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Abstract. Norms are an efficient way of controlling the behaviour of
agents while still allowing agent autonomy. While there are tools for pro-
gramming Multi-Agent Systems, few provide an explicit mechanism for
simulating norm-based behaviour using a variety of normative represen-
tations. In this paper, we develop an artefact-based mechanism for norm
processing, monitoring and enforcement and show its implementation as
a framework built with CArtAgO. Our framework is then empirically
demonstrated using a variety of enforcement settings.

1 Introduction

Multi-Agent Systems are often used as a tool for simulating interactions between
intelligent entities within societies, organisations or other communities. This
Agent-based Simulation is useful for studying social behaviour in hypothetical
situations or situations that may not be easily reproduced in the real world. The
entities being simulated, human or otherwise, are represented by programmable
intelligent agents, which must present reactive, pro-active and social behaviour [1].

When working with social simulations, we must consider that agents should
be free to act in their own best interest, even though their actions might pro-
duce negative effects to other agents. For this reason, we establish rules that
(1) prohibit actions that harm the society’s performance; (2) oblige actions that
maintain the society’s well being; and (3) permit actions that can be beneficial
to society, but never harmful. These rules, referred to as “norms” in multi-agent
environments, allow agents to reason and act freely, while still being subject to
punishment in the event that a norm is violated [2]. Although the purpose of
norms is to mediate the interactions of agents in an environment, sometimes vio-
lating a norm can prove advantageous for an agent due to the reward of violation
compensating for the penalties of detection. Existing work on normative reason-
ing [3–10] try to explore the trade-offs between compliance and non-compliance
and propose new ways in which agents see and reason about norms. Still, there
is no available tool that simulates norm-based behaviour to serve as a common
ground for benchmarking implementations of normative behaviour and reason-
ing. In norm-based behaviour simulations we must define data structures for the
various types of norms, including at least one of prohibitions, permissions or
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obligations. Once these norms are active, agent interactions shall be observed
by a monitoring mechanism and analysed by a norm-enforcing agent, which will
then punish agents caught violating norms.

Although there are multiple frameworks that can be used to simulate agent
societies, such as the MASSim [11] simulators, or the agent programming lan-
guages Jason [12] and JADE [13], relatively less attention has been focused on
frameworks for norm-based behaviour simulation [14, Chap. 1]. In this paper,
we bridge this gap by developing a scalable norm processing mechanism that
performs monitoring and enforcement in multi-agent environments. Our contri-
butions are a mechanism to monitor agents actions in an environment, described
in Sect. 4.5 and a mechanism for norm maintenance and enforcement, described
in Sect. 4.6. In Sect. 5 we demonstrate the functionality of our mechanism using
an empirical experiment applying our mechanism to a Multi-Agent System.

2 Simulating Multi-agent Societies

When self-interested intelligent agents [1] share an environment, competition
between them becomes inevitable [15]. This idea becomes clear when we think
of multi-agent systems as societies. Each person in a society has their own goals
and plans to achieve them, and it is in their best interest to do so by spending
as little effort as possible. Take for an example a person interested in eating an
apple and another interested in selling one. For the buying person, its goal is
to acquire the apple from the seller for the lowest cost possible, preferably with
no cost at all. For the seller, the goal is to sell the apple for as high a price as
affordable by the buyer, maybe even higher than that. Now, considering that in
this hypothetical world no notion of ethics is known yet, the buyer soon realizes
that instead of paying for the apple he wants to eat, he could simply grab it and
eat it on the spot.

Competition between agents is often intended when working with agent-based
simulations, as we desire to see how agents perform under such circumstances.
However, to prevent the system as a whole from descending into chaos, we must
establish rules in order to control agent interactions while still allowing them
to be autonomous. Nevertheless these rules must be limited to directing agents,
rather than restraining them, otherwise, much of the benefit from autonomous
agents is lost. When rules are set, agents that disregard them are subject to
punishment for potentially harming the environment. In our buyer/seller system,
we could establish a rule that guarantees items sold at shops must be paid for. If
one is caught stealing, it will need to pay for the seller’s injury. By doing so, we
allow the buyer to reason about the advantages and disadvantages of obeying
rules, letting it decide on an appropriate action plan. In multi-agent systems, we
refer to these rules as norms.

Usual mechanisms for controlling agent interactions include interaction mod-
els, used by simulators such as NetLogo [16], MASON [17] and Repast [18];
strategies, commonly used in Game Theory; and organisation-oriented norma-
tive systems, such as Moise [19]. The disadvantage of these methodologies is
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that agents are constrained to the rules of their environment. They are not
allowed to break rules because the system is rule-compliant by design, also known
as the regimentation approach [20]. However, unlike environmental constraints,
perfect enforcement (regimentation) of social norms is unrealistic and undesir-
able, because it prevents occasional violations that would bring about a greater
good [6,21].

3 Normative Scenario - Immigration Agents

To facilitate explanation and exemplification of our approach, as well as to high-
light its capabilities, we present the scenario we use to test our mechanism. This
scenario helps understand what norms are and how they control interactions in
an environment. First, we present a short story that connects the environment
to its agents, then we outline the norms that constrain them.

The government of a fictional emerging nation1 started an immigration pro-
gram to accelerate development through the hiring of foreigners. The country
welcomes visitors, besides landed immigrants, to the country, since money from
tourism greatly boosts the local economy. At the border, immigration officers must
inspect immigrant passports. The foreigner acceptance policy is quite straightfor-
ward, and immigration agents must immediately accept immigrants with valid
passports and no criminal records, and reject John Does and refugees outright.
The government believes that the more immigrants it accepts, the better. Each
officer’s responsibility is to accept as many immigrants as possible, while still fol-
lowing the guidelines that were passed to them. Each accepted able worker nets the
officer 5 credits, which eventually turn into a bonus to the officer’s salary. There are
no rewards for rejecting immigrants. It becomes clear that the bonus each officer
accumulates depends entirely on chance, and some officers may accumulate more
than others, if at all. As such, some officers might feel inclined to accept immi-
grants they should not, only to add to their personal gain.

To ensure officers act on the best interests of the nation only, the government
introduced an enforcement system to the offices at the borders. Among the
officers working in the immigration office, one is responsible for observing and
recording the behaviour of those working in booths. This officer is known as the
“monitor”. His job is to write reports about what the officers do and send these
reports to another officer, known as the “enforcer”. The enforcer then reads
the reports that are passed to him and look for any inconsistencies, such as the
approval of an illegal immigrant. As this represents a violation of a rule, or norm,
the enforcer then carries out an action to sanction the offending officer. The
penalties for approving an illegal immigrant are the immediate loss of 10 credits
and suspension of work activities for up to 10 s. Considering that immigrants
arrive at a rate of 1 per 2 s, in a 10-s timespan 5 immigrants would have arrived
at a given booth, meaning that a violating officer potentially loses 25 credits.
Added to the other portion of the sanction, the potential loss rises up to 35
credits.
1 Inspired by the game “Papers, please”: http://papersplea.se.

http://papersplea.se
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The enforcement system, however, is not cost free. Each monitor and enforcer
has an associated cost and it is within the interests of the nation to spend as
little as possible with such a system. Therefore, the government wants to know
how intensive the system must be to cover enough cases of disobedience so that
officers will know violating norms is a disadvantage rather than an advantage.

There are two norms that can be extracted from this scenario, which we define
in Examples 1 and 2. Later, in Sect. 4.3, we develop the formal representation of
norms in our system and proceed to formally defining these norms. These norms
concern the stability of the immigration program by assuring valid immigrants
are accepted and discouraging corrupt officers to accept those who should not be.

Example 1. “All immigrants holding valid passports must be accepted. Failure
to comply may result in the loss of 5 credits.”

Example 2. “All immigrants holding passports that are not valid must not be
accepted. Failure to comply may result in the loss of 10 credits and suspension
from work activities for up to 10 s.”

4 NormMAS Framework

In this section, we develop our monitoring and enforcement framework for norma-
tive agents. We start with an outline of the main components in our framework in
Sect. 4.1. We them review the agent and environment-based approaches we use in
our implementation in Sect. 4.2. Sections 4.3 and 4.4 describe the formalisation
of norms and actions we adopt. With these formalisation covered, we explain
how monitoring and enforcement work in Subsects. 4.5 and 4.6, respectively.

4.1 Architecture Overview

To allow the reader to better understand this section, we first offer an overview of
the architecture envisioned by our work. We illustrate this architecture in Fig. 1,
which shows the main elements that compose our framework and their interac-
tions. These elements can be divided into three groups: agents, environment and
external.

The agents group is self-explanatory, and it is where we put the agents that we
are using for simulation and for monitoring/enforcement tasks. The “Simulation
Agent Programs” are the agent programs which are simulating the behaviour we
wish to study, in this case our immigration officers. “Monitor Agents” are agent
programs which observe the actions performed by the simulation agent programs
and “Enforcer Agents” make the decision of whether these actions violate some
norm or not.

The environment group is composed of the elements that define what an
environment is like. In our case, our environment is not a centralised entity, but
a collection of artefacts through which agents interact. For example, monitor
agents use the “Reporting Interface Artefact” to file reports for enforcer agents to
analyse, as if they were actually putting reports in a pile over the enforcer agent’s
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desk. As we describe in the next subsection, this approach makes programming
the environment easier by separating responsibilities among different artefacts,
instead of concentrating actions in a single environment description. The types
of artefacts in this group should include all types pertaining to the simulation
context, e.g. immigration booths for passport reviewing; and three fixed types
that are part of our framework: the reporting artefact, the monitoring artefact
and the normative artefact. These artefacts are used exclusively by monitoring
and enforcement agents to perform tasks of the normative context, the exception
being the Normative Artefact, which should be accessible to agents interested in
observing normative events. Normative events include the creation, activation,
deactivation and destruction of norms and the emission of sanctions to violating
agents.

The external group is where we keep the elements that are auxiliary to our
framework, and although not considered autonomous agents are also not part of
the environment. Currently, this group contains the Action History, a structure
in which we store actions for normative analysis, and the Normative Base, a
database of established norms. In the following subsections we discuss each of
these groups in more detail.

4.2 Jason and CArtAgO

In order to show the feasibility of the mechanism proposed in this paper, we use
two programming approaches: agent-oriented programming and environment-
oriented programming. The former is provided by the Jason interpreter [12],
while the latter is achieved with the Common Artifact infrastructure for Agents
Open environments (CArtAgO) [22].

Jason provides us with the means to program agents using the AgentSpeak
language [23] in a Java environment. Agents are built with the BDI [24] archi-
tecture, and so their behaviour is directed by beliefs, goals and plans. Beliefs are
logical predicates that represent an agent’s considerations towards its environ-
ment. Predicates such as valid(Passport) and wallet(50,dollars) indicate
that the agent believes the given passport variable is valid and that his wallet
currently contains 50 dollars. In AgentSpeak variables start with an upper-case
letter, while constants start with lower-case.

Goals are states that the agent desires to fulfil, and these can be either
achievement goals or test goals. Achievement goals are objectives or milestones
that agents pursue when carrying out their duties. To represent these in AgentS-
peak, the goal’s name is preceded by the ‘!’ character. Test goals are questions
an agent may ask about the current state of the environment. These can be
identified by a ‘?’ preceding the goal’s name.

To achieve these goals, agents need to perform sequences of actions that
modify the environment towards the desired states. This sequence of actions is
referred to as a plan [25]. A plan is not necessarily composed solely of actions,
however, it can also contain sub-plans. This allows complex behaviours to be
built, creating flows of actions that vary and are influenced by agent beliefs and
perceptions.
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Fig. 1. Components of the NormMAS framework and their interactions.

As with any other programmed system, multi-agent systems must be tested
before being effectively deployed to their end environments. To do so, test envi-
ronments can be programmed for agents to be observed and any faulty behaviour
addressed before release. Jason allows the programming of test environments in
Java language, by providing an interface between agents and the programmed
environment. These environments, however, are centralised, and so they are
meant for small systems or specific test scenarios. This hinders scalability, which
is an important aspect to consider when working with complex, more realistic
scenarios or simply more robust structures. To address this limitation, we use
the CArtAgO framework for environment programming.

In CArtAgO, environments are not seen as a centralised domain description,
but as a distribution of observable properties and operations among artefacts.
These artefacts represent objects in the environment through which agents inter-
act with one another indirectly, e.g. a table in an office, on which an agent may
stack reports for another agent to pick these reports up and read them. The
artefact model is useful because it groups operations according to a context, so
it is not only easier to understand the environment model, but also to maintain
it. Agents can create and destroy artefacts at their convenience, and should new
operations be needed for a new feature in the MAS, it can be done by adding
new artefacts, instead of changing existing routines to conform to new protocols.
This approach is also more scalable, as one of the basic features of CArtAgO
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is that it can distribute artefacts among workspaces. Workspaces are artefact
containers that can be configured in several nodes in a network, eliminating the
need to concentrate the environment on a single machine. In our work, we use
artefacts for offering monitoring and enforcement tasks to agents, and we refer
to these artefacts as “normative artefacts”. These normative artefacts are shared
between normative agents so that more monitors and enforcers may be added
to the system as it scales up.

4.3 Norms

In order to keep competition between agents manageable a designer creates
norms to direct agent behaviour and maintain environment stability. This is
achieved by specifying obligations and prohibitions [6]. Here, obligations are
behaviours that agents must follow in a given context to comply with the norm,
and prohibitions behaviours that jeopardise the environment’s stability, and so
must be avoided. Violating prohibitions is just as harmful as violating obliga-
tions, hence both cases must be addressed when detected. We expect that, when
agents are punished for transgression, they are able to learn not to misbehave.
Examples 1 and 2, in Sect. 3, correspond to an obligation and a prohibition,
respectively.

While norms in the real world are expressed in natural language, they must
be translated to a multi-agent environment so that agents are able to reason
about them. This requires the extraction of necessary information related to a
norm and composition of a mathematical representation. Agents should not have
to reason how or why a certain norm came to be, but rather what the norm is
about and what are the consequences of violating it. The format can also be
extended to include other important information, such as the sanction function
associated with a norm’s violation, or the conditions for automatic activation
and expiration of the norm [6]. In this paper, norms as specified according to
the tuple of Definition 1.

Definition 1. A norm is represented by the tuple N = 〈μ, κ, χ, τ, ρ〉, where:
– μ ∈ {obligation, prohibition} represents the norm’s modality.
– κ ∈ {action, state} represents the type of trigger condition enclosed.
– χ represents the set of states (context) to which a norm applies.
– τ represents the norm’s trigger condition.
– ρ represents the sanction to be applied to violating agents.

Using Definition 1, we can proceed to formalising the norms from our exam-
ple. We can formalize the first norm of our scenario from Example 1, as shown
in Example 3.

Example 3. 〈obligation, action, valid(Passport), accept(Passport), loss(5)〉
The process can be repeated for Example 2. By identifying the context of a

norm, it is possible to define it solely with predicates and atoms, as shown in
Example 4, below.

Example 4. 〈prohibition, action, not valid(Passport), accept(Passport), loss(10)〉



66 S. Chang and F. Meneguzzi

4.4 Action Records

Like norms, actions must also be stored as tuples containing essential infor-
mation. Actions captured by monitors must only be accessed by agents of the
enforcer type, and therefore only the pieces of information that can be associ-
ated with norms are deemed essential. These are: what was done; who did it;
and under what context it was done. Example 5 shows how a monitor reports
its observations to an enforcer:

Example 5. “Officer John Doe approved Passport #3225. The passport was
known to be valid.”

From this report, we can extract the following details:

Example 6. 〈johndoe, approve(Passport), valid(Passport)〉
In this example, an officer approves the entry of an immigrant holding a valid
passport. The next report reads:

Example 7. “Officer John Smith approved Passport #2134. The passport’s valid-
ity could not be confirmed.”

From this report, we can extract the following details:

Example 8. 〈johnsmith, approve(Passport), notvalid(Passport)〉
As such, we define Action Records:

Definition 2. An Action Record, stored within the Action History, is repre-
sented by the tuple: R = 〈γ, α, β〉, where:
– γ represents the agent executing the action;
– α is the action description in the form “f(p0, p1, . . . , pn)”, where f is an action

name and p0, . . . , pn are the action’s parameter values; and
– β represents agent γ’s beliefs at the moment of execution.

4.5 Monitoring System

The monitoring is divided in two parts: a capturing system, which gathers infor-
mation pertaining to an action’s execution context, and a report forwarding
system, which provides enforcers with the gathered information for violation
detection. To gather relevant information, the capturing system employs two
strategies: an action capturing strategy and a belief state capturing strategy. In
action capturing, whenever an agent successfully executes an action, the captur-
ing system takes note of that action. In CArtAgO, this means that each successful
operation is recorded for further analysis. Should an action fail for any reason,
the capturing system ignores it. Yet, recording every successful action is a prob-
lem for both scalability and practicality. There is no reason to capture actions
that are not enforced by any norm, e.g book-keeping actions or CArtAgO’s own
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artefact creation and lookup operations. As such, we include capturing routines
only for the operations relevant to the normative context, so as not to waste
neither space and time with unimportant actions.

In belief state capturing, we employ a similar strategy to that of action
capturing. Much like actions, there may be beliefs which are not related to
any norms in the system. Thus, we should apply a filtering procedure when
scanning beliefs to avoid wasting space on useless information. We propose a
simple filtering technique, which requires monitors to also focus on normative
activity:

1. For each new active norm, scan the norm’s context for literals to add to a to
be observed list.

2. If the norm’s triggering condition is of the state type, do the same with the
condition’s literals.

3. For each deactivated norm, remove it from the to be observed list only literals
that are not seen in any other norms.

We then change our capturing routines to scan the belief bases only for the
literals in the to be observed list. If any belief to be observed cannot be found in
the belief base, they can be ignored. Note that this list can contain only predicate
names, and not their full list of terms.

Once we capture an action, we store it in the Action History, which is a
queue-like data structure from which monitors gather information to build the
reports that they send to enforcers. Actions are stored in the format discussed
in Sect. 4.4 and are removed from the queue as soon as a monitor attempts to
read them, regardless of the monitor’s success in doing so.

It is the monitors’s responsibility to send captured actions to enforcer agents
in the form of a report for analysis. To achieve that, we use a producer/consumer
model, in which an agent continuously provides information, through a channel,
to another agent that consumes this information. With this in mind, we can
identify four components that are necessary for this setup: a Producer, a Con-
sumer, a channel for communications and the information itself. In our context,
the role of Producer is given to Monitor Agents; the role of Consumer is given
to Enforcer Agents; the communication channels are artefacts called “Reporting
Interface”; and the information that transits through this channel are reports
containing the actions executed by agents. This process is illustrated in Fig. 2.

Since monitoring in the real world is not cost-free, we need to spend resources
to have an effective monitoring system in place [26], with the effectiveness of a
monitor depending on its intensity. For this reason, we must enable the adjust-
ment of monitoring intensity, so that enforcement can be performed at a cost
considered affordable by the society. These adjustments take the form of dif-
ferent monitoring strategies. An example would be a probabilistic strategy, in
which each captured action has a probability of being successfully read by a
monitor. If the reading is successful, the action is guaranteed to be reported to
an enforce, whereas if the reading fails, then the action is lost forever. We can
use this to simulate the imperfect monitoring of actions, when some violations
may go unpunished. Other strategies that monitors may apply include reading
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+actionAvailable
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Fig. 2. Monitors poll the monitoring interface for new actions. When a monitor is
successful at reading an action, it sends a report containing the action for analysis via
the reporting interface.

only actions that they know are being enforced by an active norm. An extension
to this strategy would be to add a probability of reading enforced actions with
success. In this paper, we use the probabilistic strategy to study the general
behaviour of our simulation.

4.6 Enforcement System

The enforcement system represents the Consumer entity in the normative mecha-
nism’s Producer/Consumer scheme. An enforcer agent connects to the Reporting
Interface and awaits the arrival of new reports to analyse. The arrival of new
reports is perceived by the enforcer, and in our implementation this perception
is mapped to the +newReport signal. Once the report submission is perceived,
the enforcer accesses the Normative Interface in search of currently activated
norms and checks for any possible violations by the reported action.

During the violation detection routine, the perception of violations is also
mapped to a signal, represented in the sequence diagram of Fig. 3 as the
+violation event. When a violation is perceived, it falls to the enforcer to
apply associated sanctions. The sanctioning step is the last in this process, and
it starts as soon as detection finishes.

In order to sanction violating agents, the normative mechanism must be able
to recognise them. It does not make sense to be told “John has approved an
invalid passport. He violated a norm”. if we do not know who John is in the
first place. Therefore agents must be registered to the normative system prior
to execution of their designed plans, similar to how people are registered for
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Fig. 3. Enforcers read new reports via the reporting interface. For each report, they
use the normative interface to access the normative base and look for violations in
agents’s actions.

government issued IDs. In CArtAgO, this is accomplished through an operation
in the Normative Interface that adds the agent’s ID to a list, so that they may
be found when needed. The ID they are registered with should be the same that
appears in Action Records.

Normative Base. When norms are created, they must be stored within the
system so that they may be accessed by an enforcer attempting to detect viola-
tions. The Normative Base structure holds all the norms that exist in the system,
active or not. Every time a norm is created, it is stored in a list structure with
a unique identifier. Norms may be activated or deactivated through the Norma-
tive Interface. Every time a norm is created, activated, deactivated or destroyed,
agents connected to the Normative Interface perceive the event.

Detecting Violations. The detection operation runs for each action report
received by an enforcer agent. Each action read is verified against the normative
base, along with the context under which the action was executed. Since it is
possible for an action to violate more than one norm, we utilize a list structure to
take note of all violations detected so they will be properly addressed at a later
time. At first, no norm is seen as violated and thus the list is empty. A norm
is only added to the list when all verification steps finish with the variable’s
isV iolated value set to True. The procedure for detecting violations can be seen
in Algorithm 1 and is explained further.
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Algorithm 1. Violation detection algorithm.
1: function DetectViolation(〈γ, α, β〉)
2: V ← [ ]
3: for each n = 〈μ, κ, χ, τ, ρ〉 ∈ ActiveNorms do

4: if ContextApplies(χ, β) then

5: if ConditionApplies(κ, τ, α, β) then

6: if μ = prohibition then

7: V ← V ∪ {n} 	 Violation detected! Adds to the list of violated norms.

8: else

9: if μ = obligation then

10: V ← V ∪ {n} 	 Violation detected! Adds to the list of violated norms.

11: for each n ∈ V do
12: SignalViolation(n, γ)

Detection of violations can be achieved in two steps: context analysis and trig-
ger condition analysis. Context analysis is about making sure that the action’s
execution context is the same as the one predicted by a norm. If it is, then there
is a possibility of violation and further analysis is required. Otherwise, violation
is considered an impossibility and the routine carries on. Formally, we define the
norm’s context as χ and the acting agent’s belief-base as β. Hence, the context
analysis returns True value if χ ⊆ β. Algorithm 2 is used for comparing sets
of predicates. It checks if all the predicates defined in context χ are present in
the agent’s belief-base β, one by one. If a predicate in χ is negated (e.g not
valid(Passport)), then the algorithm checks for its absence in belief-base β
instead. This is to reflect how the not operator works in Jason. The routine
returns True if the trigger condition is satisfied and False otherwise.

A trigger condition of a norm can be either the execution of an action or
the achievement of a state by an agent. This is specified by the norm’s trigger
condition type and directs the way in which the detection algorithm executes. If
we are working with an action trigger, then we must compare the action that was
executed with the one specified by the norm. However, if we are working with a
state trigger, then two contexts must be compared: the agent’s belief-base and
the norm’s state trigger condition. These are compared using the context analy-
sis algorithm of Algorithm2. We show the pseudo-code for the trigger analysis
procedure in Algorithm 3.

When both context and trigger conditions are satisfied, we need only verify
whether the norm is an obligation or prohibition to conclude if it was violated
or not. A prohibition means that a certain action or state is undesired under
the given context. If all the conditions up to now have been met, we conclude
that said undesired state has been reached and the norm was violated. On the
other hand, an obligation requires the flow specified by the norm to be followed
strictly, and if this is the case, we conclude that the norm was complied with.
By negating our conditions, we also negate its results: if in a prohibition context
the conditions were not met, then we would be home free; if they are not met
while in an obligation context, however, we would have just violated it.
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Algorithm 2. Context comparison sub-routine.
1: function ContextApplies(χ = [l1, ..., ln], β = [l1, ..., ln])

2: Require count(χ) ≤ count(β)
3: for each p ∈ χ do

4: isPresent ← False

5: checkAbsence ← False

6: if p is of the form ¬φ then

7: p ← φ
8: checkAbsence ← True
9: for each l ∈ β do

10: if l = p then

11: isPresent ← True
12: break
13: if checkAbsence = isPresent then

14: return False

15: return True

Their modality notwithstanding, every norm that is violated is added to a
list that is processed when all norms have been verified. Sanction functions are
then executed and agents perceive their punishments. Penalties can be brought
directly upon agents through perception or carried out by a third party, while
records on agent transgressions can be maintained in a separate structure for
greater consistency.

Algorithm 3. Trigger condition analysis sub-routine.
1: function ConditionApplies(κ, τ, α, β)
2: if κ = action then

3: return τ = α
4: return ContextApplies(τ, β)

5 Evaluation

In order to test our solution, we developed agents using Jason and deployed
them in a CArtAgO environment following the scenario described in Sect. 3. To
visualise the difference between compliant and non-compliant behaviours, two
types of agents were used: the normal type and the corrupt type. The normal
type is programmed to approve only those passports that are truly valid, whereas
the corrupt one will approve passports indiscriminately for his own personal gain.
By making it so, we can more easily tell the effectiveness of the norm enforcing
mechanism. Therefore, the following results were expected:

– Corrupt agents attain more credits when under lower monitoring intensity.
– Standard agents maintain an average quantity of credits through all simula-

tions.
– At some point, corrupt agents should start performing poorly due to higher

monitoring intensity. This marks the point at which monitoring can change
the environment.
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We ran 35 experiments for 11 different values of monitoring intensity2. Inten-
sity values range from 0 to 100, with a step value of 10. Each simulation was run
for 10 min. In this timespan, with our set-up, around 1048 immigrants attempt
to cross the border. In what follows, we refer to an agent’s obtained credits, or
their performance measure, as their utility. We use that measure in the graph of
Fig. 4, which illustrates how the environment’s monitoring intensity affects the
utilities of corrupt agents 1 and 2. The monitoring intensity is the probability as
a percentage of a monitor being able to read an agent’s action. A value of 100
means that all actions are read, while a value of 0 means no actions are read
by the monitor. We notice that, as the intensity of the monitoring mechanism
increases, the utility of corrupt agents decreases to the point where performing
badly and not performing at all yield the same utility, whereas normal agents
maintain their average utility. This allows us to conclude that, for a monitor-
ing intensity value of 40 or more, following norms is a better decision than the
contrary.

The data used to plot the graph of Fig. 4 can be seen in Table 1. Values for μ
and σ represent the arithmetic mean and standard deviation, respectively. These
were calculated to show that utility values for normal agents are near constant.
The μ values for corrupt agents show that, at the end of the simulation, their
average performance is worse than those of normal agents, due to their constant
violation of norms. A high σ value for these agents shows that their perfor-
mance suffers between simulations. We can then see that through the analysis
of recorded agent actions and successful identification of violation occurrences,
violating agents are punished by the enforcement system and have their utilities
affected.
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Fig. 4. Utility of corrupt agents is affected by monitoring intensity.

2 Although our experiments correspond in a broad sense to a simulation, we avoid the
term for its possibly loaded meaning.
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Table 1. Agent utilities × monitoring intensity.

Intensity Officer1 Officer2 Corrupt officer1 Corrupt officer2

0 65,3285 66,3714 130,6571 130,7000

10 64,5871 66,5714 103,3000 106,2285

20 65,4428 65,0142 86,8000 87,9571

30 65,3142 64,8714 73,7571 75,6571

40 65,7857 65,1857 59,0571 57,8142

50 65,6714 65,7714 54,3285 53,1857

60 65,1571 65,1714 38,7714 38,4571

70 65,0142 65,6571 27,6428 27,3714

80 64,7857 64,9571 19,2285 19,3428

90 65,0714 66,1714 13,7857 13,8142

100 66,7571 65,8000 1,4714 0,0285

μ 65.3559 65.5948 55,3454 55,5051

σ 0.5569 0.5705 38,4836 39,1996

6 Related Work

There are multiple tools available for programming multi-agent environments,
few of which provide mechanisms for norm specification. These tools range from
programming libraries to model-based simulators. To name a few, NetLogo [16]
and its distributed version HubNet [27] are of the model-based type and allow
users to work with educational projects and, to some extent, professional ones.
Other tools include MASON [17] and Repast [18]. MASON is a simulation library
developed in Java that provides functions for modelling agents and visualising
simulations as they run. As for Repast, it uses interaction models much like Net-
Logo does, although it is meant for professional use and thus offers more alter-
natives for agent programming. One final example worth mentioning is MASSim
[11], which promotes multi-agent research and is used in the MAS Programming
Contest3 [28]. This one, however, provides only the tools related to the con-
tests. Although it is possible to develop custom agents for operation within the
simulator, the practice is not encouraged by its developers.

Building a full-fledged norm-based behaviour simulation engine is not a triv-
ial task, and the “Emergence in the Loop” (EMIL) [29] project built a set of
tools to accomplish this objective. A toolset which includes an extension of
the BDI architecture that is capable of simulating the processes referred to as
“immergence” and “emergence” of norms [30]; and an integration with multi-
agent modelling tools such as NetLogo [16] and Repast [18]. In this way, agents
are modelled in one of these environments and then simulated using the EMIL
agent architecture. It is a very powerful tool for studying social behaviour in

3 https://multiagentcontest.org.

https://multiagentcontest.org
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autonomous agents, since agents can reason about norms and, together, create
conventions of what kinds of behaviours must be avoided or followed. EMIL’s
approach to normative simulation is more focused on agents and their experience
with norms. This contrasts with our approach in that we are more focused on
norm monitoring and enforcement tasks, and little is said about these matters in
the EMIL literature. We also consider the environmental aspects of Normative
Multi-Agent Systems, which is why we employ CArtAgO in our implementation.

Finally, the Moise+ [19] tool (part of the JaCaMo [31] framework) can also be
used to specify norms for MAS development. Moise+ allows us to create organ-
isations of agents, and within these organisations agents take up specific roles
to act and missions to accomplish. The normative part of Moise+ ties agents
to their missions through obligations, prohibitions and permissions. Neverthe-
less, Moise+ differs from NormMAS in three key aspects. First Moise+ focuses
on normative specification for organisations to coordinate agents in performing
certain tasks, whereas in NormMAS, we have social norms and regulations that
only tell agents what they should or should not do. Consequently, when there
is no normative specification in NormMAS, the agents’s routines remain intact.
Second, while Moise+ norms affect whole plans, NormMAS norms affect only
specific actions or states. Third, while Moise+ norms are not regimented, lack of
compliance does not incur any penalties for violating agents, which means that
they are not enforced either.

7 Conclusions and Future Work

In this paper, we constructed a mechanism of norm processing and enforcement
in a multi-agent environment. We show its feasibility with an implementation
using Jason [12] and Cartago [22] technologies. By keeping track of agent activ-
ities and analysing actions against a normative base, it is possible to detect
violations and enforce norms through the sanctioning of violating agents. With
this framework, it is possible to evaluate different implementations [6,32–34] of
normative behaviour. Statistics collection can also be customised so that results
may be compared between simulations. We provide our example implementation
to the public via a GitHub repository [35].

CArtAgO allows us to build environments in a distributed manner, therefore
providing scalability for realistic simulation scenarios or complex multi-agent
systems. The philosophy behind CArtAgO, which sees the environment as the
composition of artefacts through which agents interact, also aided in the frame-
work’s construction. Artefacts are modular, they can be attached or detached
to a multi-agent system seamlessly. Meaning that artefacts can be created to
suit an agent’s or group of agents’s specific needs, and agents may connect only
to those artefacts that are related to their designs. We took advantage of those
features to build the interfaces for the monitoring system to access the Action
History and Normative Base structures.

As future work, we aim to build improvements and extensions to the frame-
work, such as: a mechanism to be added to the normative system that allows
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activation and expiration of norms following predefined conditions; agent archi-
tectures that can learn from normative environments, and with that avoid penal-
ties by violation or minimising performance loss when violations are inevitable
[6]; enable agents to learn about the enforcing intensity and use that informa-
tion to their advantage [26]; and the introduction of agent hierarchies to control
normative power [36].
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