
Implementation of Normative Practical
Reasoning with Durative Actions

Zohreh Shams1(B), Marina De Vos1, Julian Padget1,
and Wamberto Vasconcelos2

1 Department of Computer Science, University of Bath, Bath, UK
{z.shams,m.d.vos,j.a.padget}@bath.ac.uk

2 Department of Computing Science, University of Aberdeen, Aberdeen, UK
wvasconcelos@acm.org

Abstract. Autonomous agents operating in a dynamic environment
need constantly to reason about actions in pursuit of their goals, while
taking into consideration possible norms imposed on those actions. Nor-
mative practical reasoning supports agents decision making about what
is best for an agent to do in a given situation. What makes practical
reasoning challenging is the conflict between goals that the agent is pur-
suing and the norms that the agent is trying to uphold. We offer a formal
model that allows the agents to plan for conflicting goals and norms in
presence of durative actions that can be executed concurrently. We com-
pare plans based on decision-theoretic notions (i.e. utility) such that the
utility gain of goals and utility loss of norm violations are the basis of this
comparison. The set of optimal plans consists of plans that maximise the
overall utility, each of which can be chosen by the agent to execute. The
formal model is implemented computationally using answer set program-
ming, which in turns permits the statement of the problem in terms of a
logic program that can be queried for solutions with specific properties.
We demonstrate how a normative practical reasoning problem can be
mapped into an answer set program such that the optimal plans of the
former can be obtained as the answer sets of the latter.

1 Introduction

Norms define an ideal behaviour for an autonomous agent in an open environ-
ment. However, having individual goals to pursue, self-interested agents might
not want or be able always to adhere to the norms imposed on them. Depend-
ing on the way they are given a computational interpretation, norms can be
regarded as soft or hard constraints. When modelled as hard constrains, norms
are regarded as regimented, in which case the agent has no choice but blindly to
follow the norms [12]. Although regimentation guarantees norm compliance, it
greatly restricts agent autonomy. Conversely, enforcement approaches in which
norms are modelled as soft constraints, leave the choice of obeying or disobey-
ing the norms to the agent. However, in order to encourage norm compliance,
there are consequences introduced in terms of punishment in case the agent vio-
lates the norm [25,29]. Moreover, in some enforcement approaches [1] the agent
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 335–353, 2016.
DOI: 10.1007/978-3-319-42691-4 19

336 Z. Shams et al.

is rewarded for complying with a norm. The enforcement approaches can be
broadly divided in two categories. In the utility-based approaches [1,2,26] there
is a utility gain/loss associated with respecting norm or not, whereas in the pres-
sured norm compliance approaches [25], violating a norm or not is determined
by the interference of the norm in satisfying or hindering the agent goals. Gain-
ing better utility or not losing utility is the basis of normative reasoning in the
former category, while in the latter it is the potential conflicts between norms
and agent goals. If there is no such conflict, the agent only complies with a norm
if there are goals that are hindered by punishment of violation, and violates the
norms otherwise. On the other hand, if there is a conflict, the agent does not
comply unless the goals hindered by punishment are more important than goals
facilitated by compliance.

Existing work on normative practical reasoning using enforcement have con-
sidered different phases of the practical reasoning process, such as plan genera-
tion and plan selection. In [27] norms are taken into account in the agent’s plan
generation phase, whereas [26] takes norms into consideration when deciding
how to execute a pre-generated plan with respect to the norms triggered by that
plan. There is also a substantial body of work on integration of norms into the
BDI architecture [30]. The BOID architecture [7] extends BDI with the concept
of obligation and uses agent types such as social, selfish, etc. to handle the con-
flicts between beliefs, desires, intentions and obligations. Another extended BDI
architecture is proposed in [9], which focusses on norm recognition and consider-
ing them in agent decision making processes. More recently, [2] proposed a novel
way of utilising permission norms in a BDI agent when the agent does not have
complete information about the environment it operates in.

In this paper we define an approach for practical reasoning that considers
norms in both plan generation and plan selection. We extend the current work
on normative plan generation such that the agent attempts to satisfy a set of
potentially conflicting goals in the presence of norms, as opposed to conventional
planning problems that generate plans for a single goal [26,27]. Additionally,
since in reality the actions are often non-atomic, the model allows for planning
with durative actions that can be executed concurrently. Durative actions reflects
the real time that a machine takes to execute certain actions, which is also known
as “real-time duration” of actions [6]. More importantly, another contribution
of this paper is introducing an enforcement approach that is a combination of
utility-based and pressure-based compliance methods mentioned earlier. In order
to do so, we first extend the notion of conflict defined in [25] by allowing conflict
between norms as well as between norms and goals. We then define a penalty
cost for norm violation, regardless of the existence of conflict. Whenever a norm
is triggered, both outcomes of norm compliance and violation and their impacts
on hindering or facilitating other goals and norms, are generated and compared
according to their utility. Moreover, in those cases that there are no conflicts
and no goals or norms hindered by the punishment of violation: loss of utility
drives the agent toward compliance. Regarding plan selection, generated plans
are compared based on the utility of the goals satisfied and cost of norms violated
in the entire plan. Both plan generation and plan selection mechanisms proposed
here are implemented using Answer Set Programming (ASP) [15].

Implementation of Normative Practical Reasoning with Durative Actions 337

ASP is a declarative programming paradigm using logic programs under the
answer set semantics. In this paradigm the user provides a description of a
problem and ASP works out how to solve the problem by returning answer
sets corresponding to problem solutions. The existence of efficient solvers to
generate the answers to the provided problems has increased the application of
ASP in different domains of autonomous agents and multi-agent systems such
as planning [24] and normative reasoning [8,28]. Several action languages (e.g.
event calculus [21], A [14] and its descendants (e.g. B, C [14]), Temporal Action
Logics (TAL) [11]) have been implemented in ASP [22,23], which indicates that
ASP is an appropriate tool for reasoning about actions. We therefore, propose
an implementation of STRIPS [13] as an action language in ASP.

This paper is organised as follows. The formal model and its semantics are
proposed in Sect. 2, followed by the computational implementation of the model
in Sect. 3. Section 4 provides an example that illustrates the main features of
the model in action. Finally, after the discussion of related work in Sect. 5, we
conclude in Sect. 6.

2 A Model for Normative Practical Reasoning

This section introduces a formal model and its semantics for normative practical
reasoning in the presence of durative actions. The foundation of this model is
classical planning in which an agent is presented with a set of actions and a
goal. Any sequence of actions that satisfies the goal is a solution to the planning
problem. In Sect. 2.1 we extend the classical planning problem by substituting a
single goal with a set of potentially inconsistent goals G and a set of norms N . A
solution for such a problem is any sequence of actions that satisfies at least one
goal. The agent has the choice of violating or complying with triggered norms,
while satisfying its goals.

2.1 Syntax

A normative planning system is a tuple P = (FL,Δ,A,G,N) where FL is a set
of fluents, Δ is the initial state, A is a set of durative STRIPS-like [13] actions, G
denotes the set of agent goals and N denotes a set of norms imposed on the agent
that define what an agent is obliged or forbidden to do under certain conditions.
We now describe each of these in more details.

Fluents: FL is a set of domain fluents that accounts for the description of the
domain the agent operates in. A literal l is a fluent or its negation i.e. l = fl or
l = ¬fl for some fl ∈ FL. For a set of literals L, we define L+ = {fl|fl ∈ L}
and L− = {fl|¬fl ∈ L} to denote the set of positive and negative fluents in L
respectively. L is well-defined if there exists no fluent fl ∈ FL such that fl ∈ L
and ¬fl ∈ L, i.e. if L+ ∩ L− = ∅.

The semantics of the model are defined over a set of states Σ. A state s ⊆ FL
is determined by set of fluents that hold true at a given time, while the other

338 Z. Shams et al.

fluents (those that are not present) are considered to be false. A state s ∈ Σ
satisfies fluent fl ∈ FL, denoted s |= fl, if fl ∈ s. It satisfies its negation ¬fl
if fl �∈ s. This notation can be extended to a set of literals as follows, set X is
satisfied in state s, s |= X, when ∀x ∈ X · s |= x.

Initial State: The set of fluents that hold at the initial state is denoted by
Δ ⊆ FL.

Actions: A is a set of durative STRIPS-like actions, that is actions with pre-
conditions and postconditions that take a non-zero duration of time to have
their effects in terms of their postconditions. A durative action a = 〈pr, ps, d〉 is
composed of well-defined sets of literals pr(a), ps(a) ⊆ FL to represents a’s pre-
conditions and postconditions and a positive number d(a) ∈ N for its duration.
Postconditions are further divided into a set of add postconditions ps(a)+ and
a set of delete postconditions ps(a)−. An action a can be executed in a state s
if its preconditions hold in s (i.e. s |= pr(a). The postconditions of a durative
action are applied in the state s at which the action ends (i.e. s |= ps(a)+ and
s �|= ps(a)−).

The model does not allow parallel actions, since it is not realistic to assume
that a single agent initiates several actions at the exact same point in time.
Concurrency however, is allowed unless there is a concurrency conflict between
actions, which prevents them from being executed in an overlapping period of
time. The definition of concurrency conflict is adopted from [4] as follows: two
actions a1 and a2 are in a concurrency conflict, if the preconditions or postcon-
ditions of a1 contradict the preconditions or postconditions of a2.

Goals: G denotes a set of (possibly inconsistent) goals. Goals identify the state
of affairs that an agent wants to satisfy. Each goal g = 〈r, v〉 is defined as a set of
well-defined literals r, that are requirements that should hold in order to satisfy
the goal and a positive integer v ∈ N that shows the value or utility gain of
the agent upon satisfying this goal. Goal g’s requirements and value are denoted
r(g) and v(g), respectively. Goal g is satisfied in the state s when s |= r(g).

Norms: N denotes a set of event-based norms to which the agent is subject.
Each norm is a tuple of the form n = 〈d o, a1, a2, dl, c〉, where

– d o ∈ {o, f} is the deontic operator determining the type of norm, which can
be an obligation or a prohibition. The agent is assumed to be operating in a
permissible society, hence what is not prohibited is permitted.

– a1 ∈ A is the action that counts as the norm activation condition.
– a2 ∈ A is the action that is the subject of the obligation or prohibition.
– dl ∈ N is the norm deadline relative to the activation condition, which is the

completion of execution of a1.
– c ∈ N is the penalty cost that will be applied if the norm is violated.

An obligation expresses that taking action a1 obliges the agent to take action a2

within dl time units of the end of execution of a1. Such an obligation is complied

Implementation of Normative Practical Reasoning with Durative Actions 339

with if the agent starts executing a2 before the deadline and is violated otherwise.
A prohibition expresses that taking action a1 prohibits the agent from taking
action a2 within dl time units of the end of execution of a1. Such a prohibition
is complied with if the agent does not start executing a2 before the deadline and
is violated otherwise.

2.2 Semantics

Let P = (FL,Δ,A,G,N) be a normative planning problem. A plan is rep-
resented by a sequence of actions taken at certain times, denoted as: π =
〈(a0, t0), · · · , (an, tn)〉. (ai, ti) means that action ai is executed at time ti ∈
Z
+ s.t. ∀i < j we have ti < tj . The total duration of a plan, Makespan(π),

is calculated by the relation: Makespan(π) = max(ti + d(ai)). The evolu-
tion of a sequence of actions for a given starting state s0 = Δ is a sequence
of states 〈s0, · · · sm〉 for every discrete time interval from t0 to m, where
m = Makespan(π). The transition relation between two states is defined by
Eq. 1 below. If an action aj ends at time ti, state si results from removing all
delete postconditions and adding all add postconditions of action aj to state
si−1. If there is no action ending at si, it remains the same as si−1.

∀i > 0 : si =

{
(si−1 \ ps(aj)−) ∪ ps(aj)+ i = tj + d(aj)
si−1 otherwise

(1)

A sequence of actions π satisfies a goal, π |= g, if there is at least one state si

in the sequence of states caused by the sequence of actions such that si |= g. An
obligation n1 = 〈o, ai, aj , dl, c〉 is complied with in plan π (i.e. π |= n1), if the
action that is the norm activation condition has occurred ((ai, ti) ∈ π), and the
action that is the subject of the obligation occurs ((aj , tj) ∈ π) between when the
condition holds and when the deadline expires (tj ∈ [ti +d(ai), dl+ti)+d(ai)). If
ai has occurred but aj does not occur at all or occurs in a period other than the
one specified, the obligation is violated (i.e. π �|= n1). In the case of prohibition
n2 = 〈f, ai, aj , dl, c〉, compliance happens if the action that is the norm activation
condition has occurred ((ai, ti) ∈ π) and the action that is the subject of the
prohibition does not occur in the period between when the condition holds and
when the deadline expires (� ∃(aj , tj) ∈ π s.t. tj ∈ [ti + d(ai), dl + ti + d(ai)). If
ai has occurred and aj occurs in the specified period, the prohibition is violated
(i.e. π �|= n2). The set of satisfied goals, norms complied with and norms violated
in plan π are denoted as Gπ, Ncmp(π) and Nvol(π), respectively.

In classical planning, any sequence of actions that satisfies the goal is a
solution to the planning problem. Extending a planning problem to cater for
conflicting goals and norms requires considering different types of conflicts as
follows:

Conflicting Actions. Actions ai and aj have a concurrency conflict iff the
preconditions or postconditions of ai contradict the preconditions or postcondi-
tions of aj .

340 Z. Shams et al.

cf action = {(ai, aj) s.t. ∃r ∈ pr(ai) ∪ ps(ai),¬r ∈ pr(aj) ∪ ps(aj)} (2)

Conflicting Goals. Goal gi and gj are in conflict iff satisfying one requires
bringing about a state of affairs that is in conflict with the state of affairs required
for satisfying the other.

cf goal = {(gi, gj) s.t. ∃r ∈ gi,¬r ∈ gj} (3)

Conflicting Norms. Obligations n1 = 〈o, a1, a2, dl, c〉 and n2 = 〈o, b1, b2, dl′, c′〉
are in conflict in the context of plan π iff: (i) their activation conditions hold,
(ii) the obliged actions a2 and b2 have a concurrency conflict and (iii) a2 is in
progress during the entire period over which the agent is obliged to take action
b2. The set of conflicting obligations is formulated as:

cfπ
oblobl = {(n1, n2) s.t. (a1, ta1), (b1, tb1) ∈ π; (a2, b2) ∈ cf action;

ta2 ∈ [ta1 + d(a1), ta1 + d(a1) + dl);
[tb1 + d(b1), tb1 + d(b1) + dl′) ⊆ [ta2 , ta2 + d(a2))} (4)

On the other hand, an obligation n1 = 〈o, a1, a2, dl, c〉 and a prohibition
n2 = 〈f, b1, a2, dl′, c′〉 are in conflict in the context of plan π iff: (i) their activation
conditions hold and (ii) n2 forbids the agent to take action a2 during the entire
period over which n1 obliges the agent to take a2. The set cf π

oblpro denotes the
set of conflicting obligations and prohibitions as below:

cf π
oblpro = {(n1, n2) s.t. (a1, ta1), (b2, tb2) ∈ π;

[ta1 + d(a1), ta1 + d(a1) + dl) ⊆
[tb2 + d(b2), tb2 + d(b2) + dl′)} (5)

The entire set of conflicting goals and norms is defined as:

cf π
norm = cf π

oblobl ∪ cf π
oblpro (6)

Conflicting Goals and Norms. An obligation n = 〈o, a1, a2, dl, c〉 and a goal
g are in conflict, if taking action a2 that is the subject of the obligation, brings
about postconditions that are in conflict with the requirements of goal g. The
set of conflicting goals and obligations is formulated as:

cf goalobl = {(g, n) s.t. ∃r ∈ r(g),¬r ∈ ps(a2)} (7)

In addition, a prohibition n = 〈f, a1, a2, dl, c′〉 and a goal g are in conflict,
if the postconditions of a2 contribute to satisfying g, but taking action a2 is
prohibited by norm n.

cf goalpro = {(g, n) s.t. ∃r ∈ r(g), r ∈ ps(a2)} (8)

The entire set of conflicting goals and norms is defined as:

cf goalnorm = cf goalobl ∪ cf goalpro (9)

Implementation of Normative Practical Reasoning with Durative Actions 341

A sequence of actions π is a plan for P , if all the fluents in Δ hold at time t0
and for each i, the preconditions of action ai hold at time ti, as well as through
the execution of ai, and a non-empty subset of goals is satisfied in the path from
initial state s0 to the state holding at time tm, where m = Makespan(π). Fur-
thermore, extending the conventional planning problem by multiple potentially
conflicting goals and norms requires defining extra conditions that makes a plan
a valid plan and a solution for P . Plan π is a valid plan for P iff:

1. all the fluents and only those fluents in Δ hold in the initial state: s0 = Δ
2. the preconditions of action a1 holds at time ta1 and throughout the execution

of a1:
∀k ∈ [ta1 , ta1 + d(a1)), sk |= pr(a1)

3. the set of goals satisfied by plan π is a non-empty consistent subset of goals:

Gπ ⊆ G and Gπ �= ∅ and � ∃gi, gj ∈ Gπ s.t. (gi, gj) ∈ cf goal

4. there is no concurrency conflict between actions that are executed concur-
rently:

� ∃(ai, tai
), (aj , taj

) ∈ π s.t. tai
≤ taj

< tai
+ d(ai), (ai, aj) ∈ cf action

5. there is no conflict between norms complied with.

� ∃ni, nj ∈ Ncmp(π) s.t. (ni, nj) ∈ cf π
norm

6. there is no conflict between goals satisfied and norms complied with:

� ∃g ∈ Gπ and n ∈ Ncmp(π) s.t. (g, n) ∈ cf goalnorm

Let satisfied(π) and violated(π) be the set of satisfied goals and violated
norms in plan π. The utility of a plan π is defined by Eq. 10 where Value is
a function that returns the value of goals being satisfied and Cost returns the
penalty cost of norms being violated in that plan. The set of optimal plans, Opt,
are those plans that maximise the utility.

Utility(π) =
∑

gi∈satisfied(π)

V alue(gi) −
∑

nj∈violated(π)

Cost(nj) (10)

3 An Answer Set Programming Implementation

Encoding a practical reasoning problem as a declarative specification makes
it possible to reason computationally about agent actions, goals and norms.
This enables an agent to keep track of actions taken, goals satisfied and norms
complied with or violated at each state of its evolution. More importantly, it
provides the possibility of querying traces that fulfil certain requirements such
as satisfying some specific goals. Consequently, instead of generating all possible

342 Z. Shams et al.

traces and looking for those ones that satisfy at least one goal, only those ones
that do satisfy at least one goal are generated.

ASP programs consist of a finite set of rules formed from atoms. Atoms
are the basic components of the language that can be assigned a truth value
(true or false). Literals are atoms or negated atoms. Atoms are negated
using classical negation (¬) or negation as failure (not). The former states
that something is false, whereas the latter states something is assumed false
since it cannot be proven true. The general rule syntax in ASP is: l0 ←
l1, · · · , lm, not lm+1, · · · , not ln., in which li is an atom (e.g. a) or its nega-
tion (e.g. ¬a). l0 is the rule head and l1, · · · , lm, not lm+1, · · · , not ln are the
body of the rule. The above rule is read as: l0 is known/true, if l1, · · · , lm are
known/true and none of lm+1, ln are known. If a rule body is empty, that rule
is called a fact and if the head is empty, it is called a constraint indicating that
none of the answers should satisfy the body.

3.1 Translating the Model into ASP

In this section, we demonstrate how a planning problem P = (FL,Δ,A,G,N)
can be mapped into an answer set program such that there is a one to one
correspondence between solutions for the planning problem and the answers
of the program. The mapping uses the following atoms: state(s) for denoting
the states; time(t, s) to indicate the time at state s; holdsat(x, s) to express
fluent x is true in state s; occurred(a,s) to encode action a occurs at state s.
There are additional atoms used in Figs. 2, 3, 4, 5 and 6, that will be discussed in
their respective sections. Please note that the variables begin with capital letters
in ASP.

Time and Initial State (Fig. 1). The facts produced by Line 1 provide the pro-
gram with all available states, while Line 2 defines the order of states. The
maximum number of states, q, results from sum of duration of all actions:
q =

∑n
i=1 d(ai). The final state is therefore stated as sq in Line 3. Line 4 illus-

trates the initial time that increases by one unit from one state to the state next
to it (Line 5). Finally, Line 6 encodes the fluents that hold at initial state s0.

Actions (Fig. 2). Each durative action is encoded as action(a, d) (Line 7), where
a is the name of the action and d is its duration. Recalling from Sect. 2, the
preconditions pr(a) of action a hold in state s if s |= pr(a). This is expressed in
Line 8, where pr(a)+ and pr(a)− are positive and negative literals in pr(a). In
order to make the coding more readable we introduce the shorthand EX(X,S)
where X is a set of fluents that should hold at state S. For all x ∈ X, EX(X,S) is
translated into holdsat(x,S) and for all ¬x ∈ X, EX(¬X,S) is translated into
not EX(x,S) using negation as failure. The agent has the choice to take any of
its actions in any state (Line 9), however, the preconditions of a durative action
should be preserved when it is in progress. A durative action is in progress,
inprog(A,S), from the state in which it begins to the state in which it ends
at (Lines 10 to 11). Then, Line 12 rules out the execution of an action, when

Implementation of Normative Practical Reasoning with Durative Actions 343

Fig. 1. Rules for time component (Lines 1–5) and initial state (Line 6)

the preconditions of the action do not hold during its execution. In addition
there should not be any action in progress in the final state (Line 13). Another
assumption made in Sect. 2, is the prevention of parallel actions, which prevents
the agent from starting two actions at the same time (Lines 14 to 15). Once
an action starts in one state, the result of its execution is reflected in the state
where the action ends. This is expressed through (i) Lines 16 to 17 that allow the
add postconditions of the action to hold when the action ends, and (ii) Lines 18
to 19 that allow the termination of the delete postconditions. The termination
happens in the state before the end state of the action. The reason for this is
that all the fluents that hold in a state, hold in the next state unless they are
terminated (Lines 20 to 21). Since the delete postconditions of an action are
terminated in the state before the end state of the action, they will not hold
in the following state, in which the action ends (i.e. they are deleted from the
state).

Goals (Fig. 3). Line 22 encodes goal g with value of v. From Sect. 2, we have goal
g is satisfied in state s if s |= r(g). This is expressed in Line 23, where r(g)+ and
r(g)− are the positive and negative literals in r(g).

Norms (Fig. 4). The conditional event-based norms that are the focus of this
research are discussed in the previous section. Line 24 encodes norm n with
penalty cost of c upon violation. Lines 25–39 deal with obligations and prohibi-
tions of form: n = 〈d o, a1, a2, dl, c〉. In order to implement the concepts of norm
compliance and violation described in Sect. 2.2, we introduce normative fluents
o(n, a2, dl′) and f(n, a2, dl′) that first hold in the state in which action a1’s exe-
cution ends. An obligation fluent o(n, a2, dl′) denotes that action a2 should be
brought about before deadline dl′or be subject to violation, whereas prohibition
fluent f(n, a2, dl′) denotes that action a2 should not be brought about before
deadline dl′ or be subject to violation. If a1 with duration d1 occurs at state
S, where time is T , the agent has dl units time starting from end of action

344 Z. Shams et al.

Fig. 2. Rules for translating actions

Fig. 3. Rules for translating goals

a1 (T2=T1+d1) to comply with the norm imposed on it. Lines 25–26 and 32–33
indicate the establishment of obligation and prohibition fluents.

In terms of compliance and violation, the occurrence of an obliged action
before the deadline expires, counts as compliance (Lines 27 to 28) and the
absence of such an occurrence before the deadline is regarded as violation
(Line 30). Atoms cmp(o|f(n, a, DL), S) and vol(o|f(n, a, DL), S) are used to indi-
cate compliance or violation of norm n in state S. In both cases of compliance
and violation, the norm is terminated (Lines 29 and 31). On the other hand, a
prohibition is complied with if the forbidden action does not happen before the
deadline (Lines 34 to 35) and is violated if it does happen before the deadline
(Lines 37 to 38). As with obligations, after being complied with or violated, the
prohibitions are terminated (rules 36 and 39).

3.2 Mapping of Answer Sets to Plans

In Sect. 2.2 we defined the criteria for a sequence of actions to be identified as a
valid plan and solution for P = 〈FL,Δ,A,G,N〉. Figure 5 provides the coding

Implementation of Normative Practical Reasoning with Durative Actions 345

for the criteria. The rule in Line 41 is responsible for constraining answer sets to
those that fulfil at least one goal by excluding answers that do not satisfy any
goals. The input for this rule is provided in Line 40. Line 42 prevents satisfying
two conflicting goals, hence guaranteeing the consistency of satisfied goals in a
plan. Preventing the concurrency of conflicting actions, is implemented using
Lines 43–44, by expressing that such two actions cannot be in progress together.
Lines 45 and 46 provides the input for Lines 47 and 48, which exclude the possi-
bility of satisfying a goal and complying with a norm that are conflicting. Note
that the implementation prevents complying with conflicting norms automati-
cally: (i) since it is not possible to execute two conflicting actions concurrently,
if two obligations would require that, one of them has to be violated, while (ii)
regarding conflicting obligation and prohibition, by definition, taking the obliged
action by the agent and hence complying with the obligation causes the violation
of the other norm that enforces the prohibition of taking the very same action,
and vice versa.

Theorem 1. Let program Πbase consist of Lines 7 – 48. Given a planning prob-
lem P = (FL,Δ,A,G,N), for every answer set Ans of Πbase the set of atoms
of the form occurred(a,s)1 in Ans encodes a solution to the planning problem
P . Conversely, each solution to the problem P corresponds to a single answer
set of Πbase.

Fig. 4. Rules for translating norms

1 In the formal model a plan/solution π for problem P is defined as a set of action,
time pairs (e.g. (ai, ti)), whereas in the answer sets a plan is expressed by action,
state pairs (e.g. occurred(a,s)). Action, state pairs can easily be mapped to action,
time pairs by replacing the state with the time that holds in that state.

346 Z. Shams et al.

Fig. 5. Solutions for problem P

Proof (sketch). The proof can be obtained through structural induction. Line 9
generates all sequences of actions. Line 6 ensures that all fluents in Δ hold at
t0. Line 12 guarantees that the precondition of an action hold all through its
execution. Line 41 indicates that a non-empty subset of goals has to be satisfied
in a plan, while Line 42 ensures the consistency of the goals satisfied. Preventing
the concurrency conflict is provided in Lines 43–44. Finally, Lines 47–48 eliminate
the possibility of conflict between goals satisfied and norms complied with. This
implies that the sequence of actions that is part of the answer set satisfies the
conditions to be a solution to the encoded planning program. Conversely, each
solution satisfies all the program’s rules in a minimal fashion.

3.3 Optimised Plans

In order to find optimal plans, in Fig. 6 we show how to encode the utility
function defined by Eq. 10. The sum of values of goals satisfied in a plan is
calculated in Line 49. The sum of costs of norms violated in a plan is calculated
in Line 49, by first providing the input for this line in Lines 50 and 51. Having
calculated value(TV) and cost(TC), the utility of a plan is denoted in Line 53,
which is subject to the optimisation statement in the final line.

Theorem 2. Let program Π = Πbase ∪Π∗, where Π∗ consists of Lines 49 – 54.
Given a planning problem P = (FL,Δ,A,G,N), for every answer set Ans of Π
the set of atoms of the form occurred(a,s) in Ans encodes an optimal solution
to the planning problem P . Conversely, each optimal solution for the problem P
corresponds to a single answer set of Π.

Implementation of Normative Practical Reasoning with Durative Actions 347

Fig. 6. Optimised solutions for P

Proof (Sketch). Theorem 1 ensures that all solutions are represented by answer
sets and vice versa. The optimality of solutions is guaranteed in this program.
Line 54 ensures optimal solutions that maximise utility, which is in turn defined
in Line 53 as the difference between the cost of violation (Line 52) and goal
values (Line 49).

4 Illustrative Example

In this section, we provide a brief example that highlights the most important
features of the proposed model. Let us consider an agent with the durative
actions presented in Table 1. The agent has three goals presented with their
requirements and two different set of values in Table 2. The first goal is to get
some certificate that requires the agent to take some test, but in order to be
able to attend the test, the agent first needs to pay the fee for the test. The
second goal is to make a submission of some marking that needs to be done in
the office and the last goal is to go on strike, for which the agent needs to be a
member of union, not to go to office nor to attend any meeting on behalf of the
company. In addition, one of the agent’s action, comp funding, has a normative
consequence captured in a norm that states that if company funds are used to
pay the fee for the test, the agent is obliged to attend a meeting on behalf of
the company within 1 time unit of end of action comp funding, which results
in the payment of the fee for the test. If the agent uses the funding, but does
not attend the meeting before the deadline, it is entitled to the penalty cost of
4 units.

n = 〈o, comp funding, attend meeting, 1, 4〉
Table 3 shows the corresponding ASP code for this example based on the

code in Sect. 3. For spacial reasons, only those rules that need instantiation are
provided. For ease of reference, rules instantiated in each part of the code are
titled by their corresponding figures in Sect. 3. Moreover, only one action, drive,
and one goal, certificate, are encoded. The rest of the actions and goals can be
coded in the same way.

Following Theorem 2, we obtain a one-to-one correspondence between the
answer sets of the program in Table 3 and optimal plans for the agent to exe-
cute such that the agent utility is maximised. Table 4 illustrates the optimal
plans (as translations of the answer sets) based on two different set of values in

348 Z. Shams et al.

Table 2. Plan π1 satisfies goals certificate and strike, however due to the con-
flict between strike and norm n, the norm is inevitably violated. Additionally,
the conflict between goal strike and submission, makes it impossible for the
agent to satisfy submission. Since the sum of utility loss of violating n and not
satisfying submission, is still less that the utility gain of satisfying strike, the
agent prefers the former to the latter. On the other hand, in plan π2 satisfy-
ing submission is preferred over satisfying strike, although they have the same
utility gain. However, satisfying strike would have implied violating n, and thus
incurring the penalty cost of 4. Therefore, in pursuit of maximising the util-
ity, the agent prefers satisfying submission and complying with n to satisfying
strike and violating n, which was the case in plan π1.

5 Related Work

The interaction between an agent’s individual goals and social norms has been
discussed in a number of works. Some such as [26,27] use utility measurement
to enforce norm compliance. In contrast, in [25] norm compliance relies on the
explicit interaction between goals and norms, but if the norm compliance or
violation does not hinder any goals there is no connection and hence no compu-
tational mechanism in place that enforces the norms. From a planning perspec-
tive, norms are taken into account in plan generation [27] and in plan selection
[20,26]. In [27] the normative state of the agent is checked by a planner after each
individual action is taken, which depending on the number of actions, imposes a
high computational cost on the step-by-step generation of plans. It is the utility
of individual actions here that determines norm compliance. On the other hand,
[20,26] consider norms as part of plan selection, starting from the assumption

Table 1. Agent Actions

Preconditions (Action, Duration) Postconditions

¬office (drive, 1) office

¬marking done, office (marking, 2) marking done

¬test done, fee paid (attend test, 1) test done

¬fee paid (comp funding, 1) fee paid

¬meeting attended, fee paid (attend meeting, 2) meeting attended

¬union member (join union, 1) union member

Table 2. Agent Goals

Goals Requirements Value1 Value2

certificate fee paid, test done 8 5

submission office, marking done 3 7

strike union member, ¬office, ¬meeting 9 7

Implementation of Normative Practical Reasoning with Durative Actions 349

Table 3. Instantiated ASP code

that the agent has access to a library of pre-generated plans. In contrast to all
of [20,26,27], our work deals with both plan generation and plan selection while
taking account of norms, and like [26] we focus on the utility of the entire plan,
unlike [27] which only considers the constituent actions in sequence.

350 Z. Shams et al.

Table 4. Optimal plans

Goal Values Plans Goals Norms Utility

Value1 π1 =
〈(comp funding, 0),
(union, 1),
(attend test, 2)〉

certificate, strike violated(n) 13

Value2 π2 = 〈(drive, 0),
(marking, 1),
(comp funding, 2),
(attend meeting, 3),
(attend test, 4)〉

submission, certificate complied(n) 12

Some works [19,32] focus on interaction between an agent’s goal and its
commitments, where commitments are made by agents to one another in order
to support the realisation of their goals. Our approach is different from these
approaches for two main reasons: (i) commitments are deliberately made by the
agent, whereas norms are externally imposed to the agent; and (ii) commitments
are made to support satisfying goals, while imposed norms might be in conflict
with the agent’s goals and consequently, hinder some of them.

The Event Calculus (EC) [21] forms the basis for the implementation of some
normative reasoning frameworks, such as [2,3]. Our proposed formal model is
independent of language and could be translated to EC and hence to a com-
putational model, but the one-step translation to ASP is preferred because the
formulation of the problem is very similar to the computational model, thus
there are no conceptual gaps to bridge. Furthermore, the EC implementation
language is Prolog, which although syntactically similar to ASP, suffers from
non-declarative functionality in the form of the cut operator, which results in a
loss of completeness. Furthermore, its query-based nature that focusses on one
issue at a time, makes it cumbersome to reason about all plans.

A final point is that the norm representation and implementation proposed
here is expressive and realistic in respect of time and duration: specifically, since
the formal model and ASP implementation handle time explicitly, it is straight-
forward to represent the norm deadline as a future time instant, rather than a
state to be brought about.

6 Conclusions, Discussion and Future Work

An agent performing practical reasoning in an environment regulated by norms,
needs constantly to weigh up the importance of goals satisfied and norms com-
plied with against goals not satisfied and norms broken. This comparison is
possible when the agent has access to all possible plans, such that the decision
of which goals to pursue and which norms to respect is made based on their
impact on the entire plan. We show how this impact can be captured in a utility
function that permits the agent to execute a plan that maximises the utility.

Implementation of Normative Practical Reasoning with Durative Actions 351

The focus of plan selection in this paper is on maximising the agent utility
by considering the value of goals and penalties for norm violation. While these
are sensible criteria, there are others that can be taken into account. Given that
actions modelled in this approach are durative, one such criterion is the duration
of the entire plan. Since durative actions that do not have concurrency conflicts
can be executed concurrently, there might exist some plans with the exact the
same utility while one takes longer than another. We intend to extend the plan
selection mechanism with additional criteria by using the existing multi-criteria
optimisation mechanisms in ASP.

Just like norms, in real scenarios, goals often have a deadline before which
they should be satisfied [18]). Temporally extended goals [17] are discussed in
detail in agent programming languages such as GOAL [5], however they are
not commonly used in practical reasoning frameworks. Substituting achievement
goals with temporally extended goals increases the expressiveness of the model. It
also allows defining conflict within goals and between goals and norms temporally
and which results in enriching the concept of conflict in the model.

Incorporation plan revision is also an avenue for future work. As presented
here, a plan once selected is acted out until its conclusion, but it is of course
necessary to incorporate plan revision in order to handle the inevitable dynamic
environment.

Another area of improvement is to extend the normative reasoning capability
of the model by extending it for state based norms in addition to event-based
norms. Such an extension would allow the expression of obligations and prohi-
bitions to achieve or avoid some state before some deadline. A combination of
event and state based norms [10] enriches the norm representation as well as
normative reasoning.

Lastly, we intend to build on the current ASP implementation to provide
justification for why a certain plan maximises the utility considering the goals
and norms it satisfies against those it does not. A potential starting point is [31],
where it is possible to explain why certain literals are part of an answer set of a
program and why others are not.

References

1. Aldewereld, H., Dignum, F., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar,
J.A., Sierra, C.: Operationalisation of norms for usagein electronic institutions.
In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006),
Hakodate, Japan, May 8–12, pp. 223–225. ACM (2006)

2. Alrawagfeh, W., Meneguzzi, F.: Utilizing permission norms in BDI practical nor-
mative reasoning. In: Ghose, A., et al. (eds.) COIN 2014. LNCS, vol. 9372, pp.
1–18. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25420-3 1

3. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying norm-governed computational soci-
eties. ACM Trans. Comput. Log. 10(1), 1–42 (2009)

4. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1), 281–300 (1997)

http://dx.doi.org/10.1007/978-3-319-25420-3_1

352 Z. Shams et al.

5. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A verification
framework for agent programming with declarative goals. J. Appl. Logic 5(2),
277–302 (2007)

6. Börger, E., Stärk, R.: Asynchronous multi-agent ASMs. In: Börger, E., Stärk, R.
(eds.) Abstract State Machines, pp. 207–282. Springer, Heidelberg (2003)

7. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents. AGENTS
2001, pp. 9–16. ACM, Montreal (2001)

8. Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and
reasoning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.)
CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

9. Criado, N., Argente, E., Botti, V.J.: A BDI architecture for normative decision
making. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S.
(eds.) 9th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), Toronto, Canada, May 10–14, vol. 1–3. IFAAMAS, pp. 1383–
1384 (2010)

10. De Vos, M., Balke, T., Satoh, K.: Combining event-and state-based norms. In:
Gini, M.L. Shehory, O., Ito, T., Jonker, C.M. (eds.) International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint Paul, MN,
USA, May 6–10, IFAAMAS, pp. 1157–1158 (2013)

11. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: TAL: temporal action
logics language specification and tutorial. Electron. Trans. Artif. Intell. 2, 273–306
(1998)

12. Esteva, M., Rodŕıguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

13. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theo-
rem proving to problem solving. In: Proceedings of the 2Nd International Joint
Conference on Artificial Intelligence. IJCAI 1971, pp. 608–620. Morgan Kaufmann
Publishers Inc., San Francisco (1971)

14. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 3, 281–300 (1998)
15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

Kowalski, R.A., Bowen, K.A. (eds.) ICLP, SLP, pp. 1070–1080. MIT Press (1988)
16. Gini, M.L., Shehory, O., Ito, T., Jonker, C.M. (eds.): International conference on

Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint Paul, MN,
USA, May 6–10, 2013. IFAAMAS (2013)

17. Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming
with temporally extended goals. In: Sierra, C., Castelfranchi, C., Decker, K.S.,
Sichman, J.S. (eds.) 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10–15, 2009,
vol. 1. IFAAMAS, pp. 137–144 (2009)

18. Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni,
M., Son, T.C., Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI),
vol. 4897, pp. 86–103. Springer, Heidelberg (2008)

19. Kafali, Ö., Günay, A., Yolum, P.: GOSU: computing Goal Support with commit-
ments in multiagent systems. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.)
Frontiers in Artificial Intelligence and Applications ECAI 2014–21st European
Conference on Artificial Intelligence, 18–22 , Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014), vol. 263, pp. 477–482.
IOS Press (2014)

Implementation of Normative Practical Reasoning with Durative Actions 353

20. Kollingbaum, M.: Norm-governed Practical Reasonig Agents. Ph.D. thesis. Uni-
versity of Aberdeen (2005)

21. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1),
67–95 (1986)

22. Lee, J., Palla, R.: Reformulating temporal action logicsin answer set programming.
In: Hoffmann, J., Selman, B. (eds.) Proceedings of the Twenty-SixthAAAI Confer-
ence on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI
Press (2012)

23. Lee, J., Palla, R.: Reformulating the situation calculus and theevent calculus
in the general theory of stable models and in answer set programming. CoRR
abs/1401.4607 (2014)

24. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2),
39–54 (2002)

25. y López, F.L., Luck, M., d’Inverno, M.: A normative framework for agent-based
systems. In: Normative Multi-Agent Systems (NORMAS), pp. 24–35 (2005)

26. Oren, N., Vasconcelos, W., Meneguzzi, F., Luck, M.: Acting on norm constrained
plans. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.)
CLIMA XII 2011. LNCS, vol. 6814, pp. 347–363. Springer, Heidelberg (2011)

27. Panagiotidi, S., Vázquez-Salceda, J., Dignum, F.: Reasoning over norm compliance
via planning. In: Aldewereld, H., Sichman, J.S. (eds.) COIN 2012. LNCS, vol. 7756,
pp. 35–52. Springer, Heidelberg (2013)

28. Panagiotidi, S., Vázquez-Salceda, J., Vasconcelos, W.: Contextual norm-based plan
evaluation via answer set programming. In: BajoPérez, J., et al. (eds.) Highlights
on Practical Applications of Agentsand Multi-Agent Systems. AISC, vol. 156, pp.
197–206. Springer, Heidelberg (2012)

29. Pitt, J., Busquets, D., Riveret, R.: Formal models of social processes: the pursuit
of computational justice in self-organising multi-agent systems. In: 2013 IEEE 7th
International Conference on Self-Adaptive and Self-Organizing Systems (SASO),
pp. 269–270 (2013)

30. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of
The First International Conference on Multi-Agent Systems (ICMAS 1995), pp.
312–319 (1995)

31. Schulz, C., Toni, F.: Justifying Answer Sets using Argumentation. CoRR
abs/1411.5635 (2014)

32. Telang, P.R., Meneguzzi, F., Singh, M.P.: Hierarchical planning about goals and
commitments. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M. (eds.) International
Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2013, Saint
Paul, MN, USA, May 6–10, 2013. IFAAMAS, pp. 877–884 (2013)

	Implementation of Normative Practical Reasoning with Durative Actions
	1 Introduction
	2 A Model for Normative Practical Reasoning
	2.1 Syntax
	2.2 Semantics

	3 An Answer Set Programming Implementation
	3.1 Translating the Model into ASP
	3.2 Mapping of Answer Sets to Plans
	3.3 Optimised Plans

	4 Illustrative Example
	5 Related Work
	6 Conclusions, Discussion and Future Work
	References

