series of
actuator movements necessary to pick up an object and carry it somewhere.

What are the sequences of actions for a story, and what is the goal? There are
a number of ways to answer those questions, and researchers on procedural story
generation started looking at them in the 1970s—at the time, generating purely text-
based short stories, not game stories.

We could answer that a story is a sequence of events in a story world (in our case,
a game world)—a sequence that eventually leads, through the chain of events, to the
story’s ending. Therefore we generate stories by simulating a fictional work: to tell
a story, we first simulate what happens as characters move around and take actions
in the story world, and then the story consists of simply recounting the events that
happened. One of the first influential story-generation systems, Tale-Spin [14], takes
this approach.

Generating stories by simulating a story world does have some shortcomings. It
does not take into account what makes a story—particularly an interesting story—
different from simply a log of events. Stories are carefully crafted by authors to
have a certain pace, dramatic tension, foreshadowing, a narrative arc, etc., whereas
a simulation of a day in the life of a virtual character does not necessarily have any
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of these features of a good story, except by accident. To solve that problem, we
can look at the story-planning problem from the perspective of an author writing
the story, rather than from the perspective of a protagonist taking actions in the
story world. Story planning then becomes a problem of putting together a narrative
sequence that fits the author’s goals [6]. Universe [12] and Minstrel [25] are two
well-known story generators that take this author-oriented approach.

For videogame stories, planning from the perspective of an author can become a
more problematic concept, because players act in the game’s story world, rather than
in the author’s head. Procedurally generating stories using an approach more like
Tale-Spin, that takes place within the story world, can be more straightforward, since
it has the advantage of talking about the same place and events that the player will
be interacting with. On the other hand, we may still want a narrative arc and other
author-level goals, which may lead to hybrid systems that plan author-level goals
on top of story-world events [13, 19]. Many questions remain open, so procedural
story generation in games is an active area of research.

In the rest of this chapter, we’ll introduce the concepts and algorithms behind
story planning, and walk through examples of using planning to generate interactive
stories.

7.3 Planning as search through plan space

Planning can be viewed as a process that searches through a space of potential so-
lutions to find a solution to a given problem, when knowledge about the problem
domain is given. The problem is called a planning problem and consists of the goal
state and the initial state. A solution to a planning problem is a plan, which contains
a sequence of actions. A plan is sound if it reaches the goal state starting from the
initial state when executed. Domain knowledge is represented as a library of plan
operators, where each operator consists of a set of preconditions and a set of effects.
Preconditions are just those conditions that must be established for the operator to
be executed, and effects are just those conditions that are updated by the execution
of the plan operator.

A space of potential solutions can be represented in two different ways: either as
a state space or as a plan space. A state space can in turn be represented as a tree
that consists of nodes and arcs, where a node represents a state and an arc repre-
sents a state transition by the application of an operator. The root node of the space
represents the initial state when the algorithm is forward progression search while
the root node represents the goal state when the algorithm is backward regression
search.

Here is the pseudocode description of a state space algorithm:

1: construct the root node as the initial state
2: select a non-terminal node

if non-terminal nodes are not found, return failure and exit
if this is the goal state, return path from the
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initial to current state as solution and exit
3: select an applicable operator

(its preconditions are true in forward progression search and
its effects are true in backward regression search)
if no such operators, mark node as terminal and goto 2

4: construct child nodes by applying the operator
if the number of nodes in the graph exceeds a predefined

maximum number of search nodes, return failure and exit
5: go to step 2

A plan space (see Figure 7.1) can be represented as a tree, which consists of
nodes and arcs. Unlike a state space, however, the root node of the tree specifies
the planning problem, the initial state and the goal state. Each leaf node represents
a complete plan (i.e. solution) which can achieve the goal state from a given initial
state when executed or a partial plan that cannot be refined any more due to incon-
sistencies in the plan. Internal nodes represent partial plans that contain flaws. The
search process can be viewed as refining the parent node into a plan that fixes a flaw
of the parent node [10]. A flaw in a plan can be an open precondition that has not
been established by a prior plan step or a threat that can undo an established causal
relationship in the plan.

Here is the pseudocode description of a partial-order planning algorithm:

1: construct the root node as the planning problem
2: select a non-terminal node (based on its heuristic value)
3: select a flaw in the node

if no flaw is found, return the node as a solution and exit
4: construct children nodes by repairing the flaw

if the flaw is an open precondition, either
a) establish a causal link from an existing plan step, or
b) add new plan step whose effects imply the precondition

if the flaw is a threat, either
a) add a temporal ordering constraint

so that the threatened causal link is not disrupted, or
b) add a binding constraint to separate the threatening

step from steps involved in the threatened causal link.
if the flaw is not repairable, mark the node as terminal

and go to 2
if the number of nodes in the graph exceeds a predefined

maximum number of search nodes, return failure and exit
5: go to step 2

The complete plans generated by a state-space search algorithm are total-order
plans. This means that they specify the temporal ordering constraint of every step in
the plan. A partial-order plan, by contrast, specifies only those temporal orderings
that must be established to resolve threats. For instance, imagine that you are given
the goal of purchasing milk and bread in a grocery store. The goal can be success-
fully fulfilled without worrying about which one should be purchased first. And yet,
a total-order plan specifies the order of these two purchasing actions and generates
two plans: a) to purchase milk first and then purchase bread, and b) to purchase
bread first and then purchase milk. On the other hand, a partial-order plan does not
specify the ordering constraint and defers the decision until it is necessary.
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Fig. 7.1: A plan-space graph. The root node #1 represents an empty plan that con-
tains the initial and the goal step only. The initial step contains p as an effect and the
goal step contains g as its precondition. Nodes #2 and #3 are partial plans that repair
the open precondition g by adding two different plan steps S1 and S2. Node #4 is a
complete plan repairing an open precondition p by establishing a causal link from
the initial step. The search could terminate here, if only one solution is needed. To
find all solutions, the refinement search process continues from #3, generating more
children (#5, #6, #7). Node #7 is marked as terminal, because there are no available
operators that can repair the open precondition c. Search for additional solutions
then continues from #6 (not shown)

In a plan-space search, the search process can be guided by a heuristic function
which estimates the length of the optimal complete plan, based on the number of
plan steps and the number of flaws that the current plan contains.

While both state-space search and plan-space search algorithms have advantages,
plan-space search planners have been favoured in creating stories, because their rep-
resentations are similar to the mental structure that humans construct when reading
a story [24] and their search processes resemble the way humans reason to find
a solution [17]. Furthermore, the causal relationships encoded in the plan struc-
ture allow further investigation of computational models of narrative, such as story
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summarization and affect creation [3, 5]. However, partial-order planning (POP) is
computationally expensive because its space grows exponentially as the length of
the plan increases. Therefore, it has not been used in many practical applications.

Hierarchical task networks (HTNs) [20, 22] represent plans hierarchically by
recursively splitting composite non-primitive actions into smaller primitive actions.
Figure 7.2 shows HTN action schemas that decompose abstract tasks into primitive
tasks. HTN can be used to generate a story by generating character behaviours.

Fig. 7.2: An HTN action schema. Ovals are abstract operators, and rectangles are
primitive operators. This example encodes an NPC activity that is carried out over
an hour of game-world time. The NPC can sleep if tired or perform a random task.
It may want to Get Food if hungry. Get Food is an abstract task is decomposed into
primitive tasks such as Hunt and Learn Hunting [11]

HTN planning searches in plan-space for a suitable plan. A simple HTN algo-
rithm is described below.

1: construct the root node with an abstract operator
2: select an abstract operator to expand

if no abstract operators are found and
all the preconditions are satisfied,
return the network as a solution and exit

3: select an action schema whose preconditions are true
if no such methods are found, return failure

4: decompose the abstract operator into sub-tasks
as encoded in the action schema

5: go to step 2
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7.4 Domain model

A domain model is the library of plan operator templates that encode knowledge in
a particular domain (in this chapter, a story world). Various formal languages have
been proposed to describe planning problems in terms of states, actions, and goals.
This section focuses on two planning languages, STRIPS and ADL, which have
been widely used for classical planners.

Before we get to the formalism, let us take an example. Imagine that a character
in a story, named Alex, is on the rooftop of a building. His goal is to be on the
ground level of the building without being injured. Alex can think of several plans
immediately. For instance, Alex can take an elevator (Plan 1), can walk down the
stairs (Plan 2), or can jump from the roof (Plan 3). Making the decision requires
considering constraints such as his capability (e.g. Alex could be an old man having
mobility problems), the building’s facilities (e.g. elevators), his preference (e.g. Alex
always prefers walking down the stairs for exercise), etc. If the building has an
elevator and Alex wants to go to the ground level quickly, Plan 1 would be suitable.
Alex may choose Plan 2 if there is no lift in the building. Alex may take Plan 3 if he
has a parachute with him and a serial killer with a knife is running toward him.

The goal of planning algorithms is to formalize making these kinds of decisions:
finding plans that maximise goals in the face of various conditions, constraints, and
preferences. Thus, it is important to select a formal language that best expresses the
problem domain.

7.4.1 STRIPS-style planning representation

STRIPS, introduced by Fikes and Nilson in 1971 [7], is the forerunner of many
modern formal languages in planning. In STRIPS-style plans, a state is represented
by either a propositional literal or a first-order literal where literals are ground (i.e.
variable-free) and function-free. A propositional literal states a proposition which
can be true or false (e.g. p, q, PoorButler). A first-order logic literal states a relation
over objects that can be true or false (e.g. At(Butler,House), Lord(Higginbotham)).

In STRIPS-style representations, we make a closed-world assumption—any con-
ditions that are not explicitly specified are considered false. Thus only positive lit-
erals are used for the description of initial states, goal states, and preconditions. The
effects of actions may include negative literals to negate particular conditions. A
STRIPS-style formalization of the scenario where Alex is choosing how to exit a
building (discussed above) can look like this:

• Initial state representation
At(Alex,Roo f top) ∧ Alive(Alex) ∧ Walkable(Rooftop, Ground) ∧ Person(Alex)
∧ Place(Rooftop) ∧ Place(Ground)

• Goal State representation
At(Alex, Ground) ∧ Alive(Alex)
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• Action representation
Action(WalkStairs (p, from, to))
PRECONDITION: At(p, from) ∧ Walkable(from, to) ∧ Person(p) ∧ Place(from)
∧ Place(to)
EFFECT: ¬At(p, from) ∧ At(p, to)

In the above example, the initial state is represented by the conjunction of six
first-order logic predicates. The goal state is represented by the conjunction of
two predicates in the same manner. In the action representation, the action named
WalkStairs has three variable parameters (p, f rom, to); the action’s preconditions
are represented by the conjunction of five predicates; and the action’s effects are
denoted by the conjunction of two predicates including a negative literal. The action
WalkStairs will be applicable and executed only when its preconditions are satis-
fied. After execution, the condition At(p, f rom) will be deleted from the current
state of the world and the condition At(p, to) will be added to the current state of
the world.

7.4.2 ADL, the Action Description Language

STRIPS is an efficient representation language for modelling states of the world. Us-
ing relatively simple logic descriptions (e.g. a conjunction of positive and function-
free literals), it can convert the states and actions of a particular domain in the real
world into corresponding abstract planning problems. This simplicity, however, can
be a limitation in complex planning problems. Therefore many successor planning
representations extend it with more features. One popular such extended language
is the Action Description Language (ADL), which adds a number of additional fea-
tures [16]:

• Both positive and negative literals are allowed in state descriptions, assuming
open-world semantics (that is, any unspecified conditions are considered un-
known, not false by default).

• Quantified variables and the combination of conjunction and disjunction are al-
lowed in the goal state description.

• Conditional effects are allowed.
• Equality and non-equality predicates (e.g. (from �= to)) and typed variables (e.g.

(p: Person), (from: Location)) are supported.

An ADL-style representation of the previous example is shown below:

• Initial state representation
At(Alex, Rooftop) ∧ ¬Dead(Alex) ∧ Walkable(Rooftop, Ground) ∧ Person(Alex)
∧ Place(Rooftop) ∧ Place(Ground) ∧ Wearing(Alex, Parachute) ∧¬Injured(Alex)
∧ Thing(Parachute)

• Goal State representation
At(Alex, Ground) ∧ ¬(Dead(Alex) ∨ Injured(Alex))
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• Action representation
Action(WalkStairs(p: Person, from: Place, to: Place))
PRECONDITION: At(p, from) ∧ (from �= to) ∧ (Walkable(from, to))
EFFECT: ¬At(p, from) ∧ At(p, to)
Action(JumpFromRooftop(p: Person, from: Place, to: Place, sth:Thing))
PRECONDITION: At(p, from) ∧ (from �= to) ∧ Emergent(p)
EFFECT: ¬At(p, from) ∧ At(p, to) ∧ (when Wearing(p, Parachute): ¬Dead(p))

7.5 Planning a story

A story can be represented as a partial-order plan, a tuple < S,O,C > where

• S is a series of events (i.e. instantiated plan operators),
• O is temporal ordering information represented as (s1 ¡ s2) where s1 precedes s2,
• C is a list of causal links where a causal link is represented by (s, t; c) notating a

plan step s establishes c, a precondition of a step t.

Figure 7.3 illustrates a story that consists of four events that fulfills the goal
dead(Lord) starting from the initial state have(Butler,Wine)∧ have(Butler,Poison)
∧ serving(Butler,Lord). The textual description of the plan can be read as: (1) But-
ler puts poison in wine. (2) Butler carries wine to Lord Higginbotham. (3) Lord
Higginbotham drinks wine. (4) Lord Higginbotham falls down. (The original story
is from [4].)

This plan seems reasonable as a story. But is it an optimal plan that has the
minimum number of steps? What if the butler gave the poison to the lord instead?
Then, the plan would consist of three steps: 1) The butler carries the poison, 2) The
lord drinks the poison, 3) The lord falls down.

As you may have sensed already, the new plan is logically sound but does not
make a good story. Why would the lord cooperate with this plan? This is one prob-
lem that can arise with author-centric story generation, which may ignore indi-
vidual characters’ plausible intentions. An alternative approach, character-centric
story generation, lets every character plan his/her own actions. This is more likely
to produce logically consistent sets of actions, but we cannot necessarily expect that
interesting stories will emerge from purely character-centric planning: A tellable sit-
uation rarely arises without the help of authorial goals. To tackle this issue, Riedl and
Young proposed an intent-driven planning algorithm to balance the author-centric
approach and character-centric approaches to story generation [19].

7.6 Generating game worlds and stories together

Many computer games engage players through interleaved periods of story play and
open-ended play. Story play encompasses the activities of the players that promote
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Fig. 7.3: The Butler story. A rectangle denotes an event and an arrow denotes a
causal link where the event in the source establishes a condition for the event in
the destination. The temporal ordering proceeds from the top to the bottom. Story
originally from [4]

the progression of the game world through a narrative sequence toward a desired
conclusion. As laid out in this chapter, a story can be represented as a partially or-
dered plan of actions that, when executed, transform the world progressively closer
to a desired conclusion, represented by the goal situation. Open-ended play encom-
passes player activities that do not progress (nor inhibit) the story plan. Examples of
open-ended play activities include exploring the spatial environment, encountering
random enemies, and finding treasure or items.

This section concerns itself with the generation of playable game experiences
including both story play and open-ended play. Players expect to be immersed in
a game world, a spatial environment encompassing all locations relevant to story
play and open-ended play, and inhabited by the player character and all other non-
player characters. Both story play and open-ended play are often tied to the spatial
environment. Unfortunately, the use of a story plan generator does not necessarily
result in a playable experience without being tied to a spatial environment. In the
case that a game world does not exist that suits the purposes of an automatically
generated story plan, the game world may be automatically generated.

To motivate the need for game world generation, consider the fully ordered plan
in Table 7.1. The plan involves a player character, the Paladin, performing a series
of tasks to gain the King’s trust, learn about a treasure cave, and escape a trap. Each
action in the plan establishes a number of world conditions necessary for subsequent
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Table 7.1: Example plan with event locations

1. Take (paladin, water-bucket, palace)
2. Kill (paladin, baba-yaga, water-bucket, graveyard1)
3. Drop (baba-yaga, ruby-slippers, graveyard1)
4. Take (paladin, shoes, graveyard1)
5. Gain-Trust (paladin, king-alfred, shoes, palace)
6. Tell-About (king-alfred, treasure, treasure-cave, paladin)
7. Take (paladin, treasure, treasure-cave)
8. Trap-Closes (paladin, treasure-cave)
9. Solve-Puzzle (paladin, treasure-cave)
10. Trap-Opens (paladin, treasure-cave)

actions to occur. For example, the Witch will drop her shoes only once dead, and
the King will trust the Paladin once he is presented with the shoes of the Witch. A
story plan only provides the essential steps to progress toward a goal situation, but
does not reason about player activities that do not otherwise impact the progression
of the story.

The domain model abstracts away much of the moment-to-moment activity of the
player and NPCs in order to focus on the aspects of the world that are most crucial
for story progression. Game play, however, is not always a sequence of discrete
operations. For example, solving a puzzle may require many levers to be triggered
in the right sequence. For the purposes of this chapter, we will refer to operations
in a story plan as events to highlight their abstract nature. Events are temporally
extended; each event can take a continuous duration of time, and there may be large
durations of time between events. The plan also does not account for opportunities
for open-ended play between events. For example, where is the graveyard relative
to the castle, how long does it take to travel that distance, and what might the player
see or experience along the way that is not directly relevant to the story plan?

If the game world is a given—i.e. there is a fixed world with a number of locations
and NPCs—then there is a mapping of story events in the plan to virtual locations
in the game world. For example, the game world for Table 7.1 requires a graveyard,
a castle, and a treasure cave. However, due to the nature of automatically generated
story plans, it is not always feasible to have a single fixed game world that meets
the requirements of a story plan: locations may be missing, there may be too many
irrelevant locations, or locations may need to be rearranged to make a more coherent
and sensible flow. In the next section, we describe a technique to automatically
generate a playable game world based on a story plan.

7.6.1 From story to space: Game world generation

Recalling that games often interleave plot points and open-ended game play, the
game world to be generated must ensure a coherent sequence of events are encoun-
tered in the world. The problem can be specified as follows: given a list of events
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that reference locations of known types, generate a game world that allows a lin-
ear progression through the events. To map from story to space, we will utilize a
metaphor of islands and bridges. Islands are areas in the spatial environment where
events occur. Bridges are areas of the world between islands where open-ended
game play occurs. Bridges can branch, meaning there can be areas that the player
does not necessarily need to visit in the course of the story. The length of bridges
and the branching factor of bridges are parameters that can be set by the designer or
dictated by a player model. A game world is generated in a three-stage pipeline in
which (1) a story plan is parsed for location information referenced by events, (2)
an intermediate, abstract representation of the navigable space is generated, and (3)
the graphical visualization of the navigable space is realized.

Table 7.2: A portion of the initial state declaration for a planning domain

Hero (paladin) Thing (water-bucket) Type (palace, castle)
NPC (baba-yaga) Thing (treasure) Type (graveyard1, graveyard)
NPC (king-alfred) Thing (ruby-slippers) Type (treasure-cave, cave)
Place (palace) Evil (baba-yaga) Type (water-bucket, bucket)
Place (graveyard1) Type (baba-yaga, witch) Type (ruby-slippers, shoes)
Place (treasure-cave) Type (king-alfred, king) Type (treasure, gold)

First, the generated story plan is parsed to extract a sequence of locations, each
of which becomes an island. The story plan must be fully ordered to generate such
a sequence (any partially ordered plan can be converted into a fully ordered plan).
Each event in the story plan must be associated with a location. For example, in the
story plan in Table 7.1, events occur at places referenced by the symbols palace,
graveyard1, and treasure-cave. Each referenced location must have a type. This
information is often found in the initial state declaration of the planning domain.
Table 7.2 shows a portion of the initial state for the domain used to generate the
example story plan. Thus the example story plan plays out in three locations: a
castle (events 1, 5, and 6), a graveyard (events 2 through 4), and a cave (events 7
through 10).

The next stage is to generate an intermediate representation of the game world as
a graph of location types called a space tree. A space tree is a discrete data structure
that indicates how big the game world will be, how many unique locations there are,
and which locations are adjacent to each other. Figure 7.4 shows an example of a
space tree in which the nodes corresponding to island locations—where story plan
events are to occur—are highlighted in bold and the rest of the nodes comprise the
bridges.

The planning domain does not provide enough information to tell us what types
of locations should be used for the bridges. We require an addition knowledge struc-
ture, called an environment transition graph. An environment transition graph is a
data structure that captures the game designer’s beliefs about good environment type
transitions. Each node in an environment transition graph is a possible location type
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Fig. 7.4: An example space tree. Islands are marked with bold lines. Adapted
from [8]
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Fig. 7.5: An environment transition graph. Adapted from [8]

and edges indicate non-zero probability of transitioning from one location type to
another. Figure 7.5 shows an example of an environment transition graph.

Space-tree generation can utilize any optimisation algorithm to find a space tree
that meets the evaluation criteria. See Chapter 2 for the general search-based ap-
proach to procedural content generation, and [8] for specific implementation details.
The evaluation criteria are:

• Whether bridges (nodes in the space tree between islands) have the preferred
length.

• Whether bridges have the preferred branching factor.
• Whether the length of side paths—branch nodes that are not directly between

two islands—matches the preferred side-path length.
• How closely environment type transitions between adjacent nodes match the en-

vironment transition graph probabilities.

These evaluation criteria make use of parameters set by the designer. Other evalua-
tion criteria may be used as well.

Once the space tree has been generated via a search-based optimisation process,
the third stage is to realize the game world graphically. The space tree gives us
an abstract representation of this game world but doesn’t tell us what each location
should look like. Where should art assets be placed spatially to create the appearance
of a forest, town, or graveyard, etc?
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Fig. 7.6: A space tree mapped to a grid. Adapted from [8]

We describe a graphical realization process that creates a 2D, top-down, tile-
based, graphical visualization of a game world described by a space tree. Starting
with a grid of empty tiles, we will first map the space tree to the 2D grid and then
choose tiles for each cell in the grid. If the grid is mworld × nworld tiles, then each
mscreen ×nscreen tiles is the number of tiles that can be displayed on the screen at any
one time. Each node in the space tree will be mapped to a mlocation × nlocation grid
of screens. In Figure 7.6, the world is 340× 160 tiles, each screen is 34× 16 tiles,
and each location encompasses a 3× 3 grid of screens (only a portion is shown).
The mapping of space tree to grid is as follows. Use a depth-first traversal of the
space tree, placing each child adjacent to its parent on the grid. In order to prevent
an algorithmic bias toward growing the world in a certain direction (e.g. from left
to right), one can randomize the order of cardinal directions in which it attempts to
place each child. To minimise the likelihood that nodes will be mapped to the same
portion of the grid, one can constrain the space tree such that nodes have no more
than two children, for a total of three adjacent nodes. Backtrack if necessary. If there
is no mapping solution, discard the space tree and resume search for the next best
space tree.

Once each node in the space tree has been assigned a region on the grid, the mod-
ule begins graphical instantiation of the world. Each node from the space tree has
an environment type, which determines what decorations will be placed. Decora-
tions are graphical assets that overlay tiles and visually depict the environment type.
For a 2D tile-based realization of a game world, decorations are sprites that depict
scenery found in different environment types. A forest environment has decorations
consisting of grass, trees, and bushes, while a town has decorations that look like
buildings, castle walls, and street paving stones.

But how does the system know where to place each decoration? This knowledge
is also not present in the domain model, and a third type of external knowledge is
necessary. Each environment type is associated with a function that maps decora-
tions to a probability distribution over XY tile coordinates. We have identified two
types of mapping functions.

A Gaussian distribution defines the dispersement of decorations around the cen-
ter point of a location such that decorations are placed more densely around the
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Fig. 7.7: A forest adjacent to a swamp, both with Gaussian distributions, resulting
in a blended transition. Adapted from [8]

center point of each location. The advantage of a Gaussian distribution is that deco-
rations can be placed in adjacent locations, creating the appearance that one location
blends into the next, as in Figure 7.7.

A custom distribution is an arbitrary, designer-specified function that returns the
probability of placing a decoration at any XY coordinate. Figure 7.8 shows the cus-
tom distribution for a town location type such that buildings are likely arranged in
grid-like city blocks, paving stones make up streets between city blocks, and guard
towers are arranged in a ring around the town perimeter.

Figure 7.9 shows an example of a complete game world with three islands ex-
tracted from Table 7.1.

7.6.2 From story to time: Story plan execution

Once the space in which the story will unfold has been generated, there are two ad-
ditional issues that must be addressed: (a) the world must be populated with NPCs,
and (b) the NPCs must act out the story, which is not known prior to execution.
Population of the world by NPCs is a simple process of parsing the story plan for
references to NPCs and instantiating sprites (based on NPC types) in the locations
in which they are first required to participate in an event. Because of the temporal
extension of events, NPCs must elaborate on events, including engaging in com-
bat, engaging in dialogue, setting up and triggering traps (the world itself can be an
NPC), etc. Because the story and world geometry are a-priori unknown, the NPCs
must be flexible enough to elaborate on an event under a wide range of conditions
based on what events preceded the current time point and how the world is laid out.
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Fig. 7.8: A custom distribution for a town (above) and an example of the result
(below). Brighter colour indicates greater probability of a decoration, where red in-
dicates buildings, green indicates paving stones, and blue indicates towers. Adapted
from [8]

One solution is to pair each event with a reactive script that decomposes the
event into a number of primitive NPC behaviours. Roughly, a reactive script is an
AND-OR tree structure in which internal nodes represent abstract behaviours—
possibly joint between a number of characters—and leaf nodes represent primi-
tive, executable behaviours such as animations. Reactive script execution is a walk
of the tree implementing an event such that AND-nodes create sequences of sub-
behaviours and OR-nodes express alternative means of decomposing achieving a
behaviour, implementing if-then-else decision-making logic. Internal nodes may
implement applicability criteria (similar to preconditions) that are used to prune
sub-trees that are not supported by the state of the virtual world at execution time.
Examples of reactive script technologies include behaviour trees [9], hierarchical
finite state machines, hierarchical task networks [20] such as SHOP 2 [15], and the
ABL reactive behaviour planner [13].

Two types of reactive scripts are necessary to execute an automatically generated
story in an open-ended game world [18]: narrative directive behaviours and local au-
tonomous behaviours. Narrative directive behaviours are reactive scripts associated
with event templates in the domain model. They operate as above, decomposing
events into primitive behaviours. Narrative directive behaviours enact an event like
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Fig. 7.9: Example game world generated from the islands in the plan in Table 7.1.
Adapted from [8]

a stage manager in a play; they are not associated directly with any one character,
but may control many characters at once. Local autonomous behaviours are asso-
ciated with NPC types and execute whenever an NPC is instantiated in the world
but not otherwise playing a role in an event. Local autonomous behaviours create
the appearance that NPCs have rich internal lives when they are encountered by the
player during open-ended play.

7.7 Lab exercise: Write a story domain model

The purpose of this exercise is to write a story domain model and characterize dif-
ferent planning algorithms.

1. Familiarize yourself with JSHOP2, an off-the-shelf Java implementation of the
SHOP2 HTN planner (originally written in Lisp).

• Download and install JSHOP 2.0 (http://www.cs.umd.edu/projects/shop/)
• Check out and test the sample examples included in the package

2. Write a planning problem in terms of initial state, goal state, and actions by defin-
ing two story domains (Little Red Riding Hood and The Gift of the Magi) using
either STRIPS-style or ADL-style representation. Discuss which representation
is more suitable to describe the two story-world domains and explain why.

3. Convert the above planning problems into an HTN representation suitable for
JSHOP2, and execute them. Discuss the strengths and weaknesses of HTN plan-
ning (or SHOP2 planner) as a story generation method/tool.

4. In the Butler story described in Section 7.5, suppose that the lord knows that the
wine is poisoned and only pretends to be dead, but the butler does not know that
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the lord knows. The new authorial goal is now represented as ¬dead(Lord) ∧
arrested(Butler). Make a complete story plan by adding additional actions (e.g.
Call−911(Lord), Arrest(Police,Butler)), states, and causal links. Do you think
that it will make the story more interesting? Why or why not?

5. Discuss the overall advantages and limitations of planning-based story genera-
tion.

6. Discuss how planning-based story-generation techniques can be effectively used
in interactive storytelling systems and games.

7.8 Summary

Most games have stories, be they backstories as in a typical shooter, or stories that
structure the game experience as in a role-playing game. Stories, too, can be seen
as content and be generated. The most common approach to generating stories is
to use some kind of planning algorithm. A planning algorithm finds a path from an
initial state to a goal state; the sequence of actions that constitute this path can then
be interpreted as a story. Among planning algorithms, there is a distinction between
plan-space search, where the algorithm searches in the space of possible plans, and
state-space search, where a plan is built up through adding new parts sequentially.
A domain model is a collection of facts about the (game) world and possible actions
that can be taken in it, which is then used by the planner to create a plan. There are
several ways of representing a domain model, such as the STRIPS and ADL lan-
guages. For stories which have an impact on gameplay, there are ways of generating
the map at the same time as the story, or the map to follow the story. Finally, search
and optimisation techniques can be used to map plot points to physical locations.
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Chapter 8

ASP with applications to mazes and levels

Mark J. Nelson and Adam M. Smith

Abstract Answer set programming (ASP) is an approach to logic programming,
where constraints and logical relations are declared in a Prolog-like language. ASP
solvers can be used to find world configurations that satisfy constraints expressed in
this language. Interestingly, many forms of content generation can be formulated as
constraint-solving problems, and thus expressed in ASP. For example, maps can be
represented as the position of all objects in the map, and the space of permissible
maps limited by constraints expressed in the language. This chapter discusses how
to use ASP for generating different types of mazes, using generation of dungeons as
a running example.

8.1 What to generate and how to generate it

A common theme underlying procedural content generation is that we need to be
able to specify both what we want our generated content to be like, and how to
generate it. Sometimes these two parts are tightly intertwined. In the constructive
methods of Chapter 3 and the fractal and noise methods of Chapter 4, we can pro-
duce different kinds of output by tweaking the algorithms until we’re satisfied with
their output. But if we know what properties we’d like generated content to have, it
can be more convenient to directly specify what we want, and then have a general
algorithm find content meeting our criteria.

The search-based framework introduced in Chapter 2 is one common way of
making a content-generation algorithm general, so we can tell it what kind of con-
tent we want, and have it search for content meeting our request. An evaluation
function specifies the properties we’d like the content to have, by numerically rating
the quality of generated content according to whatever criteria we choose. A search
algorithm then searches a space of content encodings to find highly rated content.

Evaluation functions summarize content quality into a single numerical rating.
Then the search process, such as an evolutionary algorithm, finds content that rates
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highly on that scale. Elements of an evaluation function may include both hard
constraints—things that the content absolutely must have, such as a level being
passable—and softer preferences. Evaluation of content quality may also depend on
the game’s mechanics. For example, whether a level is passable can depend on how a
player can move, what items are available for the player’s use, how enemies move,
and so on; in search-based PCG this is often addressed by simulating gameplay
when compute the rating.

In this chapter we look at another way of dealing with the what and how of PCG.
We specify what we want our generated content to be like through answer set pro-
gramming (ASP), a logic-programming approach. We then do the actual generation
by passing the program to an ASP solver, which outputs content that meets the
specifications of our program.

8.2 Game logic and content constraints

Instead of using a content encoding and a numerical evaluation function, here we
define the logic of a content domain, along with constraints on the properties that
we want the generated content to exhibit [9].

The logic of a game content domain is its structure and game mechanics. A grid-
based map has a structure in which tiles are arrayed horizontally and vertically,
with walls, items, structures, or other entities placed on tiles. Mechanics specify
how gameplay takes place on this grid. Common mechanics include: a player starts
somewhere, can move to any unoccupied adjacent square, can pick up certain kinds
of items, can break certain kinds of barriers (this might require an item), etc. In short,
how a game works makes up its logic. This logic can be encoded in computational
logic [7], which means we will be able to use it to guide PCG. We don’t encode how
the entire game works, to be clear, just how the game works to the extent that it’s
relevant to generating the content we want.

Once we have the logic of a domain, we can write down properties that we want
all generated content to have, by writing constraints that refer to the game’s logic.
For example: a level must have a valid path through it. What is a valid path? A
sequence of moves that a player can legally make. The sequence of moves the player
can legally make in turn depends on the logic of the particular game’s world and
rules. Some other possible constraints: all valid paths should be at least a certain
minimum length, the exit and entrance must be at opposite edges of the map, and
so on. We can add and remove these properties, as we think of them: perhaps the
player shouldn’t be able to get through a level without using at least one item (if
our game has items). Maybe at least one jump should be required, or there should
be a boss placed somewhere that can’t be avoided. Specifying these constraints will
often be done iteratively. Once we generate a few example levels, we may see things
we didn’t expect, and modify the set of desired properties accordingly.

The logic and constraints serve the role that the encoding and evaluation function
serve in search-based PCG, but in a more explicit, symbolic form, where we’ve
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written out the logic of a game world and the properties we’d like in the generated
content. The logic and constraints are then passed to a tool, called a solver, which
solves the logic problem: it finds content that conforms to the logic of the game
world and satisfies all the constraints we’ve specified. This approach is particularly
useful when many of our desired properties are hard constraints, and may depend
(perhaps in complex ways) on the game’s mechanics.

8.3 Answer set programming

To apply the approach we just described in practice, we need a specific language in
which to encode the game logic and constraints, and a solver for that language. In
this chapter, we use answer set programming (ASP), a logic-programming approach
with good support for constrained generation. While there are other possible ways to
do PCG with constraint solving [6], answer set programming has a well-developed
programming language with reliable existing tools, and which can be used to specify
both game logic and constraints within the same language. Therefore it serves as
a good general-purpose choice for programming logic- and constraint-based PCG
systems.1

Before we jump into using ASP for a content generation task, we will first in-
troduce some basic syntax. Answer set programs are expressed in a language called
AnsProlog [1, 4], a language that visually resembles Prolog while having semantics
that are more directly relatable to SAT and MAX-SAT problems.

The simplest ASP construct is a fact. A fact is something we declare to be true.
It can be an atomic fact, which is simply a symbol that is declared true:
game_over.
gravity_enabled.

Alternatively, a fact can be specified using predicates, which take parameters. A
predicate can be declared true for specific choices of parameters:
max_jump(3).
contains((2,2),wall).

So far, this is just a bare list of facts. We could encode a whole level this way,
specifying the locations of walls, items, etc. But the interesting part comes when we
add rules in addition to lists of facts. Rules specify that we can infer certain facts
from others. This encodes dependencies between game elements, and also lets us
start specifying dynamic elements of the game, such as game mechanics.

For example, let’s say that tiles containing walls are impassable, in general. We
could specify a list of facts listing explicitly which tiles are impassable. But we’d
rather just say that every tile with a wall is impassable.

In conventional mathematical logic notation, we want a rule like this:

∀Tile, contains(Tile,wall) =⇒ impassable(Tile)

1 ASP has also been used for content generation outside of games, notably to generate music [2].



146 Mark J. Nelson and Adam M. Smith

Read left to right, this says: for all tiles, if the tile contains a wall, then the tile is
impassable.

In AnsProlog, this rule would be written like so:
impassable(Tile) :- contains(Tile,wall).

The symbol :- in AnsProlog is a leftward-pointing version of the implication
arrow, following the convention in most programming languages that the assignment
operator assigns from the right-hand side to the left. Tile is a logic variable. In
AnsProlog, variables start with a capital letter, while predicates and atoms start with
a lowercase letter. Variables in AnsProlog are implicitly universally quantified, so
the “for-all” (∀) in the mathematical version doesn’t appear in the AnsProlog code.

Once we have facts and rules, that would in principle be enough to constructively
generate content. However, it is typically difficult to write a set of facts and rules so
that only content we want is derived from the rules, placing everything in exactly
the right combination of places and never generating broken or undesirable output.
Instead, we usually generate content in two steps. First, we constructively define a
design space. Then we specify constraints that exclude unwanted parts of the design
space.

The initial, larger design space is created by using the AnsProlog construct of
choice rules. A choice rule specifies that the solver has an arbitrary choice in how
to assign certain facts—as long as they meet some numerical constraints, and any
other constraints that we might add later. The following choice rule specifies that
there are between 5 and 10 walls in the level, but it doesn’t specify exactly how
many, or on which tiles they’re located:
5 { contains(T,wall) : tile(T) } 10.

More precisely, this syntax says that, if we construct a big collection of candidate
contains(T,wall) facts, for every possible T that is a tile, then the size of this set
is between 5 and 10. If we have no desire to constrain the set size, we can leave off
one or both of these numbers. The following choice rule simply says that a level has
any number of walls:
{ contains(T,wall) : tile(T) }.

A program consisting of only the above rule produces a generative space of lev-
els that contains any possible arrangement of walls on a grid. Of course, interesting
levels require more than this. Besides adding numerical constraints on how the ASP
solver makes its choices, we can exclude unwanted choices by adding different con-
straints that the solver must take into account. A standalone constraint is written like
a rule, but has nothing on the left-hand side of the :- syntax. A solution that matches
the right-hand side of the rule will be rejected as an invalid choice. The following
example rule excludes any generated map that has a wall at (1,1):
:- contains((1,1),wall).

By intermixing rules that create generative spaces, and others that prune them
back down to interesting subsets, we can achieve strong control over the kind of
content that is generated.
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AnsProlog code is put into files with the conventional extension .lp (for “logic
program”), and then passed to the solver. In this chapter we use the solver clingo
from the University of Potsdam, a free and actively maintained AnsProlog solver
which is part of the Potassco project of answer-set-programming tools [5].2

Now that we have the basic machinery of AnsProlog, we can define facts and
implications, specify design spaces as free choices, and specify constraints rejecting
some of those choices. We’ll walk through some complete examples to show how
to build and modify procedural level generators using this method.

8.4 Perfect mazes

Using our newfound ability to reason over all possible logical worlds, we will start
with a simple maze generation problem. In particular, we will look at generating
perfect mazes. A perfect maze (which may or may not actually be a desirable maze)
is one in which every location is reachable while there are no closed loops. In effect,
perfect mazes are trees that have been embedded into a fixed space, usually a grid.

One way to represent a tree embedded in a grid is to assign each tile in the grid a
parent pointer that points to one of its adjacent cells. If the choice of parent pointers
actually forms a tree, then it will be possible to traverse these pointers back to the
root of the tree no matter where we start.

Let’s begin by establishing a representational vocabulary for our mazes. Fig-
ure 8.1 is a self-contained AnsProlog program that uses a choice rule to assign
each X/Y location a unique parent direction. This choice rule can produce facts
like parent(5,7,0,-1) which might read that the tile at location (5,7) has (5,6)
for its parent. The location (1,1) will later function as the root of our tree, so we
don’t assign it a parent direction.

#const width = 5.
dim(1..width).

1 { parent(X,Y, 0,-1),
parent(X,Y, 1, 0),
parent(X,Y,-1, 0),
parent(X,Y, 0, 1) } 1 :-
dim(X), dim(Y), (X,Y) != (1,1).

Fig. 8.1: maze-core.lp

With just a single interesting rule, we can already begin visualizing the output of
the design space we are representing so far. Using a command like the following,
which uses the answer-set-solving system from the Potassco project (discussed in

2 The code here is tested with clingo version 3.0.4. Most of the examples will work with minor
syntax changes on clingo 4, but the --reify feature used in Section 8.6 hasn’t yet been added to
clingo 4, so we recommend sticking with clingo 3 when trying out the examples in this chapter.
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the previous section), we can generate previews of possible mazes. Rendered exam-
ples from our program so far can be seen in Figure 8.2.
clingo maze-core.lp --rand-freq=1

Fig. 8.2: When each tile in the maze is assigned a random parent, typical outputs
show several disconnected components. Some tiles on the edges of the maze even
point to a parent cell outside of the maze

To make sure we only see valid trees, we should enforce the property that the root
is reachable from every tile on the grid. Figure 8.3 uses a fact, a recursive rule, and
an integrity constraint to accomplish this. The linked(X,Y) property holds trivially
for the root of the tree. Any tile that has a parent that is linked is linked as well.
Finally, if there is some tile which does not have the linked property, something
is wrong with the current assignment of parent directions and this possible world
should be rejected.

linked(1,1).
linked(X,Y) :- parent(X,Y,DX,DY), linked(X+DX,Y+DY).

:- dim(X;Y), not linked(X,Y).

Fig. 8.3: maze-reach.lp

After adding these rules, we can sample examples of all and only those perfect
mazes by running a command such as the following. Example outputs are shown in
Figure 8.4.
clingo maze-core.lp maze-reach.lp

So far, we have used only hard constraints: tiles have exactly one parent, and
every tile must be linked to the root. We can express soft constraints in AnsProlog
as well by defining optimisation criteria. As an example of this for the primitive
domain of mazes, let us suppose that vertical links in the maze are undesirable and
that their use should be minimized. To accomplish this, the rules in Figure 8.5 de-
fine two ways of detecting a vertical link (an upward or downward parent), and the
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Fig. 8.4: After adding the reachability constraint for each tile, the desired tree net-
work appears. This program captures exactly the set of all perfect mazes of a given
width

minimize statement tells the solver that solutions which use the fewest vertical links
are those that interest us. Although such statements are typically read as implying
an optimality constraint (that only globally optimal solutions should be emitted),
most answer set solvers will emit a series of answer sets they find along the way to
finding one such optimal solution. By stopping the solver once it gets close enough
or runs for enough time, we can implement approximate optimisation within this
framework as well.

% soft style preferences : minimize vertical links
vertical(X,Y) :- parent(X,Y,0, 1).
vertical(X,Y) :- parent(X,Y,0,-1).
#minimize { vertical(X,Y) }.

Fig. 8.5: maze-bias.lp

Including the rules defining our bias against vertical links, a command like the
following will allow us to sample maze designs that optimise our working evaluation
criterion. Example outputs are show in Figure 8.6.
clingo maze-core.lp maze-reach.lp maze-bias.lp

8.5 Playable dungeons

Mazes are an overly simplistic example of how to carry out content generation using
ASP because they can be represented with only a single kind of choice. As a slightly
richer example, this section looks at generating simple dungeon maps in which a few
different types of sprites are stamped down onto the familiar two-dimensional grid.

Our task will be to design a level in which the player character starts in the top-
left of the grid, finds a gem in the wall of the dungeon, carries it to a central altar,



150 Mark J. Nelson and Adam M. Smith

Fig. 8.6: Using the count of horizontal connections as an evaluation function, we
can sample several alternative designs with a globally optimal score

where it is used to magically unlock the exit, and then walks out of that exit in the
bottom right. We would like every generated level to be guaranteed to be solvable
as well as to have some basic control over the pacing of the level.

To begin, examine Figure 8.7. This program establishes a vocabulary of dimen-
sion values, tiles as value pairs, and adjacency between pairs of tiles. In the character
movement model we intend to capture, tiles that are one step up/down/left/right of
each other are considered adjacent. A mathematical statement of this is that tile pairs
with a coordinate distance of one are considered adjacent. The key part of this pro-
gram is the choice rule, which states that every tile has between zero and one sprites
from the set of walls, the gem, and the altar. Because we know we only want to see
maps with one gem and one altar, we immediate add integrity constraints that reject
those maps for which there isn’t exactly one of each.

#const width=10.

param("width",width).

dim(1..width).

tile((X,Y)) :- dim(X), dim(Y).

adj((X1,Y1),(X2,Y2)) :-
tile((X1,Y1)),
tile((X2,Y2)),
#abs(X1-X2)+#abs(Y1-Y2) == 1.

start((1,1)).
finish((width,width)).

% tiles have at most one named sprite
0 { sprite(T,wall;gem;altar) } 1 :- tile(T).

% there is exactly one altar and one gem in the whole level
:- not 1 { sprite(T,altar) } 1.
:- not 1 { sprite(T,gem) } 1.

Fig. 8.7: level-core.lp
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Starting with these core rules, commands like the following will generate outputs
like those seen in Figure 8.8.
clingo level-core.lp --rand-freq=1

W

W

W

W

W

G

A

GAW

W

W

W

W W

W W

W W W W W

W

W W

W

W

WW

W

W W W

W

G

A

W

W

W W W W W

W

W

W

W

W

W

W WW

W

W W W

W

W

W

W

W

W

W W W

W W

W W

W

W W

W

W W

W W

W W

W W

W

W W

W W

W W

W W

W W

W

W

W W

W W

W

W

W W

W W

W W

W

W W W W

Fig. 8.8: A random result given rules that capture the basic representational vocab-
ulary for the dungeon generation problem. A few walls (W, gray) are present, along
with exactly one gem (G, green) and one altar (A, orange)

Our preliminary outputs hardly resemble interesting dungeon maps. There are
many interesting maps lurking in the space we have defined, but they are hard to
spot amongst the multitude of other combinations in the space. To zoom in on those
maps of stylistic interest, we’ll use a mixture of rules and integrity constraints to
discard undesirable alteratives. A dungeon with only a sparse set of walls doesn’t
feel like a dungeon. A single wall sprite takes on the character of a wall when it
is placed contiguously with other wall sprites. An altar should be surrounded by a
few tiles of blank space, and gems should be well attached to surrounding walls.
Examine Figure 8.9 for a one-line encoding of each of these concerns.

% style : at least half of the map has wall sprites
:- not (width*width)/2 { sprite(T,wall) }.

% style : altars have no surrounding walls for two steps
0 { sprite(T3,wall):adj(T1,T2):adj(T2,T3) } 0 :- sprite(T1,altar).

% style : altars have four adjacent tiles (not up against edge of map)
:- sprite(T1,altar), not 4 { adj(T1,T2) }.

% style : every wall has at least two neighbouring walls (no isolated rocks and spurs )
2 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,wall).

% style : gems have at least three surrounding walls ( they are stuck in a larger wall )
3 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,gem).

Fig. 8.9: level-style.lp

With this addition, commands like the following can be used to sample stylis-
tically valid maps such as those in Figure 8.10. Note that while the levels look
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reasonable locally, they are still completely undesirable on the basis that they do not
support the kind of play we want—there’s often not even a path from the gem to the
altar, let alone from the entrance to the exit.
clingo level-core.lp level-style.lp
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Fig. 8.10: After adding style constraints, there are many walls, the altar is sur-
rounded by open space, and the gem is surrounded by walls on three sides. The fact
that the gem is walled off is a clue that we have not yet modelled a key contraint:
the level must be playable

The general strategy for ensuring we only generate playable maps is conceptually
simple: generate a reference solution along with the level design. If a map contains
a valid reference solution, we have a proof (by existence) that it is solvable. Even
though we won’t be representing the reference solution in our final output involving
sprites on tiles, we can use the same language constructs as before to describe and
constrain the space of possible solutions for a working map design.

Examine the rules in Figure 8.11. The key predicate is touch(Tile,State)

which describes which tiles we expect the player character to touch in which game-
play state on the path to solving the level. To capture the sequence of picking up the
gem, bringing it to the altar, and then exiting the level, we define three numbered
states. The first rule tells us that the player will touch the start tile in state 1. From
here, a series of choice rules say that touching one tile allows the player character
to potentially touch any adjacent tile while retaining the same gameplay state. If the
character is touching a tile containing the gem or the altar, they can transition to
the next state in the sequence. The completed predicate holds (is true) if the player
character touches the finish tile in the final state (after placing the gem in the altar).
By rejecting every logical world where completed is not true, we zoom in on the
space of different ways of solving the level. No algorithm is needed to solve a level,
only a definition of what it means for a set of touched tiles to constitute a valid
solution.

Although we could use the contents of Figure 8.11 as a stand-alone playabil-
ity checker for human-designed dungeon maps, it is easy enough to simply use
it at the same time as our previous map generator to construct a representation
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% states :
% 1 −−> initial
% 2 −−> after picking up gem
% 3 −−> after putting gem in altar

% you start in state 1
touch(T,1) :- start(T).

% possible navigation paths
{ touch(T2,2):adj(T1,T2) } :- touch(T1,1), sprite(T1,gem).
{ touch(T2,3):adj(T1,T2) } :- touch(T1,2), sprite(T1,altar).
{ touch(T2,S):adj(T1,T2) } :- touch(T1,S).

% you can’t touch a wall in any state
:- sprite(T,wall), touch(T,S).

% the finish tile must be touched in state 3
completed :- finish(T), touch(T,3).
:- not completed.

Fig. 8.11: level-sim.lp

of the space of maps-with-valid-solutions. A command like the following yields
guaranteed-playable, styled dungeon maps like those in Figure 8.12.
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Fig. 8.12: After adding a simulation of player activity and placing constraints on the
outcome, we now only see dungeon maps that have a valid solution

8.6 Constraining the entire space of play

The dungeon maps emerging from the previous section look about as good as sprite-
on-grid maps containing two special objects and some walls can get. However, if we
imagine playing through these maps, perhaps with simple arrow-key controls, there
are still problems to resolve. In many of these maps, the task of placing the gem
in the altar represents only a minor deviation from the more basic task of walking
from the entrance to the exit of the dungeon. If the gem and the altar are to have
any meaning for the gameplay of these maps, their placement and the arrangment
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of walls should conspire to make us explore the map, take detours from a start-
to-finish speed run, and backtrack through familiar areas. Although each of these
concerns could be boiled down to a set of overlapping evaluation criteria in the form
of statements about the relative distances between sprites, there is a better strategy.

If our goal is to get the player to work to progress through the sequence of game-
play states, we can state a much higher-level goal. The low-level design details of
the map should somehow work to make sure the player character spends at least
some amount of time walking around the map in each state. How this is accom-
plished (with a network of rooms connected by indirect passages, perhaps) is not
immediately important to us. Our high-level design goal is most directly cast as a
statement about the player’s experience, not the form of any particular level. We’d
like to demand that, across all possible solutions to a given level design, spending a
minimum amount of time in each state is unavoidable. Interpreted logically, this is
a statement that is quantified over the entire space of play.

Recent advances in the use of ASP for representing design spaces now allow
the direct expression of this kind of design goal. Smith et al. [8] offer a small
metaprogramming library that extends normal ASP with two special predicates.
Their __level_design(Atom) and __concept predicates allow the expression of a
query like this: starting with a given level design and reference solution, does the
design space model allow another possibility in which identical choices are made
for every predicate tagged with __level_design(Atom) and in which __concept

is not true? If so, the tagged __concept condition must not be true for the entire
space of play for the given level design, and it should be rejected. The end result is a
design space of level designs with reference solutions in which __concept is an un-
avoidable condition across all alternative solutions to the level. As __concept could
be any quantifier-free logical formula, this language extension allows the class of
extended answer set programs to express any problem in the complexity class Σ P

2
(conventionally assumed to be much larger than the class NP).

Returning to the dungeon map generation scenario, the rules in Figure 8.13 tag
the sprite(Tile,Name) predicate as uniquely defining a level and the condition of
touching at least width tiles in each of the three states as the desired unavoidable
condition. A command like the following, which makes use of a special disjunctive
answer set solver capable of solving the broader class of high-complexity problems,
yields outputs like those shown in Figure 8.14.
clingo level-core.lp \

level-style.lp \
level-sim.lp \
level-shortcuts.lp \
--reify \

| clingo - meta{,D,O,C}.lp -l \
| clasp

Before we close this section, it is instructive to ask why the following simple rule
doesn’t achieve the same outcome. It would seem to prune away all those solutions
in which the player doesn’t spend enough time in each state.
:- width { touch(T,1) }, width { touch(T,2) }, width { touch(T,3) }.
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% holding sprites constant , ensure every solution touches at least width tiles in each state
__level_design(sprite(T,Name)) :- sprite(T,Name).
__concept :-
width { touch(T,1) },
width { touch(T,2) },
width { touch(T,3) }.

Fig. 8.13: level-shortcuts.lp
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Fig. 8.14: Ensuring that the player cannot avoid spending a certain amount of time
in each state has interesting emergent effects. Certain patterns that we might expect
in human-crafted designs, such as the presence of hidden rooms off the main path
through the level, occur naturally as the solver searches for the form of a level that
gives rise to our requested function at a higher level

This integrity constraint works like the “:- not completed.” rule from before.
It works to make sure we only observe solutions (choices for touch(Tile,State))
that demonstrate an interesting property. Zooming in on solutions that complete the
level doesn’t preclude the player from choosing not to complete the level by simply
wasting time before quitting. Likewise, zooming in on solutions in which the player
wanders for a while doesn’t imply that the wandering was inescapable. If we were to
use this rule instead of the __level_design/__concept construction, we would most
likely see many more examples like those from the previous section (Figure 8.12).
In every example, it would be possible to wander and backtrack, but it would be
unlikely to be actually required.

The idea of casting the most important properties of a level design as statements
quantified over the entire space of play was first developed in the context of the edu-
cational puzzle game Refraction. What makes a given Refraction level desirable and
relevant to its location in a larger level progression is strongly tied to which spatial
and mathematical problem-solving skills must be exercised to solve the level, even
if the level admits many possible solutions. The idea of defining a level progres-
sion primarily on the basis of which concepts are required in which levels was the
basis for one of the direct-manipulation controls in the mixed-initiative progression
design tool for Refraction [3].

Answer set programming is not the only way to write down constraints on which
kinds of gameplay must be possible (e.g. a level should be solvable) and which
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properties of gameplay are required (e.g. that a certain skill is exercised). The key
strategy to follow is to generate not just a minimal description of the content of
interest, but also a description of how the content can be used towards its desired
function (such as a reference solution). Many interesting properties of a piece of
game content are most naturally expressed as criteria that refer to how the content
is used, as opposed to any direct properties of the content itself: a good level is one
that produces desired gameplay when used together with a particular game’s me-
chanics. Despite the fact that generating content under universally quantified con-
straints maps to extremely high-complexity search and optimisation problems, many
of these problems can be solved, in practice, in short enough times to power inter-
active design tools and responsive online content generators embedded into games.
The use of ASP as a generation technique provides a declarative modelling language
that separates the designer of a content generator from the design of the search al-
gorithms that will be applied to these complex problems.

8.7 Exercises: Elaborations in dungeon generation

1. Run each of the examples from the text on your own machine.
2. Add a new style constraint. Make sure you understand how it changes the maps

that are generated.
3. Add a new type of tile sprite, call it lava, that can only be traversed after the

player character has touched the special boots tiles.
4. Change the generator so that it can be initialized with a partial map, and the

generator only fills in unconstrained tiles in a way that fits style constraints.
5. Separate the playability checker from the rest of the dungeon generation pro-

gram. Now apply it as a “machine playtester” [10] to point out playability flaws
in levels you create yourself.

6. Design question: In the previous exercise, you took a playability checker whose
initial job was to say “I wouldn’t let a PCG system generate this level,” and
adapted it to say, “you, human designer, might have some flaws in this level you
showed me.” Are these really answering the same question? If you were writing
a playability checker specifically to comment on human designers’ levels, would
you have written it differently? (See also Chapter 11.)

8.8 Summary

Answer set programming allows you to describe constraints and logical relations
in a language called AnsProlog, and use an ASP solver to find all the world con-
figurations (the “answer set”) that are compatible with the expressed relations and
constraints. AnsProlog is a declarative language that is syntactically similar to Pro-
log; however, its interpretation is different from Prolog and very different from most
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programming languages. ASP can be used for content generation by expressing the
constraints the content must adhere to in AnsProlog, and using an ASP solver to
find all configurations that adhere to these constraints. Each answer in the answer
set is then treated as an individual content artifact. For example, when generating
mazes, constraints may include the existence of starting points, goals, and different
types of cells, as well as the existence of certain through the level. Constraints such
as the reachability constraint can be implemented recursively. By building on com-
binations of simpler constraints and rules, complex constraints can be formulated
that lead to the emergence of interesting level-design properties.
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Chapter 9

Representations for search-based methods

Dan Ashlock, Sebastian Risi, and Julian Togelius

Abstract One of the key considerations in search-based PCG is how to represent the
game content. There are several important tradeoffs here, including those between
locality and expressivity. This chapter presents several more new and in some re-
spects more advanced representations. These representations include several repre-
sentations for dungeon levels, compositional pattern-producing networks for flowers
and weapons, and a way of representing level generators themselves.

9.1 No generation without representation

As discussed in Chapter 2, representation is one of the two main problems in search-
based PCG, and one of the two concerns when developing a search-based solution
to a content generation problem. In that chapter, we also discussed the tradeoff be-
tween direct and indirect representations (the former are simpler and usually result
in higher locality, whereas the latter yield smaller search spaces) and presented a few
examples of how different kinds of game content can be represented. Obviously, the
discussion in Chapter 2 has only scratched the surface with regard to the rather com-
plex question of representation. This chapter will dig deeper, partly relying on the
substantial volume of research that has been done on the topic of representation in
evolutionary computation [2].

In the first section of this chapter, we will return to the topic of dungeons, and
show how the choice of representation substantially affects the appearance of the
generated dungeon. The next section discusses the generation of maps for paper-
and-pen role-playing games in particular. After that, we discuss a particular kind of
representation that has seen some success recently, namely Compositional Pattern-
Producing Networks, or CPPNs. As we will see, this representation can be used for
both flowers and weapons, and many things in between. Finally, we will discuss
how we can represent not only the game content but the content generator itself,
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and search for good level generators in a search-based procedural procedural level
generator generator.

9.2 Representing dungeons: A maze of choices

Dungeons or mazes (we mostly use the words interchangeably) are a topic that we
have returned to several times during the book; the topic of most of Chapter 3 was
dungeons, as well as the programming exercise in Chapter 2 and some of the exam-
ples in Chapter 8. The reasons for this are both the very widespread use of this type
of content (including but certainly not limited to roguelike games) and the simplicity
of mazes, allowing us to discuss and compare vastly different methods of generating
mazes without getting lost in implementation details. It turns out that when search-
ing for good mazes, the choice of representation matters in several different ways.

When the issue of representation arises, the goal is often enhanced performance.
Enhanced performance could be improved search speed, creation of game features
with desirable secondary properties that smooth ease of use, or simply fitting in with
the existing computational infrastructure. In procedural content generation, there is
another substantial impact of changing representation: appearance.

The pictures shown in Figure 9.1 are all level maps procedurally generated by
similar evolutionary algorithms. Notice that they have very different appearances.
The difference lies in the representation. All representations specify full and empty
squares, but in different manners. The fitness function can be varied depending on
the designer’s goals and so is left deliberately vague.

Negative

The upper-left level map in Figure 9.1 starts with a matrix filled with ones. Individ-
ual loci in the gene specify where the upper left corner of a room goes and its length
and height. The corridors are rooms with one dimension of length one. The red dots
represent the position of a character’s entrance and exit from the level. There is a
potential problem with a random level having no connection from the entrance to
the exit. If there is a large enough population and the representation length (number
of rooms in each chromosome) is sufficient then the population contains many con-
nected levels and selection can use these to optimise the level. This representation
creates maps that look like mines.

Binary with content

The upper-right map in Figure 9.1 is created used a simple binary representation, but
with required content. The large room with four pillars and the symmetric room with
a closet opening north and south of it are the required content. They are specified
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Fig. 9.1: Maps generated using four different representations. In reading order the
representations are negative, binary with required content, positive, and binary with
rotational symmetry. Adapted from [1]

in a configuration file. The first few loci of the chromosome specify the position
of the required content elements. The remainder specify bits: 1=full 0=empty. The
fitness function controls relative distances of the required content elements, and the
entrances and exits. The required content represents elements the designer wants
placed in an otherwise procedurally generated level. This representation generates
maps that look like cave systems.

Positive

The lower-left map in Figure 9.1 uses a representation in which the loci specify
walls. The starting position, direction, and maximum length of a wall are given as
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well as a behavioural control. The behavioural control is 0 or 1. If it is zero it stops
when it hits another wall, if it is one it grows through the other wall. This representa-
tion generates maps that look like floor plans of buildings. The example shown uses
eight directions—eliminating the diagonal directions yields an even more building-
like appearance.

Binary with symmetry

This representation specifies directly, as full and empty, the squares of one quarter of
the level with a binary gene. Each bit specifies the full/empty status of four squares
in rotationally symmetric positions. There are a large number of possible symme-
tries that could be imposed. The imposition of symmetry yields a very different
appearance.

9.2.1 Notes on usage

An important additional factor is that we need to ensure levels are connected. In
the plain binary representation, if the probability of filling a square is 0.5 then it
is incredibly unlikely that there is any path between entrance and exit. Similarly,
if the length of walls in the positive representation is close to the diameter of the
level, connected levels are unlikely. In both cases a trick called sparse initialisation
is used. Setting the probability of a filled square to 0.2 or the maximum length of
a wall to 5 makes almost all random levels connected. They are also, on average,
very highly connected and so not very good. This leaves the problem of locating
good levels to whatever technique the search algorithm uses to improve levels. In the
examples shown, the crossover and mutation operators of the evolutionary algorithm
found this to be quite easy.

The representations shown to illustrate the impact of changing representation are
relatively simple. Figure 9.2 shows a more complex version of the positive represen-
tation with three types of walls. If there are two types of players, one of which can
move through water and the other of which can move through fire, this representa-
tion permits the simultaneous generation of two mazes, stone-fire and stone-water,
that can be optimised for particular tactical properties. In this case the stone-water
maze is easier to navigate than the stone-fire maze.

9.3 Generating levels for a fantasy role-playing game

An under-explored application of procedural content generation is the automatic
creation of pen-and-paper (i.e. played without a computer) fantasy role-playing
(FRP) modules. Popular examples of fantasy role-playing games include Dungeons
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Fig. 9.2: An example of a maze, using a positive representation, with three sorts of
walls: stone, fire, and water

and Dragons and the associated open gaming licence D20 systems which are used
for heroic fantasy settings, Paranoia set in a dystopian, Orwellian future, Champions
which is used for comic-book-style environments, and Deadlands, set in a haunted
version of the old west. These are typically pencil-and-paper games in which players
run characters and a referee (also known as a game master) interprets their actions
with the help of dice, though some of these games have also been adapted into com-
puter role-playing games. The system described here is intended to generate small
adventure modules for a heroic fantasy setting.

There are a number of ways to structure generation of this type of content. The
one presented here starts with required-content generation of a level. This means that
the designer specifies blocks of the map, such as groups of rooms, that are forced
into the level. The rest of the level is generated by filling in the area to match the rel-
ative distance between objects specified by the designer. This technique permits us
to used search-based content generation to create many different levels all of which
have basic properties specified by the designer. An example of a level generated in
this fashion appears in Figure 9.3. Room 14 is an example of required content as
is the block represented by rooms 7, 8, 11, and 12. These four rooms are a single
required-content object.

Once the level map has been generated, the ACG system then automatically iden-
tifies room-sized open spaces on the map—this includes the rooms in the required
content but also other spaces generated by the search algorithm optimising the level.
The rooms are numbered and a combinatorial graph is abstracted from the map with
rooms as vertices. The adjacency relation on the rooms is the existence of a path be-



164 Dan Ashlock, Sebastian Risi, and Julian Togelius

Fig. 9.3: Example of a level with automatically detected and numbered rooms

tween the rooms that does not contain a square in any other room. The graph for the
map in Figure 9.3 is shown in Figure 9.4. The rooms are coloured to show which grid
cells belong to them. The map with the numbered rooms, probably sans colours, is
saved for use by the referee. The graph is handed off to the room-populating engine.

We now look at the details of the level generator. Each of these modules is an
exemple and can be swapped for alternative methods with other capabilities.

9.3.1 Required content

The underlying representation for creating the levels is a simple binary one in which
1=full and 0=empty. It is modified with specifications of required content. An entry
in the required-content configuration file looks like this:
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12 12
111111111111
100100000001
100000000001
100111011001
100100001001
100100001001
100130001001
100111111001
100100000002
100100000002
100100000002
111111111111

The object specified is a 12×12 area. The representation specifies the position in
the level of the upper-left-hand corner of the room, which is part of the optimisation
performed by the search algorithm. The values 0,1 are mapped directly into the level,
forcing values. The value 2 means that those squares are specified by the binary gene
used to evolve the level. This means that some of the squares in the required content
are seconded to the search algorithm. The 3 is the same as a zero—empty space—
but it marks the checkpoint in the required-content object from which distances
are measured. Distances are computed by dynamic programming and the fitness
function uses distances between checkpoints as part of the information needed to
compute fitness.

9.3.2 Map generation

The map is generated by an evolutionary algorithm. The chromosome has 2N inte-
ger loci for N required-content objects that are reduced modulo side length to find
potentially valid places to put required-content objects. If required-content objects
overlap, the chromosome is awarded a maximally bad fitness. The remainder of the
position in the map, including 2’s in required content, are specified by a binary gene.
This gene is initialised to 20% ones, 80% zeros to make the probability the map is
connected high. This is sparse initialisation, described earlier. The fraction of ones
in population members is increased during evolution by the algorithm’s crossover
and mutation operators.

9.3.3 Room identification

The room identification algorithm contains an implicit definition of what a room is.
The rooms appearing in the required content must satisfy this implicit definition—if
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not they will not be identified as rooms. For that reason a relatively simple algorithm
is used to identify rooms.

Room identification algorithm

N=0
Scan the room in reading order

If a 3x3 block is empty
mark the block as in room N
iteratively add to the room all squares with three neighbours

already in the room
N=N+1

End If
End Scan

Once a square is marked as being part of a room, it is not longer empty, forcing
rooms to have disjoint sets of squares as members. The implementation reports the
squares that are members of each room and the number of squares in each room.

9.3.4 Graph generation

The rooms form the vertices of the graph of the dungeon. Earlier, a painting algo-
rithm was used to partition space. The adjacency of rooms is computed in a very
similar fashion. For each room, a painting algorithm is used to extend the room into
all adjacent empty spaces until no such spaces are left. The rooms that the paint-
ing algorithm reaches are those adjacent to the room that was its focus. Each room
is extended individually by painting and the paint added is erased before treating
the next room. While the painting could be done simultaneously for all rooms, this
might cause problems in empty spaces adjacent to more than two rooms.

The adjacency relationship has the form of a list of neighbours for each room but
can be reformatted in any convenient fashion. The graph in Figure 9.4 was generated
with the GraphVis package from an edge list—a list of all adjacent pairs of rooms.

9.3.5 Room population

The adjacency graph for the rooms is the simplest object to pass to a room popu-
lation engine. The designer knows which room(s) and entrances and typically sup-
plies this information to the population engine. The engine then does a breadth-first
traversal of the graph placing lesser challenges, such as traps and smaller monsters,
in the first layer, tougher monsters in the next layer, and treasure (other than that



9 Representations for search-based methods 167

Fig. 9.4: The room adjacency graph abstraction for the level shown in Figure 9.3.
Vertex vn represents room n

carried by monsters) in the next layer. Exits to the next level are typically in the last
layer.

The required content is tagged if there is a special population engine connected
with it. An evil temple, a crypt, a dragon’s den or other boss can be placed with
required content to make sure they always appear in the automatically generated
level. Correct design of the fitness function ensures that the encounters appear in an
acceptable sequence, even in a branching level, and so enable replayability.

The population engine needs a database of classified opponents, traps, and trea-
sures scaled by difficulty. It can select randomly or in a fashion constrained by
“mood” variables. A dungeon level in a volcano, for example, might be long on fire
elementals and salamanders and short on wraiths, vampires, and other flammable
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undead. A crypt, on the other hand, would be long on ghouls or skeletons and short
on officious tax collectors. The creation of the encounter database, especially a care-
ful typing system to permit enforcement of mood and style, is a critical portion of
the level creation. The database needs substantially more encounters not associated
with required content than it will use in a particular instance of the output of the
level generator.

9.3.6 Final remarks

The FRP level generator described here is an outline. Many details can only be
filled in when it is united with a particular rules system. The level generator has the
potential to create multiple versions of a level and so make it more nearly replayable
even when one or more of the players in a group has encountered the dungeon
before. While fully automatic, the system leaves substantial scope for the designer
in creating the required content and populating the encounter database.

9.4 Generating game content with compositional

pattern-producing networks

In Chapter 5 we saw how grammars such as L-systems can create natural-looking
plants, and learned that they are well suited to reproducing self-similar structures.
In this chapter we will look at a different representation that also allows the creation
of lifelike patterns, called compositional pattern-producing networks (CPPNs) [10].
Instead of formal grammars, CPPNs are based on artificial neural networks. In this
section, we will first take a look at the standard CPPN model and then see how that
representation can be successfully adapted to produce content as diverse as weapons
in the game Galactic Arms Race [4] and flowers in the social videogame Petalz [7].
In Petalz, a special CPPN encoding enables the player to breed an unlimited number
of natural-looking flowers that are symmetric, contain repeating patterns, and have
distinct petals.

9.4.1 Compositional pattern-producing networks (CPPNs)

Because CPPNs are a type of artificial neural network (ANN), we will first introduce
ANNs and then show that can modify them to produce a variety of different content.
ANNs are computational models inspired by real brains that are capable of solving
a variety of different tasks, from handwriting recognition and computer vision to
robot control problems. ANNs are also applied to controlling NPCs in games and
can even serve as PCG evaluation functions. For example, neural-network-based
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(a) Neural network (b) CPPN

(c) CPPN to image

Fig. 9.5: While traditional ANNs typically only have Gaussian or sigmoid activation
functions (a), CPPNs can use a variety of different function, including sigmoids,
Gaussians, and sines (b). The CPPN example in this figure takes two arguments x
and y as input, which can be interpreted as coordinates in two-dimensional space.
Applying the CPPN to all the coordinates and drawing them with an ink intensity
determined by its output results in a two-dimensional image (c). Adapted from [4]

controllers can be trained to drive like human players in a car-racing game to rate
the quality of a procedurally generated track [12].

An ANN (Figure 9.5a) is an interconnected group of nodes (also called neurons)
that can compute values based on external signals (e.g. infrared sensors of a robot)
by feeding information through the network from its input to its output neurons.
Neurons that are neither input nor output neurons are also called hidden neurons.
Each neuron i has an activation level yi that is calculated based on all its incoming
signals x j scaled by connection weights wi j between them:

yi = σ

(
N

∑
j

wi jx j

)
, (9.1)

where σ is called the activation function and determines the response profile of the
neuron. In traditional ANNs the activation function is often the sigmoid function

σ(x) =
1

1+ e−kx , (9.2)

where the constant k determines the slope of the sigmoid function. The behaviour of
an ANN is mainly determined by its architecture (i.e. which neurons are connected
to which other neurons) and the strengths of the connection weights between the
neurons.

While ANNs are usually used for control or classification problems, they can
also be adapted to produce content for games. CPPNs are a variation of ANN that
function similarly but can have a different set of activation functions [10]. Later we
will see how special kinds of CPPNs can produce flowers in the Petalz videogame
and weapons in GAR. While CPPNs are similar to ANNs, they have a different
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Fig. 9.6: Examples of collaboratively evolved images on Picbreeder. Adapted
from [9]

terminology because CPPNs are mainly used as pattern generators instead of as
controllers. Let us now take a deeper look at the differences in implementation and
applications between CPPNs and ANNs.

Instead of only sigmoid or Gaussian activation functions, which we can also
find in ANNs (Figure 9.5a), CPPNs can include a variety of different functions
(Figure 9.5b). The types of functions that we include has a strong influence on
the types of patterns and regularities that the CPPN produces. Typically the set
of CPPN activation functions includes a periodic function such as sine that pro-
duces segmented patterns with repetition. Another important activation function is
the Gaussian, which produces symmetric patterns. Both repeating and symmetric
patterns are common in nature and including them in the set of activation functions
allows CPPNs to produce similar patterns artificially. Finally, linear functions can
also be added to produce patterns with straight lines. The activation of a CPPN fol-
lows the ANN activation we saw in Equation 9.1, except that we now have a variety
of different activation functions.

Additionally, instead of applying a CPPN to a particular input only (e.g. the po-
sition of an enemy) as is typical for ANNs, CPPNs are usually applied across a
broader range of possible inputs, such as the coordinates of a two-dimensional space
(Figure 9.5c). This way the CPPN can represent a complete image or as we shall see
shortly also other patterns like flowers. Another advantage of CPPNs is that they can
be sampled at whatever resolution is desired because they are compositions of func-
tions. Successful CPPN-based applications include Picbreeder [9], in which users
from around the Internet collaborate to evolve pictures, EndlessForms [3], which al-
lows users to evolve three-dimensional objects, and MaestroGenesis [5], a program
that enables users to generate musical accompaniments to existing songs. Figure 9.6
shows some of the images that were evolved by users in Picbreeder, which demon-
strate the great variety of patterns CPPNs can represent. The CPPNs encoding these
images and the other procedurally generated content in this chapter are evolved by
the NEAT algorithm, which we will now examine more closely.
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9.4.2 Neuroevolution of augmenting topologies (NEAT)

NEAT [11] is an algorithm to evolve neural networks; since CPPNs and ANNs are
very similar, the same algorithm can also evolve CPPNs. The idea behind NEAT
is that it begins with a population of simple neural networks or CPPNs that have
no initial hidden nodes, and over generations new nodes and connections are added
through mutations. The advantage of NEAT is that the user does not need to de-
cide on the number of neurons and how they are connected. NEAT determines the
network topology automatically and creates more and more complex networks as
evolution proceeds. This is especially important for encoding content with CPPNs
because it allows the content to become more elaborate and intricate over genera-
tions. While there are other methods to also evolve ANNs, NEAT is a good choice
to evolve CPPNs because it worked well in the past in a variety of different domains
[9, 5, 11, 4], and it is also fast enough to work in real-time environments such as
interactive games.

9.4.3 CPPN-generated flowers in the Petalz videogame

Petalz [7] is a Facebook game in which procedurally generated content plays a sig-
nificant role. The player can breed a collection of unique flowers and arrange them
on their balconies (Figure 9.7). A flower context menu allows the player, among
other things, to create new offspring through pollination of a single flower, or to
combine two flower genomes together through cross-pollination. In addition to in-
teracting with the flower evolution, the player can also post their flowers on Face-
book, sell them in a virtual marketplace, or send them as gifts to other people. An
important aspect of the game is that once a player purchases a flower, he can now
breed new flowers from the purchased seed, and create a whole new lineage. Re-
cently, Petalz was also extended with collection-game mechanics that encourage
players to discover 80 unique flower species [8].

The flowers in Petalz are generated through a special kind of CPPN. Because
the CPPN representation can generate patterns with symmetries and repetition, it is
especially suited to generating natural-looking flowers with distinct petals. The ba-
sic idea behind the flower encoding is to first deform a circle to generate the shape
of the flower and then to colour that resulting shape based on the CPPN-generated
pattern. In contrast to the example we saw in Figure 9.5c, we now input polar co-
ordinates {θ ,r} into the CPPN (Figure 9.8) to generate radial flower patterns. Then
we query the CPPN for each value of θ by inputting {θ ,0}. However, instead of
inputting θ into the CPPN directly, we input sin(Pθ), which makes it easier for
the CPPN to produce flower-like images with radial symmetry in the form of their
petals. Parameter P can also be adjusted to create flowers with a different maximum
numbers of petals. In the first step of the flower-generating algorithm the outline of
the flower is determined, i.e. a radius value rmax for each θ value is calculated. In the
next step, the RGB colour pattern of the flower’s surface is determined by querying
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Fig. 9.7: Screenshot from a Petalz balcony that a player has decorated with various
available flower pots and player-bred flowers. Adapted from [7]

each polar coordinate between 0 and rmax with the same CPPN. Finally, the CPPN
also allows for the creation of flowers with different layers, which reflects the fact
that flowers in nature often have internal and external portions. This feature is im-
plemented through an additional CPPN input L that determines the current layer
that is being drawn. The algorithm starts by drawing the outermost layer and then
each successive layer is drawn on top of the previous layers, scaled based on its
depth. Because the same CPPN is determining all the layers, the different patterns
can share regularities just like the different layers in real flowers.

Figure 9.9 shows examples of flowers evolved by players in Petalz. The CPPN-
based encoding allows the discovery of a great variety of aesthetically pleasing flow-
ers, which show varying degrees of complexity.

9.4.4 CPPN-generated weapons in Galactic Arms Race

Galactic Arms Race [4] is another successful example of a game using procedurally
generated content and interactive evolution. Procedurally generated weapon projec-
tiles, which are the main focus of this space shooter game, are evolved interactively
based on gameplay data. The idea behind the interactive evolution in GAR, which
was briefly discussed in Chapter 1, is that the number of times a weapon is fired
is considered an indication of how much the player enjoys that particular weapon.
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L=.5

L=1.0

r

Fig. 9.8: The flower-encoding CPPN in Petalz has four inputs: polar coordinates r
and θ , current layer L and bias b. The first three outputs determine the RGB colour
values for that coordinate. In the first step of the algorithm the maximum radius for
a given θ is determined through output rmax. In the next step RGB values of the
flower’s surface are determined by querying each polar coordinate between 0 and
rmax with the same CPPN. The number and topology of hidden nodes is evolved by
NEAT, which means that flowers can get more complex over time. From [7]

Fig. 9.9: Examples of flowers collaboratively evolved by players in the Petalz
videogame. Adapted from [7]

As the game is played, new particle weapons are automatically generated based on
player behaviour. We will now take a closer look at the underlying CPPN encoding
that can generate these weapon projectiles.

Each weapon in the game is represented as a single CPPN (Figure 9.10) with
four inputs and five outputs. Instead of creating a static image (Figure 9.6) or flower
(Figure 9.8) the CPPNs in GAR determine the behaviour of each weapon particle
over time. Each animation frame the CPPN is queried for the movement (velocity in
the x and z direction) and appearance (RGB colour values) of the particle given the
particle’s current position in space relative to the ship (px, py) and distance dc to its
starting position. After activating the CPPN, the particles are moved to their newly
determined positions and the CPPN is queried again in the next frame of animation.
Evolution starts with a set of simple weapons that shoot only in a straight line and
then more and more complex weapons are evolved based on the NEAT method. By
adding new nodes with different activation functions, such as Gaussian and sine,
interesting particle movements can evolve and the player can discover a variety of
different weapons.

Figure 9.11 shows a variety of interesting weapons with vivid patterns that were
evolved by players during the game. Interestingly, different weapons do not just
have a different look but also tactical implications. For example, the wallmaker
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Fig. 9.10: CPPN representation of weapon projectiles in GAR. The movement of
each particle is controlled by the same CPPN, which has four inputs and five outputs.
The first three inputs describe the position of the particle (px, py) and the distance
dc from the location from which it was fired. After the CPPN activation, the outputs
determine the particle’s velocity (vx,vy) and RGB colour value. Adapted from [4]

Fig. 9.11: Examples of CPPN-encoded weapons evolved in the Galactic Arms Race
videogame. Adapted from [4]

weapon (Figure 9.11c) can create a wall of particles in front of the player, which
allows for a more defence-oriented play. Other guns such as the multispeed weapon
(Figure 9.11a) can be used in tactical situations in which a more offence-oriented
approach is needed.
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9.5 Generating level generators

Our final example of an advanced representation is not a representation of a partic-
ular type of game content, but rather of a level generator itself. This example, due
to Kerssemakers et al. [6], views the content generator itself as a form of content,
and creates a generator for it, a procedural procedural content generator genera-
tor (PPLGG). Specifically, it is a search-based generator that searches a space of
generators, each of which generate levels for Super Mario Bros. in the Mario AI
Framework.

As usual, we can understand a search-based generator in terms of representation
and evaluation. The evaluation in this case is interactive: a human user looks at the
various content generators, and chooses which of them (one or several) will survive
and form the basis of the next generation. In order to be able to assess these con-
tent generators, the user can look at a sample of ten different levels generated by
each content generator, and play any one of them; the tool also gives an estimate
of how many of these levels are playable using simulation-based evaluation. Com-
plementarily, the user can see a “cloud view” of each generator, where a number of
levels generated by that generator are superimposed so that patterns shared between
the levels can be seen (Figure 9.12). Figure 9.13 shows a single level in condensed
view, and part of the same level in game view, where the user can actually play the
level.

More interesting from the vantage point of the current chapter is the question
of representation. How could you represent a content generator so as to create a
searchable space of generators? In this case, the answer is that the generator is based
on agents (each generator contains between 14 and 24 agents), and the generator
genome consists of the parameters that define how the agents will behave. During
generation, the agents move concurrently and independently, though they affect each
other indirectly through the content they generate.

The genome consists of specifications for a number of agents. An agent is defined
by a number of parameters, that specify how it moves, for how long, where and when
it starts, how it changes the level and in response to what. The agent’s behaviour is
not deterministic, meaning that any collection of agents (or even any single agent) is
a level generator that can produce a vast number of different levels rather than just
a generative recipe for a single level.

The first five parameters below are simple numeric parameters that consist of
an integer value in the range specified below. The last five parameters are categor-
ical parameters specifying the logic of the agent, which might be associated with
further parameters depending on the choice of logic. The following is a list of all
parameters:

• Spawn time [0-200]: The step number on which this agent is put into the level.
This is an interesting value as it allows the sequencing of agents, but still allows
for overlap.

• Period [1-5]: An agent only performs movement if its lifetime in steps is divisible
by the period.
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Fig. 9.12: A cloud view of several content generators. Each content generator is
represented by a “cloud” consisting of multiple levels generated by that generator,
overlaid on top of each other with low opacity. Adapted from [6]

• Tokens [10-80]: The amount of resources available to the agent. One token
roughly equals a change to one tile.

• Position [Anywhere within the level]: The center of the spawning circle in
which the agent spawns.

• Spawn radius [0-60]: The radius of the spawning circle in which the agent
spawns.

• Move style: the way the agent moves every step.

– follow a line in a specified direction (of eight possible directions) with a spec-
ified step size.

– take a step in a random direction.
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= = = =

Fig. 9.13: A single generated level, and a small part of the same level in the game
view. Adapted from [6]

• Trigger state: The condition for triggering an action, checked after each move-
ment step.

– always.
– when the agent hits a specified type of terrain.
– when a specified rectangular area is full of a specified tile type.
– when a specified area does not contain a specified tile type.
– with a specified probability.

• Boundary movement: The way the agent handles hitting a boundary.

– bounce away.
– go back to start position.
– go back to within a specified rectangular area around the start position.

• Action type: The type of action performed if it is triggered.
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– place a specified tile at position.
– place a rectangular outline of specified tiles and size around position.
– place a filled rectangle of specified tiles and size around position.
– place a circle of specified tiles and size around position.
– place a platform/line of specified tiles and size at position.
– place a cross of specified tiles and size at position.

Given that the starting position of agents implies a large amount of randomness,
and a number of other behaviours imply some randomness, the same set of agents
will produce different levels each time the generator is run. This is what makes this
particular system a content generator generator rather than “just” a content genera-
tor.

9.6 Summary

This chapter addressed the issue of content representation within search-based
PCG. How content is represented affects not only how effectively the space can
be searched, but also biases the search process towards different parts of the search
space. This can be illustrated by how different ways of representing a dungeon or
maze yield end products that look very different, even though they are evolved to
satisfy the same evaluation function and reach similar fitness. Representations can
be tailored to extend the search-based paradigm in various ways, for example by
providing “required content” that cannot be altered by the variation operators of
the search/optimisation algorithm. More complicated representations might require
a multi-step genotype-to-phenotype mapping that can be seen as a PCG algorithm
in its own right. For example, compositional pattern-producing networks (CPPNs)
are a form of neural network that maps position in some space to intensity, colour,
direction or some other property of pixels or particles. This is an interesting content
generation algorithm in itself, but can also be seen as an evolvable content represen-
tation. Taking this perspective to its extreme, we can set out to evolve actual content
generators, and judge them not on any single content artefact they produce but on
samples of their almost infinitely variable output. The last example in this chapter
explains one way this can be done, by representing Mario AI level generators as
parameters of agent-based systems and evolving those.
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Chapter 10

The experience-driven perspective

Noor Shaker, Julian Togelius, and Georgios N. Yannakakis

Abstract Ultimately, content is generated for the player. But so far, our algorithms
have not taken specific players into account. Creating computational models of a
player’s behaviour, preferences, or skills is called player modelling. With a model
of the player, we can create algorithms that create content specifically tailored to
that player. The experience-driven perspective on procedural content generation pro-
vides a framework for content generation based on player modelling; one of the most
important ways of doing this is to use a player model in the evaluation function for
search-based PCG. This chapter discusses different ways of collecting and encoding
data about the player, primarily player experience, and ways of modelling this data.
It also gives examples of different ways in which such models can be used.

10.1 Nice to get to know you

As you play a game, you get to know it better and better. You understand how to
use its core mechanics and how to combine them; you get to know the levels of the
game, or, if the levels are procedurally generated, the components of the levels and
typical ways in which they can be combined. You learn to predict the behaviour of
other creatures, characters and systems in the game. All this you learn from your
interaction from the game. While playing, you also adapt to the game: you change
your behaviour so as to achieve more success in the game, or so as to entertain
yourself better.

However, both you and your game take part in this interaction, and all of your
interaction data is available to the game as well. In principle, the game should be
able to get to know you as much as you get to know it. After all, it has seen you
succeed at overtaking that other car, fail that sequence of long jumps, give up and
shut down the game after crashing your plane for the seventh time or finally resort
to buying extra moves after almost clearing a particular puzzle. A truly intelligent
game should know how you play better than you know it yourself. And then, it
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should be able to adapt itself so as to entertain you better, or let you achieve more
or less success in the game, or perhaps to give you some other kind of experience
you would not otherwise have had.

The idea of game adaptation, the game adapting itself in response to how you
play (or some other information it might have about you), is an old one. In its sim-
plest form it is called “dynamic difficulty adjustment” (DDA), and simply means
that the difficulty of the game is increased if the player does well and decreased
if the player plays poorly. This can be seen in many car racing games, where the
opponent cars always seem to be just ahead of you or just behind you, regardless
of how well you play (also known as “rubber banding”). The game design rationale
for rubber banding is that if the player is much in front of the opponents s/he will
not perceive a challenge, and if the player is far behind the opponents s/he will lose
hope of ever catching up; in either case, the player will likely lose interest in the
game. This is sometimes rationalised as a way of keeping the player in the “flow
channel”. Flow is a concept which was invented by the psychologist Csikszentmi-
halyi to signify the “optimal experience”, where someone is completely absorbed in
the activity they are performing; one condition for this is constant but not unassail-
able challenge [5]. The flow concept has inspired several theories of challenge and
engagement in games, such as GameFlow [27]; it is, however, limited to challenge,
which is only one dimension of player experience [3].

DDA mechanisms in racing games are often implemented simply by letting the
opponent cars drive faster or slower. There are interesting exceptions, such as the
Mario Kart series, which gives more powerful power-ups to players who lag be-
hind, some of which allow them to attack players who lead the pack. Other games
might lower the difficulty of a particular section of the game after a player has failed
numerous times; Grand Theft Auto V allows the player to simply skip any action
sequence which the player has failed three times already. There are several propos-
als for how this could be done more automatically, using AI techniques [10]. A key
realisation is that adaptation is about more than just difficulty: to begin with, diffi-
culty is multi-dimensional, as a game can be difficult in many different ways, and
people have unbalanced skill sets. The same game could be difficult for player A
because of its requirement for quick reactions, for player B because of the spatial
navigation, and for player C because of the nuances of the story that needs to be
understood in order to solve its puzzles. Also, just having the right difficulty is in
general not enough for a game to be perfectly tailored for a particular player. Differ-
ent players might prefer different balances of game elements or atmospheres, such
as scary, intense or contemplative parts of the game. Adaptation could in principle
happen along many axes, which may not be formalised or even described. There are
also many possible methods for adaptation, some of which involve modifying the
content of the game or even generating new content.

In this chapter, we will focus on the use of PCG methods to adapt games to
the experience of the player, which is called experience-driven procedural con-
tent generation [37]. Experience-driven PCG views game content as the building
block of player experience which is, in turn, synthesised via content adaptation.
In experience-driven PCG, a model of player experience is learned that can pre-
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dict some aspect of the player’s experience (e.g. challenge, frustration, engagement,
spatial involvement) based on some aspect of game content. This model can then be
used as a base for an evaluation function in search-based or mixed-initiative PCG.
For example, a model might be learned that predicts how engaging some players
think individual building puzzles are in a physics-based puzzle game. This model
can then be used for evolving new puzzles, where the evaluation function rewards
such puzzles that are predicted to be most engaging for the target player(s).

The chapter is structured as follows. First we describe the various ways we can
elicit player experience through a game and collect information about player expe-
rience. The next section discusses algorithms for creating models of player experi-
ence, such as neuroevolutionary preference learning, based on data collected during
the game interaction (model’s input) and annotated player experience (model’s out-
put). A short section discusses how these models can be used in content generation,
followed by a prolonged example describing experience-driven level generation in
Super Mario Bros. in detail.

10.2 Eliciting player experience

Games can elicit rich and complex patterns of user experience as they combine
unique properties such as rich interactivity and potential for multifaceted player im-
mersion [3]. User experience in games can be elicited primarily through long- or
short-term interaction with core game elements. Arguably social interaction may
have a clear impact on a player’s experience; however, it offers a rather challeng-
ing problem for artificial intelligence, signal processing and experience-driven PCG
techniques. While an interesting direction for further research, social interaction is
not included in the set of player experience elicitors considered in this chapter.

Experience-driven PCG views game content as potential building blocks of
player experience [37]. That is precisely the fundamental link between game con-
tent and player experience. In that regard, all potential content types can elicit player
experience. Game content here refers to the game environment, and its impact on
player experience can be directly linked to spatial involvement and affective involve-
ment [3]. But it also includes, as throughout the book, fundamental game-design
building blocks such as game mechanics, narrative and reward systems, as well as
various other game aspects such as audiovisual settings and camera profiles and ef-
fects. In addition complex, social and emotional non-player characters can be used
as triggers of desired player experience. In order for agents to elicit meaningful ex-
perience and immerse the player they need to engage players in rich and emotional
interaction. Towards that purpose they may embed computational models of cogni-
tion, behaviour and emotion which are based upon theoretical models such as the
OCC [20].



184 Noor Shaker, Julian Togelius, and Georgios N. Yannakakis

10.3 Modelling player experience

The detection and computational modelling of a user’s affective state are core prob-
lems in user experience and affective computing research. Detecting and modelling
affective states in games can be seen as a special case of this, though in an unusu-
ally complex domain. Given the complexity and richness of game-player interaction
and the multifaceted nature of player experience, methods that manage to overcome
the above challenges and model player experience successfully advance our un-
derstanding of human behaviour and emotive reaction with human computer inter-
action. Player experience modelling (PEM) can thus be viewed as a form of user
modelling within games incorporating aspects of behaviour, cognition and affect.
PEM involves all three key phases for computational model construction. These are
signal processing, feature extraction and feature selection for the model’s input; ex-
perience annotation for the model’s output; and various machine learning and com-
putational intelligence techniques that learn the mapping between the two. Within
experience-driven PCG, game content is also represented in the underlying function
that characterises player experience.

We can distinguish between model-based and model-free approaches to player
experience modelling [37] as well as potential hybrids between them. The differ-
ence is whether the computational model is based on or structured by a theoreti-
cal framework. A completely model-based approach relies solely on a theoretical
framework that maps game context and player responses to experience. In contrast,
a completely model-free approach assumes there is an unknown function between
modalities of user input, game content and experience that may be discovered by a
machine-learning algorithm (or a statistical model) that does not assume anything
about the structure of this function. The space between a completely model-based
and a completely model-free approach can be viewed as a continuum along which
any PEM approach might be placed. The rest of this section presents the key ele-
ments of both model-based and model-free approaches and discusses the core com-
ponents of a learned computational model (i.e. model input, model output and com-
mon modelling methods).

10.3.1 Model input and feature extraction

The PEM’s input can be of three main types: a) player behavioural responses to
game content as gathered from gameplay data (i.e. behavioural data); b) objective

data collected as player experience manifestations to game content stimuli such as
physiology and body movements; and c) the game context which comprises any
type of game content viewed, played through, and/or created [37, 35, 36].

Given the multifaceted nature of player experience, the input of a PEM usually
consists of complex spatio-temporal patterns found in user inputs, sometimes sam-
pled from multiple modalities. These signals need to be processed and relevant data
features need to be extracted to feed the model. Relevant features, however, are hard
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to find within such signals and the ad-hoc design of statistical features often un-
dermines the performance of PEM. There are several available methods within fea-
ture extraction (such as principal component analysis and Fischer projection) and
feature selection (such as sequential forward selection and genetic-search-based se-
lection) that are applicable to the problem. Recently techniques such as sequence
mining [15] for feature extraction and deep learning [13] for feature combination
have shown potential to construct meaningful features for PEM. These methods
have been able to fuse data from multiple sources across several player inputs and
between player input and game content. In particular, deep learning offers power-
ful pattern recognition capacities which can detect the most distinct patterns across
multiple signals, and provides complex spatio-temporal data attributes that comple-
ment standard ad-hoc feature extraction [13]. Sequence mining, on the other hand,
identifies the most frequent sequences of events across user input modalities and
game context which could be relevant as features for any PEM attempt [15].

In the rest of this section, we will look in more detail at these three types of input
to PEM: gameplay input, objective input, and game context input.

10.3.1.1 Gameplay input

The key motivation behind the use of behavioural (gameplay-based) player input
is that player actions and real-time preferences are linked to player experience as
games affect the player’s cognitive processing patterns, cognitive focus and emo-
tional state. Essentially, you express the contents of your mind through gameplay.
Arguably it is possible to infer a player’s current experience state by analysing pat-
terns of the interaction and associating player experience with game context vari-
ables [4, 8]. The models built on this user input type rely on detailed attributes from
the player’s behaviour which are extracted from player behavioural responses during
the interaction with game content stimuli. Such attributes, also named game metrics,
are statistical spatio-temporal features of game interaction [6] which are usually
mapped to levels of cognitive states such as attention, challenge and engagement
[23]. In general, both generic measures—such as the level of player performance
and the time spent on a task—as well as game-specific measures—such as the items
picked and used—are relevant for the gameplay-based PEM.

10.3.1.2 Objective input

The variety of available content types within a game can act as elicitors for com-
plex and multifaceted player experience patterns. Such patterns of experience may,
in turn, cause changes in the player’s physiology, be reflected in the player’s fa-
cial expression, posture and speech, and alter the player’s attention and focus level.
Monitoring such bodily alterations can assist in recognising and synthesising pre-
dictors of player experience. The objective approach to PEM assumes access to
multiple modalities of player input which manifest aspects of player experience.
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Thus, the impact of game content on a number of real-time recordings of the player
may be investigated. Physiology offers the primary medium for detecting a player’s
experience via objective measures [33]: signals obtained from electrocardiography
(ECG) [34], photoplethysmography [34, 28], galvanic skin response (GSR) [9], res-
piration [28], electroencephalography (EEG) [18] and electromyography (among
others) are commonly used for the detection of player experience given the recent
advancements in sensor technology and physiology-based game interfacing [33]. In
addition to physiology the player’s bodily expressions may be tracked at different
levels of detail and real-time cognitive or affective responses to game content may
be inferred. The core assumption of such input modalities is that particular bodily
expressions are linked to basic emotions and cognitive processes [2]. Motion track-
ing may include body posture [22], facial expression and head pose [23].

Beyond the non-verbal cues discussed above there is also room for verbal cue in-
vestigation within games. In general, social signals derived from human verbal com-
munication can potentially be used within social games that allow player-to-player
interaction (direct or indirect). Such signals challenge the principles of individual
player experience modelling but are expected to open the horizon and augment the
potential of the experience-driven PCG framework.

10.3.1.3 Game context input

In addition to gameplay and objective data, the context of the game—e.g. the game
content experienced, played, or created—is a necessary input for PEM. Game con-
text is the real-time parameterised state of the game which could extend beyond the
game content. Without the game context input, player experience models run the
risk of inferring erroneous player experience states. For example, an increase in gal-
vanic skin response (GSR) can be linked to a set of dissimilar high-arousal affective
states such as frustration and excitement. Thus, the cause of GSR increase (e.g. due
to a player’s death in a gap between platforms, or alternatively, due to a game level
completion) needs to be fused within the GSR signal and embedded in the model.
Context-free modelling (while important and desired) has not been investigated to
the degree that we can identify generic and context-independent content patterns,
features and attributes across games and players. A few recent studies, however,
such as that of Martinez et al. [14], attempt to investigate context-independent phys-
iological features that can capture player experience across multiple game genres.

10.3.2 Model output: Experience annotation

The output of a player experience model is provided through an experience anno-
tation process which can either be based on first-person reports (self-reports) or on
reports expressed indirectly by experts or external observers [37]. The model’s out-
put is, therefore, linked to a fundamental research question within player experience
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and affective computing: what is the ground truth of player experience and how to
annotate it? To address this question a number of approaches have been proposed.
The most direct way to annotate player experience is to ask the players themselves
about their experience, and build a model based on these annotations. Subjective
annotation can be based on either players’ free response during play or on forced
data retrieved through questionnaires. Alternatively, experts or external observers
may annotate the playing experience in a similar fashion. Third-person player ex-
perience annotation entails the identification of particular user (cognitive, affective,
behavioural) states by user experience and game design experts.

Annotations (either forced self-reports or third-person) can be classified as rat-
ing (scalar), class, or preference (ranking) data. With ratings, annotators are asked
to answer questionnaire items given in a rating/scaling form—such as the Game Ex-
perience Questionnaire [11] or the Geneva Emotion Wheel [1]—which labels user
states with a scalar value (or a vector of values). In a class-based format, subjects
are asked to pick a user state from a particular representation which is usually a
simple boolean question (Was that game level frustrating or not? Is this a sad fa-
cial expression?). In the preference annotation format [29], annotators are asked to
compare a playing experience in two or more variants/sessions of the game (Was
that level more engaging that this level? Which facial expression looks happier?).
Recent comparative studies have argued that rating approaches have disadvantages
compared to ranking questionnaire schemes [32, 16], such as increased order-of-
play and inconsistency effects [30] and lower inter-rater agreement [17, 31].

10.3.3 Modelling approaches

The approach used to construct models of player experience heavily relies on
the modelling approach followed (model-based vs. model-free) and the annotation
scheme adopted. With the model-based approach, components of the model and any
parameters that describe them are constructed in an ad-hoc manner and, sometimes,
tested for validity on a trial-and-error basis. No machine learning or sophisticated
computational tools are required for these approaches. One could envisage optimis-
ing the parameter space to yield more accurate models; that, however, would require
empirical studies that bring the approach closer to a model-free perspective.

Model-free approaches, on the other hand, are dependent on the annotation
scheme and, in turn, the type of model output available. If data recorded includes
either a scalar representation (e.g. via ratings) or classes of annotated labels of user
states any of a large number of machine learning (regression and classification) al-
gorithms can be used to build affective models. Available methods include artificial
neural networks, Bayesian networks, decision trees, support vector machines and
standard linear regression. Alternatively, if experience is annotated in a ranked for-
mat, standard supervised-learning techniques are inapplicable, as the problem be-
comes one of preference learning [7]. Neuro-evolutionary preference learning [29]
and rank-based support vector machines [12], along with simpler methods such as
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Fig. 10.1: Player responses to losing in IMB. Adapted from [23]

Fig. 10.2: Player responses to winning in IMB. Adapted from [23]

linear discriminant analysis [28], are some of the available approaches for learning
preferences.

The ultimate goal of constructing models of player experience is to use these
models as measures of content quality and, consequently, to produce affective, cog-
nitive, and behavioural interaction in games and generate personalised or player-
adapted content. Quantitative models of player experience can be used to capture
player-game interaction and the impact of game content on player experience.

10.4 Example: Super Mario Bros.

The work of Shaker et al. [25, 23, 24] on modelling and personalising player expe-
rience in Infinite Mario Bros. (IMB) [21]—a public-domain clone of Super Mario
Bros. [19]—gives a complete example of applying the experience-driven PCG ap-
proach. First, they build models of player experience based on information col-
lected from the interaction between the player and the game. Different types of
features capturing different aspects of player behaviour are considered: subjective
self-reports of player experience; objective measures of player experience collected
by extracting information about head movements from video-recorded gameplay
sessions; and gameplay features collected by logging players’ actions in the game.
Figures 10.1, 10.2, and 10.3 show examples of objective video data correlated with
in-game events: players’ reactions when losing, winning, and encountering hard sit-
uations, respectively.
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Fig. 10.3: Player responses to hard situations in IMB. Adapted from [23]

Table 10.1: The different types of representations of content and gameplay features
in [25]

Feature Description
Flat platform

( )( , ) A sequence of three coins
(R�,R�⇑)( ) Moving then jumping in the right direction when encountering an enemy
( , )( ) A gap followed by a decrease in platform height
(⇑�)(S)(�) Jumping to the right followed by standing still then moving right

tright Time spent moving right
n jump Total number of jumps
ncoin Total number of coins

kstomp Number of enemies killed by stomping
Ne Total number of enemies
B Total number of blocks

The choice of feature representation is vitally important since it allows different
dimensions of player experience to be captured. Furthermore, the choice of content
representation defines the search space that can be explored and affects the effi-
ciency of the content-creation method. To accommodate this, the different sets of
features collected are represented as frequencies describing the number of occur-
rences of various events or the accumulated time spent doing a certain activity (such
as the number of killings of a certain type of enemies or the total amount of time
spent jumping). Features are also represented as sequences capturing the spatial and
temporal order of events and allowing the discovery of temporal patterns [25]. Ta-
ble 10.1 presents example features from each representation.

Based on the features collected, a modelling approach is followed in an attempt
to approximate the unknown function between game content, players’ behaviour
and how players experience the game. The player experience models are developed
on different types and representations of features allowing a thorough analysis of
the player–content relationship.

The following sections describe the approach followed to model player experi-
ence and the methodology proposed to tailor content generation for particular play-
ers, using the constructed models as measures of content quality.
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Fig. 10.4: The three-phase player experience modelling approach of [25]

10.4.1 Player experience modelling

When constructing player experience models, the place to start is identifying rel-
evant features of game content and player behaviour that affect player experience.
This can be done by recording gameplay sessions and extracting features as indica-
tors of players’ affect, performance, and playing characteristics. Given the large size
of the feature set that could be extracted, feature selection then becomes a critical
step.

In this example, the input space consists of the features extracted from gameplay
sessions. Feature selection is done by using sequential forward selection (SFS), a
particular feature-selection approach (of many). Candidate features are evaluated
by having neuroevolutionary preference learning train simple single-layer percep-
trons (SLPs) and multi-layer perceptrons (MLPs) to predict emotional states, and
choosing the features that best predict the states [25]. This yields a different subset
of features for predicting each reported emotional state.

The underlying function between gameplay, content features, and reported player
experience is complex and cannot be easily captured using the simple neuroevolu-
tion model used in the feature-selection step. Therefore, once all features that con-
tribute to accurate simple neural network models are found, an optimisation step is
run to build larger networks with more complex structures. This is carried out by
gradually increasing the complexity of the networks by adding hidden nodes and
layers while monitoring the models’ performance. Figure 10.4 presents an overview
of the process.

Following this approach, models with high accuracies were constructed for pre-
dicting players’ reports of engagement, frustration and challenge from different sub-
sets of features from different modalities. The models constructed were also of vary-
ing topologies and prediction accuracies.

10.4.2 Grammar-based personalised level generator

In Chapter 5, we described how grammatical evolution (GE) can be used to evolve
content for IMB. GE employs a design grammar to specify the structure of possible
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level designs. The grammar is used by GE to transform the phenotype into a level
structure by specifying the types and properties of the different game elements that
will be presented in the final level design. The fitness function used in that chap-
ter scored designs based on the number of elements presented and their placement
properties.

It is possible to use player experience measurements as a component of the fitness
function for grammatical evolution as well. This allows us to evolve personalised
content. The content is ranked according to the experience it evokes for a specific
player and the content generator searches the resulting space for content that max-
imises particular aspects of player experience. The fitness value assigned for each
individual in the population (a level design) in the evolutionary process is the output
of the player experience model, which is the predicted value of an emotional state.
The PEM’s output is calculated by computing the values of the model’s inputs; this
includes the values of the content features which are directly calculated for each
level design generated by GE and the values of the gameplay features estimated
from the player’s behavioural style while playing a test level.

The search for the best content features that optimise a particular state is guided
by the model’s prediction of the player experience states, with higher fitness given
to individuals that are predicted to be more engaging, frustrating, or challenging for
a particular player.

10.4.2.1 Online personalised content generation

Personalisation can be done online. While the level is being played, the playing
style is recorded and then used by GE to evaluate each individual design generated.
Each individual is given a fitness according to the recorded player behaviour and the
values of its content features. The best individual found by GE is then visualised for
the player to play.

It is assumed that the player’s playing style is largely maintained during consec-
utive game sessions and thus his playing characteristics in a previous level provide
a reliable estimator of his gameplay behaviour in the next level. To compensate for
the effect of learning while playing a series of levels, the adaptation mechanism
only considers the recent playing style, i.e. the one which the player exhibited in
the most recent level. Thus, in order to effectively study the behaviour of the adap-
tation mechanism, it is important to monitor this behaviour over time. For this pur-
pose, AI agents with varying playing characteristics have been employed to test the
adaptation mechanism since this requires the player to playtest a large number of
levels. Figure 10.5 presents the best levels evolved to optimise player experience of
challenge for two AI agents with different playing styles. The levels clearly exhibit
different structures; a slightly more challenging level was evolved for the second
agent, with more gaps and enemies than the one generated for the first agent.
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Fig. 10.5: The best levels evolved to maximise predicted challenge for two AI
agents. Adapted from [26]

10.5 Lab exercise: Generate personalised levels for Super Mario
Bros.

In this lab session, you will generate levels personalised for a specific player using
the InfiniTux software. This is the same software interface used in Chapter 3, but
this time the focus is on customising content to a specific playing style.

In order to facilitate meaningful detection of player experience and to allow you
to develop player experience models, you will be given a dataset of 597 instances
containing several statistical gameplay and content features collected from hundreds
of players playing the game. The data contains information about several aspects of
players’ behaviour captured through features representing the frequencies of per-
forming specific actions such as killing an enemy or jumping and the time spent
doing certain behaviour such as moving right or jumping. Your task is to use this
data to build a player-experience model using a machine learning or a data-mining
technique of your choice. The models you build can then be used to recognise the
gameplaying style of a new player.

After you build the models and successfully detect player experience, you should
implement a method to adjust game content to changes of player experience in the
game. You can adopt well-known concepts of player experience such as fun, chal-
lenge, difficulty or frustration and adjust the game content according to the aspect
you would like your player to experience.

10.6 Summary

This chapter covered the experience-driven perspective for generating personalised
game content. The rich and diverse content of games is viewed as a building block
to be put together in a way that elicits unique player experiences. The experience-
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driven PCG framework [37] defines a generic and effective approach for optimising
player experience via the adaptation of the experienced content.

To successfully adapt game content one needs to fulfill a set of requirements:
the game should be tailored to individual players’ experience-response patterns; the
game adaptation should be fast, yet not necessarily noticeable; and the experience-
based interaction should be rich in terms of game context, adjustable game elements
and player input. The experience-driven PCG framework satisfies these conditions
via the efficient generation of game content that is driven by models of player experi-
ence. The experience-driven PCG framework offers a holistic realization of affective
interaction as it elicits emotion through variant game content types, integrates game
content into computational models of user affect, and uses game content to adapt
the experience.
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Chapter 11

Mixed-initiative content creation

Antonios Liapis, Gillian Smith, and Noor Shaker

Abstract Algorithms can generate game content, but so can humans. And while
PCG algorithms can generate some kinds of game content remarkably well and ex-
tremely quickly, some other types (and aspects) of game content are still best made
by humans. Can we combine the advantages of procedural generation and human
creation somehow? This chapter discusses mixed-initiative systems for PCG, where
both humans and software have agency and co-create content. A small taxonomy
is presented of different ways in which humans and algorithms can collaborate, and
then three mixed-initiative PCG systems are discussed in some detail: Tanagra, Sen-
tient Sketchbook, and Ropossum.

11.1 Taking a step back from automation

Many PCG methods discussed so far in this book have focused on fully automated
content generation. Mixed-initiative procedural content generation covers a broad
range of generators, algorithms, and tools which share one common trait: they re-
quire human input in order to be of any use. While most generators require some
initial setup, whether it’s as little as a human pressing “generate”, or providing con-
figuration and constraints on the output, mixed-initiative PCG automates only part
of the process, requiring significantly more human input during the generation pro-
cess than other forms of PCG.

As the phrase suggests, both a human creator and a computational creator “take
the initiative” in mixed-initiative PCG systems. However, there is a sliding scale on
the type and impact of each of these creators’ initiative. For instance, one can argue
that a human novelist using a text editor on their computer is a mixed-initiative
process, with the human user providing most of the initiative but the text editor
facilitating their process (spell-checking, word counting or choosing when to end a
line). At the other extreme, the map generator in Civilization V (Firaxis 2014) is a
mixed-initiative process, since the user provides a number of desired properties of
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(a) Computer-aided design: Humans have the
idea, the computer supports their creative pro-
cess

(b) Interactive evolution: The computer creates
content, humans guide it to create content they
prefer

Fig. 11.1: Two types of mixed-initiative design

the map. This chapter will focus on less extreme cases, however, where both human
and computer have some significant impact on the sort of content generated.

It is naive to expect that the human creator and the computational creator always
have equal say in the creative process:

• In some cases, the human creator has an idea for a design, requiring the com-
puter to allow for an easy and intuitive way to realize this idea. Closer to a word
processor or to Photoshop, such content generators facilitate the human in their
creative task, often providing an elaborate user interface. The computer’s initia-
tive is realized as it evaluates the human design, testing whether it breaks any
design constraints and presenting alternatives to the human designer. Generators
where the creativity stems from human initiative, as seen in Figure 11.1a, will be
discussed in Section 11.2.

• In other cases, the computer can autonomously generate content but lacks the
ability to judge the quality of what it creates. When evaluating generated content
is subjective, unknown in advance, or too daunting to formulate mathematically,
generators can request human users to act as judges and guide the generative pro-
cesses towards content that these users deem better. The most common method
for accomplishing this task is interactive evolution, as seen in Figure 11.1b, and
discussed in Section 11.3. In interactive evolution the computer has the creative
initiative while the human acts as an advisor, trying to steer the generator towards
their own goals. In most cases, human users don’t have direct control over the
generated artifacts; selecting their favourites does not specify how the computer
will interpret and accommodate their choice.

11.2 A very short design-tool history

To understand mixed-initiative PCG systems, as well as to gain inspiration for future
systems, it is important to also understand several older systems on which current
work builds. There are three main threads of work that we’ll look at in this section:
mixed-initiative interaction, computer-aided design (CAD), and creativity support
tools. Today’s research in game-design and mixed-initiative PCG tools has been
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influenced by the ways each of these three areas of work frames the idea of joint
human–computer creation [1, 18, 28], and the systems we’ll talk about in the chapter
all take inspiration from at least one of them.

11.2.1 Mixed-initiative interaction

In 1960, J.C.R. Licklider [24] laid out his dream of the future of computing: man–
computer symbiosis. Licklider was the first to suggest that the operator of a com-
puter take on any role other than that of the puppetmaster—he envisioned that one
day the computer would have a more symbiotic relationship with the human op-
erator. Licklider described a flaw of existing interactive computer systems: “In the
man-machine systems of the past, the human operator supplied the initiative, the
direction, the integration, and the criterion.”

Notice the use of the term “initiative” to refer to how the human interacts with the
computer, and the implication that the future of man-computer symbiosis therefore
involves the computer being able to share initiative with its human user.

The term “mixed-initiative” was first used by Jaime Carbonell to describe his
computer-aided instruction system, called SCHOLAR [3]. SCHOLAR is a text-
based instructional system that largely consists of the computer asking quiz-style
questions of the student using the system; the mixed-initiative component of the sys-
tem allows the student to ask questions of the computer as well. Carbonell argued
that there were two particularly important and related aspects of a mixed-initiative
system: context and relevancy. Maintaining context involves ensuring that the com-
puter can only ask questions that are contextually relevant to the discussion thus
far, ensuring that large sways in conversation do not occur. Relevancy involves only
answering questions with relevant information, rather than all of the information
known about the topic.

It can be helpful to think about the sharing of initiative in mixed-initiative in-
teraction in terms of a conversation. Imagine, for example, two human colleagues
having a conversation in the workplace:

Kevin: “Do you have time to chat about the tutorial levels for the game?”
Sarah: “Yes, let’s do that now! I think we need to work together to re-design the

first level. Do you—.”
Kevin: “Yeah, I agree, players aren’t understanding how to use the powerups. I

was thinking we should make the tutorial text bigger and have it linger on the
screen for longer.”

Sarah: “Well, information I got from the user study session two days ago implied
that players weren’t reading the text at all. I’m not sure if making the text bigger
will help.”

Kevin: “I think it will help.”
pause

Kevin: “It’s easy to implement, at least.”
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Sarah: “Okay, how about you try that, and I’ll work on a new idea I have for
having the companion character show you how to use them.”

Kevin: “Great! Let’s meet again next week to see how it worked.”

There are several ways in which Kevin and Sarah are sharing initiative in this
conversation. Novick and Sutton [30] describe several components of initiative:

1. Task initiative: deciding what the topic of the conversation will be, and what
problem needs to be solved. In our example, Kevin takes the task initiative, by
bringing up the topic of altering the tutorial levels, and by introducing the prob-
lem that, specifically, players don’t understand how to use the powerups.

2. Speaker initiative: determining when each actor will speak. Mixed initiative is
often characterized as a form of turn-taking interaction, where one actor speaks
while the other waits, and vice versa. Our example conversation mostly follows
a turn-taking model, but deviates in two major areas: a) Kevin interrupts Sarah’s
comments because he thinks he already knows what she will say, and b) Kevin
later speaks twice in a row, in an effort to move the conversation along.

3. Outcome initiative: deciding how the problem introduced should be solved,
sometimes involving allocating tasks to participants in the conversation. For this
example, Sarah takes the outcome initiative, determining which tasks she and
Kevin should perform as a result of the conversation.

The majority of mixed-initiative PCG systems focus entirely on the second kind
of initiative: speaker initiative. They involve the computer being able to provide
support during the design process, an activity that design researcher Donald Schön
has described as a reflective conversation with the medium [32] (more on this in the
next section). However, they all explicitly give the human designer sole responsi-
bility for determining what the topic of the design conversation will be and how to
solve the problem; all mixed-initiative PCG systems made thus far have prioritized
human control over the generated content.

11.2.2 Computer-aided design and creativity support

Doug Engelbart, an early pioneer of computing, posited that computers might aug-
ment human intellect. He envisioned a future in which computers were capable of
“increasing the capability of a man to approach a complex problem situation, to
gain comprehension to suit his particular needs, and to derive solutions to prob-
lems” [10]. Engelbart argued that all technology can serve this purpose. His de-
augmentation experiment, in which he wrote the same text using a typewriter, a
normal pen, and a pen with a brick attached to it, showed the influence that the
technology has on the ways that we write and communicate.

A peer of Engelbart’s, Ivan Sutherland, created the Sketchpad system in 1963
[42]. This was the first system to offer computational support for designers; it was
also the first example of an object-oriented system (though it did not involve pro-
gramming). Sketchpad allowed designers to specify constraints on the designs they
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were drawing; for example, it was possible to draw the general topology of an item
such as a bolt. The user could then place constraints on the edges of the bolt to
force them to be perpendicular to each other. The system was object-oriented in that
individual sketches could be imported into others to produce entire diagrams and
drawings; if the original sketch was altered, that change would propagate to all dia-
grams that imported the sketch. The idea of letting users create through adding and
removing constraints has carried forward into mixed-initiative tools such as Tanagra
and Sketchaworld, described later in this chapter.

A decade after Engelbart and Sutherland’s work, Nicholas Negroponte proposed
the creation of what he called design amplifiers. Negroponte was particularly in-
terested in how to support non-expert architectural designers, as he was concerned
that professional architects often pushed their own agendas without regard for the
needs of the occupants [27]. However, homeowners do not have the domain exper-
tise required to design their own home. His vision was for tools that could help the
general population in creating their own homes using the computer to support their
designs and ensure validity of the design. The idea that human creators should take
the forefront and have the majority of control over a design situation is reflected
in all mixed-initiative design tools; in general, the computer is never allowed to
override a decision made by the human. However, all tools must push an agenda
to some extent, though it may not be intentional: the choices that go into how the
content generator operates and what kind of content it is capable of creating vastly
influences the work that the human designer can create with the system.

More recently, Chaim Gingold has pushed the idea of “magic crayons”: software
that supports a novice’s creativity while also being intuitive, powerful, and expres-
sive [11]. Gingold argues that using design support tools should be as simple and
obvious as using a crayon, and allow for instant creativity. Any child who picks
up a crayon can quickly and easily grasp how to use it and go on to create several
drawings quite rapidly. The “magic” part of the magic crayon comes in the crayon’s
computational power and expressive potential: the crayon is imbued with compu-
tational support that allows a user to create something better than what they would
normally create themselves, while still echoing their original design intent.

11.2.3 Requirements, caveats, and open problems for
mixed-initiative systems

When designing a mixed-initiative system, there are several main questions to con-
sider. These points are based on the authors’ experiences creating their own proto-
type mixed-initiative tools:

• Who is your target audience?

How to design both the underlying technology and the interface for a mixed-
initiative system depends wildly upon who the target audience is. A tool for pro-
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fessional designers might look considerably different from a tool intended for game
players who have no design experience.

• What novel and useful editing operations can be incorporated?

A mixed-initiative environment offers the opportunity for more sophisticated level-
editing operations than merely altering content as one could do in a non-AI-
supported tool. The way the generation algorithm works might prioritize certain
aspects of the design. For example, Tanagra’s underlying generator used rhythm as
a driver for creating levels; thus, it was relatively straightforward to permit users to
interact with that underlying structure to be able to directly manipulate level pacing.

• How can the method for control over content be balanced?

Mixed-initiative content generators can involve both direct and indirect manipula-
tion of the content being created. For example, the tool will typically support a user
directly drawing in aspects of the content (e.g. level geometry), but also allow the
computer to take over and make new suggestions for the generator. How to balance
these forms of control can be challenging (especially when the human and computer
conflict, see next point). Should the computer be allowed to make new suggestions
whenever it wants, or only when specifically requested? How much of the content
should be directly manipulable?

• How to resolve conflicts that arise due to the human stating conflicting desires?

In situations where both human and computer are editing content simultaneously,
editing conflict inevitably arises. The majority of mixed-initiative tools follow the
principle that the human has final say over what is produced by the tool. How-
ever, when the human user states contradictory desires, the system must decide how
to handle the situation. Should it simply provide an error message? Should it ran-
domly choose which desire is more important for the human? Should it generate
several plausible answers and then ask the human to choose which solution is most
reasonable?

More generally, the issue is: how can the computer infer human design intent via
an interface where the human simply interacts with the content itself.

• How expressive is the system?

All content that a human can produce using a mixed-initiative PCG system must be
possible for the computer to generate on its own. Thus it is vital for the system to
be expressive enough to offer a meaningful set of choices to the human user. More
information about expressivity evaluation is in Chapter 12.

• Can the computer explain itself?

It is difficult for a human and computer to engage in a design collaboration if neither
is able to explain itself to the other. In particular, a human designer may become
frustrated or confused if the computer consistently acts as though it is not following
the model that the human designer has in her head for how the system should work.
The computer should appear intelligent (even if the choices it is making do not
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Fig. 11.2: Tanagra, an intelligent level design tool. The level is created in the large
area at the upper left. Below is a beat timeline, where the pacing of the level can be
manipulated. On the right are buttons for editing the level. Adapted from [40]

involve a sophisticated AI system), and ideally should be able to explain its actions
to the human. Being able to communicate at a meta-level about the design tasks and
outcomes has not been well explored in mixed-initiative PCG work thus far.

11.2.4 Examples of CAD tools for games

Now we’ll go through several examples of computer-aided design tools that both
allow interaction and feedback for the human designer and introduce some initiative
taken by the computational designer (in varying degrees and in different forms).

11.2.4.1 Tanagra

Tanagra is a mixed-initiative tool for level design, allowing a human and a computer
to work together to produce a level for a 2D platformer [40]. An underlying, reac-
tive level generator ensures that all levels created in the environment are playable,
and provides the ability for a human designer to rapidly view many different levels
that meet their specifications. The human designer can iteratively refine the level
by placing and moving level geometry, as well as through directly manipulating
the pacing of the level. Tanagra’s underlying level generator is capable of produc-
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ing many different variations on a level more rapidly than human designers, whose
strengths instead lie in creativity and the ability to judge the quality of the generated
content. The generator is able to guarantee that all the levels it creates are playable,
thus refocusing early playtesting effort from checking that all sections of the level
are reachable to exploring how to create fun levels.

A combination of reactive planning and constraint programming allows Tanagra
to respond to designer changes in real time. A Behavior Language (ABL) [25] is
used for reactive planning, and Choco [45] for numerical constraint solving. Re-
active planning allows for the expression of generator behaviours, such as placing
patterns of geometry or altering the pacing of the level, which can be interleaved
with a human designer’s actions.

The version of Tanagra displayed in Figure 11.2 incorporates (1) the concept of
a user “pinning” geometry in place by adding numerical positioning constraints,
(2) the system attempting to minimise the number of required positioning changes
(including never being allowed to move pinned geometry), and (3) direct changes
to level pacing by adding, removing, and altering the length of beats. Later versions
of Tanagra altered the UI to make it clearer what geometry was “pinned” and what
was not. The latest version of Tanagra also added the idea of geometry preference
toggles, allowing designers an additional layer of control over the system by letting
them state whether or not particular geometry patterns are preferred or disliked on a
per-beat basis.

11.2.4.2 Sentient Sketchbook

Sentient Sketchbook is a computer-aided design tool which assists a human designer
in creating game levels, such as maps for strategy games [22] (shown in Figure 11.3)
or dungeons for roguelike games [23]. Sentient Sketchbook uses the notion of map
sketch as a minimal abstraction of a full game level; this abstraction limits user
fatigue while creating new levels and reduces the computational effort of automat-
ically evaluating such sketches, but is rendered into a high-resolution map before
use. Like popular CAD tools, Sentient Sketchbook supports the human creator by
automatically testing maps for playability constraints, by calculating and displaying
navigable paths, by evaluating the map on gameplay properties and by converting
the coarse map sketch into a playable level.

The innovation of Sentient Sketchbook is the real-time generation and presenta-
tion of alternatives to the user’s sketch. These alternatives are evolved from an initial
population seeded by the user’s sketch, and thus a certain degree of map integrity
is maintained with the user’s designs. The shown suggestions are guaranteed to be
playable (i.e. have all vital components such as bases and resources for strategy
games connected with passable paths) via the use of constrained evolutionary opti-
misation with two populations [16]. The suggestions are either evolved to maximise
one of the predefined objective functions inspired by popular game design patterns
such as balance and exploration [23], or towards divergence from the user’s current
sketch through feasible-infeasible novelty search [21].
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Fig. 11.3: The user interface of Sentient Sketchbook. A human designer edits their
sketch (left) and a generator, acting as the artificial designer, creates map sugges-
tions in response (right). Adapted from [22]

11.2.4.3 Ropossum

Ropossum is an authoring tool for the generation and testing of levels of the physics-
based puzzle game, Cut the Rope [36]. Ropossum integrates many features: (1) au-
tomatic design of complete solvable content, (2) incorporation of designer’s input
through the creation of complete or partial designs, (3) automatic check for playa-
bility, and (4) optimisation of a given design based on playability.

Ropossum consists of two main modules: an evolutionary framework for proce-
dural content generation [34] and a physics-based playability module to solve given
designs [35]. The second module is used both for evolving playable content and for
playtesting levels designed by humans. The parameters of the evolutionary system
and the AI agent are optimised so that the system can respond to the user’s inputs
within a reasonable amount of time. Grammatical evolution (GE) is used to evolve
the content. The level structure is defined in a design grammar (DG) which defines
the positions and properties of different game components and permits an easy to
read and manipulate format by game designers [34]. First-order logic is used to en-
code the game state as facts specifying the game components and their properties
(such as position, speed, and moving direction) [35]. The relationships between the
components are represented as rules used to infer the possible next actions.

The two methods for evolving game design and assessing whether the design is
playable are combined in a framework to evolve playable content. An initial level
design, according to the design grammar, is generated or created by the designer (see
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Fig. 11.4: One of the interfaces of Ropossum. The components highlighted are the
ones constrained by the designer, and therefore will not be changed when evolving
complete playable levels. Adapted from [36]

Figure 11.4) and encoded as facts that can be used by the AI reasoning agent. Given
the game state, the agent infers the next best action(s) to perform. The actions are
then sent to the physics simulator, which performs the actions according to a given
priority and updates the game state accordingly. The new game state is sent to the
agent to infer the next action. If the sequence of actions does not lead to winning the
level, the system backtracks. A state tree is generated that represents the actions and
states explored. For each action performed, a node in the tree is generated and the
tree is explored in a depth-first approach. The size of the explored branches in the
solution tree is reduced by assigning priorities to the actions and employing domain
knowledge encoded in reasoning agent’s rules to infer the best action to perform.

11.2.4.4 Sketchaworld

Sketchaworld is an interactive tool created to enable a non-specialist user to easily
and efficiently create a complete 3D virtual world by integrating different proce-
dural techniques [39]. Sketchaworld integrates many features: (1) it facilitates easy
interaction with designers, who can specify procedural modelling operations and di-
rectly visualize their effects, (2) it builds 3D worlds by fitting all features with their
surroundings and (3) it supports iterative modelling.

The tool allows user interactions in two main modes: landscape mode and fea-
ture mode. The first mode consists of the user input which is a 2D layout map of
the virtual world formatted in a colouring grid that includes information about ele-
vations and soil materials painted with a brush. In the feature mode, users add more
specific land features such as cities and rivers (see Figure 11.5).
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Fig. 11.5: A screenshot from Sketchaworld. The user sketches as input a mountain,
river, and forest, and corresponding 3D terrain is generated. Adapted from [39]

While users sketch on the 2D grid, the effects of their modification are directly
visualized in the 3D virtual world. This requires blending the features added with
their surroundings. To this end, whenever a new feature is created, an automatic local
adaptation step is performed to ensure smoothness and correctness. This includes
for example removing trees on a generated road’s path or adding a road to connect
a generated bridge.

11.3 Interactive evolution

As its name suggests, interactive evolutionary computation (IEC) is a variant of evo-
lutionary computation where human input is used to evaluate content. As artificial
evolution hinges on the notion of survival of the fittest, in interactive evolution a
human user essentially selects which individuals create offspring and which indi-
viduals die. According to Takagi [44], interactive evolution allows human users to
evaluate individuals based on their subjective preferences (their own psychological
space) while the computer searches for this human-specified global optimum in the
genotype space (feature parameter space); as such, the collaboration between hu-
man and computer makes IEC a mixed-initiative approach. In interactive evolution
a human user can evaluate artifacts by assigning to each a numerical value (propor-
tionate to their preference for this artifact), by ordering artifacts in order of prefer-
ence, or by simply selecting one or more artifacts that they would like to see more
of. With more control to the human user, the artifacts in the next generation may
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match users’ desires better; the user’s cognitive effort may also increase, however,
which results in user fatigue, which is covered in Section 11.3.1

Interactive evolution is often used in domains where designing a fitness function
is a difficult task; for instance, the criteria for selection could be a subjective mea-
sure of beauty as in evolutionary art, a deceptive problem where a naive quantifiable
measure may be more harmful than helpful, or in cases where mathematically defin-
ing a measure of optimality is as challenging as the optimisation task itself. Since
it allows for a subjective evaluation of beauty, IEC has often been used to create
2D visual artifacts based on L-systems [26], mathematical expressions [37], neural
networks [33] or other methods. Using interactive evolution in art is often motivated
by a general interest in artificial life, as is the case with Dawkins’ Biomorph [7]. In
evolutionary art, human users often evaluate not the phenotypes but outputs speci-
fied by the phenotypes, in cases where the phenotypes are image filters or shaders
[9]. Apart from 2D visual artifacts, IEC has also been used in generating 3D art [6],
animated movies [38], typography [31], and graphic design [8]. Evolutionary music
has also used IEC to generate the rhythm of percussion parts [46], jazz melodies
[2], and accompaniments to human-authored music scores [14], among others. Out-
side evolutionary art and music, IEC has been used for industrial design [12], image
database retrieval [5], human-like robot motion [29], and many others. The survey
by Takagi [44] provides a thorough, if somewhat dated, overview of IEC applica-
tions.

11.3.1 User fatigue and methods of combating it

Since interactive evolution is entirely reliant on human input to drive its search pro-
cesses, its largest weakness is the effect of human fatigue in human-computer inter-
action. Human fatigue becomes an issue when the users are required to perform a
large number of content selections, when feedback from the system is slow, when
the users are simultaneously presented with a large amount of content on-screen, or
when users are required to provide very specific input. All of these factors contribute
to the cognitive overload of the user, and several solutions have been proposed to
counteract each of these factors.

As human users are often overburdened by the simultaneous presentation of
information on-screen, user fatigue can be limited by an interactive evolutionary
system that shows only a subset of the entire population. There are a number of
techniques for selecting which individuals to show, although they all introduce bi-
ases from the tool’s designers. An intuitive criterion is to avoid showing individuals
which all users would consider unwanted. Deciding which individuals are unwanted
is sometimes straightforward; for instance, musical tracks containing only silence
or 3D meshes with disconnected triangles. However, such methods often only prune
the edges of the search space and are still not guaranteed to show wanted content.
Another technique is to show only individuals with the highest fitness; since fit-
ness in interactive evolution is largely derived from user choices, this is likely to
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result in individuals which are very similar—if not identical—to individuals shown
previously, which is more likely to increase fatigue due to perceived stagnation.

User fatigue is often induced when the requirement of a large number of se-
lections becomes time-consuming and cumbersome. As already mentioned, fewer
individuals than the entire population can be shown to the user; in a similar vein,
not every generation of individuals needs to be shown to the user, instead show-
ing individuals every 5 or 10 generations. In order to accomplish such a behaviour,
the fitness of unseen content must be somehow predicted based on users’ choices
among seen content. One way to accomplish such a prediction is via distance-based
approaches, i.e. by comparing an individual that hasn’t been presented to the user
with those individuals that were presented to the user: the fitness of this unseen in-
dividual can be proportional to the user-specified fitness of the closest seen individ-
ual while inversely proportional to their distance [15]. Such a technique essentially
clusters all individuals in the population around the few presented individuals; this
permits the use of a population larger than the number of shown individuals as well
as an offline evolutionary sprint with no human input. Depending on the number of
seen individuals and the expressiveness of the algorithm’s representation, however,
a number of strong assumptions are made—the most important of which pertains to
the measure of distance used. In order to avoid biasing the search by these assump-
tions, most evolutionary sprints are only for a few generations before new human
feedback is required.

Another solution to the extraneous choices required of IEC systems’ users is to
crowdsource the selection process among a large group of individuals. Some form
of online database is likely necessary towards that end, allowing users to start evolv-
ing content previously evolved by another user. A good example of this method is
PicBreeder [33], which evolves images created by compositional pattern-producing
networks (CPPNs). Since evolution progressively increases the size of CPPNs due
to the Neuroevolution of Augmenting Topologies algorithm [41], the patterns of
the images they create become more complex and inspiring with large networks.
This, however, requires extensive evolution via manual labor, which is expected to
induce significant fatigue on a single user. For that reason, the PicBreeder website
allows users to start evolution “from scratch”, with a small CPPN able to create
simple patterns such as circles or gradients, or instead load images evolved by pre-
vious users and evolve them further. Since such images are explicitly saved by past
users because they are visually interesting, the user starts from a “good” area of
the genotype space and is more likely to have meaningful variations than if they
were starting from scratch and had to explore a large area of the search space which
contains non-interesting images.

Another factor of user fatigue is the slow feedback of evolutionary systems; since
artificial evolution is rarely a fast process, especially with large populations, the
user may have to sit through long periods of inaction before the next set of content
is presented. In order to alleviate that, interactive evolution addresses it by several
shortcuts to speed up convergence of the algorithm. This is often accomplished by
limiting the population size to 10 or 20 individuals, or by allowing the user to in-
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terfere directly in the search process by showing a visualization of the search space
and letting them designate an estimated global optimum [43].

To reduce the cognitive load of evaluations, a common solution is to limit the
number of rating levels, either to a common five-star rating scale, or even to only
two: the user either likes the content or doesn’t. Another option is to use rankings
[17], i.e. the user is presented with two options and chooses the one they prefer,
without having to explicitly specify that e.g. one is rated three stars while the other
is five-star content.

11.3.2 Examples of interactive evolution for games

As highly interactive experiences themselves, games are ideal for interactive evo-
lution, since the user’s preferences can be inferred from what they do in the game.
Instead of an explicit selection process, selection masquerades behind in-game ac-
tivities such as shooting, trading, or staying alive. Done properly, interactive evolu-
tion in games can bypass to a large extent the issue of user fatigue. However, the
mapping between player actions and player preference is often not straightforward;
for instance, do humans prefer to survive in a game level for a long time, or do
they like to be challenged and be constantly firing their weapons? Depending on
the choice of metric (in this example, survival time or shots fired), different content
may be favoured. Therefore, gameplay-based evaluations may include more biases
on the part of the programmer than traditional interactive evolution, which tries to
make no assumptions.

11.3.2.1 Galactic Arms Race

Galactic Arms Race [13], shown in Figure 11.6, is one of the more successful ex-
amples of a game using interactive evolution. The procedurally generated weapon
projectiles, which are the main focus of this space-shooter game, are evolved in-
teractively using gameplay data. The number of times a weapon is fired is con-
sidered a revealed user preference; the assumption is that players who don’t like a
weapon will not use it as much as others. Weapon projectiles, represented as parti-
cles, are evolved via neuroevolution of augmenting topologies (NEAT); the velocity
and colour of each particle is defined as the output of a CPPN, with the input being
the current position and distance from the firing spaceship.1 Newly evolved weapons
are dropped as rewards for destroying enemy bases; the player can pick them up, and
use them or switch among three weapons at any given time. Galactic Arms Race can
be also played by many players; in multiplayer play, the algorithm uses the firing
rates of all players when determining which weapons to evolve.

1 NEAT and CPPNs are discussed in detail in Chapter 9.
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Fig. 11.6: Galactic Arms Race with multiple players using different weapons.
Adapted from [13]

11.3.2.2 TORCS track generation

A more traditional form of interactive evolution, in which a user directly states pref-
erences, was used to generate tracks for a car racing game [4]. The system uses The
Open Racing Car Simulator (TORCS)2 and allows user interaction through a web
browser where users can view populations of race tracks and evaluate them (see
Figure 11.7). This web front-end then communicates with an evolutionary backend.
Race tracks are represented in the engine as a list of segments which can be either
straight or turning. In the evolution process, a set of control points and Bézier curves
are used to connect the points and ensure smoothness.

Different variations of interactive evolution are used to evaluate the generated
tracks. In single-user mode, human subjects were asked to play 10 generations of
20 evolved tracks each and evaluate them using two scoring interfaces: like/dislike
and rating from 1 to 5 stars. The feedback provided by users about each track is the
fitness used for evolution. In multi-user mode, the same population of 20 individuals
is played and evaluated by five human subjects. The fitness given to each track in
the population is the average score received from all users. The feedback provided
by users showed improvements in the quality of the tracks and an increase in their
interestingness.

2 http://torcs.sourceforge.net/



210 Antonios Liapis, Gillian Smith, and Noor Shaker

Fig. 11.7: The TORCS track generator visualizes tracks, and asks the player to rank
them. Adapted from [4]

11.3.2.3 Spaceship generation

Liapis et al.’s [20] work on spaceship generation is an example of fitness prediction
for the purpose of speeding up and enhancing the convergence of interactive evo-
lution. They generate spaceship hulls and their weapon and thruster topologies in
order to match a user’s visual taste as well as conform to a number of constraints
aimed at playability and game balance [19]. The 2D shapes representing the space-
ship hulls are encoded as pattern-producing networks (CPPNs) and evolved in two
populations using the feasible-infeasible two-population approach (FI-2pop) [16].
One population contains spaceships which fail ad-hoc constraints pertaining to ren-
dering, physics simulation, and game balance, and individuals in this population are
optimised towards minimising their distance to feasibility. Removing such space-
ships from the population shown to the user reduces the chances of unwanted con-
tent and reduces user fatigue.

The second population contains feasible spaceships, which are optimised accord-
ing to ten fitness dimensions pertaining to common attributes of visual taste such as
symmetry, weight distribution, simplicity, and size. These fitness dimensions are
aggregated into a weighted sum which is used as the feasible population’s fitness
function. The weights in this quality approximation are adjusted according to a
user’s selection among a set of presented spaceships (see Figure 11.8). This adaptive
aesthetic model aims to enhance the visual patterns behind the user’s selection and
minimise visual patterns of unselected content, thus generating a completely new
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Fig. 11.8: In this evolutionary spaceship generator, the user is presented a set
of spaceships from the feasible population, and selects their favourite. Adapted
from [20]

set of spaceships which more accurately match the user’s tastes. A small number
of user selections allows the system to recognize the user’s preference, reducing
fatigue.

The two-step adaptation system, where (1) the user implicitly adjusts their pref-
erence model through content selection and (2) the preference model affects the
patterns of generated content, is intended to make for a flexible tool both for person-
alizing game content to an end-user’s visual taste and also for inspiring a designer’s
creative task with content guaranteed to be playable, novel, and conforming to the
intended visual style.

11.4 Exercise

1. Choose one of the tools described in this chapter. Perform a design task similar
to that which is supported by the tool without any computational support. Reflect
upon this process: What was easy and what was hard? What did you wish the
computer could do to help? What do you feel the computer would not be able to
assist with? If the tool is available for download, try to perform the same design
task using the AI-supported tool. What were some of the key differences in your
experience as a designer?

2. Create a requirements analysis document and mock-up architecture diagram for a
mixed-initiative design tool that operates in a domain of your choice. Make sure
to consider: (a) Who is your audience? (b) What, specifically, is your domain?
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(c) What is the PCG system capable of creating? (d) What is the mixed-initiative
conversational model the system will follow?

3. Create a paper prototype of the tool you designed in exercise two. Test the pro-
totype with someone else in the class, with you acting as the “AI system” and
your partner acting as the designer. Be careful to only act according to how the
AI system itself would be able to act.

11.5 Summary

Mixed-initiative systems are systems where both humans and computers can “take
the initiative,” and both contribute to the creative process. The degree to which each
party takes the initiative and contributes varies between different systems. At one
end of this scale is computer-aided design (CAD), where the human directs the cre-
ative process and the computer performs tasks when asked to and according to the
specifications of the user. At the other end is interactive evolution, where the com-
puter proposes new artifacts and the user is purely reactive, providing feedback on
the computer’s suggestions. Both of these approaches have a rich history in games:
computer-aided design in many game design tools that include elements of content
generation, and interactive evolution in games such as Galactic Arms Race. “True”
mixed-initiative interaction, or at least the idea of such systems, has a long history
within human-computer interaction and artificial intelligence. Within game content
generation, there are so far just a few attempts to realize this vision. Tanagra is
a platformer level-generation system that uses constraint satisfaction to complete
levels sketched by humans, and regenerates parts of levels to ensure playability as
the levels are edited by humans. Sentient Sketchbook assists humans in designing
strategy game levels, providing feedback on a number of quality metrics and au-
tonomously suggesting modifications of levels. Ropossum is a level editor for Cut
the Rope, which can test the playability of levels and automatically regenerate parts
of levels to ensure playability as the level is being edited.
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Chapter 12

Evaluating content generators

Noor Shaker, Gillian Smith, and Georgios N. Yannakakis

Abstract Evaluating your content generator is a very important task, but difficult to
do well. Creating a game content generator in general is much easier than creating
a good game content generator—but what is a “good” content generator? That de-
pends very much on what you are trying to create and why. This chapter discusses
the importance and the challenges of evaluating content generators, and more gen-
erally understanding a generator’s strengths and weaknesses and suitability for your
goals. In particular, we discuss two different approaches to evaluating content gen-
erators: visualizing the expressive range of generators, and using questionnaires to
understand the impact of your generator on the player. These methods could broadly
be called top-down and bottom-up methods for evaluating generators.

12.1 I created a generator, now what?

The entirety of this book thus far has been focused on how to create procedural con-
tent generators, using a variety of techniques and for many different purposes. We
hope that, by now, you have gained an appreciation for the strengths and weaknesses
of different approaches to PCG, and also the surprises that can come from writing
a generative system. We imagine that you also have experienced some of the frus-
tration that can come from debugging a generative system: “is the interesting level I
created a fluke, a result of a bug, or a genuine result?”

Creating a generator is one thing; evaluating it is another. Regardless of the
method followed, generators are evaluated on their ability to achieve the desired
goals of the designer (or the computational designer). This chapter reviews methods
for achieving that. Arguably, the generation of any content is trivial; the generation
of valuable content for the task at hand, on the other hand, is a rather challenging
procedure. Further, it is more challenging to generate content that is both valuable
and novel.
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What makes the evaluation of content (such as stories, levels, maps, etc.) difficult
is the subjective nature of players, their large diversity and, on the other end of the
design process, the designer’s variant intents, styles, and goals [9]. Furthermore,
content quality is affected by algorithmic stochasticity (such as metaheuristic search
algorithms) and human stochasticity (such as unpredictable playing behaviour, style,
and emotive responses) that affect content quality at large. All these factors are
obviously hard to control in an empirical fashion.

In addition to factors that affect content quality, there are constraints (hard or
soft ones) put forward by the designers, or imposed by other elements of game
content that might conflict with the generated content (e.g. a generated level must
be compatible with a puzzle). A PCG algorithm needs to be able to satisfy designer
constraints as part of its quality evaluation. We have seen several types of such
algorithms in this book, such as the answer-set programming approach in Chapter 8
and the feasible-infeasible two-population genetic algorithm used in Chapter 11.
The generated results in these cases satisfy constraints, thereby they have a certain
value for the designer (at least if the designer specified the correct constraints!). But
value has varying degrees of success, and which constraints to choose are not always
obvious, and that is where the methods and heuristics discussed in this chapter can
help.

PCG can be viewed as a computational creator (either assisted or autonomous).
One important aspect that has not been investigated in depth is the aesthetics and
creativity of PCG within game design. How creative can an algorithm be? Is it
deemed to have appreciation, skill, and imagination [4]? Evaluating creativity of
current PCG algorithms, a case can be made that most of them possess skill but
not creativity. Does the creator manage to explore novel combinations within a con-
strained space thereby resulting in exploratory game design creativity [1]; or, is on
the other hand trying to break existing boundaries and constraints within game de-
sign to come up with entirely new designs, demonstrating transformational creativ-
ity [1]? If used in a mixed-initiative fashion, does it enhance the designer’s creativity
by boosting the possibility space for her? The appropriateness of evaluation methods
for autonomous PCG creation or mixed-initiative co-creation [19] remains largely
unexplored within both human and computational creativity research.

Content generators exhibit highly emergent behaviour, making it difficult to un-
derstand what the results of a particular generation algorithm might be when design-
ing the system. When making a PCG system, we are also creating a large amount
of content for players to experience, thus it is important to be able to evaluate how
successful the generator is according to players who interact with the content. The
next section highlights a number of factors that make evaluating content generators
important.
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12.2 Why is evaluation important?

There are several main reasons that we want to be able to evaluate procedural content
generation systems:

1. To better understand their capabilities. It is very hard to understand what the
capabilities of a content generator are solely by seeing individual instances of
their output.

2. To confirm that we can make guarantees about generated content. If there are
particular qualities of generated content that we want to be able to produce, it is
important to be able to evaluate that those qualities are indeed present.

3. To more easily iterate upon the generator by seeing whether what it is capable of
creating matches the programmer’s intent. As with any creative endeavor, creat-
ing a procedural content generator involves reflection, iteration, and evaluation.

4. To be able to compare content generators to each other, despite different ap-
proaches. As the community of people creating procedural content generators
continues to grow, it is important to be able to understand how we are making
progress in relationship to the current state of the art.

This chapter describes strategies for evaluating content generators, both in terms
of their capabilities as generative systems and in performing evaluations of the con-
tent that they create. The most important concept to remember when thinking of
how to evaluate a generator is the following: make sure that the method you use to
evaluate your generator is relevant to what it is you want to investigate and evaluate.
If you want to be able to make the claim that your generator produces a wide vari-
ety of content, choose a method that explicitly examines qualities of the generator
rather than individual pieces of content. If you want to be able to make the claim
that players of a game that incorporates your generator find the experience more
engaging, then it is more appropriate to evaluate the generator using a method that
includes the player.

One of the ultimate goals of evaluating content generators is to check their abil-
ity to meet the goals they are intended to achieve while being designed. Looking at
individual samples gives a very high-level overview of the capabilities of the gener-
ators but one would like for example to examine the frequency with which specific
content is generated or the amount of variety in the designs produced by the system.
It is therefore important to visualize the space of content covered by a generator.
The effects of modifications made to the system can then be easily identified in the
visualized content space as long as the dimensions according to which the content is
plotted are carefully defined to reflect the goals intended when designing the system.

The remainder of the chapter covers two main approaches for evaluating content:
the top-down approach using content generation statistics, in particular expressivity
measures (see Section 12.3), and the bottom-up approach which associates content
quality with user experience and direct or indirect content annotations (see Section
12.4).
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12.3 Top-down evaluation via expressivity measures

A tempting way to evaluate the quality of a content generator is to simply view
the content it creates and evaluate the artifacts subjectively and informally. But if a
content generator is capable of creating thousands, even millions, of unique levels,
it is not feasible to view all of the output to judge whether or not the generator is
performing as desired. If you see five levels that are impressive, among 50 that you
choose to ignore or re-generate, what does that say about the qualities of the content
generator?

To solve this problem, it is possible to evaluate the expressive range of the level
generator. Expressive range refers to the space of potential levels that the gener-
ator is capable of creating, including how biased it is towards creating particular
kinds of content in that space [15]. This evaluation is performed by choosing met-
rics along which the content can be evaluated, and using those metrics as axes to
define the space of possible content. A large number of pieces of content are then
generated and evaluated according to the defined metrics and plotted in a heatmap.
This heatmap can reveal biases in the generator, and comparisons of the heatmap
across different sets of input parameters can show how controllable the generator is.
Seeing how expressive range shifts according to input changes yields good insights
on the controllability and the quality of your generator.

12.3.1 Visualizing expressive range

The expressive range of a content generator can be visualized as an N-dimensional
space, where each dimension is a different quality of the generator that can be quan-
tified. This allows us to imagine authoring level generators as creating these spaces
of potential levels as a result of the emergent qualities of the system. By adding and
removing rules from a rule-based generator, the shape of the generator’s expressive
range (also referred to as a generative space) can be altered.

For only two dimensions, the generative space can be visualized using a two-
dimensional histogram. Higher dimensionality requires more sophisticated visual-
izations of generative spaces, which have not been deeply explored in PCG. This
requires generating a representative sample of the content and ranking it according
to the metrics; determining the amount of content to generate can be tricky. While
it is simple for some systems to compute the total number of variations that can be
generated, others may be able to create infinite variety. One method to ensure an ac-
ceptable sample size in the case of infinite content is to generate increasingly large
amounts of content and visualize the expressive range, stopping when the graphs
begin to look the same as for the previous, smaller amount of content. Expressive
range charts are not intended to be perfect, mathematical proofs of variety; rather,
they are a visualization that can help the creator of a generative system to understand
its behaviour, and potential users of that system to understand its abilities.
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Fig. 12.1: The expressive range of the Launchpad level generator. Adapted from [16]

Figure 12.1 shows the expressive range of the Launchpad level generator [16].
Notice that there is one large hot-spot for creating medium-leniency, low-linearity
levels, and another bias towards creating medium-leniency, high-linearity levels
(more on these metrics in the next section). Understanding that the system is bi-
ased towards these areas forces the designer of the system to ask why such biases
exist.

Figure 12.2 presents an alternative method for visualizing the expressive range
of one of the content generators for Infinite Mario Bros. [13]. The figure shows
different distributions of the levels according to three expressive measures defined:
linearity, leniency, and density.
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Fig. 12.2: The histograms of the linearity, leniency and density measures for one of
the Infinite Mario Bros. generators. Adapted from [13]

12.3.2 Choosing appropriate metrics

The metrics used for any content generator are bound to vary based on the domain
that content is being generated for. The “linearity” and “leniency” metrics used in
the Launchpad generator mentioned above make sense in the context of 2D plat-
forming levels, but perhaps not in the context of weapons for a space shooting game.

The important rule of thumb to remember when choosing metrics for your con-
tent generator is the following: strive to choose metrics that are as far as possible
from the input parameters to the system. The goal of performing an expressive range
evaluation is to understand the emergent properties of the generative system. Choos-
ing a metric that is highly correlated to one that is used as an input parameter (e.g. if
your generator accepts “difficulty” as an input and has “difficulty” as an expressive
range metric) can only ever provide confirmatory results. If the system is specifi-
cally designed to create a particular kind of output, measuring for that output can
only show that the algorithm operates as expected; it cannot deliver insight into
unexpected behaviour or surprising output.

12.3.3 Understanding controllability

An important consideration in procedural content generation is understanding how
well the generator can be controlled to produce different kinds of output, and espe-
cially how small changes in rule systems or priorities alter the expressivity of the
system. If a designer requests that the system create shorter levels, will it still be ca-
pable of producing a broad range of content? Will adding a new rule to the grammar
fundamentally alter the qualities of levels that can be produced?

Insight into these issues can be visualized by comparing expressive range graphs
for different configurations of input parameters. That can be achieved through vi-
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Fig. 12.3: Expressive ranges corresponding to different input parameters. Adapted
from [16]

sual comparisons showing the expressive range of the Launchpad level generator
when varying its rhythm input parameters (length of segment, pacing of segment,
and type of rhythm; see Figure 12.3). Notice that, while several graphs look quite
similar to each other, there are notable parameter configurations that lead to drasti-
cally different resulting spaces. Gaining insight into the problem is helpful not only
after creating a system and wanting to evaluate it, but also during the development
process itself as a debugging tool.

12.4 Bottom-up evaluation via players

Complementary to the top-down approaches for the evaluation of content genera-
tion, quantitative user studies can be of immense benefit for content quality assur-
ance. The most obvious approach to evaluate the content experienced by players
is to explicitly ask them about it. A game user study can involve a small number of
dedicated players that will play through varying amounts of content or, alternatively,
a crowd-sourced approach that can provide sufficient data to machine-learn content
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evaluation functions (see [14, 8, 3] among others). It is important to note that any
bottom-up content quality assessment can be complemented by content annotations
of the designers of the game or other experts involved in content creation.

12.4.1 Which questionnaire should I use?

Estimates of content quality can be based on a player’s preferences about the con-
tent retrieved through questionnaires during or after the gameplay. Content quality
can be represented as a class, a scalar (or a vector of numbers)—such as continuous
annotation throughout a level—or a relative strength (preference). Content quality
can be characterized by a number of dimensions, such as novelty, feasibility, playa-
bility, and believability [2], depending on the content type evaluated and the scope
of the evaluation.

There are several user protocol schemes and questionnaires one can adopt for
the subjective annotation of content. The survey naturally asks players to self-report
their experiences about content using directed questions which can vary from sim-
ple tick boxes to multiple choice items. Both the questions and the answers provided
may vary from single words to sentences. Questionnaires can involve elements of
the player experience (e.g. the Game Experience Questionnaire [7]), demographic
data, or other factors that might impact the assessment of content quality (e.g. per-
sonality traits).

As a general recommendation for self-reporting it is suggested that subjects
should be asked to rank the content they experience [21, 17]. Our recommendation
is based on studies by Yannakakis and Martı́nez showing limitations when using the
more common choice of ratings for subjective assessment, which provide empiri-
cal evidence for the superiority of rank-based questionnaire schemes for subjective
annotation (in games and beyond) [20, 21, 10]. In particular, rating-based question-
naires generate lower inter-rater agreement and higher levels of inconsistency and
order effects, and are dominated by a number of critical biases that make any post-
hoc analysis questionable [21, 20, 18, 11].

12.4.2 Ways around the limitations of self-reporting

While self-reporting biases can be minimised by using rank-based questionnaires,
not all disadvantages of self-reporting can be avoided this way [21]. Self-reports
can be replaced by or triangulated with alternate measures of player experience
such as physiological manifestations (of e.g. arousal, interest, and attention) [22]
and/or behavioural playing patterns [5] that may map to content quality directly. For
instance, a player being stuck at the same point of a map for several minutes might
indicate player frustration and bad level design. Further, the rank-based approach
can be enhanced if users are given the opportunity to view and annotate their video
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playthroughs (e.g. as in [6]). Evidently such a survey protocol further eliminates
reporting biases associated with memory and cognitive load which are present when
users are asked to annotate the content in a post-experience manner.

Even though the data-driven approach for annotating content is user-centric and
promotes the assessment of content quality directly by its end users, it has another
core limitation which is associated with the potential treatment of subjects as ran-
dom content evaluators. Thus, ideally, the generator should be coupled with selec-
tion mechanisms that will prune the available content (which arguably can be gen-
erated in massive amounts automatically) prior to it being presented to the players.
On that basis, content can be evaluated via a sequence of logic operations with-
out the need for player behavioural metrics or other input from players [12]. The
satisfaction of constraints or logical operators can be coupled with simulations of
AI agents that evaluate the quality of generated content (i.e. offline generate-and-
test PCG). Further, the quality of content can be evaluated implicitly through player
preferences during gameplay. It is natural to assume that the more content is se-
lected, used, experienced, or altered during gameplay, the higher its value becomes.
Studies in weapon generation, for instance, estimate the weapon’s quality implicitly
by its use during the game (see Section 11.3.2.1). and without explicitly asking the
players about the quality of the weapons or other characteristics. Such an approach
however relies heavily on the assumption that content use indicates content quality.

12.5 Summary

This chapter focused on the important but complex task of content evaluation, and
discussed various methods to achieve it. In summary, content quality can either be
assessed in a top-down fashion via well-designed content statistics (such as expres-
sivity metrics) or in a bottom-up fashion by having players experience the content
and assess its quality. Content evaluation via players may rely on both behavioural
data and data for objective assessment such as physiology, such as the methods
discussed in Chapter 10. This chapter, instead, focused on content evaluation via
subjective user data as obtained from questionnaires. Arguably a hybrid approach
involving both top-down and bottom-up methods can provide a more holistic ap-
proach to game content evaluation, and ultimately to understanding what the gener-
ator does, and whether it is suitable for the job the designer wants to use it for.
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Appendix A

Game-designer interviews

To complement the technical content of the chapters, all written by academics
(though some of the chapter authors also design and develop games), we performed
five interviews with the creators of well-known PCG-heavy games. We selected the
interviewees mostly because the games they had been part of had either introduced
new interesting PCG techniques, or because they had integrated them in game de-
sign in some novel way. The interviews were performed in 2013 and 2014 over
email, and are reproduced in their entirety here (except for corrected typos). We
asked most of the interviewees the same set of questions, focusing on the role of
PCG in game design and the limits of generative methods.

The interviewees are:

• Andrew Doull, creator of UnAngband and UnBrogue, founder of RogueLikeRa-
dio.

• Ed Key, creator of Proteus.
• Michael Toy, co-creator of Rogue.
• Richard Evans, AI lead programmer on The Sims 3, co-creator of Versu.
• Tarn Adams, creator of Dwarf Fortress.

A.1 Andrew Doull

Was there anything you wanted to do in a game you worked on that
you could not do because of algorithmic or computational
limitations?

My thinking about game design has changed significantly over the years, since
writing the original Death of the Level Designer series of articles. One of the key
changes—guided a lot by games like Michael Brough’s 868-HACK—is that a game
should embrace limitations, rather than attempt to design around them. So rather
than creating procedural systems which can model everything à la Dwarf Fortress,
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there are real advantages in keeping games as limited as possible in order that the
significance of individual procedural elements is emphasized, rather than smoothed
over by a melange of inputs. My personal limitations are very much around algo-
rithm implementation rather than design: for instance, while I have a good under-
standing of what a Voronoi diagram looks like and where it could be used, I’m
unlikely to ever successfully reimplement anything but a brute force approach for
calculating cell membership.

What new design questions has PCG posed for some game you
worked on?

I’ve written extensively about this—refer to the writing on my blog post on Unang-
band’s dungeon generation and algorithmic monster placement for specific discov-
eries. Since then, UnBrogue includes very little original procedural content: I mostly
plug new values into the well written framework that Brian Walker has developed
for Brogue’s “machine” rooms. These days I try to steer clear of actually designing
procedural systems: my experience is that you can achieve a lot using a very simple
set of algorithms, provided you choose your content carefully (see Darius Kazemi’s
essay on Spelunky’s level generation for a great example of this).

What is the most impressive example of procedural content
generation you have seen since your own work?

I’d be hard pressed to ignore Miguel Cepero of Voxel Farm, who I’m sure a lot of
people you interview will mention. While the above ground system looks great, it
was his cave designs that won me over, after being a doubter. What really impresses
me though is he’s developing all this while being the father of twins—I’m in the
same position and I can never find the time...

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

I’m going to quote Edmund McMillen here, since he made the definitive statement
on why you should write a roguelike:

“The roguelike formula is an amazing design plan that isn’t used much, mostly
because its traditional designs rely on alienatingly complicated user interfaces. Once
you crack the roguelike formula, however, it becomes an increasingly beautiful,
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deep, and everlasting design that allows you to generate a seemingly dynamic ex-
perience for players, so that each time they play your game they’re getting a totally
new adventure.”1

PCG is obviously an important part of this process, but it isn’t independent from
the other roguelike genre features like permadeath.

My hunch is that there are other “design plans” out there that are waiting to be
found that will feature PCG—in fact the majority will do, but we don’t necessarily
know what they look like, or have the maturity of the medium (of PCG) to be able
to discover them.

What are your tips for designing games that use PCG?

Keep your algorithms simple and choose your content carefully.

Do you have any interesting stories about PCG failures?

Not personally, since I’ve taken such a conservative approach to PCG algorithms.

In general, is there anything in a game you think could never be
procedurally generated?

The specific quirks of the real world. I’m not saying that PCG can’t create something
like the real world: I expect the depth required to make a world “completely con-
vincing” is actually more shallow than most PCG “haters” realize—but ultimately,
when it comes to simulation, the fact that we exist at a specific time and place in
a continuum of choices and random events is something that PCG can only hold
a mirror up to. Hand placed design will always be needed if you want to model
history—PCG will overtake hand placed design for “fantasy worlds” in the not too
distant future.

Why is PCG not used more?

PCG is a language that requires a level of literacy to understand. We’re not effec-
tively teaching this language yet, but we’re not effectively teaching the language of
game design in general either. Also, it is often more expensive than hand placed con-

1 http://www.gamasutra.com/view/feature/182380/
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tent, because a PCG algorithm which is only 90% complete can not create anything
useful, whereas 90% accurate hand placed content is clearly 9/10ths done. It’s hard
to describe working with PCG this way, but there’s almost a phase change between
when a PCG algorithm just creates junk, and when it starts producing beautiful re-
sults, and it can be very hard to tune it to reach this state.

What do you see as current directions for PCG that are worth
investigating?

There’s a lot of interesting stuff happening on the academic side—getting this to
percolate over to game development is going to be the real challenge.

A.2 Ed Key

Was there anything you wanted to do in a game you worked on that
you could not do because of algorithmic or computational
limitations?

At first there was: At one point Proteus was going to be some kind of sandbox RPG
with generated towns and quests. Once I started talking to David about music, we
reshaped the game as being all about music and exploration, and also at this point
started to find and work with the “grain” (as in carving wood) of what we had,
shaping what we wanted to do to the medium we were working in.

You can extend this to Proteus being an island rather than an infinitely streaming
world. The latter would have been technically much harder but also not really desir-
able once we decided to focus on a finite space that allowed you to get a little lost
but was also bounded and so allowed some familiarity and revisiting of locations.

Do you have any tips for designing games that use procedural
content?

Think about framing, structure and pacing. Consider how in the classical example
of Rogue, the procedural generation is incredibly simple and designed as a kind
of “lumpy canvas” for the authored elements (creature, potions, etc.) to interact. I
think the most successful PCG applications understand how the procedural content
is framed and given context by authored content, or sometimes by human curation.
Think of procedural generation as poetry or music and make use of the player’s
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imagination and faith rather than trying to create results that withstand point-by-
point examination.

One strength of PCG is to create “wildness”—either mimicking or evoking na-
ture or in glitch aesthetics. On the other hand, formal disciplines like architecture
provide patterns that PG systems can use, but I think you still need something in the
“fiction” of the game to make freakish “wrong” results something appealing rather
than bugs that break immersion.

Something I’m really keen on in game design is how to create “substances” or
things that “feel substantial”. I think a lot of this is about establishing scope and
language early on and sticking to these as a contract with the player. Of course, you
can subvert those expectations, but first you need to establish them.

In general, is there anything in a game you think could never be
procedurally generated?

Stuff like human behaviour is always going to be hard. My solution to this is to have
the PCG operate at a level of hints and suggestions instead of trying to generate
fully detailed characters, behaviour and artefacts. If the player is invested enough to
fill in the gaps with their imagination this will be a much richer experience than if
they are just given all the details and their mind unengaged and free to pick holes in
those.

There’s a deeper issue in that “meaning” can never be created by a computer sys-
tem, in my opinion. “Meaning” arises in the mind of a conscious being and is about
how the player reads and interacts with the game. On the other side it’s about what
you as the architect of the PG system put into it—values, aesthetics, etc. Humanity
is paradoxically extremely important in this domain.

What is the most impressive example of procedural content
generation you have seen since your own work?

My friend Alex May is doing some beautiful stuff with procedural trees2. For some-
thing that’s released and generating a full gameworld, maybe this PG stuff by Tom
Betts3. No Man’s Sky is also extremely enticing but hard to separate hype and ex-
pectation from the actual product at the current time (Jan 2013).

2 http://blog.starboretum.com/
3 http://www.big-robot.com/tag/sir-you-are-being-hunted/
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What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

Well, roguelike when I first knew it was permadeath and proc-gen ascii dungeons.
Now we have a whole spectrum of roguelike-likes including FTL, Don’t Starve,
etc. I think the genre already existed but has become broader, whilst at the same
time procedural techniques are spreading and growing in all genres from FPSes to
interaction fiction. I would say that yes, PCG is essential to a roguelike, but it’s
always interesting to take that as a challenge. Maybe the great PCG-free roguelike
is Dark Souls? No-one calls that a roguelike, and I think it wouldn’t work if it
was procedurally generated, but it seems to share a lot of the flavour of “punishing
exploration”. It’s interesting to think about how Dark Souls would be worse if it was
proc-gen. Places in the world would have less resonance, and players wouldn’t be
able to share stories or advice in the same way.

A.3 Michael Toy

Was there anything you wanted to do in Rogue that you could not
do because of algorithmic or computational limitations?

The limited size of programs on the PDP 11/70 (64 kilobytes), kept us from im-
plementing the variety of AI driven monsters that we had imagined in the design
phase.

What is the most impressive example of procedural content
generation you have seen since your own work?

Have to tip my hat to Dwarf Fortress. The story-telling and emergent properties are
marvelous. And the game Moria was probably the closest to what we had imagined
doing when we started writing Rogue. I’m sure there are more, I am not an expert
in the field, but there’s my answer.
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What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

The word “roguelike” belongs to the community that invented the word, so I don’t
claim any special authority. However the initial design goal for Rogue was to pro-
duce a game that avoided two problems, and the two solutions resulting are often
stated in the definition of a roguelike, PCG and permadeath.

The first problem was that having written several text adventures, it eventually (it
should have been sooner, we were young and stupid) became clear that it was never
going to be fun playing a game where you knew everything. So the quest became to
try and make a game where even the creator of the game is involved in a quest for
discovery.

Second we wanted to avoid the “Dragon’s Lair” problem where winning the
game is just running until you die, then backing up and doing something different,
repeated endlessly. We allowed saved games so you could stop and go to class or eat,
but worked hard to dis-allow people from re-playing from a save point repeatedly,
not because we were trying to create permadeath precisely, but because we wanted
the in-game consequences to matter. If a player decided to take a small or a large
risk, we wanted that risk to be a more real risk than simply the risk that you might
have to restore from the save file. This then made the rewards more meaningful also.
It wasn’t just permadeath, but perma-everything.

I actually see PCG and prevention of reverse time-jumps as being inseparable. If
I can save the game, explore a level, restore at the save point and explore the level
again only “correctly”, the entire point of the PCG is missed.

What are your tips for designing games that use PCG?

I think PCG changes how you think about the world-writing for a game.
One of the surprises for us in writing Rogue is how little PCG it took to create a

game which people could play for hundreds of hours. We really barely got working
what we thought was the base game, and suddenly it was popular and everywhere,
before we got to what we had previously thought was going to be the part which
made it interesting.

In a sense a game of Rogue is a collaborative storytelling exercise. You don’t
know how it is going to end, though you suspect it will be a tragedy. People have
imaginations and that can be a huge advantage to game designers. Rogue allowed
people to write their own scripts about what was going on, and provided them all
the action scenes for their story.
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In general, is there anything you think could never be generated?

I always dream of PCG worlds as rich and beautiful as the best hand-modeled
worlds. Not because I think the modeling is trivial, or even possible to do, but be-
cause I love the feeling of stepping into something that has never been seen before.
The problem is that a world which takes your breath away is not just doors and walls,
it is cultures and civilizations. Even traditional games rarely invent these things, but
just re-skin the ones we already know about. Can you ever generate something like
walking through a jungle and discovering ruins in a style that no human has seen
before?

A.4 Richard Evans

Would you describe The Sims 3 as doing procedural narrative
generation? What about Versu?

It depends, as always, on your criteria.
The Sims games create a broad range of possible permutations of behaviour. Of-

ten, the generated behaviour sequence is everyday—but sometimes the behaviour
sequence seems to conform to a narrative. The richer the personality model, and the
deeper the social simulation, the more likely this is to happen. Certainly, some peo-
ple did create narratives just by sitting back and watching The Sims 3. For example,
Robin Burkinshaw created Alice and Kev: a great blog describing the plight of a
couple of homeless Sims. He set up an initial situation (a father-daughter pair, who
were both homeless), and then sat back, watching and recording the events as they
occurred.

Versu procedurally generates narrative. At the drama-manager level (the level
of scenes), there is a moderately rigid story graph of scenes with pre- and post-
conditions. But within each particular scene, the individual agents are free to choose
their own actions, based on their own desires.

Interactive storytelling originates in its own separate community.
As interactive stories develop more generative
procedural-storytelling systems, do they become a kind of
procedural-content domain?

Interactive stories often have hand-written content at the drama-manager level, but
variation and procedurality within the scene. This is a limited form of procedurality
existing inside a constrained hand-written framework.
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Was there anything you wanted to procedurally generate in a game
you worked on that you could not do because of algorithmic or
computational limitations?

Yes. One thing I really wanted the computer to do was to generate a social situation
that was already half-way through. So if, for example, the player turned up at a bus-
stop, there might be an argument between a boy and a girl that was already almost
finishing. This ability, to create social situations in media res, is not something that
the Versu simulator is able to do.

What is the most impressive example of procedural content
generation you have seen?

Ooo I don’t know. There are so many recent exciting examples. Procedurally gener-
ated platform levels, music composition, puzzle games—it’s a very exciting time.

Do you have any interesting stories about procedural-content
failures?

The richer the simulation, the more possible causal pathways—and the harder it can
be to understand why something is happening. During development of Versu, I had
a tricky bug where half way through a murder-mystery, the doctor was being rather
rude to my player character. I know that the doctor did not have an abrasive person-
ality, and my character had never done anything rude to the doctor, so it was hard
to see why the doctor was behaving this way. It turned out, after much debugging,
that the reason was this: at the beginning of the game, my player character had been
dismissive to one of the servants who was waiting at the table. The servant had gone
back to the kitchen, and had told the others about my rude behaviour. The doctor,
being a friend of the servant, had believed the servant’s testimony and had formed
a negative judgement about my player’s character. This sort of example shows how
emergence is a double-edged sword: it generates new stories, some of which are not
anticipated—but can also make it harder to understand what is happening.

In general, is there anything in a game you think could never be
procedurally generated?

In Versu, we generated text from templates (e.g. “[X] look[s] towards [Y obj]”),
substituting proper names and pronouns for variables (generating e.g. “Jack looks
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towards her”). What would be significantly harder—but also significantly more
flexible—would be to generate text without templates—using e.g. a phrase-structure
grammar and semantic constraints.

A.5 Tarn Adams

Was there anything you wanted to generate in Dwarf Fortress, or
another game you worked on that you could not do because of
algorithmic or computational limitations?

Most of the algorithms are scalable, so it’s really that almost everything needs to be
kept smaller than we’d like. Things like time travel are difficult to do in a proper
fashion in DF since the amount of data is extreme, and even a small perturbation
wouldn’t be believable if it didn’t have a lot of data to back it up. Fluid dynam-
ics are difficult, and our system is pretty lame due to computational problems (and
algorithmic/scientific cluelessness for anything complicated there). All of the con-
versation AI is very basic and will likely be held back by a lack of good ideas on my
part and also my dislike of generating a lot of English sentences. The entire frontier
of what we haven’t done in DF is made up of our limitations along these lines, when
it isn’t just time constraints.

What new design questions has PCG posed for some game you
worked on?

One of the interesting ones is the matter of presentation. If you generate most of the
content in the game, and it doesn’t hew to traditional lines, you have to be careful
about how you unfurl it to the player. We’re just getting started with this considera-
tion now as we start making more generated creatures and plant-life and materials,
but the game would become gray mush if we aren’t mindful as we move away from
pre-defined content. A very simple example is the paragraph description it pops up
whenever a forgotten beast attacks your fortress—if the player were attacked with-
out being forced to look at a description, I think it would become quite confusing
as the random attacks and other properties of the creature come into play, though
there’s a lot of wiggle room and different methods that could be tried out. When we
allow the game to replace regular wilderness creatures or the standard fantasy races
(elf, goblin, etc.) or even the playable race, the roll-out of the random characteristics
is going to be front and center... almost tutorial-worthy in some cases.

There’s also the matter of the realized map area which has come up a lot—
sometimes Dwarf Fortress has pieces of the world loaded up at five different levels
of abstraction (or more?), and each of those need to mesh with each other and be
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chosen so that crucial details aren’t lost but also so that memory and speed are under
control. This can be difficult to manage, and sometimes we have to make choices
that make the game suffer—this would relate back to the first question regarding
algorithm scalability I guess. You can often accomplish a lot of what you want to
accomplish without doing a perfect job by just scaling back the loaded area a bit,
or keeping an abstract version of a larger area loaded (whether that’s a map area or
some other concept).

What is the most impressive example of procedural content
generation you have seen since your own work?

The cities from Subversion, maybe? Although it wasn’t fully realized, it seems like it
would have been cool. Seeing the game unfold in Drox Operative was neat, although
if you view yourself as an RPG camera in a strategy game there, it probably doesn’t
stand out as an AI example. The complete package was interesting though.

What do you think of the fact that roguelikes have become a genre
of their own? Is PCG in your opinion an essential part of what a
roguelike is?

I don’t know that genres are ever healthy, but it’s cool to see more games. I don’t
have a definition for “roguelikes”, and it’s a popular subject for argument, but I can’t
think of a game without map-related PCG that I’d ever casually call a “roguelike”
to somebody in conversation. Other people focus more on permanent death, save
states, and other features, though, and for all I know Gauntlet is a “roguelike” now.

What are your tips for designing games that use PCG?

For all of these, there’s the caveat that rules are meant to be broken after looking at
the bigger picture, and also that the tips grew out of mistakes I still make which are
evident in my games. So: Don’t simulate more detail than you need to get your point
across— the elements involved in the PCG should be game elements, atmospheric
elements, etc.—if you don’t need the molecules bumping around, invisible to the
player, try to stay away from chewing up computer resources and programming
time putting that in. It’s fine to go one level deeper if the “phenotype” that arises
from your procedural DNA turns out well, but that’s a matter of happy accidents
as much as planning, and you’ll have difficulty refining your game if you subject
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yourself to too much chaos theory (or to too much going on that just doesn’t affect
anything).

Keep in mind what the game is trying to accomplish overall. If you can afford
it, don’t substitute crappy PCG for a single, better hand-crafted asset (unless there’s
a really solid counter-balance, say, in replayability, then it is a matter of taste)—
at least if you are polishing up your game, since experimentation is crucial at first
and you might arrive at something really satisfying. PCG does not automatically
increase replayability—a full play through a great pre-defined game is better than
a full play through a shoddy random game that you won’t touch again. I haven’t
always been able to do the following in a timely fashion, since it can hamper exper-
imentation, but if parts of your game are moddable, I think it’s good to keep your
own internal PCG in line with the moddable format (to keep the standards uniform if
anything else)—for example, PCG Dwarf Fortress creatures and materials are made
by producing a text definition which is interpreted in the same way as pre-defined
or modded text definitions.

I also think it is good to try your hand at your own algorithms when possible,
since the output will have more character than something recognizable as Perlin
noise or a Voronoi diagram etc., though just having anything you can iterate on is
probably good enough, and of course existing algorithms form an important part
of your PCG skills to build on. Sometimes you can get better results faster just by
plowing ahead, though, rather than fishing around for something online. Most things
haven’t been tried yet, and there’s a wide frontier of PCG in games to explore.
If you are simulating something that can be related to a real-world process, keep
that process in mind when you are trying to correct unacceptable defects in your
output—the answer is often in some missing variable or relationship that the real-
world analogy makes clear.

Do you have any interesting stories about PCG failures?

They’re mostly interesting from the humor angle, since things often go terribly
wrong. I’m not sure what would be interesting for the experts or people interested
in making better PCG. My process is very iterative, and it’s difficult for me to re-
member discrete instructive moments.

In general, is there anything in a game you think could never be
procedurally generated?

You can view everything produced by people throughout history as procedurally
generated in a larger context, so I wouldn’t leave anything out in general, although
there’s probably a Gödel-ish proof sitting around that you can’t PCG everything
from computer algorithms. Some things are certainly more difficult than others.
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Prose and conversations and so on can be rough, especially as it relates to AI (since
that’s just the Turing test more or less), and chaotic behavior that comes from many
small parts (like fluids or weather) is probably not possible since you’d need to
simulate the molecular behavior properly to hit upon the actual effects (though you
could use a “good enough” test like the Turing test, for dynamic behaviors vs. hu-
man observation of them). So in any case, the actual limits of PCG probably aren’t
important yet, and I don’t think supposed limitations related to being able to match
pre-defined human artwork in terms of emotional impact or symbolic significance
or whatever else should deter anybody from exploring what’s possible.

Why is PCG not used more?

People are using it now more than I’ve ever seen, so I’m not sure this one is answer-
able from my perspective. If current PCG techniques don’t measure up, it’s prudent
to stick with hand-crafted text and graphics and music from a financial and overall
quality perspective, certainly, rather than trying to tackle everything with PCG to
your satisfaction in the time you have available for your project.

What do you see as current directions for PCG that are worth
investigating?

I think people are already jumping into everything, in one way or another, and noth-
ing should be off limits there. I look at PCG as an almost universal candidate for
feature implementation (since I don’t have useful skills for producing non-PCG ma-
terial), so I wouldn’t close off or prefer any avenue. There’s a good game to be made
regarding any subject, and PCG can be involved in those.
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