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Preface

The pervasiveness of open systems raises a range of challenges and opportunities for
research and technological development in the area of autonomous agents and
multi-agent systems. Open systems comprise loosely coupled entities interacting within
a social space. These entities join the social space in order to achieve some goals that
are unattainable by agents in isolation. However, when those entities are autonomous,
they might misbehave and, furthermore, in open systems one may not know what
entities will be active beforehand, when they may become active, or when they may
leave the system. The key point in the design and construction of open systems is to
devise governance mechanisms that foster interactions that are conducive to achieve
individual or collective goals.

The COIN (Coordination, Organisations, Institutions and Norms in Agent Systems)
Workshop series — that started as the merging of two workshops at AAMAS 2005 —
has grown to become the main venue for presenting and discussing work on social and
governance aspects of multi-agent systems.

This volume — the 11th in the COIN workshop series — contains revised versions
of 23 selected papers presented at COIN workshops in 2015: the first was co-located
with AAMAS and took place on May 4 in Istanbul, Turkey, while the second was
co-located with IJCAI and was held on July 26 in Buenos Aires, Argentina.

In total, 46 papers were submitted (25 to COIN@AAMAS 2015 and 20 to
COIN@IJCAI 2015), of which 25 were accepted for oral presentation (14 at
COIN@AAMAS 2015 and 11 at COIN@IJCAI 2015). The 23 papers included in this
collection were selected from those accepted and have undergone a substantial process
of revision. As in previous editions, for each of the two workshops at least three
Program Committee members reviewed each submitted paper, and revised versions
of the accepted papers were presented at the workshop sessions. After their presenta-
tion, some papers were selected to be part of this volume. The authors of these selected
papers were then requested to prepare revised versions that took into account the
reviewers’ comments and further insights gained from the presentation at the work-
shops. All these revised versions underwent a second stage of review before producing
the final version that appears in this volume.

Together, the papers included in this volume demonstrate the vitality of the com-
munity and the quality of the work realized in this area.

We thank the Program Committee and reviewers for the fantastic effort they put in
the reviewing process, and the authors for submitting their papers.

May 2016 Virginia Dignum
Pablo Noriega
Murat Sensoy

Jaime S. Sichman
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Reasoning with Group Norms in Software
Agent Organisations

Huib Aldewereld1, Virginia Dignum1, and Wamberto Vasconcelos2(B)

1 Delft University of Technology, Delft, The Netherlands
{H.M.Aldewereld,M.V.Dignum}@tudelft.nl

2 University of Aberdeen, Aberdeen, UK
w.w.vasconcelos@abdn.ac.uk

Abstract. Norms have been used to represent desirable behaviours that
software agents should exhibit in sophisticated multi-agent solutions. An
important open research issue refers to group norms, i.e. norms that gov-
ern groups of agents. Depending on the interpretation, group norms may
be intended to affect the group as a whole, each member of a group,
or some members of the group. Moreover, upholding group norms may
require coordination among the members of the group. We have identified
three sets of agents affected by group norms, namely, (i) the addressees
of the norm, (ii) those that will act on it, and (iii) those that are respon-
sible to ensure norm compliance. We present a formalism to represent
these, connecting it to a minimalist agent organisation model. We use
our formalism to develop a reasoning mechanism which enables agents
to identify their position with respect to a group norm, so as to further
support agent autonomy and coordination when deciding on possible
courses of action.

1 Introduction

Norms have been used to represent, in compact ways, desirable behaviour that
autonomous components should have (alternatively, undesirable behaviour they
should not have), so as to provide overall guarantees for distributed, open, and
heterogeneous computing solutions. Research on norms has tackled important
issues, ranging from logic-theoretic aspects (e.g., [28]), to more pragmatic con-
cerns (e.g., [18]).

The study of norms has mostly been limited to abstractions via the use of
roles from the individual to make norms stable over extended periods of time.
However, while addressing multiple agents at once (namely each agent enact-
ing the role), it is important to realise that these norms do not address these
agents together. A main difference is that when addressing a group of agents, it
is necessary to consider aspects as responsibility and fulfilment, that are not typ-
ically addressed by most norm representations (since the agent addressed is also
responsible, and is also the one to act). To illustrate this difference, we consider
an obligation for children under the age of 16 to attend school. While the norm
addresses children under the age of 16, who are also the ones who must perform
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 1–21, 2016.
DOI: 10.1007/978-3-319-42691-4 1



2 H. Aldewereld et al.

the task of going to school, the responsibility and blame lays with their par-
ents/guardians. Consequently, by saying that “group G should achieve outcome
ϕ”, it is not clear who in the group should actually perform the actions that lead
to ϕ, and who is to blame if the outcome is not achieved. Another example is a
removal company obliged by contract to move the contents of someone’s house,
including a piano. If moving the piano requires specialised qualifications, even
though the removal company is the addressee of the obligation, the company
will not able to act on the norm by itself and must outsource the task.

Such group norms, explicitly differenting groups of agents targeted by the
norm, those acting upon it, and those responsible for the outcome, raise coor-
dination issues not typically seen in norms addressing individuals or roles. The
agents responsible for the norm will avoid blame, and thus have to ensure that
the agents supposed to act upon it are indeed doing what they are supposed to
do (or conversely, avoiding forbidden behaviours). The acting agents might need
to coordinate whether each of them has to do it, one of them has to do it, or
even all of them have to do it together.

In addition to coordination issues, group norms also present challenges in
norm reasoning. Reasoning about norms is essential to the regulation of behav-
iour in multiagent systems [5]. Work on models of norm-governed practical rea-
soning agents have so far studied the case of norms aimed at one agent (or
role) [27]. That is, the cases in which the agent is both addressed and responsi-
ble for a norm. In this paper, we present work towards reasoning about group
norms. These norms require that the agent is both able to reason about its
relation to the norm (i.e., is it addressed, responsible or actor?) and able to
coordinate with other agents affected by the norm to determine how to handle
the norm.

In the next section we present a formalisation of group norms. In Sect. 3 we
present a minimalistic model of agent organisations for the concepts of action,
role, and power; we also present an operational semantics for organisations and
explain the concepts of individual and collective actions. In Sect. 4 we show how
agents can use this model to reason about how to act when they are addressed
by, responsible for or actor of a norm. Section 4.4 discusses issues pertaining to
the reasoning processes we sketch. We contrast our research with related work
in Sect. 5, and in Sect. 6 we draw conclusions, discuss relevant issues, and give
avenues for future investigation.

2 Group Norms

Norms are a natural way of constraining behaviours of groups and individuals.
However, by simply stating “group G should achieve ϕ”, it is not made explicit
who is to act (that is, whether each group member individually, if only one group
member, or if all of them together), and who is to blame when violations occur.
We can take again the example from the introduction: the obligation for children
under the age of 16 to attend school. While the norm addresses children under
the age of 16, who are also the ones that must act upon it, the responsibility and
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blame lie with the parents. In the rest of this section we introduce a language of
set definitions to precisely establish the notion of group, present a representation
for group norms and provide its semantics using temporal logic.

2.1 Set Definitions

We propose to represent groups as set definitions and operations. We assume
the existence of a non-empty and finite universal set Agents = {ag1, . . . , agn}
consisting of the unique identifier of each agent in our society.

Definition 1 (Set Definition). A set definition Σ is

Σ:: = Σ ∪ Σ | Σ ∩ Σ | Σ \ Σ | ΣC | S
S:: = {ag1, . . . , agm} | {α : P (α)}

The grammar establishes a language LΣ of set definitions and it captures some
of the common operations of näıve set theory [22], namely, union, intersection,
difference, and absolute complement (with respect to the universal set Agents).
The S stands for an actual set, and it can be represented as an extensive (finite)
listing {ag1, . . . , agm} ⊆ Agents of the elements of the set, or an intensional
definition {α : P (α)}, standing for ∀α ∈ Agents.P (α), that is, all those elements
of the universal set that fulfil some property P .

We extend the language of set definitions LΣ to represent more sophisticated
scenarios. It is common for certain norms to address groups with size restrictions,
as in “gatherings of more than 5 people are prohibited”. We can formalise such
requirements as |Σ| ◦ n, where ◦ is a comparison operator >,<,≥,≤,=, or 
=
and n ∈ N (a natural number). These set definitions can be seen as constrained
sets and they place restrictions on which sets can be built. For instance, if
Agents = {a, b, c, d} the definition |{α : �}| = 3 (where � stands for “true”,
that is a property which is vacuously true for everyone) stands for all subsets of
Agents with 3 elements, that is, all groups of 3 agents.

A set definition gives rise to different actual values of groups, depending
on the universal set of agents. Rather than requiring that groups have their
individuals listed one by one, our set definitions are more compact and can
be re-used for different specific populations of agents. We formally define the
value of a set definition Σ with respect to the universal set Agents, denoted as
value(Σ,Agents) ⊆ Agents , as follows:

Definition 2 (Set Definition Value).

1. value(Σ′ ∪ Σ′′,Agents) = value(Σ′,Agents) ∪ value(Σ′′,Agents)
2. value(Σ′ ∩ Σ′′,Agents) = value(Σ′,Agents) ∩ value(Σ′′,Agents)
3. value(Σ′ \ Σ′′,Agents) = value(Σ′,Agents) \ value(Σ′′,Agents)
4. value(ΣC ,Agents) = Agents \ value(Σ,Agents)
5. value({ag1, . . . , agm},Agents) = {ag1, . . . , agm}
6. value({α : P (α)},Agents) = {ag0, . . . , agm}, ∀i, 0 ≤ i ≤ m, agi ∈ Agents ∧ P (agi)
7. value(|Σ| ◦ n,Agents) = value(Σ,Agents) s.t . |value(Σ,Agents)| ◦ n
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Cases 1–4 decompose a set definition into its sub-parts, recursively obtaining
their values, which then are combined, using the corresponding set operations –
this is a straightforward mapping of our notation to the usual semantics of sets.
Cases 5 and 6 are the base cases: a set tabulation is itself, and an intensional
definition gives rise to every possible sub-set whose elements satisfy property P .
Case 7 generically defines the meaning of constrained sets – these are the values
of the set definition which satisfy their constraints.

We assume a reference set Agents in our discussion, and since we are chiefly
interested in what the set definitions actually are, we will simply use the set
definitions Σ, meaning value(Σ,Agents).

2.2 Group Norms and Their Semantics

We formally capture three different groups as set expressions Σ, as introduced
in the previous sub-section, as well as the usual components of norms, namely,
the deontic modality and the target of the norm [18,28].

We use a set of propositions P, with which one can construct formulae using
the usual operators ¬,∧,∨,→,↔. We represent generic atomic propositions as
p, q, r and we use ϕ, δ, ψ to indicate propositional formulas. The set of well-formed
propositional formulas is denoted as LP . We define group norms as follows:

Definition 3 (Group Norms). Group norms are of the form AOR
G ϕ < δ (a

group obligation) or AFR
G ϕ < δ (a group prohibition), where A,R and G are

set definitions (from the language LΣ of Definition 1), and ϕ, δ are propositional
formulae from LP . We refer to group norms in general as ADR

G ϕ < δ (where
D is either O or F).

Intuitively, the annotations A, R and G of the deontic modalities O and
F correspond to respectively the actors (those agents whose behaviours are
affected by the norm), those responsible for the norm and the addressees of
the norm. The construct ϕ < δ informally states “ϕ before δ”, a temporal
constraint which enables us to capture deadlines of obligations and periods of
prohibitions. It should be noted that we represent achievement obligations, not
maintenance obligations. In future work, we will look at the formalisation of
group maintenance norms.

The propositions of formula ϕ may represent actions or properties of states of
affairs. In the case of actions, a norm such as AOR

G paint door < δ would place
an obligation on groups A,G,R to carry out action paint door . More flexibility
and expressiveness can be achieved though if ϕ represents properties of states;
an example norm is AOR

G painted door < δ which stipulates an obligation on
groups A,G,R to carry out whatever is required in order to achieve a state
in which painted door holds – that is, they should “see to it that” the door is
painted, either by painting it themselves or finding someone to paint it on their
behalf [25]. We do not commit ourselves to either of these options – both can be
expressed with our formalism, assuming a suitable semantics for actions and a
representation of states is available.
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We provide the semantics of our group norms via a temporal logic based
on CTL* [15]. Our temporal logical language LT P extends our propositional
logic LP by adding path operators A (all paths), E (some paths), and state
operators © (next), � (always), � (sometime), and U (until). The language is
further enriched with stit , stit(α,ϕ) meaning agent α “sees to it that” ϕ [4] and
expressing individual action, and stit(G,ϕ) meaning that group G together “sees
to it that” ϕ, for collective action1. The semantics of this logic is constructed in
the typical manner from the semantics of CTL* [15] combined with stit [4]. In our
semantics the deontic modalities are handled via an Anderson’s reduction [3] of
the modality to the reserved viol(G,A,R, ϕ) construct indicating that a violation
has happened of G’s norm on ϕ by (in)action of A under the responsibility of
R. We define the meaning of group obligations as follows:

Definition 4 (Semantics of Obligation).

AOR
G ϕ < δ

def
= A

⎡
⎣�δ ∧

(¬δ ∧ ¬stit(A,ϕ)∧
¬viol(G,A,R, ϕ)

)
U

⎛
⎝
( ¬δ ∧ stit(A,ϕ)∧

©(A� ¬viol(G,A,R, ϕ))

)

∨(δ ∧ viol(G,A,R, ϕ))

⎞
⎠
⎤
⎦

Intuitively, this definition expresses that the deadline δ will occur at some point
in time and for all paths either ϕ is achieved by the actors (stit(A,ϕ)), in which
case no violation of the obligation will ever occur (©(A� ¬viol(G,A,R, ϕ))),
or the state is not achieved, the deadline occurs, and a violation happens (δ ∧
viol(G,A,R, ϕ)). Similarly, we define the meaning of group prohibitions:

Definition 5 (Semantics of Prohibition).

AFR
G ϕ < δ

def
= A

⎡
⎣

(¬δ ∧ ¬stit(A,ϕ)∧
¬viol(G,A,R, ϕ)

)
U

⎛
⎝

(¬δ ∧ stit(A,ϕ)∧
viol(G,A,R, ϕ)

)
∨

(δ ∧ A�¬viol(G,A,R, ϕ))

⎞
⎠

⎤
⎦

Group prohibitions are similar to group obligations, except that the deadline δ is
better seen as a deactivation of the prohibition (and may therefore not actually
occur in the future states, meaning that the prohibition is not deactivated).
So, no violation happens until either a violation is triggered by seeing to it
that the prohibited state is achieved before the deactivation (¬δ ∧ stit(A,ϕ) ∧
viol(G,A,R, ϕ)) or the prohibition is deactivated (after which no violation can
occur (δ ∧ A�¬viol(G,A,R, ϕ)).

With these definitions of the meaning of group norms, a norm on individual
action when G = A = R, all refering to a role specification in an organisa-
tion, expresses the same as in, for example, [7,13] – all those agents adopting a
role (hence belonging to the group) are simultaneously actors, addressees, and
responsible parties. For simplification and without loss of generality, in the rest
of our discussion we may drop the deadline component of our norms.

To relate the groups and individuals of a norm, we formalise in Sect. 3 a
notion of power (Definition 9) – we address social power (viz., a relation among

1 We explain in Sect. 3.2 how we differentiate collective and individual actions.
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individuals of a society, establishing who has authority or control over others
[17]), as opposed to institutional power (viz., whereby members of an institu-
tion are empowered to perform certain deeds [12,26]). We represent power as a
relation x � y establishing that agent x is under the power of agent y (or con-
versely, that y has power over x). This relation also applies to groups of agents,
as presented later on in the paper.

3 A Minimalist Organisation Model

There are many approaches to modelling organisations (e.g., [13,24,30]), but
they possess many features in common. Our organisation model aims at cap-
turing only those aspects necessary to explore the phenomena and mechanisms
related to group norms and joint behaviour/coordination. We make use of the
agent’s identity (i.e., the set Agents), and we formalise the following aspects:

– Roles – these are useful abstractions for (groups of) individuals, conferring
generality on organisation specifications. The organisation remains the same,
even though different individuals comprise it.

– Capabilities – we associate roles with sets of capabilities, represented as
actions. These can be understood in two ways: (i) individuals taking up a
role should be able to perform what that role entails; (ii) they specify what
individuals are expected to do in the normal running of the organisation.

– Power – within organisations it is necessary to relate roles to one another, so
as to facilitate coordination and load-sharing, ultimately enabling objectives
(see below) to be achieved. In our proposal, roles exert power (or influence)
over other roles, giving rise to power structures such as lines of command,
managed teams, hierarchies, and egalitarian teams.

We make use of our propositional language LP ; a set of propositional for-
mulae {ϕ1, ϕ2, . . .} represents the conjunction ϕ1 ∧ ϕ2 ∧ · · · . We use two special
propositions � and ⊥ to represent, respectively, “true” and “false”. We assume
that the meaning of propositions are captured with formulae establishing logical
relations in a knowledge base (or, to use a more modern terminology, a reference
ontology) shared by all stakeholders and components2 (e.g., engineers, designers,
tools, software agents, and so on). We relate our formulae via logical entailment
(formally, “|=”) and deduction (formally, “�”): for any formulae ϕ,ψ, if ϕ |= ψ
then ϕ � ψ (completeness) and if ϕ � ψ then ϕ |= ψ (correctness).

We make use of logical implications represented as (p1 ∧ · · · ∧ pn) → q to
forge relationships among propositions, thus providing a background theory (or
axioms). We denote as Ω, a set of formulae from LP , our background theory and
we define the meaning of logical implication in terms of entailment as if ((p1 ∧
· · · ∧ pn) → q) ∈ Ω and Ω |= pi, 1 ≤ i ≤ n, then Ω |= q. A similar relation is
defined for the “�” operator, if we assume its completeness.
2 More realistically, the stakeholders and components have means to relate their knowl-

edge bases (or, to re-phrase this in more modern terms, “align their ontologies”),
thus being able to map their knowledge representation on to that of other parties.
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We represent a repertoire of actions available during the enactment of an
organisation. We propose an idealised representation for actions, and consider
these as being (i) instantaneous (i.e. they take one unit of time to be performed,
that is, they do not have a duration or a period for their execution to be com-
pleted), (ii) they are either executed or not (i.e., we do not capture situations
whereby actions are partially performed nor do we address scenarios in which
actions are performed with degrees of success/quality). We make use of the set
P of propositions as well as a set of negated propositions P− = {¬p | p ∈ P}3.
Definition 6 (Action). An action ac is the triple 〈S, ac, S′〉 where S ⊆ P ∪
P−, S′ ⊆ P, and ac is an action label.

The action labels uniquely identify actions. Our actions model pre-conditions
S (a set of possibly negated propositions) which should be satisfied for action ac
to be performed, and the result of performing this action (ac’s post-conditions)
is S′, a set of non-negated propositions. We assume a universal, non-empty and
finite set of actions Ac = {ac1, . . . ,acn}, such that no two actions have the same
label. Since actions have unique labels, we shall use ac and ac interchangeably.

Importantly, we can model norms addressing properties of states, rather than
actions. This is without loss of generality since for any action 〈S, ac, S′〉, where
S′ = {p′

1, . . . , p
′
n}, we have ADR

G ac ↔ ADR
G (p′

1 ∧ · · · ∧ p′
n) that is, a norm

on an action is equivalent to a norm on its post-conditions. In the case when
S′ = ∅, we have ADR

G ac ↔ ADR
G � That is, a norm on an action without

any effect is equivalent to a norm on the vacuously true proposition “�”, as the
empty set is a sub-set of any set, ∅ ⊆ S.

We represent roles as labels available to individual agents when they join
the organisation during the enactment. We associate with each role a possibly
empty set of action labels, depicting what the role requires to be done:

Definition 7 (Role). A role rl is the pair 〈rl ,Ac′〉 where rl is the role label
and Ac′ ⊆ Ac is a set of action labels (cf. Definition 6).

When an agent joins an organisation it takes up one or more roles; by taking
up a role the agent agrees to perform any of the actions associated with that
role, whenever it is required (or whenever the agent is asked to). We assume a
universal, non-empty and finite set of roles Rl = {rl1, . . . , rlm}, such that no
two roles have the same label. Because roles have unique names, we shall use
rl and rl interchangeably. There are more sophisticated and expressive ways to
represent roles, allowing one to define constraints on how many agents can take
up the role, the least/highest number of agents for each role, relations among
roles (e.g., who takes up roles rl1, rl2 should not take up rl3), and so on, as
reported in, for instance, [13,24,30], but as we aim at a minimalist model, we
do not include these here.
3 It is important to notice that the pre-conditions of an action may contain negated

propositions, but not the post-conditions. We present in Sect. 3.1 an operational
semantics showing how agents performing actions update a global state of compu-
tation.
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When individual agents join organisations they take up roles which they will
enact during the life-time of the organisation. We thus consider agents associ-
ated with a set of roles, 〈α,Rl ′〉, α ∈ Agents ,Rl ′ ⊆ Rl . We define an agent’s
capabilities – the properties of the states that the agent can bring about based
on the roles the agent has adopted and the actions associated with these roles:

Definition 8 (Capabilities). We define the set of α’s capabilities (when
enacting roles Rl ′) as cap(α,Rl ′) =

⋃
〈S,ac,S′〉∈AllAc S′ where AllAc =⋃

〈rl,Ac〉∈Rl′ Ac, that is, the capability of an agent α undertaking roles Rl is the
union of the post-conditions S′ of all actions AllAc of all of α’s roles.

Next, we formally relate roles via power, as explored in, for instance, [26,29,
34], and more recently (and closer to our approach) in [14]:

Definition 9 (Power). Power � ⊆ 2Rl is a reflexive and transitive relation
over the set Rl of roles. If rl1 � rl2 we say that rl2 has power over rl1 or
alternatively that rl1 is under the power of rl2.

When an agent enacts a role rl2 which “has power over” another role rl1 then
that agent may request the help of any agent enacting rl1 to achieve a particular
state of affairs. This request for help is, within a formal organisation, equiva-
lent to delegation, since power relations should be followed without question.
Power and delegation is best understood via the “see to it” (stit) operator [25],
stit(rl, ϕ) standing for “role rl sees to it that ϕ”.

If stit(rl, ϕ) and rl = 〈rl ,Ac′〉 hold, then one of the following properties must
also hold:

1. Role rl has associated actions with combined post-conditions logically entail-
ing ϕ. Formally: S∗ =

(⋃
〈S,ac,S′〉∈Ac′ S′

)
and S∗ |= ϕ

2. Role rl has power over roles rl′i each of which can see to it that ϕ′
i,

and these combined ϕ′
i logically entail ϕ. Formally, Φ′ = {ϕ′

i : rl′i �
rl ∧ stit(rl′i, ϕ

′
i)} and Φ′ |= ϕ.

Since the power relation is reflexive, that is, all roles have power over themselves
(∀rl ∈ Rl .rl � rl), then property 2 above also addresses scenarios in which
agents delegate responsibility over the achievement of some ϕ′

i but they also
retain responsibility for achieving some ϕ′

i, through their own actions.
The power relation can be extended to relate individual agents: let there be

two agents ag1, ag2 with associated sets of roles 〈ag1,Rl1〉, 〈ag2,Rl2〉; if there is
a role rl′′ ∈ Rl2 for which there is a role rl′ ∈ Rl1 such that rl′ � rl′′, then we say
ag1 � ag2. That is, ag2 has power over ag1 if at least one of ag2’s roles has power
over one of ag1’s roles. We notice that this is a “weak” definition of power which
could, in some situations, lead to loops in delegation – this is an undesirable
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feature of an organisation specification to which designers should be alerted4.
A stronger definition would require that, in addition to the requirements above,
we also had rl′′ 
� rl′, for all roles rl′, rl′′.

We further extend the power relation to account for groups (sets) of agents,
as follows:

Definition 10. Given sets Agents1,Agents2 ⊆ Agents, and a power relation
� ⊆ 2Agents we say that Agents2 has power over Agents1, denoted as Agents1 �
Agents2, if, and only if ∀α′ ∈ Agents1,∃α′′ ∈ Agents2 : α′ � α′′, that is, every
member of Agents1 is under the power of at least one member of Agents2.

In order to model realistic scenarios, group norms ADR
G ϕ (where D is either

O or F) should fulfil the following properties:

1. A � R – the group of actors A must be under the power of the responsible
group R. This property ensures that those responsible for the norm should
be able to delegate to actors.

2. A � G – the group of actors A must be under the power of the group G
addressed by the norm. This property ensures that addressees are also able
to delegate to actors.

Both properties above can be checked at run-time, when the groups are instanti-
ated with specific members. Concerning the power relation between Addressees
and Responsibles, in most realistic models, it will be the case that G ∩ (A ∪ R) 
=
∅, and G ∩ A 
= ∅ ∨ G ∩ R 
= ∅, i.e. the Addressee group overlaps in some
extent with the Actors or Responsibles group. We consider the specification of
these relations for a given application domain to be design decisions, and there-
fore do not impose G � R nor R � G. (E.g., a norm aimed at a group of junior
engineers G has a senior manager responsible R for it, and operators as actors
A) R and G do not directly relate power-wise.

3.1 A Computational Model for Norm-Aware Agent Organisations

We outline a computational model for norm-aware multi-agent organisations,
providing a context for Definitions 6–10. Our model is built around an explicit
representation of the global state S∗ ⊆ P of the computation in which pre-
conditions of actions are checked for and their post-conditions (effects) are

4 During the enactment of an organisation (run-time) each agent adopts a sub-set
of roles. If the power relation has any loop then there is potential for loops when
agents (acting in different roles) are delegating. By detecting/flagging loops in the
power relation at design time we are warning designers about such potential loops
in delegation at run-time. More sophisticated representations for roles [10,14,35]
addressing features such as “at most one agent should be in this role” (cardinality of a
role) and “whomever takes up this role cannot take up this other role” (compatibility
of roles), could avoid certain combinations of roles, thus partitioning the graph of
roles (vertices) and power relations (edges) into sub-graphs without loops.
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recorded: given a state Si and an action 〈S, ac, S′〉, if S holds in Si (see below)
then the action can be applied and we obtain a next state5 Si+1 = S′.

We follow the architecture for distributed norm management proposed in
[19,37], and consider a global state which is updated as a result of individual
agent’s actions – this is similar to transition systems [15]. We represent this as
the construct S0 ⇒ S1 ⇒ · · · , showing a sequence of global states 〈S0, S1, . . .〉
created from an initial state S0 with the “⇒” operation indicating the application
of a set of actions (from possibly many agents) on Si, giving rise to Si+1.

Negated propositions in pre-conditions of actions (cf. Definition 6) are inter-
preted as negation as failure [11], that is, they hold if they cannot be proven
true. Since we are dealing with single propositions (rather than formulae), to
check if a negated proposition ¬p holds in a state S we need to check that p does
not appear in S, that is, S |= ¬p if, and only if, p 
∈ S. Given a set S′ ⊆ P ∪ P−

of (possibly negated) propositions, we establish when S |= S′:

S |= S′ if, and only if,
{∀(¬p) ∈ S′, p 
∈ S

∀p ∈ S′, p ∈ S

Given a set of actions Ac and a global state S∗, individual agents can compute
the subset of actions Ac′ ⊆ Ac whose pre-conditions hold in S∗:

applicableActions(Ac, S∗) = {〈S, ac, S′〉 ∈ Ac | S∗ |= S}
An underlying infrastructure controls access to global states, and mediates how
and when an update is to take place. Agents decide on the actions they want to
perform (chosen from applicableActions), and update the global state directly.

We provide means to check which group norms hold, using δ. For simplicity
our norms do not have activation conditions, and this is interpreted as a norm
being active until δ holds in S∗, that is,

active( ADR
G ϕ < δ, S∗) holds if, and only if, S∗ 
|= δ

Agents are able to find out all those active group norms, and use the group norm
reasoning mechanism (Algorithm 1) defined in Sect. 4 to establish how to handle
the group norm – as a member of a group of actors, addressees or responsibles.

3.2 Individual and Collective Actions

Our formalisation in Definition 6 caters for both individual and collective actions.
We differentiate between these in a pragmatic fashion: collective actions are
those whose post-conditions (effects) are achievable via the combination of
other (individual or collective) actions. Formally, given a set of actions Ac,
ac ∈ Ac, ac = 〈S, ac, S′〉 is a collective action if, and only if, the conditions
below hold
5 This means that propositions are not implicitly recorded in (copied onto) the next

state; a proposition will only be copied from one state onto the next state if it appears
both in the pre- and post-conditions of an action.
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1. for some n ≥ 2, there are aci ∈ Ac,aci 
= ac,aci = 〈Si, aci, S
′
i〉, 1 ≤ i ≤ n,

that is, there are (at least two) other actions ac1, . . . ,acn,
2. S |= ⋃n

i=1 Si, whose pre-conditions are entailed by S
3. (

⋃n
i=1 S′

i) |= S′, whose post-conditions entail S′

4. Given a set AssocRl of pairs 〈α,Rl ′〉, α ∈ Agents,Rl ′ ⊆ Rl , establishing the
roles Rl ′ which individual agents α are enacting, then S′ 
⊆ cap(α,Rl ′) for all
〈α,Rl ′〉 ∈ AssocRl .

The first condition establishes the “break-down” of a collective action into other
actions6. The second condition ensures that actions aci are applicable when-
ever ac is applicable. The third condition ensures that the combined effect
(post-conditions) of actions aci addresses all post-conditions of ac. The fourth
condition states that for a particular organisation enactment (that is, agents
associated with specific roles), a collective action is not within the capabilities
of any one individual agent α however many roles Rl ′ it has adopted.

When an obliged action cannot be achieved by any one single agent (under its
many roles) in an organisation enactment, then the action is deemed collective
and it should be “farmed out” to groups of agents so that, by joining their
capabilities, the collective action can be achieved and the obligation fulfilled. On
the other hand, an individual action is within the capabilities of a single agent
in an organisation; formally, ac = 〈S, ac, S′〉 is an individual action if, and only
if, S′ ⊆ cap(α,Rl ′) for some 〈α,Rl ′〉 ∈ AssocRl .

3.3 Coordination and Group Norms

Agents must coordinate their activities factoring in their roles (with associated
capabilities), their membership to groups, and active norms which are applicable
to the groups. Our reasoning mechanisms (Algorithms 2 and 3) introduced in the
next section make use of two procedures coordinate and coordinate ′ to support
coordination among agents, which we explain below.

Procedure coordinate is invoked by an agent α who is attempting to coordi-
nate with agents Agents ′ in order to achieve ϕ, and α is willing to contribute with
S′: coordinate(α,Agents ′, contribute, S′, ϕ). We do not prescribe any solutions
to the coordination mechanism itself, that is, the messaging/network topology,
actual contents of messages and their order, or any guarantees such mechanism
should have – research on distributed coordination [38] and planning [23] pro-
vides candidate solutions for this. The coordination process will go through a
series of rounds whereby agents α′ ∈ Agents ′ receive requests from α to help
with achieving ϕ; the request may also include (partial) information on α’s con-
tribution S′. Agents will reply to requests offering their own contributions, as
part of their deliberation process about what to do next, also factoring in other
6 Collective actions have large sets of post-conditions reflecting the “effort” to be spent

in order to achieve them. By breaking apart an action into other (simpler) actions
which together achieve the same effects (post-conditions) we capture the delegation
process supported by the power relation, and which is explored in our reasoning
mechanisms.
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group norms – research on how deliberation can be extended with normative
considerations is reported in, for instance, [31]. Agent α will select who should
contribute with what and consider whether it is necessary to send more requests,
in case the responses so far are not sufficient to achieve ϕ. After a finite number
of rounds the coordination process may succeed (and the procedure returns �,
that is, the Boolean value true) or may fail (and the procedure returns ⊥, the
Boolean value false). The same coordinate procedure supports agents when they
are coordinating about who should refrain from carrying out actions.

The other procedure coordinate ′ used in our reasoning mechanisms is
invoked by an agent α attempting to coordinate with those agents Agents ′

who belong to the R group of agents responsible for group norm ADR
G ϕ:

coordinate ′(α,Agents ′,
ADR

G ϕ). The procedure returns the pair 〈α′,
A′
XR′

G′ φ〉
with the outcome of the coordination: α′ ∈ (Agents ′ ∪ {α}) has agreed (as a
member of the group responsible for the norm) to be in charge of A′

XR′

G′ φ.
The coordination process may convert the original norm ADR

G ϕ into an alto-
gether different norm A′

XR′

G′ φ (a special case is when A′
XR′

G′ φ = ADR
G ϕ,

that is, the coordination preserves the original norm). This conversion would
allow, for instance, group norm AO{ag1,ag2}

G (p∧q) to become norms AO{ag1}
G p

and AO{ag2}
G q, that is, the group {ag1, ag2} of agents responsible for the norm

have agreed to take responsibility over parts of the original group norm. Another
important conversion would make use of domain axioms to work out how a group
norm on the effects of a collective action (cf. Sect. 3.2) could be split into dis-
tinct group norms (with potentially different groups) over the effects of other
(collective) actions.

4 Reasoning About Group Norms

The objectives of an organisation can only be realised when agents take up the
roles described in the organisation definition. We assume that agents have their
own motivations to decide on which roles they will take on, but once a role
enactment is fixed, the agent is able to act on the capabilities described for its
role(s). Moreover, agents have access to the organisation specification:

– The set of agents Agents enacting/joining the organisation.
– The set of actions Ac (Definition 6), the set of roles Rl (Definition 7) and their

associated capabilities (Definition 8).
– A set AssocRl of pairs 〈α,Rl ′〉, α ∈ Agents,Rl ′ ⊆ Rl , recording which roles

Rl ′ individual agents α are enacting (hence formally associated with).
– The power relation (Definitions 9–10) among roles and sets of agents (enacting

roles).

The organisation specification allows agents to figure out each other’s (as well
as their own) roles, capabilities, and who has power over whom.

We furthermore assume an open environment in which heterogeneous agents,
possibly developed by third parties, may join the organisation. This means that
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role enactment can take many forms, i.e., depending on the agent’s own “per-
sonality”, its interpretation of what is expected from it as enactor of the role
(and how to decide about its role norms) may vary. For instance, an agent with
a strong sense of responsibility will first consider the norms for which it belongs
to the Responsible group, whereas an agent that has a strong sense of duty may
start by considering the norms for which it is an Actor. In the following, we
describe, in pseudo-code, reasoning mechanisms for role enacting agents.

Algorithm: groupNormReasoning(α,
ADR

G ϕ)

if α ∈ value(G,Agents) then addressment(α,
ADR

G ϕ);

if α ∈ value(R,Agents) then responsibility(α,
ADR

G ϕ);

if α ∈ value(A,Agents) then actorship(α,
ADR

G ϕ);

Algorithm 1. Group norm reasoning

We initially present in Algorithm 1 the general reasoning mechanism, consist-
ing of an assessment of the value of the norm groups and a check whether or not
the agent belongs to these. Depending on which group the agent belongs to, sep-
arate sub-mechanisms are invoked, and these are explained in the remainder of
this section. We assume that the mechanisms have access to a global set Agents
comprising the organisation, as well as the specific actions, roles, capabilities
and (group) power relations (cf. Definitions 6–10).

Input parameters α and ADR
G ϕ stand for, respectively, the agent’s identity

and a group norm under consideration7. We order the agent’s considerations
about group membership: it first checks if it is part of the group of addressees of
the norm, then if it is part of the group of agents responsible for the norm, and
finally the agent checks if it is an actor of the norm. If none of these situations
arise, then the agent does not have to factor in the group norm in its decision.
This ordering is due to the relationships among agents belonging to the distinct
groups: the addressee analysis may require responsibility and actorship analysis
(depending on the circumstances); the responsibility analysis may require actor-
ship analysis, but actorship is self-contained. These mechanisms are described
in the rest of this section.

The mechanism above also caters for situations in which agents simultaneously
belong to more than one of the groups A,R, or G. As we show below, agents in G
that are addressed by the norm will “farm out” the norm among those responsible
(in group R) and those acting (in group A); those agents responsible for the norm
(in group R) will require the help of acting agents A. When an agent is part of
more than one group, then we will have the phenomenon of agents calling upon
themselves to handle the norm under a different guise.

7 For simplicity, we omit deadlines/periods of norms in our mechanisms, and the
assumption is that the input norm is currently active, that is, its deadline/period
has not expired and hence it must be considered. This assumption can be relaxed,
but all algorithms should initially check whether or not the norm is still active.
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Our group norm representation is used in mechanisms to support agents rea-
soning about actorship (Algorithm 2), responsibility (Algorithm 3), and address-
ment (Algorithm 4). We illustrate their interdependence as

addressee ��

�������������� responsibility

��
actorship

The reasoning invokes individual planning (during actorship reasoning), group
coordination (during responsibility reasoning) and individual deliberation (dur-
ing addressee reasoning). The reasoning is interleaved with message-passing (pro-
tocols) to enable coordination, as well as communication regarding who is taking
up actorship, and to signal which norm has been violated.

4.1 Reasoning About Actorship

Group norms are ultimately “processed” by actors: these are agents belonging
to the group A of norms ADR

G ϕ and their behaviours should be affected by
these norms. We recall that our group norms consider propositional formulae
ϕ (cf. Definition 3), and we note that these can come about as a result of a
coordinated joint action among various agents, each contributing some effort
to achieve or avoid ϕ. We propose the reasoning mechanism depicted in Algo-
rithm 2 to enable norm-aware decision-making and coordination among acting
agents. Line 1 computes all those sub-groups of actors whose capabilities (under
their respective adopted roles in the organisation) when pooled together log-
ically derive (or entail) ϕ8. Line 2 computes those coalitions to which α, the
agent executing the algorithm, belongs. Lines 3–11 describe the provisions for
norm-compliant behaviours. Line 12 is a place holder for non-norm-compliant
behaviours – these might include, for instance, having α alerting other team-
members (that is, all α′ such that α′ � α and α � α′) or informing its in-line
manager (that is, an α′ such that α � α′ and α′ 
� α) about its decision to not
comply with a norm. We focus on norm-compliant behaviour: line 4 computes
agent α’s own capabilities MyCap within the organisation, based on its roles.

Lines 5–13 loop through each minimal coalition to which α belongs, checking
whether the norm is an obligation (line 6) or a prohibition (line 9). In the case
of an obligation, α tries to coordinate with the coalition Agents ′ to contribute
with its capabilities MyCap to achieve ϕ – it is enough for one such coordination
attempt to succeed for the actorship algorithm to return � (line 8). In the case
of a prohibition (line 9), α attempts to coordinate with Agents ′ to agree on
who is to refrain from doing what in order to not achieve ϕ (and hence abide
by the prohibition) – it is enough for one coordination attempt to fail (that is,

8 This amounts to finding all minimal coalition of agents who can achieve ϕ collec-
tively [1].
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Algorithm: actorship(α,
ADR

G ϕ)

1 let A = {Agents ′
0, . . . ,Agents

′
n}, where each Agents ′

i ⊆ value(A,Agents) is
the smallest set s.t. ∀α′ ∈ Agents ′

i.〈α′,Rl ′〉 ∈ AssocRl ∧ (
⋃

cap(α′,Rl ′)) � ϕ
2 Aα ← {Agents ′

i ∈ A | α ∈ Agents ′
i}

3 if complyNorm(
ADR

G ϕ, Aα) then
4 MyCap ← cap(α,Rl) where 〈α,Rl〉 ∈ AssocRl
5 for Agents ′ ∈ Aα do
6 if D = O then
7 if coordinate(α, (Agents ′ \ {α}), contribute,MyCap, ϕ) then
8 return 


else
9 if ¬coordinate(α, (Agents ′ \ {α}), refrain,MyCap, ϕ) then

10 return ⊥
11 if D = O then
12 return ⊥

else
13 return 


else
14 ... non-norm-compliant behaviour...

Algorithm 2. Reasoning about actorship

¬coordinate holds in line 9) for the actorship algorithm to also fail. In both cases,
the loop is cut short and a result is returned.

If, however, the loop in lines 5–10 explores all coalitions without returning
anything, then the test in lines 11–13 confirms that agent α was unsuccessful in
coordinating to fulfill the obligation (line 12) or α was successful in coordinating
to abide by a prohibition (line 13), otherwise the commands in line 8 (respec-
tively, line 10) would have been performed and the flow of execution would never
have reached line 12 (respectively, line 13).

4.2 Reasoning About Responsibility

Agents belonging to group R of a norm ADR
G ϕ are responsible for the norm,

that is, they are to blame if the norm is violated. Those agents responsible
enlist the help of acting agents belonging to the group A of our norms. However,
agents responsible for the norm need to agree among themselves who will take
the initiative to contact the actors. Moreover, the agents responsible for the
norm should only contact actors over whom they have power. This process is
represented in Algorithm 3. Line 1 invokes a coordination mechanism whereby
α interacts with the other members of R regarding who should be ultimately
responsible for the norm. This process should factor in the nature of ϕ – it might
be the case that more than one agent should become involved in procuring actors
to fulfill the norm. We note that the result of this coordination exercise could
be the re-casting of the original norm into distinct norms whose overall effect,
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when they are complied with, is the same as the original norm9 and we indicate
this in the algorithm with a (possibly) different norm A′

XR′

G′ φ being agreed to
(line 2) by the group R to have α being in charge.

Algorithm: responsibility(α,
ADR

G ϕ)

1 〈inCharge,
A′
XR′

G′ φ〉 ← coordinate′(α, (value(R,Agents) \ {α}),
ADR

G ϕ)
2 if inCharge = α then
3 ActorsSet ← {α′| α′ ∈ value(A′,Agents) ∧ α′ � α}
4 for α′ ∈ ActorsSet do

5 if actorship(α′, A′
XR′

G′ φ) then
6 return 

7 return ⊥

Algorithm 3. Reasoning about Responsibility

Step 3 computes the set of actors α′ over which α has power (α′ � α). Line
4 establishes a loop over all actors, repeatedly invoking the actorship reasoning
mechanism of Algorithm 2, stopping (and returning “�”, that is, success) when
the first of the acting agents handles the group norm. Otherwise, when we run
out of choices for acting agents, the mechanism reports a failure “⊥”.

4.3 Reasoning About Addressment

We finally consider the case when an agent is a member of the addressed group G

of norm ADR
G ϕ, depicted in Algorithm 4. In this case, the mechanism computes

(line 1) the set of agents α′ responsible for the norm, and over which α has power
(α′ � α). Line 2 starts a loop invoking, for each α′, the responsibility mechanism
depicted in Algorithm 3, stopping when the first agent handles the norm. Lines
5–9 explores the exception to the responsibility mechanism, that is, a member
α of the addressed group A, directly takes responsibility over finding actors to
deal with the norm – this part of the mechanism corresponds to lines 3–7 of the
responsibility mechanism.

4.4 Discussion

Our representation of group norms caters for three distinct groups involved.
Being able to differentiate among those addressed by the norm (i.e., group G),
those responsible for the norm (i.e., group R), and those acting on the norm
(i.e., group A), allows us to formally capture interesting and realistic situations.
For instance, a norm such as “anyone under the age of 16 is obliged to attend
school”, can be represented as AOR

G attendSchool where

9 We illustrate this with a norm (without the groups) OliftTable and axiom (liftEndA∧
liftEndB) ↔ liftTable, which gives rise to OLiftEndA ∧ OLiftEndB .
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Algorithm: addressment(α,
ADR

G ϕ)

1 ResponsibleSet ← {α′ ∈ value(R,Agents) ∧ α′ � α}
2 for α′ ∈ ResponsibleSet do

3 if responsibility(α′, ADR
G ϕ) then

4 return 

5 ActorSet ← {α′ ∈ value(A,Agents) ∧ α′ � α}
6 for α′ ∈ ActorSet do

7 if actorship(α′, ADR
G ϕ) then

8 return 

9 return ⊥

Algorithm 4. Reasoning about Addressment

– R is {x : x ∈ People ∧ parent(x, y)∧under16 (y)}, that is, the group responsible
for the norm consists of anyone who is a parent of an under-16;

– G = A and they are |{y : y ∈ People ∧ under16 (y)}| = 1, that is, those
addressed and the actors are individuals (i.e., sets of size one) under-16.

The norm “groups of more than 3 children are forbidden to be in a shop” is
formalised as AFR

G inShop where

– G is Children, that is, the norm is addressed at all kids;
– R is |{x : x ∈ Children}| = 1, that is, each kid is individually responsible for

the norm (hence the set has exactly one member);
– A is |Children ′| > 3, that is, the actors are all groups of 3 or more children.

A third example is the norm “the chairperson of a meeting is obliged to have the
secretary circulating the minutes”, formalised as AOR

G circulateMinutes, where

– G = Meeting , i.e., the norm is addressed to all those attending the meeting.
– R = {chair}, i.e., the chairperson (singleton set) is responsible for the norm;
– A = {secretary}, i.e., the secretary (a singleton set) is the one acting.

Our group norm representation has been put to use in mechanisms to support
agents reasoning about actorship (Algorithm 2), responsibility (Algorithm 3),
and addressment (Algorithm 4). Completeness is achieved as the net effect of
our mechanism is that addresee agents exhaustively try to find someone respon-
sible or someone to act (invoking responsibility and actorship analyses), the
responsible agents exhaustively try to find actors, and finally the actors try to
plan, factoring in the constraints of the norm (avoiding prohibited states, and
aiming at obliged states). Termination of the process is guaranteed if there are
no loops in the power relation, as all groups are finite, and so are the agents’
individual roles and actions, and the interaction (although not shown) converges
with a successful action/plan or a message declining to help. The complexity of
the three combined analyses, in the worst case, is the permutation of the ele-
ments of all three sets, that is, 2|G×R×A| – this is increased by the number of
actions agents have to comply with norms (different actions may have different
but overlapping post-conditions and may thus be used interchangeably) and the
different ways in which collective actions can be achieved, as defined by domain
axioms.
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5 Related Work

Work on collective agency (e.g., [9,10,35]) and collective obligations (e.g., [20])
have addressed similar concerns as ours. These approaches represent norms
over actions, establishing groups of agents to whom the norms apply. Some
approaches regard group norms as a shorthand for a norm which applies to
all/some members of the group (e.g., [10]), whereas other approaches (e.g., [20])
regard group norms (more specifically, collective obligations) as a shared com-
plex action requiring individual contributions (i.e., simpler actions) from those
individuals of the group. However, these approaches only deal with the element
of shared responsibility, neglecting the element of shared actorship. Research
about the concept of shared actorship can be found in work on joint action and
coalitions (e.g., [1,6,21]). This line of investigation is relevant as it looks into indi-
vidual deliberation when coordination is required, whereas work on delegation
(e.g., [14,33]) sheds light on how norms can be transferred among individuals
and groups. When agents join organisations they will need to consider the impli-
cations of taking up roles, since these will determine to which groups agents
will ultimately belong, and consequently which norms will be applicable, as well
as how power and delegation will impact on the agents’ choices. Research has
addressed issues of expressiveness and reasoning complexity in various logics of
coalition (e.g., [8,36]), establishing that even for simple propositional fragments,
complexity is very high (i.e., PSPACE in the size of the formula checked).

The notion of group association and imposing norms on groups of agents
is closely related to the concept of roles. Roles have been explored in research
on electronic institutions [16] and organisations [13,24,30,35]. Roles describe
collections of stereotypical individuals who, by adopting a role, become subject
to any norms associated with that role. We note that norms addressing roles
are a useful shorthand for specialised norms addressing individuals, that is, they
stand for “any one who has adopted role r is subject to norm ν”. For instance,
a norm such as “Soldiers are forbidden to enter area (x, y)” and given agents
a1, . . . , an who have taken up the soldier role, stands for “Agent ai is forbidden
to enter area (x, y)”, for each i, 1 ≤ i ≤ n. Importantly, in existing research role
norms typically do not influence the joint behaviour of individuals and do not
require coordination.

6 Conclusions and Future Work

In this paper we have proposed a representation for group norms, a topic largely
ignored in the literature. Our proposal caters for three distinct types of stake-
holders, namely, the addressees of the norm, those responsible for the norm, and
those whose behaviours are impacted by the norm (the actors). Our representa-
tion has been influenced by a taxonomy of cases for group norms [2], with two
dimensions – the individual and the collective – within a group. Certain norms,
although addressed at groups, are fulfilled/violated by a single (or some) mem-
bers; other norms are aimed at the group as a whole. Our reasoning mechanisms
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are a first attempt at defining how agents can factor in group/individual issues
when deciding what to do within an organisation (hence there is a degree of
predictability on the agents’ part), presenting clear connections with generally
agreed organisational concepts.

We are currently extending our mechanisms with the communication layer,
using classic, off-the-shelf protocols such as the Contract-Net. We will connect
our approach with existing planning techniques (e.g., HTN [32]), to evaluate
how our group norms can help agents agree on joint plans with fewer messages
and in fewer rounds.
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Abstract. Norms are within minds and out of minds; they work thanks to their
mental implementation but also thanks to their externalized supports, processing,
diffusion, and behavioral messages. This is the normal and normative working of
Ns. Ns is not simply a behavioral and collective fact, ‘normality’ or an institution;
but they necessarily are mental artifacts. Ns change follows the same circuit. In
principle there are two (interconnected) loci of change with their forces: mental
transformations vs. external, interactive ones. Ns change is a circular process
based on a loop between ‘emergence’ and ‘immergence’; that is, changes in
behaviors presuppose some change in the mind, while behaviors causal efficacy
is due to their aggregated macro-result: acts that organize in stable choreographies
and regularities build (new) Ns in the minds of the actors. More precisely the
problem is: which are the crucial mental representations supporting a N conform
(or deviating) behavior? And which kinds of ‘mutations’ in those mental repre‐
sentations produce a change in behavior? I will focus my analysis on Social
Norms, in a broad sense.

Keywords: Norm change · Normative mind · Normative agents

1 Premise: Situated Normative Cognition1

I will discuss the internalized/externalized nature and working of Norms (Ns) and its
impact on N change. What I have in mind is a hybrid society (humans and AI-Agents
interacting together) with “norm sensible Agents”. On the one side the Agent mediating
and supporting human interaction, exchange, organization should be able to understand
human conduct in terms of Ns and to monitor and support that; on the other side Agents
should be themselves regulated by true Ns (not just pre-implemented binds, executive
procedures, but real deontic representations with the mission to regulate their decisions
and conducts) and be able to violated them in the right situation.

The analysis and typology that I will propose (that will not be complete and fully
systematized, but just in fieri) is focused on Social Norms (SocNs), in a broad sense,

1 I’m in debt with my colleagues and friends (in particular Rosaria Conte, Luca Tummolini,
Giulia Andrighetto) for my work on norms theory.
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covering various kinds of.2 Of course here I will put aside legal Ns (where there are
institutional and legal ways for Ns change) although I think that several of the mecha‐
nism that I try to enlighten for SocNs also hold for legal ones.

Norms are in minds and out minds; they work thanks to their mental implementation
but also thanks to their externalized supports, processing, circulation, and dynamics.
This is the normal and normative working of Ns. Also because usually a N is a strange
relation between a practical, effective, externalized object (the conduct of X; however
mentally/internally regulated) and a cognitive artifact: a written “table of law”, a
symbolic representation, a (verbal or non-verbal) message that has to pass into minds.
This double face of N (cognitive and behavioral, both internal and external) is intrinsic.
Ns are not simply a behavioral and collective fact, a “normality” or an institution; but
they necessarily are mental artifacts [13, 22]. A N impinges on us and works thanks to
its mental representation, (partial) understanding, and specific motivations. However,
as we just said, they are not just a mental fact: this serves to determine and control the
actors’ conducts and to build shared practices, scripts, messages and collective effects.

Our claim is that also Ns change follows the same circuit. In principle there are two
(interconnected) “loci” of change with their forces: mental transformations vs. external,
interactive ones. Of course, they are interrelated since the mental changes determine
behavioral changes, which determine collective new dynamics. vice versa, behavioral
changes that we observe will change our mind and our norm conception or repertoire.
In other terms it is both a process of ‘emergence’ [44] and ‘self-organization’; and a
process of ‘immergence’ [14, 21] and mentalization: a feedback from behavior and
collective structure/phenomenon back to the individual minds layer. Not just a bottom-
up and top-down, and an inside-outside and outside-inside process, but a real ‘loop’:
virtuous or vicious circles of Ns change or confirmation or instauration. We need the
same dynamics in normative Agents, able to learn and evolve SocNs, and to read the
behaviors of the others in these terms for monitoring it or adjusting to it.

It would also be relevant to consider that there is no just one and unique normative
role for actors with its specific mental attitudes (beliefs, goals, expectations, …). We are
not only ‘subjects’ to the N (prescribing us certain behaviors and mental states), we also
have to play the role of ‘watchman’ and ‘punishers’ of the others [11, 30]; a fundamental
role in N script and for the maintenance of the social order. We have to play the role of
‘issuers’ too: (either explicitly or implicitly) proclaiming Ns, prescriptively informing
about them, explaining and reminding us them (for example parents towards children).
I will put aside here these different normative minds and roles3, although I believe that
the role of a normative ‘watchman’ will be very relevant for Agents.

What we will try to do in this work is to examine: (a) some of the main mutation
‘events’ in particular internal to the subject’s normative minds; but also (b) as individual

2 From politeness to customs, from moral norms to Ns and rules in organizations, associations,
communities of practice with their “rules”. For a systematic analysis of social norms and
discussion about the general theory see [5, 6, 12, 31, 35].

3 I will also do not examine the other crucial phenomenon in Ns evolution: the introduction of
a completely new N, and its issuing or negotiation. I will mainly focus on adherence or violation
(and their reasons) in N changing, adaptation, or extinction.

A Cognitive Framing for Norm Change 23



conducts become signs (cues) and/or messages (signaling), and change the others and
the collective emergent conducts, so becoming public phenomena and institutions. Also
the other way around; I will give some hints about that: (c) how acts that organize in
stable collective conducts build Ns in the minds of the actors [6] but not just as a regu‐
larity to conform to, but as expectations and “prescriptions” from the others [19, 23].

2 Roots of Ns into Minds

Real “norms” are based on the possibility to be violated, not obeyed. Otherwise they are
not “norms” but physical barriers or ties and chains. Ns are devices for the control of
“autonomous” agents that decide what to do on the basis of their beliefs, reasoning, and
goals. Ns not only presuppose (accept) but also postulate a freedom in the addressees.

Our main claims are the following ones:

• A N is not just aimed at regulating our conduct, at inducing us to do or not to do a
given action; it is aimed at inducing us to do that action for specific motives, with a
given mental attitude (belief, goal, expectation). The ideal-typical Adhesion (see
Sect. 3.2) to a N is for an intrinsic motivation, for a “sense of duty”, recognition of
the authority, because it is right/correct to respect Ns, etc.; and only sub-ideally one
should respect Ns for avoiding external or internal sanctions (see below). Also
normative education goes in this direction [18].

• We agree with Bicchieri’s theory that an “empirical expectation” and the perception
of the existence of a “normal” diffused behavior is not enough for creating a real N
in “normative” sense (to use Kahneman’ terminology [39]). A merely “descriptive”
N is not “injunctive” [42]; a N implies for us a prescriptive character: it is for inducing
us to (not) do something. There is a social pressure: expectation and prescription.

• As we said, our object is “norms” in the “normative” (prescriptive) meaning/sense,
not in the “normality” (descriptive or statistic or standard sense). However there is
an important and bidirectional relation between N in normative sense and N in
normality sense:
(a) Normality-N creates and becomes a Goal for the actors and even a normative-

N (a prescription, something “due”), in order to conform, to be like the others.
This conformity is either a need of the individual or a need (and request/pressure)
of the group, or both.

(b) Normative-N creates a statistical normality-N, a normal conduct in the
community, if it is respected: N conformity is “normal”. Moreover:
• Normative-N has the goal and the function to be respected and thus to create

a normality-N, a normal behavior (at the individual, internal level this helps
N also to become an automatic response, just an habit);

• If normative-N doesn’t become/create a normality-N it is weakened and
perceived as less credible and less binding [6, 22].

• In order to perceive a social practice as a N we have to guess, presume, or understand
some “end” in it: the protection of the interest or rights of somebody, of the
community; from that a deontic “should”, an obligation. Not conforming is an harm,
is noxious, not just something irregular, strange. I’m at least frustrating your
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prescription to maintain regular practices; you count on that and plan to regulate your
behavior on that; so I’m upsetting and betraying you, not just amazing you. I’m
harming social order, and the natural ‘suspension’ of uncertainty, the assumption of
normality: a fundamental good [32], a “common”.

• Ns have to be “impersonal” and depersonalized (and perceived as such) on both sides:
the issuer’s and the addressee’s side. It is not a conflict between you and me; it is not
“my” personal request (for me, for my desires, etc. for my personal will that you have
to adopt); and it is not a request to “you”. The message is:

“I do not talk, monitor, sanction, in my name”; “I’m not addressing to you “ad personam”, but as
an instance of a class, a member, a citizen, … like any other in the same conditions”. Also for that
“You have no reasons for rebelling”.

This really is a crucial point in the perception of Ns as Ns; thus it is something that
must be signaled in some way (for official Ns: uniform, role symbols, specific docu‐
ments, etc.; for Social Ns by collective practice or attitude or explicit messages) or
at least contextually presupposed and assumed in the script.4

• As we said, Ns are social devices controlling behaviors through minds [14] but in a
specific way; through a partial understanding. They require (for their existence and
effectiveness) their explicit mental representation, their (partial) understanding and
recognition “as Norms”; specific cognitive representations and motivational
processes (“Cognitive Mediators”: [22, 24]); differently from other social
phenomena like social functions, that can be played by social actors even without
understanding - and even less intending - them [16]. Not necessarily the agent
supporting the N in some role has as his/her mental goals (“intention”, “motive”) the
aims and utility of the N; these are the goals (and functions) of the N not of the
individuals.

• Ns have to build in us an “ought”, a “duty”, “you have to”; with a rather constrictive
feeling, a negative “frame”, an avoidance orientation (even when it elicits “you have
to do this action”). And this “ought” is a non-technical “ought”, not instrumental to
and planned for a given outcome/goal. This entails a process of Adhering without
sharing the ‘instrumental’ nature of the N, and without (necessarily) understanding/
adopting its ‘function’ or end. My ‘plan’ is different from the authority’s ‘plan’.
Citizens are not real “cooperators” but “subjects”. They have to “alienate” their own
powers and products [18].

3 N Internalization

Anyway, all this requires a specific “translation” of Ns into the minds of the addressees
such that they recognize a N as such, and – on the basis of various motives – decide

4 The fact that Ns are always relative to a “class” of subjects, not just to one specific person and
it holds “for all the values of X” is one reason why the violation has not an individual meaning.
X the violator is just “one of all/many”, is a representative, an “example”; that’s why his (bad)
behavior can be a (bad) “example”; and the impact of the behavior is more that “individual”:
It is not longer true that “for any value of X, X has to, will do, and does action A”.
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whether to conform or not to it. Let’s sketch the basic constituents of Ns internalization
in our theory [18, 24]. Ns are based on a specific process of Goal-Adoption or better
Adhesion; since they have the nature of an “imperative”.

3.1 Goal Adoption and Adhesion

Ns induce new goals through “adoption”. Goal-Adoption is how an autonomous agent
is not an isle but becomes social, or better pro-social5; that its s/he does something for
the others; puts her/his autonomous goal-pursuing (intentional action), her/his cognitive
machinery for that, and her/his powers and resources into the service of the others and
of their interests. What is needed is the architecture of a social Agent able to import
goals from outside (and to influence other agents by giving them goals and relying on
them) but remaining ‘autonomous’. S/he is able to arrive to set up an intention not only
from her own endogenous ‘desires’, but also from imported goals.

Goal-Adoption means that:

X believes that Y has the goal that p and comes to have (and possibly pursue) the Goal that p
just because he believes this.

“I do something ‘for’ you” (which doesn’t mean ‘benevolence’!); I want to realize
this since and until you wants/ needs this; because it is your goal.

Of course there are different kinds of Goal-adoption, motivated by different reasons:
merely selfish and instrumental, like in exchange; altruistic; or strictly cooperative, for
a common goal. Ns prescribe a specific motive for accepting the injunction: in
Bicchieri’s view’s a “normative expectation”, for us also the recognition of the prescrip‐
tion by the others and their authority (see below).

A stronger form of G-Adoption is Adhesion: when I adhere to your (implicit or
explicit) ‘request’ (of any kind: prey, favor, order, law, etc.). In other words, you (Y)
have the goal that I adopt your goal p, that I do something (action a of X) realizing that
goal, and I adopt your goal p or of doing a, (also) because I know that you expects and
wants so.

In Adhesion one of the reasons for Adopting the goal of the other is that the other
wants so:

– She also has the (meta-)goal that we adopt her goal;
– We adopt her goal by adopting the meta-goal.

In a sense, there is a double level of adoption (a meta-adoption): I know and adopt
your goal that I adopt. Moreover, in case of Adhesion there is a (presupposed) agreement
between X and Y about X’s adoption, X doing something as desired by Y. Other forms
of adoption (like help) can be unilateral, spontaneous, and even against Y’s desire. Ns
require from us not just adoption but adhesion.

5 Not to be used as synonym of “altruistic”, “benevolence”, etc.
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3.2 Normative Adhesion

Adhesion obviously presupposes specific beliefs into the mind of the agents (and this is
the first aim of the N: to be conceived/perceived as such). In particular the recognition
of the N as a N, in force on me, and valid in that context.

It is implied a ‘generalized’ G-Adoption where:

– X believes that there is a goal impinging not directly on a single individual but on a
class or group of agents:
– if X believes to belong to that class,
– she believes to be concerned by the norm, and
– she instantiates a Goal impinging on her; adopts it.

Having adopted the ‘generalized’ goal X doesn’t limits her mind and her behavior
to this (self-regulation); she will also worry about the others’ behavior:

– X is also able to have Goals about the others’ behavior: she adopts the Goal not to
do but that for any z (DOES z A).

– Given such an Adoption she has expectations (predictions + prescriptions) about the
others behavior, and is not only surprised, but also ‘disappointed’ by their non-
conformity.

Also because she is paying some cost for respecting the norm and the authority, for
maintaining the prescribed social “order”, which is supposed to be a “common”. She
wants the other be fair, reciprocates, contributes.

3.3 Equity and Spreading

Conte and Castelfranchi [23] claim that the decision to conform to what is perceived to
be an obligation plays a relevant role in N spreading over a population of cognitive
agents. While the conventionalist view derives social norms from the spreading of
conformity, in our view conformity is derived, so to speak, from the spreading of obli‐
gation-recognition and -adoption.

“The very act of accepting an obligation implies and turns into enforcing it. The
agent respecting the obligation turns into a supporter. Conforming leads to prescribing.
The agent undergoing an obligation becomes a legislator. The more an obligatory
behavior is believed to be prescribed, the more it will be complied with, and the more,
in turn, its prescription will be enforced. Rather than acting only through a behavioral
contagion or a passive social impact, the spreading of norms is affected by cognition in
a variety of ways and attitudes”:

(i) It leads to implementing effective conformity. When an autonomous agent recog‐
nizes a norm as a norm and decides to conform to it, the number of conformers
will be increased, and the norm is more effective.

(ii) Effective conformity contributes to the spreading of normative beliefs. The larger
the number of conforming agents and the more likely the observers will form
normative beliefs and the strength/certainty of the belief will increase.

(iii) The spread of normative beliefs contributes to the spreading of normative actions.
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(iv) The spread of normative actions contributes to the spreading of normative influ‐
ence. The larger the number of agents conforming to one given norm, and the more
distributed will be the want that other agents will conform to the same norm. “This
is due to:
– An equity rule. People do not want others in the same conditions as their own

to sustain lower costs - benefits being equal (this is, indeed, one the most prob‐
able explanations of the Heckathorn’s [36] group sanction control: the more
agents respect the norms, and the more likely they will be to urge others to do
the same).

– “Norm-sharing”. Agents are likely to “share” the respected norms, that is, to
believe that those norms are sensible, useful, necessary, etc. This is also a
powerful self-defensive mechanism (agents share the norms they happened to
respect). Agents will defend the norms they share, implementing the number
of agents who want those norms to be respected.” [17].

(v) The spread of normative influence contributes to the spreading of normative
beliefs, and the whole process is started again in a circular way.

The same cognitive mediation holds for an observed violation, deviance, and their
crucial interpretations and meanings by the observer (see also Bicchieri and
Mercier [7]).

Also for Agents this might be relevant: do we want/need just agents doing as
expected/ordered or agents able to violate but also able to conform to the norm as a
decision and for specific deontic motives/reasons (N-Adhesion)? Don’t want we to
“share” norms (social, moral, legal) with our Agents? To really have a hybrid society
regulated by values and norms?

4 Internal Locus: Kinds of N Mutation Within Subjects’ Mind

Let’s identify the various though and ‘reasons’ of the ‘subject’ (S) for abandoning or
violating a given N. We will distinguish between:

(i) ‘Unintentional’ effects; where changing or weakening that N (or Ns) is not the end
or an end of S, and

(ii) ‘Intentional’ act; where S understands, expects, and intends to jerk the N.

4.1 Norm Decay, a Close Approach

It is useful to cite a recent work on N decay, also in order to underlining some differences
with our proposal.

In Hammoud et al. [35] we find a good perception of the role of N decay (not studied
enough), and an important formal and simulation study, also with a nice ontology of
different forms and reasons for Norm decay.

In their perspective: “Norms decay refers to the case in which a norm is not practiced
or adopted by any of society’s members, and eventually deleted and forgotten.” They
introduce a framework that contains three cases of norms decay which are: Norms
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Removal, Norms Disappearance, and Norms Collapse. The first case needs an inter‐
vention from a powerful authority, while the latter two cases happen when society
members stop adopting or violate a norm. That is, there is a change starting from the
decision of the agents.

• “Norms disappearance is the result of abandoning a norm from the majority in a
society. Abandoning a norm means not practicing it without being sanctioned from
the authority. Norm abandoning happens when it loses its benefit.”

• “Norm collapse is the case of norm vanishing from a society due to agents’ violation
of this norm and violation sanction decay. An agent checks the benefit of violating
a norm, and the sanction of violation … if the benefit of violation is more than the
sanction of violation, the agent violates the norm and gets the benefits he wants”.

The main difference with our view is of course our more systematic analysis of the
specific changes in the mental aspects of Ns. However, there are also other differences.
On the one side, we have a broader view of the ‘reasons’ why agent respect Ns; not
mainly “for” avoiding sanctions, or “for” the social ‘utility’ of the N.

On the other side, the authors are a bit optimistic on the collective/community
‘benefit’ of the N. In our approach Ns are not necessarily well conceived by the authority
or fair; and also social norms are not necessarily good for the community. They are
simply self-maintaining just because they are “social order”, reduction of uncertainty,
identity, even if on the practical side they can be not so good. In our vocabulary they
can be badly ‘functional’ [16].

So not necessarily a N “is abandoned when it loses its benefit”. It can remain there.
vice versa, N can be abandoned although it was and would be useful.

We also admit that N can be there even if not respect in practice by any agent, but they
know the Nʹ and are aware of the systematic violation. In a sense a social meta-N is
emerging, a shared practice/habits of violating Nʹ. And we admit that not necessarily when
“An agent checks the benefit of violating a norm, and the sanction of violation … if the
benefit of violation is more than the sanction of violation, the agent violates the norm and
gets the benefits he wants” this induces to a “N collapse”. This self-interest violation can
be there for one or few agents, since agents are in different conditions and with different
preferences; what might be convenient for an agent can be not convenient for another one.
The mental processing is the crucial device and cannot be so simplified and ‘rationalized’.

4.2 Unaware Violations

S does not realize that her behavior is an N violation. Mental conditions for such a
conduct:

– Ignorance of the N (beliefs); or
– A mistaken interpretation or instantiation (beliefs): S does not realize to be a member

of the set of the addressees of that N or that it does apply in those circumstances and
context; or

– No memory retrieval of the N in those circumstances, lack of attention, absent-mind‐
edness (beliefs).
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The violation is unintended since it is fully unaware, but - given the observable
behavior (“bad example”) - it equally injures the N.

There are also extra-mental conditions facilitating or inducing such a “mistake”. For
example, the N and its local pertinence should have been appropriately and explicitly
signaled, not given for obvious: “Please, do not park more than one car in our courtyard;
this is our polite convention”.6

4.3 Aware Violations

A. Without the goal of injuring/weakening the N

As we do not intend the supportive ‘function’ of our conforming to the N, equally
we do not necessarily intend the destructive ‘function’ of out violating it.

There are several reasons for dropping a N-goal, do not adhere to it and formulate
a conform intention:

(a) Goal-conflict: the N-goal contrasts with another goal of the agent;
Apart from the belief that the N is in conflict, what matters are the following param‐
eters:
– value of the goal based on the value of the meta-goal of respecting Ns;
– value of the contender goal;
– value of the negative expected consequences of violation, including feelings

associated to N-violation; and in particular the perceived threat: estimated prob‐
ability and weight of ‘punishment’ and blame (beliefs).7

A sub-case of (a) is a N-conflict: N contrasts with other Ns accepted by the agent
(see below).
The decision to violate if I can a N that is not convenient for me now and here (not
necessarily “in general”) can just be for my private interests. However, not neces‐
sarily the goal in contrast with the N is a private/personal one; it might be a goal
formulate for efficiently performing S’s role or mission [17]: violating for func‐
tional reasons, for an intelligent problem-solving in our work.

(b) N Application & Instantiation disagreement: S is aware of N but he contests to be
a member of the set of the addressees or that it does apply to that circumstances
and context.

(c) Material impossibility: S forms a N-goal but cannot comply with it (beliefs); the
intention would be impossible (beliefs).
i. As we said, a remarkable case of (a) – but in a sense close to (c) (in terms of not

“material” but of “deontic” impossibility) – is:
(d) Norm conflict: the N I should apply and respect is in contrast (beliefs) with another N:

6 An interpersonal example may be: X: “You can not go around in underwear!” Y: “But you had
to say me that there were guests in our house!”.

7 This expectation should be part of what Bicchieri calls “empirical expectation” (“what we
expect the other do”). However, we should distinguish between “to expect that the other
conform” and “to expect that the others monitor and sanction”. Two different predictions based
on different experiences that might also don’t be fully correlated.
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– Either another social N (social Ns are not so coherent and non contradictory,
especially in their application). For ex. the social N about our male group
meeting for drinking beer implies the possibility or prescription to burp in public
(just for funny and be deviant), while I would desire – due to my “education” –
do not burp;

– Or a conflict with legal or organizational N.
In all these cases S will not conform to the N but she is not motivated by the aim
of weakening it. For sure that violation (given the message to myself and to the
stakeholders) weakens the N, however the agent’s intention is not necessarily this.

(e) Expectation of not sanctions: Either due to some reason in the others of not sanc‐
tioning; or just because I expect to not be detected, to hidden: “I will get away with
it; they will not see me; nobody will know that”; or “They do not catch any violator,
they never punish”8. Of course, these beliefs are relevant in particular for agent
motivated to respect Ns just by the fear of sanctions.

(f) Indifference to sanction: There are cases and individuals where the fact that other
people respect N and that there will be a negative judgment by the others (sometime
even publically expressed), is not a sufficient reason for not violating: an important
sub-kind of conflict. Consider for example a young guy sited in a waiting room where
there are quite old waiting people standing up, and not giving up his seat to them,
although he knows that he “should do” that, and that he is disapproved. Either there
is in this guy (and context) indifference to the judgment and sanction from the others
(goals), since “I do not care of these guys”, “who knows them?” “I will never meet
them again …” (beliefs). Or there might even be a provocation attitude (goals): “Yes!
I’m not like you, I do not care of you”, “I’m underbred, so what!”. Or the attitude is
“motivated” by an opposition specifically to the N, as a meaningless N: a value oppo‐
sition (like in people violating the rule of giving priority to women).

All these are (more or less sincere and not self-deceptive) beliefs and motives of the
violator.

Sometime we (unconsciously) find a new interpretation of framing of our action and
circumstance, and of the N, in order to facilitate our violation. Consider the very famous
and beautiful case of people “interpreting” the monetary sanction for the violation of
the N as a fair, a price, and thus deciding to systematically violating it, and just pay what
they have to pay [34]. Let’s rewrite in our mind as a tax what in fact would be a fine!
But this morally facilitates our decision to violate.

(g) Violation as epistemic act: I know and intend (in case) to violate, but my motive is
to “see”: to see if that N is there or if I correctly understood it; or to see if the
violation will be noticed/punished; to see your reaction. Even to see if you know
that N, not in order that I know the N, but in order to know if you know it.9

Of course, there are other kinds of assumptions and reasoning that induce or facilitate
(intentional) N violation; in particular interpretations of observed deviant behaviors,

8 This is a change in our “empirical expectations” in Bicchieri and Xiao terminology [8].
9 My behavior is like an exam question, where I in fact already know the answer but I want to

know if you know it.
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changing our mind. We will see some of them below: the effect of external changes
(observed deviant behaviors) on our mind and conduct.

B. Aware violations with the goal of harming, breaking down the N

Violation is not just intentional but motivating: I violate in order to violate (Ns or
that N).

(h) Violating for changing: Intentional and public violation of N for rebellion and
opposition to that N, for rejecting and breaking it; to send a message to the others,
to the “authority”. Like Gandhi that rips in a central place of Johannesburg in front
of the police the special document obligatory for Indian people. The message (and
belief) is “This N is discriminatory, unacceptable, unfair; it has to be abolished:
rebel to it!”10 Notice that I can violate an N as unacceptable, not fair even if it does
not directly damage me.

(i) Violation against stigma, for changing values, building our identity: I violate for
provocation and rebellion towards stakeholders’ values and attitudes. There are two
different cases.
A possible aim is to build our collective identity, to remark that “we” are different,
not like you, and we do not want be part of you (like Punk’s provocation; or adoles‐
cent deviant attitudes). We are not In-group, but Out-group; it is an “exit” or seces‐
sion move from your value and community.
Another possible aim is to change your values, to obtain respect: like in the prov‐
ocation of the “Gay pride” and exhibition: “Our aim is not splitting from you; on
the contrary we want to be accepted, integrated, and respected; you have to change
your conservative values and thus your social Ns on that”.

A crucial construct in human mind is the “sense of justice” and the related sufferance
for iniquitous situations (not only harming us personally but even favoring us, or
harming others: we can play the role of the victim, of the privileged guy, or of the
stakeholder, but always with some discomfort) (“equity theory”), the need for equity (a
“value” and a “motivation”11). We can consider a given N with this perspective, by
evaluating its “equity and justice”. This changes very much our disposition in obeying
to it, or in supporting/defending it as punisher (Sect. 3.3). I feel “justified” in my viola‐
tion; not a bad guy but a good guy; I do not feel guilty but proud of me.12 If I consider
a given N unfair I can have a serious conflict between two internal values, intrinsic
motivations: the sense of duty/obedience vs. the sense of justice. The conflict is within
my own values.13 Sometimes this mental justification and motivation in terms of “sense

10 This nice example is about a legal N, however similar examples exist also for social ones; like
the “provocation” acts of courageous women in Arabic countries.

11 For a rigorous cognitive notion of “value” and its strict link with evaluations, prescriptions and
Ns see [40].

12 Agents too should have some moral value and should be able at least to interpret our behavior
and reasons in these terms, and possibly mediate our interaction caring of moral norms.

13 This is Antigone tragedy. This also is Socrates’ message to us while taking the poison:
respecting Ns and authorities (even when their decision is incorrect and harming us) may/
should be a prevalent value.
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of injustice” is just a convenient alibi (in front of the others, or in front of myself) for
allowing my violation for personal advantages and desires (like the “sense of injustice”
sometimes used for covering/hiding our envy).

(j) Violation to be noticed, to innovate: Sometime we violate a social Ns or consue‐
tude’s just to emerge, to be noticed, and to be original; like women first wearing a
bikini or a mini. These provocative guys (actually innovators that may create a new
“fashion”, but not necessarily with this intention) are aware of and ready to cope
with criticism and even insults.
Two examples about previous cases: I violate the N that on the beach one cannot be
nude, and (with other people) I use “topless”; so I create or converge a new use,
imposing tolerance to the others (they can no longer blame and reproach me). Or I’m
completely nude; but this is too disturbing, intolerable for that group, so this creates a
scission of groups and places: you nudists must have your own beach (and we will not
come there!), but you cannot stay in “our” beach and be nude. If you become part of
the new group and go to the nudist beach it become not just tolerate to be nude (the
old N doesn’t constrains you any longer) but there even is a new N of “being nude”.
Similar path for vegans: they want not just be permitted to refuse current food
without objection, ridiculous, blame, but they are trying to build new Ns - based on
new values - (“Do not eat animals!” etc.) on such a basis to criticize, blame the
violator (although they are the majority) and make propaganda. Their aim is not
just to build a separate culture and community, but also to change the practices and
the Ns of the big community.

Notice that this kind of N change requires (and is grounded on and aimed at) a change of “value”
which is first of all a specific mental object.

(k) Against the authority as such: It is also possible to violate in order to rebel, but not
against a given set of N that we want to reject or change, but against the normative
authority A. To impair A, independently from the specific N. What maters is to
violate; to show to myself or to my peer or to A that I do not respect A, do not
submit: this is the message and motive. Like a “rebel” child that rejects any parents’
prescription or restriction to his desires; like some political movement or demon‐
stration where what matters is to broken something, to do something prohibited,
not what to broken and why.
The crisis of the authority (see Sect. 6.2) can be due to various assumptions and
motives; like the fact that A is no longer credible, trustworthy, correctly and
competently playing its role; so I do not want longer depend on and delegate to it.
Or a crisis of identity and membership: I do not any longer feel one of “you”. Or
for a crisis of values grounding that A: I do not any longer feel morally “obliged”.
And so on.
Again; it is not necessarily a matter of sanctions, power, and fear.
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5 External Locus: The Others’ Observed Behaviors

Which and how many observed changes in normative behavior are necessary for
changing our conform conduct? Not necessarily we need diffused and spreading prac‐
tices. Even a single violation act or meta-violation (for example do not monitoring or
punishing) can call into question a given N in my mind (for example, a single resounding
act of euthanasia); a single provocation can be enough for discredit authority (see
Gandhi’s example).

To know that somebody has violated N is an important factor in the crisis of that N.
However, this works through our mind and what matters is the interpretation we give
of that behavior: Accidental? Intentional? And why? And which are the consequences?

Let’s first see some examples/kinds of assumptions and reasoning that induce or
facilitate (intentional) N violation; in particular interpretations of observed deviant
behaviors, changing our mind:

(l) Interpretations of observed deviant behaviors:
– “If he (they) is doing that, me too I can do so! It is not fair that he does that and

I cannot!”
– “If he (they) is doing that it means (it is a sign) that it is permitted/possible: there

is not a N or is no longer in force here”
– “If he (they) is doing that it means (it is a sign) that this is the right way; what

we have to do (he expects that I do so)”.14 Actually this is an intentional action
entailing a violation, but not intentional as violation.

– “In fact he is right! He is courageous. It is correct to violate this N!” (Thanks to
his violation behavior I change my value-attitude towards N; this goes in the
direction of N criticism).

5.1 A Single Bad Example

The impact of an external, observable deviating behavior does not depend only from the
number of violators: the many the violators the more impaired the N.

A single guy’s deviant behavior can be sufficient for a large impact. It depends on the
network, on the number of stakeholders and – of course – on his/her role and influence.

It also is important the fact that (a) not all violations are equivalent, although behav‐
iorally identical; and (b) that sometimes a single deviating example (not a multitude)
be enough for; but of course it depends on its visibility and significance and interpreta‐
tion. The single violation of a leader is not the same of the one of a follower; the violation
a well-known person is not like the violation of an anonymous person, and so on.

The number of violator is of course a relevant factor because one principle for the
strength of our persuasion is the number of converging sources or examples. But also
the single’s reliability - as model or authority – and prestige has a precise impact on the
degree of our persuasion.

14 This case and the previous one change our “normative expectation” in Bicchieri and Xiao [9]
terminology.
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5.2 The Others (Deviant) Behaviors as Messages

Since minds are typically read off behavior “it is impossible not to communicate” about
our minds even those prescribed by a specific role. Our behaviors or their traces inevi‐
tably “signify” our mental attitudes. And we use our everyday behavior or its traces
(practical actions not “expressive” ones or conventionalized gestures) on purpose to
send this information to others; for signaling. This is a special form of communication
crucial for human social coordination, and conventions and institutions establishment
via “tacit” negotiation and agreement, not to be mixed up with gestural or other forms
of non-verbal communication [43].15

Also N maintenance or innovation “circles” (observation-interpretation-change-
action-observation- and so on) (Sect. 6) works thanks to the fact that a cognitive agent
“reads” the others’ conducts, and they signify/inform about the existence, respect, or
violation of Ns [3]. Thus a violation conduct may acquire either the communicative
function or the communicative intention of impairing the N or of explaining my reasons.
Demolition or establishment of SocNs is mainly based on such a kind of not explicit
communication, negotiation, and tacit agreements.

This factor contributes to the explanation of a crucial issue. As remarked by Christine
Cuskley16 “frequency and stability exhibit an interesting relationship in language: the
more frequent a linguistic construction is, the less it tends to change over time.” In my
view this might be generalized to behaviors, and in particular to normatively regulated
behaviors. Also linguistic constructions are “norms” and “rules” for people aimed at
using that language; just a sub-case (with its specific additional dynamics). “Despite the
evident relationship between frequency and stability, it is still unclear what specific
social and cognitive factors underlie this relationship.” As for social Ns, I would say
that part of these factors is rather clear: the more diffused a (normative) behavior, the
greater the probability to be observed and imitated/learned (a very strong and repeated
“message”!), and thus not just to spread around but to be “reinforced” in its prescriptive
character. Moreover, the more it is diffused the greater the absolute number of necessary
“exceptions” and “violations” for its change or elimination. Thus the more widespread
the more stable. And vice versa: the more stable in time and people, the greater the
probability to be diffused and repeated (frequency). And so on.

6 Collective Destruction/Construction: Emergence-Immergence
Cycles

On the basis of this analysis of internal mutations and their behavioral consequences,
let’s focus on the description of the internal-external, mental-behavioral, individual-
collective loops, and on the description of the phases of Ns change (vicious) ‘circles’
(Fig. 1).

15 On the relevance of Norm-signaling, and of explicit communication, not just of punishment,
see also [2, 3].

16 Christine Cuskley “Frequency and stability in linguistic rule dynamics”, Invited seminar at
ISTC October 2014.
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Fig. 1. Internal-external cycle

6.1 External ⇔ Internal Circles

Obviously – as for the “external” observed events (single or regular) – what matters is
the Intentional Stance interpretation, the ascribed mind and reasons. I observed an indi‐
vidual violation by S or by W (not blame, no sanction); is it by accident, ignorance, or
lack of attention? Or was it intentional? And “why”? Was S just egoist and self-maxi‐
mizing, or is he violating because disagrees about the N or for invalidating the A? As
we saw in Sect. 5 there are various possible interpretations and effects. And about norm
‘watchman’ role: was he indulgent because lazy or corrupted or familiar with S? Or was
he thinking that N doesn’t apply in that circumstance or is bad and unfair?

The effect on my mind and on my view of the N in the various cases is very different.
The external event impact depends on our subjective interpretation of it.

That’s why also a very clear collective behavioral regularity is not always and auto‐
matically interpreted (and complied) as a N. There are “vicious” and “virtuous” circles,
from the point of view of normative behavior. Both, the vicious one (that is, violation,
behavioral messages, N impairment, and collapse) and the virtuous one (N emergence,
implicit negotiation, establishment, and maintenance) are due to the same internal-
external cycle (Fig. 1).

There is also a very interesting self-referential feedback: the violating or conforming
subject is observing his/her own behavior, and interpreting it, and confirming or
changing his/her beliefs and preferences and feelings (as we saw in Sect. 4), and so on.
Our behavior signifies a lot to us, and we send (intentional or unintentional) messages
to ourselves. Also because, if I act on the basis of some implicit, presupposed, assump‐
tions or choices, and the action is successful (good results), this automatically reinforces
the presupposed mental conditions for that act, and increases the probability to take the
same path next time.
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6.2 The Crisis of N Authority

A nice example of a multilayer vicious circle between normative behavior and norm-
related mental attitudes is the crisis and discredit of the “authority”. To work well
authority requires not only respect/submission for authoritarian strength, threats, coer‐
cive power (credible sanctions), but “prestige” or more precisely “authoritativeness”.
That is, A’s “credibility”. An A requires trust for its role; without trust it cannot work.
Information authority, source of knowledge must be “credible” in strict sense: it has to
be perceived (evaluated and felt) as “competent” in that domain and honest, not cheating
for some private interest. Analogously the norm-A must be “credible” and trustworthy,
its Ns should be perceived/given as the right one (from a technical and a justice point
of view) and not due to private interests. If the A is authoritative, I accept its information
or prescription, without need for prices or threats, without conflict, rebellion: I have a
generalized adoption disposition; in a sense I obey for intrinsic motivations.

However this authoritativeness can collapse, and A can have a crisis of credibility,
be discredited and no longer “automatically” respected. Which are changes in individual
mind that might start (or reinforce) this process?

(a) I no longer believe that A or its behavior is respectable, that A is authoritative,
credible; thus

(b) I do not adopt its prescription/N, I start do not conform to (decision);
(c) this feedbacks, and reinforce my belief about violability of N and my right to violate,

and - since my deviating behavior can be observed
(d) it discredits the A in the others’ eyes; diffuses the same evaluation about A (and

probably also its perceived capacity or right of sanctioning); it builds a “collective
belief”17

(e) it infects, diffuses deviating behaviors; but
(f) this spreading of the evaluations and of the deviating behaviors confirms and rein‐

forces my perception of A, of that N, and my behavior; and so on.

The collapse of A’s authoritativeness is a mental and behavioral, and internal and
external, and individual and collective, fact.18

7 Concluding Remarks

Three issues.

• As we said, Ns are based on the possibility to be violated, not obeyed. They are
devices for the control of “autonomous” agents that decide what to do on the basis
of their beliefs, reasoning, and goals. Ns not only presuppose (accept) but also postu‐
late a freedom in the addressees. Is this just a not so good but unavoidable feature?
Or violability in this regulating device of social conduct has some advantages? N

17 Not in the sense of a “collective mind” but in the more basic sense of a collective of minds;
many minds sharing certain assumptions and infecting each other.

18 It is clear that such an internal/external dynamics of Ns change might be fully simulated only
with cognitive Agents in MAS.
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“violation” usually has a negative connotation, since to “violate” is an evil in itself
(as harm at a general and meta-level, of order, authority, trust; as we explained).
However – actually – not only it can be morally justified and even noble and coura‐
geous, but also it plays a key function. It is one of the mechanisms and pressure for
N change, adaptation, and evolution19 [16].20

• I’m not sure that the current theory and definitions of social norms (see for example
[6, 37]) fully captures some of the aspects we have discussed21. For example, there
are social norms (not only legal ones) that are still there even if systematically violated
by a large part of people. The norm is still in force since it is perceived as such by
that people, although they violate it. They actually know/decide to “violate” it, thus,
in a sense, that N still “regulates” their conduct. For example, in several part of Italy
it is very frequent that people throw papers on the street or do not collect the excre‐
ments of his dog; however, they know (and even agree) that this is bad, not “correct”
(N violation), but since it is tiring do not do so, and since a lot of people does the
same … Is that N “in force” in this group? Yes: everybody knows what one “should”
do. In our view a social norm to be there doesn’t require to be a behavioral norm, a
stable practice. It is sufficient that the large part of the group knows it, reminds and
considers it, although regularly or frequently violating it. It is perceived as a N, taken
into account in the individual cognitive process and mentally shared in the group,
although ineffective on the conduct. It is a strange N state: an still in force but
ineffective N. We shouldn’t forget that first of all a N is into the (shared) mind of the
agents; this is its presupposition.
Of course it is fully true – coherently with Bicchieri’s theory – that:
(i) On the one side the norm not only is ineffective but is probably in “decadence”,

close to disappearing also from the mind of people, for example for the learning
process of the new guy or for the mental automatization of the bad practice
without no longer considering/perceiving that you are violating.
This is reasonably a possible and rather typical intermediate step in the path of
N extinction: N respect and sanctioning; bad practices but the N is still consid‐
ered as such; non longer taken into account as a N, no longer impinging on us.

19 This obviously shouldn’t be an excuse for the selfish violator just for his own private interests
(although – as Adam Smith has explained – even this guy plays his social function, beyond his
personal motives).

20 I worry about the rigorous computational (intelligent) coordination and surveillance on human
work and organization. At least in “critical states” we need violations, although not foreseen
in the program; but just opportunistic and reactive to a given contingency.

21 For example, the motto of Bicchieri for synthesizing the spirit and working of social Ns “Do
the right thing: But only if others do so” could create some misunderstanding. This might be
the mental rule, the prescription that the individual gives to himself in front of a N (it can
explain his conformity or violating behavior) but is not the prescription of the N: the N says,
prescribes, just “Do the right thing!” Ns want to be obeyed and respected in any case; this is
their imperative. I may decide or be leaning to respect this absolute imperative only “if”, under
certain condition, but the “normative expectation” also by the others doesn’t say “only if the
others do so”.
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(ii) On the other side, it is true that the fact that several guy systematically violate
that N encourages ignoring it, to consider that it is possible and not so terrible
to violate it. We live in a rude world and we adapt/belong to it.22

In a sense the norm is still there in the mind of the agents; they know that there is
such a norm. However, they are no longer committed to respect it [28]; they do not
formulate the intention to respect it. One might say that knowledge about the others’
conformity to a norm is not only or necessarily the origin and basis of our believing
that a norm is there (Bicchieri’s theory), but is more the basis of our “commitment”
(and its strength) to that duty.

• Agents are relevant in two ways: for modeling the complexity of such a dynamic and
immergent/emergent process, by Agent-based Social Simulation; but also because
we need non-passive normative and moral agents in Hybrid Societies where Artificial
Intelligences (Agents, robots,) will work and cohabit with humans. In particular N
change processes (internal and external) should be present in both MAS with cogni‐
tive Agents, and in Hybrid Societies. We have even to allow and exploit violations
of rules and practices in organization, coordination, and work, but only when it is the
case and by understanding “why” (reading behavior and mind) [17]. Actually there
is a strong and advanced tradition in AgMAS on Agent architecture for Ns, in N
based MAS and organization, in MAS simulation of Ns efficacy23, however – in my
view – we still need some advancements in theoretical modeling of cognitive and
collective aspects of Ns dynamics. This work is a partial attempt in this direction.
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Abstract. Principal Agent Theory (PAT) seeks to identify the incen-
tives and sanctions that a consumer should apply when entering into
a contract with a provider in order to maximise their own utility. How-
ever, identifying suitable contracts—maximising utility while minimising
regret— is difficult, particularly when little information is available about
provider competencies. In this paper we show that a global contract can
be used to govern such interactions, derived from the properties of a rep-
resentative agent. After describing how such a contract can be obtained,
we analyse the contract utility space and its properties. Then, we show
how this contract can be used to address the cold start problem and
that it significantly outperforms other approaches. Finally, we discuss
how our work can be integrated with existing research into multi-agent
systems.

1 Introduction

Autonomous agents are often assumed to be rational, self interested entities,
interacting with others in order to maximise their own utility. When asked to
fulfil a task, they will therefore do so in a way that maximises their expected
utility. When acting as a service provider (e.g., in an electronic marketplace),
there is thus a risk that the agent will provide a substandard service. Approaches
to mitigate this risk include the use of electronic contracts [19,20], which spec-
ify the rewards and penalties (or more generally, incentives) to be imposed on
interacting parties in response to successful or unsuccessful interactions [7]. Prin-
cipal Agent Theory (PAT) [11,13,18,21] aims to determine the optimal level of
incentives—in the form of rewards and penalties—that an agent (the principal
or consumer) must commit to giving others (the providers) in order to have the
latter act in such a way so as to maximise the principal’s utility. To utilise PAT
an agent requires beliefs about the behaviour of the provider. However, with-
out previous (potentially negative) experiences, such beliefs cannot be formed.
This problem, of lack of experience with others in the system potentially lead-
ing to poor experiences when operating within the system, is referred to as the
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cold start problem [25]. Several approaches have been proposed for addressing
the cold start problem, from minimal expectation or random assignment to the
capabilities of the providers [23,26], to active learning [16]. In particular, good
results have been shown by using samples of the society [24].

Apart from the cold start problem, several other difficulties arise when using
PAT. Computing incentives requires solving a highly non-linear optimisation
problem. When combined with the need to select between multiple possible
providers, the computational costs of creating contracts using PAT, and gather-
ing the information needed to create such contracts, become prohibitive. When
dealing with unfamiliar parties humans often resort to general principles to deter-
mine incentives, stemming from cultural, psychological or legal foundations. In
this paper, we build on this intuition, suggesting that without additional infor-
mation, an approximate set of incentives can be specified for all interactions
within the system. We envision that a PAT based system would initially utilise
this approximate set of incentives to generate contracts. As more information
becomes available through repeated interactions, these approximations become
discounted in favour of more accurate incentives to form better contracts. How-
ever, in the case of very simple computationally bound agents, our approxima-
tions could continue to be used. Our work can therefore be seen to address the
cold start problem by allowing an agent to successfully interact with others in
the absence of specific information about them.

Our contributions are as follows. We describe a procedure for determining
suitable approximate global incentive values. Such incentives aim to be applica-
ble to all agents in the system, and in defining them, we consider their effects
on overall system utility, which we refer to as the social utility. We define a set
of incentives, or a contract, as suitable if it is the result of a trade-off between
the social utility that can be gained, and the regret of paying too much for a
given good or task. Informally, the contract is based on an average individual
provider computed from the profile of all agents in the system. We experimentally
evaluate our contribution, showing how using the global contract significantly
outperforms other techniques aimed at addressing the cold start problem.

In the next section, we provide some background on principal agent the-
ory, following which we describe how global contracts are computed in Sect. 3.
Section 4 discusses another set of experiments evaluating the performance of
using the global contract in solving the cold start problem. Section 5 summarises
our results and concludes.

2 Background and Assumptions

2.1 Preliminary Notions

Following [6], we take as given a society of agents A = {x, y, . . .} and a set of
tasks T . A consumer x ∈ A desires to see some task τ ∈ T accomplished and
must do so by having a provider y ∈ A perform the task on its behalf. Given
τ ∈ T , let Oτ = {o0, o1, o2, . . . , on} denote the set of possible outcomes for
task τ , where o0 ≡ abs represents the case where the provider abstained from
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executing the task. �o induces a total strict order over Oτ , such that intuitively,
if oi �o oj , oi is better than oj . mino Oτ represents the worst possible outcome
of task τ , i.e., complete failure, while maxo Oτ represents complete success. For
ease of notation, oi ≺o oj iff oj �o oi. We assume that all agents share the same
task evaluation criteria as well as the same ordering function.1

In delegating a task to a provider, the consumer asks the provider to execute
it. The delegation of a task results in the consumer and provider obtaining some
utility (for the consumer, due to the execution of the desired task, and for the
provider, due to payment obtained from the consumer). Given this, the utility
gained by the consumer is computed by the function Ux : Oτ �→ R, while the
provider gains utility V y : Oτ �→ R.

The task provider has autonomy in selecting the method by which a task
will be carried out. In particular, let Eτ = {e0, e1, . . . , em} denote the set of
effort levels they can apply when performing τ , where e0 ≡ abs identifies the
case where the provider abstains from performing the task. We define a total
ordering �e over Eτ such that if ei �e ej , then ei requires more effort (or is
higher than ej . Similarly as before, ei ≺e ej iff ej �e ei.

Each effort has an associated cost determined by the function Cost : A ×
Eτ �→ R. For ease of notation, for agent y ∈ A, Costy denotes its cost function.
Different effort levels have an impact on outcomes, which we capture through a
probability distribution: ∀o ∈ Oτ ,∀e ∈ Eτ , py(o | e) represents the probability
that agent (provider) y will achieve the outcome o using effort e. It is assumed
that py(abs | abs) = 1.

When delegating, the consumer devises a payment function, or contract, C :
A × A × T × O �→ R. We write Cx

y:τ (o) for a given o ∈ Oτ to represent the
contract specifying the compensation consumer x will give to provider y given
outcome o of task τ .

Therefore, the net utility nV y for a provider y which achieves an outcome
given a specific effort (including abstention) is:

nV y(o, e) = V y(o) + Cx
y:τ (o) − Cost (e) (1)

2.2 A Fair System

In what follows we assume a fair system which identifies several desirable and
common-sense properties that any system should have. These properties are
as follows.

(F1): ∀oi, oj ∈ Oτ , if oi �o oj then Ux(oi) ≥ Ux(oj) and V y(oi) ≥ V y(oj);
(F2): ∃oi ∈ Oτ ,∃e ∈ Eτ s.t. nV y(abs, e) < nV y(oi, e);
(F3): ∀ei, ej ∈ Eτ , if ei �e ej then Cost (ei) ≥ Cost (ej);
(F4): ∀oi, oj ∈ Oτ , if oi �o oj then Cx

y:τ (oi) ≥ Cx
y:τ (oj);

(F5): Cx
y:τ (abs) = Cost (abs).

1 In other words, all agents have the same preference ordering �o over tasks.
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(F1) states that the better the outcome of a task, the greater the utility that both
the provider and the consumer independently receive; (F2) there has to be at
least one outcome that gives the provider a better gross utility than abstaining
(for example by being paid more for this outcome than for abstaining); (F3) that
the higher the effort, the higher the associated cost to the provider; (F4) that
the better the outcome, the higher the compensation to the provider according
to the contract (incentive); (F5) that the contract covers the costs associated
with abstaining behaviour, but no more. We note that these constraints are
not minimal.

Although in reality some of those properties might fail to be satisfied, they
try to capture a minimal set of norms for a free-market society. Far from being
unquestionable, we elicit them as postulates on which we base our proposal in
the next sections.

2.3 Rationality Assumptions

We assume that each provider rationally decides whether or not to accept a
contract, and which effort to use if it does not abstain. In particular, if the
provider’s expected utility is greater than the utility it would obtain abstaining,
then the provider will perform the requested task. Moreover, the provider will
utilise the effort on the task which will maximise its own expected utility. EV y

denotes the expected utility for a provider y in performing a task τ with a
contract Cx

y:τ , and is computed as follows.

EV y =
∑
e∈Eτ

∑
o∈Oτ

(
p(o|e) (V y(o) + Cx

y:τ (o) − Cost (e))
)

(2)

Therefore, if EV y ≤ V y(abs), it is better, or more convenient for the provider
to abstain from accepting the task. If, instead, EV y > V y(abs), then the effort
that the provider will expend on performing the task is as follows.

argmax
e∈Eτ

∑
o∈Oτ

(
py(o | e) (V y(o) + Cx

y:τ (o) − Cost (e))
)

(3)

Let delegate denote the non-deterministic function that, given a task τ , a
provider y, and a contract Cx

y:τ , returns a pair of elements: (1) an element of Oτ ∪
{abs} which depends on the effort resulting from y’s decision process (obtained
from Eqs. (2) and (3)); and (2) the net utility for y.

As mentioned above, we seek a global approximation for incentives. In order
to evaluate the incentives’ effectiveness, we must consider how task delegation
(i.e., the execution of the task from the consumer by the provider) operates in
the presence of these incentives. We therefore consider the total utility of the
system over both providers and consumers for a specific contract (i.e., the sum of
each provider’s and consumer’s utility over the whole system). This is measure
of social utility, with regards to a task τ for a given contract Cx

y:τ , is defined as
follows.
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sU(Cx
y:τ ) =

∑
x,y∈A

Ux(ô) + n̂V y (4)

where 〈ô, n̂V y〉 = delegate(τ, y, Cx
y:τ ).

Finally, following [22, p. 51], we can compute the regret of a consumer to
have chosen a contract Cx

y:τ from a set of contracts Cx
y:τ as follows.

Regret(Cx
y:τ , o) =

(
min

Cx
y:τ ∈Cx

y:τ

Cx
y:τ (o)

)
− Cx

y:τ (o) (5)

The regret value is, by definition, negative. However, its value must be inter-
preted as an absolute value [22, p. 51].

2.4 Traditional Solutions to the Cold Start Problem

Several approaches have been proposed for solving the cold start problem in
contract negotiation. For the purpose of this work we will focus on three of
them.

The first approach is probably the simplest. It proposes to use, as starting
point, the minimum contract possible according to fair systems requests. In this
way, by incrementing the value of the contract (in the sense of utility paid to the
provider for successful task execution) every time we receive an abstention, we
can converge to the minimum contract while guaranteeing providers not abstain.
However, this contract is not guaranteed to maximise the consumer’s expected
utility.

A second approach adopts an exploration strategy, such as Boltzmann selec-
tion [7], whereby, given a set of outcomes for a task, contracts are randomly
selected initially (i.e., the exploration phase), with the best observed contract
being chosen after some time period has elapsed (the exploitation phase). In case
the chosen contract does not guarantee participation, we can iterate the inter-
actions and converge sooner to the minimum contract guaranteeing it. However,
if the cost of the contract for the consumer is too high, this will result in high
regret.

A third approach utilises sampling. This includes widely adopted techniques
for solving the cold-start problem via active learning [24]. Given a society of
agents A and the set of contracts C, and given a simple sampling procedure [9],
the problem is to determine the number of samples required to achieve some
statistical accuracy requirement.

Since our goal is to identify sufficient samples to obtain non-abstaining behav-
iours, we can divide each unit of the search space A×C—assumed to be normally
distributed—into one of two classes yielding either abstaining or non-abstaining
output. Given the margin of error d that we consider acceptable in the estimated
proportion p in the class of non-abstaining output, and given the accepted risk
α that we can incur that the actual error is larger than d, then according to [9],
we require n samples, computed as follows.

n0 =
t2 p (1 − p)

d2
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where t is the abscissa of the normal curve that cuts off an area of α at the
tails. If n0

|A×C| is negligible, n0 is a satisfactory approximation, and thus n = n0.
Otherwise,

n =
n0

1 + n0
|A×C|

(6)

In the following we identify with Ĉd
α the set of sample contracts given the

margin of error d and the accepted risk α.

3 Global Contracts

In order to apply PAT, one must be able to compute the provider’s expected utility,
requiring knowledge about provider costs and success likelihoods for different effort
levels. Therefore, in order to assess its own utility, the consumer should know, for
each provider and for each effort level, the associated cost, as well as the probability
of obtaining each outcome of the task for a given provider’s effort level.

To reduce the computational effort for a consumer to explore providers’
capabilities, we introduce a representative agent ω obtained from the providers
present in the system. ω can be viewed as the simplest stereotype agent [2,5,12]
for a given society, which acts as a proxy for the agent’s neighbours. Although
outside the scope of this work, assessing the quality of the representative agent
is an important issue which can impact on other aspects of a multi-agent society,
e.g., how much can an agent trust the agents in a society in which it enters for
the very first time?

In what follows, without loss of generality and to simplify the presentation,
we assume:

– a single task τ ;
– a fixed shared cost function Cost for all the providers;
– a fixed shared utility function V for all the providers;2

– a fixed shared utility function U for all the consumers;
– contracts Cx

y:τ such that ∀o ∈ Oτ , Cx
y:τ (o) ∈ Z: moreover, we assume a strong

fairness requirement for these contracts, i.e., Cx
y:τ (oi) � Cx

y:τ (oj) if oi �o oj .

Therefore, the representative agent ω is one such that:

∀o ∈ Oτ ,∀e ∈ Eτ , pω(o | e) =
1

|A|
∑
y∈A

py(o | e)

3.1 Searching for a Suitable Contract as a Linear Problem

Considering a representative agent as the “average” provider in a given society
does not entirely address the problem of identifying a suitable contract. However,
by taking into account Eq. (2), we can derive bounds for the contracts, such that
2 Shared utility functions are widely employed in cooperative contexts [4], which is

also the main focus of our research.
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values of contract below the lower bound would have the same effect as the
minimum contract itself, and the same for the upper bound.

The lower bound for contracts is:

∀o ∈ Oτ , Cx
ω:τ (o) ≥

⌊(
min
e∈Eω

Costω(e)
)

−
(

max
o∈Oτ

V ω(o)
)⌋

(7)

Similarly, the upper bound is:

∀o ∈ Oτ , Cx
ω:τ (o) ≤

⌈(
max
e∈Eω

Costω(e)
)

−
(

min
o∈Oτ

V ω(o)
)⌉

(8)

Given the bounds of Eqs. (7) and (8), let Cx
ω:τ ⊆ Cx

y:τ be the set of contracts
that respect them.

Recall that our aim is to identify a suitable global contract given limited
knowledge of the providers, taking into account the trade-off between (i) max-
imising the social utility, while (ii) minimising the (absolute value of) regret for
the consumer.

Concerning (i), from Eq. (2) there is an inverse relationship between the
likelihood of abstaining from accepting the task and the utility gained by the
provider. This thus limits our search space, as we want to select a contract
that is not likely to lead to an abs result. Concerning (ii), Eq. (5) suggests that
minimising the chosen contract is correlated with minimising the (absolute value
of the) regret as well. Let us notice that this requirement does not apply to
contracts in general, rather regret minimization is enforced only in searching for
a suitable contract given the representative agent. There might be situations
where minimising the regret for the consumer is unnecessary: we will investigate
them in future work.

Solving the following linear problem thus addresses the above two aims:

min
Cx

ω:τ

∑
o∈Oτ

Cx
ω:τ (o) (9)

subject to

∑
o∈Oτ

Cx
ω:τ (o)

∑
e∈Eω

pω(o | e) ≥

V ω(abs) −
( ∑

o∈Oτ

∑
e∈Eω

(V ω(o) − Costω(e))

) (10)

and

∀o ∈ Oτ

Cx
ω:τ (o) ≥

(
min
e∈Eω

Costω(e)
)

−
(

max
o∈Oτ

V ω(o)
)

, and

Cx
ω:τ (o) ≤

(
max
e∈Eω

Costω(e)
)

−
(

min
o∈Oτ

V ω(o)
) (11)
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and

∀oi, oj ∈ Oτ s.t. oi �o oj , Cx
ω:τ (oi) > Cx

ω:τ (oj) (12)

In particular, Eq. (9) seeks to minimise regret, while Eq. (10) constrains the
search space to avoid abstentions. Equations (11) and (12) enforce the lower and
upper bounds on the contract, as well as the fairness constraint respectively.

In [8] we show how the contract which provides a solution to the lin-
ear problem is a suitable—i.e., a trade-off between social utility and regret—
approximation to the best solution obtained through exhaustive search.

3.2 Sampling the Society

Deriving a representative agent is a complex task. If there is no a priori knowl-
edge to do so, then deriving it is itself an instance of the cold start problem.
Therefore, we can adapt the idea of simple sampling discussed in Sect. 2.4 to the
case of continuous data [9].

Let us assume the society A is distributed as a normal distribution N (μ, σ)
with mean μ and standard deviation σ. Given r the acceptable relative error,
and α, the risk of being mislead by the sample, the size of the sample n required
is as follows.

n0 =
t2 S2

r2 μ2

Here S2 =
∑|A|

i=1(ai−aμ)

|A|−1 � σ2. If no

|A| is appreciable, n = n0
1+

n0
|A|

(cf. Eq. 6); other-

wise n = n0 [9].
It is worth noticing that we only sample A, while the equations in Sect. 2.4

sample the space A × C. In the following, Ar
α identifies the sampled space of

agents with r relative error and α the risk of being mistaken; ω̂r
α identifies the

representative agent derived from simple sampling of Ar
α.

4 Global Contract for Cold Start Problem

In the previous section we described how a suitable contract can be found given
some knowledge of a society. We now turn our attention to searching for such
a contract given no prior information about the society. This is therefore an
example of the cold start problem [25], wherein we seek to identify a suitable
contract to be used in PAT with minimal information about the providers.

4.1 Searching for Non-abstaining Contracts

According to Eq. (2), given a contract Cx
y:τ a provider will abstain from perform-

ing the task τ if doing so will increase its expected utility. In such cases, it is
necessary to increment Cx

y:τ towards a “better” (to the provider) fair contract.
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Algorithm 1. Increment Contracts
contractIncrement(Cx

y:τ )
1: Input: Cx

y:τ a valid contract
2: Output: Cx

y:τ an incremented contract
3: Cx

y:τ := Cx
ω:τ

4: for oi ∈ 〈o1, . . . , on〉 s.t. ∀j, k, j > k, oj �o ok do
5: if oi = o1 then
6: Cx

y:τ (oi) = Cx
y:τ (oi) + 1

7: else
8: if Cx

y:τ (oi−1) = Cx
y:τ (oi) then

9: Cx
y:τ (oi) := Cx

y:τ (oi) + 1
10: end if
11: end if
12: end for
13: return Cx

y:τ

To this end, Algorithm 1 defines the contractIncrement procedure which
returns the closest higher fair contract Cx

y:τ of an contract Cx
y:τ given as input.

At line 3 of Algorithm 1, contractIncrement copies the value of Cx
y:τ

to Cx
y:τ ; at line 6 it increments the value of the contract for the worst out-

come Cx
y:τ (o1). Then, for each other outcome oi in the sequence induced by

the ordering function �o, contractIncrement checks if Cx
y:τ (oi−1) = Cx

y:τ (oi)
(line 8). If this is the case, Cx

y:τ (oi) is also incremented to ensure fairness.
The following proposition proves that there are no other contracts “smaller”

than Cx
y:τ = contractIncrement(Cx

y:τ ) but “greater” than Cx
y:τ . Therefore,

Cx
y:τ is the closest of the contracts (in terms of increments necessary within

them) that are more convenient (for the provider) than Cx
y:τ .

Proposition 1. Given a contract Cx
y:τ , and Cx

y:τ = contractIncrement(Cx
y:τ ),

it is the case that ∀o ∈ Oτ �Ĉx
y:τ ∈ Cx

y:τ \ {Cx
y:τ , Cx

y:τ} s.t. Cx
y:τ (o) < Ĉx

y:τ (o) <

Cx
y:τ (o).

Proof. Let assume that ∃Ĉx
y:τ s.t. Cx

y:τ (o) < Ĉx
y:τ (o) < Cx

y:τ (o) for some o ∈ Oτ .
If o = o1, from line 6 of Algorithm 1 Ĉx

y:τ = Cx
y:τ , quod est absurdum.

If o = oi, i > 1, without loss of generality let us assume Cx
y:τ (i) = Ĉx

y:τ (oi)+1
= Cx

y:τ (oi)+2. From l. 9 of Algorithm 1, this implies that Cx
y:τ (oi) = Cx

y:τ (oi)+1,
quod est absurdum.

While Algorithm 1 derives more convenient (for the provider) contracts, Algo-
rithm 2 implements the sound and complete procedure hillC for computing the
distance of a given contract Cx

y:τ from the closest contract which is more conve-
nient (for the provider) than abstaining from performing the given task.

hillC requires as input the provider y, and a contract Cx
y:τ . It returns the

number of interactions needed to ensure that y will not abstain. At line 3 it
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Algorithm 2. Hill-Climbing Contracts
hillC(y, Cx

y:τ )
1: Input: y ∈ A, Cx

y:τ a valid contract
2: Output: S the number of iterations to non-abstain behaviour
3: S := 0
4: while delegate(τ, y, Cx

y:τ ) = abs do
5: S := S + 1
6: Cx

y:τ := contractIncrement(Cx
y:τ )

7: end while
8: return S

initialises the variable S which stores the number of interactions with y. Such
a variable is incremented (l. 5) every time the delegation process returns
abs.3 In such a case, the contract is incremented (l. 6) using the function
contractIncrement (Algorithm 1).

The following proposition proves that hillC (Algorithm 2) is complete and
sound.

Proposition 2. Algorithm2 is sound and complete.

Proof. Immediate from Proposition 1 and Eq. (2).

4.2 Experimental Hypotheses

The procedure hillC takes a contract as input: determining which contract to
use first is the essence of the cold start problem. For the purpose of this work,
we compare the following possible initial contracts:

– Cx
y:τ ↓global s.t. ∀o ∈ Oτ , Cx

y:τ ↓global(o) = Cx
ω:τ (o), where Cx

ω:τ is a solution to
the linear problem of Eqs. (9–12). We denote Cx

y:τ ↓global as GLOBAL. In
the following, to show the robustness of our approach, we assume that the
capabilities of the representative agents are uniformly perturbed by up to 0.2
from the average.

– Cx
y:τ ↓globalS s.t. ∀o ∈ Oτ , Cx

y:τ ↓globalS(o) = Cx
ω̂r

α:τ (o), where Cx
ω:τ is a

solution to the linear problem of Eqs. (9–12). We denote Cx
y:τ ↓globalS as

GLOBALsample. We considered α = 0.05, and d = 0.20.

We compare these two contracts to three contracts capturing existing
approaches to dealing with the cold start problem.

– Cx
y:τ ↓min s.t. ∀o ∈ Oτ , Cx

y:τ ↓min(o) = min
Cx

y:τ

Cx
y:τ (o) according to Eq. (7). We

denote Cx
y:τ ↓min as MIN;

3 We admit a small abuse of notation: formally delegate returns a tuple of two ele-
ments. In this case we silently assume that returns only the first element of such a
tuple, namely the outcome of task τ or abs.
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– Cx
y:τ ↓rand s.t. ∀o ∈ Oτ , Cx

y:τ ↓rand(o) = rand, where rand is a random number
between 0 and 1 derived from an uniform distribution. We denote Cx

y:τ ↓rand
as RANDOM;

– Cx
y:τ ↓S s.t. ∀o ∈ Oτ , Cx

y:τ ↓S(o) = min
Cx

y:τ ∈Ĉ
Cx

y:τ (o) according to Eq. (7). We

denote Cx
y:τ ↓S as CONTRACTsample. We considered α = 0.05, and d = 0.20.

Our experimental hypotheses are:

I1 : on average, the procedure hillC invoked on GLOBAL and GLOBALsample
(the contracts derived from the representative agent resp. without or with
a sampling activity) will require a minor number of interactions to con-
verge to a non-abstaining contract than if it is invoked on, in order,
CONTRACTsample, RANDOM, hillC(MIN);

I2 : GLOBAL and GLOBALsample are more robust with respect to changes of
network structure and distribution of competencies in the network.

4.3 Experimental Settings

We ran a set of experiments to evaluate the hypotheses, as detailed below. For
all experiments, we used the following base settings. Oτ = {o1, o2} s.t. o2 �o o1.
V (o1) = −10, V (o2) = 50, and V (abs) = 0. Eτ = {e1, e2, e3} s.t. e3 �e e2, e2 �e

e1, and Cost (e1) = 10, Cost (e2) = 15, Cost (e3) = 20.
Our system consisted of three agent types (G1,G2,G3), described in Table 1.

We considered societies of 100 agents. While we evaluated different topologies
(namely fully connected; random [10] and scale-free [1], our results were virtually
identical, and we therefore discuss and show only the random case.

Finally, we utilised three distributions of agent competencies, aimed at
reflecting different types of competences within different societies. These values
were picked so as to be sufficiently variable to reflect these differences in soci-
eties. Respectively, these are the poor, uniform and highly competent societies.
Table 2 describes the three distributions.

Table 1. Agents grouped by competencies

G1 G2 G3

pg(o1 | e1) 0.80 0.75 0.70

pg(o1 | e2) 0.60 0.55 0.50

pg(o1 | e3) 0.40 0.40 0.20

pg(o2 | e1) 0.20 0.25 0.30

pg(o2 | e2) 0.40 0.45 0.50

pg(o2 | e3) 0.40 0.60 0.80
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Table 2. Distribution of competencies in the network

Competence p(a ∈ G1) p(a ∈ G2) p(a ∈ G3)

Poor 0.6 0.3 0.1

Uniform 1
3

1
3

1
3

High 0.1 0.3 0.6

For each configuration (distribution of competencies), we generated 10 dif-
ferent societies (s0–s9) and evaluated each of them 50 times.

Simulations have been programmed using Java 1.6 using parallel comput-
ing for reducing the overall execution time.4 Indeed experiments exploited the
Aberdeen Maxwell High Performance Computing Cluster which is composed by
40 nodes, each with two 8 or 12-core Xeon E5 processors and 256 GB of RAM.
For each simulation we reserved 512 MBytes of RAM. We used LPSolve5 as
solver for the linear programs which arise during the simulations.

4.4 Experimental Evaluation

Figures 1, 2, and 3 qualitatively depict the results of our experiments: each figure
refers to a single distribution of competencies. Figure 1 illustrates our results for
poor competence societies, Fig. 2 for uniform competence, and Fig. 3 for high
competence. As mentioned above, we observed that the network topology has a
little impact on the results and therefore focus on random networks only.

For each configuration, for each society, Figs. 1, 2, and 3 show average and
standard deviation—over the 50 explorations for each society, and over the
agents in the society—of the number of steps needed to find a contract with
no abstaining results when the starting contract is GLOBAL, GLOBALsample,
MIN, RANDOM, or CONTRACTsample. Although it is not always the case
that these values are normally distributed, we chose to represent average and
standard deviation for qualitative purposes.

These results have been proven statistically significant using the Wilcoxon
Signed-Rank Test (WSRT) [29] (p < 0.01). From Figs. 1, 2, and 3 it is clear
that our hypotheses are satisfied. With respect to hypothesis I1 , the aver-
age of hillC(MIN) is the highest in any configuration and for any society. On
average, values of hillC(RANDOM) are always smaller than hillC(MIN), and
hillC(CONTRACTsample) is smaller that both of them. We also perturbed
the representative agent by up to 0.2 to evaluate the resilience of the generated
contract. In such a situation, hillC(GLOBAL) is almost always the smallest,
and barely distinguishable from hillC(GLOBALsample). This is particularly
true when the competencies are distributed uniformly, Fig. 2, or society is highly
competent (Fig. 3).
4 The code can be found at the URL https://sourceforge.net/projects/global-

approximations-pat/.
5 https://sourceforge.net/projects/lpsolve/.

https://sourceforge.net/projects/global-approximations-pat/
https://sourceforge.net/projects/global-approximations-pat/
https://sourceforge.net/projects/lpsolve/
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Fig. 1. Average steps and standard deviation necessary to find a contract which avoids
abstaining: poorly competent agents

Fig. 2. Average steps and standard deviation necessary to find a contract which avoids
abstaining: uniform distribution of competencies
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Fig. 3. Average steps and standard deviation necessary to find a contract which avoids
abstaining: highly competent agents

Regarding hypothesis I2 , it is worth noting that the distribution of compe-
tencies has an effect on hillC(MIN) which varies in the range [32, 47], where 32 is
the minimum in the case of highly competent societies, and 47 is the maximum in
poorly competent societies: the poorer the agents in terms of competencies, the
higher the (average) value of hillC(MIN). In contrast, both hillC(GLOBAL)
and hillC(GLOBALsample) returns values that are always in the range [0, 8],
independent of the configuration and the societies. This suggests that I2 is also
verified by this set of experiments.

In order to test the robustness of our approach, we also perturbed the com-
petencies of the representative agent by adding uniform noise in intervals of 0.05
between 0 and 0.25 for each pg(o | e). In 53 % of cases—80 % between uniformly
distributed and highly competent agents—they lead to non-significant results
(p > 0.01) according to the Kruskal-Wallis test [17]. Only in the case of poorly
competent agents were these perturbations always significant. This supports our
previous analysis regarding the robustness of our approach and the good perfor-
mance obtained.

5 Conclusions and Future Work

In this paper, we propose techniques to identifying an approximate contract, to
be used by consumers before they have obtained sufficient information to craft a
specific contract for interactions with providers within the system. This contract
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provides a trade-off between social utility and regret, and is identified by solving
a linear optimisation problem. Our work addresses an instance of the cold-start
problem. We evaluated our approach empirically, comparing it to existing cold-
start mitigation techniques, and found that our heuristic GLOBAL is robust
over different network topologies and provider competencies; furthermore, in its
GLOBALsample version, it is also computationally efficient, sampling only a
small subset of agents within the system. Finally, it allows agents to converge
to contracts which minimise the level of abstention with fewer interactions than
heuristics derived from existing cold-start mitigation techniques.

In the empirical evaluation presented in this paper we considered binary task
outcomes and discrete domains. Though this covers many situations where an
agent is concerned only with the success or failure of the task, there are situations
where a more fine-grained set of outcomes should be considered. For instance,
in the context of information sharing, an information consumer might pay more
for higher quality data from information providers. To represent these situations
we plan to adapt the formalisms presented in [3,27], where the authors discuss
a framework for information sharing with different levels of quality within a
multi-agent system. Moreover, our approach can be integrated with Carmel and
Markovitch [7] to improve the effectiveness of their strategies for explorations.

Moreover, considering (potentially infinite) sets of outcomes and efforts
would allow us to integrate our work with trust and reputation systems (e.g.,
[14,15,28]). We envision that an agent, on entering the system, would use the
mechanisms described in the current work, but as it gains experience, would
transition to utilising its trust and reputation mechanism to identify optimal
contracts (c.f., [6]).
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Abstract. Norms are an efficient way of controlling the behaviour of
agents while still allowing agent autonomy. While there are tools for pro-
gramming Multi-Agent Systems, few provide an explicit mechanism for
simulating norm-based behaviour using a variety of normative represen-
tations. In this paper, we develop an artefact-based mechanism for norm
processing, monitoring and enforcement and show its implementation as
a framework built with CArtAgO. Our framework is then empirically
demonstrated using a variety of enforcement settings.

1 Introduction

Multi-Agent Systems are often used as a tool for simulating interactions between
intelligent entities within societies, organisations or other communities. This
Agent-based Simulation is useful for studying social behaviour in hypothetical
situations or situations that may not be easily reproduced in the real world. The
entities being simulated, human or otherwise, are represented by programmable
intelligent agents, which must present reactive, pro-active and social behaviour [1].

When working with social simulations, we must consider that agents should
be free to act in their own best interest, even though their actions might pro-
duce negative effects to other agents. For this reason, we establish rules that
(1) prohibit actions that harm the society’s performance; (2) oblige actions that
maintain the society’s well being; and (3) permit actions that can be beneficial
to society, but never harmful. These rules, referred to as “norms” in multi-agent
environments, allow agents to reason and act freely, while still being subject to
punishment in the event that a norm is violated [2]. Although the purpose of
norms is to mediate the interactions of agents in an environment, sometimes vio-
lating a norm can prove advantageous for an agent due to the reward of violation
compensating for the penalties of detection. Existing work on normative reason-
ing [3–10] try to explore the trade-offs between compliance and non-compliance
and propose new ways in which agents see and reason about norms. Still, there
is no available tool that simulates norm-based behaviour to serve as a common
ground for benchmarking implementations of normative behaviour and reason-
ing. In norm-based behaviour simulations we must define data structures for the
various types of norms, including at least one of prohibitions, permissions or

c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 59–77, 2016.
DOI: 10.1007/978-3-319-42691-4 4



60 S. Chang and F. Meneguzzi

obligations. Once these norms are active, agent interactions shall be observed
by a monitoring mechanism and analysed by a norm-enforcing agent, which will
then punish agents caught violating norms.

Although there are multiple frameworks that can be used to simulate agent
societies, such as the MASSim [11] simulators, or the agent programming lan-
guages Jason [12] and JADE [13], relatively less attention has been focused on
frameworks for norm-based behaviour simulation [14, Chap. 1]. In this paper,
we bridge this gap by developing a scalable norm processing mechanism that
performs monitoring and enforcement in multi-agent environments. Our contri-
butions are a mechanism to monitor agents actions in an environment, described
in Sect. 4.5 and a mechanism for norm maintenance and enforcement, described
in Sect. 4.6. In Sect. 5 we demonstrate the functionality of our mechanism using
an empirical experiment applying our mechanism to a Multi-Agent System.

2 Simulating Multi-agent Societies

When self-interested intelligent agents [1] share an environment, competition
between them becomes inevitable [15]. This idea becomes clear when we think
of multi-agent systems as societies. Each person in a society has their own goals
and plans to achieve them, and it is in their best interest to do so by spending
as little effort as possible. Take for an example a person interested in eating an
apple and another interested in selling one. For the buying person, its goal is
to acquire the apple from the seller for the lowest cost possible, preferably with
no cost at all. For the seller, the goal is to sell the apple for as high a price as
affordable by the buyer, maybe even higher than that. Now, considering that in
this hypothetical world no notion of ethics is known yet, the buyer soon realizes
that instead of paying for the apple he wants to eat, he could simply grab it and
eat it on the spot.

Competition between agents is often intended when working with agent-based
simulations, as we desire to see how agents perform under such circumstances.
However, to prevent the system as a whole from descending into chaos, we must
establish rules in order to control agent interactions while still allowing them
to be autonomous. Nevertheless these rules must be limited to directing agents,
rather than restraining them, otherwise, much of the benefit from autonomous
agents is lost. When rules are set, agents that disregard them are subject to
punishment for potentially harming the environment. In our buyer/seller system,
we could establish a rule that guarantees items sold at shops must be paid for. If
one is caught stealing, it will need to pay for the seller’s injury. By doing so, we
allow the buyer to reason about the advantages and disadvantages of obeying
rules, letting it decide on an appropriate action plan. In multi-agent systems, we
refer to these rules as norms.

Usual mechanisms for controlling agent interactions include interaction mod-
els, used by simulators such as NetLogo [16], MASON [17] and Repast [18];
strategies, commonly used in Game Theory; and organisation-oriented norma-
tive systems, such as Moise [19]. The disadvantage of these methodologies is
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that agents are constrained to the rules of their environment. They are not
allowed to break rules because the system is rule-compliant by design, also known
as the regimentation approach [20]. However, unlike environmental constraints,
perfect enforcement (regimentation) of social norms is unrealistic and undesir-
able, because it prevents occasional violations that would bring about a greater
good [6,21].

3 Normative Scenario - Immigration Agents

To facilitate explanation and exemplification of our approach, as well as to high-
light its capabilities, we present the scenario we use to test our mechanism. This
scenario helps understand what norms are and how they control interactions in
an environment. First, we present a short story that connects the environment
to its agents, then we outline the norms that constrain them.

The government of a fictional emerging nation1 started an immigration pro-
gram to accelerate development through the hiring of foreigners. The country
welcomes visitors, besides landed immigrants, to the country, since money from
tourism greatly boosts the local economy. At the border, immigration officers must
inspect immigrant passports. The foreigner acceptance policy is quite straightfor-
ward, and immigration agents must immediately accept immigrants with valid
passports and no criminal records, and reject John Does and refugees outright.
The government believes that the more immigrants it accepts, the better. Each
officer’s responsibility is to accept as many immigrants as possible, while still fol-
lowing the guidelines that were passed to them. Each accepted able worker nets the
officer 5 credits, which eventually turn into a bonus to the officer’s salary. There are
no rewards for rejecting immigrants. It becomes clear that the bonus each officer
accumulates depends entirely on chance, and some officers may accumulate more
than others, if at all. As such, some officers might feel inclined to accept immi-
grants they should not, only to add to their personal gain.

To ensure officers act on the best interests of the nation only, the government
introduced an enforcement system to the offices at the borders. Among the
officers working in the immigration office, one is responsible for observing and
recording the behaviour of those working in booths. This officer is known as the
“monitor”. His job is to write reports about what the officers do and send these
reports to another officer, known as the “enforcer”. The enforcer then reads
the reports that are passed to him and look for any inconsistencies, such as the
approval of an illegal immigrant. As this represents a violation of a rule, or norm,
the enforcer then carries out an action to sanction the offending officer. The
penalties for approving an illegal immigrant are the immediate loss of 10 credits
and suspension of work activities for up to 10 s. Considering that immigrants
arrive at a rate of 1 per 2 s, in a 10-s timespan 5 immigrants would have arrived
at a given booth, meaning that a violating officer potentially loses 25 credits.
Added to the other portion of the sanction, the potential loss rises up to 35
credits.
1 Inspired by the game “Papers, please”: http://papersplea.se.

http://papersplea.se
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The enforcement system, however, is not cost free. Each monitor and enforcer
has an associated cost and it is within the interests of the nation to spend as
little as possible with such a system. Therefore, the government wants to know
how intensive the system must be to cover enough cases of disobedience so that
officers will know violating norms is a disadvantage rather than an advantage.

There are two norms that can be extracted from this scenario, which we define
in Examples 1 and 2. Later, in Sect. 4.3, we develop the formal representation of
norms in our system and proceed to formally defining these norms. These norms
concern the stability of the immigration program by assuring valid immigrants
are accepted and discouraging corrupt officers to accept those who should not be.

Example 1. “All immigrants holding valid passports must be accepted. Failure
to comply may result in the loss of 5 credits.”

Example 2. “All immigrants holding passports that are not valid must not be
accepted. Failure to comply may result in the loss of 10 credits and suspension
from work activities for up to 10 s.”

4 NormMAS Framework

In this section, we develop our monitoring and enforcement framework for norma-
tive agents. We start with an outline of the main components in our framework in
Sect. 4.1. We them review the agent and environment-based approaches we use in
our implementation in Sect. 4.2. Sections 4.3 and 4.4 describe the formalisation
of norms and actions we adopt. With these formalisation covered, we explain
how monitoring and enforcement work in Subsects. 4.5 and 4.6, respectively.

4.1 Architecture Overview

To allow the reader to better understand this section, we first offer an overview of
the architecture envisioned by our work. We illustrate this architecture in Fig. 1,
which shows the main elements that compose our framework and their interac-
tions. These elements can be divided into three groups: agents, environment and
external.

The agents group is self-explanatory, and it is where we put the agents that we
are using for simulation and for monitoring/enforcement tasks. The “Simulation
Agent Programs” are the agent programs which are simulating the behaviour we
wish to study, in this case our immigration officers. “Monitor Agents” are agent
programs which observe the actions performed by the simulation agent programs
and “Enforcer Agents” make the decision of whether these actions violate some
norm or not.

The environment group is composed of the elements that define what an
environment is like. In our case, our environment is not a centralised entity, but
a collection of artefacts through which agents interact. For example, monitor
agents use the “Reporting Interface Artefact” to file reports for enforcer agents to
analyse, as if they were actually putting reports in a pile over the enforcer agent’s
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desk. As we describe in the next subsection, this approach makes programming
the environment easier by separating responsibilities among different artefacts,
instead of concentrating actions in a single environment description. The types
of artefacts in this group should include all types pertaining to the simulation
context, e.g. immigration booths for passport reviewing; and three fixed types
that are part of our framework: the reporting artefact, the monitoring artefact
and the normative artefact. These artefacts are used exclusively by monitoring
and enforcement agents to perform tasks of the normative context, the exception
being the Normative Artefact, which should be accessible to agents interested in
observing normative events. Normative events include the creation, activation,
deactivation and destruction of norms and the emission of sanctions to violating
agents.

The external group is where we keep the elements that are auxiliary to our
framework, and although not considered autonomous agents are also not part of
the environment. Currently, this group contains the Action History, a structure
in which we store actions for normative analysis, and the Normative Base, a
database of established norms. In the following subsections we discuss each of
these groups in more detail.

4.2 Jason and CArtAgO

In order to show the feasibility of the mechanism proposed in this paper, we use
two programming approaches: agent-oriented programming and environment-
oriented programming. The former is provided by the Jason interpreter [12],
while the latter is achieved with the Common Artifact infrastructure for Agents
Open environments (CArtAgO) [22].

Jason provides us with the means to program agents using the AgentSpeak
language [23] in a Java environment. Agents are built with the BDI [24] archi-
tecture, and so their behaviour is directed by beliefs, goals and plans. Beliefs are
logical predicates that represent an agent’s considerations towards its environ-
ment. Predicates such as valid(Passport) and wallet(50,dollars) indicate
that the agent believes the given passport variable is valid and that his wallet
currently contains 50 dollars. In AgentSpeak variables start with an upper-case
letter, while constants start with lower-case.

Goals are states that the agent desires to fulfil, and these can be either
achievement goals or test goals. Achievement goals are objectives or milestones
that agents pursue when carrying out their duties. To represent these in AgentS-
peak, the goal’s name is preceded by the ‘!’ character. Test goals are questions
an agent may ask about the current state of the environment. These can be
identified by a ‘?’ preceding the goal’s name.

To achieve these goals, agents need to perform sequences of actions that
modify the environment towards the desired states. This sequence of actions is
referred to as a plan [25]. A plan is not necessarily composed solely of actions,
however, it can also contain sub-plans. This allows complex behaviours to be
built, creating flows of actions that vary and are influenced by agent beliefs and
perceptions.
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Fig. 1. Components of the NormMAS framework and their interactions.

As with any other programmed system, multi-agent systems must be tested
before being effectively deployed to their end environments. To do so, test envi-
ronments can be programmed for agents to be observed and any faulty behaviour
addressed before release. Jason allows the programming of test environments in
Java language, by providing an interface between agents and the programmed
environment. These environments, however, are centralised, and so they are
meant for small systems or specific test scenarios. This hinders scalability, which
is an important aspect to consider when working with complex, more realistic
scenarios or simply more robust structures. To address this limitation, we use
the CArtAgO framework for environment programming.

In CArtAgO, environments are not seen as a centralised domain description,
but as a distribution of observable properties and operations among artefacts.
These artefacts represent objects in the environment through which agents inter-
act with one another indirectly, e.g. a table in an office, on which an agent may
stack reports for another agent to pick these reports up and read them. The
artefact model is useful because it groups operations according to a context, so
it is not only easier to understand the environment model, but also to maintain
it. Agents can create and destroy artefacts at their convenience, and should new
operations be needed for a new feature in the MAS, it can be done by adding
new artefacts, instead of changing existing routines to conform to new protocols.
This approach is also more scalable, as one of the basic features of CArtAgO
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is that it can distribute artefacts among workspaces. Workspaces are artefact
containers that can be configured in several nodes in a network, eliminating the
need to concentrate the environment on a single machine. In our work, we use
artefacts for offering monitoring and enforcement tasks to agents, and we refer
to these artefacts as “normative artefacts”. These normative artefacts are shared
between normative agents so that more monitors and enforcers may be added
to the system as it scales up.

4.3 Norms

In order to keep competition between agents manageable a designer creates
norms to direct agent behaviour and maintain environment stability. This is
achieved by specifying obligations and prohibitions [6]. Here, obligations are
behaviours that agents must follow in a given context to comply with the norm,
and prohibitions behaviours that jeopardise the environment’s stability, and so
must be avoided. Violating prohibitions is just as harmful as violating obliga-
tions, hence both cases must be addressed when detected. We expect that, when
agents are punished for transgression, they are able to learn not to misbehave.
Examples 1 and 2, in Sect. 3, correspond to an obligation and a prohibition,
respectively.

While norms in the real world are expressed in natural language, they must
be translated to a multi-agent environment so that agents are able to reason
about them. This requires the extraction of necessary information related to a
norm and composition of a mathematical representation. Agents should not have
to reason how or why a certain norm came to be, but rather what the norm is
about and what are the consequences of violating it. The format can also be
extended to include other important information, such as the sanction function
associated with a norm’s violation, or the conditions for automatic activation
and expiration of the norm [6]. In this paper, norms as specified according to
the tuple of Definition 1.

Definition 1. A norm is represented by the tuple N = 〈μ, κ, χ, τ, ρ〉, where:
– μ ∈ {obligation, prohibition} represents the norm’s modality.
– κ ∈ {action, state} represents the type of trigger condition enclosed.
– χ represents the set of states (context) to which a norm applies.
– τ represents the norm’s trigger condition.
– ρ represents the sanction to be applied to violating agents.

Using Definition 1, we can proceed to formalising the norms from our exam-
ple. We can formalize the first norm of our scenario from Example 1, as shown
in Example 3.

Example 3. 〈obligation, action, valid(Passport), accept(Passport), loss(5)〉
The process can be repeated for Example 2. By identifying the context of a

norm, it is possible to define it solely with predicates and atoms, as shown in
Example 4, below.

Example 4. 〈prohibition, action, not valid(Passport), accept(Passport), loss(10)〉
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4.4 Action Records

Like norms, actions must also be stored as tuples containing essential infor-
mation. Actions captured by monitors must only be accessed by agents of the
enforcer type, and therefore only the pieces of information that can be associ-
ated with norms are deemed essential. These are: what was done; who did it;
and under what context it was done. Example 5 shows how a monitor reports
its observations to an enforcer:

Example 5. “Officer John Doe approved Passport #3225. The passport was
known to be valid.”

From this report, we can extract the following details:

Example 6. 〈johndoe, approve(Passport), valid(Passport)〉
In this example, an officer approves the entry of an immigrant holding a valid
passport. The next report reads:

Example 7. “Officer John Smith approved Passport #2134. The passport’s valid-
ity could not be confirmed.”

From this report, we can extract the following details:

Example 8. 〈johnsmith, approve(Passport), notvalid(Passport)〉
As such, we define Action Records:

Definition 2. An Action Record, stored within the Action History, is repre-
sented by the tuple: R = 〈γ, α, β〉, where:
– γ represents the agent executing the action;
– α is the action description in the form “f(p0, p1, . . . , pn)”, where f is an action

name and p0, . . . , pn are the action’s parameter values; and
– β represents agent γ’s beliefs at the moment of execution.

4.5 Monitoring System

The monitoring is divided in two parts: a capturing system, which gathers infor-
mation pertaining to an action’s execution context, and a report forwarding
system, which provides enforcers with the gathered information for violation
detection. To gather relevant information, the capturing system employs two
strategies: an action capturing strategy and a belief state capturing strategy. In
action capturing, whenever an agent successfully executes an action, the captur-
ing system takes note of that action. In CArtAgO, this means that each successful
operation is recorded for further analysis. Should an action fail for any reason,
the capturing system ignores it. Yet, recording every successful action is a prob-
lem for both scalability and practicality. There is no reason to capture actions
that are not enforced by any norm, e.g book-keeping actions or CArtAgO’s own
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artefact creation and lookup operations. As such, we include capturing routines
only for the operations relevant to the normative context, so as not to waste
neither space and time with unimportant actions.

In belief state capturing, we employ a similar strategy to that of action
capturing. Much like actions, there may be beliefs which are not related to
any norms in the system. Thus, we should apply a filtering procedure when
scanning beliefs to avoid wasting space on useless information. We propose a
simple filtering technique, which requires monitors to also focus on normative
activity:

1. For each new active norm, scan the norm’s context for literals to add to a to
be observed list.

2. If the norm’s triggering condition is of the state type, do the same with the
condition’s literals.

3. For each deactivated norm, remove it from the to be observed list only literals
that are not seen in any other norms.

We then change our capturing routines to scan the belief bases only for the
literals in the to be observed list. If any belief to be observed cannot be found in
the belief base, they can be ignored. Note that this list can contain only predicate
names, and not their full list of terms.

Once we capture an action, we store it in the Action History, which is a
queue-like data structure from which monitors gather information to build the
reports that they send to enforcers. Actions are stored in the format discussed
in Sect. 4.4 and are removed from the queue as soon as a monitor attempts to
read them, regardless of the monitor’s success in doing so.

It is the monitors’s responsibility to send captured actions to enforcer agents
in the form of a report for analysis. To achieve that, we use a producer/consumer
model, in which an agent continuously provides information, through a channel,
to another agent that consumes this information. With this in mind, we can
identify four components that are necessary for this setup: a Producer, a Con-
sumer, a channel for communications and the information itself. In our context,
the role of Producer is given to Monitor Agents; the role of Consumer is given
to Enforcer Agents; the communication channels are artefacts called “Reporting
Interface”; and the information that transits through this channel are reports
containing the actions executed by agents. This process is illustrated in Fig. 2.

Since monitoring in the real world is not cost-free, we need to spend resources
to have an effective monitoring system in place [26], with the effectiveness of a
monitor depending on its intensity. For this reason, we must enable the adjust-
ment of monitoring intensity, so that enforcement can be performed at a cost
considered affordable by the society. These adjustments take the form of dif-
ferent monitoring strategies. An example would be a probabilistic strategy, in
which each captured action has a probability of being successfully read by a
monitor. If the reading is successful, the action is guaranteed to be reported to
an enforce, whereas if the reading fails, then the action is lost forever. We can
use this to simulate the imperfect monitoring of actions, when some violations
may go unpunished. Other strategies that monitors may apply include reading
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Art:Reporting
Interface

Ag:MonitorArt:Monitoring
Interface

Monitoring System

sendReport

action

readAction

+actionAvailable

poll

Fig. 2. Monitors poll the monitoring interface for new actions. When a monitor is
successful at reading an action, it sends a report containing the action for analysis via
the reporting interface.

only actions that they know are being enforced by an active norm. An extension
to this strategy would be to add a probability of reading enforced actions with
success. In this paper, we use the probabilistic strategy to study the general
behaviour of our simulation.

4.6 Enforcement System

The enforcement system represents the Consumer entity in the normative mecha-
nism’s Producer/Consumer scheme. An enforcer agent connects to the Reporting
Interface and awaits the arrival of new reports to analyse. The arrival of new
reports is perceived by the enforcer, and in our implementation this perception
is mapped to the +newReport signal. Once the report submission is perceived,
the enforcer accesses the Normative Interface in search of currently activated
norms and checks for any possible violations by the reported action.

During the violation detection routine, the perception of violations is also
mapped to a signal, represented in the sequence diagram of Fig. 3 as the
+violation event. When a violation is perceived, it falls to the enforcer to
apply associated sanctions. The sanctioning step is the last in this process, and
it starts as soon as detection finishes.

In order to sanction violating agents, the normative mechanism must be able
to recognise them. It does not make sense to be told “John has approved an
invalid passport. He violated a norm”. if we do not know who John is in the
first place. Therefore agents must be registered to the normative system prior
to execution of their designed plans, similar to how people are registered for
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Art:Normative
Interface

Ag:EnforcerArt:Reporting
Interface

Enforcing System

sanction

violation

detectViolation

report

readReport

+newReport

Fig. 3. Enforcers read new reports via the reporting interface. For each report, they
use the normative interface to access the normative base and look for violations in
agents’s actions.

government issued IDs. In CArtAgO, this is accomplished through an operation
in the Normative Interface that adds the agent’s ID to a list, so that they may
be found when needed. The ID they are registered with should be the same that
appears in Action Records.

Normative Base. When norms are created, they must be stored within the
system so that they may be accessed by an enforcer attempting to detect viola-
tions. The Normative Base structure holds all the norms that exist in the system,
active or not. Every time a norm is created, it is stored in a list structure with
a unique identifier. Norms may be activated or deactivated through the Norma-
tive Interface. Every time a norm is created, activated, deactivated or destroyed,
agents connected to the Normative Interface perceive the event.

Detecting Violations. The detection operation runs for each action report
received by an enforcer agent. Each action read is verified against the normative
base, along with the context under which the action was executed. Since it is
possible for an action to violate more than one norm, we utilize a list structure to
take note of all violations detected so they will be properly addressed at a later
time. At first, no norm is seen as violated and thus the list is empty. A norm
is only added to the list when all verification steps finish with the variable’s
isV iolated value set to True. The procedure for detecting violations can be seen
in Algorithm 1 and is explained further.
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Algorithm 1. Violation detection algorithm.
1: function DetectViolation(〈γ, α, β〉)
2: V ← [ ]
3: for each n = 〈μ, κ, χ, τ, ρ〉 ∈ ActiveNorms do

4: if ContextApplies(χ, β) then

5: if ConditionApplies(κ, τ, α, β) then

6: if μ = prohibition then

7: V ← V ∪ {n} 	 Violation detected! Adds to the list of violated norms.

8: else

9: if μ = obligation then

10: V ← V ∪ {n} 	 Violation detected! Adds to the list of violated norms.

11: for each n ∈ V do
12: SignalViolation(n, γ)

Detection of violations can be achieved in two steps: context analysis and trig-
ger condition analysis. Context analysis is about making sure that the action’s
execution context is the same as the one predicted by a norm. If it is, then there
is a possibility of violation and further analysis is required. Otherwise, violation
is considered an impossibility and the routine carries on. Formally, we define the
norm’s context as χ and the acting agent’s belief-base as β. Hence, the context
analysis returns True value if χ ⊆ β. Algorithm 2 is used for comparing sets
of predicates. It checks if all the predicates defined in context χ are present in
the agent’s belief-base β, one by one. If a predicate in χ is negated (e.g not
valid(Passport)), then the algorithm checks for its absence in belief-base β
instead. This is to reflect how the not operator works in Jason. The routine
returns True if the trigger condition is satisfied and False otherwise.

A trigger condition of a norm can be either the execution of an action or
the achievement of a state by an agent. This is specified by the norm’s trigger
condition type and directs the way in which the detection algorithm executes. If
we are working with an action trigger, then we must compare the action that was
executed with the one specified by the norm. However, if we are working with a
state trigger, then two contexts must be compared: the agent’s belief-base and
the norm’s state trigger condition. These are compared using the context analy-
sis algorithm of Algorithm2. We show the pseudo-code for the trigger analysis
procedure in Algorithm 3.

When both context and trigger conditions are satisfied, we need only verify
whether the norm is an obligation or prohibition to conclude if it was violated
or not. A prohibition means that a certain action or state is undesired under
the given context. If all the conditions up to now have been met, we conclude
that said undesired state has been reached and the norm was violated. On the
other hand, an obligation requires the flow specified by the norm to be followed
strictly, and if this is the case, we conclude that the norm was complied with.
By negating our conditions, we also negate its results: if in a prohibition context
the conditions were not met, then we would be home free; if they are not met
while in an obligation context, however, we would have just violated it.
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Algorithm 2. Context comparison sub-routine.
1: function ContextApplies(χ = [l1, ..., ln], β = [l1, ..., ln])

2: Require count(χ) ≤ count(β)
3: for each p ∈ χ do

4: isPresent ← False

5: checkAbsence ← False

6: if p is of the form ¬φ then

7: p ← φ
8: checkAbsence ← True
9: for each l ∈ β do

10: if l = p then

11: isPresent ← True
12: break
13: if checkAbsence = isPresent then

14: return False

15: return True

Their modality notwithstanding, every norm that is violated is added to a
list that is processed when all norms have been verified. Sanction functions are
then executed and agents perceive their punishments. Penalties can be brought
directly upon agents through perception or carried out by a third party, while
records on agent transgressions can be maintained in a separate structure for
greater consistency.

Algorithm 3. Trigger condition analysis sub-routine.
1: function ConditionApplies(κ, τ, α, β)
2: if κ = action then

3: return τ = α
4: return ContextApplies(τ, β)

5 Evaluation

In order to test our solution, we developed agents using Jason and deployed
them in a CArtAgO environment following the scenario described in Sect. 3. To
visualise the difference between compliant and non-compliant behaviours, two
types of agents were used: the normal type and the corrupt type. The normal
type is programmed to approve only those passports that are truly valid, whereas
the corrupt one will approve passports indiscriminately for his own personal gain.
By making it so, we can more easily tell the effectiveness of the norm enforcing
mechanism. Therefore, the following results were expected:

– Corrupt agents attain more credits when under lower monitoring intensity.
– Standard agents maintain an average quantity of credits through all simula-

tions.
– At some point, corrupt agents should start performing poorly due to higher

monitoring intensity. This marks the point at which monitoring can change
the environment.
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We ran 35 experiments for 11 different values of monitoring intensity2. Inten-
sity values range from 0 to 100, with a step value of 10. Each simulation was run
for 10 min. In this timespan, with our set-up, around 1048 immigrants attempt
to cross the border. In what follows, we refer to an agent’s obtained credits, or
their performance measure, as their utility. We use that measure in the graph of
Fig. 4, which illustrates how the environment’s monitoring intensity affects the
utilities of corrupt agents 1 and 2. The monitoring intensity is the probability as
a percentage of a monitor being able to read an agent’s action. A value of 100
means that all actions are read, while a value of 0 means no actions are read
by the monitor. We notice that, as the intensity of the monitoring mechanism
increases, the utility of corrupt agents decreases to the point where performing
badly and not performing at all yield the same utility, whereas normal agents
maintain their average utility. This allows us to conclude that, for a monitor-
ing intensity value of 40 or more, following norms is a better decision than the
contrary.

The data used to plot the graph of Fig. 4 can be seen in Table 1. Values for μ
and σ represent the arithmetic mean and standard deviation, respectively. These
were calculated to show that utility values for normal agents are near constant.
The μ values for corrupt agents show that, at the end of the simulation, their
average performance is worse than those of normal agents, due to their constant
violation of norms. A high σ value for these agents shows that their perfor-
mance suffers between simulations. We can then see that through the analysis
of recorded agent actions and successful identification of violation occurrences,
violating agents are punished by the enforcement system and have their utilities
affected.
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Fig. 4. Utility of corrupt agents is affected by monitoring intensity.

2 Although our experiments correspond in a broad sense to a simulation, we avoid the
term for its possibly loaded meaning.



Simulating Normative Behaviour in Multi-agent Environments 73

Table 1. Agent utilities × monitoring intensity.

Intensity Officer1 Officer2 Corrupt officer1 Corrupt officer2

0 65,3285 66,3714 130,6571 130,7000

10 64,5871 66,5714 103,3000 106,2285

20 65,4428 65,0142 86,8000 87,9571

30 65,3142 64,8714 73,7571 75,6571

40 65,7857 65,1857 59,0571 57,8142

50 65,6714 65,7714 54,3285 53,1857

60 65,1571 65,1714 38,7714 38,4571

70 65,0142 65,6571 27,6428 27,3714

80 64,7857 64,9571 19,2285 19,3428

90 65,0714 66,1714 13,7857 13,8142

100 66,7571 65,8000 1,4714 0,0285

μ 65.3559 65.5948 55,3454 55,5051

σ 0.5569 0.5705 38,4836 39,1996

6 Related Work

There are multiple tools available for programming multi-agent environments,
few of which provide mechanisms for norm specification. These tools range from
programming libraries to model-based simulators. To name a few, NetLogo [16]
and its distributed version HubNet [27] are of the model-based type and allow
users to work with educational projects and, to some extent, professional ones.
Other tools include MASON [17] and Repast [18]. MASON is a simulation library
developed in Java that provides functions for modelling agents and visualising
simulations as they run. As for Repast, it uses interaction models much like Net-
Logo does, although it is meant for professional use and thus offers more alter-
natives for agent programming. One final example worth mentioning is MASSim
[11], which promotes multi-agent research and is used in the MAS Programming
Contest3 [28]. This one, however, provides only the tools related to the con-
tests. Although it is possible to develop custom agents for operation within the
simulator, the practice is not encouraged by its developers.

Building a full-fledged norm-based behaviour simulation engine is not a triv-
ial task, and the “Emergence in the Loop” (EMIL) [29] project built a set of
tools to accomplish this objective. A toolset which includes an extension of
the BDI architecture that is capable of simulating the processes referred to as
“immergence” and “emergence” of norms [30]; and an integration with multi-
agent modelling tools such as NetLogo [16] and Repast [18]. In this way, agents
are modelled in one of these environments and then simulated using the EMIL
agent architecture. It is a very powerful tool for studying social behaviour in

3 https://multiagentcontest.org.

https://multiagentcontest.org
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autonomous agents, since agents can reason about norms and, together, create
conventions of what kinds of behaviours must be avoided or followed. EMIL’s
approach to normative simulation is more focused on agents and their experience
with norms. This contrasts with our approach in that we are more focused on
norm monitoring and enforcement tasks, and little is said about these matters in
the EMIL literature. We also consider the environmental aspects of Normative
Multi-Agent Systems, which is why we employ CArtAgO in our implementation.

Finally, the Moise+ [19] tool (part of the JaCaMo [31] framework) can also be
used to specify norms for MAS development. Moise+ allows us to create organ-
isations of agents, and within these organisations agents take up specific roles
to act and missions to accomplish. The normative part of Moise+ ties agents
to their missions through obligations, prohibitions and permissions. Neverthe-
less, Moise+ differs from NormMAS in three key aspects. First Moise+ focuses
on normative specification for organisations to coordinate agents in performing
certain tasks, whereas in NormMAS, we have social norms and regulations that
only tell agents what they should or should not do. Consequently, when there
is no normative specification in NormMAS, the agents’s routines remain intact.
Second, while Moise+ norms affect whole plans, NormMAS norms affect only
specific actions or states. Third, while Moise+ norms are not regimented, lack of
compliance does not incur any penalties for violating agents, which means that
they are not enforced either.

7 Conclusions and Future Work

In this paper, we constructed a mechanism of norm processing and enforcement
in a multi-agent environment. We show its feasibility with an implementation
using Jason [12] and Cartago [22] technologies. By keeping track of agent activ-
ities and analysing actions against a normative base, it is possible to detect
violations and enforce norms through the sanctioning of violating agents. With
this framework, it is possible to evaluate different implementations [6,32–34] of
normative behaviour. Statistics collection can also be customised so that results
may be compared between simulations. We provide our example implementation
to the public via a GitHub repository [35].

CArtAgO allows us to build environments in a distributed manner, therefore
providing scalability for realistic simulation scenarios or complex multi-agent
systems. The philosophy behind CArtAgO, which sees the environment as the
composition of artefacts through which agents interact, also aided in the frame-
work’s construction. Artefacts are modular, they can be attached or detached
to a multi-agent system seamlessly. Meaning that artefacts can be created to
suit an agent’s or group of agents’s specific needs, and agents may connect only
to those artefacts that are related to their designs. We took advantage of those
features to build the interfaces for the monitoring system to access the Action
History and Normative Base structures.

As future work, we aim to build improvements and extensions to the frame-
work, such as: a mechanism to be added to the normative system that allows
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activation and expiration of norms following predefined conditions; agent archi-
tectures that can learn from normative environments, and with that avoid penal-
ties by violation or minimising performance loss when violations are inevitable
[6]; enable agents to learn about the enforcing intensity and use that informa-
tion to their advantage [26]; and the introduction of agent hierarchies to control
normative power [36].
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Abstract. Organization is an important mechanism for improving per-
formance in complex multiagent systems. Yet, little consideration has
been given to the performance gain that organization can provide across a
broad range of conditions. Intuitively, when agents are mostly idle, orga-
nization offers little benefit. In such settings, almost any organization—
appropriate, inappropriate, or absent—leads to agents accomplishing the
needed work. Conversely, when every agent is severely overloaded, no
choice of agent activities achieves system objectives. Only as the overall
workload approaches the limit of agents’ capabilities is effective organi-
zation crucial to success.

We explored this organizational “sweet spot” intuition by examining
the effectiveness of two previously published implementations of orga-
nized software agents when they are operated under a wide range of
conditions: (1) call-center agents extinguishing RoboCup Rescue fires
and (2) agents learning network task-distribution policies that optimize
service time. In both cases, organizational effect diminished significantly
outside the sweet spot. Detailed measures taken of coordination and
cooperation amounts, lost work opportunities, and exceeded span-of-
control limits account for this behavior. Such measures can be used
to assess the potential benefit of organization in a specific setting and
whether the organization design must be a highly effective one.

1 Introduction

Organization is an important mechanism for improving performance in com-
plex multiagent systems [1–8]. Designed agent organizations provide agents with
organizational directives that, when followed, reduce the complexity and uncer-
tainty of each agent’s activity decisions, lower the cost of distributed resource
allocation and agent coordination, help limit inappropriate agent behavior, and
reduce unnecessary communication and agent activities [9–11].

When agents are mostly idle, agents can accomplish needed work whether
or not they are well organized. This does not mean that effective organization
does not affect how efficiently the agents work together, only that unorganized
and even misorganized agents have sufficient time and resources to accomplish
system objectives when lightly loaded. Conversely, when every agent is severely
overloaded, no choice of agent activities achieves system objectives. In this sit-
uation, effective organization can help agents be more efficient while failing to
c© Springer International Publishing Switzerland 2016
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achieve objectives fully, but whether they are well organized or not, the system
is unable to perform acceptably. Only as the overall workload approaches the
limit of agents’ capabilities does organization play a significant role in system
performance.

2 Organizational “Sweet Spot”

We first explored this organizational-impact conjecture empirically using an
previously implemented and described system of organizationally adept BDI1

agents [13–15] operating in a well-instrumented and highly parametrized exper-
imental platform adapted from the fire-extinguishing portion of RoboCup Res-
cue [16]. Organizationally adept call center agents direct fire brigade resources
under their control to extinguish fires in important buildings as quickly as pos-
sible. There are no fire-brigade bases in the adapted RoboCup Rescue environ-
ment, and brigades typically move directly from fire to fire, remaining deployed
if they become briefly idle. The objective is to minimize the total importance-
weighted damage to buildings. A call center can use its fire brigades to execute
plans to achieve its own goals of extinguishing building fires, and it can request
temporary use of fire brigades from other call centers when necessary.

Our goal was to learn how the relative performance of previously evaluated
agent organizations in this multiagent system changed when operating in envi-
ronments well outside the conditions typically studied. Whether the existing
agents and organization designs in this system were the best possible was not
a concern, as better candidates would affect only the magnitude of the relative
performances and not their qualitative characteristics. Some observations were
intuitive, but there were also surprises, and we believe this to be the first sys-
tematic study of organizational impact in a multiagent system over such a broad
range of conditions. We ran and analyzed thousands of controlled and repeat-
able simulation experiments involving dynamic environments in which new fires
occur at various city locations throughout the entire duration of an experimen-
tal scenario. In such settings, call-center agents have an ongoing (but potentially
changing) firefighting workload in which following organizational guidance offers
potential advantages over unguided, reactive local decision-making.

Observation 1: Sweet-spot behavior ⇒ Figure 1 shows the relative differ-
ence in performance (as a percentage increase or decrease) between two organi-
zational configurations, Org and No Org, as the firefighting workload increases.
Org is an effective organization design that specifies a responsibility region for
each call center, and No Org dictates that call-center agents operate without any
responsibility-region directives. Call centers give priority to fighting fires in their
responsibility regions when such regions are provided. Each of the four call cen-
ters controlled six fire-brigade resources. Performance attained in each of the 320
simulation runs is a raw score of the inverse importance-weighted fire damage
in the city. We observed that the performance benefit achieved by organization

1 Belief-desire-intention model of agency [12].
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Fig. 1. Relative score achieved by organization (Color figure online)

(the raw score improvement) was greatest when the average firefighting work-
load on brigades was near their capacity to fight important fires (approximately
2.2 fires per timestep). All figures illustrate trends as workload (e.g., ignition
frequency) is varied. Trend lines are fit using a local linear model, with shaded
regions representing a 95 % confidence level in the mean of the performance dis-
tribution. For example, each trend line in the firefighting experiments fits 320
separate simulation runs (drawn as individual dots).

Attenuation of organization benefit outside the sweet spot is a form of phase
transition behavior. The transition occurs as the workload approaches the limit
of agents’ capabilities. The effect of phase boundaries has proved important
in satisfiability problems [17–19] as well as to understanding problem difficulty
in constraint satisfaction, number partitioning, and traveling salesmen tasks.2

With multiagent organizations, it is important to determine where on the con-
trol complexity scale a system is operating (how important using an effective
organization is to system performance) and more generally, when complex mul-
tiagent systems are operating within their organizational sweet spot. One may

2 For example, a typical phase-transition performance plot, such as Fig. 4 in the classic
Kirkpatrick and Selman SAT phase-change paper [18] shows the performance cliff
that occurs at the phase boundary, which shifts laterally under different conditions.
If such a figure is redrawn as relative difference curves from a baseline condition
(such as the k = 6/N = 40 values in that figure), it reveals wide “sweet spot”
curves similar to the curves shown in this paper. Relative plots highlight the span
and magnitude of performance differences near the phase change, and we consider
them more informative in highlighting sweet-spot regions than raw performance-
value plots.
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argue that organizations (multiagent or otherwise) will tend to be inevitably
operated within the sweet spot region due to real-world economics that limit
capabilities and resources to the minimum required to operate effectively.

Upon observing organizational sweet-spot behavior, we took a more detailed
look into what was occurring as workload changed that accounted for the benefit
attenuation.

3 Performance Factors

Why do we create agent organizations? One reason is that complex agent behav-
ior becomes more structured and understandable through the definition of roles,
behavioral expectations, and authority relationships [20]. Additionally, orga-
nizational concepts can be used to help design and build agent based sys-
tems (organization-based multiagent system engineering). There is also a line of
research that addresses organizational membership in open agent societies (incen-
tives for organizational recruitment and retention and for the replacement of
agents that leave the organization). Recent work in open and sociotechnical set-
tings [21,22] has this emphasis. Aligning agents’ individual goals and objectives
with those of the organization are among the issues addressed in that context.
Our focus here is on organizational control; specifically, the organizational perfor-
mance of the members (“how they do their jobs”), rather than on attracting par-
ticipants from an open pool of agents (“obtaining members for the enterprise”)
or designing the agent system (“defining what the jobs (roles) are”). We assume
here that we have acquired the agents we need, that they all share the organiza-
tional objectives (e.g., saving the most important buildings in the city), and that
they are competent in their ability to perform tasks necessary to attain that objec-
tive. For example, there is no need to decide if an agent is able to play some role
in the organization [23]. Furthermore, there are no non-cooperative agents trying
to burn things down. Nevertheless, the cooperative agents sometimes do work at
cross-purposes in attaining those objectives (such as all wanting to fight an impor-
tant fire). This can occur whether the agents are organized or not, because agents
have a limited local view of the situation. If unorganized agents did not have the
same shared objective as when organized, then some performance gained through
organization could stem from the changed objectives. Our assumptions eliminate
such a cooperative-objective bonus.

We distinguish between operational decision making, the detailed moment-
to-moment behavior decisions made by agents, and organizational control , an
organization design expressed to agents through directives (“job descriptions”)
that limit and inform the range of operational decisions made by each agent in
the organization. These directives contain general, long-term guidelines, in the
form of parametrized role assignments and priorities (e.g., prefer extinguishing
fires in region A over fires in region B), that are subject to ongoing elaboration
into precise, moment-to-moment activity decisions by the agents [2,4,24]. Ideally,
following organizational directives should be beneficial when agent directives can
be designed that perform well over a range of potential long-term environment
and agent characteristics.
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3.1 Operational Challenges

Without organizational directives, a call center must coordinate with other centers
to avoid sending redundant fire brigades to the same fire (every call center receives
all fire reports) using a highest estimated utility protocol to resolve conflicts. Coor-
dination and retractions consume valuable time, delaying extinguishing opera-
tions. The designed organization only requires coordination if a call center wants
to fight a fire outside its responsibility region. When region responsibilities are
inappropriate and do not match workloads, fire-brigade borrowing requests from
overloaded centers increase, again with a loss in performance. When the design is
appropriate, retractions are diminished at the risk of more borrowing (as we will
demonstrate when we discuss Fig. 6). Call centers must consider all borrowing and
loaning options in the context of estimated opportunity costs that are based on
potential new fires and uncertainty in the duration of fighting current fires. These
are challenging decisions even when agents are well organized.

The call-center agents are highly competent and can make skillful operational
decisions to extinguish fires without organizational guidance. Norms, functions,
protocols, etc., are implicitly represented in the plan templates used by these
call-center agents. Centers follow these norms (organized or not) and know how
to work together to fight fires and share fire-brigade resources.

Appropriately organized call-center agents, when operating in the sweet spot,
should function better than unorganized centers, which must consider of all
potential activities and explicitly coordinate them. The organizational complex-
ity in the firefighting system is quite simple. Each call center can perform only
two roles: (1) extinguishing fires by directing fire brigades to fight them and
(2) loaning fire brigades to another call center. Perhaps counter intuitively, orga-
nizational design and control of split roles in homogeneous multiagent systems
is more challenging than assigning discrete functional roles to specialized agents
in heterogeneous multiagent systems because specialization reduces the space of
reasonable choices [10]. The organizational “simplicity” in the firefighting set-
ting means that observed organizational performance differences stem from a
relatively small set of organizationally-biased behaviors and are not obscured by
complex role and agent interactions.

3.2 Factors Affecting Organizational Performance

We analyzed a number of general factors that influence organizational perfor-
mance. As these factors change, a designed organization may become highly
effective or less effective. In the discussion that follows, we provide an intuitive
description of each factor, why it is important, and how it can affect organi-
zational performance. We adjusted each factor individually while holding other
environmental settings constant in order to observe its effect on organizational
performance independent of the other factors. In total, we conducted a broad
analysis that included over 5000 simulation runs with over ten terabytes of simu-
lator output to determine how the general factors of coordination requirements,
cooperation benefits, lost opportunity, workload imbalance, and span of control
impact the effectiveness of organization. We begin with coordination.
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Coordination Requirements. Typically, complex tasks performed by multi-
ple agents require coordination, and often a well-coordinated system will perform
much better than a system where agents work at cross purposes from only their
local, selfish perspectives. In firefighting, coordination is necessary to ensure that
call-center agents share responsibility for extinguishing a building only when
necessary, and otherwise fight important fires independently (i.e., they do not
blindly work on the same fire when more utility could be gained by working on
separate fires).

Coordination is not without associated costs, often involving delays while
beliefs, desires, and intentions are communicated. The time required for agents
to communicate this information and reconcile it with information from other
agents can be significant, especially in cases where agents control resources which
must be held in reserve while an agent decides whether it wishes to pursue
some goal. Even more significantly, when agents take uncoordinated actions that
involve operating in the world, they must deal with the consequences of phys-
ically moving resources and then withdrawing them (or having wasted them
if they are consumables) once they discover their actions are in conflict with
those of another agent. In our analyses, this has been the largest contributor to
coordination “cost.”

The amount of coordination required is not organization-independent. Orga-
nizational directives influence agents to assume specific roles and responsibilities
pertaining to certain goals, and assume less responsibility for other goals. The
best-case organization for a specific situation would be a perfect partitioning of
responsibility regions so that agents select the fires for which they are responsi-
ble over those that are the responsibility of others. This ideal situation results in
minimal goal conflicts, where two agents needlessly pursue the same goal (e.g.,
extinguish the building at 5th and Madison). It is important to note that even this
organization is not coordination-free, but when each goal is managed and com-
mitted to by the agent with the highest expected utility, the committing agent
is best suited for reaching out for assistance if necessary. In the context of fire-
fighting, this assistance comes in the form of lending and borrowing fire brigades,
an effective remedy for temporal workload imbalances. However, as we will note
shortly, excessive resource borrowing leads to inefficiencies in resource provision-
ing and is often a sign of a more permanent resource imbalance. The worst-case
organization (in terms of coordination complexity) would influence every agent
to select the same goals (No Org configuration). We analyzed many organization
configurations to explore the full spectrum between these two extremes, where
organization sometimes cannot prevent agents from selecting the same goals,
and at other times, is effective in preventing a goal conflict (which we will also
discuss later in conjunction with Fig. 6).

This coordination phenomena occurs in firefighting because call centers need
to negotiate with other call centers about which fires to fight. In order to come
to a resolution for a contested goal, call centers need to compute and share their
expected utility with peers. The call center with the highest expected utility will
then be responsible for managing fighting the fire, and for borrowing fire-brigade
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resources from peers if necessary. To investigate the effect of adjusting this coor-
dination cost, we adjusted the resolution period, during which call centers reserve
resources to fight a fire while waiting for and considering bids from other call
centers intent on fighting the same fire. Only after the resolution period has
elapsed will the call center with the highest utility commit to fighting the fire.
By increasing the resolution period, we increase the cost of coordination while
simultaneously making centers more “globally aware” of the utility expected by
other agents. By lowering the resolution period, we lower the cost of coordination
but make call centers more selfish in that they are less open to considering bids
from other centers. Figures 2 and 3, to be discussed shortly, show the effects of
“Low-Cost” (short) resolution and “High-Cost” (long) resolution times.

Observation 2: The performance separation of effective organization
increases with coordination requirements, without shifting the sweet
spot laterally ⇒ We analyzed several organizational designs: (1) a specific
responsibility region for each call center (Org) and (2) all centers are responsible
for the entire city (No Org). It seems reasonable to believe that when fires are
uniformly distributed, Org would perform best, minimizing goal conflicts while
still providing each agent with sufficient beneficial opportunities in its respon-
sibility region. In practice, this is generally true, however, we have found that
in cases where, when the conflict resolution period is very short (correspond-
ing to low coordination cost and more selfish agents), the directives supplied to
the organized agents do not improve on the No Org baseline. As coordination
cost grows, the performance of the organized agents (which need to coordinate
less frequently) improves increasingly on the No Org configuration (see Figs. 2
and 3). Figure 3 shows the total retraction time relative to No-Org, which has
the most retractions. In both Figs. 2 and 3, the 0- and 10-time-steps resolution
period results are relative to comparable 0- and 10-time-steps resolution No Org
baselines.

Note that with low coordination cost (0-timestep resolution), the difference in
performance between the Org and the No Org configuration is only statistically
significant within a small window, centered at about 2–2.5 fires per timestep.
Correspondingly, the scenario with high coordination cost (10-timestep resolu-
tion) achieves a prominent global maximum centered at this time window. From
this analysis, it can be seen that when coordination does not incur significant
costs, organization is not nearly as beneficial as in cases where coordination (or
the absence of needed coordination) is costly. At moderate workload levels, the
performance gains afforded by organization reach the maximum. When the sim-
plicity of the scenario does not require coordination, the performance of the Org

configuration and the No Org configuration are statistically indistinguishable.
Extremely overloaded work scenarios are marked by either statistically indistin-
guishable performance differences or diminished returns.

Observation 3: Increasing call-center capabilities by adding resources
results in a lateral shift and widening of the sweet spot ⇒ The width
and position of the sweet-spot window is not fixed, as it depends on the agent’s
capabilities in servicing goals at either end of the workload range. Call centers
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Fig. 2. Varying coordination requirements: score relative to No Org (Color figure
online)

become more capable when they have more fire-brigade resources. Figure 4 shows
the result of doubling the number of fire brigades controlled by each call center
from six to twelve. Now, the organizational sweet spot occurs at a higher work-
load level: at approximately 2.7 fires per timestep. In addition, the sweet spot is
wider as call centers can handle greater task loads before the situation becomes
hopeless.
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Fig. 3. Varying coordination requirements: cost effects relative to No Org (Color figure
online)

By holding the conflict resolution period constant and varying the number of
call centers in the system, we see that coordination complexity is also a function
of how “well partitioned” the centers’ responsibilities are. In experiments with
four call centers, we can see that fewer goal conflicts arise in the Org case than the
No Org case. However, if we increase the number of call-center agents to twelve,
each with two rather than six fire brigades and responsibility regions that over-
lap with two other centers, the environmental responsibilities are too precisely
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Fig. 4. Relative score with twice as many fire brigades (Color figure online)

partitioned to handle temporal responsibility differences even if, on average over
the course of the run, each center’s responsibilities are roughly uniform. In Figs. 5
and 6, this behavior is reflected in the fact that the number of goal conflicts
in the organized, 12-call-center configuration approach the number of conflicts
without organization. Correspondingly, the differences in performance between
the two configurations are significant. Any advantages to organization under the
4-call-center scenario are lost with the increase in coordination complexity in
the 12-call-center scenario. This observation is consistent with the notion that
there is an “ideal” number of call centers given the centers’ capabilities and the
environmental conditions. We do not know for certain that a 4-center organiza-
tion is the best choice for the environmental conditions that we simulated, but
it is certainly better than a 12-center organization, as the 4-center organization
provides a better balance between the partitioning of responsibility regions and
coordination complexity [25].

Workload Imbalance. Organizational directives influence agents to assume
responsibility over particular goals and tasks. This reduces the amount of coor-
dination involved in meeting these demands, as there is some expectation of
which agent will perform or manage a task. In order for this organizational
influence to improve performance, the per-agent workload that is suggested by
the organizational directives must be consistent with the distribution of tasks
in the environment. Otherwise, some agents have too little work and others
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Fig. 5. Varying the number of call centers: relative score (Color figure online)

have too much. As such, highly beneficial tasks may go without consideration
by underloaded agents while overloaded agents struggle to complete all of the
tasks they are responsible for. Workload imbalance occurs in firefighting when
the distribution of fires throughout the city is not consistent with the size of
each of the centers’ responsibility region. For instance, if 60 % of fires occur in
the northwest corner of the city, a partitioning of the city into four equally-sized
quadrants would result in a significant average workload imbalance, with the call
center in the northwest corner of the city having almost six times the workload of
other centers. In this setting, an appropriate organization would assign a much
smaller responsibility region to the call center responsible for the northwest cor-
ner of the city, and expand the responsibilities of other call centers to make up
the difference in coverage.
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Fig. 6. Varying the number of call centers: relative goal-conflict rate (Color figure
online)

Observation 4: The performance separation of effective organization
increases with increased workload imbalance ⇒ When workloads are
imbalanced in this way, call-center agents are not necessarily idle, but instead
they work on less beneficial goals. Thus, the penalty occurred by providing these
call centers with an inappropriate organization comes in the form of “lost oppor-
tunity,” where the agent could have performed much more beneficial tasks if
it had not been discouraged from doing so by organizational directives. Cor-
respondingly, Fig. 7 shows that, as the organizational influences becomes less
appropriate, the mean benefit of selected goals becomes lower. A surprising
observation shown in Fig. 7 is that the No Org case has the highest mean goal
benefit of all of the configurations (but not the highest relative score). This is
due to No Org agents’ preference to selfishly commit to attractive goals which
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Fig. 7. Varying workload balance: mean goal benefit (Color figure online)

other agents may already be working on, introducing additional goal conflicts
and coordination cost.

Observation 5: Extreme workload imbalance, high or low, causes orga-
nizationally guided performance to converge to non-organized perfor-
mance ⇒ On the other end of the spectrum, both Appropriate and Inappropriate

Org’s less beneficial goals result in a direct lowering of overall score. Figure 8
indicates that this behavior essentially lowers the Appropriate Org curve onto the
No Org curve, while still maintaining a window in the workload spectrum where
organization is especially advantageous.

Span of Control. An important factor in determining if and how agents should
be organized is span of control. Simply adding resources (or performers) to a task
does not result in constant gain per added resource, and can even result in a net
loss of utility. This phenomena is found in many real-world settings [25] where
organizations attempt to scale the number of performers without correspondingly
scaling management capacity (e.g., hundreds of construction workers cannot be
managed by a single foreman). In the firefighting simulator, per-resource effec-
tiveness is diminished above a parameterized call center span-of-control limit.

Observation 6: Increasing the number of call-center agents beyond
what is necessary given their span-of-control capabilities adds coordi-
nation requirements (to keep them out of each other’s way), decreas-
ing the organizational benefit separation compared to a suitable
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Fig. 8. Varying workload balance: relative score (Color figure online)

number of centers ⇒ Span-of-control limits are both important and ubiq-
uitous, since centralization is not generally tractable or realistic. When exceeded
in RoboCup Rescue firefighting, performance per brigade is attenuated, counter-
acting coordination reductions from centralization. Otherwise, one center could
handle all brigades.

We explored span of control using a configuration where a single call center
agent is responsible for managing all 24 fire-brigade resources in the system, but
with a span-of-control limit imposed after 6 utilized brigades. Then, we increased
the span-of-control capability of the center to 24 (no span-of-control-limit atten-
uation) to understand how the single call-center agent would perform with no
span-of-control limit. We compared these two cases with the baseline configura-
tion where the fire brigades are distributed evenly across four call centers, each
controlling 6 of them. Because no call center coordination is needed when there is
a single center, in cases where fewer than 6 brigades are needed to execute all of
the tasks in the environment, both of the single-agent configurations outperform
the multiagent configuration (Fig. 9).

At a workload level of one fire per timestep, the limited resource effectiveness
incurred by the span-of-control penalty becomes more significant than the coor-
dination cost in the multiagent case. Further, since the single-agent case incurs
no coordination complexity, there is a noticeable peak in the single-agent configu-
ration without a span-of-control penalty, corresponding to the coordination-cost
peak discussed previously.
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Fig. 9. Span of control analysis (Color figure online)

Observation 7: Coordination requirements that exceed an agent’s
span-of-control capabilities leads to an inverted performance curve ⇒
Figure 9 shows that the sweet spot obtained when running under the best case
scenario of a single call center with no coordination requirements becomes a “sour
spot” when span of control is considered. Intuitively, the sweet spot drops below
the No Org baseline in the region of the workload spectrum where it is important
that fire-brigade resources are managed effectively. With span-of-control limits
imposed, fire-brigade effectiveness is diminished.

4 MARL Organizations

We next looked for sweet-spot behavior using a previously described and imple-
mented multiagent reinforcement learning (MARL) system. This second system
operates in a very different setting: organizing agents that are learning task-
assignment policies that optimize service time for tasks arriving in a network of
agents [26,27].
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Fig. 10. Illustration of a small MARL
domain (Color figure online)

Formally, the structure of this domain
can be represented as a graph G = 〈V,E〉.
The vertex set, V , represents the set
of agents in the system. The edge set,
E, represents connections between pairs
of agents through which tasks can be
forwarded, illustrated in Fig. 10. Agents
maintain a processing queue and a rout-
ing queue. The processing queue contains
tasks that an agent is actively working on.
The routing queue contains tasks that are
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not being actively worked on, and need a decision on the part of the agent to
either process or forward to a neighboring agent. Each task is annotated with
a duration s, indicating how many time units it takes to complete that task.
After a task has been at the head of an agent’s processing queue for s steps,
that task is dequeued and marked as completed. Three parameters govern the
pattern of task generation. First, the task duration, s, is randomly distributed
according to an exponential distribution with rate λ, held constant throughout
our experiments. Second, a parameter T ⊂ V controls the potential locations
in the network where tasks may originate. In our experiments, T is varied, but
|T | is held constant. Third, the rate at which tasks arrive at each vertex in T
is Poisson distributed. The rate of this Poisson distribution is used to control
task difficulty. Newly created tasks are assigned to a specific agent v and placed
in v’s routing queue. Agent v may either work on the task itself, by adding
the task to its processing queue, or it may forward the task to a neighbor (i.e.,
those agents j for which (v, j) ∈ E). Forwarding a task to neighbor j places
that task in j’s routing queue. The reward function in this setting is defined
as the reciprocal of the average service time over a time window, where service
time is measured as the total time incurred from task creation to task comple-
tion. Given this formulation, agents are tasked with learning a forwarding policy
given observed behaviors of neighboring agents and their intrinsic queue state.
Throughout these experiments, the PGA-APP algorithm [28] and an extension
of Q-Learning to the multiagent case with stochastic policies were used to learn
those policies.

Fig. 11. Relative performance of MARL organizations
(Color figure online)

In this domain, each
agent is either a sub-
ordinate or a supervisor.
Supervisors are responsible
for transferring experiences
between subordinates that
are experiencing similar
environmental conditions.
Appropriate organizations
in this task allocation do-
main are those that arrange
supervisors in a way that
exploits similarities bet-
ween agents. If a group
of subordinates frequently
experience the same envi-
ronmental conditions, a
great deal of transfer learn-
ing can take place. If sub-
ordinate groups experience

vastly different environmental conditions, transfer learning can occur less fre-
quently, thus not taking advantage of the benefits that organization provides. As
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in firefighting, an organizational arrangement of supervisors that is appropriate
given a particular task distribution may be inappropriate under a different task
distribution, so the organization is only effective if the actual distribution is con-
sistent with the expectations assumed in the designed supervisor arrangement.

For our experiments, we used a 100-agent lattice network and considered
two agent organizations. The first organization arranges 4 supervisors such that
agents are assigned to supervisors based on their distance from the border of
the lattice. The second organization arranges 4 supervisors according to quad-
rants of the lattice. Tasks are then distributed on the lattice originating from
the boundary. Under this model, the former organization is considered “Appro-
priate” since it partitions agents in a manner that maximizes the similarity of
agents in supervisory groups. The latter organization is considered “Inappropri-
ate” since it arranges agents in a way that prohibits effective experience sharing.
Given this setup, we experimentally varied the difficulty of the learning problem
by increasing the mean of the Poisson distribution governing task distribution
on the range [0, 1], where 1 represents a very heavy task load (averaging one
task per time unit). One hundred values of λ were sampled uniformly along this
range for each supervisory configuration, resulting in a total of 200 runs. Eval-
uation was performed in terms of area under a learning curve (AUC), modeled
as an exponential moving average of system-wide task service time. When the
system converges more quickly to an optimal policy, the area under this curve
will be smaller. To characterize relative performance differences across a wide
array of problem difficulties, AUC was normalized relative to the Inappropriate

Org configuration.

Observation 8: The MARL system also has a sweet spot ⇒ Figure 11
shows more performance variability than occurred with firefighting, but a statis-
tically significant sweet spot arises around a per-agent task rate of 0.25 tasks per
timestep. At this workload, the Appropriate Org’s performance dominates the Inap-

propriate Org’s. Elsewhere, the two are statistically indistinguishable. The results
in the MARL domain are particularly clear. When tasks arrive so frequently that
agents cannot compute meaningful policies and the learning process diverges, a
supervisor structure that is highly effective in the sweet spot does not help in
transferring reasonable policies. On the opposite end of the workload spectrum,
when tasks arrive so infrequently that agents do not need to act intelligently in
order to service the requests in a timely manner, policy transfer is not important.
It is clear from this analysis that even with a completely different set of system
dynamics and agent behaviors, an organizational sweet spot exists.

5 Closing Thoughts

Although we have measured and analyzed agent-organization performance under
widely varying conditions using only two previously implemented and studied
systems (each operating in a different problem domain), we believe that the
qualitative behaviors we observed are general and apply to multiagent organi-
zations in any domain. We hope our observations encourage those working with
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more complex heterogeneous agent organizations to investigate and report their
performance over a wider range of conditions. Recognizing when a multiagent
system will be operating in its organizational sweet spot is helpful in deciding
how much effort should be spent in designing and using an agent organization as
well as for explaining situations where using an agent organization results in lit-
tle observed benefit (because the system is operating outside the sweet spot). We
have observed that coordination and cooperation amounts, lost work opportu-
nities, and span-of-control capabilities all contribute to sweet-spot performance
benefits.

Understanding a multiagent system’s organizational sweet spot is important,
not just for understanding organizational control opportunity and effectiveness,
but when considering if organizational adaptation (dynamic agent organizations)
might be worthwhile [14,29–31]. Sweet-spot understanding is also important in
open, sociotechnical settings when designing an organization (and sizing that
design appropriately) for agent recruitment. Identifying where a multiagent sys-
tem is operating in relation to its organizational sweet spot is important to any
discussion or analysis of organizational suitability, performance, or effectiveness.
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Abstract. Large and open societies of agents require regulation, and
therefore many tools have been developed that enable the definition and
enforcement of rules on multiagent systems. Unfortunately, most of them
have been designed to be used by computer scientists and are not suitable
for people with no more than average computer skills. Since more and
more tools are nowadays running as cloud services accessible to anyone
(e.g. Massive Open Online Courses and social networks) we feel there
is a need for a simple tool that allows ordinary people to create rules
and protocols for these kinds of environments. In this paper we present
ongoing work on the development of a new programming language for
the definition of protocols for multiagent systems, which is so simple
that anyone should be able to use it. Although its syntax is strict, it
looks very similar to natural language so that protocols written in this
language can be understood directly by anyone, without having to learn
the language beforehand. Moreover, we have implemented an easy-to-use
editor that helps users writing sentences that obey the syntax rules, as
well as an interpreter that can parse such protocols and verify whether
they are violated or not.

1 Introduction

In open multiagent systems (MAS) where any agent can enter and leave at will
and the origins of the agents are unknown one needs a mechanism to regulate the
behavior of those agents. Just like in human societies, rules need to be imposed
in order to prevent the agents from misbehaving and abusing system resources.
A good example is that of an auction taking place under a specific protocol. An
English auction protocol for example, requires the buyers to make increasing bids
and stops when the auctioneer says so, after which the buyer with the highest
bid wins the auction. In a Dutch auction on the other hand, bids are decreasing,
and the first buyer to accept a bid wins the auction.

Many systems for the implementation of such regulatory systems have been
developed, such as ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15].
They allow users to define a set of rules and then impose those rules on the
agents in a MAS (the term ‘agents’ may here refer to software agents as well as
to human beings). This enforcement of rules may happen either by punishing
misbehaving agents, or by simply making it impossible to violate them, which
is called regimentation.
c© Springer International Publishing Switzerland 2016
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One common characteristic of these systems is that they are mainly designed
with computer scientists as their target users. They require knowledge of multi-
agent systems, programming languages and/or formal logic. For people with no
more than average computer skills they are unfortunately too complicated.

We expect however that agent technologies will become more and more com-
mon in the near future, creating a demand for simple tools to maintain and
organize such systems and that can be used by ordinary people. We can com-
pare this for example with the evolution of web development. In the early days
of the Internet, developing a web page was considered an advanced task that
would only be undertaken by computer experts, and hence web development
languages such as HTML, PHP and SQL were developed to be used by profes-
sional programmers. However, as web pages became more and more abundant
and every shop, social club, or sports team wanted to have its own web page,
many tools such as DreamWeaver and WordPress were introduced to make the
creation of web pages a much simpler task. We strive for a similarly easy tool
for the development of multiagent systems.

A good example of where such a tool would be useful is the organization of
online classes, because teachers often want to put restrictions on their students.
Teachers may for example require that students only take a certain exam after
they have passed all previous exams. In this way teachers make sure they do
not waste their time correcting exams of students that do not study seriously
anyway. Another example could be the process of organizing a conference, where
one requires authors to submit before a deadline, or one requires the program
chair to appoint at least 3 reviewers to each paper. Also, one can think of a tool
that allows users to set up their own social networks, with their own specific
rules, as suggested in [23].

Therefore, in this paper we present ongoing work on the development of a new
language to define protocols for multiagent systems. This language is so close
to natural language that it can be understood directly by anyone without prior
knowledge of any other programming language. We call this language SIMPLE,
which stands for SIMple Protocol LanguagE. Although it looks very similar to
natural language, it has in fact a strict syntax. Together with this language we
also present two tools: an editor that makes it very easy for users to write well-
formed sentences, and an interpreter that parses the source file and makes sure
that the rules defined in it are indeed enforced. The fact that the language comes
with an editor is very important, because it enables the users to write correct
protocols without having to know the rules of the language by heart and makes
sure that all sentences are syntactically correct.

We would like to stress that this language is not meant to program the agents
themselves. It is only meant to program the organizational structure between
the agents. That is: it puts restrictions on the agents in their actions, but does
not dictate entirely what they ought to do; the agents still have the freedom to
make autonomous decisions, as long as these decisions comply with the protocol.
Protocols written in this language do not specify what the agents must do, but
only what the agents can do.
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We have developed SIMPLE according to the following guidelines:

– The language should stay as close as possible to natural language.
– The syntax should remain strict: sentences must be well formed, and every

well formed sentence can only have one correct interpretation.
– Given a protocol written in this language anyone should immediately be able

to understand what it means, even if he or she has never seen our language
before.

– Users should be able to write a protocol in this language without having to
spend any time learning the language.

The only thing we require from the user is that he or she be familiar with the
English language. We still consider the language as presented here (version 0.10)
to be in a premature state, and we plan to extend it much more in the future.
A working demonstration of the SIMPLE editor and interpreter can be found at
http://simple.iiia.csic.es.

The rest of this paper is organized as follows: in Sect. 2 we give a short
overview of previous work done in this field. Next, in Sect. 3 we explain the
assumptions that we have made about the set-up of any MAS to which our
language is applied. In Sect. 4 we describe the syntax rules of our language.
Next, in Sect. 5 we explain how our interpreter parses text files written in our
language and enforces its rules upon the agents. Then, in Sect. 6 we give two
examples of protocols written in SIMPLE, for which we have tested that they
are successfully parsed and enforced by our interpreter. In Sect. 7 we make a
comparison between the expressivity of SIMPLE and the expressivity of the
existing Islander tool. And finally, in Sect. 8 we describe the further extensions
that we are planning to add to our language.

2 Related Work

Regulatory systems have been subject of research for a long time and a number of
frameworks have been implemented that often consist of tools for implementing,
testing, running and visualizing protocols. Examples of such frameworks are
ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15]. A comparative study
of some of those systems has been made in [16].

ANTE [7] has been implemented as a JADE-based platform, including a set
of agents that provide contracting services. It integrates automatic negotiation,
trust & reputation and Normative Environments. Users and agents can specify
their needs and indicate the contract types to be created. Norms governing
specific contract types are predefined in the normative environment. Although
ANTE has been targeting the domain of electronic contracting, it was conceived
as a more general framework having in mind a wider range of applications.

The MANET [34] meta-model is based on the assumption that the agent
environment is composed of two fundamental building blocks: the physical envi-
ronment, concerned with agent interaction with physical resources and with the

http://simple.iiia.csic.es
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MAS infrastructure, and the social environment, concerned with the social inter-
actions of the agents. In the MANET meta-model it is assumed that the nor-
mative system can be composed of three structural components: agents, objects
and spaces.

In the EIDE framework agents interact with each other in a so called Elec-
tronic Institution. The agents are grouped in to conversations, which are called
Scenes. The institution has a specification that defines how agents can move from
one scene to another and defines a protocol for each scene. Within a scene the
agents interact by sending messages to one another. Each agent in the system
has a special agent assigned to it, called its Governor, which checks whether the
messages sent by the agent satisfy the protocol, and blocks them when they do
not. The EIDE framework comes with a graphical tool called Islander [14] that
allows people to create institution specifications in a visual manner. Protocols
in Islander are represented as finite state machines, drawn as a graph in which
the states are the vertices and the state-transitions are the edges. Every message
sent triggers a state transition.

In order to define rules and norms for multiagent systems, a vast amount of
languages and logics have been proposed. It would be impossible to list all the
relevant work in this field here, so we just mention some of the most important
examples. A logical system to define norms and rules is called a deontic logic. The
best known system of deontic logic is called Standard Deontic Logic (SDL) [37].
Important refinements of this logic are Dyadic Deontic Logic (DDL) [26] and
Defeasible Deontic Logic [31]. Furthermore, an extension of this taking temporal
considerations into account was proposed in [20]. In [28] a system to formalize
norms using input/output logic was proposed, while in [21] the authors provide a
model for the formalization of social law by means of Alternating-time Temporal
Logic (ATL). In [25] the author proposes the use of Linear Time Logic (LTL) to
express norms. Other important approaches are based on Propositional Dynamic
Logic (PDL) [29], on See-to-it-that logic (STIT) [4] and on Computational Tree
Logic (CTL) [6]. Models for the verification of expectations in normative systems
are proposed in [1,10], and in [32] the authors introduce the nC+ language for
representing normative systems as state transition systems.

The above mentioned systems however mainly focus on the theoretical prop-
erties of regulatory systems. Work that is more focused on the actual implemen-
tation of such systems is for example [27] which proposes a model to define rules
in the Z language, while in [3] the authors propose the use of Event Calculus
for the specification of protocols. A programming language designed to program
organizations, called 2OPL, was introduced in [11]. Other important examples
of languages and frameworks for the implementation of norms and rules are
described in: [2,9,18,24,35,36].

Although some of the above mentioned languages are more user friendly than
others, it still seems that they all require the user to be a computer scientist or
at least has some knowledge of programming, logic or mathematics.
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There do exist a number of programming languages that claim to be similar
to natural language such as hyperTalk1 and PlainEnglish2, but most of them
still aim at real programmers, albeit that they aim for beginning programmers.
The only exception that we know of, is a language called Inform 7 [30]. This
is a language that in many cases truly reads like natural language, but the
main difference with SIMPLE is that it is developed for an entirely different
domain. Inform 7 is a language to write Interactive Fiction: an art form that
lies somewhere in between literature and computer games.

We think that one of the main reasons that Inform 7 can stay very close to
natural language, is that it is highly adapted to a very specific domain. This
restricts the possible things a programmer may want to express and hence keeps
the language manageable. We have taken a similar approach: our language is only
intended to be used as a language for implementing protocols for multiagent
systems, and although it could possibly be useful for other domains too, we
restrict our attention to this domain.

Another example of an easy-to-use language is If-This-Then-That3 (IFTTT).
This tool allows users to define if-then rules that trigger some action to occur
whenever a certain event takes places. This concept is very similar to SIMPLE,
except that in SIMPLE the rules do not trigger events to take place, but rather
grant rights to agents.

Controlled natural language has been applied to policy making before in
[8,12], which is essentially a mapping between Attempto Controlled English
(ACE) [17] and the policy specification language Protune [5]. However, this
work seems to focus mainly on the specification of static rules, whereas our work
puts emphasis on dynamic rules that may change depending on events that are
happening during the execution of the policy. This is reflected by the fact that
in their language the conditions of the rules are written in simple present, rather
than in present perfect as in our language. A similar tool to write static rules in
controlled natural language was presented in [33].

3 Basic Ideas

We assume a multiagent system in which agents exchange messages according to
some given protocol. These agents may be autonomous software agents, or may
be humans acting through a graphic user interface. The agents are however not
in direct contact with one another. Every message any agent sends first passes
a central server that verifies whether the message satisfies the protocol. If a
message does not satisfy the protocol, then it is blocked by the server and it will
not arrive at its intended recipients. Note that this is a form of regimentation. In
this paper we will not consider any forms of punishment, and assume protocols
are only enforced by means of regimentation. We assume that the life-cycle of
the MAS is as follows:
1 http://en.wikipedia.org/wiki/HyperTalk.
2 http://www.osmosian.com.
3 https://ifttt.com/.

http://en.wikipedia.org/wiki/HyperTalk
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1. A user (the protocol designer) writes a protocol in our language and stores it
in a text file.

2. He or she launches a communication server, with the location of the text file
as a parameter.

3. The interpreter, which is part of the server application, parses the text file.
4. Agents connect to the server through a TCP/IP connection and send messages

to one another.
5. Every such message is checked by the interpreter. If it does not satisfy the

protocol, it is blocked. If it does satisfy the protocol it is forwarded to its
intended recipients.

6. The agent that intended to send the message is notified by the server whether
the message has been delivered correctly or not.

The text file contains the protocol as a set of sentences that follow the SIM-
PLE syntax, and are therefore human readable. Furthermore, it also stores the
protocol in JSON format so that it can be parsed easily by the interpreter.

Protocols written in SIMPLE have a closed-world interpretation: every mes-
sage is considered illegal by default, unless the protocol specifies that it is legal.
In order to determine which messages are legal, we use a system based on the
notion of ‘rights’ and ‘events’, meaning that an agent obtains the right to send a
specific message if a certain event has (or has not) taken place. The assignment
of such rights is determined by if-then rules in the protocol.

We currently assume agents can send messages following one of these two
patterns:

– (‘say’, x)
– (‘announce’, y, z)

in which the sender can replace x, y and z by any character string (we will see
later that the ‘announce’ message has the interpretation that, by uttering this
message, the value of z will be assigned to the variable y). The current version
of the language does not yet allow users to specify the recipient of a message,
so for now we assume that any message is always sent to all the other agents in
the MAS. We plan this to change in future versions of SIMPLE. Also, we expect
that future versions will support more types of messages.

The interpreter keeps a list of rights for each agent in the MAS. A right is
a tuple of one of the two following forms:

– (‘say’, v)
– (‘announce’, w)

We say that a right (‘say’, v) matches a message (‘say’, x) if and only if x
is equal to v, or v is the keyword ‘anything’. A right (‘announce’, w) matches a
message (‘announce’, y, z) if and only if y equals w. For example: if the agent has
the right (‘announce’, ‘price’) then it matches the message (‘announce’, ‘price’,
‘$100’). A message is considered legal if the agent sending the message has at
least one right that matches the message. Whenever the interpreter determines
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that a message is legal, it stores a copy of that message, together with the name
of its sender, in the interpreter’s event history.

One concept that we have borrowed from EIDE is the concept of a role.
The rules in the protocol never refer to specific individuals, because we assume
that at design time the designer cannot know which agents are going to join
the MAS at run time. Instead, the protocol assigns rights to agents based on
the roles they are playing. Every agent that enters the MAS (i.e. connects to
the communication server) must choose a specific role to adopt, from a number
of roles that are defined in the protocol. An auction protocol for example, could
define the roles buyer and auctioneer. The protocol could then define a rule
saying that a buyer can only make a bid after the auctioneer has opened the
auction.

4 Description of the Language

A protocol is written as a set of sentences that look like natural language, but
follow a strict syntax. Although in this paper we will often start sentences with
a capital, this is not necessary, as the language is entirely case-insensitive. Like
in natural language, the end of a sentence is marked with a period. Unlike most
other programming languages, variable names are allowed to contain spaces.
Another important property of this language, as we will see at the end of this
section, is that it is impossible to write inconsistent protocols.

4.1 Roles

In order to define a role in the protocol the user must first specify two names
for that role: the singular role name and the plural role name, for exam-
ple: ‘auctioneer’ and ‘auctioneers’. The user must then specify a role constraint
sentence:

Definition 1. A role constraint sentence is a sentence of one of the follow-
ing forms:

– There can be any number of r.
– There must be at least x r.
– There can be at most x r
– There must be at least y and at most x r.
– There must be exactly x r.

Where x and y can be any positive integer with y < x and r is the plural role
name, except in the case that x = 1 in which case r it is the singular role name.

The following sentence is an example of a role constraint sentence:

There must be at least 2 buyers.
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For each role in the protocol there must be exactly one such role constraint
sentence. The interpreter makes sure that these role constraints are not violated.
That is, when an agent tries to connect to the communication server with a role
for which there are already too many participants, the connection will be refused.
If on the other hand there are not enough participants for every role, then every
message is considered illegal. Therefore, the agents cannot start sending messages
to one another until there are enough participants for every role.

4.2 Conditions and Consequences

The main idea of the language, as explained above, is that rights are assigned
to the agents by means of if-then rules. An example of such a rule could be:

If the auctioneer has said ‘open’ then any buyer can announce his bid price.

In order to precisely define which sentences are well formed we first need to
introduce a number of terms, namely: quantifiers, identifiers, conditions, and
consequences.

Definition 2. A quantifier is any of these keywords: no, any, every, a, an,
the, that.

Definition 3. An identifier is a sequence of characters of one of the following
forms:

– q r
– no one
– anyone
– everyone
– he

Where q can be any quantifier and r can be any singular role name. Identifiers of
the form no r as well as the identifier ‘no one’ are called negative identifiers.
All other identifiers are called positive identifiers.

Definition 4. A past-event condition is a string of characters of one of the
following forms:

– id has said ‘x’
– id has announced the x
– id has announced his x
– pid has not said ‘x’
– pid has not announced the x
– pid has not announced his x

where id can be any identifier, x can be any character string, and pid can be
any positive identifier. A past-event condition is called negative if it contains the
keyword ‘not’ or if it contains a negative identifier. A past-event condition is
called positive otherwise.
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A past-event condition is a specific type of condition. We will define other
types of condition later on. A positive past-event condition is considered true if
and only if there is any message in the event history that matches the condition.
For example the condition any buyer has said ‘hello’ is considered true if there
exists a message in the event history of the form (‘say’, ‘hello’) which was sent by
an agent playing the role buyer. A negative past-event condition is considered
true if and only if there is no message in the event history that matches the
condition.

Definition 5. A right-update consequence is a string of characters of one
of the following forms:

– pid can say ‘x’
– pid can announce the x
– pid can announce his x

where pid can be any positive identifier and x can be any character string.

A right-update consequence is a specific type of consequence. Other types of
consequences are defined later on.

We can now construct sentences (‘rules’) of the form If A then B, where A
is a conjunction of conditions and B is a right-update consequence. We say that
a rule is active if all its conditions are true. Then the idea is that an agent has
the right to send a specific message if and only if there is an active rule with
right-update consequence that matches that message.

Identifiers are used inside conditions and consequences to determine to which
set of agents these conditions and consequences apply. We would like to remark
that the quantifiers ‘a’, ‘an’, ‘any’ and ‘the’ all have exactly the same meaning, so
the language contains some redundancy. However, we do consider it very useful
to have all of them in the language because they help the protocol designer to
write more natural sentences. For example, if an auction protocol contains only
one auctioneer it makes much more sense to talk about ‘the auctioneer’ than
about ‘any auctioneer’.

Also note that we have included the quantifier ‘that’. This quantifier refers to
any agent that was also referred to by the last quantifier earlier in the sentence.
For example, suppose that a buyer called Alice says ‘hello’ and then a buyer
called Bob says ‘hi’, then the condition:

a buyer has said ‘hello’ and a buyer has said ‘hi’

is true. However, the condition:

a buyer has said ‘hello’ and that buyer has said ‘hi’

is false, because ‘that buyer’ refers to the same agent as the one that said ‘hello’
(which is Alice). This second condition would only be true if the messages (‘say’
‘hello’) and (‘say’, ‘hi’) had been sent by the same agent. Likewise, we have
included the identifier ‘he’, which refers to the same agent as the last identifier
that appeared earlier in the sentence. For example:

If a buyer has said ‘hello’ and he has said ‘hi’
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4.3 Properties

The rights of an agent may not only depend on past events, but may also depend
on values of variables. Variables in SIMPLE are called properties. A property
can be assigned to the protocol (a global property), or can be assigned to indi-
vidual agents (a role property). For example, we may specify that every buyer
has a property ‘age’, and that the protocol has a global property ‘minimum age’,
so that we can state conditions such as:

If a buyer has said ‘hello’ and his age is greater than the minimum age then...

A property can be defined by including a property initialization sentence in the
protocol.

Definition 6. A property initialization sentence is a sentence of one of the
following forms:

– This protocol has a x, which is initially v.
– Every r has a x, which is initially v.

where x can be any character string, v can be any character string, number,
or identifier and r can be any singular role name. The string x is called the
property name, and v is its initial value.

The first of these sentences is used to define a global property, while the
second one defines a role property. If the name of the property x starts with a
vowel then the editor will automatically replace the article ‘a’ in the sentence
with ‘an’. For example:

Every buyer has an age, which is initially 0.

A property can also be added to a protocol without including a property initial-
ization sentence, but instead by mentioning it in some rule containing the verb
‘to announce’. For example, if there is a rule containing the condition

If a buyer has announced his age...

then the interpreter automatically understands that the role ‘buyer’ has a prop-
erty named ‘age’. Similarly, if the protocol contains a sentence containing the
conditions

If the auctioneer has announced the start price...

then the interpreter understands that the protocol has a global property named
‘start price’.

The current version of SIMPLE supports three types of properties: strings,
numbers and identifiers. The type of a property is determined implicitly. That
is: if the parser of the protocol is able to interpret the initial value of a property
as a number, then the property is considered to be of type number, and likewise
for identifiers. In all other cases the property is considered a string.
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Definition 7. A property condition is a clause of one of the following forms:

– x is less than n
– x is less than or equal to n
– x is v
– x is not v
– x is greater than or equal to n
– x is greater than n

where x is either the keyword ‘the’ followed by the name of a global property, or
the keyword ‘his’ followed by the name of a role property. v can be any string,
number or identifier, and n can be any number.

Definition 8. A property-update consequence is a clause of the form:

– x becomes y
– x will be v
– x is increased by n
– x is decreased by n
– x is multiplied by n
– x is divided by n

where x and y both are either the keyword ‘the’ followed by the name of a global
property, or the keyword ‘his’ followed by the name of a role property. y can be
any character string, v can be any string, number of identifier, and n can be any
number.

Definition 9. A current-event condition is a string of characters of one of
the following forms:

– pid says ‘x’
– pid announces the x
– pid announces his x

where pid can be any positive identifier and x can be any character string.

In order to change the values of properties we can use property-update rules.

Definition 10. A property-update rule is a sentence of the form:

– When x then z.

Where x is a current-event condition and z is a property-update consequence.

Examples of property-update rules are:

When any buyer says ‘bid!’ then his bid price is increased by 10.
When the auctioneer says ‘sold’ then the last bidder becomes the winner.
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Note that the clause x becomes y means that the value of property y is overwrit-
ten with the value of property x. This can be understood as follows: suppose
we have a property called Carol’s sister and a property called Bob’s wife. Fur-
thermore, suppose that Carol’s sister is initialized to the value ‘Alice’. Then the
clause Carol’s sister becomes bob’s wife means that the value ‘Alice’ is copied
into the property Bob’s wife. Note that when a property is assigned to an agent
we use the key word ‘his’ to refer to the agent that owns the property. To be
precise: it refers to the last agent that appears earlier in the sentence. So in the
above example, ‘his bid price’ refers to the property named ‘bid price’ assigned
to the agent that said ‘bid!’.

Another way that values of properties are updated is when a message of type
(‘announce’, x, y) is sent. In that case the value y is assigned to a property with
name x. For example, whenever an agent sends the message (‘announce’, ‘price’,
100), the value 100 is automatically assigned to a property with the name ‘price’.
More specifically, if the property ‘price’ is global than that unique property is
updated, while if it is a role property, for example for the role ‘buyer’, and the
sender of the message indeed plays that role, then it is the property of the sender
that is updated. If neither is the case, that is: if the property ‘price’ is a role
property for the role ‘buyer’, but the sender does not play the ‘buyer’ role, then
the message is illegal.

Definition 11. A right-update rule is a sentence of the form:

– id can always say v.
– id can always announce the v.
– id can always announce his v.
– If x then y.
– If x then y, as long as w.

where id is an identifier, v can be any character string, x and w are conjunc-
tions of past-event conditions and/or property conditions and y is a right-update
consequence (the conditions in w are also referred to as constraints).

Note that we allow such a rule to have no conditions at all, so that it is
always active. In that case the protocol designer needs to include the keyword
‘always’ after the keyword ‘can’. Also note that right-update rules have past-
event conditions (which are written in present perfect), while property-update
rules have current-event conditions (which are written in simple present). This
is because they are interpreted in a fundamentally different way, which we will
explain in Sect. 5.

4.4 Constraints

We have seen in Definition 11 that right-update rules may contain so-called con-
straints. A constraint is similar to a property condition, but is written at the
end of the sentence, and indicated by the keywords as long as.
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If the auctioneer has said ‘open’ then any buyer can announce his bid price,
as long as his bid price is higher than the current price.

The consequences of a rule only have effect if all conditions and constraints
of the rule are satisfied. The difference between constraints and conditions is
that constraints refer to property values inside the consequence of the sentence,
whereas conditions may only refer to past events or properties that do not appear
inside the consequence. This means that when the interpreter verifies the legality
of a certain message X, the truth of the constraints of any rule depend on the
contents of that message, whereas the truth of the conditions of any rule can
already be determined before the interpreter has received message X.

In the example sentence above for instance, the constraint says that the bid
price announced by the buyer, must be higher than the current price. This can
of course only be checked when the buyer is announcing his bid price, and not
before.

4.5 Inconsistencies

One very important aspect of our language is that right-update consequences
can only have positive identifiers. This means that a consequence can only give
rights to an agent, but not take them away. Nevertheless, we can still make agents
lose rights, but we do that by using negative conditions, rather than negative
consequences. Take for example the following rule:

If the auctioneer has not said ‘sold!’ then any buyer can say ‘bid!’.

Here, every buyer initially has the right to say ‘bid!’. If there is no other rule
that gives buyers the right to do that, then buyers will lose this right once the
auctioneer says ‘sold!’, because the condition becomes false. If there is more than
one rule that grants the right to say ‘bid!’ to every buyer then all those rules
must become inactive in order for the buyers to lose that rule.

The big advantage of only allowing positive consequences, is that this makes it
impossible to write inconsistent rules. Recall from Sect. 3 that for every message
submitted the interpreter needs to answer the question: “Does the sender of this
message have the right to do so?”, with either “yes” or “no”. We say that a
protocol is consistent if for every possible message this question has only one
correct answer.

Lemma 1. A protocol written in SIMPLE is guaranteed to be consistent.

Proof. The proof is easy: in our language, by definition, an agent has the right
to do something if and only if there is at least one active rule that grants this
right to the agent. This can never lead to inconsistencies: either such a rule exists
or not.

This aspect certainly does not make our language unique, as the same prin-
ciple applies to several other logical languages, such as GDL [19] and ASP [13]
(Fig. 1).
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Fig. 1. Two screen shots of the SIMPLE editor. Users write sentences simply by select-
ing available options, and they can only write free text whenever the syntax rules indeed
allow that. Therefore it is impossible to write malformed sentences.

5 The SIMPLE Interpreter

We will now describe the software component that interprets and enforces the
protocols.

Whenever an agent tries to send a message, this message is first analyzed by
the interpreter. The interpreter verifies if the agent sending the message indeed
has the right to send that message and, if so, updates its internal state and
forwards the message to the other agents connected to the server. If the sender
of the message does not have the right to send that message he or she is notified
that the message has failed. The message will in that case not be forwarded to
the other agents and the internal state of the interpreter is not updated. In fact,
we consider this message as not sent.

The internal state of the interpreter consists of the following data structures:

– a list of all messages that have so far been sent successfully (the event history)
– a table that maps the name of each property to the current value of that

property
– a table that maps the name of each agent in the MAS to the role it is playing
– a table that maps the name of each agent in the MAS to a list of rights for

that agent.

Every time an agent tries to send a message, the interpreter follows the following
procedure:4

1. The list of rights of that agent is made empty.
2. For each right-update rule in the protocol, the interpreter verifies if its con-

ditions are true:
– If the condition is a property condition then it checks whether that prop-

erty currently has the proper value to make the condition true.
– If the condition is a past-event condition, the interpreter tries to find an

event in the event history that matches the condition. If such an event is
indeed found, then the condition is considered true.

A rule for which all conditions are true is labeled as ‘active’.

4 This procedure can be implemented in a much more efficient way than presented
here, but we think this is not very relevant for this paper, so we prefer to present it
in a way that is easier to understand for the reader.
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3. For each right-update consequence in each active rule, the interpreter checks
whether the identifier matches the sender of the message and, if yes, adds the
right corresponding to this consequence to the sender’s list of rights. If this
consequence has any constraints assigned to it, they are stored together with
the right.

4. After all the rights of the sending agent have been determined the interpreter
verifies whether any of them matches the message that the agent is trying to
send.

5. Next, if the agent indeed has that right the interpreter checks whether its
constraints (if any) are satisfied.

6. If the sending agent has the proper right, and all its constraints are satisfied
then the interpreter determines if there are any property-update rules in the
protocol for which the condition matches the message. If yes, the properties
in the rule’s consequences are updated accordingly.

7. Finally, if the agent has the right to send the message and its constraints are
satisfied, a copy of the message is stored in the event history, together with
the name of the sender, and the message is forwarded to all other agents in
the MAS.

It is important to note here that property-update rules and right-update
rules are treated in a different way. To be precise: to verify whether a past-
event condition is true, the interpreter compares the condition with all messages
in the event history. Since messages are never removed from the event history
this means that whenever a past-event condition becomes true, it remains true
forever. For example, when a buyer says ‘hello’ then the condition any buyer
has said ‘hello’ becomes true, and remains true forever. For negative conditions
exactly the opposite holds: the condition no buyer has said ‘bye’ is initially true,
but as soon as a buyer says ‘bye’ it becomes false, and will stay false forever.
The current-event conditions on the other hand are only considered true at the
moment that the corresponding message is under evaluation of the interpreter.
That is, the condition when a buyer says hello is considered to be true only
while the interpreter is evaluating the message (‘say’, ‘hello’) sent by some agent
playing the role of buyer. As soon as the interpreter handles the next message
this condition is considered false again. The reason for this is that we consider
that when you obtain a right, you keep that right for an extended period of
time, until one of the negative conditions in the rule becomes false. Updating of
a property on the other hand, is a one-time event that only takes place at the
moment a certain message is sent.

6 Examples

We here provide two examples of protocols. Both have been tested and are
correctly executed by the interpreter.
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English Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
Every buyer has a bid price which is initially 0.
This protocol has a highest bidder, which is initially no one.
This protocol has a winner, which is initially no one.

If the auctioneer has not said ‘sold!’ and the auctioneer has not announced
the current price, then the auctioneer can announce the current price.
If the auctioneer has not said ‘sold!’ and the auctioneer has announced the
current price, then any buyer can announce his bid price, as long as bid price
is greater than current price.
When a buyer announces his bid price, then his bid price becomes the current
price.
When a buyer announces his bid price, then that buyer becomes the highest
bidder.
If any buyer has announced his bid price, then the auctioneer can say ‘sold!’.
When the auctioneer says ‘sold!’, then the highest bidder becomes the winner.

Dutch Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
This protocol has a winner, which is initially no one.

If the auctioneer has not announced the current price, then he can announce
the current price.
If the auctioneer has announced the current price and no buyer has said
‘mine!’, then the auctioneer can say ‘next!’.
When the auctioneer says ‘next!’, then the current price is decreased by 1.
If the auctioneer has announced the current price and no buyer has said
‘mine!’, then any buyer can say ‘mine!’.
When a buyer says ‘mine!’, then that buyer becomes the winner.

7 Comparison with Islander

Many other tools have been developed for the specification of protocols so it
would be impossible to discuss all the advantages and disadvantages of SIMPLE
with respect to those existing tools. Therefore, we limit ourselves to a comparison
with the Islander tool, which is part of the EIDE framework.

Islander allows users to specify protocols using a graphical model that repre-
sents protocols as a directed graph in which the nodes represent states, and edges
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between nodes represent actions (an agent sending a message to another agent)
that lead from one state to the next. This graphical model can be extended by
assigning pre-conditions and post-conditions to the edges which are written in a
formal language.

The advantage of the graphical model is that is relatively easy to use and
understand, but the disadvantage is that it has very limited expressivity. There-
fore, it is almost always necessary to use it in combination with the formal
language, which however can be very difficult to use, even for computer scien-
tists.

We will now give an example of a protocol that is hard to express using only
the graphical representation of Islander. Note that this example uses the verb
‘to make’ which is currently not yet available in SIMPLE. Therefore, the idea
is to show how SIMPLE will be more easy to use than Islander in the future,
when we have further extended the language.

Suppose we want to implement the following protocol in Islander:

There must be at least 5 students.
Initially, any student can make assignment 1.
If a student has made assignment 1 then he can make assignment 2.
If a student has made assignment 2 then he can make assignment 3.

If there would be only 1 student then this protocol would be very easy to imple-
ment in Islander. It would just be a linear graph with 4 nodes and three edges,
where each edge corresponds to making an assignment.

With multiple students however, you run into the problem that students may
make their assignments at different speeds. For example, one student may quickly
deliver assignments 1 and 2, while another is still busy with assignment 1. This
means that at any moment each student can be in any of 4 states, and thus the
protocol as a whole can be in any of 4n different states if there are n students.
With as little as 5 students drawing the graph would already become practically
impossible as it would require the designer to draw 45 = 1024 states plus all
their edges. The only realistic way to specify this protocol would be to use the
formal language rather than the graph-representation.

Another way to implement this protocol in Islander would be to implement
it as a protocol for only 1 student, and then let n of these protocols run in
parallel. In this way we again only need to draw a linear graph with 4 nodes
and 3 edges. However, this is only possible because in this example there is no
interdependency between the students’ actions. If we make the example a bit
more complicated, for example by adding a final exam that only starts when all
students have finished all assignments, this is no longer possible.

Another problem with Islander is that one cannot use universal quantifiers.
Even in Islander’s formal language one cannot directly state something like “If
all students have finished their assignments...”. The only way to achieve this is
to create a list of names of students, make sure that the name of a student is
added to this list when he or she enters the institution, and make sure that the
name of a student is removed from this list whenever he or she finishes his or her
assignment. Then, whenever you need the precondition that all students must
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have finished their assignments, you can specify that this list must be empty. In
practice, this turns out to be a tedious job to do all this in Islander, making it
far from user-friendly.

8 Future Work

We consider that the language as it is, is still too limited to be of real practical
use. We here list the shortcoming that we consider most important and that
we plan to fix in the near future, as well as other improvements that we are
considering.

Firstly, we will add the possibility to specify the recipient of a message.
Currently every message is sent to all other agents in the MAS, which makes it
impossible to send confidential information. This means we will allow to write
sentences such as:

If the auctioneer has said ‘welcome’ to a buyer then that buyer can say ‘hello’
to the auctioneer.

Secondly, we would like the protocol designer to be able to express that a certain
event must have taken place a certain number of times. For example:

If a buyer has announced his bid price more than 5 times...

Thirdly, we would like to add time-constraints to the language, so that we could
define rights that expire after a certain amount of time, such as:

If no one announces his bid during 10 s then the highest bidder becomes the
winner.

Furthermore, we would like to add more types of messages and maybe even allow
the protocol designer to define message types. That would make it possible to
use certain domain-specific verbs. For example:

If a student has finished his assignment...

We could even take this a step further and allow the protocol designer to define
new data types, similar to data types in the EIDE framework. For example, one
could define a data type “contract” by including a sentences such as:

A contract consists of a date, a price, and a quantity.
A price is a positive number.

One could then define a negotiation protocol with sentences such as

Any negotiator can propose a contract.

If such data types are composed of basic types such as Strings and numbers then
during the execution of the protocol the GUI can display the proper input fields
for the user to specify the details of the contract to propose. Defining new types
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of objects is typically something that Inform 7 can handle well, so we may draw
some inspiration from that language.

Furthermore, we will add a system that determines at run time, whenever an
agent tries to send an illegal message, which conditions first need to be fulfilled
before the agent can indeed legally send that message. In this way the system
can explain to the user why he or she made a mistake and will help the user
to understand new protocols. In order to make the language more flexible and
expressive, we will delve into literature about linguistics and apply some of its
principles to our language.

Finally, we will perform an empirical study to evaluate how easy-to-use this
language really is. We will let random people implement a protocol using our
language as well as using some other existing tool such as Islander to compare
whether our language indeed makes the task easier.
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15. Esteva, M., Rodŕıguez-Aguilar, J.A., Arcos, J.L., Sierra, C., Noriega, P., Rosell,
B., de la Cruz, D.: Electronic institutions development environment. In: AAMAS
(Demos), pp. 1657–1658 (2008). http://www.iiia.csic.es/files/pdfs/eide.pdf

16. Fornara, N., Cardoso, H.L., Noriega, P., Oliveira, E., Tampitsikas, C., Schumacher,
M.I.: Modelling agent institutions. In: Ossowski, S. (ed.) Agreement Technologies,
Chap. 18, vol. 8, pp. 277–307. Springer-Verlag GmdH, Netherlands (2013)

17. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled English for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
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Abstract. The ability to exhibit social behaviour is paramount for
agents to be able to engage in meaningful interaction with people.
In fact, agents are social beings at the core. That is, agent behaviour
is the result of more than just rational, goal-oriented deliberation. This
requires novel agent architectures that start from and integrate different
socio-cognitive elements such as emotions, social norms and personality.
Current agent architectures however, do not support the construction of
social agents in a structured, modular and computational- and design-
efficient manner. Inspired by service-orientation concepts, in this paper
we propose MaaS (Mind as a Service) as a modular architecture for agent
systems that enables the composition of different socio-cognitive capa-
bilities into a running system. Depending on the characteristics of the
domain, agent’s deliberation will require different social capabilities. We
propose to model these capabilities as services, and define a ‘Delibera-
tion Bus’ that enables to design deliberation as a composition of services.
This approach allows to define deliberation architectures that are situa-
tional and dependent on the available components in order to cope with
the complexity of social and physical environments in parallel. We fur-
thermore propose a Service Interface Descriptor language to encapsulate
service functionalities in a uniform way.

1 Introduction

The potential of artificial intelligent systems to interact and collaborate not only
with each other but also with human users is no longer science fiction. Healthcare
robots, intelligent vehicles, virtual coaches and serious games are currently being
developed that exhibit social behaviour - to facilitate interactions, to enhance
decision making, to improve learning and skill training, to facilitate negotiations
and to generate insights about a domain. In all these cases, the ability to exhibit
social behaviour is paramount for successful functioning of the system.

We informally define social intelligent agents as systems whose behaviour can
be interpreted by others as that of perceiving, thinking, moral, intentional, and
behaving individuals; i.e. as individuals that can consider the intentional or ratio-
nal meaning of expressions of others, and that can form expectations about the acts
and actions of others [27]. In this light, functionalities required from social intelli-
gent agents include the ability to reason about norms, beliefs and culture-specific
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 119–133, 2016.
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contexts, to display and understand emotions, to balance between goal-directed
and reactive behaviour, maintain a sense of identity, to form expectations about
the other’s acts and actions, etc. An important aspect of social behaviour is the
capability to integrate and to choose between different types of behaviour, such
as e.g. utility-based, mimicry or altruistic behaviours based on the physical and
social context.

In the last years, many systems have been developed which possess some of
these characteristics. In particular, work on Intelligent Virtual Agents and on
Social Robotics has delivered many promising results. However, we are still lack-
ing theories, tools and methodologies to guide and ground these developments.
That is, current approaches often result in ad-hoc, unstructured solutions. Suc-
cess and applicability are often more due to the expertise and art of the devel-
opers, rather than on robust engineering principles. Moreover, in most cases,
social aspects are ‘added-in’ on top of existing architectures, such as BDI, which
does not allow to model the rich inter-dependencies between social capabilities
needed to generate social behaviour [12].

The necessity to develop working real-world systems capable of exhibiting
social behaviour for the purpose of interaction and collaboration with people
requires engineering approaches to explore the full potential of social artificial
intelligent systems on a larger scale, mandates a new understanding of social
intelligent agents. Architectures, tools and methodologies are needed to realize
this potential and engineer applications with a high level of robustness and
quality. Only then can we reach a level of robustness acceptable by industry and
society.

In this paper, we introduce the vision of MaaS (Mind as a Service), a frame-
work to develop the ‘minds’ of social intelligent systems, based on the compo-
sition of different cognitive modules, or services. In the context of this paper,
the concept of ‘mind’ should be understood as an analogy of the human mind
rather than as a faithful representation, i.e. representations and processes that
enable behaviour that can be interpreted by others as socio-cognitive behaviour.
It is important to notice that our aim is to develop synthetic models that exhibit
behaviour that can be seen as social, rather to attempt at emulating the human
brain with computational capabilities. Furthermore, we use the term ‘mind’ in
order to stress the fact that we are only specifying the deliberation mechanisms.
In most applications this mind will be connected to a physical or virtual body
of the agent, but the specification of the agent’s body is outside the scope of this
paper.

MaaS combines a service-oriented concepts with formal specification lan-
guages to verify behaviour. In this position paper, we outline the MaaS app-
roach, present the grounding theories on which MaaS is based, and discuss its
main challenges. The work presented here should be seen as a first proposal
towards a comprehensive theory and tools to build and analyse social intelligent
agents.
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2 Related Work

MaaS is grounded in both the Social Sciences and Artificial Intelligence.
Researchers from many different backgrounds, have studied social behaviour and
deliberation, resulting in many approaches, of different levels of formalisation,
applicability and detail.

Understanding social behaviour is the first step towards building social
minds [7]. Social intelligence is defined as an aggregate of different capabili-
ties, including awareness, social beliefs and attitudes, and the ability to change
[6,16]. In his book, “The Society of Mind” Minsky explores the notion that the
mind consists of a great diversity of mechanisms: every mind is really a rich and
multifaceted society of structures and processes, different for every individual as
result of genetics, millennia of human cultural evolution, and years of personal
experience [23]. Societies of Mind are composed of agents with specific function-
ality that can be combined together to perform functions more complex than
any single agent could, and ultimately produce the many abilities we attribute to
minds. Despite the great popularity of this work, there have been few attempts
to implement the Society of Minds theory, especially due to the fact that Min-
sky presents his ideas at different level of abstraction and provides few handles
for construction of minds. In its main objective, that of providing a modular,
compositional and adaptable architecture for intelligent systems, MaaS takes a
similar view of mind as that proposed by Minsky and can be seen as providing
a principled engineering framework to develop systems similar to the Society of
Minds. However, the basic concepts behind MaaS and the Society of Minds are
quite different.

Decision-making processes are influenced by individual and social
sources [22]. Social influences are often described in terms of social rules that
are followed, such as ‘obey your parents’ or ‘mimic the behaviour of your peers’.
Individual influences are usually expressed in terms of personal goals or util-
ities and lead to ‘rational’ decision rules. The social sciences describe many
mechanisms or schemas used by humans to link these capabilities (e.g. salience,
priming, motivation and regulation), determine how decisions are made and gen-
erate complex social behaviour [1,15]. Similar processes occur in human-agent
interaction because social signals (like emotional expressions) produced by com-
putational agents are processed by humans in a similar manner as signals which
are produced by humans [32].
Computational cognitive models, such as ACT-R [3] and SOAR [9] produce intel-
ligent behaviour by employing quantitative measures, which means that different
factors take the same form in the deliberation process. This makes it difficult to
manage, control and vary different socio-cognitive aspects because these cannot
easily be isolated in the decision rules. Moreover, once models get larger they lack
transparency to link observed behaviour to the implementation. Existing archi-
tectures used to construct virtual agents and intelligent game characters, such as
FAtiMA [11], GRETA [21] or CIGA [31] can achieve fairly realistic behaviours
that are computationally efficient, but are generally developed for a very spe-
cific domain of application. Given this domain-oriented focus, their results are
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not easily reusable in applications that require slightly different social aspects.
Sometimes norms play a major role in a training application while in health
care applications emotions might take precedence. Moreover, the focus of these
approaches is geared to the visualisation of the behaviours by the virtual char-
acters in terms of e.g. gestures, or facial expressions.

Recently, Kaminka and Dignum et al. [12,18] discussed the many challenges
of designing the social behaviour of agents. In this paper, we propose an ini-
tial architecture to build agents that can meet those challenges. MaaS takes a
modular, service-oriented approach to build social intelligent agents, resulting
in flexible and adaptable deliberation. Nevertheless, existing cognitive models in
AI are often too simplistic, mostly suitable for well-defined problem domains,
platform- or domain-specific, or computationally too complex [9,20,29].

Deliberative agent models, such as BDI [33], have formal logic-grounded
semantics, but often require extensive computational resources to deal with social
contexts, or use game-theoretic rules that are too simple to capture many of the
rich interactions that take place in real-world scenarios [5]. BDI does use different
modules for beliefs, desires and intentions. However, these are geared towards
individual influences on decision making. These models thus lack an explicit rep-
resentation for social influences. One can represent all these social influences in
the beliefs or goals of an agent, but that leads to the same objection as against
the cognitive models; the rules become convoluted and different aspects cannot
easily be managed separately.

Other decision-theoretic approaches often used are (PO)MDPs - (Partially
Observable) Markov Decision Processes, which capture many of the facets of
real world problems, but unrealistically assume that whatever system is solving
the MDP knows at every point what state it is in. Moreover, (PO)MDPs do
not scale well and lack the modularity needed to analyse the results of large
models [4].

The Subsumption Architecture [8,30] takes a reactive perspective, through
an hierarchy of task-accomplishing behaviours (simple rules) without necessar-
ily a central control. Lower layers correspond to ‘primitive’ behaviours and have
precedence over higher (more abstract) ones. This architecture is simple in com-
putational terms, but is conceptually obscure due to its ‘black box’ character.

In an attempt to balance different aspects, and improve the separation of
concerns, AOSE (Agent-Oriented Software Engineering) addresses adaptation,
concurrency, and fault-tolerance issues [13,28] of the development of agent sys-
tems. However, most current AOSE approaches see agents as an application
layer software component operating on middleware platforms to gain access to
standardised infrastructures. Specifically, such approaches provide syntactic con-
structs to represent domain knowledge and agent functionalities but lack the for-
mal semantics to reason about agent behaviour at higher levels of abstraction, in
terms of socio-cognitive concepts. This leads to results that are not generalizable
to other frameworks and applications.
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3 The MaaS Vision

As discussed in the previous section, many approaches exist to model different
aspects of social intelligence. Our proposal is not to develop yet another model,
but enables the integration of different models into working software systems,
with variable levels of precision and realism. We therefore aim to build social
intelligent systems as a modular, service-based architecture which enables for-
mal verification and conceptual clarity while making possible the integration of
different reasoning architectures.

The ‘Mind as a Service’ (MaaS) architecture proposed in this paper, repre-
sents social intelligent agents as a composition of software services, each designed
to implement a specific socio-cognitive functionality. MaaS systems behave in
human-like fashion by integrating individual considerations and social influ-
ences in their decision making process, and taking into account situational differ-
ences. This approach follows recent literature suggesting that rational behaviour
requires the input from different socio-cognitive abilities [2].

This approach is based on three pillars. Firstly, the development of models for
social deliberation and interaction. The models should be grounded in existing
proven psycho-sociological theories, but also be computationally sound and suffi-
ciently ‘light’ to be easily be embeddable into avatars, robots or other intelligent
systems. By expressing algorithms in logical terms, explanation and synthesis
of socio-cognitive behaviour is possible [24]. This view is orthogonal to current
AI research focus on emulating the human brain1, in such that our aim is to
develop synthetic models that exhibit behaviour that can be perceived as social,
and not to understand the human brain in order to emulate its computational
capabilities.

Secondly, the development of a computational platform to build MaaS as a
composition of socio-cognitive services. This platform will allow to build mod-
ular socio-cognitive deliberation architectures and to analyse the consistency
of different compositions in terms of accuracy of real world behaviour. Given
the explicit formal representation of MaaS models this allows for introspection
of the drives of an agent’s behaviour. We will take inspiration from Service-
Oriented Architecture (SOA) principles [14], in order to realise systems that are
scalable and flexible, as services can be replaced by other services, and the sys-
tem includes only those services required for its aims. Note that our use of SOA
ideas should be seen in a broad perspective. We are particularly interested in the
overall principles of service-orientation design, stressing separation of concerns
in software development, and the view of software as partitioned into operational
capabilities, the services, each designed to solve an individual concern.

The idea is thus to design agents’ minds as a composition of cognitive services,
each based on different theories and approaches, and provide the tools to combine
and integrate these services into ‘minds’ fulfilling given requirements in terms of
reasoning capabilities, realism and computational efficiency.

1 Such as is advocated e.g. by the Human Brain Project (https://www.
humanbrainproject.eu/).

https://www.humanbrainproject.eu/
https://www.humanbrainproject.eu/
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Through composition, new services can be created from a set of existing
services. Moreover, each socio-cognitive function can be modelled in many ways,
resulting in several services for the same socio-cognitive ability with different
levels of complexity and realism, which can be interchanged depending on the
requirements of the application. MaaS services can be addressed in a uniform way
through a standard Service Description Interface that is platform- and domain-
independent.

Thirdly, design of a methodology to develop MaaS to be embedded in artifi-
cial interactive systems. This methodology should provide guidelines for domain
analysis, evaluate the socio-cognitive functionalities required for interaction and
their level of realism, construct and compose the relevant socio-cognitive ser-
vices, and evaluate results. The use of the methodology and framework will be
evaluated in the development of prototypes for three case studies.

Ultimately, we aim to develop a complete framework that integrates formal
theory, software development tools, and methodology to build artificial minds
in a structured, compositional way. Through this framework, social intelligent
agents can be build that are modular, flexible, adjustable and verifiable. This
aim leads directly to the following challenges that we face for the realisation of
MaaS:

Modular: requires definitions and models to represent different theories
(describing socio-cognitive capabilities) and verify the resulting computa-
tional models. To address this challenge we propose a meta-modelling app-
roach to specify socio-cognitive capabilities.

Flexible: Each application domain requires different abilities at different lev-
els of precision. Our approach to this challenge is twofold: (1) we provide
procedures and guidelines to identify relevant socio-cognitive modules given
the requirements of an application domain, and (2) we define uniform inter-
face descriptions that enable the composition and encapsulation of different
socio-cognitive models.

Adjustable: Which socio-cognitive capabilities are needed, at which level of
realism and computational complexity, and how to integrate the different
capabilities into a deliberation mechanism, is dependent on the character-
istics of the domain. MaaS should provide an extendible library of socio-
cognitive services. We aim at a plug-and-play mechanism to combine these
services in many ways resulting in different decision-making paradigms (e.g.
rational or behavioural models of decision making).

Verifiable: To judge the appropriateness of the behaviour of a MaaS system,
computational theories and tools are needed to analyse the composed effects
of social capabilities. By specifying formal representations of socio-cognitive
theories we will be able to use formal model-checkers to verify whether a
MaaS satisfies some desired properties.

3.1 The MaaS Development Process

In order to integrate different models in a structured way we follow a Model-
Driven Engineering (MDE) approach [19]. This enables to develop models that
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make sense from the point of view of a domain expert or a social scientist,
and that can serve as a basis for implementing running computational systems.
First step, will be to design formal models of socio-cognitive theories as defined
in the Social Sciences. The formalisation of these models is needed in order to
enable formal verification, or theorem proving, and are the basis for service meta-
models. From these meta-models, platform independent models can be generated
for specific application domains, realizing the functional requirements and char-
acteristics of those application domain. Finally, these models can be transformed
into computational systems to be embedded in specific computational platforms.
Without claiming a direct relation, this process can be compared with the MDE
ideas of Platform Independent Models (PIM) are used as a blueprint to develop
and compose software services, or Platform Specific Models (PSM). We propose
a Deliberation Bus (cf. Sect. 4.2) through which these cognitive services are com-
posed into an operational mind (the MaaS) that is embedded in social intelligent
systems that interact with people, such as Embodied Virtual Agents (EVAs) or
other avatars or cognitive robots. This process is illustrated in Fig. 1.

Social Science 
theories of 
behaviour

Metamodels
for social 

intelligence

PIMs for 
social 

intelligence 

Social 
intelligence 

services
MaaS

S
ervice-oriented

architecture

M
odel-driven

engineering 

F
orm

al logics

Integration 

E
m

bedding 

Simulation and Verification

Fig. 1. The MaaS development process

3.2 Development Environment

Our aim is to develop MaaS system that can be embedded in interactive soft-
ware applications, such as game characters, virtual assistants or robots. To this
extent, we are developing MindBuilder, a computational platform to design and
implement MaaS. MindBuilder will have the following functionalities:

– design of meta-models for cognitive services, integrating
• formal languages to specify abstract socio-cognitive capabilities, and
• theorem provers to verify their formal properties

– tools to specify concrete socio-cognitive services based on the meta-models
and define service interfaces using the Service Interface Description language

– tools for composition and adaptation of cognitive services
– a library of cognitive services models and meta-models
– MaaS verification tools, including formal algorithms to model-check behaviour
– a sandbox environment to test and evaluate MaaS
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– a methodology to analyse and develop MaaS systems for specific application
domains taking into account ethical, social and technical considerations.

MindBuilder platform and methodology will support the specification, inte-
gration, simulation and reuse of MaaS as a composition of services, illustrated in
Fig. 2. The objective is to generate computational models of socio-cognitive capa-
bilities through a semi-automatic transformation of the formal meta-models with
the concrete characteristics and requirements of a specific application domain.
For example, a possible normative meta-model will enable the specification and
verification of abstract norms as deontic logic expressions. An alternative meta-
model for norms, can represent norms as constraint rules. Each of these meta-
models will define different models for normative services. Depending on the
requirements of the application scenario, one or the other can be chosen result-
ing in different normative capabilities for the MaaS. For example, in the scenario
described in Sect. 3.3, if the deontic meta-model is chosen to represent physical
activity norms for children, the norm “children must do 90 min of physical activ-
ity per day” can be represented as a deontic expression, enabling rich normative
about violated states. If a constraint-based meta-model is chosen, the norm is
represented as a constraint and only acceptable behaviours are possible in the
system.

library

Cognitive 
service builder

MindBuilder

MaaS
composition

MaaS
verification

MaaS
deployment

Fig. 2. The MindBuilder architecture

Resulting MaaS systems can be embedded in different interactive software
applications, to provide social intelligence capabilities to those applications.

The MindBuilder methodology supports the identification of the socio-
cognitive capabilities required for the domain, and their level of realism, guides
the development of domain-specific versions of existing models and services, and
defines the parameters for analysis of results using simulation.
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3.3 Example Scenario

To illustrate the MaaS vision, we describe its possible application to develop
a virtual coach for overweight children, JOGG. The socio-cognitive capabilities
required by JOGG include the ability to show emotions, and to understand
norms and values. For example, the virtual coach should express happiness when
the user has successfully performed a task, should be persuading when suggesting
a course of action, should monitor norms, such as the obligation to exercise daily,
or the prohibition to snack too often, and enforce values such as privacy, but
should also be able to decide when to break a norm, for example violate the
norm of privacy and notify a doctor if the health of the user is perceived to be
very poor.

Different social science theories exist to describe and analyse these socio-
cognitive abilities. To name just a few, emotions can be described using e.g. the
OCC model [26], or by simple rules that relate happiness to the fulfilment of
one’s goal, and norms can be modelled using e.g. deontic logics [34], or by the
normative theory of Kahnemann [17]. The MaaS methodology will support the
analysis of the domain to determine which base sociological theories are the most
suitable, and what level of realism is required.

The MindBuilder Library may already contain meta-models or specific
services implementing these theories, otherwise new meta-models should be
specified using MindBuilder Design. The required services are designed as trans-
formation of the meta-models adapted to the specific characteristics of the JOC-
CGG domain, e.g. specifying specific norms on physical activity and nutrition,
relevant values such as privacy of participants, and suitable emotional expres-
sions in the given cultural context of use. Using MindBuilder Composition com-
ponent, services are composed into a MaaS. In order to determine the most
adequate compositions, and which level of detail and realism of socio-cognitive
services is required, MindBuilder Simulation is used to analyse different MaaS
configuration options. Different configurations representing different deliberation
mechanisms can be checked, e.g. to determine the effect of a norm on the emo-
tion of the MaaS and vice-versa, to check how norm violations affect values, or
to determine the effect of e.g. mimicry or goal-orientation as basis for the MaaS
deliberation. The resulting MaaS can then be embedded in an app to be used
to support the user control their weight and maintain an active lifestyle.

4 MaaS Deliberation

Social deliberation in MaaS results from the integration of different socio-
cognitive services. In order to realise the MaaS vision, we need both the means
to describe these services in a uniform way (the Service Interface Description),
and the ways to combine them into meaningful deliberation (the Deliberation
Bus). The aim of the remainder of this section is to provide insight on the vision
behind these two functionalities rather than describe existing work. In fact, the
development of these functionalities is the aim of further work.
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4.1 Service Interface Description

In order to ensure service integration into MaaS systems in a robust, resilient,
dependable and scalable manner, we need to develop interfaces between services,
and to identify and represent quality of service expectations. A service-oriented
approach enables to separate service implementation from service specification.
Service Interface Descriptors (SID) will describe the functionality offered by a
service, independently from its implementation. As such, services can be seen as
black boxes, where operational details are abstracted by the SID. Other services
rely on SID to call the service.

As in Situation Calculus, we model the domain world as progressing through
a series of states, as a result of various actions being performed within the world.
A social state is defined as a set of fluents (properties whose truth changes over
time). These fluents represent physical situations (agent is in place X), emotional
aspects (agent is happy), relational aspects (agent A is friend of B), and other
issues pertinent to the situation. A socio-cognitive service is then a transition
from one (social) state to another. I.e., services take a state as input and result
in an alteration of that state, that is a change in the value of some of the state
fluents. SIDs describe which fluents are modifiable by the service, under which
circumstances (i.e. fluents describing the preconditions for using the service).

A service-oriented approach enables to separate service implementation from
service specification. We use Service Interface Descriptors (SID) to describe the
functionality offered from a service, independently from its implementation. As
such services can be seen as black boxes, encapsulated by SID. Other services
rely on the SID to call the service. SIDs indicate which fluents are modifiable by
the service, under which circumstances (i.e. fluents describing the preconditions
for using the service).

Each service acts over a specific set of fluents. Several services may be active
at the same time, and can call each other to perform some desired change. For
example, in the scenario presented above, for the virtual coach JOGG to propose
a possible activity to the user, it will employ services to determine the possible
activities, to adapt its emotional expression (which calls a service to determine
the user’s current emotional state), to decide on the most appropriate way to
propose those activities to the user (based on the user’s culture, personality, and
on holding norms of behaviour), and so on.

Quality of Service. MaaS systems have different requirements concerning the
socio-cognitive capabilities needed and the desired level of realism. Although all
aspects will play a role in both decisions their relative importance is different.
For example, decisions on buying more organic products in the supermarket are
mostly based on culture and personality, while decisions on buying cars might be
more status driven. This characteristic demands design models that are scalable,
and can be flexibly adapted to the varying requirements of quality and scale of
different use-cases.

The service-oriented approach taken to build MaaS enables to specify and
select services with different levels of precision and computational complexity
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to execute similar functionality. I.e., depending on the specific demands of an
application domain, a socio-cognitive service for normative reasoning can, for
example, be based on a temporal-deontic logic [34] or on Ostrom’s ‘ADICO’
model [10]. Given the use of uniform Service Interface Descriptors, a service
with a given level of quality can be replaced by another (of lower or higher
quality), resulting in different levels of cognitive deliberation, according to the
requirements of a given domain.

We conceive an approach to quality of service in MaaS, based on different lev-
els. At the most abstract level, quality is defined as high-level abstractions. For
example, can a service handle a specific norm, or a specific emotion. At the level
of SID, the quality of a service is described by the service’s capability to handle
fluents. That is, differences in quality of services are related to which fluents
can be handled by the service SID, and how those fluents are interpreted by the
service. Assuming an expressive domain representation language, many details
can be given about a situation, however not all services are able to handle all the
details. This results in different levels of complexity and realism for interchange-
able services. Consider for instance, services that analyse the emotion of an user.
Rich services can take into account vision, audio and biologic sensor information,
while a simple emotion service is only able to take into account input from a
dropdown-menu question to the user (“How are you feeling? Choose from the
following X options”). Obviously, the result of different emotion-services will be
more or less detailed depending on the service option used. However, not all
applications require the richer version.

4.2 Deliberation Bus

It is well-known that neither purely reactive nor purely deliberative techniques
are capable of producing the range of behaviours required of intelligent agents
in dynamic, unpredictable, domains, and specially when interaction with people
is needed. I.e. real-time interaction requires both extensive reasoning as well as
fast reaction. Therefore, socio-cognitive services have different expectations in
terms of time and reaction rate, which demands the integration of goal-based
planning and reaction over diverse temporal and functional scopes. At the heart
of a MaaS we propose a Deliberation Bus consisting of a central deliberation
bus to connect and synchronise different services, and of memory and time man-
agement units. Besides socio-cognitive services, the Deliberation Bus also links
to sensing and actuator services. These are dependent on the actual system or
artefact in which the MaaS is embedded. The Deliberation Synchronisation Bus
specifies and implements the communication between services using SID, and
takes care of the synchronisation of the different service processes. We use the
term ‘bus’ to stress the fact that we do not assume a fixed deliberation cycle but
rather parallel communication between services depending on the situation. In
order to allow a uniform quantization of time throughout the model, yet permit
different rates of reaction for services, it becomes necessary to interleave sensing
and planning. The time management unit allows multiple state updates to occur
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during deliberation, while keeping in synch with an evolving world. The Deliber-
ation Bus architecture (cf. Fig. 3) integrates deliberation and reaction in flexible
and efficient ways. Existing deliberation paradigms such as goal-oriented (BDI)
or reactive (Sense-Plan-Act) can be represented in the Bus, which is expressive
enough to specify many other deliberation possibilities.

socio-cognitive services

actuator
services

sensor
services

deliberation synchronisation bus

memory timer

Fig. 3. Abstract deliberation bus architecture

4.3 Service Meta-Models and Verification

Deep theoretical understanding of specific functionalities for social interaction is
a pre-requisite to their use in artificial social intelligent systems, yet there is an
awareness that current formalisms are not able to deal with the representation
of social functionalities and their interrelations in a way that enables verifica-
tion and proof. Nevertheless, formalisms abound that deal with specific aspects
of reasoning, such as decision-making, norms, or emotions. However, such mod-
els are quite disparate and integration is not well understood. Our proposal is
to start from existing logical formalisms to represent and reason about social-
cognitive behaviour and develop formal interpretations of existing social science
theories of social behaviour.

There is a long tradition in AI to use logical theories to provide insights
into the reasoning problem without directly informing the implementation. The
use of logical formalisms as a tool of analysis and knowledge representation, is
at the basis of AI research [25]. We will use existing formalisms for different
aspects of social behaviour (emotions, norms, culture, personality, ...) as a basis
to develop formal theory and algorithms to specify social intelligent systems in a
compositional way integrating different theoretical formalisms for socio-cognitive
behaviour. To enable the integration and combination of different models we are
exploring a meta-modelling approach.

Model checking is a well-known technique to verify properties of a formal
model. An attractive feature of model checking is that it can be used to identify
behaviours in which the properties do not hold, potentially generating insight
in how certain problems can be solved. Well-known limitations of model check-
ing include its inappropriateness to deal with infinite state spaces and branch-
ing/alternative time, and it enables only the verification of the model and not
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validation the process used to transform social science theories into the for-
mal representation. Moreover, the main challenge in model checking is the state
explosion problem that can occur if the system being verified has components
that make transitions in parallel. However, the scale and complexity of the for-
malizations that are required for social behaviour are reaching beyond the tra-
ditional techniques of philosophical logic. We will explore the combination of
logical methods with simulation models to enable the development of a more
comprehensive and adequate theory of practical social reasoning than what pure
logic can achieve. Simulation results can identify ‘interesting’ situations that can
subsequently be formally checked by model checkers or theorem provers to verify
whether the system satisfies certain desired (formal) properties. Simulations pro-
duce possible behaviours of the system, which enable to understand the meaning
of the abstractions and see whether it corresponds to the system requirements.

5 Conclusions

In this paper, we introduced the ‘Mind as a Service’ (MaaS) architecture.
Inspired by service models, we propose to build the minds of social intelligent
agents as a composition of socio-cognitive services. Each of these services is
designed to implement a specific socio-cognitive functionality, based on different
theories and providing different levels of deliberation. We are at the initial stages
of this research, which we believe has the potential to realise a new paradigm for
agents. This paper aims to highlight the main features and challenges of MaaS.
We are currently developing a software environment to build and deploy social
minds. This platform, MindBuilder, depicted in Fig. 2 enables the specification,
composition, simulation and reuse of MaaS, and provides functionalities for (a)
Design: design services constructed using meta-models based on those formal
representations using a uniform interface structure; (b) Composition: specify
Deliberation Bus models to compose services into MaaS systems with different
deliberation models; (c) Simulation: simulate and verify the behaviour of those
MaaS systems; (d) Library: provides library capabilities to store and search for
services. The impact of the resulting systems on the people interacting with them
is potentially very high. It is therefore crucial to consider the ethical impact of
social intelligent systems. We believe that realistic technical solutions are needed
before we can fully address the moral and ethical issues inherent to artificial sys-
tems that provide care, change behaviour, and interact with vulnerable people
across all age-groups. User participation and near-realistic experimentation envi-
ronments are needed to explore and evaluate technical results and their ethical
consequences in a controlled non-evasive way.

Finally, at this stage, we are only considering the development of single agents
(as a composition of socio-cognitive services). Future work will focus on the
interaction of different MaaS in multi-agent systems, specifically in cooperative
teams integrating several agents and people.
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Abstract. Existing approaches for the verification of normative sys-
tems consider limited representations of norms, often neglecting collec-
tive imperatives, deadlines and contrary-to-duty obligations. In order to
capture the requirements of real-world scenarios, these structures are
important. In this paper we propose methods for the specification and
formal verification of complex normative systems that include contrary-
to-duty, collective and event-driven imperatives with deadlines. We pro-
pose an operational syntax and semantics for the specification of such
systems. Using Maude and its linear temporal logic model checker, we
show how important properties can be verified for such systems, and
provide some experimental results for both bounded and unbounded
verification.

Keywords: Model checking · Normative systems · Collective
imperatives

1 Introduction

The specification and verification of properties of normative systems is an impor-
tant consideration for the design of complex distributed systems [1,6]. Motivated
by the need to capture the requirements of real world scenarios, research on the
specification of normative systems has explored conditional [18], event-governed
(e.g. activation/expiration condition) norms [16], collective imperatives [9,14],
imperatives with deadlines [7], and contrary-to-duty (CTD) norms [18]. A fur-
ther focus has explored mechanisms for the analysis of systems of norms for
the purpose of identifying and resolving conflicts between norms and plans [19].
Although such analyses are of benefit, for safety critical systems it is important
to analyse the interactions between normative constraints and agents’ actions
as a system evolves. For these reasons the use of model checking [3] techniques
to analyse liveness and safety properties of norm-governed systems has been
explored [1,6,8]. To date, however, this research has focussed on restricted rep-
resentations of norms such as labelling states or transitions as compliant/non-
compliant. Ågotnes et al. [1], for example, study the complexity of this model
c© Springer International Publishing Switzerland 2016
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checking problem for different robustness-related properties; e.g. whether a cer-
tain property is guaranteed in the event of a subset of agents violating a norm.

The focus of this paper is on how to efficiently apply model checking to
analyse properties of normative systems specifications with richer representations
of norms. In particular, we consider event-governed conditional norms, deadlines
for the fulfilment of obligations, and contrary to duty and group imperatives. The
contributions we claim are as follows: (i) We propose a norm specification lan-
guage that is sufficiently expressive to capture all the features discussed above,
namely còir 1; (ii) a Structural Operational Semantics (SOS) [15] for a mon-
itoring component that, given a description of the environment, keeps track of
activation, expiration, fulfilment, and violations of norms; and (iii) a realisation
of this component using the Maude [4] rewriting logic framework, which allows
us to perform formal analysis of normative systems specifications. A particular
challenge is that representing time explicitly (in order to reason about temporal
deadlines) makes the problem undecidable. For these reasons we explore both
the use of bounded model checking and model abstraction to obtain a finite
Kripke structure for unbounded model checking. We present some results of
both these approaches in an example domain that motivates the requirements
for us considering such a rich representation of norms.

2 Motivating Example

Consider a coalition of agents of the sea-guard, consisting of a set of Unmanned
aerial vehicles (UAVs), helicopters, and boats. Their goal is to monitor and inter-
cept unauthorized boats trying to access a restricted area. The norms that guide
the behaviour of the coalition are: (1) At any moment at least one member of
the coalition must monitor the area. Moreover, we prefer having UAVs moni-
toring the area over helicopters. We assume that only helicopters and UAVs are
capable of monitoring. (2) Whenever an unauthorized boat enters the area, a
member of the coalition must intercept it before a certain deadline expires. (3) If
no one intercepts the boat, then at least one member of the coalition must send a
report to head-quarters before a certain deadline expires. These are all examples
of collective imperatives: they require at least one member of the coalition to
act. Norm 3 is also a CTD obligation that is activated in the event of a violation
of the obligation 2. Moreover, norms 2 and 3 require the agents to perform an
action before a certain deadline (a liveness property), while norm 1 requires that
at any given moment someone is monitoring the area (a safety property).

3 CÒIR Norm Specification

We now introduce a formalism for representing norms that satisfies our require-
ments, which we call còir. We allow for the definition of obligations with dead-
lines and prohibitions and we assume that everything that is not prohibited is

1 còir is Scottish Gaelic for obligation.
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permitted. Compliance with norms is evaluated against a knowledge base KB
that is dynamically updated to represent the environment and the observable
properties of the agents acting within it. We rely on the closed-world assump-
tion, which we believe to be reasonable in a verification setting. We include
the description of previous violations in the knowledge base. These can then be
used to activate CTD norms. An issue that has been discussed, for example,
by Dignum et al. [7] is whether an obligation with a deadline should persist or
be deactivated after a violation; i.e. after the deadline has expired without the
obligation being fulfilled. còir supports the specification of either of these alter-
natives. By default obligations do not expire when violated, but, thanks to the
fact that violations are represented in KB , it is always possible to specify the
expiration condition as being triggered by a violation of the current instance.

3.1 Syntax

A norm ndi is defined as a tuple 〈idi,modi, acti, expi, goali, ddli〉 where: idi is a
unique identifier; modi ∈ {O,F} specifies whether the norm is an obligation with
deadline or a prohibition; acti (activation condition) describes a pattern that,
when matched in KB , causes a norm instance to be detached; goali represents
the situation that needs to be brought about (for an obligation) or avoided (for
a prohibition); expi (expiration condition) is a condition that, when met, causes
the expiration of the instance; and the deadline for the fulfilment of the norm
(ddli) can be temporal or symbolic and is defined only for obligations.

Figure 1 shows the EBNF grammar of the operational language used to rep-
resent the components of a norm specification. functor and strTerm are iden-
tified by strings that start with a letter, numTerm by numbers and varTerm by
strings that start with a ? character. ?actTime, ?violTime, ?tick, ?this-id,
?violated and ?flag are reserved terms. The description of the environment,
KB , consists of a set of ground predicates; i.e. predicates with no varTerm. Intu-
itively, a boolExpr represents a condition that is evaluated against KB returning
a boolean result, while a formula is a pattern with a set of variables that is eval-
uated by returning the set of substitutions that make the pattern match a subset
of KB . In a norm description, acti is represented by a formula, while expi, goali,
and ddli are boolExprs.

The formula VIOLATION-OF(n, s) is matched when there is a violation of
norm n and is used for the activation of CTD obligations. The meaning of the
parameter s will be explained in Sect. 4. The meanings of EQUALS, EXISTS and
the usual boolean operators are intuitive. TEMPORAL(n) is evaluated to true if a
temporal deadline has expired, while VIOLATED can be used in expi and returns
true if the instance being evaluated has been violated. COUNT (v IN {f}) > n
evaluates to true if the number of different assignments of the variable v that
matches the pattern f is higher than the number n.
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Fig. 1. EBNF grammar for the COIR language.

3.2 Representing Collective Obligations

We now discuss how our formalism allows us to represent different types of
collective obligations [14]. In contrast to Tinnemeier et al. [17], we allow goali,
expi, and ddli to include variables that have not been bound at activation time.
Through the use of the patterns EXISTS{fi} and NOT EXISTS{fi} we are able to
express existential and universal quantification on these variables. Inspired by
Norman and Reed [14] we discuss some common patterns of collective obligations
and show how they can be expressed in our language (See [9,14] for discussions
of responsibility in collective obligations). In order to ease the presentation, we
assume that agents are organized in groups, group membership is represented
by predicates of the type memberOf(agent,group), and an agent’s performance
of an action by perform(agent,action).

Joint distributive obligations are obligations where all the members of group
g are responsible for all the members of the group performing the action a. This
can be expressed by an obligation where:

acti = memberOf(?add,g)

goali =NOT EXISTS {IN {memberOf(?ag,g)}
FILTER NOT EXISTS {perform(?ag,a)}}

goali is met when there is no member of g that has not performed a; i.e. when
all the members of g have performed a. As a result, if any of the members of
the group do not perform the task, all the members will be responsible for the
violation. Alternatively we could consider the group as an entity to be responsible
for the fulfilment of the obligation by specifying the activation condition as:

acti = BIND(?add,g)
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and referring to the group as ?add in the goal. Note that if a group has no
members, such an obligation would be trivially fulfilled. It might be appropriate
to add the constraint EXISTS{memberOf(?add,g)} in acti or in goali.

Joint collective obligations specify that all the members of a group g are
responsible for at least one member of the group performing the action a.

acti = memberOf(?add,g)

goali = EXISTS{ memberOf(?ag,g) /\ perform(?ag,a)}

4 CÒIR Semantics

We define the semantics of còir through a Structural Operational Semantics
(SOS) [15], a framework for the description of the semantics of programming
and specification languages. SOS consists of a set of transition rules that gener-
ate a transition system whose states are called configurations. Transition rules
are of the form P

C→C′ meaning that, whenever P holds, a transition from the
configuration C to C ′ is applicable. We use SOS to describe how the active norm
instances and violations are updated every time we detect a change in KB .

In formalising these semantics we assume two functions that evaluate
formula and boolExpr; these will be summarised below. We define a substi-
tution θj ∈ Θ as a set of assignments [v/c] where c is a constTerm and v a
varTerm. Formulae are evaluated by means of a function match : 2P × Q → 2Θ,
where P is the set of all predicates, Q the set of all formulae, and Θ the set of
all substitutions. Intuitively, match(KB , f) returns all the substitutions θi such
that f · θi is entailed by KB . Boolean expressions (boolExpr) are evaluated by
means of a function eval : 2P ×E ×Θ → bool where E is the set of all boolExpr
and bool ∈ { true, false }. A norm instance [idi, θj , at] is detached at time
at for each substitution θj ∈ match(KB , acti). Then eval(KB , e, θj) is used to
evaluate expi, goali, and ddli. The addressee of the norm, identified by the value
assigned to ?add in θj , is responsible for complying with the obligation (reaching
a state where eval(KB , goali, θj) = true before the deadline) or with the pro-
hibition (avoiding states where eval(KB , goali, θj) = true until the prohibition
expires).

A further issue to address prior to detailing the transition rules of our opera-
tional semantics is that of “duplicate activations”. Consider a simplified version
of norm 3 from Sect. 2. We specify its activation condition as follows:

type(?add,coalition) /\ type(?boat,unBoat)
/\ type(?area,rArea) /\ inArea(?boat,?area)

In other words, an instance of the obligation to send a report should be detached
when an unauthorized boat is in the restricted area. Intuitively, if the same boat
remains in the restricted area for more than one consecutive instant of time,
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we do not want the coalition members to send more than one report. However,
if the boat exits and then re-enters the area, we would expect the coalition
to be obliged to send another report. Formally, if we denote by KB t the state
of the knowledge base at time t, we capture this distinction by activating an
instance of a norm ndi, associated with a substitution θj , at an instant of time
t whenever θj ∈ match(KB t, acti) and θj �∈ match(KB t−1, acti); i.e. when we
find a substitution such that acti goes from “unmatched” to “matched” in two
subsequent instants of time. To do that we keep record of the instances [idi, θj , at]
such that the acti was matched in the previous instant of time.

Following Dennis et al. [6], in order to enforce an order of execution among
the transitions of the operational semantics, we organize the reasoning cycle in
three stages: (A) Deactivate instances for which the expiration condition holds
or the obligation has been fulfilled; (B) Check for violations of active obligations
(if the deadline has passed, but the goal has not been achieved) and prohibitions
(if the state to avoid is achieved). (C) Check for the activation of new norms
and update the list of previously matched instances.

In the following we denote by a1 : a2 : . . . a list of elements and we use ε
to indicate the end of a list. Moreover, we assume that KB contains a predicate
cT(n), where n is a numTerm that represents the current time of the system and
we denote by time(KB) the value n such that cT(n) ∈ KB . A configuration
Conf is defined as 〈KB ,Δ, I,Π, Φ,Σ, r〉 where KB is the current state of the
knowledge base, Δ is a list of norm descriptions, I is the list of active norm
instances and Π the list of previously matched instances, which, as discussed
above, is needed to avoid the problem of multiple activations. Φ is the set of
violations detected in the current reasoning cycle2, and a violation is represented
as v = [idi, θ, t], where t corresponds to the violation time. Σ is the stage of the
computation and r is a flag that is set initially to false, and changed to true if
we need to loop again through the reasoning cycle. This is necessary because,
whenever we activate a new instance (stage C), we need to check whether this
is instantly fulfilled or violated (A and B). Moreover, detecting a violation (B)
could trigger an expiration or an activation (A and C).

The initial configuration is 〈KB0,Δ, ε, ε, ε,A, false〉, where KB0 describes
the initial state and Δ the normative specification. We now illustrate the key
rules of the operational semantics. For each rule we include only the components
of the configuration that are involved in it.

Rule R1 applies when the first instance in I is such that its expiration con-
dition holds. In this case we simply remove the instance from the list. Similarly
another rule (not included) is defined for the case of a fulfilled obligation. Rule
R2 accounts for the case where the first instance in the list is a prohibition and
the expiration condition is not met. In this case we move the instance to the
end of the list, after the ε symbol. We write a similar rule (not included) for an
obligation instance that it is neither fulfilled nor expired. Rule R3 represents the
end of stage A, which occurs when the first instance is ε.

2 We refer to the whole updating procedure as a reasoning cycle, while A, B and C
are the stages of a cycle.
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〈KB ,Δ, [idi, θj , at] : I,A〉, ndi ∈ Δ,
eval(KB , expi, θj) = true

〈KB ,Δ, [idi, θj , at] : I,A〉 → 〈KB ,Δ, I,A〉
(R1)

ndi ∈ Δ, modi = F, eval(KB , expi, θj) = false
〈KB ,Δ, [idi, θj , at] : I,A〉 → 〈KB ,Δ, I : [idi, θj , at],A〉 (R2)

true
〈ε : I,A〉 → 〈I : ε,B〉 (R3)

Rule R4 detects violated obligations; i.e. obligations whose deadline has expired
before the goal is satisfied. Since fulfilled obligations have been deleted in stage
A, we just need to check whether the deadline has expired. When we detect a
violation we update the violations list, add the violation description (denoted by
d([idi, θj , τ ])) to KB and we set the flag r to true since the violation predicate
might trigger the expiration condition of that instance. d([idi, θj , τ ]) consists of a
predicate v(idi, p(θj), τ) where p(θj) is a representation of the substitution in
the form of a predicate. In rule R5 if the first obligation in the list is not violated
we move it at the end of the list. Similarly we add two rules (not included) for
prohibitions, where we consider a prohibition to be violated if its goal condition
evaluates to true. Φ is included to avoid infinite loops. In fact, since rule R4
sets r to true, detecting the same violation in each loop would cause infinite
iteration. Rule R6, together with the condition [idi, θj , τ ] �∈ Φ of rule R4 ensures
that each violation is detected only once for each reasoning cycle. Another rule
similar to rule R3 (not included) is defined for the end of stage B.

modi = O, [idi, θj , τ ] �∈ Φ,
eval(KB , ddli, θj) = true, KB∗ = KB ∪ d([idi, θj , τ ])

〈KB ,Δ, [idi, θj , at] : I, Φ,B, r〉 →
〈KB∗,Δ, I : [idi, θj , at], [idi, θj , τ ] : Φ,B, true〉

(R4)

nd.mod = O, eval(KB , ddli, θj) = false
〈KB ,Δ, [idi, θj , at] : I,B〉 → 〈KB ,Δ, I : [idi, θj , at],B〉 (R5)

[idi, θj , τ ] ∈ Φ
〈[idi, θj , at] : I, Φ,B〉 → 〈I : [idi, θj , at], Φ,B〉 (R6)

Rule R7 checks for the activation of new instances of the first norm ndi in Δ. Let
τ = time(KB), for each θj ∈ match(KB , acti), we add a new instance [idi, θj , τ ]
at the end of Π (list Π2), while we add to I only those instances that are not in
Π (list I2). The substitutions of the instances added to I2 are integrated with
the assignment of the variables ?actTime and ?this-id which are needed to
evaluate the TEMPORAL and the VIOLATED conditions as we will show below. If
we activate at least one new instance we set r = true. By adding new instances
at the end of Π, we ensure that, at the end of the reasoning process, the instances
added to Π during the current reasoning cycle will be those after ε. Formally the
pattern Π3 : ε : Π4 identifies with Π4 all the instances added in the current step
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and with Π3 all the instances added during the previous reasoning cycle. This
is exploited in rule R8, where, at the end of stage C, if r is equal to false, we
end the reasoning cycle (stage end) and discard Π3 and Φ. We define another
rule (not included) for the case where r is equal to true. In this case we move
ε at the end of Δ and go back to stage A. In rule R7, when we check if a new
instance is not in Π, we consider also instances added in previous loops of the
current reasoning cycle. In this way it is guaranteed that we do not reactivate
the same instances in each loop.

θk = [?actTime/τ ] ∪ [?this-id/idi] and
I2 = 〈[idi, (θj ∪ θk), τ ] : . . . 〉 s.t. θj ∈ match(KB , acti) and

eval(KB , expi, θj) = false and [idi, θj , τ − 1] �∈ Π,
Π2 = 〈[idi, θj , τ ] : . . . 〉 s.t. θj ∈ match(KB , acti),

r∗ = true iff (I2 �= ∅) or (r = true)
〈KB , ndi : Δ, I,Π,C, r〉 →

〈KB ,Δ : ndi, I2 : I,Π : Π2,C, r∗〉

(R7)

true
〈ε : Δ,Π3 : ε : Π4, Φ,C, false〉 → 〈Δ : ε,Π4 : ε, ε, end, false〉 (R8)

With these transition rules in place, we now provide further details of the
match and eval functions for querying KB . We denote by θi[v] the value c
assigned by θi to the variable v. Given a formula f , f · θi denotes the formula
obtained by substituting, for each varTerm v with an assignment in θi, each
occurrence of v in f with θi[v]. Moreover we say that two substitutions θ1 and
θ2 are compatible if and only if there is no variable v that is bound in both the
substitutions such that its assigned values are different. Formally:

compatible(θ1, θ2) = true iff � v, ([v/c1] ∈ θ1 and [v/c2] ∈ θ2 and c2 �= c1)

Let p denote a predicate, e a boolExpr, fi a formula, vi a varTerm, n and a
numTerm, si a strTerm and t a constTerm. We denote by s1.θk the substitution
obtained by adding the string s1 as a prefix to all varTerms in θk. Figure 2
summarizes the semantics of match and eval.

The construct TEMPORAL(n), where n is a numTerm, will be used to evaluate a
temporal deadline of n steps relative to the activation time of a norm instance.
In defining its semantics we assume that the variable ?actTime is bound in θj to
the activation time (see Rule R7 of above). The construct VIOLATION-OF(n, s)
presented in Sect. 3.1, can be used in the activation condition of a CTD norm to
return the description of a detected violation of a norm with id n. For a violation
[idj , θj ], with n = idj , it returns the substitution obtained by adding the prefix
s to all the variable names of θj . The prefix is added in order to allow the
norm designer to distinguish between variables bound by the substitution of the
violation and variables bound by the activation condition, even when they have
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Fig. 2. Semantics of match and eval

the same variable name. The construct VIOLATED is used when we want to ask
whether the current instance has been violated (e.g. for the expiration condition
of an obligation). It is evaluated to true if KB contains the description of a
violation of the instance being evaluated. Note that, since, for each instance,
we bind the activation time in the substitution, VIOLATED is able to distinguish
between violations of different instances associated with the same pair (ndj, θj).

Figure 3 illustrates the life-cycle of an obligation (left) and a prohibition
(right) instance in còir. Circles represent states and arrows represent transitions
and are labeled with the condition that triggers the transition. A norm instance
is activated when the activation condition (act) holds and an equivalent instance
(an instance of the same norm associated with the same substitution) is not in
the previous matches (Π) list. An active obligation becomes fulfilled when the
goal (goal) condition holds, it expires if the expiration condition (exp) but not
the goal holds, and it becomes violated if the deadline (ddl) condition holds
true before the expiration or the goal condition. Once an obligation instance
is violated, it remains so until the expiration condition holds (in which case it
becomes expired) or the goal condition holds (in which case it becomes fulfilled).
Once an obligation is fulfilled or expired it will remain so for the remainder of
the execution. An active prohibition expires when the expiration condition holds,
and becomes violated if the goal holds, but the expiration condition does not.
A violated prohibition becomes expired if the expiration condition holds. It is
important to notice that, when a previously violated norm becomes expired it
will not be detected as a current violation. A norm designer, however, can specify
the clause NOT VIOLATED in the expiration condition in order to avoid this. The
same applies to violated obligations that becomes fulfilled.
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Fig. 3. Norm instance life-cycle

5 The Seaguard Example

We now show how we can capture the norms described in our motivating example
(Sect. 2) using the còir formalism. Norm 1 states that at any instant of time, at
least one agent must monitor the area. This may be captured by a prohibition
from achieving a state where no agent is monitoring the area (a safety property).
The fact that a UAV monitoring the area is preferred to a helicopter can be
represented by separating the norm in two as shown in Fig. 4 (nd1 and nd4).
Norm nd1 is a prohibition that is violated if no UAV is monitoring the area.
Norm nd4 is violated if neither a UAV nor a helicopter is monitoring the area.
Therefore, a situation where a UAV is monitoring the area would comply with
both the norms, while having a helicopter monitoring would violate only nd1.

Norms nd2 and nd3 capture the specification of norms 2 and 3 from our
motivating example respectively. An instance of the obligation nd2 is activated,
for a coalition, every time an unauthorized boat ?ag1 enters the restricted area
?ar. The obligation is fulfilled if one member of the coalition ?ag2 intercepts
?ag1 before a deadline of three time steps, while it expires if ?ag1 exits ?ar
or the obligation is violated. Obligation nd3 is activated by a violation of norm
nd2, and is addressed to the same coalition. It requires at least one member of
the coalition to report the unauthorized access.
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Fig. 4. Specification of norms nd1, nd2 and nd3.

6 Formal Verification

In this section we explore the problem of verifying properties of multi-agent
systems specified using còir. Firstly we discuss our implementation of the oper-
ational semantics in Maude [4], a rewriting logic framework that allows us to
specify the semantics of a system by means of rewriting rules. We chose Maude
because its syntax for specifying rewriting rules is very close to that for SOS.
Moreover, by implementing our system in Maude, we obtain a specification which
is executable and on which we can perform formal verification using the Maude
Linear Temporal Logic (LTL) model checker. In this way we can: (i) Validate
our normative specification; for example by verifying that a specified non compli-
ant behaviour always results in a detected violation; and (ii) Verify how robust a
multi-agent system is to violations; for example by verifying if a certain property
is guaranteed under certain compliance assumptions [1,8].

We discuss the reasons why, by representing our model as explained in Sect. 4,
we obtain an infinite state model. We show how we can use the LTL model
checker to perform bounded model checking of the infinite state system, and
then show how we can modify our model in order to make the state space finite
and apply unbounded model checking.

6.1 Maude Implementation

Maude modules can contain conditional equations: simplification rules used to
define data-types and language constructs and to specify how they are evaluated
by the system. Modules may also contain conditional rewriting rules: transition
rules that describe how the state of a system can evolve over time. We defined
the còir language (Fig. 1) and we implemented the match and eval functions.
We then implemented our operational semantics by means of an operator reason
that takes as arguments a configuration and returns the configuration resulting
from the application of the reasoning cycle. The reasoning process is described
by a set of conditional equations, which are a direct (syntactical) translation
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of the rules of Sect. 4 into the Maude syntax. The dynamics of the system is
specified by a set of rules that follow the pattern:

crl C => reason( tick(C’, n) ) if condition.

where C and C’ are two configurations and the only component that can change
from C to C’ is the knowledge base. tick is a function that takes a configuration
C and an integer n as parameters and increases the time in C by n units. The
meaning of this rule pattern is that, at each step, after applying the changes in
the description of the environment, we invoke the reason operator to update the
list of active instances, previous matches and violations accordingly. The Maude
model checker, given one initial state i, and a set of transition rules T , generates
a Kripke structure containing all the states that are reachable from i.

6.2 Bounded Model Checking

Properties of a norm-governed multi-agent system can be verified using the
Maude LTL model checker. In order to do so we need to define a labelling
function λ, specifying the set of atomic propositions q ∈ Q that hold in some
state s ∈ S [4, Chap. 13]. We denote by ((s |=λ q) = true) the fact q holds in
s and by ((s |=λ q) = false) the fact that q does not hold in s. The state of a
multi-agent system is represented by the configuration Conf of the monitoring
component. Let Q be the set of all predicates as defined in Fig. 1. Equations 1–4
defines λ.

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ p = true if p ∈ KB . (1)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ violated(n) = true

if ∃ θj , τ s.t. : d([n, θj , τ ]) ∈ KB
(2)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ violated(n, t) = true if
∃ θj , τ s.t. : d([n, θj ∪ [?add/t], τ ]) ∈ KB

(3)

〈KB ,Δ, I,Π, Φ,Σ, r〉 |=λ p = false otherwise. (4)

Equation 1 makes it possible to use the predicates of KB as atoms of LTL
properties. Equations 2 and 3 define properties about the normative state of a
configuration, allowing us to query the model checker for states where a certain
norm has been violated (optionally specifying an addressee).

The principal requirement to make the LTL model-checking decidable is for
the transition system to have a finite number of reachable states. However, the
fact that we represent time explicitly in KB means that the state space is infinite.
One way of dealing with this is to limit the state space to the states reachable in
a fixed number of transitions, l. We can do this, for example, by modifying the
specification of the system so that all the conditional rewriting rules that increase
the time by n are applicable only to states where time(KB) < l − n. Ideally,
however, we want to be able to verify system properties in the unbounded case.
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6.3 Unbounded Model Checking

In order to make the unbounded model checking problem decidable, we need to
remove any explicit reference to the current time from the semantics. We remove
the predicate cT(n) from KB and the references to activation and violation time
from instances and violations respectively (now represented as [idj , θk]). In order
to represent temporal deadlines, we take an approach similar to the one proposed
by Lamport [12]. When we activate an instance (Rule R7), instead of binding
?actTime, we add the assignment [?tick/n] in the substitution of instances of
norms that include a statement of type TEMPORAL(n). Rule R7 is substituted
with:

I2 = 〈[idi, (θj ∪ θk)] : . . . 〉 s.t. θj ∈ match(KB , acti) and
eval(KB , expi, θj) = false and θk = isTemp(ddli) and

[idi, θj ] �∈ Π,Π2 = 〈[idi, θj ] : . . . 〉 s.t. θj ∈ match(KB , acti),
r∗ = true iff (I2 �= ∅) or (r = true)

〈KB , ndi : Δ, I,Π,C, r〉 → 〈KB ,Δ : ndi, I2 : I,Π : Π2,C, r∗〉

(R7*)

where isTemp(ddli) checks whether a deadline is temporal and, in that case,
returns the initialisation for the ?tick variable.

isTemp(ddli) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[?tick/t]
if ddli contains one and only one statement

of the type TEMPORAL(t)

∅ otherwise.

We then modify the tick(C,m) operator so that, for each instance [idj , θk],
it will decrease all the values t such that [?tick/t] ∈ θk by a value equal to
the minimum of t and m. The semantics of eval(KB , TEMPORAL(n), θj) is then
changed to return true if and only if the ?tick variable reaches value zero:

eval(KB , TEMPORAL(n), θj) = true iff [?tick/0] ∈ θj .

In other words, for every instance of a norm with a temporal deadline, we
activate a timer that is decremented by a call to the function tick. The deadline
is considered expired when the timer reaches 0. Another consequence of removing
the explicit reference to the current time is that, without a reference to the
activation time, multiple instances or violations associated with the same pair
(ndi , θj) become indistinguishable. This leads to a number of problems at the
implementation level. Consider the example in Sect. 5. When the coalition fails
to intercept an unauthorized boat ub (violation of nd2), an instance of nd3 that
binds to ub will be activated and included in the list Π. Subsequent violations
will bind to the same substitution in the activation condition of nd3, preventing
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any new activation. In order to solve this problem we need to make sure that
every new violation of nd2 will match, for the activation condition of nd3, to
a substitution that is not currently in Π. We do this by adding a boolean flag
in the representation of the violation in the knowledge base. When the first
violation of nd2 associated with θj is detected, its description is added to KB
with the flag set to false. At every subsequent violation associated with the
same pair (nd2, θj) we change the value of the flag. We update the semantics
of match for the construct VIOLATION-OF(t1, s1) to include the variable ?flag
bound to the flag value instead of the variable ?violTime. When, for example,
the flag values goes from false to true, the previous match for the activation
of nd3 is deleted while the instance with ?flag set to true gets activated. This
mechanism guarantees that we can activate at least one CTD instance per step
for each pair (nd3, θj). Further, to correctly interpret the VIOLATED expression,
we need to check for a violation of the current instance. Again, without relying
on the activation time, we are not able to distinguish between different violations
associated to the same pair (ndi, θj). We solve this by adding to the substitution
θj of each instance [idi, θj ] a variable ?violated which is initially unbound. We
modify Rule R4 (and the equivalent for violated prohibitions) to set ?violated
to true when a violation is detected, and update the semantics of eval for
VIOLATED as follows:

eval(KB , VIOLATED, θj) = true iff [?violated/true] ∈ θj (5)

As a result of these modifications, Rule R4 becomes as follows:

modi = O, θk = θj ∪ [?violated/true]
[idi, θj ] �∈ Φ, eval(KB , ddli, θj) = true,

KB∗ = addV (KB , [idi, θj ])
〈KB ,Δ, [idi, θj ] : I, Φ,B, r〉 →

〈KB∗,Δ, I : [idi, θk], [idi, θk] : Φ,B, true〉

(R4*)

where θk is the substitution obtained by setting the value of the ?violated
flag and addV updates the content of KB as discussed above:

addV (KB , [idi, θj ]) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

KB ∪ v(idi,p(θj),false)
if ∀f ∈ {true, false}
v(idi,p(θj),f) �∈ KB

KB \ v(idi,p(θj),f)

∪ v(idi,p(θj),¬f)
if v(idi,p(θj),f) ∈ KB

6.4 Model Checking Results

We implemented our scenario in Maude and ran the LTL model checker to verify
properties of the system for both bounded and unbounded cases.
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Table 1 shows the results for bounded model checking3. The scenario imple-
mented includes a single UAV a Helicopter and two unauthorized boats and is
regulated by norms nd1, nd2 and nd4. In all these scenarios agents can perform,
according to their capabilities, at most seven actions: start and stop monitoring,
start and stop intercepting, start and stop reporting, and move to a different
area. We checked the following property, which asks whether a state where uav
does not monitor the restricted area area2 always results in a violation of nd1:

�((¬monitoring(uav1, area2)) → violated(1))

To prove that this property is always true the model checker has to observe the
whole state space, giving us a worst-case scenario in terms of execution time.
We can see that both the execution time and the number of states increase
exponentially with the number of steps.

Table 2 shows the results for unbounded model checking in different scenarios.
cA is the number of coalition agents, uB the number of unauthorized boats,
while for each ndi , a � indicates that the norm was included in the scenario.

Table 1. Model checking results: bounded steps

Step limit

7 8 9 10 11

States 4647 12352 32336 81504 202007

Execution time 10 s 29 s 78 s 3m 8s 8 m

The scenario in row 2 (Table 2.a) is equivalent to that used to produce the
results in Table 1. Note that the execution time for bounded model checking at
10 steps is higher than the unbounded case. This is due to the fact that, since we
include the time value in KB , conceptually equivalent states are not recognized
because their time values differ, making it impossible for the model checker to
take advantage of optimizations that rely on state matching.

As we can see from Table 2.a, the scenarios where both nd2 and nd3 are
enforced are those with higher execution times. We believe this is due to an
interaction between temporal deadlines and CTD obligations: In fact nd3 is a
CTD of nd2 and each of them has a temporal deadline of 3 steps. Values for
the ?tick variable range from 3 to 0 in instances of nd2 and, whenever nd2 is
violated, the timer for nd3 is initialized. Our intuition is confirmed by Table 2.b:
by decreasing the deadline to 1, we obtain significantly smaller state spaces and
execution times.

We now show how model checking can be used to verify that our normative
specification is correct, by checking that non compliant behaviours are detected

3 All tests ran on a Intel Core i5 2.7Ghz, 16 GB RAM.
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Table 2. Model checking result: unbounded

Part a: ddl2 = ddl3 = TEMPORAL (3)

cA uB nd1 nd2 nd3 nd4 States Time
2 2 � � 5250 20s Part b: ddl2 = ddl3 = TEMPORAL (1)

2 2 � � � 20012 2m cA uB nd1 nd2 nd3 nd4 States Time
2 2 � � � � 243994 1h,16m 1 2 � � � � 5717 40s
3 2 � � 19032 2m 2 2 � � � � 17653 5m
3 2 � � � 72327 15m 3 2 � � � � 75245 16m
3 2 � � � � 870165 25h

as violations. Let’s consider a variation of nd2 stating that, in order to optimize
the allocation of resources, we want one and only one member of the coalition to
intercept the unauthorized boat detected in the restricted area. Intuitively we
would be tempted to express the norm with the following goal:

goal2 = COUNT ( ?ag2 IN { memberOf(?ag2,?add)
/\ intercepting(?ag2,?ag1) } ) = 1

which holds true if the number of agents (?ag2) that are members of the
coalition and are intercepting ?ag1 is equal to 1. We can now use model checking
to verify whether this specification captures the meaning we intend. For example,
we might ask whether it is true that having two agents intercepting the same
boat results in a violation. We refer to area2 to be the restricted area, ub the
unauthorized boat, and uav and heli the UAV and the helicopter respectively.
We check the following property, which says that having both uav and heli
intercepting ub always results in a violation of nd2.

�((intercepting(uav,ub) ∧ intercepting(heli,ub)

∧ inArea(ub,area2)) → violated(2))

The model checker returns an execution trace that violates the property as a
counter example. In fact, if the uav and heli start intercepting at two different
instants of time, the obligation is fulfilled (and thus deleted) when the first agent
starts intercepting. We can capture the intended meaning with an obligation to
have at least one agent intercepting before the deadline and a prohibition from
having multiple agents intercepting the same boat.

We now show, with an example, how model checking can be used to ver-
ify robustness-related properties. We want to verify whether compliance with
nd2 and nd3 guarantees that an unauthorized boat cannot enter and exit the
restricted area without being reported or intercepted. We denote by area1 and
area2 an unrestricted and a restricted area respectively. The following property
says that there is no path such that ub goes from area2 to area1 being neither
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intercepted nor reported and without triggering a violation of nd2 or nd3.

¬♦(inArea(ub,area2) ∧ ♦inArea(ub,area1) ∧
�(¬violated(2) ∧ ¬violated(3) ∧
¬intercepting(uav,ub) ∧ ¬reporting(uav,ub) ∧
¬intercepting(heli,ub) ∧ ¬reporting(heli,ub)))

The model checker shows as a counterexample a path where ub moves from
area2 to area1 before the deadline for it being intercepted, causing the expira-
tion of nd2. We thus verified that our normative system does not guarantee that
the specified critical situation will never occur, even if we consider only compli-
ant paths. If we want to make sure that, in a situation of compliance, a boat
that exits the area is at least reported, we can modify exp2, ddl2 and exp3 as:

exp2 = VIOLATED ; exp3 = false
ddl2 = TEMPORAL(3) \/ NOT EXISTS{inArea(?ag1,?ar)}

In this way, both the expiration of the temporal deadline or ub exiting area2
before being intercepted trigger a violation of nd2, thus activating an instance
of nd3. By applying model checking we can see that compliance with revised
norms nd2 and nd3 guarantees that the boat is intercepted or reported.

7 Discussion

The formalism we use to represent norms builds upon a number of approaches
to formalise norms for practical applications. For example Tinnemeirer et al.
[17] describe the operational semantics of a normative language with support
for norms with deadlines and CTD obligations. Hüber et al. [11] adopt an SOS-
approach to formalise the norm lifecycle (activation, fulfilment, violation, etc.)
and for monitoring the execution of norm-governed systems, which provides the
underpinning for a language (NOPL) for programming such systems. Alvarez-
Napagao et al. [2] propose a semantics based on production systems for a norm
monitoring component that supports norms with deadlines. Similarly, Hindriks
and Van Riemsdijk [10] propose a semantics based on timed transition systems
to keep track of activation, fulfilment and violation of obligation with real time
relative deadlines. This semantics could be used for verification purposes, for
example with tools such as Real-Time Maude [13]. This issue, however, is only
discussed briefly by the authors and no details are offered. We complement this
existing research by addressing the issue of verifying temporal logic properties
of such systems. còir also permits the representation of collective imperatives,
which are not considered in existing models defined using semantics at the oper-
ational level.

Existing research on the verification of properties of normative systems has
focussedon restricted representations of norms, considering only variations of
conditional deontic logic, without considering deadlines, event-driven norms, or
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collective imperatives. Dennis et al. [6], for example, integrate the ORWELL
normative language in the MCAPL verification framework in order to verify
properties of agents’ organisations. In ORWELL norms are represented through
counts as rules, which label states as compliant or non-compliant by saying that
a brute fact counts as an institutional fact (e.g. a violation) in a certain context.
Our results (Table 2), show that, despite using a more expressive representation,
verification times are comparable to those reported by Dennis et al. [6].

In research that shares some similarities with ours, Cliffe et al. [5] describe a
formalism for specifying obligations with deadlines, permissions and contrary to
duty norms. They use answer set programming to verify properties of systems.
Their approach is, however, only able to analyse execution traces up to a certain
length, and in this regard, is equivalent to bounded model checking.

Ågotnes et al. [1] consider transitions of a Kripke structure that are labelled
as compliant or non compliant. It is then possible to use model checking to verify
properties of the system under different compliance assumptions. While such a
labelling might be expressive enough to represent the kind of norms captured by
our formalism, it is not clear how to compute it from a declarative normative
specification.

We believe that this mismatch between formalisms used to specify and mon-
itor norms and those used to verify and analyse normative systems makes it dif-
ficult to ensure that norms satisfy certain desired properties. Our work attempts
to bridge the gap between norm specification, monitoring and verification by
providing an executable specification that is verifiable through model checking.

For future research we plan to explore techniques to exploit domain symme-
tries in order to improve performance and to extend our model to allow agents
to issue imperatives at run-time.

8 Conclusion

In this paper we proposed còir, a language for the specification of obligations
and prohibitions with support for common features of real world norms, including
deadlines, contrary to duty and event-based activation/deactivation. We showed
how, thanks to the fact that we allow existential and universal quantification over
variables, our formalism can be used to specify common patterns of collective
obligations. We then formalized how norms are to be interpreted by means of
an operational semantics which we then implemented in Maude. We discussed
how the fact that we explicitly represent time in our model leads to an infinite
state space, and hence proposed an abstraction that preserves the semantics
and makes unbounded model checking decidable. We then used the Maude LTL
model checker to validate our normative specification and to verify its robustness
to violations.

Acknowledgments. This research was sponsored by Selex ES.
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Abstract. This paper discusses knowledge accumulation and diffusion mecha‐
nisms and their effect on social and institutional change in an artificial society.
The focus of this paper is to model the role of knowledge keepers in the context
of social control in the CKSW institutional meta-role framework. In literature this
role has been associated with helping to maintain social order by spreading social
awareness and resolving disputes. In addition to outlining the model of a complex,
adaptive, and self-sustaining artificial society, we examine in this context the
societal mechanism of violence control.

Keywords: Artificial social systems · Social simulation · Institutions · Complex
social systems · Agent-based modelling

1 Introduction

An increasingly popular approach for understanding complex social interactions in the
social sciences is agent-based modelling and simulation [1–5]. Most of the works in this
area take a specific perspective on the complex world of human societies and model
phenomena related to that perspective in isolation from any other aspects of the society.
However, agent-based modelling affords the opportunity to see how multiple intercon‐
nected factors may interact and affect an overall outcome.

This paper exemplifies this using a model of primitive human communities with
thousands of agents across multiple generations. Apart from representing an archetypical
primitive society, the model affords measuring changes of social relationships over time
and their effects on societal functioning. Furthermore, it demonstrates how these
modelled individuals dynamically adapt to different levels of resource availability or
different demographic compositions. The model introduces a set of specific social inter‐
actions, such as mutual sharing, maintaining personal relationships, and keeping up with
social reputation changes. We deem those to be applicable to primitive societies in
particular in order to measure their long-term effect on the society’s structural makeup
and socio-economic development.
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A notable feature of our model is its representation of generic roles that characterize
some of the fundamental social activities in the society and how they are coordinated.
In particular the generic role of the knowledge keeper will be shown below to be a key
element in the coordination of the society’s activities. It is our belief that such generic
agent roles, such as that of the knowledge keeper, shape a society’s social interactions
and are as fundamental to social sustainability as the coordination by norms and insti‐
tutions.

2 Background

As discussed in [6], primitive communities can be considered a good starting point for
modelling human interactions and societies’ structures. Agent-based models of such
societies typically have agents operate according to simple rules that are derived from
ethnographic field studies. We built our model based on the earlier extensive studies of
primitive cultures that were initiated by Younger [6–10]. Younger’s work was based on
his observations of pre-contact Pacific Island societies, and serve as an archetype for
pre-modern societies without advanced and explicit institutional structures. In order to
define both the society’s and agents’ internal structure we apply the CKSW approach
of Purvis and Purvis [11, 12] that identifies four fundamental meta roles of social inter‐
action that are believed to be found in every society. The CKSW Meta-Role Model
consists of four basic meta roles:

• C ‒ the Commander role. It characterizes leaders and those who are in charge of
decision-making and have access to coercive authority to control others.

• K ‒ the Knowledge role. The Knowledge role has the responsibility to create, main‐
tain, control, and transmit institutional knowledge. Since its central feature lies in the
management of knowledge, we refer to it as knowledge keeper in the remainder of
the text.

• S ‒ the Skill role characterizes know-how intelligence. Skilled people develop tools
to enhance their operations, and they have historically engaged in trade to exchange
these tools with other groups.

• W ‒ the Worker role represents the general working population which can use tools
to engage in productive activities.

The reflection of the CKSW meta-role model in real human societies suggests
that it can provide a natural structural scaffolding for agent-based models in artifi‐
cial societies. Its application to our model of an evolving primitive society is partic‐
ularly suitable, since it allows us to model and retrace structural developments of a
society both on an individual-centred micro level, an intermediate level (classes of
agents that are primarily dedicated to a particular role), and a macro level (the
overall structural outcome). The internal (individual level) CKSW element defines
different types of agents with varying preferences in the light of similar opportuni‐
ties. For example an individual with a relatively high K (knowledge)-value would be
more able to use and exploit knowledge that becomes available. In earlier work by
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Jahanbazi et al. [13], covering social interaction in primitive societies, only the C and
W meta roles were included in the social model. In general, when societies become
more organized, it is natural for them to start keeping track of and managing knowl‐
edge of general value, thereby shaping their value system and culture. For example,
a K-specific aspect is the interpretation of the natural environment and phenomena.
Thus special social roles with a focus on K-management have arisen in early soci‐
eties, such as the “medicine man” or priest that managed and interpreted knowledge.
Thus we believe that societies first emerged with C and W meta-role sectors (the
most primitive societies) and then developed into societies with C, W, and K meta-
role sectors. Only later were all four C, K, W, and S meta-role sectors present in
more developed societies. The work presented here describes a model for early C-K-
W societies that have agents that activate the C, K, and W meta roles.

Work on the part of other social scientists and agent-based modelers has investigated
building artificial societies, but without the CKSW scaffolding. Each uses a different
approach and different angle to define the complex world in their model. The models
developed in [3, 14] share our objective for developing a model which allows endoge‐
nous progression of institutional development. There are many works which only focus
on singular aspects captured in our model, for instance population dynamics [15–17],
mate selection [18–20], kinship [21], leadership and governance [3, 6], institutions [3,
14], economic development [2, 5, 22] or modelling the society’s history [23, 24].

Due to the multifaceted nature of our model and limited space, in the upcoming
section we can only briefly introduce the various elements of the model as well as
features relevant to the knowledge keeper role.

3 Model Description

Our model consists of one or more villages of people, each with a leader. All agents
have a finite lifetime (they can die of “old age”) and need to eat food resources in order
to sustain themselves. If an agent doesn’t eat enough food, it can die of hunger. For this
reason agents may sometimes be motivated to steal food from others. But agents may
be killed for either stealing food or for reasons of revenge due to negative opinions of
each other or previous negative experience. During their fertility ages, agents find mates
(based on the matching of their mutual relationship values) and reproduce offspring that
inherits (with a small possibility of mutation) their parents’ characteristics.

Model Overview. In summary, our core model follows the idea that ordinary worker
agents live in a village that is ruled by a leader agent and undergo a regular daily life
cycle. They gather food from the environment and bring it to storage locations controlled
by the leader. In our model an agent’s time schedule is based on its own characteristics.
For example, while the length of day is a universal parameter and is the same for all
agents, an agent’s “productive time” depends on its loyalty and defines how many time
units during the day they must work for the village leader. During their productive time
period, the follower (i.e. non-leader) agents are under the command of the leader and
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gather food from the surrounding area which they then deposit into a central storage
controlled by the leader.

After an agent’s productive time period has elapsed, it is free from obligations to the
leader. At this point agents can keep the collected food. Agents can carry this food
around, or can store it in their home. The stored food at home is accessible by all members
of a household and is secure from theft, while the food that agents carry might be subject
to theft. Beyond these activities, agents engage in other activities, such as sharing food
(in order to increase their reputation and hence increase their chance of finding a mate),
stealing, socializing (sharing what they know about other agents’ reputations with third
parties), and taking revenge if they hold a negative relationship value towards another
agent. An agent could have a negative relationship value towards another agent if it were
to witness that agent’s stealing and/or killing acts, or witness an out-group agent (an
agent from another village) collecting food from the observer’s village’s food sources.
Apart from these actions, agents also perform automated activities that do not require
deliberation. Those include growing older, experiencing increase in the hunger level due
to energy consumption, eating (if they carry food and their hunger level is high),
observing other nearby agents, and mating (under the condition that they had already
found a mate).

Leaders maintain order in the village, but they do not gather food. They have control
over the village’s storage, however. They issue orders to collect food. Furthermore, they
might share food with hungry follower agents based on their own loyalty and altruism
level. They also have the power based on their aggression level to arrest agents who
commit crimes in their vicinity. The overall social climate is affected by the leader’s
behavior. For example, leaders with high personal altruism levels tend to share more
food with their followers, which can lead to social welfare without starvation (but also
possibly to overexploitation with deleterious results). On the other hand, leaders with
high personal aggression levels prevent more crimes and therefore decrease overall
deaths due to crime. A schematic and high-level overview of the simulation is shown in
Algorithm 1.
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Schematic overview of the simulation run
1: Initialize global parameters and physical environment
2: Instantiate agents
3: Assign Leader to each village
4: for simulation duration do
5: if clock < (Loyalty * LengthOfDay) and Is Follower and 
6: Leader’s order = collect food do
7: Move toward food sources
8: Collect food
9: Move back to individual’s village
10: Deposit food into central storage
11: else if Leader’s order = share food do 
12: Get a share of food
13: end if
14: Eat food at food source
15: Share food
16: Move back to individual’s home
17: Deposit food into home storage
18: Steal
19: Take revenge
20: Share normative reputation
21: Observe others
22: Eat food from home storage
23: Procreate
24: while Death Condition = False do
25: Grow older
26: Consume energy
27: Forget old or unimportant relationships
28: Find mate
29: end while
30: Update food resources
31: Update statistics
32: Update leaders
33: end for

Algorithm 1. High-level schematic overview of the simulation. 

Functional Aspects of the Model. Our agent-based model is implemented in Netlogo
[25], in which locations are referred to as “patches”, and relationships between agents
are represented as “links”. In the following we will give insight into the functional
aspects of the model.

The individual agents in our model have the following feature categories:

• Simulation-related variables. These track an individual’s states, such as its needed
food resource level, the amount of food resources it may be carrying, its current
chosen goal, or the location of its home (its “patch”). This also includes a list of
known resource locations.

• Demographic variables. Age, sex, and fertility rate are part of this group.
• Kinship-related variables. These include references to parents, children, mate,

lineage, siblings, and their village.
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• Personal variables. These include Altruism, Aggression, Loyalty, Physical Ability,
and they are represented by a value between 0 and 1.0. These variables are adopted
from [6].

• Role-related variables. Agents can be Leaders or Followers (corresponding to
Commanders (C) and Workers (W)). In addition we consider a notion of Leader Class
in the form of agents with family ties to the current leader (they are still follower
agents but they may have special privileges). In this connection with this there is a
loyalty-level parameter. For the leader of a village, it determines the extent to which
his ruling is coercive. But for followers, this parameter determines how likely they
are to obey orders.

• Agents’ internal CKSW variables. Each agent has C, K, S, and W attributes, and
for each such attribute there are two values ‒ a capability value and an achievement
value. The capability variable reflects how an agent will react to various opportunities
available in the environment. For example, if an agent must choose between
(1) exploring ways to be able to collect more food resources, and (2) exchanging
information with other agents about known resources, then its choice will be deter‐
mined by the dominance of either its knowledge (K) capability or skill (S) capability.
If its knowledge capability is dominant, then the agent will choose to exchange
information. This achievement level can be enhanced over time according to defined
individual learning rates.

Agents’ Interactions. Agents keep track of their relationships with other agents. The
relationships of agents are maintained using an internal interaction matrix maintained
by each agent that holds information about other agents it has encountered. The matrix
is modified based on the observation of ‘good deeds’, such as sharing, and likewise
adjusted based on negative experiences with an agent, such as observing or being the
victim of stealing. Associated with this is the essential action of socialization. Similar
to the notion of gossiping, whenever agents socialize they align their interaction matrix
values in congruence with shared common acquaintances.

Relationships are represented by Netlogo “links”. Each agent has a set of incoming
links which are carrying another agent’s opinion of the agent. Additionally each agent
has a set of outgoing links that hold its opinion about other agents. The reputation of
one agent is the sum of all the observational values on incoming links.

Links have the following attributes:

• Age: the creation time of the link.
• Frequency: the number of interactions so far with the agent at the end of this link.
• Material exchange value: the amount of resources exchanged with this agent by

sharing or stealing.
• Observational Values: the “strength” of the relationship based on observing the

other agent’s actions or by being informed about that agent from other sources (for
example by gossiping about a known third agent’s reputation).

Agents’ Decision-Making. Agents choose actions based on their internal state, which
can include their hunger level, levels of altruism or aggression, as well as external state,
which can be changed by the presence of a leader or enforcer agent in their vicinity.
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In general, we aim to use a minimum of fixed behaviour parameters to determine an
agent’s actions, and instead make use of social comparison in most decision-making
activities. For example, aggressive agents are not necessarily just those with aggression
levels higher than 0.5 (or any other hard-wired parameter); instead, they define a personal
threshold based on self-comparison with other people that they know in their village.
This implies that an agent with an aggression level of 0.6 who lives near another agent
whose aggression level is 0.4 might act more aggressively compared to a similar 0.6
aggression level agent who lives next to an agent with a 0.8 aggression level. (If an
agent’s aggression level is higher than those in its vicinity, then it is more likely to act
aggressively.)

Another example of how an agent’s activities can vary according to the social context
concerns the conditions under which an agent might be motivated to steal. Ordinarily
the conditions determining when an agent might commit a crime are dependent on
whether a composite set of threshold conditions is met (the MaxHunger value is the level
of hunger at which the agent will die of starvation):

(1) There is no law enforcer (e.g. a leader) nearby.
(2) The perpetrating agent is not carrying food.
(3) Another agent is nearby who carries food.
(4) HungerLevel/(MaxHunger) > AltruismLevel
(5) HungerLevel/(MaxHunger) > (1- AggressionLevel).

In addition to such situations, however, there are other conditions that could prevail. A
potential crime perpetrator could evaluate the risk of getting caught and decide that it is
worth committing the crime, for example, when condition (1) is not met. In that case the
perpetrator agent might temporarily elevate its aggression level and commit the crime
anyway.

3.1 The Incorporation of Knowledge into the Model

Having discussed the fundamental features of this model, we proceed with introducing
new features added to the model. In order to make the model more comprehensible, we
have classified its main features based on their related structural components, which we
use as a rough guide for the introduction of the model additions. Figure 1 shows the
defined model components. The Physical Environment covers infrastructural aspects
related to the simulation environment, such as the locations of resources, growth rates,
defining distances between different locations, the distances between villages, village
settings, and the locations of distributed village storages. The Institutional Structure is
the social structure we impose upon the agents; it defines the structure of the society in
which agents live, including the norms and the rules they must consider in their decision-
making. The Individual Agent covers anything related to features and capabilities of
individual agents.

160 M. Jahanbazi et al.



Physical Environment

Institutional Structure

Individual Agent

Fig. 1. Model components.

Physical Environment. As shown in Fig. 2 at the center of each village is a central
storage area that the leader controls. In addition, each village has four distributed storage
locations, which are also controlled by the leader and which make it easier for villages
to deposit food so that there is less time spent commuting from and to food sources.
There is also a common food source area between the villages, for which each village
claims ownership. Collecting food from this area may lead to revenge attacks or negative
reciprocity relationships (since villagers look negatively on any other agent from another
village who collects food from the common area that they claim as theirs). We gener‐
alized this model to permit a varying number of villages.

Fig. 2. Multi-Village Configurations. Each village has a central storage in the center that is
surrounded by four distributed storage locations (small houses). Food sources, shown by black
squares, are organized in a circle around the center. A common food source area is located between
villages with the same distance to the center of each village.

Institutional Structure. As a society grows in size, it becomes increasingly difficult
for a leader to maintain a monopoly on coercive control. For social scalability we have
thus introduced a class of people appointed by the leader who monitor and prevent
crimes. Those agents are recruited from the “Worker Class” (i.e. regular villagers) and
selected based on the strength of their kinship relationships to the leader. This is asso‐
ciated with the leader selection strategy that builds on heredity. That is, when a leader
dies, either his son, or his next closest kin will step up to become the new leader. And
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the new leader class will be selected based on the new leader’s kinship relationships;
members of the old “Leader class” will be ‘converted’ back to regular workers.

The daily course of action of people in the “Leader class” group is similar to that of
the normal worker class. They have all basic responsibilities, but in addition they have
the authority to secure locations identified by the leader to prevent crimes. This is
governed by a probability related to their aggression and loyalty levels. The aggression
level determines the successful prevention of crimes, while the loyalty level determines
how long (how many time units) these agents are under orders to maintain security at a
location. They have the power to arrest agents who dare to commit a crime in their
presence. Resulting prisoner agents are required to work full time for the public good
and collect food and deposit it into village storage. This strategy is in accordance with
Boehm [26], who argues that in Pacific Island societies, instead of elimination of the
offender, a sort of temporary punishment had been applied, which motivated the offender
to regain group acceptance again and be able to return to life in the society. Whenever
agents do get arrested, their reputation values will decrease significantly based on their
current reputation level and the type of the crime they were caught committing. The
secondary form of punishment is in accordance with [27], which discusses the effec‐
tiveness of combining material punishment (having to collect certain amounts of food
for the leader) with normative punishment (lowering one’s reputation), which is a form
of group punishment [28] in that it decreases the chance of the offending agent in finding
a mate or receiving shared food (since an agent’s reputation is publicly visible).

But this system of law enforcement only works if knowledge about notable events
is shared widely. Ordinarily whenever any notable event such as a crime occurs, nearby
agents who have a high Knowledge Capability may observe this event and record it. But

Fig. 3. Different elements and parties in distributed enforcement.
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ordinary agents have only information about the areas that they visited and they don’t
have a big picture of the whole village. However, a group of agents with high loyalty
have the opportunity to share their observations with the leader. This is in line with the
notion of having a group of people who care more for their society’s wellbeing and see
themselves responsible to report crimes whenever they see them and take action in order
to make their society safer [29]. Then the leader can decide on locations which need
more control of violence. Since agents with a high Knowledge Capability have the
motivation to share and distribute their knowledge, if they collocate with another agent
with a similar Knowledge Capability, they can share information about their observa‐
tions of events and agents they know.

Thus the distributed enforcement relies on three essential elements (see Fig. 3): (1)
distributed knowledge accumulation of K-agents, (2) transmission of this information
by a loyal subset of K-agents to the leader who will accumulate a global overview of
what’s happening in his territory, and (3) the leader’s decisions on whether to send
enforcers to a certain area.

Conflict Mediation. Historians have observed that people living in small groups often
go to an elder to resolve their disputes [26, 30]. An elder with good reputation can resolve
the intra-group conflicts, whereas inter-group conflicts should be resolved by the leader
himself. Different cultures qualify different individuals as the ones who can resolve
disputes ‒ sometimes a person with high verbal skills, a good warrior reputation or a
warm personality can be considered a good candidate. In some other groups, wealth (or
the ability to offer a material gift), generosity, aggression, self-assertion, and reputation
are considered to be important. We employ the most often mentioned property, which
is reputation. In our model, reputation is also a signal of kindness, since it improves by
sharing, and as kind agents grow old, they have more opportunities to share. If they have
high Knowledge Capability, they have a higher chance of getting to know other agents
and thereby have more knowledge to make judgment about contesting agents inasmuch
as they know all parties involved in a dispute. Therefore high-reputation agents who
have a high Knowledge Capability are good candidates for resolving intra-group
disputes.

A significant aspect of dispute mediation is the procedure itself. In some cultures a
material gift from the offending person will work, while in some other situations a duel,
physical harm, or ostracism is needed to resolve the dispute [30, 31]. In our model, we used
a practice of gift exchange. The amount required for this material exchange is the quantity
of food units needed to make the relationship between two agents reach a neutral value.

In simulation runs which have this feature enabled, whenever an agent is collocated
with another agent with whom he has a negative relationship and his aggression level is not
sufficiently high to trigger revenge, a dispute resolution mechanism will be sought. In this
case the offended agent will identify another agent in the vicinity with a high reputation.
Then both parties will move toward the identified mediator, and the “neutral” mediator
will prescribe a penalty based on the relationship values. The target agent must pay the
penalty amount to the other party to restore his reputation. The cost involved in this proce‐
dure is mostly the time both agents spend finding the mediator agent and moving towards
him. The mediator agent increases its own reputation in return, which makes him more
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likely to be chosen in connection with future disputes. Thus, over time, agents with higher
reputation are expected to become experienced dispute mediators [13].

The combination of these two new features empowers our artificial society with a
simplified version of both legal and civil justice. Legal justice aims to prevent crimes,
and if enforcers catch someone committing a crime, there is a penalty of imprisonment
and loss of reputation. On the other hand, civil justice attempts to resolve issues between
agents by a reputable mediator agent without any actual penalty. Figure 4 shows different
parties in both mechanisms.

Fig. 4. Crime prevention and mediation mechanisms.

At this stage we have introduced the essential aspects of our relatively feature-rich
agent model. Below, we present the results of our sensitivity analysis which we used to
test the system for plausibility, but also to inform further parameter choices for selected
scenarios.

4 Sensitivity Analysis

By using multi-agent modelling as a research tool, a repetitive process of defining and
re-defining model requirements based on extensive literature in different disciplines can
be followed in order to validate the model based on observational studies and reports
from related literature. Thereafter simulations of different scenarios can help to gain
deeper understanding of the causes of deviations or optimal ways to trigger the desired
outcomes [11]. We have followed a systematic approach in this fashion by tuning each
model parameter to find the most reasonable value (or range of values). As defined in
[32], ‘reasonable parameters’ are those which help the model to reproduce patterns
observed in reality. We tested hundreds of configurations for single parameters, even
for the most trivial ones, such as the degree in which agents change their direction when
exploring, or the hunger level at which they start eating.

We began our simulation study by starting with similar parameters used as reported
in previous work [7, 13, 33]. In our attempts to extend those models with new features,
whenever we needed a new parameter, we have tested wide ranges of values for each
one of them. Nevertheless, the selection of the range of possible values in itself is not
straightforward. In order to illustrate how we went about it, we provide an example
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showing the steps we went through to define one of the parameters used. Although in
this example we ended up with a different tactic (using social comparison instead of
using a parameter), we basically followed similar steps for most of the used parameters.

Initially, by adopting a perspective similar to [7, 13, 33], we decided to use the
revenge threshold parameter, which could be set at any negative value. We tested a range
from 0 to −1000 (in decrements of 20) to see how it affected the simulation outcomes.
Each value was tested with 20 different random number generator seeds which led to
1000 rounds for a single-village setting. The outcomes revealed that having high-magni‐
tude values led to the collapse of the simulation (values higher than −100), due to high
numbers of revenge killings (since revenge killing could start a vicious cycle of revenge
attacks and thereby lead to a population collapse). On the other hand, by using very low-
magnitude values, revenge attacks never happen (−600 and lower). However, since our
overall approach was to employ a minimal number of parameters and by considering
that not all the people have the same threshold, we took a step back and considered other
factors which helped us to facilitate parameter estimation. We observed the minimum
and maximum relationship values for each agent and used this range for each individual
agent in the following way:

Accordingly, an agent will take revenge if (a) the agent has a negative revenge
threshold (indicating negative reciprocity) and (b) is collocated with an agent who has
a lower-than-threshold relationship value toward him. In summary, we tested every
single parameter with hundreds of experiments and used those which seemed more
plausible and led to results closest to [33]. Of course the issue of “plausibility” can be
subjective and is not objectively measurable, which is a framing consideration for all
agent-based models.

In summary, as we stated earlier we avoided hard-wired thresholds to introduce new
institutional activities that keep the social order intact. Instead we have used notions of
social comparison among the agents to define their own views towards welfare at the
societal level and at the individual level. This is also in accordance with theories of the
social self and the idea that we are influenced by people around us, and have a tendency
to adopt the characteristics of those who are close to us [34]. We believe that this is
missing in many agent-based models, inasmuch as they mostly define arbitrary global
parameters for such thresholds set at low, medium, or high values. We argue that it is
preferable to look from a situated perspective and ask whether the effects of a particular
parameter can be shown to emerge from the social and environmental context.

5 Experimental Design

We used 30 different random seeds for each pair of experiments in 2-village configura‐
tions with 100 agents as initial populations for each village. Agents can live up to 4,000
time units, and we used 40,000 time units as the total duration of the each simulation
run. There were three major scenario categories that we examined:
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(1) Scenarios without distributed control of violence (or distributed enforcement).
(2) Scenarios with distributed control of violence but without the use of observation

of events by agents with high Knowledge Capability. Instead we simulated global
knowledge of criminal occurrences by storing the criminal events locally in the
patch and making them globally visible to the enforcers.

(3) Scenarios with distributed control of violence and with the use of observation of
events by agents with high Knowledge Capability.

For each scenario we tested it with and without conflict resolution, which made a
total of 6 experiments per random seed (180 in total). We considered Scenario (2) and
(3) in order to compare the relative efficiency difference between global knowledge
about crime and knowledge about crime that is passed through knowledge-aware agents.
For simulation efficiency it can be useful to store the criminal results in the patches, but
it is less realistic. We found that Scenario (3), which employed criminal event obser‐
vation and communication by high Knowledge-Capability agents to be almost as effi‐
cient as Scenario (2) and a more realistic representation.

6 Results and Discussion

In this section we summarize our experimental results with regard to specific features.

Effectiveness of Distributed Information Gathering. Before moving to our main
features and their effects, the scenarios that test the accuracy of information will be
discussed. The results show that the correlation between decline in death due to revenge
and enabling enforcers who use crime information stored in the patches is −0.80, while
the correlation between decline in death due to revenge and enabling enforcers who use
the information collected by distributed knowledge gathering is −0.78. The results indi‐
cate that distributed information gathering is almost as effective as using accurate infor‐
mation stored in the history of patches.

Enabling Distributed Control of Violence. Other than a leader’s control of the distri‐
bution of food based on his altruism level, there is only one institutional element that
prevents agents from stealing and violence: this is provided by the authorized members
of the Leader class engaged in distributed violence control. The correlations between
enabling this distributed form of crime control and different causes of death are signif‐
icant. Correlation with the death rate due to (a) revenge is −0.78, (b) thefts is −0.54,
and (c) hunger is +0.8. The correlation of distributed violence control and the total
number of thefts is −0.77. In general, theft and killings are reduced considerably by
implementing distributed control of violence, while death due to hunger rises. This could
suggest that even in this artificial society, mere prevention of violence is not enough.
There should be further institutions beyond stopping crime, such as providing the
deprived agents with assistance for food acquisition. Additionally, since agents who are
enforcing the rules are not productive anymore, they do not contribute to central storage
sites any longer, leaving the society has fewer contributors and more consumers. This
result raises the question concerning to what degree can distributed law enforcement be
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tailored to achieve a balance between crime and starvation. Figure 5 shows the average
percentages of different causes of death for all scenarios with activated observation of
events for configurations with and without distributed enforcement. As shown in Fig. 5,
death due to old age is hardly affected by this feature.

0 10 20 30 40 50 60

Old Age

Hunger

Revenge

Theft

Death Rate %

Distributed Enforcement No Distributed Enforcement

Fig. 5. Effect of distributed enforcement on different causes of death.

Conflict Mediation. Introducing conflict mediation made much more of a difference in
the absence of other types of crime prevention (see Figs. 6 and 7). Unsurprisingly, it has
a correlation of +0.8 with the Reputation Gini, which defines the inequality in agent
reputations1. The reason behind this effect is due to the role of the mediator who gains
in reputation as he resolves the disputes. In addition, those with negative reciprocity
towards each other have the chance to remedy their relationship and thus improve it.
However, this indicates the emergence of class stratification based on reputation. While
we expected that conflict mediation improves the overall welfare of the society, it has
the unforeseen effect in population rise which leads resource scarcity and more conflict
over resources. This is schematically illustrated in Fig. 8.

1 The reputation Gini index shows the relative reputation inequality in a group. In particular, it
reveals the gap between agents with very high reputation and agents with low reputation. In
order to calculate the Gini index, we implement formula used by [35]. ’s reputation
represented by . Then we sort ,  in ascending order . Finally, Gini is

calculated as .

The Role of Knowledge Keepers 167



Fig. 6. Population change over 10 generations for scenarios with and without conflict resolution.
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Fig. 7. Average rates of different causes of death with and without dispute resolution.

Fig. 8. Effect of higher reputation results from conflict resolution.
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The correlations between population increase and different causes of death are
significant (see Figs. 6 and 7). The correlation between the number of agents and: (a)
death due to hunger is +0.51, (b) death due to thefts is +0.63, and (c) death due to old
age −0.8. Moreover, it decreases the life expectancy of agents in such a way that the
average age at death decreases considerably when population size increases (correlation
is −0.8). Figure 6 shows the average population change for scenarios with and without
dispute resolution, and Fig. 7 shows the average rates of different causes of death in
scenarios with and without dispute resolution.

In addition to calculating the correlations between each feature and different outputs,
we have used regression analysis to confirm the results. Table 1 summarizes the regres‐
sion analysis of 180 experiments which shows the p-values and coefficients of regression
test with a confidence level of 95 %.

Table 1. Regression results.

Revenge Hunger Thefts
P-value Coefficients P-value Coefficients P-value Coefficients

Intercept 0.79 661.29 0.46 −2196.00 0.69 317.62
Distributed

enforcement
4E−40 −8.53 5E−50 12.47 5E−20 −1.70

Event observation 0.020 1.27 0.00 −2.14 0.11 0.28
Conflict resolution 0.000 −1.59 8E−07 2.52 7E−13 1.03
Adjusted R square 0.685 0.73 0.48

Distributed enforcement has significant p-values for all three output variables. It is
worth mentioning that the reason behind less significant p-values for event observation
compared to distributed enforcement lies in its comparison with scenarios in which
enforcers had actual knowledge of crime areas. As shown in the results, distributed
enforcement comes with the cost of higher death due to hunger. As mentioned earlier,
this can be due to more consumers and less contributors. In the same way, in the real
world, enforcement comes at a cost too, and this brings up the challenge of balancing
enforcement and the cost of enforcement.

0 5 10 15 20 25 30 35

Base Scenario

Prevention, No Mediation

Prevention and Mediation

Death Rate %
Revenge-Rate Hunger-Rate

Fig. 9. Death rates due to revenge and hunger for different scenarios.
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Figure 9 compares the average values for three main scenarios at once. It can be seen
that as crime prevention features are added, deaths due to revenge decrease, but deaths
due to starvation increase which shows the cost of resolving conflicts or its prevention.

7 Conclusion and Future Work

As supported by the claim made in [36] that agent-based modelling is “a new standard
of explanation”, there has been a growing interest in agent-based modelling of complex
social phenomena. However, perhaps partly due to computational limitations, the
complexity and interactive scope of the modelled agents is often limited. In the work
presented in this paper and by expanding the model developed by [33], we have included
a wider range of aspects found in real societies and studied their interaction in different
simulation settings. In this work we have explored the impact of compliance and dispute
resolution mechanisms on the functioning of a society, along with the structural change
of the society’s configuration based on the different social roles.

However, our path toward building more realistic artificial human societies has much
ahead of it. We believe that continued development of CKSW-based meta-role models
can offer new opportunities in the area of social modelling. The CKSW perspective takes
into account social ordering activities that have been observed across the history of
human societies. Building models using agents with these meta-role capabilities will
enable us to reproduce some of the observed higher-level social structures in an organic
fashion. These general role scenarios offer a more realistic representation of how prim‐
itive societies of autonomous agents achieve a measure of societal coordination.

Considerably more work will need to be done to achieve our main objective of
modelling a human society with the internal ability to construct essential institutions to
sustain and enhance the overall social prosperity. A number of important limitations
need to be considered in order to refine and improve the current model. Some immediate
extensions we will be pursuing include improving the current simplistic view of mate
selection (the selected mate cannot reject the proposal) by considering real mate selec‐
tion criteria in different cultures. Furthermore, we will be introducing more variation in
food resource fertility rates and transportation channels. The next major extension of
the model will be implementing the skill (S) class and introducing concepts such as
agricultural technology for different societies.
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Abstract. In regulated organizations, norms may come from various
regulation sources imposed by different institutions. With possibly con-
flicting values and interests, inconsistencies are likely to occur among
these norms, e.g., one norm obliges some actions to be done while another
norm prohibits the same actions. In this paper, we propose a formal-
ization of norm conflicts based on the normative states of interrelated
norms. Then via operationalizing the normative structure based on Col-
ored Petri Nets, we propose a method for detecting such conflicts.

Keywords: Regulated organizations · Normative systems · Norm con-
flicts · Agent organizations

1 Introduction

A common problem for organizations is the increasing amount and complexity
of norms that they have to consider in the design of their business processes.
For example, when dairy products are exported, besides the internal process
control of the dairy exporter, many other sources of norms are imposed by dif-
ferent institutions [4]. For instance, customs regulates the activities concerning
export declaration, and transportation. An health agency regulates the activity
of health certification. An agriculture agency puts information requirements on
export declaration. A tax agency regulates the activities of Value-Added Tax
settlement and invoicing. Given the diversity of regulation sources and possibly
conflicting interests, it is likely that the norms imposed by these institutions
are not consistent. In such cases, it is impossible to reach an agreement on
whether the organizations comply with the regulations, which may cause misun-
derstanding and decrease the effectiveness of laws and regulations. To this end,
mechanisms are needed to detect the norm conflicts.

Such a problem has been extensively investigated by researchers in the
domain of normative systems. An early work is presented by [14], in which the
concept of normative conflict is formally analyzed and two approaches of reason-
ing with normative conflicts are discussed. [16,17] applied first-order unification
to discover overlapping substitutions to the variables of laws/norms in which
legal/norm conflicts may occur. Targeting distributed management of norms, [2]
proposed a normative model based on the propagation of normative positions
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 173–190, 2016.
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as consequences of agents’ actions, and realized conflict detection by providing
a mapping of the normative model into Colored Petri Nets. Focused on nor-
mative conflicts in electronic contracts, [3] presented a set of primitive conflict
patterns and proposed the representation of e-contracts in default logic to facil-
itate conflict detection. [10,11] proposed a computational model for detecting
norm conflicts given traces of agent actions by means of Answer Set Program-
ming. Focused on identifying conflicts between obligations in dynamic settings,
[15] introduced a new semantics for the obligations to identify the necessary and
sufficient conditions to detect conflicting obligations. Though these approaches
provide useful formalisms and detection techniques, there are two issues that
have not been discussed. One is the analysis of how the interrelations between
norms might influence the existence of norm conflicts. The other one is how
compliance status of norms is linked to the existence of norm conflicts.

Targeting these two issues, this paper investigates the concept of norm con-
flicts in the setting of interrelated norms. To formalize the specification of norms,
we adopt the normative language Norm Nets (NNs) [8] which provide formalisms
for representing the interrelations between norms. Based on NNs, we present an
analysis of norm conflicts in terms of the compliance status of norms and show
how interrelations between norms may influence the formation of norm conflicts.
Moreover, we distinguish between two types of norm conflicts, i.e., weak conflicts
and strong conflicts. To detect the conflicts, a computational model is developed
by using Colored Petri Nets [5].

The rest of the paper is organized as follows. Section 2 introduces the for-
malisms that are used to model norms. Section 3.2 gives the definition of norm
conflicts and presents the mechanism of detecting such conflicts. Section 4 pro-
vides a case study. Finally, Sect. 5 concludes this paper and identifies the direc-
tions for future work.

2 Normative Structure

In this paper, we consider an institution as a set of norms used to regulate the
behavior of participating agents in organizations [12], which is formalized by
Norm Nets (NNs) [8].

2.1 Conceptual Model

(i) Preliminaries. Events are defined to represent the actions available to the
roles in organizations.

Definition 1 (Event). Let R be a finite set of roles and A be a finite set of
actions. The set of events E ⊆ R × A where an element from E is denoted as
ε = (r, α), r ∈ R,α ∈ A.

An event ε = (r, α) describes an action α available to a role r. For example, we
can express an institutional observation “a student enters the library” by defining
an event (Student, enter library). Using the notion of events, a propositional
language LE is defined over the set of events.
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Definition 2 (Event Language). Given an event e ∈ E, let the event lan-
guage LE be the set of expressions generated by the following grammar:

ϕ ::= e|(ϕ ∧ ϕ)|(ϕ ∨ ϕ)|(ϕ < ϕ)|λ

ϕ1 ∧ ϕ2 indicates both ϕ1 and ϕ2 occur (conjunction), ϕ1 ∨ ϕ2 indicates either
ϕ1 or ϕ2 occurs (disjunction), ϕ1 < ϕ2 indicates ϕ1 occurs before ϕ2 (sequence),
and λ represents a null event. Eϕ is used to indicate all the events contained in ϕ.
The event expressions can be evaluated to true or false based on the occurrence
of prescribed events and their relations.

For example, given ϕ1 = (Student, enter library) and ϕ2 = (Librarian, check -
identity), ϕ1 ∧ ϕ2 means that the student enters the library and the librarian
checks the identity; ϕ1 ∨ ϕ2 means that either the student enters the library or
the librarian checks the identity; ϕ1 < ϕ2 means that the student enters the
library and then the librarian checks the identity.

(ii) Norms. Norms are defined to prescribe how agents ideally should (not)
behave in terms of the roles they enact. In NNs, two types of norms are defined,
i.e., obligations and prohibitions, as formalized in Definition 3.

Definition 3 (Norm). A norm n = (D, ρ, δ, σ) where (1) D ∈ {O, F} indi-
cates the deontic type of the norm, i.e., Obliged, Forbidden, (2) ρ ∈ E, describ-
ing a non-empty target to which the deontic modality is assigned, (3) δ ∈ LE,
describing the deadline of the norm, and (4) σ ∈ LE, describing the precondition
of the norm.

The target is indicated by a role-action pair in which the role specifies to whom
the norm applies and the action specifies the behavior that is constrained by
the norm. Both the precondition and the deadline are event formulas. The pre-
condition determines when the norm is activated and enforced, and the deadline
determines when an obligation has to be ensured or a prohibition ceases.

For example, we can model a regulation that “If a student borrows a book
from the library, the student should return the book within 1 month” by defin-
ing a norm n = (O, (Student, return book), (Timeline, pass 1month), (Student,
borrow book)). In this norm, we have defined two roles Student and Timeline, in
which Timeline is a reserved role used to indicate the elapsing of time.

(iii) State Transitions of Norms. A norm is instantiated when it is created.
As soon as the precondition holds, the norm is activated. An obligation is consid-
ered satisfied when both its precondition and target are true while its deadline is
false, and considered violated when both its precondition and deadline are true
while the target is false. A prohibition is considered satisfied when both its pre-
condition and deadline are true while its target is false, and considered violated
when both its precondition and target are true while its deadline is false.
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(iv) Norm Nets. To capture the interrelations between norms, the concept of
Norm Net is introduced.

Definition 4 (Norm Net). A norm net NN is defined by the following BNF:

NN ::= n|AND(NN, NN)|OR(NN, NN)|OE(NN, NN)

where n is a norm; SNN is used to denote the set of component norm nets
contained in NN and ENN is used to denote the set of events contained in NN .

A norm net can be a single norm or a nested structure composed of norms with
three different relations. AND indicates that both component norm nets should
be satisfied and the violation of either component will result in a violation to
the combination. OR indicates a choice between the two component norm nets
and only when both are violated the combination is considered as violated. OE
indicates that the two component norm nets are conditional and exclusive, i.e.,
(1) only when the first component is violated can the second component be
activated, (2) the violation of the first component can be repaired by the second
component being satisfied. Based on the state transitions of single norms, the
state transitions of NNs can be derived according to the interrelations between
its component norms.

For example, consider the following normative constraint “students should
return the book within 1 month after they borrow the book, otherwise they
have to pay a fine within 1 week.” This piece of constraint indicates a repa-
ration/sanction relation between two norms, which can be represented by
a norm net OE(n1, n2) where n1 = (O, (Student, return book), (Timeline,
pass 1month), (Student, borrow book)) and n2 = (O, (Student, pay fine),
(Timeline, pass 1week), λ).

Note that while n2 has an empty activation condition λ, the norm is still
only triggered after n1 is violated, due to the semantics of the OE operator.
The activation condition of the second norm in an OE-construction (the sanction
norm) can thus be used to further specify conditions that should hold to activate
the sanction (or, create exceptions when not to activate the sanction norm).

2.2 Operational Semantics

The operational semantics of NNs are obtained by a mapping to Colored Petri
Nets (CPNs) following the approach presented by [8].

(i) Colored Petri Nets. A CPN [5] is a directed graph consisting of two types
of nodes, called places and transitions, where arcs are either from a place to a
transition or from a transition to a place. Tokens in CPNs may have different
colors or data types and carry data attributes that characterize the entities the
tokens represent.

A place serves as a placeholder for the entities in the system being modeled.
Each place is associated with a type or a color set that determines the kind of tokens
the place may contain. Besides a type, each place has a marking (denoted as M)
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to indicate its state, which is defined as a multiset of values over the type of the
place. A multiset is similar to an ordinary set except that the same element can
occur multiple times. A token is an element of such a marking, i.e., it has a value
and resides in a place. If a marking consists of tokens with different values, we sep-
arate them with two pluses (++). The subtraction of tokens with different values
is expressed as two minuses (−−).

An arc has an inscription which may contain one or more free variables.
Transitions represent the events that can occur in the system being modeled.
A transition has a set of variables, i.e., the ones occurring on all the arcs con-
necting to it. Each of these variables can be assigned a value from the set repre-
sented of its type. A transition along with an assignment of each of its variables
is referred to as a binding (denoted as b). Given a CPN with a marking and a
binding, the binding is considered to be enabled if all input places contain at
least the tokens specified by the evaluation of the expression on the correspond-
ing input arcs in the binding. A transition is enabled in a marking if there exists
at least one binding which is enabled in the marking. If a binding or a transition
is enabled, it can occur or be fired. This results in consuming all the tokens
from input places corresponding to the evaluations of the expressions on input
arcs and producing new tokens on output places corresponding to the evalua-
tions of the expressions on output arcs. The marking of a model before we start
simulation is called the initial marking.

Based on the description above, the formalization of a CPN is shown in
Definition 5.

Definition 5 (CPN). A CPN is a tuple (P, T, A, Σ, V, C, E, I) where (1) P
is a finite set of places, (2) T is a finite set of transitions such that P ∩ T = ∅,
(3) A ⊆ P × T ∪ T × P is a set of directed arcs, (4) Σ is a finite set of non-
empty color sets (data types), (5) V is a finite set of typed variables such that
Type[v] ∈ Σ for all variables v ∈ V , (6) C : P → Σ is a color set function
that assigns a color set to each place, (7) E : A → EXPRV is an arc expression
function that assigns an arc expression to each arc a ∈ A such that Type[E(a)] =
C(p)MS, where p is the place connected to the arc a and MS indicates C(p)MS

is a multiset, (8) I : P → EXPR∅ is an initialization function that assigns a
closed expression to each place p such that Type[I(p)] = C(p)MS.

(ii) Mapping from NNs to CPNs. In organizations, roles are enacted by
agents, and the agents’ behavior is constrained by the norms regulating the
roles they enact. In this paper, we assume a set of agents Ag participating in
a regulated organization and an explicit enactment relation REA between the
agents and the roles specified in the norms. Based on the definition of NNs and
their state transitions, correspondences between a norm net and a Colored Petri
net can be generalized as follows.

• R → Σ: each role corresponds to a color set which can be assigned to the
places,

• A → T : actions are represented by the transitions,
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• E → P ×T : events are indicated by the connections from places to transitions,
• (REA ⊆ Ag × R) → I: role-enacting agents are indicated by the initial distri-

bution of tokens in the places (i.e., initial marking),
• Satisfied ⊆ P, Violated ⊆ P, Satisfied ∩ Violated = ∅: the satisfied and violated

states of norms are indicated by two disjoint subsets of the places.

Agents are represented by the tokens which can only reside in the places with
the matching colors according to the roles the agents are enacting.

Based on the correspondences between the elements in NNs and that in
CPNs, we follow the approach presented by [8] and the CPN patterns in [13] to
construct the CPN model of NNs. The resulting CPN model of a norm net is
given as follows.

Definition 6 (CPN Model of NNs). The CPN model of a norm net NN with
an enactment relation REA is denoted as Θ(NN,REA) = (N , Satisfied, Vio-
lated, ps, pv) where (1) N is a CPN according to Definition 5, (2) Satisfied ∈ PN
is a subset of the places of N , indicating the satisfied states of all the component
norm nets in NN , (3) Violated ∈ PN is a subset of the places of N , indicating
the violated states of all the component norm nets in NN , (4) ps ∈ Satisfied is
a place of N such that �t ∈ TN : (ps, t) ∈ AN , indicating the overall satisfied
state of NN , (5) pv ∈ Violated is a place of N such that �t ∈ TN : (pv, t) ∈ AN ,
indicating the overall violated state of NN .

(iii) Visual Mapping of Norms to CPN. Following the approach presented
in [8], we briefly present a visual guidance how norms are translated to CPN
models. Given a regulative norm nr = (D, ρ, δ, σ), the construction of its CPN
model follows three steps:

1. constructing CPN snippets for each event in the construction of the target ρ,
the deadline δ and the precondition σ (see top-left of Fig. 1);

2. combining the CPN snippets obtained from the first step according to the
relations (∧,∨, <) between the corresponding institutional events in the pre-
condition σ and deadline δ (see bottom of Fig. 1); and

3. connecting the combined CPN snippets obtained from the second step to
obtain the CPN model of a regulative norm according to the deontic type of
the norm (see Fig. 2).

An event (r, α) is replaced by a two places (input and output) connected
by a transition. Both places are associated with a color set rag indicating that
agents represented by the residing tokens are enacting the role r. Note that the
“color” of a token is only a data-type/label, not per se an actual color (black,
green, red, etc.). The transition refers to action α, thus indicating that the firing
of that transition represents that an agent playing role r has performed α.

The combination of events (bottom part of Fig. 1) is realized through the
three operators in LE : ∧ (and), ∨ (or), < (before). Based on the workflow pat-
terns presented in [13], the CPN patterns for the three types of combination are
described as follows.
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Fig. 1. CPN patterns for events, conjunction, disjunction, and before.

∧ relation: top-right of Fig. 1 shows the CPN pattern for two event formulas ψ1

and ψ2 combined with a ∧ relation which indicates that only when both ψ1

and ψ2 occur, the combination of these two occurs. Accordingly, the output
places of both branches are connected to a single transition, thus converging
the thread of control only when both output places contain a token.

∨ relation: the middle of Fig. 1 shows the CPN pattern for two event formulas
ψ1 and ψ2 combined with a ∨ relation which indicates that as long as one of
ψ1 or ψ2 occurs the combination of the two occurs. Accordingly, the output
places of both branches are connected to the same place in such a way that
the thread of control is converged when either branch has a token in its
output place.

For both the ∧ and ∨ relation, the places in the succeeding branch are assigned
a new color set, being the union of the color sets of the input branches. This
is to enable the conjunction/disjunction of events with different roles, allowing
either role from the input branches to proceed to the output place.

< relation: the bottom of Fig. 1 shows the CPN pattern for two event formulas
ψ1 and ψ2 combined with a < relation, which indicates that only when ψ1

occurs first and then ψ2 occurs the combination occurs. To achieve this,
the output places of the pattern representing ψ1 are connected to the first
transitions occuring in ψ2. This ensures that those transitions (of ψ2) can
only fire when ψ1 has finished (i.e., ψ1 has tokens in its output places).
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Notice that there is a set of transitions labelled null, which are necessary in
order to apply the synchronization mechanism of CPNs. These transition will
fire as soon as their input places have sufficient tokens.

prohibition: (F, ρ, δ , σ)  

α 
r_ag

V

S

A

...

...
precondition: σ

target: ρ

deadline: δ

REA

REA

obligation: (O, ρ, δ , σ)  

α 
r_ag

S

V

A

...

...

precondition: σ

target: ρ

deadline: δ

REA

REA

Fig. 2. CPN patterns for obligation (left) and prohibition (right).

The combination of the target, precondition, and deadline of a regulative
norm should follow the logic that after the occurrence of the precondition, the
target should (not) occur, before the occurrence of the deadline (otherwise a
violation is generated). The precondition determines when the regulative norm
is activated, while the deadline determines when the norm can be evaluated to be
satisfied or violated (depending on the deontic type of the norm). To represent
these correlations in a norm, the construction of its CPN model follows these
two steps (see Fig. 2):

(1) activation: connecting the output place of the precondition to the transition
of the target, and to the last transition of the deadline, such that only when
the precondition is fulfilled, the target and the deadline are enabled to fire.

(2) evaluation: connecting the first place of the target to the last transition of
the deadline, such that (a) when the target occurs first (the deadline has not
finished), the token in the source place of the target, representing the agent,
moves to the last place of the target, or (b) when the deadline finished first
(and the target has not occurred), the token moves to the output place of the
deadline instead. The label of these output places depends on the deontic type
of the norm; for an obligation the output of the target is labelled ‘Satisfied’
and the one of the deadline ‘Violated’, in the case of a prohibition, the labels
are reversed.

The places in Fig. 2 labelled A, S, V represent the state of the norm, being
respectively ‘Activated’, ‘Satisfied’, or ‘Violated’.

For more details on the mapping from norms to CPN, and the combination of
the CPN models using the NN operators AND, OR and OE, we refer interested
readers to [7,8].
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3 Norm Conflicts

Based on the formalism of NNs, in this section, we propose a definition of norm
conflicts in terms of the compliance status of norms. Taking into account the
interrelations between norms, the definition gives a comprehensive representation
of norm conflicts. Furthermore, a computational model is developed to detect
the conflicts.

3.1 Definition

A conflict occurs between an obligation and a prohibition when they constrain
on the same behavior and have an overlapped activation period (cf. [17]). That
is, if some behavior of the same role is obliged and forbidden at the same time, a
conflict arises. From this definition, we differentiate between two types of norm
conflicts. First, weak conflicts: the activation period of the prohibition does not
cover the whole activation period of the obligation. In this sense, a weak conflict
can be avoided when the event constrained by the two norms, occurs during
the time period when the obligation is activated while the prohibition is not. In
this way, both norms can be satisfied. Second, strong conflicts: the activation
period of the prohibition covers the whole activation period of the obligation.
That is, whenever the event constrained by the two norms occurs, or whether
or not it occurs, one of the norms will be violated. In essence, a conflict occurs
between an obligation and a prohibition when the two norms cannot be satisfied
at the same time, i.e., the compliance status of the two norms is evaluated to be
contradictory with respect to the occurrence of an event.

Furthermore, to determine whether a norm conflict exists, there is another
criterion that has to be considered, i.e., the compliance relation between norms.
In Sect. 2, we have introduced three compliance relations between norms, i.e.,
AND, OR and OE. Therefore, with an event occurring, if two (or more) norm
nets with contradictory compliance evaluations are combined, the conflicting
status of the combined norm net depends on the compliance relations of the
component norm nets. If the compliance relation is AND, a conflict occurs since
the combined norm net cannot reach an agreement on the compliance of the
event. If the compliance relation is OR, there is no conflict since the combined
norm net only picks up the positive evaluation result, i.e., satisfied. As for the
compliance relation of OE, there is never a conflict since the activation period
of the two component norm nets will never overlap, i.e., only when the origin is
violated can the reparation be activated. Therefore, a norm conflict between two
norm nets may occur only when the two norm nets are connected by an AND
compliance relation.

Based on the description above, we give the definition of a norm conflict as
follows.

Definition 7 (Norm Conflict). Given the occurrence of an event e, a norm
conflict arises in a norm net NN iff ∃ NNx, NNy ∈ SNN (NN) such that
(1) NNx and NNy have an AND compliance relation, and (2) NNx is eval-
uated to be satisfied and NNy is evaluated to be violated.
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Given the occurrence of an event, a conflict occurs in a norm net when there are
two AND-related component norm nets in the norm net whose normative states
are respectively evaluated to be satisfied and violated. While for the conflicting
component norm nets themselves, they may have a nested structure of norms
connected by other compliance relations such as OR and OE.

It can be seen that our definition of norm conflicts is from the perspective
of norm compliance, which is different from other definitions provided in the
literature (e.g., [11,17]). The advantage of our definition is that it can be eas-
ily extended to other types of norms or normative structures since it captures
the root cause of norm conflicts. For example, it is possible that a role-enacting
agent is regulated by both an obligation to sit and another obligation to stand
whose activation period have an overlap. In this case, a conflict occurs since the
two actions “sit” and “stand” are physically exclusive to each other, which can
be reflected from the compliance evaluation results of the two norms. While, if
defining a norm conflict at the level of norm specification between an obligation
and prohibition, such conflicts may not be covered. The differentiation between
weak and strong conflicts is based on whether there are possible event sequences
that can avoid introducing conflicting normative states (i.e., satisfied and vio-
lated), which will be detailed in Sect. 3.3. Moreover, we take into account the
impact of the compliance relations between norms.

3.2 Detection

Given the definition above, we now illustrate how to make use of the CPN
models of NNs to computationally detect the norm conflicts. To do this, there
are three steps. The first step is to construct the CPN model of the norm net
NN , following the procedure presented in [8]. The second step is to obtain the
new marking of the CPN model with respect to the occurrence of the enabled
transitions given the event e. Comparing the new marking with the previous
marking, we can derive the changes of the normative state of all the component
norm nets in NN by looking at the satisfied places and the violated places.
The third step, including two sub-steps, is to determine whether there is any
norm conflict in NN with respect to the occurrence of the event e. The first
sub-step checks whether NN is evaluated to be violated. If so, the second sub-
step is to further check whether there are any two component norm nets in NN
that are respectively evaluated to be satisfied and violated, by looking at the
token distribution in the places representing the satisfied and violated states.
Algorithm 1 gives the procedure of detecting norm conflicts in a norm net with
respect to the occurrence of an event.

The problem of detecting whether a sequence of events will cause any conflicts
in a norm net can be transformed into the problem of pattern matching of CPN
markings/states, the complexity of which is shown to be O(L · W 2) where L is
the size of the event sequence and W is the size of the CPN model (i.e., the
number of nodes in the CPN model).
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Algorithm 1. Conflict Detection
Require: (NN, REA, e) � A norm net with an enactment relation and an event
Ensure: CFS � Conflicting status

1: � Obtain the enabled bindings of the CPN model N given the occurrence of event e and
the current marking M

2: function EnabledStep(e, M, N )
3: Y ← ∅
4: (r, α) ← e
5: for all (p, t) ∈ AN do
6: if C(p) = r and t = α and E(p, t)〈b〉 ≤ M(p) then

7: Y ← Y ∪ (t, b)

8: end if

9: end for
10: return Y
11: end function

12: � Obtain the new marking of the CPN model N given the occurrence of event e and
the current marking M

13: function UpdateState(Y, M, N )

14: for all p ∈ PN do

15: M ′(p) ← M(p) −−
(
++
MS

) ∑
(t,b)∈Y E(p, t)〈b〉 ++

(
++
MS

) ∑
(t,b)∈Y E(t, p)〈b〉

16: end for
17: Y ← EnabledStep((∗, null), N , M ′)
18: if Y 
= ∅ then

19: M ′ ← UpdateState(Y, M ′, N )
20: end if
21: return M ′
22: end function

23: � (Step 1) Obtain the CPN model of the norm net NN with the role enactment REA
24: (N , Satisfied, Violated, ps, pv) ← Θ(NN, REA)

25: � (Step 2) Obtain the new normative state of NN given the occurrence of the event e

26: M ← IN
27: Y ← EnabledStep(e, M, N )
28: M ′ ← UpdateState(Y, M, N )

29: � (Step 3) Check the normative state changes of all the component norm nets in NN
30: � (Step 3.1) Check whether the normative state of NN is evaluated to be violated

31: CFS ← false

32: if M ′(pv) − −M(pv) > 0 then

33: for all (p, p′) ∈ Satisfied × Violated do
34: � (Step 3.2) Check whether there are two component norm nets in NN such that

one is evaluated to be satisfied and the other is evaluated to be violated

35: if (M ′(p) −− M(p)) > 0 and (M ′(p′) −− M(p′)) > 0 then

36: CFS ← true
37: end if

38: end for
39: end if
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3.3 Weak and Strong Conflicts

We have shown the mechanism of detecting norm conflicts using the CPN models
of NNs. Now we continue with the question of whether a norm conflict found
in a norm net is a weak or strong conflict. To this end, we assume the set ℵ of
all the possible instances of a norm net (i.e., all the possible states of the real
system) and give the following definition.

Definition 8 (Weak Conflict). A weak conflict is detected in a norm net NN
with respect to an event e iff

1. there exists an instance of NN from the set of all possible instances ℵ such
that a norm conflict exists in the instance, and

2. there exists an instance of NN from the set of all possible instances ℵ such
that no norm conflict exists in the instance.

The first condition indicates that there exists a norm net instance of NN in
which a conflict is found with respect to the occurrence of the event e. The
second condition indicates that there exists a norm net instance of NN in which
no conflict is found with respect to the occurrence of the event e.

In a similar way, a strong conflict is defined as follows.

Definition 9 (Strong Conflict). A strong conflict is detected in a norm net
NN with respect to an event e iff for every instance of NN from the set of
all possible instances ℵ, there is always a norm conflict existing in the instance
according to Definition 7.

The condition of a strong conflict indicates that for every possible instance of
the norm net NN there is always a conflict found with respect to the occurrence
of the event e. Given the definition of a weak conflict and strong conflict, we
define a consistent norm net as follows.

Definition 10 (Consistent Norm Net). A norm net NN is consistent iff
∀e ∈ ENN , neither a weak conflict nor a strong conflict is detected in NN .

A norm net is consistent if and only if the occurrence of any event specified in
the norm net does not lead to a norm conflict (weak and strong).

The complexity of determining whether the occurrence of an event causes a
weak conflict or a strong conflict in a norm net is O(W 2 ·V ) where W is the size
of the CPN model of the norm net and V is the number of nodes in the state
space of the CPN model. That is, in the worst case, we have to search over the
complete state space of the CPN model.

3.4 Design-Time vs. Run-Time Verification

The approach mentioned above was initially meant as a design-time verification
of the consistency of the norms (as part of the Consistency and Compliance
Checker Toolkit (CCCT) [9]). As the detection of weak and strong conflicts
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requires a search over all the states of the system (state space search), the veri-
fication of the existance of such conflicts can only be done during the design of
a system.

However, during run-time the consistency of the Norm Net can also be veri-
fied, because conflicts are identified by the occurrence of both a ‘Satisfied’ as well
as a ‘Violated’ with respect to a single event. One can monitor the evaluation
of the different (parts of) the Norm Net and fire the enabled transitions based
on the events that are occuring (in real-time). Monitoring and comparing the
evaluation states of the (parts of the) Norm Net gives you not only information
about the compliance of the system (as presented in [9]), but also about possible
conflicts.

However, it has to be noted, that such an evaluation during the run-time of a
system cannot detect whether a conflict is a strong conflict or a weak conflict, as
the amount of information (i.e., a single trace/run of the system) is not enough
to make that distinction.

4 Case Study

4.1 Case Description

The World Customs Organization has defined a framework called the Authorized
Economic Operator (AEO) program [1] in order to address the tensions created
by the simultaneous growth in international trade and requirements for increased
security. The European Communities’ implementation of AEO permits various
customs administrations to grant AEO certificates to qualified companies under
which they enjoy special privileges. Taking the scenario of importing food from a
country outside the EU to the Netherlands, a number of governmental authorities
and companies are involved, which are governed by different sets of regulations
concerning different aspects of the food importation process. For example, the
EU has a set of general regulations, one of which specifies that the food authority
is obliged to carry out a food quality inspection. With the introduction of the
AEO programme, the Dutch government introduced new regulations for the
specific domain of AEO-certified goods in order to improve trading efficiency.
For example, one regulation specifies that a food authority is forbidden to carry
out a food quality inspection, if the customs has already done so. Additionally,
companies such as container terminals play an important role and bring their
own regulations, e.g., a regulation at one container terminal is that carriers
are obliged to transport their goods thence within two days of unloading. With
different values and interests, the regulations from these institutions are likely
to be inconsistent.

4.2 Modeling Norms

In this case study, we consider three institutions I1, I2 and I3 respectively corre-
sponding to the regulation of EU, Dutch government and a Container terminal,
captured by three norm nets NN1, NN2, and NN3 described as follows.
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• NN1 = AND(AND(n11, n12), n13) where
n11 = (O, (Food authority, inspect quality), (Carrier, transport goods),
(Carrier, arrive)); n12 = (F, (Carrier, unload food), (Food authority,
inspect quality), λ); n13 = (F, (Carrier, choose inspectLocation), λ, λ))

• NN2 = AND(n21, n22) where
n21 = (F, (Food authority, inspect quality), λ, (Customs, inspect quality));
n22 = (F, (Carrier, unload food), (Food authority, inspect quality), λ)

• NN3 = OE(n31, n32) where
n31 = (O, (Carrier, transport goods), (Timeline, pass 2days), (Carrier,
arrive)); n32 = (O, (Carrier, pay fine), (Timeline, pass 1month), λ)

Four roles are defined in the three norm nets, i.e., Carrier, Food authority, Cus-
toms and Timeline. In particular, Timeline is a reserved field for representing the
pass of time. At the moment, we assume an equal status of regulation between
different institutions, i.e., the norm nets representing the three institutions are
combined with an AND relation, represented as AND(AND(NN1, NN2), NN3).
We will explore more advanced relations between institutions such as priority
relation in future work.
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Fig. 3. The CPN model of NN1.

In this case study, we assume three agents ag1, ag2, ag3 respectively enacting
the roles Carrier, Food authority, Customs. To operationalize the regulation of
the three institutions, we build for each norm net a CPN model following the
approach presented by [8]. As an example, we show the CPN model of NN1

in Fig. 3. Places are drawn as ellipses and transitions are drawn as rectangles.
Enabled transitions are indicated by bold outlines. The color assigned to each
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place is indicated by the label below the ellipses. The action each transition
represents is indicated by the label inside the rectangles. Role-enacting agents
are represented by the dots with a number inside. For example, there is a token
valued 1‘(carrier, “ag1”) in place p1, representing an agent named ag1 enacting
the role carrier. The satisfied and violated states of all the component norm
nets are indicated by the places whose labels start with s and v. Specifically, a
color set REA is assigned to all these satisfied and violated places/states in the
CPN model, which is defined as a union of the set of all the roles specified in the
corresponding norm net, indicating that any role-enacting agents may satisfy or
violate the norms. The color set Ending together with the transition ending is
defined specifically to signal the ending of an event sequence such that norms
whose deadline is null can be evaluated accordingly, e.g., the prohibition n13.

4.3 Detecting Conflicts

Figure 4 shows a part of institutional evolutions with respect to three sequences
of events in this case study. In general, when an event occurs (shown above/below
the arrows), the system will identify which norms in the relevant institutions
are triggered/activated. Each circle represents a normative state of the three
institutions. With more than one norm from different institutions being triggered
simultaneously, conflicts might occur. For example, three norms from the three
institutions are triggered simultaneously at M3, between which two conflicts
occur. In this case study, there are in total three pairs of conflicts (indicated by
a line with a cross).
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Fig. 4. Institution evolution and norm conflicts.

As an example, we show how the normative states of the three institutions
change along with the first event sequence in terms of the markings of the corre-
sponding CPN models implemented in CPN tools [6], as shown in Fig. 5. There
are three markings, denoted as nodes 1, 2 and 3, each of which is indicated by
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Fig. 5. Normative state transition of the three institutions.

the number of tokens each place of the CPN models contains, as listed in the
box under each node. It can be seen that initially at the marking represented
by node 1, all the overall satisfied and violated states (places labeled with S
and V ) of the three institutions are empty, highlighted by the red rectangles.
From node 1, an event (Carrier, arrive) occurs. As a result, another marking
represented by node 2 is generated, in which the states of the three pairs of
satisfied and violated places remain the same as that at node 1. From node 2,
an event (Carrier, transport goods) occurs. As a result, we obtain a new mark-
ing represented by node 3, in which the overall violated places of the first and
second institutions Institution1′V and Institution2′V both get a token (car-
rier, “ag1”) while the overall satisfied places Institution1′S and Institution2′S
remain empty, indicating that the agent ag1 enacting the role Carrier pro-
duces a violation in both I1 and I2. However, the overall violated place of the
third institution Institution3′V remains empty but the overall satisfied place
Institution3′S gets a token (carrier, “ag1”), indicating that I3 is satisfied with
respect to the agent behavior. These imply that the three institutions give
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contradictory compliance evaluation results with respect to the same event.
Therefore, we can derive two norm conflicts, respectively between I1 and I3,
and between I2 and I3.

5 Conclusions

In this paper, we provide an analysis of norm conflicts in the setting of interre-
lated norms. From the perspective of compliance, we show how norm conflicts
can be modeled and analyzed. Moreover, we consider the influence of compliance
relations between norms with respect to norm conflicts, which provides an inte-
grated view on the analysis of sets of norms. To operationalize conflict detection,
we make use of the CPN models of NNs and show the application of the state
space analyzing tools from CPNs in detecting (potential) conflicts. Our defini-
tion of norm conflicts is not bound to a specific computational mechanism but
can also be combined with other detection techniques, e.g., the model based on
Answer Set Programming proposed by [11]. However, the choice of CPNs is sup-
ported by its capability of modeling concurrent systems, graphical expressions,
tool support and advanced state space analyzing techniques. Moreover, variants
of CPNs such as hierarchical CPNs, timed CPNs and stochastic CPNs, provide
extended support for the analysis of norm conflicts when aspects such as levels,
time and probability are considered.

There are several directions for future work. Firstly, we will further investi-
gate the interrelations between norms and their impact on norm conflicts. For
example, norms may have different priority in the regulation of organizational
behavior, and the fulfillment of a norm may cancel the enforcement of some other
norms. In practice, norms are not always specified at a single level of abstrac-
tion, which necessitates research on norm conflicts between norms at multiple
abstraction levels. Given the results of norm conflicts, an important question is
how to resolve such conflicts. To this end, we are going to investigate approaches
that can learn from agents’ past behavior and find optimal solutions for norm
revision in terms of, e.g., the number of norms to be changed, the number of
roles involved, the overall social risk and welfare, etc.
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Abstract. Institutions governing multi-agent systems (MASs) are a
pervasive means to guide agents towards the aims of the MAS (e.g. col-
lecting data) with regulations on the outcomes of agents’ behaviour.
Yet, wider organisations/governments often intend to guide the design
of institutions governing MAS in meeting different aims (e.g. preserv-
ing the rights of agents). A pervasive means to guide the design of
MAS-governing institutions (or any institution, for that matter) is to
use institutions at higher tiers of governance (e.g. directives, constitu-
tions) to regulate the regulations of institutions at lower tiers of gover-
nance (e.g. national legislation, software policies). A recent innovation
has been an automated means to determine the compliance of a lower-
tier institution’s regulations with a higher-tier’s. However, for a designer
of a non-compliant institution there remains a dilemma: be punished
for non-compliant regulations or arduously determine and rectify the
underlying causes of non-compliance. In this paper we propose a way
to automatically determine how to revise an institution to be compliant
that also minimises the change in the regulations’ outcomes thus keeping
as closely as possible to the institution designers’ original intentions.

Keywords: Multi-tier institutions · Norm revision · Institution
revision · Institutional compliance

1 Introduction

Legal institutions have long been used to govern Multi-Agent Systems (MAS)
away from anarchic and uncoordinated behaviour towards a collaborative society
through regulations that impose norms (obligations and prohibitions) on agents,
leading to many frameworks for automated institutional reasoning (see [1] for a
review). However, an institution governing an MAS is typically designed with
only the global aim of the MAS (according to its stakeholders) in mind (e.g.
collecting and aggregating data). Yet, institutions governing MASs can operate
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in the realm of governments and organisations with different aims to the MAS
being governed, such as maintaining the rights of agents (e.g. ensuring children’s
personal data is not collected and aggregated). Inevitably, tensions arise between
the aims of institutions guiding MAS with the aims of the wider organisations
and governments they reside in.

The social-world resolves such tensions by using institutions to govern other
institutions, guiding institutional design towards wider aims with regulations
on the outcomes of other institutions’ regulations. Known variously as multi-
tier/multi-level/vertical governance [15], these governance structures comprise a
tiering of institutions: a tier-1 institution governing an MAS by imposing obliga-
tions/prohibitions on agent behaviour, a tier-2 institution governing through reg-
ulating the outcomes of tier-1 regulation by obliging/prohibiting the imposition
of specific obligations/prohibitions (i.e. imposing higher-order norms), and so on.
In [10] we addressed the apparent lack of frameworks for institutions governing
institutions with a formal and computational framework for the representation
and reasoning of vertical governance structures which we call multi-tier insti-
tutions. By formalising multi-tier institutions, where institutions govern other
institutions, lower-tier institutions can automatically be checked for compliance.

However, once non-compliance has been automatically determined, the prob-
lem remains for the designer of a non-compliant institution – determining how to
revise the institution to be compliant and thus avoid any potential punishments
for non-compliance (e.g. fines in the case of EU Directives). The difficulty is that
there can be many causes of non-compliance due to the complexity of an institu-
tion and its multiple interacting rules. Thus, in this paper we use the framework
in [10] for multi-tier institution representation and reasoning and propose an
automated means to revise lower-tier institutions to comply with higher-tier
institutions. To do so, we view revising an institution to be compliant as an
Inductive Logic Programming problem where hypotheses (explanations for non-
compliance) are sought. In order to solve the problem, we use abductive search
implemented in Answer-Set Programming to abduce inductive explanations for
non-compliance (ways to revise for compliance).

In the rest of this paper, we first introduce a running example of a two-tier
institution in the domain of collecting audio data in Sect. 2. Then, we give some
background in Sect. 3 on the formal multi-tier institution representation and
reasoning, the computational multi-tier framework in Answer-Set Programming
(ASP), and a brief re-introduction of Inductive Logic Programming (ILP) theory
revision. In Sect. 4 we show how revising an institution to be compliant is an
instance of an ILP problem, and show how we can resolve it by transforming
a program representing an institution in ASP to a program for abducing revi-
sions for compliance in ASP. The revision process is based on [12] for revising
conflicting institutions adapted for revising non-compliant lower-tier institutions
in multi-tier institutions with the following extensions: (i) creating or modify-
ing existing rules for imposing higher-order norms, (ii) deleting existing rules
and (iii) minimising the changes in the consequences of a revised institution
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compared to before revision. We further discuss differences with related work in
Sect. 5 and conclude the paper in Sect. 6.

2 Running Example

Our running example is in the context of a system for crowdsourcing audio data
from users using specialised cellphone apps, called a soundsensing system [16]. A
tier-1 soundsensing institution is designed to guide the cellphone app users (i.e.
an MAS) in collecting audio data. The soundsensing institution is described as
follows:

Soundsensing Tier-1 Institution

– Users are forbidden from turning their microphone off to ensure data is col-
lected continuously.

– Users are obliged to provide their location on request to give the collected
data location context.

– If a user violates a norm they are obliged to pay a fine.

In turn, the soundsensing institution is governed by a tier-2 governmental
institution designed to meet different aims (e.g. maintaining agents’ rights),
partly inspired by real-world regulations [19]:

Governmental Tier-2 Institution

– It is obliged that fines are only imposed on users after they violate a norm.
– When a user is in an area that forbids audio recording, it is forbidden to forbid

them from turning their microphone off.
– It is forbidden to oblige children (users under the age of 14) to share their

location (similar regulations can be found in the United States Government’s
Child Privacy and Protection Act [19])

Putting these two institutions together, the tier-1 institution can be non-
compliant for many reasons. Due to institution designer error, users might be
obliged to pay a fine even when not violating a norm, and/or the tier-1 insti-
tution might not take into account areas where recording is forbidden or the
possibility that users are children. Even if the tier-1 institution has, on the face
of it, taken into account these factors, the interaction between different rules can
mean all things considered it does not.

3 Background

To provide context for this paper, we re-introduce the conceptualisation and
operationalisation of individual and multi-tier institutions from [10]. Then, we
give an overview of ILP theory revision which we later use to formulate the
problem of institution revision for compliance.
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3.1 Formal Framework: Individual and Multi-tier Institutions

An individual legal institution acts as a mechanism to guide the behaviour of
the system it governs. Institutions define a set of constitutive and regulative
rules which respectively establish an institutional description and prescription
of reality (see Searle’s counts-as relation [18]). Constitutive rules describe the
system governed through creating institutional facts that can represent events
caused by other events (e.g. entering a location which is private counts-as enter-
ing a private location), or they can represent changes to the institutional state
(e.g. entering a private location causes an agent to be at a private location).
Regulative rules prescribe what properties should hold/events should occur in a
system by creating obligations and prohibitions in states (e.g. when requested
an agent is obliged to share their location). An institution’s regulative rules
regulate over a social interpretation of reality constructed from brute facts by
constitutive rules.

Conceptually, a multi-tier institution extends the notion of an individual
institution governing an MAS to institutions governing institutions in a tiered
structure. Each institutional tier governs the tier below. The first-tier imposes
norms on what occurs and holds in an MAS (first-order norms), the second-tier
norms on the norms imposed by the first (norms about first-order norms, i.e.
second-order norms), and so on.

Formally, individual and multi-tier institutions are specified and reasoned
about accordingly. The obligations/prohibitions which hold in states are repre-
sented as normative fluents describing an obligation/prohibition for an aim to
occur before a deadline. Formally the grammar is n := obl(a, d) | pro(a, d) where
a is the aim and d the deadline defined over a set of propositions Pr s.t. a, d ∈ Pr.
The set of all expressible elements n is N|Pr. When Pr contains propositions
denoting events (e.g. Bertrand sharing his location share location(betrand),)
and non-normative fluents, normative fluents about descriptive propositions are
expressible allowing first-order norms to be expressed (e.g. Bertrand is obliged
to share his location before leaving it:
obl(share location(betrand), leave(betrand, street d))). When Pr contains nor-
mative fluents, normative fluents about other normative fluents are express-
ible, allowing higher-order norms to be expressed (e.g. it is prohibited to oblige
Bertrand to share his location until he turns 14: pro(obl(share location(betrand),
leave(betrand, street d)), birthday(betrand, 14))).

An individual institution specification, based on the InstAL framework [4]
is a tuple I|Pr = 〈E ,F ,G, C,Δ〉 (defined over a set of propositions Pr which
in places we omit). The elements are: (i) The set of events E that occur in the
institution and bring about state change. These comprise observable events Eobs,
events that have an institutional meaning Einstact (e.g. an agent enters a private
area) and events denoting a norm is discharged/violated Enorm. (ii) The set of
fluents F that can hold in states. These comprise fluents used to describe the
domain Fdom and normative fluents Fnorm ⊆ N|Pr. (iii) An institutional event
generation function G : X×E → 2Einstact . The function is conditional on the fluents
that hold in a state (called a state condition represented with X = 2F∪¬F as
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a set of positive fluents that hold and negative fluents that do not hold in a
state) and an event. (iv) An institutional state change function describing the
fluents initiated and terminated from one state to the next conditional on the
previous state and an event C : X ×E → 2F ×2F . The codomain is a pair of sets
〈C↑(X , E), C↓(X , E)〉 of initiated and terminated fluents. (v) The institution’s
initial state Δ ⊆ F .

Table 1. Formalisation of the tier-1 soundsensing institution and tier-2 governmental
institution.

Formally, a multi-tier institution is specified as a tuple M = 〈T ,GX i, CX i〉.
The components are: (i) A tiering of individual institutions T =
〈I1|Pr1 , ..., In|Prn〉 where we say an institution I is in M iff ∃i ∈ N : Ii = I.
(ii) A function GX i for providing the normative events occurring during a state
transition in one tier to the tier above for monitoring. (iii) A function CX i for
providing the normative fluents that hold in a state to the tier above for mon-
itoring. The tiering of institutions restricts each institution in only imposing
ith-order norms over the behaviour of the system it governs such that the nor-
mative fluents are defined over Pri which contains everything expressible in the
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Fig. 1. Schematic view of a multi-tier institution model

tier below (i.e. Pr2 contains first-order norms and thus I|2Pr2 imposes second-
order normative fluents over Pr2. For formal details see: [10]).

Table 1 formalises the running example as a multi-tier institution consisting of
the soundsensing system’s tier-1 institution and a governmental tier-2 institution
(upper-case symbols stand for variables and for brevity we leave out the set
of events and fluents for each institution). Both institutions consist of rules
describing the domain (e.g. an agent entering a new location causes the agent
to be at that location) and consider the location ‘street b’ to be private and the
agent ‘Bertrand’ to be a child (see the initial states). The formalised example
has three issues of non-compliance between the two institutions. Firstly, when
an agent enters a new location this causes a generic norm violation event in the
soundsensing institution (1.3) due to designer error and which in turn initiates
an obligation to pay a fine (1.9). However, the governmental institution only
recognises actual norm violation events as causing a generic norm violation event
(2.2 and 2.3) and obliges an actual norm is violated before an obligation to pay
a fine is imposed (2.5 and Δ2). Secondly, in the soundsensing institution agents
are unconditionally prohibited from turning their microphone off (Δ1), however
the governmental institution prohibits such a prohibition when an agent enters
a private location (2.6). Thirdly, when an agent is requested to provide their
location the soundsensing institution obliges them to do so (1.8), but this is
forbidden by the governmental institution if the agent is a child (Δ2), such as
Bertrand.

The operational semantics of a multi-tier institution, first presented in [10],
allow such non-compliance to be determined by checking a multi-tier institution
model for norm violations. Depicted in Fig. 1, the model describes how each
ith-tier institution evolves over time, as an event-state sequence, in response to
the evolution of the tier below. The first-tier evolves in response to a trace of
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observable events that could occur in an MAS (i.e. produced for a pre-runtime
check). Each tier above the first evolves in response to the event-state sequence
of the institution they govern (i.e. the tier below). States contain domain fluents
describing the MAS and normative fluents prescribing the events that should
occur and fluents that should hold in the tier below (including other normative
fluents). Each state transition is caused by events occurring in the institution
from the previous state, which are in turn driven by the events and states from
the tier below. If a normative fluent in a state is violated by an event or fluent
in the tier below (including another normative fluent) a norm violation event
occurs in the transition to the next state. Thus, model-checking can be used to
compliance-monitor one institution with another by checking for higher-order
norm violation events.

3.2 Computational Framework for Multi-Tier Institutions in ASP

The formal framework described is complemented by a corresponding computa-
tional framework in ASP (see [10]) for automatic compliance checking of lower-
tier institutions with higher-tier institutions. ASP [2] is a non-monotonic logic
programming language for representing problems where solutions to those prob-
lems, known as answer-sets, are computed according to the stable model seman-
tics [8] using an answer-set solver (e.g. [7,11]). An ASP program is built from
first-order atoms which can be weakly negated with not. In an ASP program
facts are of the form p0. Rules are horn clauses of the form p0 : −p1, ..., pn., which
states the head p0 is true when p1, ..., pn are true. Constraints on answer-sets pro-
duced can be represented as : −p1, ..., pn. meaning falsity is in the head of the
rule and thus p1, ..., pn is not true in any answer-set. Finally, choice constructs
of the form l{p1, ..., pn}u where l and u are positive integers state that at least
l and at most u members of the set can arbitrarily be included in an answer-set
(when omitted, l is 0 and u is infinity).

The computational framework consists of several components which we
refer to later in this paper (i) an implementation of the operational seman-
tics, the reasoning program Preas (ii) a program representing the trace of
observable events used as input for producing multi-tier models, the timeline
program Ptime and (iii) a representation in ASP of a multi-tier institution
M = 〈T ,GX i, CX i〉 according to the translation given in Table 2, which pro-
duces an ASP program PIi for each individual institution Ii in the multi-tier
institution M. For brevity we leave out the details of the translation, but note
that (i) In is a unique name for the institution Ii, (ii) initiated(p, In, I) and
terminated(p, In, I) means the fluent p is initiated/terminated at time I in
institution In, (iii) occurred(e, In, I) means the event e occurs at time I in
institution In, (iv) holdsat(f, In, I) means a fluent f holds at time I in institu-
tion In, (v) start(I) means I is the initial time interval according to the timeline
program, and finally, (vi) EX(X, In, I) is shorthand for translating a state con-
dition X ∈ X i into a corresponding set of ASP body literals holdsat(f, In, I)
for all positive elements of X and not holdsat(f, In, I) for all negative ele-
ments of X.
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Table 2. Multi-tier institution translation to ASP.

3.3 Inductive Logic Programming: A Brief Overview

We view the problem of revising lower-tier institutions to be compliant with
higher-tier institutions as a theory revision (TR) problem that can be solved
using Inductive Logic Programming (ILP). ILP [17] is a machine learning tech-
nique concerned with the induction of logic theories that generalise (positive and
negative) examples with respect to a prior background knowledge. In non-trivial
problems it is crucial to define the search space accurately. This is done by a
language bias, that can be expressed using the notion of mode declarations [17],
describing the structure of the elements in the target theory. In the case pre-
sented here, we want to find ASP rules that contain certain elements in the head
and body. So we will have head and body mode declarations.

An ILP theory revision task is a tuple 〈P,B,M〉 where P is a set of conjunc-
tions of literals, called properties, B is a normal program, called the background
theory, M is a set of mode declarations describing the form that rules in the
revised theory can take and s(M) is the set of rules adhering to M . A the-
ory H, called a hypothesis, is an inductive solution for the task 〈P,B,M〉, if
(i) H ⊆ s(M), and (ii) P is true in all the answer sets of B ∪ H.

Our approach to making a lower-tier institution in a multi-tier institution
compliant is based on the introduction of new rules, and deleting and revising
existing ones. As discussed in [5], non-monotonic inductive logic programming
can be used to revise an existing theory. The key concept is that of minimal
revision. In general, a TR system is biased towards the computation of theories
that are similar to a given revisable theory. The difference between two programs
T and T ′ is denoted as c(T, T ′).

The theory T ′, called a revised theory, is a TR solution for the task
〈P,B, T,M〉 with distance c(T, T ′), iff (i) T ′ ⊆ s(M), (ii) P is true in all the
answer sets of B ∪ T ′, (iii) if a theory S exists that satisfies conditions (i) and
(ii) then c(T, S) ≥ c(T, T ′), (i.e. minimal revision).
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4 Revising Institutions for Compliance

In this section we give the details of the paper’s main contribution: a system for
revising a lower-tier institution to be compliant with a higher-tier institution in
a multi-tier institution. In particular, we are interested in revising the institution
which the system user (an institutional designer) has the power to effect change.
We call this institution to be revised a mutable institution. We are interested in
revising a mutable institution to meet two properties:

– Success meaning that a formerly non-compliant institution for an event-trace
is compliant for the same event trace after being revised. This means when
normative fluents are obliged to be imposed they are, and conversely any
prohibited normative fluents are not imposed.

– Minimality is a requirement for any revision to minimise the change in con-
sequences of the new institution compared to the old one. That is, following
changes to the institution the institution’s states are as close as possible to
the states prior to the change(s) for a trace of events. To give an example,
the soundsensing institution prohibits agents to turn their cellphone micro-
phone off, whilst the governmental institution prohibits such a prohibition in
areas deemed ‘private’. In this case, an institution revision can be successful
by removing the soundsensing institution’s prohibition altogether, but only
successful and minimal by removing the prohibition in just those cases where
an agent is at a private location.

We instantiate the problem of revising a mutable institution as an ILP theory
revision task in Sect. 4.1. Then, we take a computational approach to solving the
ILP theory revision task by performing abductive search in ASP [6]. Abductive
search is achieved by transforming the mutable institution represented in ASP to
an ASP representation encoding the space of ILP theory revisions and enabling
different revisions to be tried. We describe our computational approach using
ASP in Sect. 4.2, and the implementation and revision results for our running
example in Sect. 4.3.

4.1 Revising Institutions to be Compliant is an ILP Theory
Revision Task Instance

In this section, we define the revision for compliance task as an ILP revision
task according to the revision for compliance requirements outlined previously.
We begin by formally defining the search space of possible revisions with mode
declarations. Mode declarations define the literals that can appear in the head
and body of rules. In the case of revising a mutable institution in a multi-
tier institution, the mode declarations describe the valid rules for: generating
non-normative institutional events, initiating and terminating domain fluents,
and given the mutable institution is the ith-tier, initiating and terminating ith-
order normative fluents (i.e. restricted to only initiating/terminating a normative
fluent f if it is not in the language of norms N|Pri−1 of the tier i − 1 below).
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Definition 1. Mode Declarations. Let Ii = 〈E i,F i,Gi, Ci,Δi〉 be a mutable
institution for which In is a unique label. The mode declarations for Ii are a
pair M = 〈Mh,M b〉 where Mh is the set of head mode declarations and M b the
set of body mode declarations, defined as:

Mh = {initiated(f, In, I), terminated(f, In, I) : f ∈ F \ N|Pri−1}∪
{occurred(e, In, I) : e ∈ E i

instact}
M b = {holdsat(f,In, I),¬holdsat(f,In, I) : f ∈ F i}∪

{occurred(e, In, I) : e ∈ E i}
The set of compatible rules with the head and body mode declarations are

also required to contain one event in the body and are defined as:

Definition 2. Compatible Rules. Let M = 〈Mh,M b〉 be the mode dec-
larations for a mutable institution Ii = 〈E i,F i,Gi, Ci,Δi〉. An ASP rule
l0 : − l1, ..., ln. where n ∈ N is compatible with M iff l0 ∈ Mh, ∀i ∈ [1, n] :
li ∈ M b and |{l1, ..., ln} ∩ {occurred(e, In, I) : e ∈ E i}| = 1. The set of all
compatible rules with M is s(M).

Having described the search space of revisions, a theory revision task TR
needs to be instantiated with the properties P that a solution must meet. These
properties are typically positive examples (formulae that are true following a
revision) and negative examples (formulae that are false following a revision).
In our case we are only interested in supplying negative examples, stating that
non-compliance is eradicated in a solution to TR. The negative examples in P
are represented as ASP integrity constraints requiring a revised mutable insti-
tution is compliant with all higher-order norms it can violate – including those
it does not violate before revision – ensuring revision does not cause further
non-compliance.

Definition 3. Compliance Properties. Let Ii be a mutable institution and
Ii+1 = 〈E i+1,F i+1, Ci+1,Gi+1,Δi+1〉 be the institution with unique name Ini+1

governing Ii where i ∈ N. The compliance properties for Ii is the set of con-
straints:

P = {: − occurred(viol(n), Ini+1, I), instant(I). : n ∈ F i+1
norm}

We can now instantiate an ILP theory revision task, as a compliance theory
revision task in a multi-tier institution according to the previous definitions:

Definition 4. Compliance Theory Revision Task. Let Ii be a mutable
institution in the multi-tier institution M. An ILP theory revision task TR =
〈P,B, T,M〉 is a compliance theory revision task for Ii iff: (i) P is a set of
compliance properties for Ii, (ii) B is the normal program comprising (a) a
multi-tier reasoning program Preas, (b) the timeline program Ptime and (c) the
institution representation program PIj for each institution Ij in M apart from
the mutable institution Ii, (iii) T is the institution representation program PIi

for the mutable institution Ii, and (iv) M is the set of mode declarations for Ii.
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As outlined previously, we require solutions to theory revision to minimise
the revision cost in order to remain as close to an institution designer’s origi-
nal intentions as possible. More precisely, the requirement is that the changed,
mutable, institution’s model for a composite trace contains as many similarities
between states compared to before the changes were made (i.e. minimising the
changes to consequences). We derive the cost of revision from the changes in
consequences rather than the number of rule changes – as used in [12] – since
due to non-monotonicity, as the changes in consequences between two versions
of a mutable institution increases, the number of rule changes does not neces-
sarily monotonically increase. The changes in consequences are the number of
added and deleted fluents in the answer set for B∪T compared to the answer-set
B ∪ T ′ for some revised institution T ′ (i.e. the symmetric set difference between
the answer-sets for B ∪ T and for B ∪ T ′).

Definition 5. Theory Revision Cost. Let TR = 〈P,B, T,M〉 be a compli-
ance theory revision task for a mutable institution I with unique label In, T ′ be
a solution to TR, ans be the answer-set for B ∪ T and ans′ be the answer-set
for B ∪ T ′ and ⊕ be the set symmetric difference operation. The cost c(T, T ′) is
defined as:

c(T, T ′) =
∣∣{f = holdsat(p, In, i) : i ∈ N, f ∈ ans ⊕ ans′ }∣∣

4.2 Solving ILP Institution Revision in ASP

Based on [12] we use abductive search in ASP to solve an ILP theory revision
task TR = 〈P,B, T,M〉 instantiated as institutional revision for compliance.
The approach we take is to transform the theory to be revised T (a mutable
institution) into an ASP program where different changes to the theory can be
tried/abduced (body literal and rule addition and deletion) that fit into the
space of possibilities s(M). We call this program the revision program Prev. The
background theory B remains unchanged and provides both the unchangeable
parts of the multi-tier institution and multi-tier reasoning. The background the-
ory allows the effects of different revisions to be determined. The properties to
be met, P , constrain any revisions found by the ASP program Prev to result
in a compliant institution. The cost measure between a revisable T and revised
theory T ′, c(T, T ′) is encoded as an ASP optimisation statement. Computing the
answer-sets for these components as a single ASP program explores the search
space, with each answer-set representing an outcome (revised theory) that meets
the properties P and with those that minimise the difference (changes in conse-
quences) ranked highest and presented to the user for selection. The advantage
of this approach is that the representation and reasoning for the non-revisable
portions of the multi-tier institution are encoded as the same ASP programs for
the computational and revision framework requiring no re-implementation.

In order to go from a revisable theory T representing a mutable institution
to a revision program Prev, we need to alter T in some way such that adding
new rules and changing existing rules can be tried by the new program with
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Table 3. Explanation of how abducible revision predicates can (re-)define institutional
rules for finding revisions of the institution In

each answer-set corresponding to different revised theories. The approach we
take, as in [6,12], is to introduce abducible predicates which represent the dif-
ferent revision operations. Abducible predicates are selected by the program for
inclusion in answer-sets. If an abducible is selected for inclusion in an answer-set
then the effect is to perform the revision operation the abducible represents.
The abducibles have the form rev(In, i, details(...)) conveying to the user the
revision operation described in details(...) (e.g. a rule deletion operation) is
carried out on a rule with label i in institution In. To give a simple example
the rule l0 : − l1. cannot be selected for deletion by an ASP program, but we
can modify it to become l0 : −l1, not rev(In, i, details(rDel)). meaning if the
abducible rev(In, i, details(rDel)) is included by the program in an answer-set
the effect is to delete the rule i by ensuring the body is never true. The selection
of revision tuples for inclusion in an answer-set is encoded in the ASP revision
program using the ASP choice construct of the form {rev(In, i, details(...))}.
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Each type of revision operation (rule and body literal addition and deletion)
requires a different abducible and set of rules in the ASP revision program Prev.
In Table 3 we describe the details of the different rules for trying revisions and
the transformation from a revisable theory T to a revision program Prev using
In to represent an institution’s name, i to represent a rule identifier (e.g. an
integer) and B+

−(l) to represent whether a literal l is positive or negative.
Finally, the cost c(T, T ′) between two theories is encoded as an ASP optimi-

sation constraint causing the ASP program to only present answer-sets that are
minimal in the changes to consequences between T ∪ B and T ′ ∪ B, which we
also extend with a secondary preference for revisions that generalise the insti-
tution (deleting body literals and rules) rather than specialising (adding new
body literals and rules). The optimisation statement is given below where X@n
represents the priority n of minimising the numerical value X, difference/1
measures the difference between the states in the answer-set for the institution
before and after revision (in terms of added and removed fluents for each state),
rAdd/1 counts the rule additions, bAdd/1 the body additions, bDel/1 the body
deletions and rDel/1 the rule deletions.

#minimize {D@5: difference(D); RA@4: rAdd(RA); BA@3: bAdd(BA); BD@2: bDel(BD);
RD@1: rDel(RD)}.

4.3 Implementation and Results

A prototype system for revising a lower-tier institution to be compliant with
a higher-tier is implemented according to the description in the preceding sec-
tions1. The implementation is a compiler written in Java which, as depicted
in Fig. 2, takes as input the mutable institution the institution designer has the
power to effect change represented in ASP (the mutable institution program PIi)
and outputs a revision program Prev. The revision program is then put together
with compliance properties to be met by revisions, revision cost minimisation
optimisations and the background theory to remain unchanged (the non-mutable
institutions, the timeline program and the multi-tier institution reasoning). An
answer-set solver applied to the composition of these programs then produces
minimal revision suggestions for compliance (answer sets). The suggestions are
passed to a user who selects and applies a set of revisions, resulting in a compliant
institution represented as an ASP program.

In addition to the system presented in this paper, the ASP compiler also
addresses an apparent lack of re-usability of institutions (e.g. using the same
institution for different sets of agents) due to their propositional nature. Rather
than taking just propositional institutions as input, the compiler also takes first-
order institution theories containing variables in the head and body of rules,
together with bindings and monadic predicates to denote types. To give an
example, agent(ada) denotes ada is of type agent and agent(X) denotes the

1 The prototype, multi-tier reasoning in ASP and the examples used in this paper can
be found at https://sourceforge.net/projects/multitierinstitutionlearning/files/.

https://sourceforge.net/projects/multitierinstitutionlearning/files/
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Fig. 2. Overview of using the implemented compiler and the multi-tier institution
framework to resolve non-compliance.

variable X is any ground term of type agent. Thus, a designer does not need to
write a new propositional institution for the case where a new agent, Charles,
joins the institutionalised society with all the norms and domain fluents that are
about Charles. Instead, a fact agent(charles) can be added stating Charles is
of type agent. In turn, the compiler takes these more re-usable first-order insti-
tution theories as input and outputs a first-order institution revision program
that tries different variable bindings between head and body literals’ variables
of the same type.

For our running example, we have used our prototype compiler to produce a
revision program for sub-sets of the compliance problem. That is, dividing the
program up into smaller parts and resolving one case of non-compliance at a
time for tractability, and testing all revision suggestions together at the end to
confirm they are consistent. Some of the minimal and successful revisions found
are given below (we keep to those we find most intuitive).

The first change suggested addresses the issue of non-compliance due to an
obligation to pay a fine being imposed by the tier-1 institution when an agent
enters a new area. Non-compliance occurs, because an agent entering a new area
triggers a norm violation event in the first tier institution regardless of whether
a norm has been violated, whilst the second tier obliges that a norm is genuinely
violated before a fine is imposed. The revision suggestion is to delete the rule in
the first-tier institution causing a norm violation event to occur when an agent
enters an area:

occurred(norm violation(Agent0), soundsensing, I) :- agent(Agent0), instant(I),
occurred(enter(Agent0, Location0), soundsensing, I), location(Location0).
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The second issue is that children (people under the age of 14) are obliged to
share their location when requested, but this is prohibited by the tier-2 institu-
tion. The following suggestion is one of several minimal changes found to ensure
the non-compliant obligation is not imposed on children. An additional con-
straint is placed that an agent, Agent2, is not a child and the variable Agent2
is bound to the variable Agent0 denoting the agent who would be obliged to
share their location. This means that the obligation can not be imposed on a
child. The new variable Agent2 is introduced since the implementation relies
on using unique variables for all literals and then systematically trying different
optional bindings between the variables (or no bindings). The new rule is:

initiated(obl(share_location(Agent0), leave(Agent0, Location0)), soundsensing, I)
:- occurred(request_location(Agent1), soundsensing, I),

holdsat(at(Agent1, Location0), soundsensing, I),
not holdsat(child(Agent2), soundsensing, I), Agent0 = Agent1,
Agent0 = Agent2, agent(Agent0), agent(Agent1), agent(Agent2),
location(Location0), instant(I).

Finally, the tier-2 institution prohibits a prohibition on an agent to turn
their microphone off when they are in a private area. Yet, the tier-1 institution
always prohibits turning a microphone off until the agent leaves the system (the
prohibition exists in the initial state). The revisions found are not to delete the
rule initiating a prohibition in the tier-1 institution’s initial state, but instead, to
terminate the prohibition when an agent enters a private area and then initiate
it again when they leave. Although the revision adds two rules, it is minimal in
the outcome of the tier-1 institution since there is still a prohibition on turning
the microphone off in all other cases where it is allowed by the tier-2 institution:

terminated(pro(microphone off(Agent0), leave soundsensing(Agent0)), soundsensing, I)
:- occurred(enter private(Agent2), soundsensing, I), agent(Agent2),
agent(Agent0), Agent0=Agent2, instant(I).

initiated(pro(microphone off(Agent0), leave soundsensing(Agent0)), soundsensing, I)
:- occurred(leave private(Agent2), soundsensing, I), agent(Agent2),
agent(Agent0), Agent0=Agent2, instant(I).

5 Related Work

There has been much work on norm change in normative systems, however, as
far as we are aware we are the first to propose a way to revise institutions to be
compliant with other institutions in a multi-tier institution.

The most closely related work is by Li et al. [12,13] who also uses abductive
search in ASP to resolve an ILP theory revision task. Unlike us, their focus is
on resolving norm conflicts between multiple institutions governing a group of
agents (e.g. when an agent is prohibited to perform an action by one institution
and obliged by another) and later the general case of debugging ASP programs
[14]. In comparison, we focus on revising non-compliance between lower-tier and
higher-tier institutions in a multi-tier institution. Our proposal is based on Li
et al. and extended to revising an ith-tier institution by adding new rules or
modifying/deleting pre-existing rules to impose ith-order norms. We also extend
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the work to revising with minimal changes in the consequences of a revised
institution (as opposed to changed rules), finally we look at the creation and
deletion of existing rules which in our running example provides more minimal
changes in the consequences compared to rule modification.

Vasconcelos et al. [20] have proposed a technique for revising conflicting
norms based on first-order unification. Their proposal provides a fine-grained
way to revise obligation/permission/prohibition predicates’ terms. For example,
an obligation to be in an area that overlaps with a prohibited area is revised
by changing the obliged/prohibited areas for an agent to be in. In contrast
to our work, their focus is on modifying the obligation/permission/prohibition
predicates and not with adding/removing/modifying rules to meet a particular
property (compliance between institutions in our case).

Governatori and Rotolo [9] propose a way to use a defeasible logic to modify
legal systems by introducing new norms which derogate, abrogate and annul
norms using defeasible rules. Central to their proposal is the idea of a legal
system being versioned and having two timelines: the versioning timeline and
the timeline of the legal system’s evolution (i.e. which norms are imposed and
when). We only consider the latter timeline, the evolution of an institution (in
our case during pre-runtime model checking) and focus on diagnosing causes of
non-compliance between institutions rather than assuming it is known what the
new information (rules) is.

Finally, on the more conceptual and theoretical side, Boella et al. [3] look at
how to classify different systems of norm change by investigating a set of rational
norm change postulates. Specifically, they look at normative system change to
incorporate new conditional norms in input/output logics and they investigate
the set of consistent postulates for different input/output logics. Again, this work
also presupposes which conditional norms should be added to the normative
system/institution, thus any system meeting these postulates is quite different
from our proposal.

6 Conclusions

In this paper we proposed an implemented automated system for revising a lower-
tier institution’s regulations to be compliant with the regulations of a higher-
tier institution it is governed by. The proposal addressed a problem created by
pervasive legal artefacts in the social world, where on the one hand institutions
are used to govern other institutions in a vertical governance structure we call
multi-tier institutions, creating the potential for non-compliant regulations. On
the other hand, revising institutions’ regulations to be compliant is non-trivial
due to their inherent complexity.

Our proposal takes our previous formal and computational framework [10]
for determining the compliance of institutions in multi-tier institutions. Then,
viewing the problem of revising an institution to be compliant as an instance of
an ILP (Inductive Logic Programming) theory revision task, we use abductive
search in ASP based on [12] to solve the ILP theory revision task for compliance.
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Abductive search in ASP is performed by translating, using an implemented
compiler, from an ASP representation of an institution that needs to be revised
to be complaint where revisions cannot be tried and searched for, to an ASP
representation where all possible revisions can be tried and thus revisions for
compliance determined. Then, our system goes about finding revisions that are
successful in resolving non-compliance and minimal in the changes to the insti-
tution’s consequences thus keeping the regulations as close as possible to the
institution designer’s original intentions.

The system for revising institutions, for tractability, considers a fragment of
the search space of revisions: modifying and deleting existing rules and extending
a single mutable institution with a limited number of rules. The successful and
minimal revisions that do exist (if any) within the space explored are guaranteed
to be found. However, there may be more minimal revisions that result in a well-
formed institution (according to our representation of institutions) outside of this
space, but this space is bigger and takes longer to explore.

We consider this a problem that is important to address. Firstly with formal
analysis of the complexity of the full problem. Secondly, by studying the applica-
bility of various heuristics to the full search problem (e.g. genetic algorithms)
which cannot guarantee a minimal solution is found (i.e. in the case of genetic
algorithms instead converging on local optima) but can help resolve tractabil-
ity issues. As yet, it is unclear which heuristics are appropriate and how they
can be incorporated into ILP revision as abducible search in ASP, presenting an
interesting challenge for future work.

Another avenue for future work is to go beyond the problem of revising a sin-
gle non-compliant mutable institution in a multi-tier institution. There remains
the question of how to revise for compliance when multiple institutions are non-
compliant. One approach is to simply extend the work presented in the paper
from searching rule changes for a single institution to all non-compliant insti-
tutions. Yet due to combinatorial explosion this is a more complex task for
non-trivial multi-tier institutions. Another option is to revise institutions in a
specific order, searching a fragment of possible changes to multi-tier institutions.
However, it remains to be seen if there is procedural order in which to search
for revisions that offers the same guarantees of minimality and success, with the
additional guarantee of the procedure terminating. This makes revising multiple
institutions for compliance an interesting avenue for formal analysis in future
work, in particular when looking at more general governance structures rather
than multi-tier institutions, such as arbitrary graphs.
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Abstract. Choosing actions within norm-regulated environments
involves balancing achieving one’s goals and coping with any penalties
for non-compliant behaviour. This choice becomes more complicated in
environments where there is uncertainty. In this paper, we address the
question of choosing actions in environments where there is uncertainty
regarding both the outcomes of agent actions and the intensity of mon-
itoring for norm violations. Our technique assumes no prior knowledge
of probabilities over action outcomes or the likelihood of norm violations
being detected by employing reinforcement learning to discover both
the dynamics of the environment and the effectiveness of the enforcer.
Results indicate agents become aware of greater rewards for violations
when enforcement is lax, which gradually become less attractive as the
enforcement is increased.

1 Introduction

Norm-driven behaviour and monitoring have traditionally make four assump-
tions about the enforcement mechanism and the environment in which agents
act, namely:

– the environment is fully deterministic (e.g. [10,12,20]);
– enforcement is either perfect or limited in known ways (e.g. “coverage” is

limited [1]);
– agents are perfectly aware of all information regarding the environment and

monitoring;
– agents do not change their behaviour due to changes in enforcement capabil-

ity [7].

While settings based on these assumptions are a useful abstraction for theoretical
work on norm-driven behaviour, when norm-driven agents are meant to either
model or mimic rational decision-making behaviour in realistic environments,
such as in agent-based simulation [2], they must either be relaxed or dropped
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-42691-4 12
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entirely [11]. Consider the following example. An agent driving a car enters a
city in a foreign city,1 which has streets and traffic dynamics that are known to
the agent, and the agent has a goal to drop off a passenger as close as possible
to the passenger’s desired destination. The agent is unaware of the meaning of
the signs in this city and of the frequency with which traffic wardens patrol the
streets, and must make a decision as to where to drop off the passenger, knowing
that traffic may force it to stop at undesirable locations. In this kind of situation,
existing approaches to norm reasoning fail to provide the agent with the means
to make a decision due to a number of factors. First, although the agent is aware
of the optimal way of dropping off the passenger from a movement point of view,
it is unaware of exactly which spots are forbidden, and, if so, whether a sanction
will be immediately applied. Second, the environment is stochastic, and some
movements of the agent may be sanctioned because the environment forced the
agent (by chance) to be at a certain spot. Third, if the agent makes a decision
and is not sanctioned, nothing guarantees that sanctions may not be applied in
the future.

In this paper, we use a reinforcement learning-based mechanism to learn
normative rewards, and investigate norm enforcement mechanisms to regulate
such reinforcement learning agents. Our mechanism assumes no prior knowledge
of the normative state or enforcement intensity, and yields policies that are
close to optimal using multiple reinforcement-learning techniques. We show the
effectiveness of our approach empirically via simulations and identify key learning
algorithm and parameter combinations for our scenario. The ultimate aim of our
work is to allow enforcement agents to improve enforcement over time.

The remainder of the paper is organised as follows. We formalise the problem
we aim to solve with our approach in Sect. 2 and proceed to describe our approach
in Sect. 3, which we validate empirically using the experiments in Sect. 4. Finally,
we compare our approach to related work in Sect. 5 and conclude the paper with
a discussion of our contributions and directions for future work in Sect. 6.

2 Problem Formalisation

Norms have been widely advocated as a means of coordinating multi-agent systems
and several approaches have been proposed in the literature, including state-based
norms (where norms are defined in terms of states that should or should not occur),
e.g., [9], and event-based norms (where norms are defined in terms of what agents
should or should not do), e.g., [3,5]. Similarly, various approaches to the imple-
mentation of norms have been proposed, including enforcement (where sanctions
are imposed on norm-violating states and behaviours) and regimentation (where
norm-violating states and behaviours are eliminated).

2.1 Norms and Enforcement

In this paper, we adopt essentially a state-based approach to norms and
assume norms are regulated using enforcement. Each state of the environment
1 A city foreign to the agent’s designer.
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is described in terms of a set of features {ϕ1, . . . , ϕn}, where each feature corre-
sponds to a binary variable that must be either true or false (i.e. each feature is
a propositional variable). Thus, the combination of all features (i.e. the enumer-
ation of all possible models of ϕ1, . . . , ϕn) induces a state-space S. Using such
features, we define an entailment relation |= over states and formulas using the
standard logic connectives (∧, ∨, ¬, →), so that (s ∈ S) |= ϕ means that the set
of features present in s is a model of ϕ.

Norms specify conditions (sets of states) that either must hold (obligation) or
should not hold (prohibition) when a triggering or activation condition is true.
For example, parking in a no-parking zone may be prohibited between 8am and
6pm. If a norm is violated, a penalty or sanction is applied in the violation state,
e.g., parking illegally may result in a fine of $100. This has some similarities to the
use of ‘counts as’ rules in normative multi-agent programming, e.g., [4]. However
we feel our approach is more intuitive in allowing the direct representation of
obligation deontic modalities, rather than simply violations as in [4].

Definition 1. A norm is a tuple 〈δ,G,φ,ψ, ρ〉 where:

– δ ∈ {obligation, prohibition} is the deontic modality;
– G is a set of agent roles to which the norm applies;
– φ is the activation condition, which induces a set of states Sφ such that Sφ =

{s | s ∈ S ∧ s |= φ};
– ψ is the normative condition, which induces a set of states Sψ such that Sψ =

{s | s ∈ Sφ ∧ s |= ψ};
– ρ : S → R is a function that specifies the penalty for violating the norm in a

given state ( ρ(s) returns the penalty to be paid in s).

A norm n = 〈δ,G,φ,ψ, ρ〉 is activated in a state s ∈ Sφ, i.e., a state in which
the activation condition φ of the norm holds for an agent a if the role of the agent
role(a) is a role to which the norm applies, role(a) ∈ G. The norm is obeyed if the
normative condition ψ holds in s (in the case of obligations) or does not hold in
s (in the case of prohibitions). Otherwise the norm is violated in s, and the agent
must pay a penalty ρ(s) in s. We assume that agents are self interested, and only
comply with norms if the expected penalties for non-compliance outweigh the
benefits of violating a norm from the agent’s perspective.

2.2 Monitoring Compliance

Norms are monitored and enforced by a normative organisation. The normative
organisation is responsible for: determining when a norm is activated in a state,
whether an activated norm is obeyed or violated, and (in the case of violations),
for applying the appropriate penalty.
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A normative organisation monitors a set of norms N , and (c.f. Definition 1)
a state s ∈ S violates a norm n = 〈δ,G,φ,ψ, ρ〉 ∈ N if δ = prohibition and
s |= ψ, or δ = obligation and s �|= ψ. The set N −

s of norms violated in state s is
defined as

N −
s = {〈δ,G,φ,ψ, ρ〉 ∈ N | δ = prohibition ∧ s |= ψ} ∪

{〈δ,G,φ,ψ, ρ〉 ∈ N | δ = obligation ∧ s �|= ψ}

We assume that the probability that violations of a norm will be detected is
under the control of the normative organisation. The enforcement intensity of
the norm is a measure of the ‘effort’ the normative organisation is prepared to
invest in detecting violations of the norm. An enforcement intensity of 1 indicates
violations will be detected with probability 1, while an enforcement intensity of
0 indicates that the norm is not enforced (no violations are detected).

The enforcement intensity is modelled as a detection function D(n, t), which
gives the detection probability of the violation of the norm n ∈ N at time step
t.2 In Fagundes [6], the detection function takes into account the current state,
that is, D(n, s) where n ∈ N and s ∈ S, but ignores the fact that in some
systems the detection probabilities are not constant since they can be changed
over time as part of a norm enforcement strategy.

Note that, as part of its norm enforcement strategy, a normative organisa-
tion may choose not to disclose the current enforcement intensity to the agents.
This disparity in information regarding the enforcement intensity was termed
information asymmetry in [11]. In this case, agents must determine the like-
lihood of norm violations being detected either by assuming the enforcement
intensity to be some constant, or by trying to learn it. Criticially, given that
agents cannot learn the enforcement intensity perfectly or even approximate the
actual intensity without a temporal delay to observe sufficient instances of norm
enforcement, it becomes possible for the normative organisation to optimise the
effort spent monitoring to achieve a given level of compliance.

In the remainder of the paper we investigate norm enforcement mechanisms
to regulate the behaviour of self-interested rational agents in a fully-observable
stochastic environment. The mechanisms take into account not only the imme-
diate costs and benefits of enforcing the norms with a given intensity, but also
information asymmetry, and the adaptive capabilities of the agents which can
change their behaviour in response to perceived changes in the norm enforcement
intensity.

2.3 Example

In this section we introduce a simple Parking World scenario to illustrate the
idea of variable enforcement of a norm. In the scenario, an agent drives from a
start location to a destination location (e.g., from work to home). The agent can

2 In a slight abuse of notation, we shall denote by D(n) the detection probability of
the violation of the norm n ∈ N where n is constant at all time points t.
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stop on the way (e.g., to buy groceries on the way home). There are two places
the agent can park: a legal parking zone, which has lower utility, but does not
violate a parking norm, and an illegal parking zone, which violates the parking
norm, but may have higher utility. If the violation is undetected (the parking
norm is not enforced), the utility of parking illegally is higher than of parking
legally; however if the norm if enforced the agent incurs a large sanction.

The Parking World is shown in Fig. 1, and consists of a 5 × 5 grid of cells.
The environment contains four distinguished cells: the START cell (1, 1), the
END cell (5, 5), a “legal parking cell” (2, 4) and an “illegal parking cell”
(4, 2). The agent enters the environment at the START cell and can move
from cell to cell orthogonally and may revisit each cell apart from the END cell
an arbitrary number of times. When the agent reaches the END cell the simu-
lation stops. Visiting a parking cell counts as parking, and we assume that the
agent parks at most once (legally or illegally) en route. The reward structure
if the agent has not already parked is shown in Fig. 1a. When visiting all cells
except the END cell and the parking cells, the agent receives a small negative
reward (penalty) of −4 (i.e., short routes between START and END have higher
utility). Visiting the legal parking cell (2, 4) has a positive utility of +20. The
reward for visiting the illegal parking cell (4, 2) depends on whether the nor-
mative organisation enforces the parking norm. If the norm is not enforced, the
agent receives a positive reward of +50; if the norm is enforced, the agent receives
a large negative reward −100 (i.e., a sanction). Visiting the END results in a
reward of +100. The reward structure after the agent has parked at least once is
shown in Fig. 1b. In this case, visiting all cells except the END cell results in a
small negative reward (penalty) of −4, and visiting the END results in a reward
of +100. After the agent has parked once, the parking cells effectively become
‘normal’ cells and the parking norm is no longer enforced on the illegal parking
cell (4, 2).

The scenario is designed such that the agent has to make a single decision
about where to park on its way home (parking repeatedly does not increase the
agent’s utility). Parking legally gives a positive reward. The reward for visiting
the illegal parking cell is controlled by the normative organisation. Specifically,
the probability that the agent will receive a negative rather than a positive
reward for parking illegally is determined by the enforcement intensity. Critically,
the agent has limited information about the enforcement intensity of the parking
norm. However the agent can attempt to learn the enforcement intensity over
multiple trials, and we discuss this in the next section.

3 Reinforcement Learning in Normative Organisations

The process of reinforcement learning (RL) can be described as follows: an RL
agent first obtains the initial state of the environment and then selects and
executes an action. The environment then responds with a numerical reward and
a new state. The agent makes its second move based on the reward it received
in the first step and the new state. This process repeats until the agent reaches
the end state or it cannot proceed any further. For example,
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(b) Rewards after parking

Fig. 1. Two layer parking world

s0
a0 r1−−−−−−→ s1

a1 r2−−−−−−→ s2 ... sn−1
an−1 rn−−−−−−−−→ sn

where sn is state n, an is an action made by agent at state n, rn+1 = R(sn+1)
is the reward given by the environment for reaching state n + 1.

RL can be formulated as Markov Decision Process (MDP). An MDP is a
five-tuple, MDP =< S,A, P (s′|s, a), R >, where

– S is a set of possible states. For all states in discrete time steps, st ∈ S.
– A is a set of possible actions, where for all actions a possible in a given state,

a ∈ A.
– P (s′|s, a) is the probability of moving from state s to s′ when executing action

a, such that
∑

s′ P (s′|s, a) = 1 and P (s′|s, a) ≥ 0.
– R is the reward function, mapping from states to reward values. R : S �→ R.
– γ is the discount factor, 0 ≤ γ ≤ 1. The discount factor determines the impor-

tance of future rewards.

The goal of agent is to maximise its total reward, Σn
i=0R(si), by computing

a control policy. The policy is a function, π, that maps from each possible state
of the environment to an action.

π : S → A

The optimal policy is obtained by learning a value function, V , that maps each
state (or state-action pair for Q-learning) to a numeric value, indicating expected
total reward following that state. The optimal value function, V ∗, is defined as

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

P (s′|s, a)V ∗(s′)
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Therefore, the optimal policy, π∗, can be defined as the best action a such that
future expected total reward is maximised in state s.

π∗(s) = arg max
a∈A

∑
s′∈S

P (s′|s, a)V ∗(s′)

We assume that the agents do not know exactly what the rewards are for
states where norms apply, nor exactly which states are affected by norms (and
thus, the probability of being sanctioned). We have therefore developed an app-
roach that can use any model-free reinforcement learning mechanism, and have
implemented the two most common reinforcement learning algorithms, namely
SARSA [14] and Q-Learning [19].

A key problem in RL, is balancing exploration and exploitation. For each step,
the agent needs to decide whether to follow the best action given by its learned
policy (exploitation) or randomly pick an action (exploration). It’s obvious that
we cannot do exploration all the time, which means that agent makes no use of
the learned knowledge about the environment. On the other hand, exploitation
fails to discover potential better actions. In our approach, we use an epsilon-
greedy strategy, which chooses an exploitation action in most cases; however
with probability ε, the agent chooses a random action. This guarantees that
eventually all states are visited after an infinite number of runs. If a∗ is the
optimal action given by agent’s policy, the probability of choosing an action
a ∈ A using an epsilon-greedy strategy is:

P (a) ←
{

1 − ε + ε
|A| , if a = a∗

ε
|A| , if a �= a∗

In practice, ε should be large enough to help the agent interact with the envi-
ronment and learn quickly, and small enough to maximise the total rewards. A
value of 0.1 is often used in the literature.

The basic reinforcement learning algorithm is shown in Algorithm1. Each
trial t represents a full execution of the agent starting from the initial state to
the end state. The current state s and the next state s′ are initialised to the
initial state s0. For each step in a trial, if the agent is not already in the end
state, we calculate all applicable states of the agent given its current state. The
exploration-exploitation strategy then decides whether the agent chooses explo-
ration (selects a random action), or exploitation (an action given by agent’s
policy). The next state s′ is given by executing the action in a non-deterministic
environment. The optimal next state s∗ is the state followed by agent’s policy
without consideration of environment (Algorithm3). The mechanism of assigning
the reward of each step r is given Sect. 2.3 and in detail in Algorithm 2. Finally,
we update the utilities of states (or state-action pairs) using either SARSA or
Q-learning algorithms (Algorithms 4 and 5) (depending on the experimental
setup, see Sect. 4).

SARSA and Q-Learning are temporal difference approaches to learning the
optimal policy. The core of the two algorithms are update equations for the
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Algorithm 1. Reinforcement learning for the Parking World
1 foreach t ∈ totalTrials do
2 s ← s′ ← s0
3 while ¬isTerminal(s) do
4 A ← applicableActions(s)
5 if isExploration(t) then
6 a ← random a ∈ A

7 else
8 a ← π(s)

9 s′ ← execute(a)
10 s∗ ← getOptimalState(s)
11 r ← getReward(s)
12 V (s) ← Update(s, s′, s∗, α, γ)
13 s ← s′

/* Update final state */

14 r ← getReward(s)
15 err ← r + 0 − V (s)
16 V (s) ← V (s) + α ∗ err
17 reset

Algorithm 2. getReward(state)
1 if s = illegalState then
2 if isDetected(s) then
3 r ← penaltyOfIllegalParking;

4 else
5 r ← R(s);

/* Once the illegal cell or the legal cell is visited, they become

’normal’ cells and norms are not enforced */

6 if s = illegalState or s = legalState then
7 illegalState.reward ← defaultReward;
8 legalState.reward ← defaultReward;
9 enforcementIntensity ← 0

10 return r

Algorithm 3. getOptimalState(state)
1 foreach a ∈ applicableAction(s) do
2 s′ ← execute(a);
3 if V (s′) > V (s∗) then
4 s∗ ← s′

5 return s∗
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value function, which are given in Algorithm 4 (for SARSA) and Algorithm5 for
(Q-learning). α is the learning rate that controls the amount of difference that
contributes to the update of the value of state s.

Algorithm 4. SARSA: Update(s, s’, s∗, α, γ)
1 return V (s) + α · [r + γ · V (s′) − V (s)]

Algorithm 5. Q-learning: Update(s, s’, s∗, α, γ)
1 return V (s) + α · [r + γ · V (s∗) − V (s)]

The SARSA and Q-learning algorithms have distinct characteristics [15, p.
844] when exploration takes place. In this context, Q-learning is more flexible in
the sense that it is able to converge towards an optimal policy even if the initial
policy is random or very low quality, since its update rule always takes the best
Q-value backed up so far. Conversely, SARSA is more realistic in that its update
rule always uses the actual values obtained in each learning episode (and thus
has less bias towards optimistic assessments). This has important implications
for the results we might expect from these algorithms in our approach. Namely,
we expect Q-learning to perform better when the penalties for violation are
high, resulting in a norm-compliant policy substantially different than a norm-
ignoring policy, whereas we expect SARSA to perform better when the enforcer
agent changes enforcement more often.

4 Experiments

We carried out two experiments using the scenario described in Sect. 2 to study
the behaviour of the SARSA and Q-learning agents:

1. under different fixed enforcement intensities; and
2. under variable enforcement intensities.

In both experiments, we used the following parameter values (the meanings are
explained Sect. 3):

– the ε-greedy strategy has ε = 0.1;
– the discount factor, γ, is set to 0.9; and
– the learning rate, α, is set to 0.01 for the first 100,100 trials to help the agents

learn efficiently in the earlier trials.

α ←
{

1
c−100000 , if c ≥ 100, 100
0.01, if c < 100, 100

(1)

where c is the number of times that a cell has been visited.
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4.1 Fixed Enforcement Intensities

We know that if the enforcement intensity is high, choosing a path that goes
through the legal parking cell gives a higher total reward. On the other hand,
choosing a path through the illegal cell is better if the enforcement intensity is
low. Therefore, there exists a critical value of enforcement intensity where the
agent switches its preference from a path through the legal cell to a path through
the illegal cell or vice versa. The purpose of the first experiment is to find this
critical value.

In the first experiment, we varied the enforcement intensity from 0 to 1 in
steps of 0.1. Having identified the critical range of values, we performed a further
set of experiments using a step size of 0.01. For each experiment the agent was
run 10 times with 1 million episodes per run to obtain an average utility.

Fig. 2. Learned utilities for differing enforcement intensity (SARSA)

The results for the SARSA agent are shown in Fig. 2. As can be seen, the
critical enforcement intensity is around 0.22. Moreover, Fig. 2 shows that when
the enforcement intensity is greater than 0.3, further increases in enforcement
intensity have no significant effect on the utility of the legal cell. Similarly, when
the intensity is below 0.18, decreasing the enforcement intensity has very little
effect on the utility of illegal cell.

The results for the Q-learning agent are shown in Fig. 3. In this case, the util-
ities of the legal and illegal cells are very close when the enforcement intensity is
lower than 0.15. While the utility of the legal cell is stable when the enforcement
intensity increases, the utility of the illegal cell decreases.
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Fig. 3. Learned utilities for differing enforcement intensity (Q-learning)

4.2 Variable Enforcement Intensities

The second experiment was designed to show how the SARSA and Q-learning
agents behave when the enforcement intensity changes during a single run. This
experiment was divided into two phases. In the first phase, the agent was trained
with an enforcement intensity of 0 until its learned utilities for the legal and
illegal cells converged. The agent was then evaluated 1,000 times using this
learned policy (the policy was kept fixed during the evaluation period). The agent
then entered the second phase with the policy it learned in the first phase. In
this phase, the enforcement intensity was changed to 1 and the agent was trained
1,000 times followed by 1,000 runs for evaluation (again the policy learned in
the second phase was kept fixed during the evaluation period). We ran this
experiment 10 times and took the average total reward of each episode. Since
the length of the training period in the first phase varied from run to run, we
do not report the data collected in this period in our results.

The total rewards for the first 1,000 runs collected during the evaluation of
the SARSA agent trained under an enforcement intensity 0 are shown in Fig. 4.
In this period, the agent chooses the illegal path as no sanctions are applied,
resulting very high total rewards (about 110 on average). At the 1,001st episode,
the intensity changes to 1, resulting in all illegal parking being punished. As a
consequence, the total reward drops immediately, because the agent continues
to follow a policy that believes an illegal path is better, which is no longer
correct. However, the SARSA agent is able to adapt to this change very quickly.
After a few episodes with very low total rewards, its policy is updated to a legal
path. As we can see from the figure, the average total rewards after the change
in enforcement intensity is about 80. In addition to this main result, we also
observe that the average total reward of an illegal path is 30 units higher than



220 J. Li et al.

-20

 0

 20

 40

 60

 80

 100

 120

 0  1000  2000  3000

T
ot

al
 R

ew
ar

d

Number of Episodes

Total reward

Average

Fig. 4. Total rewards received by the SARSA agent for enforcement intensities 0 and
1. The green dots are the average total reward of 10 runs and the red dots are the
averages of 100 recent green dots. (Color figure online)
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Fig. 5. Total rewards received by Q agent under different enforcement intensity. The
green dots are the average total reward of 10 runs and the red dots are the averages of
100 recent green dots. (Color figure online)

an legal one. This is expected and is exactly what we defined in the scenario,
where the rewards of the legal cell and illegal cell are 20 and 50 respectively.

However, the results of the first evaluation period for the Q-learning agent
(first 1,000 episodes in Fig. 5) fluctuate, as it has difficulty deciding between a
legal path or an illegal one, i.e., the utilities of legal and illegal parking cells are
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very close when the enforcement intensity is 0. When the intensity is increased
to 1 after the first 1,000 episodes, the agent also quickly learned a new policy
which gives similar total rewards as the SARSA agent. At the moment we are
investigating the causes of this behaviour, and our future work aims to use
different scenarios to replicate it and hopefully explain under what conditions
this shift in utility happens.

5 Related Work

Our work builds upon the basic model of Fagundes et al. [8]. While the NMDPs
in that work are slightly more expressive in allowing penalties in the form of
enforced transitions, the basic assumption of constant enforcement intensity
throughout an agent’s lifetime in [8] precludes the kind of learning mechanism
and normative organisation adaptation we define in this paper.

Our work is also related to work on norm identification. Norm identification
techniques have mostly been developed in deterministic environments, with a
focus on identifying the actual norms present in a normative MAS rather than in
detecting the enforcement intensity of the norms [16]. Savarimuthu et al. [17,18]
propose learning-based norm identification mechanisms to identify conditional
norms. This work differs from ours in two fundamental respects: first, it assumes
the norms are not known (and the task is discovering them and their conditions),
and second, the environment is deterministic. In addition, their use of learning
techniques focuses on data-mining techniques to be used in environment interac-
tion histories, whereas our work is based on the use of reinforcement learning by
an agent acting in the environment. Thus, whereas Savarimuthu’s agents learn
norms by observation, ours learn the enforcement intensity of (known) norms by
acting on the environment.

Morales et al. [13] have proposed a mechanism for the automated synthesis
of norms that ensures norms are conflict free and achieve certain coordination
properties. In contrast, we assume the set of norms is static, and the synthe-
sis approach proposed by Morales et al. does not consider the possibility of
imperfect or variable enforcement. We believe the combination of norm synthe-
sis approaches and a variable enforcement mechanism are a promising avenue of
future work.

6 Conclusion

Our experiments show that reinforcement learning agents can: (1) learn different
policies to maximise their total rewards under different unknown norm enforce-
ment intensities in a non-deterministic environment; and (2) adapt to a change
of enforcement intensity very quickly so as to obtain maximum total reward
under the new enforcement intensity.

There are several directions for future work. The behaviour of the Q-learning
agent under low enforcement intensities requires further investigation to explain
why the agent is unable to choose between the legal and illegal parking cells.



222 J. Li et al.

In addition, we would like to include enforced transitions in our learning frame-
work, e.g., instead of a penalty after violation, the agent is returned to the
initial state. Finally, we plan to explore the behaviour of the normative organi-
sation, i.e., how the normative organisation can maximise its utility by changing
enforcement intensities given the agent’s policies.
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Abstract. In many scenarios, humans must team with agents to achieve
joint aims. When working collectively in a team of human and artificial
agents, communication is important to establish a shared situation of
the task at hand. With no human in the loop and little cost for commu-
nication, information about the task can be easily exchanged. However,
when communication becomes expensive, or when there are humans in
the loop, the strategy for sharing information must be carefully designed:
too little information leads to lack of shared situation awareness, while
too much overloads the human team members, decreasing performance
overall. This paper investigates the effects of sharing beliefs and goals in
agent teams and in human-agent teams. We performed a set of exper-
iments using the BlocksWorlds for Teams (BW4T) testbed to assess
different strategies for information sharing. In previous experimental
studies using BW4T, explanations about agent behaviour were shown
to have no effect on team performance. One possible reason for this is
because the existing scenarios in BW4T contained joint tasks, but not
joint actions. That is, atomic actions that required interdependent and
simultaneous action between more than one agent. We implemented new
scenarios in BW4T in which some actions required two agents to com-
plete. Our results showed an improvement in artificial-agent team per-
formance when communicating goals and sharing beliefs, but with goals
contributing more to team performance, and that in human-agent teams,
communicating only goals was more effective than communicating both
goals and beliefs.

Keywords: Human-agent collaboration · BlocksWorld for Teams ·
Joint action · Interdependence

1 Introduction

Over the past decade or so, there has been a realisation that “autonomous”
intelligent agents will offer more value if they work semi-autonomously as part
of a team with humans [4]. Semi-autonomous agents must therefore be designed
to explicitly consider the human in the loop to work effectively as part of a team.

In a joint task, a team has a joint aim to achieve a goal, and they must
work together to do achieve this goal. While in some simple scenarios, team
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 224–241, 2016.
DOI: 10.1007/978-3-319-42691-4 13
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members may be able to operate individually to achieve the joint goal, in most
scenarios, the individual actions within a task are interdependent [17]. However,
to successfully operate on an interdependent task, team members must have a
shared situation awareness of at least part of the task, and must coordinate the
actions that comprise the task. As such, communication between team members
is important to efficiently complete a task.

This is the case in human-human teams, but also in human-agent teams.
For example, Stubbs et al. [18] observed over 800 h of human-robot interaction
and noted that as the level of autonomy in the robot increased, the efficiency of
the mission decreased as operators started increasingly questioned the robot’s
decision making. Stubb et al. concluded that having an agent explain relevant
parts of the behaviour to maintain a common ground on the task is important
for effective collaboration. The process to achieve common ground requires com-
munication, taking into account what is necessary and important, and what the
other team members already know.

The aim of our work is to identify the types of and amount of informa-
tion that are relevant for interdependent tasks. We use the BlocksWorlds for
Teams (BW4T) [11] test bed for this. BW4T is a simulation tool that allows
experimentation of scenarios involving humans and agents. The joint goal of
the human-agent team is to locate and retrieve a sequence of coloured blocks
in a given order. Harbers et al. [5,6] have experimented with the same concept
in BW4T, however, they found that communication did not have a significant
impact on team efficiency in completing the task. They hypothesise that one
reason may be the simple nature of the task, and that more complex scenarios
show results similar to those seen in field experiments such as the ones by Stubbs
discussed above.

In this paper, we develop a new scenario for BW4T that contains joint
actions, rather than just joint tasks. By “action”, we mean the atomic actions
that make up a task. Our simple extension is to introduce a type of heavy block
that requires one agent to hold the door to a room for another agent, meaning
that moving the block out of the room is a joint action. That is, no individual
agent can move the block out of a room. In terms of the model proposed by
Saavedra et al.[15], this extension moves the task from one of a team merely
working in parallel towards a common goal, called pooled interdependence, to
one of team task interdependence, where team members must execute actions
jointly.

We performed initial experiments to assess different communication strate-
gies teams of artificial agents, demonstrating that sharing goals improves task
efficiency better than sharing beliefs. Then, we used this to determine experimen-
tal parameters for human-agent experiments on similar scenarios, and showed
sharing goals in the scenarios does indeed increase the efficiency of the team in
completing the task. Further, we observed that sharing too much information
resulted in decreased performance due to information overload.

This paper is outlined as follows. Section 2 presents the most closely
related work, and Sect. 3 presents relevant background on the BW4T simulator.
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Section 4 outlines the agent communication models used in our experiments,
including how agents handle communication for joint tasks. Section 5 presents the
experimental evaluation, including results, for both sets of experiments (agent
teams and human-agent teams), while Sect. 6 concludes.

2 Related Work

In this section, we discuss the most closely related work to the work in this
paper. While there is a large body of work investigating how human teams work
together on interdependent tasks [14,15] and how the process of grounding a
common ground [3,12], and their relation to shared cognition of a team [2,16],
this section will focus on related work on interdependence in human-agent teams.

The primary questions of work in this domain are: (1) “how much” autonomy
should we grant a semi-autonomous agent, and; (2) given this, what information
needs to be communicated between the agent and the human for efficient task
completion. In this paper, we look mostly at the second question.

In recent years, the realisation that human-agent teams offer more than
agent-only teams has lead to many empirical studies of human-agent teams
[1,4,13] that address the issue of what and when to communicate to team mem-
bers. For example, Stubbs et al. [18] discuss their experience observing over 800 h
of human-agent teamwork in a scientific setting. Their team remotely deployed a
robot in the in Chile’s Atacama Desert to investigate microorganisms that grow
there, with the view that such a deployment would be similar to deploying a
semi-autonomous robot on other planets. The team changed the level of auton-
omy of the deployed robot, giving it more responsibility on some tasks in certain
cases, and observed the scientific teams’ response. Stubbs et al. found that as
the level of autonomy increased, the effectiveness of the team reduced. This was
mostly caused by a lack of transparency in the robot’s decision-making, result-
ing in cases where the scientific team spent more time discussing and trying to
understand why the robot had made certain decisions, rather than on the scien-
tific aims related to microorganisms. Stubbs et al. hypothesis that establishing
a common ground between the relevant parties on tasks is essential.

Bradshaw et al. [1] hypothesise that human-agent teams will become more
effective if agents are considered peers and team members, rather than just tools
to which to delegate tasks. They later discuss the concept of coactive design [9],
and argue that the consideration of interdependence between agents in perform-
ing joint tasks is key to effective human-agent teams. They define interdepen-
dence as the relationships between members of a team, and argue that these
relationship determine what information is relevant for the team to complete
a task, and in that sense, the interdependent relationships define the common
ground that is necessary. In more recent work [10], they present the Coactive
Design Method for designing intelligent agents that must interact with humans.
In this model, interdependence is the organising principle. Human and artificial
agents worked together through an interface that is designed around the con-
cepts of Observability, Predictability and Directability (OPD). The model was
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applied to the design of a simulated teleoperated robot for the DARPA Virtual
Robotics Challenge, and obtained an excellent score due to the advantages the
coactive system model. They describe scenarios in which the identification of
interdependent tasks improved their agent design, such as the robot having to
attach a hose to a spigot. The robot is unable to identify the hose — a task done
by the human —, but attaching the hose itself was a joint task, in which the
robot positioned the hose and the human directed the arm to the spigot.

Other recent work looks at how to simulate such scenarios in a laboratory set-
ting to allow for more controlled experimentation. In particular, the BlocksWorld
for Teams (BW4T) testbed [11], used in our work, was developed to support
experimentation of human-agent teaming in joint activities.

Harbers et al. [5,6] use the BW4T testbed to experiment with explanation
in human-agent teams. In particular, they looked at the effect of sharing beliefs
and intention within teams, providing the humans with the ability to exploit
information about intentions to improve their understanding of the situation.
Their results showed that, while participants reported increased awareness of
what the agents were doing, there was no improvement in team effectiveness
measured by completion time. Thus, their explanation model did indeed explain
the situation, but this information was not useful for the human players to
coordinate their actions. Harbers et al. hypothesise that this may be because
the team tasks are so straightforward that the human player can easily predict
what behaviour it requires, and thus processing the explanations has a cost that
is similar to what the explanation is worth. We agree with this analysis. Our
experiments are similar in spirit to these experiments, however, the introduction
of joint action helps to provide a more complex scenario without increasing the
complexity to a point that confuses the human players or requires extensive
training.

In other work, Harbers et al. [7] used BW4T to investigate communication
in agent-only teams, and found that sharing intentions and taking advantage of
this knowledge increased the team efficiency, while sharing beliefs had minimal
impact — a finding consistent with the work in this paper.

Wei et al. [19] study the construction and effectiveness of shared mental mod-
els between artificial agents using BW4T. They designed four scenarios with
different numbers of artificial agents and environment sizes, and measured com-
pletion time as a proxy for the effectiveness of different communication strategies.
Their results showed that communicating between team members improved effi-
ciency, especially in the case in which there were sequential interdependencies
between tasks; that is, the tasks had an explicit order in which they must have
been completed. Further, they also found that communicating more information
lead to more interference between agents, indicating that even in agent teams
where processing is not a large issue, it is important to communicate only the
most relevant and important information. Our work goes further than the exper-
iments by Wei, Hindriks, and Jonker by looking at joint actions and including
humans in the loop.
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3 BlocksWorld for Teams

BlocksWorld For Team (BW4T) is a simulator that extends the classic blocks
world domain, written specifically for experimenting with human-agent teams.
The overall goal of the agent team is to search for the required blocks in a
given set of rooms. The task can be performed by a single agent or a group of
agents. Agents can be either artificial or human. The role of the agents can be
distinguished based on how it is programmed.

Fig. 1. The BW4T environment (Color figure online)

Figure 1 displays the three different BW4T maps we used in our experiments.
The environment of BW4T consists of rooms and coloured blocks scattered in
different rooms. Each room has one door, which is represented by the small
green bold line. The dark area on the bottom is the drop zone, where blocks
are dropped once collected. The small black squares with red labels represent
agents. At the bottom, the sequence of colours specifies the blocks that the team
is tasked with collecting. The team must put down the block with the right
colour into the drop zone, otherwise, the block will disappear. The sequence is
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represented by the colourful bar on the bottom of the environment. The small
triangles on the colourful bar means the completed tasks.

The agents within BW4T are programmed using the GOAL programming
language [8], and the BW4T simulator provides specific constructs for interacting
with GOAL agents. Agents can perceive the environment using an environmental
sensor, including information such as the next target block, or the blocks in the
room they are in.

Agents communicate to each other using messaging, and the contents can be
arbitrary. On receiving a message, it is stored in a “mailbox” for reading. When
an agent representing a human (which we call the supervisor agent) receives a
message, it translates the message into a human-readable format, and displays
this on the GUI that is viewable by the human. The human player can inform and
direct the supervisor agent using a drop-down menu of commands; e.g. telling
the agent which room a particular-coloured block is in.

4 Agents and Joint Actions in BW4T

In this section, we present the scenario and models of agents that we used to
experiment with human-agent teams in joint activity. We model how an artificial
agent communicates with artificial team members, and then with humans.

4.1 The Scenario

From the perspective of the rules of the BW4T game, we alter only one aspect:
we introduce types of block. In the BW4T simulator, blocks have colours, and
the sequence of target blocks must be returned according to a specific colour
in each slot. In our model, blue blocks are given a special status, in that they
are considered heavier than other blocks, and they require two agents to get
the block from its location to the drop zone. As part of our experiments, we
implemented a simple scenario in which, when an agent wanted to take a blue
block from a room, a second agent was required to hold the door open for them
(because the block is too heavy to hold in one arm, and the carrying agent
therefore has no hand to open the door). As soon as the carrying agent exited
the room, the second agent holding the door was free to return to another task.

This represents an interdependent action [17]: an agent can only take a blue
block from a room if another agent opens the door, and the agent opening the
door receives no value from this unless the block is taken from the room and
back to the drop zone. One can imagine different implementations; e.g. two or
more agents must carry blocks together, but this simple variation is enough to
test out joint actions in BW4T.

4.2 Agent Models

In this section, we outline our model for dealing with the joint activity of col-
lecting a blue block. We adopt a basic model of searching and retrieving blocks,
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and extend this with the ability for agents to request and offer assistance for
heavy blocks. In our basic model, all agents know the sequence of blocks to be
found. They search rooms in a semi-random fashion, not revisiting rooms known
to have been visited by themselves or a team member, and maintain a belief set
of the locations of blocks (which colours and in which rooms) that they have
perceived. An agent’s “default” goal is to find and retrieve the next block in the
sequence, until they receive a request for assistance, or until another agent finds
the block and broadcasts this fact, in which case they adopt the goal of finding
the next block.

4.2.1 Requesting and Offering Assistance
Requesting help and offering assistance are required for the particular joint activ-
ity of heavy blocks. As mentioned before, blue blocks represent heavy blocks.
This process for request and offering assistance for a blue block is shown in Fig. 2.

Fig. 2. Request help and offer assistance

All available agents will search for the blue block. The first agent to find
one, who we call the operator agent will broadcast the needhelp message to all
other agents. Any artificial agent ready to assist will move towards the room,
and send a message (“Help has arrived”) indicating they are at the help position
(e.g. holding the door at Room1). The first agent to arrive will inform all others,
who adopt their default goal of searching for the next block in the sequence. All
agents attempting to help may not be an efficient use of their time, but we opt
for a simple policy here to avoid any possibility of this policy influencing results
about communication. As this policy is consistent across all experiments, we do
not consider that this meaningfully affects the results.

4.2.2 Supervisor Agent
Recall that humans are represented by a supervisor agent, who can direct other
agents to perform tasks. This agent acts as an interface between the human and
artificial agents, but is also a player capable of finding and retrieving blocks.
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Human players direct their representative agents using high-level commands,
such as which block to search for; in sense, simulating a basic remote teleoper-
ation of a robot. Human players can request and offer assistance like artificial
agents, however, the decision making about whether to offer assistance is left
up to the human, rather than coded in GOAL.

Figure 3 shows the models used for a supervisor agent. The first model is
used when taking on a new task (Fig. 3a), and the second is used when the
player intends to provide assistance to another agent trying to retrieve a blue
block (Fig. 3b).

(a) Completing a New Task (b) Helping the Artificial Agent

Fig. 3. Supervisor agent (Color figure online)

From Fig. 3a, one can see that a supervisor agent is idle unless directed by
the human player to take a task; that is, to starting searching for a particular
colour block. The supervisor agent then searches autonomously for the block.
If it finds the block and the block is non-blue, it will update the other agents
to inform them that the block has been located and is being taken back to the
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drop zone, allowing other agents to drop this task1. If the block is blue, it will
request help and wait. After getting help from other agent, the “take block”
option is made available on the human player’s GUI, and clicking this directs
the supervisor agent to take the block to the drop zone autonomously.

The other artificial agents adapt the player’s changing actions. For example,
if the supervisor agent drops its goal while carrying a block (e.g. yellow) to the
drop zone, the other agents will drop their current task of searching for the next
block in the sequence, and will adopt the goal of finding a yellow block.

The model outlined in this section is put in place to provide human decision
support into the system. In a team with only artificial agents, if all agents have
a current goal and one agent finds a blue block, it will be required to wait for
one of its team members to complete its tasks.

However, in our model, we offer the human player the possibility to drop its
own goal to help complete the tasks. We opted not to have the human player
directing other artificial agents to drop goals when other agents find blue blocks,
as we believed that the extra decision of which agent to direct could increase the
cognitive load of the human player to the point where decisions became arbitrary.
By allowing the human player to direct only their own agent, this model provides
a complex-enough scenario to introduce an interdependent action into BW4T,
without the complexity of the scenario overwhelming participants.

Ultimately, we believe that the results from our experiments (see Sect. 5)
demonstrate that our decision is justified.

4.3 Information Exchange Between Agents

It is clear that sharing information can improve team efficiency. However, the
information shared, and how much of it, is crucial, especially in human-agent
teams, where the humans’ capacities to process information is reduced compared
to its artificial team members.

4.3.1 Information Messaging
In this section, we present the communication protocols between agents, which
consist of individual messages. Several types of message can be sent, enabling
agents to inform others about part of the environment, or its own goals.

Beliefs are the information about the environment, which are perceived via
agents, such as the location of different coloured blocks. Goals are mental states
that motivate action. To complete a single task, an agent must complete a
sequence of goals. We enabled agents to share their beliefs and goals.

Five messages can be transferred amongst agents:

1. block(BlockID, ColourID, PlaceID): block BlockID with colour Colour
ID has been found by the message sender at room PlaceID. When in a room,
an agent broadcasts information about any block colours that are in the goal
sequence.

1 Artificial agents are also programmed with this capability in our model.
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2. visited(PlaceID): room PlaceID has been visited by the message sender.
While this can be inferred when a block message (above) is sent, the visited
message is sent when the room does not contain any blocks that are in the
target sequence.

3. hold(BlockID, ColourID): block BlockID with ColourID is held by the
message sender.

4. will deliver(Index, ColourID): a block of colour ColourID, which is also
the Indexth block in the sequence of the main goal, is being delivered to the
drop zone.

5. dropped(Index, ColourID): the Indexth block in the task sequence, with
colour ColourID, previously held by the message sender, has been dropped.

While all messages are sharing information about the task, the intention of
the first three is to share belief about the environment, while the intention of
the last two is to share goals; e.g. when an agent delivered the task, it will drop
this goal.

Agents use the information about where they have visited and what colour
blocks are in the rooms to inform their search strategy. We model the artificial
agents to used the shared information about block locations and room searching
to improve the completion of the task. For example, when the agents share their
belief about the location of blocks, others can update their own beliefs with this
information, preventing unnecessary searching of rooms.

Our models use shared information about blocks being retrieved and dropped
to further improve this. That is, when an agent broadcasts that they have located
the next block, others will stop searching for that colour, and when a block in
the main sequence is dropped, others will starting searching for this again.

Fig. 4. The effect of sharing belief

Figure 4 shows how information about block location and holding blocks.
Suppose artificial agent 2 is stationary, while artificial agent 1 is exploring for
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a blue target. Agent 1 visits room 6, there is no blue block, but a yellow block
is inside of the room. If the agents share beliefs, agent 1 will send a message
block(3, Yellow, Room6) to all the other agents, and all other agents will
update their belief base with this information.

Next, suppose agent 1 goes to room 4, which contains a blue block. The agent
will pick up the block and broadcast the message hold(2, Blue). The others
agents will then update their belief base to remove the belief block(2, Blue,
Room4), if they had this belief in their belief base.

4.4 Filtering for Human Players

The hypothesis in human-agent collaboration research is that explanation from
the later can improve team performance in the joint activities. However, it is clear
that humans do not have sufficient processing capabilities to use all information
shared in the previous section. Despite this, the human player also needs to
know some of the critical information such as the environment states and other
artificial agents’ message.

In our model, the supervisor agent takes on the role of an information broker
who is responsible to deliver and translate information for the human player,
and to filter the “explanation” from artificial agents. From the artificial agents’
perspective, a supervisor agent is another artificial agent that receives and sends
messages, and supervisor agents are the bridge between the environment, artifi-
cial agents, and human players.

Figure 5 shows two examples of translating information between the artificial
agents and human agents — one for each direction. In Fig. 5a, the supervisor
agent accepts two parts of input: (1) from the environment, including information
such as the room occupancy and current team target; and (2) from another agent,
including the requesting assistance and sharing the goals. The supervisor agent
selects some of the incoming information and “explains” this to the human agent.

The key part of any design is what information should be filtered out, and
what should be filtered in and explained. In the next section, we describe an
experiment design that looks at three levels of filtering, and their effect on the
performance of the overall system.

5 Experimental Evaluation

In this section, we outline two sets of experiments to provide evidence towards
our hypothesis that communication can improve the team performance in joint
activities, and report the results. The first set of experiments runs three BW4T
scenarios using a team made entirely of artificial agents, while the second set
includes a human player in the loop, along with its supervisor agent. Within each
experiment, the information that is shared between team members is changed
to measure the effect of information exchange.
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(a) Supervisor transfers artificial agent
intentions to human player

(b) Supervisor transfers human inten-
tions to artificial agents

Fig. 5. Filtering by the supervisor agent

5.1 Artificial Agent Team Experiment

5.1.1 Experiment Design
The aim of this experiment is to study which type of information sharing between
artificial agents effects the team performance: sharing beliefs, goals, or both.

Independent Variable. We modify two independent variables: (1) communication
strategy; and (2) the environment type.

For the communication strategy, we use four values: (a) minimal information
shared: the only communication is to ask for help moving a blue block; (b) belief
only: minimal plus belief about the environment (items 1–3 in Sect. 4.3.1);
(c) goals only: minimal plus agent goals (items 4–5 in Sect. 4.3.1); and (d) belief
and goals.

For the environment, we use three different maps: (a) cooperative block world;
(b) rainbow; and (c) simple. The first two are shown in Fig. 1 (page 5). Cooper-
ative block world contains seven block colours, but only three occur in the main
goal, and these are randomly allocated to the main goal in a uniform manner.
Rainbow contains seven coloured blocks, and all seven colours can appear in the
main goal. Simple contains randomly allocated blocks, but with no blue blocks;
and therefore, no joint action.

Measures. We measure completion time of the entire scenario as a proxy for the
effectiveness of each communication strategy.

Setup. For each map, we run all four communication strategies giving us 12
combinations. Each combination is run 30 times, with different random seeds
to generate different block locations, resulting in 360 experiments run in total.
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All experiments were run with two artificial agents, nine rooms, and nine blocks
in the main goal.

5.1.2 Results
Figure 6 shows the average completion time for all combinations of scenarios and
communication strategies. This figure demonstrates several interesting findings
from our experiments.

Fig. 6. Average task completion time for the artificial agents team (Color figure online)

With regards to the three scenarios maps, cooperative blocks world consumes
more time than other two, and the simple map, with no strictly joint action, took
the least time to finish on average. This supports our hypothesis that having joint
actions in a scenario increasing the complexity more than simply joint tasks. The
largest gap (40 %) between the cooperative block world and simple world results
is in the scenario where “nothing” is shared (recall that agents still request help
once they pick up a heavy blue block), indicating that sharing beliefs and goals
is useful in this environment. Further, for the cooperative blocks world scenario,
there is a large step between sharing belief and sharing goals, indicating that
sharing goals is far more valuable that sharing just belief. This is further backed
up by the small decrement from sharing goals to sharing both belief and goals. In
all three maps, sharing belief had only a small impact. This finding is interesting,
because while agents share their knowledge of the environment, meaning that
searching for the right coloured block can be reduced, it is in fact coordinating
the joint action early that increases efficiency the most in this scenario.

Table 1 shows the outcomes of a two-way factorial ANOVA to examine the
influence of the two different independent variables. The p-values for the rows
(maps), columns (communication strategy), and the interaction, are all < 0.001,
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Table 1. The two-way factorial ANOVA results for the artificial agents team

Source of variance SS F P-value

Communication strategy 6669.31 110.39 9.20E-33

Map 1948.40 48.38 9.97E-16

Interaction 585.17 4.84 2.04E-04

indicating that the results are statistically significant to this level. Comparing
the sum of square errors (SS), we see that communication has more impact than
the scenarios, but both factors have a significant influence on the results.

The results show that communication is beneficial for improving cooperative
team work, and sharing goals has the largest impact. We drilled down into the
experiment data and found that the primary reason for this was labour redun-
dancy. An agent will update its team members once a block is placed in the
drop zone, limiting the team members’ knowledge of task progress. By shar-
ing the goal that they have collected a block suitable to fulfil the current team
sub-goal, the other team members can start on a new task.

5.2 Human-Agent Teams

The results from the artificial agent teams helped to inform the design of the
human-agent team experiments. In this section, we outline the experimental
design and results for the human-agent team scenarios.

5.2.1 Experiment Design
The aim of this experiment is to study how the type of information shared
between the human player and other agents effects the team performance. Due
to the introduction of a human into the loop, the experiment is much simplified
compared to the experiments in the previous section, as we aimed to keep total
completion time to under 30 min for each participant.

Independent Variable. The independent variable in the experiments is filtering
strategy used by the supervisor agent to exchange information with the human
player: (1) full info: everything is shared as in the artificial team; (2) partial info:
only information that will change the goals of the human player are shared; and
(3) silence: only information that a block has been delivered to the drop zone.
Table 2 outlines what information is shared in each of the three cases.

Measures. As in the artificial team experiment, we use completion time of the
entire scenario as a proxy for the effectiveness of each communication strategy.

Setup. We recruited 12 participants to perform three runs of the experiment —
one with each communication strategy. No participant had used or heard of the
BW4T simulator previously. To avoid bias, the order in which the participants
used the various communication strategies were systematically varied.
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Table 2. The information shared in the three scenarios

Information Full info Partial info Silence

Next target ✔ ✔ ✔

Other agent’s current task ✔ ✔

Request assistance ✔ ✔

Offer assistance ✔ ✔

Task completion ✔ ✔

Block location ✔

Room occupancy ✔

Other agents’ state ✔

Due to the relative difficult of recruiting participants and running the exper-
iments, we used only one map in all three scenarios: the cooperative block world
map (Fig. 1). We chose this map because the results of the agent-team experi-
ments demonstrate that this best simulates a reasonably complex scenario with
joint action. The speed of the BW4T simulation is adjusted to be slow to pro-
vide the human player with sufficient time to make decisions. Each experiment
consisted of two artificial agents, one supervisor agent, and one human play-
ers. There was no time out for completion of the experiment, and none of the
participants failed to complete the scenario.

5.2.2 Results
Figure 7 shows the results for the human-agent team experiments. Due to the rel-
atively smaller number of data points, results for each participant is shown. The
x-axis is the communication strategy, the y-axis are the individual participants,
and the z-axis is completion time. Results are sorted roughly by completion
time. The overall average completion time for the three scenarios are: full info =
4.92 min, partial info = 4.36 min, and silence = 4.72 min.

From the figure, it is clear that results differ among people, but that the
difference between the strategies per person establishes a trend. From the aver-
age scores, having full information took the longest time, followed by silence,
and finally, the partial information. These results support the hypothesis that
explanation can improve the team performance in scenarios with joint action,
and further, that too much explanation can hinder a human players ability for
decision making.

To test the effect of different communication scenarios, we performed a
repeated measures two-way ANOVA between groups, and a pairwise Tukey HSD
comparison between all pairs of groups. Relevant values for the ANOVA are
shown in Table 3. For the pairwise Tukey HSD test, the full information vs. par-
tial information results are significant at the 0.05 level, while the other two pairs
are not. These tests demonstrate that the results between groups is significant
(Table 3).
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Fig. 7. The results of human-artificial agents’ team

Table 3. ANOVA analysis of human-artificial agents’ team results

Source SS df MS F P-value

Treatment (between groups) 1.985 2 0.9925 5.07 0.0154

Error (within groups) 4.305 22 0.1957

6 Conclusions and Future Work

In this paper, we studied the effectiveness of communication in artificial agent
teams and human-agent teams using the BW4T testbed. Extending previous
studies using BW4T, we added the concept of a joint action — a single atomic
action that requires more than one agent to complete.

For the artificial agents team, we performed extensive simulation experiments
to assess the value of sharing beliefs, sharing goals, and sharing both belief and
goals. The results showed that sharing goals, namely, agents exchanging their
immediate goals, increase team efficiency significantly more than sharing beliefs.

Using these results, we designed an experiment using the same joint action
scenario, but with a human player in the loop. We recruited 12 people to each
play in three scenarios using three different communication strategies: (1) update
only when a block sub-task has been completed; (2) share goals; and (3) share
goals and beliefs. We observed that sharing goals and beliefs lead to information
overload of the human, resulting in a less efficient team than just sharing goals,
and that sharing almost nothing is more efficient than sharing all goals and
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beliefs, most likely because the scenario is still straightforward enough to guess
the optimal next movement.

We identify two areas of future work: (1) a more fine-grained study on the
types of goals that are shared; and (2) study of tasks in which communication
is necessary to complete a task.
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Abstract. Coordination is essential to the effective operation of multi-
agent systems. Convention emergence offers a low-cost and decentralised
method of ensuring compatible actions and behaviour, without requiring
the imposition of global rules. This is of particular importance in envi-
ronments with no centralised control or where agents belong to different,
possibly conflicting, parties. The timely emergence of robust conven-
tions can be facilitated and manipulated via the use of fixed strategy
agents, who attempt to influence others into adopting a particular strat-
egy. Although fixed strategy agents have previously been investigated,
they have not been considered in dynamic networks. In this paper, we
explore the emergence of conventions within a dynamic network, and
examine the effectiveness of fixed strategy agents in this context. Using
established placement heuristics we show how such agents can encour-
age convention emergence, and we examine the impact of the dynamic
nature of the network. We introduce a new heuristic, Life-Degree, to
enable this investigation. Finally, we consider the ability of fixed strategy
agents to manipulate already established conventions, and investigate the
effectiveness of placement heuristics in this domain.

Keywords: Dynamic networks · Conventions · Social norms · Influence

1 Introduction

Within multi-agent systems (MAS) cooperation and coordination of individu-
als’ actions and goals are required for efficient interaction. Incompatible actions
result in clashes that often incur a resource cost, such as time, to the participat-
ing agents. The predetermination of which actions clash is not always possible,
particularly for large action spaces and dynamic populations.

The emergence of conventions is often used to solve these problems. Conven-
tions represent socially-adopted expected behaviour amongst agents and thus
facilitate coordinated action choice without the dictation of rules. Convention
emergence has been shown to be possible in static networks with minimal require-
ments, namely agent rationality and the ability to learn from previous interac-
tions [5,25]. This adds little design overhead, and is of particular importance in
open MAS where agent modification is likely to be impractical or impossible.
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Fixed strategy (FS) agents continue to choose the same action regardless of
its efficacy or the choices of others in the system. Their presence has been shown
to affect the direction and speed of convention emergence in static networks.
Small numbers of these agents are able to influence much larger populations [21],
especially when placed using appropriate heuristics [7,10]. Fixed strategy agents
can also be used to cause a system to abandon an already established convention
in favour of an alternative [13,15].

In many domains, the nature of the relationships between agents is not static.
Agents may leave the system, new agents can enter, and the links between agents
may change over time. These dynamic interaction topologies induce different
system characteristics than those found in static networks. Relatively little work
has studied the nature of convention emergence in these types of network.

This paper considers the emergence and manipulation of conventions within
dynamic topologies. We introduce a new heuristic, Life-Degree, to support
this investigation, which considers aspects of the dynamic nature of the sys-
tem when placing fixed strategy agents. We examine the importance of dynamic
topology characteristics by comparing the performance of Life-Degree against
previously used heuristics based on network metrics. We then consider the effi-
cacy of the various heuristics when fixed strategy agents are used to destabilise
or remove an established convention.

The remainder of this paper is organised as follows: Sect. 2 discusses the
related work on convention emergence, fixed strategy agents and dynamic topolo-
gies. Section 3 describes the model of convention emergence being used, as well as
the simulation model used to generate the topologies. Additionally this section
introduces the heuristics used to place fixed strategy agents. Our results are
shown in Sect. 4 and, finally, we present our conclusions in Sect. 5.

2 Related Work

A convention is a form of socially-accepted rule regarding agent behaviour and
choices. Conventions can be viewed as “an equilibrium everyone expects in inter-
actions that have more than one equilibrium” [26]. No explicit punishment exists
for going against a convention, nor is there any implicit benefit in the action
represented by the convention over other possible actions. Members of a conven-
tion expect others to behave a certain way, and acting against the convention
increases the likelihood of incompatible action choices and the costs associated
with these. Conventions have been shown to emerge naturally from local agent
interactions [5,12,23,25] and enhance agent coordination by placing social con-
straints on agents’ action choices [22].

Although the terms are often used interchangeably in the literature [17,21],
in this paper we differentiate between conventions and norms. Norms typically
imply an obligation or prohibition on agents with regards to a specific action.
Failure to adhere to norms and exhibit the expected behaviour is often associated
with punishments or sanctions [1,3,11,19]. Alternatively, agents may be explic-
itly rewarded for adherence to norms. Thus, norms generally require additional
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system or agent capabilities as well as incurring a system-level overhead for pun-
ishment/reward. In this paper, we assume that agents do not have the capability
to punish one another, nor can they observe defection in others. Instead, we use
conventions as a lightweight method of increasing coordination.

We make only minimal assumptions about agent architecture and behaviour;
we assume that agents are rational and that they have access to a (limited)
memory of previous interactions. Numerous studies have focused on convention
emergence with these assumptions [5,10,21,25] and have shown that they allow
rapid and robust convention emergence. Walker and Wooldridge [25] investigated
convention emergence whilst making few assumptions about agent capabilities.
In their model, agents select actions based on the observed choices of others, and
global convention emergence is shown to be possible.

Expanding on this, Sen and Airiau [21] investigated social learning for con-
vention emergence, where agents receive a payoff from their interactions which
informs their learning (via Q-Learning). They showed convention emergence can
occur when agents have no memory of interactions and only observe their own
rewards. However, their model is limited in that agents are able to interact with
any other member of the population rather than being situated in a network
topology. Additionally, the convention space considered is restricted to only two
possible actions. In more realistic settings larger convention spaces and more
restrictive connecting network topologies are likely. The network topology agents
are situated in has been shown to have a significant effect on convention emer-
gence [4,5,12,24], affecting the speed with which emergence occurs. Recent work
has shown that a larger number of actions typically slows convergence [7,10,18].

The use of fixed strategy agents, who always choose the same action regard-
less of others’ choices, to influence convention emergence has also been explored.
Sen and Airiau [21] show that a small number of such agents can cause a popula-
tion to adopt the fixed strategy as a convention over other equally valid choices.
This indicates that small numbers of agents can affect much larger populations.

In Sen and Airiau’s model, due to the lack of connecting topology, all agents
are identical in terms of their ability to interact with others. However, in many
domains, agent interactions may be limited to neighbours in the network. As
such, some agents will have larger sets of potential interactions than others. In
the context of static topologies, Griffiths and Anand [10] establish that which
agents are selected and where they are in the topology is a key factor in their
effectiveness as fixed strategy agents. They show that placement by simple met-
rics such as degree offers better performance than random placement.

Franks et al. [6,7] investigated fixed strategy agents where interactions are
constrained by a static network topology and agents are exposed to a large
convention space. They found that topology affects the number of fixed strategy
agents required to increase convergence speed. This also expanded on the work
of Griffiths and Anand [10] by investigating the effectiveness of placing by more
advanced metrics such as eigenvector centrality.

Few studies have focused on convention emergence in dynamic topologies,
with most work focusing on static networks. Savarimuthu et al. [20] consider the
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related phenomenon of norm emergence in a dynamic topology. They show that
norms are able to emerge under a number of conditions, but their work differs
from ours due to the requirements placed on agents. The interaction model used
requires agents to maintain an internal norm as well as being able to query other
agents. We make minimal assumptions about agent internals or the information
available. Additionally, our work investigates the manipulation of convention
emergence, something not considered by Savarimuthu et al.

Mihaylov et al. [16] briefly consider convention emergence in dynamic topolo-
gies using the coordination game. However, their work focuses on a new proposed
method of learning, rather than on the emergence itself. In particular, they do
not consider fixed strategy agents, or the action that emerges as a convention.
In this paper, we consider both convention emergence in dynamic topologies and
the use of fixed strategy agents to understand the impact of network dynamics.

Relatively little work has considered destabilising established conventions,
with previous investigations of fixed strategy agents typically inserting them at
the beginning of interactions. We have previously [13,15] investigated using fixed
strategy agents in static topologies to cause members of the dominant convention
to change their adopted convention and hence destabilise it. We found that this
required substantially more fixed strategy agents than is needed to influence con-
ventions before emergence. This paper expands on this work to examine aspects
of dynamic networks when selecting fixed strategy agents for destabilisation. We
also expand on [14] and consider the general nature of convention emergence in
dynamic topologies, particularly without the use of fixed strategy agents, and
the effect of topology features on convention emergence time. Finally, we explore
the relationship between placement heuristics, number of fixed strategy agents
and the speed of convention emergence.

3 Convention Emergence Model

Our experimental setup consists of three main components, introduced below:
the network topology, the interaction regime used by agents and the heuristics
used for placing fixed strategy agents.

3.1 Dynamic Topology Generator

Similar to Savarimuthu et al. [20] we utilise a particle-based simulation,
developed by González et al. [8,9], to model dynamic network topologies with
characteristics comparable to those observed in real-world networks. Agents are
represented as colliding particles and the topology is modified by collisions cre-
ating links between the agents. A population of N agents, represented as a set of
particles with radius r, is placed within a 2D box with sides of length L. Initially,
all agents are distributed uniformly at random within the space and are assigned
a velocity of constant magnitude v0 and random direction.

Each timestep, agents move according to their velocity and detect collisions
with other agents. When two agents collide, an edge is added between them in the
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network topology if one does not already exist. Both agents then move away in a
random direction with a speed proportional to their degree. Thus, higher degree
nodes have an increased probability of further collisions, which in turn further
increases their degree. In this way, the model exhibits preferential attachment,
a characteristic found in static scale-free networks [2]. Such networks are often
studied in the field of convention emergence [5,7,10,18] due to characteristics
that are representative of real-world networks.

Additionally, all agents are assigned a Time-To-Live (TTL) when created.
This is drawn uniformly at random between zero and the maximum TTL, Tl.
After each timestep agents’ TTLs are decremented by one. When an agent’s
TTL = 0 the agent and all its edges are removed. A new agent is placed at
the same location within the simulation with the randomised initial properties
discussed above. In this manner, the topology is constantly changing.

Different topologies can be characterised by the value of Tl/T0 where T0 is
the characteristic time between collisions. This can be expressed as:

Tl

T0
=

2
√

2πrNv0Tl

L2
(1)

González et al. show that this value dictates key characteristics of the generated
topology, primarily the average degree and degree distribution.

The concept of a quasi-stationary state (QSS) is discussed by González
et al., such that a QSS emerges after a number of timesteps and is characterised
by macro-scale stability of network characteristics. Micro-scale characteristics,
for individual agents, remain in flux. In [8] it is shown that the QSS can be
described as any timestep, t, where t � 2Tl. Our approach here differs from
Savarimuthu et al. [20] as we consider agent interactions starting from t = 0
rather than waiting for the QSS. This allows us to mimic scenarios where agents
have been placed in a new environment rather than only considering already
established networks.

3.2 Interaction Regime

Agents within the system interact with one another and, learning from these
interactions, converge to a shared behaviour in the form of a convention. Agent
interactions occur during each timestep of the regime. In each timestep, every
agent chooses one of its neighbours in the network at random. These agents play
a round of the n-action pure coordination game. In this game, both agents are
given a choice from a set of n-actions, A. Agents do not know what their opponent
has chosen. The payoff that each agent receives depends on the combination of
the chosen actions: if both chose the same action they receive a positive payoff,
otherwise a negative payoff. Alternative payoff matrices and their effect on the
effectiveness of the intervention strategies are discussed in Sect. 4.4.

Each agent monitors their expected payoff for each action, based on the
previous payoffs they have received when choosing that action. We adopt the
approach of Villatoro et al. [24] in this regard by using a simplified form of
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Q-Learning. For each action, a ∈ A, the agent maintains a Q-Value which is
updated by Qi(a) = (1 − α) × Qi−1(a) + α × payoff where α is a parameter
known as the learning rate and i represents the number of times a has been
chosen. All agents start with Q0(a) = 0,∀a ∈ A. To combat the issue of local
optima, we allow each agent, with probability pexplore to randomly select an
action. Otherwise, as each agent is rational, they will always select the action
with the highest Q-Value, selecting randomly between ties.

In the formulation proposed by Kittock [12], a convention is considered to
have emerged when a high proportion (90 %) of non-fixed strategy agents, when
not exploring, would choose the same action. We adopt this definition of a con-
vention but modify it to better fit the dynamic nature of the network topol-
ogy. Instead of considering the entire population, we monitor adoption within
the largest connected component. This follows from the findings of Gonzalez
et al. [8] that in most simulations a giant cluster consisting of nearly all agents
will emerge. Agents not within this cluster are likely to be recently created
agents and, as such, should not be included in the adoption rate calculation as
they have not interacted. This is reinforced by our simulations which showed
that most agents not within the largest connected component had degree zero.
Similarly, 100 % adoption is unlikely due to new agents joining.

The Kittock criteria sets a high threshold and measures nearly pervasive
conventions. If a convention does not emerge at this threshold there is often still a
highly dominant strategy in the system. By considering a different threshold and
defining these as conventions, we can examine the effectiveness of the heuristics
in situations not normally considered. This approach can be seen in Sect. 4.4.

Fixed strategy agents will be placed within the network to study the effect on
convention emergence. These agents will replace selected agents upon insertion,
keeping all of that agent’s edges. This can be justified in real-world scenarios as
persuading the agents to act in a desired manner via some reward mechanism.
Such agents will be assigned the same fixed strategy and their placement will
be determined heuristically as discussed below. If a fixed strategy agent’s TTL
should reach zero, a new agent will be selected using the same heuristic.

We consider two different scenarios: placing fixed strategy agents at the begin-
ning of a system’s life, to encourage and direct initial convention emergence,
and inserting fixed strategy agents once a convention has emerged to attempt to
change it. In the former case, the fixed strategy will be randomly chosen from
the available actions. In the latter, it will be randomly chosen from the avail-
able actions excluding the already established convention. Initial insertion will
occur once a connected component of size greater than N/2 has emerged. This
prevents convention emergence being declared prematurely for a non-giant clus-
ter. Additionally, placement heuristics which rely on network metrics (such as
degree) may select sub-optimal agents if used before a main cluster has emerged.

3.3 Placement Heuristics

Previous work has utilised placement heuristics to enhance the effect of fixed
strategy agents. Metrics such as degree, eigenvector centrality and betweenness
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centrality have been used with greater efficacy than random placement [6,10].
In this paper, we focus on degree-based placement. However, the dynamic nature
of the topology introduces a number of ways to apply it. All heuristics are cal-
culated with respect to the largest connected component.

Our initial heuristic, Static Degree, corresponds to the equivalent heuristic for
static networks. At the time of insertion, agents are chosen to be fixed strategy
agents in descending order of degree. This selection is static once chosen, only
being modified upon agent expiration as detailed above. This simplistic approach
is computationally cheap, a factor of importance in settings where gathering
or computing this information is expensive. However, this risks selected agents
potentially becoming sub-optimal choices as the simulation progresses. The static
nature of this heuristic means that if another agent acquires a larger degree it
will not be selected until one of the current agents expires. Depending on the
TTL of the current fixed strategy agents, this could be a substantial period.

To address this issue we propose another degree-based heuristic: Updating
Degree. This approach is sensitive to the dynamic nature of the topology and
reselects the fixed strategy agents each timestep, based on highest current degree.
Whilst this offers a solution to the potential sub-optimality of Static Degree it
suffers from two problems. Firstly, the ability to acquire this information each
timestep in a timely manner may be infeasible in many domains. Secondly, there
is the potential that the fixed strategy agents will not remain in a given location
long enough to influence the local area before being replaced.

The Static and Updating Degree heuristics do not fully consider the dynamic
network context. Whilst high degree agents are likely to be influential due to
their ability to interact with many others, additional dimensions may affect their
applicability. Agents close to expiring may be less desirable than younger agents
as their expected number of interactions before replacement is lower. However,
the youngest agents, those newly created, cannot be guaranteed to become influ-
ential later on. Hence, the age of an agent adds an additional consideration. We
propose a new heuristic, Life-Degree, that allows exploration of the effect of
age in addition to degree on a fixed strategy agent’s efficacy.

In many settings it may be impossible to know an agent’s TTL. However,
we can estimate an agent’s remaining life. Given the upper bound, Tl, and the
uniformly distributed nature of TTL, the normalised expected remaining TTL,
ErTTL, for an agent n ∈ N is:

ErTTL(n) = 1 − age(n) × 2
Tl

(2)

We can also calculate the normalised degree of a node within the largest con-
nected component as:

degnorm(n) =
deg(n)

maxn′∈LCC deg(n′)
(3)

The Life-Degree heuristic is then defined as:

Life-Degree(n) = ω × degnorm(n) + (1 − ω) × ErTTL(n) (4)
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In this, 0 ≤ ω ≤ 1 is a weight, determining the relative contributions of degree
and expected TTL.

Life-Degree allows combination of the relevant information, normalised
against theoretical maximums, in a manner that allows exploration of the impor-
tance of both. Two variations of Life-Degree will be used, Static and Updat-
ing, to compare against the heuristics discussed above.

4 Results and Discussion

In this section we present our findings on convention emergence in dynamic
topologies and consider the effect of agent age via our proposed heuristic, Life-
Degree. Unless otherwise mentioned, all experiments used 1000 agents, the
10-action coordination game and an exploration and Q-Learning rate of 0.25.
Results were averaged over 100 runs. A payoff of +4 for coordinated actions and
−1 for conflicting actions was used. This was found to rapidly emerge thorough
and robust conventions. Additional payoff schemes are considered in Sect. 4.4.

4.1 Characterising Topology

We initially consider convention emergence without external manipulation in
dynamic topologies. This gives insight into the impact of network dynamics
on convention emergence and provides a baseline. Additionally, it allows us to
quantify the point at which a stable convention will have emerged for later
experiments that focus on destabilisation.

The features of the dynamic topology can be manipulated by varying the
parameters of the network model, and are encapsulated in different values of
Tl/T0. González et al. [9] show that the features of the topology thus only depend
on the ratio Tl/T0 and the density, ρ ≡ N/L2. Additionally, they show that the
average degree is a non-linear function of Tl/T0 that depends on the chosen ρ.
As such, for all experiments we use a constant ρ = 0.625 (i.e. N = 1000, L = 40)
to allow meaningful comparisons of the Tl/T0 values.

Parameter settings were chosen that generated values of Tl/T0 between 0 and
20. These were rounded to the nearest integer to combine similar Tl/T0 values,
with each bucket containing 10 values. The average time taken, over 30 rounds,
for convention emergence to occur was measured on the generated topologies
and the average time over the bucketed values was then calculated. Values which
did not result in convention emergence after 20,000 timesteps were discounted
from the second average as they were unlikely to result in conventions emerging.
Only runs with Tl/T0 � 4 are affected by this. Simulations with a higher Tl/T0

exhibited convention emergence for all runs. With Tl/T0 � 4 as much as 80 % of
the runs for a given simulation did not result in convergence. The transition is
notable and is discussed below.

It is clear that convention emergence is successful in the dynamic topology,
and for most values of Tl/T0 there is little variation in the average time for con-
vention emergence as shown in Fig. 1. Values of Tl/T0 � 5 all have a convention
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after initial intervention using standard
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emergence time of around t = 500 with little variation between runs. However,
values of Tl/T0 � 4 displayed significant variation and, in general, much more
time was required for convention emergence to occur if it occurred at all. Higher
values of Tl/T0 did not exhibit this.

At low Tl/T0 values the topology either did not generate a giant cluster
or agents were found to expire before meaningful convention emergence could
occur. This follows from the parameter settings required to give a small Tl/T0

and means that there is a lower threshold for the topology to experience con-
vention emergence. In particular, there is a minimum level of connectedness and
lifespan that must be present. Below this threshold the network will be partially
disconnected and not representative of real-world topologies. However, once this
is achieved the time required for convention emergence is mostly independent
of Tl/T0. As such, we select parameter settings that are used for all following
simulations that give Tl/T0 = 4.7 which was found to provide stable convention
emergence times. For completeness, additional Tl/T0 values in the range 20 to
200 were also examined. There was a slight decrease in the average time at higher
values, although the low variation remained. As the real-world networks exam-
ined by González et al. had Tl/T0 values around 5–6 these results were purely
to determine the impact of high Tl/T0 values, and have not been included.

4.2 Initial Intervention

Having established that convention emergence occurs in dynamic topologies, we
now examine the effect of fixed strategy agents. We start by considering the
scenario where fixed strategy agents are introduced early in a system’s lifespan
to manipulate convention emergence. As discussed in Sect. 3, this initial inser-
tion is delayed until a cluster of size greater than N/2 has emerged. This was



Manipulating Conventions in a Particle-Based Topology 251

found empirically to always have occurred by t = 200. Fixed strategy agents are
inserted after this “burn-in” period has elapsed.

We begin by considering the initial heuristics discussed in Sect. 3: Static
Degree and Updating Degree. We also consider random placement of the fixed
strategy agents as a baseline. The fixed strategy agents were inserted into the
system at t = 200 and the simulation allowed to run for 5000 timesteps. Prior
simulations showed that conventions always emerged well before this time even
without the presence of fixed strategy agents. The number of fixed strategy
agents inserted into the system was varied from zero to twenty and the propor-
tion of simulations in which the fixed strategy emerged as the convention was
monitored. The results of this setting are shown in Fig. 2.

As expected, given the size of the action space (10), when no fixed strat-
egy agents were inserted, the proportion of times the fixed strategy emerged as
the convention is approximately 0.1. With the introduction of only a few fixed
strategy agents placed at targeted locations we are able to readily manipulate
the emerged convention more than 50 % of the time. The results also show that
even randomly placed fixed strategy agents are able make a large difference in
convention emergence. This corroborates the findings in previous work on static
networks [10,21], although larger numbers of fixed strategy agents are needed
comparatively. As the number of inserted agents increases, the difference between
the targeted heuristics and random placement becomes more pronounced. The
targeted heuristics are able to cause convention emergence in nearly 100 % of
cases with only 12 agents whilst random placement requires 20.

Importantly, there is little difference between the two targeted heuristics.
Updating Degree slightly outperforms Static Degree although in most cases this
is not statistically significant (only 4 and 10 FS agents exhibited differences
at a 10 % significance level with most showing a Z-Score less than 1.0). Given
this, and the additional complexity and resource requirements for calculating
the Updating Degree heuristic, Static Degree is likely sufficient in most cases.

Having established the efficacy of the traditional heuristics, we now examine
the effect of considering agent age using our new heuristic, Life-Degree. We
begin by examining Static Life-Degree, contrasting this to Static Degree. Var-
ious weightings of Life-Degree were considered and the results are presented
in Fig. 3. The results of Static Degree have also been included for comparison.

When given equal weighting between expected life and degree (ω = 0.5),
Life-Degree performs markedly worse than Static Degree for nearly all num-
bers of fixed strategy agents. This is due to the fact that such a weighting is
heavily biased to much younger agents. The range of possible ages is larger than
that of degree and as such, even when normalised, age was found to be the
primary selector. A weighting of 0.7 in favour of degree exhibits the same per-
formance as Static Degree (within a 90 % confidence interval). Further increasing
the weighting offers no further improvement in performance, with ω = 0.9 also
performing the same as Static Degree. Additional weightings of 0.95 and 0.99
were also considered and similarly offered no improvements.
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These results show that an agent’s connectivity, indicated by its degree, is
a much larger contributor to its ability to influence others than how long that
agent will remain in the system. The fact that considering age can only decrease
the effectiveness of the chosen agents indicates that agents’ short-term influence
is a larger factor in convention emergence than choosing long-term targets.

Life-Degree was also used in an updating manner, such that the set of
fixed strategy agents was recalculated each iteration. The results from this and,
for comparison, Updating Degree are shown in Fig. 4. Similar to the Static Life-
Degree experiments, the performance of Updating Life-Degree depends
heavily on the value of ω being used. As before, giving equal weighting to each
factor results in poor performance, far below that of pure degree. Increasing
the weighting again enhances performance but only to that of Updating Degree.
This mirrors the results of Static Life-Degree and shows that, regardless of the
ability to continuously assess an agent’s remaining lifespan, choosing agents with
numerous connections is the most important factor. This indicates that, even in
the extreme case where an agent is expected to expire in a few timesteps, on
average equal performance can be achieved when selecting them compared to
selecting an agent who remains in the system much longer.

Static Life-Degree and Updating Life-Degree, like their pure degree
counterparts, have only slight differences in performance, with Updating Life-
Degree performing slightly better. At each weight, Updating Life-Degree
outperforms Static Life-Degree at a 10 % significance level for several num-
bers of FS agents. This is most pronounced when ω = 0.9 where Updating
Life-Degree performs significantly better between 4–8 FS agents. However,
the constant information updates may make Updating Life-Degree untenable
in many domains. In domains where this information is readily available, we have
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shown that using up-to-date estimates of degree is sufficient to offer improved
outcomes from fixed strategy agent selection.

The results presented above show that it is possible to influence the direction
of convention emergence in dynamic topologies. Another commonly used metric
of the efficiency of fixed strategy agents is the effect they have on the speed of
convention emergence [7,10]. Figure 5 shows how time for convention emergence
varies for different numbers of fixed strategy agents using the heuristics. As is
to be expected, given the asymptotic behaviour exhibited above, consideration
of age, depending on weighting, causes either an increase in the average time
required or results in similar times to the equivalent pure degree heuristics.
Omitted from the graph for clarity, a value of ω = 0.5 requires more time for
convention emergence to occur for any number of fixed strategy agents. Values
higher than 0.7 perform similarly to 0.7 and hence have also been omitted.

The standard deviation of the convention emergence time also decreases
rapidly as the number of fixed strategy agents rises, from up to 100 with zero
agents to around 20 with 20 agents. The standard deviation of the results from
the Life-Degree simulations are equivalent to those of the pure degree heuris-
tics except for ω = 0.5 which exhibits much larger variance. Thus, consideration
of age has a negative effect both in establishing conventions as well as the time
it takes to do this. This indicates that, in all aspects, degree is the factor that
contributes most to how influential a given agent will be.

4.3 Late Intervention

We now look to the related use of fixed strategy agents in destabilising and
replacing an already established convention [13,15]. This requires a convention
to already have emerged within the system. So that the results are representative
of the general case, we allow a convention to naturally emerge without the use
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after late intervention using Updating
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of fixed strategy agents to encourage it. It was found that conventions always
emerged before timestep t = 1500 and, as such, insertion of fixed strategy agents
occurs at this time. This also means that the system will have entered the QSS.
The action of the fixed strategy is chosen uniformly at random from the actions
that exclude the established convention.

In common with the findings of Marchant et al. [13,15] for static networks, our
initial experiments showed a much larger number of fixed strategy agents was
required to affect the established convention compared to the number needed
when inserted into a system earlier. However, a relatively small set of fixed
strategy agents are still able to effect a change. In contrast to static networks, the
transition between no effect and guaranteed change occurs over a much smaller
range of fixed strategy agents. For nearly all heuristics (excluding random) there
is little or no effect at 40 fixed strategy agents (4 % of the population), whilst 50
fixed strategy agents (5 % of the population) results in the targeted convention
supplanting the established convention in almost 100 % of cases. This narrow
window indicates that there is a critical number of fixed strategy agents that is
required to guarantee replacement of a convention in dynamic topologies.

Figure 6 shows the proportion of runs in which the convention represented
by the fixed strategy became established when using the static heuristics: Static
Life-Degree and Static Degree. In common with initial intervention, consid-
eration of age induces poorer performance here. With ω = 0.7, Life-Degree is
substantially outperformed by Static Degree for any non-trivial proportion, in
contrast to the case in initial intervention when such a weighting produced sim-
ilar performances. Even when increasing the weighting to 0.9, previously equiv-
alent to the performance of pure degree, Static Life-Degree is still slightly
outperformed by Static Degree though this is within the margin of error (only
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46 FS agents produce significant differences at a 10 % level). The performance
of higher weights asymptotically approached that of Static Degree.

Similar results are presented in Fig. 7 for updating heuristics. The difference
between Updating Life-Degree and Updating Degree in this scenario is even
more pronounced. A weighting of 0.7 is again substantially worse than the pure
degree heuristic with the higher weightings, 0.9 and 0.95, being of similar quality
to Updating Degree.

Of note, the difference in performance between static heuristics and updat-
ing heuristics is more pronounced here than in initial interventions; the updating
heuristics consistently require significantly fewer fixed strategy agents to effect a
change. This indicates that inclusion of up-to-date information of agent state is
more important when combating an existing convention and makes a larger con-
tribution compared to establishing a convention from a state of neutral agents.

These findings indicate that destabilisation of an existing convention is even
more sensitive to the consideration of agent longevity than initial convention
emergence. Indeed, the age or expected lifespan of an agent can be safely ignored
with no detrimental effects to the performance of the fixed strategy agents. This
strongly implies that the major factor in destabilising conventions is instead
choosing agents with high degree, regardless of how long that agent will last.
High degree is more effective at spreading influence than choosing a lower degree
agent with longer life. The difference between Static and Updating Degree, not
present in initial intervention, also supports this view; the importance of choosing
the current highest degree agents is far more pronounced.

4.4 Alternative Payoffs

We now turn our attention to the effect the payoff matrix has on interven-
tion effectiveness. In particular, we examine whether the positive and negative
rewards the agents receive (and the symmetry or asymmetry of these) changes
the relationship or relative performance of the various placement heuristics.

This exploration uses 3 different payoff matrices: 4v-1 (positive reinforce-
ment), 1v-1 (neutral reinforcement) and 1v-4 (negative reinforcement) where
the first number represents the payoff for coordinated strategy choice, the sec-
ond the payoff for conflicting strategy choice. 4v-1 is the payoff structure that
has been used in all previous experiments and represents situations where coor-
dination is more beneficial than conflict is harmful, or where coordination is
more encouraged. For example, attempting to find a mutual radio channel over
which to communicate; whilst there is an expenditure of time for each failure, it
is not necessarily very harmful whilst correctly communicating is very beneficial.
This structure has been used in previous work [21] and has been shown to allow
rapid and thorough convention emergence. 1v-1 can instead represent situations
where there is symmetry between the benefit and harm, such as choosing which
side of a corridor to walk on; there are both minor inconveniences and minor
benefits but neither of a larger scale than the other. Finally, 1v-4 represents
situations where conflicting action choices could be very detrimental and should
be discouraged rapidly. An example of this is which side of the road to drive on
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Fig. 8. A comparison of the effect of game payoff on the effectiveness of the standard
heuristics in encouraging initial convention emergence.

(although this is often described using a symmetric payoff); the negative effects
of a crash are substantial.

As this paper is concerned with the effectiveness of strategies to either direct
or replace convention emergence, we primarily concern ourselves with the payoff
matrix that best enables conventions to emerge rapidly and thoroughly, so the
strategies can be studied. The 4v-1 payoff matrix performs best in this regard.
Indeed, the other payoff matrices nearly always fail to reach the Kittock criteria
of 90 % for convention emergence, even when the simulation is run for 50000
timesteps. This is related to both the number of strategies available and the
payoff matrix. As the number of strategies increases, the average percentage of
agents adhering to the primary convention decreases and, with the alternative
payoff structures, falls below the 90 % Kittock threshold for our strategy space
of 10. Whilst the positive reinforcement system teaches agents which choice is
best, the other payoff structures instead teach agents which choices are worst.
Due to the asymmetry of this, and the fact that coordination is not as heavily
rewarded, the level of coordination is lower.

However, although the 90 % threshold of the Kittock criteria is not met, there
is in general still a singular strategy that dominates agent choice and if we reduce
the threshold to 80 % we can view this as convention emergence. Lowering the
threshold of convention emergence enables us to compare the effectiveness of
the strategies under different payoff matrices whilst still considering situations
where the system is heavily dominated by a single strategy. All the results in
this subsection use the 80 % threshold, with all other parameters kept as defined
at the beginning of this section.

Initial Intervention. We begin by considering the payoff matrices as applied
to initial intervention. Using the same heuristics and weightings as before the
simulations were run with the three different payoff matrices and, using a thresh-
old of 80 %, the proportion of runs in which the fixed strategy emerged above
this threshold was compared. Figure 8 shows the comparison when using the
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Fig. 9. A comparison of the effect of game payoff on the effectiveness of the advanced
heuristics in encouraging initial convention emergence.

standard heuristics. As this figure shows, the relative performance between the
random, static degree and updating degree placement strategies never changes.
However, the absolute performance of each of the heuristics increases in both 1v-
1 and 1v-4 with fewer FS agents needed to enact the same change. This is likely
due to it being easier for the system to overcome any partial convention that has
started to emerge by the time the FS agents are inserted (t = 200) as the reward
for perpetuating this emerging convention is lower and, in the case of 1v-4, the
negative payoff for conflicting with the FS agents is higher. Additionally, whilst
the other payoff structures may provide easier to manipulate systems, 4v-1 is
the only one of those examined that reached the Kittock criteria.

Figure 9 shows the comparison for both static and updating placement heuris-
tics. The findings in Fig. 8 are also present here: the relative performance between
the heuristics does not change as the payoff is altered but performance for all
heuristics increases. Additionally, the poor performance of the 0.5 weighting of
Life-Degree has a reduced penalty compared to the other weightings.



258 J. Marchant and N. Griffiths

40 42 44 46 48 50
0

0.2

0.4

0.6

0.8

1

Number of FS Agents

P
ro

po
rt

io
n

em
er

gi
ng

F
S

co
nv

en
ti

on 4v-1

30 32 34 36 38 40

Number of FS Agents

1v-1

30 32 34 36 38 40

Number of FS Agents

1v-4

Degree - Static Life-Degree - 0.7 Life-Degree - 0.9 Life-Degree - 0.95

(a) Static Heuristics Comparison

40 42 44 46 48 50
0

0.2

0.4

0.6

0.8

1

Number of FS Agents

P
ro

po
rt

io
n

em
er

gi
ng

F
S

co
nv

en
ti

on 4v-1

30 32 34 36 38 40

Number of FS Agents

1v-1

30 32 34 36 38 40

Number of FS Agents

1v-4

Degree - Updating Life-Degree - 0.7 Life-Degree - 0.9 Life-Degree - 0.95

(b) Updating Heuristics Comparison

Fig. 10. A comparison of the effect of game payoff on the effectiveness of the advanced
heuristics in encouraging replacement of an already established convention via late
intervention. Note the different x-axes between the original payoff structure and the
others.

Late Intervention. Having examined the effect of the payoff matrix on initial
interventions we now investigate the effect on late interventions and destabilisa-
tion. For these experiments the threshold for both destabilisation and considering
a new convention to have replaced the old are both 80 %. Figure 10 shows the
results for both static and updating heuristics. Of particular note is the differ-
ence in x-axis range between 4v-1 and the other payoffs: the former ranges from
40 to 50, the latter from 30 to 40.

Similar to the findings for initial intervention, the relative performances
amongst the heuristics are the same across the different payoff matrices. How-
ever the absolute performance, in the number of agents needed, is substantially
smaller for the latter payoff matrices. This provides additional evidence for the
hypothesis discussed above, that it is easier to get agents to switch away from
the established convention as the reward for continuing to use it is less compared
to switching to the introduced strategy. As with other aspects discussed in this
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paper the effect is amplified in late interventions compared to similar effects
present in initial intervention.

Overall, changing the payoff matrix, either from positive asymmetry to neu-
tral symmetry or negative asymmetry caused no change on the relative effec-
tiveness of the various interventions. Degree placement still performs best in
both initial and late interventions and, depending on weighting, can offer large
improvements over the consideration of agent age. However, the absolute perfor-
mance change is interesting and future work will further explore this difference.

5 Discussion and Conclusions

Convention emergence is often used in multi-agent systems to encourage effi-
cient and coordinated action choice. It provides a mechanism through which
such behaviour can naturally occur without requiring changes to, or assump-
tions about, underlying agent capabilities. How best to facilitate robust conven-
tion emergence in a timely manner is an area of ongoing research. Fixed strategy
agents can be used to speed up and direct emergence. In particular, placing small
numbers of fixed strategy agents at targeted locations within the network topol-
ogy connecting agents has been shown to better facilitate convention emergence
than untargeted placement. The heuristics used to choose these locations often
make use of metrics derived from an agent’s location within the topology.

In this paper, we initially considered uninfluenced convention emergence in a
dynamic network, using the topology model proposed by González et al. [8,9]. We
showed that conventions emerge in a dynamic environment and that the average
time taken for this is largely independent of the parameter settings used in the
network model provided the value of Tl/T0 is above a threshold of approximately
4. Below this, the topology or agent lifespans are not conducive to any convention
emergence occurring at all. This indicates that there is a minimum connectedness
required in dynamic topologies for conventions to emerge.

We proposed a new placement heuristic, Life-Degree, that utilises informa-
tion unique to dynamic topologies in its decision making process, allowing us to
test the importance of that information. We contrasted this to the performance
of the traditionally used placement heuristics. We examined the scenario where
fixed strategy agents are introduced early in the life of the system to direct and
encourage faster convention emergence. We showed that, as in static networks,
targeted placement offers better performance than untargeted. A small number
of agents are able to influence a population much larger than themselves. We
established that, in domains where it is possible to change the fixed strategy
agents after selection, doing so offers small improvements in performance. In
both settings, the most important aspect of selected agents was found to be
their degree, ignoring their longevity. This both increased the probability of a
specific convention emerging as well as increasing the speed of that emergence.

Additionally, we considered the destabilisation of already established conven-
tions in dynamic networks. We found that destabilisation is more sensitive to
the inclusion of agent lifespan than when using fixed strategy agents to estab-
lish a convention at the beginning of simulation. Choosing locations that will
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maximise an agent’s influence, regardless of how long they will remain, is the
most important aspect to consider when destabilising conventions in dynamic
networks. Future work will investigate this further and examine if other features
of dynamic networks offer beneficial information when selecting fixed strategy
agents. We showed that the updating heuristics cause more destabilisation than
the static heuristics and that this effect was much larger than the equivalent
difference when encouraging initial convention emergence.

Finally we explored the effect that different payoff schemes had on the effec-
tiveness of the heuristics. We showed that the ordering of performance was not
affected by the payoff scheme but that the overall effectiveness of all heuristics
is sensitive to the rewards the agents receive.

Overall, we have shown that convention emergence is possible in dynamic
topologies and that many characteristics have direct parallels in static networks.
We have shown that the degree of an agent is a major factor when choosing
them and can be used to cause rapid convention emergence and destabilisation.
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Abstract. We describe the reciprocal agents that build virtual associ-
ations in accordance with past cooperative work in a bottom-up man-
ner and that allocate tasks or resources preferentially to agents in the
same associations in busy large-scale distributed environments. Models
of multi-agent systems (MAS) are often used to express tasks that are
done by teams of cooperative agents, so how each subtask is allocated to
appropriate agents is a central issue. Particularly in busy environments
where multiple tasks are requested simultaneously and continuously, sim-
ple allocation methods in self-interested agents result in conflicts, mean-
ing that these methods attempt to allocate multiple tasks to one or a
few capable agents. Thus, the system’s performance degrades. To avoid
such conflicts, we introduce reciprocal agents that cooperate with spe-
cific agents that have excellent mutual experience of cooperation. They
then autonomously build associations in which they try to form teams
for new incoming tasks. We introduce the N -agent team formation (TF)
game, an abstract expression of allocating problems in MAS by eliminat-
ing unnecessary and complicated task and agent specifications, thereby
identifying the fundamental mechanism to facilitate and maintain associ-
ations. We experimentally show that reciprocal agents can considerably
improve performance by reducing the number of conflicts in N -agent TF
games with different N values by establishing association structures. We
also investigate how learning parameters to decide reciprocity affect asso-
ciation structures and which structure can achieve efficient allocations.

1 Introduction

Many computational tasks are completed by not just a single agent but by teams
or groups of cooperative agents. For example, a task in service computing is often
dynamically composed of a number of service elements and can be achieved by
allocating the elements to appropriate agents. These agents are usually soft-
ware entities on the Internet created by different developers. We can find such
applications not only in computer science-related areas such as ad hoc networks,
e-commerce, and sensor networks but also in other areas such as coalition forma-
tion for tackling pollution control problems (economics and social science) [22]
c© Springer International Publishing Switzerland 2016
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and group work in education (e.g., [24,29]). In these applications, the efficient
and effective formation of teams for doing tasks is vital for providing qualitative
service in a timely manner. However, forming a team in large-scale multi-agent
systems (MAS) is costly because agents have to select team members from a
large pool of agents. In addition, if tasks are numerous and appear simulta-
neously in distributed environments, many allocation conflicts occur because
multiple self-interested agents attempt to allocate tasks to a single or to a few
capable agents simultaneously. This hinders team formation and degrades the
entire performance.

Much of literature in the multi-agent systems context has discussed methods
for forming coalitions and teams for group-based tasks. For example, a number
of studies on coalition formation (e.g., [7,13,23]) have proposed methods to find
the combinatorial formation that provides the maximum social utility under
the assumption that characteristic functions for all possible groups are given.
However, real-world applications often cannot assume characteristic functions
in advance. Therefore, a few studies have focused on identifying characteristic
functions [18,30]. However, they assume that their environments are static and
not busy. Another approach to team formation is market-based methods, such
as the conventional contract net protocol and its extensions. However, these also
assume that the system is not large or busy; when it does become busy and
large, the efficiency for forming teams, i.e., allocating the elements of the given
tasks to agents, is severely degraded. More importantly, most of these studies
do not take into account the conflicts in allocations in busy environments.

We often form groups for doing tasks in the real world, and if conflicts in
group formation occur and if no prior communications for pre-negotiation are
possible, we first find reliable and dependable persons with whom to work. Such
people are usually identified according to past reciprocity and an agreement for
benefit distribution within the groups (e.g., [9]). Furthermore, if the opportu-
nities for group work are frequent, we try to form collaborative relationships
with these mutually reliable people. In an extreme case when group work with
unreliable people is offered, we can refuse the offers for the sake of finding possi-
ble future proposals with reliable people and for punishing the proposing agents
because of their past unreliable behavior [9,10]. Although such behavior is irra-
tional because of its self-interest, it can stabilize collaborative relationships and
avoid the possibility of conflicts in team formations. Thus, we expect stable ben-
efits in the future through working with reliable and dependable agents. We
previously proposed a reciprocal agent that builds associations in accordance
with past cooperative work in a bottom-up manner and that allocate tasks or
resources preferentially to agents in the same associations [19]. We then experi-
mentally showed that the society of the reciprocal agents could reduce the num-
ber of conflicts by associating with dependable agents, thus enabling tasks to
be executed efficiently. However, the method in [19] was limited and the experi-
ments were not enough because we assumed that all tasks had a certain identical
structure. Thus, in this paper, we have extended the method in [19] for use in
more complex environments where different types of tasks are requested.
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This paper describes the first attempt to create a computational method
for team formations that have fewer conflicts (thereby ensuring stability) and
more acceptable benefit distributions among teams. This is done by introducing
non-rational behavior—much like that in humans. Initially, agents form teams
randomly, so many trials may fail due to conflicts or may result in unaccept-
able benefit distributions. However, through these trials, the agents mutually
memorize the reciprocal and non-reciprocal behaviors by agents encountered
in teams and also learn the appropriate behaviors for other reciprocal agents.
Then, agents with enough experience in group work will identify which agents
are dependable when necessary and virtually build collaboration relationships,
called associations of agents, in a bottom-up manner. Agents also learn how
the benefits should be shared with collaborators in the associations. At the
same time, agents that are found to be dependable by certain agents will try
to behave as expected. Agents often behave irrationally (like humans) in this
learning process because they may decline group work offers from undependable
or first-time agents. However, from a long-term viewpoint, these behaviors and
learning will help agents build associations consisting of mutually dependable
and trusted agents and will enable teams to be formed stably within the associ-
ations to which they belong. Such teams within an association may not be the
best from the viewpoint of optimality, but if they can complete tasks with the
required quality, the effectiveness and reduced conflicts are more important in a
large-scale and busy MAS.

This paper is organized as follows. Section 2 discusses related work and Sect. 3
describes the model of agents and the game of team formation by detailing an
abstract resource allocation problem in a multi-agent system context. In Sect. 4,
we describe several types of agents, including reciprocal agents, and explain how
they perform the games by building associations consisting of dependable agents.
Section 5 shows how the performance of the game improved by learning payoff
distributions and by building associations based on the behavior in games. We
also investigate how learning parameters to decide reciprocity affected associa-
tion structures and which structure could achieve efficient allocations. Section 6
briefly discusses the experimental results. We conclude the paper in Sect. 7.

2 Related Work

Many studies on resource or task allocation have been conducted in multi-agent
systems contexts. Resource and task allocation problems are usually formulated
by using integer or linear programming techniques (e.g., [25]). These techniques
are centralized methods and thus are applicable only when all information is
available at a single point. However, this assumption is often impractical in
distributed environments. An important approach in such environments is coali-
tional formation based on cooperative game theory and teamwork [7,23,26,27].
Although this approach has numerous applications, such as disaster control [2],
sensor networks [13], and unmanned air vehicles [1], it assumes coalitions for
one-shot situations, making it applicable only to static and unbusy environ-
ments. Furthermore, it assumes that characteristic functions for coalitions are
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shared among agents in advance. However, this assumption is often implausible
in real-world applications.

Research more related to ours in this respect is coalitional formation in
dynamic environments [6,16,18,30]. For example, Chalkiadakis and Boutilier [6]
proposed stable coalitional formation within the framework of cooperative game
theory using Bayesian reinforcement learning, but this method is not sufficiently
scalable. Kluschand and Gerber [18] proposed a dynamic coalition formation
mechanism using rational agents, called DCF-A, in which fixed leader agents
learn how coalitions should be formed. The leaders are the central points and
DCF-A assumes that all agents are constantly available. Ye et al. [30] proposed
a dynamic method in environments where agents are connected with a certain
network structure. However, we focus on autonomous and bottom-up generation
of a stable coalitional (or association) structure formation in busy environments
where tasks continuously arrive at the MAS. Jones and Barber [16] proposed
a bottom-up method that uses heuristics combining team formation strategies
and task selection strategies to adapt to dynamic environments. Faye et al. [8]
proposed coalitional formation in environments where the availability of agents
is unpredictable, although the focus theme was network applications. Our study
is different in that we address how dependable agents are mutually recognized
and make associations for stable task executions.

Of course, a lot of research on groups and reciprocity in human societies has
been conducted in sociobiology and economics (e.g., [28]), and we wanted to
utilize the findings in these research areas. Numerous studies have attempted
to explain non-self-interested behavior using reciprocity. The simplified mean-
ing for this is that people do not engage in selfish actions towards and do not
betray others who are reciprocal and cooperative, even if such selfish actions
could result in higher payoffs for themselves [11,12,21]. Panchanathan and Boyd
[21] stated that cooperation can be established from indirect reciprocity, mean-
ing that people work together with certain persons and expect future rewards
through cooperating with others [9]. The authors of [11,12] insisted that fairness
in cooperation produces non-self-interested behavior; agents do not betray rele-
vant reciprocal agents because such a betrayal would be unfair. One important
study related to our work is the results of a repeated ultimatum game [14] done
by Fehr and Fischbacher [9] that showed how payoffs shared among collaborators
affected the strategies in subsequent games. The same authors also found that
punishment towards those who distribute unfair payoffs is frequently observed,
although the punishment can be costly [10]; fairness and punishment are key
points in continuing cooperation in an ultimatum game.

Group formation and selection are also related work. For example,
Bowels et al. [5] argued that people form groups because those belonging
to groups have high probabilities to win races occurring in their societies
(we believe the notion of race in [5] corresponds to conflict in our work).
Bowles et al. [4] also investigated using agent-based simulations and found that
groups and group-adapted behavior that may be individually costly evolved
because group institutions can limit the fitness cost of for the behavior.



266 Y. Miyashita et al.

Bornstein and Yaniv [3] experimentally found that in the ultimatum game,
people in a group can receive lower payoffs than in individual-based games
but are nonetheless likely to accept the proposals in the group. The situations
we address in this paper are quite similar to those of the repeated ultimatum
game—more specifically, the dictator game [17], which is a variant of the ulti-
matum game—but we focus on algorithmic methods to understand how agents
can autonomously form groups and how they become likely to accept group
proposals; in our context, this means that conflict situations can be avoided by
choosing group-based behavior.

We already introduced two models in our previous studies [19,20]. First, we
proposed reciprocal agents that build virtual associations though an association
invitation protocol with punishment according to past cooperative work in a
bottom-up manner [19]. We also proposed a self-organizing mechanism based
only on cooperative relationships for task allocation without using association
protocols or punishment [20]. We then showed that many agents (but not all)
form implicit associations based on the reciprocity while a few agents continued
to act as self-interested agents. Interestingly, this mixed structure improved the
entire performance. This paper extends the method in [19] for application to
more general cases by partly introducing the method proposed in [20].

3 Model and Problem

3.1 Overview of Allocation Problem

Our source of motivation in this paper is a continuous task or resource allocation
problem in which a task consisting of a number of subtasks is executed by a num-
ber of agents that have sufficient resources to process the allocated subtasks [15].
Briefly, the problem is formulated as follows: Let A = {1, . . . , n} be the set of
agents and let agent i ∈ A have its resources expressed by Ri = {r1i , . . . , r

p
i },

where rki is a non-negative number and p is the number of types of resources. Task
T = {s1, . . . , sk} consists of a number of subtasks sk. Some amounts of various
resources are required to execute subtask s, so we identify it as s = {u1

s , . . . , up
s },

where uk
s is a non-negative number expressing and the k-th resource required

for s. Agent i can process s when its resources satisfy

rki ≥ uk
s (1 ≤ ∀k ≤ p). (1)

T is executed by a team of agents, but any agent can belong to only one team at
a time. When the agents in the team satisfy Condition (1) for the given subtasks,
the team can successfully execute T .

For a positive integer vo, called the task load, vo tasks on average are given
to the systems every tick, where ‘tick’ is the time unit in our model. Let Q =
{T1, . . . , Tl} be the set of given tasks. For task T ∈ Q, one agent works as a leader
and is an initiator to form the team. The leader selects one agent (or a few) for
each subtask in T and then sends it (them) a solicitation message with a subtask
to join the team. The agents that receive the messages select one of them and
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send back an acceptance message. If agents accepting the solicitation message
satisfy Condition (1) for all subtasks, the team can execute T with a certain
game duration. Then, the leader receives the payoffs for T and distributes them
to members with a certain policy. In this process, a number of (capable) agents
may receive multiple solicitation messages simultaneously or during execution.
Because agents can belong to only one team simultaneously, they have to decline
the rest of the solicitations. Thus, team formation may fail. This sort of conflict
frequently occurs when the system is busy, so the performance is degraded.

We previously proposed the aforementioned task allocation method based
on past successful cooperation in forming teams and achieved efficient team
formation [15], on the basis of agent’s rational decision. However, the success
rate was insufficient for use in actual applications. One major reason for the low
success rate was the allocation conflicts. This kind of request for group work is
often observed in human society; even so, we attempted to improve the success
rate. For example, we typically invite to work with only dependable people we
believe will probably accept them if they are inactive. Conversely, when we
receive multiple solicitations, we tend to select the solicitation from the most
reliable leader, meaning that that leader selects us over others. To stabilize such
team formations, we often build a group, called an association, whose members
consider each other to be dependable. Our purpose is to reduce these conflicts in
task allocation by using the associations of computer systems from which leaders
select the candidates for team members.

3.2 Abstract Model of Allocation Problem

We referenced the findings in other disciplines in an attempt to identify what
information affects the building of virtual associations in a society of agents and
how that information should be used. For this purpose, we created an abstract
of a model of an allocation problem with team formation in Sect. 3.1 by elim-
inating unnecessary specifications of tasks and agents and then identified the
fundamental mechanisms in building associations in a bottom-up manner.

The abstract version of the allocation problem with team formation is called
the team formation game (TF game). It is similar to the repeated N -person
ultimatum game (N ≥ 2 is an integer) in that we focus more on how teams
should be formed by distributing the received payoffs. More precisely, this is
more similar to the N -person dictator game because member agents cannot
refuse the payoffs proposed by the leader but can refuse the solicitation to join
the TF game next time.

The N -agent Team Formation Game proceeds as follows. Leader l ∈ A selects
N − 1 agents from A \ {l} and solicits them to form a team. The solicited agents
then select zero or one solicitation (on the basis of their own policy). If no
solicited agents accept them, the game is deemed a failure and ends. Otherwise
(if all agents accept), the game succeeds, and the formed team is retained for d
ticks. After that, l receives the pre-defined payoffs P > 0. l picks up some payoffs
from P in return for playing the leader and the remaining payoffs are distributed
to all other members equally. Then, the game ends. We assume that agents
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cannot accept and attend multiple games simultaneously. An agent currently
engaged in a TF game is called active; otherwise, it is called inactive. Every tick,
vo inactive agents are randomly selected and initiate the TF games as leaders.
This process is then reiterated. We propose a method to increase the success
rates of TF games. The number of TF games succeeding during a certain period
is called the game performance, after this. The number of agents N is called the
game size. Integer d corresponds to the processing time for the allocated task.

The findings in (socio-)biology and experimental economy discussed in Sect. 2
suggest that although humans are usually motivated by self-interest, fairness is a
key feature for group-based activities; that is, people tend to behave fairly within
a group. Often, they give punishments for unfair behaviors, though punishments
incur some costs to themselves and, in this sense, do not represent rational
behavior [9]. Therefore, we attempted to find a control method for agents to
build associations. We herein show that these associations can improve game
performance by reducing conflicts.

4 Proposed Method: Reciprocal Agents and Associations

4.1 Reciprocal Agents

We introduce a reciprocal agent that is concerned with who is dependable, i.e.,
who is likely to accept forming teams in TF games and to distribute payoffs
fairly on the basis of the past reciprocal activities of other agents. Then, the
agent tries to build associations of mutually dependable agents. A reciprocal
agent is different from a cooperative agent in the sense that a reciprocal agent
demonstrates cooperative attitudes to those that were cooperative in the past
and may ignore or understate messages from non-reciprocal and unfair agents
as punishment.

We introduce three learning parameters in reciprocal agents for N -agent TF
games: greediness, the threshold rate for dissatisfaction (TRD), and confidence
degree. The definition of confidence degree is described in the next section. The
parameter of greediness of i, 0 ≤ gi ≤ gmax , determines that when i has worked
as the leader of a successful team, i picks up P · gi · 1/N and so (P − P · gi ·
1/N) ·1/(N −1) is distributed equally to other members. For example, when the
rate of gi = 1, rewards are distributed equally to the leader and members. As
leader agents want to earn more payoffs, the higher gi is better. However, other
members may become dissatisfied.

Parameter TRD, 0 ≤ Trd i, denotes the threshold for i’s (dis)satisfaction
toward leader j with the received payoffs from j and is defined by the relative
value of their own greediness parameter. It is calculated by

Trd i = gi + βTrd
i , (2)

where βTrd
i is the margin to express dissatisfaction. We assume that the values of

βTrd
i represent the fixed character of individual agents. Thus, they are initially

defined inherently as constant values. When the parameters of greediness is



Formation of Association Structures Based on Reciprocity 269

updated, TRD is updated simultaneously. How the parameters of greediness are
learned on the basis of the game results and the received payoffs is described in
Sect. 4.4. After i joins a successful team whose leader is j, if j’s greediness holds

gj > Trd i, (3)

i expresses dissatisfaction to leader j. Note that i is able to calculate gj from
the received reward.

4.2 Association and Its Formation

Agent i can belong to a number of associations, which are the sets of agents
including i. Agent i knows Li, the collection of the associations it belongs to.
We also assume that agents know the current state, either active (attending
another TF game) or inactive, for those in the same associations. We feel this
assumption is reasonable if the number of agents in each association is low;
actually, we experimentally show that it is quite low. Initially, i has a singleton
association, so Li = {{i}}. We also define

L = ∪i∈ALi, (4)

which is the collection of all associations. Note that if L2 ⊂ L1 for L1, L2 ∈ L,
L2 is redundant and so is eliminated from Li. Agents working as a leader first
select one of their associations and try to find team member candidates from
within it.

Reciprocal agent i has a set of parameters called a confidence degree (CD),
{cij | j ∈ A \ {i}, 0 ≤ cij ≤ 1}, to extend or reduce the member of associations.
Intuitively, the CD denotes how much agent i wants to form teams with j ∈
A \ {i} again, and it is learned through j’s past behavior to i using

cij = (1 − αc) · cij + αc · λij , (5)

where 0 < αc � 1 is the learning rate and λij is defined in accordance with the
process of TF games as follows:
Case 1: If i worked as a leader and j accepted the solicitation from i, then
λij = 1, and if it refused the solicitation, λij = 0.
Next, suppose that i worked as a member of a team whose leader is j.
Case 2: If the TF game succeeded and i did not complain about the rewards
from j, λij = 1; otherwise, λij = 0.
Case 3: Furthermore, if the game succeeded, i raises the CD values to other
members by λik = 1 for any k(	= i, j) in the team. Conversely, i lowers the CD
for agent k by λik = 0 if k refused the solicitation from j because this is a
reason for the failure of the TF game. However, for agent k′ who accepted the
invitation, cik′ remains unchanged.

The association is extended or reduced as follows in accordance with the
CD values. Agent i starts the process to invite non-associating agent j when
cij > Fc, where Fc is the threshold value for invitation to i’s associations after
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team formation. Such j is called i’s dependable agent. For ∀L ∈ Li s.t. j 	∈ L,
if ci′j > Fc for more than half agent i′ ∈ L, j is accepted to join L so L =
L ∪ {j}. Then, redundant associations are eliminated. Conversely, if ∃j ∈ L s.t.
the number of agents i ∈ L whose confidence satisfies cij < Fexp is more than
half, j is expelled from L. Note that i may have low confidence for agent j ∈ Li

(cij < Fexp) in the shared association if other members in Li have high CD
values for j. Agent j is called an undependable agent for i when cij < Fexp .
Agent i can also withdraw from association Li ∈ Li when the average of the
CDs of other members is lower than Fexp , i.e.,

∑
j∈Li\{i}

cij/(|Li| − 1) < Fexp (6)

is held.

4.3 Forming Teams Based on Associations and Confidence Degree

A reciprocal agent plays N -agent TF games using an ε-greedy strategy as follows.
Agent i working as a leader first selects one association, Li, that has the most
dependable inactive agents; this is possible because agents know the states of
other agents in the common associations. If the number of dependable inactive
agents in Li is greater than or equal to N − 1, i selects the N − 1 agents from it
according to a descending order of the CD values of i. If the number is smaller
than N − 1, the rest of the members are selected according to i’s CD values,
so some members may not belong to i’s association. However, with probability
ε, one of the selected members is replaced by another agent that is selected
randomly.

Next, suppose that i is currently not a leader and has received a number of
solicitation messages. Agent i first ignores the message from undependable agent
j who is deemed based on cij < Fexp , even if it has received only such messages.
This ignorance may be irrational behavior because accepting one solicitation
may produce some payoffs, but we can think of it as a kind of punishment to
the sender because the low CD value is the result of past unfair and betrayal
behavior. Agent i then selects one of the messages in accordance with the CD
values for senders with probability 1 − ε; otherwise i selects one randomly.

4.4 Response and Payoff Distribution Strategies in Reciprocal
Agents

The CD values are updated using the new value of λij in Sect. 4.2 after the TF
game with the team members. These values are determined in accordance with
(not only the CD values of other agents but also) the responses to the specifi-
cations and the rates of the received payoffs. These responses and payoffs are
decided in accordance with the parameters of greediness and TRD. We already
mentioned update function for Trd i as Formula (2). The greediness parameter gi
in agent i also learns to find the appropriate values by using the update function

gi = (1 − αg) · gi + αg · δg, (7)
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where αg is the learning rate. We will describe when reciprocal agents update
them and how δg is decided.

The basic concept behind reciprocal agents for greediness is that when the
game succeeds, they want to obtain larger rewards only if no members of the
TF game complain. However, when the game fails (at least one agent declined
the solicitation), or when one member of the TF game complains, the leader’s
greediness should decrease. The details are as follows. If leader i succeeds in the
TF game with the members of Mi and no agents in Mi complain, i updates gi
with δg = gmax using Formula (7). If one member of the TF game complains or
the game failed, i decreases gi with δg = 0.

4.5 Comparative Agents

We introduce two types of agents, a self-interested agent and an associating
self-interested (AS) agent, for comparison in the following experiments because
self-interestedness is a basic concept not only in multi-agent systems literature
but also in economics and computational biology. Self-interested agents in this
article behave so that they get more payoffs based on past game interactions and
do not intend to build new associations. AS agents try to build associations by
estimating which ones are more beneficial in accordance with past interactions,
in addition to behaving to get more payoffs, the same as self-interested agents.

We introduce two learning parameters for self-interested agent i. The expected
value of distributed payoffs (EDP) eij for (∀j ∈ A \ {i}) is the statistical value
for how many payoffs can be expected when i accepts the solicitation from j. It
is updated by

eij = (1 − αe) · eij + αe · vj (8)

after accepting the solicitation from j, where vj is the received payoff from
j and 0 < αe < 1 is the learning rate. Note that vj = 0 if the TF game
failed. The parameter expected acceptance rate (EAR), hij , expresses the degree
of acceptance of the solicitation by j; after leader i sends the solicitation message
to j, hij is updated by

hij = (1 − αh) · hij + αh · δ, (9)

where δ = 1 if j accepted the solicitation and δ = 0 otherwise. Parameter EDP
is used when self-interested agents select one solicitation to pursue more payoffs.
Parameter EAR is used to select more probable agents as members of TF games.

Self-interested agent i as a leader selects members in accordance with the
descending order of EAR, hij (j ∈ A). When i plays a member, it selects one
solicitation message based on the EDP values. In both situations, i selects a
member agent and a solicitation message randomly with probability ε. Self-
interested agents also have parameter greediness. As for greediness, these agents
use the same formula (Formula (7)).

AS agents additionally have CD values and try to build associations similar
to reciprocal agents. The leader AS agents select the members from their associ-
ations, but the member AS agents select the solicitation messages according to
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the EDP instead of the CD values. Furthermore, because they are interested in
which agent will directly provide more payoffs and which have no dissatisfaction
related to unfair payoff distributions, the CD values are updated only in Cases
1 and 2 in Sect. 4.2. We also define random agents to compare with their agents.
Random agents always select members and solicitation messages randomly.

5 Experiments

5.1 Experimental Set-Up

We investigated how the game performance, which is the success rate of TF
games, improved over time in the society of reciprocal agents and compared
the results with those in the society of self-interested, AS, or random agents.
We also compared the number of generated associations, their structures, and
how learning parameters converged. The number of agents was 300 (|A| = 300).
Twenty N -person TF games with game durations d of 3 were initiated with 20
inactive agents selected randomly every tick (vo = 20). We set the game size,
N , between three and seven randomly and set the game rewards as P = N
because agents can divide rewards equally between leader and members. The
upper bound of greediness, gmax , was set to three, since this was the actual limit
when N = 3. The initial values of greediness were randomly selected between
0.5 and 3. The value of βTrd

i for agent ∀i was randomly selected between 0.0
and 0.1 when i was created and it was fixed during each experimental trial. The
initial values of CD, EDP, and EAR were set to 0.5, 1.0, and 0.5, respectively.
The threshold values were defined as Fc = 0.7 and Fexp = 0.2. All learning rates,
αc, αe, αh, and αg, were set to 0.05 and ε = 0.01. The data indicated below are
average values from 20 independent trials.

5.2 Experimental Results: Game Performance and Association
Structure

The number of successful TF games per 10 ticks is plotted in Fig. 1. This figure
indicates that reciprocal agents could perform TF games much more effectively
than other agents. We can also see that the performance of self-interested agents
was relatively low: the self-interested agents pursue their own benefits, so con-
flicts are likely to occur in busy environments because they learned similar results
and therefore, selected a few agents simultaneously. The game performances of
AS agents slowly improved, but reciprocal agents have higher game performances
than AS agents through all the ticks. This suggests that associations could con-
tribute to the game performance in AS agents but that their learning is inef-
fective and slow. Because they also selected leaders who would distribute more
rewards regardless of past interaction, they have few opportunities to cultivate
dependability relationships; hence, AS agents could not build associations within
a reasonable time.

Figure 2 plots the number of associations in the agent societies of reciprocal
and AS agents. Initially, the number of associations was 300 because all agents
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Fig. 1. Performance improvement over
time.

Fig. 2. Number of existing associa-
tions.

Fig. 3. Sizes of associations of reciprocal agents.

belong to their own singleton association. As each agent repeats team formation
games, it can find dependable agents and invite them to it’s associations. Then,
agents gradually combined and formed larger associations. Thus, Fig. 2 indi-
cates that the number of associations of reciprocal agents gradually decreased
and eventually was approximately 50. However, the number of associations of
AS agents was much higher. We could also observe that after 10,000 ticks, per-
formances of reciprocal agents decreased gradually from 125 to 120 as the ticks
went on.

5.3 Structural Analysis

To understand what happened in these situations, we plotted the number
of associations structures of reciprocal agents in Fig. 3. As shown, seven-size
associations, i.e., associations whose members were seven, gradually increased.
Conversely, two-size associations rapidly decreased. We illustrate example agent
associations at 1,000 ticks, 10,000 ticks, 40,000 ticks and 60,000 ticks in Fig. 4(a),
(b), (c) and (d), respectively. Note that these figures were created on the basis
of a certain experimental trial. The nodes in these figures express associations
and the edges between associations indicate they have the shared agents. Thus,
the shared agents belonged to multiple associations.
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(d) 60,000 ticks(c) 40,000 ticks

(b) 10,000 ticks(a) 1,000 ticks

Fig. 4. Sizes of associations of reciprocal agents.

Fig. 5. Rate of selecting team members
from the same associations.

Fig. 6. Structure of AS agent associa-
tions at 60,000 ticks.

Figure 4(a) and (b) indicates that many two-size associations existed and
were connected with edges (shared agents). In particular, Fig. 4(b) shows that
agents who belong to six- or seven-size associations also belong to other associa-
tions whose sizes were two. Then the associations were gradually combined and
became large, thus reducing the number of two-size associations. Finally, almost
none of the associations had edges with other associations.
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We believe this is also the reason the number of successful TF games grad-
ually decreased. In agent associations like the ones in Fig. 4(c) and (d), their
members were almost completely fixed and if multiple tasks were assigned to an
association, one of them was likely to fail. Of course, leaders sent solicitations
to agents outside their associations, but they usually belonged to other associa-
tions and/or were already active in busy environments. We plot the number of
agents that leaders selected from their local associations in Fig. 5. These curves
are quite similar to those in Fig. 1 and suggest that they gradually tended to
solicit agents in other associations.

Figure 6 indicates the example structure of the association of AS agents in
a certain experimental trial. This figure shows that their associations also had
many edges but their sizes of association were relatively small: mostly four or
less. Therefore, they sent more solicitations to other agents.

These experimental results reveal an important finding: the combination of
large associations and quite small associations improves the overall performance.
Furthermore, reciprocal agents can take advantage of such structures of associa-
tions. Thus, we want to maintain the structures appearing around 10,000 ticks,
but the current behavior of reciprocal agents is to form independent associations.
We discuss this issue in Sect. 5.5.

5.4 Payoff Distribution

Figure 7 shows the average values of greediness that determine the amount of
payoff distribution and the minimum acceptable payoff without declaring dissat-
isfaction. Note that greediness is defined for all types of agents except random
agents. We can see from Fig. 7 that the greediness value at 60,000 ticks for AS
agents was 1.2 and that for self-interested and reciprocal agents was 0.8. A fair
distribution is when gi = 1.0, so the rewards for themselves in reciprocal agents
seemed slightly small. Because they formed associations, we can say that their
payoff distribution is fair in the sense that they have similar greediness values.
Although the average greediness in AS agents was slightly higher than 1.0, that
in self-interested agents converged to relatively small values. We assume that
their greediness values were tied to the poor game performance.

Fig. 7. Transition of average greediness
value.

Fig. 8. Number of expressed dissatis-
factions.
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The greediness in reciprocal agents also converged to a small value (0.8), but
the reason for this seems different from that in self-interested agents. To under-
stand this phenomenon, we plot the number of agents expressing dissatisfaction
in Fig. 8. This figure indicates that dissatisfaction continued to be expressed
over time, and the slightly smaller value of greediness is the result of payoff
distribution without dissatisfaction.

We conclude that a message of dissatisfaction to leaders is very impor-
tant to maintain stable associations. From Fig. 8, the number of dissatisfactions
decreased gradually after 5,000 ticks. Agents tended to belong to multiple asso-
ciations at the beginning of the experiment and then gradually tended to belong
to only one after that. Thus, we can see that dissatisfaction could make the
greediness values stable by avoiding leaders that increased them locally.

Fig. 9. Game performance with differ-
ent Fexp .

Fig. 10. Number of associations Fexp .

5.5 Influence of threshold of dependability Fexp

The experimental results in Sect. 5.3 suggest that the edges between associa-
tions and the existence of small-size associations seemed to affect the overall
performance. To understand this effect more clearly, we performed additional
experiments with Fexp values between 0.0 and 0.4. Note that we have omitted
the results for Fexp = 0 since they are the same as those for Fexp = 0.1. The
number of successful TF games is plotted in Fig. 9. It indicates that reciprocal
agents who have Fexp = 0.4 could perform TF games much less successfully
than other reciprocal agents with other values. When Fexp = 0.3, agents could
perform TF games as well as in other cases up to 10,000 ticks, but after that, the
performance decreased. We cannot observe any difference between the curves of
Fexp = 0.2 and 0.1. These curves also slightly decreased, as shown in Fig. 1.

Figure 10 plots the numbers of associations. It shows that the numbers of asso-
ciations converged to around 50 when Fexp = 0.2 and 0.3, although their conver-
gence speeds were different. Furthermore, the performance for Fexp = 0.3 was sig-
nificantly worse than that for Fexp = 0.2 (Fig. 9). On the other hand, the numbers
of associations when Fexp = 0.1 and 0.4 converged to similar values (around 120),
but their performances also differed considerably as shown in Fig. 9. We would
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(a) Fexp= 0.1 

(c) Fexp= 0.4 

(b) Fexp= 0.3 

Fig. 11. Number of associations.

like to understand the reasons for these differences by referring to their associa-
tion structures.

Figure 11(a), (b) and (c) plots the number of associations by breaking them
down by size when Fexp = 0.1, 0.3, and 0.4, respectively. We also illustrate
the structures of associations at 60,000 ticks in Fig. 12(a), (b) and (c). The
graphs for Fexp = 0.2 are already shown in Figs. 3 and 4(d). By comparing
Fig. 3 and 11(a), (b) and (c), we can see that when Fexp = 0.1, the number of
two-size associations slowly decreased, but were still the largest in number at
60,000 ticks. In contract, two-size associations quickly decreased in other cases.
Another observation is that when Fexp = 0.4, the number of single (one-size)
associations was the largest but single associations almost disappeared in other
cases. Meanwhile, the numbers of seven-size associations were the second-largest
when Fexp = 0.1 and 0.4 and were the largest in other cases.

These observations can also be recognized from their association structures.
When Fexp = 0.1, we can see the characteristics of the association structure: each
large (mostly seven-size) association was connected with a number of small (mostly
two-size) associations and were connected alternatively. This structure was also
similar to that for Fexp = 0.2 at 10,000 ticks. This is why their game performance
was quite good when Fexp = 0.1. Agents usually worked with members in the same
associations. However, if some of them were already active (this may occur when
some members are active for a small-size TF game), they could not join a team for
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(d) Fexp= 0.1 (10,000 ticks)(c) Fexp= 0.4 (60,000 ticks)

(b) Fexp= 0.3 (60,000 ticks)(a) Fexp= 0.1 (60,000 ticks)

Fig. 12. Number of association structures (0.1).

a new game. Thus, leader agents solicited agents in the connected two-size associ-
ations to fill up the deficiency. Two-size associations worked as backup.

The game performance was also quite good when Fexp = 0.2 (Fig. 9), but their
structure was slightly different. Figure 4(d) indicates that some large associations
have edges with the two-, three- and four-size associations, but most large associ-
ations are isolated, and some of them consist of eight agents. They coped with the
lack of members by enlarging associations.

Wecanfind that, like the case ofFexp = 0.2, the gameperformancewhenFexp =
0.1 slightly decreased over time (as shown in Fig. 9) and also seemed caused by
the disappearance of edges between large and small associations when Fexp = 0.1.
Actually, the number of edges at 60,000 (which was 150.2) was smaller than that
at 10,000 ticks (which was 171.8; see also Fig. 12)(d), but its decreasing speed was
slower than that when Fexp = 0.2.

When Fexp = 0.3, all associations were relatively large and isolated, but this
association structurewas ineffective; for example, when small tasks are allocated to
the larger associations, many other members remain inactive. Furthermore, when
Fexp = 0.4, we can observe many single associations (this also means that they
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cannot form associations due to the strict condition) due to frequent punishment
by other agents. Note that single associations also appeared in associations of AS
agents (Fig. 6).

6 Discussion

We previously conducted research to allocate subtasks to appropriate agents in a
busy and large-scale distributed environment and found that allocation conflicts
were a major cause of reduced overall efficiency [15]. We also found that build-
ing associations within the tasks to be done is an efficient and effective solution to
this problem [15]. Teams within an association may not be the best from the view-
point of the optimality, but if they can complete tasks with the required quality, an
association-based team formation is acceptable, probably efficient, and practical
in a large-scale system. We previously proposed reciprocal agents and learning for
organizing associations for N -agent TF games [19], but the learning assumed that
N was a constant. Thus, we have extended it here for organizing associations in TF
games with a variable number of agents.

One objective of this study was to clarify the basic mechanism to build asso-
ciations in a bottom-up manner and to investigate what structure of associations
achieves efficient assignment of tasks by using an abstract and simplified model
called a TF game. Our experiments show that one-size associations obviously wors-
ened the game performance, while two-size associations that were connected with
larger associations improved the performance. Unfortunately, the current method
could not make the association structures stable: edges between associations were
gradually eliminated, and the average size of associations gradually became larger
to cover the deficiency of agents.

We also investigated the relationship between the values of dependability, Fexp ,
and the association structures and found that suitable structures of agent associa-
tions improved game performance. The value of Fexp affected the association struc-
tures as well as the speed of forming the structures. Control and learning to stably
maintain suitable structures of agent associations will be the focus of our future
work.

Our experiments revealed that two key pieces of information are needed to facil-
itate building associations from the viewpoint of individual agents. First, the agent
should memorize who it worked with and share the information with other team
members because the success of a TF game depends on all members in the team.
Conversely, the failure of a game is caused by an unacceptance of at least one agent,
for one of two reasons: the leader’s selectionwasnot appropriate and/or one ormore
of thememberswasbetrayed.These correspond to the learningofCDvalues inCase
3 (Sect. 4.2). This is quite different from the behavior of self-interested and ratio-
nal agents that act on the basis of which agents are likely to provide more payoffs
directly.

Second, punishments and dissatisfaction contributed to building associations.
The punishments, which represented refusals of the solicitation messages from
agents whose confidence degree was low or expulsion of low-confidence agents from
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associations in our context, affected the speed of building associations; actually,
it could make the convergence faster, but it slightly reduced actual game perfor-
mance. Dissatisfaction, which can be seen as advance notice of punishment, was
necessary to make established associations stable, as mentioned previously.

7 Conclusion

We described reciprocal agents that build associations for team-based tasks to
avoid possible conflicts in a large-scale, busy MAS. Our objective was to perform
task allocation problems efficiently. Thus, we first introduced an abstract form of
this problem, called the team formation game, to identify what information and
mechanisms can facilitate building associations. We experimentally showed that
team formationbased on the associations the reciprocal agents belong tohelped the
agents perform the games more efficiently than other types of agents, namely, self-
interested agents and associating self-interested agents. We attempted to identify
what information and mechanisms can facilitate building associations and which
virtual association structure improves game performances. Our future work is to
find a method to stabilize association structures.
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Abstract. Cooperative problem solving involves four key phases:
(1) finding potential members to form a team, (2) forming the team,
(3) formulating a plan for the team, and (4) executing the plan. We
extend recent work on multi-agent epistemic planning and apply it to
the problem of team formation in a blocksworld scenario. We provide an
encoding of the first three phases of team formation from the perspective
of an initiator, and show how automated planning efficiently yields condi-
tional plans that guarantee certain collective intentions will be achieved.
The expressiveness of the epistemic planning formalism, which supports
modelling with the nested beliefs of agents, opens the prospect of broad
applicability to the operationalisation of collective intention.

1 Introduction

It is both a challenging and important problem to form a cohesive team that
can achieve a task. Wooldridge et al. [30] propose four key phases to cooperative
problem solving: (1) potential recognition where the team “initiator” must iden-
tify the capabilities of the agents; (2) team formation where the potential team
members are persuaded to join for the collective intention; (3) plan formation
where a plan is constructed; and (4) plan action where the joint plan is executed.
Dignum et al. [6] propose a framework for these four stages that relies on struc-
tured dialogue between the initiator and the agents in the domain. In this work
we introduce a novel approach for building principled and scalable mechanisms
for team formation that exploits recent advances in multi-agent epistemic plan-
ning, and we illustrate the approach by working with a model of team formation
inspired by the Dignum et al. framework (referred to as DDV in the remainder
of the paper).

We focus on the initiator role in team formation, which involves assessing the
potential for team formation and persuading possible members to join. While
all four phases of team formation are important, currently we address the first
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 282–299, 2016.
DOI: 10.1007/978-3-319-42691-4 16
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three phases only: i.e., the phases that involve the initiator’s deliberation prior
to the execution of a plan. We take the view that the initiator will deliberate
about what questions to ask, what promises to make, the composition of the
team, and the potential of achieving the overall objective as a team, all prior
to the execution of any action or dialogue. While the initiator is not strictly
required to form a plan before the actual dialogue occurs, doing so can save the
initiator from asking irrelevant questions and performing actions that ultimately
will never lead to a solution. This is vital particularly when part of the dialogue
may involve making promises to the agents that make up a team as part of the
persuasion. Thus, the initiator not only plans for the required dialogue, but also
for the eventual plans contingent on the possible dialogue outcomes.

The four phases of teamwork formation are general concepts. Here, we con-
sider a specific realization of the four phases where the initiator can: (1) ask
agents about their “capabilities” (e.g., can agent 4 lift blue blocks?); (2) ask and
convince agents about their “intentions” to assist in a task given a particular
promise (e.g., will agent 3 lift red blocks if we promise to put block 4 in room 2?);
and (3) orchestrate the actions of the agents that agree to assist. The reasoning
task for the initiator is to come up with a conditional plan (conditioned on the
responses of the agents) such that a cohesive team can be formed to achieve the
overall objective. This cannot always be guaranteed (e.g., if every agent refuses
to help), but the initiator’s deliberation process should at least discover the ways
in which a successful team can be formed.

We model the problem from the perspective of the team initiator using an
extension of the recently introduced multi-agent epistemic planning (MEP) for-
malism [20], which uses syntactic belief bases restricted to non-disjunctive clauses
to represent nested agent beliefs [18]. MEP extends classical planning by allowing
the nested belief of agents in a multi-agent environment as action preconditions
and effects, and nested beliefs as goals that can be posed. Using MEP allows us
to model the critical notion of an agent’s belief that their own objectives have
been satisfied. We extend MEP by allowing for non-deterministic action out-
comes – providing a natural way to express yes/no questions for dialogue – and
by using a generic fragment for the action theory that allows for team formation
to take place. All of the existing MEP domain descriptions, which describe the
actions that agents can take in the domain and the effect that they have on the
belief of agents, can easily be plugged into the augmented system.

The realization of our approach using automated planning is both power-
ful and flexible. Unlike other approaches, such as BDI [25] or hierarchical plan
representations [10], the plans for the agents need not be specified in advance.
Rather, we can use the powerful automated planning techniques that have been
developed over the recent decades to synthesize the viable plans for us [11]. This
approach shifts our focus from one of creating a new solving technique to one of
creating a novel encoding for existing solvers. We choose one solver in particu-
lar, but in general any viable planner can be used as a blackbox component to
solve the encoded problem. As such, we do not go into detail on how the plans
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are generated, but rather focus on how we encode the problem of teamwork
formation.

For our running example, we adapt the Blocks World for Teams (BW4T)
domain [13] to include agents with varied capabilities and tasks that can require
multiple agents, a natural extension given our focus on modelling team forma-
tion. In BW4T, agents carry different-coloured blocks around various rooms.
In our adaptation, agents have capabilities to carry only certain colours (e.g.,
blocks with the blue colour can only be lifted by “blue lifters”), blocks may take
on multiple colours, and agents may have multiple colour capabilities.

In the next section we provide the necessary background and notation for
our approach. Following this, we describe how we have modelled the problem of
teamwork formation in Sect. 3 and encoded it for automated planning in Sect. 4.
We then discuss a preliminary evaluation using the BW4T domain in Sect. 5 and
conclude with a discussion of related and future work in Sect. 6.

2 Background

2.1 Team Formation

Team formation based on various approaches to ‘matching’ potential participant
skills with the requirements of a task have long been studied. Some approaches
involve heuristics guided by logical analysis, e.g. [15,29], others involve formal
mechanisms based on multimodal logics, e.g. [7,8], and others draw on game the-
oretic and optimisation techniques, e.g. [1,2,5,17,23,26]. Varying assumptions
are made in the team formation stage about the knowledge that agents have
about others, from complete, e.g. [29], to very limited, e.g. [3].

Although all this work is about team formation different approaches tend
to focus on different parts of the issue of forming a team to accomplish a task.
In the optimisation work the focus is generally on finding the best team given
that it is clear which plan (or set of tasks) is to be executed [5,23]. Thus the
question is how to allocate tasks to agents in an optimal way. In work related
to coalition formation, e.g. [24,27], the emphasis is typically on the negotiation
process between the agents in order to join and stay within a team. This can be
done using game theoretic notions, in which division of possible rewards over a
group play an important role. It can also be done using argumentation in which
the emphasis shifts to the reasons for joining a team and persuading potential
team members about the justification or importance of the team goal and or
a particular plan to reach the goal, e.g. [2]. In the logic based approaches the
emphasis is on the exchange of information about goals, intentions and beliefs
such that the logical pre-conditions for working as a team according to the
SharedPlans framework [9] are fulfilled.

In DDV the emphasis is on what is needed for a set of agents to start working
as a team to achieve a joint goal. It involves at least that all the agents agree
upon their role in the plan to achieve that goal (or in other words the tasks
that they are willing to perform within the plan) and that they have enough
information to execute their task at the right moment in time. As mentioned,
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we consider team formation from the perspective of the initiator. The first task
of the initiator is to form a partial (abstract) plan for the achievement of the
(team) goal. On the basis of the (type of) subgoals that it recognizes, it will
determine which agents might be most suited to form the team. In order to
determine this match, the initiator seeks to find out the properties of the agents,
with the DDV framework focusing specifically on three aspects: their abilities,
opportunities, and willingness to participate in team formation. Ability does not
depend on the situation, but is taken as an inherent property of the agent. The
aspect of opportunity takes into account the possibilities of task performance in
the particular situation, involving resources and possibly other properties. The
aspect of willingness considers the agents’ mental attitudes towards participating
in the proposed team goal. The outcome of the potential recognition stage is that
the initiator knows whether or not it is possible to form a team, but has yet to
engage in team persuasion, i.e. persuading potential team members to take on
the intention to achieve the overall goal.

As our focus is on the initiator’s reasoning process, we adopt a slightly altered
view of the notions “goal” and “collective intention”. For our work, the initiator’s
original goal is the specification of what the initiator would like to achieve as a
result of forming and directing a team. The collective intention of this team will
include both the team initiator’s original goal and any subgoal arising from the
team formation process.

In the rest of this paper we will show how multi-agent epistemic planning can
be used to operationalize this approach, and provide a practical way to generate
possible plans for the team to achieve a goal.

2.2 Multi-agent Epistemic Planning

We adopt a formalism of planning where the planning agent can reason in a
limited fashion about the nested belief of other agents in the domain [20]. The
state of the world in this setting is a collection of Restricted Modal Literals
(RMLs) which are taken from the set LAg,d

F defined by the following grammar:

φ:: = p | Biφ | ¬φ

where p is from a set of primitive fluents F and i is from a set of agents Ag. The
modal proposition Biφ states that agent i believes proposition φ, in which φ can
be other possibly-nested beliefs. The maximum depth of nesting is limited by d.
If F , Ag, and d are all finite, then so is the set of RMLs LAg,d

F .
A query on the knowledge base is a simple database query [18], and this

query assumes an open world. An open-world assumption allows representation
of uncertainty. For example, we can express that we are certain that proposition
p is true by adding p to the knowledge base, we can express we are certain that p
is not true by adding ¬p to the knowledge base, and we can express that we are
unsure (or have no information about) the belief of p by having neither p nor ¬p
in the knowledge base. We can express similar uncertainty about other agents;
e.g. ¬Bip,¬Bi¬p expresses our belief that agent i is uncertain of the truth of p.
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Following earlier work [20], we define a Multi-agent Epistemic Planning
(MEP) problem as the tuple 〈F ,A, I,G, Ag, d〉, where:

– F is a set of atomic fluents.
– A is a set of actions (described below).
– I is a subset of LAg,d

F describing the initial state.
– G is a subset of LAg,d

F describing the goal condition.
– Ag is the set of agents in the domain.
– d is the maximum depth of nesting allowed.

For every action a in A, we will use Name(a) to indicate the action’s name.
Precond(a) is the subset of LAg,d

F that must hold in order for a to be executable,
and Effects(a) is a set of outcomes, of which exactly one will occur after a is
executed: i.e., the action outcomes may be non-deterministic [4]. The possible
outcomes of an action are known in advance, but the precise outcome is known
only after the action has been executed. Thus, we are assuming fully-observable,
non-deterministic (FOND) planning, in which actions are non-deterministic, but
their effects are fully observable after execution. This is in contrast with the
original MEP formalism where every action was necessarily deterministic.

This generalization of deterministic actions is an appealing way to model dia-
logue. The modifications we made to accommodate for non-deterministic actions
did not change the theoretical framework introduced by Muise et al. [20], as the
non-determinism in the domain is fully observable (i.e., the agent will know
which outcome occurs immediately after the action is executed). While this
requires the planner to handle various contingencies depending on the action
outcome, it does not alter the way beliefs are encoded using the standard MEP
formalism. The only change made was to replace the classical sub-planner with a
non-deterministic one. Using a non-deterministic planner allows us to plan for all
contingencies offline, which can be extremely helpful in avoiding bad sequences
of dialogue and bargaining actions.

Every outcome in Effects(a) is a set of conditional effects that change the
state of the “world”, in which the “world” includes beliefs of agents. We use
cond → f to signify the conditional effect that updates the state of the world
for f to hold in the following state when cond holds in the current state. If the
condition cond is empty, we will just omit the →. If every action is deterministic,
then a solution to a MEP problem is a sequence of actions that, when executed
from the initial state, achieves the goal. As we allow for non-deterministic effects,
a solution is generalized to be a policy mapping reachable states (including the
initial state) to the action that the agent should execute next in that state.

The choice in modelling language we use throughout the paper reflects the
encoding that automated planners require. In practice, we have a more general
input specification, which can be found at the project’s source1.

Using a variation of MEP planning in lieu of classical planning provides
valuable modelling properties in the context of multi-agent environments. We

1 http://www.haz.ca/research/tw-as-ap.

http://www.haz.ca/research/tw-as-ap
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will point out some of these advantages throughout the paper in the context of
our target domain, and refer the interested reader to [20] for a deeper discussion
on how belief is maintained during the planning process.

2.3 Blocks World for Teams

As a testbed, we consider a version of the Blocks World For Teams (BW4T)
domain [13] designed to support the study of interactions in heterogeneous
teams - i.e. teams composed of both humans and agents. In BW4T, participants
must navigate a series of rooms to relocate blocks in a target goal configuration.
The platform has been used in several studies of moderately complex interac-
tions involving humans and agents, e.g. [14,16], and recently extended to a richer
modelling environment to allow more experimentation with human participants
in more realistic settings [12]. We extend the general setting to include fluents
indicating block types (each block can have one or more “colour” associated with
it), as well as the capabilities for participants to lift blocks of a particular colour.
The extension allows us to model the interactions of heterogeneous agents, as is
typical with many team formation problems. The goal of the initiator will be to
form a team that can collectively achieve the goal configuration of blocks. The
task that we solve in this work is to synthesize a plan of dialogue steps that will
yield such a team formation.

While not strictly required, we will associate an agent with every action that
signifies the agent performing the action. For example, instead of the action
lift blue b1 room1 we will have actions lift i blue b1 room1 for every agent i
in Ag (note that if block b1 was also of the red type, we would have a sep-
arate lift i red b1 room1 action for every agent). For simplicity we include
the agent and objects in the action name, but in practice these are parame-
terized. To ensure only the appropriate agent lifts a block, preconditions will
include the agent’s capability: e.g., the lift ag1 blue b1 room1 action will include
can lift ag1 blue as a precondition (we discuss capabilities further in Sect. 3).
Other preconditions and effects include the standard ones for the BW4T domain,
as well as extra effects to update the belief of agents. The following is the full
description for lift ag1 blue b1 room1 (we have replaced repeated effects for
each agent with a single effect for agent i):2

Name(a) = lift ag1 blue b1 room1
Precond(a) = {at ag1 room1, block colour b1 blue,

in b1 room1, can lift ag1 blue}
Effects(a) = [{holding ag1 b1,¬in b1 room1,

at i room1 → Biholding ag1 b1,

at i room1 → Bi¬in b1 room1}]

2 Note that, as with most blocksworld encodings, the fluent in b1 room is false when-
ever an agent is holding block b1.
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As a result of using the MEP framework [20] in an off-the-shelf manner,
additional effects will be created to maintain certain properties. For example,
the effect at i room1 → ¬Bi¬holding ag1 b1 would be added to maintain con-
sistency of belief; that is, if agent i believes that agent 1 is holding b1, then it
cannot believe agent 1 is not holding b1. There are similar effects on the move
actions; e.g. an agent will believe the contents of a room when they enter it.
Using MEP gives us a much richer environment in which to pose our teamwork
formation problem. The types of inferences that are made in the MEP frame-
work could in theory be embedded within a planning system. However, by using
it in a blackbox fashion (which has the inferences compiled away into the domain
description) we were able to seamlessly switch out the deterministic planner for
a non-deterministic one given our setting.

3 Model of Team Formation

The initiator must assess the capabilities of the agents, and bargain with them
in order to convince them to join the team. As a side-effect of bargaining, the
collective intention of the eventual team may change – every promise made
during the bargaining phase will become a subgoal for the team to achieve in
the final state of the plan in addition to the original goal.

As discussed earlier, we adopt a model of team formation inspired by Dignum
et al. [6]. Because we wish to consider team formation from the perspective of the
initiator, many of the details are abstracted away from the DDV model (e.g., the
precise reasoning capabilities of the other agents). Further, from the perspective
of an initiator that is considering the viability of forming a team, every agent
is assumed to be “blindly committed”: if they have agreed to join the team,
they will perform the actions prescribed to them by the initiator as expected.
Thus, where the DDV model concentrates on the formation of a joint intention
for a team, this paper instead concentrates on the planning and willingness of
other agents to participate in the plan. Note that we are not assuming that the
agents are purely cooperative – the team initiator must convince them that it
is worthwhile to join the team through a process of negotiation. In this section,
we describe our model of team formation, and contrast it with that of DDV.

The objective of the initiator is to form a team that can achieve the initiator’s
original goal. As part of the team formation process, the initiator must ensure
that the capabilities of the agents on the team will allow the goal to be achieved,
and may also need to promise certain things for potential members to join the
team. The problem that we address is how the initiator can reason about which
questions to ask and bargains to make. Rather than isolating dialogue planning
from reasoning about goal achievement, we model both concurrently. The advan-
tage is that we can rule out certain bargaining options that provably will never
result in a viable team.

The initiator agent takes the following steps to form a team that can execute
a joint plan for the initiator’s original goal:

(a) assess capabilities of the agents (Sect. 4.2);
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(b) bargain with the agents about promises (Sect. 4.3);
(c) given the commitments made to the agents, plan for the collective intention

of the team (Sect. 4.4).

Note again, that the initiator reasons about these steps before the communi-
cation actually takes place. Thus the plan is a conditional plan, based on the
answers and commitments of the agents.

Our teamwork formation model describes only the set of potential capabilities
and bargains that the initiator should consider in the reasoning process – a
process that takes place before the communication is initiated. Together with an
action theory describing what the agents can do, an initial state of the world,
and a goal configuration, the initiator synthesizes a conditional plan for forming
a team to achieve the team’s collective intention.

Thus the structure of a plan can be viewed as a tree of dialogue actions
(branching occurring based on the agents’ response to capability assessment
or bargaining), where the leaves represent either a successful team’s plan or a
configuration of agent responses that lead to no viable team formation (e.g., if
too many agents are unwilling). If there is a chance that making further bargains
will allow a team to be formed, the planning phase will detect this. Naturally,
the solutions produced will use only those agents necessary, and this is detected
automatically from our encoding. Figure 1 shows a high-level structure of one
such plan: the stage marked 1 is where the dialogue occurs, and the nodes marked
‘x’ are the situations when the dialogue fails (e.g., an essential agent refuses to
help). We describe the other components in more detail below.

Fig. 1. Example plan for team formation. Stage 1: Capability assessment and bargain-
ing. Stage 2: Planning steps to achieve the collective intention. Stage 3: Meta actions
to ensure every promise was fulfilled.

The key components of our team formation model are: (1) the potential
capabilities of the agents; and (2) the range of bargains that can be offered to
an agent. Formally, given the set of agents Ag and fluents describing the world
F , a teamwork formation model 〈Cap, C,B〉 is a tuple where,

– Cap ⊆ F is a set of fluents representing the agents’ capabilities;
– C : Ag → 2Cap maps agents to the set of their potential capabilities; and
– B : Ag → 2F maps agents to the set of the possible bargains they will consider.
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Note that for agent ag1, C(ag1) does not describe all of their capabilities.
Rather, it describes a superset of the actual capabilities that agent ag1 might
have. It is the responsibility of the initiator to surmise from agent ag1, which
capabilities in the set C(ag1) it actually has. Our notion of capability corresponds
to the DDV notion of ability, and the initiator is able to ask the agents if they
have particular capabilities as part of the information seeking dialogue.

After the initiator knows an agent is capable of what is required of them,
the initiator must “persuade” the agent to join the team. The initiator achieves
this through the use of bargaining. The initiator can offer any fluent in the set
B(ag1) to agent ag1 as a promised subgoal that will hold at the end of the
execution (i.e., in the final state of the system). B(ag1) may contain fluents
involving other agents, so for example we may have a pair of agents that will
only join the team if the other is promised a block: B(ag1) = {holding ag2 b1}
and B(ag2) = {holding ag1 b2}. This possibility of mutual support can lead
to added restrictions on team formation, making the need even greater for the
initiator to plan in advance.

After a bargain is proposed, the agent can agree or disagree, and the initiator
plans for both eventualities. If the agent agrees, it becomes part of the formed
team and achieving the promise must be satisfied by the plan. If the agent does
not agree, then the initiator can try to persuade the agent in a different way, or
try to find another agent to assist.

The plan must allow the promises to be satisfied in the following sense: if
agent ag1 joined the team on the premise that f ∈ F is achieved, the goal
of the initiator must now include Bag1f . That is, a promise made to an agent
must be believed by that agent when the plan’s execution is complete. This
allows for behaviour whereby the initiator can form a team where the members
have inconsistent intentions, as long as the individual agents believe that their
promises will be fulfilled in the end. We could keep the initiator “fully honest”
by placing both f and Bag1f in the set of goals when a promise of f is made to
agent ag1. If the set of goals is inconsistent (e.g., an agent must have inconsistent
beliefs), then no plan exists and no team can be formed.

The set of promises that an initiator commits to, along with the original goal,
then constitutes what we term the collective intention of the team. While the
collective intention is not explicitly represented, as is the case with DDV, the
plan produced by the initiator serves as an essential basis for the team to have
collective intention. In a sense, the plan produced by our encoding is a certificate
that the initiator can use in order to achieve DDV’s form of collective intention
during the actual dialogue phase.

The concepts of willingness and team persuasion from DDV are both covered
by the initiator’s ability to bargain. A key aspect of our approach is that the
dialogue can occur in any order. The initiator can consider inquiring about
capabilities, then bargaining with some agents, then inquiring about capabilities
depending on the outcome of previous dialogue. This allows the initiator to
condition their dialogue strategy based on the responses they have received so far.
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The DDV notion of opportunity assumes that the initiator thinks they are
both able and have the resources in the situation to achieve something. Instead of
ascribing this notion to the agents, we task the initiator with assessing whether
or not agents have the opportunity to achieve a subgoal. This is a natural conse-
quence of our assumption that the initiator is reasoning about both the dialogue
and planning phases simultaneously. This shifts the complexity of gauging an
agent’s opportunity to achieve a subgoal to the initiator’s planning phase. The
advantage of this is that the initiator does not need to reason apriori about
which subgoals the agent has the opportunity to achieve (which can be a com-
plex notion given the other agents that may be on the team). When the initiator
considers a formed team, they can try to synthesize a plan with the team while
implicitly computing the opportunities of every agent.

4 Encoding Team Formation

Our general approach to team formation is to model the cognitive process of
a team initiator who must make various decisions about how best to form a
quality team. The mental exercise of the team initiator involves not only the
enumeration of team member configurations, but also the evaluation of a given
team configuration’s potential to achieve the goal. By considering everything
from bargaining to physical actions in the world, the initiator can rule out bad
team configurations and avoid unnecessary bargaining before launching the ini-
tial dialogue to form a team.

We begin by describing the general encoding we use, and then elaborate on
the details particular to teamwork formation. Following the general encoding,
we focus on our model of capability assessment and bargaining. These are the
methods the initiator uses to make an informed judgement about who to include
on the team. Next, we describe the three internal stages of the initiator’s rea-
soning. These do not correspond directly to the phases of solving a joint task,
but we do point out the relation between the two.

4.1 General FOND MEP Encoding

There are two sources of input for the generated FOND encoding: (1) the original
MEP problem specification; and (2) the description of bargaining and capability
properties for the agents that can form a team. Both will inform the fluents,
initial state, goal configuration, and actions in the domain.

Fluents. The MEP problem comes with a set of fluents F and agents Ag for
the domain. These are combined, along with the maximum depth d, to generate
fluents for the encoding that represent both what is true in the world and what
the belief of each agent consists of. For example, the fluents in the BW4T domain
FOND encoding will include holding ag1 b2 and Bag3 in b1 room4.
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Initial State. The initial state will come directly from the MEP problem as
well. By adopting the MEP framework, the initial state represents the belief of
the initiator. It can either be fully specified (i.e., for every fluent f , either f or
¬f holds in the initial state) or partially specified (i.e., the initiator is uncertain
about certain facts). The option to use a partially specified initial state opens
the door to a wider class of problems that include situations where the team
initiator is not omniscient; a realistic assumption that often is overlooked.

Goal Configuration. As with the initial state, we adopt the goal from the
MEP problem for the FOND encoding. It will consist of a set of fluents that
describe a partial state that must be achieved (e.g., having particular blocks
placed in a specific location).

Actions. The actions for the FOND encoding will correspond to those in the
MEP action theory, with the precondition and effect RMLs replaced by their
compiled fluent equivalent. We assume that every action from the MEP problem
has an associated agent. For example, the action for picking up block b1 has a
copy for every agent (pickup ag1 b1, pickup ag2 b1, etc.). Similarly, the fluents
that are required by an agent to conduct an action will have an agent associated
with it (e.g., hand free ag1 ∈ Precond(pickup ag1 b1)).

4.2 Capability Assessment

To achieve the overall goal of the team, the initiator must assess the capabilities
of potential members. Some capabilities may be known in advance, but in general
we assume that the initiator must consider “asking” the agents if they are capable
of certain tasks. For example, the initiator may ask agent 1 if he or she can lift
blue blocks. Because the initiator deliberates offline, she must consider all of the
possible outcomes of a question. For the time being, we limit the form of the
question to simple yes/no inquiries such as the example above. After asking
the question, the initiator will continue the deliberation process in two ways:
once assuming a positive response, and again assuming a negative response.
Thus, we can model the question using a non-deterministic action:

Name(a) = ask if ag1 can lift blue blocks
Precond(a) = {¬can lift ag1 blue,¬cannot lift ag1 blue}
Effects(a) = [{can lift ag1 blue}, {cannot lift ag1 blue}]

There are two important aspects of this encoding. First, one outcome
will allow the initiator to orchestrate standard actions for lifting blue blocks
using agent 1 (recall that a precondition of lift ag1 blue b2 room1 is that
can lift ag1 blue). Second, both outcomes make it impossible to ask this ques-
tion a second time. This second aspect is important because we do not want to
assume that repeating a question will eventually lead to a different response.
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4.3 Bargaining

Once the initiator is confident that an agent has the right capability for the
task, she must ensure that the agent is willing to help. This notion corresponds
directly to the idea of persuasion in DDV. Rather than convincing the agent that
the collective intention is achievable through dialogue, the initiator will consider
making “promises” about the collective intention of the team. For example, she
might tell agent 2 that if they decide to join the team, they can have block 3 at
the end of the sequence.

The combination of the original goal with the set of promises made to the
agents constitutes the collective intention for the team. Every agent on the team
is either willing to join for free, or is willing to join for a particular price. We
model this aspect of the dialogue in a fashion similar to capability assessment
using the following non-deterministic action:

Name(a) = bargain with ag1 for holding ag1 b2
Precond(a) = {¬ag1 willing,¬ag1 unwilling holding ag1 b2}
Effects(a) = [{promised ag1 holding ag1 b2, ag1 willing},

{ag1 unwilling holding ag1 b2}]

Similar to the capability assessment, the initiator cannot try continually to
bargain using the same offer. However, different actions may correspond to dif-
ferent promises that the initiator can propose in order to convince the agent to
join the team. As mentioned previously, an agent can only perform an action
if they are willing to be a part of the team (i.e., agi willing holds). The addi-
tional fluent promised ag1 holding ag1 b2 maintains this aspect of the collective
intention, and we will see next how the reasoning for the initiator ensures that
the team achieves this subgoal.

4.4 Three Stages for Initiator Reasoning

The initiator’s deliberation process is encoded as a FOND MEP problem, and
will go through three distinct stages: (1) forming the team based on capabil-
ity assessment and bargaining; (2) constructing the plan for the team; and (3)
ensuring that the goal is satisfied and the promises fulfilled. In relation to the
four phases of a team jointly achieving a task, stage (1) corresponds both to
team assessment and team formation (phases 1 and 2 in cooperative problem
solving [30]) – the initiator has the option to consider interleaving the assess-
ment of capabilities and persuasion. Stages (2) and (3) correspond directly to
plan formation (phase 3). Finally, as mentioned earlier, we do not consider the
fourth phase from Wooldridge and Jennings that covers plan execution. We have
marked the actions belonging to the three stages in an example plan shown in
Fig. 1.

To restrict the reasoning to each of the stages, we include the following com-
ponents in the encoding:
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(a) We introduce the auxillary fluents stage formation, stage planning, and
stage final, with stage formation set to true in the initial state.

(b) We introduce two actions, start planning and finish planning, that simply
change the value of the auxillary fluents appropriately (i.e., removing the
current stage and adding the next).

(c) Every capability assessment and bargaining action has the extra precondi-
tion of stage formation.

(d) Every standard action has the extra precondition of stage planning.
(e) We introduce new “satisfy” actions for each agent, as described below.

The above changes force all of the capability assessment and bargaining to
occur before the standard planning actions are considered. Doing so forces the
initiator to consider forming the team prior to considering if they can achieve
the goal. However, note that the initiator reasons about all three stages before
they physically start any dialogue.

For the final phase (i.e., stage (3)), the initiator uses the plan from stage (2)
to determine if the team has achieved the collective intention. The initiator must
achieve both the original goal and the presumed satisfaction of every agent. The
initiator will presume an agent satisfied if either the agent was not part of the
team to begin with, or by acknowledging that the agent believes any promise
made to them was kept. The first of the two actions, which covers the case of an
agent not part of the team, is as follows:

Name(a) = satisfy ag1 unwilling
Precond(a) = {¬ag1 willing, stage final}
Effects(a) = [{ag1 satisfied}]

Note that we use ag1 willing here additionally to indicate that the agent
was a part of the team, while ¬ag1 willing indicates that they were not. The
other action capable of “satisfying” an agent is to reaffirm that they explicitly
believe the promise that was presented to them during team formation:

Name(a) = satisfy ag1 for holding ag1 b2
Precond(a) = {stage final ,Bag2 holding ag1 b2 ,

promised ag1 holding ag1 b2}
Effects(a) = [{ag1 satisfied}]

The distinction of achieving an agent’s bargained promise, as opposed to
having that agent believe the promise is fulfilled, is an important one. On one
hand, it is not enough for the team to achieve something that was promised
to an agent while the agent remains unaware of this fact. On the other hand,
this provides potential for deceitful behaviour – depending on how the agent
updates their belief, they may believe that their objective holds when in fact
it does not (e.g., they see a block placed in a room they desire, and then leave
the room believing that it will remain there). This level of expressiveness is
an intended consequence of using MEP planning as our underlying framework
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instead of generic automated planning techniques. Once all of the agents have
been “satisfied”, the reasoning process is complete. Note that because of the
stage fluents, agents can be considered satisfied only in the final stage; during
which the state of the world and the beliefs of the agents cannot be altered
further.

It is worth emphasizing that the 3 stages are all solved as a single planning
problem. The conceptual separation between the actions in each of the stages is
implicit in any valid solution that the planner generates. Further, the planner is
equipped with an efficient means of relevance analysis and policy reuse (see [22]
for a discussion), which means that partial plans found for a subset of the agents
can be reused in different configurations of the team. This reasoning essentially
is “free” when we use a state-of-the-art FOND planner to solve the encoded
problem. We would not get this benefit without significant overhead if we were
to implement the three stages individually.

Another key benefit is the embedded heuristics in the planners we use. As
a natural consequence of the relevance analysis done inside of a planner when
considering the best course of action, teams will typically be formed to contain
no irrelevant member. This advantage is not guaranteed (i.e., our approach is
not optimal), but is nonetheless the norm. Indeed, every team computed in our
preliminary evaluation was minimal in the sense that removing one agent would
render the team ineffective.

While perhaps counter-intuitive, the bundling of all stages into a single
encoded problem allows us to fully leverage the planning technology at the core
of our approach. Aside from the reuse of plan fragments mentioned earlier, the
planner will also recognize when making a particularly bad decision early in
stage (1) will prevent stages (2) or (3) to be successful. Further, we can use the
produced conditional plan as a certificate for future negotiations by the team
initiator (a phase out of scope for this work).

5 Preliminary Evaluation

We report on a preliminary evaluation to demonstrate the potential for solving
teamwork formation problems with automated planning technology. We used the
available implementation of the MEP framework [19], and wrote a compiler for
team formation problems (cf. Sect. 3) that produces an encoded FOND MEP
problem (cf. Sect. 4). To solve the encoded problems, we used an off-the-shelf
FOND planner, PRP [22], which generates a policy for the initiator to follow.
As we are using PRP in a black-box manner, we do not go into the details of how
it computes a plan for the resulting encoding. The computed solutions may be
suboptimal, but in general they do not contain superfluous dialogue or planning
actions. By using modern planning technology, our approach is scalable to far
larger problems; existing planners can solve problems with trillions of states in
fractions of a second [11]. Where scalability suffers, as pointed out by Muise
et al. [20], is when the depth of nesting and number of agents grows too large.

We modelled various settings for the BlocksWorld for Teams (BW4T) domain
[13] with five agents, five rooms, four blocks, and three possible block colours,
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running four different scenarios. Each of the four scenarios tested a unique set-
ting for the team formation (described further below), and details of the base
encoding can be found in Sect. 2.3. Table 1 shows the time that it takes to synthe-
size a plan, including both the encoding and solving phases, as well as the final
policy size measured as the number of possible states that it takes to encode the
initiator’s controller. All problems were run on a Linux Desktop with a 3.4 GHz
processor. Valid solutions were generated for all problems.

Table 1. Plan size, encoding time, and solve time

Problem 1 2 3 4

Plan size 20 83 109 45

Solving time (s) 4.8 12.0 34.8 35.4

Encoding time (s) 16.2 16.1 16.3 15.9

Problem 1: No Bargaining. The initiator is free to consider dialogue with
the potential members, but there is one agent in particular that can achieve the
goal and asks nothing in return. As expected, the final plan uses this one-agent
team to achieve the goal without bargaining.

Problem 2: Birds of a Feather. Problem 2 is a scenario where the goal can be
achieved by any of three combinations (and their supersets) of team: 1, 2-3, and
4-5. Agent 1 is capable of achieving the original goal, but if they decline, then
either team 2-3 or 4-5 must be sought after. In these cases, a further restriction
in the scenario is that the agents can be persuaded to join the team only if
the other agent in the pair will possess a particular block in the final state
(e.g., B(ag2) = {holding ag3 b1} and B(ag3) = {holding ag2 b2}), and (e.g.,
B(ag4) = {holding ag5 b1} and B(ag5) = {holding ag4 b2}). This leads the
initiator to devise a plan that forms a team with one of the pairs exclusively.
Note that a superset of the teams would also work, but these inefficient teams
naturally are not considered by the planner: if enough of the agents have agreed
to join, then a team is formed immediately. See Fig. 1 for the full solution to
problem 2 with the labels removed.

Problem 3: Bait and Switch. If the initiator acted with full honesty, only
the team 1-2-5 can achieve the task in this problem. However, the initiator can
find a second team that includes agent 4 instead of 5. The issue with team 1-2-4
is that agent 2 can only be persuaded if block 3 ends in room 3, while agent
4 can only be persuaded if block 3 ends in room 4. This is impossible, but the
initiator’s reasoning recognizes that agents 2 and 4 can both believe (one of
them incorrectly) that their promise is fulfilled: in the resulting plan, agent 2
witnesses block 3 being dropped in room 3, and then the initiator directs agent
2 to walk away while agent 4 brings the block to room 4. This demonstrates the
expressiveness that comes when planning with multi-agent epistemic states in
lieu of the standard classical planning formalism.



Towards Team Formation via Automated Planning 297

Problem 4: Satisfying Suspicions. In problem 3, the agents continue to
believe that the location of a block is unchanged even when they are in a differ-
ent location. In problem 4, we change the action description so that an agent no
longer believes that the location of blocks in a room remain constant when they
exit (i.e., they only maintain beliefs about blocks in the room they currently
inhabit). With this modification, the initiator correctly identifies just one possi-
ble team: 1-2-5. Problems 3 and 4 each take the planner approximately 35 s to
solve, and this time largely is spent attempting to find a different configuration
for dialogue acts that will result in a new team.

6 Discussion

We presented an approach for team formation from the perspective of a team
initiator, whose task is to synthesize a strategy to form an effective team through
capability assessment and bargaining. The team’s success hinges on the mem-
bers’ ability to achieve a collective intention that includes the original goal plus
any promises made during the bargaining process. We have made the described
framework and test suite for team formation available to the wider research
community at the following website:

http://www.haz.ca/research/tw-as-ap/

Demonstrating and evaluating this approach on a commonly used
blocksworld-style problem set, we have shown that this planning technology can
handle the encoded problems readily. The relevance analysis that comes with
existing planners makes our approach well suited to tackling both the dialogue
and planning phases simultaneously: often the infeasibility of a team to achieve
the collective intention is recognized early in the planning phase, and a new team
is considered. Additionally, including the MEP formalism reveals interesting new
considerations for modelling the teamwork formation problem, as evidenced by
the distinction between problems 3 and 4.

Note, however, that the only agents acting in the environment are those that
are part of the formed team. We hope to relax this assumption by incorporating
our research with a framework that allows us to plan in the presence of other
agents [21]. The resulting system would construct a team that could adequately
handle the uncertainty posed by the possible actions of agents not on our team.

As the objective in this paper was not to introduce a particular mechanism for
team formation, a detailed comparison with other team formation models is not
relevant here. Rather, our contribution is the introduction of a novel approach
that is suitable for efficiently operationalising the requirements of multiple mod-
els. Hence, we point to the generic benefits of our planning-based approach, and
posit that because the underlying representation supports complex encoding,
including modelling the nested beliefs of agents, many team formation models
will be amenable to implementation via planning. This also includes models in
other settings where collective intention is a central concept. Of course, further
work, both conceptually and empirically, is needed to put a precise scope around

http://www.haz.ca/research/tw-as-ap/
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this claim. In particular, it would be interesting to use the work of Johnson [28]
to assess the performance of a team created using our approach.

The preliminary results give a good indication that automated planning tech-
niques can solve these types of problems. Moving forward, we will expand the
encoding to include richer forms of dialogue within the team formation process.
In doing so, we aim to extend this work to the domain of narrative planning,
where properly sequenced speech acts play a central role.

Acknowledgements. This research is partially funded by Australian Research
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Abstract. Resources sharing is an important but complex problem to
be solved. The problem is exacerbated in a coalition context due to pol-
icy constraints, that reflect concerns regarding security, privacy and per-
formance to name a few, placed on the resources. Thus, to effectively
share resources, members of a coalition need to negotiate on policies and
at times refine them to meet the needs of the operating environment.
Towards achieving this goal, in this work we propose and evaluate a
novel policy negotiation mechanism based on the interest-based negotia-
tion paradigm. Interest-based negotiation, promotes collaboration when
compared with the traditional, position-based negotiation approaches.

1 Introduction

Negotiation is a form of interaction usually expressed as a dialogue between two
or more parties with conflicting interests that try to achieve mutual agreement
about the exchange of scarce resources, resolve points of difference and craft out-
comes that satisfy various interests. Chasing mutual agreements, the involved
parties make proposals, trade options and offer concessions. The automation of
the negotiation process and its integration with autonomic, multi-agent environ-
ments has been well-researched over the last few decades [1,2].

The theoretical approaches for automated negotiation can be classified into
three major categories: (1) game theoretic (2) heuristic, and (3) argumentation
based [1]. The first two represent traditional, bilateral negotiation mechanisms
wherein each negotiation party exchanges offers aiming to usually satisfy their
own interests. Both approaches fall under the broader spectrum of position-
based negotiations (PBN), where participants attack the opposing parties’ offers,
trying to convince them for the suitability of their own ones. Typically, those
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approaches are formalized as search problems in the space of possible deals by
focusing on negotiation objectives.

Argumentation-based negotiation (ABN) has been introduced as a means to
enhance automated negotiation by exchanging richer information between nego-
tiators. Interest-based negotiation (IBN) is a type of ABN based on a mechanism,
where negotiating agents exchange information about the goals that motivate
the negotiation action [3,4]. IBN unlike PBN approaches, tackles the problem of
negotiation, focusing on “why to negotiate for” rather than on “what to negotiate
for”, aiming to lead negotiating parties to win-win solutions.

Multi-party teams are often formed to support collective endeavors, which
otherwise would be difficult, if not impossible, to achieve by a single party. In
order to support such activities, resources belonging to collaborative partners
are shared among the team members. Mechanisms, for effective resource shar-
ing between institutions and/or individuals are actively and broadly explored in
research community. This is due to the impact that different resource sharing
setups and modifications (what to share, with who, when and under what condi-
tions) can bring into the collaboration, with respect to domains such as security,
privacy and performance to name only a few.

Consider for instance the following scenarios: (a) the resource sharing in
corporate environments such as the recent MobileFirst partnership between
IBM and Apple where cloud and other services are shared in a daily basis; or
(b) a short-lived, mobile, opportunistic network comprised of few peer members,
established for message routing or data sharing. In both cases, an access control
mechanism that governs resource sharing, needs to be implemented for estab-
lishing smooth collaboration. A suitable mechanism for managing access control
on resources of such systems is a policy-based management system (PBMS).
A PBMS provides systems administrators with a programable, abstract layer
that describes the system to be managed, enabling them to express high-level,
management goals and objectives through high-level policy rules.

The more complex and heterogeneous a multi-party, collaborative formations
is, the more complex the mechanism that establishes trust between collaborators
is as well; this has a negative impact on developing stricter resource sharing
policy rules, which raises the barriers towards smooth and effective collaboration.
In such scenarios, the need for a tool for enabling authorization policy negotiation
is imperative, in order for strict policy rules to be refined accordingly, so that to
promote collaboration.

The work herein presents a novel, interest-based policy negotiation mecha-
nism for enabling authorization policy negotiation in multi-party, collaborative
and dynamic environments. It focuses on policy makers who are not necessar-
ily experts in either IT or negotiation techniques. To the best of our knowledge
there is no mature work done on policy negotiation in general. The vast majority
of automated negotiation work: (a) deals with autonomous, multi-agent envi-
ronments, (b) utilizes PBN approaches and (c) invariably ignores the special
characteristics of multi-party, collaborative environments.



302 C. Parizas et al.

It is our belief that by understanding the interests behind collaborative
parties’ policies and by crafting options that can meet their asset sharing
requirements, IBN could provide a negotiation mechanism, that promotes good
collaboration unlike PBN, which inadvertently creates adversarial negotiation
atmosphere. Moreover, the PBN paradigm with its fixed, opposing positions is
a cumbersome negotiation method, to cope with more dynamic environments
[1]. From an architectural point of view, the proposed negotiation mechanism
can operate in parallel to a PBMS. Briefly, the proposed, policy IBN mechanism
considers an approach that refines strict policies, in order to increase overall
usability of collaborators’ assets while remaining faithful to existing authoriza-
tion policies. The main contributions of this of work are as follows:

1. Definition of an interest-based authorization policy negotiation model.
2. Specification of an architecture for its integration with PBMS.
3. Evaluation of policy IBN behavior through simulation experiments.

The remainder of the paper is organized as follows: in Sect. 2 we discuss previ-
ous literature on policy negotiation approaches. Section 3 presents an illustrative
walkthrough of the policy negotiation mechanism. Section 4 describes the policy
negotiation framework, the policy language, and its interface to PBMS by means
of an architectural overview. Section 5 presents the algorithmic steps for IBN
achievement through policy refinement and in Sect. 6 we evaluate IBN through
simulation of multi-party, collaborative environments. We conclude this docu-
ment in Sect. 7 by summarizing our contribution and outlining future research
directions.

2 Background and Related Work

The first computer applications for supporting bilateral negotiations were devel-
oped in late 1960s [5]. The reason for their emergence was to assist human
negotiators to overcome weaknesses related to negotiation process such as cog-
nitive biases, emotional risks, and their inability to manage complex negotia-
tion environments. Although there is rich literature on negotiation protocols in
autonomous, Multi-agent Systems (MAS), there is very limited and no mature
work done on policy negotiation.

Briefly, an agent in the context of MAS, is perceived as a software compu-
tational entity, capable of possessing the properties of autonomy, social ability,
reactivity and pro-activeness [6]. In order for MAS agents to cooperatively solve
problems, a comprehensive interaction is needed. Negotiation is an effective agent
interaction mechanism, enabling autonomous bidirectional deliberation in both
situations of competition and cooperation. For the development of sophisticated,
negotiation models there are three areas that need to be considered: (a) the
negotiation protocols that define the rules of interaction amongst agents, (b) the
negotiation objects that contain the range of issues on which agreements must
be achieved and (c) the negotiation decision making models that guide agents’
concession stance [7].
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Initially, automated negotiation has received considerable attention in the
field of economics, utilizing the analytical methods of game theory [8], aiming to
calculate the equilibrium outcome before the negotiation game is played. While
interesting conceptually, the game theoretic approaches have been criticized for
assuming: (a) complete and common information and (b) perfect and correct
information. However, most real world problems are cases of imperfect, erroneous
and incomplete information where revelation is not realistic [4].

Heuristic negotiation approaches, started to being studied to cope with the
computationally expensive game theoretic ones, which unrealistically considered
the agents as entities of unlimited computational resources and time. Thus, they
focused on producing good, but efficient negotiation decisions, as opposed to
the optimal and inefficient decisions provided by predecessors [9]. The two basic
limitations of heuristic approaches were: (a) the underused agent communication
and cognitive capabilities (e.g., agents’ rejection as a feedback when a negotiation
agreement is not achieved) and (b) the statically defined agents positions (i.e.,
each agent has a clearly defined and static position) [4].

The intuition behind ABN is that the negotiating parties can improve the way
they negotiate by exchanging explicit information about their intentions. This
information exchange reveals unknown, non-shared, incomplete, and imprecise
information about the underlying attitudes of the parties involved in the nego-
tiation [10]. Think for instance, a negotiation case where two negotiators after
exchanging offers are very close to achieve an agreement, but lacking this extra
information they give up moments before achieving it.

We see the role of PBMS in managing large, complex and dynamic systems
as of a high importance and the existence of sophisticated ways to do so imper-
ative. We believe that the integration of an effective negotiation mechanism on
a PBMS, works towards this direction.

To the best of our knowledge, no work had previously attempted to bring
the IBN paradigm into policy negotiation. The authors in [11] focus on the
requirements of policy languages, which deal with trust negotiation and pay
attention on the technical aspects and properties of trust models to effectively
negotiate with access requests. They do not research any of the aspects of policy
negotiation and the scenarios they deal with are less dynamic compared to our
problem domain.

The work in [12] proposes an architecture that combines a policy-based man-
agement mechanism for evaluating privacy policy rules with a policy negotiation
roadmap. It is very generic and does not provide clear evidence of any effective-
ness of the proposed approach, while lacking any evaluation. [13] is the first work
that looks into policy negotiation and covers the area in depth. It also looks into
collaborative environments and introduces the notion of ABN in policy negotia-
tion. However, it focuses on a very specific application domain in which it deals
with writing insurance policies. The whole process is based on a static approach
maintaining a common and collaborative knowledge base.

The work discussed in [14] has many similarities to our work; it deals with
cooperative environments where a PBMS is employed for managing the service
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composition in a distributed setting, while a negotiation framework is used to
effectively compose services. The main difference with the work proposed herein
is that the objective of the negotiation in [14] is the services that are managed
by policies, not the policies themselves. We believe that in order to decrease the
management overhead, the objective of the negotiation should be the policies.
This is because policies, are the core of a PBMS and the logical component where
the system’s management resides.

Finally, [15] proposes a policy negotiation approach and presents its archi-
tecture. It lacks of any effectiveness evaluation while it does not consider either
multi-partner or dynamic environments, following the PBN paradigm.

3 IBN and Asset Sharing Policies: Setting the Scene

Below, we provide illustrative scenarios to explain and motivate the use of IBN
on policies, in charge of regulating asset sharing in collaborative environments. In
Subsect. 3.1 we revisit the classic orange–chefs scenario discussed in best-selling
book Getting to YES [3] and then we transfer the same IBN principles into an
opportunistic, mobile asset sharing scenario in Subsect. 3.2.

3.1 The Chefs-Orange Scenario

Two chefs that work in the same kitchen, both want to use orange for their
recipes. Unfortunately, there is only one orange left. Instead of negotiating on
who is going to get the orange or some portion of it, as in a zero-sum, PBN
approach, the two chefs opt to follow an IBN inspired approach. So, they ask
each other why they need the orange for. In other words, they try to better
understand their underlying goals of using the orange. Answering the “why”
question, it turns out that one chef needs only the orange flesh (to execute a
sauce recipe) while the other needs only its peel (for executing a dessert recipe)
leading them to share the orange accordingly, achieving a win-win negotiation
outcome.

3.2 Asset Sharing Policy Negotiation

An individual P2 wants to access a smartphone device SMD, owned by the
individual P1. However, P1 has a set of restrictions which are captured by policy
set R on how to share SMD with other people. These restrictions may reflect
privacy concerns (e.g., by accessing their smartphone, one could have access to
their photos). For the sake of clarity, in this example, we assume that the set R
contains the following policy constraint R1: do not share the device SMD with
anyone else but its owner. When P2 asks for permission to use the physical device
SMD, R1 prohibits this action. Ostensibly there is little room for negotiation here
with the current set of policies, if one follows a PBN approach.

However, by applying the IBN and trying to understand the underlying inter-
ests of the involving parties, we believe the situation could be handled in a sat-
isfactory manner for both parties. For example, asking the “why” question it
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turns out that P2 needs a data service (as opposed to the physical device), in
order to execute the task of Email submission and P1 does not mind sharing
a data connection as a hotspot with a trusted party; if P1 could get to know
why P2 needs the device for, the situation could be solved to the satisfaction
of both parties. All an IBN mechanism needs to do in this case is to introduce
another policy – actually a refinement of the existing policy – to R1 to say that
data service can be shared among trusted parties. We argue that in such cases,
by understanding the situation and broadening the space of possible negotiation
deals, one can reach a win-win solution.

As stated earlier, IBN is a type of ABN where the negotiating parties
exchange information about their negotiation goals, which then guide the negoti-
ation process. Thus, the why party of the intention is of major importance when
compared with the what part. We would say, that the IBN is more of a negoti-
ation shortcut method rather than a typical negotiation process. By attacking
the problem of negotiation, IBN could potentially skip the proposals making,
the options trading and the need for negotiating parties to offer concession as in
PBN cases. Instead of trying to negotiate on a fixed pie, it tries to find alterna-
tives so that to expand it. In the next section, we shall introduce our IBN-based
policy mechanism and provide our intuition behind the approach.

4 Interest-Based Policy Negotiation Mechanism

The designing and development of intelligent tools and protocols for enhancing
the negotiation process amongst human negotiators, needs to achieve some desir-
able outcomes that are secured by meeting a set of systematic properties such
as: guaranteed negotiation success (i.e., negotiation mechanism that guarantees
agreement), simplicity (i.e., eases negotiation decision for the participants), max-
imization of social welfare (i.e., maximization of the sum of payoffs or utilities of
participants) to name a few. A complete list of desirable negotiation outcomes
and evaluation criteria as described throughout the literature can be found in
[16]. The main objective of the negotiation mechanism proposed herein, is to
increase of social welfare.

In scenarios that often suffer from resource scarcity (i.e., environments where
resource demand exceeds supply), and many user tasks may be competing for the
same resource in order to be served, like those described in introduction, the for-
mation of coalitions offers alleviation by bringing more resources on the table.
The relationships between collaborative parties in those scenarios are mostly
peer-to-peer (P2P), without assuming fully cooperative relationships. Coalition
partners often pursue cooperation but they deny to share sensitive intelligence
that can deliver greater value to the collaborators [17]. In literature this kind
of relationship model, where parties have cooperative and competitive attitudes
from time to time, is called coopetition [18]. The PBMS is in charge here, play-
ing a regulative role in order to keep balance between asset sharing and asset
“protection”.

The mechanism presented herein allows negotiation on policies with minimal
human intervention. In traditional system management, policies associated with
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PBMS are static (or rarely change); these systems, however, fail miserably in
dynamic environments where policies need to adopt according to situational
changes. We note, that it is not prudent to assume human operators in these
environments that can effectively be on top of every change to manage PBMS(s)
effectively; they require automated assistance.

Summarizing the intention behind applying IBN principles, on policy regu-
lated asset sharing, it considers a cooperative negotiation approach, for strict
policies refinement, that aims to: (a) increase social welfare by increasing the
overall usability of collaborative assets while (b) remaining faithful to existing
authorization policies, maintaining their core trends. Utilizing such a tool, a
multilateral policy transformation can be achieved establishing a more effec-
tive PBMS, considering input and criteria from multi-party formations, for the
benefit of the coalition.

The product of IBN execution is a new, refined, authorization policy rule.
The IBN mechanism when refining the strict policy, considers the interest of
both: asset owner and asset requestor. As far as the negotiation protocol is con-
cerned, each negotiation session considers sets of two negotiators, so we deal with
a bilateral negotiation mechanism. The issue that needs to be settled through
the negotiation process, is the granting (or not) of access to non-sharable assets
through policy refinement, thus, the protocol deals with single-attribute negoti-
ations.

4.1 Policies Under Negotiation

The proposed policy negotiation framework is applied on authorization policies
expressed in the Controlled English (CE) policy language [19]. CE policy lan-
guage is an ontological approach that uses a Controlled Natural Language (CNL)
for defining a policy representation that is both human-friendly (CNL represen-
tation) and unambiguous for computers (using a CE reasoner) [20]. CE is used
to define domain models that describe the system to be managed. The domain
models take the form of concept definitions and comprise objects, their proper-
ties, and the relationships amongst them. Those domain model components are
the building blocks of the attribute-based CE policy language.

Each policy rule follows the if-condition(s)-then-action form and consists of
four basic grammatical blocks as shown below:

– Subject: specifies the entities (human/machine) which interpret obligation
policies or can access assets in authorization policies

– Action: what must be performed for obligations and what is permitted for
authorization

– Target: objects on which actions are to be performed
– Constraints: boolean conditions

The utilization of CE here is two-folde. It is not only the user friendly for-
mal representation of (a) the system to be managed and (b) its policy-based
management, but it also helps decision makers who lack technical expertise to
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Fig. 1. Authorization policy negotiation scenario: domain model.

cope in a more transparent way with the complexities associated with policy
negotiation. It does so by easing the comparison between the original and the
refined policy proposed by IBN, using a user friendly representation. Figure 1
provides a graphical depiction of the CE-based domain model, which describes
the smartphone access scenario of Sect. 3.2, while the CE representation of policy
R1 is shown below.

Policy R1
If
( there is an Asset A named SMD ) and
( there is a Person P named P1 )
then
( the Person P canAccess the Asset A )
.

4.2 IBN Integration into Policy Regulated Asset Sharing

The role of policies in managing a system, is to guide its actions towards behav-
iors that would secure optimal system’s outcomes. Different users have different
rights, relationships and interests in regards to deployed coalition assets. Non-
owner users want to gain access to assets in order to increase the probability
of serving their tasks’ needs, while owners want to protect their assets from
unauthorized users. There is therefore a monopolistic resource usage case. The
proposed negotiation approach considers both concerns in a single mechanism
providing a mechanism that pursues a win-win negotiation outcome for any sets
of negotiators. In other words, it tries through negotiation to redefine what is
a suboptimal system outcome given: (a) the currently-deployed assets, (b) the
user created tasks’ needs and (c) the policies themselves.

The finite state diagram of Fig. 2 depicts the role the policy negotiation
mechanism plays on tasks’ implementation in collective endeavors. The human,
task creator, in order to serve their appetite for information, creates tasks with
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Fig. 2. Interest-based policy negotiation and task implementation.

a utility demand. The Asset-Task Assignment (ATA) component is in charge
for optimizing the task utility by allocating the appropriate assets (information-
providing assets) to each task. The PBMS component is responsible then, for
evaluating and enforcing authorization policies made by multi-party collabora-
tors. In the case of a non-restrictive authorization policy the task creator gets
their task served. If the policy rule is restrictive, the policy negotiation compo-
nent takes over. It first takes input from ATA, so that to define the creator’s
interest behind accessing the asset, and then modifies the policy rule accordingly
passing it to the asset owner for confirmation. Given the asset owner’s decision
the task is then either satisfied or unsatisfied.

4.3 IBN Enabled PBMS

The policy negotiation framework can be integrated into a PBMS as a plug-in,
enabling negotiation in policy enforcement process. A PBMS, as defined by stan-
dards organizations such as IETF and DMTF consists of four basic components
as shown in Fig. 3: (a) the policy management tool, (b) the policy repository,
(c) the policy enforcement point, and (d) the policy decision point [21]. The pol-
icy management tool is the entry point through which policy makers interface
(write, update and delete) with policies to be enforced on the system. The policy
repository is a specific data store where the policies generated by the manage-
ment tool are held (step A1). The PEP is the logical component that can take
actions on enforcing the policies’ decisions, while the PDP is the logical entity
that makes policy decisions for itself or for other system elements that request
such decisions. Triggered by an event that needs policy’s evaluation the PEP
contacts PDP (step A2), which is responsible for fetching the necessary policy
from policy repository (step A3, A4), evaluates it and decides the actions that
need to be enforced on PEP (step A5).
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Fig. 3. IBN extended PBMS (Color figure online)

In addition to the four basic PBMS elements, Fig. 3 also includes a human-in-
the-loop element, representing the roles played by the asset requestor and owner
in the negotiation process. The additional component where the IBN framework
resides is called Policy Negotiation Point (PNP) and lies between the PEP and
PDP, interfacing also with the human-in-the-loop element. As mentioned before,
the PNP is triggered to attempt to refine authorization policies when a user
creates a task that cannot be served due to restrictive policies. The dashed lines
show optional communication between the PBMS components, which is only
established when a policy negotiation incident occurs. The red numbered part
of the figure (flow paths which are prefixed by A’s) describe the typical PBMS
operational flow, while the green part (flow paths which are prefixed by B’s)
replace step A5 (red, dotted line) with the policy negotiation extension. Note
that the separation between the components can be only logical when they reside
in the same physical device. When PNP detects a restrictive policy (step B5) it
refines it following the steps described in the following section and passes it to the
asset owner for confirmation (step B6). If the asset owner accepts the refined
policy rule, it is then pushed to PEP for enforcement (step B7) and either is
stored in Policy Repository permanently (step B8) or can be only enforced once
and then be discarded. This is on asset owner’s jurisdiction. Otherwise step A5
is executed as before.

5 Achieving IBN Through Policy Refinement

The negotiators in our scenario are essentially decision makers who generally
lack negotiation expertise. Thus, the IBN mechanism tries to take, as much as
possible, the negotiation weight off their shoulders rather than providing them
the means for making proposals and trade options themselves. However, it does
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not exclude them completely from the negotiation process as in fully automated
models. To achieve such behavior it simply applies the IBN principles described
in Chefs-Orange scenario of Sect. 3.1, exploiting the domain model’s semantics,
the semantics of the polices and the seamless relation between them as they both
share the same CE representation.

The objective of the negotiation is the restrictive policies. Asking the why
question as in Chefs-Orange scenario, to the asset requestor side, the PNP gets
as a reply the reason why they need the asset for (i.e., to get their task served).
Asking the why question to the asset owners/policy authors side, it gets the
reasons why they do not want to grant access to their assets respectively. The
prerequisite for the PNP operation here, is to have full and accurate knowledge
of the managed system. This is achieved by having unlimited and unconditional
access to both domain model and policy rules of Policy Repository. Unlike the
majority of the proposed PBN approaches, the human-in-the-loop negotiators in
our case are ignorant of the preferences of their opponents, while their knowledge
in terms of the domain model reaches only the ground of their own expertise
and ownership.

Utilizing CE as the formal representation for describing the system to be
managed, and the representation for expressing authorization policies, eases the
human-machine communication (i.e., communication between PNP and non-IT
expert negotiators) for exchanging information regarding the negotiation process
in a transparent way. The human-machine communication through CE conver-
sational agents has been described in [22] where a human-machine, machine-
machine and machine-human communication protocol was presented for provid-
ing intelligence to decision makers through fusing human input, unstructured
with structured information. However, trying to automate as much as possible
the negotiation process, the why question is rather rhetorical here (i.e., PNP
does not require input from user). In the asset requestor’s case, the answer to
the why question is quite simple and straightforward and the PNP is aware of it
just by taking input from the Asset-Task Assignment component of Fig. 2. The
asset requestor clearly wants to access the asset in order to get their task served.
Hence, a desired negotiation outcome as far as the asset requestor is concerned,
is the derivation of a refined policy that has them included in the set of Subject
policy block, with a positive access (i.e., canAccess) Action, to a Target set that
includes the prohibited asset capable of serving their task’s needs.

Inferring the answer to the why question from the asset owner’s side, for
understanding their interests and broadening the negotiation space, is a more
challenging task. In general any application of authorization systems, aims to
specify access rights to resources. A simple answer would be including the reasons
why asset owners want to decline access rights to their resources in a negative
authorization policy, or alternatively the reasons for granting access to their
resources in a positive one. Thus, the why question from the asset owner/policy
maker side can be extracted as the rationale of a policy rule. Combining the
definitions from [23,24] the rationale is the reasoning pathway from contextual
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facts, assumptions and decisions, through the reasoning steps, which describes
the development of an artifact including details of why it was designed.

Looking carefully at a policy rule, its rationale is basically described from
the policy’s Condition(s) block. The policy R1 of Sect. 4.1 is rather a simple one
referring deliberately to a simple scenario and this might not be easily inferred.
Considering other more complex policy rules with several conditions describing
for instance constraints such as the age of the requestor or their expertise this
is easier inferred.

However, this is not exactly the answer to the why question we are looking for
here. Considering the policies as the means for guiding systems’ actions towards
behaviors to achieve optimal outcomes, the Condition(s) policy block refers to
the actions level of the policy. Our focus here is on the higher level, this of the
system’s behavior. Focusing on a higher level, gives us the agility to find different
policies as far as the actions are concerned, that provides the same functionality
in terms of behavior; and the different policies we are looking for are those
which serve the needs of the asset requestors as well. Achieving this goal, leads
the negotiation to a win-win outcome like the one described in Chefs-Orange
scenario. The next steps describe the process for reaching such an outcome.

In the event of a restricting authorization policy, that prohibits a task cre-
ator/asset requestor to access desired resources, in order to get their task served,
the PNP, is activated taking input from ATA component as shown in input step
of Fig. 4 (upper left hand side). The input refers to both: (a) the task’s needs
and (b) the very specific resources needed for its implementation. In a policy-
based, access control system, the resources required for a task’s implementation
are represented by the Target policy rule block. If the Target block of the cur-
rently applied/restricting policy rule refers to a superset of the resources passed
as input to PNP from ATA then the policy refinement mechanism develops as
follows:

Step 1: The simplistic domain model of Fig. 1 presents only the concepts
involved in the smartphone scenario of Sect. 3.2 and their relationships. It hides
however their properties. Assume that the concept Asset has a property named
Provided capability and that the Asset instance named SMD has the Provided
capability property named Tethering. Thus, the policy R1 by denying access to
SMD, it denies access to any of SMD’s provided capability or in other words
denies access to any of SMD’s subsets capable of serving a desired task. Thus,
the IBN mechanism, trying to broaden the negotiation space, separates the SMD
from its Provided capability property as shown in Step1 of Fig. 4 allowing SMD’s
capabilities to be subject of a policy rule Target block.

Step 2: The concept Task has a property named Required capability and the
Task instance Email submission has a number of required capabilities including
that of Tethering. The second step of IBN process, considering input from ATA
regarding task’s needs, it separates it from its Required capability property as
shown in Step2 of Fig. 4.
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Fig. 4. IBN through Policy Refinement: Graphical representation.

Step 3: In Step 3, as shown in Fig. 4, now that required/provided Capability
exists as standalone concept in the conceptual model, the IBN mechanism allows
for a relationship and thus for an Action policy rule block to emerge between
asset requestor (presented as Person concept) and asset’s capabilities (presented
as Capability concept). In other words the asset requestor (i.e., P2) now can
access a subset/subsystem of the asset that provides required capabilities (i.e.,
Tethering), for their task’s to be served and this can be expressed in CE policy
rule and reasoned on CE conceptual model.

Step 4: This step performs the policy refinement1. The asset requestor (i.e.,
P2) is represented by the Subject block of the refined policy rule, which has
as Action block a positive authorization action (i.e., canAccess) and its Target
block refers to the provided by the prohibited Asset and required by the desired
Task Capability (i.e., Tethering). The CE refined policy R1-Refined below is
passed then to the asset owner for approval.

Policy R1-Refined
if

( there is an asset A named SMD ) and
( there is a Capability C named Tethering ) and
( there is a Person P named P2 )

then
( the Person P canAccess the Capability C ).

1 Note that the term policy refinement herein refers to a different process than the
policy refinement in [25], which describes the process of interpreting more general,
business layer policies to more specific, system layer ones.
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The asset owner P1 is in charge of approving or not the replacement of
policy rule R1 from the proposed by IBN policy rule R1-Refined. In the case
of approval the refined rule R1-Refined is enforced over R1 providing access to
SMD’s Tethering capability. It is then either stored in Policy Repository or can
be only enforced once and then be discarded. This is on asset owner’s jurisdiction.

6 Policy IBN Evaluation

Ideally, the evaluation of the behavior and effectiveness of IBN as a negotia-
tion mechanism for policy-regulated asset sharing, should had human partici-
pants involved, operating in a collaborative environment, such as an opportunis-
tic network scenario. Considering their own sharing constraints, they would be
responsible for the approval or rejection of the refined policies proposed by IBN
mechanism.

6.1 Simulation Setup

We conduct an experiment by simulating this environment, to test the policy
IBN mechanism’s behavior prior to carrying out a more resource-costly human
participant experiment. The simulation describes an asset sharing scenario of a
small, short lived opportunistic network. In the scenario, there are three basic
concepts: (a) the human users, (b) their assets and (c) the tasks they create. The
users are the asset owners and in charge of sharing them with others through a
PBMS. Being eager for consuming information, users create tasks that require
specific resources provided by the deployed assets in order to be served. Often,
task creators cannot serve their tasks just by utilizing their own resources and
ask for support by their peers in the opportunistic network.

The simulated, opportunistic network scenario assumes 8 users, each one of
them owns one asset. There are three types of assets, as many as the types of the
tasks the users can create. Each asset type has the capability to serve a particular
task type meeting its information requirements. As far as the asset sharing is con-
cerned, it is managed through policies written by asset owners. Each user opts
whether to exclusively use their assets (following concerns regarding security,
privacy, performance and other) or sharing them with the others. This inten-
tion is expressed through authorization policies. We do not assume any spatial
constraints in the simulated network, which implies that all the users, oper-
ate in distance where their devices have enough transmission/reception capacity
to communicate with each other. Moreover, one out of three asset types has a
monolithic architectural design making it capable of serving only one particular
task, unlike the other two, more capable devices that can operate as platforms
that provide several capabilities, able to serve more than one task types.

To better visualize the simulated scenario, think of the following vignette.
Eight individuals (i.e., opportunistic network’s users) go hiking across a moun-
tain. The three types of assets are: (a) a smartphone device such as the SMD
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described in previous sections, (b) a music player equipped with transmit-
ter/receiver and communication protocol capabilities able to communicate with
other assets of the same type and (c) a monolithic wearable pedometer device.
The three possible tasks created by users are: (a) the submission of an email,
which requires internet connection provided by a smartphone device, (b) a music
sharing task, which is served by portable music players capable of exchanging
songs and playlists with other devices of the same type and (c) a step counting
task, served by the monolithic pedometer device.

The IBN mechanism, following the steps described in the previous section
is only capable to be applied on polylithic assets (i.e., SMD and music player
device) when strict authorization policies are applied. For the implementation of
the step counting task, the user needs to physically access a pedometer device.
Hence, if the user that creates and need to serve a step counting task, either does
not own a pedometer device or any of the pedometer devices of the network are
not shareable due to strict authorization policies, the IBN mechanism is unable
to provide any policy refinement.

The total number of created tasks is 100. They are created randomly by
the eight users, which implies uneven number of tasks for each user. Task types
are also randomly picked as do the types of the user owned assets. As it was
mentioned before, the main objective of the IBN mechanism is to increase the
social welfare. To measure the effect of IBN on social welfare in our scenario we
use as metrics the proportion of served and dropped tasks. A task is considered
dropped (i.e., unsupported by opportunistic network’s deployed assets), if there
are no available resources to satisfy the task utility demand.

To have a better picture of IBN effect on social welfare, we experiment with
three different asset sharing models. The first and strictest one deals with very
conservative (in terms of sharing policies) users where they do not share any of
their devices with their peers. In this case the asset sharing is set to 0 % and
the user created tasks can only be served, if and only if their creators’ devices
are capable to do so. In the second experiment we set the asset sharing to 25 %
namely 25 % of the total devices are shareable and finally the last and most
liberal case deals with 50 % asset sharing. In all three experiments we measure
the proportion of served and dropped tasks when: (a) the IBN mechanism is
deactivated IBN OFF and (b) the IBN mechanism is activated IBN ON. For
all six experimental cases

– Asset sharing 0%: (1) IBN OFF, (2) IBN ON
– Asset sharing 25%: (1) IBN OFF, (2) IBN ON
– Asset sharing 50%: (1) IBN OFF, (2) IBN ON

we execute each simulation instance 100 times, averaging the measurements
(i.e., the percentage of served and dropped tasks).

6.2 Simulation RedLines

For simulating the approval or rejection of the refined policies (i.e., the relaxed
policies provided by IBN) we utilize a mechanism called RedLine. We borrowed
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Fig. 5. PNP: IBN OFF vs IBN ON

the term RedLine from the worldwide used phrase “Red line”, or “cross the red
line”, which means a figurative point of no return or a limit past which safety can
no longer be guaranteed. Each user at the beginning of the simulation, randomly
gets their RedLines settled, which defines their intention to approve or reject
the refined policies. Given the complexity, in terms of assets capabilities and
tasks requirements, we assume, it is difficult for opportunistic network’s users to
write fine-grained policies to define access control on every possible combination
of them. In SMD case for instance, the asset owner P1, being unable to cope
with the complexity of matching SMD’s capabilities and Email submission task’s
requirements he opts not to share any of SMD’s capabilities with P2 following
personal concerns. Hence, he simply expresses his constraints at higher level,
setting access control policies at the assets level only. The RedLine mechanism,
defines the distance between the asset owners’ high-level authorization policies
and their “real” willingness to share their assets or subsets of them with their
peers.

This assumption is depicted in Fig. 5. On the left hand side where IBN is
inactive, user P1 expresses his strict constraints, in terms of SMD sharing with
P2 through high-level policy rule R1, according to which the requestor user
P2 is not allowed to access it and as a consequence he forbids access to any of
SMD’s subsystems (namely resources r1, r2 & r3 and their provided capabilities).
The PNP, activating IBN mechanism as shown on the right hand side of Fig. 5
proposes a finer-grained rule R1’ according to which the requestor user R2 can
access (as the dotted line circles indicate) the necessary SMD subsystem (namely
resource r3 and its provided capability) in order to get his task served. The
intention of P1 in terms of approving or rejecting the refined R1’ is simulated
by users’ RedLines mechanism.

IBN mechanism, as mentioned before, attempts to lower barriers, through
policy refinement, in order to establish better collaboration through asset sharing
(i.e., increase the overall number of served tasks and thus increase the social
welfare) while maintaining the level of compromise from the asset owners point
of view. Those users whose RedLines are more relaxed compared to their policies,
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Fig. 6. IBN effect on social welfare: Asset Sharing 0 % (Color figure online)

represent those who believe that they do not compromise any of their concerns
expressed through their initial, strict sharing policies and proceed with accepting
the refined ones.

6.3 Simulation Results

The experimental results are presented through Figs. 6, 7 and 8 and the error
bars on clustered column charts represent (+ / -) 1 Standard Deviation. In
all three sets of experiments, when the IBN mechanism is activated the social
welfare in terms of task implementation is higher as expected. As it is shown the
effectiveness of IBN is higher in strict environments and decreases as moving to
more liberal ones. In Fig. 6, for 0 % asset sharing model, the IBN OFF columns
indicate that only 32 % of the total tasks are served meaning that given the users’
information need only the one third of it can be served by their own resources.
For the same sharing model, when IBN is activated the proportion of served
tasks increases to 50 %.

In first and most strict case Fig. 6, the margin between dropped and served
tasks when IBN is inactive is 36 % units. In IBN ON case the proportion of
dropped and served tasks is even. In the second experiment and 25 % asset
sharing model, as shown in Fig. 7, the served tasks proportion outperforms the
dropped tasks’ whether the IBN is active or not. With IBN ON however, the
proportion of served tasks is 8 % units more compared to when IBN is OFF.

Same trend in the last and most liberal case where half of the assets in the
opportunistic network are shared with the network’s users. The margin here
between IBN ON and IBN OFF cases almost disappears with IBN ON case
performing slightly better with 2 % units. Finally, as shown in Fig. 8 in the
simulated opportunistic network environment, if the asset sharing ratio is higher
than 50 % the IBN mechanism has not much to offer, while it is a useful tool
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Fig. 7. IBN effect on social welfare: Asset Sharing 25% (Color figure online)

Fig. 8. IBN effect on social welfare: Asset Sharing 50% (Color figure online)

in promoting collaboration through asset sharing, for stricter (in terms of asset
sharing) environments.

7 Conclusion and Future Work

In summary the proposed IBN mechanism provides a policy refinement tool
for revising asset sharing policies in dynamic, multi-party environments. The
IBN paradigm is a good fit in multi-party environments, where collaboration is
promoted, to achieve mutually satisfactory negotiation outcomes. The proposed
mechanism is seamlessly interfaced with standardized PBMS and provides the
means to directly negotiate with policies. Finally, the experimental evaluation
indicates that when the IBN mechanism is activated the social welfare, in terms
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of task implementation, increases, while the effectiveness of IBN is higher in
stricter environments and decreases as moving to more liberal ones.

As for the future research, there are plans for (a) extending the IBN steps
with regards to broadening the negotiation space considering heuristics related
to users and their characteristics, such as, their team affiliation that can improve
IBN’s effectiveness through sharing assets and provided service horizontally (e.g.
inner-team) unlike the current vertical (i.e., user-to-user) approach and (b) con-
duct experiments involving human participants.
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Abstract. A multi-agent system can be helped by a normative sys-
tem that guides its (autonomous) agents towards an expected behavior.
These agents on their side have to reason about the impact of those
norms in their personal desires. Considering that agents have limited
resources, it is necessary to reason also about available resources and
whether they are enough to reach goals generated by norms and desires.
The Huggin proposes and implements a deliberation process that uses
the concept of mood to reason about norms, desires and resources. The
proposed deliberation process is conceived as an optimization problem
known as multidimensional knapsack problem with multiple-choice. The
computational complexity of this process is NP-complete and thus it can
likely be a bottleneck in the agent reasoning cycle. The main goal of this
paper is to identify how the desires, norms and resources (input vari-
ables) impact in the reasoning cycle execution. Considering the input
variables, we empirically measure their impact on the usage percentage
of Huginn in the agent overall process time. We conclude in this work
that, despite of the process complexity, the impact on the reasoning is
acceptable for the usual number of norms, desires and resources of cur-
rent MAS applications.

1 Introduction

MAS is a suitable approach to develop open systems, where unknown agents
can flow through freely. To protect these systems against malicious agents, a
normative system can be used to control their behavior [1]. From the agent
side, the ability to understand and interpret the normative system is a desirable
feature. Normative agents shall solve conflicts between desires and norms, since
they may have a desire to reach a specific goal, but a norm prohibits them to
reach this goal. These agents need thus to balance what is good for them and
the system and therefore decide whether to commit to a goal or not.

In the specific case where normative agents have limited resources they need
to reason also about available resources. Sometimes, an agent can agree with the
norm, but it does not have sufficient resources to reach the goal generated by
the norm. Or, the norm’s reward does not justify the required resource.
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An agent that is capable of reasoning about norms and managing resources
can get better results for the system and for itself within its contexts. Mobile
robots are an example of this kind of application, because they work with limited
resources and in some cases they need to choose among norms and desires. For
example, a robot on Mars has accepted a norm that obliges it to gather rocks
and it also has the desire to stay in the safety zone. The rocks however are out
of the safety zone. The agent also has only 5 units of fuel. Therefore the agent
needs to solve the conflict between the norm and the desire (to gather rocks or
to stay in the safety zone) and do not spend more fuel than it has got.

The Huginn model [2] proposes a reasoning model inspired in the mood
concept [3] capable to deliberate about desires and norms, considering available
resources. The proposed model is a BDI architecture extension where the main
features are the following:

– The deliberation process is translated into an optimization problem (multiple-
choice multidimensional knapsack);

– The model deals with conflicts between norms and desires;
– The model manages the resources to reach the best gain.

To develop these features, Huginn implementation has a process that can
insert some bottlenecks in the agent reasoning cycle. Therefore the goal of this
paper is the identification of how the quantity of desires, norms, con-
flicts, available resources and resources types impact in the reasoning
cycle execution. To accomplish this goal, we conducted an empirical evaluation
(Sect. 4) of Huginn implementation (shortly presented in Sect. 3.3).

2 Preliminaries

In this section is briefly presented the main concepts used in this paper.

2.1 Norms

Norms are representations of expected behaviors in a certain group population.
Many studies [4–6] in the sociology field describe different norm types in the same
normative system. This paper deals with deontic norms. These norms usually
define obligations, prohibitions, and permissions for the agents. Obligations can
be used to define states of the world that agents have to achieve. Prohibitions can
be used to define states of the world that agents have to not achieve. Permissions
are not explicitly considered in this paper, but can be seen as the negation of a
prohibition.

Normally norms are not applied all the time. Their specification has thus
activation and expiration conditions. The activation condition defines when the
norm is active. The agent knows that when the activation condition is true, it
needs to accomplish the norm. The expiration condition defines when the norm
is inactive. The sanction is the negative reinforcement for an agent who does not
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accomplish a norm. The reward is the positive reinforcement for an agent that
accomplish a norm. The Huginn adopts the norm as represented by the tuple 1:

〈D,Φ, T,A,E, S, γ〉 (1)

where D ∈ {Obl, Pro} is the deontic norm’s type, obligation (Obl) or prohibition
(Pro); Φ is the state of the world related to the norm; T is the agent target; A is
the activation condition; E is the expiration condition; S is the sanction and γ
is the reward. The sanction and reward values are numbers between 0 and 1. For
the norm “the driver is prohibited to run faster than 40 Km/h in urban area”,
the target is the driver; the norm is activated when the driver enters an urban
area; is inactive when it leaves the urban area. The driver receives a sanction if
he disobeys this norm and a reward if he obeys. This norm is represented by the
tuple (2).

〈Pro, run fast than 40Kmh, driver, urban area,¬urban area, 1.0, 0.1〉 (2)

2.2 Desires

The Huginn proposes that a desire is composed of: a state that the agent wants
to reach (Φ), a expiration condition (E), a necessity (N) and an intensity (I).
Necessity and intensity are scalar values between 0 and 1. The necessity repre-
sents how much it is essential to satisfy the desire. If the agent does not satisfy
the desire, it will suffer by the necessity to satisfy it. The intensity represents
how much it is desirable to reach a goal. This work considers a desire as a tuple
as in (3).

〈Φ,E,N, I〉 (3)

For example, a glutton agent has a desire with intensity 1 to be fed. However
the agent has a high fat percentage, thus, in this moment, the agent has a
necessity 0.2 of being fed. This desire is represented by a tuple like (4). The
desire is expired when the agent has been fed.

〈fed , fed , 0.2, 1〉 (4)

2.3 Mood Concept

This paper uses a mood psychological concept [3] as the main inspiration for a
deliberation process that considers norms, desires and resources. Thayer consid-
ers that the mood is a relation between energy and tension to gain benefits [7].
A person can be energetic or tired while also being tense or calm. The energy
is the state of being (tired or energetic) and the tension is the psychic state of
being (tense or calm). According to Thayer, people feel better when they are in
a calm-energy mood. They feel worse when in a tense-tired state.

Different elements can regulate the mood. These elements can change the
mood because they provide a gain of benefit. This gain provides a satisfaction,
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relaxing the being’s tension. For example, people often use food to regulate mood.
Thayer identifies a fundamental food-mood connection, and advises against the
reliance on food as a mood regulator. Another element that can regulate the
mood is the physical activity. For example, great quantities of hormones are
produced during a walk. On the other hand, the walk consumes energy and
generates tension during the process. However, the hormones it produces can
counteract the tension, as experienced in a bad mood.

The “being” needs to find the middle term among regulatory elements (food,
physical activity, and others) to reach the best mood state. Therefore, the “being”
needs to choose things that avoid tension and give more benefit, counterattacking
the bad mood.

3 Huginn

The normative reasoning based on mood enables the agent to reasoning about
norms and desires considering the available resources. The Fig. 1 represents
this context. The agent recognizes his desires and obtains the environmental
resources and norms. Hereafter, the agent deliberates about the desires, norms
and resources and, by committing to some goals, it changes its behavior to reach
a better mood. The mood concept [3] allows us to conceive a deliberation process
to choose the best set of desires and norms (decreasing the tensions and increas-
ing the benefit).

Resources

Norms
GoalsDesires

Fig. 1. Model overview

In the proposed model, the energy of the agents is the amount of resources
they need to have to satisfy the norm or desire. The agent’s tension represents
how much it costs to do not satisfy the norm or desire. The agent’s benefit
represents how much it receives to satisfy the norm or desire.

The agent’s energy state is a n-dimensional space, whose each dimension
represents one limited resource. For example, an agent has two resources, tires
and fuel. Thus the mood space is two-dimensional and it uses these resources to
minimize the tension and maximize the benefit (best mood).

Considering that in deontic logic a prohibition can be expressed as an oblig-
ation to not reach a state of the world [8] and that Huginn considers that states
as goals (from the agent perspective), all norms are related to goals, as well as
all desires. In Huggin thus the element D of norms (1) is always Obl and the
element St is a goal. Similarly, the element St of desires (3) is also a goal. The
Huginn model proposed to model the energies, tension and benefit as an opti-
mization problem for the agent to find the best mood (less tension and more
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Deliberation

Norms
(N)

Desires
(D)

Resources
(R)

Best mood
set (M)

resources required

Expiration
   - norms
   - desires

Perceptions
   - norms
   - desires
   - resources

Triggers Goals set
(O)

(C)

Fig. 2. Deliberation process flowchart

benefit). Therefore it is possible to use an optimization solver to find the best
set of goals from norms and desires with the available resources.

In this paper the deliberation process has as inputs the desires, norms and
resources and it has as output the best set of goals. The deliberation process is
triggered when some event in that input data occurs. Examples of such event are
norm or desire expiration, a new norm, desire, or resource. The Fig. 2 illustrates
the proposed deliberation process. The hexagon represents the process of desire
and norm selection, the rectangles represent sets, and the dashed box represents
the definition of benefits, tensions and resources required. In the Fig. 2, the set
D is the set of all desires, N is composed of all active norms and R is composed
of all available resources. The set O is composed of goals included in desires and
norms with definitions of benefits, tensions and resources required for each set
element, C is composed of all conflicts among goals generated by norms and
desires, M is the set of goals that maximizes the agent gains.

3.1 Definition of Energies, Tension and Benefit

For each goal in O it is defined: how much tension would be generated by not
satisfying the desire or norm, how much benefit would be generated if that is
satisfied and how much resources would be consumed to satisfy the desire or
norm.

In this paper the tension is represented by the loss that the agent suffers by
not fulfilling a desire or norm. The tension is represented by a function which
returns a value between 0 and 1 as defined in (5).

tension : O → [0..1] (5)

The tension is based on the norm’s sanction for goal originated from norms.
The tension is based on the desires’s necessity for goals from desires. The tension
is the sum of sanction and necessity when the goal appears both in a norm and
a desire. The tension is defined in (6), where sanction(o) returns the norm’s
sanction value (the S value represented in (1)) and necessity(o) returns the
desire necessity value (the N value represented in (3)).

tension(o) =

⎧
⎨
⎩

sanction(o) if o is generated by a norm
necessity(o) if o is generated by a desire
sanction(o) + necessity(o) if o is generated by both

(6)
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The benefit is the reward for the agent to satisfy a desire or norm. This
benefit is a function that returns a value between 0 and 1 corresponding to the
agent’s gain. This function type is defined in (7).

benefit : O → [0..1] (7)

The benefit is based on the norm’s reward for goal originated from norms,
the desire’s intensity for goal from desires and a sum of reward and intensity
when it comes from both. A generic form of the benefit is defined in (8), where
reward(o) returns the norm reward value (the γ value represented in (1)) and
intensity(o) returns the desire intensity value (the I value represented in (3).

benefit(o) =

⎧
⎨
⎩

reward(o) if o is generated by a norm
intensity(o) if o is generated by a desire
reward(o) + intensity(o) if o is generated by both

(8)

As previously presented, the available resources are the agent’s energies.
These represents a |R|-dimensional space where each dimension corresponds to
a resource type r, where r ∈ R. In this way the function rr returns a real value
corresponding to the required resource quantity to satisfy a goal. This function is
defined in (9) and rr(o, r) returns how much of resource r is necessary to satisfy
the goal o.

rr :O × R → R
+ (9)

For example, one goal g originated from both a norm (with sanction 0.3 and
reward 0.5) and a desire (with necessity 0.6 and intensity 0.3), has benefit(g) =
0.8 and tension(g) = 0.9.

The Huginn considers that conflicts between goals are informed by the devel-
oper as in the predicate (10). Where is possible to declare the conflict between
two huginn goals (o1 and o2).

huginn conflict(o1, o2) (10)

3.2 Deliberation

In the Huginn, the agent deliberates about which goal from the set O will be
adopted to reach the best mood (set M). To do this, it needs to treat O element’s
conflicts and resource’s conflicts that may happen.

The majority of the related work [9–11] treats the conflicts using preference
systems. Therefore, a norm or desire with high-priority will be fulfilled even if it
underutilized the agent’s capacity. For example, an obligation with high-priority
consumes 5 liters of fuel to grant a benefit. On the other hand, the agent has
other two obligations with low-priority that together consume the same 5 liters
of fuel, and they grant a better benefit. Therefore to fulfill the high-priority
obligation the agent’s capacity will be underutilized. To avoid this, the Huginn
model proposes to maximize the agent’s benefit, choosing non-conflicting goals
that compose the best benefit using the available resources.
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The Huginn models the choice of a set of non-conflicting goals as a multiple-
choice knapsack problem [12]. This problem has an additional constraint in rela-
tion to the traditional knapsack problem. The items are divided into classes. To
solve the problem, at most one item can be chosen per class. For example the
items torch, lantern, candle, penknife, and tent are divided in three classes: light
(torch, lantern, candle), cut (penknife), and shelter (tent). Therefore, a feasible
solution of this problem does not contain in the knapsack a torch, a lantern or
a candle simultaneously.

In the Huginn case, each class c is a set of conflicting goals and every goal
belongs to one class. A goal does not have conflict if it belongs a class with just
itself. With these classes and the constraint (11) it is granted that at most one
element of each class will be chosen. In the constraint (11), mo is the binary
decision variable of goal o. When the mo value is 1 the goal o is selected and
when mo is 0 it is not selected. C is a subset of the power set of O (12) that
contains all classes (C) mutually exclusive (13) and collective exhaustive (14).

∑
o∈c

mo ≤ 1, c ∈ C (11)

C ⊆ 2O (12)
ci ∩ cj = ∅, i 
= j, 0 < i < |C|, 0 < j < |C| (13)⋃
c∈C

c = O (14)

For example, the goal ¬p, p, and q are divided in two classes, represented in
(15). ¬p and p are in the same class because they are obviously in conflict.

C = {{¬p, p}, {q}} (15)

The Huginn models the choice of set of goal respecting the available resources
as a multidimensional knapsack problem [12]. To solve the resource conflict prob-
lem, each resource r ∈ R is a constraint in the problem. Thus, a solution for
the problem shall not pass the available resources limit. The inequality (16) is
the optimization problem constraint that represents this condition. Where ar(r)
returns how much resource r the agent has.

∑
c∈C

∑
o∈c

(morr(o, r)) ≤ ar(r), r ∈ R (16)

The problem definition is thus presented in (17). In this problem formula-
tion it is possible to see that the maximization function proposed to choose the
desires and norms considers their benefits and tensions. This function shows
mood generated by the benefit plus the tension. If the agent satisfies a desire
or norm it receives the benefit and avoids the tension. For example, when some
goal o is fulfilled the agent benefit is 0.5 and when the goal o is not fulfilled it
loses (tension) 0.4. Therefore when the agent fulfills the goal o, it gains 0.5 and
does not lose 0.4. Thus mood generated by the goal o is 0.9.
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Maximize
∑
c∈C

∑
o∈c

(mo(benefit(o) + tension(o))) (17)

Subject to ∑
c∈C

∑
o∈c

(morr(o, r)) ≤ ar(r), r ∈ R

∑
o∈c

mo ≤ 1, c ∈ C

The solution for the optimization problem, based on the decision variable m,
defines the set M as

M = {o|mo = 1} (18)

3.3 Huginn for Jason - Implementation

The Huginn for Jason [13] is an implementation of the Huginn model [2]. The
Jason reasoning cycle was customized including the normative deliberation as
defined by Huginn. This new step identifies the goals from desires and norms
and triggers the solver to select, drop, suspend or resume them. In Jason, all
relevant mind change generates an event. For example, added beliefs, removed
beliefs, added desires, etc. The Huginn monitors these events to identify the
changes of resources and the goals from norms and desires.

The Algorithm 1 is the Huginn implementation for Jason and it has three
steps. The first step (lines 2 to 7 of Algorithm 1) is a search in Events queue
(Fi) for new goals from norms and desires. When a new one is found, it is
added in the set (O). The second step (lines 8 to 12) of this algorithm is a
search in the O set for expired elements. When an expired element is found, it
is removed from the set. In the third step (line 13 to 18), the optimization is
executed (deliberation(O,C,R)) and it produces a new set M (the set of goals
that produces the best mood for the agent). Each selected goal (m ∈ M) will be
resumed and each goal not selected (o ∈ {O − M}) will be suspended.

4 Empirical Evaluation

This section presents the design of experiments, the infrastructure and the ana-
lytical methods used to evaluate the Huginn. The Subsect. 4.1 presents the design
of the experiments where we define the agents code, the input variables and the
sample set size. The Subsect. 4.2 presents the infrastructure used in the experi-
ments and the analytical methods used to extract the data of output variable,
the usage percentage. The usage percentage is how much CPU time was used to
execute the Huginn in relation to the other processes of the agent.

4.1 Design of Experiments

The aim of this evaluation is to answer the question: what is the impact of
each input variables in the performance of Huginn agent reasoning?
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Algorithm 1. Huginn for Jason algorithm
Inputs: Events queue (Fi); Goals set (O); Conflict set (C); Resources set (R)

1 newDeliberation←false;
2 for each f ∈ Fi do
3 if f means the agent has the goal o from a norm or desire then
4 O ← O ∪ {o};
5 newDeliberation←true;

6 if f means the agent has more resource then
7 newDeliberation←true;

8 for each o ∈ O do
9 if expiration condition of o is true then

10 O ← O\{o};
11 drop(o);
12 newDeliberation←true;

13 if newDeliberation then
14 M ← deliberation(O,C,R) ;
15 for each o ∈ O − M do
16 suspend(o);

17 for each m ∈ M do
18 resume (m);

We choose a simple scenario to evaluate the impact of the Huginn on the reason-
ing cycle, because this is the main goal of this paper. In this scenario, the agent
has different norms and desires, but the plan that reaches the goal generated
from them is the same for all. The plan calculates the fifteenth element of the
Fibonacci series. The plan is the same for all because his role in the experiment
is just to simulate time consumption. Also in the designed scenario, the agent
adds one new desire or norm by cycle to stress the deliberation process where
the set O is continuously changed.

These experiments has four independent input variables: number of goals
from desires and norms (O), conflicts between desires and norms (C), resources
available (Q) and resources types (R). These variables can impact the results
of the tests. In order to evaluate Huggin under these variables, their values are
varied in three classes (low, medium and high) as shown in Table 1. The conflict
variable (C) is a percentage of the maximal quantity of conflict. For example, 100
norms taken two by two produces and arrangement of 10000 different combina-
tions. However, conflicts between desires and norms are symmetric, and therefore
it is possible to represent 5000 combinations of conflicts. If C is 50 %, it will be
randomly generated 2500 conflicts.

The sample set is composed of agent instances created using the values of the
Table 1. To obtain a good sample set we observed two items: the randomness and
the coverage of the sample set. To ensure the randomness, the benefits, sanc-
tions and resources required are generated randomly, minimizing the effects of
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Table 1. Variables X Values

Variable Low Medium High

O 10 50 100

C 10 % 50 % 90 %

Q 30 70 100

R 1 2 3

unexpected variability in the observed responses [14]. The benefits and sanctions
range is from 0 to 1. The resources required range from 0 to 10. The conflicts
between pairs of goals are also randomly generated. To ensure the coverage,
we combined the input variables and their values (described in the Table 1) to
generate one sample for all possibles combinations. In this case, we produced 81
samples (valuesvariables = 34 = 81). To improve results accuracy, we doubled the
sample set size, generating 2 samples for each possible combination. Therefore,
it was randomly generated 162 samples1.

4.2 Infrastructure and Analytical Methods

The Huginn for Jason was developed in Java with JNI to call the GLPK2 [15]
to solve the deliberation problem. We customize the reasoning cycle of the
Jason agent in its version 1.4.1. The GLPK version used was 4.32. The machine
employed to run the tests is an iMac with a processor 3.06 GHz (Intel Core 2
Duo), 4 GB memory (DDR3). The Operating system was OS X Yosemite. The
Java version was 1.8. The profiler used was the Java HProf [16]. The GNU time
was used to capture the execution elapse time.

Tests samples were executed once each to discover the CPU usage percentage
of the Huginn compared to all the agent use. In the experiment, we used a
profiler to discover the CPU usage of the deliberation process. To collect this
information, the profiler injects code into every method entry and exit, keeping
track of exact method call counts and the time spent in each method.

5 Results and Discussion

To discover the agent behavior for the obtained data we fit them into a quadratic
function and observed its adherence of the data (input variables). The following
sections present:

– the quadratic generic model [14] that is based on the obtained data will be
fitted to reveal the relation among the input and output variables;

– the quality evaluation of the model fitted for each output variable.

1 To obtain the sample set send an e-mail to: tiagolschmitz@gmail.com.
2 http://www.gnu.org/software/glpk/.

http://www.gnu.org/software/glpk/
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5.1 Model Fitting

A quadratic polynomial equation produces a function of independent variables
and their interaction to predict the response. In general, the response for the
quadratic polynomials is described like in (19).

Y = β0 +
∑

βixi +
∑

βiix
2
i +

∑ ∑
βijxijxj (19)

where Y is the response (in this paper the usage percentage and the execution
time); βi is the intercept coefficient, βii is the squared terms and βij is the
interaction terms, and xi and xj are the independent variables (In our case: O,
C, Q and R variables). Evaluation of variance (ANOVA)3 was applied to estimate
the effects of main variables and their potential interaction effects on the Huginn.
We conducted two experiments. The relation among the usage percentage with
the parameters and the relation among the execution time with the parameters.
The statistical evaluation of these experiments are described in the Subsect. 5.2.

5.2 Statistical evaluation

Results obtained from the CPU usage percentage experimentation has a
behavior described by a second order polynomial equation described in (20) that
could relate the usage percentage (U) with the input variables (O,R,C,Q).

U = − 0.2164 + 1.905O + 2.326R + 0.4186C (20)

+ 0.003221Q − 0.009929O2 − 0.06296R2

− 0.002555C2 + 0.00005617Q2 − 0.00624OR

+ 0.001489OC − 0.01542RC − 0.000274OQ

− 0.002835RQ + 0.00000398CQ − 0.00002729ORC

+ 0.00009597ORQ + 0.000001758OCQ

− 0.000003013RCQ − 0.0000009042ORCQ

R-square is a statistical measure of how close the data are to the fitted regres-
sion line. It is also known as the coefficient of determination, or the coefficient
of multiple determination for multiple regression. For the experiment, the model
fitted has an ANOVA R-squared equals to 0.9852. The closer the R-squared value
is to 1, better the empirical model fit the actual data. On the other hand, the
smaller the value of R-squared, the lesser will be the relevance of the dependent
variables of the model in explaining the behavior. Therefore the predicted values
match the observed values reasonably.

If the p value for models is less than 0.05, the model is significant which is
desirable because it indicates that the terms in the model have a significant effect
on the response. In our experiment the p-value is < 2.2 × 10−16. Therefore the
model has a significant effect on the response. The statistical evaluation obtained
from the analysis of variance (ANOVA) is a quadratic model shown in Table 2.
In this case the terms related to the O and C input variables are significant.
3 Using R Statistical Software.
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Table 2. Anova Table: Percentual Usage

M. Terms p value M. Terms p value

O < 2.2 × 10−16 RC 0.1181

R 0.7021 OQ 0.7957

C < 2.2 × 10−16 RQ 0.9849

Q 0.9292 CQ 0.9898

O2 < 2.2 × 10−16 ORC 0.8031

R2 0.9314 ORQ 0.8990

C2 1.077 × 10−7 OCQ 0.9960

Q2 0.9268 RCQ 0.9095

OR 0.7130 ORCQ 0.9412

OC 1.685 × 10−6

The influence of O and C (variables more relevant) are observable in the
graph of Fig. 3. It is possible to see the quadratic behavior of CPU usage per-
centage. The conflict influences directly the CPU usage percentage. For example,
the point (10,10) corresponds a smaller percentage usage than the point (10,90).
The same way the goals from desires and norms quantity influences in the usage
percentage.

Fig. 3. CPU Usage percentage graph (Color figure online)

The mathematical model used in this evaluation could predict the behavior of
Huginn for CPU use. The evaluation conducted in this paper concludes that the
usage grows quickly when the numbers of desires and norms (O) and the conflicts
(C) increase. Therefore, the Huginn deliberation process is recommended to
agents with low quantity of norms and desires.
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6 Related Works

There have been several works dealing with normative programming frameworks
and middleware to support the development of normative multi-agent organi-
zations, and such frameworks are often designed to inter-operate with existing
agent’s languages programs. Some of agent’s architectures allow the agent to
deliberate about whether to comply with norms.

For example, the BOID model proposes a BDI extension with the explicit
obligation notion. Agents of type BOID [11] are composed of four components:
beliefs, obligations, intentions and desires. This is one of the first models that
works with obligations. This model uses static preferences to rank the compo-
nents. The agent uses the ranking to deliberate about norms.

In contrast, the Carabelea’s model [17] works before the agent joins the orga-
nization. This model proposes to use the social power theory [18,19] for the agent
to deliberate about joining a group. The Carabelea’s objective is to use this the-
ory for the agent understands its powers and the powers of the other agents to
deliberate about the entrance in the organization. Carabelea’s model enables the
agent to reason about dependencies among agents. On the other hand, after the
agent has joined the organization, it will obey all the norms.

Kollingbaum model [9] is another model where the agent tries to fulfill all
norms. But, if there are conflicts between norms the agent detects and solves
them. Kollingbaum defines algorithms to detect and to solve the norms conflict.
They use seven strategies: arbitrary decision, recency, seniority, cautions, bold,
renegotiate and social power.

Criado model presents an architecture called n-BDI (normative BDI). The
deliberation process about norms uses utility functions. Thus, the agent uses
the rewards and sanctions to define which norms will be accepted [20]. Other
relevant model is the N-2APL [21]. This model allows the creation of agents
capable to deliberate about norms. The N-2APL adds to 2APL language [22]
the support to normative concepts as obligations, prohibitions, sanctions and
deadlines. The deliberation process considers deadlines and priority criteria to
choose the norms.

The deliberation process proposed in Huginn has some similarities with
related studies like the use of N-BDI architecture. The Huginn model has how-
ever a different deliberation process. It does not use a preference systems to
select norms and desires. The deliberation process has a singular feature when
compared with the related studies: it worked with limited resources to deliber-
ate about norms and desires. In addition, the process uses another elements like
rewards, sanctions, intensities and necessities to deliberate.

While most of the related works are extensions of the BDI architecture, we
did not find empirical evaluations of the deliberation impact on the reasoning
cycle of the agents.
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7 Conclusion

This paper presents an empirical evaluation of the Huginn, constrained norm-
aware BDI reasoner. In this paper, we conclude that the proposed mathematical
model could predict the behavior of Huginn for CPU usage percentage. We
conclude, also, that the usage grows quickly when the numbers of desires and
norms (O) and the conflicts (C) increase. Therefore, the Huginn deliberation
process is recommended for agents with low quantity of norms and desires. For
instance, in our experiment, agents with more than 50 norms or desires spend
more than 40% of the time doing the Huginn deliberation.

The next step is to implement a real case to evaluate how the model behaves.
The proposed scenario is a route planning for an Unmanned Aerial Vehicle using
the Huginn.

The first future work is to handle conflicts considering more than two Huginn
goals. For example, if an agent has 3 norms: (n1) ride a bicycle, (n2) arrive at
point X, 5 miles away within 1 h and (n3) take a 40 mile detour then there is no
conflict in pairs of norms. However, it is not feasible to fulfil all the three norms.

The second future work is to compare with others norms reasoners. To accom-
plish that, it this is necessary to maturate the test scenario and find a way to
include the profiling tools in the other models.

The third future work is to consider the relation with others agents. In this
branch we will consider the relation of power among the agents to define how
this can be modelled in the Huginn.
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Abstract. Autonomous agents operating in a dynamic environment
need constantly to reason about actions in pursuit of their goals, while
taking into consideration possible norms imposed on those actions. Nor-
mative practical reasoning supports agents decision making about what
is best for an agent to do in a given situation. What makes practical
reasoning challenging is the conflict between goals that the agent is pur-
suing and the norms that the agent is trying to uphold. We offer a formal
model that allows the agents to plan for conflicting goals and norms in
presence of durative actions that can be executed concurrently. We com-
pare plans based on decision-theoretic notions (i.e. utility) such that the
utility gain of goals and utility loss of norm violations are the basis of this
comparison. The set of optimal plans consists of plans that maximise the
overall utility, each of which can be chosen by the agent to execute. The
formal model is implemented computationally using answer set program-
ming, which in turns permits the statement of the problem in terms of a
logic program that can be queried for solutions with specific properties.
We demonstrate how a normative practical reasoning problem can be
mapped into an answer set program such that the optimal plans of the
former can be obtained as the answer sets of the latter.

1 Introduction

Norms define an ideal behaviour for an autonomous agent in an open environ-
ment. However, having individual goals to pursue, self-interested agents might
not want or be able always to adhere to the norms imposed on them. Depend-
ing on the way they are given a computational interpretation, norms can be
regarded as soft or hard constraints. When modelled as hard constrains, norms
are regarded as regimented, in which case the agent has no choice but blindly to
follow the norms [12]. Although regimentation guarantees norm compliance, it
greatly restricts agent autonomy. Conversely, enforcement approaches in which
norms are modelled as soft constraints, leave the choice of obeying or disobey-
ing the norms to the agent. However, in order to encourage norm compliance,
there are consequences introduced in terms of punishment in case the agent vio-
lates the norm [25,29]. Moreover, in some enforcement approaches [1] the agent
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 335–353, 2016.
DOI: 10.1007/978-3-319-42691-4 19
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is rewarded for complying with a norm. The enforcement approaches can be
broadly divided in two categories. In the utility-based approaches [1,2,26] there
is a utility gain/loss associated with respecting norm or not, whereas in the pres-
sured norm compliance approaches [25], violating a norm or not is determined
by the interference of the norm in satisfying or hindering the agent goals. Gain-
ing better utility or not losing utility is the basis of normative reasoning in the
former category, while in the latter it is the potential conflicts between norms
and agent goals. If there is no such conflict, the agent only complies with a norm
if there are goals that are hindered by punishment of violation, and violates the
norms otherwise. On the other hand, if there is a conflict, the agent does not
comply unless the goals hindered by punishment are more important than goals
facilitated by compliance.

Existing work on normative practical reasoning using enforcement have con-
sidered different phases of the practical reasoning process, such as plan genera-
tion and plan selection. In [27] norms are taken into account in the agent’s plan
generation phase, whereas [26] takes norms into consideration when deciding
how to execute a pre-generated plan with respect to the norms triggered by that
plan. There is also a substantial body of work on integration of norms into the
BDI architecture [30]. The BOID architecture [7] extends BDI with the concept
of obligation and uses agent types such as social, selfish, etc. to handle the con-
flicts between beliefs, desires, intentions and obligations. Another extended BDI
architecture is proposed in [9], which focusses on norm recognition and consider-
ing them in agent decision making processes. More recently, [2] proposed a novel
way of utilising permission norms in a BDI agent when the agent does not have
complete information about the environment it operates in.

In this paper we define an approach for practical reasoning that considers
norms in both plan generation and plan selection. We extend the current work
on normative plan generation such that the agent attempts to satisfy a set of
potentially conflicting goals in the presence of norms, as opposed to conventional
planning problems that generate plans for a single goal [26,27]. Additionally,
since in reality the actions are often non-atomic, the model allows for planning
with durative actions that can be executed concurrently. Durative actions reflects
the real time that a machine takes to execute certain actions, which is also known
as “real-time duration” of actions [6]. More importantly, another contribution
of this paper is introducing an enforcement approach that is a combination of
utility-based and pressure-based compliance methods mentioned earlier. In order
to do so, we first extend the notion of conflict defined in [25] by allowing conflict
between norms as well as between norms and goals. We then define a penalty
cost for norm violation, regardless of the existence of conflict. Whenever a norm
is triggered, both outcomes of norm compliance and violation and their impacts
on hindering or facilitating other goals and norms, are generated and compared
according to their utility. Moreover, in those cases that there are no conflicts
and no goals or norms hindered by the punishment of violation: loss of utility
drives the agent toward compliance. Regarding plan selection, generated plans
are compared based on the utility of the goals satisfied and cost of norms violated
in the entire plan. Both plan generation and plan selection mechanisms proposed
here are implemented using Answer Set Programming (ASP) [15].
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ASP is a declarative programming paradigm using logic programs under the
answer set semantics. In this paradigm the user provides a description of a
problem and ASP works out how to solve the problem by returning answer
sets corresponding to problem solutions. The existence of efficient solvers to
generate the answers to the provided problems has increased the application of
ASP in different domains of autonomous agents and multi-agent systems such
as planning [24] and normative reasoning [8,28]. Several action languages (e.g.
event calculus [21], A [14] and its descendants (e.g. B, C [14]), Temporal Action
Logics (TAL) [11]) have been implemented in ASP [22,23], which indicates that
ASP is an appropriate tool for reasoning about actions. We therefore, propose
an implementation of STRIPS [13] as an action language in ASP.

This paper is organised as follows. The formal model and its semantics are
proposed in Sect. 2, followed by the computational implementation of the model
in Sect. 3. Section 4 provides an example that illustrates the main features of
the model in action. Finally, after the discussion of related work in Sect. 5, we
conclude in Sect. 6.

2 A Model for Normative Practical Reasoning

This section introduces a formal model and its semantics for normative practical
reasoning in the presence of durative actions. The foundation of this model is
classical planning in which an agent is presented with a set of actions and a
goal. Any sequence of actions that satisfies the goal is a solution to the planning
problem. In Sect. 2.1 we extend the classical planning problem by substituting a
single goal with a set of potentially inconsistent goals G and a set of norms N . A
solution for such a problem is any sequence of actions that satisfies at least one
goal. The agent has the choice of violating or complying with triggered norms,
while satisfying its goals.

2.1 Syntax

A normative planning system is a tuple P = (FL,Δ,A,G,N) where FL is a set
of fluents, Δ is the initial state, A is a set of durative STRIPS-like [13] actions, G
denotes the set of agent goals and N denotes a set of norms imposed on the agent
that define what an agent is obliged or forbidden to do under certain conditions.
We now describe each of these in more details.

Fluents: FL is a set of domain fluents that accounts for the description of the
domain the agent operates in. A literal l is a fluent or its negation i.e. l = fl or
l = ¬fl for some fl ∈ FL. For a set of literals L, we define L+ = {fl|fl ∈ L}
and L− = {fl|¬fl ∈ L} to denote the set of positive and negative fluents in L
respectively. L is well-defined if there exists no fluent fl ∈ FL such that fl ∈ L
and ¬fl ∈ L, i.e. if L+ ∩ L− = ∅.

The semantics of the model are defined over a set of states Σ. A state s ⊆ FL
is determined by set of fluents that hold true at a given time, while the other
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fluents (those that are not present) are considered to be false. A state s ∈ Σ
satisfies fluent fl ∈ FL, denoted s |= fl, if fl ∈ s. It satisfies its negation ¬fl
if fl �∈ s. This notation can be extended to a set of literals as follows, set X is
satisfied in state s, s |= X, when ∀x ∈ X · s |= x.

Initial State: The set of fluents that hold at the initial state is denoted by
Δ ⊆ FL.

Actions: A is a set of durative STRIPS-like actions, that is actions with pre-
conditions and postconditions that take a non-zero duration of time to have
their effects in terms of their postconditions. A durative action a = 〈pr, ps, d〉 is
composed of well-defined sets of literals pr(a), ps(a) ⊆ FL to represents a’s pre-
conditions and postconditions and a positive number d(a) ∈ N for its duration.
Postconditions are further divided into a set of add postconditions ps(a)+ and
a set of delete postconditions ps(a)−. An action a can be executed in a state s
if its preconditions hold in s (i.e. s |= pr(a). The postconditions of a durative
action are applied in the state s at which the action ends (i.e. s |= ps(a)+ and
s �|= ps(a)−).

The model does not allow parallel actions, since it is not realistic to assume
that a single agent initiates several actions at the exact same point in time.
Concurrency however, is allowed unless there is a concurrency conflict between
actions, which prevents them from being executed in an overlapping period of
time. The definition of concurrency conflict is adopted from [4] as follows: two
actions a1 and a2 are in a concurrency conflict, if the preconditions or postcon-
ditions of a1 contradict the preconditions or postconditions of a2.

Goals: G denotes a set of (possibly inconsistent) goals. Goals identify the state
of affairs that an agent wants to satisfy. Each goal g = 〈r, v〉 is defined as a set of
well-defined literals r, that are requirements that should hold in order to satisfy
the goal and a positive integer v ∈ N that shows the value or utility gain of
the agent upon satisfying this goal. Goal g’s requirements and value are denoted
r(g) and v(g), respectively. Goal g is satisfied in the state s when s |= r(g).

Norms: N denotes a set of event-based norms to which the agent is subject.
Each norm is a tuple of the form n = 〈d o, a1, a2, dl, c〉, where

– d o ∈ {o, f} is the deontic operator determining the type of norm, which can
be an obligation or a prohibition. The agent is assumed to be operating in a
permissible society, hence what is not prohibited is permitted.

– a1 ∈ A is the action that counts as the norm activation condition.
– a2 ∈ A is the action that is the subject of the obligation or prohibition.
– dl ∈ N is the norm deadline relative to the activation condition, which is the

completion of execution of a1.
– c ∈ N is the penalty cost that will be applied if the norm is violated.

An obligation expresses that taking action a1 obliges the agent to take action a2

within dl time units of the end of execution of a1. Such an obligation is complied



Implementation of Normative Practical Reasoning with Durative Actions 339

with if the agent starts executing a2 before the deadline and is violated otherwise.
A prohibition expresses that taking action a1 prohibits the agent from taking
action a2 within dl time units of the end of execution of a1. Such a prohibition
is complied with if the agent does not start executing a2 before the deadline and
is violated otherwise.

2.2 Semantics

Let P = (FL,Δ,A,G,N) be a normative planning problem. A plan is rep-
resented by a sequence of actions taken at certain times, denoted as: π =
〈(a0, t0), · · · , (an, tn)〉. (ai, ti) means that action ai is executed at time ti ∈
Z
+ s.t. ∀i < j we have ti < tj . The total duration of a plan, Makespan(π),

is calculated by the relation: Makespan(π) = max(ti + d(ai)). The evolu-
tion of a sequence of actions for a given starting state s0 = Δ is a sequence
of states 〈s0, · · · sm〉 for every discrete time interval from t0 to m, where
m = Makespan(π). The transition relation between two states is defined by
Eq. 1 below. If an action aj ends at time ti, state si results from removing all
delete postconditions and adding all add postconditions of action aj to state
si−1. If there is no action ending at si, it remains the same as si−1.

∀i > 0 : si =

{
(si−1 \ ps(aj)−) ∪ ps(aj)+ i = tj + d(aj)
si−1 otherwise

(1)

A sequence of actions π satisfies a goal, π |= g, if there is at least one state si

in the sequence of states caused by the sequence of actions such that si |= g. An
obligation n1 = 〈o, ai, aj , dl, c〉 is complied with in plan π (i.e. π |= n1), if the
action that is the norm activation condition has occurred ((ai, ti) ∈ π), and the
action that is the subject of the obligation occurs ((aj , tj) ∈ π) between when the
condition holds and when the deadline expires (tj ∈ [ti +d(ai), dl+ti)+d(ai)). If
ai has occurred but aj does not occur at all or occurs in a period other than the
one specified, the obligation is violated (i.e. π �|= n1). In the case of prohibition
n2 = 〈f, ai, aj , dl, c〉, compliance happens if the action that is the norm activation
condition has occurred ((ai, ti) ∈ π) and the action that is the subject of the
prohibition does not occur in the period between when the condition holds and
when the deadline expires (� ∃(aj , tj) ∈ π s.t. tj ∈ [ti + d(ai), dl + ti + d(ai)). If
ai has occurred and aj occurs in the specified period, the prohibition is violated
(i.e. π �|= n2). The set of satisfied goals, norms complied with and norms violated
in plan π are denoted as Gπ, Ncmp(π) and Nvol(π), respectively.

In classical planning, any sequence of actions that satisfies the goal is a
solution to the planning problem. Extending a planning problem to cater for
conflicting goals and norms requires considering different types of conflicts as
follows:

Conflicting Actions. Actions ai and aj have a concurrency conflict iff the
preconditions or postconditions of ai contradict the preconditions or postcondi-
tions of aj .
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cf action = {(ai, aj) s.t. ∃r ∈ pr(ai) ∪ ps(ai),¬r ∈ pr(aj) ∪ ps(aj)} (2)

Conflicting Goals. Goal gi and gj are in conflict iff satisfying one requires
bringing about a state of affairs that is in conflict with the state of affairs required
for satisfying the other.

cf goal = {(gi, gj) s.t. ∃r ∈ gi,¬r ∈ gj} (3)

Conflicting Norms. Obligations n1 = 〈o, a1, a2, dl, c〉 and n2 = 〈o, b1, b2, dl′, c′〉
are in conflict in the context of plan π iff: (i) their activation conditions hold,
(ii) the obliged actions a2 and b2 have a concurrency conflict and (iii) a2 is in
progress during the entire period over which the agent is obliged to take action
b2. The set of conflicting obligations is formulated as:

cfπ
oblobl = {(n1, n2) s.t. (a1, ta1), (b1, tb1) ∈ π; (a2, b2) ∈ cf action;

ta2 ∈ [ta1 + d(a1), ta1 + d(a1) + dl);
[tb1 + d(b1), tb1 + d(b1) + dl′) ⊆ [ta2 , ta2 + d(a2))} (4)

On the other hand, an obligation n1 = 〈o, a1, a2, dl, c〉 and a prohibition
n2 = 〈f, b1, a2, dl′, c′〉 are in conflict in the context of plan π iff: (i) their activation
conditions hold and (ii) n2 forbids the agent to take action a2 during the entire
period over which n1 obliges the agent to take a2. The set cf π

oblpro denotes the
set of conflicting obligations and prohibitions as below:

cf π
oblpro = {(n1, n2) s.t. (a1, ta1), (b2, tb2) ∈ π;

[ta1 + d(a1), ta1 + d(a1) + dl) ⊆
[tb2 + d(b2), tb2 + d(b2) + dl′)} (5)

The entire set of conflicting goals and norms is defined as:

cf π
norm = cf π

oblobl ∪ cf π
oblpro (6)

Conflicting Goals and Norms. An obligation n = 〈o, a1, a2, dl, c〉 and a goal
g are in conflict, if taking action a2 that is the subject of the obligation, brings
about postconditions that are in conflict with the requirements of goal g. The
set of conflicting goals and obligations is formulated as:

cf goalobl = {(g, n) s.t. ∃r ∈ r(g),¬r ∈ ps(a2)} (7)

In addition, a prohibition n = 〈f, a1, a2, dl, c′〉 and a goal g are in conflict,
if the postconditions of a2 contribute to satisfying g, but taking action a2 is
prohibited by norm n.

cf goalpro = {(g, n) s.t. ∃r ∈ r(g), r ∈ ps(a2)} (8)

The entire set of conflicting goals and norms is defined as:

cf goalnorm = cf goalobl ∪ cf goalpro (9)
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A sequence of actions π is a plan for P , if all the fluents in Δ hold at time t0
and for each i, the preconditions of action ai hold at time ti, as well as through
the execution of ai, and a non-empty subset of goals is satisfied in the path from
initial state s0 to the state holding at time tm, where m = Makespan(π). Fur-
thermore, extending the conventional planning problem by multiple potentially
conflicting goals and norms requires defining extra conditions that makes a plan
a valid plan and a solution for P . Plan π is a valid plan for P iff:

1. all the fluents and only those fluents in Δ hold in the initial state: s0 = Δ
2. the preconditions of action a1 holds at time ta1 and throughout the execution

of a1:
∀k ∈ [ta1 , ta1 + d(a1)), sk |= pr(a1)

3. the set of goals satisfied by plan π is a non-empty consistent subset of goals:

Gπ ⊆ G and Gπ �= ∅ and � ∃gi, gj ∈ Gπ s.t. (gi, gj) ∈ cf goal

4. there is no concurrency conflict between actions that are executed concur-
rently:

� ∃(ai, tai
), (aj , taj

) ∈ π s.t. tai
≤ taj

< tai
+ d(ai), (ai, aj) ∈ cf action

5. there is no conflict between norms complied with.

� ∃ni, nj ∈ Ncmp(π) s.t. (ni, nj) ∈ cf π
norm

6. there is no conflict between goals satisfied and norms complied with:

� ∃g ∈ Gπ and n ∈ Ncmp(π) s.t. (g, n) ∈ cf goalnorm

Let satisfied(π) and violated(π) be the set of satisfied goals and violated
norms in plan π. The utility of a plan π is defined by Eq. 10 where Value is
a function that returns the value of goals being satisfied and Cost returns the
penalty cost of norms being violated in that plan. The set of optimal plans, Opt,
are those plans that maximise the utility.

Utility(π) =
∑

gi∈satisfied(π)

V alue(gi) −
∑

nj∈violated(π)

Cost(nj) (10)

3 An Answer Set Programming Implementation

Encoding a practical reasoning problem as a declarative specification makes
it possible to reason computationally about agent actions, goals and norms.
This enables an agent to keep track of actions taken, goals satisfied and norms
complied with or violated at each state of its evolution. More importantly, it
provides the possibility of querying traces that fulfil certain requirements such
as satisfying some specific goals. Consequently, instead of generating all possible
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traces and looking for those ones that satisfy at least one goal, only those ones
that do satisfy at least one goal are generated.

ASP programs consist of a finite set of rules formed from atoms. Atoms
are the basic components of the language that can be assigned a truth value
(true or false). Literals are atoms or negated atoms. Atoms are negated
using classical negation (¬) or negation as failure (not). The former states
that something is false, whereas the latter states something is assumed false
since it cannot be proven true. The general rule syntax in ASP is: l0 ←
l1, · · · , lm, not lm+1, · · · , not ln., in which li is an atom (e.g. a) or its nega-
tion (e.g. ¬a). l0 is the rule head and l1, · · · , lm, not lm+1, · · · , not ln are the
body of the rule. The above rule is read as: l0 is known/true, if l1, · · · , lm are
known/true and none of lm+1, ln are known. If a rule body is empty, that rule
is called a fact and if the head is empty, it is called a constraint indicating that
none of the answers should satisfy the body.

3.1 Translating the Model into ASP

In this section, we demonstrate how a planning problem P = (FL,Δ,A,G,N)
can be mapped into an answer set program such that there is a one to one
correspondence between solutions for the planning problem and the answers
of the program. The mapping uses the following atoms: state(s) for denoting
the states; time(t, s) to indicate the time at state s; holdsat(x, s) to express
fluent x is true in state s; occurred(a,s) to encode action a occurs at state s.
There are additional atoms used in Figs. 2, 3, 4, 5 and 6, that will be discussed in
their respective sections. Please note that the variables begin with capital letters
in ASP.

Time and Initial State (Fig. 1). The facts produced by Line 1 provide the pro-
gram with all available states, while Line 2 defines the order of states. The
maximum number of states, q, results from sum of duration of all actions:
q =

∑n
i=1 d(ai). The final state is therefore stated as sq in Line 3. Line 4 illus-

trates the initial time that increases by one unit from one state to the state next
to it (Line 5). Finally, Line 6 encodes the fluents that hold at initial state s0.

Actions (Fig. 2). Each durative action is encoded as action(a, d) (Line 7), where
a is the name of the action and d is its duration. Recalling from Sect. 2, the
preconditions pr(a) of action a hold in state s if s |= pr(a). This is expressed in
Line 8, where pr(a)+ and pr(a)− are positive and negative literals in pr(a). In
order to make the coding more readable we introduce the shorthand EX(X,S)
where X is a set of fluents that should hold at state S. For all x ∈ X, EX(X,S) is
translated into holdsat(x,S) and for all ¬x ∈ X, EX(¬X,S) is translated into
not EX(x,S) using negation as failure. The agent has the choice to take any of
its actions in any state (Line 9), however, the preconditions of a durative action
should be preserved when it is in progress. A durative action is in progress,
inprog(A,S), from the state in which it begins to the state in which it ends
at (Lines 10 to 11). Then, Line 12 rules out the execution of an action, when
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Fig. 1. Rules for time component (Lines 1–5) and initial state (Line 6)

the preconditions of the action do not hold during its execution. In addition
there should not be any action in progress in the final state (Line 13). Another
assumption made in Sect. 2, is the prevention of parallel actions, which prevents
the agent from starting two actions at the same time (Lines 14 to 15). Once
an action starts in one state, the result of its execution is reflected in the state
where the action ends. This is expressed through (i) Lines 16 to 17 that allow the
add postconditions of the action to hold when the action ends, and (ii) Lines 18
to 19 that allow the termination of the delete postconditions. The termination
happens in the state before the end state of the action. The reason for this is
that all the fluents that hold in a state, hold in the next state unless they are
terminated (Lines 20 to 21). Since the delete postconditions of an action are
terminated in the state before the end state of the action, they will not hold
in the following state, in which the action ends (i.e. they are deleted from the
state).

Goals (Fig. 3). Line 22 encodes goal g with value of v. From Sect. 2, we have goal
g is satisfied in state s if s |= r(g). This is expressed in Line 23, where r(g)+ and
r(g)− are the positive and negative literals in r(g).

Norms (Fig. 4). The conditional event-based norms that are the focus of this
research are discussed in the previous section. Line 24 encodes norm n with
penalty cost of c upon violation. Lines 25–39 deal with obligations and prohibi-
tions of form: n = 〈d o, a1, a2, dl, c〉. In order to implement the concepts of norm
compliance and violation described in Sect. 2.2, we introduce normative fluents
o(n, a2, dl′) and f(n, a2, dl′) that first hold in the state in which action a1’s exe-
cution ends. An obligation fluent o(n, a2, dl′) denotes that action a2 should be
brought about before deadline dl′or be subject to violation, whereas prohibition
fluent f(n, a2, dl′) denotes that action a2 should not be brought about before
deadline dl′ or be subject to violation. If a1 with duration d1 occurs at state
S, where time is T , the agent has dl units time starting from end of action
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Fig. 2. Rules for translating actions

Fig. 3. Rules for translating goals

a1 (T2=T1+d1) to comply with the norm imposed on it. Lines 25–26 and 32–33
indicate the establishment of obligation and prohibition fluents.

In terms of compliance and violation, the occurrence of an obliged action
before the deadline expires, counts as compliance (Lines 27 to 28) and the
absence of such an occurrence before the deadline is regarded as violation
(Line 30). Atoms cmp(o|f(n, a, DL), S) and vol(o|f(n, a, DL), S) are used to indi-
cate compliance or violation of norm n in state S. In both cases of compliance
and violation, the norm is terminated (Lines 29 and 31). On the other hand, a
prohibition is complied with if the forbidden action does not happen before the
deadline (Lines 34 to 35) and is violated if it does happen before the deadline
(Lines 37 to 38). As with obligations, after being complied with or violated, the
prohibitions are terminated (rules 36 and 39).

3.2 Mapping of Answer Sets to Plans

In Sect. 2.2 we defined the criteria for a sequence of actions to be identified as a
valid plan and solution for P = 〈FL,Δ,A,G,N〉. Figure 5 provides the coding
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for the criteria. The rule in Line 41 is responsible for constraining answer sets to
those that fulfil at least one goal by excluding answers that do not satisfy any
goals. The input for this rule is provided in Line 40. Line 42 prevents satisfying
two conflicting goals, hence guaranteeing the consistency of satisfied goals in a
plan. Preventing the concurrency of conflicting actions, is implemented using
Lines 43–44, by expressing that such two actions cannot be in progress together.
Lines 45 and 46 provides the input for Lines 47 and 48, which exclude the possi-
bility of satisfying a goal and complying with a norm that are conflicting. Note
that the implementation prevents complying with conflicting norms automati-
cally: (i) since it is not possible to execute two conflicting actions concurrently,
if two obligations would require that, one of them has to be violated, while (ii)
regarding conflicting obligation and prohibition, by definition, taking the obliged
action by the agent and hence complying with the obligation causes the violation
of the other norm that enforces the prohibition of taking the very same action,
and vice versa.

Theorem 1. Let program Πbase consist of Lines 7 – 48. Given a planning prob-
lem P = (FL,Δ,A,G,N), for every answer set Ans of Πbase the set of atoms
of the form occurred(a,s)1 in Ans encodes a solution to the planning problem
P . Conversely, each solution to the problem P corresponds to a single answer
set of Πbase.

Fig. 4. Rules for translating norms

1 In the formal model a plan/solution π for problem P is defined as a set of action,
time pairs (e.g. (ai, ti)), whereas in the answer sets a plan is expressed by action,
state pairs (e.g. occurred(a,s)). Action, state pairs can easily be mapped to action,
time pairs by replacing the state with the time that holds in that state.
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Fig. 5. Solutions for problem P

Proof (sketch). The proof can be obtained through structural induction. Line 9
generates all sequences of actions. Line 6 ensures that all fluents in Δ hold at
t0. Line 12 guarantees that the precondition of an action hold all through its
execution. Line 41 indicates that a non-empty subset of goals has to be satisfied
in a plan, while Line 42 ensures the consistency of the goals satisfied. Preventing
the concurrency conflict is provided in Lines 43–44. Finally, Lines 47–48 eliminate
the possibility of conflict between goals satisfied and norms complied with. This
implies that the sequence of actions that is part of the answer set satisfies the
conditions to be a solution to the encoded planning program. Conversely, each
solution satisfies all the program’s rules in a minimal fashion.

3.3 Optimised Plans

In order to find optimal plans, in Fig. 6 we show how to encode the utility
function defined by Eq. 10. The sum of values of goals satisfied in a plan is
calculated in Line 49. The sum of costs of norms violated in a plan is calculated
in Line 49, by first providing the input for this line in Lines 50 and 51. Having
calculated value(TV) and cost(TC), the utility of a plan is denoted in Line 53,
which is subject to the optimisation statement in the final line.

Theorem 2. Let program Π = Πbase ∪Π∗, where Π∗ consists of Lines 49 – 54.
Given a planning problem P = (FL,Δ,A,G,N), for every answer set Ans of Π
the set of atoms of the form occurred(a,s) in Ans encodes an optimal solution
to the planning problem P . Conversely, each optimal solution for the problem P
corresponds to a single answer set of Π.
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Fig. 6. Optimised solutions for P

Proof (Sketch). Theorem 1 ensures that all solutions are represented by answer
sets and vice versa. The optimality of solutions is guaranteed in this program.
Line 54 ensures optimal solutions that maximise utility, which is in turn defined
in Line 53 as the difference between the cost of violation (Line 52) and goal
values (Line 49).

4 Illustrative Example

In this section, we provide a brief example that highlights the most important
features of the proposed model. Let us consider an agent with the durative
actions presented in Table 1. The agent has three goals presented with their
requirements and two different set of values in Table 2. The first goal is to get
some certificate that requires the agent to take some test, but in order to be
able to attend the test, the agent first needs to pay the fee for the test. The
second goal is to make a submission of some marking that needs to be done in
the office and the last goal is to go on strike, for which the agent needs to be a
member of union, not to go to office nor to attend any meeting on behalf of the
company. In addition, one of the agent’s action, comp funding, has a normative
consequence captured in a norm that states that if company funds are used to
pay the fee for the test, the agent is obliged to attend a meeting on behalf of
the company within 1 time unit of end of action comp funding, which results
in the payment of the fee for the test. If the agent uses the funding, but does
not attend the meeting before the deadline, it is entitled to the penalty cost of
4 units.

n = 〈o, comp funding, attend meeting, 1, 4〉
Table 3 shows the corresponding ASP code for this example based on the

code in Sect. 3. For spacial reasons, only those rules that need instantiation are
provided. For ease of reference, rules instantiated in each part of the code are
titled by their corresponding figures in Sect. 3. Moreover, only one action, drive,
and one goal, certificate, are encoded. The rest of the actions and goals can be
coded in the same way.

Following Theorem 2, we obtain a one-to-one correspondence between the
answer sets of the program in Table 3 and optimal plans for the agent to exe-
cute such that the agent utility is maximised. Table 4 illustrates the optimal
plans (as translations of the answer sets) based on two different set of values in
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Table 2. Plan π1 satisfies goals certificate and strike, however due to the con-
flict between strike and norm n, the norm is inevitably violated. Additionally,
the conflict between goal strike and submission, makes it impossible for the
agent to satisfy submission. Since the sum of utility loss of violating n and not
satisfying submission, is still less that the utility gain of satisfying strike, the
agent prefers the former to the latter. On the other hand, in plan π2 satisfy-
ing submission is preferred over satisfying strike, although they have the same
utility gain. However, satisfying strike would have implied violating n, and thus
incurring the penalty cost of 4. Therefore, in pursuit of maximising the util-
ity, the agent prefers satisfying submission and complying with n to satisfying
strike and violating n, which was the case in plan π1.

5 Related Work

The interaction between an agent’s individual goals and social norms has been
discussed in a number of works. Some such as [26,27] use utility measurement
to enforce norm compliance. In contrast, in [25] norm compliance relies on the
explicit interaction between goals and norms, but if the norm compliance or
violation does not hinder any goals there is no connection and hence no compu-
tational mechanism in place that enforces the norms. From a planning perspec-
tive, norms are taken into account in plan generation [27] and in plan selection
[20,26]. In [27] the normative state of the agent is checked by a planner after each
individual action is taken, which depending on the number of actions, imposes a
high computational cost on the step-by-step generation of plans. It is the utility
of individual actions here that determines norm compliance. On the other hand,
[20,26] consider norms as part of plan selection, starting from the assumption

Table 1. Agent Actions

Preconditions (Action, Duration) Postconditions

¬office (drive, 1) office

¬marking done, office (marking, 2) marking done

¬test done, fee paid (attend test, 1) test done

¬fee paid (comp funding, 1) fee paid

¬meeting attended, fee paid (attend meeting, 2) meeting attended

¬union member (join union, 1) union member

Table 2. Agent Goals

Goals Requirements Value1 Value2

certificate fee paid, test done 8 5

submission office, marking done 3 7

strike union member, ¬office, ¬meeting 9 7
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Table 3. Instantiated ASP code

that the agent has access to a library of pre-generated plans. In contrast to all
of [20,26,27], our work deals with both plan generation and plan selection while
taking account of norms, and like [26] we focus on the utility of the entire plan,
unlike [27] which only considers the constituent actions in sequence.



350 Z. Shams et al.

Table 4. Optimal plans

Goal Values Plans Goals Norms Utility

Value1 π1 =
〈(comp funding, 0),
(union, 1),
(attend test, 2)〉

certificate, strike violated(n) 13

Value2 π2 = 〈(drive, 0),
(marking, 1),
(comp funding, 2),
(attend meeting, 3),
(attend test, 4)〉

submission, certificate complied(n) 12

Some works [19,32] focus on interaction between an agent’s goal and its
commitments, where commitments are made by agents to one another in order
to support the realisation of their goals. Our approach is different from these
approaches for two main reasons: (i) commitments are deliberately made by the
agent, whereas norms are externally imposed to the agent; and (ii) commitments
are made to support satisfying goals, while imposed norms might be in conflict
with the agent’s goals and consequently, hinder some of them.

The Event Calculus (EC) [21] forms the basis for the implementation of some
normative reasoning frameworks, such as [2,3]. Our proposed formal model is
independent of language and could be translated to EC and hence to a com-
putational model, but the one-step translation to ASP is preferred because the
formulation of the problem is very similar to the computational model, thus
there are no conceptual gaps to bridge. Furthermore, the EC implementation
language is Prolog, which although syntactically similar to ASP, suffers from
non-declarative functionality in the form of the cut operator, which results in a
loss of completeness. Furthermore, its query-based nature that focusses on one
issue at a time, makes it cumbersome to reason about all plans.

A final point is that the norm representation and implementation proposed
here is expressive and realistic in respect of time and duration: specifically, since
the formal model and ASP implementation handle time explicitly, it is straight-
forward to represent the norm deadline as a future time instant, rather than a
state to be brought about.

6 Conclusions, Discussion and Future Work

An agent performing practical reasoning in an environment regulated by norms,
needs constantly to weigh up the importance of goals satisfied and norms com-
plied with against goals not satisfied and norms broken. This comparison is
possible when the agent has access to all possible plans, such that the decision
of which goals to pursue and which norms to respect is made based on their
impact on the entire plan. We show how this impact can be captured in a utility
function that permits the agent to execute a plan that maximises the utility.
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The focus of plan selection in this paper is on maximising the agent utility
by considering the value of goals and penalties for norm violation. While these
are sensible criteria, there are others that can be taken into account. Given that
actions modelled in this approach are durative, one such criterion is the duration
of the entire plan. Since durative actions that do not have concurrency conflicts
can be executed concurrently, there might exist some plans with the exact the
same utility while one takes longer than another. We intend to extend the plan
selection mechanism with additional criteria by using the existing multi-criteria
optimisation mechanisms in ASP.

Just like norms, in real scenarios, goals often have a deadline before which
they should be satisfied [18]). Temporally extended goals [17] are discussed in
detail in agent programming languages such as GOAL [5], however they are
not commonly used in practical reasoning frameworks. Substituting achievement
goals with temporally extended goals increases the expressiveness of the model. It
also allows defining conflict within goals and between goals and norms temporally
and which results in enriching the concept of conflict in the model.

Incorporation plan revision is also an avenue for future work. As presented
here, a plan once selected is acted out until its conclusion, but it is of course
necessary to incorporate plan revision in order to handle the inevitable dynamic
environment.

Another area of improvement is to extend the normative reasoning capability
of the model by extending it for state based norms in addition to event-based
norms. Such an extension would allow the expression of obligations and prohi-
bitions to achieve or avoid some state before some deadline. A combination of
event and state based norms [10] enriches the norm representation as well as
normative reasoning.

Lastly, we intend to build on the current ASP implementation to provide
justification for why a certain plan maximises the utility considering the goals
and norms it satisfies against those it does not. A potential starting point is [31],
where it is possible to explain why certain literals are part of an answer set of a
program and why others are not.
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Abstract. Design imposes a novel social choice problem: using a team
of voting agents, maximize the number of optimal solutions; allowing
a user to then take an aesthetical choice. In an open system of design
agents, team formation is fundamental. We present the first model of
agent teams for design. For maximum applicability, we envision agents
that are queried for a single opinion, and multiple solutions are obtained
by multiple iterations. We show that diverse teams composed of agents
with different preferences maximize the number of optimal solutions,
while uniform teams composed of multiple copies of the best agent are in
general suboptimal. Our experiments study the model in bounded time;
and we also study a real system, where agents vote to design buildings.

Keywords: Collaboration · Distributed AI · Team formation · Design
and computation · Design optimization · Design automation

1 Introduction

Teams of voting agents are a powerful tool for finding the optimal solution in
many applications [16,17,19]. Voting is a popular approach since it is easily
parallelizable, it allows the re-use of existing agents, and there are theoretical
guarantees for finding one optimal choice [2]. For design problems, however, find-
ing one optimal solution is not enough. For example, it could be mathematically
optimal under measurable metrics but lack aesthetic qualities or social accep-
tance by the target public. Besides, the solution could have a poor performance
in some key objective of a multi-objective optimization problem. Essentially,
designers need to explore a large set of optimal alternatives, to pick one solution
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not only according to her aesthetic taste (and/or the one of the target public),
but also according to preferences that may be unknown or not formalized [7,25].

Hence, we actually need systems that find as many optimal solutions as pos-
sible, allowing a human to explore such optimal alternatives to make a choice.
Even if a user does not want to consider too many solutions, they can be filtered
and clustered [5], and be presented in manageable ways [21], allowing her to
easily make an informed choice. Therefore, a system of voting agents that pro-
duces a unique optimal solution is insufficient, and we propose the novel social
choice problem of maximizing the number of optimal alternatives found by a
voting system. As ranked voting may suffer from noisy rankings when using
existing agents [11], we study multiple plurality voting iterations, allowing great
applicability and re-use of existing agents.

Traditionally, social choice studies the optimality of voting rules, assuming a
certain noise models for the agents, and rankings composed of a linear order over
alternatives [1,2]. Hence, there is a single optimal choice, and a system is suc-
cessful if it can return that optimal choice with high probability. More recently,
several works have been considering cases where there is a partial order over
alternatives [20,26], or where the agents output pairwise comparisons instead of
rankings [4]. However, these works still focus on finding an optimal alternative,
or a fixed-sized set of optimal alternatives (where the size is known beforehand).
Therefore, they still provide no help in finding the maximum set of optimal solu-
tions. Moreover, they assume agents that are able to output comparisons among
all actions with fairly good precision, and the use of multiple voting iterations
has never been studied. When considering agents with different preferences, the
field is focused on verifying if voting rules satisfy a set of axioms that are con-
sidered to be important to achieve fairness [18]. Meanwhile, the computational
design literature has not yet found the potential of teams of voting agents. They
study traditional optimization techniques [28], or swarms of agents that interact
on the geometric space to emerge aesthetically complex shapes [22,23].

In this work we bring together the social choice and computational design
fields. We present a theoretical study of which kinds of teams are desirable for
design problems, and how their size may effect optimality. In doing so, we show
many novel results for the study of multi-agent systems. Instead of studying
agents with different preferences in order to verify fairness axioms, we show here
that agents with different preferences are actually fundamental when voting to
find a “truth” (i.e., optimal decisions). On the other hand, agents with the same
set of preferences significantly harm the performance, and in general the number
of optimal solutions decreases as the size of the team grows. Such results were
never seen before in the social choice literature. Our theoretical development
draws a novel connection between social choice and number theory, instead of
the traditional connections with bayesian probability theory. This novel connec-
tion allows us to show that the optimal diverse team size is constant with high
probability, and a prime number of optimal actions may impose problems. We
also show that we can maximize the number of optimal solutions with agents
with different preferences as the team size grows, as long as the team size grows
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carefully. Moreover, we simulate design agents in synthetic experiments to further
study our model, confirming the predictions of our theory and providing realis-
tic insights into what happens when systems run with bounded computational
time. Finally, we present experiments in a highly relevant domain: architectural
design, where we show teams of real design agents that vote to choose the best
qualifying and energy-efficient design solutions for buildings.

2 Related Work

Voting systems have been extensively used for many different applications
[16,17,19]. Mostly because, under some assumptions, they provide optimality
guarantees for finding an optimal choice [2]. For many real problems, however,
finding one optimal solution is not enough, and we actually want to find the
maximum number of optimal solutions. However, most of the social choice liter-
ature is about finding a correct ranking in domains where there is a linear order
over the alternatives, and hence a unique optimal decision [1,2]. Recent works,
however, are considering more complex domains. Xia and Conitzer [26] study
the problem of finding k optimal solutions, where k is known beforehand, by
aggregating rankings from each agent. However, not only do they need strong
assumptions about the quality of the rankings of such agents, but they also show
that calculating the maximum likelihood estimation (MLE) from the rankings
is an NP-hard problem. Procaccia et al. [20] study a similar perspective, where
the objective is to find the top k options given rankings from each agent, where,
again, k is known in advance. However, in their case, they assume there still
exists one unique truly optimal choice, hidden among these top k alternatives.
Elkind and Shah [4], motivated by the crowdsourcing domain, study the case
where instead of rankings, the voters output pairwise comparisons among all
actions, which may not follow transitivity. However, their final objective is still
to pick a single winner, not to maximize the set of optimal solutions found by a
voting system. Finally, outputting a full comparison among all actions can be a
burden for an agent [12]. Jiang et al. [11] show that actual agents can have very
noisy rankings, and therefore do not follow the assumptions of previous works
in social choice. Hence, as any agent is able to output at least one action (i.e., a
single vote), we study here systems where agents vote across multiple iterations.

Concerning distributed optimization, our work is related to the study of dis-
tributed genetic algorithms [13]. Our experimental section relates to the “island
model”, where populations evolve concurrently. Normally, however, the popula-
tions interact by transferring offsprings, not by voting, and a theoretical study
of voting teams which must maximize the number of optimal solutions was never
performed. Additionally, the use of multiple classifiers has been a very successful
technique in machine learning, in the study of ensemble systems [19]. None of
these works, however, explore the potential of multiple agents in maximizing the
set of optimal solutions for design problems.

In computational design, automated methods that can provide a high number
of optimal alternatives are highly desirable, as it is hard for the human designers
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to manually find optimal solutions, and they need a large solution pool in order
to pick one that fits their aesthetic/subjective evaluation and/or to make a
complex trade-off among different objectives that cannot be formalized into a
single function [6,24]. One common method for generating alternatives is to use
genetic algorithms [27]. Other optimization methods have also been explored
[28]. Another line of work in computational design uses a swarm of agents that
move and interact in the geometric space, while depositing material, and hence
emerging complex geometrical shapes [22,23]. Although such works are able
to design and create intricate geometries, they are not yet using these agent
teams to optimize the designs, let alone finding a maximum number of optimal
solutions.

3 Design Domains

We consider in this work domains where the objective is to find the highest
number of optimal solutions. We show that design is one of such domains.
One of the most common computational design approaches is to use paramet-
ric designs [5,8], where a human designer creates an initial design of a product
using computer-aided design tools. However, instead of manually deciding all
aspects of the product, she leaves free parameters, whose values can be modified
to change the design of the product. It is up to the designer to decide which
parameters are going to be available, their valid types and their valid range.
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Fig. 1. A parametric design of a building,
showing two parameters: X1 and Y 1.

This approach is used because
design is an inherently complex prob-
lem. Although a human is able to test
and evaluate a few solutions looking
for optimality, the number of different
possibilities that she can manually cre-
ate is highly limited, especially under
the (common) hard time-constraints.
In Fig. 1, we show a simple example
in the context of architectural design,
where the parameters X1 and Y 1 are being used to specify the position of the
lower left corner of the building relative to the site boundary.

The design of a product normally occurs over multiple phases, where increas-
ing levels of details are decided and optimized. Our work is focused on the initial
design phase, when multiple possible design alternatives are analyzed in order to
choose one for further study and optimization. This initial design phase is, how-
ever, very important to the final performance of a product [21]. For example, in
the context of architectural design (as how we explore later in our experiments),
it has been acknowledged that it has a high impact on the overall building per-
formance [3]. Design problems are in general multi-objective, since a product
normally must be optimized across different objectives. For example, a product
should have a low cost, but at the same time high quality. Hence, there are a
large number of optimal solutions, all tied in a Pareto frontier. For the compu-
tational system, these optimal solutions are all equivalent. However, a human
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may have unknown preferences, may dynamically decide to value some objective
over another when handling intricate trade-offs, and/or may choose the option
that most pleases her own aesthetic taste or the one of the target public/client.

Note that choosing a design according to aesthetics is an undefined problem,
since there are no formal definitions to compare among different options. Hence,
the best that a system can do is to provide a human with a large number of
optimal solutions (according to other measurable factors), allowing her to freely
decide among equally optimal solutions — but most probably with different
aesthetic qualities. Therefore, it is natural that in design problems we are going
to have many possible solutions, and we want to find as many optimal ones
as possible. In fact, the exploration of a large space of possible alternatives is
essential in design, as recently shown by other researchers [7,14,25]. There are
many benefits in discovering a large number of optimal solutions:

Knowledge “Does not Hurt”: We argue that having more optimal solutions
to choose from is not worse than having less. Although some works in psychology
show that humans may get frustrated in the face of too many options, especially
under time pressure [9,10], we argue that if a designer has enough time or moti-
vation to analyze only x solutions, she can do so with a system that provides
more than x optimal solutions by sampling the exact amount that she desires.
However, she will never be able to do so with a system that provides less than
x optimal solutions. Note also that the works in psychology [9,10] were taken
in the context of consumers deciding among products to purchase, not in the
context of design exploration. As mentioned before, in design the necessity of
large exploration spaces is recognized [7,14,25]. Moreover, as we discuss in detail
later, voting systems could be combined with another system that identify and
eliminate solutions that are similar by applying clustering and analysis tech-
niques, and that presents the optimal alternatives to a human in a manageable
way [5,21].

Knowledge Increases Confidence in Optimality: In general design prob-
lems, the true Pareto frontier is unknown. Genetic algorithms are widely used
in order to estimate it. The only knowledge available for the system to evalu-
ate the optimality is in comparison with the other solutions that are also being
evaluated during the optimization process [6]. Many apparently “optimal” solu-
tions are actually discovered to be sub-optimal as we find more solutions. Hence,
finding a higher number of optimal solutions decreases the risk of a designer pick-
ing a wrong choice that was initially outputted as “optimal” by a system (for
example, the single agents, as we will show later).

Knowledge Increases Aesthetic Qualities: If a human has a larger set of
optimal solutions to choose from, there is a greater likelihood that at least one
of these solutions is going to be of high aesthetic quality according to her pref-
erences, or the ones of the target public [7].

Knowledge Increases Diversity of Options: In general, when a system x has
more optimal solutions available than a system y, it does not necessarily imply
that the solutions in the system x are more similar, while the optimal solutions
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in y are more different/diverse. In fact, all things equal (i.e., the algorithms
are equally able to find unique solutions), the greater the amount of optimal
solutions, the higher the likelihood that we have more diverse solutions available.
Of course we could have some algorithm x that produces many optimal solutions
by creating small variations of one unique solution, but here we do not consider
these potentially misleading systems. Again, we assume that such solutions could
be identified and filtered by another system [5,21].

4 Agent Teams for Design Problems

We consider here a team of agents that vote together at each decision point
of the design of a product. For the sake of clarity and precision, we present in
this section an idealized model. In Sect. 4.1 we generalize our model to more
complex situations, and in Sect. 5 we generalize further by performing synthetic
experiments. Let Φ be a set of agents φ, and Ω a set of world states ω. Each
ω has an associated set of possible actions Aω. For example, each world state
may represent a parameter of a parametric design problem, and each action may
represent a possible value for such parameter. At each world state, each agent
φ outputs an action a, an optimal action according to the agent’s imperfect
evaluation – which may or may not be a truly optimal action. Hence, there is
a probability pj that the agent outputs a certain action aj . The teams take the
action decided by plurality voting (i.e., the team takes the decision voted by the
largest number of agents – we consider ties are broken uniformly at random).

We assume first that the world states are independent, and by taking an
optimal action at all world states we find an optimal solution for the entire
problem. That is, we assume first that by taking locally optimal decisions at
each design decision point, a globally optimal solution is obtained. We generalize
this assumption later, in Proposition 8 (in Sect. 4.1), where we consider design
problems with correlated parameters.

In this paper our objective goes beyond finding one optimal solution, we
want to maximize the number of optimal solutions that we can find. For greater
applicability, we consider here agents that output a single action. Hence, we
generate multiple solutions by re-applying the voting procedure across all world
states multiple times (which are called voting iterations – one iteration goes
across all world states, forming one solution). Formally, let S be the set of
(unique) optimal solutions that we find by re-applying the voting procedure
through z iterations. Our objective is to maximize |S|. We will show that, under
some conditions, we can achieve that when z → ∞.

We consider that at each world state ω there is a subset Goodω ⊂ Aω of
optimal actions in ω. An optimal solution is going to be composed by assigning
any a ∈ Goodω in world state ω – for all world states. Conversely, we consider the
complementary subset Badω ⊂ Aω, such that Goodω ∪Badω = Aω,Goodω ∩
Badω = ∅. We drop the subscripts ω when it is clear that we are referring to a
certain world state.

One fundamental problem is selecting which agents should form a team. By
the classical voting theories, one would expect the best teams to be uniform
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teams composed of multiple copies of the best agent [2,15]. Here we show, how-
ever, that for design problems uniform teams need very strong assumptions to
be optimal, and in most cases they actually converge to always outputting a
single solution – an undesirable outcome. However, diverse teams are optimal as
long as the team size grows carefully, as we explain later in Theorem 1.

We call a team optimal when: (i) |S| → ∏
ω |Goodω| as z → ∞, and

(ii) all optimal solutions are chosen by the team with the same probability
1/

∏
ω |Goodω|. Otherwise, even though the team still produces all optimal solu-

tions, it would tend to repeat already generated solutions whose probability is
higher. Since in practice there are time bounds, such condition is fundamental
to have as many optimal solutions as possible in limited time. Also note that
condition (ii) subsumes condition (i), but we keep both for clarity.

We first consider agents whose pdfs are independent and identically distrib-
uted. Let pGood

j be the probability of voting for aj ∈ Good, and pBad
k be the

probability of voting for ak ∈ Bad. Let n := |Φ| be the size of the team, and
Nl be the number of agents that vote for al in a certain voting iteration. If
∀aj ∈ Good, ak ∈ Bad, pGood

j > pBad
k , the team is going to find one optimal

solution with probability 1 as n → ∞:

Observation 1. The probability of a team outputting one optimal solution goes
to 1 as n → ∞, if pGood

j > pBad
k , ∀aj ∈ Good, ak ∈ Bad.

Note that as the agents are independent and identically distributed, we can
model the process of pooling the opinions of n agents as a multinomial dis-
tribution with n trials (and the probability of any class k of the multinomial
corresponds to the probability pk of voting for an action ak). Hence, for each
action al, the expected number of votes is given by E[Nl] = n×pl. Therefore, by
the law of large numbers, if pGood

j > pBad
k ∀aj ∈ Good, ak ∈ Bad, we have that

Nj > Nk. Hence, the team will pick an action aj ∈ Good, in all world states, if
n is large enough (i.e., n → ∞).

However, with a team made of copies of the same agent, the system is likely
to lose the ability to generate new solutions as n increases. If, for each ω, we
have an action aω

m such that pGood
m > pGood

j ∀aω
m 
= aω

j , the team converges to
picking only action aω

m. Hence, |S| = 1, which is a very negative result for design
problems. Therefore, contrary to traditional social choice, here it is not the case
that increasing the team size always improves performance. We formalize this
notion in Proposition 1 below, where we also show the conditions for a uniform
team to be optimal. Let pGood :=

∑
j pGood

j be the probability of picking any
action in Good. We re-write the probability of an action aGood

j as: pGood
j :=

pGood

|Good| + λj , where
∑

j λj := 0. Hence, some λj are positive, and some are
negative (unless they are all equal to 0). Let λ+ be the set of λj > 0. Let λHigh

be the maximum possible value for λj ∈ λ+, such that the relation pGood
j > pBad

k ,
∀aj ∈ Good, ak ∈ Bad is preserved. We show that when z → ∞, |S| is the
highest as max λ+ → 0, and the lowest (i.e., one) as minλ+ → λHigh. Note that
max λ+ → 0 represents the situation where the probability is equally divided
among all optimal actions, and minλ+ → λHigh represents the case where one
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optimal action receives a high probability in comparison with the other optimal
actions.

Proposition 1. The maximum value for |S| is
∏

ω |Goodω|. When z, n → ∞,
as max λ+ → 0, |S| → ∏

ω |Goodω|. Conversely, as min λ+ → λHigh, |S| → 1.

Proof. As max λ+ → 0, λj → 0, ∀aj . Hence, E[Nj ] → n × pGood

|Good| , ∀aj ∈ Good.
Because ties are broken randomly, at each world state ω, each aj ∈ Goodω is
selected by the team with equal probability 1

|Goodω| . As E[Nj ] = E[Nk] ∀aj , ak ∈
Good, we have that at each ω it is possible to choose |Goodω| different actions.
Hence, there are

∏
ω |Goodω| possible combinations of solutions. At each voting

iteration, ties are broken at each ω randomly, and one possible combination
is generated. As z → ∞, eventually we cover all possible combinations, and
|S| → ∏

ω |Goodω|.
Conversely, as min λ+ → λHigh, E[Nj ] → n × pGood

j for one fixed aj such
that pGood

j > pGood
k ,∀aj 
= ak ∈ Good. Consequently, E[Nj ] > E[Nk], at each ω.

Hence, there is no tie in any world state, and the team picks a fixed aω
j at each

world state. Therefore, even if z → ∞, |S| → 1. Note that we do not say here
that the same action is picked across world states (as aω

j may differ for each ω),
but that the same optimal solution is picked for all voting iterations. �

Therefore, uniform teams need a very strong assumption to satisfy condition
(i): the probability of voting for optimal actions must be uniformly distributed
over all optimal actions (i.e., maxλ+ → 0). If max λ+ → 0, condition (ii) is also
satisfied as n grows, because of Observation 1 (i.e., the probability of outputting
a suboptimal solution goes to 0) and because of the fact that all actions are
equally likely to be chosen; hence each solution is chosen with equal probability
1/

∏
ω |Goodω|.

We show that, alternatively, we can use agents with different “preferences”
(i.e., “diverse” agents), to maximize |S|. We consider here agents that have about
the same ability in problem-solving, but they prefer different optimal actions. As
the agents have similar ability, we consider here the probabilities to be the same
across agents, except for the actions in Good, as each agent φi has a subset
Goodi ⊂ Good consisting of its preferred actions (which are more likely to be
chosen than other actions). We denote by pij the probability of agent φi voting
for action aj . Hence, we define the pdf of the diverse agents as: ∀aj ∈ Goodi,
let pGoodi :=

∑
j pij , pij := pGoodi

|Goodi| ; ∀aj ∈ Good \ Goodi, pij := pGood−pGoodi

|Good\Goodi| ;
and ∀ak /∈ Goodi, aj ∈ Goodi, pij > pik. Goodi ∩ Goodl (of agents φi and φl)
is not necessarily ∅. The pdfs are strictly defined in this section for the sake of
clarity and precision, but in the next section and in our synthetic experiments
we generalize further. In Fig. 2 we show an illustrative example.

Let’s consider we can draw diverse agents from a distribution F . Each agent
φi has r < |Good| actions in its Goodi, and we assume that all actions in
Good are equally likely to be selected to form Goodi (since they are all equally
optimal). Note that r is the same for all agents (as, again, we assume they have
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Fig. 2. Illustrative example of the probability distribution functions of two diverse
agents.

the same pdfs, but different preferences), and that we also cover the case where
each agent prefers a single action (which would be r := 1). We show that by
drawing n agents from F , the team is optimal for large n with probability 1, as
long as n is a multiple of a divisor (> 1) of each |Goodω|. We also show that
the minimum necessary optimal team size is constant with high probability as
the number of world states grow. We start with the following:

Proposition 2. If a team of size n is optimal at a world state, then
gcd(n, |Good|) > 1. That is, n and |Good| are not co-prime.

Proof (by contradiction). By the optimality requirement (ii), each action must
be in the Goodi set of the same number of agents. Otherwise, if an action ai is
preferred by a larger number of agents than another action aj , the team would
pick ai with a larger probability than aj . Hence, we must have that:

n × r = k × |Good|, (1)

where k is a constant ∈ N>0. k represents the number of agents that have a given
action aj in its Goodi. Note that it must be the same for all optimal actions,
and therefore we have a single constant. If n and |Good| are co-prime, then it
must be the case that r is divisible by |Good|. However, this yields r ≥ |Good|,
which contradicts our assumption. Therefore, n and |Good| are not co-prime. �

r
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Agent 1
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Agent 5

a1
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n

k := 4

Fig. 3. Illustrative example of Eq. 1. Each action is in the list of preferences of 4 agents
(k := 4). As an example, we mark with a dashed circle one of the actions, a2.

We illustrate Eq. 1 with an example in Fig. 3. In the figure we show 6 agents
(n := 6), with 2 preferred actions each (r := 2). Note that each action is preferred
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by 4 agents, and hence we show a case where k := 4. As an example, we mark
with a dashed circle one of the actions, a2. In such case, the team will have an
equal probability of picking all optimal actions, and optimality condition (ii)
would be satisfied if the probability of picking suboptimal actions is 0. If, for
example, we now change agent 5 to prefer actions a2 and a3 (replacing action a1

by a2), then the team would be more likely to pick action a2 by plurality voting
than any other action, and it would be less likely to pick action a1 than any other
action. As the number of voting iterations is limited in actual applications, this
situation is not desirable.

Note that we could also have a case where one agent prefers a larger number
of actions than others. For example, we could change agent 5 to prefer actions a1,
a2 and a3. However, as the agent has a limited amount of probability distributed
over the actions in the Goodi set (i.e., pGoodi), we have that necessarily the
probability of the agent voting for a1 and a3 would drop; hence, the team would
pick a2 more often than the other actions, and a1 and a3 less often than the other
actions. This does not mean, however, that there is a single optimal configuration
for each number of optimal actions |Good|. There are multiple possible solutions
for Eq. 1, but in any possible solution we will find that the size of the team n
and |Good| are not co-prime.

Proposition 2 is a necessary but not sufficient condition for optimality. If
Eq. 1 is satisfied, all optimal actions will be selected with the same probability,
but it is still necessary for the probability of picking suboptimal actions to go to
0 to fully satisfy condition (ii). That will be the case if pGoodi = 1, or if n → ∞,
since pGood

j > pBad
k , ∀aj ∈ Good, ak ∈ Bad. Note that Proposition 2 implies

hard restrictions for world states where |Good| is prime, or for teams with prime
size n: if n is prime, |Good| must be a multiple of n; and if |Good| is prime, n
must be a multiple of |Good|.

Let’s analyze across a set of world states Ω. For a team of fixed size n,
Proposition 2 applies across all world states. Hence, the team size must be a
multiple of a divisor (> 1) of each |Goodω|. Note that the pdfs of the agents
(and also r) may change according to ω. Let D be a set containing one divisor of
each world state (if two or more world states have a common divisor x, it will be
representable by only one x ∈ D). Hence, ∀ω, ∃d ∈ D, such that d

∣∣ |Goodω|;
and ∀d ∈ D, ∃Goodω, such that d

∣∣ |Goodω|. There are multiple possible D
sets, from the superset of all possibilities D . Therefore, we can now study the
minimum size necessary for an optimal team. Applying Proposition 2 at each
world state ω, we have that the minimum size necessary for an optimal team is
n = minD∈D

∏
d∈D d. Hence, our worst case is when each |Goodω| is a unique

prime, as the team will have to be a product of all (unique) optimal action space
sizes:

Proposition 3. In the worst case, the minimum team size is exponential in the
size of the world states |Ω|. In the best case, the minimum necessary team size
is a constant with |Ω|.
Proof. In the worst case, each added world state ω has a unique prime optimal
action space size. Hence, the minimum team size is at least the product of the
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first |Ω| primes, which, by the prime number theorem, has growth rate exp((1+
o(1))|Ω| log |Ω|). In the best case, each added Goodω has a common divisor
with previous ones, and the minimum necessary team size does not change. �

However, we show that the worst case happens with low probability, and the
best case with high probability. Let G be the maximum possible |Good|, and
M := |Ω|. Assume that each world state ωj will have a uniformly randomly
drawn number of optimal actions, denoted as mj , for all j = 1, . . . , M (i.e.,
∀ω ∈ Ω). We assume that G is large enough, so that the probability that a
given mj has factor p is 1/p.

Proposition 4. The probability that the minimum necessary team size grows
exponentially tends to 0, and the probability that it is constant tends to 1, as
M → ∞.

Proof. It is sufficient to show that the probability that m1, . . . ,mM−1 are all
co-prime with mM tends to 0 as M → ∞. That is, we show that when adding
a new world state ωM , its |Goodω| will have a common factor with the size of
the Good set of some of the other world states with high probability. Given
any prime p, the probability that at least one of any independently randomly
generated M −1 numbers m1, ...,mM−1 has factor p is 1 − (1 − 1

p )M−1, while the
probability that one independently randomly generated number mM has factor
p is 1

p (for large enough G). Therefore, the probability mM shares common factor

p with at least one of m1, . . . ,mM−1 is
1−(1− 1

p )M−1

p . The probability that mM

is co-prime with all m1, . . . ,mM−1 is:

∏
all primes p

[1 −
1 − (1 − 1

p )M−1

p
],

which, as M → ∞, tends to:
∏

all primes p

(1 − 1
p
) =

1
ζ(1)

= 0,

where ζ(s) is the Riemann zeta function. The last equality holds true since:

ζ(1) =
∏

all primes p

1
1 − p−1

=
∞∑

i=1

1
i

→ ∞

(as shown by Euler). Hence, with high probability, when adding a new world
state ω, |Goodω| will share a common factor with a world state already in Ω. �

Finally, in the next theorem we show that a diverse team of agents is always
optimal as the team grows, as long as it grows carefully. That is, we show that
for large diverse teams we will be able to satisfy the optimality conditions (i)
and (ii), as long as the team size is a multiple of a divisor of |Goodω|, ∀ω ∈ Ω.
Again, we assume that G is large enough, so that the probability that a given
mj has factor p is 1/p.
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Theorem 1. Let D ∈ D be a set containing one factor from each Goodω. For
arbitrary n, the probability that we generate (by drawing from a distribution F)
an optimal team of size n converges to 0 as |Ω| → ∞. However, if n = c

∏
d∈D d,

then the probability that the team is optimal tends to 1 as c → ∞.

Proof. For an arbitrary team size n, let P be the set of its prime factors. Given
one p ∈ P , the probability that p is not a factor of |Goodω| is 1 − 1/p. The
probability that all p ∈ P are not factors is:

∏
p(1−1/p). As 0 <

∏
p(1−1/p) < 1,

the probability that at least one p ∈ P is a factor of |Goodω| is 1−∏
p(1−1/p) <

1. For |Ω| tests, the probability that at least one p is a factor in all of them is:

(
1 −

∏
p

(1 − 1/p)

)|Ω|

,

which tends to 0, as |Ω| → ∞. Hence, the probability that gcd(n, |Goodω|) = 1
for at least one ω tends to 1, and the probability that the team can be optimal
tends to 0.

However, if:
n = c

∏
d∈D

d,

then gcd(n, |Goodω|) 
= 1 ∀ω ∈ Ω, satisfying the necessary condition in Propo-
sition 2 at all world states. Let nj be the number of agents φi that have aj in its
Goodi, and P (nj = nk) be the probability that nj = nk (that is, the probability
that the same number of agents have aj and ak in their Goodi). As each aj has
equal probability of being in a Goodi, for a large number of drawings from F
(i.e., c → ∞), we have that P (nj = nk) → 1,∀aj , ak ∈ Goodω,∀ω, by the law
of large numbers. Hence, each optimal solution will be selected with the same
probability. Moreover, as pGood

j > pBad
k , ∀aj ∈ Good, ak ∈ Bad, the probabil-

ity of picking a suboptimal solution converges to 0 (as n → ∞ with c → ∞),
and hence the probability of picking each of the optimal solutions converges to
1/

∏
ω |Goodω| (satisfying optimality condition (ii)). �

If it is expensive to test values for n such that Theorem 1 is satisfied, we
can choose n = c

∏
ω |Goodω|, as it immediately implies the conditions of the

theorem. Moreover, if we know the size of all |Goodω|, we can check if n and
|Goodω| are co-prime in O(h) time (where h is the number of digits in the
smaller number), using the Euclidean algorithm. Hence, we can test all world
states in O(|Ω|h) time.

4.1 Generalizations

In this section we present several generalizations from our initial idealized model,
in order to cover more realistic situations. We start by generalizing our theory
to cases where the agents do not have only a probability of pij := pGoodi

|Goodi| or

pij := pGood−pGoodi

|Good\Goodi| to vote for actions in Good (depending if the action is in
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Goodi or not), but now can have different probabilities distributed over the
actions in Good. Hence, we now model each agent as having a set of Goodi

sets, each with its own probability distributed over the actions in the set. For this
generalization, we still consider that the agents have the same pdf, but different
preferences. That is, the agents may have different actions at each Goodi set,
but their size and the number of sets is the same across agents.

Hence, we denote each Goodi set j as jGoodi. Each also has its own p
jGoodi

total probability, that will be equally distributed among all actions in jGoodi,
in a similar fashion as before. As mentioned, the content of each jGoodi set may
differ across agents, but we consider the p

jGoodi to be the same across agents.
Note that the case where each action has a different probability is defined as
the situation where each |jGoodi| := 1. Similarly as before, we consider that
each agent φi has jr < |Good| actions at each jGoodi, and all actions in Good
are equally likely to be selected to form each jGoodi. In Fig. 4 we show an
illustrative example of the pdf of two agents with multiple jGoodi sets.
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Fig. 4. Illustrative example of the probability distribution functions of two agents with
multiple jGoodi sets.

Proposition 5. Theorem 1 still applies under the more general model stated
above. That is, if n = c

∏
d∈D d, then the probability that the team is optimal

tends to 1 as c → ∞.

Proof. Similarly as before, for each jGoodi we must have that:

n × jr = jk × |Good|, (2)

so that for each jGoodi we have that jk agents have a given action a in its
jGoodi. As the total probability p

jGoodi of each set is the same across agents,
we have that each optimal action will be selected by the team with the same
probability when Eq. 2 is satisfied for all jGoodi. Hence, across world states, each
optimal solution will also have the same probability of being selected. Similarly
as in Proposition 2, for Eq. 2 to be satisfied, we must have that n and |Good|
are not co-prime, and that will be true when n = c

∏
d∈D d.

Let jnl be the number of agents φi that have al in its jGoodi, and
P (jnl = jnm) be the probability that jnl = jnm. Like before, as each al has
equal probability of being in a jGoodi, for a large number of drawings from F
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(i.e., c → ∞), we have that P (jnl = jnm) → 1,∀al, am ∈ Goodω,∀ω, by the
law of large numbers.

Notice that this happens for all jGoodi sets. Hence, all optimal actions will
be selected with the same probability by the team. Like before, as pGood

l >
pBad

m , ∀al ∈ Good, am ∈ Bad, the probability of picking a suboptimal action
converges to 0 (as n → ∞ with c → ∞), and hence the probability of picking
each of the optimal solutions converges to 1/

∏
ω |Goodω| (satisfying optimality

condition (ii)). �
Now we present our second generalization. We show that Theorem 1 still

applies for agents φi with different probabilities over optimal actions pGoodi . We
consider here a more general definition of optimal team: the difference between
the probabilities of picking each optimal solution and 1/

∏
ω |Goodω| must be

as small as possible.
Hence, let pΦ

j be the probability of team Φ picking optimal action aj , the
optimal team is such that ϑ :=

∑
aj

|pΦ
j − 1/|Goodω||, ∀aj ∈ Goodω is mini-

mized (∀ω ∈ Ω). We focus here in a single world state ω, as by minimizing ϑ
in each world state we are also making the difference between the probability of
picking each optimal solution and 1/

∏
ω |Goodω| as small as possible. Hence,

the original definition in the previous section is the case where ϑ := 0.

Proposition 6. Theorem1 still applies when |pGoodi − pGoodj | ≤ ε, ∀φi, φj, for
small enough ε > 0.

Proof. Let Φ be an optimal team, where pGoodi is the same for all agents
φi. Hence, the probability of all actions in Good being selected by the
team is the same. I.e., pΦ

k = pΦ
l ,∀ak, al ∈ Good, and ϑ := 0. Let Δ :=∑

ak∈Good

∑
al∈Good |pΦ

k − pΦ
l | be the difference between the probabilities of

the team taking each optimal action. In the rest of the proof we will disturb the
probabilities pGoodi of sets of agents, which will change Δ. We focus in studying
the variation in Δ, as minimizing the variation in Δ also minimizes the variation
in ϑ.

We prove by mathematical induction. Assume we change the pGoodi of x
agents φi, and Δ is as small as possible. Now we will change x + 1 agents. Let’s
pick one agent φi and increase its pGoodi by δ ≤ ε. It follows that pΦ

k > pΦ
l ,∀ak ∈

Goodi, al /∈ Goodi, and the new Δ′ :=
∑

ak∈Good

∑
al∈Good |pΦ

k − pΦ
l | > Δ.

If we add one more agent φj , such that Goodj ∩ Goodi = ∅, the probabil-
ity of voting for actions am ∈ Goodj increases. For small enough ε, pGoodj

will be too large to precisely equalize the probabilities, and it follows that
pΦ

m > pΦ
k > pΦ

l ,∀am ∈ Goodj , ak ∈ Goodi, al /∈ Goodi ∪ Goodj , and
Δ′′ :=

∑
ak∈Good

∑
al∈Good |pΦ

k − pΦ
l | > Δ′. The same applies for each newly

added agent, until we have a new team such that n = c
∏

d∈D d (again, satisfying
the conditions of the theorem).

The base case follows trivially. If we did not change the probability of any
agent (i.e., x := 0), and we now increase pGoodi of a single agent φi, pΦ

k >
pΦ

l ,∀ak ∈ Goodi, al /∈ Goodi, and Δ′ > Δ. By the same argument as before,
adding more agents will only increase Δ′, until n = c

∏
d∈D d. �
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Thirdly, we also generalize to the case where the number of preferred actions
r changes for each agent. We consider that the number of actions in the Goodi of
each agent φi (ri) is decided according to a uniform distribution on the interval
[1, r′].

Proposition 7. If n = r′ × c
∏

d∈D d, the probability that the team is optimal
→ 1 as c → ∞.

Proof. For large n, the number of agents with ri = 1, . . . , r′ is the same.
Therefore, if for each subset Φi ⊂ Φ, such that rφ = i,∀φ ∈ Φi, we have that
pΦi

k = pΦi

l , ∀ak, al ∈ Good, we will have that pΦ
k = pΦ

l ,∀ak, al ∈ Good. Given
an optimal team of size n, we have r′ subsets Φi of size n/r′ each. It follows by
Theorem 1 that n/r′ = c

∏
d∈D d, and:

n = r′ × n/r′ = r′ × c
∏
d∈D

d,

hence n also follows the necessary conditions in Proposition 2. Similarly as in
Theorem 1, as n → ∞ with c → ∞, the probability of picking a suboptimal solu-
tion converges to 0, and the probability of picking each of the optimal solutions
converges to 1/

∏
ω |Goodω| (satisfying optimality condition (ii)). �

Lastly, we discuss the assumption that world states are independent. In design
problems they could actually be correlated. We present below a constructive
proof showing that we can use our model to study design problems with corre-
lated parameters.

Proposition 8. The previous results apply for problems with correlated para-
meters.

Proof. Let’s consider a design problem with a set Υ of parameters υ. We can
divide Υ in Υk sets, where all υ ∈ Υk are correlated, but υi and υj are inde-
pendent, ∀υi ∈ Υi, υj ∈ Υj , i 
= j. That is, all parameters υ in a Υk set are
correlated, but the parameters between two different Υk sets are independent.
This can always be performed, as in the worst case where all parameters are
correlated, we can have a single Υk := Υ .

Now, instead of modeling each design parameter υ as a world state ω (as
in our original model), we can model each set Υk as a world state ω. Hence,
instead of an action a being one value assigned to a parameter υ, an action a now
represents one full combination of values to each υk in a set Υk. Therefore, instead
of voting at each parameter υ, each agent φi now votes for one combination of
value assignments (of correlated parameters) at each set Υk. As all sets Υk are
independent, we still have agents voting for independent world states ω and
the previous results still apply. In the worst case, where all parameters of the
problem are correlated, we would have agents voting for entire solutions, and
the model would be considered as having a single world state. �
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5 Synthetic Experiments

Fig. 5. Percentage as
max λ+ grows.

We run synthetic experiments, where we simulate design
agents and evaluate diverse and uniform teams (henceforth
diverse and uniform). We randomly create pdfs for the
agents, and simulate voting iterations across a series of
world states. We repeat all our experiments 100 times,
and in the graphs we plot the average and the confidence
interval of our results (according to a t-test with p := 0.01).
We run 1000 voting iterations (z), and measure how many
optimal solutions the team is able to find. We study a
scenario where the number of actions (|A|) := 100, and the number of optimal
actions per world state (|Goodω|) is, respectively: < 2, 3, 5, 5, 5 >, in a total of
750 optimal solutions.

Fig. 6. Percentage of opti-
mal solutions as # agents
grows.

At each repetition of our experiment, we randomly
create a pdf for the agents. We start by studying
the impact of max λ+ in uniform. When creating
the uniform team, the total probability of playing
any of the optimal actions (i.e., pGood) is randomly
assigned (uniform distribution) between 0.6 and 0.8.
We fix the size of the team (25) and evaluate different
max λ+ in Fig. 5. As expected from Proposition 1, for
max λ+ := 0 the system finds the highest number of
optimal solutions; and as maxλ+ increases, it quickly
drops.

We then study the impact of increasing the num-
ber of agents, for uniform and diverse. To generate a diverse team, we draw
randomly a rω in an interval U for each world state, that will be the size of
|Goodi|. We study three variants: diverse*, where U := (0, |Goodω|]; diverse,
where U := (0, |Goodω|), and diverseΔ, where we allow agents to have differ-
ent ri

ω, also drawn from (0, |Goodω|). We independently create pdfs randomly
for each agent φi. For each agent we draw a number between 0.6 and 0.8 to
distribute over the set of optimal actions, and randomly decide rω actions to
compose its Goodi set. We distribute equally 80 % of the probability of voting
over optimal actions on the actions of that set.

Fig. 7. Percentage for
larger teams.

As we can see, in Fig. 6, the number of solutions
decreases for uniform as the number of agents grows.
Normally, in social choice, we expect the performance
to improve as teams get larger, so this is a novel
result. It is, however, expected from our Proposition 1.
Diverse, on the other hand, improves in performance
for all 3 versions, as predicted by our theory. How-
ever, the system seems to converge for a fixed z, as
the performance does not increase much after around
20 agents. Hence, in Fig. 7 we study larger diverse
(continuous line) and diverseΔ teams (dashed line), going all the However, with
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a team made of copies of theway up to 1800 agents. We also study four different
number of voting iterations (z, shown in the figure by different lines): 1000, 2000,
3000, 4000. As we can see, although adding more agents was not really improving
the performance in the experimental scenario under study, there is clearly a sta-
tistically significant improvement (p < 0.01) by increasing the number of voting
iterations, with the system improving from finding around 53% of the optimal
solutions, all the way up to finding more than 80% of them. However, there is
a diminishing returns effect, as the impact of adding more iterations decreases
as the actual number of iterations grow larger. We also note that diverseΔ is
better than diverse, and the difference increases as z grows.

As we can see, although theoretically possible, it is still a challenge to have
a system that can find all the possible optimal solutions. Moreover, it would be
expensive to pool the votes of agents through a large number of voting itera-
tions. However, as we show next, we can actually approximate this process in a
real system, by pooling only a small number of solutions from each agent, and
executing many voting iterations by aggregating different combinations of these
solutions.

6 Experiments in Architectural Design

6.1 Architectural Design Domain

Base

Office Park

Contemporary

Fig. 8. Parametric
designs.

We study a real system for architectural building design.
This is a fundamental domain, since the design of a building
impacts its energy usage during its whole life-span [3,6]. We
use Beagle [6], a multi-objective design optimization soft-
ware that assists users in the early stage design of buildings.
First, the designer creates a parametric design, containing
(as discussed in Sect. 3) a set of parameters that can be mod-
ified within a specified range, allowing the creation of many
variations. The ranges are defined according to the legisla-
tion (i.e., setback, maximum height, etc.), or the intention
of the designer (for example, the general shape of the build-
ing). We use designs from Gerber and Lin [6], shown in Fig. 8:
base, a simple building type with uniform program (i.e., ten-
ant type); office park, a multi-tenant grouping of towers; and
contemporary, a double “twisted” tower that includes multi-
ple occupancy types, relevant to contemporary architectural
practices.

Beagle uses a genetic algorithm (GA) to optimize the building design based
on three objectives: energy efficiency, financial performance and area require-
ments. In detail, the objective functions are: Sobj : max SPCS; Eobj : min EUI;
Fobj : max NPV . SPCS is the Spatial Programming Compliance Score, EUI is
the Energy Use Intensity and NPV is the Net Present Value, defined as follows.

SPCS defines how well a building conforms to the project requirements
(by measuring how close the area dedicated to different activities is to a given
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specification). Let L be a list of activities (in our designs, L=<Office, Hotel,
Retail, Parking>), area(l) be the total area in a building dedicated to activity
l and requirement(l) be the area for activity l given in a project specification.
SPCS is defined as: SPCS := 100 ×

(
1 −

∑
l∈L |area(l)−requirement(l)|

|L|

)
.

EUI regulates the overall energy performance of the building. This is an
estimated overall building energy consumption in relation to the overall building
floor area. The process to obtain the energy analysis result is automated in Beagle
through Autodesk Green Building Studio (GBS) web service.

Finally, NPV is a commonly used financial evaluation. It measures the
financial performance for the whole building life cycle, given by: NPV :=(∑T

t=1
ct

(1+r)t

)
− c0, where T is the Cash Flow Time Span, r is the Annual Rate

of Return, c0 is the construction cost, and ct := Revenue − Operation Cost.
Many options affect the execution of the GA, including: initial population

size, size of the population, selection size, crossover ratio, mutation ratio, max-
imum iteration. Further details about Beagle are at Gerber and Lin [6]. In the
end of the optimization process, the GA outputs a set of solutions. These are
considered “optimal”, according to the internal evaluation of the GA, but are
not necessarily so. As in our theory, for each parameter the assigned value is
going to be one of the optimal ones with a certain probability. In fact, most
of the solutions outputted by the GAs are later identified as sub-optimal and
eliminated in comparison with better ones found by the teams.

We model each run of the GA as an agent φ. Each parameter of the paramet-
ric design is a world state ω, where the agents decide among different actions A
(i.e., possible values for the current parameter). Our model assumes independent
multiple voting iterations across all world states. However, in general it could
be expensive to pool agents for votes in a large number of iterations. Therefore,
in order to test the applicability of the predictions of our model in more real-
istic scenarios, in our experiments we pool only 3 solutions per agent, but run
multiple voting iterations by aggregating over all possible combinations of them.
That is, at each combination we pick one solution per agent, and vote across all
the parameters, in a total of 81 voting iterations with 4 agents.

6.2 Empirical Results

Table 1. GA parameters.

Agent PZ SZ CR MR
Agent 1 12 10 0.8 0.1
Agent 2 18 8 0.6 0.2
Agent 3 24 16 0.55 0.15
Agent 4 30 20 0.4 0.25

We run experiments across the different
parametric designs shown in Fig. 8. These
are designs with increasing complexity. More
details about the designs and the meanings of
each parameter are available in Gerber and Lin
[6]. We create 4 different agents, using different
options for the GA, as shown in Table 1 (Ini-
tial Population and Maximum Iteration were
kept as constants: 10 and 5. PZ = Population Size, SZ = Selection Size, CR
= Crossover Ratio, MR = Mutation Ratio). We are dealing here with real (and
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consequently complex) design problems, where the true set of optimal solutions
is unknown. We approach the problem in a comparative fashion: when evalu-
ating different systems, we consider the union of the set of solutions of all of
them. That is, let Hx be the set of solutions of system x; we consider the set
H :=

⋃
x Hx. We compare all solutions in H, and consider as optimal the best

solutions in H, forming the set of optimal solutions O. We use the concept of
Pareto dominance: the best solutions in H are the ones that dominate all other
solutions (i.e., they are better in all 3 objectives). As we know which system
generated each solution o ∈ O, we estimate the set of optimal solutions Sx of
each system.

Although our theory focuses on plurality voting, we also present results using
the mean and the median of the opinions of the agents. That is, given one
combination (a set of one solution from each agent), we also generate a new
solution by calculating the mean or the median of the values from each agent
across all parameters. Also, when performing the voting aggregation (vote), we
consider values that are the same up to 3 decimal places as equal. Concerning
uniform, we evaluate a team composed of copies of the “best” agent. By “best”,
we mean the agent that finds the highest number of optimal solutions. According
to Proposition 1, such an agent should be the one with the lowest maxλ+, and
we can predict that voting among copies of that agent generates a large number
of optimal solutions. Hence, for each design, we first compare all solutions of all
agents, to estimate which one has the largest set of optimal solutions S. We,
then, run that agent multiple times, creating uniform. For diverse, we consider
one copy of each agent in Table 1. We aggregate the solutions of diverse and
uniform. We run 81 aggregation iterations, by selecting 3 solutions from each
agent φi, in its set of solutions Hi, and aggregating all possible combinations of
these solutions. We evaluate together the solutions of all agents and all teams
(i.e., we construct H with the solutions of all systems), in order to estimate the
size of Sx of each system.

Since the true optimal solutions set is unknown, we first plot the percentage
of unique solutions found by each system in relation to the total number of
unique optimal solutions in H. Hence, in Fig. 9(a), we show the percentage of
optimal solutions for all systems, in relation to |O|. For clarity, we represent
the result of the individual agents by the one that had the highest percentage.
As we can see, in all parametric designs the teams find a significantly larger
percentage of optimal solutions than the individual agents. The agents find less
than 1% of the solutions, while the teams are in general always close to or above
15%. In total (considering all aggregation methods and all agents), for all three
parametric designs the agents find only about 1% of the optimal solutions, while
uniform finds around 51% and diverse 47%. Looking at vote, in base diverse
finds a larger percentage of optimal solutions than uniform (around 9.4% for
uniform, while 11.6% for diverse). In office park and contemporary, however,
uniform finds more solutions than diverse. Based on Proposition 1, we expect
that this is caused by the best agent having a lower max λ+ in office park and
contemporary than in base.
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Fig. 9. Percentage of optimal solutions of each system.

(a) False optimal solutions that are
eliminated.

(b) Number of unique optimal solu-
tions.

Fig. 10. Additional analysis.

Figure 9(b) shows the percentage of optimal solutions found, in relation to
the size of the set of evaluated solutions of each system. That is, let Ox be
the set of optimal solutions of system x, in O. We show |Ox|

|Hx| . Concerning vote,
the teams are able to find a new optimal solution around 20% of the time for
base, around 73% of the time for office park and around 36% of the time for
contemporary. Meanwhile, for the individual agents it is close to 0%. We can
see that teams have great potential for generating new optimal solutions, as
expected from our theory. However, as studied in our synthetic experiments,
we can expect some diminishing returns when increasing the number of voting
iterations. It is interesting to note that the performance of the teams is much
higher for office park than for the other two parametric designs. In base and
contemporary, the building mass is parametrized into a single volume, while in
office park the building mass has multiple volumes. Hence, a possible explanation
is that the division in multiple volumes facilitated the generation of multiple
optimal solutions, since these can be combined in many different ways. We also
plot in Fig. 10(a) the percentage of solutions that were reported to be optimal by
each agent, but were later discovered to be suboptimal by evaluating H. A large
amount of solutions are eliminated, close to 100%, helping the designer to avoid
making a poor decision, and increasing her confidence that the set of optimal
solutions found represent well the “true” Pareto frontier. Moreover, we test for
duplicated solutions across different aggregation methods, different teams and



374 L. Soriano Marcolino et al.

different agents. The number is small: only 4 in contemporary, and none in base
and office park. Hence, we are providing a high coverage of the Pareto frontier
for the designer. We show the total number of optimal solutions in Fig. 10(b).

7 Conclusion

Design imposes a novel problem to social choice: maximize the number of opti-
mal solutions. We present a new model for agent teams, that shows the potential
of voting agents to be creative, by generating a large number of optimal solu-
tions to the designer. Our analysis, which builds a new connection with number
theory, shows that: (i) uniform teams are in general suboptimal, and converge to
a unique solution; (ii) diverse teams are optimal as long as the team’s size grows
carefully ; (iii) the minimum optimal team size is constant with high probability;
(iv) the worst case for teams is a prime number of optimal actions. Experi-
ments considered bounded time and relaxed assumptions. We also show results
in architecture, where teams find a large number of solutions.
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Abstract. Decentralized monitors can be subject to robustness and
security risks. Robustness risks include attacks on the monitor’s
infrastructure in order to disable parts of its functionality. Security risks
include attacks that try to extract information from the monitor and
thereby possibly leak sensitive information. Formal methods to analyze
the design of a monitor with respect to these issues can help to create
more secure designs and/or identify critical parts. In this paper we spec-
ify a model for analyzing robustness and security risks for collaborative
monitors constructed from a network of local monitors.

Keywords: Monitoring · Runtime verification · Security

1 Introduction

Normative systems help to make sure that agents behave according to preset
guidelines/norms in multi-agent systems [5]. One approach is provided by exoge-
nous normative systems where norms are explicit. The normative aspect of the
multi-agent system is captured by an exogenous—to the agents—organization
or institution. With this approach it must be verified whether any norm viola-
tion occurs in the multi-agent system’s execution. Monitoring large distributed
multi-agent systems such as traffic, smart grids and economic markets requires
decentralized approaches. Monolithic centralized monitors can impose a bottle-
neck due to the distributed nature of multi-agent systems and a single point of
failure in case of break downs.

A major concern of many decentralized verification applications is their
robustness and security. The data that is gathered from a multi-agent system
can severely compromise the agents’ privacy if leaked. Adversaries can also try
to take down parts of the network to impede its functioning. Formal models of
decentralized monitors allow for the analysis of critical parts in monitors in terms
of robustness and security. Such an analysis allows the developers of decentral-
ized monitors to invest more resources in critical parts. In this paper we present
a formal model for decentralized monitors that supports their formal analysis
to face the aspects of robustness and security when designing a monitor. As an
c© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 376–395, 2016.
DOI: 10.1007/978-3-319-42691-4 21
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Location 2

Location 3

Location 1
Location 4

Fig. 1. Example scenario. Black dots indicate locations, arrows indicate traffic flow
and double lines indicate roads.

example we shall use an abstract traffic monitoring scenario (Example 1). Traf-
fic monitoring faces many challenges, including physical attacks on the monitor
infrastructure and the privacy of individuals (cf. [7]).

In our approach we assume that monitors observe the execution trace of a
system in order to detect specific properties of its behavior. These properties are
expressed in linear-time temporal logic (LTL) [14]. Temporal logics have been
used in the past to analyze normative systems (e.g. [1,2]). For the structure
of decentralized monitors we draw inspiration from existing popular decentral-
ized monitoring techniques such as wireless sensor networks (WSNs). The struc-
ture of a WSN is that a collection of information gathering nodes route sensor
data towards a sink, which acts as the central data gathering point. Interme-
diate data aggregation is often used to increase security and save energy. In
our decentralized framework a network of local monitors collaborates to verify
properties. We call such a network a collaborative monitor. Each local monitor
is assumed to make observations on its own and can in addition to that query
other local monitors with respect to their (aggregated) observations. This allows
to enhance privacy as monitors only obtain an aggregated value. This is similar
to the frameworks proposed in [3,17]. However, different from those two frame-
works we assume that information flows through the network without temporal
delay. Also, instead of sharing observations as in [17] or progressed formulas as
in [3], local monitors in our framework combine their input into a single evalua-
tion (true, false, or ‘yet unknown’) and share that with other neighboring local
monitors.

The contribution of this paper is a formal framework for specifying collabo-
rative monitors. The model allows to analyze how critical specific local monitors
are with respect to the security and robustness of the collaborative monitor.
We believe that the presented design methodology is not only beneficial for the
design and development of decentralized monitors using LTL, but can also pro-
vide insights into design-time and/or runtime analysis of robustness and security
risks for other decentralized verification technologies. We leave a study of tech-
nical properties for future work.

Example 1 (Smart Infrastructure Scenario). Throughout this paper we give
examples using a simple smart infrastructure scenario. We assume that there
are various traffic streams that at some point merge together, as shown in Fig. 1.
The aim of the smart infrastructure is to maximize throughput by minimizing



378 B. Testerink et al.

traffic jams at locations 2 and 3. To this end there is a road side unit (RSU)
at location 1 which informs passing vehicles whether location 2 or location 3 is
jammed. Which, if this is the case, will hopefully cause vehicles to choose the
non-jammed route. A local monitor at location 1 monitors whether vehicles that
pass location 1 will end up in a traffic jam at either location 2 or 3. Each location
has a local monitor with-short range communication capabilities that observes
the vehicles which pass by, except for the monitor at location 4 which observes
nothing, but can relay long distance messages. The monitors at locations 2 and
3 can, in addition to observing individual vehicles, also determine whether their
location is jammed. The local monitor at location 1 should be able to verify
whether a vehicle that passes location 1 does not end up in a traffic jam.

The rest of the paper is structured as follows. In Sect. 2 we summarize related
work and background literature that influenced this paper. In Sect. 3 we present
the model for collaborative monitors that we use to describe robustness in Sect. 4
and security in Sect. 5. In Sect. 6 we discuss possible changes in the framework’s
assumptions and future work.

2 Related Work and Background

The field of wireless sensor networks (WSNs) contains a vast amount of identi-
fied robustness and security risks as well as countermeasures (cf. [11,12]). Exam-
ple risks include the malfunctioning of hardware and software and attempts by
an adversary to eavesdrop on communication. Countermeasures include various
techniques such as routing protocols and encryption. The aim of countermeasures
is to keep the monitoring service online if local monitors malfunction and prevent
sensitive information from being obtained by an adversary. The requirements
of WSNs are commonly organized by: (1) data confidentiality (only intended
receivers can see sensitive data), (2) data integrity and freshness (data is correct
and new), (3) protection against Sybil attacks (the imitation of monitors) and
(4) availability (continued operation of monitors).

Protection against confidentiality and availability attacks will be the main
focus of this paper. Data integrity and freshness is assumed. I.e., we assume that
monitors either work correctly or they are unavailable, but cannot for instance
send false information. Different kinds of attacks can be categorized between
attacks that change the network topology (e.g. physically compromising a node
or communication line, or a wormhole attack that connects two nodes) and
those that extract information from the network (capture and/or imitation of
nodes). We shall address the case that a local monitor can malfunction. This
encapsulates both aggressive and non-aggressive failures of local monitors. We
shall also discuss the case that an attacker can query a local monitor without
proper authorization. This encapsulates Sybil attacks.

WSNs also suffer from hardware constraints. Sensors tend to have limited
power and communication capabilities. A common practice to limit energy usage
is to use intermediate aggregation of data between the source of data and the
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sink. Data aggregation also helps to optimize any other monitoring system by
reducing the amount of required communication. There are many works dedi-
cated to security in data aggregation systems [10]. We note that the concept of
privacy in data aggregation literature is generally interpreted as privacy of sen-
sors. For instance, if a sensor computes the average velocity of all vehicles, then
it may receive from other sensors the average velocities of partitions of the set
of vehicles. Privacy in related literature would mean that it is not known which
sensors provided what data to compute the total average velocity. In this paper
we consider only privacy in the form of the privacy of agents. For instance, in our
example scenario the location of a specific vehicle can be seen as privacy sensi-
tive information. Therefore, instead of a monitor sharing separately the velocity
of the vehicle and whether location 2 is jammed, it may share the evaluation of
the conjunction of these two facts. If a receiver obtains this evaluation and it is
false, then the receiver cannot derive whether the vehicle was not at location 2
or whether there was a traffic jam. Note that if the evaluation is true, then it is
known that the vehicle was at location 2.

Security related papers on wireless networks for monitoring tend to focus
on how to prevent security risks by using cryptography (e.g. [13]) and/or spe-
cial routing protocols (e.g. [8]). Our approach is complementary to this. We do
not look at runtime implementation techniques for preventing risks, but address
design time questions and analysis to see where potential robustness and secu-
rity risks lie. We believe design based analysis can help in further improving
decentralized monitors. Depending on the practical limitations of an application
it might not be possible to always make a perfect design. But our work can
help in determining which parts of a network require more advanced/expensive
hardware to increase safety.

WSNs usually concern sensor readings of continuous parameters. However,
we take a logical approach with discrete values as this fits better with the declara-
tive nature of normative systems theory. Many normative systems express norms
as conditional obligations/prohibitions with deadlines (cf. [2]). Such construc-
tions can often be expressed as properties about a system’s behavior over time.
This has led us to opting for linear temporal logic. Monitors that perform run-
time verification of properties that are expressed in LTL can be modeled with
automata [4] or progression systems [6]. For our framework it is not important
which one is used. As for decentralized LTL verification there are the proposals
from [3,17]. However the framework in [3] is built on assumptions that do not
support our intended scenarios. For one, in their framework all monitors are
connected to each other whereas we want to investigate specific topologies. The
framework from [17] does allow different topologies but data is not aggregated
by local monitors. Also we have no notion of information delay, which both
frameworks have.

As in [3,17] we assume that the monitors work synchronously. This means
that at any moment all monitors are (partially) observing the same behav-
ior of the multi-agent system. In various decentralized monitoring communi-
cation protocols synchronization is introduced in order to have data freshness
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(e.g. SNEP [13]). We assume that the monitors are connected in an acyclic man-
ner and that the aggregation operation of local monitors is taking a combination
of the input, as explained in the next section.

3 Monitor Model

The task of a monitor is to verify whether the monitored system’s behavior
satisfies a property. The behavior of the system is a trace of states, and properties
are expressed as LTL formulas. We first introduce preliminaries. Then, we explain
the architecture of collaborative monitors and how views of local monitors and
their in-between connections give rise to their locally verifiable properties. The
basic idea of our verification model has been published as an extended abstract
in [16].

3.1 Formal Setting

Let Π be a set of propositional symbols. A transition system (over Π) is given
by a tuple T = (S,R, V ) where S is a state space, R ⊆ S2 a serial transition
relation, and V : S → 2Π an evaluation function which returns the propositions
that hold at a given state. We assume that Π, S, V a are fixed throughout this
article if not said otherwise.

An infinite trace is defined as an infinite sequence σ = s0s1 . . . of states
interconnected by R, i.e. (si, si+1) ∈ R for all i ∈ N0. Similarly, a finite trace is
given by s0 . . . sk. The set of infinite and finite traces over T is denoted by TriT
and TrfT , respectively. The set of all traces is denoted by TrT = TriT ∪ TrfT . The
length of a trace, i.e. the number of states on it, is denoted by |σ|; in particular,
if σ ∈ TriT then |σ| = ∞. We use σ[i] to refer to state i on σ where 0 ≤ i < |σ|.
We shall often take traces as first-class citizen if it is not important to highlight
the transition system which generated them; in that case, we omit mentioning
T as subscript and whenever it is clear from context. Given a finite trace σ we
write σTri to refer to all infinite traces in Tri that extend σ, i.e. which have σ
as initial prefix. Similarly, we assume that Tr refers to a set of traces (over T ) in
the remainder of this paper.

We use linear-time temporal logic LTL [14] for specifying properties. Formulas
of LTL are defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ψ | ©ϕ | ϕUψ

where p ∈ Π is a propositional symbol. As usual, we use ♦ϕ as macro for 
Uϕ
(sometime in the future ϕ holds) and �ϕ (always ϕ) for ¬♦¬ϕ.

Definition 1 (Infinite LTL Semantics). Let T = (S,R, V ) be a transition
system, σ ∈ Tri be an infinite trace and i ∈ N0 an index. The infinite trace
semantics for LTL is defined by relation |= as follows:
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T, σ, i |= p ⇔ p ∈ V (σ[i])
T, σ, i |= ¬ϕ ⇔ T, σ, i �|= ϕ
T, σ, i |= ϕ ∨ ψ ⇔ T, σ, i |= ϕ or T, σ, i |= ψ
T, σ, i |= ©ϕ ⇔ T, σ, i + 1 |= ϕ
T, σ, i |= ϕUψ ⇔ ∃j ∈ [i,∞] : T, σ, j |= ψ and

∀k ∈ [i, j − 1] : T, σ, k |= ϕ

The finite trace semantics for LTL of [4] evaluates a formula to t (true), f
(false) or ? (unknown). The intuitive reading for t is that the property holds for
a given finite trace, therefore also for all finite and infinite extensions of that
trace. Analogously, f means that the property does not hold independent of the
future behavior of the system. Finally, ? means that the current finite trace can
be extended such that the property holds or does not hold; the satisfaction of
the formula is still open.

Definition 2 (Finite LTL Semantics). Let T = (S,R, V ) be a transition
system, σ ∈ Trf be a finite trace and j ∈ [0, |σ| − 1] an index. The finite trace
semantics for LTL is defined by relation [·]Tσ,j as follows:

[ϕ]Tσ,j =

⎧
⎨
⎩

t if ∀σ′ ∈ σTri : T, σ′, j |= ϕ

f if ∀σ′ ∈ σTri : T, σ′, j �|= ϕ
? otherwise

We write [ϕ]Tσ for [ϕ]Tσ,0. Moreover, we use T, σ, j |=3 ϕ to refer to [ϕ]Tσ,j = t,
and Trf |=3 ϕ if for all finite traces σ ∈ Trf we have that T, σ, 0 |=3 ϕ.

3.2 Local and Collaborative Monitors

Before we define local monitors, we first discuss their capability of aggregating
(ternary) evaluations of formulae into a single evaluation. Ultimately, we will use
this aggregation to obtain the evaluation of an LTL property on a finite trace.
A monitor aggregates evaluations using propositional formula α which we eval-
uate using Kleene’s ternary semantics [9].

Definition 3 (Aggregation Formula). An aggregation formula with k vari-
ables is a propositional formula α with k propositional symbols x1, . . . , xk which
can take on the values in {t, f, ?}. Aggregation formulae are evaluated using
Kleene’s ternary semantics shown in Fig. 2. Given truth values v1, . . . , vk ∈
{t, f, ?} we write α(v1, . . . vk) to refer to the evaluation of α if truth value vi

is assigned to variable xi.

Each local monitor has its own sensing capabilities which allow the local monitor
to verify an LTL formula on any finite execution trace. The basic idea of an
observation formula ϕ is that the monitor can distinguish all infinite traces
where ϕ holds from those where ϕ does not hold. This is from a specification
perspective. However, we are especially interested how the monitor makes a
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Fig. 2. Truth definition of Kleene logic.

decision at run-time. For example, if the monitor is assumed to be able to observe
♦p, it does not mean that at run-time the monitor can always decide after a finite
number of steps whether the current trace is a ♦p trace or not. In addition to
the monitor’s observation formula we allow it to use inputs of other monitors
according to a given aggregation formula.

Definition 4 (Local Monitor). A local monitor is a tuple m = (α,ϕ), where
α is an aggregation formula over k + 1 variables for some k ≥ 0, and ϕ is an
LTL formula, called m’s observation formula.

For any aggregation formula α with k + 1 variables we assume that the vari-
ables are named o, x1, . . . , xk and are ordered. Moreover, we shall also write
α(o, x1, . . . , xk) if we want to make the variable names explicit. Note the dif-
ference to α(v0, . . . , vk) for truth values vi, i = 0, . . . , k. The intuition of
α(o, x1, . . . , xk) is that the monitor aggregates its current observation, encoded
in o, with the input evaluations x1, . . . , xk of its neighboring local monitors
according to α. By convention we reserve the first variable for the evaluation of
the monitor’s observation formula.

Example 2 (Local Monitor). For simplicity we talk about a specific vehicle in
our examples. Local monitors m1, m2 and m3 can observe the location of the
vehicle (li stands for “the vehicle is at location i”). m2 and m3 can also observe
traffic jams at their location (ji means “location i is jammed”). We assume a
transition system T = (S,R, V ) as a model of our scenario. The state space is
S = {s0, ..., s5}. The transition relation consists of all pairs (s0, si) and (si, s5)
with i ∈ {1, ..., 4} and (s5, s5). The valuation function is given by V (s0) =
{l1}, V (s1) = {l2}, V (s2) = {l2, j2}, V (s3) = {l3}, V (s4) = {l3, j3} and finally
V (s5) = ∅. Hence, for each infinite trace in Tr that starts at s0 there is a moment
where either l2 or l3 is visited by the vehicle, and in that state either the vehicle is
in a jam or not. As an example monitor we consider the monitor m1 = (α1, ϕ1),
where α1 = o ∧ x1 is a formula with two variables. For instance given that o is
the valuation of ϕ1 and x1 is an input valuation then if o’s valuation is true (t)
and x1 =? then α(t, ?) is evaluated to ? by Kleene’s semantics. Monitor 1 can
observe whether l1 holds for a given state. This allows m1 to monitor a formula
ϕ1 = ♦l1 (the vehicle is at location 1 at some moment).

A collaborative monitor is modeled by a directed acyclic graph of local mon-
itors. The main reason for acyclicity is to avoid unnecessary complexities for
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the formulation of collaborative LTL verification. The connections between local
monitors is referred to as the query relation. This relation is given by a function
that given a local monitor m returns the connected local monitors in the order
of their input for the aggregation formula of m. In the following definition we
use Mk for the set of monitor tuples of length k.

Definition 5 (Collaborative Monitor Specification). A collaborative mon-
itor C is specified by (M, qry), where M is a non-empty set of local monitors,
qry : M → {ε} ∪ ⋃|M |

k=1 Mk is a query relation with qry(m) = (m1, . . . ,mj) for
j = 1, . . . , |M | iff m = (α,ϕ) where α is an aggregation formula over j + 1 vari-
ables. Moreover, qry is assumed to be acyclic1. The empty sequence is denoted
by ε.

In the case that qry(m) = ε (the empty sequence) the monitor cannot query
other monitors.

Example 3 (Collaborative Monitor Specification). Figure 3 shows a representation
of the example collaborative monitor. Monitors m2 and m3 are assumed to be able
to see whether the vehicle is at their location, and whether there is a jam at their
location. This allows monitor m2 to distinguish traces where �(¬j2 ∨ ¬l2) either
holds or not. The formula is read as “The vehicle is never at location 2 whilst there
is a jam at location 2”. We use this formula as the observation formula of m2. m3

has the same observation formula, but with respect to location 3. Both m2 and m3

do not receive any input. m4 has no observation capabilities. We set its observation
formula to 
2. The monitor aggregates inputs from m2 and m3 which will repre-
sent the statement “the vehicle has been in a traffic jam”. Finally, as discussed in
the previous example, m1 can observe ♦l1 and aggregates, using input from m4,
whether the vehicle at some point has passed through location 1 and whether the
vehicle has been in a traffic jam.Formally the collaborativemonitor from the exam-
ple scenario is specified by (M, qry) where:

– M = {m1,m2,m3,m4}.
– qry(m1) = (m4), qry(m2) = qry(m3) = ε (no input), qry(m4) = (m2,m3).

For a local monitor, let o be the observation formula’s evaluation variable, and
x and y be input evaluations variables. The local monitors are given by:

– m1 = (α1, ϕ1), α1(o, x) = o ∧ x, ϕ1 = ♦l1.
– m2 = (α2, ϕ2), α2(o) = o, ϕ2 = �(¬j2 ∨ ¬l2).
– m3 = (α3, ϕ3), α3(o) = o, ϕ3 = �(¬j3 ∨ ¬l3).
– m4 = (α4, ϕ4), α4(o, x, y) = o ∧ x ∧ y, ϕ4 = 
.

1 Firstly, let reachable be inductively defined as: m′ is reachable from m if m′ is among
qry(m) = (m1, . . . ,mk). Furthermore by transitivity if m′′ is reachable by m′ and
m′ is reachable from m, then m′′ is reachable by m. Acyclicity means that there is
no m ∈ M such that m is reachable from m.

2 We note that the choice of � for “no observation” only makes sense because of m4’s
aggregation formula o ∧ x ∧ y as defined below.
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Fig. 3. Example collaborative monitor. Nodes are local monitors with at the right their
name, arrows indicate the query relation, below monitors are the observation formulas.

For example, monitor m4 is assumed to be able to distinguish all traces satisfying
ϕ = �(¬j2 ∨ ¬l2) ∧ �(¬j3 ∨ ¬l3) ≡ �((¬j2 ∨ ¬l2) ∧ (¬j3 ∨ ¬l3)). This formula
is evaluated to false (f) if and only if at some point the vehicle is at a jammed
location. Monitor m1 is assumed to be able to distinguish all traces satisfying
ϕ′ ≡ ♦l1 ∧ ϕ. This formula is evaluated to false if and only if at some point the
vehicle passes location 1 and if at some point the vehicle is at a jammed location.
(Note that this follows from the way the model is constructed.)

Local monitors are models of runtime monitoring applications. In a runtime
system the monitor does not have access to the infinite trace that a monitored
system produces. Instead, the behavior of the system is revealed incrementally
as it develops at runtime. Therefore, it is up to a monitor to determine whether
some property is true, false or unknown given a finite trace. We shall therefore
analyze local and collaborative monitors by using finite traces of the monitored
system. Consider the local monitor m2 = (α2, ϕ2) from our example scenario
and an arbitrary trace σ ∈ Trf for an example model T of our scenario. The
input that m2 provides to m4 given σ is given by the application of α2 on the
valuation [ϕ2]Tσ . This also holds for m3 = (α3, ϕ3). The input that m4 = (α4, ϕ4)
provides to m1 given σ is hence α4([ϕ4]Tσ , α2([ϕ2]Tσ ), α3([ϕ3]Tσ )). The inputs of
an aggregation formula are ultimately the evaluation of LTL formulas on a given
trace. Hence, the input that for instance m4 provides to m1 given a trace σ
is equivalent to the evaluation of some Boolean combination ϕ of the formulas
ϕ4, ϕ2 and ϕ3. We call this Boolean combination the m4-aggregate. If a local
monitor m can query m′, then it means that m can query the evaluation of the
m′-aggregate. It is important to note, however, that only the evaluation of the
aggregate is communicated and not the truth values of its composed parts. This
is an important feature of our model to ensure privacy and security properties.
Because for each local monitor the aggregation formula is fixed, it means that
given a collaborative monitor all the aggregates can be determined at design-
time. Also note that due to acyclicity there are local monitors m = (α,ϕ) without
neighbors and hence for such local monitors their m-aggregate is equivalent to
a Boolean combination of the monitor’s observation formula ϕ, providing four
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alternatives: ϕ, ¬ϕ, ϕ ∧ ¬ϕ or ϕ ∨ ¬ϕ. To see this, observe that any 3-valued
function α on a single input necessarily maps ? to ? and any x �=? to α(x) �=?.
Hence only four possible different functions are possible given a single variable
aggregation formula.

Definition 6 (Aggregate, Aggm). Let T be a transition system and C =
(M, qry) be a collaborative monitor. A mapping Agg : M → LTL is called an
M -aggregation iff for all m = (α,ϕ) ∈ M and all σ ∈ Trf we have that

[Agg(m)]Tσ ≡ α([ϕ]Tσ , [Agg(m1)]Tσ , . . . , [Agg(mk)]Tσ ).

where qry(m) = (m1, . . . ,mk). We simply call Agg(m) the m-aggregate (wrt.
Agg) and denote it by Aggm.

The following proposition shows that an M -aggregation always exists and
also how it can be constructed. We also note that the result makes use of the
acyclicity of a collaborative monitor.

Proposition 1. Let T be a transition system and C = (M, qry) be a collabora-
tive monitor. Then, an M -aggregation exists. Moreover, an M -aggregation can
be effectively constructed such that for each m = (α,ϕ) ∈ M with qry(m) =
(m1, . . . ,mk) the m-aggregate Aggm is given by Aggm = α[ϕ/o,Aggm1

/x1, . . . ,
Aggmk

/xk] where α[ψ/x] denotes that variable x is replaced by formula ψ in α.

Proof (Sketch). Due to acyclicity there are local monitors m = (α,ϕ) ∈ M such
that qry(m) = ε returns no local monitors. For these local monitors α is an
aggregation formula with one variable o. We can construct the m-aggregate of
such a local monitor m = (α,ϕ) by syntactically replacing the variable o in α
by ϕ and maintaining the Boolean connectives. Now we can proceed inductively.
Let m′ = (α′(o′, x1, ..., xk), ϕ′) ∈ M be a monitor where qry(m′) = (m1, . . . ,mk)
and the aggregates or Aggmi

for i = 1, . . . , k are already constructed. We can
construct the m′-aggregate by syntactically replacing in α′ the first variable o′

by ϕ′, and each variable xi by the mi-aggregate for i ∈ 1, ..., k. Hence, proceeding
bottom-up, we can construct the M -aggregation Agg. ��
Example 4 (Aggregate). The m1-aggregate Aggm1

is equal to ♦l1 ∧ Aggm4
=

♦l1 ∧Aggm2
∧Aggm3

= ♦l1 ∧�(¬j2 ∨¬l2)∧�(¬j3 ∨¬l3). This corresponds with
the assumption from Example 3 that m1 should be able to distinguish between
traces where the vehicle passes through location one and a traffic jam, and those
where this does not happen.

3.3 Monitorability and Expressivity

For various robustness and security issues, and from a design perspective, it
is useful to determine what kind of formulas can be collaboratively verified by
local monitors. We first recall the notion of (non)monitorability, which is an
adaptation of the one from [4,15]. The difference is that we assume an underlying
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transition system. A formula ϕ is nonmonitorable after a finite trace σ if ϕ can
never be evaluated to a conclusive true or false after σ given the finite LTL
semantics. For ϕ to be monitorable it means that there is no finite trace such
that ϕ is nonmonitorable after that trace. We highlight that monitorable does
not mean that it will be possible to evaluate the truth of the formula, but only
that the possibility is not excluded. Consider for example the formula ♦p and a
transition system with two states q1 and q2 with R = {(q1, q1), (q1, q2), (q2, q2)}
and only q2 is labeled with a proposition p. Then, after each finite trace ♦p is
monitorable as each finite trace can be extended to evaluate the formula true or
false. However, after each finite trace q∗

1 no definite evaluation can be given.

Definition 7 ((Non)monitorable [4]). Let T be a transition system, σ ∈ Trf

be a finite trace, and ϕ be an arbitrary LTL-formula. We say that ϕ is Tr-
nonmonitorable after σ iff for all finite traces σ′ ∈ σTrf it holds that [ϕ]Tσ′ =?.
We say that ϕ is Tr-monitorable iff there is no finite trace σ ∈ Trf such that ϕ
is Tr-nonmonitorable after σ.

Note that a formula is defined to be nonmonitorable after a specific finite
trace, and monitorable if no such trace exists. Hence nonmonitorable is a different
concept than “not monitorable”. For a formula to be “not monitorable” it means
that there is a trace such that the formula becomes nonmonitorable after that
trace.

Remark 1 (Monitorability). The definition of (non)-monitorability requires a
transition system/set of traces. As a consequence, a formula can be not mon-
itorable for one transition system, but monitorable for another. Consider for
example the formula �♦p. Let T = (S,R, V ) be a transition system with
S = {s0, s1}, R = S × S and V (s0) = {p} and V (s1) = ∅. For all finite traces
σ ∈ Trf of T it holds that [�♦p]Tσ =?, hence �♦p is not Tr-monitorable. Let
T ′ = ({s0}, {(s0, s0)}, V ′), such that V ′(s0) = ∅. The set of traces Tr′ contains
only traces in which p never holds. Hence, [�♦p]T

′
σ = f for each σ ∈ Trf

′
, which

makes the formula Tr′-monitorable.

The next proposition captures the observation that monitorability is invariant
regarding equivalent formulae.

Proposition 2. Let T be a transition system and ϕ and ψ LTL-formulae. If
Trf |=3 ϕ ↔ ψ, then ϕ is Tr-monitorable iff ψ is Tr-monitorable.

Proof (Sketch). Because Trf |=3 ϕ ↔ ψ it means that ∀σ ∈ Trf : [ϕ]Tσ = [ψ]Tσ .
Hence, if ϕ is monitorable then for each trace σ ∈ Trf it holds that there must
be a σ′ ∈ σTrf such that [ϕ]Tσ′ �=? and by extension [ψ]Tσ′ �=?, hence ψ is then
also monitorable. The other way around is exactly the same if we switch ϕ
and ψ. ��

We are interested in whether a local monitor m can verify a specific LTL
formula ϕ for any trace. The m-aggregate is syntactically defined. If ϕ and Aggm
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give the same result on all traces of a transition system and ϕ is monitorable,
or alternatively if Aggm is monitorable (cf. Proposition 2) then the monitor can
detect all definite evaluations of ϕ.

Example 5 (Monitorability). The formula ψ = ♦l1 ∧�((¬j2 ∨¬l2)∧ (¬j3 ∨¬l3))
is equivalent to Aggm1

from Example 4. As we assumed that the vehicle will pass
maximally once through a location, and it will at some point go through either
location 2 or 3, we have that for any trace where the vehicle has not passed
location 2 or 3, there is an extension in which the vehicle passes these locations.
Then, when it passes a location, there is either a traffic jam or not. After the
vehicle passes location 2 or 3, all extensions of the trace will not contain another
state where the vehicle passes location 2 or 3. Therefore, any trace in which either
location is passed will evaluate ψ to t or f , which makes ψ Tr-monitorable.

We assume that each collaborative monitor has the purpose that one or more
local monitors can observe a specific formula. We call the specification of this
purpose the expressiveness constraint of the collaborative monitor which is a set
of local monitor/formula pairs (m,ϕ) where the local monitor m must be able
to observe formula ϕ.

Definition 8 (Expressiveness Constraint). An expressiveness constraint for
a collaborative monitor C = (M, qry) is a relation E ⊆ M × LTL consisting of
pairs of local monitors and formulae. The collaborative monitor C Tr-satisfies
the expressiveness constraint E iff for each (m,ϕ) ∈ E it holds that Tr |=3 ϕ ↔
Aggm.

Example 6 (Expressiveness Constraint). An expressiveness constraint for the
example scenario is E = {(m1, ϕ)} where ϕ = ♦l1 ∧ �(¬j2 ∨ ¬l2) ∧ �(¬j3 ∨ ¬l3)
is from Example 4. Because ϕ is equivalent to Aggm1

, it means that the example
collaborative monitor Tr-satisfies the expressiveness constraint E.

4 Robustness

Suppose we are given a collaborative monitor which satisfies some expressive-
ness constraint. For various reasons, such as physical sabotaging attacks, local
monitors and/or communication links between them can malfunction. From a
system designer’s perspective it can make sense to construct a monitor with
some redundancy such that the expressiveness constraint is still satisfied when
some components malfunction. In this section we analyze the robustness of mon-
itors; that is, to which degree local monitor failures affect the functioning of the
collaborative monitor.

4.1 Monitor Malfunctioning

Conceptually, one may imagine that a failing local monitor is removed from
the collaborative monitor. For another local monitor the malfunction may cause
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a situation where one of its inputs no longer exists, hence its aggregation for-
mula has to be updated. We update the aggregation formula by removing the
occurrences of the variable that corresponds to the failing monitor.

Definition 9 (Local Monitor Malfunctioning). Let C = (M, qry) be a col-
laborative monitor, and F ⊆ M be a set of malfunctioning monitors. We define
the collaborative monitor C|F = (M ′, qry′) as follows:

– M ′ = M \ F .
– for each m ∈ M it holds that qry′(m) equals qry(m) but with each local moni-

tors in F being removed from the tuple.
– M contains all m = (α,ϕ) ∈ M \ F where qry(m) = (m1, . . . ,mk) but each

α(o, x1, ..., xk) is replaced by α′ which is obtained by the following procedure
that is repeated until no variable xi for mi ∈ F remains:
1. If li ∈ {xi,¬xi,¬¬xi, . . .} occurs in a disjunctive subformula li ∨ ϕ or

conjunctive subformula li ∧ ϕ of α then this subformula is rewritten to ϕ.
2. If α equals li with li ∈ {xi,¬xi,¬¬xi, . . .}, then α′ = 
.

Intuitively, the definition expresses that input from malfunction monitors are
ignored in a sense that they can no longer help to classify traces.

Example 7 (Local Monitor Malfunctioning). If F = {m4} then monitor 4 is
removed. The resulting collaborative monitor is C|F = (M ′, qry′) where M ′ =
{m1,m2,m3} and qry′(mi) = qry(mi) for i = 2 and i = 3, and qry′(m1) = ε is
the empty sequence. The malfunction causes α1 = o∧x to be updated to α′

1 = o,
which means that Aggm1

becomes equivalent to ♦l1.

We limit ourselves to local monitor malfunctioning, but communication mal-
functioning can be straightforwardly defined as well. Instead of removing local
monitors, only the query relation is updated. For example, if communication
from m1 to m4 malfunctions then the new query relation removes m4 from m1’s
input sequence of local monitors. The aggregation formula is updated following
the same procedure proposed for local monitor malfunctioning. An extension of
malfunctioning where monitors send false information is also interesting and left
for future research.

4.2 Monitor Robustness

In a hostile environment local monitors can be damaged, but they can also
malfunction for other reasons (e.g. running out of energy). We aim at quantify-
ing robustness in terms of how much damage a collaborative monitor can take
before its expressiveness constraint is not satisfied any more. This damage can
be expressed as a set of potentially malfunctioning local monitors or a number
specifying the number of malfunctioning local monitors. We consider monitors
that do not occur in an expressiveness constraint to be supporting monitors.
k-robustness is a measurement of how many of such monitors may fail before
the expressiveness constraint is not satisfied.
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Definition 10 (Collaborative Monitor Robustness). Let C = (M, qry) be
a collaborative monitor Tr-satisfying the expressiveness constraint E, M ′ = {m |
m ∈ M, (m,ϕ) �∈ E} and F ⊆ M be a subset of local monitors. We say that C
is F-robust for E and Tr if C|F Tr-satisfies E. We say that C is k-robust for E
and Tr, k ∈ N0, if C is F ′-robust for E and Tr for any F ′ ⊆ M ′ with |F ′| ≤ k.

We note that given a collaborative monitor C, 0-robustness is equivalent to ∅-
robustness for some E and Tr which simply means that C Tr-satisfies E. If every
local monitor occurs in E with some ϕ then only 0-robustness can be obtained.

Example 8 (Collaborative Monitor Robustness). Let F = {m4} and E be as in
Example 6. The collaborative monitor is not F -robust for E. However, assume
we allow that m2 and m3 can potentially switch to more energy costly but
long range communication. This can be modeled by including m2 and m3 in
qry(m1). Also assume that in that case Aggm1

is equivalent to ϕ1 ∧ (Aggm4
∨

(Aggm2
∧ (Aggm3

))). In this scenario, if m4 fails then the new m1-aggregate
becomes ϕ1 ∧ (Aggm2

∧ Aggm3
). Hence, the monitor would be F -robust. Also,

given E the example collaborative monitor can only be 0-robust.

Aside from a specific attack we might wonder how much damage a monitor can
take in general before it fails. This is especially useful in scenarios with many
homogeneous local monitors such as botnets where attacks can be widespread
and targeting any point in the network. This notion is captured by k-robustness.
To determine the k of k-robustness, one has to consider the potential set of
monitors which might fail and then check for each set of monitors of size k
whether the collaborative monitor is robust with respect to those subsets and
its expressiveness constraints. We leave a detailed investigation for future studies.

4.3 Fail Tolerance

Recall from Sect. 2 that we aimed at providing basic metrics to determine critical
parts of a collaborative monitor, and that data availability is one of the topics
that we address. In wireless sensor networks data availability is a concept that
describes that data is available to monitor some property because enough sensors
are working properly. Hence, robustness is related to data availability as it deals
with scenarios where monitors fail. Intuitively we want to capture for a local
monitor how critical its functioning is for the collaborative monitor. We shall
use a fairly simple qualification called fail tolerance for determining how critical
a local monitor is. This can be used as a basis for more sophisticated metrics.
Recall that the presented analysis is for design purposes. In an implementation
one has to deploy a mechanism for detecting whether a monitor has failed.

For a collaborative monitor C, a local monitor m in C, and an expressive-
ness constraint E, we call monitor m k-fail tolerant if alongside m at least k − 1
other monitors must fail before C cannot satisfy E, and without m’s failure the
expressiveness constraint would be satisfied. In particular, m being 1-fail toler-
ant means that m’s correct functioning is absolutely critical for the collaborative
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monitor, because alongside m zero other monitors must fail before the expres-
siveness constraint is not satisfied. Similarly, m being k-fail tolerant and k > 1
indicates that there is some redundancy wrt. m. For instance if m is 2-fail toler-
ant then the expressiveness constraint is not violated if only m fails. Therefore,
there must be some other monitor that has some redundancy with m. Being
∞-fail tolerant would indicate that the collaborative monitor does not depend
on m’s functioning for satisfying its expressiveness constraints. That is, if the
collaborative monitor does not satisfy an expressiveness constraint E due to any
set of failing monitors, then it would still not satisfy E if m did not fail.

Definition 11 (Fail Tolerant). Let T be a transition system, C = (M, qry)
be a collaborative monitor and E be an expressiveness constraint. For a monitor
m ∈ M we say m is k-fail tolerant wrt. E and Tr, k < ∞ iff there is a F ⊆ M
of size k such that:

– (1) m ∈ F , C is not F -robust for E and Tr, and for each subset F ′ ⊆ F \{m}
C is F ′-robust for E and Tr, and

– (2) there is no F ′ ⊆ M such that (1) holds for F ′ and |F ′| < |F |.

If there does not exist a k < ∞ such that m is k-fail tolerant, then we say that
m is ∞-fail tolerant.

Example 9 (Fail Tolerance). All monitors in our example scenario are 1-fail tol-
erant, as each of them observes vital information for the goal aggregate in m1.
However, see Fig. 4 for an illustration of more robust collaborative monitors. In
the left monitor we assume only one expressiveness constraint such that m7 must
be able to aggregate p ∧ q ∧ r, hence m7 is 1-fail tolerant. m1 is 1-fail tolerant
as its failure will immediately let the whole monitor fail. m2 is 2-fail tolerant
as its failure together with m3 will let the whole monitor fail. Note that m1

together with m2 is not considered for m2’s fail tolerance as m1 was already
1-fail tolerant. Monitors m4 to m6 are 3-fail tolerant.

In the right collaborative monitor of Fig. 4 we assume that m5 must be able
to aggregate p∧ q and hence it is 1-fail tolerant. All the other monitors are 2-fail
tolerant, and the collaborative monitor as a whole is 1-robust.

p q r r rq

rr rqqp

m1 m2 m3 m4 m5 m6

m7

p q

p q

∧p q ∧p q

∧p q

m1 m2

m3 m4

m5

Fig. 4. Example collaborative monitors. Nodes are local monitors with on the top their
name, arrows indicate the query relation, below monitors are the observation formulas.
An arrow from a monitor mi to mj is labeled with the mj-aggregate.
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We note that if a monitor is k-robust, then the lowest i-fail tolerance that a
local monitor can have aside from 1 is (k + 1).

Given a monitor design we can now see how critical a local monitor is in terms
of its functioning. A straightforward expansion of this fail tolerance analysis is
to not only check for F -robustness, but also look at which expressiveness pairs
(m,ϕ) are not satisfied anymore in case the monitor is not F -robust. If not all
expressiveness constraints are equally important, then for tolerance analysis this
can be taken into account. Also looking at how many pairs are not satisfied is
an important ingredient should one want to specify graceful degradation for col-
laborative monitors. At runtime the collaborative monitor can benefit from fail
tolerance analysis by assigning higher reparation priorities to critical monitors,
if possible.

5 Security

When it comes to the security of a collaborative monitor, we focus on the pos-
sible information an attacker can extract from the monitor. We say an attacker
extracts an LTL property ϕ if the attacker can extract from the collaborative
monitor the evaluation of ϕ given an arbitrary finite trace.

5.1 Information Extraction

In practice there are various ways in which an attacker can extract informa-
tion. The attacker can intercept and interpret messages, query other monitors
by pretending to be authorized and capture a monitor. To analyze intercepted
messages it is required to know what messages are exactly exchanged, something
which is not covered in our model. Also our model is not suited for analyzing
how a monitor can be reprogrammed, given that we only have semantical repre-
sentations and no program specifications of monitors. Therefore we focus on the
situation where the attacker can ask a query by pretending to be authorized.
This can in practice occur, for example, if the attacker pretends to be a local
monitor from the network.

We assume that like monitors the attacker can aggregate extracted informa-
tion by using some aggregation formula. However, for the attacker this is not a
fixed formula. Hence, given the aggregates that it obtains from the collaborative
monitor it can combine them by standard Boolean connectives. In the follow-
ing PL(X) denotes all possible formulae that can obtained by applying Boolean
connectives to elements in X.

Definition 12 (Monitor Attack). Let C = (M, qry) be a collaborative moni-
tor. An attack att ⊆ M is a set of local monitors. The set of extracted properties
LC
att is PL({Aggm|m ∈ att}).

If the framework is extended and other forms of attacks, such as eavesdrop-
ping on communication, can also be analyzed then these will contribute to the
set of extracted properties. Note that if some ϕ is extracted from the monitor,
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then the attacker may still not know whether the system’s behavior satisfies this
property given a finite trace, because the evaluation may be inconclusive.

Example 10 (Monitor Attack). If an attacker can imitate m4 then it will be able
to query m2 and m3. In that case att = {m2,m3} and the extracted properties
are PL({Aggm2

,Aggm3
}). For instance the attacker can determine given an arbi-

trary trace what the evaluation is of ¬�(¬j2 ∨¬l2)∨¬�(¬j3 ∨¬l3) (somewhere
in the future there was a jam at either location and/or the vehicle was at either
location).

5.2 Safety

For monitor safety we look at whether a specific attack can be used to observe
some given property from the collaborative monitor. We assume the attacker
knows what an aggregate represents. That is, if it obtains information on the eval-
uation of the m-aggregate for a monitor m, then it knows that the m-aggregate
is Aggm.

Definition 13 (Monitor Safety). Let T be transition system, C be a collab-
orative monitor, att be an attack and ϕ be an LTL formula. We say that C is
Tr-safe for ϕ and att iff there is no ψ ∈ LC

att such that Trf |=3 ϕ ↔ ψ.

Example 11 (Monitor Safety). Given att = {m1,m2,m3,m4} the example col-
laborative monitor is Tr-safe for ϕ = ♦(l1 ∧ ♦l2) and att. It is also Tr-safe for
ψ = ♦(l1 ∧ ♦l3) and att. This means that even if the attacker can obtain all
available aggregates, it still cannot determine for a trace whether the vehicle
used or may use in the future the route through locations 1 and 2 or through
locations 1 and 3, respectively.

The space of potential attacks is heavily restricted by practical details that
are not covered by our model. For instance if in a network some local monitor only
has wired connections to other local monitors in a safe environment, then it might
be impossible that local monitor is targeted for an attack. Therefore we focus
on analyzing security risks wrt. potentially attacked local monitors and with
the assumption that the attack is practically feasible. The security constraint
of a monitor consist of a set of monitors that can potentially be attacked and
a set of properties that represent sensitive information. The analysis of what
properties count as sensitive should be part of the system’s design methodology.
These will differ per practical real-world scenario. A monitor satisfies its security
constraint if none of the considered attacks allows the attacker to monitor a
sensitive property.

Definition 14 (Security Constraints). Let T be a transition system and C =
(M, qry) be a collaborative monitor. A security constraint for C is defined as
(A,P ) where A ⊆ M is a set of local monitors and P ⊆ LTL is a set of sensitive
properties. C Tr-satisfies its security constraint iff for each and ϕ ∈ P , C is
Tr-safe for ϕ and A.
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It should be noted that for some constraint (A,P ) a not monitorable property
ϕ ∈ P might still be reasonable to consider as sensitive information. There is
the possibility that given the behavior of the monitored system at runtime such
a formula will always be evaluated to ‘?’, but this is not guaranteed to be the
case, unless ϕ is nonmonitorable after the empty trace.

Example 12 (Security Constraint). Let M = {m1,m2,m3,m4}, ϕ and ψ be as in
Example 11 and (A,P ) = (M, {ϕ,ψ}) be the scenario’s security constraint. The
example collaborative monitor Tr-satisfies its security constraint (A,P ). This
means that no matter which local monitors are attacked, the route of the vehicle
remains private.

5.3 Attack Tolerance

For security we also want to know how critical an attack on a monitor can
be. That is, if a certain monitor’s aggregate can be obtained, how bad is that?
In contrast to robustness, this is only interesting if the collaborative monitor
does not satisfy its security constraint. Because that would indicate that there
are combinations of monitors such that the attack on those monitors would
reveal sensitive information. The attack tolerance of a local monitor m indicates
how many other monitors need to be attacked in addition to m before sensitive
information is leaked. A local monitor is maximally attack tolerant if it cannot
contribute to any security leakage at all.

Definition 15 (Attack Tolerant). Let C = (M, qry) be a collaborative mon-
itor and (A,P ) be its security constraint. For an attack att ⊆ A and a local
monitor m ∈ att we say that m is contributing to att iff P ∩ LC

att �= ∅ and
P ∩ LC

att′ ⊂ P ∩ LC
att, where and att′ = att \ {m}. For a monitor m ∈ M we

define:

– m is k-attack tolerant iff att ⊆ A is the smallest attack such that m is con-
tributing to att and k = |att|.

– m is ∞-attack tolerant iff there is no att ⊆ A such that m ∈ att and m is
contributing to att.

If C = (M, qry) Tr-satisfies a security constraint then all local monitors are
∞-attack tolerant. If a local monitor m is 1-attack tolerant then the m-aggregate
is equivalent to a sensitive property, or the aggregate’s negation is. The maximal
attack tolerance value for a local monitor aside from ∞ is |M |.
Example 13 (Attack Tolerant). In our example scenario the monitor Tr-satisfies
the example security constraint and hence all monitors are ∞-attack tolerant. If
in the right monitor of Fig. 4 the security constraint is ({m1, . . . ,m7}, {p ∧ q})
then m1 and m2 are 2-attack tolerant and the other local monitors are 1-attack
tolerant.
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Now we can determine how attack tolerant a local monitor is, which is an
indicator for how critical the local monitor is for the security of the collabora-
tive monitor. Based on this basic framework several extensions are possible. For
instance if a monitor is easier to attack than another (i.e. a simple sensor in a
WSN versus a sophisticated sink), then the tolerance of the easier target should
be decreased relatively to the harder target. In a runtime environment if attacks
are detected then new attack tolerance values can be computed with the knowl-
edge that some local monitors are already attacked. This could for instance be
countered with low attack tolerance local monitors switching to more secure,
albeit energy and/or more overhead cost expensive, communication protocols.

6 Discussion and Conclusion

In this paper we presented a formal framework for collaborative monitors, which
are networks of local monitors. We have drawn inspiration from the wireless sen-
sor network literature to specify the interaction between local monitors. The local
monitors in a collaborative monitor are models of monitors that aggregate local
and distributed observations. The model for monitoring is suitable for scenarios
where it is unfeasible to have a centralized monitor that can observe the entire
state of the system that is monitored. Also, aggregation is useful in scenarios
where communication is expensive, as it can reduce the cost of communica-
tion. Aggregation may also improve the security of a monitor. We discussed how
aspects related to robustness and safety can be investigated in the framework.
The model for robustness and safety allows a designer to detect the importance
of the correct functioning and safety of a local monitor. In an application that
implements the model this may help the designer to decide upon what counter
measures to take against potentially failing or attacked monitors.

The contribution of this paper is just a first step towards a formal frame-
work for modeling and analyzing collaborative monitor applications. At several
points we explained how the framework could be extended. The runtime analysis
of communication failures and the effects of different communication protocols
from related literature provide interesting directions for future research. Also,
the concepts of robustness and safety can be extended to model, e.g., graceful
degradation of a collaborative monitor’s functioning and safety. We also left the
investigation of formal properties of the framework, e.g. complexity and synthesis
results, for future work.
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Abstract. Using Punch and Judy as a story domain, we describe an
interactive puppet show, where the flow and content of the story can be
influenced by the actions of the audience. As the puppet show is acted
out, the audience reacts to events by cheering or booing the charac-
ters. This affects the agents’ emotional state, potentially causing them to
change their actions, altering the course of the narrative. An institutional
normative model is used to constrain the narrative so that it remains
consistent with the Punch and Judy canon. Through this vignette of a
socio-technical system (STS), comprising human and software actors, an
institutional model – derived from narrative theory – and (simplistic)
technological interaction artifacts, we begin to be able to explore some
of the issues that can arise in STS through the prism of the World-
Institution-Technology (WIT) model.

1 Introduction

Agent-based approaches for interactive narrative generation use intelligent
agents to model the characters in a story. The agents respond to the inter-
actions of a player with dialogue or actions fitting the shape of a story. However,
these agents have little autonomy in their actions, bound as they are to the strict
requirements of their role in the narrative.

Other approaches to balancing authorial control with player or charac-
ter agency include the use of director agents [15], reincorporation of player
actions back into the narrative [29] and mediation to prevent narrative-breaking
actions [26].

An institutional model can be used as a normative framework for governing
the actions of agents in a story. By describing the rules of a narrative in terms
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of social expectations, the agents are encouraged to perform certain types of
actions while still retaining the option to break free of these expectations. As in
society in the real world, breaking agreed norms comes with consequences, and
only generally happens in exceptional circumstances. One situation where this
may reasonably occur is when agents experience emotions. An agent experienc-
ing an extreme emotion – in respect of some emotional model – such as rage
or depression, may be allowed to act unusually or uncharacteristically. Allowing
characters to break with the norms of the narrative enables them to be ‘pushed
too far’ by circumstances, with results that can add an extra dimension of rich-
ness to the telling.

There are two novel aspects to the approach we describe here: (i) the use of an
institutional model to describe a narrative ‘world’ or domain, and (ii) how emo-
tional models can give intelligent agents an alternative form of autonomy – from
being limited by knowledge, reasoning capacity and time (bounded-rationality)
and self-interest – both to act in idiosyncratic ways and to react emotionally to
input from the audience.

Here we present an implementation in the form of an interactive Punch and
Judy puppet show, in which the course of the story changes in accordance with
the responses that come from the audience.

The structure of the system takes cues from the WIT model [22] which offers
a pattern for analysing socio-technical systems through the interaction of three
views of a system: (i) the world view (W), as human and software agents see it:
in this case, the audience (human) and the actors (BDI agents) playing roles in
Punch and Judy, (ii) the institutional view (I) that sets out the regulation of the
system: in this case the narrative structure corresponding to Punch and Judy,
captured in terms of Propp’s [23] story moves and roles, and (iii) the technologi-
cal view (T) that identifies the components (software and hardware) that enable
the realization of the system, in this case, the means to capture audience input
and the visualisation of the performance. More importantly, WIT emphasises
the role of the institution both as regulator and monitor of behaviour, which is
exactly what we see in our system, since through permission and obligation it
directs the actors towards the conclusion of the narrative, while also observing
their actions for adherence to the narrative structure.

The puppets in the show are each realised by belief-desire-intention (BDI)
agents augmented with a valence, arousal, dominance (VAD) emotional model,
which we describe in Sect. 4. The story is modelled by a set of institutional norms
(Sect. 6) that describe the Punch and Judy story domain in terms of Propp’s
‘story moves’ [23] (Sect. 2). In Sect. 6, we discuss the architecture and the means
for the audience to interact with the system. The focus here is on the more
technical aspects of the system and how the various components fit together,
while more detail on the narrative side appears in [28].
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2 Propp’s Story Moves and Roles

To express story events as an institution, we need some sort of formalisation
for the analysis of the story – rather than an arbitrary selection of features –
and so we look to narrative theory for inspiration. Instead of describing parts
of the Punch and Judy story explicitly (such as ‘Punch is expected to hit the
policeman in this scene’), it is desirable to describe scenes in a more abstract
way using roles (‘The villain fights the victim in this scene’). The use of more
general story fragments allows us to reuse them in multiple scenes, or even in
other stories.

Narratology, and structuralism in particular, supply such generalised building
blocks for stories. Russian formalism is an early movement in narrative theory
that sought to formalise the elements of narrative, and Vladimir Propp was a
prominent figure in this school. One outcome of this movement was Propp’s 1928
formalism derived from the study of Russian folktales, The Morphology of the
Folktale [23], which is what we use to build a model to direct the course of the
narrative. Propp is widely used – and criticised – in the domains of computa-
tional models of narrative and digital story telling [8], but retains appeal through
it’s simple but relatively effective modelling capacity. In his formalism, Propp
identifies recurring characters, which become roles and motifs, which become
action fragments, in Russian folklore, distilling them down to a concise syntax
with which to describe stories. Propp’s event-driven style translates comfort-
ably to an institutional framework for event-based norms. However, while these
action fragments fit the Punch and Judy story adequately, we note that the role
labels can sound rather awkward because of the apparent semantic import of
the textual label.

In Propp’s formalism, characters have roles, such as hero, villain, dispatcher,
false hero, and more. Characters performing a certain role are able to perform a
subset of story moves, which are actions that make the narrative progress. For
example, the dispatcher might send the hero on a quest, or the victim may issue
an interdiction to the villain, which is then violated.

Propp defines a total of 31 distinct story functions. Each such function is
denoted by a number and symbol in order to provide a succinct way of describing
entire stories by reference to the constituent story functions. Examples of such
functions are:

– One of the members of a family absents himself from home: absentation.
– An interdiction is addressed to the hero: interdiction.
– The victim submits to deception and thereby unwittingly helps his enemy:
complicity.

– The villain causes harm or injury to a member of the family: villainy.

Each of these functions can vary in subtle ways. For example, the villainy
function can be realised as one of 19 distinct forms of villainous deed, including
the villain abducts a person, the villain seizes the daylight, and the villain makes
a threat of cannibalism. These functions are enacted by characters following
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certain roles. Each role (or dramatis persona in Propp’s definition) has a sphere
of action consisting of the functions that they are able to perform at a particular
point in the story. Propp defines seven roles each of which has distinct spheres
of action: villain, donor, helper, princess, dispatcher, hero, and false hero. In a
typical story, one story function will follow another as the tale progresses in
a sequence of cause and effect. Propp’s formalism does however also allow for
simultaneous story functions.

2.1 Propp Example: Sausages and Crocodile Scene

To provide some context for Punch and Judy, since it is a peculiarly British
phenomenon, although with Italian origins, we quote from Wikipedia:

Punch and Judy is a traditional, popular, and usually very violent puppet show
featuring Mr Punch and his wife, Judy. The performance consists of a sequence
of short scenes, each depicting an interaction between two characters, most typi-
cally Mr. Punch and one other character (who usually falls victim to Mr. Punch’s
club). It is often associated with traditional British seaside culture. The Punch
and Judy show has roots in the 16th-century Italian commedia dell’arte.
http://en.wikipedia.org/wiki/Punch and Judy, retrieved 2015-05-06.

The common elements of Punch and Judy are easily described in terms of
Propp’s story functions. Here we pick one scene to use as an example: the scene
where Punch battles a crocodile in order to safeguard some sausages. In this
scene, Joey the clown (our narrator) asks Punch to guard the sausages. Once
Joey has left the stage, a crocodile appears and eats the sausages. Punch fights
with the crocodile, but it escapes. Joey then returns to find that his sausages
are gone. The corresponding story functions are:

1. Joey tells Punch to look after the sausages (interdiction).
2. Joey has some reservations, but decides to trust Punch (complicity).
3. Joey gives the sausages to Punch (provision or receipt of a magical agent).
4. Joey leaves the stage (absentation).
5. A crocodile enters the stage and eats the sausages (violation).
6. Punch fights with the crocodile (struggle).
7. Joey returns to find that the sausages are gone (return).

Some features of Punch and Judy map to story functions better than others
(for example, it is debatable as to whether or not the sausages can be considered
a “magical agent”), but for the most part Propp’s formalism seems well suited
to Punch and Judy. The advantage of using Propp to model the Punch and Judy
story domain is that the story function concept captures the notion of actual
story (brute) events counting as [11] story function (institutional) events and
hence leading to the construction and evolution of institutional models.

http://en.wikipedia.org/wiki/Punch_and_Judy
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3 Institutional Model

An institution describes a set of ‘social’ norms describing the permitted and
obliged behaviour of interacting agents. Noriega’s ‘Fish Market’ thesis [3]
describe how an institutional model can be used to regiment the actions of agents
in a fish market auction. Several [2,5,9] extend this idea to build systems where
institutions actively regulate the actions of agents, while still allowing them to
decide what to do. We build on the work of Cliffe et al. [7] and Lee et al. [14] to
adapt it for the world of narrative, using an institutional model to describe the
story world of Punch and Judy in terms of Propp’s story moves and character
roles, through which the actors acquire powers and permissions appropriate to
the character and the story function in which they are participating.

Institutional models use concepts from deontic logic to provide obligations
and permissions that act on interacting agents in an environment. By combining
this approach with Propp’s concepts of roles and story moves, we describe a
Propp-style formalism of Punch and Judy in terms of what agents are obliged
and permitted to do at certain points in the story.

For example, in one Punch and Judy scene, a policeman enters the stage and
attempts to apprehend Punch. According to the rules of the Punch and Judy
world, Punch has an obligation to kill the policeman by the end of the scene (as
this is what the audience expects to happen, having seen other Punch and Judy
shows). The policeman has an obligation to try his best to catch Punch. Both
agents have permission to be on the stage during the scene. The policeman only
has permission to chase Punch if he can see him (Punch is obliged to hide from
him at the start of the scene).

The permissions an agent has, on the one hand, constrain the choices of
actions available to them at any given moment. Obligations, on the other hand,
affect the goals of an agent. Whether or not an agent actively tries to fulfil an
obligation depends on their emotional state.

3.1 Institution Example

To illustrate the application of institutional modelling, we here continue the
‘sausages and crocodile’ scene example from Sect. 2.1, taking the Propp story
functions and describing them in an institutional model. We define our insti-
tution in terms of fluents, events, powers, permissions and obligations, follow-
ing [7], to which the interested reader is referred for the full details of the formal
model, including the generate (G) and consequence (C) relations, which are only
described here in sufficient depth for the model being presented.

Fluents. These are properties that may or may not hold true at some instant
in time, and that change over the course of time. Institutional events are able to
initiate or terminate fluents at points in time. A fluent could describe whether a
character is currently on stage, the scene of the story that is currently being acted
out, or whether or not the character is happy at that moment in time. Domain
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fluents (D) describe domain-specific properties that can hold at a certain point
in time. In the Punch and Judy domain, these can be whether or not an agent
is on stage, or their role in the narrative:

D = {onstage, hero, villain, victim, donor, item}

Institutional fluents consist of (institutional) powers, permissions and obliga-
tions. An institutional power (W) describes whether or not an external event
has the authority to generate a meaningful institutional event. Taking an exam-
ple from Propp’s formalism, an absentation event can only be generated by an
external event brought about by a donor character (such as their leaving the
stage). Therefore, any characters other than the donor character would not have
the institutional power to generate an absentation institutional event when they
leave the stage. The possible empowerments (institutional events) from Propp
used in Punch and Judy are:

W = {pow(introduction), pow(interdiction), pow(give),
pow(absentation), pow(violation), pow(return)}

Permissions. (P) are associated with external actions that agents are permit-
ted to do at a certain instant in time. These can be thought of as the set of
socially permitted actions available to an agent. While it is possible for an agent
to perform other actions, societal norms usually discourage them from doing so.
For example, it would not make sense in the world of Punch and Judy if Punch
were to give the sausages to the Policeman. It is always Joey who gives the
sausages to Punch. Also, it would be strange if Joey were to do this in the mid-
dle of a scene where Punch and Judy are arguing. We make sure agents’ actions
are governed so as to allow them only a certain subset of permitted actions at
any one time. The set of permission fluents is:

P = {perm(leavestage), perm(enterstage), perm(die), perm(kill),
perm(hit), perm(give), perm(fight)}

Obligations. (O) are institutional facts that contain actions agents should do
before a certain deadline. If the action is not performed in time, a violation event
is triggered, which may result in a penalty being incurred. While an agent may
be obliged to perform an action, it is entirely their choice whether or not they
actually do so. They must weigh up whether or not pursuing other courses of
action is worth accepting the penalty that an unfulfilled obligation brings.

Anybody who has seen a Punch and Judy show knows that at some point
Joey tells Punch to guard some sausages, before disappearing offstage. Joey’s
departure is modelled in the institution as the absentation event. It could also
be said that Joey has an obligation to leave the stage as part of the absentation
event, otherwise the story function is violated. This can be described in the
institution as:
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Eobs = {startshow, leavestage, enterstage, die, give,
harmed, hit, fight, kill, escape} (1)

Einstevent = {introduction, interdiction, receipt, absentation,
violation, return, struggle, defeat, complicity,
victory, escape} (2)

Eviol = {viol(introduction), viol(interdiction), viol(receipt),
viol(absentation), viol(violation), viol(return),
viol(struggle), viol(defeat), viol(complicity)
viol(victory), viol(escape)} (3)

Fig. 1. External, institutional and violation events for Punch and Judy

O = {obl(leavestage, absentation, viol(absentation))}

The first argument is the external event that must be triggered according to
the obligation, the second argument is the institutional deadline event, and the
third argument is the violation event which is triggered if the obligation is not
fulfilled before the deadline.

Events. Cliffe’s model specifies three types of event: external events (or
‘observed events’, Eobs), institutional events (Einstevent) and violation events
(Eviol). Examples of each are given in Fig. 1. External events are observed to hap-
pen in the agents’ environment, which can generate institutional events which
occur only within the institional model, leading to the initiation or termina-
tion of (domain) fluents, permissions, obligations or institutional powers. An
external event could be an agent leaving the stage, an agent hitting another, or
an agent dying. Internal events include narrative events such as scene changes,
or the triggering of Propp story functions such as absentation or interdiction
(described in Sect. 2). Violation is the name of a Propp story function, and is
included as an internal event, although it has no relation to the violation events
of an institution. Violation events occur when an agent has failed to fulfil an
obligation before the specified deadline. These can be implemented in the form
of a penalty, by decreasing an agent’s health, for example.

Event Generation and Consequences. An event generation function, G,
describes how events (E , usually external, but can also be internal) can generate
other (usually institutional) events, conditional upon the current institutional
state (X ). This is the counts-as relation. For example, if an agent leaves the stage
while the interdiction event holds, they trigger the leavestage event. This combi-
nation generates the absentation institutional event (rule 7). Further examples
appear in Fig. 2.
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Fig. 2. Event generation in the sausage scene

Fig. 3. Fluent initiation in the sausage scene

Fig. 4. Fluent termination in the sausage scene

Event generation functions follow a 〈preconditions〉 → {postconditions}
format. The preconditions consist of a set of fluents that hold at that time,
along with an event to have occurred. The postconditions are the events that are
generated. The generation functions are used to generate internal, institutional
events from external events.
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Consider the Punch and Judy scenario described in Sect. 2.1. There are seven
institutional events (story functions) that occur during this scene: interdiction,
complicity, receipt (from Propp’s receipt of a magical agent) absentation, vio-
lation, struggle, return. These institutional events are all generated by exter-
nal events. The interdiction is generated when Joey tells Punch to protect the
sausages. Punch agreeing amounts to complicity. Joey gives punch the sausages
(receipt), then leaves the stage (absentation). The crocodile eating the sausages
is a violation of Punch’s oath, the agents fight (struggle), then Joey enters the
stage again (return).

It is desirable that these story functions occur in this sequence in order for
a satisfying narrative to emerge. Agents may decide to perform actions that
diverge from this set of events, but the institution is guiding them towards the
most fitting outcome for a Punch and Judy world. For this reason, a currently
active story function can be the precondition for event generation. For example,
the receipt event may only be triggered if an agent externally performs a give
action and if the complicity event currently holds (rule 6). Examples of event
generation function for this scenario, complete with preconditions, are listed in
rules 4–10 (Fig. 2).

Consequences consist of fluents, permissions and obligations that are ini-
tiated (C↑) or terminated (C↓) by institutional events. For example, the insti-
tutional event receipt initiates the donor agent’s permission to leave the stage,
triggering the absentation event (rule 12). When the interdiction event is cur-
rently active and a violation event occurs, the interdiction event is terminated
(19). Rules 11–20 in Figs. 3 and 4 describe the initiation and termination of
fluents in the Punch and Judy sausages scene detailed in Sect. 2.1.

4 VAD Emotional Model

In order to make the agents acting out the Punch and Judy show more believable,
we apply an emotional model to affect their actions and decisions. For this,
we use the valence-arousal (circumplex) model first described by Russell [27].
To give each character its own distinct personality, we extend this model with
an extra dimension: dominance, as used by Ahn et al. [1] in their model for
conversational virtual humans. This dominance level is affected by the reactions
of the audience to the agents’ actions. For example, Judy may become more
dominant as her suggestions to hit Punch with a stick are cheered on by the
audience, emboldening her into acting out her impulses. A detailed description
appears in the text in Fig. 5.
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Fig. 5. VAD emotional values (figure adapted
from Ahn et al.) [1]

The VAD model illustrates
how valence, arousal and dom-
inance values map to identifi-
able emotions. Valence, arousal
and dominance can each have a
value of low, medium or high.
This allows the agents to have
a total of 27 distinct emo-
tional states. The valence and
arousal levels of each agent are
affected by the actions of other
agents. For example, a char-
acter being chased around the
stage by Punch will see their
valence level drop while their
arousal increases. According to
Russell’s circumplex model of
emotion [27], this would result
in them becoming afraid (if
their dominance level is low).

An agent’s emotional state
affects its ability to fulfil its
institutional obligations. An
agent that is furious might have
no problem carrying out an
obligation that requires them to
kill another agent. If that same
agent is happy or depressed,
however, they might not have
the appropriate motivation to
perform such a violent action.

It is important to note that the emotional model is part of the agent belief
state, and not held in the institution. We want to explore how the characters of
the story might be able to choose actions based on their emotional state. While
the institution could theoretically calculate the emotional state for each agent
in turn and dictate this to them along with the norms of the narrative, it makes
sense to decouple this feature from the narrative institution in order to separate
the characters from the events of the story.

Agents’ emotional states change according to their interactions with the audi-
ence. This is unrelated to what is happening in the narrative, and so this under-
scores the decision not to include any emotional modelling in the institution.
Also, we want the agents to have some degree of freedom within the narrative
world. They should be allowed to determine their emotions themselves, so that
in extreme emotional states they can perform ‘irrational’ or ‘extreme’ actions
that may not necessarily fit into the narrative.
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Listing 1.1. Emotional rules for a character with medium dominance

1 emotion(sleepy) :- valence (0) & arousal (-1) & dominance (0).
2 emotion(neutral) :- valence (0) & arousal (0) & dominance (0).
3 emotion(surprised) :- valence (0) & arousal (1) & dominance (0).
4 emotion(anxious) :- valence (-1) & arousal (-1) & dominance (0).
5 emotion(unhappy) :- valence (-1) & arousal (0) & dominance (0).
6 emotion(embarrassed) :- valence (-1) & arousal (1) & dominance (0).
7 emotion(glad) :- valence (1) & arousal (-1) & dominance (0).
8 emotion(happy) :- valence (1) & arousal (0) & dominance (0).
9 emotion(delighted) :- valence (1) & arousal (1) & dominance (0).

4.1 VAD Emotions in Jason

Emotions are implemented as beliefs inside an agent. An agent believes it has a
certain level of valence, arousal and dominance, and it works out its emotional
state based on a combination of these three factors. When the audience cheers
or boos them, this changes the belief holding the relevant emotional variable,
and their emotional state as a whole is recalculated.

Valence, arousal and dominance values can take values of −1 (low), 0
(medium) or 1 (high). Listing 1.1 shows the emotional belief rules for an agent
with medium dominance (a dominance level of 0). Note that an agent maintains
beliefs about both its current emotion label (such as sleepy or happy) and the
separate valence, arousal and dominance values at the same time. Similar sets
of rules handle the belief emotion for the other dominance levels.

Every time an emotional variable (valence, arousal, or dominance) changes,
an agent’s emotion is changed according to the rules in Listing 1.1. While an
agent’s valence, arousal and dominance belief values affect the way it makes
decisions internally, the results of combinations of these values (sleepy, happy,
etc.) are broadcast as external actions. The reason for this is that an agent’s
emotional state may affect the way in which the character is animated: changing
the speed at which they move or turning their smile into a frown, for example.
For this reason, whenever an emotional change takes place, the new emotion is
published as an external action of the agent so that observing entities may per-
ceive it. The Bath sensor framework described in Sect. 6 provides the means for
this evidence of the agent’s internal state change to be received by the animation
system and reflected accordingly in the display.

Listing 1.2 shows the AgentSpeak rules describing how an agent’s valence and
dominance levels are changed by the audience cheering or booing their actions.
These AgentSpeak plans describe what the agent should do in response to a
goal addition (denoted by a +! at the start of the plan name) or a belief addi-
tion (prefixed by a simple +). In the case of Listing 1.2, the +!changeMood plan
updates the agent’s emotional state based on its valence-arousal-dominance val-
ues and broadcasts the result as an external action. The +response plans raise or
lower an agent’s valence and dominance levels depending on whether the agent
perceives a “boo” or “cheer” response from the audience.

An agent announces what they intend to do, then waits three seconds. During
this time, they have the belief that they are ‘asking’ the audience, and listen for
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Listing 1.2. AgentSpeak rules for changing an agent’s emotional values from audience
responses

1 +! changeMood
2 <- ?emotion(Z);
3 emotion(Z).
4 +response(_, boo) : asking
5 <- -+valence (-1);
6 -+dominance (-1);
7 !changeMood.
8 +response(_, cheer) : asking
9 <- -+valence (1);

10 -+dominance (1);
11 !changeMood.

a response. A boo reduces an agent’s valence and dominance, while a cheer raises
them. For each response, the changeMood goal is triggered, which looks up and
broadcasts the agent’s emotional state to the other agents and environment.

5 Agent Decision Making

The agents choose which goals to pursue according to three factors: their per-
mitted actions, their obliged actions and their emotional state. Though obliged
actions are given priority, and while agents’ decisions are generally constrained
by their permitted actions, an agent’s emotional state has the final say in its
decisions. In this way, an agent will follow the social norms of the narrative, but
only according to their own mood.

Agent Goals and Plans. The agents are implemented using a belief-desire-
intention (BDI) psychological model using the Jason platform [4]. An agent’s
knowledge about the state of their world and themselves are stored as beliefs,
with new information coming in from the environment getting added to their
belief base as percepts, which are ephemeral and only last for one reasoning cycle
of an agent.

Agents are created with goals and plan libraries. Any goal that an agent is
set on carrying out at any point is an intention, whereas a goal that an agent has
but is not yet pursuing is a desire. Plan libraries describe the steps agents need
to take in order to achieve goals, as well as how to react to changes in agents’
environments.

Norms as Percepts. When an event occurs, it is added to the event timeline,
which is used to query the ASP (Answer Set Programming) solver to obtain the
set of norms that hold after the new event has occurred. The new permissions and
obligations are then added to each agent as percepts. Each time this happens,
the set of permitted and obliged actions that an agent sees is changed to be
only those that apply at that instant in time, with the previous norms being
discarded.
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Agents choose between permitted and obliged actions based on their emo-
tional state at the point of decision making. Obliged actions are given a higher
priority over permitted ones for most of the emotional states that an agent can
be in, though not always. If an agent is in a sulky mood, for example, they may
decide to ignore what they are obliged to do by the narrative, even though they
know there will be consequences.

For example, in the scene where Joey gives the sausages to Punch, Punch may
see that he has permission to eat the sausages, drop them, fight the crocodile,
run away (leave the stage) or shout for help at the crocodile or audience. His
obligation for the scene, in accordance with the Punch and Judy narrative world,
is to either eat the sausages himself, or let the crocodile have them. This ends
Propp’s interdiction story function with a violation function. Note that his oblig-
ation in this case is not to guard the sausages as asked to by Joey. While Joey’s
entrusting of the sausages is certainly an obligation in itself, Punch’s main oblig-
ations are to the narrative. Lesser obligations towards characters in the story
can be implemented as having a lower priority than those of the story itself.

Similarly, at times of extreme emotion, an agent may decide to disregard their
set of permitted actions entirely, instead acting out their innermost desires. For
example, an angry Punch might decide to just attack Joey instead of agreeing
to look after the sausages, or he might just decide to give up and leave if he
is depressed. The key point is that the norms act as the will of the narrative,
guiding the story forward, rather than a strict set of rules that the agents must
follow at all costs.

Violation events add percepts to the agents telling them that they are in
violation of the narrative norms. Once an agent receives such a percept, an
emotional variable is changed. Typically, their dominance will decrease. The
reasoning behind this is that if agents are unwilling to participate in the story,
they should have less influence in its course of events.

6 Architecture

Multi-agent System. We use the JASON framework for belief-desire-intention
(BDI) agents [4], programming our agents in the AgentSpeak language. The
VAD emotional model is represented inside each agent as a set of beliefs. Each
agent has beliefs for its valence, arousal and dominance levels, each of which can
take the value of low, medium or high, as discussed in Sect. 4. This combination
of VAD values creates one of the 27 emotional states shown in Fig. 5, affecting
whether or not an agent breaks from its permitted or obliged behaviour.

Institutional Framework. To describe our institutional model, we use InstAL [7],
a domain-specific (action) language for describing institutions that compiles to
AnsProlog, a declarative programming language for Answer Set Programming
(ASP). InstAL’s semantics are inspired by the Situation Calculus [24] and the
Event Calculus [13]. InstAL describes how external events generate institutional
events, which then initiate or terminate fluents that hold at certain points in time.
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These fluents can include the permissions and obligations that describe what an
agent is permitted or obliged to do when, as described in Sect. 3. For example,
if an agent with the role of dispatcher leaves the stage, it generates the Propp
absentation move in the institution, but only if the interdiction function is active
(i.e., the activeFunction(interdiction) fluent holds):

1 leaveStage(X) generates intAbsentation(X)
2 if role(X, dispatcher), activeFunction(interdiction);

which generates the following AnsProlog code:

The absentation institutional event gives the crocodile permission to enter
the stage if there are any sausages on the stage. It also terminates the permission
of the absented agent to leave the stage, as they have already done so:
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which generates the following:

By combining statements such as the above, we can build a complete descrip-
tion of the sausages scene in terms of agent norms, such as the Propp absentation
function, shown in Listing 1.3. InstAL rules like those shown above and in List-
ing 1.3 are compiled into AnsProlog, then we use the clingo answer set solver [10]
to ground the program, and ‘solve’ queries by finding all permissions and oblig-
ations that apply to any agents, given a sequence of events as the query input.
The agents’ percepts are then updated with their permitted and obliged actions
from that time instant onwards. Thus, the institutional model acts as a social
narrative sensor, interpreting actors’ actions in the context of the combination
of the concrete narrative and the abstract story moves which detach (instanti-
ate) the norms that guide the actors in the direction of the conclusion of the
story arc.

A query is simply a list of external events in chronological order, also called
a trace. A possible trace describing the actions of agents acting out the sausages
is described in Listing 1.4. The ‘pj’ in the trace is the name of the institution
that observes the events, while the number is the enumeration of events in the
sequence.
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Each observed event triggers a corresponding occurs event inside the insti-
tution, as determined by the generates relation. Listing 1.5 shows an extract
from an answer set output for the trace queried against the ASP description of
the sausages scenario, for events 5 to 7 of the scene. Starting with an initial set
of fluents that hold at instant 5, only fluents that have been initiated and not
terminated hold at the next instant. For ease of reading, the listing only shows
roles that hold at certain instants when they have some effect on the scene,
although in practice, all role fluents hold throughout the scene. Figure 6 shows
a visualisation of the answer set for the trace in Listing 1.4.

Bath Sensor Framework. The components communicate using the Bath Sensor
Framework (BSF) [14], through publish/subscribe-style communication between
distributed software components, in this case connecting intelligent agents with
their virtual environments. It currently uses the XMPP publish/subscribe proto-
col for communication between agents, environment and other software compo-
nents. Each agent subscribes to receive notifications of environment changes via
the appropriate topic node in the XMPP server, which relays messages between
publishers and subscribers. If any environment change occurs, all subscribed
agents are informed of the changes.
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S1

startShow: pj

S2

startScene(sausages): pj
intSceneChange(sausages): pj

onStage(punch): pj

S3

enterStage(punch): pj
intEnterStage(punch): pj

onStage(joey): pj
onStage(punch): pj

S4

enterStage(joey): pj
intEnterStage(joey): pj

onStage(joey): pj
onStage(punch): pj

S5

say(joey, give): pj

activeFunction(interdiction):
pj

onStage(joey): pj
onStage(punch): pj

S6

say(joey, protect): pj
intInterdiction(joey, sausages): pj

has(punch, sausages): pj
activeFunction(interdiction): pj
onStage(joey): pj
onStage(punch): pj
has(joey, sausages): pj

S7

give(joey, punch, sausages): pj
intGive(joey, punch, sausages): pj

activeFunction(absentation):
pj

activeFunction(interdiction): pj
has(punch, sausages): pj
onStage(punch): pj
onStage(joey): pj

S8

leaveStage(joey): pj
intLeaveStage(joey): pj
intAbsentation(joey): pj

activeFunction(absentation): pj
activeFunction(interdiction): pj
has(punch, sausages): pj
onStage(punch): pj

S9

say(punch, harm): pj

activeFunction(struggle): pj
onStage(croc): pj
activeFunction(absentation): pj
activeFunction(interdiction): pj
has(punch, sausages): pj
onStage(punch): pj

S10

enterStage(croc): pj
intEnterStage(croc): pj
intAmbush(croc): pj

intStruggle(croc, punch): pj

has(croc, sausages): pj
activeFunction(absentation): pj
activeFunction(interdiction): pj
activeFunction(struggle): pj
onStage(croc): pj
onStage(punch): pj
has(punch, sausages): pj

S11

take(croc, sausages): pj
intTake(croc, sausages): pj

activeFunction(iviolation): pj
activeFunction(absentation): pj
activeFunction(struggle): pj
has(croc, sausages): pj
onStage(croc): pj
onStage(punch): pj
activeFunction(interdiction): pj

S12

eat(croc, sausages): pj
intViolation(sausages): pj

activeFunction(absentation): pj
activeFunction(iviolation): pj
has(croc, sausages): pj
onStage(punch): pj
activeFunction(struggle): pj
onStage(croc): pj

S13

leaveStage(croc): pj
intLeaveStage(croc): pj

activeFunction(return): pj
activeFunction(struggle): pj
onStage(joey): pj
has(croc, sausages): pj
onStage(punch): pj
activeFunction(absentation): pj
activeFunction(iviolation): pj

S14

enterStage(joey): pj
intEnterStage(joey): pj

intStruggle(joey, punch): pj
intReturn(joey): pj

activeFunction(return): pj
activeFunction(struggle): pj
has(croc, sausages): pj
onStage(joey): pj
onStage(punch): pj

S15

hit(joey, punch): pj

activeFunction(return): pj
has(croc, sausages): pj
onStage(punch): pj
activeFunction(struggle): pj
onStage(joey): pj

S16

leaveStage(joey): pj
intLeaveStage(joey): pj

activeFunction(return): pj
has(croc, sausages): pj
onStage(punch): pj

S17

leaveStage(punch): pj
intLeaveStage(punch): pj

has(croc, sausages): pj
activeFunction(return): pj

S18

startScene(end): pj
intSceneChange(end): pj

has(croc, sausages): pj

Fig. 6. Trace visualisation
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Audience Interaction. The puppet show is designed to be run in front of either
a single user’s computer, or on a large display in front of an audience. The
user/audience is instructed to cheer or boo the actions of the characters of the
show, which will be picked up by a microphone and ‘heard’ by the agents. This
will then affect the emotional state of the agents and change the actions they
make in the show. Their actions are constrained by the set of ‘Punch and Judy’
world norms as described in the institutional model.

There are many different ways in which the audience’s responses can affect
the outcomes of the show. If the audience craves a more ‘traditional’ Punch
and Judy experience, then they can cheer Punch into beating and killing all
of his adversaries (including his wife, Judy). Alternatively, a more mischievous
audience could goad Judy into killing Punch and then taking over his role as
sadist and killer for the rest of the show. The narrative outcomes are dependent
on how the audience responds to the action, yet still conform to the rules of the
Punch and Judy story world.

Fig. 7. A screenshot of the Punch and Judy show

The animation engine that
shows the visual output of the
agents actions is written in
Javascript and the Phaser game
framework. It runs entirely in
a browser, and communicates
with BSF using the Strophe
XMPP library.

If the user allows the pro-
gram access to their micro-
phone, they can cheer or boo the
actions of the agents by shout-
ing into the microphone. Oth-
erwise, they can simulate these
actions by clicking on ‘cheer’ or
‘boo’ buttons at the bottom of

the screen (Fig. 7).

7 Related Work

Many approaches exist for creating interactive drama using agents as characters.
Carnegie Mellon’s OZ project [20] is one of the first major research efforts to use
agents for interactive narrative. A dramatic structure is given to the narrative
by means of a drama manager, which is able to see all of the actions occurring in
the story world and can change anything in order to create a better experience
for the user. While a drama manager rigidly enforces agents to conform to the
expectations of a story, our approach differs in that it regulates the agents,
allowing them some degree of agency. This allows the agents to break from
the set of actions suggested by a story function. If multiple institutions present
alternative sets of story functions to the agents as norms, then this means that
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the agents would have some freedom to change the course of the story, while the
institutions ensure a coherent narrative.

Ideas from the OZ project were later developed into what became Mateas’s
and Stern’s Façade, where players interact with the characters of the story
through natural language. In this game, the player attends the party of a young
couple (Grace and Trip) celebrating their wedding anniversary. As the course of
events unfold however, the player learns that all is not as happy as it seems.

In Façade, the smallest unit of narrative action is called a story beat, taken
from McKee’s book on authorial style for screenwriters [21]. The simulation
constantly monitors what the user is doing and how it may lead from the current
story beat to another. Story beats have preconditions and effects on the state of
the narrative, so it is the drama manager’s job to work out when it makes sense
to initiate a certain beat. They can be thought as analogous to Propp’s story
functions, but in contrast to the work presented here, operate at a lower level
of abstraction, describing specific agent goals and the steps needed to achieve
them. Our use of norms allows abstract story components to be written without
the need to write agent goals for story events. Instead, their existing plans are
governed by institutions, and guided towards taking actions to fulfil the story
components.

Riedl and Young make much use of agents and planners in their work on
interactive narrative. Addressing the problem of balancing character believabil-
ity with plot coherence, they present a planner-based solution for story genera-
tion [25]. Their planner is described as an ‘intent-driven partial order causal link’
planner, planning actions for agents in a multi-agent system based on causality
and intention. In this case, intention refers to a component of agents based on
the Belief Desire Intention (BDI) framework. Their planner observes the actions
of the agents in the system and infers their intentions. While their planners have
the flexibility to revise their plans based on user interactions, they still rely on
an author creating all possible alternative plans that allow the agents to act out
a story. Again, our use of institutions allows for story authoring on a higher
level, where an author need not be concerned with writing plans.

8 Conclusions and Future Work

With our approach to interactive narrative generation, we regulate the rules of
the story domain using an institutional model. This model describes what each
agent is permitted and obliged to do at any point in the story. This approach
alone would be too rigid, however. The audience’s interactions (cheering or boo-
ing) may alter the course of the narrative, but the agents would still have blindly
to follow a pre-determined set of paths. By giving our agents emotional models
that change their willingness to follow the narrative, a degree of unpredictabil-
ity enters each performance, giving the impression that the agents are indeed
characters capable of free will. The VAD emotional model is essentially reactive
and quite simplistic. A more deeply-rooted emotional response, perhaps better
aligned with BDI, could be achieved, based on the appraisal theory of emotion.
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We also note that Propp’s formalism is very specific to Russian folktales and
could be replaced with something more general, such as Lehnert’s story func-
tions [16]. Cavazza et al. [6] suggest the use of Linear Logic as a promising
possibility for narrative formalisation, with Martens et al. [19] exploring its use
further.

In our current approach, we describe the use of institutions for the modelling
of narrative. There are two major unconsidered aspects in the current implemen-
tation, namely how to manage multiple scenes and how to preserve information
between scenes.

The current Propp-based method is only suitable for modelling either one
scene per institution or the complete narrative as a fixed sequence of scenes as
one institution. Either way, the order of scenes is not governed in any way, but
is pre-determined, whereas to create a truly non-linear narrative, the sequence
must be changeable as the simulation or game is running. A solution would be a
mechanism to coordinate multiple institutions dynamically, but still according to
some higher level narrative. [12] describe the use of metanorms or higher-order
norms to enable institutions to govern other institutions, which could be applied
in InstAL to create a multi-tier institution for narrative.

A second issue is how to retain information between scenes: if a set of nar-
rative events have occurred in one scene, their consequences often need to be
carried over to other scenes, which implies the transfer of fluents between insti-
tutions. [17] describe a mechanism to bridge institutions, which could be used
to control the flow of events and facts between institution instances.

In meeting both these requirements, a hierarchy of institutions is needed to
govern the narrative world: a kind of ‘scene director’ institution to manage the
flow between scene institutions, and a means to share information in order to
achieve narrative consistency and persistence. Such a combination of multi-tiered
and co-operating institutions offers the potential for the generation of a much
richer way of regulating narrative events in a multi-agent system. The simple
proof-of-concept set out in this paper provides a first step towards developing an
institutional model for narrative as well as a preliminary validation of the WIT
model.
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Abstract. This paper builds on an existing notion of group responsibil-
ity and proposes two ways to define the degree of group responsibility:
structural and functional degrees of responsibility. These notions mea-
sure potential responsibilities of agent groups for avoiding a state of
affairs. According to these notions, a degree of responsibility for a state
of affairs can be assigned to a group of agents if, and to the extent that,
the group of the agents have potential to preclude the state of affairs.
These notions will be formally specified and their properties will be ana-
lyzed.

1 Introduction

The concept of responsibility has been extensively investigated in philosophy and
computer science. Each proposal focuses on specific aspects of responsibility. For
example, [1] focuses on the causal aspect of responsibility and defines a notion of
graded responsibility, [2] focuses on the organizational aspect of responsibility, [3]
argues that group responsibility should be distributed to individual responsibil-
ity, [4] focuses on the interaction aspect of responsibility and defines an agent’s
responsibility in terms of the agent’s causal contribution, and [5] focuses on
the strategic aspect of group responsibility and defines various notions of group
responsibility. In some of these proposals, the concept of responsibility is defined
with respect to a realized event “in past” while in other approaches it is defined as
the responsibility for the realization of some event “in future”. This introduces a
major dimension of responsibility, namely backward-looking and forward-looking
responsibility [6]. Backward-looking approaches reason about level of causality
or contribution of agents in the occurrence of an already realized outcome while
forward-looking notions are focused on the capacities of agents towards a state
of affairs.

Although some of the existing approaches are designed to measure the degree
of responsibility, they either constitute a backward-looking (instead of forward-
looking) notion of responsibility [1], provide qualitative (instead of quantitative)
levels of responsibility [7,8], or focus on individual (instead of group) respon-
sibility [4]. To our knowledge, there is no forward-looking approach that could
measure the degree of group responsibility quantitatively. Such notion would
enable reasoning on the potential responsibility of an agent group towards a
state of affairs in strategic settings, e.g., collective decision making scenarios. In
this paper, we build on a forward-looking approach to group responsibility and
c© Springer International Publishing Switzerland 2016
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define two notions of responsibility degrees. The first concept is based on the
partial or complete power of an agent group to preclude a state of affairs while
the second concept is based on the potentiality of an agent group to reach a
state where the agent group possesses the complete power to preclude the state
of affairs. This results in a distinction between what we will call the “structural
responsibility” versus the “functional responsibility” of an agent group. In our
proposal, an agent group has the full responsibility, if it has an action profile to
preclude the state of affairs. All other agent groups that do not have full respon-
sibility, but may have contribution to responsible agent groups, will be assigned
a partial degree of responsibility.

The paper is structured as follows. In Sect. 2 we provide a brief analysis of
the concept of group responsibility from a power-based point of view. Section 3
presents the framework in which our proposed notions will be formally charac-
terized. In Sects. 4 and 5 we introduce the notions that capture our conception of
degree of group responsibility with respect to a given state of affairs and analyze
their properties. Finally, concluding remarks and future work directions will be
presented in Sect. 7.

2 Group Responsibility: A Power-Based Analysis

In order to illustrate our conception of group responsibility and the nuances in
degrees of responsibility, we follow [1] and use a voting scenario to explain the
degree of responsibility of agents’ groups for voting outcomes. The voting sce-
nario considers a small congress with ten members consisting of five Democrats
(D), three Republicans (R), and two Greens (G). We assume that there is a
voting in progress on a specific bill (B). Without losing generality and to reduce
the combinatorial complexity of the setting, we assume that all members of a
party vote either in favour of or against the bill B. Table 1 illustrates the eight
possible voting outcomes. Note that in this scenario, six positive votes are suffi-
cient for the approval of B. For example, row 4 shows the case where R and D
vote against B and the bill is disapproved. For this case we say that the group
RD votes against B. It should also be noted that our assumption reduces parties
to individual agents with specific weights such that the question raises as why
we use this party setting instead of a simple voting of three agents whose votes
have different weights. The motivation is that this setting is realistic and makes
the weighted votes of each agent (party) more intuitive.

Following [5] we believe that it is reasonable to assign the responsibility for
a specific state of affairs to a group of agents if they jointly have the power to
avoid the state of affairs1. According to [9], the preclusive power is the ability
of a group to preclude a given state of affairs which entails that a group with
preclusive power, has the potential but might not practice the preclusion of a
given state of affairs. For our voting scenario, this suggests to assign respon-
sibility to the group GR consisting of parties G and R since they can jointly
1 See [5] for a detailed discussion on why to focus on avoiding instead of enforcing a

state of affairs.



420 V. Yazdanpanah and M. Dastani

Table 1. Voting results

G(2) R(3) D(5) Result

0 − − − ×
1 − − + ×
2 − + − ×
3 − + + �
4 + − − ×
5 + − + �
6 + + − ×
7 + + + �

Table 2. War incidence

Congress President War

0 − − ×
1 − + ×
2 + − ×
3 + + �

disapprove B. Note that the state of affair to be avoided can also be the state
of affairs where B is disapproved. In this case, the group can be assigned the
responsibility to avoid disproving B. Similarly, groups D, GD, RD, and GRD
have preclusive power with respect to the approval of B as they have sufficient
members (weights) to avoid the approval of B. Note that none of the other two
groups, i.e., G and R, could preclude the approval of B independently. However,
based on [5], the agent groups that consist of a smaller sub-group with preclusive
power, must be excluded from the set of responsible groups. Hence, we consider
GR and D as being responsible groups for the approval of B. The intuition for
this concept of responsibility is supported by the fact that the lobby groups are
willing (i.e., it is economically rational) to invest resources in parties that have
the power to avoid a specific state of affairs.

We build on the ideas in [5] and propose two orthogonal approaches to capture
our conception of degree of group responsibility towards a state of affairs. Our
intuition suggests that the degree of responsibility of a group of agents towards
a state of affairs should reflect the extent they structurally or functionally can
contribute to the groups that have preclusive power with respect to the state
of affairs. In the sequel, we will explain the conception of degree of responsibil-
ity according to the structural and functional approaches, and illustrate both
approaches by means of our voting scenario example.

Our conception of structural responsibility degree is based on the following
observation in the voting scenario. We deem that regarding the approval of B,
although the groups G and R have no preclusive power independently, they nev-
ertheless have a share in the composition of GR with preclusive power regarding
the approval of B. Hence, we say that any group that shares members with
responsible groups, should be assigned a degree of responsibility that reflects
its proportional contribution to the groups with preclusive power. For example,
group R with three members, has larger share in GR than the group G has.
Therefore, we believe that the relative size of a group and its share in the groups
with the preclusive power are substantial parameters in formulation of the notion
of responsibility degree. In this case, the larger share of R in GR in comparison
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with the share of G in GR will be positively reflected in R’s responsibility degree.
These parameters will be explained in details later. We would like to emphasize
that this concept of responsibility degree is supported by the fact that lobby
groups do proportionally support political parties that can play a role in some
key decisions. In a sense, the lobby groups consider political parties responsible
for some decision and therefore they are willing to support the parties.

The second approach in capturing the notion of functional responsibility
degree addresses the dynamics of preclusive power of a specific group. Suppose
that the bill B was about declaration of the congress to the President (P ) which
enables P to start a war (Table 2). Roughly speaking, P will be in charge only
after the approval of the congress. When we are reasoning at the moment when
the voting is in progress in the congress, it is reasonable to assume that groups
GR and D are responsible as they have preclusive power to avoid the war. More-
over, after the approval of B, the President P is the only group with preclusive
power to avoid the war. Hence, we believe that although P alone would not have
the preclusive power before the approval of B in the congress, it is rationally
justifiable for an anti-war campaign to invest resources on P , even before the
approval voting of the congress, simply because there exists possibilities where
P will have the preclusive power to avoid the war. Accordingly, a reasonable
differentiation could be made between the groups which do have the chance of
acquiring the preclusive power and those they do not have any chance of power
acquisition. This functional notion of responsibility degree addresses the eventu-
ality of a state in which an agent group possesses the preclusive power regarding
a given state of affairs.

Note that following [5], our notions of group responsibility are locally
bounded as they will be defined with respect to some source state. Hence, a
group might be responsible in a specific state and not responsible in the other
states regarding a given state of affairs. Additionally, our proposed notions
for responsibility degree have dependency to the global setting. In the voting
scenario, the global setting that ten voters are situated in three parties of G
(2 members), R (3 members) and D (5 members), is crucial for the responsibil-
ity degrees that are assigned to various groups. Any change in the global setting
may alter the responsibility degree of various groups. For example, when two
members of the Republican party secede from R and form a new Tea Party T ,
we face a different global setting, which in turn causes the responsibility degrees
assigned to various groups to change. This is due to the fact that the new set-
ting introduces new groups such as RGT with preclusive power regarding the
approval of B. Our analysis is not limited to the voting scenarios, but can be
applied to other situations as shown later in this paper.

3 Models and Preliminary Notions

The behaviour of a multi-agent system is often modelled by concurrent game
structures (CGS) [10]. Such structures specify possible state of the system,
agents’ abilities at each state, and the outcome of concurrent actions at each
state.
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Definition 1 (Concurrent game structures [10]). A concurrent game
structure is a tuple M = (N,Q,Act, d, o), where N = {1, ..., k} is a nonempty
finite set of agents, Q is a nonempty set of system states, Act is a nonempty and
finite set of atomic actions, d : N ×Q → P(Act) is a function that identifies the
set of available actions for each agent i ∈ N at each state q ∈ Q, and o is a deter-
ministic and partial transition function that assigns a state q′ = o(q, α1, ..., αk)
to a state q and an action profile (α1, ..., αk) such that all k agents in N choose
actions in the action profile respectively. An action profile ᾱ = (α1, ..., αk) is
a sequence that consists of actions αi ∈ d(i, q) for all players in N . In case
o(q, α1, ..., αk) is undefined then o(q, α′

1, ..., α
′
k) is undefined for each action pro-

file (α′
1, ..., α

′
k). For the sake of notation simplicity, d(i, q) will be written as di(q)

and dC(q) :=
∏

i∈C di(q).

A state of affairs refers to a set S ⊆ Q, S̄ denotes the set Q\S, and
(αC , αN\C) denotes the action profile, where αC is the actions of the agents
in group C and αN\C denotes the actions of the rest of the agents. Following
the setting of [5], we recall the definitions of q-enforce, q-avoid, q-responsible and
weakly q-responsible (See [5] for details and properties of these notions).

Definition 2 (Agent groups: strategic abilities and responsibility [5]).
Let M = (N,Q,Act, d, o) be a CGS, q ∈ Q be a specific state, and S a state of

affairs. We have the following concepts.

1. C ⊆ N can q-enforce S in M iff there is a joint action αC ∈ dC(q) such that
for all joint actions αN\C ∈ dN\C(q), o(q, (αC , αN\C)) ∈ S.

2. C ⊆ N can q-avoid S in M iff for all αN\C ∈ dN\C(q) there is αC ∈ dC(q)
such that o(q, (αC , αN\C)) ∈ S̄.

3. C ⊆ N is q-responsible for S in M iff C can q-enforce S̄ and for all other
C ′ ⊆ N that can q-enforce S̄, we have that C ⊆ C ′.

4. C ⊆ N is weakly q-responsible for S in M2 iff C is a minimal group that
can q-enforce S̄.

Considering the voting scenario from Sect. 2, groups GD, RD and GRD can
qs-enforce the approval of B while groups D, GR, GD, RD, and GRD can qs-
avoid the approval of B. In this scenario, qs denotes the starting moment of the
voting progress. Note that the notions of q-enforce and q-avoid correlate with the
notions of, respectively, α-effectivity and β-effectivity in [11]. In this scenario,
we have no qs-responsible group for approval of B and two groups D and GR
are weakly qs-responsible for the approval of B. Note that the groups GD, RD,
and GRD are not weakly qs-responsible for the approval of B as they are not
minimal.

The concept of (weakly) q-responsibility merely assigns responsibility to
groups with preclusive power and considers all other groups as not being respon-
sible. As we have argued in Sect. 2, we believe that responsibility can be assigned
to all groups, even those without preclusive power, though to a certain degree

2 In further references, “in M” might be omitted wherever it is clear from the context.
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including zero degree. In order to define our notions of responsibility degree, we
first introduce two notions of structural power difference and power acquisition
sequence. Given an arbitrary group C, a state q, and a state of affair S, the
first notion concerns the number of missing elements in C that when added to C
makes it a (weakly) q-responsible groups for a S, and the second notion concerns
a sequence of action profiles from given state q that leads to a state q′ where C
is (weakly) q′-responsible for S. According to the first notion, group C can gain
preclusive power for S if supported by some additional members, and accord-
ing to the second notion C can gain preclusive power for S in some potentially
reachable state.

Let M be a multi-agent system, S a state of affairs in M , C an arbitrary
group, and Ĉ be a (weakly) q-responsible group for S in M .

Definition 3 (Power measures). We say that the structural power difference
of C and Ĉ in q ∈ Q with respect to S, denoted by ΘS,M

q (Ĉ, C), is equal to
cardinality of Ĉ\C. Moreover, we say that C has a power acquisition sequence
〈ᾱ1, ..., ᾱn〉 in q′ ∈ Q for S in M iff for qi ∈ Q, o(qi, ᾱi) = qi+1 for 1 ≤ i ≤ n
such that q′ = q1 and qn+1 = q′′ and C is (weakly) q′′-responsible for S in M .

Consider the war approval declaration of the congress to the president (P )
in Sect. 2. Here, we can see that the structural power difference of the group G
and the weakly qs-responsible group GR is equal to 3. Moreover, the singleton
group P that is not responsible in qs has the opportunity of being responsible for
the war in states other than qs. Note that power acquisition sequence does not
necessarily need to be unique. If the group C is not (weakly) responsible in a state
q, the existence of any power acquisition sequence with a length higher than zero
implies that the group could potentially reach a state q′ (from the current state
of q) where C is (weakly) q′-responsible for S. This notion also covers the cases
where C is already in a (weakly) responsible state where the minimum length of
power acquisition sequence is taken to be zero. In this case, the group is already
(weakly) q-responsible for S. For example, in the voting scenario, group D is
weakly responsible for the state of affairs and therefore, the minimum length of
a power acquisition sequence is zero. When we are reasoning in a source state
q, the notion of power acquisition sequence, enables us to differentiate between
the non (weakly) q-responsible groups that do have the opportunity of becoming
(weakly) q′-responsible for a given state of affairs (q �= q′) and those they do not.
Moreover, we emphasize that the availability of a power acquisition sequence for
an arbitrary group C from a source state q to a state q′ in which C is (weakly)
q-responsible for the state of affairs, does not necessitate the existence of an
independent strategy for C to reach q′ from q.

4 Structural Degree of Responsibility

Structural degree of responsibility addresses the preclusive power of a group for
a given state of affairs by means of the maximum contribution that the group
has in a (weakly) responsible group for the state of affairs. To illustrate the
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intuition behind this notion, consider again the voting scenario in the Sect. 2.
If an anti-war campaign wants to invest its limited resources to prevent the bill
start a war, we deem that it is reasonable to invest more on R than G, if the
resources admit such a choice. Although neither R nor G could prevent the war
individually, larger contribution of R in groups with preclusive power, i.e. GR
and D, entitles R to be assigned with larger degree of responsibility than G. This
intuition will be reflected in the formulation of structural degree of responsibility.

Definition 4 (Structural degree of responsibility). Let W
S,M
q denote the

set of all (weakly) q-responsible groups for state of affairs S in multi-agent system
M , and C ⊆ N be an arbitrary group. In case W

S,M
q = ∅, the structural degree

of q-responsibility of any C for S in M is undefined; otherwise, the structural
degree of q-responsibility of C for S in M denoted SDRS,M

q (C), is defined as
follows:

SDRS,M
q (C) = max

Ĉ∈W
S,M
q

({i | i = 1 − ΘS,M
q (Ĉ,C)

|Ĉ| })

Intuitively, SDRS,M
q (C) measures the highest contribution of a group C in

a (weakly) q-responsible Ĉ for S. Hence, structural degree of responsibility is in
range of [0, 1]. In sequel, we write SDRS

q (C) and W
S
q instead of SDRS,M

q (C)
and W

S,M
q , respectively.

Proposition 1 (Full structural responsibility). The structural degree of q-
responsibility of group C for S is equal to 1 iff C is either a (weakly) q-responsible
group for S or C ⊇ Ĉ such that Ĉ is (weakly) q-responsible for S.

Proof. Follows directly from Definition 4 and definition of (weak) responsibility
in [5]. 
�

Example 1. Consider again the voting scenario from Sect. 2 (Fig. 1). In this sce-
nario, we have an initial state qs in which all voters can use their votes in favour
or against the approval of the bill B (no abstention or null vote is allowed). The
majority of six votes (or more) in favour of B will be considered as the state of
affairs consisting of states q7, q5 and q3. This multi-agent system can be modelled
as CGS M = (N,Q,Act, d, o), where N = {1, ..., 10}, Q = {qs, q0, ..., q7}, Act =
{0, 1, wait}, di(qs) = {0, 1} and di(q) = {wait} for all i ∈ N and q ∈ Q\{qs}.
Voters are situated in three parties such that G = {1, 2}, R = {3, 4, 5} and
D = {6, 7, 8, 9, 10}. For notation convenience, actions of party members will
be written collectively in the action profiles, e.g., we write (0, 1, 0) to denote
the action profile (0, 0, 1, 1, 1, 0, 0, 0, 0, 0). The outcome function is as illustrated
in Fig. 1 (e.g., o(qs, (0, 0, 1)) = q1 is illustrated by the arrow from qs to q1).
Moreover, the simplifying assumption that all party members vote collectively
is implemented by o(qs, ᾱ

′) = qs for all possible action profiles ᾱ′ in which party
members act differently. We observe that the set of weakly qs-responsible groups
in this example is {GR,D}. Using Definition 4, the structural degree of qs-
responsibility of G will be equal to max({2/5, 0/5}) = 2/5 and SDRS

qs(R) = 3/5.
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Fig. 1. Voting scenario

A similar calculation leads to the conclusion that the structural degree of qs-
responsibility for all (weakly) qs-responsible groups, i.e., GR and D, and their
super-sets is equal to 1. The structural degree of qs-responsibility of empty group
(∅) is equal to 0 as the structural power difference of the empty group with all
(weakly) qs-responsible groups Ĉ is equal to the cardinality of Ĉ.

A group C might share members with various (weakly) q-responsible groups,
therefore the largest structural share of C in (weakly) q-responsible groups for S,
will be considered to form the SDRS

q (C). We would like to stress that our notions
for responsibility degrees are formulated based on the maximum expected power
of a group to preclude a state of affairs. While we believe that in legal theory, and
with respect to its backward-looking approach, the minimum preclusive power
of a group need be taken into account for assessing culpability, our focus as a
forward-looking approach will be on maximum expected preclusive power of a
group regarding a given state of affairs.

The following lemma introduces a responsibility paradox case in which our
presented notion of structural degree of responsibility is not applicable as a notion
for reasoning about responsibility of groups of agents.

Lemma 1 (Applicability constraint: responsibility paradox). The empty
group is (unique) q-responsible for S iff the structural degree of q-responsibility
of all possible groups C for S is equal to 1.

Proof. “⇒”: Based on Proposition 1, if the empty group (∅) is q-responsible
for S, the structural degree of q-responsibility of the empty group and all its
super-groups, i.e., all the possible groups, is equal to 1.

“⇐”: According to Proposition 1, and because the empty group is only a
super-group of itself, the premise entails that the empty group must be either
a weakly q-responsible group for S or the unique q-responsible group for S.
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Based on [5], if the empty group is weakly q-responsible for S, then it is the
q-responsible group for S. 
�

The common avoidability of S implies that the occurrence of S is impossible
by means of any action profile in q. In other words, given the specification of a
CGS model M , a state of affairs S and a source state q in M , no action profile ᾱ
leads to a state qs ∈ S. Common avoidability of a state of affairs, correlates with
the impossibility notion ¬♦S in modal logic [12]. An impossible state of affairs S
in q, entitles all the possible groups to be “fully responsible”. The impossibility
of S neutralizes the space of groups with respect to their structural degree of q-
responsibility for S. Therefore, we believe that in cases where the empty group is
responsible for a given state of affairs, as S is impossible, full degree of structural
responsibility of a group is not an apt measure, does not imply the preclusive
power of any group, and hence, not an applicable reasoning notion for one who is
willing to invest resources in the groups of agents that have the preclusive power
over S. Note that in case the empty set is not responsible for S, its structural
degree of responsibility is equal to 0 because its structural power difference with
all (weakly) responsible groups Ĉ is equal to the cardinality of Ĉ.

The next theorem illustrates a case in which a singleton group possesses the
preclusive power over a state of affairs. The existence of such a dictator agent in a
state q, polarizes the space of all possible groups with respect to their structural
degree of q-responsibility for the state of affairs.

Theorem 1 (Polarizing dictatorship). Let Ĉ be a singleton group, q an arbi-
trary state and S a possible state of affairs (in sense of Lemma1). Then, Ĉ is
a (unique) q-responsible group for S iff for any arbitrary group C, SDRS

q (C) ∈
{0, 1}, where SDRS

q (C ∈ I) = 1 and SDRS
q (C ∈ O) = 0 for I = {C|C ⊇ Ĉ}

and O = {C|C � Ĉ}.
Proof. “⇒”: Based on Proposition 1, the structural degree of q-responsibility
of any group C ⊇ Ĉ is equal to 1. In other cases, the structural degree of q-
responsibility of C � Ĉ is equal to 0 because C shares no element with Ĉ, which
is the singleton (unique) q-responsible group for S.

“⇐”: Here we have a partition W = {I,O} of all possible groups. As S is
not an impossible state of affair in sense of Lemma 1, the empty group is not
q-responsible for S but has the structural degree of q-responsibility equal to 0;
and therefore a member of O. I as a set of all groups with structural degree
of responsibility equal to 1, is a non-empty set either; because there exists at
least one group in I which is Ĉ. Hence, SDRS

q (Ĉ ∈ I) = 1 and necessarily there
exists at least one non-empty weakly q-responsible group for S, i.e., W

S
q �= ∅.

Accordingly, based on Proposition 1, and as Ĉ is a singleton, Ĉ ∈ W
S
q . Moreover,

based on Proposition 1, we have that W
S
q ⊆ I. As Ĉ is a subset of all groups in

I, we conclude that Ĉ ⊆ W
S
q . Thus, Ĉ is a weakly q-responsible group and is

a subset of all possible weakly q-responsible groups for S. Therefore, Ĉ is the
unique singleton q-responsible group or the q-dictator for S. 
�
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Example 2 (Operating room scenario). Consider a surgery operation room
where a patient is going to be operated. In this surgery operation a surgeon
D, a surgeon assistant A and an anesthesiologist N are involved. In this sce-
nario, each agent, i.e., D, A and N , can decide to perform her role in health-
care delivery or to refuse. If the anesthesiologist chooses to refuse or if both
the surgeon and the assistant decide to refuse, the patient will die. When
all three agents choose to perform their tasks, the patient will recover in the
state of good health. Finally, an exclusive refusal of the assistant or the sur-
geon, results in medium health or infirm health, respectively. This multi-agent
scenario can be modelled as a CGS M , as shown in Fig. 2. This CGS is
specified as M = ({D,A,N}, {qs, q1, q2, q3, q4}, {perform, refuse, wait}, d, o)
where di(qs) = {perform, refuse} and di(q) = {wait} for all i ∈ {D,A,N}
and q ∈ {q1, q2, q3, q4}. The outcome function o is shown in the Fig. 2, e.g.
o(qs, (perform, refuse, perform)) = q2. The star � represents any available
action, i.e. � ∈ {perform, refuse}. In this example the weakly qs-responsible
groups for death of the patient (at state q4) are DN and AN . Hence, the struc-
tural degree of qs-responsibility of all possible groups, i.e., D, A, N , DA, DN ,
AN , and DAN , for q4, could be measured based on their maximum contribu-
tion in DN and AN . Accordingly, the structural degree of qs-responsibility of
groups D, A, N and DA will be 1/2. All groups of DN , AN and DAN have the
structural degree of qs-responsibility equal to 1 which reflects their preclusive
power to avoid the death of P .

As our concept of group responsibility is based on the preclusive power of a
group over a given state of affairs, the following monotonicity property shows
that increasing the size of a group by adding new elements, does not have a
negative effect on the preclusive power. This property, as formulated below,
correlates with the monotonicity of power and power indices [13,14].

qsq2

q1

q3

q4

Good health

Medium health

Infirm health

Death

(p, p, p)

(p, r, p)

(r
, p

, p
)

(r, r, p)

(�, �, r)

S

S̄

Fig. 2. Operating room scenario
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Proposition 2 (Structural monotonicity). Let C and C ′ be two arbitrary
groups such that C ⊆ C ′. If W

S,M
q �= ∅ then SDRS

q (C) ≤ SDRS
q (C ′).

Proof. By definition, the structural degree of q-responsibility of C for S, in case it
is not undefined in general, reflects the maximum share of C in all possible weakly
q-responsible groups for S. Hence, as the structural degree of q-responsibility has
a value in range [0, 1], the elements in C ′\C could have no negative effect on
this degree. 
�

Note that the other way does not hold in general; because the structural
degree of q-responsibility of the groups C and C ′, might be formulated based
on their maximum contribution in two distinct weakly q-responsible groups.
Consider the operating room scenario in Example 2. As presented, SDRS

qs(A) =
1/2leqSDRS

qs(DN) = 1 but A � DN .
The following theorem shows that in case of existence of a unique nonempty

q-responsible group for a state of affairs, the structural degree of q-responsibility
of any group could be calculated cumulatively based on the degrees of disjoint
subsets. In this case, for any two arbitrary groups C1 and C2, the summation
of their structural degree of q-responsibility will be equal to the degree of the
unified group.

Theorem 2 (Conditional cumulativity). If there exists a nonempty
(unique) q-responsible group for S, then for any arbitrary group C and parti-
tion P = {C1, ..., Cn} of C, we have

∑n
i=1 SDRS

q (Ci) = SDRS
q (C).

Proof. Suppose Ĉ is the q-responsible group for S. Then, as Ĉ is unique (See
[5]), the structural degree of q-responsibility of any group Ci ∈ P , could be
reformulated based on its contribution to Ĉ. Thus,

∑n
i=1 SDRS

q (Ci) is equal to∑n
i=1

|Ĉ∩Ci|
|Ĉ| . The whole equation is equal to 1

|Ĉ|
∑n

i=1 |Ĉ ∩ Ci|. Hence, as P is

a partition of C, we have |Ĉ∩C|
|Ĉ| which is equal to SDRS

q (C). 
�

5 Functional Degree of Responsibility

Functional degree of responsibility addresses the dynamics of preclusive power of
a specific group with respect to a given state of affairs. We remind the example
from Sect. 2 where the president will be in charge, regarding the war decision,
only after the approval of the congress. It is our understanding that the existence
of a sequence of action profiles that leads to a state where the president becomes
responsible for the war decision rationalizes the investment of an anti-war cam-
paign on the president, even before the approval of the congress.

The functional degree of responsibility of a group C in a state q will be
calculated based on the notion of power acquisition sequence by tracing the
number of necessary state transitions from q, in order to reach a state q′ in
which the group C is (weakly) q′-responsible for S. The length of a shortest
power acquisition sequence form q to q′, illustrates the potentiality of preclusive
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power of the group C. If two groups have the capacity of reaching a state in which
they have the preclusive power over the state of affairs S, we say that the group
which has the shorter path has a higher potential preclusive power and thus
gets the larger functional degree of responsibility. Accordingly, a group which is
already in a responsible state, has full potential to avoid a state of affairs. Hence,
it will be assigned with maximum functional degree of responsibility equal to one.

Definition 5 (Functional degree of responsibility). Let P
S,M
q (C) denote

the set of all power acquisition sequences of group C ⊆ N in q for S in M .
Let also � = min

k∈P
S,M
q (C)

({i | i = length(k)}) be the length of a shortest power

acquisition sequence. The functional degree of q-responsibility of C for S in M ,
denoted by FDRS,M

q (C), is defined as follows:

FDRS,M
q (C) =

{
0 if P

S,M
q (C) = ∅

1
(�+1) otherwise

The notion of FDRS,M
q (C) is formulated based on the minimum length of

power acquisition sequences, which taken to be 0 if C is a (weakly) q-responsible
group for S. In such a case, C has already an action profile to avoid S in q. Hence,
the functional degree of q-responsibility of C for S will be equal to 1. If no power
acquisition sequence k does exist for C (i.e., P

S,M
q (C) = ∅), then the minimum

length of power acquisition sequences is taken to be ∞ such that the functional
degree of q-responsibility of C for S becomes 0. In other cases FDRS,M

q (C)
will be strictly between zero and one. In sequel, we write FDRS

q (C) and P
S
q (C)

instead of FDRS,M
q (C) and P

S,M
q (C), respectively.

Proposition 3 (Full functionality implies full responsibility). Let Ĉ be
a group, q an arbitrary state and S a given state of affairs. If FDRS

q (Ĉ) = 1,
then the structural degree of q-responsibility of Ĉ for S is equal to 1.

Proof. According to Definition 5, only for (weakly) q-responsible groups C,
FDRS

q (C) = 1. Hence, based on Proposition 1, for the group Ĉ with functional
degree of q-responsibility equal to 1, we have that SDRS

q (Ĉ) = 1. 
�

Note that the other side does not hold in general because SDRS
q (C) = 1

also includes the cases in which C is a proper super-set of a responsible group.
For instance, consider the operating room scenario in Example 2. As presented,
SDRS

qs(ADN) = 1 but as it is not minimal, it is not weakly qs-responsible for
S. Hence, the functional degree of qs-responsibility of ADN for S is not equal
to one. In fact, FDRS

qs(ADN) = 0 as there is no eventual state q′ in which the
group ADN is weakly q′-responsible for S.

Example 3 (War powers resolution). Consider again the voting scenario in the
congress, as explained in Sect. 2; but now extended with a new president agent
P . The decision of starting a war W should first be approved by a majority
of the congress members (six votes or more in favour of W ) after which the
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president makes the final decision. Hence, P has the preclusive power which
is conditioned on the approval of the congress members. Moreover, we have
a simplifying assumption that no party member acts independently and thus
assume that all members of a party vote either in favor of or against the W .
In this scenario, which is illustrated in Fig. 3, we have an initial state qs in
which all the congress members could use their votes in favour or against the
approval of W (no abstention or null vote is allowed). In this example, W will
be considered as the state of affairs consisting of states q11, q12, and q13. This
multi-agent scenario can be modelled by the CGS M = (N,Q,Act, d, o), where
N = {1, ..., 11} (the first ten agents are the voters in the congress followed by
the president), Q = {qs, q0, ..., q13}, Act = {0, 1, wait}, di(qs) = {0, 1} for all
i ∈ {1, ..., 10}, d11(qs) = {wait}, di(q) = {wait} for all i ∈ {1, ..., 10} and
q ∈ {q0, ..., q13}, d11(r) = {wait} for r ∈ ({q0, q1, q2, q4, q6} ∪ {q8, ..., q13}), and
d11(t) = {0, 1} for t ∈ {q3, q5, q7}. The outcome function o is illustrated in
Fig. 3 where for example o(qs, (1, 0, 0, �)) = q4 in which the war W will not
take place because of the disapproval of the congress (� represents any available
action). For notation convenience, actions of party members will be written
collectively in the action profiles, e.g., we write (0, 1, 0, �) to denote the action
profile (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, �). Moreover, the simplifying assumption that all
party members vote collectively is implemented by o(qs, ᾱ

′) = qs for all possible
action profiles ᾱ′ in which at least one party member acts independently.

The set of all weakly qs-responsible groups W
W
qs consists of two groups of GR

and D. These two are the minimal groups with the preclusive power over W in
qs. If an anti-war campaign wants to negotiate and invest its limited resources
in order to avoid the war W , convincing any of groups in W

W
qs , can avoid the

war. However, it is observable that convincing the president is also adequate.
Although the president has no preclusive power in qs over W , there exist some
accessible states from qs (i.e., q3, q5, and q7), in which P is responsible for
the state of affairs. This potential capacity of P , will be addressed by means
of the introduced notion of functional degree of responsibility. Two weakly qs-
responsible groups GR and D, have the functional degree of qs-responsibility of
1 for W because they already have sufficient power to avoid W in source state
qs. Groups ∅, G, R, D, GD, RD, and GRD are not (weakly) qs-responsible for
W and no power acquisition sequence exists for these groups. Accordingly, their
functional degree of qs-responsibility for W is 0. Groups PG, PR, PD, PGR,
PGD, PRD and PGRD, have the potentiality of possessing the preclusive power
in other states, i.e., q3, q5, and q7, but none of them will be minimal group with
preclusive power over W . Note that minimality is a requirement for being a
(weakly) responsible group [5]. Hence, the functional degree of qs-responsibility
for all these groups will be 0. The group which has a chance of becoming a
(weakly) responsible group in states other than qs (i.e., q3, q5, and q7) is P .
In fact, the President is the (unique) responsible group for W in states q3, q5,
and q7. As the minimum length of power acquisition sequence for P is 1, the
functional degree of qs-responsibility of P for W is 1/2. Although, P has no
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Fig. 3. War powers resolution

independent action profile to avoid W in qs, there exists a power acquisition
sequence for P through which P acquires the preclusive power over W .

The next proposition illustrates that through a shortest power acquisition
sequence, the potentiality that the group is responsible for the state of affairs,
increases strictly. This potential reaches its highest possible value where the
group “really” has the preclusive power over the state of affairs as a (weakly)
responsible group. Note that there is a one-to-one correspondence between any
power acquisition sequence P = 〈ᾱ1, ..., ᾱn〉 in q for a group C for S and the
sequence of states 〈q1 = q, ..., qn+1〉 due to the deterministic nature of the action
profiles ᾱi for 1 ≤ i ≤ n, i.e., o(qi, ᾱi) = qi+1 and q = q1 and q′ = qn+1 and C is
(weakly) q′-responsible for S. Hence, in the following, we write P = 〈q1, ..., qn+1〉
and interchangeably use it instead of P = 〈ᾱ1, ..., ᾱn〉. Therefore, we simply refer
to any state qi as a state “in” the power acquisition sequence P .

Proposition 4 (Strictly increasing functionality). Let P = 〈q1, ..., qn+1〉
(n ≥ 1) be a power acquisition sequence in q = q1 for a group C for S. Then,
for any tuple of states (qi, qi+1), 1 ≤ i ≤ n, FDRS

qi(C) < FDRS
qi+1

(C) iff P is
a shortest power acquisition sequence in q for C for S.



432 V. Yazdanpanah and M. Dastani

Proof. “⇒”: Suppose the claim is false. Then, although the functional degree of
responsibility of C for S is strictly increasing from q1 to qn+1 in P , there exists
a shorter power acquisition sequence P ′ = 〈q′

1, ..., q
′
m+1〉 (n > m ≥ 0) in q = q′

1

for C for S. Note that as degrees are strictly increasing, for any states qa and
qb in P (qa �= qb) we have that FDRS

qa(C) �= FDRS
qb

(C). Both P and P ′ end
in a state in which C is (weakly) responsible for S. Thus, for states qn+1 and
q′
m+1 we have that FDRS

qn+1∈P (C) = FDRS
q′
m+1∈P ′(C) = 1. If we trace back

step by step through both sequences, the functional degree of responsibility of C
for S is equal in corresponding states in P and P ′. For example, for the states qn

and q′
m, we have that FDRS

qn(C) = FDRS
q′
m

(C) = 1/2 (m ≥ 1). By continuing
the stepwise process of matching all states in P ′ with corresponding states in
P , as number of states in P ′ is strictly less than P and both sequences start
in same state of q = q1 = q′

1, we reach the corresponding states qn+1−k and
q′
m+1−k for 0 ≤ k ≤ m where FDRS

qn+1−k
(C) = FDRS

q′
m+1−k

(C) and qn+1−k �=
q′
m+1−k and both states of qn+1−k and q′

m+1−k are in P . This contradicts with
the assumption that for any states qa and qb in P , if qa �= qb, we have that
FDRS

qa(C) �= FDRS
qb

(C).
“⇐”: Suppose the sequence P is a shortest power acquisition sequence

in q for C for S. According to Definitions 3 and 5, the functional degree of
qi-responsibility of C for S must be formulated based on the sequence Pi

= 〈ᾱi, ..., ᾱn〉 as a sub-sequence of P . Accordingly, length of Pi is equal to
�i = n−i+1. Hence, in each state qi+1, the length of a shortest power acquisition
sequence for C for S, �i+1, will be one unit shorter than �i. Finally, as � ≥ 0, the
functional degree of responsibility of C for S in each state qi+1 in P is strictly
larger than in the state qi in P . 
�

The following propositions focus on the cases in which a group has partial
degrees of functional and structural responsibility in a specific state. In former,
we can reason about the degree of responsibility of the group in some states
other than the current sate while in the latter, we can reason about the degree
of responsibility of some other groups in the current state.

Proposition 5 (Global signalling of partial functional degree). Let C be
a group with functional degree of q-responsibility 1/k for S where k is a natural
number. Then, it is guaranteed that there exists at least k − 1 states q̂ such
that FDRS

q̂ (C) > FDRS
q (C) and at least one state q′ such that FDRS

q′(C) =
SDRS

q′(C) = 1.

Proof. According to Proposition 4, the functional degree of responsibility of C
for S is strictly increasing during a shortest power acquisition sequence in q for
C for S. This sequence passes k − 2 states and reaches a state q′. Hence, the
existence of at least k−1 states in which C has functional degree of responsibility
larger than 1/k for S, and one state in which the functional and structural degree
of responsibility of C is equal to 1 for S is guaranteed. 
�

Note that based on Definition 5, the functional degree of responsibility could
always be written in form of 1/k (k ∈ N) unless it is equal to 0.
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Proposition 6 (Local signalling of partial structural degree). Let C be
a group with structural degree of q-responsibility of k for S such that 0 < k < 1.
Then, there exists at least a group Ĉ with structural and functional degree of
q-responsibility of 1 for S.

Proof. Based on Definition 4, k is assigned to C based on its contribution in a
(weakly) q-responsible group which has the structural and functional degree of
q-responsibility of 1 for S. 
�

In general, the existence of a group Ĉ with the structural and the functional
degree of q-responsibility of 1, could not guarantee the existence of a group with
structural degree of q-responsibility of k such that 0 < k < 1. As explained
in Theorem 1, cases in which we have a singleton q-responsible group for S are
counterexamples for such a claim.

6 Related Work

Presented notions for degree of group responsibility follow the responsibility
notions in [5] and are in coherence with the concept of preclusive power in
[9]. Our notion of functional degree of responsibility of an agent group is based
on the minimum length of a sequence from a source state towards a state in
which the agent group has power over a given state of affairs. This step-wise
formulation was put forward by [1] in a quantified degree of responsibility as a
backward-looking approach. However, [1] traces the steps in a causal network
and studies the degree of causality, whereas we define our notions in strategic
settings by means of a similar formulation. The other connection is to the [4] in
which the notion of avoidance potential is central. There are two main differences
between our approach and [4]. First, our notion of preclusion of a state of affairs
is a property of a group, whereas in [4] the avoidance potential for a state of
affairs is a property of a strategy of an individual agent. Second, the notion of
preclusion in our case considers the power of a group while avoidance potential
in [4] considers the probability of other agents to choose a strategy such that
the strategy of the agent in question has no contribution to the establishment
of the state of affairs.

As our degrees of group responsibility are based on quantifying the structural
and functional potentials of agent groups in multi-agent systems, we would like
to provide a brief comparison between our approach and the two well-known
power indices, the Banzhaf index (with its related measure) [15], and the Shpley-
Shubik index [16]. A main distinction is that both indices measure the power or
contribution of individual agents in possible coalitions, rather than measuring the
power of agent groups. The methodological difference between Banzhaf measure
and our measure is that we formulate the degree of group responsibility based on
the maximum contribution of an agent group to groups with preclusive power
(structural degree) or minimum number of transitions that is necessary for a
group to gain preclusive power (functional degree). This is different than the
Banzhaf measure, where the main parameter is the probability that an agent
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would be the so called swing player with the ability to transform a “looser”
group (of agents) to a “winner” group. Moreover, we focus on the ability of
groups to preclude a state of affairs and base our notions on the potential of
groups to q-enforce the complement of state of affairs (See Definition 2). This
is different than “winner” groups in both the Banzhaf measure and the Shpley-
Shubik index as they are the agent groups with the ability to determine the
outcome which may be more related to the ability of agent groups to q-enforce
a state of affairs (See q-control in [5]). Finally, in the Shpley-Shubik index, the
order in which agents join a group plays an important role, which we believe
is more relevant for the group/coalition formation process [17,18]. We stand
before the group formation process, reason about all the possible agent groups,
and assign them forward-looking degrees of group responsibility with respect to
their potentials to avoid the materialization of a given state of affairs.

7 Conclusion and Future Work

In this paper, we proposed a forward-looking approach to measure the degree of
group responsibility. The proposed notions can be used as a tool for analyzing
the potential responsibility of agent groups towards a state of affairs. In our
approach, full structural and functional degrees of responsibility towards a state
of affairs are assigned to agent groups, if they can preclude the state of affairs.
All other groups that may contribute to such responsible groups receive a partial
structural degree of responsibility. Also, all other groups for which there exists a
path to a state in which they possess the preclusive power receive a partial func-
tional degree of responsibility. The structural degree of responsibility captures
the responsibility of a group based on accumulated preclusive power of included
agents while the functional degree of responsibility captures the responsibility of
a group due to the potentiality of reaching a state in which it has the preclusive
power.

We plan to apply our presented methodology for analyzing forward-looking
responsibility to backward-looking responsibility. We believe that integrating the
responsibility notions as proposed in [1,4] with our methodology could lead to a
graded notion for backward-looking responsibility in strategic settings. In such
extension, one could reason from a realized outcome state and assign a degree of
blameworthiness to agent groups in liability determination principles from legal
domain such as contributory negligence. In this paper we used concurrent game
structure in its original form as we had a logical approach to formalize our two
notions for degree of group responsibility. In an extended version, we plan to use
probabilistic concurrent game structures to make our notions also applicable in
probabilistic settings (See [19,20]). Finally, we aim at extending our framework
with logical characterizations of the proposed notions based on the coalitional
logic with quantification [5,21,22].
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