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Abstract. Although there is an abundance of how-to guides online,
systematically utilising the collective knowledge represented in such
guides has been limited. This is primarily due to how-to guides (effec-
tively, informal process descriptions) being expressed in natural lan-
guage, which complicates the process of extracting actions and data. This
paper describes the use of Ripple-Down Rules (RDR) over the Stanford
NLP toolkit to improve the extraction of actions and data from process
descriptions in text documents. Using RDR, we can incrementally and
rapidly build rules to refine the performance of the underlying extrac-
tion system. Although RDR has been widely applied, it has not so far
been used with NLP phrase structure representations. We show, through
implementation and evaluation, how the use of action-data extraction
rules and knowledge acquisition in RDR is both feasible and effective.

1 Introduction

In daily life, people often undertake processes' whose intrinsic details are
unknown because they are being encountered for the first time. Such processes
could be as simple as cooking a dish or as complex as buying a house. To dis-
tinguish them from the conventional (and more widely-studied) organisational
workflows, we refer to these kinds of processes as “personal processes’. Descrip-
tions of personal processes are often shared on-line in the form of how-to guides
(e.g., on-line recipe sites, eHow?, WikiHow?®), which are normally written in
natural language as a set of step-by-step instructions.

Although the collective knowledge and data represented in such descriptions
could be useful in many applications, the potential for using them is curbed by
their natural language format. The ultimate goals of our project [3] are (i) to
build a repository of personal process descriptions based on a formal model and
(ii) to investigate novel query techniques and data analytics on such descriptions.

! In this paper, we use the terms process and workflow interchangeably.
2 www.ehow.com, eHow.

3 www.wikihow.com, WikiHow.
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In this paper, as a step towards building the repository, we describe RDR-
ADE (RDR Action Data Extractor), which aims to extract the basic constructs
of a process description from how-to guides.

We adopt a knowledge acquisition approach (using Ripple-Down Rules [1]) to
allow human users to improve the performance of a standard NLP parser [10] in
identifying verbs and objects in personal process descriptions. Although RDR has
been used in conjunction with NLP tools in the past, the aim of our approach is to
extract basic process constructs (i.e., actions and data) from text, which has not
been done with RDR before. Specifically, we make the following contributions.

— We propose the notion of action-data extraction rules (henceforth extraction
rules). These rules represent user knowledge about how the actions and their
associated data can be identified from process descriptions.

— We present incremental knowledge acquisition techniques to build and update
a set of extraction rules. The continuous update of extraction rules enables
our system, over time, to make finer-grained extraction decisions.

— We present an implementation of RDR-ADE and provide the evaluation
results that show the feasibility and effectiveness of our proposed approach.

While the ideas we present should apply to many types of process descrip-
tions, we consider here only cooking recipes due to the availability of large num-
bers of relatively compact online descriptions?.

The rest of the paper is structured as follows: In Sect. 2, we discuss the use
of RDR in other systems as a way to improve the underlying techniques. We then
briefly introduce some background concepts such as a model for personal processes
and Stanford CoreNLP. In Sects.4, 5 and 6 we describe the details of the rule
models and implementation, followed by evaluation results and conclusion.

2 Related Work

Ripple Down Rules (RDR) [1] is a knowledge acquisition technique that allows
experts to rapidly construct knowledge bases on a case-by-case basis while a
system is already in use. It can be built incrementally on top of an existing
system to improve the underlying system. RDR and its variants have been suc-
cessfully used in a wide range of application domains, such as Web document
classification [8], diagnosis [9], information extraction [7], and have had signifi-
cant commercial uptake [2,9]. A wide range of RDR research covering a range
of RDR methods is reviewed in [12].

The key idea behind RDR is that cases are processed by the RDR system and
when the output provided by the system is not correct, a new rule is added to
give the correct output for that case. In this process, the expert does not need to
consider the structure of the knowledge base or modify other rules. They build
the rule to give the correct conclusion for the case they are trying to correct,

4 Recipes are also useful for subsequent studies in personal process analysis, but that
is beyond the scope of this paper.
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and in most RDR systems this rule is then checked against cases for which
rules were previously added to see that none of these cases are misclassified. If
necessary the expert adds further rule conditions, making the rule more specific
for the case in hand excluding the previous cases. The system then automatically
adds the new rule into the knowledge base. This is a very rapid process and log
data from commercial systems shows that across 10s of 1000s of rule and 100s
of knowledge bases, the average time to add a rule was under two minutes [9].

In terms of utilising RDR with NLP tools, [6] shows how the informal writ-
ing style of Web documents tends to negatively affect the performance of NER
(Named Entity Recogniser) parsers. The paper proposes an RDR-based knowl-
edge acquisition process where the rules are used to correct spelling errors or
missing/unclassified named entity (NE) tags (e.g., ‘YouTube’ and ‘YOUTUBE’
should be classified as ‘ORG’ (organisation)). The same authors also applied
the same principles to extract Open Relations between named entities. Open
Relation Extraction systems seek to extract all potential relations from the text
rather than extracting pre-defined ones [7]. The only previous work on RDR for
parts of speech and phrase representations was an automated learner using the
RDR structure, rather than actual knowledge acquisition [11].

Our aim is to not only demonstrate improvement on the NLP Stanford parser,
but to improve the extraction of action and data information from the text, which
is something that has not been done before with RDR.

3 Preliminaries

In this section, we give the background concepts that are necessary to describe
the RDR-ADE system: the target schema that RDR-ADE works towards and
the extraction process of action/data pairs using the Stanford NLP parser.

3.1 PPDG: A Model for Personal Process Descriptions

To formally represent and analyse the process instructions in how-to guides,
we proposed a graph-based model, called “Personal Process Description Graph”
and a query language over this model [5,14]. PPDGs are labelled directed graphs
that include both actions and data. In a PPDG, there are different node types
for actions and data, different arc types to represent action flow and data flow,
and associations between actions and data. The formal definitions and prop-
erties of the model are omitted here as the main topic of this paper does not
directly involve PPDGs. Our goal is to extract, from a process description, the
information required to define action nodes and data nodes to build a PPDG.

3.2 Action and Data Extraction Process

The Stanford CoreNLP toolkit [10] provides a collection of NLP tools. The tools
that are important for our purposes are the part-of-speech (POS) tagger, which
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Input: kimchi recipe

Output:

1,' Cut the cabbage crosswise into Parse tree a set of (action, data) pairs

| 2-inch pieces, discarding the || [ [—————————————
1 root end. B ROOT o ™
\ HS {“Action™ [ !

U featany-

2. Sprinkle with the salt, and toss m VP | {“S‘eP y 1 Y i
with your hands until the cabba :ﬁgﬂ vB i “;ctt'?”[‘; cg;) ) !
e is coated. 1 ata™ [‘cabbage”, 1
g i> M the| DT i>i “2-inch pieces’}, |
3. Turn every 30 minutes. B cabbage| NN [ (“step 2 ) - i
W PP ! action”: “discarding”, i
4. Add one ingredient at a time in a B ADVP \,data’ “root-end’} S

oo | N
large bowl and stir to combine B crosswise|RB

5. Leave the cabbage and let sit at
a room temperature for 1- 1 1/2
hours.

Fig. 1. Example input and output for the RDR-ADFE system

marks words with their syntactic function, and the parser, which produces a
parse tree for a chunk of natural language text.

The overall process of extracting actions and data from a description is shown
in Fig. 1. We break this process into the following phases:

1. Input Text Segmentation. A process description consists of a number of “input
units” where each “input unit” contains one or more sentences and each
sentence contains one or more phrases. Each phrase corresponds to a single
step in the process. Input units are separated by line breaks. The parser
partitions each input unit into sentences and phrases.

2. Parse Tree Generation. Using the Standford NLP parser, this phase takes
an input unit and produces as output a parse tree. As in Fig.1, the non-
leaf nodes of the parse tree carry the phrase structure (via tags such as NP
(Noun Phrase) or VP (Verb Phrase)), while leaf nodes carry the part-of-
speech (POS) for individual words (via tags such as NN (Noun), VB (Verb)).

3. Action and Data Faxtraction. In this phase, we extract a set of (action, data)
pairs from the parse trees generated from the previous phase. In identifying
each pair, we use the phrase structure and consider a word with VB (and
derivations of it) as an action and NN as a data item. The extracted pairs are
written as JSON objects for further processing (e.g., mapping to a PPDG).

The phrase structure contained in a parse tree is useful for identifying the
most likely places from which to find verbs and objects. In each sentence, the
parse tree tags a verb phrase (VP) and within a verb phrase, we may find a
relevant noun phrase (NP).

While the NLP toolkit is useful for our purpose, it has limitations for the
kind of informal text that we typically find in process descriptions.

For example, the default POS tagger and parser are trained to assume that
the first phrase in a sentence will be a noun phrase referring to the sentence sub-
ject. However, recipe sentences generally start with the verb, and have an implicit
subject (“you”). This results in common types of recipe sentences (e.g. “smoke
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the salmon”) being misinterpreted as starting with a noun (e.g. “smoke”) if the
first word can be interpreted as a noun. Another type of sentence which caused
problems for the parser was one in which an adverbial phrase was placed at the
start of the sentence (e.g. “with a sharp knife, chop the cabbage” vs “chop the
cabbage with a sharp knife”).

As we have briefly outlined in Sect. 2, instead of re-training the CoreNLP
tools, we employ a similar approach to [6,7]. We exploit the RDR technique
to build and update action-data extraction rules over the baseline system (i.e.,
CoreNLP tools). These rules are designed to address the said problems. The
continuous updates of extraction rules enable our system to perform more precise
extraction.

4 Harnessing User Knowledge

In this section, we describe the notion of extraction rules and their manage-
ment. As noted above, previous RDR techniques on NLP tools were targeted
on extracting named entities or open relations - utilising POS tags. The knowl-
edge we need to represent in RDR-ADEFE has to be expressed over the parse tree
structure. The rule model we present below is designed to express user knowl-
edge about which situations the actions and their relevant data can be identified
in a given parse tree.

4.1 Extraction Rule Representation Model

Each rule has two components: a condition and a conclusion. The conclusion
part of the rule simply states how a word is to be labelled as ‘action’ or ‘data’,
or left unlabelled. A condition consists of a conjunction of predicates on parse
trees. To express a condition relating to the parse tree, we propose the following
rule syntax components: nodes, test values and operators.

Nodes: To express conditions over nodes in the parse tree, we provide intuitive
access names for the nodes (following the XML document model). Some of the
examples of the possible names are: currentNode, parentNode, allAncestors,
xthLevelParentNode, firstChild, lastChild, nextSibling, prevSibling, etc.

Test Values: The test values can be of two types: Tags or Regular Expressions.
Tags represent the parse tree tag values that a node could be associated with,

Table 1. A sample list of tags

PT* Description wTt Description wTt Description

Apvp | Adverb phrase CD |Cardinal number | NN, NNS | Noun, plural

NP Noun phrase DT | Determiner VB, VBG | Verb, gerund

PP Prepositional phrase IN |Preposition VBN Verb past participle
VP Verb phrase JJ | Adjective PRP$ Possessive pronoun

*PT = Phrase Level Tags, +WT = POS Word Tags.
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such as VP, NN, and DT. Table1 describes some of the phrase structure tags
and part-of-speech tags® used in our system. Besides the standard tags, we have
our own custom tags: ‘ACTION’ and ‘DATA’.

A test value could also contain a regular expression. This is useful, for exam-
ple, when the user wants to match any POS tags that are derivations of a base
form (e.g., VBD, VBG, VBN, VBP, VBZ are derivations of VB). Note that a
regular expression could also include a literal value (e.g., ‘Oil’).

Operators: The set of operators we currently support allows for a given node
to be tested against certain properties. For example, we could test if a node is a
verb phrase, or has a text value of ‘X’. The design and implementation of these
operators is at the heart of the rule design. Our current implementation supports
the following operations®:

— HasPhraseTag: returns true if the node tested has a phrase tag give in the
test value, e.g., PP (Prepositional phrase), VP (Verb phrase).

— HasWordTag: returns true if the node tested has a part-of-speech tag give in
the test value, e.g., DT (Determiner), CD (Cardinal number), VB (Verb). We
use the term word tags for part-of-speech tags.

— HasActionObjectTag: returns true if the node tested is labelled with the our
custom tags “Action” or “Data”.

— IsLeafNode: returns true if the node tested is a leaf node in the parse tree.

— HasText: returns true if the node tested has the text given in the test value.

— CanBeOfWordType: returns true if the text value of the node tested is of the
word type given in the test value, e.g., (NN) Noun, (VB) Verb, or (JJ) Adjec-
tive.

We use the WordNet API” to implement the CanBeOfWordType () operator. This

operator is used to see if a given word could have different functions in a sentence.

For example, ‘0il’ could be a noun (as in ‘olive 0il’) or a verb (as in ‘oil the fish’).
Using these components, we define an extraction rule as follows:

Definition 1 (Extraction Rule). Let Ny be a set of nodes in a parse treet. An
extraction rule has the form: IF P THEN C where P is a conjunction of predicates
on tree nodes and test values, and C is a conclusion. Each predicate has the form
(node, op,val), in which node€ Ny, ope{HasPhraseTag,IsLeafNode,...}, and
vale{VP,NN,VB,NP,...}. The conclusion has the form (node, action/data).

For example, the rule (currentNode,HasWordTag,NN)— (currentNode,
‘Data’) checks whether the current tree node has a tag of NN and then deter-
mines that it must be a data item. If the node was cabbage|NN, the conclusion
would be that “cabbage” was data for the current action.

5 For the complete set of part-of-speech tags generated by the Standford parser, see
http://www.comp.leeds.ac.uk/amalgam /tagsets/upenn.html.

5 However, adding a new operator is a straightforward task in our system.

" WordNet 3.0, https://wordnet.princeton.edu.
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4.2 Matching Extraction Rules

When a parse tree t is generated from a case, the system identifies two extraction
rules where one is for identifying actions and the other is for identifying their asso-
ciated data. For this, we provide an operation called MatchRule (), which takes as
input ¢ and produces as output the rules for the action and data identification
process. The system matches ¢ against the conditions of a set of extraction rules.
It evaluates the rules at the first level of rule tree. Then, the next level of rules
are evaluated, if their parent rules are satisfied. If no extraction rule is found to
be appropriate to ¢, the user might build a new rule with the help of rule editor
provided by our system.

Algorithm 1. MatchRule

Input: Parse tree ¢t and a set of extraction rules R
Output: A set of matched extraction rules

begin

Let satisfiedRules:= ¢;

2 // C is a condition of a rule
3 // p is a predicate of C
4 foreach r € R do

5: C:= getCondition(r);
6.

7

8

—_

allPredicatesSatisfied:= true;
foreach p € C do
: if not isSatisfiedBy(p, t) then
9: allPredicatesSatisfied := false;

11: endif

11: endfor

12: if allPredicatesSatisfied then

13: satisfied Rules:= satisfiedRules U T
14: endif

15:  endfor

16:  return satisfiedRules;

end

5 Incremental Knowledge Acquisition
This section presents how to incrementally obtain the extraction rules from users.

5.1 Knowledge Acquisition Method: Ripple Down Rules

To build and update extraction rules, we use the RDR. [1] knowledge acquisition
method because: (i) it provides a simple approach to knowledge acquisition and
maintenance; (ii) it works incrementally, in that users can start with an empty
rule base and gradually add rules while processing new cases.

RDR organizes the extraction rules as a tree. In RDR-ADE, we have two
rule trees: one for action extraction (Fig.2(a)), the other for data extraction
(Fig. 2(b)). For example, the rule tree for action extraction has Action_DefaultRule
and Action_BaseRule. The exceptions to the base rule are named AE_Rulel,
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AE_Rule2, ... AE_RuleX according to the creation order. Action_DefaultRule is the
rule that is fired initially for every case. The rules underneath it are more special-
ized rules created by adding exception conditions to their parent rules. The rule
inference in RDR starts from the root node and traverses the tree, until there are
no more children to evaluate. The conditions of nodes are examined via depth-first
traversal, which means the traversal result is the rule whose condition is satisfied
last. The same applies to the rule tree for data extraction. We note that for each
case, RDR-ADE evaluates both the action extraction and data extraction rule
trees to produce the JSON output.

AE_Rule 1
IF
) (currentNode, HasText, ‘am|is|are|been’) OR
Action_BaseRule (currentNode, HasText, ‘have|has|had’)
Action_DefaultRule IF THEN
(currentNode, HasWordTAG, ‘VB[A-Z]*') AND (currentNode, ‘None’)
IF (default true) pye
THEN NULL T'fl%a’\r‘entNode, HasPhraseTAG, 'VP') AE_Rule X
(currentNode, ‘Action’) IF
THEN
(a) Rule tree consisting of rules to extract actions
(b) Rule tree consisting of rules to extract data DE_Rule 1

IF
(currentNode, HasText, ‘minute(s)|hour(s)|day(s)’) OR

Data_BaseRule (currentNode, HasWordTAG, ‘CD’)
Data_DefaultRule  |IF THEN .
F (Gefault 1uo) (currentNode, HasWordTAG, ‘NN[S|JJ|CD’) AND (currentNode, ‘None’)
(parentNode, HasPhraseTAG, ‘NP’)
THEN NULL THEN DE_Rule 2
(currentNode, ‘Data’) IF

(parentNode, HasSibling, ‘at|for’) AND

(currentNode, HasText, ‘time|month’)
THEN

(currentNode, ‘None’)

Fig. 2. Example RDR trees (abbreviated)

5.2 Acquiring User Knowledge Incrementally

In what follows, we demonstrate how error-correcting rules are acquired from the
user incrementally using a sequence of cases as an example scenario. In the cases,
actions are underlined and data is shown in bold.

Case 1. “Cut the cabbage crosswise into 2-inch pieces, discarding the root
end”.

From the sentence in Case 1, our system generates the parse tree shown in
Fig.3. At this point, there is one default rule in each rule tree. These rules are
applied to this parse tree and NULL values are returned from each rule tree.

The user considers this as an incorrect result and adds new rules
Action_BaseRule and Data_BaseRule under the default rules as shown in Fig. 2.
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Parse tree

n ﬁgt VB JSON

u the| DT “ActionObject’:
m cabbage| NN { Clotn "Jec [
Case 1 m PP ﬁs
] u ADVP ‘action
“Cut the cabbage crosswise m crosswise| RB
into 2-inch pieces, —> [] m’o\ IN
discarding the root end” L . {"step” 2,
: zi:er::cer;ll\thS “action”: “discarding”,
aS P “data”: “root end"}

I

Action_BaseRule

& Data_BaseRule | 2inch pieces’]),

u VP
m _discarding| VBG
u NP

m the| DT

m root| NN

m end| NN

Fig. 3. Case 1 applying two new exception rules

Action_BaseRule specifies that, if a node has a word tag matching a regular expres-
sion ‘VB[A-Z]*" and its parent node has a phrase tag ‘VP’, the word is labelled as
‘Action’. By applying this rule to the parse tree of Case 1, the system returns a set of
actions {cut, discarding}. On the other hand, Data_BaseRule states that if a node
has a word tag ‘NN[S]’, ‘JJ’ or ‘CD’ and its parent node has a phrase tag ‘NP’, the
word should be labelled as ‘Data’. From the parse tree, this rule returns {cabbage,
2-inch pieces, root end}. Figure 3 shows the results of applying these two new rules
to the case, which is now considered correct.

In fact, as indicated by their names, we consider these two rules as the base
rules in our system for extracting actions and data respectively.

Now we consider the next case, Case 2 whose parse tree is shown in Fig. 4.

Case 2. “Sprinkle with salt; toss with your hands until the cabbage is coated”.

Using the parse tree for this case, the two base rules are fired and the system
returns as actions {sprinkle, toss, is coated} and as data {salt, hands, cabbage}.

The user considers the results and decides to exclude ‘is coated’ from the action
list. As a general rule in our system, we ignore forms of the verb ‘to be’ (and some-
times ‘to have’) when used as an auxiliary together with the past participle of a
transitive verb, especially when a word like ‘until’ is used as a subordinating con-
junction to connect another action to a point in time.

To ignore BE-verbs (e.g. am, are, is, been, ...) and HAVE-verbs (have, has,
had, ...) from the actions, the user adds the following rule as an exception to
Action_BaseRule:

AE_Rulel: For current node n € Ny, (n, HasText, ‘am,is,are,been’) or (n,
HasText, ‘have,has,had’) — n is not labelled as ‘action’.

According to AFE_Rulel, if the current node contains either a BE-word or a
HAVE-word, the word associated with the node is ignored from action labelling.
Thus, from the same parse tree in Fig. 4, the rule matching algorithm now gen-
erates the final JSON object by applying AE_Rulel and Data_BaseRule instead
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JSON
Parse tree {“ActionObject”: [
ROOT {"step™ 1,
= R0 “action’: *Sprinkle’,
u VP “data”: “salt’},
m Sprinkle| VB {"step™ 2,
mPP Action_BaseRule “action”: “toss”,
: }'\l"gm IN & Data_BaseRule “data”: “hands’},
u the| DT {'step™3,
Case 2 m salt| NN “action”: “is coated”,
VP “data”: ¥
“Sprinkle with the salt, and " m toss| VB 1 data' "cabbage’),

m your| PRP$
™ SBIAFI{\ands| NNS {“ActionObject”: [

m until] IN {“stgp“z 1, .

u NP “action”: “Sprinkle”,
u the| DT AE_Rulet ‘data” “salt’},
;Pcabbage| NN [7g Data_BaseRule | {step”: 2,

" mis|VBZ “action”: “toss”,

m coated| VBN ) “data”: *hands”}

Fig. 4. Case 2 ignoring HAVE-verbs and BE-verbs.

of Action_BaseRule and Data_BaseRule. Here, we do not extract the cabbage as
data because its associated verb is not identified as an action.

Case 3. “Turn every 30 minutes”.

In Case 3, according to the existing rules so far, 30minutes is classified as
‘Data’ (by Data_BaseRule). In this scenario, the user decides to ignore numbers
or units such as 30 minutes, 2days, 30 cm and so on, because she considers them
as auxiliary information that is certainly useful but not part of the key action/data
constructs in a process. She may want to consult the system developer to define
a new type of label “UNITS”, but for now, she adds a new rule DE_Rulel as an
exception of Data_BaseRule.

DE_Rulel: For the current node n € Ny, (n, HasText, ‘minutes(s), hour(s),
day(s)’) or (n, HasWordTag, ‘CD’) — n is not labelled as ‘data’.

DE_Rulel states that, if a node has a time-word or has a word tag CD or DT, then
it is not labelled as data. After this rule is defined, in the final JSON object in
Fig. 5(a), we extract only the action “turn” from the sentence.

Case 4. “Add one ingredient at a time in a large bowl and stir to combine”.

Now consider Case 4. According to the rules so far, Data_BaseRule will make
time|NN, under NP as ‘Data’. The user considers that the result is not what she
expected, and decides that she does not want to extract data from propositional
phrases such as at a time, in half, for up to one month, etc. She adds the fol-
lowing rule DE_Rule?2.

DE_Rule2: For current node n € Ny, parent node pn € Ny, (pn,HasSibling,
‘at,for’) and (n,HasText, ‘time,month’) — n is not labelled as ‘data’.
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Parse tree
..Rg ot Case 4
m VP
Parse tree m Add| VB “Add one ingredient at a
Case 3 u NP time in a large bowl and
* m ROOT = one| DT stir to combine.”
“Turn every 30 Y m ingredient| NN
minutes.” P i
wat)IN
m Tum| VB u NP
JSON = NP walDT JSON
{“ActionObject”: [ m every| DT u tme| NN {*ActionObject”: [
" u PP {'step” 1
{'step™ 1, Action_BaseRule = 30/ CD win|IN vseee b
“action”: “turn’} &DE_Rule] = minutes| NNS = NP action” ‘add’,
I ma| DT ‘data”: [‘one ingredient’,
u large| JJ Action_BaseRule “large bowl']},
= bowl[ NN &DE_Rule2 {'step’:
LA ‘action” “stir’}),
m stirl VB “
a VP {'step™ 3,
u o] TO “action”: “combine”}
m combine| VB I

(a) (b)
Fig. 5. Case 3 ignoring numbers or units, Case 4 ignoring prepositional phrases.
The rule says if a current node is a time-related word and its parent node has a

sibling node tagged as at or for, then word associated with the node is not labelled
‘Data’. The final JSON objects with this rule is shown in Fig. 5(b).

User Interface Knowledge
Layer Acquisition Layer

Case

Editor Parse Tree
Generator

Rule

c:) Action-Data

Extractor

Editor
Parse tree
Browser
Rule
000 Manager

~
@
=
=}
2
Z.
Q
=
<

Layer

Rule Base

Recipes

-

Processes

Fig. 6. RDR-ADE system architecture

6 Implementation and Evaluation

This section describes our prototype implementation and experimental results.

6.1 Implementation

A prototype was implemented using Java, J2EE and Web services. The RDR
engine and action-data extractor are all independent Java programs that are
wrapped by a REST web service and accessed through HTTP. This architecture
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allows other web pages or applications to make use of the services in other ways.
The RDR-ADE system consists of the following three layers: user interface, knowl-
edge acquisition, and repository (see Fig. 6).

The user interface layer allows users to browse generated parse trees and incre-
mentally build extraction rules using the rule editor. The knowledge acquisition
layer is responsible for generating parse trees, extracting actions and data, cre-
ating rules, etc. The repository layer stores the rules, process descriptions (e.g.,
recipes), JSON objects, and so on. Table 2 shows a set of operations that the com-
ponents of such layers can invoke to carry out their specific functions. Figure 7
gives a screen-shot of our system. Here, we see the input case on the top left panel.
For the input case, the system generates a parse tree in the bottom right panel.
Then, using the extraction rules in a knowledge base, it produces a set of (action,
data) pairs in the format of a JSON object in the top right panel.

Table 2. The list of operations invoked in RDR-ADE

Parse tree generator/Rule manager operations

- generateParseTree(c) produces a parse tree from an input case c.

- matchRule(c) returns a list of extraction rules applicable to an input case c.

- createRule(c,d) creates a rule with a condition ¢ and a conclusion d.

- refineRule(r,c,d) refines a rule r with a conditionc and a conclusion d.

Action and data extractor operations

- extractActionData(p) identifies actions and data from a given parse tree p.

- generateJSON(ad) generates a JSON object from a set of (action, data) pairs ad.

6.2 Evaluation

We now present the evaluation results to show how effectively the RDR-ADE sys-
tem identifies actions and their associated data from process descriptions.

Dataset. We use a dataset derived from 30 recipes. The dataset consists of 317
sentences and 4765 words. We have manually labelled the verbs (as ‘action’) and
data items (as ‘data’) in each sentence to create the ground-truth. Each sentence
is uniquely identified with an ID. We then processed sentences one by one in the
presented order.

Evaluation Metrics. We measured the overall performance of the extraction
system using the following formula.

the number of correctly identified actions and data items
Accuracy =

the total number of labelled actions and data items
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RDR powered Stanford Parser and Action Object Extraction

Input Paragraph Final output for Action Object extraction
Cut the cabbage crosswise into 2-inch pieces, di: ling the root end {"Acti ject™: [
{
"Step": 1,
"Data": [
"cabbage",
"2-inch pieces”
1
"Action": "Cut"
3
{
“Step": 2,
“Data": "rootend",
Execute “"Action": "discarding"
}
Output without RDR Raw Parse Tree Parse Tree with RDR
Cut| VB the| DT cabbage | NN crosswise|NN into|IN 2-inch ) . ROOT « ROOT
pieces|NNS,, |, discarding|VBG the DT root |NN end|NN i Iy
- VP - VP
= Cut|VB = Cut|VB
- NP = NP
= the|DT = the|DT
= cabbage|NN = cabbage|NN
= crosswise|NN - PP
- PP = ADVP
Output with RDR Applied = into|IN = crosswise|RB
= NP = into|IN
Cut|VB the | DT cabbage | NN crosswise|RB into|IN 2-inch |} = 2dinch|)) = NP
pieces NNS, |, discarding|VBG the |DT root|NN end [NN = pieces|NNS = 2-inch|j)
=l = pieces|NNS
=S -l
= VP =5

= discarding|VBG - VP
- NP = discarding|VBG

Fig. 7. Screenshot showing: input case, parse tree, and action-data pairs.

Training Phase. Starting with an empty knowledge base, we began the knowl-
edge acquisition process by looking at the sentences one by one in the order pre-
pared at the start of the experiment.

The acquisition process is defined as follows (note that this process is repeated
for every sentence): (i) a sentence is given as an input case, (ii) rules are applied,
(iii) we examine the result, (iv) if the result is what the user expected, the rule-base
is untouched; if not, an exception rule is added to the rule base.

The above steps are repeated until all sentences are considered, or until we do
not see significant improvement in the accuracy measure. With an RDR system
one can keep adding rules indefinitely as increasingly rare errors are identified. In
critical in application areas such as medicine, the ability to keep easily adding rules
if required is a key advantage of RDR. In other domains, and in research studies
such as this, it is sufficient to add rules until the performance plateaus and adding
new rules has a negligible effect on the overall performance.

In the first run, we stopped at the 212" case. In the following discussion we
have called the initial 212 cases “training data” and used the remaining cases
(cases 213-317) as the “test data” (i.e., unseen cases). In fact the initial 212 cases
should not really be considered as “training data” until they have been processed
by the system and perhaps a rule added. For example in Fig. 8(c), in processing
the first 100 cases, 22 errors occurred and a rule was added for each error as it
occurred. The remaining 112 cases had not yet been used for training; however, in
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Fig. 8. Experiment results

the following discussion of accuracy, for simplicity, all 212 cases eventually used
for training are used in assessing accuracy on training data.

Observations:

— Figure 8(a) shows that, during the training phase, the performance of the system
improves as more sentences are processed and more rules are added. The perfor-
mance improves rapidly at the early stage of the training and gradually plateaus.
At the end of the training cases, 32 rules had been added and the accuracy was
98 %. The accuracy is not 1.0 because when a new rule is added only the case
for which the parent rule is added is checked; however other cases in the train-
ing data processed by this rule, might now be incorrect. The results demonstrate
that even checking one case per rule provides very robust validation.

The performance on the test data similarly improves rapidly as more rules are
added to deal with training data errors. The accuracy on the test data and train-
ing data is very similar when low numbers of rules have been added, because in
fact most of the “training data” is as yet unseen; however, as more and more of
the training data is actually used for training, the performance on the test data
is only slightly less than the training data, 96 % vs 98 %.

— Figure 8(b) shows that a new rule had bigger impact on the performance of the
system at the early stage of the experiment. Then, as more and more rules were
added their impact tailed off. This is because common and repeated errors are
fixed earlier on, leading to substantial improvement in terms of the accuracy
measure. The overall trend of the graphs shows that the improvement brought
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by each rule converges at a low volume, because the errors left to be fixed at the
late stage of the experiment are most likely only applicable to unique and less
common cases.

— Figure 8(c) shows how quickly rules are added as the cases are processed. Rules
are initially added frequently as exceptions are discovered. Since the exceptions
are subsequently re-used to handle new sentences, less new rules are required.
Eventually, as the other graphs show, sufficient rules have been added to the
system to handle most new sentences.

On Awverage Time Per Rule Creation: Because creating rules requires understand-
ing of the NLP parse tree structure, we also have looked at the average time taken
per rule creation. This was done by asking three users (one expert, two non-experts)
to use the system. The expert who was the developer of the system had around
12 hours of experience using the rule editor. The non-experts were aware of the pur-
pose of the system, but not necessarily familiar with the parse tree structure. They
had around 2 hours of training on the system. They did not participate in building
knowledge bases, but experimented with the system adding around 5-10 rules. The
expert reported that it took less than 2 minutes to look at a case and create a rule
if needed. For the non-experts, it took around 2 minutes to create a rule.

7 Conclusion

In this paper, we presented an RDR-based knowledge acquisition system to
extract action/data pairs from text documents (specifically recipes) that contain
process instructions (i.e., step-by-step guides). Although omitted for clarity, our
system also provides a rule-based component that improves the POS tagging itself,
which in turns improves the action-data extraction process overall. The perfor-
mance of the system over a test data set showed that even with relatively short
training, we could obtain 96 % accuracy on unseen data.

Our immediate future work includes performing more experiments with mul-
tiple users, using the same dataset and ground truth. This is not only to show
that the results can be repeated by different users, but also to gain deeper insights
into the relationships between the number and quality of the rules and the perfor-
mance improvement of the system. In machine learning research, repeat experi-
ments with different randomisations of training and test data, are used to avoid
spurious results due to differences between training and test data. The results here
are clearly not due to significant differences between training and test data as the
increase in accuracy as cases are processed and rules are added is very similar for
both training data (including cases from the 212 not yet processed in training)
and test data (cases 213 to 317).

Another important aspect of the work is to design an approach that could
assist users with writing the rules over the parse trees, as this requires a high level
of understanding of the phrase representations. The email classification system
built by [4,13] shows that a purpose-designed rule editor interface that facilitates
a simple point-and-click style can help the rule building process. The extensive
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evaluation plan we outlined above could help us identify critical and common pat-
terns in the generated rules. Such patterns could be the basis for the design of a
more intuitive rule editor.
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