
SIMPLE: A Language for the Specification
of Protocols, Similar to Natural Language

Dave de Jonge(B) and Carles Sierra

IIIA-CSIC, Bellaterra, Catalonia, Spain
{davedejonge,sierra}@iiia.csic.es

Abstract. Large and open societies of agents require regulation, and
therefore many tools have been developed that enable the definition and
enforcement of rules on multiagent systems. Unfortunately, most of them
have been designed to be used by computer scientists and are not suitable
for people with no more than average computer skills. Since more and
more tools are nowadays running as cloud services accessible to anyone
(e.g. Massive Open Online Courses and social networks) we feel there
is a need for a simple tool that allows ordinary people to create rules
and protocols for these kinds of environments. In this paper we present
ongoing work on the development of a new programming language for
the definition of protocols for multiagent systems, which is so simple
that anyone should be able to use it. Although its syntax is strict, it
looks very similar to natural language so that protocols written in this
language can be understood directly by anyone, without having to learn
the language beforehand. Moreover, we have implemented an easy-to-use
editor that helps users writing sentences that obey the syntax rules, as
well as an interpreter that can parse such protocols and verify whether
they are violated or not.

1 Introduction

In open multiagent systems (MAS) where any agent can enter and leave at will
and the origins of the agents are unknown one needs a mechanism to regulate the
behavior of those agents. Just like in human societies, rules need to be imposed
in order to prevent the agents from misbehaving and abusing system resources.
A good example is that of an auction taking place under a specific protocol. An
English auction protocol for example, requires the buyers to make increasing bids
and stops when the auctioneer says so, after which the buyer with the highest
bid wins the auction. In a Dutch auction on the other hand, bids are decreasing,
and the first buyer to accept a bid wins the auction.

Many systems for the implementation of such regulatory systems have been
developed, such as ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15].
They allow users to define a set of rules and then impose those rules on the
agents in a MAS (the term ‘agents’ may here refer to software agents as well as
to human beings). This enforcement of rules may happen either by punishing
misbehaving agents, or by simply making it impossible to violate them, which
is called regimentation.
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 98–118, 2016.
DOI: 10.1007/978-3-319-42691-4 6

A Language for the Specification of Protocols, Similar to Natural Language 99

One common characteristic of these systems is that they are mainly designed
with computer scientists as their target users. They require knowledge of multi-
agent systems, programming languages and/or formal logic. For people with no
more than average computer skills they are unfortunately too complicated.

We expect however that agent technologies will become more and more com-
mon in the near future, creating a demand for simple tools to maintain and
organize such systems and that can be used by ordinary people. We can com-
pare this for example with the evolution of web development. In the early days
of the Internet, developing a web page was considered an advanced task that
would only be undertaken by computer experts, and hence web development
languages such as HTML, PHP and SQL were developed to be used by profes-
sional programmers. However, as web pages became more and more abundant
and every shop, social club, or sports team wanted to have its own web page,
many tools such as DreamWeaver and WordPress were introduced to make the
creation of web pages a much simpler task. We strive for a similarly easy tool
for the development of multiagent systems.

A good example of where such a tool would be useful is the organization of
online classes, because teachers often want to put restrictions on their students.
Teachers may for example require that students only take a certain exam after
they have passed all previous exams. In this way teachers make sure they do
not waste their time correcting exams of students that do not study seriously
anyway. Another example could be the process of organizing a conference, where
one requires authors to submit before a deadline, or one requires the program
chair to appoint at least 3 reviewers to each paper. Also, one can think of a tool
that allows users to set up their own social networks, with their own specific
rules, as suggested in [23].

Therefore, in this paper we present ongoing work on the development of a new
language to define protocols for multiagent systems. This language is so close
to natural language that it can be understood directly by anyone without prior
knowledge of any other programming language. We call this language SIMPLE,
which stands for SIMple Protocol LanguagE. Although it looks very similar to
natural language, it has in fact a strict syntax. Together with this language we
also present two tools: an editor that makes it very easy for users to write well-
formed sentences, and an interpreter that parses the source file and makes sure
that the rules defined in it are indeed enforced. The fact that the language comes
with an editor is very important, because it enables the users to write correct
protocols without having to know the rules of the language by heart and makes
sure that all sentences are syntactically correct.

We would like to stress that this language is not meant to program the agents
themselves. It is only meant to program the organizational structure between
the agents. That is: it puts restrictions on the agents in their actions, but does
not dictate entirely what they ought to do; the agents still have the freedom to
make autonomous decisions, as long as these decisions comply with the protocol.
Protocols written in this language do not specify what the agents must do, but
only what the agents can do.

100 D. de Jonge and C. Sierra

We have developed SIMPLE according to the following guidelines:

– The language should stay as close as possible to natural language.
– The syntax should remain strict: sentences must be well formed, and every

well formed sentence can only have one correct interpretation.
– Given a protocol written in this language anyone should immediately be able

to understand what it means, even if he or she has never seen our language
before.

– Users should be able to write a protocol in this language without having to
spend any time learning the language.

The only thing we require from the user is that he or she be familiar with the
English language. We still consider the language as presented here (version 0.10)
to be in a premature state, and we plan to extend it much more in the future.
A working demonstration of the SIMPLE editor and interpreter can be found at
http://simple.iiia.csic.es.

The rest of this paper is organized as follows: in Sect. 2 we give a short
overview of previous work done in this field. Next, in Sect. 3 we explain the
assumptions that we have made about the set-up of any MAS to which our
language is applied. In Sect. 4 we describe the syntax rules of our language.
Next, in Sect. 5 we explain how our interpreter parses text files written in our
language and enforces its rules upon the agents. Then, in Sect. 6 we give two
examples of protocols written in SIMPLE, for which we have tested that they
are successfully parsed and enforced by our interpreter. In Sect. 7 we make a
comparison between the expressivity of SIMPLE and the expressivity of the
existing Islander tool. And finally, in Sect. 8 we describe the further extensions
that we are planning to add to our language.

2 Related Work

Regulatory systems have been subject of research for a long time and a number of
frameworks have been implemented that often consist of tools for implementing,
testing, running and visualizing protocols. Examples of such frameworks are
ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15]. A comparative study
of some of those systems has been made in [16].

ANTE [7] has been implemented as a JADE-based platform, including a set
of agents that provide contracting services. It integrates automatic negotiation,
trust & reputation and Normative Environments. Users and agents can specify
their needs and indicate the contract types to be created. Norms governing
specific contract types are predefined in the normative environment. Although
ANTE has been targeting the domain of electronic contracting, it was conceived
as a more general framework having in mind a wider range of applications.

The MANET [34] meta-model is based on the assumption that the agent
environment is composed of two fundamental building blocks: the physical envi-
ronment, concerned with agent interaction with physical resources and with the

http://simple.iiia.csic.es

A Language for the Specification of Protocols, Similar to Natural Language 101

MAS infrastructure, and the social environment, concerned with the social inter-
actions of the agents. In the MANET meta-model it is assumed that the nor-
mative system can be composed of three structural components: agents, objects
and spaces.

In the EIDE framework agents interact with each other in a so called Elec-
tronic Institution. The agents are grouped in to conversations, which are called
Scenes. The institution has a specification that defines how agents can move from
one scene to another and defines a protocol for each scene. Within a scene the
agents interact by sending messages to one another. Each agent in the system
has a special agent assigned to it, called its Governor, which checks whether the
messages sent by the agent satisfy the protocol, and blocks them when they do
not. The EIDE framework comes with a graphical tool called Islander [14] that
allows people to create institution specifications in a visual manner. Protocols
in Islander are represented as finite state machines, drawn as a graph in which
the states are the vertices and the state-transitions are the edges. Every message
sent triggers a state transition.

In order to define rules and norms for multiagent systems, a vast amount of
languages and logics have been proposed. It would be impossible to list all the
relevant work in this field here, so we just mention some of the most important
examples. A logical system to define norms and rules is called a deontic logic. The
best known system of deontic logic is called Standard Deontic Logic (SDL) [37].
Important refinements of this logic are Dyadic Deontic Logic (DDL) [26] and
Defeasible Deontic Logic [31]. Furthermore, an extension of this taking temporal
considerations into account was proposed in [20]. In [28] a system to formalize
norms using input/output logic was proposed, while in [21] the authors provide a
model for the formalization of social law by means of Alternating-time Temporal
Logic (ATL). In [25] the author proposes the use of Linear Time Logic (LTL) to
express norms. Other important approaches are based on Propositional Dynamic
Logic (PDL) [29], on See-to-it-that logic (STIT) [4] and on Computational Tree
Logic (CTL) [6]. Models for the verification of expectations in normative systems
are proposed in [1,10], and in [32] the authors introduce the nC+ language for
representing normative systems as state transition systems.

The above mentioned systems however mainly focus on the theoretical prop-
erties of regulatory systems. Work that is more focused on the actual implemen-
tation of such systems is for example [27] which proposes a model to define rules
in the Z language, while in [3] the authors propose the use of Event Calculus
for the specification of protocols. A programming language designed to program
organizations, called 2OPL, was introduced in [11]. Other important examples
of languages and frameworks for the implementation of norms and rules are
described in: [2,9,18,24,35,36].

Although some of the above mentioned languages are more user friendly than
others, it still seems that they all require the user to be a computer scientist or
at least has some knowledge of programming, logic or mathematics.

102 D. de Jonge and C. Sierra

There do exist a number of programming languages that claim to be similar
to natural language such as hyperTalk1 and PlainEnglish2, but most of them
still aim at real programmers, albeit that they aim for beginning programmers.
The only exception that we know of, is a language called Inform 7 [30]. This
is a language that in many cases truly reads like natural language, but the
main difference with SIMPLE is that it is developed for an entirely different
domain. Inform 7 is a language to write Interactive Fiction: an art form that
lies somewhere in between literature and computer games.

We think that one of the main reasons that Inform 7 can stay very close to
natural language, is that it is highly adapted to a very specific domain. This
restricts the possible things a programmer may want to express and hence keeps
the language manageable. We have taken a similar approach: our language is only
intended to be used as a language for implementing protocols for multiagent
systems, and although it could possibly be useful for other domains too, we
restrict our attention to this domain.

Another example of an easy-to-use language is If-This-Then-That3 (IFTTT).
This tool allows users to define if-then rules that trigger some action to occur
whenever a certain event takes places. This concept is very similar to SIMPLE,
except that in SIMPLE the rules do not trigger events to take place, but rather
grant rights to agents.

Controlled natural language has been applied to policy making before in
[8,12], which is essentially a mapping between Attempto Controlled English
(ACE) [17] and the policy specification language Protune [5]. However, this
work seems to focus mainly on the specification of static rules, whereas our work
puts emphasis on dynamic rules that may change depending on events that are
happening during the execution of the policy. This is reflected by the fact that
in their language the conditions of the rules are written in simple present, rather
than in present perfect as in our language. A similar tool to write static rules in
controlled natural language was presented in [33].

3 Basic Ideas

We assume a multiagent system in which agents exchange messages according to
some given protocol. These agents may be autonomous software agents, or may
be humans acting through a graphic user interface. The agents are however not
in direct contact with one another. Every message any agent sends first passes
a central server that verifies whether the message satisfies the protocol. If a
message does not satisfy the protocol, then it is blocked by the server and it will
not arrive at its intended recipients. Note that this is a form of regimentation. In
this paper we will not consider any forms of punishment, and assume protocols
are only enforced by means of regimentation. We assume that the life-cycle of
the MAS is as follows:
1 http://en.wikipedia.org/wiki/HyperTalk.
2 http://www.osmosian.com.
3 https://ifttt.com/.

http://en.wikipedia.org/wiki/HyperTalk
http://www.osmosian.com
https://ifttt.com/

A Language for the Specification of Protocols, Similar to Natural Language 103

1. A user (the protocol designer) writes a protocol in our language and stores it
in a text file.

2. He or she launches a communication server, with the location of the text file
as a parameter.

3. The interpreter, which is part of the server application, parses the text file.
4. Agents connect to the server through a TCP/IP connection and send messages

to one another.
5. Every such message is checked by the interpreter. If it does not satisfy the

protocol, it is blocked. If it does satisfy the protocol it is forwarded to its
intended recipients.

6. The agent that intended to send the message is notified by the server whether
the message has been delivered correctly or not.

The text file contains the protocol as a set of sentences that follow the SIM-
PLE syntax, and are therefore human readable. Furthermore, it also stores the
protocol in JSON format so that it can be parsed easily by the interpreter.

Protocols written in SIMPLE have a closed-world interpretation: every mes-
sage is considered illegal by default, unless the protocol specifies that it is legal.
In order to determine which messages are legal, we use a system based on the
notion of ‘rights’ and ‘events’, meaning that an agent obtains the right to send a
specific message if a certain event has (or has not) taken place. The assignment
of such rights is determined by if-then rules in the protocol.

We currently assume agents can send messages following one of these two
patterns:

– (‘say’, x)
– (‘announce’, y, z)

in which the sender can replace x, y and z by any character string (we will see
later that the ‘announce’ message has the interpretation that, by uttering this
message, the value of z will be assigned to the variable y). The current version
of the language does not yet allow users to specify the recipient of a message,
so for now we assume that any message is always sent to all the other agents in
the MAS. We plan this to change in future versions of SIMPLE. Also, we expect
that future versions will support more types of messages.

The interpreter keeps a list of rights for each agent in the MAS. A right is
a tuple of one of the two following forms:

– (‘say’, v)
– (‘announce’, w)

We say that a right (‘say’, v) matches a message (‘say’, x) if and only if x
is equal to v, or v is the keyword ‘anything’. A right (‘announce’, w) matches a
message (‘announce’, y, z) if and only if y equals w. For example: if the agent has
the right (‘announce’, ‘price’) then it matches the message (‘announce’, ‘price’,
‘$100’). A message is considered legal if the agent sending the message has at
least one right that matches the message. Whenever the interpreter determines

104 D. de Jonge and C. Sierra

that a message is legal, it stores a copy of that message, together with the name
of its sender, in the interpreter’s event history.

One concept that we have borrowed from EIDE is the concept of a role.
The rules in the protocol never refer to specific individuals, because we assume
that at design time the designer cannot know which agents are going to join
the MAS at run time. Instead, the protocol assigns rights to agents based on
the roles they are playing. Every agent that enters the MAS (i.e. connects to
the communication server) must choose a specific role to adopt, from a number
of roles that are defined in the protocol. An auction protocol for example, could
define the roles buyer and auctioneer. The protocol could then define a rule
saying that a buyer can only make a bid after the auctioneer has opened the
auction.

4 Description of the Language

A protocol is written as a set of sentences that look like natural language, but
follow a strict syntax. Although in this paper we will often start sentences with
a capital, this is not necessary, as the language is entirely case-insensitive. Like
in natural language, the end of a sentence is marked with a period. Unlike most
other programming languages, variable names are allowed to contain spaces.
Another important property of this language, as we will see at the end of this
section, is that it is impossible to write inconsistent protocols.

4.1 Roles

In order to define a role in the protocol the user must first specify two names
for that role: the singular role name and the plural role name, for exam-
ple: ‘auctioneer’ and ‘auctioneers’. The user must then specify a role constraint
sentence:

Definition 1. A role constraint sentence is a sentence of one of the follow-
ing forms:

– There can be any number of r.
– There must be at least x r.
– There can be at most x r
– There must be at least y and at most x r.
– There must be exactly x r.

Where x and y can be any positive integer with y < x and r is the plural role
name, except in the case that x = 1 in which case r it is the singular role name.

The following sentence is an example of a role constraint sentence:

There must be at least 2 buyers.

A Language for the Specification of Protocols, Similar to Natural Language 105

For each role in the protocol there must be exactly one such role constraint
sentence. The interpreter makes sure that these role constraints are not violated.
That is, when an agent tries to connect to the communication server with a role
for which there are already too many participants, the connection will be refused.
If on the other hand there are not enough participants for every role, then every
message is considered illegal. Therefore, the agents cannot start sending messages
to one another until there are enough participants for every role.

4.2 Conditions and Consequences

The main idea of the language, as explained above, is that rights are assigned
to the agents by means of if-then rules. An example of such a rule could be:

If the auctioneer has said ‘open’ then any buyer can announce his bid price.

In order to precisely define which sentences are well formed we first need to
introduce a number of terms, namely: quantifiers, identifiers, conditions, and
consequences.

Definition 2. A quantifier is any of these keywords: no, any, every, a, an,
the, that.

Definition 3. An identifier is a sequence of characters of one of the following
forms:

– q r
– no one
– anyone
– everyone
– he

Where q can be any quantifier and r can be any singular role name. Identifiers of
the form no r as well as the identifier ‘no one’ are called negative identifiers.
All other identifiers are called positive identifiers.

Definition 4. A past-event condition is a string of characters of one of the
following forms:

– id has said ‘x’
– id has announced the x
– id has announced his x
– pid has not said ‘x’
– pid has not announced the x
– pid has not announced his x

where id can be any identifier, x can be any character string, and pid can be
any positive identifier. A past-event condition is called negative if it contains the
keyword ‘not’ or if it contains a negative identifier. A past-event condition is
called positive otherwise.

106 D. de Jonge and C. Sierra

A past-event condition is a specific type of condition. We will define other
types of condition later on. A positive past-event condition is considered true if
and only if there is any message in the event history that matches the condition.
For example the condition any buyer has said ‘hello’ is considered true if there
exists a message in the event history of the form (‘say’, ‘hello’) which was sent by
an agent playing the role buyer. A negative past-event condition is considered
true if and only if there is no message in the event history that matches the
condition.

Definition 5. A right-update consequence is a string of characters of one
of the following forms:

– pid can say ‘x’
– pid can announce the x
– pid can announce his x

where pid can be any positive identifier and x can be any character string.

A right-update consequence is a specific type of consequence. Other types of
consequences are defined later on.

We can now construct sentences (‘rules’) of the form If A then B, where A
is a conjunction of conditions and B is a right-update consequence. We say that
a rule is active if all its conditions are true. Then the idea is that an agent has
the right to send a specific message if and only if there is an active rule with
right-update consequence that matches that message.

Identifiers are used inside conditions and consequences to determine to which
set of agents these conditions and consequences apply. We would like to remark
that the quantifiers ‘a’, ‘an’, ‘any’ and ‘the’ all have exactly the same meaning, so
the language contains some redundancy. However, we do consider it very useful
to have all of them in the language because they help the protocol designer to
write more natural sentences. For example, if an auction protocol contains only
one auctioneer it makes much more sense to talk about ‘the auctioneer’ than
about ‘any auctioneer’.

Also note that we have included the quantifier ‘that’. This quantifier refers to
any agent that was also referred to by the last quantifier earlier in the sentence.
For example, suppose that a buyer called Alice says ‘hello’ and then a buyer
called Bob says ‘hi’, then the condition:

a buyer has said ‘hello’ and a buyer has said ‘hi’

is true. However, the condition:

a buyer has said ‘hello’ and that buyer has said ‘hi’

is false, because ‘that buyer’ refers to the same agent as the one that said ‘hello’
(which is Alice). This second condition would only be true if the messages (‘say’
‘hello’) and (‘say’, ‘hi’) had been sent by the same agent. Likewise, we have
included the identifier ‘he’, which refers to the same agent as the last identifier
that appeared earlier in the sentence. For example:

If a buyer has said ‘hello’ and he has said ‘hi’

A Language for the Specification of Protocols, Similar to Natural Language 107

4.3 Properties

The rights of an agent may not only depend on past events, but may also depend
on values of variables. Variables in SIMPLE are called properties. A property
can be assigned to the protocol (a global property), or can be assigned to indi-
vidual agents (a role property). For example, we may specify that every buyer
has a property ‘age’, and that the protocol has a global property ‘minimum age’,
so that we can state conditions such as:

If a buyer has said ‘hello’ and his age is greater than the minimum age then...

A property can be defined by including a property initialization sentence in the
protocol.

Definition 6. A property initialization sentence is a sentence of one of the
following forms:

– This protocol has a x, which is initially v.
– Every r has a x, which is initially v.

where x can be any character string, v can be any character string, number,
or identifier and r can be any singular role name. The string x is called the
property name, and v is its initial value.

The first of these sentences is used to define a global property, while the
second one defines a role property. If the name of the property x starts with a
vowel then the editor will automatically replace the article ‘a’ in the sentence
with ‘an’. For example:

Every buyer has an age, which is initially 0.

A property can also be added to a protocol without including a property initial-
ization sentence, but instead by mentioning it in some rule containing the verb
‘to announce’. For example, if there is a rule containing the condition

If a buyer has announced his age...

then the interpreter automatically understands that the role ‘buyer’ has a prop-
erty named ‘age’. Similarly, if the protocol contains a sentence containing the
conditions

If the auctioneer has announced the start price...

then the interpreter understands that the protocol has a global property named
‘start price’.

The current version of SIMPLE supports three types of properties: strings,
numbers and identifiers. The type of a property is determined implicitly. That
is: if the parser of the protocol is able to interpret the initial value of a property
as a number, then the property is considered to be of type number, and likewise
for identifiers. In all other cases the property is considered a string.

108 D. de Jonge and C. Sierra

Definition 7. A property condition is a clause of one of the following forms:

– x is less than n
– x is less than or equal to n
– x is v
– x is not v
– x is greater than or equal to n
– x is greater than n

where x is either the keyword ‘the’ followed by the name of a global property, or
the keyword ‘his’ followed by the name of a role property. v can be any string,
number or identifier, and n can be any number.

Definition 8. A property-update consequence is a clause of the form:

– x becomes y
– x will be v
– x is increased by n
– x is decreased by n
– x is multiplied by n
– x is divided by n

where x and y both are either the keyword ‘the’ followed by the name of a global
property, or the keyword ‘his’ followed by the name of a role property. y can be
any character string, v can be any string, number of identifier, and n can be any
number.

Definition 9. A current-event condition is a string of characters of one of
the following forms:

– pid says ‘x’
– pid announces the x
– pid announces his x

where pid can be any positive identifier and x can be any character string.

In order to change the values of properties we can use property-update rules.

Definition 10. A property-update rule is a sentence of the form:

– When x then z.

Where x is a current-event condition and z is a property-update consequence.

Examples of property-update rules are:

When any buyer says ‘bid!’ then his bid price is increased by 10.
When the auctioneer says ‘sold’ then the last bidder becomes the winner.

A Language for the Specification of Protocols, Similar to Natural Language 109

Note that the clause x becomes y means that the value of property y is overwrit-
ten with the value of property x. This can be understood as follows: suppose
we have a property called Carol’s sister and a property called Bob’s wife. Fur-
thermore, suppose that Carol’s sister is initialized to the value ‘Alice’. Then the
clause Carol’s sister becomes bob’s wife means that the value ‘Alice’ is copied
into the property Bob’s wife. Note that when a property is assigned to an agent
we use the key word ‘his’ to refer to the agent that owns the property. To be
precise: it refers to the last agent that appears earlier in the sentence. So in the
above example, ‘his bid price’ refers to the property named ‘bid price’ assigned
to the agent that said ‘bid!’.

Another way that values of properties are updated is when a message of type
(‘announce’, x, y) is sent. In that case the value y is assigned to a property with
name x. For example, whenever an agent sends the message (‘announce’, ‘price’,
100), the value 100 is automatically assigned to a property with the name ‘price’.
More specifically, if the property ‘price’ is global than that unique property is
updated, while if it is a role property, for example for the role ‘buyer’, and the
sender of the message indeed plays that role, then it is the property of the sender
that is updated. If neither is the case, that is: if the property ‘price’ is a role
property for the role ‘buyer’, but the sender does not play the ‘buyer’ role, then
the message is illegal.

Definition 11. A right-update rule is a sentence of the form:

– id can always say v.
– id can always announce the v.
– id can always announce his v.
– If x then y.
– If x then y, as long as w.

where id is an identifier, v can be any character string, x and w are conjunc-
tions of past-event conditions and/or property conditions and y is a right-update
consequence (the conditions in w are also referred to as constraints).

Note that we allow such a rule to have no conditions at all, so that it is
always active. In that case the protocol designer needs to include the keyword
‘always’ after the keyword ‘can’. Also note that right-update rules have past-
event conditions (which are written in present perfect), while property-update
rules have current-event conditions (which are written in simple present). This
is because they are interpreted in a fundamentally different way, which we will
explain in Sect. 5.

4.4 Constraints

We have seen in Definition 11 that right-update rules may contain so-called con-
straints. A constraint is similar to a property condition, but is written at the
end of the sentence, and indicated by the keywords as long as.

110 D. de Jonge and C. Sierra

If the auctioneer has said ‘open’ then any buyer can announce his bid price,
as long as his bid price is higher than the current price.

The consequences of a rule only have effect if all conditions and constraints
of the rule are satisfied. The difference between constraints and conditions is
that constraints refer to property values inside the consequence of the sentence,
whereas conditions may only refer to past events or properties that do not appear
inside the consequence. This means that when the interpreter verifies the legality
of a certain message X, the truth of the constraints of any rule depend on the
contents of that message, whereas the truth of the conditions of any rule can
already be determined before the interpreter has received message X.

In the example sentence above for instance, the constraint says that the bid
price announced by the buyer, must be higher than the current price. This can
of course only be checked when the buyer is announcing his bid price, and not
before.

4.5 Inconsistencies

One very important aspect of our language is that right-update consequences
can only have positive identifiers. This means that a consequence can only give
rights to an agent, but not take them away. Nevertheless, we can still make agents
lose rights, but we do that by using negative conditions, rather than negative
consequences. Take for example the following rule:

If the auctioneer has not said ‘sold!’ then any buyer can say ‘bid!’.

Here, every buyer initially has the right to say ‘bid!’. If there is no other rule
that gives buyers the right to do that, then buyers will lose this right once the
auctioneer says ‘sold!’, because the condition becomes false. If there is more than
one rule that grants the right to say ‘bid!’ to every buyer then all those rules
must become inactive in order for the buyers to lose that rule.

The big advantage of only allowing positive consequences, is that this makes it
impossible to write inconsistent rules. Recall from Sect. 3 that for every message
submitted the interpreter needs to answer the question: “Does the sender of this
message have the right to do so?”, with either “yes” or “no”. We say that a
protocol is consistent if for every possible message this question has only one
correct answer.

Lemma 1. A protocol written in SIMPLE is guaranteed to be consistent.

Proof. The proof is easy: in our language, by definition, an agent has the right
to do something if and only if there is at least one active rule that grants this
right to the agent. This can never lead to inconsistencies: either such a rule exists
or not.

This aspect certainly does not make our language unique, as the same prin-
ciple applies to several other logical languages, such as GDL [19] and ASP [13]
(Fig. 1).

A Language for the Specification of Protocols, Similar to Natural Language 111

Fig. 1. Two screen shots of the SIMPLE editor. Users write sentences simply by select-
ing available options, and they can only write free text whenever the syntax rules indeed
allow that. Therefore it is impossible to write malformed sentences.

5 The SIMPLE Interpreter

We will now describe the software component that interprets and enforces the
protocols.

Whenever an agent tries to send a message, this message is first analyzed by
the interpreter. The interpreter verifies if the agent sending the message indeed
has the right to send that message and, if so, updates its internal state and
forwards the message to the other agents connected to the server. If the sender
of the message does not have the right to send that message he or she is notified
that the message has failed. The message will in that case not be forwarded to
the other agents and the internal state of the interpreter is not updated. In fact,
we consider this message as not sent.

The internal state of the interpreter consists of the following data structures:

– a list of all messages that have so far been sent successfully (the event history)
– a table that maps the name of each property to the current value of that

property
– a table that maps the name of each agent in the MAS to the role it is playing
– a table that maps the name of each agent in the MAS to a list of rights for

that agent.

Every time an agent tries to send a message, the interpreter follows the following
procedure:4

1. The list of rights of that agent is made empty.
2. For each right-update rule in the protocol, the interpreter verifies if its con-

ditions are true:
– If the condition is a property condition then it checks whether that prop-

erty currently has the proper value to make the condition true.
– If the condition is a past-event condition, the interpreter tries to find an

event in the event history that matches the condition. If such an event is
indeed found, then the condition is considered true.

A rule for which all conditions are true is labeled as ‘active’.

4 This procedure can be implemented in a much more efficient way than presented
here, but we think this is not very relevant for this paper, so we prefer to present it
in a way that is easier to understand for the reader.

112 D. de Jonge and C. Sierra

3. For each right-update consequence in each active rule, the interpreter checks
whether the identifier matches the sender of the message and, if yes, adds the
right corresponding to this consequence to the sender’s list of rights. If this
consequence has any constraints assigned to it, they are stored together with
the right.

4. After all the rights of the sending agent have been determined the interpreter
verifies whether any of them matches the message that the agent is trying to
send.

5. Next, if the agent indeed has that right the interpreter checks whether its
constraints (if any) are satisfied.

6. If the sending agent has the proper right, and all its constraints are satisfied
then the interpreter determines if there are any property-update rules in the
protocol for which the condition matches the message. If yes, the properties
in the rule’s consequences are updated accordingly.

7. Finally, if the agent has the right to send the message and its constraints are
satisfied, a copy of the message is stored in the event history, together with
the name of the sender, and the message is forwarded to all other agents in
the MAS.

It is important to note here that property-update rules and right-update
rules are treated in a different way. To be precise: to verify whether a past-
event condition is true, the interpreter compares the condition with all messages
in the event history. Since messages are never removed from the event history
this means that whenever a past-event condition becomes true, it remains true
forever. For example, when a buyer says ‘hello’ then the condition any buyer
has said ‘hello’ becomes true, and remains true forever. For negative conditions
exactly the opposite holds: the condition no buyer has said ‘bye’ is initially true,
but as soon as a buyer says ‘bye’ it becomes false, and will stay false forever.
The current-event conditions on the other hand are only considered true at the
moment that the corresponding message is under evaluation of the interpreter.
That is, the condition when a buyer says hello is considered to be true only
while the interpreter is evaluating the message (‘say’, ‘hello’) sent by some agent
playing the role of buyer. As soon as the interpreter handles the next message
this condition is considered false again. The reason for this is that we consider
that when you obtain a right, you keep that right for an extended period of
time, until one of the negative conditions in the rule becomes false. Updating of
a property on the other hand, is a one-time event that only takes place at the
moment a certain message is sent.

6 Examples

We here provide two examples of protocols. Both have been tested and are
correctly executed by the interpreter.

A Language for the Specification of Protocols, Similar to Natural Language 113

English Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
Every buyer has a bid price which is initially 0.
This protocol has a highest bidder, which is initially no one.
This protocol has a winner, which is initially no one.

If the auctioneer has not said ‘sold!’ and the auctioneer has not announced
the current price, then the auctioneer can announce the current price.
If the auctioneer has not said ‘sold!’ and the auctioneer has announced the
current price, then any buyer can announce his bid price, as long as bid price
is greater than current price.
When a buyer announces his bid price, then his bid price becomes the current
price.
When a buyer announces his bid price, then that buyer becomes the highest
bidder.
If any buyer has announced his bid price, then the auctioneer can say ‘sold!’.
When the auctioneer says ‘sold!’, then the highest bidder becomes the winner.

Dutch Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
This protocol has a winner, which is initially no one.

If the auctioneer has not announced the current price, then he can announce
the current price.
If the auctioneer has announced the current price and no buyer has said
‘mine!’, then the auctioneer can say ‘next!’.
When the auctioneer says ‘next!’, then the current price is decreased by 1.
If the auctioneer has announced the current price and no buyer has said
‘mine!’, then any buyer can say ‘mine!’.
When a buyer says ‘mine!’, then that buyer becomes the winner.

7 Comparison with Islander

Many other tools have been developed for the specification of protocols so it
would be impossible to discuss all the advantages and disadvantages of SIMPLE
with respect to those existing tools. Therefore, we limit ourselves to a comparison
with the Islander tool, which is part of the EIDE framework.

Islander allows users to specify protocols using a graphical model that repre-
sents protocols as a directed graph in which the nodes represent states, and edges

114 D. de Jonge and C. Sierra

between nodes represent actions (an agent sending a message to another agent)
that lead from one state to the next. This graphical model can be extended by
assigning pre-conditions and post-conditions to the edges which are written in a
formal language.

The advantage of the graphical model is that is relatively easy to use and
understand, but the disadvantage is that it has very limited expressivity. There-
fore, it is almost always necessary to use it in combination with the formal
language, which however can be very difficult to use, even for computer scien-
tists.

We will now give an example of a protocol that is hard to express using only
the graphical representation of Islander. Note that this example uses the verb
‘to make’ which is currently not yet available in SIMPLE. Therefore, the idea
is to show how SIMPLE will be more easy to use than Islander in the future,
when we have further extended the language.

Suppose we want to implement the following protocol in Islander:

There must be at least 5 students.
Initially, any student can make assignment 1.
If a student has made assignment 1 then he can make assignment 2.
If a student has made assignment 2 then he can make assignment 3.

If there would be only 1 student then this protocol would be very easy to imple-
ment in Islander. It would just be a linear graph with 4 nodes and three edges,
where each edge corresponds to making an assignment.

With multiple students however, you run into the problem that students may
make their assignments at different speeds. For example, one student may quickly
deliver assignments 1 and 2, while another is still busy with assignment 1. This
means that at any moment each student can be in any of 4 states, and thus the
protocol as a whole can be in any of 4n different states if there are n students.
With as little as 5 students drawing the graph would already become practically
impossible as it would require the designer to draw 45 = 1024 states plus all
their edges. The only realistic way to specify this protocol would be to use the
formal language rather than the graph-representation.

Another way to implement this protocol in Islander would be to implement
it as a protocol for only 1 student, and then let n of these protocols run in
parallel. In this way we again only need to draw a linear graph with 4 nodes
and 3 edges. However, this is only possible because in this example there is no
interdependency between the students’ actions. If we make the example a bit
more complicated, for example by adding a final exam that only starts when all
students have finished all assignments, this is no longer possible.

Another problem with Islander is that one cannot use universal quantifiers.
Even in Islander’s formal language one cannot directly state something like “If
all students have finished their assignments...”. The only way to achieve this is
to create a list of names of students, make sure that the name of a student is
added to this list when he or she enters the institution, and make sure that the
name of a student is removed from this list whenever he or she finishes his or her
assignment. Then, whenever you need the precondition that all students must

A Language for the Specification of Protocols, Similar to Natural Language 115

have finished their assignments, you can specify that this list must be empty. In
practice, this turns out to be a tedious job to do all this in Islander, making it
far from user-friendly.

8 Future Work

We consider that the language as it is, is still too limited to be of real practical
use. We here list the shortcoming that we consider most important and that
we plan to fix in the near future, as well as other improvements that we are
considering.

Firstly, we will add the possibility to specify the recipient of a message.
Currently every message is sent to all other agents in the MAS, which makes it
impossible to send confidential information. This means we will allow to write
sentences such as:

If the auctioneer has said ‘welcome’ to a buyer then that buyer can say ‘hello’
to the auctioneer.

Secondly, we would like the protocol designer to be able to express that a certain
event must have taken place a certain number of times. For example:

If a buyer has announced his bid price more than 5 times...

Thirdly, we would like to add time-constraints to the language, so that we could
define rights that expire after a certain amount of time, such as:

If no one announces his bid during 10 s then the highest bidder becomes the
winner.

Furthermore, we would like to add more types of messages and maybe even allow
the protocol designer to define message types. That would make it possible to
use certain domain-specific verbs. For example:

If a student has finished his assignment...

We could even take this a step further and allow the protocol designer to define
new data types, similar to data types in the EIDE framework. For example, one
could define a data type “contract” by including a sentences such as:

A contract consists of a date, a price, and a quantity.
A price is a positive number.

One could then define a negotiation protocol with sentences such as

Any negotiator can propose a contract.

If such data types are composed of basic types such as Strings and numbers then
during the execution of the protocol the GUI can display the proper input fields
for the user to specify the details of the contract to propose. Defining new types

116 D. de Jonge and C. Sierra

of objects is typically something that Inform 7 can handle well, so we may draw
some inspiration from that language.

Furthermore, we will add a system that determines at run time, whenever an
agent tries to send an illegal message, which conditions first need to be fulfilled
before the agent can indeed legally send that message. In this way the system
can explain to the user why he or she made a mistake and will help the user
to understand new protocols. In order to make the language more flexible and
expressive, we will delve into literature about linguistics and apply some of its
principles to our language.

Finally, we will perform an empirical study to evaluate how easy-to-use this
language really is. We will let random people implement a protocol using our
language as well as using some other existing tool such as Islander to compare
whether our language indeed makes the task easier.

Acknowledgments. Supported by the Agreement Technologies CONSOLIDER
project, contract CSD2007-0022 and INGENIO 2010 and CHIST-ERA project ACE
and EU project 318770 PRAISE.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based software tool. Appl. Artif.
Intell. 20(2–4), 133–157 (2006)

2. Argente, E., Criado, N., Botti, V., Julian, V.: Norms for agent service controlling.
In: EUMAS-08, pp. 1–15 (2008)

3. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A protocol for resource sharing in
norm-governed ad hoc networks. In: Leite, J., Omicini, A., Torroni, P., Yolum, P.
(eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg
(2005). http://dx.doi.org/10.1007/11493402 13

4. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. In:
Kyburg Jr., H.E., Loui, R.P., Carlson, G.N. (eds.) Knowledge Representation and
Defeasible Reasoning. Studies in Cognitive Systems, vol. 5, pp. 167–190. Springer,
Netherlands (1990). http://dx.doi.org/10.1007/978-94-009-0553-5 7

5. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: 6th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), 6–8 June 2005, Stockholm, Sweden, pp.
14–23 (2005). http://dx.doi.org/10.1109/POLICY.2005.13

6. Broersen, J., Dignum, F., Dignum, V., Meyer, J.-J.C.: Designing a deontic logic
of deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol.
3065, pp. 43–56. Springer, Heidelberg (2004)

7. Cardoso, H.L., Urbano, J., Rocha, A.P., Castro, A.J., Oliveira, E.: Ante: agree-
ment negotiation in normative and trust-enabled environments. In: Ossowski, S.
(ed.) Agreement Technologies. Law, Governance and Technology Series, vol. 8,
pp. 549–564. Springer, Netherlands (2013). http://dx.doi.org/10.1007/978-94-007-
5583-3 32

8. Coi, J.L.D., Kärger, P., Olmedilla, D., Zerr, S.: Using natural language policies
for privacy control in social platforms (2009). http://CEUR-WS.org/Vol-447/
paper4.pdf

http://dx.doi.org/10.1007/11493402_13
http://dx.doi.org/10.1007/978-94-009-0553-5_7
http://dx.doi.org/10.1109/POLICY.2005.13
http://dx.doi.org/10.1007/978-94-007-5583-3_32
http://dx.doi.org/10.1007/978-94-007-5583-3_32
http://CEUR-WS.org/Vol-447/paper4.pdf
http://CEUR-WS.org/Vol-447/paper4.pdf

A Language for the Specification of Protocols, Similar to Natural Language 117

9. Cranefield, S.: A rule language for modelling and monitoring social expectations
in multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM and
OOOP 2005. LNCS (LNAI), vol. 3913, pp. 246–258. Springer, Heidelberg (2006)

10. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking
truncated paths. J. Logic Comput. 21(6), 1217–1256 (2011). http://logcom.
oxfordjournals.org/content/21/6/1217.abstract

11. Dastani, M., Tinnemeier, N.A., Meyer, J.J.C.: A programming language for nor-
mative multi-agent systems (2009)

12. De Coi, J.: Notes for a possible ACE → Protune mapping. Technical report,
Forschungszentrum L3S, Appelstr. 9a, 30167 Hannover, July 2008

13. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset,
M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40–110.
Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03754-2 2

14. Esteva, M., de la Cruz, D., Sierra, C.: Islander: en electronic institutions editor.
In: Bologna, Italy, vol. 3, pp. 1045–1052. ACM Press, 15–19 July 2002

15. Esteva, M., Rodŕıguez-Aguilar, J.A., Arcos, J.L., Sierra, C., Noriega, P., Rosell,
B., de la Cruz, D.: Electronic institutions development environment. In: AAMAS
(Demos), pp. 1657–1658 (2008). http://www.iiia.csic.es/files/pdfs/eide.pdf

16. Fornara, N., Cardoso, H.L., Noriega, P., Oliveira, E., Tampitsikas, C., Schumacher,
M.I.: Modelling agent institutions. In: Ossowski, S. (ed.) Agreement Technologies,
Chap. 18, vol. 8, pp. 277–307. Springer-Verlag GmdH, Netherlands (2013)

17. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled English for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85658-0 3

18. Garćıa-Camino, A.: Ignoring, forcing and expecting simultaneous events in elec-
tronic institutions. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.)
COIN 2007. LNCS (LNAI), vol. 4870, pp. 15–26. Springer, Heidelberg (2008).
http://dl.acm.org/citation.cfm?id=1791649.1791652

19. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the aaai
competition. AI Mag. 26(2), 62–72 (2005)

20. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: Procedings of the 10th International Conference on Artificial Intel-
ligence and Law, pp. 25–34. ACM Press (2005)

21. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternat-
ing time: effectiveness, feasibility, and synthesis. Synthese 156(1), 1–19 (2007).
http://dx.doi.org/10.1007/s11229-006-9072-6

22. Hübner, J.F., Sichman, J.S., Boissier, O.: S − Moise+: a middleware for devel-
oping organised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J.
(eds.) ANIREM and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer,
Heidelberg (2006). http://dx.doi.org/10.1007/11775331 5

23. de Jonge, D., Rosell, B., Sierra, C.: Human interactions in electronic institutions.
In: Chesñevar, C.I., Onaindia, E., Ossowski, S., Vouros, G. (eds.) AT 2013. LNCS,
vol. 8068, pp. 75–89. Springer, Heidelberg (2013)

24. Kollingbaum, M.J.: Norm-governed practical reasoning agents. Ph.D. thesis,
University of Aberdeen (2005)

25. Kröger, F.: Temporal Logic of Programs. Springer-Verlag New York, Inc.,
New York (1987)

http://logcom.oxfordjournals.org/content/21/6/1217.abstract
http://logcom.oxfordjournals.org/content/21/6/1217.abstract
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://www.iiia.csic.es/files/pdfs/eide.pdf
http://dx.doi.org/10.1007/978-3-540-85658-0_3
http://dl.acm.org/citation.cfm?id=1791649.1791652
http://dx.doi.org/10.1007/s11229-006-9072-6
http://dx.doi.org/10.1007/11775331_5

118 D. de Jonge and C. Sierra

26. Lewis, D.: Semantic analyses for dyadic deontic logic. In: Stenlund, S. (ed.) Logical
Theory and Semantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth
Birthday, pp. 1–14. Reidel, Dordrecht (1974)

27. López y López, F., Luck, M.: A model of normative multi-agent systems and
dynamic relationships. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA
2002. LNCS (LNAI), vol. 2934, pp. 259–280. Springer, Heidelberg (2004)

28. Makinson, D., Van Der Torre, L.: Input/output logics. J. Philos. Logic 29(4),
383–408 (2000)

29. Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic. Notre Dame J. Formal Logic 29(1), 109–136 (1987).
http://dx.doi.org/10.1305/ndjfl/1093637776

30. Nelson, G.: Natural language, semantic analysis and interactive fiction (2014).
http://inform7.com/learn/documents/WhitePaper.pdf

31. Nute, D.: Defeasible Deontic Logic. Springer, The Netherlands (1997)
32. Sergot, M.J., Craven, R.: The Deontic Component of Action Language nC+. In:

Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11786849 19

33. Shi, L.L., Chadwick, D.W.: A controlled natural language interface for authoring
access control policies. In: Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC), TaiChung, Taiwan, 21–24 March 2011, pp. 1524–1530 (2011).
http://doi.acm.org/10.1145/1982185.1982510

34. Tampitsikas, C., Bromuri, S., Schumacher, M.I.: MANET: a model for first-class
electronic institutions. In: Cranefield, S., van Riemsdijk, M.B., Vázquez-Salceda,
J., Noriega, P. (eds.) COIN 2011. LNCS, vol. 7254, pp. 75–92. Springer, Heidelberg
(2012). http://link.springer.com/chapter/10.1007/978-3-642-35545-5 5

35. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson,
M., Jung, H.: New developments in ontology-based policy management: increasing
the practicality and comprehensiveness of KAoS. In: IEEE International Workshop
on Policies for Distributed Systems and Networks, pp. 145–152 (2008)

36. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multi-
agent systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

37. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)

http://dx.doi.org/10.1305/ndjfl/1093637776
http://inform7.com/learn/documents/WhitePaper.pdf
http://dx.doi.org/10.1007/11786849_19
http://doi.acm.org/10.1145/1982185.1982510
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-35545-5_5

	SIMPLE: A Language for the Specification of Protocols, Similar to Natural Language
	1 Introduction
	2 Related Work
	3 Basic Ideas
	4 Description of the Language
	4.1 Roles
	4.2 Conditions and Consequences
	4.3 Properties
	4.4 Constraints
	4.5 Inconsistencies

	5 The SIMPLE Interpreter
	6 Examples
	7 Comparison with Islander
	8 Future Work
	References

