Virginia Dignum

Pablo Noriega

Murat Sensoy

Jaime Simao Sichman (Eds.)

Coordination, Organizations,
Institutions, and Norms

in Agent Systems XI

COIN 2015 International Workshops

COIN@AAMAS, Istanbul, Turkey, May 4, 2015

COIN@IJCAI, Buenos Aires, Argentina, July 26, 2015
Revised Selected Papers

LNAI 9628

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

9628

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Virginia Dignum - Pablo Noriega
Murat Sensoy - Jaime Simao Sichman (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems XI

COIN 2015 International Workshops
COIN@AAMAS, Istanbul, Turkey, May 4, 2015
COIN@IJCAI Buenos Aires, Argentina, July 26, 2015
Revised Selected Papers

@ Springer

Editors

Virginia Dignum Murat Sensoy

Delft University of Technology Ozyegin University
Delft Istanbul

The Netherlands Turkey

Pablo Noriega Jaime Simdo Sichman
IIIA-CSIC University of Sao Paulo
Barcelona Sao Paulo, SP

Spain Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence

ISBN 978-3-319-42690-7 ISBN 978-3-319-42691-4 (eBook)

DOI 10.1007/978-3-319-42691-4

Library of Congress Control Number: 2016944911
LNCS Sublibrary: SL7 — Artificial Intelligence

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The pervasiveness of open systems raises a range of challenges and opportunities for
research and technological development in the area of autonomous agents and
multi-agent systems. Open systems comprise loosely coupled entities interacting within
a social space. These entities join the social space in order to achieve some goals that
are unattainable by agents in isolation. However, when those entities are autonomous,
they might misbehave and, furthermore, in open systems one may not know what
entities will be active beforehand, when they may become active, or when they may
leave the system. The key point in the design and construction of open systems is to
devise governance mechanisms that foster interactions that are conducive to achieve
individual or collective goals.

The COIN (Coordination, Organisations, Institutions and Norms in Agent Systems)
Workshop series — that started as the merging of two workshops at AAMAS 2005 —
has grown to become the main venue for presenting and discussing work on social and
governance aspects of multi-agent systems.

This volume — the 11th in the COIN workshop series — contains revised versions
of 23 selected papers presented at COIN workshops in 2015: the first was co-located
with AAMAS and took place on May 4 in Istanbul, Turkey, while the second was
co-located with IJCAI and was held on July 26 in Buenos Aires, Argentina.

In total, 46 papers were submitted (25 to COIN@AAMAS 2015 and 20 to
COIN@IICAI 2015), of which 25 were accepted for oral presentation (14 at
COIN@AAMAS 2015 and 11 at COIN@IIJCAI 2015). The 23 papers included in this
collection were selected from those accepted and have undergone a substantial process
of revision. As in previous editions, for each of the two workshops at least three
Program Committee members reviewed each submitted paper, and revised versions
of the accepted papers were presented at the workshop sessions. After their presenta-
tion, some papers were selected to be part of this volume. The authors of these selected
papers were then requested to prepare revised versions that took into account the
reviewers’ comments and further insights gained from the presentation at the work-
shops. All these revised versions underwent a second stage of review before producing
the final version that appears in this volume.

Together, the papers included in this volume demonstrate the vitality of the com-
munity and the quality of the work realized in this area.

We thank the Program Committee and reviewers for the fantastic effort they put in
the reviewing process, and the authors for submitting their papers.

May 2016 Virginia Dignum
Pablo Noriega

Murat Sensoy

Jaime S. Sichman

Organization

COIN@AAMAS 2015 Chairs: Pablo Noriega and Murat Sensoy
COIN@IJCAI 2015: Virginia Dignum and Jaime S. Sichman

Program Committee

Mohsen Afsharchi
Huib Aldewereld
Anarosa Alves Franco
Brandao
Estefania Argente
Alexander Artikis
Tina Balke
Guido Boella
Olivier Boissier
Didac Busquets
Patrice Caire
Cristiano Castelfranchi
Amit Chopra
Rob Christiaanse
Luciano Coutinho
Stephen Cranefield
Natalia Criado
Mehdi Dastani
Geeth de Mel
Marina De Vos
Frank Dignum
Virginia Dignum
Nicoletta Fornara
Amineh Ghorbani
Aditya Ghose
Davide Grossi
Jomi Fred Hubner
Ozgur Kafali
Anup Kalia
Martin Kollingbaum
Christian Lemaitre
Victor Lesser
Henrique Lopes Cardoso
Maite Lopez Sanchez
Emiliano Lorini
Samhar Mahmoud
Eric Matson

University of Zanjan, Iran
TU Delft, The Netherlands
University of Sao Paulo, Brazil

Universidad Politecnica de Valencia, Spain
NCSR Demokritos, Greece

University of Surrey, UK

University of Turin, Italy

ENS Mines Saint-Etienne, France

Imperial College, UK

University of Luxembourg, Luxembourg
ISTC-CNR, Italy

Lancaster University, UK

TU Delft, The Netherlands

Universidade Federal do Maranhdao (UFMA), Brazil

University of Otago, New Zealand
Liverpool John Moores University, UK
Utrecht University, The Netherlands
IBM T.J. Watson Research Center, USA
University of Bath, UK

Utrecht University, The Netherlands

TU Delft, The Netherlands

Universita della Svizzera Italiana, Switzerland
TU Delft, The Netherlands

University of Wollongong, Australia
University of Liverpool, UK

Federal University of Santa Catarina, Brazil
Royal Holloway, University of London, UK
North Carolina State University, USA
University of Aberdeen, UK

Universidad Autonoma Metropolitana de Mexico, Mexico

University of Massachusetts Amherst, USA
University of Porto, Portugal

University of Barcelona, Spain

IRIT, France

King’s College London, UK

Purdue University, USA

VI Organization

Felipe Meneguzzi Pontifical Catholic University of Rio Grande do Sul, Brazil

John-Jules Meyer Utrecht University, The Netherlands

Simon Miles King’s College London, UK

Daniel Moldt University of Hamburg, Germany

Pablo Noriega Artificial Intelligence Research Institute (IITA), Spain

Tim Norman University of Aberdeen, UK

Eugenio Oliveira University of Porto, Portugal

Andrea Omicini Universita di Bologna, Italy

Nir Oren University of Aberdeen, UK

Sascha Ossowski Rey Juan Carlos University, Spain

Julian Padget University of Bath, UK

Simon Parsons University of Liverpool, UK

Jeremy Pitt Imperial College London, UK

Alessandro Ricci University of Bologna, Italy

Ana Paula Rocha LIACC - University of Porto, Portugal

Antonio Carlos UCPEL, Brazil
Rocha Costa

Juan-Antonio Artificial Intelligence Research Institute, IIIA-CSIC, Spain
Rodriguez-Aguilar

Antonino Rotolo Universita di Bologna, Italy

Tony Savarimuthu Otago University, New Zealand

Silvia Schiaffino ISISTAN (CONICET - UNCPBA), Italy

Murat Sensoy Ozyegin University, Turkey

Alexei Sharpanskykh Delft University of Technology, The Netherlands

Christophe University of Toulouse/IRIT, France
Sibertin-Blanc

Jaime Sichman University of Sao Paulo, Brazil

Viviane Silva Universidade Federal Fluminense, Brazil

Liz Sonenberg Melbourne University, Australia

Charalampos University of Lugano, Switzerland
Tampitsikas

Pankaj Telang North Carolina State University, USA

John Thangarajah RMIT, Australia

Luca Tummolini ISTC-CNR, Italy

Leender van der Torre University of Luxembourg, Luxembourg

Wamberto Vasconcelos University of Aberdeen, UK

Harko Verhagen Stockholm University, Sweden

Dani Villatoro BBVA Data & Analytics, Spain

George Vouros University of Piraeus, Greece

Martijn Warnier Delft University of Technology, The Netherlands

Additional Reviewers

Yoosef Abushark RMIT, Australia
Graham Billiau University of Wollongong, Australia
Maiquel De Brito Federal University of Santa Catarina, Brazil

Chris Haynes
Marin Lujak
Ambra Molesini

Organization

King’s College London, UK
University Rey Juan Carlos, Madrid, Spain
University of Bologna, Italy

COIN Steering Committee

Huib Aldewereld

Tina Balke

Olivier Boissier
Stephen Cranefield
Frank Dignum
Virginia Dignum
Nicoletta Fornara

Eric Matson

Pablo Noriega

Julian Padget

Birna van Riemsdijk
Jaime Sichman
Viviane Torres da Silva
Wamberto Vasconcelos
Javier Vazquez-Salceda
Marina de Vos

George Vouros

Delft University of Technology, The Netherlands
University of Surrey, UK

ENS Mines Saint-Etienne, France

Otago University, New Zealand

Utrecht University, The Netherlands

Delft University of Technology, The Netherlands
University of Lugano, Switzerland

Purdue University, USA

IITA-CSIC, Spain

University of Bath, UK

Delft University of Technology, The Netherlands
University of Sao Paulo, Brazil

Universidade Federal Fluminente, Brazil
University of Aberdeen, UK

Universitat Politecnica de Catalunya, Spain
University of Bath, UK

University of Piracus, Greece

IX

Contents

Reasoning with Group Norms in Software Agent Organisations 1
Huib Aldewereld, Virginia Dignum, and Wamberto Vasconcelos

A Cognitive Framing for Norm Change. 22
Cristiano Castelfranchi

Representative Agents and the Cold Start Problem in Contract Negotiation . . . 42
Federico Cerutti, Christopher Burnett, and Nir Oren

Simulating Normative Behaviour in Multi-agent Environments Using
Monitoring Artefacts 59
Stephan Chang and Felipe Meneguzzi

Exploring the Effectiveness of Agent Organizations. 78
Daniel D. Corkill, Daniel Garant, and Victor R. Lesser

SIMPLE: A Language for the Specification of Protocols, Similar to Natural
Language. 98
Dave de Jonge and Carles Sierra

Mind as a Service: Building Socially Intelligent Agents. 119
Virginia Dignum

COIR: Verifying Normative Specifications of Complex Systems. 134
Luca Gasparini, Timothy J. Norman, Martin J. Kollingbaum,
Liang Chen, and John-Jules C. Meyer

The Role of Knowledge Keepers in an Artificial Primitive Human Society:

An Agent-Based Approach. 154
Marzieh Jahanbazi, Christopher Frantz, Maryam Purvis,
and Martin Purvis

Modeling and Detecting Norm Conflicts in Regulated Organizations.. 173
Jie Jiang and Huib Aldewereld

Revising Institutions Governed by Institutions for Compliant Regulations ... 191
Thomas C. King, Tingting Li, Marina De Vos, Catholijn M. Jonker,
Julian Padget, and M. Birna van Riemsdijk

Reinforcement Learning of Normative Monitoring Intensities 209
Jiaqi Li, Felipe Meneguzzi, Moser Fagundes, and Brian Logan

http://dx.doi.org/10.1007/978-3-319-42691-4_1
http://dx.doi.org/10.1007/978-3-319-42691-4_2
http://dx.doi.org/10.1007/978-3-319-42691-4_3
http://dx.doi.org/10.1007/978-3-319-42691-4_4
http://dx.doi.org/10.1007/978-3-319-42691-4_4
http://dx.doi.org/10.1007/978-3-319-42691-4_5
http://dx.doi.org/10.1007/978-3-319-42691-4_6
http://dx.doi.org/10.1007/978-3-319-42691-4_6
http://dx.doi.org/10.1007/978-3-319-42691-4_7
http://dx.doi.org/10.1007/978-3-319-42691-4_8
http://dx.doi.org/10.1007/978-3-319-42691-4_9
http://dx.doi.org/10.1007/978-3-319-42691-4_9
http://dx.doi.org/10.1007/978-3-319-42691-4_10
http://dx.doi.org/10.1007/978-3-319-42691-4_11
http://dx.doi.org/10.1007/978-3-319-42691-4_12

XII Contents

Communication in Human-Agent Teams for Tasks with Joint Action 224
Sirui Li, Weixing Sun, and Tim Miller

Manipulating Conventions in a Particle-Based Topology 242
James Marchant and Nathan Griffiths

Formation of Association Structures Based on Reciprocity and Their
Performance in Allocation Problems 262
Yuki Miyashita, Masashi Hayano, and Toshiharu Sugawara

Towards Team Formation via Automated Planning 282
Christian Muise, Frank Dignum, Paolo Felli, Tim Miller,
Adrian R. Pearce, and Liz Sonenberg

Interest-Based Negotiation for Policy-Regulated Asset Sharing 300
Christos Parizas, Geeth De Mel, Alun D. Preece, Murat Sensoy,
Seraphin B. Calo, and Tien Pham

An Empirical Evaluation of the Huginn Constrained Norm-Aware BDI
Reasoner 320
Tiago Luiz Schmitz and Jomi Fred Hiibner

Zohreh Shams, Marina De Vos, Julian Padget,
and Wamberto Vasconcelos

Multi-agent Team Formation for Design Problems 354
Leandro Soriano Marcolino, Haifeng Xu, David Gerber, Boian Kolev,
Samori Price, Evangelos Pantazis, and Milind Tambe

Security and Robustness for Collaborative Monitors 376
Bas Testerink, Nils Bulling, and Mehdi Dastani

An Interactive, Generative Punch and Judy Show Using Institutions, ASP
and Emotional Agents 396
Matt Thompson, Julian Padget, and Steve Battle

Quantified Degrees of Group Responsibility. 418
Vahid Yazdanpanah and Mehdi Dastani

Author Index 437

http://dx.doi.org/10.1007/978-3-319-42691-4_13
http://dx.doi.org/10.1007/978-3-319-42691-4_14
http://dx.doi.org/10.1007/978-3-319-42691-4_15
http://dx.doi.org/10.1007/978-3-319-42691-4_15
http://dx.doi.org/10.1007/978-3-319-42691-4_16
http://dx.doi.org/10.1007/978-3-319-42691-4_17
http://dx.doi.org/10.1007/978-3-319-42691-4_18
http://dx.doi.org/10.1007/978-3-319-42691-4_18
http://dx.doi.org/10.1007/978-3-319-42691-4_19
http://dx.doi.org/10.1007/978-3-319-42691-4_20
http://dx.doi.org/10.1007/978-3-319-42691-4_21
http://dx.doi.org/10.1007/978-3-319-42691-4_22
http://dx.doi.org/10.1007/978-3-319-42691-4_22
http://dx.doi.org/10.1007/978-3-319-42691-4_23

Reasoning with Group Norms in Software
Agent Organisations

Huib Aldewereld!, Virginia Dignum!, and Wamberto Vasconcelos?(®)
! Delft University of Technology, Delft, The Netherlands
{H.M.Aldewereld,M.V.Dignum}@tudelft.nl
2 University of Aberdeen, Aberdeen, UK

w.w.vasconcelos@abdn.ac.uk

Abstract. Norms have been used to represent desirable behaviours that
software agents should exhibit in sophisticated multi-agent solutions. An
important open research issue refers to group norms, i.e. norms that gov-
ern groups of agents. Depending on the interpretation, group norms may
be intended to affect the group as a whole, each member of a group,
or some members of the group. Moreover, upholding group norms may
require coordination among the members of the group. We have identified
three sets of agents affected by group norms, namely, (i) the addressees
of the norm, (ii) those that will act on it, and (iii) those that are respon-
sible to ensure norm compliance. We present a formalism to represent
these, connecting it to a minimalist agent organisation model. We use
our formalism to develop a reasoning mechanism which enables agents
to identify their position with respect to a group norm, so as to further
support agent autonomy and coordination when deciding on possible
courses of action.

1 Introduction

Norms have been used to represent, in compact ways, desirable behaviour that
autonomous components should have (alternatively, undesirable behaviour they
should not have), so as to provide overall guarantees for distributed, open, and
heterogeneous computing solutions. Research on norms has tackled important
issues, ranging from logic-theoretic aspects (e.g., [28]), to more pragmatic con-
cerns (e.g., [18]).

The study of norms has mostly been limited to abstractions via the use of
roles from the individual to make norms stable over extended periods of time.
However, while addressing multiple agents at once (namely each agent enact-
ing the role), it is important to realise that these norms do not address these
agents together. A main difference is that when addressing a group of agents, it
is necessary to consider aspects as responsibility and fulfilment, that are not typ-
ically addressed by most norm representations (since the agent addressed is also
responsible, and is also the one to act). To illustrate this difference, we consider
an obligation for children under the age of 16 to attend school. While the norm
addresses children under the age of 16, who are also the ones who must perform

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNATI 9628, pp. 1-21, 2016.
DOI: 10.1007/978-3-319-42691-4_1

2 H. Aldewereld et al.

the task of going to school, the responsibility and blame lays with their par-
ents/guardians. Consequently, by saying that “group G should achieve outcome
", it is not clear who in the group should actually perform the actions that lead
to i, and who is to blame if the outcome is not achieved. Another example is a
removal company obliged by contract to move the contents of someone’s house,
including a piano. If moving the piano requires specialised qualifications, even
though the removal company is the addressee of the obligation, the company
will not able to act on the norm by itself and must outsource the task.

Such group norms, explicitly differenting groups of agents targeted by the
norm, those acting upon it, and those responsible for the outcome, raise coor-
dination issues not typically seen in norms addressing individuals or roles. The
agents responsible for the norm will avoid blame, and thus have to ensure that
the agents supposed to act upon it are indeed doing what they are supposed to
do (or conversely, avoiding forbidden behaviours). The acting agents might need
to coordinate whether each of them has to do it, one of them has to do it, or
even all of them have to do it together.

In addition to coordination issues, group norms also present challenges in
norm reasoning. Reasoning about norms is essential to the regulation of behav-
iour in multiagent systems [5]. Work on models of norm-governed practical rea-
soning agents have so far studied the case of norms aimed at one agent (or
role) [27]. That is, the cases in which the agent is both addressed and responsi-
ble for a norm. In this paper, we present work towards reasoning about group
norms. These norms require that the agent is both able to reason about its
relation to the norm (i.e., is it addressed, responsible or actor?) and able to
coordinate with other agents affected by the norm to determine how to handle
the norm.

In the next section we present a formalisation of group norms. In Sect. 3 we
present a minimalistic model of agent organisations for the concepts of action,
role, and power; we also present an operational semantics for organisations and
explain the concepts of individual and collective actions. In Sect. 4 we show how
agents can use this model to reason about how to act when they are addressed
by, responsible for or actor of a norm. Section 4.4 discusses issues pertaining to
the reasoning processes we sketch. We contrast our research with related work
in Sect. 5, and in Sect.6 we draw conclusions, discuss relevant issues, and give
avenues for future investigation.

2 Group Norms

Norms are a natural way of constraining behaviours of groups and individuals.
However, by simply stating “group G should achieve ¢”, it is not made explicit
who is to act (that is, whether each group member individually, if only one group
member, or if all of them together), and who is to blame when violations occur.
We can take again the example from the introduction: the obligation for children
under the age of 16 to attend school. While the norm addresses children under
the age of 16, who are also the ones that must act upon it, the responsibility and

Reasoning with Group Norms in Software Agent Organisations 3

blame lie with the parents. In the rest of this section we introduce a language of
set definitions to precisely establish the notion of group, present a representation
for group norms and provide its semantics using temporal logic.

2.1 Set Definitions

We propose to represent groups as set definitions and operations. We assume
the existence of a non-empty and finite universal set Agents = {agy,...,a9,}
consisting of the unique identifier of each agent in our society.

Definition 1 (Set Definition). A set definition X is

Y=YUuX|Eny|S\ 2| x| s
Si:={agy,...,a9,,} | {a: P(a)}

The grammar establishes a language Ly of set definitions and it captures some
of the common operations of naive set theory [22], namely, union, intersection,
difference, and absolute complement (with respect to the universal set Agents).
The S stands for an actual set, and it can be represented as an extensive (finite)
listing {agq,...,0a9,,} C Agents of the elements of the set, or an intensional
definition {a : P(a)}, standing for Va € Agents.P(«), that is, all those elements
of the universal set that fulfil some property P.

We extend the language of set definitions Ly to represent more sophisticated
scenarios. It is common for certain norms to address groups with size restrictions,
as in “gatherings of more than 5 people are prohibited”. We can formalise such
requirements as || o n, where o is a comparison operator >, <,> <, =, or #
and n € N (a natural number). These set definitions can be seen as constrained
sets and they place restrictions on which sets can be built. For instance, if
Agents = {a,b,c,d} the definition |{a : T} = 3 (where T stands for “true”,
that is a property which is vacuously true for everyone) stands for all subsets of
Agents with 3 elements, that is, all groups of 3 agents.

A set definition gives rise to different actual values of groups, depending
on the universal set of agents. Rather than requiring that groups have their
individuals listed one by one, our set definitions are more compact and can
be re-used for different specific populations of agents. We formally define the
value of a set definition Y with respect to the universal set Agents, denoted as
value(X, Agents) C Agents, as follows:

Definition 2 (Set Definition Value).

1. value(Z’ U X", Agents) = value(X’', Agents) U value(X", Agents)

2. value(X' N X", Agents) = value(X’, Agents) N value(X", Agents)

3. value(X' \ X, Agents) = value(X’, Agents) \ value(X", Agents)

4. value(X°, Agents) = Agents \ value(X, Agents)

5. value({agy,- .., ag,,}, Agents) = {agq,...,a9,,}

6. value({a : P(a)} Agents) = {agg,-..,a9,,}, V4,0 <i<m,ag; € Agents A\ P(ag;)
7. value(|X] o n, Agents) = value(X, Agents) s.t. |value(X, Agents)| o

4 H. Aldewereld et al.

Cases 1-4 decompose a set definition into its sub-parts, recursively obtaining
their values, which then are combined, using the corresponding set operations —
this is a straightforward mapping of our notation to the usual semantics of sets.
Cases b and 6 are the base cases: a set tabulation is itself, and an intensional
definition gives rise to every possible sub-set whose elements satisfy property P.
Case 7 generically defines the meaning of constrained sets — these are the values
of the set definition which satisfy their constraints.

We assume a reference set Agents in our discussion, and since we are chiefly
interested in what the set definitions actually are, we will simply use the set
definitions X', meaning value(X, Agents).

2.2 Group Norms and Their Semantics

We formally capture three different groups as set expressions X, as introduced
in the previous sub-section, as well as the usual components of norms, namely,
the deontic modality and the target of the norm [18,28].

We use a set of propositions P, with which one can construct formulae using
the usual operators —, A, V, —, <. We represent generic atomic propositions as
p,q,r and we use @, §, 1 to indicate propositional formulas. The set of well-formed
propositional formulas is denoted as Lp. We define group norms as follows:

Definition 3 (Group Norms). Group norms are of the form AOE <3 (a
group obligation) or AFg © < § (a group prohibition), where A, R and G are
set definitions (from the language Ly, of Definition 1), and ¢, are propositional
formulae from Lp. We refer to group norms in general as ADg » < & (where

D is either O or F).

Intuitively, the annotations A, R and G of the deontic modalities O and
F correspond to respectively the actors (those agents whose behaviours are
affected by the norm), those responsible for the norm and the addressees of
the norm. The construct ¢ < § informally states “@ before §”, a temporal
constraint which enables us to capture deadlines of obligations and periods of
prohibitions. It should be noted that we represent achievement obligations, not
maintenance obligations. In future work, we will look at the formalisation of
group maintenance norms.

The propositions of formula ¢ may represent actions or properties of states of
affairs. In the case of actions, a norm such as AOE paint_door < § would place
an obligation on groups A, G, R to carry out action paint_door. More flexibility
and expressiveness can be achieved though if ¢ represents properties of states;
an example norm is Aog painted_door < § which stipulates an obligation on
groups A, G, R to carry out whatever is required in order to achieve a state
in which painted_door holds — that is, they should “see to it that” the door is
painted, either by painting it themselves or finding someone to paint it on their
behalf [25]. We do not commit ourselves to either of these options — both can be
expressed with our formalism, assuming a suitable semantics for actions and a
representation of states is available.

Reasoning with Group Norms in Software Agent Organisations 5

We provide the semantics of our group norms via a temporal logic based
on CTL* [15]. Our temporal logical language L7p extends our propositional
logic Lp by adding path operators A (all paths), E (some paths), and state
operators () (next), O (always), ¢ (sometime), and U (until). The language is
further enriched with stit, stit(a, ¢) meaning agent « “sees to it that” ¢ [4] and
expressing individual action, and stit(G, ¢) meaning that group G together “sees
to it that” ¢, for collective action'. The semantics of this logic is constructed in
the typical manner from the semantics of CTL* [15] combined with stit [4]. In our
semantics the deontic modalities are handled via an Anderson’s reduction [3] of
the modality to the reserved viol(G, A, R, ¢) construct indicating that a violation
has happened of G’s norm on ¢ by (in)action of A under the responsibility of
R. We define the meaning of group obligations as follows:

Definition 4 (Semantics of Obligation).

‘ =6 A stit(A, o)A
08 <5 Al A (ﬁ‘s .Afngg“‘];f“> U <Q(AD ~wiol(G, A, R, <,0)))
viol(G, 4, B, ¢) V(6 A viol(G, A, R,)

Intuitively, this definition expresses that the deadline § will occur at some point
in time and for all paths either ¢ is achieved by the actors (stit(A,)), in which
case no violation of the obligation will ever occur (O(AD —wiol(G, A, R, ¥))),
or the state is not achieved, the deadline occurs, and a violation happens (6 A
viol(G, A, R, ¢)). Similarly, we define the meaning of group prohibitions:

Definition 5 (Semantics of Prohibition).

. =0 A stit(A, o)A
ARE Lo 5% A (:‘i}if)lzg”;gf“é@)§)u (vz’ol(G,A,R, 0)"
A L $ (5 A AO-wiol(G, A, R, ¢))

Group prohibitions are similar to group obligations, except that the deadline § is
better seen as a deactivation of the prohibition (and may therefore not actually
occur in the future states, meaning that the prohibition is not deactivated).
So, no violation happens until either a violation is triggered by seeing to it
that the prohibited state is achieved before the deactivation (—d A stit(A, @) A
viol(G, A, R, ¢)) or the prohibition is deactivated (after which no violation can
occur (6 A AO-wiol(G, A, R, ¢)).

With these definitions of the meaning of group norms, a norm on individual
action when G = A = R, all refering to a role specification in an organisa-
tion, expresses the same as in, for example, [7,13] — all those agents adopting a
role (hence belonging to the group) are simultaneously actors, addressees, and
responsible parties. For simplification and without loss of generality, in the rest
of our discussion we may drop the deadline component of our norms.

To relate the groups and individuals of a norm, we formalise in Sect.3 a
notion of power (Definition 9) — we address social power (viz., a relation among

1 We explain in Sect. 3.2 how we differentiate collective and individual actions.

6 H. Aldewereld et al.

individuals of a society, establishing who has authority or control over others
[17]), as opposed to institutional power (viz., whereby members of an institu-
tion are empowered to perform certain deeds [12,26]). We represent power as a
relation z < y establishing that agent z is under the power of agent y (or con-
versely, that y has power over). This relation also applies to groups of agents,
as presented later on in the paper.

3 A Minimalist Organisation Model

There are many approaches to modelling organisations (e.g., [13,24,30]), but
they possess many features in common. Our organisation model aims at cap-
turing only those aspects necessary to explore the phenomena and mechanisms
related to group norms and joint behaviour/coordination. We make use of the
agent’s identity (i.e., the set Agents), and we formalise the following aspects:

— Roles — these are useful abstractions for (groups of) individuals, conferring
generality on organisation specifications. The organisation remains the same,
even though different individuals comprise it.

— Capabilities — we associate roles with sets of capabilities, represented as
actions. These can be understood in two ways: (i) individuals taking up a
role should be able to perform what that role entails; (i7) they specify what
individuals are expected to do in the normal running of the organisation.

— Power — within organisations it is necessary to relate roles to one another, so
as to facilitate coordination and load-sharing, ultimately enabling objectives
(see below) to be achieved. In our proposal, roles exert power (or influence)
over other roles, giving rise to power structures such as lines of command,
managed teams, hierarchies, and egalitarian teams.

We make use of our propositional language Lp; a set of propositional for-
mulae {¢1, @2, ...} represents the conjunction w1 A @a A---. We use two special
propositions T and L to represent, respectively, “true” and “false”. We assume
that the meaning of propositions are captured with formulae establishing logical
relations in a knowledge base (or, to use a more modern terminology, a reference
ontology) shared by all stakeholders and components? (e.g., engineers, designers,
tools, software agents, and so on). We relate our formulae via logical entailment
(formally, “&=”) and deduction (formally, “t”): for any formulae @, 9, if ¢ E 9
then ¢ F 1 (completeness) and if ¢ b 1) then ¢ |= 9 (correctness).

We make use of logical implications represented as (p1 A -+ A p,) — ¢ to
forge relationships among propositions, thus providing a background theory (or
axioms). We denote as 2, a set of formulae from Lp, our background theory and
we define the meaning of logical implication in terms of entailment as if ((p1 A
o Apn) —q) € 2 and 2 | pi,1 <i<n, then 2 = ¢. A similar relation is
defined for the “H” operator, if we assume its completeness.

2 More realistically, the stakeholders and components have means to relate their knowl-
edge bases (or, to re-phrase this in more modern terms, “align their ontologies”),
thus being able to map their knowledge representation on to that of other parties.

Reasoning with Group Norms in Software Agent Organisations 7

We represent a repertoire of actions available during the enactment of an
organisation. We propose an idealised representation for actions, and consider
these as being (i) instantaneous (i.e. they take one unit of time to be performed,
that is, they do not have a duration or a period for their execution to be com-
pleted), (%) they are either executed or not (i.e., we do not capture situations
whereby actions are partially performed nor do we address scenarios in which
actions are performed with degrees of success/quality). We make use of the set
P of propositions as well as a set of negated propositions P~ = {—p|p € P}>.

Definition 6 (Action). An action ac is the triple (S, ac, S’y where S C P U
P~, 8" CP, and ac is an action label.

The action labels uniquely identify actions. Our actions model pre-conditions
S (a set of possibly negated propositions) which should be satisfied for action ac
to be performed, and the result of performing this action (ac’s post-conditions)
is §’, a set of non-negated propositions. We assume a universal, non-empty and
finite set of actions Ac = {acy,...,ac,}, such that no two actions have the same
label. Since actions have unique labels, we shall use ac and ac interchangeably.

Importantly, we can model norms addressing properties of states, rather than
actions. This is without loss of generality since for any action (S, ac, S’), where
S = {pl,...,pl}, we have ADg ac < ADg (py A -+ A pl) that is, a norm
on an action is equivalent to a norm on its post-conditions. In the case when
S" = 0, we have “DZ ac « “DZ T That is, a norm on an action without
any effect is equivalent to a norm on the vacuously true proposition “T”, as the
empty set is a sub-set of any set,) C S.

We represent roles as labels available to individual agents when they join
the organisation during the enactment. We associate with each role a possibly
empty set of action labels, depicting what the role requires to be done:

Definition 7 (Role). A role rl is the pair (rl, Ac') where 1l is the role label
and Ac' C Ac is a set of action labels (cf. Definition 6).

When an agent joins an organisation it takes up one or more roles; by taking
up a role the agent agrees to perform any of the actions associated with that
role, whenever it is required (or whenever the agent is asked to). We assume a
universal, non-empty and finite set of roles Rl = {rly,...,rl,;,}, such that no
two roles have the same label. Because roles have unique names, we shall use
rl and rl interchangeably. There are more sophisticated and expressive ways to
represent roles, allowing one to define constraints on how many agents can take
up the role, the least/highest number of agents for each role, relations among
roles (e.g., who takes up roles rly,rly should not take up rl3), and so on, as
reported in, for instance, [13,24,30], but as we aim at a minimalist model, we
do not include these here.

3 It is important to notice that the pre-conditions of an action may contain negated
propositions, but not the post-conditions. We present in Sect.3.1 an operational
semantics showing how agents performing actions update a global state of compu-
tation.

8 H. Aldewereld et al.

When individual agents join organisations they take up roles which they will
enact during the life-time of the organisation. We thus consider agents associ-
ated with a set of roles, (o, Rl'),a € Agents, RI' C RI. We define an agent’s
capabilities — the properties of the states that the agent can bring about based
on the roles the agent has adopted and the actions associated with these roles:

Definition 8 (Capabilities). We define the set of a’s capabilities (when
enacting roles Rl') as cap(a,Rl') = Us,ac,51yeam1ac 5" where AllAc =
U<Tl,AC>€Rl/ Ac, that is, the capability of an agent o undertaking roles Rl is the
union of the post-conditions S’ of all actions AllAc of all of a’s roles.

Next, we formally relate roles via power, as explored in, for instance, [26,29,
34], and more recently (and closer to our approach) in [14]:

Definition 9 (Power). Power < C 2% is a reflexive and transitive relation
over the set Rl of roles. If rl; < rly we say that rly has power over rly or
alternatively that rly is under the power of rls.

When an agent enacts a role rl, which “has power over” another role rl; then
that agent may request the help of any agent enacting rl; to achieve a particular
state of affairs. This request for help is, within a formal organisation, equiva-
lent to delegation, since power relations should be followed without question.
Power and delegation is best understood via the “see to it” (stit) operator [25],
stit(rl, ¢) standing for “role rl sees to it that ¢”.

If stit(rl,) and rl = (rl, Ac") hold, then one of the following properties must
also hold:

1. Role rl has associated actions with combined post-conditions logically entail-
ing ¢. Formally: S* = (U(s,ac,S/)eAc’ S’) and S* | ¢

2. Role rl has power over roles rl; each of which can see to it that ¢,
and these combined ¢! logically entail ¢. Formally, & = {¢} : rl} <
rl A stit(rl;, i)} and @' = .

Since the power relation is reflexive, that is, all roles have power over themselves
(Vrl € Rl.rl 5 rl), then property 2 above also addresses scenarios in which
agents delegate responsibility over the achievement of some ¢ but they also
retain responsibility for achieving some ¢, through their own actions.

The power relation can be extended to relate individual agents: let there be
two agents agq, ag, with associated sets of roles (ag;, Rl1), {(ag,, Rl2); if there is
arolerl” € Ri, for which there is a role rl’ € Rl; such that rl’ < rl”, then we say
ag, < ago. That is, agy has power over ag; if at least one of agy’s roles has power
over one of ag;’s roles. We notice that this is a “weak” definition of power which
could, in some situations, lead to loops in delegation — this is an undesirable

Reasoning with Group Norms in Software Agent Organisations 9

feature of an organisation specification to which designers should be alerted?.
A stronger definition would require that, in addition to the requirements above,
we also had rl” £ rl’, for all roles rl’, rl”.

We further extend the power relation to account for groups (sets) of agents,
as follows:

Definition 10. Given sets Agents,, Agentsy C Agents, and a power relation
< C 249¢M e say that Agents, has power over Agents,, denoted as Agents; <
Agents,, if, and only if Vo' € Agents,, 3o’ € Agents, : o' < ", that is, every
member of Agents, is under the power of at least one member of Agents,.

In order to model realistic scenarios, group norms ADg ¢ (where D is either
O or F) should fulfil the following properties:

1. A < R — the group of actors A must be under the power of the responsible
group R. This property ensures that those responsible for the norm should
be able to delegate to actors.

2. A < G — the group of actors A must be under the power of the group G
addressed by the norm. This property ensures that addressees are also able
to delegate to actors.

Both properties above can be checked at run-time, when the groups are instanti-
ated with specific members. Concerning the power relation between Addressees
and Responsibles, in most realistic models, it will be the case that G N (AU R) #
g,and G NA# VG N R # I, ie the Addressee group overlaps in some
extent with the Actors or Responsibles group. We consider the specification of
these relations for a given application domain to be design decisions, and there-
fore do not impose G < R nor R < G. (E.g., a norm aimed at a group of junior
engineers GG has a senior manager responsible R for it, and operators as actors
A) R and G do not directly relate power-wise.

3.1 A Computational Model for Norm-Aware Agent Organisations

We outline a computational model for norm-aware multi-agent organisations,
providing a context for Definitions 6-10. Our model is built around an explicit
representation of the global state S* C P of the computation in which pre-
conditions of actions are checked for and their post-conditions (effects) are

* During the enactment of an organisation (run-time) each agent adopts a sub-set
of roles. If the power relation has any loop then there is potential for loops when
agents (acting in different roles) are delegating. By detecting/flagging loops in the
power relation at design time we are warning designers about such potential loops
in delegation at run-time. More sophisticated representations for roles [10,14,35]
addressing features such as “at most one agent should be in this role” (cardinality of a
role) and “whomever takes up this role cannot take up this other role” (compatibility
of roles), could avoid certain combinations of roles, thus partitioning the graph of
roles (vertices) and power relations (edges) into sub-graphs without loops.

10 H. Aldewereld et al.

recorded: given a state S; and an action (S, ac, S’), if S holds in S; (see below)
then the action can be applied and we obtain a next state® S; .1 = S'.

We follow the architecture for distributed norm management proposed in
[19,37], and consider a global state which is updated as a result of individual
agent’s actions — this is similar to transition systems [15]. We represent this as
the construct = = .-, showing a sequence of global states (Sy, S1,...)
created from an initial state Sy with the “=" operation indicating the application
of a set of actions (from possibly many agents) on S;, giving rise to S;11.

Negated propositions in pre-conditions of actions (cf. Definition 6) are inter-
preted as negation as failure [11], that is, they hold if they cannot be proven
true. Since we are dealing with single propositions (rather than formulae), to
check if a negated proposition —p holds in a state S we need to check that p does
not appear in S, that is, S | —pif, and only if, p & S. Given a set S’ C P U P~
of (possibly negated) propositions, we establish when S = S

V(-p)e S pgSs

/s :
S E S’ if, and only if, {Vpe S pes

Given a set of actions Ac and a global state S*, individual agents can compute
the subset of actions Ac¢’ C Ac whose pre-conditions hold in S*:

applicableActions(Ac, S*) = {(S, ac,S’) € Ac | S* E S}

An underlying infrastructure controls access to global states, and mediates how
and when an update is to take place. Agents decide on the actions they want to
perform (chosen from applicableActions), and update the global state directly.

We provide means to check which group norms hold, using . For simplicity
our norms do not have activation conditions, and this is interpreted as a norm
being active until § holds in S*, that is,

active(ADg © < 6,5%) holds if, and only if, S* }£= §

Agents are able to find out all those active group norms, and use the group norm
reasoning mechanism (Algorithm 1) defined in Sect. 4 to establish how to handle
the group norm — as a member of a group of actors, addressees or responsibles.

3.2 Individual and Collective Actions

Our formalisation in Definition 6 caters for both individual and collective actions.
We differentiate between these in a pragmatic fashion: collective actions are
those whose post-conditions (effects) are achievable via the combination of
other (individual or collective) actions. Formally, given a set of actions Ac,
ac € Ac, ac = (S, ac,S’) is a collective action if, and only if, the conditions
below hold

5 This means that propositions are not implicitly recorded in (copied onto) the next
state; a proposition will only be copied from one state onto the next state if it appears
both in the pre- and post-conditions of an action.

Reasoning with Group Norms in Software Agent Organisations 11

1. for some n > 2, there are ac; € Ac,ac; # ac,ac; = (S;, ac;,S0),1 < i <mn,
that is, there are (at least two) other actions acy,...,ac,,

2. S = U, Si, whose pre-conditions are entailed by S

(Ui, S!) E S, whose post-conditions entail S’

4. Given a set AssocRl of pairs (a, RI'), o € Agents, RI' C R, establishing the
roles RI' which individual agents o are enacting, then S’ Z cap(c, RI") for all
(o, RI'Y € AssocRI.

©w

The first condition establishes the “break-down” of a collective action into other
actions®. The second condition ensures that actions ac; are applicable when-
ever ac is applicable. The third condition ensures that the combined effect
(post-conditions) of actions ac; addresses all post-conditions of ac. The fourth
condition states that for a particular organisation enactment (that is, agents
associated with specific roles), a collective action is not within the capabilities
of any one individual agent o however many roles RI" it has adopted.

When an obliged action cannot be achieved by any one single agent (under its
many roles) in an organisation enactment, then the action is deemed collective
and it should be “farmed out” to groups of agents so that, by joining their
capabilities, the collective action can be achieved and the obligation fulfilled. On
the other hand, an individual action is within the capabilities of a single agent
in an organisation; formally, ac = (S, ac, S’) is an individual action if, and only
if, S’ C cap(a, Rl") for some (o, RI') € AssocRI.

3.3 Coordination and Group Norms

Agents must coordinate their activities factoring in their roles (with associated
capabilities), their membership to groups, and active norms which are applicable
to the groups. Our reasoning mechanisms (Algorithms 2 and 3) introduced in the
next section make use of two procedures coordinate and coordinate’ to support
coordination among agents, which we explain below.

Procedure coordinate is invoked by an agent o who is attempting to coordi-
nate with agents Agents’ in order to achieve ¢, and « is willing to contribute with
S’ coordinate(c, Agents’, contribute, S’, ¢). We do not prescribe any solutions
to the coordination mechanism itself, that is, the messaging/network topology,
actual contents of messages and their order, or any guarantees such mechanism
should have — research on distributed coordination [38] and planning [23] pro-
vides candidate solutions for this. The coordination process will go through a
series of rounds whereby agents o € Agents’ receive requests from a to help
with achieving ; the request may also include (partial) information on o’s con-
tribution S’. Agents will reply to requests offering their own contributions, as
part of their deliberation process about what to do next, also factoring in other

5 Collective actions have large sets of post-conditions reflecting the “effort” to be spent
in order to achieve them. By breaking apart an action into other (simpler) actions
which together achieve the same effects (post-conditions) we capture the delegation
process supported by the power relation, and which is explored in our reasoning
mechanisms.

12 H. Aldewereld et al.

group norms — research on how deliberation can be extended with normative
considerations is reported in, for instance, [31]. Agent « will select who should
contribute with what and consider whether it is necessary to send more requests,
in case the responses so far are not sufficient to achieve . After a finite number
of rounds the coordination process may succeed (and the procedure returns T,
that is, the Boolean value true) or may fail (and the procedure returns L, the
Boolean value false). The same coordinate procedure supports agents when they
are coordinating about who should refrain from carrying out actions.

The other procedure coordinate’ used in our reasoning mechanisms is
invoked by an agent a attempting to coordinate with those agents Agents’

who belong to the R group of agents responsible for group norm ADg p:

coordinate’ (o, Agents’, ADg ©). The procedure returns the pair (o, AXE o)
with the outcome of the coordination: o/ € (Agents’ U {a}) has agreed (as a

member of the group responsible for the norm) to be in charge of 4 Xg, @.

The coordination process may convert the original norm ADg into an alto-
gether different norm A Xg, ¢ (a special case is when A Xg, ¢ = ADg o,
that is, the coordination preserves the original norm). This conversion would

allow, for instance, group norm Aoglgl’agz} (pAq) to become norms Aogzgl}p

and AOé“g 2 g, that is, the group {ag;, ag,} of agents responsible for the norm
have agreed to take responsibility over parts of the original group norm. Another
important conversion would make use of domain axioms to work out how a group
norm on the effects of a collective action (cf. Sect. 3.2) could be split into dis-
tinct group norms (with potentially different groups) over the effects of other
(collective) actions.

4 Reasoning About Group Norms

The objectives of an organisation can only be realised when agents take up the
roles described in the organisation definition. We assume that agents have their
own motivations to decide on which roles they will take on, but once a role
enactment is fixed, the agent is able to act on the capabilities described for its
role(s). Moreover, agents have access to the organisation specification:

— The set of agents Agents enacting/joining the organisation.

— The set of actions Ac (Definition 6), the set of roles Rl (Definition 7) and their
associated capabilities (Definition 8).

— A set AssocRI of pairs (o, RI'),a € Agents, RI' C Rl, recording which roles
RI’ individual agents « are enacting (hence formally associated with).

— The power relation (Definitions 9-10) among roles and sets of agents (enacting
roles).

The organisation specification allows agents to figure out each other’s (as well
as their own) roles, capabilities, and who has power over whom.

We furthermore assume an open environment in which heterogeneous agents,
possibly developed by third parties, may join the organisation. This means that

Reasoning with Group Norms in Software Agent Organisations 13

role enactment can take many forms, i.e., depending on the agent’s own “per-
sonality”, its interpretation of what is expected from it as enactor of the role
(and how to decide about its role norms) may vary. For instance, an agent with
a strong sense of responsibility will first consider the norms for which it belongs
to the Responsible group, whereas an agent that has a strong sense of duty may
start by considering the norms for which it is an Actor. In the following, we
describe, in pseudo-code, reasoning mechanisms for role enacting agents.

Algorithm: groupNormReasoning(a, ADg ®)

if « € value(G, Agents) then addressment(a, ADE ®);
if « € value(R, Agents) then responsibility(a, ADS ®);
if o« € value(A, Agents) then actorship(a, ADg ®);

Algorithm 1. Group norm reasoning

We initially present in Algorithm 1 the general reasoning mechanism, consist-
ing of an assessment of the value of the norm groups and a check whether or not
the agent belongs to these. Depending on which group the agent belongs to, sep-
arate sub-mechanisms are invoked, and these are explained in the remainder of
this section. We assume that the mechanisms have access to a global set Agents
comprising the organisation, as well as the specific actions, roles, capabilities
and (group) power relations (cf. Definitions 6-10).

Input parameters a and ADg o stand for, respectively, the agent’s identity
and a group norm under consideration’. We order the agent’s considerations
about group membership: it first checks if it is part of the group of addressees of
the norm, then if it is part of the group of agents responsible for the norm, and
finally the agent checks if it is an actor of the norm. If none of these situations
arise, then the agent does not have to factor in the group norm in its decision.
This ordering is due to the relationships among agents belonging to the distinct
groups: the addressee analysis may require responsibility and actorship analysis
(depending on the circumstances); the responsibility analysis may require actor-
ship analysis, but actorship is self-contained. These mechanisms are described
in the rest of this section.

The mechanism above also caters for situations in which agents simultaneously
belong to more than one of the groups A, R, or G. As we show below, agents in G
that are addressed by the norm will “farm out” the norm among those responsible
(in group R) and those acting (in group A); those agents responsible for the norm
(in group R) will require the help of acting agents A. When an agent is part of
more than one group, then we will have the phenomenon of agents calling upon
themselves to handle the norm under a different guise.

" For simplicity, we omit deadlines/periods of norms in our mechanisms, and the
assumption is that the input norm is currently active, that is, its deadline/period
has not expired and hence it must be considered. This assumption can be relaxed,
but all algorithms should initially check whether or not the norm is still active.

14 H. Aldewereld et al.

Our group norm representation is used in mechanisms to support agents rea-
soning about actorship (Algorithm 2), responsibility (Algorithm 3), and address-
ment (Algorithm 4). We illustrate their interdependence as

addressee — responsibility

|

actorship

The reasoning invokes individual planning (during actorship reasoning), group
coordination (during responsibility reasoning) and individual deliberation (dur-
ing addressee reasoning). The reasoning is interleaved with message-passing (pro-
tocols) to enable coordination, as well as communication regarding who is taking
up actorship, and to signal which norm has been violated.

4.1 Reasoning About Actorship

Group norms are ultimately “processed” by actors: these are agents belonging

to the group A of norms ADg @ and their behaviours should be affected by
these norms. We recall that our group norms consider propositional formulae
¢ (cf. Definition 3), and we note that these can come about as a result of a
coordinated joint action among various agents, each contributing some effort
to achieve or avoid ¢. We propose the reasoning mechanism depicted in Algo-
rithm 2 to enable norm-aware decision-making and coordination among acting
agents. Line 1 computes all those sub-groups of actors whose capabilities (under
their respective adopted roles in the organisation) when pooled together log-
ically derive (or entail) ¢®. Line 2 computes those coalitions to which «, the
agent executing the algorithm, belongs. Lines 3-11 describe the provisions for
norm-compliant behaviours. Line 12 is a place holder for non-norm-compliant
behaviours — these might include, for instance, having « alerting other team-
members (that is, all o’ such that o/ < o and o < ') or informing its in-line
manager (that is, an o’ such that @ < o’ and o # «) about its decision to not
comply with a norm. We focus on norm-compliant behaviour: line 4 computes
agent a’s own capabilities MyCap within the organisation, based on its roles.
Lines 5-13 loop through each minimal coalition to which « belongs, checking
whether the norm is an obligation (line 6) or a prohibition (line 9). In the case
of an obligation, « tries to coordinate with the coalition Agents’ to contribute
with its capabilities MyCap to achieve ¢ — it is enough for one such coordination
attempt to succeed for the actorship algorithm to return T (line 8). In the case
of a prohibition (line 9), a attempts to coordinate with Agents’ to agree on
who is to refrain from doing what in order to not achieve ¢ (and hence abide
by the prohibition) — it is enough for one coordination attempt to fail (that is,

8 This amounts to finding all minimal coalition of agents who can achieve ¢ collec-
tively [1].

Reasoning with Group Norms in Software Agent Organisations 15

Algorithm: actorship(a, ADg ®)

1 let A= {Agents, ..., Agents, }, where each Agents; C value(A, Agents) is
the smallest set s.t. Va' € Agents’.(a’, Rl') € AssocRl A (|J cap(c’, RlI')) -

2 A% — {Agents, € A| o € Agents.}

3 if complyNorm(ADg p, A%) then

4 MyCap «— cap(«, Rl) where (a, Rl) € AssocRI

5 for Agents’ € A~ do

6 if D = O then

7 if coordinate(a, (Agents’ \ {a}), contribute, MyCap, p) then
8 ‘ ‘ return T

else
9 if —coordinate(a, (Agents’ \ {a}), refrain, MyCap, ») then
10 ‘ ‘ return L
11 if D = O then
12 ‘ return |
else
13 ‘ return T
else

14 ‘ ... non-norm-compliant behaviour...

Algorithm 2. Reasoning about actorship

—coordinate holds in line 9) for the actorship algorithm to also fail. In both cases,
the loop is cut short and a result is returned.

If, however, the loop in lines 5-10 explores all coalitions without returning
anything, then the test in lines 11-13 confirms that agent o was unsuccessful in
coordinating to fulfill the obligation (line 12) or a was successful in coordinating
to abide by a prohibition (line 13), otherwise the commands in line 8 (respec-
tively, line 10) would have been performed and the flow of execution would never
have reached line 12 (respectively, line 13).

4.2 Reasoning About Responsibility

Agents belonging to group R of a norm ADg @ are responsible for the norm,
that is, they are to blame if the norm is violated. Those agents responsible
enlist the help of acting agents belonging to the group A of our norms. However,
agents responsible for the norm need to agree among themselves who will take
the initiative to contact the actors. Moreover, the agents responsible for the
norm should only contact actors over whom they have power. This process is
represented in Algorithm 3. Line 1 invokes a coordination mechanism whereby
« interacts with the other members of R regarding who should be ultimately
responsible for the norm. This process should factor in the nature of ¢ — it might
be the case that more than one agent should become involved in procuring actors
to fulfill the norm. We note that the result of this coordination exercise could
be the re-casting of the original norm into distinct norms whose overall effect,

16 H. Aldewereld et al.

when they are complied with, is the same as the original norm” and we indicate

’

this in the algorithm with a (possibly) different norm A Xg, ¢ being agreed to
(line 2) by the group R to have « being in charge.

Algorithm: responsibility(«, ADE)

1 (inCharge, A,Xgi ¢) — coordinate' (a, (value(R, Agents) \ {a}), “D&)
2 if inCharge = o then

3 ActorsSet « {d| o’ € value(A’, Agents) Ao’ < a}
4 for o’ € ActorsSet do

5 if actorship(c’, AXE ¢) then

6 ‘ return T

7 return |

Algorithm 3. Reasoning about Responsibility

Step 3 computes the set of actors o’ over which « has power (o’ < «). Line
4 establishes a loop over all actors, repeatedly invoking the actorship reasoning
mechanism of Algorithm 2, stopping (and returning “T”, that is, success) when
the first of the acting agents handles the group norm. Otherwise, when we run
out of choices for acting agents, the mechanism reports a failure “17.

4.3 Reasoning About Addressment

We finally consider the case when an agent is a member of the addressed group G
of norm ADg v, depicted in Algorithm 4. In this case, the mechanism computes
(line 1) the set of agents o’ responsible for the norm, and over which « has power
(o/ %). Line 2 starts a loop invoking, for each o/, the responsibility mechanism
depicted in Algorithm 3, stopping when the first agent handles the norm. Lines
5-9 explores the exception to the responsibility mechanism, that is, a member
« of the addressed group A, directly takes responsibility over finding actors to
deal with the norm — this part of the mechanism corresponds to lines 3-7 of the
responsibility mechanism.

4.4 Discussion

Our representation of group norms caters for three distinct groups involved.
Being able to differentiate among those addressed by the norm (i.e., group G),
those responsible for the norm (i.e., group R), and those acting on the norm
(i.e., group A), allows us to formally capture interesting and realistic situations.
For instance, a norm such as “anyone under the age of 16 is obliged to attend

school”, can be represented as Aog attendSchool where

9 We illustrate this with a norm (without the groups) Olift Table and axiom (liftEndA A
liftEndB) < lift Table, which gives rise to O LiftEndA A O LiftEndB.

Reasoning with Group Norms in Software Agent Organisations 17
Algorithm: addressment(a, ADg ®)

1 ResponsibleSet — {a’ € value(R, Agents) Ao/ < o}
2 for o’ € ResponsibleSet do

3 if responsibility(a’, ADE ») then

4 ‘ return T

5 ActorSet «— {a’ € value(A, Agents) Ao’ < a}

6 for o' € ActorSet do

7 if actorship(a’, ADE ©) then

8 ‘ return T

9 return L

Algorithm 4. Reasoning about Addressment

— Ris{x: x € People A parent(zx,y)Aunder16(y)}, that is, the group responsible
for the norm consists of anyone who is a parent of an under-16;

- G = A and they are |{y : y € People A under16(y)}| = 1, that is, those
addressed and the actors are individuals (i.e., sets of size one) under-16.

The norm “groups of more than 3 children are forbidden to be in a shop” is
. AQR .
formalised as “F inShop where

— (G is Children, that is, the norm is addressed at all kids;

— Ris |[{z : x € Children}| = 1, that is, each kid is individually responsible for
the norm (hence the set has exactly one member);

— Ais |Children'| > 3, that is, the actors are all groups of 3 or more children.

A third example is the norm “the chairperson of a meeting is obliged to have the
secretary circulating the minutes”, formalised as AOg circulate Minutes, where

— G = Meeting, i.e., the norm is addressed to all those attending the meeting.
— R = {chair}, i.e., the chairperson (singleton set) is responsible for the norm;
— A = {secretary}, i.e., the secretary (a singleton set) is the one acting.

Our group norm representation has been put to use in mechanisms to support
agents reasoning about actorship (Algorithm 2), responsibility (Algorithm 3),
and addressment (Algorithm 4). Completeness is achieved as the net effect of
our mechanism is that addresee agents exhaustively try to find someone respon-
sible or someone to act (invoking responsibility and actorship analyses), the
responsible agents exhaustively try to find actors, and finally the actors try to
plan, factoring in the constraints of the norm (avoiding prohibited states, and
aiming at obliged states). Termination of the process is guaranteed if there are
no loops in the power relation, as all groups are finite, and so are the agents’
individual roles and actions, and the interaction (although not shown) converges
with a successful action/plan or a message declining to help. The complexity of
the three combined analyses, in the worst case, is the permutation of the ele-
ments of all three sets, that is, 21¢%%*Al — this is increased by the number of
actions agents have to comply with norms (different actions may have different
but overlapping post-conditions and may thus be used interchangeably) and the
different ways in which collective actions can be achieved, as defined by domain
axioms.

18 H. Aldewereld et al.

5 Related Work

Work on collective agency (e.g., [9,10,35]) and collective obligations (e.g., [20])
have addressed similar concerns as ours. These approaches represent norms
over actions, establishing groups of agents to whom the norms apply. Some
approaches regard group norms as a shorthand for a norm which applies to
all/some members of the group (e.g., [10]), whereas other approaches (e.g., [20])
regard group norms (more specifically, collective obligations) as a shared com-
plex action requiring individual contributions (i.e., simpler actions) from those
individuals of the group. However, these approaches only deal with the element
of shared responsibility, neglecting the element of shared actorship. Research
about the concept of shared actorship can be found in work on joint action and
coalitions (e.g., [1,6,21]). This line of investigation is relevant as it looks into indi-
vidual deliberation when coordination is required, whereas work on delegation
(e.g., [14,33]) sheds light on how norms can be transferred among individuals
and groups. When agents join organisations they will need to consider the impli-
cations of taking up roles, since these will determine to which groups agents
will ultimately belong, and consequently which norms will be applicable, as well
as how power and delegation will impact on the agents’ choices. Research has
addressed issues of expressiveness and reasoning complexity in various logics of
coalition (e.g., [8,36]), establishing that even for simple propositional fragments,
complexity is very high (i.e., PSPACE in the size of the formula checked).

The notion of group association and imposing norms on groups of agents
is closely related to the concept of roles. Roles have been explored in research
on electronic institutions [16] and organisations [13,24,30,35]. Roles describe
collections of stereotypical individuals who, by adopting a role, become subject
to any norms associated with that role. We note that norms addressing roles
are a useful shorthand for specialised norms addressing individuals, that is, they
stand for “any one who has adopted role r is subject to norm v”. For instance,
a norm such as “Soldiers are forbidden to enter area (x,y)” and given agents
ai,...,a, who have taken up the soldier role, stands for “Agent a; is forbidden
to enter area (x,y)”, for each ¢,1 <14 < n. Importantly, in existing research role
norms typically do not influence the joint behaviour of individuals and do not
require coordination.

6 Conclusions and Future Work

In this paper we have proposed a representation for group norms, a topic largely
ignored in the literature. Our proposal caters for three distinct types of stake-
holders, namely, the addressees of the norm, those responsible for the norm, and
those whose behaviours are impacted by the norm (the actors). Our representa-
tion has been influenced by a taxonomy of cases for group norms [2], with two
dimensions — the individual and the collective — within a group. Certain norms,
although addressed at groups, are fulfilled/violated by a single (or some) mem-
bers; other norms are aimed at the group as a whole. Our reasoning mechanisms

Reasoning with Group Norms in Software Agent Organisations 19

are a first attempt at defining how agents can factor in group/individual issues
when deciding what to do within an organisation (hence there is a degree of
predictability on the agents’ part), presenting clear connections with generally
agreed organisational concepts.

We are currently extending our mechanisms with the communication layer,

using classic, off-the-shelf protocols such as the Contract-Net. We will connect
our approach with existing planning techniques (e.g., HTN [32]), to evaluate
how our group norms can help agents agree on joint plans with fewer messages
and in fewer rounds.

References

10.

11.

12.

13.

14.

Agotnes, T., Alechina, N.: Reasoning about joint action and coalitional abil-
ity in K, with intersection. In: Leite, J., Torroni, P., Agotnes, T., Boella, G.,
van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp. 139-156. Springer,
Heidelberg (2011)

Aldewereld, H., Dignum, V., Vasconcelos, W.: We ought to; they do; blame the
management!: a conceptualisation of group norms. In: Balke, T., Dignum, F.,
van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS, vol. 8386,
pp. 195-210. Springer, Heidelberg (2014)

Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 67, 100-103
(1958)

Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. Theoria
54(3), 175-199 (1988)

Boella, G., van der Torre, L.: Normative multiagent systems. In: Proceedings of
Trust in Agent Societies Workshop at AAMAS 2004, New York (2004)

Borgo, S.: Coalitions in action logic. In: Proceedings of the 20th International
Joint Conference on Artifical Intelligence, IJCAI 2007, San Francisco, CA, USA,
pp. 1822-1827. Morgan Kaufmann Publishers Inc. (2007)

Broersen, J., Dignum, F.P.M., Dignum, V., Meyer, J.-J.C.: Designing a deontic
logic of deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI),
vol. 3065, pp. 43-56. Springer, Heidelberg (2004)

Broersen, J., Herzig, A., Troquard, N.: What groups do, can do, know they can do:
an analysis in normal modal logics. J. Appl. Non-Class. Logics 19, 261-290 (2009)
Carmo, J.: Collective agency, direct action and dynamic operators. Logic J. IGPL
18(1), 66-98 (2010)

Carmo, J., Pacheco, O.: Deontic and action logics for organized collective agency,
modeled through institutionalized agents and roles. Fundam. Inform. 48(2-3),
129-163 (2001)

Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293-322. Springer, New York (1978)

Demolombe, R., Louis, V.: Norms, institutional power and roles: towards a logical
framework. In: Esposito, F., Ras, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS
2006. LNCS (LNAI), vol. 4203, pp. 514-523. Springer, Heidelberg (2006)
Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Universiteit Utrecht, The Netherlands (2004)

Dignum, V., Dignum, F.: A logic of agent organizations. Logic J. IGPL 20(1),
283-316 (2011)

20

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.
34.

H. Aldewereld et al.

Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 955-1072. MIT Press, Cambridge (1990)
Esteva, M., Rodriguez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.-L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126-147. Springer, Heidelberg (2001)
Friedkin, N.E.: A formal theory of social power. J. Math. Sociol. 12(2), 103-126
(1986)

Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.-A.: Implementing norms in
electronic institutions. In: Proceedings of the 4th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 667-673. ACM.
New York (2005)

Garcia-Camino, A., Rodriguez-Aguilar, J.-A., Vasconcelos, W.W.: A distributed
architecture for norm management in multi-agent systems. In: Sichman, J.S.,
Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870,
pp. 275-286. Springer, Heidelberg (2008)

Grossi, D., Dignum, F.P.M., Royakkers, L.M.M., Meyer, J.-J.C.: Collective oblig-
ations and agents: who gets the blame? In: Lomuscio, A., Nute, D. (eds.) DEON
2004. LNCS (LNAI), vol. 3065, pp. 129-145. Springer, Heidelberg (2004)

Grossi, D., Royakkers, L., Dignum, F.: Organizational structure and responsibility.
Artif. Intell. Law 15(3), 223-249 (2007)

Halmos, P.: Naive set theory. Van Nostrand (1960). Reprinted by Springer-Verlag,
Undergraduate Texts in Mathematics (1974)

Han, X., Mandal, S., Pattipati, K.R., Kleinman, D.L., Mishra, M.: An
optimization-based distributed planning algorithm: a blackboard-based collabo-
rative framework. IEEE Trans. Syst. Man, Cybern. 44(6), 673-686 (2014)
Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: an organizational
model for multi-agent systems. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000
and IBERAMIA 2000. LNCS (LNAT), vol. 1952, pp. 156-165. Springer, Heidelberg
(2000)

Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
Jones, A.J.I., Sergot, M.J.: A formal characterisation of institutionalised power.
Logic J. IGPL 4(3), 427-443 (1996)

Kollingbaum, M., Norman, T.: NoA - a normative agent architecture. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, IJCAI
2003, pp. 1465-1466. Morgan Kaufmann Publishers Inc., San Francisco (2003)
Lomuscio, A., Sergot, M.J.: On multi-agent systems specification via deontic
logic. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
pp. 86-99. Springer, Heidelberg (2002)

Lépez y Lépez, F.: Social Power, Norms: Impact on Agent Behaviour. Ph.D. thesis,
University of Southampton, UK, June 2003

McCallum, M., Vasconcelos, W.W., Norman, T.J.: Organizational change through
influence. Auton. Agents Multi-Agent Syst. 17(2), 157-189 (2008)

Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W.W., Luck, M.: BDI rea-
soning with normative considerations. Eng. Appl. Artif. Intell. 43, 127-146 (2015)
Nau, D., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: an
HTN planning system. J. Artif. Intell. Res. 20, 379-404 (2003)

Norman, T.J., Reed, C.: A logic of delegation. Artif. Intell. 174, 51-71 (2010)
Oren, N., Luck, M., and Miles, S.: A model of normative power. In: Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2010, IFAAMAS, Richland, SC, pp. 815-822 (2010)

35.

36.

37.

38.

Reasoning with Group Norms in Software Agent Organisations 21

Pacheco, O., Carmo, J.: A role based model for the normative specification of
organized collective agency and agents interaction. Auton. Agents Multi-Agent
Syst. 6, 145-184 (2003)

Troquard, N.: Reasoning about coalitional agency and ability in the logics of
“bringing-it-about”. Auton. Agents Multi-Agent Syst. 28(3), 381-407 (2014)
Vasconcelos, W.W., Garcia-Camino, A., Gaertner, D., Rodriguez-Aguilar, J.A.,
Noriega, P.: Distributed norm management for multi-agent systems. Expert Syst.
Appl. 39(5), 5990-5999 (2012)

Williams, R.K.: Interaction and Topology in Distributed Multi-Agent Coordina-
tion. Ph.D. thesis, Department of Electrical Engineering, University of Southern
California (2014)

A Cognitive Framing for Norm Change

Cristiano Castelfranchi™

ISTC-CNR GOAL Lab, Rome, Italy
cristiano.castelfranchi@istc.cnr.it

“Just remove a brick and the wall will sink”
(Arab saying)

Abstract. Norms are within minds and out of minds; they work thanks to their
mental implementation but also thanks to their externalized supports, processing,
diffusion, and behavioral messages. This is the normal and normative working of
Ns. Nsis not simply a behavioral and collective fact, ‘normality’ or an institution;
but they necessarily are mental artifacts. Ns change follows the same circuit. In
principle there are two (interconnected) loci of change with their forces: mental
transformations vs. external, interactive ones. Ns change is a circular process
based on a loop between ‘emergence’ and ‘immergence’; that is, changes in
behaviors presuppose some change in the mind, while behaviors causal efficacy
is due to their aggregated macro-result: acts that organize in stable choreographies
and regularities build (new) Ns in the minds of the actors. More precisely the
problem is: which are the crucial mental representations supporting a N conform
(or deviating) behavior? And which kinds of ‘mutations’ in those mental repre-
sentations produce a change in behavior? 1 will focus my analysis on Social
Norms, in a broad sense.

Keywords: Norm change - Normative mind - Normative agents

1 Premise: Situated Normative Cognition'

I will discuss the internalized/externalized nature and working of Norms (Ns) and its
impact on N change. What I have in mind is a hybrid society (humans and AI-Agents
interacting together) with “norm sensible Agents”. On the one side the Agent mediating
and supporting human interaction, exchange, organization should be able to understand
human conduct in terms of Ns and to monitor and support that; on the other side Agents
should be themselves regulated by true Ns (not just pre-implemented binds, executive
procedures, but real deontic representations with the mission to regulate their decisions
and conducts) and be able to violated them in the right situation.

The analysis and typology that I will propose (that will not be complete and fully
systematized, but just in fieri) is focused on Social Norms (SocNs), in a broad sense,

" I'm in debt with my colleagues and friends (in particular Rosaria Conte, Luca Tummolini,
Giulia Andrighetto) for my work on norms theory.

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 2241, 2016.
DOI: 10.1007/978-3-319-42691-4_2

A Cognitive Framing for Norm Change 23

covering various kinds of.? Of course here I will put aside legal Ns (where there are
institutional and legal ways for Ns change) although I think that several of the mecha-
nism that I try to enlighten for SocNs also hold for legal ones.

Norms are in minds and out minds; they work thanks to their mental implementation
but also thanks to their externalized supports, processing, circulation, and dynamics.
This is the normal and normative working of Ns. Also because usually a N is a strange
relation between a practical, effective, externalized object (the conduct of X; however
mentally/internally regulated) and a cognitive artifact: a written “table of law”, a
symbolic representation, a (verbal or non-verbal) message that has to pass into minds.
This double face of N (cognitive and behavioral, both internal and external) is intrinsic.
N are not simply a behavioral and collective fact, a “normality” or an institution; but
they necessarily are mental artifacts [13, 22]. A N impinges on us and works thanks to
its mental representation, (partial) understanding, and specific motivations. However,
as we just said, they are not just a mental fact: this serves to determine and control the
actors’ conducts and to build shared practices, scripts, messages and collective effects.

Our claim is that also Ns change follows the same circuit. In principle there are two
(interconnected) “loci” of change with their forces: mental transformations vs. external,
interactive ones. Of course, they are interrelated since the mental changes determine
behavioral changes, which determine collective new dynamics. vice versa, behavioral
changes that we observe will change our mind and our norm conception or repertoire.
In other terms it is both a process of ‘emergence’ [44] and ‘self-organization’; and a
process of ‘immergence’ [14, 21] and mentalization: a feedback from behavior and
collective structure/phenomenon back to the individual minds layer. Not just a bottom-
up and top-down, and an inside-outside and outside-inside process, but a real ‘loop’:
virtuous or vicious circles of Ns change or confirmation or instauration. We need the
same dynamics in normative Agents, able to learn and evolve SocNs, and to read the
behaviors of the others in these terms for monitoring it or adjusting to it.

It would also be relevant to consider that there is no just one and unique normative
role for actors with its specific mental attitudes (beliefs, goals, expectations, ...). We are
not only ‘subjects’ to the N (prescribing us certain behaviors and mental states), we also
have to play the role of ‘watchman’ and ‘punishers’ of the others [11, 30]; a fundamental
role in N script and for the maintenance of the social order. We have to play the role of
‘issuers’ too: (either explicitly or implicitly) proclaiming Ns, prescriptively informing
about them, explaining and reminding us them (for example parents towards children).
I will put aside here these different normative minds and roles?, although I believe that
the role of a normative ‘watchman’ will be very relevant for Agents.

What we will try to do in this work is to examine: (a) some of the main mutation
‘events’ in particular internal to the subject’s normative minds; but also (b) as individual

* From politeness to customs, from moral norms to Ns and rules in organizations, associations,
communities of practice with their “rules”. For a systematic analysis of social norms and
discussion about the general theory see [5, 6, 12, 31, 35].

? T will also do not examine the other crucial phenomenon in Ns evolution: the introduction of
acompletely new N, and its issuing or negotiation. I will mainly focus on adherence or violation
(and their reasons) in N changing, adaptation, or extinction.

24 C. Castelfranchi

conducts become signs (cues) and/or messages (signaling), and change the others and
the collective emergent conducts, so becoming public phenomena and institutions. Also
the other way around; I will give some hints about that: (c) how acts that organize in
stable collective conducts build Ns in the minds of the actors [6] but not just as a regu-
larity to conform to, but as expectations and “prescriptions” from the others [19, 23].

2 Roots of Ns into Minds

Real “norms” are based on the possibility to be violated, not obeyed. Otherwise they are

not “norms” but physical barriers or ties and chains. Ns are devices for the control of

“autonomous’ agents that decide what to do on the basis of their beliefs, reasoning, and

goals. Ns not only presuppose (accept) but also postulate a freedom in the addressees.
Our main claims are the following ones:

e A N is not just aimed at regulating our conduct, at inducing us to do or not to do a
given action; it is aimed at inducing us to do that action for specific motives, with a
given mental attitude (belief, goal, expectation). The ideal-typical Adhesion (see
Sect. 3.2) to a N is for an intrinsic motivation, for a “sense of duty”, recognition of
the authority, because it is right/correct to respect N, etc.; and only sub-ideally one
should respect Ns for avoiding external or internal sanctions (see below). Also
normative education goes in this direction [18].

e We agree with Bicchieri’s theory that an “empirical expectation” and the perception
of the existence of a “normal” diffused behavior is not enough for creating a real N
in “normative” sense (to use Kahneman’ terminology [39]). A merely “descriptive”
Nis not “injunctive” [42]; a N implies for us a prescriptive character: it is for inducing
us to (not) do something. There is a social pressure: expectation and prescription.

e As we said, our object is “norms” in the “normative” (prescriptive) meaning/sense,
not in the “normality” (descriptive or statistic or standard sense). However there is
an important and bidirectional relation between N in normative sense and N in
normality sense:

(a) Normality-N creates and becomes a Goal for the actors and even a normative-
N (a prescription, something “due”), in order to conform, to be like the others.
This conformity is either a need of the individual or a need (and request/pressure)
of the group, or both.

(b) Normative-N creates a statistical normality-N, a normal conduct in the
community, if it is respected: N conformity is ‘“normal”. Moreover:

e Normative-N has the goal and the function to be respected and thus to create
a normality-N, a normal behavior (at the individual, internal level this helps
N also to become an automatic response, just an habit);

e If normative-N doesn’t become/create a normality-N it is weakened and
perceived as less credible and less binding [6, 22].

e Inorder to perceive a social practice as a N we have to guess, presume, or understand
some “end” in it: the protection of the interest or rights of somebody, of the
community; from that a deontic “should”, an obligation. Not conforming is an harm,
is noxious, not just something irregular, strange. I'm at least frustrating your

A Cognitive Framing for Norm Change 25

prescription to maintain regular practices; you count on that and plan to regulate your
behavior on that; so I'm upsetting and betraying you, not just amazing you. I'm
harming social order, and the natural ‘suspension’ of uncertainty, the assumption of
normality: a fundamental good [32], a “common”.

e Nshaveto be “impersonal” and depersonalized (and perceived as such) on both sides:
the issuer’s and the addressee’s side. It is not a conflict between you and me; it is not
“my” personal request (for me, for my desires, etc. for my personal will that you have
to adopt); and it is not a request to “you”’. The message is:

“I do not talk, monitor, sanction, in my name”; “I'm not addressing to you “ad personam”, but as
an instance of a class, a member, a citizen, ... like any other in the same conditions”. Also for that
“You have no reasons for rebelling”.

This really is a crucial point in the perception of Ns as Ns; thus it is something that
must be signaled in some way (for official Ns: uniform, role symbols, specific docu-
ments, etc.; for Social Ns by collective practice or attitude or explicit messages) or
at least contextually presupposed and assumed in the script.*

e As we said, Ns are social devices controlling behaviors through minds [14] but in a
specific way; through a partial understanding. They require (for their existence and
effectiveness) their explicit mental representation, their (partial) understanding and
recognition “as Norms”; specific cognitive representations and motivational
processes (“Cognitive Mediators”: [22, 24]); differently from other social
phenomena like social functions, that can be played by social actors even without
understanding - and even less intending - them [16]. Not necessarily the agent
supporting the N in some role has as his/her mental goals (“intention”, “motive”) the
aims and utility of the N; these are the goals (and functions) of the N not of the
individuals.

e N have to build in us an “ought”, a “duty”, “you have to”; with a rather constrictive
feeling, a negative “frame”, an avoidance orientation (even when it elicits “you have
to do this action”). And this “ought” is a non-technical “ought”, not instrumental to
and planned for a given outcome/goal. This entails a process of Adhering without
sharing the ‘instrumental’ nature of the N, and without (necessarily) understanding/
adopting its ‘function’ or end. My ‘plan’ is different from the authority’s ‘plan’.
Citizens are not real “cooperators” but “subjects”. They have to “alienate” their own
powers and products [18].

3 N Internalization

Anyway, all this requires a specific “translation” of Ns into the minds of the addressees
such that they recognize a N as such, and — on the basis of various motives — decide

4 The fact that Ns are always relative to a “class” of subjects, not just to one specific person and
it holds “for all the values of X” is one reason why the violation has not an individual meaning.
X the violator is just “one of all/many”, is a representative, an “example”; that’s why his (bad)
behavior can be a (bad) “example”; and the impact of the behavior is more that “individual”:
It is not longer true that “for any value of X, X has to, will do, and does action A”.

26 C. Castelfranchi

whether to conform or not to it. Let’s sketch the basic constituents of Ns internalization
in our theory [18, 24]. Ns are based on a specific process of Goal-Adoption or better
Adhesion; since they have the nature of an “imperative”.

3.1 Goal Adoption and Adhesion

Ns induce new goals through “adoption”. Goal-Adoption is how an autonomous agent
is not an isle but becomes social, or better pro—socialS; that its s/he does something for
the others; puts her/his autonomous goal-pursuing (intentional action), her/his cognitive
machinery for that, and her/his powers and resources into the service of the others and
of their interests. What is needed is the architecture of a social Agent able to import
goals from outside (and to influence other agents by giving them goals and relying on
them) but remaining ‘autonomous’. S/he is able to arrive to set up an intention not only
from her own endogenous ‘desires’, but also from imported goals.

Goal-Adoption means that:

X believes that Y has the goal that p and comes to have (and possibly pursue) the Goal that p
Jjust because he believes this.

“I do something ‘for’ you” (which doesn’t mean ‘benevolence’!); I want to realize
this since and until you wants/ needs this; because it is your goal.

Of course there are different kinds of Goal-adoption, motivated by different reasons:
merely selfish and instrumental, like in exchange; altruistic; or strictly cooperative, for
a common goal. Ns prescribe a specific motive for accepting the injunction: in
Bicchieri’s view’s a “normative expectation”, for us also the recognition of the prescrip-
tion by the others and their authority (see below).

A stronger form of G-Adoption is Adhesion: when I adhere to your (implicit or
explicit) ‘request’ (of any kind: prey, favor, order, law, etc.). In other words, you (Y)
have the goal that I adopt your goal p, that I do something (action a of X) realizing that
goal, and I adopt your goal p or of doing a, (also) because I know that you expects and
wants so.

In Adhesion one of the reasons for Adopting the goal of the other is that the other
wants so:

— She also has the (meta-)goal that we adopt her goal;
— We adopt her goal by adopting the meta-goal.

In a sense, there is a double level of adoption (a meta-adoption): I know and adopt
your goal that I adopt. Moreover, in case of Adhesion there is a (presupposed) agreement
between X and Y about X’s adoption, X doing something as desired by Y. Other forms
of adoption (like help) can be unilateral, spontaneous, and even against Y’s desire. Ns
require from us not just adoption but adhesion.

5 f g
Not to be used as synonym of “altruistic”, “benevolence”, etc.

A Cognitive Framing for Norm Change 27

3.2 Normative Adhesion

Adhesion obviously presupposes specific beliefs into the mind of the agents (and this is
the first aim of the N: to be conceived/perceived as such). In particular the recognition
of the N as a N, in force on me, and valid in that context.

It is implied a ‘generalized’ G-Adoption where:

— X believes that there is a goal impinging not directly on a single individual but on a
class or group of agents:
— if X believes to belong to that class,
— she believes to be concerned by the norm, and
— she instantiates a Goal impinging on her; adopts it.

Having adopted the ‘generalized’ goal X doesn’t limits her mind and her behavior
to this (self-regulation); she will also worry about the others’ behavior:

— Xis also able to have Goals about the others’ behavior: she adopts the Goal not to
do but that for any z (DOES z A).

— Given such an Adoption she has expectations (predictions + prescriptions) about the
others behavior, and is not only surprised, but also ‘disappointed’ by their non-
conformity.

Also because she is paying some cost for respecting the norm and the authority, for
maintaining the prescribed social “order”, which is supposed to be a “common”. She
wants the other be fair, reciprocates, contributes.

3.3 Equity and Spreading

Conte and Castelfranchi [23] claim that the decision to conform to what is perceived to
be an obligation plays a relevant role in N spreading over a population of cognitive
agents. While the conventionalist view derives social norms from the spreading of
conformity, in our view conformity is derived, so to speak, from the spreading of obli-
gation-recognition and -adoption.

“The very act of accepting an obligation implies and turns into enforcing it. The
agent respecting the obligation turns into a supporter. Conforming leads to prescribing.
The agent undergoing an obligation becomes a legislator. The more an obligatory
behavior is believed to be prescribed, the more it will be complied with, and the more,
in turn, its prescription will be enforced. Rather than acting only through a behavioral
contagion or a passive social impact, the spreading of norms is affected by cognition in
a variety of ways and attitudes”:

(1) It leads to implementing effective conformity. When an autonomous agent recog-
nizes a norm as a norm and decides to conform to it, the number of conformers
will be increased, and the norm is more effective.

(ii) Effective conformity contributes to the spreading of normative beliefs. The larger
the number of conforming agents and the more likely the observers will form
normative beliefs and the strength/certainty of the belief will increase.

(iii) The spread of normative beliefs contributes to the spreading of normative actions.

28 C. Castelfranchi

(iv) The spread of normative actions contributes to the spreading of normative influ-
ence. The larger the number of agents conforming to one given norm, and the more
distributed will be the want that other agents will conform to the same norm. “This
is due to:

— An equity rule. People do not want others in the same conditions as their own
to sustain lower costs - benefits being equal (this is, indeed, one the most prob-
able explanations of the Heckathorn’s [36] group sanction control: the more
agents respect the norms, and the more likely they will be to urge others to do
the same).

— “Norm-sharing”. Agents are likely to “share” the respected norms, that is, to
believe that those norms are sensible, useful, necessary, etc. This is also a
powerful self-defensive mechanism (agents share the norms they happened to
respect). Agents will defend the norms they share, implementing the number
of agents who want those norms to be respected.” [17].

(v) The spread of normative influence contributes to the spreading of normative
beliefs, and the whole process is started again in a circular way.

The same cognitive mediation holds for an observed violation, deviance, and their
crucial interpretations and meanings by the observer (see also Bicchieri and
Mercier [7]).

Also for Agents this might be relevant: do we want/need just agents doing as
expected/ordered or agents able to violate but also able to conform to the norm as a
decision and for specific deontic motives/reasons (N-Adhesion)? Don’t want we to
“share” norms (social, moral, legal) with our Agents? To really have a hybrid society
regulated by values and norms?

4 Internal Locus: Kinds of N Mutation Within Subjects’ Mind

Let’s identify the various though and ‘reasons’ of the ‘subject’ (S) for abandoning or
violating a given N. We will distinguish between:

(1) ‘Unintentional’ effects; where changing or weakening that N (or Ns) is not the end
or an end of S, and
(i1) ‘Intentional’ act; where S understands, expects, and intends to jerk the N.

4.1 Norm Decay, a Close Approach

It is useful to cite a recent work on N decay, also in order to underlining some differences
with our proposal.

In Hammoud et al. [35] we find a good perception of the role of N decay (not studied
enough), and an important formal and simulation study, also with a nice ontology of
different forms and reasons for Norm decay.

In their perspective: “Norms decay refers to the case in which a norm is not practiced
or adopted by any of society’s members, and eventually deleted and forgotten.” They
introduce a framework that contains three cases of norms decay which are: Norms

A Cognitive Framing for Norm Change 29

Removal, Norms Disappearance, and Norms Collapse. The first case needs an inter-
vention from a powerful authority, while the latter two cases happen when society
members stop adopting or violate a norm. That is, there is a change starting from the
decision of the agents.

o “Norms disappearance is the result of abandoning a norm from the majority in a
society. Abandoning a norm means not practicing it without being sanctioned from
the authority. Norm abandoning happens when it loses its benefit.”

o “Norm collapse is the case of norm vanishing from a society due to agents’ violation
of this norm and violation sanction decay. An agent checks the benefit of violating
a norm, and the sanction of violation ... if the benefit of violation is more than the
sanction of violation, the agent violates the norm and gets the benefits he wants”.

The main difference with our view is of course our more systematic analysis of the
specific changes in the mental aspects of Ns. However, there are also other differences.
On the one side, we have a broader view of the ‘reasons’ why agent respect Ns; not
mainly “for” avoiding sanctions, or “for” the social ‘utility’ of the N.

On the other side, the authors are a bit optimistic on the collective/community
‘benefit’ of the N. In our approach Ns are not necessarily well conceived by the authority
or fair; and also social norms are not necessarily good for the community. They are
simply self-maintaining just because they are “social order”, reduction of uncertainty,
identity, even if on the practical side they can be not so good. In our vocabulary they
can be badly ‘functional’ [16].

So not necessarily a N “is abandoned when it loses its benefit”. It can remain there.
vice versa, N can be abandoned although it was and would be useful.

We also admit that N can be there even if not respect in practice by any agent, but they
know the N” and are aware of the systematic violation. In a sense a social meta-N is
emerging, a shared practice/habits of violating N’. And we admit that not necessarily when
“An agent checks the benefit of violating a norm, and the sanction of violation ... if the
benefit of violation is more than the sanction of violation, the agent violates the norm and
gets the benefits he wants” this induces to a “N collapse”. This self-interest violation can
be there for one or few agents, since agents are in different conditions and with different
preferences; what might be convenient for an agent can be not convenient for another one.
The mental processing is the crucial device and cannot be so simplified and ‘rationalized’.

4.2 Unaware Violations

S does not realize that her behavior is an N violation. Mental conditions for such a
conduct:

— Ignorance of the N (beliefs); or

— A mistaken interpretation or instantiation (beliefs): S does not realize to be a member
of the set of the addressees of that N or that it does apply in those circumstances and
context; or

— No memory retrieval of the N in those circumstances, lack of attention, absent-mind-
edness (beliefs).

30 C. Castelfranchi

The violation is unintended since it is fully unaware, but - given the observable
behavior (“bad example”) - it equally injures the N.

There are also extra-mental conditions facilitating or inducing such a “mistake”. For
example, the N and its local pertinence should have been appropriately and explicitly
signaled, not given for obvious: “Please, do not park more than one car in our courtyard,;
this is our polite convention”.

4.3 Aware Violations

A. Without the goal of injuring/weakening the N

As we do not intend the supportive ‘function’ of our conforming to the N, equally
we do not necessarily intend the destructive ‘function’ of out violating it.

There are several reasons for dropping a N-goal, do not adhere to it and formulate
a conform intention:

(a) Goal-conflict: the N-goal contrasts with another goal of the agent;

Apart from the beliefthat the N is in conflict, what matters are the following param-

eters:

— value of the goal based on the value of the meta-goal of respecting Ns;

— value of the contender goal;

— value of the negative expected consequences of violation, including feelings
associated to N-violation; and in particular the perceived threat: estimated prob-
ability and weight of ‘punishment’ and blame (beliefs).”

A sub-case of (a) is a N-conflict: N contrasts with other Ns accepted by the agent

(see below).

The decision to violate if I can a N that is not convenient for me now and here (not

necessarily “in general”) can just be for my private interests. However, not neces-

sarily the goal in contrast with the N is a private/personal one; it might be a goal
formulate for efficiently performing S’s role or mission [17]: violating for func-
tional reasons, for an intelligent problem-solving in our work.

(b) N Application & Instantiation disagreement: S is aware of N but he contests to be
a member of the set of the addressees or that it does apply to that circumstances
and context.

(c) Material impossibility: S forms a N-goal but cannot comply with it (beliefs); the
intention would be impossible (beliefs).

i. As we said, a remarkable case of (a) —but in a sense close to (¢) (in terms of not
“material” but of “deontic” impossibility) — is:

(d) Norm conflict: the N I should apply and respect is in contrast (beliefs) with another N:

° An interpersonal example may be: X: “You can not go around in underwear!” Y: “But you had
to say me that there were guests in our house!”.

7 This expectation should be part of what Bicchieri calls “empirical expectation” (“what we
expect the other do””). However, we should distinguish between “to expect that the other
conform” and “to expect that the others monitor and sanction”. Two different predictions based
on different experiences that might also don’t be fully correlated.

A Cognitive Framing for Norm Change 31

— Either another social N (social Ns are not so coherent and non contradictory,
especially in their application). For ex. the social N about our male group
meeting for drinking beer implies the possibility or prescription to burp in public
(just for funny and be deviant), while I would desire — due to my “education” —
do not burp;

— Or a conflict with legal or organizational N.

In all these cases S will not conform to the N but she is not motivated by the aim

of weakening it. For sure that violation (given the message to myself and to the

stakeholders) weakens the N, however the agent’s intention is not necessarily this.

(e) Expectation of not sanctions: Either due to some reason in the others of not sanc-
tioning; or just because I expect to not be detected, to hidden: “I will get away with
it; they will not see me; nobody will know that”; or “They do not catch any violator,
they never punish®. Of course, these beliefs are relevant in particular for agent
motivated to respect Ns just by the fear of sanctions.

(f) Indifference to sanction: There are cases and individuals where the fact that other
people respect N and that there will be a negative judgment by the others (sometime
even publically expressed), is not a sufficient reason for not violating: an important
sub-kind of conflict. Consider for example a young guy sited in a waiting room where
there are quite old waiting people standing up, and not giving up his seat to them,
although he knows that he “should do” that, and that he is disapproved. Either there
is in this guy (and context) indifference to the judgment and sanction from the others
(goals), since “I do not care of these guys”, “who knows them?” “I will never meet
them again ...” (beliefs). Or there might even be a provocation attitude (goals): “Yes!
I’'m not like you, I do not care of you”, “I’m underbred, so what!”. Or the attitude is
“motivated” by an opposition specifically to the N, as a meaningless N: a value oppo-
sition (like in people violating the rule of giving priority to women).

All these are (more or less sincere and not self-deceptive) beliefs and motives of the
violator.

Sometime we (unconsciously) find a new interpretation of framing of our action and
circumstance, and of the N, in order to facilitate our violation. Consider the very famous
and beautiful case of people “interpreting” the monetary sanction for the violation of
the N as a fair, a price, and thus deciding to systematically violating it, and just pay what
they have to pay [34]. Let’s rewrite in our mind as a tax what in fact would be a fine!
But this morally facilitates our decision to violate.

(g) Violation as epistemic act: I know and intend (in case) to violate, but my motive is
to “see”: to see if that N is there or if I correctly understood it; or to see if the
violation will be noticed/punished; to see your reaction. Even to see if you know
that N, not in order that I know the N, but in order to know if you know it.?

Of course, there are other kinds of assumptions and reasoning that induce or facilitate
(intentional) N violation; in particular interpretations of observed deviant behaviors,

8 This is a change in our “empirical expectations” in Bicchieri and Xiao terminology [8].
My behavior is like an exam question, where I in fact already know the answer but I want to
know if you know it.

32 C. Castelfranchi

changing our mind. We will see some of them below: the effect of external changes
(observed deviant behaviors) on our mind and conduct.

B. Aware violations with the goal of harming, breaking down the N

Violation is not just intentional but motivating: I violate in order to violate (Ns or
that N).

(h) Violating for changing: Intentional and public violation of N for rebellion and
opposition to that N, for rejecting and breaking it; to send a message to the others,
to the “authority”. Like Gandhi that rips in a central place of Johannesburg in front
of the police the special document obligatory for Indian people. The message (and
belief) is “This N is discriminatory, unacceptable, unfair; it has to be abolished:
rebel to it!”’10 Notice that I can violate an N as unacceptable, not fair even if it does
not directly damage me.

(i) Violation against stigma, for changing values, building our identity: 1 violate for
provocation and rebellion towards stakeholders’ values and attitudes. There are two
different cases.

A possible aim is to build our collective identity, to remark that “we” are different,
not like you, and we do not want be part of you (like Punk’s provocation; or adoles-
cent deviant attitudes). We are not In-group, but Out-group; it is an “exit” or seces-
sion move from your value and community.

Another possible aim is to change your values, to obtain respect: like in the prov-
ocation of the “Gay pride” and exhibition: “Our aim is not splitting from you; on
the contrary we want to be accepted, integrated, and respected; you have to change
your conservative values and thus your social Ns on that”.

A crucial construct in human mind is the “sense of justice” and the related sufferance
for iniquitous situations (not only harming us personally but even favoring us, or
harming others: we can play the role of the victim, of the privileged guy, or of the
stakeholder, but always with some discomfort) (“equity theory”), the need for equity (a
“value” and a “motivation”!"). We can consider a given N with this perspective, by
evaluating its “equity and justice”. This changes very much our disposition in obeying
to it, or in supporting/defending it as punisher (Sect. 3.3). I feel “justified” in my viola-
tion; not a bad guy but a good guy; I do not feel guilty but proud of me.!? If I consider
a given N unfair I can have a serious conflict between two internal values, intrinsic
motivations: the sense of duty/obedience vs. the sense of justice. The conflict is within
my own values.'? Sometimes this mental justification and motivation in terms of “sense

19 This nice example is about a legal N, however similar examples exist also for social ones; like
the “provocation” acts of courageous women in Arabic countries.

" Fora rigorous cognitive notion of “value” and its strict link with evaluations, prescriptions and
Ns see [40].

12 Agents too should have some moral value and should be able at least to interpret our behavior
and reasons in these terms, and possibly mediate our interaction caring of moral norms.

" This is Antigone tragedy. This also is Socrates’ message to us while taking the poison:
respecting Ns and authorities (even when their decision is incorrect and harming us) may/
should be a prevalent value.

A Cognitive Framing for Norm Change 33

of injustice” is just a convenient alibi (in front of the others, or in front of myself) for
allowing my violation for personal advantages and desires (like the “sense of injustice”
sometimes used for covering/hiding our envy).

(j) Violation to be noticed, to innovate: Sometime we violate a social Ns or consue-
tude’s just to emerge, to be noticed, and to be original; like women first wearing a
bikini or a mini. These provocative guys (actually innovators that may create a new
“fashion”, but not necessarily with this intention) are aware of and ready to cope
with criticism and even insults.

Two examples about previous cases: I violate the N that on the beach one cannot be
nude, and (with other people) I use “topless”; so I create or converge a new use,
imposing tolerance to the others (they can no longer blame and reproach me). Or I'm
completely nude; but this is too disturbing, intolerable for that group, so this creates a
scission of groups and places: you nudists must have your own beach (and we will not
come there!), but you cannot stay in “our” beach and be nude. If you become part of
the new group and go to the nudist beach it become not just tolerate to be nude (the
old N doesn’t constrains you any longer) but there even is a new N of “being nude”.
Similar path for vegans: they want not just be permitted to refuse current food
without objection, ridiculous, blame, but they are trying to build new Ns - based on
new values - (“Do not eat animals!” etc.) on such a basis to criticize, blame the
violator (although they are the majority) and make propaganda. Their aim is not
just to build a separate culture and community, but also to change the practices and
the N of the big community.

Notice that this kind of N change requires (and is grounded on and aimed at) a change of “value”
which is first of all a specific mental object.

(k) Against the authority as such: It is also possible to violate in order to rebel, but not
against a given set of N that we want to reject or change, but against the normative
authority A. To impair A, independently from the specific N. What maters is to
violate; to show to myself or to my peer or to A that I do not respect A, do not
submit: this is the message and motive. Like a “rebel” child that rejects any parents’
prescription or restriction to his desires; like some political movement or demon-
stration where what matters is to broken something, to do something prohibited,
not what to broken and why.

The crisis of the authority (see Sect. 6.2) can be due to various assumptions and
motives; like the fact that A is no longer credible, trustworthy, correctly and
competently playing its role; so I do not want longer depend on and delegate to it.
Or a crisis of identity and membership: I do not any longer feel one of “you”. Or
for a crisis of values grounding that A: I do not any longer feel morally “obliged”.
And so on.

Again; it is not necessarily a matter of sanctions, power, and fear.

34 C. Castelfranchi

5 External Locus: The Others’ Observed Behaviors

Which and how many observed changes in normative behavior are necessary for
changing our conform conduct? Not necessarily we need diffused and spreading prac-
tices. Even a single violation act or meta-violation (for example do not monitoring or
punishing) can call into question a given N in my mind (for example, a single resounding
act of euthanasia); a single provocation can be enough for discredit authority (see
Gandhi’s example).

To know that somebody has violated N is an important factor in the crisis of that N.
However, this works through our mind and what matters is the interpretation we give
of that behavior: Accidental? Intentional? And why? And which are the consequences?

Let’s first see some examples/kinds of assumptions and reasoning that induce or
facilitate (intentional) N violation; in particular interpretations of observed deviant
behaviors, changing our mind:

(1) Interpretations of observed deviant behaviors:
“If he (they) is doing that, me too I can do so! It is not fair that he does that and
I cannot!”

— “If he (they) is doing that it means (it is a sign) that it is permitted/possible: there
is not a N or is no longer in force here”

— “If he (they) is doing that it means (it is a sign) that this is the right way; what
we have to do (he expects that I do so)”.!# Actually this is an intentional action
entailing a violation, but not intentional as violation.

— “In fact he is right! He is courageous. It is correct to violate this N!” (Thanks to
his violation behavior I change my value-attitude towards N; this goes in the
direction of N criticism).

5.1 A Single Bad Example

The impact of an external, observable deviating behavior does not depend only from the
number of violators: the many the violators the more impaired the N.

A single guy’s deviant behavior can be sufficient for a large impact. It depends on the
network, on the number of stakeholders and — of course — on his/her role and influence.

It also is important the fact that (a) not all violations are equivalent, although behav-
iorally identical; and (b) that sometimes a single deviating example (not a multitude)
be enough for; but of course it depends on its visibility and significance and interpreta-
tion. The single violation of a leader is not the same of the one of a follower; the violation
a well-known person is not like the violation of an anonymous person, and so on.

The number of violator is of course a relevant factor because one principle for the
strength of our persuasion is the number of converging sources or examples. But also
the single’s reliability - as model or authority — and prestige has a precise impact on the
degree of our persuasion.

14 This case and the previous one change our “normative expectation” in Bicchieri and Xiao [9]
terminology.

A Cognitive Framing for Norm Change 35

5.2 The Others (Deviant) Behaviors as Messages

Since minds are typically read off behavior “it is impossible not to communicate” about
our minds even those prescribed by a specific role. Our behaviors or their traces inevi-
tably “signify” our mental attitudes. And we use our everyday behavior or its traces
(practical actions not “expressive” ones or conventionalized gestures) on purpose to
send this information to others; for signaling. This is a special form of communication
crucial for human social coordination, and conventions and institutions establishment
via “tacit” negotiation and agreement, not to be mixed up with gestural or other forms
of non-verbal communication [43].1

Also N maintenance or innovation “circles” (observation-interpretation-change-
action-observation- and so on) (Sect. 6) works thanks to the fact that a cognitive agent
“reads” the others’ conducts, and they signify/inform about the existence, respect, or
violation of Ns [3]. Thus a violation conduct may acquire either the communicative
function or the communicative intention of impairing the N or of explaining my reasons.
Demolition or establishment of SocNs is mainly based on such a kind of not explicit
communication, negotiation, and tacit agreements.

This factor contributes to the explanation of a crucial issue. As remarked by Christine
Cuskley!® “frequency and stability exhibit an interesting relationship in language: the
more frequent a linguistic construction is, the less it tends to change over time.” In my
view this might be generalized to behaviors, and in particular to normatively regulated
behaviors. Also linguistic constructions are “norms” and “rules” for people aimed at
using that language; just a sub-case (with its specific additional dynamics). “Despite the
evident relationship between frequency and stability, it is still unclear what specific
social and cognitive factors underlie this relationship.” As for social Ns, I would say
that part of these factors is rather clear: the more diffused a (normative) behavior, the
greater the probability to be observed and imitated/learned (a very strong and repeated
“message’!), and thus not just to spread around but to be “reinforced” in its prescriptive
character. Moreover, the more it is diffused the greater the absolute number of necessary
“exceptions” and “violations” for its change or elimination. Thus the more widespread
the more stable. And vice versa: the more stable in time and people, the greater the
probability to be diffused and repeated (frequency). And so on.

6 Collective Destruction/Construction: Emergence-Immergence
Cycles

On the basis of this analysis of internal mutations and their behavioral consequences,
let’s focus on the description of the internal-external, mental-behavioral, individual-
collective loops, and on the description of the phases of Ns change (vicious) ‘circles’

(Fig.).

"> On the relevance of Norm-signaling, and of explicit communication, not just of punishment,
see also [2, 3].

' Christine Cuskley “Frequency and stability in linguistic rule dynamics”, Invited seminar at
ISTC October 2014.

36 C. Castelfranchi

5 - linterpret/| . |Ichange my
I The‘y\do.. Lsee think “| veliefs, preferences, ..

i
They see me |_ I contribute : ldo
I see me N to collective behavior

Fig. 1. Internal-external cycle

6.1 External < Internal Circles

Obviously — as for the “external” observed events (single or regular) — what matters is
the Intentional Stance interpretation, the ascribed mind and reasons. I observed an indi-
vidual violation by S or by W (not blame, no sanction); is it by accident, ignorance, or
lack of attention? Or was it intentional? And “why”’? Was S just egoist and self-maxi-
mizing, or is he violating because disagrees about the N or for invalidating the A? As
we saw in Sect. 5 there are various possible interpretations and effects. And about norm
‘watchman’ role: was he indulgent because lazy or corrupted or familiar with S? Or was
he thinking that N doesn’t apply in that circumstance or is bad and unfair?

The effect on my mind and on my view of the N in the various cases is very different.
The external event impact depends on our subjective interpretation of it.

That’s why also a very clear collective behavioral regularity is not always and auto-
matically interpreted (and complied) as a N. There are “vicious” and “virtuous” circles,
from the point of view of normative behavior. Both, the vicious one (that is, violation,
behavioral messages, N impairment, and collapse) and the virtuous one (N emergence,
implicit negotiation, establishment, and maintenance) are due to the same internal-
external cycle (Fig. 1).

There is also a very interesting self-referential feedback: the violating or conforming
subject is observing his/her own behavior, and interpreting it, and confirming or
changing his/her beliefs and preferences and feelings (as we saw in Sect. 4), and so on.
Our behavior signifies a lot to us, and we send (intentional or unintentional) messages
to ourselves. Also because, if I act on the basis of some implicit, presupposed, assump-
tions or choices, and the action is successful (good results), this automatically reinforces
the presupposed mental conditions for that act, and increases the probability to take the
same path next time.

A Cognitive Framing for Norm Change 37

6.2 The Crisis of N Authority

A nice example of a multilayer vicious circle between normative behavior and norm-
related mental attitudes is the crisis and discredit of the “authority”. To work well
authority requires not only respect/submission for authoritarian strength, threats, coer-
cive power (credible sanctions), but “prestige” or more precisely “authoritativeness”.
That is, A’s “credibility”. An A requires trust for its role; without trust it cannot work.
Information authority, source of knowledge must be “credible” in strict sense: it has to
be perceived (evaluated and felt) as “competent” in that domain and honest, not cheating
for some private interest. Analogously the norm-A must be “credible” and trustworthy,
its Ns should be perceived/given as the right one (from a technical and a justice point
of view) and not due to private interests. If the A is authoritative, I accept its information
or prescription, without need for prices or threats, without conflict, rebellion: I have a
generalized adoption disposition; in a sense I obey for intrinsic motivations.

However this authoritativeness can collapse, and A can have a crisis of credibility,
be discredited and no longer “automatically” respected. Which are changes in individual
mind that might start (or reinforce) this process?

(a) I no longer believe that A or its behavior is respectable, that A is authoritative,
credible; thus

(b) Ido not adopt its prescription/N, I start do not conform to (decision);

(c) this feedbacks, and reinforce my belief about violability of N and my right to violate,
and - since my deviating behavior can be observed

(d) it discredits the A in the others’ eyes; diffuses the same evaluation about A (and
probably also its perceived capacity or right of sanctioning); it builds a “collective
belief”!”

(e) itinfects, diffuses deviating behaviors; but

(f) this spreading of the evaluations and of the deviating behaviors confirms and rein-
forces my perception of A, of that N, and my behavior; and so on.

The collapse of A’s authoritativeness is a mental and behavioral, and internal and
external, and individual and collective, fact.!3

7 Concluding Remarks

Three issues.

e As we said, Ns are based on the possibility to be violated, not obeyed. They are
devices for the control of “autonomous” agents that decide what to do on the basis
of their beliefs, reasoning, and goals. Ns not only presuppose (accept) but also postu-
late a freedom in the addressees. Is this just a not so good but unavoidable feature?
Or violability in this regulating device of social conduct has some advantages? N

17 Not in the sense of a “collective mind” but in the more basic sense of a collective of minds;
many minds sharing certain assumptions and infecting each other.

' It is clear that such an internal/external dynamics of Ns change might be fully simulated only
with cognitive Agents in MAS.

38

C. Castelfranchi

“violation” usually has a negative connotation, since to “violate” is an evil in itself
(as harm at a general and meta-level, of order, authority, trust; as we explained).
However — actually — not only it can be morally justified and even noble and coura-
geous, but also it plays a key function. It is one of the mechanisms and pressure for
N change, adaptation, and evolution'® [16].20

I’'m not sure that the current theory and definitions of social norms (see for example
[6, 37]) fully captures some of the aspects we have discussed”!. For example, there
are social norms (not only legal ones) that are still there even if systematically violated
by a large part of people. The norm is still in force since it is perceived as such by
that people, although they violate it. They actually know/decide to “violate” it, thus,
in a sense, that N still “regulates” their conduct. For example, in several part of Italy
it is very frequent that people throw papers on the street or do not collect the excre-
ments of his dog; however, they know (and even agree) that this is bad, not “correct”
(N violation), but since it is tiring do not do so, and since a lot of people does the
same ... Is that N “in force” in this group? Yes: everybody knows what one “should”
do. In our view a social norm to be there doesn’t require to be a behavioral norm, a
stable practice. It is sufficient that the large part of the group knows it, reminds and
considers it, although regularly or frequently violating it. It is perceived as a N, taken
into account in the individual cognitive process and mentally shared in the group,
although ineffective on the conduct. It is a strange N state: an still in force but
ineffective N. We shouldn’t forget that first of all a N is into the (shared) mind of the
agents; this is its presupposition.

Of course it is fully true — coherently with Bicchieri’s theory — that:

(i) On the one side the norm not only is ineffective but is probably in “decadence”,
close to disappearing also from the mind of people, for example for the learning
process of the new guy or for the mental automatization of the bad practice
without no longer considering/perceiving that you are violating.

This is reasonably a possible and rather typical intermediate step in the path of
N extinction: N respect and sanctioning; bad practices but the N is still consid-
ered as such; non longer taken into account as a N, no longer impinging on us.

20

2

This obviously shouldn’t be an excuse for the selfish violator just for his own private interests
(although — as Adam Smith has explained — even this guy plays his social function, beyond his
personal motives).

[worry about the rigorous computational (intelligent) coordination and surveillance on human
work and organization. At least in “critical states” we need violations, although not foreseen
in the program; but just opportunistic and reactive to a given contingency.

For example, the motto of Bicchieri for synthesizing the spirit and working of social Ns “Do
the right thing: But only if others do so” could create some misunderstanding. This might be
the mental rule, the prescription that the individual gives to himself in front of a N (it can
explain his conformity or violating behavior) but is not the prescription of the N: the N says,
prescribes, just “Do the right thing!” Ns want to be obeyed and respected in any case; this is
their imperative. I may decide or be leaning to respect this absolute imperative only “if”’, under
certain condition, but the “normative expectation” also by the others doesn’t say “only if the
others do so”.

A Cognitive Framing for Norm Change 39

(i) On the other side, it is true that the fact that several guy systematically violate
that N encourages ignoring it, to consider that it is possible and not so terrible
to violate it. We live in a rude world and we adapt/belong to it.??

In a sense the norm is still there in the mind of the agents; they know that there is

such a norm. However, they are no longer committed to respect it [28]; they do not

formulate the intention to respect it. One might say that knowledge about the others’
conformity to a norm is not only or necessarily the origin and basis of our believing
that a norm is there (Bicchieri’s theory), but is more the basis of our “commitment”

(and its strength) to that duty.

e Agents are relevant in two ways: for modeling the complexity of such a dynamic and
immergent/emergent process, by Agent-based Social Simulation; but also because
we need non-passive normative and moral agents in Hybrid Societies where Artificial
Intelligences (Agents, robots,) will work and cohabit with humans. In particular N
change processes (internal and external) should be present in both MAS with cogni-
tive Agents, and in Hybrid Societies. We have even to allow and exploit violations
of rules and practices in organization, coordination, and work, but only when it is the
case and by understanding “why” (reading behavior and mind) [17]. Actually there
is a strong and advanced tradition in AgMAS on Agent architecture for Ns, in N
based MAS and organization, in MAS simulation of Ns efficacy??, however — in my
view — we still need some advancements in theoretical modeling of cognitive and
collective aspects of Ns dynamics. This work is a partial attempt in this direction.

References

1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.: Normative Multi-Agent
Systems. Dagstuhl Follow-Ups 4, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2013). http://dblp.uni-trier.de/db/series/dfu/index.html

2. Andrighetto, G., Brandsts, J., Conte, R., Sabater-Mir, J., Solaz, H., Villatoro, D.: Punish and
voice: punishment enhances cooperation when combined with norm-signalling. PLOS
(2013). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064941

3. Andrighetto, G., Castelfranchi, C.: Norm compliance: The Prescriptive Power of Normative
Actions. Paradigmi 2, 152-168 (2013)

4. Artikis, A.: Specifying norm-governed computational societies. ACM (2009)

5. Bendor, J., Swistak, P.: The evolution of norms. Am. J. Sociol. 106(6), 1493-1545 (2001)

22 Tt is even possible that a meta-norm emerges: the idea that to conform to this N (for example,
of politeness) by antiquate, ridiculous, or snob, and this elicits negative attitudes in the others,
that I want to avoid. A sort of meta N of not conforming to the traditional N is emerged;
sometime even justified by new value (for example, “do not give precedence to women” as
sign of women discrimination). In this case, for those people the previous N is no longer there,
is no longer considered and accepted as a social N. The emergence or formulation of a meta-
N about the violation (and then abandon) of a previous specific N is one of the processes of N
abandoning and N innovation. It requires specific mental changes and contents; including a
value-based justification of the “criticism” to the previous impinging N.

23 See for example: [1], [40], [10], [26] [27], [37], [44], [29] [30].

http://dblp.uni-trier.de/db/series/dfu/index.html
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064941

40

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

C. Castelfranchi

Bicchieri, C.: The Grammar of Society: Nature and Dynamics of Social Norms. Cambridge
University Press, New York (2006)

Bicchieri, C., Mercier, H.: Norm and beliefs: how change occurs. In: Edmonds, B. (ed.) The
Dynamic View of Norms. Cambridge University Press, Cambridge (2009)

Bicchieri, C., Xiao, E.: Do the right thing: but only if others do so. J. Behav. Decis. Making
22, 191-208 (2009)

Bicchieri, C., Xiao, E., Muldoon, R.: Trustworthiness is a social norm, but trusting is not.
Polit. Philos. Econ. 10, 170 (2011)

Boella, G., Noriega, P., Pigozzi, G.: HarkoVerhagen: introduction to the special issue on
NorMAS 2009. J. Log. Comput. 23(2), 307-308 (2013)

Boyd, R., Gintis, H., Bowles, S., Richerson, P.J.: The evolution of altruistic punishment.
PNAS 100(6), 3531-3535 (2003)

Brennan, G., Eriksson, L., Goodin, R.E., Southwood, N.: Explaining Norms. Oxford
University Press, Oxford (2013)

Campenni, M., Andrighetto, G., Cecconi, F., Conte, R.: Normal = Normative? The role of
intelligent agents in norm innovation. Mind Soc. 8, 153-172 (2009)

Castelfranchi, C.: Through the minds of the agents. J. Artif. Soc. Soc. Simul. 1(1) (1998).
http://www.soc.surrey.ac.uk/JASSS/1/1/contents.html

Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption. AI Law
Spec. Issue Norms MAS 7(1999), 37-50 (1999)

Castelfranchi, C.: The theory of social functions. Challenges for multi-agent-based social
simulation and multi-agent learning. J. Cogn. Syst. Res. 2, 5-38 (2001). Elsevier. http://
www.cogsci.rpi.edu/~rsun/si-mal/article1.pdf

Castelfranchi, C.: Formalising the informal? J. Appl. Log. N° 1 (2004)

Castelfranchi, C.: Cognitivizing “Norms”. Norm internalization and processing. In: Faro, S.,
Lettieri, N. (eds.) Informatica e Diritto, Special Issue in “Law and Computational Social
Science, vol. XXII, no. 1, pp. 75-98 (2013)

Castelfranchi, C., Tummolini, L.: Positive and negative expectations and the deontic nature
of social conventions. In: Proceedings of the 9th International Conference of Artificial
Intelligence and Law (ICAIL 2003), pp. 119-125. ACM Press (2003)

Cialdini, R.: Descriptive social norms as underappreciated sources of social control.
Psychometrika 72(2), 263-268 (2007)

Conte, R., Andrighetto, G., Campenni, M., Paolucci, M.: Emergent and immergent effect in
complex social systems. In: Proceedings of AAAI Symposium, Social and Organizational
Aspects of Intelligence, Washington (2007)

Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995)
Conte, R., Castelfranchi, C.: From conventions to prescriptions. Towards a unified view of
norms. Artif. Intell. Law 3, 323-340 (1999)

Conte, R., Castelfranchi, C.: The mental path of norms. Ratio Juris 19(4), 501-517 (2006)
Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Mueller, J. (ed.)
Proceedings of the 5th International workshop on Agent Theories Architectures and
Languages, Paris, 4-7 July 1999

Criado, N., Argente, E., Noriega, P., Botti, V.J.: MaNEA: a distributed architecture for
enforcing norms in open MAS. Eng. Appl. Al 26(1), 76-95 (2013)

Criado, N., Argente, E., Noriega, P., Botti, V.J.: Corrigendum to ‘Human-inspired model for
norm compliance decision making’. Inf. Sci. 245, 218-239 (2013). Inf. Sci. 258, 217 (2014)
Dastani, M., van der Torre, L., Yorke-Smith, N.: Commitments and interaction norms in
organization. In: Autonomous Agents and Multi-Agent Systems, pp. 1-43 (2015)

Dignum, F.: Autonomous agents with norms. Artif. Intell. Law 7(1), 69-79 (1999)

http://www.soc.surrey.ac.uk/JASSS/1/1/contents.html
http://www.cogsci.rpi.edu/~rsun/si-mal/article1.pdf
http://www.cogsci.rpi.edu/~rsun/si-mal/article1.pdf

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.
45.

A Cognitive Framing for Norm Change 41

Dignum, F., Dignum, V.: Emergence and enforcement of social behavior. In: Anderssen, R.S.,
Braddock, R.D., Newham, L.T.H. (eds.) 18th World IMACS Congress and MODSIM09
International Congress on Modelling and Simulation, July 2009, pp. 2377-2383. Modelling
and Simulation Society of Australia and New Zealand and International Association for
Mathematics and Computers in Simulation (2009)

Fehr, E., Fischbacher, U., Géchter, S.: Strong reciprocity, human cooperation, and the
enforcement of social norms. Hum. Nat. 13, 1-25 (2002)

Galoob, S., Hill, A.: Norms, attitudes, and compliance. Tulsa Law Review (2015,
Forthcoming)

Garfinkel, H.: A conception of, and experiments with, ‘trust’ as a condition of stable concerted
actions. In: Harvey, O.J. (ed.) Motivation and Social Interaction, pp. 187-238. The Ronald
Press, New York (1963)

Gneezy, U., Rustichini, A.: A fineis a price. J. Leg. Stud. 29(1) (2000). http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=180117#%23

Hammoud, M., Tang, A.Y.C., Ahmad, A.: A norms decay framework in open normative
multi-agent systems. Br. J. Appl. Sci. Technol. 12(4), 1-15 (2016)

Heckathorn, D.: Collective sanctions and the compliance norms a formal theory of group-
mediated social-control. Am. J. Soc. 94, 535-562 (1988)

Hechter, M., Opp, K.-D. (eds.): Social Norms. Russell Sage Foundation, New York (2001)
Hiibner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.): COIN@ AAMAS 2008. LNCS,
vol. 5428. Springer, Heidelberg (2009)

Kahneman, D., Miller, D.T.: Norm theory: comparing reality to its alternatives. Psychol. Rev.
80, 136-153 (1986)

Miceli, M., Castelfranchi, C.: A cognitive approach to values. J. Theor. Soc. Behav. 19(2),
169-193 (1989)

Noriega, P., Chopra, A.K., Fornara, N., Cardoso, H.L., Singh, M.P.: Regulated MAS: social
perspective. Normative Multi-Agent Syst. 2013, 93-133 (2013)

Schultz, P.W., Nolan, J.M., Cialdini, R.B., Goldstein, N.J., Griskevicius, V.: The constructive,
destructive, and reconstructive power of social norms. Psychol. Sci. 18(5), 429—434 (2007)
Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D.,
Van Dyke Parunak, H., Michel, F. (eds.) EAMAS 2006. LNCS (LNAI), vol. 4389,
pp. 141-156. Springer, Heidelberg (2007)

Ullmann-Margalit, E.: The Emergence of Norms. Oxford University Press, Oxford (1977)
Vasconcelos, W., Garcia-Camino, A., Gaertner, D., Rodriguez-Aguilar, J.A., Noriega, P.:
Distributed norm management for multi-agent systems. Expert Syst. Appl. 39(5), 5990-5999
(2012)

http://papers.ssrn.com/sol3/papers.cfm%3fabstract_id%3d180117%23%2523
http://papers.ssrn.com/sol3/papers.cfm%3fabstract_id%3d180117%23%2523

Representative Agents and the Cold Start
Problem in Contract Negotiation

Federico Cerutti*®), Christopher Burnett?, and Nir Oren?

1 Cardiff University, Cardiff, UK
CeruttiFQ@cardiff.ac.uk
2 Department of Computing Science, University of Aberdeen, Aberdeen, UK

Abstract. Principal Agent Theory (PAT) seeks to identify the incen-
tives and sanctions that a consumer should apply when entering into
a contract with a provider in order to maximise their own utility. How-
ever, identifying suitable contracts—maximising utility while minimising
regret— is difficult, particularly when little information is available about
provider competencies. In this paper we show that a global contract can
be used to govern such interactions, derived from the properties of a rep-
resentative agent. After describing how such a contract can be obtained,
we analyse the contract utility space and its properties. Then, we show
how this contract can be used to address the cold start problem and
that it significantly outperforms other approaches. Finally, we discuss
how our work can be integrated with existing research into multi-agent
systems.

1 Introduction

Autonomous agents are often assumed to be rational, self interested entities,
interacting with others in order to maximise their own utility. When asked to
fulfil a task, they will therefore do so in a way that maximises their expected
utility. When acting as a service provider (e.g., in an electronic marketplace),
there is thus a risk that the agent will provide a substandard service. Approaches
to mitigate this risk include the use of electronic contracts [19,20], which spec-
ify the rewards and penalties (or more generally, incentives) to be imposed on
interacting parties in response to successful or unsuccessful interactions [7]. Prin-
cipal Agent Theory (PAT) [11,13,18,21] aims to determine the optimal level of
incentives—in the form of rewards and penalties—that an agent (the principal
or consumer) must commit to giving others (the providers) in order to have the
latter act in such a way so as to maximise the principal’s utility. To utilise PAT
an agent requires beliefs about the behaviour of the provider. However, with-
out previous (potentially negative) experiences, such beliefs cannot be formed.
This problem, of lack of experience with others in the system potentially lead-
ing to poor experiences when operating within the system, is referred to as the

F. Cerutti—The work was performed when the author was affiliated with the
University of Aberdeen.
© Springer International Publishing Switzerland 2016

V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 42-58, 2016.
DOI: 10.1007/978-3-319-42691-4_3

Representative Agents and the Cold Start Problem in Contract Negotiation 43

cold start problem [25]. Several approaches have been proposed for addressing
the cold start problem, from minimal expectation or random assignment to the
capabilities of the providers [23,26], to active learning [16]. In particular, good
results have been shown by using samples of the society [24].

Apart from the cold start problem, several other difficulties arise when using
PAT. Computing incentives requires solving a highly non-linear optimisation
problem. When combined with the need to select between multiple possible
providers, the computational costs of creating contracts using PAT, and gather-
ing the information needed to create such contracts, become prohibitive. When
dealing with unfamiliar parties humans often resort to general principles to deter-
mine incentives, stemming from cultural, psychological or legal foundations. In
this paper, we build on this intuition, suggesting that without additional infor-
mation, an approximate set of incentives can be specified for all interactions
within the system. We envision that a PAT based system would initially utilise
this approximate set of incentives to generate contracts. As more information
becomes available through repeated interactions, these approximations become
discounted in favour of more accurate incentives to form better contracts. How-
ever, in the case of very simple computationally bound agents, our approxima-
tions could continue to be used. Our work can therefore be seen to address the
cold start problem by allowing an agent to successfully interact with others in
the absence of specific information about them.

Our contributions are as follows. We describe a procedure for determining
suitable approximate global incentive values. Such incentives aim to be applica-
ble to all agents in the system, and in defining them, we consider their effects
on overall system utility, which we refer to as the social utility. We define a set
of incentives, or a contract, as suitable if it is the result of a trade-off between
the social utility that can be gained, and the regret of paying too much for a
given good or task. Informally, the contract is based on an average individual
provider computed from the profile of all agents in the system. We experimentally
evaluate our contribution, showing how using the global contract significantly
outperforms other techniques aimed at addressing the cold start problem.

In the next section, we provide some background on principal agent the-
ory, following which we describe how global contracts are computed in Sect. 3.
Section4 discusses another set of experiments evaluating the performance of
using the global contract in solving the cold start problem. Section 5 summarises
our results and concludes.

2 Background and Assumptions

2.1 Preliminary Notions

Following [6], we take as given a society of agents A = {x,y,...} and a set of
tasks T. A consumer © € A desires to see some task T € T accomplished and
must do so by having a provider y € A perform the task on its behalf. Given
7 €T, let Or = {00,01,02,...,0,} denote the set of possible outcomes for
task 7, where oy = abs represents the case where the provider abstained from

44 F. Cerutti et al.

executing the task. >, induces a total strict order over O, such that intuitively,
if 0; =, 0j, 0; is better than o;. min, O, represents the worst possible outcome
of task 7, i.e., complete failure, while max, O, represents complete success. For
ease of notation, 0; <, 0; iff 0; >, 0;. We assume that all agents share the same
task evaluation criteria as well as the same ordering function.!

In delegating a task to a provider, the consumer asks the provider to execute
it. The delegation of a task results in the consumer and provider obtaining some
utility (for the consumer, due to the execution of the desired task, and for the
provider, due to payment obtained from the consumer). Given this, the utility
gained by the consumer is computed by the function U® : O, — R, while the
provider gains utility V¥ : O, — R.

The task provider has autonomy in selecting the method by which a task
will be carried out. In particular, let & = {eg,e1,...,e,} denote the set of
effort levels they can apply when performing 7, where ey = abs identifies the
case where the provider abstains from performing the task. We define a total
ordering >~. over & such that if e; . e;, then e; requires more effort (or is
higher than e;. Similarly as before, e; <. e; iff e; >, e;.

Each effort has an associated cost determined by the function Cost : A x
&, — R. For ease of notation, for agent y € A, Cost? denotes its cost function.
Different effort levels have an impact on outcomes, which we capture through a
probability distribution: Yo € O,,Ve € &,,pY(o | e) represents the probability
that agent (provider) y will achieve the outcome o using effort e. It is assumed
that p¥(abs | abs) = 1.

When delegating, the consumer devises a payment function, or contract, C :
Ax AxT x O — R. We write Cy_(0) for a given o € O, to represent the
contract specifying the compensation consumer z will give to provider y given
outcome o of task 7.

Therefore, the net utility nV¥Y for a provider y which achieves an outcome
given a specific effort (including abstention) is:

nV¥o,e) = V¥(o) + Cj .. (0) — Cost(e) (1)

2.2 A Fair System

In what follows we assume a fair system which identifies several desirable and
common-sense properties that any system should have. These properties are
as follows.

): Yoi,05 € Oy, if 0, =, 0j then U%(0;) > U*(0;) and V¥(0;) > V¥(0;);
): 3o; € Or,3e € & s.t. nVY(abs,e) < nV¥(0;,€);

): Ves,ej € &, if e; - e; then Cost(e;) > Cost(e;);

): Vol,oj € O, if 0; =, 0 then Cy_(0;) > Cy.(05);

): Cy..(abs) = Cost(abs).

! In other words, all agents have the same preference ordering >, over tasks.

Representative Agents and the Cold Start Problem in Contract Negotiation 45

(Fy) states that the better the outcome of a task, the greater the utility that both
the provider and the consumer independently receive; (F3) there has to be at
least one outcome that gives the provider a better gross utility than abstaining
(for example by being paid more for this outcome than for abstaining); (F3) that
the higher the effort, the higher the associated cost to the provider; (Fy) that
the better the outcome, the higher the compensation to the provider according
to the contract (incentive); (F5) that the contract covers the costs associated
with abstaining behaviour, but no more. We note that these constraints are
not minimal.

Although in reality some of those properties might fail to be satisfied, they
try to capture a minimal set of norms for a free-market society. Far from being
unquestionable, we elicit them as postulates on which we base our proposal in
the next sections.

2.3 Rationality Assumptions

We assume that each provider rationally decides whether or not to accept a
contract, and which effort to use if it does not abstain. In particular, if the
provider’s expected utility is greater than the utility it would obtain abstaining,
then the provider will perform the requested task. Moreover, the provider will
utilise the effort on the task which will maximise its own expected utility. EVY
denotes the expected utility for a provider y in performing a task 7 with a

contract Cy.., and is computed as follows.

EVY =YY" (plole) (V¥(0) + CL.(0) — Cost(e))) (2)

ec&r 0e0,

Therefore, if EVY < V¥(abs), it is better, or more convenient for the provider
to abstain from accepting the task. If, instead, EVY > V¥ (abs), then the effort
that the provider will expend on performing the task is as follows.

argmax Z (0]e) (V¥(0) + Cy..(0) — Cost(e))) (3)

[tom 0€0.

Let delegate denote the non-deterministic function that, given a task 7, a
provider y, and a contract Cy. ., returns a pair of elements: (1) an element of O, U
{abs} which depends on the effort resulting from y’s decision process (obtained
from Egs. (2) and (3)); and (2) the net utility for y.

As mentioned above, we seek a global approximation for incentives. In order
to evaluate the incentives’ effectiveness, we must consider how task delegation
(i.e., the execution of the task from the consumer by the provider) operates in
the presence of these incentives. We therefore consider the total utility of the
system over both providers and consumers for a specific contract (i.e., the sum of
each provider’s and consumer’s utility over the whole system). This is measure
of social utility, with regards to a task 7 for a given contract Cy.,, is defined as
follows.

46 F. Cerutti et al.

UCy)= Y U@)+nVv (4)
z,y€A
where <5,m> = delegate(t,y,Cy.,).
Finally, following [22, p. 51], we can compute the regret of a consumer to
have chosen a contract Cy.. from a set of contracts ;. as follows.

Regret(C..,0) = (min %(0)) - Cy (o) (5)

Cez _egz

YT YT

The regret value is, by definition, negative. However, its value must be inter-
preted as an absolute value [22, p. 51].

2.4 Traditional Solutions to the Cold Start Problem

Several approaches have been proposed for solving the cold start problem in
contract negotiation. For the purpose of this work we will focus on three of
them.

The first approach is probably the simplest. It proposes to use, as starting
point, the minimum contract possible according to fair systems requests. In this
way, by incrementing the value of the contract (in the sense of utility paid to the
provider for successful task execution) every time we receive an abstention, we
can converge to the minimum contract while guaranteeing providers not abstain.
However, this contract is not guaranteed to maximise the consumer’s expected
utility.

A second approach adopts an exploration strategy, such as Boltzmann selec-
tion [7], whereby, given a set of outcomes for a task, contracts are randomly
selected initially (i.e., the exploration phase), with the best observed contract
being chosen after some time period has elapsed (the exploitation phase). In case
the chosen contract does not guarantee participation, we can iterate the inter-
actions and converge sooner to the minimum contract guaranteeing it. However,
if the cost of the contract for the consumer is too high, this will result in high
regret.

A third approach utilises sampling. This includes widely adopted techniques
for solving the cold-start problem via active learning [24]. Given a society of
agents A and the set of contracts C, and given a simple sampling procedure [9],
the problem is to determine the number of samples required to achieve some
statistical accuracy requirement.

Since our goal is to identify sufficient samples to obtain non-abstaining behav-
iours, we can divide each unit of the search space A x C—assumed to be normally
distributed—into one of two classes yielding either abstaining or non-abstaining
output. Given the margin of error d that we consider acceptable in the estimated
proportion p in the class of non-abstaining output, and given the accepted risk
« that we can incur that the actual error is larger than d, then according to [9],
we require n samples, computed as follows.

> p (1—p)

Nnog = d2

Representative Agents and the Cold Start Problem in Contract Negotiation 47

where t ib the abscissa of the normal curve that cuts off an area of « at the
tails. If TAxC] 12 C] is negligible, ng is a satisfactory approximation, and thus n = ny.

Otherwise,
o
- (6)
1+ e
In the following we identify with CA‘Of the set of sample contracts given the
margin of error d and the accepted risk a.

3 Global Contracts

In order to apply PAT, one must be able to compute the provider’s expected utility,
requiring knowledge about provider costs and success likelihoods for different effort
levels. Therefore, in order to assess its own utility, the consumer should know, for
each provider and for each effort level, the associated cost, as well as the probability
of obtaining each outcome of the task for a given provider’s effort level.

To reduce the computational effort for a consumer to explore providers’
capabilities, we introduce a representative agent w obtained from the providers
present in the system. w can be viewed as the simplest stereotype agent [2,5,12]
for a given society, which acts as a proxy for the agent’s neighbours. Although
outside the scope of this work, assessing the quality of the representative agent
is an important issue which can impact on other aspects of a multi-agent society,
e.g., how much can an agent trust the agents in a society in which it enters for
the very first time?

In what follows, without loss of generality and to simplify the presentation,
we assume:

— a single task 7;

a fixed shared cost function Cost for all the providers;

— a fixed shared utility function V for all the providers;?

a fixed shared utility function U for all the consumers;

— contracts Cy ;. such that Vo € O,,Cy. (o) € Z: moreover, we assume a strong
fairness requirement for these contracts, i.e., Cy. (0:) > Cy..(05) if 0; =, 0;.

Therefore, the representative agent w is one such that:

|A|Zp (o]e)

yeA

Yo € O,,Ve € E,,p%(0 | e) =

3.1 Searching for a Suitable Contract as a Linear Problem

Considering a representative agent as the “average” provider in a given society
does not entirely address the problem of identifying a suitable contract. However,
by taking into account Eq. (2), we can derive bounds for the contracts, such that

2 Shared utility functions are widely employed in cooperative contexts [4], which is
also the main focus of our research.

48 F. Cerutti et al.

values of contract below the lower bound would have the same effect as the
minimum contract itself, and the same for the upper bound.
The lower bound for contracts is:

xT > s w _ w
Yo € O, CZ. (0) > _(enengri Cost (e)> <£I€12(19)i 14 (0))_ (7)
Similarly, the upper bound is:
x < w _ ; w
Yo € O,, CF..(0) < (gé%): Cost (e)) (Olélgi 14 (0)) (8)

Given the bounds of Egs. (7) and (8), let €7 C Cy be the set of contracts
that respect them.

Recall that our aim is to identify a suitable global contract given limited
knowledge of the providers, taking into account the trade-off between (i) max-
imising the social utility, while (ii) minimising the (absolute value of) regret for
the consumer.

Concerning (i), from Eq.(2) there is an inverse relationship between the
likelihood of abstaining from accepting the task and the utility gained by the
provider. This thus limits our search space, as we want to select a contract
that is not likely to lead to an abs result. Concerning (ii), Eq. (5) suggests that
minimising the chosen contract is correlated with minimising the (absolute value
of the) regret as well. Let us notice that this requirement does not apply to
contracts in general, rather regret minimization is enforced only in searching for
a suitable contract given the representative agent. There might be situations
where minimising the regret for the consumer is unnecessary: we will investigate
them in future work.

Solving the following linear problem thus addresses the above two aims:

min Y CZ,(0) (9)

“Toe0,
subject to
Y Cinlo) Y p¥(o]e)=
o€, ec, (10)
V¥ (abs) — (Z Z (V¥(o0) — Costw(e))>
0cO; ecé&,
and
Yo € O,
Cor(0) 2 | min Cost™(e) | — | max V(o)], and (11)
C?.(0) < | max Cost“(e) | — | min V*¥(o)

ecé, 0€0,

Representative Agents and the Cold Start Problem in Contract Negotiation 49

and

Yoi,0; € Or8.8.0; =0 05, C.(0;) > CZ._(05) (12)

In particular, Eq. (9) seeks to minimise regret, while Eq. (10) constrains the
search space to avoid abstentions. Equations (11) and (12) enforce the lower and
upper bounds on the contract, as well as the fairness constraint respectively.

In [8] we show how the contract which provides a solution to the lin-
ear problem is a suitable—i.e., a trade-off between social utility and regret—
approximation to the best solution obtained through exhaustive search.

3.2 Sampling the Society

Deriving a representative agent is a complex task. If there is no a priori knowl-
edge to do so, then deriving it is itself an instance of the cold start problem.
Therefore, we can adapt the idea of simple sampling discussed in Sect. 2.4 to the
case of continuous data [9].

Let us assume the society A is distributed as a normal distribution A (u, o)
with mean p and standard deviation o. Given r the acceptable relative error,
and «, the risk of being mislead by the sample, the size of the sample n required
is as follows.

2 §?

ng = ——-5
r2 ,UQ

AL (g —
Here S22 = W ~ g2, If % is appreciable, n = 14?% (cf. Eq. 6); other-

wise n = ng [9].

It is worth noticing that we only sample A, while the equations in Sect. 2.4
sample the space A x C. In the following, A/, identifies the sampled space of
agents with r relative error and « the risk of being mistaken; @/, identifies the
representative agent derived from simple sampling of A,.

4 Global Contract for Cold Start Problem

In the previous section we described how a suitable contract can be found given
some knowledge of a society. We now turn our attention to searching for such
a contract given no prior information about the society. This is therefore an
example of the cold start problem [25], wherein we seek to identify a suitable
contract to be used in PAT with minimal information about the providers.

4.1 Searching for Non-abstaining Contracts

According to Eq. (2), given a contract Cy. . a provider will abstain from perform-
ing the task 7 if doing so will increase its expected utility. In such cases, it is
necessary to increment Oy towards a “better” (to the provider) fair contract.

50 F. Cerutti et al.

Algorithm 1. Increment Contracts

contractIncrement(Cy..)
1: Input: Cy., a valid contract

2: Output: CZ.. an incremented contract
3: g, :=0C5.,

4: for o; € (01,...,0p) 8.t. Vj, k, 7 > k,0; =0 o do
5: if 0; = 01 then

6: Cgir(0i) = Cjir(01) + 1

7 else

8: if Cz..(0i—1) = CZ..(0;) then
9: Cz.(0;) == C%-(0:) +1

10: end if

11: end if

12: end for

13: return C%.,

To this end, Algorithm 1 defines the contractIncrement procedure which

returns the closest higher fair contract C}.. of an contract Cj.. given as input.
At line 3 of Algorithm 1, contractIncrement copies the value of Cy.,

to CF..; at line 6 it increments the value of the contract for the worst out-

come C¥_(o1). Then, for each other outcome o; in the sequence induced by

the ordering function >,, contractIncrement checks if C%. (0;—1) = CZ_(0;)
(line 8). If this is the case, Cf. (0;) is also incremented to ensure fairness.

The following proposition proves that there are no other contracts “smaller”
than C}.. = contractIncrement(C}.) but “greater” than Cj . Therefore,
Cg.. is the closest of the contracts (in terms of increments necessary within

them) that are more convenient (for the provider) than C .

Proposition 1. Given a contract Cy

s and Cf. . = contractIncrement(Cy.),

it is the case that Yo € O, ﬂC/’gj\T e & \{Cy,Cz } st. Cf (o) < W) <

Tz (0).

Proof. Let assume that EICT;’:\T s.t. Cy..(0) < C?E) < Cy.. (o) for some o € O;.
If o = 04, from line 6 of Algorithm 1 C/'é;T\T = C%_, quod est absurdum.

If o = 0;,4 > 1, without loss of generality let us assume C}. (i) = 5(\01) +1
= Cy.,(0;)+2. From L. 9 of Algorithm 1, this implies that Cy. . (0;) = Cy.;(0;) +1,
quod est absurdum. O]

While Algorithm 1 derives more convenient (for the provider) contracts, Algo-
rithm 2 implements the sound and complete procedure hillC for computing the
distance of a given contract Cy., from the closest contract which is more conve-
nient (for the provider) than abstaining from performing the given task.

hillC requires as input the provider y, and a contract Cy.,. It returns the
number of interactions needed to ensure that y will not abstain. At line 3 it

Representative Agents and the Cold Start Problem in Contract Negotiation 51

Algorithm 2. Hill-Climbing Contracts
RillC(y, Cj.,)
1: Input: y € A, Cy.; a valid contract

2: Output: S the number of iterations to non-abstain behaviour
3:5:=0

4: while delegate(r,y,Cj}..) = abs do

5: S:=5+1

6: Cy., = contractIncrement(Cy.,)

7: end while

8: return S

initialises the variable S which stores the number of interactions with y. Such
a variable is incremented (1. 5) every time the delegation process returns
abs.> In such a case, the contract is incremented (1. 6) using the function
contractIncrement (Algorithm 1).

The following proposition proves that hillC (Algorithm 2) is complete and
sound.

Proposition 2. Algorithm 2 is sound and complete.

Proof. Immediate from Proposition 1 and Eq. (2). O

4.2 Experimental Hypotheses

The procedure hillC takes a contract as input: determining which contract to
use first is the essence of the cold start problem. For the purpose of this work,
we compare the following possible initial contracts:

CZZTlglobal s.t. Yo € Oy, O;/C:Uglobal(o) = CZ._(0), where CZ._ is a solution to

the linear problem of Eqgs. (9-12). We denote Cgi‘flglobal as GLOBAL. In

the following, to show the robustness of our approach, we assume that the

capabilities of the representative agents are uniformly perturbed by up to 0.2

from the average.

- C;:TlglobalS s.t. Yo € O, CZ:TlglobaIS(O) = C3,.,(0), where CJ. is a
solution to the linear problem of Egs. (9-12). We denote C?

v | globals &%
GLOBALsample. We considered o = 0.05, and d = 0.20.

We compare these two contracts to three contracts capturing existing
approaches to dealing with the cold start problem.

- C;:nmin s.t. Yo € OT’C;:nmin(O) = Icnfn} Cy.-(0) according to Eq. (7). We
denote Cy.. . as MIN;
Y:T | min

3 We admit a small abuse of notation: formally delegate returns a tuple of two ele-
ments. In this case we silently assume that returns only the first element of such a
tuple, namely the outcome of task 7 or abs.

52 F. Cerutti et al.

. CZ:Tlrand s.t. Yo € O, CZ:Tlrand(O) = rand, where rand is a random number

between 0 and 1 derived from an uniform distribution. We denote Cgf
as RANDOM,;

_ CZ:US s.t. VoéOT,C;TlS(o) = min_Cy, (o) according to Eq. (7). We

T |rand

denote C;TLS as . We considered o = 0.05, and d = 0.20.
Our experimental hypotheses are:

11: on average, the procedure hillC invoked on GLOBAL and GLOBALsample
(the contracts derived from the representative agent resp. without or with
a sampling activity) will require a minor number of interactions to con-
verge to a non-abstaining contract than if it is invoked on, in order,
, RANDOM, hillC(MIN);
I2: GLOBAL and GLOBALsample are more robust with respect to changes of
network structure and distribution of competencies in the network.

4.3 Experimental Settings

We ran a set of experiments to evaluate the hypotheses, as detailed below. For
all experiments, we used the following base settings. O, = {01, 02} s.t. 03 >, 01.
V(01) = =10, V(02) = 50, and V (abs) = 0. &, = {e1, ea,e3} s.t. 3 > €2, €2 >,
e1, and Cost(er) = 10, Cost(ez) = 15, Cost(ez) = 20.

Our system consisted of three agent types (Gi,Ga,G3), described in Table 1.
We considered societies of 100 agents. While we evaluated different topologies
(namely fully connected; random [10] and scale-free [1], our results were virtually
identical, and we therefore discuss and show only the random case.

Finally, we utilised three distributions of agent competencies, aimed at
reflecting different types of competences within different societies. These values
were picked so as to be sufficiently variable to reflect these differences in soci-
eties. Respectively, these are the poor, uniform and highly competent societies.
Table 2 describes the three distributions.

Table 1. Agents grouped by competencies

G |Gz |G
p9(01 | 1) 0.800.75 0.70
p?(01 | e2) | 0.60|0.55 | 0.50
p? (01 | e3)|0.40|0.400.20
p9(02 | 1) 0.200.25 0.30
p? (02 | €2) | 0.40|0.45 | 0.50
p? (02 | e3) | 0.40 | 0.60 | 0.80

Representative Agents and the Cold Start Problem in Contract Negotiation 53

Table 2. Distribution of competencies in the network

Competence p(a € Gi1) | p(a € G2) | p(a € G3)
Poor 0.6 0.3 0.1
Uniform % % %

High 0.1 0.3 0.6

For each configuration (distribution of competencies), we generated 10 dif-
ferent societies (s0-s9) and evaluated each of them 50 times.

Simulations have been programmed using Java 1.6 using parallel comput-
ing for reducing the overall execution time.* Indeed experiments exploited the
Aberdeen Maxwell High Performance Computing Cluster which is composed by
40 nodes, each with two 8 or 12-core Xeon E5 processors and 256 GB of RAM.
For each simulation we reserved 512 MBytes of RAM. We used LPSolve® as
solver for the linear programs which arise during the simulations.

4.4 Experimental Evaluation

Figures 1, 2, and 3 qualitatively depict the results of our experiments: each figure
refers to a single distribution of competencies. Figure 1 illustrates our results for
poor competence societies, Fig.2 for uniform competence, and Fig.3 for high
competence. As mentioned above, we observed that the network topology has a
little impact on the results and therefore focus on random networks only.

For each configuration, for each society, Figs. 1, 2, and 3 show average and
standard deviation—over the 50 explorations for each society, and over the
agents in the society—of the number of steps needed to find a contract with
no abstaining results when the starting contract is GLOBAL, GLOBALsample,
MIN, RANDOM, or . Although it is not always the case
that these values are normally distributed, we chose to represent average and
standard deviation for qualitative purposes.

These results have been proven statistically significant using the Wilcoxon
Signed-Rank Test (WSRT) [29] (p < 0.01). From Figs.1, 2, and 3 it is clear
that our hypotheses are satisfied. With respect to hypothesis I1, the aver-
age of hillC(MIN) is the highest in any configuration and for any society. On
average, values of hillC(RANDOM) are always smaller than hillC(MIN), and
hillC() is smaller that both of them. We also perturbed
the representative agent by up to 0.2 to evaluate the resilience of the generated
contract. In such a situation, hillC(GLOBAL) is almost always the smallest,
and barely distinguishable from hillC(GLOBALsample). This is particularly
true when the competencies are distributed uniformly, Fig. 2, or society is highly
competent (Fig. 3).

* The code can be found at the URL https://sourceforge.net/projects/global-
approximations-pat/.
5 https:/ /sourceforge.net /projects/Ipsolve/.

https://sourceforge.net/projects/global-approximations-pat/
https://sourceforge.net/projects/global-approximations-pat/
https://sourceforge.net/projects/lpsolve/

54 F. Cerutti et al.

Randomly Generated Network — Poorly Competent Agents
Number of Steps to Non-Abstain Outcomes

50 T T T T T T T T
il S — — e — — e — UR—
40 + i : i | A | .
35 3 g
30 |+ ~ o P .
25 2 : * i
20+ } o ‘ [E—
R e T i ,; ; -
s S, B s
sO sl s2 s3 s4 sH s6 s7 s8 s9
Societies
MIN ----se---a GLOBALsample -
RANDOM :--%-+ CONTRACTsample -
GLOBAL

Fig. 1. Average steps and standard deviation necessary to find a contract which avoids
abstaining: poorly competent agents

Randomly Generated Network — Uniform Distribution of Competencies
Number of Steps to Non-Abstain Outcomes

50 T
45 r N i .
40 foomeees femeeroe R
35
L e -
25 | ; .
15 Frgiommmmscfosnmn e s s
5 ¢ ! i e R A —
B | e e
5 L L L L L L L L
s0 sl s2 s3 s4 Sh) s6 s7 s8 s9
Societies
MIN - o GLOBALsample ~--= -
RANDOM %+ CONTRACTsample - o
GLOBAL :-e

Fig. 2. Average steps and standard deviation necessary to find a contract which avoids
abstaining: uniform distribution of competencies

Representative Agents and the Cold Start Problem in Contract Negotiation 55

Randomly Generated Network — Highly Competent Agents
Number of Steps to Non-Abstain Outcomes

********** e TS M s st

| 1 i |] i X]

i -% .

(= » & o n 8 & . S e

_5 1 n 1 1 1 1 1 1
s0 sl s2 s3 s4 sb s6 s7 s8 s9
Societies
MIN --oseem GLOBALsample ~- = -
RANDOM :--%--: CONTRACTsample

GLOBAL -8

Fig. 3. Average steps and standard deviation necessary to find a contract which avoids
abstaining: highly competent agents

Regarding hypothesis 12, it is worth noting that the distribution of compe-
tencies has an effect on hillC(MIN) which varies in the range [32,47], where 32 is
the minimum in the case of highly competent societies, and 47 is the maximum in
poorly competent societies: the poorer the agents in terms of competencies, the
higher the (average) value of hillC(MIN). In contrast, both hillC(GLOBAL)
and hillC(GLOBALsample) returns values that are always in the range [0, §],
independent of the configuration and the societies. This suggests that I2 is also
verified by this set of experiments.

In order to test the robustness of our approach, we also perturbed the com-
petencies of the representative agent by adding uniform noise in intervals of 0.05
between 0 and 0.25 for each p?(o | €). In 53 % of cases—80 % between uniformly
distributed and highly competent agents—they lead to non-significant results
(p > 0.01) according to the Kruskal-Wallis test [17]. Only in the case of poorly
competent agents were these perturbations always significant. This supports our
previous analysis regarding the robustness of our approach and the good perfor-
mance obtained.

5 Conclusions and Future Work

In this paper, we propose techniques to identifying an approximate contract, to
be used by consumers before they have obtained sufficient information to craft a
specific contract for interactions with providers within the system. This contract

56 F. Cerutti et al.

provides a trade-off between social utility and regret, and is identified by solving
a linear optimisation problem. Our work addresses an instance of the cold-start
problem. We evaluated our approach empirically, comparing it to existing cold-
start mitigation techniques, and found that our heuristic GLOBAL is robust
over different network topologies and provider competencies; furthermore, in its
GLOBALsample version, it is also computationally efficient, sampling only a
small subset of agents within the system. Finally, it allows agents to converge
to contracts which minimise the level of abstention with fewer interactions than
heuristics derived from existing cold-start mitigation techniques.

In the empirical evaluation presented in this paper we considered binary task
outcomes and discrete domains. Though this covers many situations where an
agent is concerned only with the success or failure of the task, there are situations
where a more fine-grained set of outcomes should be considered. For instance,
in the context of information sharing, an information consumer might pay more
for higher quality data from information providers. To represent these situations
we plan to adapt the formalisms presented in [3,27], where the authors discuss
a framework for information sharing with different levels of quality within a
multi-agent system. Moreover, our approach can be integrated with Carmel and
Markovitch [7] to improve the effectiveness of their strategies for explorations.

Moreover, considering (potentially infinite) sets of outcomes and efforts
would allow us to integrate our work with trust and reputation systems (e.g.,
[14,15,28]). We envision that an agent, on entering the system, would use the
mechanisms described in the current work, but as it gains experience, would
transition to utilising its trust and reputation mechanism to identify optimal
contracts (c.f., [6]).

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

Research was sponsored by US Army Research laboratory and the UK Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of
the US Army Research Laboratory, the U.S. Government, the UK Ministry of Defense,
or the UK Government. The US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation
hereon.

This work was performed using the Maxwell High Performance Computing Cluster
of the University of Aberdeen IT Service (http://www.abdn.ac.uk/staffnet/research/
research-computing), provided by Dell Inc. and supported by Alces Software.

References

1. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 11 (1999). http://arxiv.org/abs/cond-mat /9910332

2. Beckett, N.E., Park, B.: Use of category versus individuating information:
making base rates salient. Pers. Soc. Psychol. Bull. 21(1), 21-31 (1995).
http://psp.sagepub.com/content/21/1/21.refs

http://www.abdn.ac.uk/staffnet/research/research-computing
http://www.abdn.ac.uk/staffnet/research/research-computing
http://arxiv.org/abs/cond-mat/9910332
http://psp.sagepub.com/content/21/1/21.refs

Representative Agents and the Cold Start Problem in Contract Negotiation 57

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bisdikian, C., Tang, Y., Cerutti, F., Oren, N.: A framework for using trust to
assess risk in information sharing. In: Chesfievar, C.I., Onaindia, E., Ossowski, S.,
Vouros, G. (eds.) AT 2013. LNCS, vol. 8068, pp. 135-149. Springer, Heidelberg
(2013). http://link.springer.com/content /pdf/10.10072F978-3-642-39860-5_11.pdf
Boella, G., Damiano, R., Lesmo, L.: Cooperation and group utility. In: Jennings,
N., Lesprance, Y. (eds.) Intelligent Agents VI. LNCS, vol. 1757, pp. 319-333.
Springer, Berlin Heidelberg (2000)

Burnett, C., Norman, T.J., Sycara, K.: Bootstrapping trust evaluations through
stereotypes. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, pp. 241-248, May 2010. http://dl.acm.org/
citation.cfm?id=1838206.1838240

Burnett, C., Norman, T.J., Sycara, K.: Trust decision-making in multi-agent sys-
tems. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence —IJCAI 2011, pp. 115-120. AAAT Press (2011). http://dL
acm.org/citation.cfm?id=2283396.2283417

Carmel, D., Markovitch, S.: Exploration strategies for model-based learning in
multi-agent systems: exploration strategies. Auton. Agents Multi-agent Syst. 2(2),
141-172 (1999)

Cerutti, F., Oren, N., Burnett, C.: Global approximations for principal agent the-
ory. In: Proceedings of the 14th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2015), pp. 1845-1846 (2015). http://aamas2015.
com/en/AAMAS_2015_USB/aamas/p1845.pdf

Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley Inc, New York (1977)

. Erdés, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290-297

(1959)

Grossman, S.J., Hart, O.D.: An analysis of the principal-agent problem. Econo-
metrica: J. Econometric Soc. 51(1), 7-45 (1983)

Hilton, J.L., von Hippel, W.: Stereotypes. Ann. Rev. Psychol. 47, 237-271 (1996).
http://www.annualreviews.org//abs/10.1146 /annurev.psych.47.1.237

Holmstrom, B.R., Tirole, J.: The theory of the firm. Handb. Ind. Organ. 1, 61-133
(1989)

Jgsang, A., Ismail, R.: The Beta reputation system. In: Proceedings of 15th Bled
Electronic Commerce Conference (2002)

Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 640-651. ACM (2003)

Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Active learn-
ing for aspect model in recommender systems. In: 2011 IEEE Symposium on Com-
putational Intelligence and Data Mining, pp. 162-167 (2011). http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5949431

Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J.
Am. Stat. Assoc. 47(260), 583-621 (1952). http://www.jstor.org/stable/2280779
Marsa-Maestre, 1., Klein, M., Jonker, C.M., Aydoan, R.: From problems to pro-
tocols: towards a negotiation handbook. Decis. Support Syst. 60, 39-54 (2014).
http://www.sciencedirect.com/science/article/pii/S016792361300167X
Meneguzzi, F., Miles, S., Luck, M., Holt, C., Smith, M.: Electronic contracting in
aircraft aftercare: a case study. In: Proceedings of the 7th International Confer-
ence on Autonomous Agents and Multiagent Systems — AAMAS 2008, pp. 63-70.
International Foundation for Autonomous Agents and Multiagent Systems (2008).
http://dl.acm.org/citation.cfm?id=1402795.1402807

http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.10072F978-3-642-39860-5_11.pdf
http://dl.acm.org/citation.cfm?id=1838206.1838240
http://dl.acm.org/citation.cfm?id=1838206.1838240
http://dl.acm.org/citation.cfm?id=2283396.2283417
http://dl.acm.org/citation.cfm?id=2283396.2283417
http://aamas2015.com/en/AAMAS_2015_USB/aamas/p1845.pdf
http://aamas2015.com/en/AAMAS_2015_USB/aamas/p1845.pdf
http://www.annualreviews.org//abs/10.1146/annurev.psych.47.1.237
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5949431
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5949431
http://www.jstor.org/stable/2280779
http://www.sciencedirect.com/science/article/pii/S016792361300167X
http://dl.acm.org/citation.cfm?id=1402795.1402807

58

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Cerutti et al.

Miles, S., Groth, P., Oren, N., Luck, M.: Handling mitigating circumstances for
electronic contracts. In: Proceedings of the 7th European Workshop on Multi-
Agent Systems (2009)

Miller, G.J., Whitford, A.B.: Trust and incentives in principal-agent negotiations:
the ‘Insurance/Incentive Trade-Off’. J. Theor. Politics 14(2), 231-267 (2002).
http://jtp.sagepub.com/content/14/2/231.abstract

Peterson, M.: An Introduction to Decision Theory. Cambridge University Press,
Cambridge (2009). http://dx.doi.org/10.1017/CB09780511800917

Popescul, A., Pennock, D.M., Lawrence, S.: Probabilistic models for unified collab-
orative and content-based recommendation in sparse-data environments. In: Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
pp. 437-444. Morgan Kaufmann Publishers Inc. (2001)

Provost, F., Melville, P., Saar-Tsechansky, M.: Data acquisition and cost-effective
predictive modeling. In: Proceedings of the Ninth International Conference on Elec-
tronic Commerce, p. 389, New York, USA (2007). http://dl.acm.org/citation.cfm?
id=1282100.1282172

Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics
for cold-start recommendations. In: Proceedings of the 25th International ACM
SIGIR Conference on Research and Development in Information Retrieval, p. 253,
New York, USA (2002) http://dl.acm.org/citation.cfm?id=564376.564421
Schmidt, S., Steele, R., Dillon, T.S., Chang, E.: Fuzzy trust evaluation and credibil-
ity development in multi-agent systems. Appl. Soft Comput. 7(2), 492-505 (2007).
http://www.sciencedirect.com/science/article/pii/S1568494606000755

Tang, Y., Cerutti, F., Oren, N., Bisdikian, C.: Reasoning about the impacts of infor-
mation sharing. Inf. Syst. Front. J. 17(4), 725-742 (2014). http://link.springer.
com/article/10.1007%2Fs10796-014-9521-6

Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: TRAVOS: trust and reputation
in the context of inaccurate information sources. Auton. Agents Multi-agent Syst.
12(2), 183-198 (2006). http://link.springer.com/10.1007/s10458-006-5952-x
Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80-83 (1945)

http://jtp.sagepub.com/content/14/2/231.abstract
http://dx.doi.org/10.1017/CBO9780511800917
http://dl.acm.org/citation.cfm?id=1282100.1282172
http://dl.acm.org/citation.cfm?id=1282100.1282172
http://dl.acm.org/citation.cfm?id=564376.564421
http://www.sciencedirect.com/science/article/pii/S1568494606000755
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10796-014-9521-6
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10796-014-9521-6
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10458-006-5952-x

Simulating Normative Behaviour in Multi-agent
Environments Using Monitoring Artefacts

Stephan Chang and Felipe Meneguzzi®)

School of Computer Science, Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil
stephan.chang@acad.pucrs.br, felipe.meneguzzi@pucrs.br

Abstract. Norms are an efficient way of controlling the behaviour of
agents while still allowing agent autonomy. While there are tools for pro-
gramming Multi-Agent Systems, few provide an explicit mechanism for
simulating norm-based behaviour using a variety of normative represen-
tations. In this paper, we develop an artefact-based mechanism for norm
processing, monitoring and enforcement and show its implementation as
a framework built with CArtAgO. Our framework is then empirically
demonstrated using a variety of enforcement settings.

1 Introduction

Multi-Agent Systems are often used as a tool for simulating interactions between
intelligent entities within societies, organisations or other communities. This
Agent-based Simulation is useful for studying social behaviour in hypothetical
situations or situations that may not be easily reproduced in the real world. The
entities being simulated, human or otherwise, are represented by programmable
intelligent agents, which must present reactive, pro-active and social behaviour [1].

When working with social simulations, we must consider that agents should
be free to act in their own best interest, even though their actions might pro-
duce negative effects to other agents. For this reason, we establish rules that
(1) prohibit actions that harm the society’s performance; (2) oblige actions that
maintain the society’s well being; and (3) permit actions that can be beneficial
to society, but never harmful. These rules, referred to as “norms” in multi-agent
environments, allow agents to reason and act freely, while still being subject to
punishment in the event that a norm is violated [2]. Although the purpose of
norms is to mediate the interactions of agents in an environment, sometimes vio-
lating a norm can prove advantageous for an agent due to the reward of violation
compensating for the penalties of detection. Existing work on normative reason-
ing [3-10] try to explore the trade-offs between compliance and non-compliance
and propose new ways in which agents see and reason about norms. Still, there
is no available tool that simulates norm-based behaviour to serve as a common
ground for benchmarking implementations of normative behaviour and reason-
ing. In norm-based behaviour simulations we must define data structures for the
various types of norms, including at least one of prohibitions, permissions or
© Springer International Publishing Switzerland 2016

V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 59-77, 2016.
DOI: 10.1007/978-3-319-42691-4_4

60 S. Chang and F. Meneguzzi

obligations. Once these norms are active, agent interactions shall be observed
by a monitoring mechanism and analysed by a norm-enforcing agent, which will
then punish agents caught violating norms.

Although there are multiple frameworks that can be used to simulate agent
societies, such as the MASSim [11] simulators, or the agent programming lan-
guages Jason [12] and JADE [13], relatively less attention has been focused on
frameworks for norm-based behaviour simulation [14, Chap. 1]. In this paper,
we bridge this gap by developing a scalable norm processing mechanism that
performs monitoring and enforcement in multi-agent environments. Our contri-
butions are a mechanism to monitor agents actions in an environment, described
in Sect. 4.5 and a mechanism for norm maintenance and enforcement, described
in Sect. 4.6. In Sect. 5 we demonstrate the functionality of our mechanism using
an empirical experiment applying our mechanism to a Multi-Agent System.

2 Simulating Multi-agent Societies

When self-interested intelligent agents [1] share an environment, competition
between them becomes inevitable [15]. This idea becomes clear when we think
of multi-agent systems as societies. Each person in a society has their own goals
and plans to achieve them, and it is in their best interest to do so by spending
as little effort as possible. Take for an example a person interested in eating an
apple and another interested in selling one. For the buying person, its goal is
to acquire the apple from the seller for the lowest cost possible, preferably with
no cost at all. For the seller, the goal is to sell the apple for as high a price as
affordable by the buyer, maybe even higher than that. Now, considering that in
this hypothetical world no notion of ethics is known yet, the buyer soon realizes
that instead of paying for the apple he wants to eat, he could simply grab it and
eat it on the spot.

Competition between agents is often intended when working with agent-based
simulations, as we desire to see how agents perform under such circumstances.
However, to prevent the system as a whole from descending into chaos, we must
establish rules in order to control agent interactions while still allowing them
to be autonomous. Nevertheless these rules must be limited to directing agents,
rather than restraining them, otherwise, much of the benefit from autonomous
agents is lost. When rules are set, agents that disregard them are subject to
punishment for potentially harming the environment. In our buyer/seller system,
we could establish a rule that guarantees items sold at shops must be paid for. If
one is caught stealing, it will need to pay for the seller’s injury. By doing so, we
allow the buyer to reason about the advantages and disadvantages of obeying
rules, letting it decide on an appropriate action plan. In multi-agent systems, we
refer to these rules as norms.

Usual mechanisms for controlling agent interactions include interaction mod-
els, used by simulators such as NetLogo [16], MASON [17] and Repast [18];
strategies, commonly used in Game Theory; and organisation-oriented norma-
tive systems, such as Moise [19]. The disadvantage of these methodologies is

Simulating Normative Behaviour in Multi-agent Environments 61

that agents are constrained to the rules of their environment. They are not
allowed to break rules because the system is rule-compliant by design, also known
as the regimentation approach [20]. However, unlike environmental constraints,
perfect enforcement (regimentation) of social norms is unrealistic and undesir-
able, because it prevents occasional violations that would bring about a greater
good [6,21].

3 Normative Scenario - Immigration Agents

To facilitate explanation and exemplification of our approach, as well as to high-
light its capabilities, we present the scenario we use to test our mechanism. This
scenario helps understand what norms are and how they control interactions in
an environment. First, we present a short story that connects the environment
to its agents, then we outline the norms that constrain them.

The government of a fictional emerging nation® started an immigration pro-
gram to accelerate development through the hiring of foreigners. The country
welcomes visitors, besides landed immigrants, to the country, since money from
tourism greatly boosts the local economy. At the border, immigration officers must
inspect immigrant passports. The foreigner acceptance policy is quite straightfor-
ward, and immigration agents must immediately accept immigrants with valid
passports and no criminal records, and reject John Does and refugees outright.
The government believes that the more immigrants it accepts, the better. Each
officer’s responsibility is to accept as many immigrants as possible, while still fol-
lowing the guidelines that were passed to them. Each accepted able worker nets the
officer 5 credits, which eventually turn into a bonus to the officer’s salary. There are
no rewards for rejecting immigrants. It becomes clear that the bonus each officer
accumulates depends entirely on chance, and some officers may accumulate more
than others, if at all. As such, some officers might feel inclined to accept immi-
grants they should not, only to add to their personal gain.

To ensure officers act on the best interests of the nation only, the government
introduced an enforcement system to the offices at the borders. Among the
officers working in the immigration office, one is responsible for observing and
recording the behaviour of those working in booths. This officer is known as the
“monitor”. His job is to write reports about what the officers do and send these
reports to another officer, known as the “enforcer”. The enforcer then reads
the reports that are passed to him and look for any inconsistencies, such as the
approval of an illegal immigrant. As this represents a violation of a rule, or norm,
the enforcer then carries out an action to sanction the offending officer. The
penalties for approving an illegal immigrant are the immediate loss of 10 credits
and suspension of work activities for up to 10s. Considering that immigrants
arrive at a rate of 1 per 2s, in a 10-s timespan 5 immigrants would have arrived
at a given booth, meaning that a violating officer potentially loses 25 credits.
Added to the other portion of the sanction, the potential loss rises up to 35
credits.

! Inspired by the game “Papers, please”: http://papersplea.se.

http://papersplea.se

62 S. Chang and F. Meneguzzi

The enforcement system, however, is not cost free. Each monitor and enforcer
has an associated cost and it is within the interests of the nation to spend as
little as possible with such a system. Therefore, the government wants to know
how intensive the system must be to cover enough cases of disobedience so that
officers will know violating norms is a disadvantage rather than an advantage.

There are two norms that can be extracted from this scenario, which we define
in Examples 1 and 2. Later, in Sect. 4.3, we develop the formal representation of
norms in our system and proceed to formally defining these norms. These norms
concern the stability of the immigration program by assuring valid immigrants
are accepted and discouraging corrupt officers to accept those who should not be.

Ezxample 1. “All immigrants holding valid passports must be accepted. Failure
to comply may result in the loss of 5 credits.”

Example 2. “All immigrants holding passports that are not valid must not be
accepted. Failure to comply may result in the loss of 10 credits and suspension
from work activities for up to 10s.”

4 NormMAS Framework

In this section, we develop our monitoring and enforcement framework for norma-
tive agents. We start with an outline of the main components in our framework in
Sect. 4.1. We them review the agent and environment-based approaches we use in
our implementation in Sect.4.2. Sections4.3 and 4.4 describe the formalisation
of norms and actions we adopt. With these formalisation covered, we explain
how monitoring and enforcement work in Subsects. 4.5 and 4.6, respectively.

4.1 Architecture Overview

To allow the reader to better understand this section, we first offer an overview of
the architecture envisioned by our work. We illustrate this architecture in Fig. 1,
which shows the main elements that compose our framework and their interac-
tions. These elements can be divided into three groups: agents, environment and
external.

The agents group is self-explanatory, and it is where we put the agents that we
are using for simulation and for monitoring/enforcement tasks. The “Simulation
Agent Programs” are the agent programs which are simulating the behaviour we
wish to study, in this case our immigration officers. “Monitor Agents” are agent
programs which observe the actions performed by the simulation agent programs
and “Enforcer Agents” make the decision of whether these actions violate some
norm or not.

The environment group is composed of the elements that define what an
environment is like. In our case, our environment is not a centralised entity, but
a collection of artefacts through which agents interact. For example, monitor
agents use the “Reporting Interface Artefact” to file reports for enforcer agents to
analyse, as if they were actually putting reports in a pile over the enforcer agent’s

Simulating Normative Behaviour in Multi-agent Environments 63

desk. As we describe in the next subsection, this approach makes programming
the environment easier by separating responsibilities among different artefacts,
instead of concentrating actions in a single environment description. The types
of artefacts in this group should include all types pertaining to the simulation
context, e.g. immigration booths for passport reviewing; and three fixed types
that are part of our framework: the reporting artefact, the monitoring artefact
and the normative artefact. These artefacts are used exclusively by monitoring
and enforcement agents to perform tasks of the normative context, the exception
being the Normative Artefact, which should be accessible to agents interested in
observing normative events. Normative events include the creation, activation,
deactivation and destruction of norms and the emission of sanctions to violating
agents.

The external group is where we keep the elements that are auxiliary to our
framework, and although not considered autonomous agents are also not part of
the environment. Currently, this group contains the Action History, a structure
in which we store actions for normative analysis, and the Normative Base, a
database of established norms. In the following subsections we discuss each of
these groups in more detail.

4.2 Jason and CArtAgO

In order to show the feasibility of the mechanism proposed in this paper, we use
two programming approaches: agent-oriented programming and environment-
oriented programming. The former is provided by the Jason interpreter [12],
while the latter is achieved with the Common Artifact infrastructure for Agents
Open environments (CArtAgO) [22].

Jason provides us with the means to program agents using the AgentSpeak
language [23] in a Java environment. Agents are built with the BDI [24] archi-
tecture, and so their behaviour is directed by beliefs, goals and plans. Beliefs are
logical predicates that represent an agent’s considerations towards its environ-
ment. Predicates such as valid(Passport) and wallet(50,dollars) indicate
that the agent believes the given passport variable is valid and that his wallet
currently contains 50 dollars. In AgentSpeak variables start with an upper-case
letter, while constants start with lower-case.

Goals are states that the agent desires to fulfil, and these can be either
achievement goals or test goals. Achievement goals are objectives or milestones
that agents pursue when carrying out their duties. To represent these in AgentS-
peak, the goal’s name is preceded by the ‘I’ character. Test goals are questions
an agent may ask about the current state of the environment. These can be
identified by a ‘?’ preceding the goal’s name.

To achieve these goals, agents need to perform sequences of actions that
modify the environment towards the desired states. This sequence of actions is
referred to as a plan [25]. A plan is not necessarily composed solely of actions,
however, it can also contain sub-plans. This allows complex behaviours to be
built, creating flows of actions that vary and are influenced by agent beliefs and
perceptions.

64 S. Chang and F. Meneguzzi

Agents perceive normative activity
Simulation
Agent
Programs . Environment
,,,,,, act/perceive
Lo Simulation Artefacts
[::::: External n ‘ﬁ——: r——:
****** . record to b b —
L Action CTTmT
Histor ! I I
Y read from Lo — s b
Monitor) . Monitoring
Agent pcluclvr: action Interface
7P7roigr7ar7nsi on Artefact
L. Wt
Co Reporting
77777 0.n Interface
Artefact
Enforcer WF 0..n
Agent
Programs 1.n .
9 maintain nprms/ Normative
1..n evaluate report/ 0..n Interface
send sanction order Artefact
Norm read/update
Base

Fig. 1. Components of the NormMAS framework and their interactions.

As with any other programmed system, multi-agent systems must be tested
before being effectively deployed to their end environments. To do so, test envi-
ronments can be programmed for agents to be observed and any faulty behaviour
addressed before release. Jason allows the programming of test environments in
Java language, by providing an interface between agents and the programmed
environment. These environments, however, are centralised, and so they are
meant for small systems or specific test scenarios. This hinders scalability, which
is an important aspect to consider when working with complex, more realistic
scenarios or simply more robust structures. To address this limitation, we use
the CArtAgO framework for environment programming.

In CArtAgO, environments are not seen as a centralised domain description,
but as a distribution of observable properties and operations among artefacts.
These artefacts represent objects in the environment through which agents inter-
act with one another indirectly, e.g. a table in an office, on which an agent may
stack reports for another agent to pick these reports up and read them. The
artefact model is useful because it groups operations according to a context, so
it is not only easier to understand the environment model, but also to maintain
it. Agents can create and destroy artefacts at their convenience, and should new
operations be needed for a new feature in the MAS, it can be done by adding
new artefacts, instead of changing existing routines to conform to new protocols.
This approach is also more scalable, as one of the basic features of CArtAgO

Simulating Normative Behaviour in Multi-agent Environments 65

is that it can distribute artefacts among workspaces. Workspaces are artefact
containers that can be configured in several nodes in a network, eliminating the
need to concentrate the environment on a single machine. In our work, we use
artefacts for offering monitoring and enforcement tasks to agents, and we refer
to these artefacts as “normative artefacts”. These normative artefacts are shared
between normative agents so that more monitors and enforcers may be added
to the system as it scales up.

4.3 Norms

In order to keep competition between agents manageable a designer creates
norms to direct agent behaviour and maintain environment stability. This is
achieved by specifying obligations and prohibitions [6]. Here, obligations are
behaviours that agents must follow in a given context to comply with the norm,
and prohibitions behaviours that jeopardise the environment’s stability, and so
must be avoided. Violating prohibitions is just as harmful as violating obliga-
tions, hence both cases must be addressed when detected. We expect that, when
agents are punished for transgression, they are able to learn not to misbehave.
Examples1 and 2, in Sect. 3, correspond to an obligation and a prohibition,
respectively.

While norms in the real world are expressed in natural language, they must
be translated to a multi-agent environment so that agents are able to reason
about them. This requires the extraction of necessary information related to a
norm and composition of a mathematical representation. Agents should not have
to reason how or why a certain norm came to be, but rather what the norm is
about and what are the consequences of violating it. The format can also be
extended to include other important information, such as the sanction function
associated with a norm’s violation, or the conditions for automatic activation
and expiration of the norm [6]. In this paper, norms as specified according to
the tuple of Definition 1.

Definition 1. A norm is represented by the tuple N' = (i, k, X, T, p), where:

— 1 € {obligation, prohibition} represents the norm’s modality.

- k € {action, state} represents the type of trigger condition enclosed.
— x represents the set of states (context) to which a norm applies.

— T represents the norm’s trigger condition.

— p represents the sanction to be applied to violating agents.

Using Definition 1, we can proceed to formalising the norms from our exam-
ple. We can formalize the first norm of our scenario from Example1, as shown
in Example 3.

Ezample 3. (obligation, action,valid(Passport), accept(Passport),loss(5))

The process can be repeated for Example 2. By identifying the context of a
norm, it is possible to define it solely with predicates and atoms, as shown in
Example 4, below.

Example 4. (prohibition, action,not valid(Passport), accept(Passport),loss(10))

66 S. Chang and F. Meneguzzi

4.4 Action Records

Like norms, actions must also be stored as tuples containing essential infor-
mation. Actions captured by monitors must only be accessed by agents of the
enforcer type, and therefore only the pieces of information that can be associ-
ated with norms are deemed essential. These are: what was done; who did it;
and under what context it was done. Example 5 shows how a monitor reports
its observations to an enforcer:

Ezample 5. “Officer John Doe approved Passport #3225. The passport was
known to be valid.”

From this report, we can extract the following details:
Ezample 6. (johndoe, approve(Passport),valid(Passport))

In this example, an officer approves the entry of an immigrant holding a valid
passport. The next report reads:

Ezxample 7. “Officer John Smith approved Passport #2134. The passport’s valid-
ity could not be confirmed.”

From this report, we can extract the following details:
Ezample 8. (johnsmith, approve(Passport), notvalid(Passport))
As such, we define Action Records:

Definition 2. An Action Record, stored within the Action History, is repre-
sented by the tuple: R = (v, a, B), where:

— vy represents the agent executing the action;

— « 18 the action description in the form “f(po,p1,--.,pn)”, where f is an action
name and pg, ..., Pn are the action’s parameter values; and

— B represents agent 7y’s beliefs at the moment of execution.

4.5 Monitoring System

The monitoring is divided in two parts: a capturing system, which gathers infor-
mation pertaining to an action’s execution context, and a report forwarding
system, which provides enforcers with the gathered information for violation
detection. To gather relevant information, the capturing system employs two
strategies: an action capturing strategy and a belief state capturing strategy. In
action capturing, whenever an agent successfully executes an action, the captur-
ing system takes note of that action. In CArtAgQO, this means that each successful
operation is recorded for further analysis. Should an action fail for any reason,
the capturing system ignores it. Yet, recording every successful action is a prob-
lem for both scalability and practicality. There is no reason to capture actions
that are not enforced by any norm, e.g book-keeping actions or CArtAgO’s own

Simulating Normative Behaviour in Multi-agent Environments 67

artefact creation and lookup operations. As such, we include capturing routines
only for the operations relevant to the normative context, so as not to waste
neither space and time with unimportant actions.

In belief state capturing, we employ a similar strategy to that of action
capturing. Much like actions, there may be beliefs which are not related to
any norms in the system. Thus, we should apply a filtering procedure when
scanning beliefs to avoid wasting space on useless information. We propose a
simple filtering technique, which requires monitors to also focus on normative
activity:

1. For each new active norm, scan the norm’s context for literals to add to a to
be observed list.

2. If the norm’s triggering condition is of the state type, do the same with the
condition’s literals.

3. For each deactivated norm, remove it from the to be observed list only literals
that are not seen in any other norms.

We then change our capturing routines to scan the belief bases only for the
literals in the to be observed list. If any belief to be observed cannot be found in
the belief base, they can be ignored. Note that this list can contain only predicate
names, and not their full list of terms.

Once we capture an action, we store it in the Action History, which is a
queue-like data structure from which monitors gather information to build the
reports that they send to enforcers. Actions are stored in the format discussed
in Sect.4.4 and are removed from the queue as soon as a monitor attempts to
read them, regardless of the monitor’s success in doing so.

It is the monitors’s responsibility to send captured actions to enforcer agents
in the form of a report for analysis. To achieve that, we use a producer/consumer
model, in which an agent continuously provides information, through a channel,
to another agent that consumes this information. With this in mind, we can
identify four components that are necessary for this setup: a Producer, a Con-
sumer, a channel for communications and the information itself. In our context,
the role of Producer is given to Monitor Agents; the role of Consumer is given
to Enforcer Agents; the communication channels are artefacts called “Reporting
Interface”; and the information that transits through this channel are reports
containing the actions executed by agents. This process is illustrated in Fig. 2.

Since monitoring in the real world is not cost-free, we need to spend resources
to have an effective monitoring system in place [26], with the effectiveness of a
monitor depending on its intensity. For this reason, we must enable the adjust-
ment of monitoring intensity, so that enforcement can be performed at a cost
considered affordable by the society. These adjustments take the form of dif-
ferent monitoring strategies. An example would be a probabilistic strategy, in
which each captured action has a probability of being successfully read by a
monitor. If the reading is successful, the action is guaranteed to be reported to
an enforce, whereas if the reading fails, then the action is lost forever. We can
use this to simulate the imperfect monitoring of actions, when some violations
may go unpunished. Other strategies that monitors may apply include reading

68 S. Chang and F. Meneguzzi

Monitoring SystemJ
Art:Monitoring Ag:Monitor Art:Reporting
Interface Interface
T T T
™ oll -
I
+actionAvailable S |
I
readAction
action
sendReport
T
I
I
I
I
I
I
m | e
I | I
))

Fig. 2. Monitors poll the monitoring interface for new actions. When a monitor is
successful at reading an action, it sends a report containing the action for analysis via
the reporting interface.

only actions that they know are being enforced by an active norm. An extension
to this strategy would be to add a probability of reading enforced actions with
success. In this paper, we use the probabilistic strategy to study the general
behaviour of our simulation.

4.6 Enforcement System

The enforcement system represents the Consumer entity in the normative mecha-
nism’s Producer/Consumer scheme. An enforcer agent connects to the Reporting
Interface and awaits the arrival of new reports to analyse. The arrival of new
reports is perceived by the enforcer, and in our implementation this perception
is mapped to the +newReport signal. Once the report submission is perceived,
the enforcer accesses the Normative Interface in search of currently activated
norms and checks for any possible violations by the reported action.

During the violation detection routine, the perception of violations is also
mapped to a signal, represented in the sequence diagram of Fig.3 as the
+violation event. When a violation is perceived, it falls to the enforcer to
apply associated sanctions. The sanctioning step is the last in this process, and
it starts as soon as detection finishes.

In order to sanction violating agents, the normative mechanism must be able
to recognise them. It does not make sense to be told “John has approved an
invalid passport. He violated a norm”. if we do not know who John is in the
first place. Therefore agents must be registered to the normative system prior
to execution of their designed plans, similar to how people are registered for

Simulating Normative Behaviour in Multi-agent Environments 69

Enforcing SystemJ

Art:Reporting
Interface
T

Art:Normative
Interface
T

’ Ag:Enforcer

+newReport S ‘

— L

readReport

F-

report

detectViolation

-

= violation

sanction

Fig. 3. Enforcers read new reports via the reporting interface. For each report, they
use the normative interface to access the normative base and look for violations in
agents’s actions.

government issued IDs. In CArtAgQO, this is accomplished through an operation
in the Normative Interface that adds the agent’s ID to a list, so that they may
be found when needed. The ID they are registered with should be the same that
appears in Action Records.

Normative Base. When norms are created, they must be stored within the
system so that they may be accessed by an enforcer attempting to detect viola-
tions. The Normative Base structure holds all the norms that exist in the system,
active or not. Every time a norm is created, it is stored in a list structure with
a unique identifier. Norms may be activated or deactivated through the Norma-
tive Interface. Every time a norm is created, activated, deactivated or destroyed,
agents connected to the Normative Interface perceive the event.

Detecting Violations. The detection operation runs for each action report
received by an enforcer agent. Each action read is verified against the normative
base, along with the context under which the action was executed. Since it is
possible for an action to violate more than one norm, we utilize a list structure to
take note of all violations detected so they will be properly addressed at a later
time. At first, no norm is seen as violated and thus the list is empty. A norm
is only added to the list when all verification steps finish with the variable’s
isViolated value set to True. The procedure for detecting violations can be seen
in Algorithm 1 and is explained further.

70 S. Chang and F. Meneguzzi

Algorithm 1. Violation detection algorithm.

1: function DETECTVIOLATION({7, «, 3))
2 V1]

3 for each n = (u, K, x, 7, p) € ActiveNorms do
4 if CONTEXTAPPLIES(, 3) then

5: if CONDITIONAPPLIES(k, T, o, 3) then
6: if p = prohibition then
7.

8

9

V «—VU{n} b Violation detected! Adds to the list of violated norms.

else
: if u = obligation then
10: V —VU{n} b Violation detected! Adds to the list of violated norms.
11: for each n € V do
12: SIGNALVIOLATION(n,)

Detection of violations can be achieved in two steps: context analysis and trig-
ger condition analysis. Context analysis is about making sure that the action’s
execution context is the same as the one predicted by a norm. If it is, then there
is a possibility of violation and further analysis is required. Otherwise, violation
is considered an impossibility and the routine carries on. Formally, we define the
norm’s context as x and the acting agent’s belief-base as (3. Hence, the context
analysis returns True value if y C (. Algorithm 2 is used for comparing sets
of predicates. It checks if all the predicates defined in context x are present in
the agent’s belief-base (3, one by one. If a predicate in x is negated (e.g not
valid(Passport)), then the algorithm checks for its absence in belief-base 3
instead. This is to reflect how the not operator works in Jason. The routine
returns True if the trigger condition is satisfied and F'alse otherwise.

A trigger condition of a norm can be either the execution of an action or
the achievement of a state by an agent. This is specified by the norm’s trigger
condition type and directs the way in which the detection algorithm executes. If
we are working with an action trigger, then we must compare the action that was
executed with the one specified by the norm. However, if we are working with a
state trigger, then two contexts must be compared: the agent’s belief-base and
the norm’s state trigger condition. These are compared using the context analy-
sis algorithm of Algorithm 2. We show the pseudo-code for the trigger analysis
procedure in Algorithm 3.

When both context and trigger conditions are satisfied, we need only verify
whether the norm is an obligation or prohibition to conclude if it was violated
or not. A prohibition means that a certain action or state is undesired under
the given context. If all the conditions up to now have been met, we conclude
that said undesired state has been reached and the norm was violated. On the
other hand, an obligation requires the flow specified by the norm to be followed
strictly, and if this is the case, we conclude that the norm was complied with.
By negating our conditions, we also negate its results: if in a prohibition context
the conditions were not met, then we would be home free; if they are not met
while in an obligation context, however, we would have just violated it.

Simulating Normative Behaviour in Multi-agent Environments 71

Algorithm 2. Context comparison sub-routine.
1: function CONTEXTAPPLIES(x = [l1, ..., In], 8 = [l1, ..., In])

2: Require count(x) < count(3)
3: for each p € x do

4: isPresent «— False

5: checkAbsence «— False

6: if p is of the form —¢ then
7 p—¢

8: checkAbsence < True
9: for each | € 5 do

10: if [= p then

11: isPresent — True
12: break

13: if checkAbsence = isPresent then
14: return False

15: return True

Their modality notwithstanding, every norm that is violated is added to a
list that is processed when all norms have been verified. Sanction functions are
then executed and agents perceive their punishments. Penalties can be brought
directly upon agents through perception or carried out by a third party, while
records on agent transgressions can be maintained in a separate structure for
greater consistency.

Algorithm 3. Trigger condition analysis sub-routine.
1: function CONDITIONAPPLIES(k, T, &, 3)

2: if kK = action then
3: return 7 = «
4: return CONTEXTAPPLIES(T, 3)

5 Evaluation

In order to test our solution, we developed agents using Jason and deployed
them in a CArtAgO environment following the scenario described in Sect. 3. To
visualise the difference between compliant and non-compliant behaviours, two
types of agents were used: the normal type and the corrupt type. The normal
type is programmed to approve only those passports that are truly valid, whereas
the corrupt one will approve passports indiscriminately for his own personal gain.
By making it so, we can more easily tell the effectiveness of the norm enforcing
mechanism. Therefore, the following results were expected:

— Corrupt agents attain more credits when under lower monitoring intensity.

— Standard agents maintain an average quantity of credits through all simula-
tions.

— At some point, corrupt agents should start performing poorly due to higher
monitoring intensity. This marks the point at which monitoring can change
the environment.

72 S. Chang and F. Meneguzzi

We ran 35 experiments for 11 different values of monitoring intensity?. Inten-
sity values range from 0 to 100, with a step value of 10. Each simulation was run
for 10 min. In this timespan, with our set-up, around 1048 immigrants attempt
to cross the border. In what follows, we refer to an agent’s obtained credits, or
their performance measure, as their utility. We use that measure in the graph of
Fig. 4, which illustrates how the environment’s monitoring intensity affects the
utilities of corrupt agents 1 and 2. The monitoring intensity is the probability as
a percentage of a monitor being able to read an agent’s action. A value of 100
means that all actions are read, while a value of 0 means no actions are read
by the monitor. We notice that, as the intensity of the monitoring mechanism
increases, the utility of corrupt agents decreases to the point where performing
badly and not performing at all yield the same utility, whereas normal agents
maintain their average utility. This allows us to conclude that, for a monitor-
ing intensity value of 40 or more, following norms is a better decision than the
contrary.

The data used to plot the graph of Fig. 4 can be seen in Table 1. Values for u
and o represent the arithmetic mean and standard deviation, respectively. These
were calculated to show that utility values for normal agents are near constant.
The p values for corrupt agents show that, at the end of the simulation, their
average performance is worse than those of normal agents, due to their constant
violation of norms. A high o value for these agents shows that their perfor-
mance suffers between simulations. We can then see that through the analysis
of recorded agent actions and successful identification of violation occurrences,
violating agents are punished by the enforcement system and have their utilities
affected.

o 140 — .

= Officer 1 ——
£ 120y Officer2 |
5 100 + Corrupt 1 g
& 80 L Corrupt 2]
2 60]
)

% 40 + 1
o 20 + A
>

< 0

0 10 20 30 40 50 60 70 80 90 100

Monitoring Intensity

Fig. 4. Utility of corrupt agents is affected by monitoring intensity.

2 Although our experiments correspond in a broad sense to a simulation, we avoid the
term for its possibly loaded meaning.

Simulating Normative Behaviour in Multi-agent Environments 73

Table 1. Agent utilities X monitoring intensity.

Intensity | Officerl | Officer2 | Corrupt officerl | Corrupt officer2
0 65,3285 | 66,3714 | 130,6571 130,7000
10 64,5871 | 66,5714 | 103,3000 106,2285
20 65,4428 | 65,0142 | 86,8000 87,9571
30 65,3142 | 64,8714 | 73,7571 75,6571
40 65,7857 | 65,1857 | 59,0571 57,8142
50 65,6714 | 65,7714 | 54,3285 53,1857
60 65,1571 | 65,1714 | 38,7714 38,4571
70 65,0142 | 65,6571 | 27,6428 27,3714
80 64,7857 1 64,9571 | 19,2285 19,3428
90 65,0714 | 66,1714 | 13,7857 13,8142
100 66,7571 | 65,8000 1,4714 0,0285
m 65.3559 | 65.5948 | 55,3454 55,5051
o 0.5569 | 0.5705 | 38,4836 39,1996

6 Related Work

There are multiple tools available for programming multi-agent environments,
few of which provide mechanisms for norm specification. These tools range from
programming libraries to model-based simulators. To name a few, NetLogo [16]
and its distributed version HubNet [27] are of the model-based type and allow
users to work with educational projects and, to some extent, professional ones.
Other tools include MASON [17] and Repast [18]. MASON is a simulation library
developed in Java that provides functions for modelling agents and visualising
simulations as they run. As for Repast, it uses interaction models much like Net-
Logo does, although it is meant for professional use and thus offers more alter-
natives for agent programming. One final example worth mentioning is MASSim
[11], which promotes multi-agent research and is used in the MAS Programming
Contest? [28]. This one, however, provides only the tools related to the con-
tests. Although it is possible to develop custom agents for operation within the
simulator, the practice is not encouraged by its developers.

Building a full-fledged norm-based behaviour simulation engine is not a triv-
ial task, and the “Emergence in the Loop” (EMIL) [29] project built a set of
tools to accomplish this objective. A toolset which includes an extension of
the BDI architecture that is capable of simulating the processes referred to as
“immergence” and “emergence” of norms [30]; and an integration with multi-
agent modelling tools such as NetLogo [16] and Repast [18]. In this way, agents
are modelled in one of these environments and then simulated using the EMIL
agent architecture. It is a very powerful tool for studying social behaviour in

3 https://multiagentcontest.org.

https://multiagentcontest.org

74 S. Chang and F. Meneguzzi

autonomous agents, since agents can reason about norms and, together, create
conventions of what kinds of behaviours must be avoided or followed. EMIL’s
approach to normative simulation is more focused on agents and their experience
with norms. This contrasts with our approach in that we are more focused on
norm monitoring and enforcement tasks, and little is said about these matters in
the EMIL literature. We also consider the environmental aspects of Normative
Multi-Agent Systems, which is why we employ CArtAgQO in our implementation.

Finally, the Moise™ [19] tool (part of the JaCaMo [31] framework) can also be
used to specify norms for MAS development. Moise™ allows us to create organ-
isations of agents, and within these organisations agents take up specific roles
to act and missions to accomplish. The normative part of Moise™ ties agents
to their missions through obligations, prohibitions and permissions. Neverthe-
less, Moise™ differs from NormMAS in three key aspects. First Moise™ focuses
on normative specification for organisations to coordinate agents in performing
certain tasks, whereas in NormMAS, we have social norms and regulations that
only tell agents what they should or should not do. Consequently, when there
is no normative specification in NormMAS, the agents’s routines remain intact.
Second, while Moise™ norms affect whole plans, NormMAS norms affect only
specific actions or states. Third, while Moise™ norms are not regimented, lack of
compliance does not incur any penalties for violating agents, which means that
they are not enforced either.

7 Conclusions and Future Work

In this paper, we constructed a mechanism of norm processing and enforcement
in a multi-agent environment. We show its feasibility with an implementation
using Jason [12] and Cartago [22] technologies. By keeping track of agent activ-
ities and analysing actions against a normative base, it is possible to detect
violations and enforce norms through the sanctioning of violating agents. With
this framework, it is possible to evaluate different implementations [6,32-34] of
normative behaviour. Statistics collection can also be customised so that results
may be compared between simulations. We provide our example implementation
to the public via a GitHub repository [35].

CArtAgO allows us to build environments in a distributed manner, therefore
providing scalability for realistic simulation scenarios or complex multi-agent
systems. The philosophy behind CArtAgO, which sees the environment as the
composition of artefacts through which agents interact, also aided in the frame-
work’s construction. Artefacts are modular, they can be attached or detached
to a multi-agent system seamlessly. Meaning that artefacts can be created to
suit an agent’s or group of agents’s specific needs, and agents may connect only
to those artefacts that are related to their designs. We took advantage of those
features to build the interfaces for the monitoring system to access the Action
History and Normative Base structures.

As future work, we aim to build improvements and extensions to the frame-
work, such as: a mechanism to be added to the normative system that allows

Simulating Normative Behaviour in Multi-agent Environments 75

activation and expiration of norms following predefined conditions; agent archi-
tectures that can learn from normative environments, and with that avoid penal-
ties by violation or minimising performance loss when violations are inevitable
[6]; enable agents to learn about the enforcing intensity and use that informa-
tion to their advantage [26]; and the introduction of agent hierarchies to control
normative power [36].

References

10.

11.

12.

13.

14.

Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multi-Agent Systems, 2nd
edn, pp. 3-50. The MIT Press, Cambridge (2013)

Jones, A.J.1., Sergot, M.: On the characterisation of law and computer systems: the
normative systems perspective. In: Meyer, J.-J.C., Wieringa, R.J. (eds.) Deontic
Logic in Computer Science: Normative System Specification, Wiley Professional
Computing Series, Chapter 12, pp. 275-307. Wiley, Chichester (1993)
Kollingbaum, M.: Norm-governed practical reasoning agents. Ph.D. thesis, Univer-
sity of Aberdeen (2005)

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp. 9-16
(2001)

Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defea-
sible logic. Auton. Agent. Multi-Agent Syst. 17(1), 36-69 (2008)

Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proceedings of the Eighth International Conference on Autonomous Agents and
Multiagent Systems, pp. 177-184 (2009)

Criado, N.: Using norms to control open multi-agent systems. Ph.D. thesis,
Universitat Politécnica de Valéncia (2012)

Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: van
der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M., (eds.) Autonomous Agents
and Multi-Agent Systems, IFAAMAS, pp. 1057-1064 (2012)

Panagiotidi, S., Vazquez-Salceda, J., Dignum, F.: Reasoning over norm compliance
via planning. In: Aldewereld, H., Sichman, J.S. (eds.) COIN 2012. LNCS, vol. 7756,
pp- 35-52. Springer, Heidelberg (2013)

Meneguzzi, F., Mehrotra, S., Tittle, J., Oh, J., Chakraborty, N., Sycara, K.,
Lewis, M.: A cognitive architecture for emergency response. In: Proceedings of the
Eleventh International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1161-1162 (2012)

Behrens, T.M., Dastani, M., Dix, J., Novédk, P.: MASSi: multi-agent systems
simulation platform. In: Begehung des Simulationswissenschaftlichen Zentrums.
Clausthal University of Technology (2008)

Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason (Wiley Series in Agent Technology). Wiley, Chichester
(2007)

Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE (Wiley Series in Agent Technology). Wiley, New York (2007)

Conte, R., Andrighetto, G., Campennl, M.: Minding Norms: Mechanisms and
Dynamics of Social Order in Agent Societies. Oxford Series on Cognitive Mod-
els and Architectures. OUP, Oxford (2013)

76

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Chang and F. Meneguzzi

Fagundes, M., Ossowski, S., Meneguzzi, F.: Analyzing the tradeoff between effi-
ciency and cost of norm enforcement in stochastic environments populated with
self-interested agents. In: Proceedings of the 21st European Conference on Artificial
Intelligence (2014)

Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University. Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81, 517-527 (2005)

North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., Sydelko, P.:
Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst.
Model. 1(1), 1-26 (2013)

Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1, 370-395 (2007)

Jones, A.J.I., Sergot, M.: On the characterisation of law, computer systems: the
normative systems perspective. In: Deontic Logic in Computer Science: Normative
System Specification, pp. 275-307. Wiley (1993)

Oren, N., Vasconcelos, W., Meneguzzi, F., Luck, M.: Acting on Norm Constrained
Plans. In: Leite, J., Torroni, P., Agotnes, T., Boella, G., van der Torre, L. (eds.)
CLIMA XII 2011. LNCS, vol. 6814, pp. 347-363. Springer, Heidelberg (2011)
Ricci, A., Viroli, M., Omicini, A.: CArtAgQO: a framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Dyke Parunak, H., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67-86. Springer, Heidelberg (2007)
Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42-55. Springer, Heidelberg (1996)

Bratman, M.E.: Intention, Plans and Practical Reason. Harvard University Press,
Cambridge (1987)

Meneguzzi, F., De Silva, L.: Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning. Knowl. Eng. Rev. 30, 1-44 (2015)
Meneguzzi, F., Logan, B., Fagundes, M.S.: Norm monitoring with asymmetric
information. In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) Inter-
national Conference on Autonomous Agents and Multi-Agent Systems, AAMAS
2014, Paris, France, pp. 1523-1524. IFAAMAS/ACM, 5-9 May 2014

Wilensky, U., Stroup, W.: HubNet. Center for Connected Learning and Computer-
Based Modeling, Northwestern University. Evanston, IL (1999). http://ccl
northwestern.edu/netlogo/hubnet.html

Behrens, T.M., Dastani, M., Dix, J., Hiibner, J., Koster, M., Novék, P., Schlesinger,
F.: The multi-agent programming contest. AI Mag. 33(4), 111-113 (2012)
Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop:
simulating the two way dynamics of norm innovation. In: Boella, G., van der
Torre, L.W.N., Verhagen, H. (eds.) Normative Multi-agent Systems, vol. 07122,
Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszen-
trum fiir Informatik, Schloss Dagstuhl, Germany, 18-23 March 2007
Andrighetto, G., Campenni, M., Conte, R., Paolucci, M.: On the immergence
of norms: a normative agent architecture. In: Proceedings of the Association for
the Advancement of Artificial Intelligence Symposium, Social and Organizational
Aspects of Intelligence, Forthcoming (2007)

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
http://ccl.northwestern.edu/netlogo/hubnet.html

31.

32.

33.

34.

35.

36.

Simulating Normative Behaviour in Multi-agent Environments 7

Boissier, O., Bordini, R.H., Hubner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Prog. 78(6), 747-761 (2013). Spe-
cial section: The Programming Languages track at the 26th ACM Symposium on
Applied Computing (SAC 2011); Special section on Agent-oriented Design Meth-
ods and Programming Techniques for Distributed Computing in Dynamic and
Complex Environments

Lee, J., Padget, J., Logan, B., Dybalova, D., Alechina, N.: Run-time norm com-
pliance in BDI agents. In: International Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS 2014, pp. 1581-1582 (2014)

Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict reso-
lution in multi-agent systems. Auton. Agents Multi-Agent Syst. 19(2), 124-152
(2009)

Criado, N., Argente, E., Botti, V.J., Noriega, P.: Reasoning about norm compli-
ance. In: Sonenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) 10th International
Conference on Autonomous Agents and Multiagent Systems, Taipei, Taiwan, vol.
1-3, pp. 1191-1192, IFAAMAS, 2-6 May 2011

Chang, S.: normmas-sim: NormMAS - paper version. Zenodo, December 2015.
doi:10.5281/zenodo.35028

Oren, N., Luck, M., Miles, S.: A model of normative power. In: van der Hoek,
W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th International
Conference on Autonomous Agents and Multiagent Systems, Toronto, Canada,
vol. 1-3, pp. 815-822, IFAAMAS, 10-14 May 2010

http://dx.doi.org/10.5281/zenodo.35028

Exploring the Effectiveness
of Agent Organizations

Daniel D. Corkill®™), Daniel Garant, and Victor R. Lesser

University of Massachusetts Amherst, Amherst, MA 01003, USA
corkill@cics.umass.edu

Abstract. Organization is an important mechanism for improving per-
formance in complex multiagent systems. Yet, little consideration has
been given to the performance gain that organization can provide across a
broad range of conditions. Intuitively, when agents are mostly idle, orga-
nization offers little benefit. In such settings, almost any organization—
appropriate, inappropriate, or absent—leads to agents accomplishing the
needed work. Conversely, when every agent is severely overloaded, no
choice of agent activities achieves system objectives. Only as the overall
workload approaches the limit of agents’ capabilities is effective organi-
zation crucial to success.

We explored this organizational “sweet spot” intuition by examining
the effectiveness of two previously published implementations of orga-
nized software agents when they are operated under a wide range of
conditions: (1) call-center agents extinguishing RoboCup Rescue fires
and (2) agents learning network task-distribution policies that optimize
service time. In both cases, organizational effect diminished significantly
outside the sweet spot. Detailed measures taken of coordination and
cooperation amounts, lost work opportunities, and exceeded span-of-
control limits account for this behavior. Such measures can be used
to assess the potential benefit of organization in a specific setting and
whether the organization design must be a highly effective one.

1 Introduction

Organization is an important mechanism for improving performance in com-
plex multiagent systems [1-8]. Designed agent organizations provide agents with
organizational directives that, when followed, reduce the complexity and uncer-
tainty of each agent’s activity decisions, lower the cost of distributed resource
allocation and agent coordination, help limit inappropriate agent behavior, and
reduce unnecessary communication and agent activities [9-11].

When agents are mostly idle, agents can accomplish needed work whether
or not they are well organized. This does not mean that effective organization
does not affect how efficiently the agents work together, only that unorganized
and even misorganized agents have sufficient time and resources to accomplish
system objectives when lightly loaded. Conversely, when every agent is severely
overloaded, no choice of agent activities achieves system objectives. In this sit-
uation, effective organization can help agents be more efficient while failing to

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 78-97, 2016.
DOI: 10.1007/978-3-319-42691-4_5

Exploring the Effectiveness of Agent Organizations 79

achieve objectives fully, but whether they are well organized or not, the system
is unable to perform acceptably. Only as the overall workload approaches the
limit of agents’ capabilities does organization play a significant role in system
performance.

2 Organizational “Sweet Spot”

We first explored this organizational-impact conjecture empirically using an
previously implemented and described system of organizationally adept BDI!
agents [13—15] operating in a well-instrumented and highly parametrized exper-
imental platform adapted from the fire-extinguishing portion of RoboCup Res-
cue [16]. Organizationally adept call center agents direct fire brigade resources
under their control to extinguish fires in important buildings as quickly as pos-
sible. There are no fire-brigade bases in the adapted RoboCup Rescue environ-
ment, and brigades typically move directly from fire to fire, remaining deployed
if they become briefly idle. The objective is to minimize the total importance-
weighted damage to buildings. A call center can use its fire brigades to execute
plans to achieve its own goals of extinguishing building fires, and it can request
temporary use of fire brigades from other call centers when necessary.

Our goal was to learn how the relative performance of previously evaluated
agent organizations in this multiagent system changed when operating in envi-
ronments well outside the conditions typically studied. Whether the existing
agents and organization designs in this system were the best possible was not
a concern, as better candidates would affect only the magnitude of the relative
performances and not their qualitative characteristics. Some observations were
intuitive, but there were also surprises, and we believe this to be the first sys-
tematic study of organizational impact in a multiagent system over such a broad
range of conditions. We ran and analyzed thousands of controlled and repeat-
able simulation experiments involving dynamic environments in which new fires
occur at various city locations throughout the entire duration of an experimen-
tal scenario. In such settings, call-center agents have an ongoing (but potentially
changing) firefighting workload in which following organizational guidance offers
potential advantages over unguided, reactive local decision-making.

Observation 1: Sweet-spot behavior = Figure1 shows the relative differ-
ence in performance (as a percentage increase or decrease) between two organi-
zational configurations, Org and No Org, as the firefighting workload increases.
Org is an effective organization design that specifies a responsibility region for
each call center, and No Org dictates that call-center agents operate without any
responsibility-region directives. Call centers give priority to fighting fires in their
responsibility regions when such regions are provided. Each of the four call cen-
ters controlled six fire-brigade resources. Performance attained in each of the 320
simulation runs is a raw score of the inverse importance-weighted fire damage
in the city. We observed that the performance benefit achieved by organization

! Belief-desire-intention model of agency [12].

80 D.D. Corkill et al.

0.06
Configuration
R ~ Org

© 0.04- e Lt = No Org
o] N .
3 :
(7]
.g 0.02-
©
[T}
X 0.00

-0.02

0.0 2.5 5.0 7.5 10.0

* Fires Per Timestep

Fig. 1. Relative score achieved by organization (Color figure online)

(the raw score improvement) was greatest when the average firefighting work-
load on brigades was near their capacity to fight important fires (approximately
2.2 fires per timestep). All figures illustrate trends as workload (e.g., ignition
frequency) is varied. Trend lines are fit using a local linear model, with shaded
regions representing a 95 % confidence level in the mean of the performance dis-
tribution. For example, each trend line in the firefighting experiments fits 320
separate simulation runs (drawn as individual dots).

Attenuation of organization benefit outside the sweet spot is a form of phase
transition behavior. The transition occurs as the workload approaches the limit
of agents’ capabilities. The effect of phase boundaries has proved important
in satisfiability problems [17-19] as well as to understanding problem difficulty
in constraint satisfaction, number partitioning, and traveling salesmen tasks.?
With multiagent organizations, it is important to determine where on the con-
trol complexity scale a system is operating (how important using an effective
organization is to system performance) and more generally, when complex mul-
tiagent systems are operating within their organizational sweet spot. One may

2 For example, a typical phase-transition performance plot, such as Fig. 4 in the classic
Kirkpatrick and Selman SAT phase-change paper [18] shows the performance cliff
that occurs at the phase boundary, which shifts laterally under different conditions.
If such a figure is redrawn as relative difference curves from a baseline condition
(such as the k = 6/N = 40 values in that figure), it reveals wide “sweet spot”
curves similar to the curves shown in this paper. Relative plots highlight the span
and magnitude of performance differences near the phase change, and we consider
them more informative in highlighting sweet-spot regions than raw performance-
value plots.

Exploring the Effectiveness of Agent Organizations 81

argue that organizations (multiagent or otherwise) will tend to be inevitably
operated within the sweet spot region due to real-world economics that limit
capabilities and resources to the minimum required to operate effectively.

Upon observing organizational sweet-spot behavior, we took a more detailed
look into what was occurring as workload changed that accounted for the benefit
attenuation.

3 Performance Factors

Why do we create agent organizations? One reason is that complex agent behav-
ior becomes more structured and understandable through the definition of roles,
behavioral expectations, and authority relationships [20]. Additionally, orga-
nizational concepts can be used to help design and build agent based sys-
tems (organization-based multiagent system engineering). There is also a line of
research that addresses organizational membership in open agent societies (incen-
tives for organizational recruitment and retention and for the replacement of
agents that leave the organization). Recent work in open and sociotechnical set-
tings [21,22] has this emphasis. Aligning agents’ individual goals and objectives
with those of the organization are among the issues addressed in that context.
Our focus here is on organizational control; specifically, the organizational perfor-
mance of the members (“how they do their jobs”), rather than on attracting par-
ticipants from an open pool of agents (“obtaining members for the enterprise”)
or designing the agent system (“defining what the jobs (roles) are”). We assume
here that we have acquired the agents we need, that they all share the organiza-
tional objectives (e.g., saving the most important buildings in the city), and that
they are competent in their ability to perform tasks necessary to attain that objec-
tive. For example, there is no need to decide if an agent is able to play some role
in the organization [23]. Furthermore, there are no non-cooperative agents trying
to burn things down. Nevertheless, the cooperative agents sometimes do work at
cross-purposes in attaining those objectives (such as all wanting to fight an impor-
tant fire). This can occur whether the agents are organized or not, because agents
have a limited local view of the situation. If unorganized agents did not have the
same shared objective as when organized, then some performance gained through
organization could stem from the changed objectives. Our assumptions eliminate
such a cooperative-objective bonus.

We distinguish between operational decision making, the detailed moment-
to-moment behavior decisions made by agents, and organizational control, an
organization design expressed to agents through directives (“job descriptions”)
that limit and inform the range of operational decisions made by each agent in
the organization. These directives contain general, long-term guidelines, in the
form of parametrized role assignments and priorities (e.g., prefer extinguishing
fires in region A over fires in region B), that are subject to ongoing elaboration
into precise, moment-to-moment activity decisions by the agents [2,4,24]. Ideally,
following organizational directives should be beneficial when agent directives can
be designed that perform well over a range of potential long-term environment
and agent characteristics.

82 D.D. Corkill et al.

3.1 Operational Challenges

Without organizational directives, a call center must coordinate with other centers
to avoid sending redundant fire brigades to the same fire (every call center receives
all fire reports) using a highest estimated utility protocol to resolve conflicts. Coor-
dination and retractions consume valuable time, delaying extinguishing opera-
tions. The designed organization only requires coordination if a call center wants
to fight a fire outside its responsibility region. When region responsibilities are
inappropriate and do not match workloads, fire-brigade borrowing requests from
overloaded centers increase, again with a loss in performance. When the design is
appropriate, retractions are diminished at the risk of more borrowing (as we will
demonstrate when we discuss Fig. 6). Call centers must consider all borrowing and
loaning options in the context of estimated opportunity costs that are based on
potential new fires and uncertainty in the duration of fighting current fires. These
are challenging decisions even when agents are well organized.

The call-center agents are highly competent and can make skillful operational
decisions to extinguish fires without organizational guidance. Norms, functions,
protocols, etc., are implicitly represented in the plan templates used by these
call-center agents. Centers follow these norms (organized or not) and know how
to work together to fight fires and share fire-brigade resources.

Appropriately organized call-center agents, when operating in the sweet spot,
should function better than unorganized centers, which must consider of all
potential activities and explicitly coordinate them. The organizational complex-
ity in the firefighting system is quite simple. Each call center can perform only
two roles: (1) extinguishing fires by directing fire brigades to fight them and
(2) loaning fire brigades to another call center. Perhaps counter intuitively, orga-
nizational design and control of split roles in homogeneous multiagent systems
is more challenging than assigning discrete functional roles to specialized agents
in heterogeneous multiagent systems because specialization reduces the space of
reasonable choices [10]. The organizational “simplicity” in the firefighting set-
ting means that observed organizational performance differences stem from a
relatively small set of organizationally-biased behaviors and are not obscured by
complex role and agent interactions.

3.2 Factors Affecting Organizational Performance

We analyzed a number of general factors that influence organizational perfor-
mance. As these factors change, a designed organization may become highly
effective or less effective. In the discussion that follows, we provide an intuitive
description of each factor, why it is important, and how it can affect organi-
zational performance. We adjusted each factor individually while holding other
environmental settings constant in order to observe its effect on organizational
performance independent of the other factors. In total, we conducted a broad
analysis that included over 5000 simulation runs with over ten terabytes of simu-
lator output to determine how the general factors of coordination requirements,
cooperation benefits, lost opportunity, workload imbalance, and span of control
impact the effectiveness of organization. We begin with coordination.

Exploring the Effectiveness of Agent Organizations 83

Coordination Requirements. Typically, complex tasks performed by multi-
ple agents require coordination, and often a well-coordinated system will perform
much better than a system where agents work at cross purposes from only their
local, selfish perspectives. In firefighting, coordination is necessary to ensure that
call-center agents share responsibility for extinguishing a building only when
necessary, and otherwise fight important fires independently (i.e., they do not
blindly work on the same fire when more utility could be gained by working on
separate fires).

Coordination is not without associated costs, often involving delays while
beliefs, desires, and intentions are communicated. The time required for agents
to communicate this information and reconcile it with information from other
agents can be significant, especially in cases where agents control resources which
must be held in reserve while an agent decides whether it wishes to pursue
some goal. Even more significantly, when agents take uncoordinated actions that
involve operating in the world, they must deal with the consequences of phys-
ically moving resources and then withdrawing them (or having wasted them
if they are consumables) once they discover their actions are in conflict with
those of another agent. In our analyses, this has been the largest contributor to
coordination “cost.”

The amount of coordination required is not organization-independent. Orga-
nizational directives influence agents to assume specific roles and responsibilities
pertaining to certain goals, and assume less responsibility for other goals. The
best-case organization for a specific situation would be a perfect partitioning of
responsibility regions so that agents select the fires for which they are responsi-
ble over those that are the responsibility of others. This ideal situation results in
minimal goal conflicts, where two agents needlessly pursue the same goal (e.g.,
extinguish the building at 5" and Madison). It is important to note that even this
organization is not coordination-free, but when each goal is managed and com-
mitted to by the agent with the highest expected utility, the committing agent
is best suited for reaching out for assistance if necessary. In the context of fire-
fighting, this assistance comes in the form of lending and borrowing fire brigades,
an effective remedy for temporal workload imbalances. However, as we will note
shortly, excessive resource borrowing leads to inefficiencies in resource provision-
ing and is often a sign of a more permanent resource imbalance. The worst-case
organization (in terms of coordination complexity) would influence every agent
to select the same goals (No Org configuration). We analyzed many organization
configurations to explore the full spectrum between these two extremes, where
organization sometimes cannot prevent agents from selecting the same goals,
and at other times, is effective in preventing a goal conflict (which we will also
discuss later in conjunction with Fig. 6).

This coordination phenomena occurs in firefighting because call centers need
to negotiate with other call centers about which fires to fight. In order to come
to a resolution for a contested goal, call centers need to compute and share their
expected utility with peers. The call center with the highest expected utility will
then be responsible for managing fighting the fire, and for borrowing fire-brigade

84 D.D. Corkill et al.

resources from peers if necessary. To investigate the effect of adjusting this coor-
dination cost, we adjusted the resolution period, during which call centers reserve
resources to fight a fire while waiting for and considering bids from other call
centers intent on fighting the same fire. Only after the resolution period has
elapsed will the call center with the highest utility commit to fighting the fire.
By increasing the resolution period, we increase the cost of coordination while
simultaneously making centers more “globally aware” of the utility expected by
other agents. By lowering the resolution period, we lower the cost of coordination
but make call centers more selfish in that they are less open to considering bids
from other centers. Figures2 and 3, to be discussed shortly, show the effects of
“Low-Cost” (short) resolution and “High-Cost” (long) resolution times.

Observation 2: The performance separation of effective organization
increases with coordination requirements, without shifting the sweet
spot laterally = We analyzed several organizational designs: (1) a specific
responsibility region for each call center (Org) and (2) all centers are responsible
for the entire city (No Org). It seems reasonable to believe that when fires are
uniformly distributed, Org would perform best, minimizing goal conflicts while
still providing each agent with sufficient beneficial opportunities in its respon-
sibility region. In practice, this is generally true, however, we have found that
in cases where, when the conflict resolution period is very short (correspond-
ing to low coordination cost and more selfish agents), the directives supplied to
the organized agents do not improve on the No Org baseline. As coordination
cost grows, the performance of the organized agents (which need to coordinate
less frequently) improves increasingly on the No Org configuration (see Figs.2
and 3). Figure3 shows the total retraction time relative to No-Org, which has
the most retractions. In both Figs.2 and 3, the 0- and 10-time-steps resolution
period results are relative to comparable 0- and 10-time-steps resolution No Org
baselines.

Note that with low coordination cost (O-timestep resolution), the difference in
performance between the Org and the No Org configuration is only statistically
significant within a small window, centered at about 2-2.5 fires per timestep.
Correspondingly, the scenario with high coordination cost (10-timestep resolu-
tion) achieves a prominent global maximum centered at this time window. From
this analysis, it can be seen that when coordination does not incur significant
costs, organization is not nearly as beneficial as in cases where coordination (or
the absence of needed coordination) is costly. At moderate workload levels, the
performance gains afforded by organization reach the maximum. When the sim-
plicity of the scenario does not require coordination, the performance of the Org
configuration and the No Org configuration are statistically indistinguishable.
Extremely overloaded work scenarios are marked by either statistically indistin-
guishable performance differences or diminished returns.

Observation 3: Increasing call-center capabilities by adding resources
results in a lateral shift and widening of the sweet spot = The width
and position of the sweet-spot window is not fixed, as it depends on the agent’s
capabilities in servicing goals at either end of the workload range. Call centers

o
o
o
S

= 0.075-

Relative Score

o
o
a
o

Exploring the Effectiveness of Agent Organizations 85

Configuration
- —~ Org
. + No Org

1S0D-MO7

150D-ybIH

5.0 75

2.5
Fires per Timestep

Fig. 2. Varying coordination requirements: score relative to No Org (Color figure

online)

become more capable when they have more fire-brigade resources. Figure 4 shows
the result of doubling the number of fire brigades controlled by each call center
from six to twelve. Now, the organizational sweet spot occurs at a higher work-
load level: at approximately 2.7 fires per timestep. In addition, the sweet spot is
wider as call centers can handle greater task loads before the situation becomes

hopeless.

86 D.D. Corkill et al.

_ SIS Configuration
1000 - ..o.. o.. ‘,..-. o« ° o e Org
A0 + No Org
.‘*..',) W ’:.°. *
2 500 _ ..;.;".. o ' . .:..o. " ------ S . ------- 5 —
g 1 ERED R
O 3 . O
9 P] -2
L 0 et t——— e —
O v . .
© ‘ .
=
&
C -500 . ® o0l s %o
G1000- S .
© * ;.":l. B o ® ‘. . -~ ~
2 Y AR R
% e KAl
< 500- ¥ * s e
: . ° *s (g_
Q N ;
E © - §
0- !‘;" N A : —L:“. - e 1 -
-500- |
0.0 2.5 5.0 7.5 10.0

Fires per Timestep

Fig. 3. Varying coordination requirements: cost effects relative to No Org (Color figure
online)

By holding the conflict resolution period constant and varying the number of
call centers in the system, we see that coordination complexity is also a function
of how “well partitioned” the centers’ responsibilities are. In experiments with
four call centers, we can see that fewer goal conflicts arise in the Org case than the
No Org case. However, if we increase the number of call-center agents to twelve,
each with two rather than six fire brigades and responsibility regions that over-
lap with two other centers, the environmental responsibilities are too precisely

Exploring the Effectiveness of Agent Organizations 87

0.15- :
Configuration
o ~ Org
. ~=No Org
0.10 =t

Relative Score

0.0 25 5.0 7.5 10.0
Fires per Timestep

Fig. 4. Relative score with twice as many fire brigades (Color figure online)

partitioned to handle temporal responsibility differences even if, on average over
the course of the run, each center’s responsibilities are roughly uniform. In Figs. 5
and 6, this behavior is reflected in the fact that the number of goal conflicts
in the organized, 12-call-center configuration approach the number of conflicts
without organization. Correspondingly, the differences in performance between
the two configurations are significant. Any advantages to organization under the
4-call-center scenario are lost with the increase in coordination complexity in
the 12-call-center scenario. This observation is consistent with the notion that
there is an “ideal” number of call centers given the centers’ capabilities and the
environmental conditions. We do not know for certain that a 4-center organiza-
tion is the best choice for the environmental conditions that we simulated, but
it is certainly better than a 12-center organization, as the 4-center organization
provides a better balance between the partitioning of responsibility regions and
coordination complexity [25].

Workload Imbalance. Organizational directives influence agents to assume
responsibility over particular goals and tasks. This reduces the amount of coor-
dination involved in meeting these demands, as there is some expectation of
which agent will perform or manage a task. In order for this organizational
influence to improve performance, the per-agent workload that is suggested by
the organizational directives must be consistent with the distribution of tasks
in the environment. Otherwise, some agents have too little work and others

88 D.D. Corkill et al.

0.075
Configuration
= Org
0.050 * No Org
..)
0.025 — 8
N &
R)
.. — 2
Lot = *
() 0.000 ’:‘ _—— 2o 0-»--1::.:.. u. i T .:.‘E:
= Iy . - . ! < P =
o A X .—1
8 .'. 5
®-0.025-
.5 0.075-
L
m .
® 0050~ . .
y
7 N
>
0.025 . %
2 =]
B ".\l o * ‘e ﬂ: a
OOOO N : ~q“.' :'-?'-:00.0- L O-oo:-n-o ----- “:':.‘.7:"=’
: o g, . g. :!
-0.025-
0.0 2.5 5.0 7.5 10.0

Fires per Timestep

Fig. 5. Varying the number of call centers: relative score (Color figure online)

have too much. As such, highly beneficial tasks may go without consideration
by underloaded agents while overloaded agents struggle to complete all of the
tasks they are responsible for. Workload imbalance occurs in firefighting when
the distribution of fires throughout the city is not consistent with the size of
each of the centers’ responsibility region. For instance, if 60 % of fires occur in
the northwest corner of the city, a partitioning of the city into four equally-sized
quadrants would result in a significant average workload imbalance, with the call
center in the northwest corner of the city having almost six times the workload of
other centers. In this setting, an appropriate organization would assign a much
smaller responsibility region to the call center responsible for the northwest cor-
ner of the city, and expand the responsibilities of other call centers to make up
the difference in coverage.

Exploring the Effectiveness of Agent Organizations 89

0.4 Configuration
. - Org
% . * No Org N
G . <

§0-2" R . ‘ >

o7 il . - @
8 .,.:‘.‘:°. R . .. g

ot ‘: . o.. R - = - °
—0.0- f= et =
®
% . LY
o 0.4 =
© 3o 2 e B .
O Ll .
(D .:c ‘5 o o, ‘ :
0.) .‘ g o ':_.» . . D
20-2" o A 2o S &
— .“, b 3 .‘. LR . . m
Y y 0 N 3
() f— . L@
m .

0.0 bomsmeior cmnimie]

0.0 25 5.0 7.5 10.0
Fires per Timestep

Fig. 6. Varying the number of call centers: relative goal-conflict rate (Color figure

online)

Observation 4: The performance separation of effective organization
increases with increased workload imbalance = When workloads are
imbalanced in this way, call-center agents are not necessarily idle, but instead
they work on less beneficial goals. Thus, the penalty occurred by providing these
call centers with an inappropriate organization comes in the form of “lost oppor-
tunity,” where the agent could have performed much more beneficial tasks if
it had not been discouraged from doing so by organizational directives. Cor-
respondingly, Fig.7 shows that, as the organizational influences becomes less
appropriate, the mean benefit of selected goals becomes lower. A surprising
observation shown in Fig.7 is that the No Org case has the highest mean goal
benefit of all of the configurations (but not the highest relative score). This is
due to No Org agents’ preference to selfishly commit to attractive goals which

90 D.D. Corkill et al.

2000- -
=
)
& 1500-
m
© ,
O /2 s
&
< 1000 41k . :
§ i . Configuration
a + Approriate Org
5 = Inappropriate Org
500- & -+ No Org
0.0 2.5 5.0 7.5 10.0

Fires per Timestep

Fig. 7. Varying workload balance: mean goal benefit (Color figure online)

other agents may already be working on, introducing additional goal conflicts
and coordination cost.

Observation 5: Extreme workload imbalance, high or low, causes orga-
nizationally guided performance to converge to non-organized perfor-
mance = On the other end of the spectrum, both Appropriate and Inappropriate
Org’s less beneficial goals result in a direct lowering of overall score. Figure 8
indicates that this behavior essentially lowers the Appropriate Org curve onto the
No Org curve, while still maintaining a window in the workload spectrum where
organization is especially advantageous.

Span of Control. An important factor in determining if and how agents should
be organized is span of control. Simply adding resources (or performers) to a task
does not result in constant gain per added resource, and can even result in a net
loss of utility. This phenomena is found in many real-world settings [25] where
organizations attempt to scale the number of performers without correspondingly
scaling management capacity (e.g., hundreds of construction workers cannot be
managed by a single foreman). In the firefighting simulator, per-resource effec-
tiveness is diminished above a parameterized call center span-of-control limit.

Observation 6: Increasing the number of call-center agents beyond
what is necessary given their span-of-control capabilities adds coordi-
nation requirements (to keep them out of each other’s way), decreas-
ing the organizational benefit separation compared to a suitable

Exploring the Effectiveness of Agent Organizations 91

0.10-
o ! Configuration
——— ~+ Approriate Org
. . ~ Inappropriate Org
) . ’ -+ No Org
& 0.05 S
3 L. dee .
o Sy o G
. ‘ sl e . . ®
0 W LN, e »
5 : ':' 4 3 "..': .':.:.‘-
© 0.00 = imbotes sswemie)
(h'd Jree Tt 0%
-0.05- . :
0.0 2.5 5.0 7.5 10.0

Fires per Timestep

Fig. 8. Varying workload balance: relative score (Color figure online)

number of centers = Span-of-control limits are both important and ubig-
uitous, since centralization is not generally tractable or realistic. When exceeded
in RoboCup Rescue firefighting, performance per brigade is attenuated, counter-
acting coordination reductions from centralization. Otherwise, one center could
handle all brigades.

We explored span of control using a configuration where a single call center
agent is responsible for managing all 24 fire-brigade resources in the system, but
with a span-of-control limit imposed after 6 utilized brigades. Then, we increased
the span-of-control capability of the center to 24 (no span-of-control-limit atten-
uation) to understand how the single call-center agent would perform with no
span-of-control limit. We compared these two cases with the baseline configura-
tion where the fire brigades are distributed evenly across four call centers, each
controlling 6 of them. Because no call center coordination is needed when there is
a single center, in cases where fewer than 6 brigades are needed to execute all of
the tasks in the environment, both of the single-agent configurations outperform
the multiagent configuration (Fig.9).

At a workload level of one fire per timestep, the limited resource effectiveness
incurred by the span-of-control penalty becomes more significant than the coor-
dination cost in the multiagent case. Further, since the single-agent case incurs
no coordination complexity, there is a noticeable peak in the single-agent configu-
ration without a span-of-control penalty, corresponding to the coordination-cost
peak discussed previously.

92 D.D. Corkill et al.

0.10 . Configuration
" 5 ~ No Penalty
o o e == No Org Baseline
S Y e == Penalty ;
S 0.05- & iia
'g :'3"*" et R S—
T 0.00- F gty
K Mg, - o ° SN ----'-_.__'_____.- maste
&J =l aaicd T — .
-0.05- : R
0.0 25 50 7'5 10.0

Fires Per Timestep'

Fig. 9. Span of control analysis (Color figure online)

Observation 7: Coordination requirements that exceed an agent’s
span-of-control capabilities leads to an inverted performance curve =
Figure 9 shows that the sweet spot obtained when running under the best case
scenario of a single call center with no coordination requirements becomes a “sour
spot” when span of control is considered. Intuitively, the sweet spot drops below
the No Org baseline in the region of the workload spectrum where it is important
that fire-brigade resources are managed effectively. With span-of-control limits
imposed, fire-brigade effectiveness is diminished.

4 MARL Organizations

We next looked for sweet-spot behavior using a previously described and imple-
mented multiagent reinforcement learning (MARL) system. This second system
operates in a very different setting: organizing agents that are learning task-
assignment policies that optimize service time for tasks arriving in a network of
agents [26,27].

Formally, the structure of this domain
can be represented as a graph G = (V| E).
The vertex set, V, represents the set
of agents in the system. The edge set,
E, represents connections between pairs
of agents through which tasks can be
forwarded, illustrated in Fig.10. Agents
maintain a processing queue and a rout-
ing queue. The processing queue contains
tasks that an agent is actively working on.
The routing queue contains tasks that are

Fig. 10. Illustration of a small MARL
domain (Color figure online)

Exploring the Effectiveness of Agent Organizations 93

not being actively worked on, and need a decision on the part of the agent to
either process or forward to a neighboring agent. Each task is annotated with
a duration s, indicating how many time units it takes to complete that task.
After a task has been at the head of an agent’s processing queue for s steps,
that task is dequeued and marked as completed. Three parameters govern the
pattern of task generation. First, the task duration, s, is randomly distributed
according to an exponential distribution with rate A, held constant throughout
our experiments. Second, a parameter 7" C V controls the potential locations
in the network where tasks may originate. In our experiments, T is varied, but
|T| is held constant. Third, the rate at which tasks arrive at each vertex in T
is Poisson distributed. The rate of this Poisson distribution is used to control
task difficulty. Newly created tasks are assigned to a specific agent v and placed
in v’s routing queue. Agent v may either work on the task itself, by adding
the task to its processing queue, or it may forward the task to a neighbor (i.e.,
those agents j for which (v,7) € F). Forwarding a task to neighbor j places
that task in j’s routing queue. The reward function in this setting is defined
as the reciprocal of the average service time over a time window, where service
time is measured as the total time incurred from task creation to task comple-
tion. Given this formulation, agents are tasked with learning a forwarding policy
given observed behaviors of neighboring agents and their intrinsic queue state.
Throughout these experiments, the PGA-APP algorithm [28] and an extension
of Q-Learning to the multiagent case with stochastic policies were used to learn
those policies.
In this domain, each
agent is either a sub-
1.3 - Configuration ordinate or a supervisor.
* Appropriate Supervisors are responsible
* Inappropriate . .
for transferring experiences
1.2 between subordinates that
are experiencing similar
environmental conditions.
1.1 J o 1 : Appropriate organizations
) in this task allocation do-
S g ¢ 2Tt main are those that arrange
1.0 :‘_::':‘-}--i.-':-- el & -~ SN LS L supervisors in a way that
a1 ge : . exploits similarities bet-
ween agents. If a group

Relative Performance

0.9 = i of subordinates frequently
0.00 0.25 0.50 0.75 experience the same envi-
Task Rate ronmental conditions, a

great deal of transfer learn-
ing can take place. If sub-
ordinate groups experience
vastly different environmental conditions, transfer learning can occur less fre-
quently, thus not taking advantage of the benefits that organization provides. As

Fig. 11. Relative performance of MARL organizations
(Color figure online)

94 D.D. Corkill et al.

in firefighting, an organizational arrangement of supervisors that is appropriate
given a particular task distribution may be inappropriate under a different task
distribution, so the organization is only effective if the actual distribution is con-
sistent with the expectations assumed in the designed supervisor arrangement.

For our experiments, we used a 100-agent lattice network and considered
two agent organizations. The first organization arranges 4 supervisors such that
agents are assigned to supervisors based on their distance from the border of
the lattice. The second organization arranges 4 supervisors according to quad-
rants of the lattice. Tasks are then distributed on the lattice originating from
the boundary. Under this model, the former organization is considered “Appro-
priate” since it partitions agents in a manner that maximizes the similarity of
agents in supervisory groups. The latter organization is considered “Inappropri-
ate” since it arranges agents in a way that prohibits effective experience sharing.
Given this setup, we experimentally varied the difficulty of the learning problem
by increasing the mean of the Poisson distribution governing task distribution
on the range [0, 1], where 1 represents a very heavy task load (averaging one
task per time unit). One hundred values of A were sampled uniformly along this
range for each supervisory configuration, resulting in a total of 200 runs. Eval-
uation was performed in terms of area under a learning curve (AUC), modeled
as an exponential moving average of system-wide task service time. When the
system converges more quickly to an optimal policy, the area under this curve
will be smaller. To characterize relative performance differences across a wide
array of problem difficulties, AUC was normalized relative to the Inappropriate
Org configuration.

Observation 8: The MARL system also has a sweet spot = Figurell
shows more performance variability than occurred with firefighting, but a statis-
tically significant sweet spot arises around a per-agent task rate of 0.25 tasks per
timestep. At this workload, the Appropriate Org’s performance dominates the Inap-
propriate Org’s. Elsewhere, the two are statistically indistinguishable. The results
in the MARL domain are particularly clear. When tasks arrive so frequently that
agents cannot compute meaningful policies and the learning process diverges, a
supervisor structure that is highly effective in the sweet spot does not help in
transferring reasonable policies. On the opposite end of the workload spectrum,
when tasks arrive so infrequently that agents do not need to act intelligently in
order to service the requests in a timely manner, policy transfer is not important.
It is clear from this analysis that even with a completely different set of system
dynamics and agent behaviors, an organizational sweet spot exists.

5 Closing Thoughts

Although we have measured and analyzed agent-organization performance under
widely varying conditions using only two previously implemented and studied
systems (each operating in a different problem domain), we believe that the
qualitative behaviors we observed are general and apply to multiagent organi-
zations in any domain. We hope our observations encourage those working with

Exploring the Effectiveness of Agent Organizations 95

more complex heterogeneous agent organizations to investigate and report their
performance over a wider range of conditions. Recognizing when a multiagent
system will be operating in its organizational sweet spot is helpful in deciding
how much effort should be spent in designing and using an agent organization as
well as for explaining situations where using an agent organization results in lit-
tle observed benefit (because the system is operating outside the sweet spot). We
have observed that coordination and cooperation amounts, lost work opportu-
nities, and span-of-control capabilities all contribute to sweet-spot performance
benefits.

Understanding a multiagent system’s organizational sweet spot is important,
not just for understanding organizational control opportunity and effectiveness,
but when considering if organizational adaptation (dynamic agent organizations)
might be worthwhile [14,29-31]. Sweet-spot understanding is also important in
open, sociotechnical settings when designing an organization (and sizing that
design appropriately) for agent recruitment. Identifying where a multiagent sys-
tem is operating in relation to its organizational sweet spot is important to any
discussion or analysis of organizational suitability, performance, or effectiveness.

Acknowledgment. This material is based in part upon work supported by the
National Science Foundation under Awards No. IIS-0964590 and IIS-1116078. Any
opinions, findings, conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. Fox, M.S.: An organizational view of distributed systems. IEEE Trans. Syst. Man
Cybern. SMC 11(1), 70-80 (1981)

2. Corkill, D.D., Lesser, V.R.: The use of meta-level control for coordination in a
distributed problem-solving network. In: IJCAI-83, Karlsruhe, Federal Republic of
Germany, pp. 748-756, August 1983

3. Gasser, L., Ishida, T.: A dynamic organizational architecture for adaptive problem
solving. In: AAAI-91, Anaheim, California, pp. 185-190, July 1991

4. Durfee, E.H., So, Y.P.: The effects of runtime coordination strategies within static
organizations. In: IJCAI-97, Nagoya, Japan, pp. 612-618, August 1997

5. Carley, K.M., Gasser, L.: Computational organization theory. In: Weiss, G. (ed.)
Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
Chap. 7, pp. 299-330. MIT Press, Cambridge (1999)

6. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281-316 (2004)

7. Dignum, F., Dignum, V., Sonenberg, L.: Exploring congruence between organi-
zational structure and task performance: a simulation approach. In: Boissier, O.,
Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S.,
Vazquez-Salceda, J. (eds.) ANIREM and OOOP 2005. LNCS (LNAI), vol. 3913,
pp- 213-230. Springer, Heidelberg (2006)

8. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural aspects
of the evaluation of agent organizations. In: Noriega, P., Vdzquez-Salceda, J.,

96

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

D.D. Corkill et al.

Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006.
LNCS (LNAI), vol. 4386, pp. 3—-18. Springer, Heidelberg (2007)

Horling, B., Lesser, V.: Using quantitative models to search for appropriate orga-
nizational designs. Auton. Agent. Multi-Agent Syst. 16(2), 95-149 (2008)

Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 16(2), 151-185 (2008)

Slight, J., Durfee, E.H.: Organizational design principles and techniques for
decision-theoretic agents. In: Proceedings of the Twelveth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2013),
pp. 463-470, May 2013

Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS 1995),
San Francisco, California, pp. 312-319, June 1995

Corkill, D.D., Durfee, E., Lesser, V.R., Zafar, H., Zhang, C.: Organizationally
adept agents. In: Proceedings of the 12th International Workshop on Coordination,
Organization, Institutions and Norms in Agent Systems (COINQAAMAS 2011),
pp. 15-30, May 2011

Corkill, D., Zhang, C., Silva, B.D., Kim, Y., Zhang, X., Lesser, V.: Using anno-
tated guidelines to influence the behavior of organizationally adept agents. In:
Proceedings of the 14th International Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems (COINQAAMAS 2012), pp. 4660, June
2012

Corkill, D., Zhang, C., Silva, B.D., Kim, Y., Garant, D., Lesser, V., Zhang, X.:
Biasing the behavior of organizationally adept agents (extended abstract). In: Pro-
ceedings of the Twelveth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2013), pp. 13091310, May 2013

Kitano, H., Tadokoro, S.: RoboCup-Rescue: a grand challenge for multi-agent and
intelligent systems. Al Mag. 22(1), 39-52 (2001)

Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: IJCAI-91, Sydney, Australia, pp. 331-337, August 1991

Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean
expressions. Science 264, 1297-1301 (1994)

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-
ing computational complexity from characteristic ‘phasetransitions’. Nature 400,
133-137 (1999)

Gasser, L.: An overview of DAI. In: Distributed Artificial Intelligence: Theory and
Praxis, pp. 9-30. Springer (1993)

Sterling, L., Taveter, K.: The Art of Agent-Oriented Modeling. MIT Press,
Cambridge (2009)

Boissier, O., van Riemsdijk, M.B.: Organizational reasoning agents. In: Ossowski,
S. (ed.) Agreement Technolgies, Chap. 19, vol. 8, pp. 309-320. Springer, The
Netherlands (2013)

van Riemsdijk, M.B., Dignum, V., Jonker, C., Aldewereld, H.: Programming
role enactment through reflection. In: Proceedings of the 2011 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
(WL-IAT 2011), Lyon, France, pp. 133-140, August 2011

March, J.G., Simon, H.A.: Organizations. Wiley, New York (1958)

Horling, B., Lesser, V.: Analyzing, modeling and predicting organizational effects
in a distributed sensor network. J. Braz. Comput. Soc. 11(1), 9-30 (2005). Special
Issue on Agent Organizations

26.

27.

28.

29.

30.

31.

Exploring the Effectiveness of Agent Organizations 97

Zhang, C., Abdallah, S., Lesser, V.: Integrating organizational control into
multi-agent learning. In: Proceedings of the Eighth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
vol. 2, pp. 757-764 (2009)

Garant, D., da Silva, B.C., Lesser, V., Zhang, C.: Accelerating multi-agent rein-
forcement learning with dynamic co-learning. Technical report UM-CS-2015-004,
School of Computer Science, University of Massachusetts Amherst, Ambherst,
MA 01003, January 2015

Zhang, C., Lesser, V.: Multi-agent learning with policy prediction. In: Proceedings
of the 24th AAAT Conference on Artificial Intelligence, Atlanta, pp. 927-934 (2010)
Hiibner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent sys-
tems using the MOISE+ model: programming issues at the system and agent levels.
Int. J. Agent-Oriented Softw. Eng. 1(3/4), 370-395 (2009)

Staikopoulos, A., Saudrais, S., Clarke, S., Padget, J., Cliffe, O., Vos, M.D.: Mutual
dynamic adaptation of models and service enactment in ALIVE. In: Proceedings of
the Third International Models@Runtime Workshop, Toulouse, France, pp. 26-35,
September 2008

Quillinan, T.B., Brazier, F., Aldewereld, H., Dignum, F., Dignum, V., Penserini,
L., Wijngaards, N.: Developing agent-based organizational models for crisis man-
agement. In: Proceedings of the Industry Track of the Eighth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2009),
Budapest, Hungary, pp. 45-51, May 2009

SIMPLE: A Language for the Specification
of Protocols, Similar to Natural Language

Dave de Jonge®™) and Carles Sierra

IITA-CSIC, Bellaterra, Catalonia, Spain
{davedejonge,sierra}@iiia.csic.es

Abstract. Large and open societies of agents require regulation, and
therefore many tools have been developed that enable the definition and
enforcement of rules on multiagent systems. Unfortunately, most of them
have been designed to be used by computer scientists and are not suitable
for people with no more than average computer skills. Since more and
more tools are nowadays running as cloud services accessible to anyone
(e.g. Massive Open Online Courses and social networks) we feel there
is a need for a simple tool that allows ordinary people to create rules
and protocols for these kinds of environments. In this paper we present
ongoing work on the development of a new programming language for
the definition of protocols for multiagent systems, which is so simple
that anyone should be able to use it. Although its syntax is strict, it
looks very similar to natural language so that protocols written in this
language can be understood directly by anyone, without having to learn
the language beforehand. Moreover, we have implemented an easy-to-use
editor that helps users writing sentences that obey the syntax rules, as
well as an interpreter that can parse such protocols and verify whether
they are violated or not.

1 Introduction

In open multiagent systems (MAS) where any agent can enter and leave at will
and the origins of the agents are unknown one needs a mechanism to regulate the
behavior of those agents. Just like in human societies, rules need to be imposed
in order to prevent the agents from misbehaving and abusing system resources.
A good example is that of an auction taking place under a specific protocol. An
English auction protocol for example, requires the buyers to make increasing bids
and stops when the auctioneer says so, after which the buyer with the highest
bid wins the auction. In a Dutch auction on the other hand, bids are decreasing,
and the first buyer to accept a bid wins the auction.

Many systems for the implementation of such regulatory systems have been
developed, such as ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15].
They allow users to define a set of rules and then impose those rules on the
agents in a MAS (the term ‘agents’ may here refer to software agents as well as
to human beings). This enforcement of rules may happen either by punishing
misbehaving agents, or by simply making it impossible to violate them, which
is called regimentation.

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 98-118, 2016.
DOI: 10.1007/978-3-319-42691-4_6

A Language for the Specification of Protocols, Similar to Natural Language 99

One common characteristic of these systems is that they are mainly designed
with computer scientists as their target users. They require knowledge of multi-
agent systems, programming languages and/or formal logic. For people with no
more than average computer skills they are unfortunately too complicated.

We expect however that agent technologies will become more and more com-
mon in the near future, creating a demand for simple tools to maintain and
organize such systems and that can be used by ordinary people. We can com-
pare this for example with the evolution of web development. In the early days
of the Internet, developing a web page was considered an advanced task that
would only be undertaken by computer experts, and hence web development
languages such as HTML, PHP and SQL were developed to be used by profes-
sional programmers. However, as web pages became more and more abundant
and every shop, social club, or sports team wanted to have its own web page,
many tools such as DreamWeaver and WordPress were introduced to make the
creation of web pages a much simpler task. We strive for a similarly easy tool
for the development of multiagent systems.

A good example of where such a tool would be useful is the organization of
online classes, because teachers often want to put restrictions on their students.
Teachers may for example require that students only take a certain exam after
they have passed all previous exams. In this way teachers make sure they do
not waste their time correcting exams of students that do not study seriously
anyway. Another example could be the process of organizing a conference, where
one requires authors to submit before a deadline, or one requires the program
chair to appoint at least 3 reviewers to each paper. Also, one can think of a tool
that allows users to set up their own social networks, with their own specific
rules, as suggested in [23].

Therefore, in this paper we present ongoing work on the development of a new
language to define protocols for multiagent systems. This language is so close
to natural language that it can be understood directly by anyone without prior
knowledge of any other programming language. We call this language SIMPLE,
which stands for SIMple Protocol LanguagE. Although it looks very similar to
natural language, it has in fact a strict syntax. Together with this language we
also present two tools: an editor that makes it very easy for users to write well-
formed sentences, and an interpreter that parses the source file and makes sure
that the rules defined in it are indeed enforced. The fact that the language comes
with an editor is very important, because it enables the users to write correct
protocols without having to know the rules of the language by heart and makes
sure that all sentences are syntactically correct.

We would like to stress that this language is not meant to program the agents
themselves. It is only meant to program the organizational structure between
the agents. That is: it puts restrictions on the agents in their actions, but does
not dictate entirely what they ought to do; the agents still have the freedom to
make autonomous decisions, as long as these decisions comply with the protocol.
Protocols written in this language do not specify what the agents must do, but
only what the agents can do.

100 D. de Jonge and C. Sierra

We have developed SIMPLE according to the following guidelines:

— The language should stay as close as possible to natural language.

— The syntax should remain strict: sentences must be well formed, and every
well formed sentence can only have one correct interpretation.

— Given a protocol written in this language anyone should immediately be able
to understand what it means, even if he or she has never seen our language
before.

— Users should be able to write a protocol in this language without having to
spend any time learning the language.

The only thing we require from the user is that he or she be familiar with the
English language. We still consider the language as presented here (version 0.10)
to be in a premature state, and we plan to extend it much more in the future.
A working demonstration of the SIMPLE editor and interpreter can be found at
http://simple.iiia.csic.es.

The rest of this paper is organized as follows: in Sect.2 we give a short
overview of previous work done in this field. Next, in Sect.3 we explain the
assumptions that we have made about the set-up of any MAS to which our
language is applied. In Sect.4 we describe the syntax rules of our language.
Next, in Sect.5 we explain how our interpreter parses text files written in our
language and enforces its rules upon the agents. Then, in Sect.6 we give two
examples of protocols written in SIMPLE, for which we have tested that they
are successfully parsed and enforced by our interpreter. In Sect.7 we make a
comparison between the expressivity of SIMPLE and the expressivity of the
existing Islander tool. And finally, in Sect.8 we describe the further extensions
that we are planning to add to our language.

2 Related Work

Regulatory systems have been subject of research for a long time and a number of
frameworks have been implemented that often consist of tools for implementing,
testing, running and visualizing protocols. Examples of such frameworks are
ANTE [7], MANET [34], S-MOISE+ [22], and EIDE [15]. A comparative study
of some of those systems has been made in [16].

ANTE [7] has been implemented as a JADE-based platform, including a set
of agents that provide contracting services. It integrates automatic negotiation,
trust & reputation and Normative Environments. Users and agents can specify
their needs and indicate the contract types to be created. Norms governing
specific contract types are predefined in the normative environment. Although
ANTE has been targeting the domain of electronic contracting, it was conceived
as a more general framework having in mind a wider range of applications.

The MANET [34] meta-model is based on the assumption that the agent
environment is composed of two fundamental building blocks: the physical envi-
ronment, concerned with agent interaction with physical resources and with the

http://simple.iiia.csic.es

A Language for the Specification of Protocols, Similar to Natural Language 101

MAS infrastructure, and the social environment, concerned with the social inter-
actions of the agents. In the MANET meta-model it is assumed that the nor-
mative system can be composed of three structural components: agents, objects
and spaces.

In the EIDE framework agents interact with each other in a so called FElec-
tronic Institution. The agents are grouped in to conversations, which are called
Scenes. The institution has a specification that defines how agents can move from
one scene to another and defines a protocol for each scene. Within a scene the
agents interact by sending messages to one another. Each agent in the system
has a special agent assigned to it, called its Governor, which checks whether the
messages sent by the agent satisfy the protocol, and blocks them when they do
not. The EIDE framework comes with a graphical tool called Islander [14] that
allows people to create institution specifications in a visual manner. Protocols
in Islander are represented as finite state machines, drawn as a graph in which
the states are the vertices and the state-transitions are the edges. Every message
sent triggers a state transition.

In order to define rules and norms for multiagent systems, a vast amount of
languages and logics have been proposed. It would be impossible to list all the
relevant work in this field here, so we just mention some of the most important
examples. A logical system to define norms and rules is called a deontic logic. The
best known system of deontic logic is called Standard Deontic Logic (SDL) [37].
Important refinements of this logic are Dyadic Deontic Logic (DDL) [26] and
Defeasible Deontic Logic [31]. Furthermore, an extension of this taking temporal
considerations into account was proposed in [20]. In [28] a system to formalize
norms using input/output logic was proposed, while in [21] the authors provide a
model for the formalization of social law by means of Alternating-time Temporal
Logic (ATL). In [25] the author proposes the use of Linear Time Logic (LTL) to
express norms. Other important approaches are based on Propositional Dynamic
Logic (PDL) [29], on See-to-it-that logic (STIT) [4] and on Computational Tree
Logic (CTL) [6]. Models for the verification of expectations in normative systems
are proposed in [1,10], and in [32] the authors introduce the nC+ language for
representing normative systems as state transition systems.

The above mentioned systems however mainly focus on the theoretical prop-
erties of regulatory systems. Work that is more focused on the actual implemen-
tation of such systems is for example [27] which proposes a model to define rules
in the Z language, while in [3] the authors propose the use of Event Calculus
for the specification of protocols. A programming language designed to program
organizations, called 20PL, was introduced in [11]. Other important examples
of languages and frameworks for the implementation of norms and rules are
described in: [2,9,18,24,35,36].

Although some of the above mentioned languages are more user friendly than
others, it still seems that they all require the user to be a computer scientist or
at least has some knowledge of programming, logic or mathematics.

102 D. de Jonge and C. Sierra

There do exist a number of programming languages that claim to be similar
to natural language such as hyperTalk! and PlainEnglish?, but most of them
still aim at real programmers, albeit that they aim for beginning programmers.
The only exception that we know of, is a language called Inform 7 [30]. This
is a language that in many cases truly reads like natural language, but the
main difference with SIMPLE is that it is developed for an entirely different
domain. Inform 7 is a language to write Interactive Fiction: an art form that
lies somewhere in between literature and computer games.

We think that one of the main reasons that Inform 7 can stay very close to
natural language, is that it is highly adapted to a very specific domain. This
restricts the possible things a programmer may want to express and hence keeps
the language manageable. We have taken a similar approach: our language is only
intended to be used as a language for implementing protocols for multiagent
systems, and although it could possibly be useful for other domains too, we
restrict our attention to this domain.

Another example of an easy-to-use language is If-This-Then-That® (IFTTT).
This tool allows users to define if-then rules that trigger some action to occur
whenever a certain event takes places. This concept is very similar to SIMPLE,
except that in SIMPLE the rules do not trigger events to take place, but rather
grant rights to agents.

Controlled natural language has been applied to policy making before in
[8,12], which is essentially a mapping between Attempto Controlled English
(ACE) [17] and the policy specification language Protune [5]. However, this
work seems to focus mainly on the specification of static rules, whereas our work
puts emphasis on dynamic rules that may change depending on events that are
happening during the execution of the policy. This is reflected by the fact that
in their language the conditions of the rules are written in simple present, rather
than in present perfect as in our language. A similar tool to write static rules in
controlled natural language was presented in [33].

3 Basic Ideas

We assume a multiagent system in which agents exchange messages according to
some given protocol. These agents may be autonomous software agents, or may
be humans acting through a graphic user interface. The agents are however not
in direct contact with one another. Every message any agent sends first passes
a central server that verifies whether the message satisfies the protocol. If a
message does not satisfy the protocol, then it is blocked by the server and it will
not arrive at its intended recipients. Note that this is a form of regimentation. In
this paper we will not consider any forms of punishment, and assume protocols
are only enforced by means of regimentation. We assume that the life-cycle of
the MAS is as follows:

! http://en.wikipedia.org/wiki/HyperTalk.
2 http://www.osmosian.com.
3 https://ifttt.com/.

http://en.wikipedia.org/wiki/HyperTalk
http://www.osmosian.com
https://ifttt.com/

A Language for the Specification of Protocols, Similar to Natural Language 103

1. A user (the protocol designer) writes a protocol in our language and stores it
in a text file.

2. He or she launches a communication server, with the location of the text file
as a parameter.

3. The interpreter, which is part of the server application, parses the text file.

4. Agents connect to the server through a TCP/IP connection and send messages
to one another.

5. Every such message is checked by the interpreter. If it does not satisfy the
protocol, it is blocked. If it does satisfy the protocol it is forwarded to its
intended recipients.

6. The agent that intended to send the message is notified by the server whether
the message has been delivered correctly or not.

The text file contains the protocol as a set of sentences that follow the SIM-
PLE syntax, and are therefore human readable. Furthermore, it also stores the
protocol in JSON format so that it can be parsed easily by the interpreter.

Protocols written in SIMPLE have a closed-world interpretation: every mes-
sage is considered illegal by default, unless the protocol specifies that it is legal.
In order to determine which messages are legal, we use a system based on the
notion of ‘rights’ and ‘events’, meaning that an agent obtains the right to send a
specific message if a certain event has (or has not) taken place. The assignment
of such rights is determined by if-then rules in the protocol.

We currently assume agents can send messages following one of these two
patterns:

- (Lsay7a X)
— (‘announce’, y, z)

in which the sender can replace x, y and z by any character string (we will see
later that the ‘announce’ message has the interpretation that, by uttering this
message, the value of z will be assigned to the variable y). The current version
of the language does not yet allow users to specify the recipient of a message,
so for now we assume that any message is always sent to all the other agents in
the MAS. We plan this to change in future versions of SIMPLE. Also, we expect
that future versions will support more types of messages.

The interpreter keeps a list of rights for each agent in the MAS. A right is
a tuple of one of the two following forms:

N (‘say’, V)
— (‘announce’, w)

We say that a right (‘say’, v) matches a message (‘say’, x) if and only if x
is equal to v, or v is the keyword ‘anything’. A right (‘announce’, w) matches a
message (‘announce’, y, z) if and only if y equals w. For example: if the agent has
the right (‘announce’; ‘price’) then it matches the message (‘announce’; ‘price’,
‘$100”). A message is considered legal if the agent sending the message has at
least one right that matches the message. Whenever the interpreter determines

104 D. de Jonge and C. Sierra

that a message is legal, it stores a copy of that message, together with the name
of its sender, in the interpreter’s event history.

One concept that we have borrowed from EIDE is the concept of a role.
The rules in the protocol never refer to specific individuals, because we assume
that at design time the designer cannot know which agents are going to join
the MAS at run time. Instead, the protocol assigns rights to agents based on
the roles they are playing. Every agent that enters the MAS (i.e. connects to
the communication server) must choose a specific role to adopt, from a number
of roles that are defined in the protocol. An auction protocol for example, could
define the roles buyer and auctioneer. The protocol could then define a rule
saying that a buyer can only make a bid after the auctioneer has opened the
auction.

4 Description of the Language

A protocol is written as a set of sentences that look like natural language, but
follow a strict syntax. Although in this paper we will often start sentences with
a capital, this is not necessary, as the language is entirely case-insensitive. Like
in natural language, the end of a sentence is marked with a period. Unlike most
other programming languages, variable names are allowed to contain spaces.
Another important property of this language, as we will see at the end of this
section, is that it is impossible to write inconsistent protocols.

4.1 Roles

In order to define a role in the protocol the user must first specify two names
for that role: the singular role name and the plural role name, for exam-
ple: ‘auctioneer’ and ‘auctioneers’. The user must then specify a role constraint
sentence:

Definition 1. A role constraint sentence is a sentence of one of the follow-
ing forms:

— There can be any number of r.

— There must be at least x r.

— There can be at most x r

— There must be at least y and at most x r.
— There must be exactly x r.

Where x and y can be any positive integer with y < x and r is the plural role
name, except in the case that x = 1 in which case r it is the singular role name.

The following sentence is an example of a role constraint sentence:

There must be at least 2 buyers.

A Language for the Specification of Protocols, Similar to Natural Language 105

For each role in the protocol there must be exactly one such role constraint
sentence. The interpreter makes sure that these role constraints are not violated.
That is, when an agent tries to connect to the communication server with a role
for which there are already too many participants, the connection will be refused.
If on the other hand there are not enough participants for every role, then every
message is considered illegal. Therefore, the agents cannot start sending messages
to one another until there are enough participants for every role.

4.2 Conditions and Consequences

The main idea of the language, as explained above, is that rights are assigned
to the agents by means of if-then rules. An example of such a rule could be:

If the auctioneer has said ‘open’ then any buyer can announce his bid price.

In order to precisely define which sentences are well formed we first need to
introduce a number of terms, namely: quantifiers, identifiers, conditions, and
consequences.

Definition 2. A quantifier is any of these keywords: no, any, every, a, an,
the, that.

Definition 3. An identifier is a sequence of characters of one of the following
forms:

—qr
- no one
— anyone
— everyone
-~ he

Where q can be any quantifier and r can be any singular role name. Identifiers of
the form no r as well as the identifier ‘no one’ are called negative identifiers.
All other identifiers are called positive identifiers.

Definition 4. A past-event condition is a string of characters of one of the
following forms:

— id has said x’

— id has announced the x

- id has announced his x

— pid has not said %’

— pid has not announced the x
— pid has not announced his x

where id can be any identifier, x can be any character string, and pid can be
any positive identifier. A past-event condition is called negative if it contains the
keyword ‘not’ or if it contains a megative identifier. A past-event condition is
called positive otherwise.

106 D. de Jonge and C. Sierra

A past-event condition is a specific type of condition. We will define other
types of condition later on. A positive past-event condition is considered true if
and only if there is any message in the event history that matches the condition.
For example the condition any buyer has said ‘hello’ is considered true if there
exists a message in the event history of the form (‘say’, ‘hello’) which was sent by
an agent playing the role buyer. A negative past-event condition is considered
true if and only if there is no message in the event history that matches the
condition.

Definition 5. A right-update consequence is a string of characters of one
of the following forms:

- pid can say %’

— pid can announce the x

— pid can announce his x

where pid can be any positive identifier and x can be any character string.

A right-update consequence is a specific type of consequence. Other types of
consequences are defined later on.

We can now construct sentences (‘rules’) of the form If A then B, where A
is a conjunction of conditions and B is a right-update consequence. We say that
a rule is active if all its conditions are true. Then the idea is that an agent has
the right to send a specific message if and only if there is an active rule with
right-update consequence that matches that message.

Identifiers are used inside conditions and consequences to determine to which
set of agents these conditions and consequences apply. We would like to remark
that the quantifiers ‘a’, ‘an’, ‘any’ and ‘the’ all have exactly the same meaning, so
the language contains some redundancy. However, we do consider it very useful
to have all of them in the language because they help the protocol designer to
write more natural sentences. For example, if an auction protocol contains only
one auctioneer it makes much more sense to talk about ‘the auctioneer’ than
about ‘any auctioneer’.

Also note that we have included the quantifier ‘that’. This quantifier refers to
any agent that was also referred to by the last quantifier earlier in the sentence.
For example, suppose that a buyer called Alice says ‘hello’ and then a buyer
called Bob says ‘hi’, then the condition:

a buyer has said ‘hello’ and a buyer has said ‘hi’
is true. However, the condition:
a buyer has said ‘hello’ and that buyer has said ‘hi’

is false, because ‘that buyer’ refers to the same agent as the one that said ‘hello’
(which is Alice). This second condition would only be true if the messages (‘say’
‘hello’) and (‘say’, ‘hi’) had been sent by the same agent. Likewise, we have
included the identifier ‘he’, which refers to the same agent as the last identifier
that appeared earlier in the sentence. For example:

If a buyer has said ‘hello’ and he has said ‘hi’

A Language for the Specification of Protocols, Similar to Natural Language 107

4.3 Properties

The rights of an agent may not only depend on past events, but may also depend
on values of variables. Variables in SIMPLE are called properties. A property
can be assigned to the protocol (a global property), or can be assigned to indi-
vidual agents (a role property). For example, we may specify that every buyer
has a property ‘age’, and that the protocol has a global property ‘minimum age’,
so that we can state conditions such as:

If a buyer has said ‘hello’ and his age is greater than the minimum age then...

A property can be defined by including a property initialization sentence in the
protocol.

Definition 6. A property initialization sentence is a sentence of one of the
following forms:

— This protocol has a x, which is initially v.
— Fvery r has a x, which is initially v.

where x can be any character string, v can be any character string, number,
or identifier and r can be any singular role name. The string x is called the
property name, and v is its initial value.

The first of these sentences is used to define a global property, while the
second one defines a role property. If the name of the property x starts with a
vowel then the editor will automatically replace the article ‘a’ in the sentence
with ‘an’. For example:

Every buyer has an age, which is initially 0.

A property can also be added to a protocol without including a property initial-
ization sentence, but instead by mentioning it in some rule containing the verb
‘to announce’. For example, if there is a rule containing the condition

If a buyer has announced his age...

then the interpreter automatically understands that the role ‘buyer’ has a prop-
erty named ‘age’. Similarly, if the protocol contains a sentence containing the
conditions

If the auctioneer has announced the start price...

then the interpreter understands that the protocol has a global property named
‘start price’.

The current version of SIMPLE supports three types of properties: strings,
numbers and identifiers. The type of a property is determined implicitly. That
is: if the parser of the protocol is able to interpret the initial value of a property
as a number, then the property is considered to be of type number, and likewise
for identifiers. In all other cases the property is considered a string.

108 D. de Jonge and C. Sierra

Definition 7. A property condition is a clause of one of the following forms:

1s less than n

is less than or equal to n
1SV

1§ not v

18 greater than or equal to n
1s greater than n

E T T T

where x is either the keyword ‘the’ followed by the name of a global property, or
the keyword ‘his’ followed by the mame of a role property. v can be any string,
number or identifier, and n can be any number.

Definition 8. A property-update consequence is a clause of the form:

x becomes y

x will be v

X 18 increased by n

x 1s decreased by n

x s multiplied by n

x is divided by n

where x and y both are either the keyword ‘the’ followed by the name of a global
property, or the keyword ‘his’ followed by the name of a role property. y can be
any character string, v can be any string, number of identifier, and n can be any
number.

Definition 9. A current-event condition is a string of characters of one of
the following forms:

- pid says x’
— pid announces the x
- pid announces his x

where pid can be any positive identifier and x can be any character string.

In order to change the values of properties we can use property-update rules.

Definition 10. A property-update rule is a sentence of the form:

— When x then z.

Where x is a current-event condition and z is a property-update consequence.
Examples of property-update rules are:

When any buyer says ‘bid!’ then his bid price is increased by 10.
When the auctioneer says ‘sold’ then the last bidder becomes the winner.

A Language for the Specification of Protocols, Similar to Natural Language 109

Note that the clause z becomes y means that the value of property y is overwrit-
ten with the value of property x. This can be understood as follows: suppose
we have a property called Carol’s sister and a property called Bob’s wife. Fur-
thermore, suppose that Carol’s sister is initialized to the value ‘Alice’. Then the
clause Carol’s sister becomes bob’s wife means that the value ‘Alice’ is copied
into the property Bob’s wife. Note that when a property is assigned to an agent
we use the key word ‘his’ to refer to the agent that owns the property. To be
precise: it refers to the last agent that appears earlier in the sentence. So in the
above example, ‘his bid price’ refers to the property named ‘bid price’ assigned
to the agent that said ‘bid!’.

Another way that values of properties are updated is when a message of type
(‘announce’; x, y) is sent. In that case the value y is assigned to a property with
name x. For example, whenever an agent sends the message (‘announce’; ‘price’,
100), the value 100 is automatically assigned to a property with the name ‘price’.
More specifically, if the property ‘price’ is global than that unique property is
updated, while if it is a role property, for example for the role ‘buyer’, and the
sender of the message indeed plays that role, then it is the property of the sender
that is updated. If neither is the case, that is: if the property ‘price’ is a role
property for the role ‘buyer’, but the sender does not play the ‘buyer’ role, then
the message is illegal.

Definition 11. A right-update rule is a sentence of the form:

— id can always say v.

— id can always announce the v.
— id can always announce his v.
- If x then y.

- If x then y, as long as w.

where id is an identifier, v can be any character string, x and w are conjunc-
tions of past-event conditions and/or property conditions and y is a right-update
consequence (the conditions in w are also referred to as constraints).

Note that we allow such a rule to have no conditions at all, so that it is
always active. In that case the protocol designer needs to include the keyword
‘always’ after the keyword ‘can’. Also note that right-update rules have past-
event conditions (which are written in present perfect), while property-update
rules have current-event conditions (which are written in simple present). This
is because they are interpreted in a fundamentally different way, which we will
explain in Sect. 5.

4.4 Constraints

We have seen in Definition 11 that right-update rules may contain so-called con-
straints. A constraint is similar to a property condition, but is written at the
end of the sentence, and indicated by the keywords as long as.

110 D. de Jonge and C. Sierra

If the auctioneer has said ‘open’ them any buyer can announce his bid price,
as long as his bid price is higher than the current price.

The consequences of a rule only have effect if all conditions and constraints
of the rule are satisfied. The difference between constraints and conditions is
that constraints refer to property values inside the consequence of the sentence,
whereas conditions may only refer to past events or properties that do not appear
inside the consequence. This means that when the interpreter verifies the legality
of a certain message X, the truth of the constraints of any rule depend on the
contents of that message, whereas the truth of the conditions of any rule can
already be determined before the interpreter has received message X.

In the example sentence above for instance, the constraint says that the bid
price announced by the buyer, must be higher than the current price. This can
of course only be checked when the buyer is announcing his bid price, and not
before.

4.5 Inconsistencies

One very important aspect of our language is that right-update consequences
can only have positive identifiers. This means that a consequence can only give
rights to an agent, but not take them away. Nevertheless, we can still make agents
lose rights, but we do that by using negative conditions, rather than negative
consequences. Take for example the following rule:

If the auctioneer has not said ‘sold!’ them any buyer can say ‘bid!’.

Here, every buyer initially has the right to say ‘bid!’. If there is no other rule
that gives buyers the right to do that, then buyers will lose this right once the
auctioneer says ‘sold!’; because the condition becomes false. If there is more than
one rule that grants the right to say ‘bid!” to every buyer then all those rules
must become inactive in order for the buyers to lose that rule.

The big advantage of only allowing positive consequences, is that this makes it
impossible to write inconsistent rules. Recall from Sect. 3 that for every message
submitted the interpreter needs to answer the question: “Does the sender of this
message have the right to do so?”, with either “yes” or “no”. We say that a
protocol is consistent if for every possible message this question has only one
correct answer.

Lemma 1. A protocol written in SIMPLE is guaranteed to be consistent.

Proof. The proof is easy: in our language, by definition, an agent has the right
to do something if and only if there is at least one active rule that grants this
right to the agent. This can never lead to inconsistencies: either such a rule exists
or not.

This aspect certainly does not make our language unique, as the same prin-
ciple applies to several other logical languages, such as GDL [19] and ASP [13]

(Fig. 1).

A Language for the Specification of Protocols, Similar to Natural Language 111

Define the consequence of the rule:
Define the conditions of the rule:

If any student has said 'hello'

anays then

eiffany v]stucent v|has v said
® any v || student v |can| say

Cancel || And || Then
Cancel || Back || As long as || OK

Fig. 1. Two screen shots of the SIMPLE editor. Users write sentences simply by select-
ing available options, and they can only write free text whenever the syntax rules indeed
allow that. Therefore it is impossible to write malformed sentences.

5 The SIMPLE Interpreter

We will now describe the software component that interprets and enforces the
protocols.

Whenever an agent tries to send a message, this message is first analyzed by
the interpreter. The interpreter verifies if the agent sending the message indeed
has the right to send that message and, if so, updates its internal state and
forwards the message to the other agents connected to the server. If the sender
of the message does not have the right to send that message he or she is notified
that the message has failed. The message will in that case not be forwarded to
the other agents and the internal state of the interpreter is not updated. In fact,
we consider this message as not sent.

The internal state of the interpreter consists of the following data structures:

a list of all messages that have so far been sent successfully (the event history)

— a table that maps the name of each property to the current value of that
property

— a table that maps the name of each agent in the MAS to the role it is playing

— a table that maps the name of each agent in the MAS to a list of rights for

that agent.

Every time an agent tries to send a message, the interpreter follows the following
procedure:*

1. The list of rights of that agent is made empty.
2. For each right-update rule in the protocol, the interpreter verifies if its con-
ditions are true:

— If the condition is a property condition then it checks whether that prop-
erty currently has the proper value to make the condition true.

— If the condition is a past-event condition, the interpreter tries to find an
event in the event history that matches the condition. If such an event is
indeed found, then the condition is considered true.

A rule for which all conditions are true is labeled as ‘active’.

4 This procedure can be implemented in a much more efficient way than presented
here, but we think this is not very relevant for this paper, so we prefer to present it
in a way that is easier to understand for the reader.

112 D. de Jonge and C. Sierra

3. For each right-update consequence in each active rule, the interpreter checks
whether the identifier matches the sender of the message and, if yes, adds the
right corresponding to this consequence to the sender’s list of rights. If this
consequence has any constraints assigned to it, they are stored together with
the right.

4. After all the rights of the sending agent have been determined the interpreter
verifies whether any of them matches the message that the agent is trying to
send.

5. Next, if the agent indeed has that right the interpreter checks whether its
constraints (if any) are satisfied.

6. If the sending agent has the proper right, and all its constraints are satisfied
then the interpreter determines if there are any property-update rules in the
protocol for which the condition matches the message. If yes, the properties
in the rule’s consequences are updated accordingly.

7. Finally, if the agent has the right to send the message and its constraints are
satisfied, a copy of the message is stored in the event history, together with
the name of the sender, and the message is forwarded to all other agents in
the MAS.

It is important to note here that property-update rules and right-update
rules are treated in a different way. To be precise: to verify whether a past-
event condition is true, the interpreter compares the condition with all messages
in the event history. Since messages are never removed from the event history
this means that whenever a past-event condition becomes true, it remains true
forever. For example, when a buyer says ‘hello’ then the condition any buyer
has said ‘hello’ becomes true, and remains true forever. For negative conditions
exactly the opposite holds: the condition no buyer has said ‘bye’ is initially true,
but as soon as a buyer says ‘bye’ it becomes false, and will stay false forever.
The current-event conditions on the other hand are only considered true at the
moment that the corresponding message is under evaluation of the interpreter.
That is, the condition when a buyer says hello is considered to be true only
while the interpreter is evaluating the message (‘say’, ‘hello’) sent by some agent
playing the role of buyer. As soon as the interpreter handles the next message
this condition is considered false again. The reason for this is that we consider
that when you obtain a right, you keep that right for an extended period of
time, until one of the negative conditions in the rule becomes false. Updating of
a property on the other hand, is a one-time event that only takes place at the
moment a certain message is sent.

6 Examples

We here provide two examples of protocols. Both have been tested and are
correctly executed by the interpreter.

A Language for the Specification of Protocols, Similar to Natural Language 113

English Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
Every buyer has a bid price which is initially 0.

This protocol has a highest bidder, which is initially no one.
This protocol has a winner, which is initially no one.

If the auctioneer has not said ‘sold!” and the auctioneer has not announced
the current price, then the auctioneer can announce the current price.

If the auctioneer has not said ‘sold!” and the auctioneer has announced the
current price, then any buyer can announce his bid price, as long as bid price
s greater than current price.

When a buyer announces his bid price, then his bid price becomes the current
price.

When a buyer announces his bid price, then that buyer becomes the highest
bidder.

If any buyer has announced his bid price, then the auctioneer can say ‘sold!’.
When the auctioneer says ‘sold!’, then the highest bidder becomes the winner.

Dutch Auction Protocol:

There must be exactly 1 auctioneer.
There must be at least 2 buyers.

This protocol has a current price, which is initially 0.
This protocol has a winner, which is initially no one.

If the auctioneer has not announced the current price, then he can announce
the current price.

If the auctioneer has announced the current price and no buyer has said
‘mine!’, then the auctioneer can say ‘next!’.

When the auctioneer says ‘next!’, then the current price is decreased by 1.
If the auctioneer has announced the current price and no buyer has said
‘mine!’, then any buyer can say ‘minel’.

When a buyer says ‘mine!’, then that buyer becomes the winner.

7 Comparison with Islander

Many other tools have been developed for the specification of protocols so it
would be impossible to discuss all the advantages and disadvantages of SIMPLE
with respect to those existing tools. Therefore, we limit ourselves to a comparison
with the Islander tool, which is part of the EIDE framework.

Islander allows users to specify protocols using a graphical model that repre-
sents protocols as a directed graph in which the nodes represent states, and edges

114 D. de Jonge and C. Sierra

between nodes represent actions (an agent sending a message to another agent)
that lead from one state to the next. This graphical model can be extended by
assigning pre-conditions and post-conditions to the edges which are written in a
formal language.

The advantage of the graphical model is that is relatively easy to use and
understand, but the disadvantage is that it has very limited expressivity. There-
fore, it is almost always necessary to use it in combination with the formal
language, which however can be very difficult to use, even for computer scien-
tists.

We will now give an example of a protocol that is hard to express using only
the graphical representation of Islander. Note that this example uses the verb
‘to make’ which is currently not yet available in SIMPLE. Therefore, the idea
is to show how SIMPLE will be more easy to use than Islander in the future,
when we have further extended the language.

Suppose we want to implement the following protocol in Islander:

There must be at least 5 students.

Initially, any student can make assignment 1.

If a student has made assignment 1 then he can make assignment 2.
If a student has made assignment 2 then he can make assignment 3.

If there would be only 1 student then this protocol would be very easy to imple-
ment in Islander. It would just be a linear graph with 4 nodes and three edges,
where each edge corresponds to making an assignment.

With multiple students however, you run into the problem that students may
make their assignments at different speeds. For example, one student may quickly
deliver assignments 1 and 2, while another is still busy with assignment 1. This
means that at any moment each student can be in any of 4 states, and thus the
protocol as a whole can be in any of 4™ different states if there are n students.
With as little as 5 students drawing the graph would already become practically
impossible as it would require the designer to draw 4° = 1024 states plus all
their edges. The only realistic way to specify this protocol would be to use the
formal language rather than the graph-representation.

Another way to implement this protocol in Islander would be to implement
it as a protocol for only 1 student, and then let n of these protocols run in
parallel. In this way we again only need to draw a linear graph with 4 nodes
and 3 edges. However, this is only possible because in this example there is no
interdependency between the students’ actions. If we make the example a bit
more complicated, for example by adding a final exam that only starts when all
students have finished all assignments, this is no longer possible.

Another problem with Islander is that one cannot use universal quantifiers.
Even in Islander’s formal language one cannot directly state something like “If
all students have finished their assignments...”. The only way to achieve this is
to create a list of names of students, make sure that the name of a student is
added to this list when he or she enters the institution, and make sure that the
name of a student is removed from this list whenever he or she finishes his or her
assignment. Then, whenever you need the precondition that all students must

A Language for the Specification of Protocols, Similar to Natural Language 115

have finished their assignments, you can specify that this list must be empty. In
practice, this turns out to be a tedious job to do all this in Islander, making it
far from user-friendly.

8 Future Work

We consider that the language as it is, is still too limited to be of real practical
use. We here list the shortcoming that we consider most important and that
we plan to fix in the near future, as well as other improvements that we are
considering.

Firstly, we will add the possibility to specify the recipient of a message.
Currently every message is sent to all other agents in the MAS, which makes it
impossible to send confidential information. This means we will allow to write
sentences such as:

If the auctioneer has said ‘welcome’ to a buyer then that buyer can say ‘hello’
to the auctioneer.

Secondly, we would like the protocol designer to be able to express that a certain
event must have taken place a certain number of times. For example:

If a buyer has announced his bid price more than 5 times...

Thirdly, we would like to add time-constraints to the language, so that we could
define rights that expire after a certain amount of time, such as:

If no one announces his bid during 10s then the highest bidder becomes the
winner.

Furthermore, we would like to add more types of messages and maybe even allow
the protocol designer to define message types. That would make it possible to
use certain domain-specific verbs. For example:

If a student has finished his assignment...

We could even take this a step further and allow the protocol designer to define
new data types, similar to data types in the EIDE framework. For example, one
could define a data type “contract” by including a sentences such as:

A contract consists of a date, a price, and a quantity.
A price is a positive number.

One could then define a negotiation protocol with sentences such as
Any negotiator can propose a contract.

If such data types are composed of basic types such as Strings and numbers then
during the execution of the protocol the GUI can display the proper input fields
for the user to specify the details of the contract to propose. Defining new types

116 D. de Jonge and C. Sierra

of objects is typically something that Inform 7 can handle well, so we may draw
some inspiration from that language.

Furthermore, we will add a system that determines at run time, whenever an
agent tries to send an illegal message, which conditions first need to be fulfilled
before the agent can indeed legally send that message. In this way the system
can explain to the user why he or she made a mistake and will help the user
to understand new protocols. In order to make the language more flexible and
expressive, we will delve into literature about linguistics and apply some of its
principles to our language.

Finally, we will perform an empirical study to evaluate how easy-to-use this
language really is. We will let random people implement a protocol using our
language as well as using some other existing tool such as Islander to compare
whether our language indeed makes the task easier.

Acknowledgments. Supported by the Agreement Technologies CONSOLIDER
project, contract CSD2007-0022 and INGENIO 2010 and CHIST-ERA project ACE
and EU project 318770 PRAISE.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based software tool. Appl. Artif.
Intell. 20(2-4), 133-157 (2006)

2. Argente, E., Criado, N., Botti, V., Julian, V.: Norms for agent service controlling.
In: EUMAS-08, pp. 1-15 (2008)

3. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A protocol for resource sharing in
norm-governed ad hoc networks. In: Leite, J., Omicini, A., Torroni, P., Yolum, P.
(eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 221-238. Springer, Heidelberg
(2005). http://dx.doi.org/10.1007/11493402_13

4. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. In:
Kyburg Jr., H.E., Loui, R.P., Carlson, G.N. (eds.) Knowledge Representation and
Defeasible Reasoning. Studies in Cognitive Systems, vol. 5, pp. 167-190. Springer,
Netherlands (1990). http://dx.doi.org/10.1007/978-94-009-0553-5_7

5. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: 6th IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), 6-8 June 2005, Stockholm, Sweden, pp.
14-23 (2005). http://dx.doi.org/10.1109/POLICY.2005.13

6. Broersen, J., Dignum, F., Dignum, V., Meyer, J.-J.C.: Designing a deontic logic
of deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol.
3065, pp. 43-56. Springer, Heidelberg (2004)

7. Cardoso, H.L., Urbano, J., Rocha, A.P., Castro, A.J., Oliveira, E.: Ante: agree-
ment negotiation in normative and trust-enabled environments. In: Ossowski, S.
(ed.) Agreement Technologies. Law, Governance and Technology Series, vol. 8,
pp. 549-564. Springer, Netherlands (2013). http://dx.doi.org/10.1007/978-94-007-
5583-3_32

8. Coi, J.L.D., Kérger, P., Olmedilla, D., Zerr, S.: Using natural language policies
for privacy control in social platforms (2009). http://CEUR-WS.org/Vol-447/
paperd.pdf

http://dx.doi.org/10.1007/11493402_13
http://dx.doi.org/10.1007/978-94-009-0553-5_7
http://dx.doi.org/10.1109/POLICY.2005.13
http://dx.doi.org/10.1007/978-94-007-5583-3_32
http://dx.doi.org/10.1007/978-94-007-5583-3_32
http://CEUR-WS.org/Vol-447/paper4.pdf
http://CEUR-WS.org/Vol-447/paper4.pdf

A Language for the Specification of Protocols, Similar to Natural Language 117

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Cranefield, S.: A rule language for modelling and monitoring social expectations
in multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vazquez-Salceda, J. (eds.) ANIREM and
OOOP 2005. LNCS (LNATI), vol. 3913, pp. 246-258. Springer, Heidelberg (2006)
Cranefield, S., Winikoff, M.: Verifying social expectations by model checking
truncated paths. J. Logic Comput. 21(6), 1217-1256 (2011). http://logcom.
oxfordjournals.org/content/21/6/1217.abstract

Dastani, M., Tinnemeier, N.A., Meyer, J.J.C.: A programming language for nor-
mative multi-agent systems (2009)

De Coi, J.: Notes for a possible ACE — Protune mapping. Technical report,
Forschungszentrum L3S, Appelstr. 9a, 30167 Hannover, July 2008

Eiter, T., Tanni, G., Krennwallner, T.: Answer set programming: a primer. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset,
M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40-110.
Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03754-2_2
Esteva, M., de la Cruz, D., Sierra, C.: Islander: en electronic institutions editor.
In: Bologna, Italy, vol. 3, pp. 1045-1052. ACM Press, 15-19 July 2002

Esteva, M., Rodriguez-Aguilar, J.A., Arcos, J.L., Sierra, C., Noriega, P., Rosell,
B., de la Cruz, D.: Electronic institutions development environment. In: AAMAS
(Demos), pp. 1657-1658 (2008). http://www.iiia.csic.es/files/pdfs/eide.pdf
Fornara, N., Cardoso, H.L., Noriega, P., Oliveira, E., Tampitsikas, C., Schumacher,
M.IL.: Modelling agent institutions. In: Ossowski, S. (ed.) Agreement Technologies,
Chap. 18, vol. 8, pp. 277-307. Springer-Verlag GmdH, Netherlands (2013)

Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled English for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104-124.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85658-0_3
Garcia-Camino, A.: Ignoring, forcing and expecting simultaneous events in elec-
tronic institutions. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.)
COIN 2007. LNCS (LNAI), vol. 4870, pp. 15-26. Springer, Heidelberg (2008).
http://dl.acm.org/citation.cfm?id=1791649.1791652

Genesereth, M., Love, N., Pell, B.: General game playing: overview of the aaai
competition. AT Mag. 26(2), 62-72 (2005)

Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defea-
sible logic. In: Procedings of the 10th International Conference on Artificial Intel-
ligence and Law, pp. 25-34. ACM Press (2005)

van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternat-
ing time: effectiveness, feasibility, and synthesis. Synthese 156(1), 1-19 (2007).
http://dx.doi.org/10.1007 /s11229-006-9072-6

Hiibner, J.F., Sichman, J.S., Boissier, O.: S — Moise™: a middleware for devel-
oping organised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Véazquez-Salceda, J.
(eds.) ANIREM and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64-78. Springer,
Heidelberg (2006). http://dx.doi.org/10.1007/11775331_5

de Jonge, D., Rosell, B., Sierra, C.: Human interactions in electronic institutions.
In: Chesnevar, C.I., Onaindia, E., Ossowski, S., Vouros, G. (eds.) AT 2013. LNCS,
vol. 8068, pp. 75-89. Springer, Heidelberg (2013)

Kollingbaum, M.J.: Norm-governed practical reasoning agents. Ph.D. thesis,
University of Aberdeen (2005)

Kroger, F.: Temporal Logic of Programs. Springer-Verlag New York, Inc.,
New York (1987)

http://logcom.oxfordjournals.org/content/21/6/1217.abstract
http://logcom.oxfordjournals.org/content/21/6/1217.abstract
http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://www.iiia.csic.es/files/pdfs/eide.pdf
http://dx.doi.org/10.1007/978-3-540-85658-0_3
http://dl.acm.org/citation.cfm?id=1791649.1791652
http://dx.doi.org/10.1007/s11229-006-9072-6
http://dx.doi.org/10.1007/11775331_5

118

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

D. de Jonge and C. Sierra

Lewis, D.: Semantic analyses for dyadic deontic logic. In: Stenlund, S. (ed.) Logical
Theory and Semantic Analysis: Essays Dedicated to Stig Kanger on His Fiftieth
Birthday, pp. 1-14. Reidel, Dordrecht (1974)

Loépez y Lépez, F., Luck, M.: A model of normative multi-agent systems and
dynamic relationships. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA
2002. LNCS (LNAI), vol. 2934, pp. 259-280. Springer, Heidelberg (2004)
Makinson, D., Van Der Torre, L.: Input/output logics. J. Philos. Logic 29(4),
383-408 (2000)

Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic. Notre Dame J. Formal Logic 29(1), 109-136 (1987).
http://dx.doi.org/10.1305/ndjfl /1093637776

Nelson, G.: Natural language, semantic analysis and interactive fiction (2014).
http://inform7.com/learn/documents/WhitePaper.pdf

Nute, D.: Defeasible Deontic Logic. Springer, The Netherlands (1997)

Sergot, M.J., Craven, R.: The Deontic Component of Action Language nC'+. In:
Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222-237.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11786849_19

Shi, L.L., Chadwick, D.W.: A controlled natural language interface for authoring
access control policies. In: Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC), TaiChung, Taiwan, 21-24 March 2011, pp. 1524-1530 (2011).
http://doi.acm.org/10.1145/1982185.1982510

Tampitsikas, C., Bromuri, S., Schumacher, M.I.: MANET: a model for first-class
electronic institutions. In: Cranefield, S., van Riemsdijk, M.B., Vazquez-Salceda,
J., Noriega, P. (eds.) COIN 2011. LNCS, vol. 7254, pp. 75-92. Springer, Heidelberg
(2012). http://link.springer.com/chapter/10.1007/978-3-642-35545-5_5

Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson,
M., Jung, H.: New developments in ontology-based policy management: increasing
the practicality and comprehensiveness of KAoS. In: IEEE International Workshop
on Policies for Distributed Systems and Networks, pp. 145-152 (2008)
Viézquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multi-
agent systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, pp. 313-327. Springer, Heidelberg (2004)
von Wright, G.H.: Deontic logic. Mind 60, 1-15 (1951)

http://dx.doi.org/10.1305/ndjfl/1093637776
http://inform7.com/learn/documents/WhitePaper.pdf
http://dx.doi.org/10.1007/11786849_19
http://doi.acm.org/10.1145/1982185.1982510
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-35545-5_5

Mind as a Service: Building Socially Intelligent
Agents

Virginia Dignum ™)

Delft University of Technology, Delft, The Netherlands
M.V.Dignum@tudelft.nl

Abstract. The ability to exhibit social behaviour is paramount for
agents to be able to engage in meaningful interaction with people.
In fact, agents are social beings at the core. That is, agent behaviour
is the result of more than just rational, goal-oriented deliberation. This
requires novel agent architectures that start from and integrate different
socio-cognitive elements such as emotions, social norms and personality.
Current agent architectures however, do not support the construction of
social agents in a structured, modular and computational- and design-
efficient manner. Inspired by service-orientation concepts, in this paper
we propose MaaS (Mind as a Service) as a modular architecture for agent
systems that enables the composition of different socio-cognitive capa-
bilities into a running system. Depending on the characteristics of the
domain, agent’s deliberation will require different social capabilities. We
propose to model these capabilities as services, and define a ‘Delibera-
tion Bus’ that enables to design deliberation as a composition of services.
This approach allows to define deliberation architectures that are situa-
tional and dependent on the available components in order to cope with
the complexity of social and physical environments in parallel. We fur-
thermore propose a Service Interface Descriptor language to encapsulate
service functionalities in a uniform way.

1 Introduction

The potential of artificial intelligent systems to interact and collaborate not only
with each other but also with human users is no longer science fiction. Healthcare
robots, intelligent vehicles, virtual coaches and serious games are currently being
developed that exhibit social behaviour - to facilitate interactions, to enhance
decision making, to improve learning and skill training, to facilitate negotiations
and to generate insights about a domain. In all these cases, the ability to exhibit
social behaviour is paramount for successful functioning of the system.

We informally define social intelligent agents as systems whose behaviour can
be interpreted by others as that of perceiving, thinking, moral, intentional, and
behaving individuals; i.e. as individuals that can consider the intentional or ratio-
nal meaning of expressions of others, and that can form expectations about the acts
and actions of others [27]. In this light, functionalities required from social intelli-
gent agents include the ability to reason about norms, beliefs and culture-specific
© Springer International Publishing Switzerland 2016

V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 119-133, 2016.
DOI: 10.1007/978-3-319-42691-4_7

120 V. Dignum

contexts, to display and understand emotions, to balance between goal-directed
and reactive behaviour, maintain a sense of identity, to form expectations about
the other’s acts and actions, etc. An important aspect of social behaviour is the
capability to integrate and to choose between different types of behaviour, such
as e.g. utility-based, mimicry or altruistic behaviours based on the physical and
social context.

In the last years, many systems have been developed which possess some of
these characteristics. In particular, work on Intelligent Virtual Agents and on
Social Robotics has delivered many promising results. However, we are still lack-
ing theories, tools and methodologies to guide and ground these developments.
That is, current approaches often result in ad-hoc, unstructured solutions. Suc-
cess and applicability are often more due to the expertise and art of the devel-
opers, rather than on robust engineering principles. Moreover, in most cases,
social aspects are ‘added-in’ on top of existing architectures, such as BDI, which
does not allow to model the rich inter-dependencies between social capabilities
needed to generate social behaviour [12].

The necessity to develop working real-world systems capable of exhibiting
social behaviour for the purpose of interaction and collaboration with people
requires engineering approaches to explore the full potential of social artificial
intelligent systems on a larger scale, mandates a new understanding of social
intelligent agents. Architectures, tools and methodologies are needed to realize
this potential and engineer applications with a high level of robustness and
quality. Only then can we reach a level of robustness acceptable by industry and
society.

In this paper, we introduce the vision of MaaS (Mind as a Service), a frame-
work to develop the ‘minds’ of social intelligent systems, based on the compo-
sition of different cognitive modules, or services. In the context of this paper,
the concept of ‘mind’ should be understood as an analogy of the human mind
rather than as a faithful representation, i.e. representations and processes that
enable behaviour that can be interpreted by others as socio-cognitive behaviour.
It is important to notice that our aim is to develop synthetic models that exhibit
behaviour that can be seen as social, rather to attempt at emulating the human
brain with computational capabilities. Furthermore, we use the term ‘mind’ in
order to stress the fact that we are only specifying the deliberation mechanisms.
In most applications this mind will be connected to a physical or virtual body
of the agent, but the specification of the agent’s body is outside the scope of this
paper.

MaaS combines a service-oriented concepts with formal specification lan-
guages to verify behaviour. In this position paper, we outline the MaaS app-
roach, present the grounding theories on which Maa$S is based, and discuss its
main challenges. The work presented here should be seen as a first proposal
towards a comprehensive theory and tools to build and analyse social intelligent
agents.

Mind as a Service: Building Socially Intelligent Agents 121

2 Related Work

MaaS is grounded in both the Social Sciences and Artificial Intelligence.
Researchers from many different backgrounds, have studied social behaviour and
deliberation, resulting in many approaches, of different levels of formalisation,
applicability and detail.

Understanding social behaviour is the first step towards building social
minds [7]. Social intelligence is defined as an aggregate of different capabili-
ties, including awareness, social beliefs and attitudes, and the ability to change
[6,16]. In his book, “The Society of Mind” Minsky explores the notion that the
mind consists of a great diversity of mechanisms: every mind is really a rich and
multifaceted society of structures and processes, different for every individual as
result of genetics, millennia of human cultural evolution, and years of personal
experience [23]. Societies of Mind are composed of agents with specific function-
ality that can be combined together to perform functions more complex than
any single agent could, and ultimately produce the many abilities we attribute to
minds. Despite the great popularity of this work, there have been few attempts
to implement the Society of Minds theory, especially due to the fact that Min-
sky presents his ideas at different level of abstraction and provides few handles
for construction of minds. In its main objective, that of providing a modular,
compositional and adaptable architecture for intelligent systems, MaaS takes a
similar view of mind as that proposed by Minsky and can be seen as providing
a principled engineering framework to develop systems similar to the Society of
Minds. However, the basic concepts behind MaaS and the Society of Minds are
quite different.

Decision-making processes are influenced by individual and social
sources [22]. Social influences are often described in terms of social rules that
are followed, such as ‘obey your parents’ or ‘mimic the behaviour of your peers’.
Individual influences are usually expressed in terms of personal goals or util-
ities and lead to ‘rational’ decision rules. The social sciences describe many
mechanisms or schemas used by humans to link these capabilities (e.g. salience,
priming, motivation and regulation), determine how decisions are made and gen-
erate complex social behaviour [1,15]. Similar processes occur in human-agent
interaction because social signals (like emotional expressions) produced by com-
putational agents are processed by humans in a similar manner as signals which
are produced by humans [32].

Computational cognitive models, such as ACT-R [3] and SOAR [9] produce intel-
ligent behaviour by employing quantitative measures, which means that different
factors take the same form in the deliberation process. This makes it difficult to
manage, control and vary different socio-cognitive aspects because these cannot
easily be isolated in the decision rules. Moreover, once models get larger they lack
transparency to link observed behaviour to the implementation. Existing archi-
tectures used to construct virtual agents and intelligent game characters, such as
FAtiMA [11], GRETA [21] or CIGA [31] can achieve fairly realistic behaviours
that are computationally efficient, but are generally developed for a very spe-
cific domain of application. Given this domain-oriented focus, their results are

122 V. Dignum

not easily reusable in applications that require slightly different social aspects.
Sometimes norms play a major role in a training application while in health
care applications emotions might take precedence. Moreover, the focus of these
approaches is geared to the visualisation of the behaviours by the virtual char-
acters in terms of e.g. gestures, or facial expressions.

Recently, Kaminka and Dignum et al. [12,18] discussed the many challenges
of designing the social behaviour of agents. In this paper, we propose an ini-
tial architecture to build agents that can meet those challenges. MaaS takes a
modular, service-oriented approach to build social intelligent agents, resulting
in flexible and adaptable deliberation. Nevertheless, existing cognitive models in
AT are often too simplistic, mostly suitable for well-defined problem domains,
platform- or domain-specific, or computationally too complex [9,20,29].

Deliberative agent models, such as BDI [33], have formal logic-grounded
semantics, but often require extensive computational resources to deal with social
contexts, or use game-theoretic rules that are too simple to capture many of the
rich interactions that take place in real-world scenarios [5]. BDI does use different
modules for beliefs, desires and intentions. However, these are geared towards
individual influences on decision making. These models thus lack an explicit rep-
resentation for social influences. One can represent all these social influences in
the beliefs or goals of an agent, but that leads to the same objection as against
the cognitive models; the rules become convoluted and different aspects cannot
easily be managed separately.

Other decision-theoretic approaches often used are (PO)MDPs - (Partially
Observable) Markov Decision Processes, which capture many of the facets of
real world problems, but unrealistically assume that whatever system is solving
the MDP knows at every point what state it is in. Moreover, (PO)MDPs do
not scale well and lack the modularity needed to analyse the results of large
models [4].

The Subsumption Architecture [8,30] takes a reactive perspective, through
an hierarchy of task-accomplishing behaviours (simple rules) without necessar-
ily a central control. Lower layers correspond to ‘primitive’ behaviours and have
precedence over higher (more abstract) ones. This architecture is simple in com-
putational terms, but is conceptually obscure due to its ‘black box’ character.

In an attempt to balance different aspects, and improve the separation of
concerns, AOSE (Agent-Oriented Software Engineering) addresses adaptation,
concurrency, and fault-tolerance issues [13,28] of the development of agent sys-
tems. However, most current AOSE approaches see agents as an application
layer software component operating on middleware platforms to gain access to
standardised infrastructures. Specifically, such approaches provide syntactic con-
structs to represent domain knowledge and agent functionalities but lack the for-
mal semantics to reason about agent behaviour at higher levels of abstraction, in
terms of socio-cognitive concepts. This leads to results that are not generalizable
to other frameworks and applications.

Mind as a Service: Building Socially Intelligent Agents 123

3 The MaaS Vision

As discussed in the previous section, many approaches exist to model different
aspects of social intelligence. Our proposal is not to develop yet another model,
but enables the integration of different models into working software systems,
with variable levels of precision and realism. We therefore aim to build social
intelligent systems as a modular, service-based architecture which enables for-
mal verification and conceptual clarity while making possible the integration of
different reasoning architectures.

The ‘Mind as a Service’ (MaaS) architecture proposed in this paper, repre-
sents social intelligent agents as a composition of software services, each designed
to implement a specific socio-cognitive functionality. MaaS systems behave in
human-like fashion by integrating individual considerations and social influ-
ences in their decision making process, and taking into account situational differ-
ences. This approach follows recent literature suggesting that rational behaviour
requires the input from different socio-cognitive abilities [2].

This approach is based on three pillars. Firstly, the development of models for
social deliberation and interaction. The models should be grounded in existing
proven psycho-sociological theories, but also be computationally sound and suffi-
ciently ‘light’ to be easily be embeddable into avatars, robots or other intelligent
systems. By expressing algorithms in logical terms, explanation and synthesis
of socio-cognitive behaviour is possible [24]. This view is orthogonal to current
AT research focus on emulating the human brain!, in such that our aim is to
develop synthetic models that exhibit behaviour that can be perceived as social,
and not to understand the human brain in order to emulate its computational
capabilities.

Secondly, the development of a computational platform to build MaaS as a
composition of socio-cognitive services. This platform will allow to build mod-
ular socio-cognitive deliberation architectures and to analyse the consistency
of different compositions in terms of accuracy of real world behaviour. Given
the explicit formal representation of MaaS models this allows for introspection
of the drives of an agent’s behaviour. We will take inspiration from Service-
Oriented Architecture (SOA) principles [14], in order to realise systems that are
scalable and flexible, as services can be replaced by other services, and the sys-
tem includes only those services required for its aims. Note that our use of SOA
ideas should be seen in a broad perspective. We are particularly interested in the
overall principles of service-orientation design, stressing separation of concerns
in software development, and the view of software as partitioned into operational
capabilities, the services, each designed to solve an individual concern.

The idea is thus to design agents’ minds as a composition of cognitive services,
each based on different theories and approaches, and provide the tools to combine
and integrate these services into ‘minds’ fulfilling given requirements in terms of
reasoning capabilities, realism and computational efficiency.

! Such as is advocated e.g. by the Human Brain Project (https://www.
humanbrainproject.eu/).

https://www.humanbrainproject.eu/
https://www.humanbrainproject.eu/

124 V. Dignum

Through composition, new services can be created from a set of existing
services. Moreover, each socio-cognitive function can be modelled in many ways,
resulting in several services for the same socio-cognitive ability with different
levels of complexity and realism, which can be interchanged depending on the
requirements of the application. MaaS services can be addressed in a uniform way
through a standard Service Description Interface that is platform- and domain-
independent.

Thirdly, design of a methodology to develop MaaS to be embedded in artifi-
cial interactive systems. This methodology should provide guidelines for domain
analysis, evaluate the socio-cognitive functionalities required for interaction and
their level of realism, construct and compose the relevant socio-cognitive ser-
vices, and evaluate results. The use of the methodology and framework will be
evaluated in the development of prototypes for three case studies.

Ultimately, we aim to develop a complete framework that integrates formal
theory, software development tools, and methodology to build artificial minds
in a structured, compositional way. Through this framework, social intelligent
agents can be build that are modular, flexible, adjustable and verifiable. This
aim leads directly to the following challenges that we face for the realisation of
MaasS:

Modular: requires definitions and models to represent different theories
(describing socio-cognitive capabilities) and verify the resulting computa-
tional models. To address this challenge we propose a meta-modelling app-
roach to specify socio-cognitive capabilities.

Flexible: Each application domain requires different abilities at different lev-
els of precision. Our approach to this challenge is twofold: (1) we provide
procedures and guidelines to identify relevant socio-cognitive modules given
the requirements of an application domain, and (2) we define uniform inter-
face descriptions that enable the composition and encapsulation of different
socio-cognitive models.

Adjustable: Which socio-cognitive capabilities are needed, at which level of
realism and computational complexity, and how to integrate the different
capabilities into a deliberation mechanism, is dependent on the character-
istics of the domain. MaaS should provide an extendible library of socio-
cognitive services. We aim at a plug-and-play mechanism to combine these
services in many ways resulting in different decision-making paradigms (e.g.
rational or behavioural models of decision making).

Verifiable: To judge the appropriateness of the behaviour of a MaaS system,
computational theories and tools are needed to analyse the composed effects
of social capabilities. By specifying formal representations of socio-cognitive
theories we will be able to use formal model-checkers to verify whether a
MaaS satisfies some desired properties.

3.1 The MaaS Development Process

In order to integrate different models in a structured way we follow a Model-
Driven Engineering (MDE) approach [19]. This enables to develop models that

Mind as a Service: Building Socially Intelligent Agents 125

make sense from the point of view of a domain expert or a social scientist,
and that can serve as a basis for implementing running computational systems.
First step, will be to design formal models of socio-cognitive theories as defined
in the Social Sciences. The formalisation of these models is needed in order to
enable formal verification, or theorem proving, and are the basis for service meta-
models. From these meta-models, platform independent models can be generated
for specific application domains, realizing the functional requirements and char-
acteristics of those application domain. Finally, these models can be transformed
into computational systems to be embedded in specific computational platforms.
Without claiming a direct relation, this process can be compared with the MDE
ideas of Platform Independent Models (PIM) are used as a blueprint to develop
and compose software services, or Platform Specific Models (PSM). We propose
a Deliberation Bus (cf. Sect. 4.2) through which these cognitive services are com-
posed into an operational mind (the MaaS) that is embedded in social intelligent
systems that interact with people, such as Embodied Virtual Agents (EVAs) or
other avatars or cognitive robots. This process is illustrated in Fig. 1.

6o [lewio4
uonelBaju|
ppaqu3

Buuesuibua
UBALIP-|9PON
ainjospyose
PoJUBLIcADINISS

Bu
O
O

9|

Social Science& Metamodels PIMs for

Social L]
theories of for social social ‘ intelligence -Maas- "D J

behaviour intelligence intelligence services
| 3 2 : g 7 nn

Simulation and Verification

Fig. 1. The MaaS development process

3.2 Development Environment

Our aim is to develop MaaS system that can be embedded in interactive soft-
ware applications, such as game characters, virtual assistants or robots. To this
extent, we are developing MindBuilder, a computational platform to design and
implement MaaS. MindBuilder will have the following functionalities:

— design of meta-models for cognitive services, integrating

e formal languages to specify abstract socio-cognitive capabilities, and

e theorem provers to verify their formal properties
— tools to specify concrete socio-cognitive services based on the meta-models

and define service interfaces using the Service Interface Description language

— tools for composition and adaptation of cognitive services
— a library of cognitive services models and meta-models
— MaaS verification tools, including formal algorithms to model-check behaviour
— a sandbox environment to test and evaluate MaaS

126 V. Dignum

— a methodology to analyse and develop Maa$S systems for specific application
domains taking into account ethical, social and technical considerations.

MindBuilder platform and methodology will support the specification, inte-
gration, simulation and reuse of MaaS as a composition of services, illustrated in
Fig. 2. The objective is to generate computational models of socio-cognitive capa-
bilities through a semi-automatic transformation of the formal meta-models with
the concrete characteristics and requirements of a specific application domain.
For example, a possible normative meta-model will enable the specification and
verification of abstract norms as deontic logic expressions. An alternative meta-
model for norms, can represent norms as constraint rules. Each of these meta-
models will define different models for normative services. Depending on the
requirements of the application scenario, one or the other can be chosen result-
ing in different normative capabilities for the MaaS. For example, in the scenario
described in Sect. 3.3, if the deontic meta-model is chosen to represent physical
activity norms for children, the norm “children must do 90 min of physical activ-
ity per day” can be represented as a deontic expression, enabling rich normative
about violated states. If a constraint-based meta-model is chosen, the norm is
represented as a constraint and only acceptable behaviours are possible in the
system.

/ N

Maa$S
verification

Cognitive

service builde

EER
deployment

library

MindBuilder

Fig. 2. The MindBuilder architecture

Resulting MaaS systems can be embedded in different interactive software
applications, to provide social intelligence capabilities to those applications.

The MindBuilder methodology supports the identification of the socio-
cognitive capabilities required for the domain, and their level of realism, guides
the development of domain-specific versions of existing models and services, and
defines the parameters for analysis of results using simulation.

Mind as a Service: Building Socially Intelligent Agents 127

3.3 Example Scenario

To illustrate the MaaS vision, we describe its possible application to develop
a virtual coach for overweight children, JOGG. The socio-cognitive capabilities
required by JOGG include the ability to show emotions, and to understand
norms and values. For example, the virtual coach should express happiness when
the user has successfully performed a task, should be persuading when suggesting
a course of action, should monitor norms, such as the obligation to exercise daily,
or the prohibition to snack too often, and enforce values such as privacy, but
should also be able to decide when to break a norm, for example violate the
norm of privacy and notify a doctor if the health of the user is perceived to be
very poor.

Different social science theories exist to describe and analyse these socio-
cognitive abilities. To name just a few, emotions can be described using e.g. the
OCC model [26], or by simple rules that relate happiness to the fulfilment of
one’s goal, and norms can be modelled using e.g. deontic logics [34], or by the
normative theory of Kahnemann [17]. The MaaS methodology will support the
analysis of the domain to determine which base sociological theories are the most
suitable, and what level of realism is required.

The MindBuilder Library may already contain meta-models or specific
services implementing these theories, otherwise new meta-models should be
specified using MindBuilder Design. The required services are designed as trans-
formation of the meta-models adapted to the specific characteristics of the JOC-
CGG domain, e.g. specifying specific norms on physical activity and nutrition,
relevant values such as privacy of participants, and suitable emotional expres-
sions in the given cultural context of use. Using MindBuilder Composition com-
ponent, services are composed into a MaaS. In order to determine the most
adequate compositions, and which level of detail and realism of socio-cognitive
services is required, MindBuilder Simulation is used to analyse different MaaS
configuration options. Different configurations representing different deliberation
mechanisms can be checked, e.g. to determine the effect of a norm on the emo-
tion of the MaaS and vice-versa, to check how norm violations affect values, or
to determine the effect of e.g. mimicry or goal-orientation as basis for the MaaS
deliberation. The resulting MaaS can then be embedded in an app to be used
to support the user control their weight and maintain an active lifestyle.

4 MaaS Deliberation

Social deliberation in MaaS results from the integration of different socio-
cognitive services. In order to realise the MaaS vision, we need both the means
to describe these services in a uniform way (the Service Interface Description),
and the ways to combine them into meaningful deliberation (the Deliberation
Bus). The aim of the remainder of this section is to provide insight on the vision
behind these two functionalities rather than describe existing work. In fact, the
development of these functionalities is the aim of further work.

128 V. Dignum

4.1 Service Interface Description

In order to ensure service integration into MaaS systems in a robust, resilient,
dependable and scalable manner, we need to develop interfaces between services,
and to identify and represent quality of service expectations. A service-oriented
approach enables to separate service implementation from service specification.
Service Interface Descriptors (SID) will describe the functionality offered by a
service, independently from its implementation. As such, services can be seen as
black boxes, where operational details are abstracted by the SID. Other services
rely on SID to call the service.

As in Situation Calculus, we model the domain world as progressing through
a series of states, as a result of various actions being performed within the world.
A social state is defined as a set of fluents (properties whose truth changes over
time). These fluents represent physical situations (agent is in place X), emotional
aspects (agent is happy), relational aspects (agent A is friend of B), and other
issues pertinent to the situation. A socio-cognitive service is then a transition
from one (social) state to another. Le., services take a state as input and result
in an alteration of that state, that is a change in the value of some of the state
fluents. SIDs describe which fluents are modifiable by the service, under which
circumstances (i.e. fluents describing the preconditions for using the service).

A service-oriented approach enables to separate service implementation from
service specification. We use Service Interface Descriptors (SID) to describe the
functionality offered from a service, independently from its implementation. As
such services can be seen as black boxes, encapsulated by SID. Other services
rely on the SID to call the service. SIDs indicate which fluents are modifiable by
the service, under which circumstances (i.e. fluents describing the preconditions
for using the service).

Each service acts over a specific set of fluents. Several services may be active
at the same time, and can call each other to perform some desired change. For
example, in the scenario presented above, for the virtual coach JOGG to propose
a possible activity to the user, it will employ services to determine the possible
activities, to adapt its emotional expression (which calls a service to determine
the user’s current emotional state), to decide on the most appropriate way to
propose those activities to the user (based on the user’s culture, personality, and
on holding norms of behaviour), and so on.

Quality of Service. MaaS systems have different requirements concerning the
socio-cognitive capabilities needed and the desired level of realism. Although all
aspects will play a role in both decisions their relative importance is different.
For example, decisions on buying more organic products in the supermarket are
mostly based on culture and personality, while decisions on buying cars might be
more status driven. This characteristic demands design models that are scalable,
and can be flexibly adapted to the varying requirements of quality and scale of
different use-cases.

The service-oriented approach taken to build MaaS enables to specify and
select services with different levels of precision and computational complexity

Mind as a Service: Building Socially Intelligent Agents 129

to execute similar functionality. I.e., depending on the specific demands of an
application domain, a socio-cognitive service for normative reasoning can, for
example, be based on a temporal-deontic logic [34] or on Ostrom’s ‘ADICO’
model [10]. Given the use of uniform Service Interface Descriptors, a service
with a given level of quality can be replaced by another (of lower or higher
quality), resulting in different levels of cognitive deliberation, according to the
requirements of a given domain.

We conceive an approach to quality of service in MaaS, based on different lev-
els. At the most abstract level, quality is defined as high-level abstractions. For
example, can a service handle a specific norm, or a specific emotion. At the level
of SID, the quality of a service is described by the service’s capability to handle
fluents. That is, differences in quality of services are related to which fluents
can be handled by the service SID, and how those fluents are interpreted by the
service. Assuming an expressive domain representation language, many details
can be given about a situation, however not all services are able to handle all the
details. This results in different levels of complexity and realism for interchange-
able services. Consider for instance, services that analyse the emotion of an user.
Rich services can take into account vision, audio and biologic sensor information,
while a simple emotion service is only able to take into account input from a
dropdown-menu question to the user (“How are you feeling? Choose from the
following X options”). Obviously, the result of different emotion-services will be
more or less detailed depending on the service option used. However, not all
applications require the richer version.

4.2 Deliberation Bus

It is well-known that neither purely reactive nor purely deliberative techniques
are capable of producing the range of behaviours required of intelligent agents
in dynamic, unpredictable, domains, and specially when interaction with people
is needed. I.e. real-time interaction requires both extensive reasoning as well as
fast reaction. Therefore, socio-cognitive services have different expectations in
terms of time and reaction rate, which demands the integration of goal-based
planning and reaction over diverse temporal and functional scopes. At the heart
of a MaaS we propose a Deliberation Bus consisting of a central deliberation
bus to connect and synchronise different services, and of memory and time man-
agement units. Besides socio-cognitive services, the Deliberation Bus also links
to sensing and actuator services. These are dependent on the actual system or
artefact in which the MaaS is embedded. The Deliberation Synchronisation Bus
specifies and implements the communication between services using SID, and
takes care of the synchronisation of the different service processes. We use the
term ‘bus’ to stress the fact that we do not assume a fixed deliberation cycle but
rather parallel communication between services depending on the situation. In
order to allow a uniform quantization of time throughout the model, yet permit
different rates of reaction for services, it becomes necessary to interleave sensing
and planning. The time management unit allows multiple state updates to occur

130 V. Dignum

during deliberation, while keeping in synch with an evolving world. The Deliber-
ation Bus architecture (cf. Fig. 3) integrates deliberation and reaction in flexible
and efficient ways. Existing deliberation paradigms such as goal-oriented (BDI)
or reactive (Sense-Plan-Act) can be represented in the Bus, which is expressive
enough to specify many other deliberation possibilities.

| memory | | timer |

actuator

sensof _
services

services

deliberation synchronisation bus

socio-cognitive services

Fig. 3. Abstract deliberation bus architecture

4.3 Service Meta-Models and Verification

Deep theoretical understanding of specific functionalities for social interaction is
a pre-requisite to their use in artificial social intelligent systems, yet there is an
awareness that current formalisms are not able to deal with the representation
of social functionalities and their interrelations in a way that enables verifica-
tion and proof. Nevertheless, formalisms abound that deal with specific aspects
of reasoning, such as decision-making, norms, or emotions. However, such mod-
els are quite disparate and integration is not well understood. Our proposal is
to start from existing logical formalisms to represent and reason about social-
cognitive behaviour and develop formal interpretations of existing social science
theories of social behaviour.

There is a long tradition in AI to use logical theories to provide insights
into the reasoning problem without directly informing the implementation. The
use of logical formalisms as a tool of analysis and knowledge representation, is
at the basis of Al research [25]. We will use existing formalisms for different
aspects of social behaviour (emotions, norms, culture, personality, ...) as a basis
to develop formal theory and algorithms to specify social intelligent systems in a
compositional way integrating different theoretical formalisms for socio-cognitive
behaviour. To enable the integration and combination of different models we are
exploring a meta-modelling approach.

Model checking is a well-known technique to verify properties of a formal
model. An attractive feature of model checking is that it can be used to identify
behaviours in which the properties do not hold, potentially generating insight
in how certain problems can be solved. Well-known limitations of model check-
ing include its inappropriateness to deal with infinite state spaces and branch-
ing/alternative time, and it enables only the verification of the model and not

Mind as a Service: Building Socially Intelligent Agents 131

validation the process used to transform social science theories into the for-
mal representation. Moreover, the main challenge in model checking is the state
explosion problem that can occur if the system being verified has components
that make transitions in parallel. However, the scale and complexity of the for-
malizations that are required for social behaviour are reaching beyond the tra-
ditional techniques of philosophical logic. We will explore the combination of
logical methods with simulation models to enable the development of a more
comprehensive and adequate theory of practical social reasoning than what pure
logic can achieve. Simulation results can identify ‘interesting’ situations that can
subsequently be formally checked by model checkers or theorem provers to verify
whether the system satisfies certain desired (formal) properties. Simulations pro-
duce possible behaviours of the system, which enable to understand the meaning
of the abstractions and see whether it corresponds to the system requirements.

5 Conclusions

In this paper, we introduced the ‘Mind as a Service’ (MaaS) architecture.
Inspired by service models, we propose to build the minds of social intelligent
agents as a composition of socio-cognitive services. Each of these services is
designed to implement a specific socio-cognitive functionality, based on different
theories and providing different levels of deliberation. We are at the initial stages
of this research, which we believe has the potential to realise a new paradigm for
agents. This paper aims to highlight the main features and challenges of MaaS.
We are currently developing a software environment to build and deploy social
minds. This platform, MindBuilder, depicted in Fig. 2 enables the specification,
composition, simulation and reuse of Maa$S, and provides functionalities for (a)
Design: design services constructed using meta-models based on those formal
representations using a uniform interface structure; (b) Composition: specify
Deliberation Bus models to compose services into MaaS systems with different
deliberation models; (¢) Simulation: simulate and verify the behaviour of those
MaaS systems; (d) Library: provides library capabilities to store and search for
services. The impact of the resulting systems on the people interacting with them
is potentially very high. It is therefore crucial to consider the ethical impact of
social intelligent systems. We believe that realistic technical solutions are needed
before we can fully address the moral and ethical issues inherent to artificial sys-
tems that provide care, change behaviour, and interact with vulnerable people
across all age-groups. User participation and near-realistic experimentation envi-
ronments are needed to explore and evaluate technical results and their ethical
consequences in a controlled non-evasive way.

Finally, at this stage, we are only considering the development of single agents
(as a composition of socio-cognitive services). Future work will focus on the
interaction of different MaaS in multi-agent systems, specifically in cooperative
teams integrating several agents and people.

132

V. Dignum

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

. Adolphs, R.: Social cognition and the human brain. Trends Cogn. Sci. 3(12),

469-479 (1999)

. Allen, C., Wallach, W., Smit, .. Why machine ethics? IEEE Intell. Syst. 21(4),

12-17 (2006)
Anderson, J.R., Matessa, M., Lebiere, C.: Act-R: a theory of higher level cognition
and its relation to visual attention. Hum.-Comput. Interact. 12(4), 439-462 (1997)

. Aras, R., Dutech, A.: An investigation into mathematical programming for finite

horizon decentralized pomdps. J. Artif. Int. Res. 37(1), 329-396 (2010)

Beheshti, R.: Normative agents for real-world scenarios. In: Proceedings of the
2014 International Conference on Autonomous Agents and Multi-agent Systems,
AAMAS 2014, pp. 1749-1750. International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2014)

Boyatzis, R.E.: Learning life skills of emotional and social intelligence competen-
cies. In: The Oxford Handbook of Lifelong Learning, p. 91. Oxford University Press
(2011)

. Breazeal, C.: Social interactions in HRI: the robot view. Trans. Sys. Man Cyber.

Part C 34(2), 181-186 (2004)

Brooks, R.A.: Cognitive simulators. In: Architectures for Intelligence: The 22nd
Carnegie Mellon Symposium on Cognition. Psychology Press (2014)

Butt, A.J., Butt, N.A., Mazhar, A., Khattak, Z., Sheikh, J.A.: The soar of cognitive
architectures. In: CTIT 2013, pp. 135-142. IEEE (2013)

Crawford, S.E., Ostrom, E.: A grammar of institutions. Am. Polit. Sci. Rev. 89(03),
582-600 (1995)

Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: towards an agent architecture
with a genericappraisal framework. In: WS Standards for Emotion Modeling (2011)
Dignum, F., Prada, R., Hofstede, G.J.: From autistic to social agents. In: Inter-
national Conference on Autonomous Agents and Multi-Agent Systems, AAMAS
2014, pp. 1161-1164 (2014)

Dragone, M., Jordan, H., Lillis, D., Collier, R.W.: Separation of concerns in hybrid
component and agent systems. Int. J. Commun. Netw. Distrib. Syst. 6(2), 176-201
(2011)

Erl, T.: SOA: Principles of Service Design, vol. 1. Prentice Hall, Upper Saddle
River (2008)

Fiske, S.T., Taylor, S.E.: Social Cognition: From Brains to Culture. Sage, Thousand
Oaks (2013)

Goleman, D.: Social Intelligence: The New Science of Social Relationships. Bantam,
New York (2006)

Kahneman, D., Miller, D.T.: Norm theory: comparing reality to its alternatives.
Psychol. Rev. 93(2), 136 (1986)

Kaminka, G.A.: Curing robot autism: a challenge. In: International Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2013. IFAAMAS (2013)
Caskurlu, B.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.)
IFM 2002. LNCS, vol. 2335, pp. 286-298. Springer, Heidelberg (2002)

Laird, J.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)
Mancini, M., Pelachaud, C.: Dynamic behavior qualifiers for conversational agents.
In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D.
(eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 112-124. Springer, Heidelberg (2007)

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Mind as a Service: Building Socially Intelligent Agents 133

March, J.G.: Primer on Decision Making: How Decisions Happen. Simon and Schus-
ter, New York (1994)

Minsky, M.: The Society of Mind. Simon & Schuster Inc., New York (1986)
Minsky, M.: The emotion machine: Commonsense thinking, artificial intelligence,
and the future of the human mind. Simon and Schuster, 2007

R. C. Moore. Logic and representation, vol. 39. Center for the Study of Language
(CSLI), 1995

A. Ortony. The cognitive structure of emotions. Cambridge University Press, 1990
A. Schutz. The phenomenology of the social world. Northwestern University Press,
1967

Shehory, O.M., Sturm, A.: Agent-Oriented Software Engineering: Reflections on
Architectures, Methodologies, Languages, and Frameworks. Springer, Heidelberg
(2014)

Silverman, B.G., Johns, M., Cornwell, J., O’Brien, K.: Human behavior models for
agents in simulators and games: Part I: enabling science with PMFserv. Presence
Teleoperators Virtual Environ. 15(2), 139-162 (2006)

Turner, J.T., Givigi, S.N., Beaulieu, A.: Implementation of a subsumption based
architecture using model-driven development. In: 2013 IEEE International Systems
Conference (SysCon), pp. 331-338. IEEE (2013)

van Oijen, J., Vanhée, L., Dignum, F.: CIGA: a middleware for intelligent agents
in virtual environments. In: Beer, M., Brom, C., Dignum, F., Soo, V.-W. (eds.)
AEGS 2011. LNCS, vol. 7471, pp. 22-37. Springer, Heidelberg (2012)

Wagner, J., Lingenfelser, F., Baur, T., Damian, 1., Kistler, F., André, E.: The social
signal interpretation framework: multimodal signalprocessing and recognition in
real-time. In: 21st ACM Conference on Multimedia, pp. 831-834. ACM (2013)
Weiss, G.: Multiagent Systems. MIT Press, Cambridge (2013)

Wieringa, R., Meyer, J.-J.: Applications of deontic logic in computer science: a
concise overview. In: Deontic Logic in Computer Science: Normative System Spec-
ification, pp. 17-40. Wiley, New York (1993)

COIR: Verifying Normative Specifications
of Complex Systems

Luca Gasparini'®™), Timothy J. Norman', Martin J. Kollingbaum®,
Liang Chen', and John-Jules C. Meyer?

! Department of Computing Science, University of Aberdeen, Aberdeen, UK
{1.gasparini,t.j.norman,m.j.kollingbaum}@abdn.ac.uk
2 Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
j.j.c.meyer@uu.nl

Abstract. Existing approaches for the verification of normative sys-
tems consider limited representations of norms, often neglecting collec-
tive imperatives, deadlines and contrary-to-duty obligations. In order to
capture the requirements of real-world scenarios, these structures are
important. In this paper we propose methods for the specification and
formal verification of complex normative systems that include contrary-
to-duty, collective and event-driven imperatives with deadlines. We pro-
pose an operational syntax and semantics for the specification of such
systems. Using Maude and its linear temporal logic model checker, we
show how important properties can be verified for such systems, and
provide some experimental results for both bounded and unbounded
verification.

Keywords: Model checking - Normative systems - Collective
imperatives

1 Introduction

The specification and verification of properties of normative systems is an impor-
tant consideration for the design of complex distributed systems [1,6]. Motivated
by the need to capture the requirements of real world scenarios, research on the
specification of normative systems has explored conditional [18], event-governed
(e.g. activation/expiration condition) norms [16], collective imperatives [9,14],
imperatives with deadlines [7], and contrary-to-duty (CTD) norms [18]. A fur-
ther focus has explored mechanisms for the analysis of systems of norms for
the purpose of identifying and resolving conflicts between norms and plans [19].
Although such analyses are of benefit, for safety critical systems it is important
to analyse the interactions between normative constraints and agents’ actions
as a system evolves. For these reasons the use of model checking [3] techniques
to analyse liveness and safety properties of norm-governed systems has been
explored [1,6,8]. To date, however, this research has focussed on restricted rep-
resentations of norms such as labelling states or transitions as compliant/non-
compliant. Agotnes et al. [1], for example, study the complexity of this model

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 134-153, 2016.
DOI: 10.1007/978-3-319-42691-4_8

COIR: Verifying Normative Specifications of Complex Systems 135

checking problem for different robustness-related properties; e.g. whether a cer-
tain property is guaranteed in the event of a subset of agents violating a norm.

The focus of this paper is on how to efficiently apply model checking to
analyse properties of normative systems specifications with richer representations
of norms. In particular, we consider event-governed conditional norms, deadlines
for the fulfilment of obligations, and contrary to duty and group imperatives. The
contributions we claim are as follows: (i) We propose a norm specification lan-
guage that is sufficiently expressive to capture all the features discussed above,
namely COIR '; (ii) a Structural Operational Semantics (SOS) [15] for a mon-
itoring component that, given a description of the environment, keeps track of
activation, expiration, fulfilment, and violations of norms; and (iii) a realisation
of this component using the Maude [4] rewriting logic framework, which allows
us to perform formal analysis of normative systems specifications. A particular
challenge is that representing time explicitly (in order to reason about temporal
deadlines) makes the problem undecidable. For these reasons we explore both
the use of bounded model checking and model abstraction to obtain a finite
Kripke structure for unbounded model checking. We present some results of
both these approaches in an example domain that motivates the requirements
for us considering such a rich representation of norms.

2 DMotivating Example

Consider a coalition of agents of the sea-guard, consisting of a set of Unmanned
aerial vehicles (UAVs), helicopters, and boats. Their goal is to monitor and inter-
cept unauthorized boats trying to access a restricted area. The norms that guide
the behaviour of the coalition are: (1) At any moment at least one member of
the coalition must monitor the area. Moreover, we prefer having UAVs moni-
toring the area over helicopters. We assume that only helicopters and UAVs are
capable of monitoring. (2) Whenever an unauthorized boat enters the area, a
member of the coalition must intercept it before a certain deadline expires. (3) If
no one intercepts the boat, then at least one member of the coalition must send a
report to head-quarters before a certain deadline expires. These are all examples
of collective imperatives: they require at least one member of the coalition to
act. Norm 3 is also a CTD obligation that is activated in the event of a violation
of the obligation 2. Moreover, norms 2 and 3 require the agents to perform an
action before a certain deadline (a liveness property), while norm 1 requires that
at any given moment someone is monitoring the area (a safety property).

3 COIR Norm Specification

We now introduce a formalism for representing norms that satisfies our require-
ments, which we call cOIR. We allow for the definition of obligations with dead-
lines and prohibitions and we assume that everything that is not prohibited is

! cOIR is Scottish Gaelic for obligation.

136 L. Gasparini et al.

permitted. Compliance with norms is evaluated against a knowledge base KB
that is dynamically updated to represent the environment and the observable
properties of the agents acting within it. We rely on the closed-world assump-
tion, which we believe to be reasonable in a verification setting. We include
the description of previous violations in the knowledge base. These can then be
used to activate CTD norms. An issue that has been discussed, for example,
by Dignum et al. [7] is whether an obligation with a deadline should persist or
be deactivated after a violation; i.e. after the deadline has expired without the
obligation being fulfilled. COIR supports the specification of either of these alter-
natives. By default obligations do not expire when violated, but, thanks to the
fact that violations are represented in KB, it is always possible to specify the
expiration condition as being triggered by a violation of the current instance.

3.1 Syntax

A norm nd< is defined as a tuple (id;, mod;, act;, exp;, goal;,ddl;) where: id; is a
unique identifier; mod; € {O, F'} specifies whether the norm is an obligation with
deadline or a prohibition; act; (activation condition) describes a pattern that,
when matched in KB, causes a norm instance to be detached; goal; represents
the situation that needs to be brought about (for an obligation) or avoided (for
a prohibition); exp; (expiration condition) is a condition that, when met, causes
the expiration of the instance; and the deadline for the fulfilment of the norm
(ddl;) can be temporal or symbolic and is defined only for obligations.

Figure 1 shows the EBNF grammar of the operational language used to rep-
resent the components of a norm specification. functor and strTerm are iden-
tified by strings that start with a letter, numTerm by numbers and varTerm by
strings that start with a ? character. 7actTime, ?violTime, 7tick, ?this-id,
?violated and 7flag are reserved terms. The description of the environment,
KB, consists of a set of ground predicates; i.e. predicates with no varTerm. Intu-
itively, a boolExpr represents a condition that is evaluated against KB returning
a boolean result, while a formula is a pattern with a set of variables that is eval-
uated by returning the set of substitutions that make the pattern match a subset
of KB. In a norm description, act; is represented by a formula, while exp;, goal;,
and ddl; are boolExprs.

The formula VIOLATION-OF(n,s) is matched when there is a violation of
norm n and is used for the activation of CTD obligations. The meaning of the
parameter s will be explained in Sect.4. The meanings of EQUALS, EXISTS and
the usual boolean operators are intuitive. TEMPORAL (n) is evaluated to true if a
temporal deadline has expired, while VIOLATED can be used in exp; and returns
true if the instance being evaluated has been violated. COUNT (v IN {f}) >n
evaluates to true if the number of different assignments of the variable v that
matches the pattern f is higher than the number n.

COIR: Verifying Normative Specifications of Complex Systems 137

(constTerm) = (strTerm) | (numTerm) ;

(term) = (constTerm) | (varTerm) | (predicate) ;

(predicate) = (functor) "(" (term) { "," (term) } ")" ;

(binding) = "BIND(" (varTerm) "," (term) ")" ;

(violationCond) = "VIOLATION-OF(" (numTerm) "," (strTerm) ")" ;

(formula) = (predicate) | (binding) | (violationCond) | (formula) "/\" (formula)
| (formula) "\/" (formula) | "IN {" (formula) "} FILTER" (boolExpr) ;

(constant) = "false" | "true" ;

(existsPattern) = "EXISTS {" (formula) "}" ;

(equalsCond) = "EQUALS (" (term) "," (term) ")" ;

(temporal) = "TEMPORAL (" (numTerm) ")" ;

(violated) = "VIOLATED" ;

(compareOp) = "=t o | o=t | om>sn g

(count) = "COUNT(" (varTerm) "IN{" (formula) "})" (compareOp)(numTerm) ;

(boolExpr) = "NOT" (boolExpr) | (violated) | (count) | (boolExpr) "/\" (boolExpr)
|

(boolExpr) "\/" (boolExpr) | (existsPattern) | (equalsCond) | (constant) ;

Fig. 1. EBNF grammar for the COIR language.

3.2 Representing Collective Obligations

We now discuss how our formalism allows us to represent different types of
collective obligations [14]. In contrast to Tinnemeier et al. [17], we allow goal;,
exp;, and ddl; to include variables that have not been bound at activation time.
Through the use of the patterns EXISTS{ f;} and NOT EXISTS{f;} we are able to
express existential and universal quantification on these variables. Inspired by
Norman and Reed [14] we discuss some common patterns of collective obligations
and show how they can be expressed in our language (See [9,14] for discussions
of responsibility in collective obligations). In order to ease the presentation, we
assume that agents are organized in groups, group membership is represented
by predicates of the type member0f (agent,group), and an agent’s performance
of an action by perform(agent,action).

Joint distributive obligations are obligations where all the members of group
g are responsible for all the members of the group performing the action a. This
can be expressed by an obligation where:

act; = member0f (7add, g)
goal; =NOT EXISTS {IN {memberOf(?ag,g)}
FILTER NOT EXISTS {perform(?ag,a)}}

goal; is met when there is no member of g that has not performed a; i.e. when
all the members of g have performed a. As a result, if any of the members of
the group do not perform the task, all the members will be responsible for the
violation. Alternatively we could consider the group as an entity to be responsible
for the fulfilment of the obligation by specifying the activation condition as:

act; = BIND(?7add,g)

138 L. Gasparini et al.

and referring to the group as 7add in the goal. Note that if a group has no
members, such an obligation would be trivially fulfilled. It might be appropriate
to add the constraint EXISTS{member0f (?add,g)} in act; or in goal;.

Joint collective obligations specify that all the members of a group g are
responsible for at least one member of the group performing the action a.

act; = member0f (7add, g)
goal; = EXISTS{ member0f(?ag,g) /\ perform(?ag,a)}

4 COIR Semantics

We define the semantics of COIR through a Structural Operational Semantics
(SOS) [15], a framework for the description of the semantics of programming
and specification languages. SOS consists of a set of transition rules that gener-
ate a transition system whose states are called configurations. Transition rules
are of the form % meaning that, whenever P holds, a transition from the
configuration C to C’ is applicable. We use SOS to describe how the active norm
instances and violations are updated every time we detect a change in KB.

In formalising these semantics we assume two functions that evaluate
formula and boolExpr; these will be summarised below. We define a substi-
tution 6; € © as a set of assignments [v/c] where c is a constTerm and v a
varTerm. Formulae are evaluated by means of a function match : 28 x Q — 29,
where P is the set of all predicates, @ the set of all formulae, and © the set of
all substitutions. Intuitively, match(KB, f) returns all the substitutions ; such
that f - 6; is entailed by KB. Boolean expressions (boolExpr) are evaluated by
means of a function eval : 27 x E x © — bool where E is the set of all boolExpr
and bool € { true, false }. A norm instance [id;,0;,at] is detached at time
at for each substitution 6; € match(KB,act;). Then eval(KB,e,0;) is used to
evaluate exp;, goal;, and ddl;. The addressee of the norm, identified by the value
assigned to 7add in 6, is responsible for complying with the obligation (reaching
a state where eval(KB, goal;,0;) = true before the deadline) or with the pro-
hibition (avoiding states where eval(KB, goal;,0;) = true until the prohibition
expires).

A further issue to address prior to detailing the transition rules of our opera-
tional semantics is that of “duplicate activations”. Consider a simplified version
of norm 3 from Sect. 2. We specify its activation condition as follows:

type(7add,coalition) /\ type(?boat,unBoat)
/\ type(7area,rArea) /\ inArea(7?boat,?area)

In other words, an instance of the obligation to send a report should be detached
when an unauthorized boat is in the restricted area. Intuitively, if the same boat
remains in the restricted area for more than one consecutive instant of time,

COIR: Verifying Normative Specifications of Complex Systems 139

we do not want the coalition members to send more than one report. However,
if the boat exits and then re-enters the area, we would expect the coalition
to be obliged to send another report. Formally, if we denote by KB; the state
of the knowledge base at time ¢, we capture this distinction by activating an
instance of a norm ndi, associated with a substitution 6, at an instant of time
t whenever 0; € match(KB,,act;) and 8; ¢ match(KBy_1,act;); i.e. when we
find a substitution such that act; goes from “unmatched” to “matched” in two
subsequent instants of time. To do that we keep record of the instances [id;, 6, at]
such that the act; was matched in the previous instant of time.

Following Dennis et al. [6], in order to enforce an order of execution among
the transitions of the operational semantics, we organize the reasoning cycle in
three stages: (A) Deactivate instances for which the expiration condition holds
or the obligation has been fulfilled; (B) Check for violations of active obligations
(if the deadline has passed, but the goal has not been achieved) and prohibitions
(if the state to avoid is achieved). (C) Check for the activation of new norms
and update the list of previously matched instances.

In the following we denote by a1 : as : ... a list of elements and we use €
to indicate the end of a list. Moreover, we assume that KB contains a predicate
cT(n), where n is a numTerm that represents the current time of the system and
we denote by time(KB) the value n such that cT(n) € KB. A configuration
Conf is defined as (KB, A, I, II,®, X, r) where KB is the current state of the
knowledge base, A is a list of norm descriptions, I is the list of active norm
instances and II the list of previously matched instances, which, as discussed
above, is needed to avoid the problem of multiple activations. @ is the set of
violations detected in the current reasoning cycle?, and a violation is represented
as v = [id;, 0, t], where t corresponds to the violation time. X' is the stage of the
computation and r is a flag that is set initially to false, and changed to true if
we need to loop again through the reasoning cycle. This is necessary because,
whenever we activate a new instance (stage C), we need to check whether this
is instantly fulfilled or violated (A and B). Moreover, detecting a violation (B)
could trigger an expiration or an activation (A and C).

The initial configuration is (KBg, A, €, €, ¢, A, false), where KB describes
the initial state and A the normative specification. We now illustrate the key
rules of the operational semantics. For each rule we include only the components
of the configuration that are involved in it.

Rule R1 applies when the first instance in [is such that its expiration con-
dition holds. In this case we simply remove the instance from the list. Similarly
another rule (not included) is defined for the case of a fulfilled obligation. Rule
R2 accounts for the case where the first instance in the list is a prohibition and
the expiration condition is not met. In this case we move the instance to the
end of the list, after the € symbol. We write a similar rule (not included) for an
obligation instance that it is neither fulfilled nor expired. Rule R3 represents the
end of stage A, which occurs when the first instance is e.

2 We refer to the whole updating procedure as a reasoning cycle, while A, B and C
are the stages of a cycle.

140 L. Gasparini et al.

<KB, A, [idi,ﬂj,at] : I,A>, nd; € A,
eval (KB, exp;,0;) = true (R1)
; 7ii7 Hat:) - y =54y
KB, A, lid;, 0; I,A KB, A IA

nd; € A, mod; = F, eval(KB, exp;,0;) = false
<KB,A, [idi,ej,at] : I,A> — <KB,A,I : [z’di79j,at]7A>

(R2)

true

(e:I,A) — (I :¢,B)

(R3)

Rule R4 detects violated obligations; i.e. obligations whose deadline has expired
before the goal is satisfied. Since fulfilled obligations have been deleted in stage
A, we just need to check whether the deadline has expired. When we detect a
violation we update the violations list, add the violation description (denoted by
d([id;,0;,7])) to KB and we set the flag r to true since the violation predicate
might trigger the expiration condition of that instance. d([id;, 6, T]) consists of a
predicate v (id;, p(6;),7) where p(8;) is a representation of the substitution in
the form of a predicate. In rule R5 if the first obligation in the list is not violated
we move it at the end of the list. Similarly we add two rules (not included) for
prohibitions, where we consider a prohibition to be violated if its goal condition
evaluates to true. @ is included to avoid infinite loops. In fact, since rule R4
sets r to true, detecting the same violation in each loop would cause infinite
iteration. Rule R6, together with the condition [id;, 6;, 7] & @ of rule R4 ensures
that each violation is detected only once for each reasoning cycle. Another rule
similar to rule R3 (not included) is defined for the end of stage B.

modi = O, [Z'diagjv’r] g dj’
eval(KB,ddl;,8;) = true, KB* = KB U d([id;,0;,T])

(KB, A[id;, 0;,a8] - 1,5,B,7) — (R4)
(KB*,A,I : [id;,0;,at], [id;,0;,7] : ,B, true)
nd.mod = O, eval (KB, ddl;,0;) = false (R5)
(KB, A, id;,0;,at] : I,B) — (KB, A, I: [id;,0;,at],B)
[Zdi,ej,ﬂ cd (RG)

([¢d;, 05, at] - I,8,B) — (I : [id;, 0;,at], P, B)

Rule R7 checks for the activation of new instances of the first norm nd; in A. Let
T = time(KB), for each 6; € match(KB, act;), we add a new instance [id;, 6;, 7]
at the end of IT (list IT5), while we add to I only those instances that are not in
IT (list I3). The substitutions of the instances added to I are integrated with
the assignment of the variables 7actTime and 7this-id which are needed to
evaluate the TEMPORAL and the VIOLATED conditions as we will show below. If
we activate at least one new instance we set r = true. By adding new instances
at the end of IT, we ensure that, at the end of the reasoning process, the instances
added to IT during the current reasoning cycle will be those after e. Formally the
pattern Il3 : € : I14 identifies with I, all the instances added in the current step

COIR: Verifying Normative Specifications of Complex Systems 141

and with I73 all the instances added during the previous reasoning cycle. This
is exploited in rule R8, where, at the end of stage C, if r is equal to false, we
end the reasoning cycle (stage end) and discard I3 and ¢. We define another
rule (not included) for the case where r is equal to true. In this case we move
€ at the end of A and go back to stage A. In rule R7, when we check if a new
instance is not in II, we consider also instances added in previous loops of the
current reasoning cycle. In this way it is guaranteed that we do not reactivate
the same instances in each loop.

0 = [?actTime/7]| U [?this-id/id;| and
I = ([id;, (0; U Oy), 7] : ...) s.t. 0; € match(KB,act;) and
eval(KB, exp;,0;) = false and [id;,0;,7 — 1] & II,
II, = ([id;, 05, 7] : ...) s.t. 0; € match(KB, act;), (R7)
r+ = true iff (Is # @) or (r = true)
(KB,nd; : A, I,II,C,r) —
(KB, A :nd;, Iy : 1,11 : Iy, C, %)

true
(e: A Il3:€:I1,,d,C, false) — (A: ¢ Iy : €,¢,end, false)

(R8)

With these transition rules in place, we now provide further details of the
match and eval functions for querying KB. We denote by 6;[v] the value ¢
assigned by 6; to the variable v. Given a formula f, f - 6; denotes the formula
obtained by substituting, for each varTerm v with an assignment in 6;, each
occurrence of v in f with 6;[v]. Moreover we say that two substitutions #; and
05 are compatible if and only if there is no variable v that is bound in both the
substitutions such that its assigned values are different. Formally:

compatible(0y,02) = true iff A v, ([v/c1] € 0; and [v/ca] € O3 and cg # c;)

Let p denote a predicate, ¢ a boolExpr, f; a formula, v; a varTerm, n and a
numTerm, s; a strTerm and ¢ a constTerm. We denote by s1.0; the substitution
obtained by adding the string s; as a prefix to all varTerms in 6. Figure 2
summarizes the semantics of match and eval.

The construct TEMPORAL (n), where n is a numTerm, will be used to evaluate a
temporal deadline of n steps relative to the activation time of a norm instance.
In defining its semantics we assume that the variable 7actTime is bound in 6; to
the activation time (see Rule R7 of above). The construct VIOLATION-OF (n, s)
presented in Sect. 3.1, can be used in the activation condition of a CTD norm to
return the description of a detected violation of a norm with id n. For a violation
[id;, 8;], with n = id;, it returns the substitution obtained by adding the prefix
s to all the variable names of 6;. The prefix is added in order to allow the
norm designer to distinguish between variables bound by the substitution of the
violation and variables bound by the activation condition, even when they have

142 L. Gasparini et al.

match(KB,p) ={0;, :p-0; € KB}

match(KB, BIND (vy , t))= {[vi/t]}

match(KB, fi /\ f2) = {(61 U 02) : 61, € match(KB, f1)
and 02 € match(KB, f2) and compatible(01,602)}

match(KB, fi \/ f2) = match(KB, f1) U match(KB, f2)

match(KB, VIOLATION-0F (¢1, s1)) = {s1.(0; U [?violTime/vt]) : d([t1,0;,vt]) € KB}

eval(KB,EXISTS { fi1 },0;) = false if match(KB, f1 - 0;) = (); true otherwise.

eval(KB,EQUALS (t1 , t2),0;) = true iff t1 = to. If t; or to are varTerm, §; is used
to replace them with their assigned constant terms.

eval (KB, VIOLATED, ;) = true iff there exists a vt such
that d([t1,0;,vt]) € KB and 6;[?thisId] = t;

eval (KB, TEMPORAL(n), 6;) = true iff 0;[7actTime] + n <= time(KB)

eval(KB,COUNT (vy IN{f1}) > n,0;) = true iff [{0;[v1] : 0; € match(KB, f1-0;)}| > n.
same for the other compareOp.

NOT,\/, and /\ have the usual meaning when applied to boolExpr

match(KB,IN { fi} FILTER e) = {6; : 0; € match(KB, f1) and eval(KB, e, 0;) = true}.

Fig. 2. Semantics of match and eval

the same variable name. The construct VIOLATED is used when we want to ask
whether the current instance has been violated (e.g. for the expiration condition
of an obligation). It is evaluated to true if KB contains the description of a
violation of the instance being evaluated. Note that, since, for each instance,
we bind the activation time in the substitution, VIOLATED is able to distinguish
between violations of different instances associated with the same pair (ndj,6;).

Figure 3 illustrates the life-cycle of an obligation (left) and a prohibition
(right) instance in COTR. Circles represent states and arrows represent transitions
and are labeled with the condition that triggers the transition. A norm instance
is activated when the activation condition (act) holds and an equivalent instance
(an instance of the same norm associated with the same substitution) is not in
the previous matches (IT) list. An active obligation becomes fulfilled when the
goal (goal) condition holds, it expires if the expiration condition (exp) but not
the goal holds, and it becomes violated if the deadline (ddl) condition holds
true before the expiration or the goal condition. Once an obligation instance
is violated, it remains so until the expiration condition holds (in which case it
becomes expired) or the goal condition holds (in which case it becomes fulfilled).
Once an obligation is fulfilled or expired it will remain so for the remainder of
the execution. An active prohibition expires when the expiration condition holds,
and becomes violated if the goal holds, but the expiration condition does not.
A violated prohibition becomes expired if the expiration condition holds. It is
important to notice that, when a previously violated norm becomes expired it
will not be detected as a current violation. A norm designer, however, can specify
the clause NOT VIOLATED in the expiration condition in order to avoid this. The
same applies to violated obligations that becomes fulfilled.

COIR: Verifying Normative Specifications of Complex Systems 143

Obligation Prohibition

act A\ -exp A\
instance not in 1

act A\ —exp A\
instance not in I

-exp /\ goal

Fig. 3. Norm instance life-cycle

5 The Seaguard Example

We now show how we can capture the norms described in our motivating example
(Sect. 2) using the COIR formalism. Norm 1 states that at any instant of time, at
least one agent must monitor the area. This may be captured by a prohibition
from achieving a state where no agent is monitoring the area (a safety property).
The fact that a UAV monitoring the area is preferred to a helicopter can be
represented by separating the norm in two as shown in Fig.4 (nd1 and nd4).
Norm nd1 is a prohibition that is violated if no UAV is monitoring the area.
Norm nd4 is violated if neither a UAV nor a helicopter is monitoring the area.
Therefore, a situation where a UAV is monitoring the area would comply with
both the norms, while having a helicopter monitoring would violate only nd1.

Norms nd2 and nd3 capture the specification of norms 2 and 3 from our
motivating example respectively. An instance of the obligation nd2 is activated,
for a coalition, every time an unauthorized boat 7agl enters the restricted area
7ar. The obligation is fulfilled if one member of the coalition 7ag2 intercepts
7agl before a deadline of three time steps, while it expires if 7agl exits 7ar
or the obligation is violated. Obligation nd3 is activated by a violation of norm
nd2, and is addressed to the same coalition. It requires at least one member of
the coalition to report the unauthorized access.

144 L. Gasparini et al.

ndl = (1, F, actl, false, goall, false)
actl = type(?add,coalition) /\ type(?ar,rArea)
goall = NOT EXISTS{ memberOf(?agl,?add) /\ type(?agl,uav) /\ monitoring(?agl,?ar) }
nd4 = (4, F, actl, false, goal4, false)
goal4 = NOT EXISTS{ member0f (?agl,?add) /\ monitoring(?agl,?ar) /\
(type(?agl,uav) \/ type(?agl,heli)) }
nd2 = (2, O, act2, exp2, goal2, ddi2)
act2 = IN{ type(?add,coalition) /\ type(?ar,rArea) /\ inArea(?agl,?ar) } FILTER
NOT EXISTS{ type(?agl,?type) /\ subType(?type,authAgent) }
exp2 = VIOLATED \/ NOT EXISTS { inArea(?agl,?ar) }
goal2 = EXISTS{ intercepting(?ag2,?agl) /\ memberOf(?ag2,?add) }
ddl2 = TEMPORAL(3)
nd3 = (3, O, act3, exp3, goal3, TEMPORAL(3))
act3 = IN { type(?add,coalition) /\ VIOLATION-OF(2,v) } FILTER EQUALS(7add,?v:add)
exp3 = NOT EXISTS{ inArea(?v:agl,?v:ar) } \/ EXISTS { intercepting(?ag2,?v:agl) }
goal3 = EXISTS{ reporting(?ag2,?v:agl) /\ memberOf(?ag2,?add) }

Fig. 4. Specification of norms nd1, nd2 and nd3.

6 Formal Verification

In this section we explore the problem of verifying properties of multi-agent
systems specified using COIR. Firstly we discuss our implementation of the oper-
ational semantics in Maude [4], a rewriting logic framework that allows us to
specify the semantics of a system by means of rewriting rules. We chose Maude
because its syntax for specifying rewriting rules is very close to that for SOS.
Moreover, by implementing our system in Maude, we obtain a specification which
is executable and on which we can perform formal verification using the Maude
Linear Temporal Logic (LTL) model checker. In this way we can: (i) Validate
our normative specification; for example by verifying that a specified non compli-
ant behaviour always results in a detected violation; and (ii) Verify how robust a
multi-agent system is to violations; for example by verifying if a certain property
is guaranteed under certain compliance assumptions [1,8].

We discuss the reasons why, by representing our model as explained in Sect. 4,
we obtain an infinite state model. We show how we can use the LTL model
checker to perform bounded model checking of the infinite state system, and
then show how we can modify our model in order to make the state space finite
and apply unbounded model checking.

6.1 Maude Implementation

Maude modules can contain conditional equations: simplification rules used to
define data-types and language constructs and to specify how they are evaluated
by the system. Modules may also contain conditional rewriting Tules: transition
rules that describe how the state of a system can evolve over time. We defined
the COIR language (Fig.1) and we implemented the match and eval functions.
We then implemented our operational semantics by means of an operator reason
that takes as arguments a configuration and returns the configuration resulting
from the application of the reasoning cycle. The reasoning process is described
by a set of conditional equations, which are a direct (syntactical) translation

COIR: Verifying Normative Specifications of Complex Systems 145

of the rules of Sect.4 into the Maude syntax. The dynamics of the system is
specified by a set of rules that follow the pattern:

crl C => reason(tick(C’, n)) if condition.

where C and C’ are two configurations and the only component that can change
from C to C’ is the knowledge base. tick is a function that takes a configuration
C and an integer n as parameters and increases the time in C by n units. The
meaning of this rule pattern is that, at each step, after applying the changes in
the description of the environment, we invoke the reason operator to update the
list of active instances, previous matches and violations accordingly. The Maude
model checker, given one initial state i, and a set of transition rules 7', generates
a Kripke structure containing all the states that are reachable from i.

6.2 Bounded Model Checking

Properties of a norm-governed multi-agent system can be verified using the
Maude LTL model checker. In order to do so we need to define a labelling
function A, specifying the set of atomic propositions ¢ € @ that hold in some
state s € S [4, Chap. 13]. We denote by ((s [=a ¢q) = true) the fact ¢ holds in
s and by ((s = ¢) = false) the fact that ¢ does not hold in s. The state of a
multi-agent system is represented by the configuration Conf of the monitoring
component. Let @) be the set of all predicates as defined in Fig. 1. Equations 1-4
defines .

(KB, A ILII, P, X, r) =) p=trueif p € KB. (1)

(KB, A, I II, &, X ry = violated(n) = true
if 36,7 s.t. : d([n,0;,7]) € KB

(KB, A III, &, X, r) = violated(n,t) = true if
36;,7s.t.:d([n,0; U[?add/t],7]) € KB

(KB, A,I,II,®, X, r) =5 p= false otherwise. (4)

Equation 1 makes it possible to use the predicates of KB as atoms of LTL
properties. Equations2 and 3 define properties about the normative state of a
configuration, allowing us to query the model checker for states where a certain
norm has been violated (optionally specifying an addressee).

The principal requirement to make the LTL model-checking decidable is for
the transition system to have a finite number of reachable states. However, the
fact that we represent time explicitly in KB means that the state space is infinite.
One way of dealing with this is to limit the state space to the states reachable in
a fixed number of transitions, {. We can do this, for example, by modifying the
specification of the system so that all the conditional rewriting rules that increase
the time by n are applicable only to states where time(KB) < | — n. Ideally,
however, we want to be able to verify system properties in the unbounded case.

146 L. Gasparini et al.

6.3 Unbounded Model Checking

In order to make the unbounded model checking problem decidable, we need to
remove any explicit reference to the current time from the semantics. We remove
the predicate cT(n) from KB and the references to activation and violation time
from instances and violations respectively (now represented as [id;, 0x]). In order
to represent temporal deadlines, we take an approach similar to the one proposed
by Lamport [12]. When we activate an instance (Rule R7), instead of binding
7actTime, we add the assignment [?tick/n| in the substitution of instances of
norms that include a statement of type TEMPORAL(n). Rule R7 is substituted
with:

I, = <[Zdz, (0] U gk)] : > s.t. Gj S match(KB, &Cti) and
eval(KB, exp;,0;) = false and 6y = isTemp(ddl;) and
[Zd“ Hj] ¢ I, 1l = <[ldz, 9]] . > s.t. Gj € match(KB, CLCti), (R7*)
r« = true iff (Is # 0) or (r = true)
(KB,nd; : A,I1,II,C,r) — (KB, A :nd;, I : I,II : II5, C, 1)

where isTemp(ddl;) checks whether a deadline is temporal and, in that case,
returns the initialisation for the ?tick variable.

if ddl; contains one and only one statement

[Ptick/t]
of the type TEMPORAL (t)

isTemp(ddl;) =

0 otherwise.

We then modify the tick(C,m) operator so that, for each instance [id;, 0],
it will decrease all the values ¢t such that [?tick/t] € 0, by a value equal to
the minimum of ¢ and m. The semantics of eval(KB, TEMPORAL (n), §;) is then
changed to return true if and only if the ?tick variable reaches value zero:

eval (KB, TEMPORAL (n), ;) = true iff [?tick/0] € 6;.

In other words, for every instance of a norm with a temporal deadline, we
activate a timer that is decremented by a call to the function tick. The deadline
is considered expired when the timer reaches 0. Another consequence of removing
the explicit reference to the current time is that, without a reference to the
activation time, multiple instances or violations associated with the same pair
(nd<,6;) become indistinguishable. This leads to a number of problems at the
implementation level. Consider the example in Sect. 5. When the coalition fails
to intercept an unauthorized boat ub (violation of nd2), an instance of nd3 that
binds to ub will be activated and included in the list II. Subsequent violations
will bind to the same substitution in the activation condition of nd3, preventing

COIR: Verifying Normative Specifications of Complex Systems 147

any new activation. In order to solve this problem we need to make sure that
every new violation of nd2 will match, for the activation condition of nd3, to
a substitution that is not currently in I7. We do this by adding a boolean flag
in the representation of the violation in the knowledge base. When the first
violation of nd2 associated with 6; is detected, its description is added to KB
with the flag set to false. At every subsequent violation associated with the
same pair (nd2,6,) we change the value of the flag. We update the semantics
of match for the construct VIOLATION-OF (¢1, s1) to include the variable ?flag
bound to the flag value instead of the variable ?violTime. When, for example,
the flag values goes from false to true, the previous match for the activation
of nd3 is deleted while the instance with ?flag set to true gets activated. This
mechanism guarantees that we can activate at least one CTD instance per step
for each pair (nd3, ¢;). Further, to correctly interpret the VIOLATED expression,
we need to check for a violation of the current instance. Again, without relying
on the activation time, we are not able to distinguish between different violations
associated to the same pair (nd%, 6;). We solve this by adding to the substitution
6; of each instance [id;,0;] a variable ?violated which is initially unbound. We
modify Rule R4 (and the equivalent for violated prohibitions) to set ?violated
to true when a violation is detected, and update the semantics of eval for
VIOLATED as follows:

eval(KB,VIOLATED, §;) = true iff [?7violated/true] € 6, (5)

As a result of these modifications, Rule R4 becomes as follows:

mod; = O, 6, =0; U [?violated/true]
lid;, 0;] & ®, eval(KB,ddl;,0;) = true,
KB* = addV (KB, [id;, 0;)) (R4¥)
(KB, A, id;, 0;]: 1,8,B,r) —
(KB*, A, I : [id;, O], [id;, O] : D, B, true)

where 0y, is the substitution obtained by setting the value of the ?violated
flag and addV updates the content of KB as discussed above:

KB Uv(id, . o(0,) . false) if Vf € {true,false}
VR pR0G LRSS i, p(0)) .) & KB
addV (KB, [id;, 0,]) =

. if v(id;,p(0;),f) € KB
UV('Ldl,p(a‘?),ﬁf) PAY; f
6.4 Model Checking Results

We implemented our scenario in Maude and ran the LTL model checker to verify
properties of the system for both bounded and unbounded cases.

148 L. Gasparini et al.

Table 1 shows the results for bounded model checking®. The scenario imple-
mented includes a single UAV a Helicopter and two unauthorized boats and is
regulated by norms nd1, nd2 and nd4. In all these scenarios agents can perform,
according to their capabilities, at most seven actions: start and stop monitoring,
start and stop intercepting, start and stop reporting, and move to a different
area. We checked the following property, which asks whether a state where uav
does not monitor the restricted area area2 always results in a violation of nd1:

O((—monitoring(uavl, area2)) — violated(1))

To prove that this property is always true the model checker has to observe the
whole state space, giving us a worst-case scenario in terms of execution time.
We can see that both the execution time and the number of states increase
exponentially with the number of steps.

Table 2 shows the results for unbounded model checking in different scenarios.
cA is the number of coalition agents, uB the number of unauthorized boats,
while for each nd%, a v* indicates that the norm was included in the scenario.

Table 1. Model checking results: bounded steps

Step limit

7 8 9 10 11
States 4647 | 12352 | 32336 | 81504 | 202007
Execution time | 10s |29s |78s |3m 8s|8m

The scenario in row 2 (Table2.a) is equivalent to that used to produce the
results in Table 1. Note that the execution time for bounded model checking at
10 steps is higher than the unbounded case. This is due to the fact that, since we
include the time value in KB, conceptually equivalent states are not recognized
because their time values differ, making it impossible for the model checker to
take advantage of optimizations that rely on state matching.

As we can see from Table2.a, the scenarios where both nd2 and nd3 are
enforced are those with higher execution times. We believe this is due to an
interaction between temporal deadlines and CTD obligations: In fact nd3 is a
CTD of nd2 and each of them has a temporal deadline of 3 steps. Values for
the ?tick variable range from 3 to Oin instances of nd2 and, whenever nd2 is
violated, the timer for nd3 is initialized. Our intuition is confirmed by Table 2.b:
by decreasing the deadline to 1, we obtain significantly smaller state spaces and
execution times.

We now show how model checking can be used to verify that our normative
specification is correct, by checking that non compliant behaviours are detected

3 All tests ran on a Intel Core i5 2.7Ghz, 16 GB RAM.

COIR: Verifying Normative Specifications of Complex Systems 149

Table 2. Model checking result: unbounded

Part a: dd12 = dd13 = TEMPORAL (3)

cA|uB|nd1|nd2|nd3|nd4||States| Time

212V v 5250 20s Part b: dd12 = dd13 = TEMPORAL (1)

212 (Vv |V v' || 20012 2m ||[cA|uB|nd1l|nd2|nd3|nd4|/States|Time
212 | Vv | vV | V|V |[243994(1h,16m|| 1 |2 | v | v | vV | v || 5717 | 40s

312V |V 19032 | 2m 212 |V | vV | vV | VvV |[17653| 5m

312 Vv |V v || 72327 | 15m 312 | Vv |V |V |V |[75245 | 16m
32| v | v | Vv |V ||870165 25h

as violations. Let’s consider a variation of nd2 stating that, in order to optimize
the allocation of resources, we want one and only one member of the coalition to
intercept the unauthorized boat detected in the restricted area. Intuitively we
would be tempted to express the norm with the following goal:

goal2 = COUNT (7ag2 IN { memberOf(7ag2,?add)
/\ intercepting(?ag2,7agl) }) =1

which holds true if the number of agents (?ag2) that are members of the
coalition and are intercepting 7agl is equal to 1. We can now use model checking
to verify whether this specification captures the meaning we intend. For example,
we might ask whether it is true that having two agents intercepting the same
boat results in a violation. We refer to area2 to be the restricted area, ub the
unauthorized boat, and uvav and heli the UAV and the helicopter respectively.
We check the following property, which says that having both uav and heli
intercepting ub always results in a violation of nd2.

O((intercepting(uav,ub) A intercepting(heli,ub)
A inArea(ub,area2)) — violated(2))

The model checker returns an execution trace that violates the property as a
counter example. In fact, if the uav and heli start intercepting at two different
instants of time, the obligation is fulfilled (and thus deleted) when the first agent
starts intercepting. We can capture the intended meaning with an obligation to
have at least one agent intercepting before the deadline and a prohibition from
having multiple agents intercepting the same boat.

We now show, with an example, how model checking can be used to ver-
ify robustness-related properties. We want to verify whether compliance with
nd2 and nd3 guarantees that an unauthorized boat cannot enter and exit the
restricted area without being reported or intercepted. We denote by areal and
area?2 an unrestricted and a restricted area respectively. The following property
says that there is no path such that ub goes from area2 to areal being neither

150 L. Gasparini et al.

intercepted nor reported and without triggering a violation of nd2 or nd3.

—{(inArea(ub,area2) A QinArea(ub,areal) A
O(—violated(2) A —violated(3) A
—intercepting(uav,ub) A —reporting(uav,ub) A

—intercepting(heli,ub) A —reporting(heli,ub)))

The model checker shows as a counterexample a path where ub moves from
area?2 to areal before the deadline for it being intercepted, causing the expira-
tion of nd2. We thus verified that our normative system does not guarantee that
the specified critical situation will never occur, even if we consider only compli-
ant paths. If we want to make sure that, in a situation of compliance, a boat
that exits the area is at least reported, we can modify exp2, ddl2 and exp3 as:

erp2 = VIOLATED ; exp3 = false
ddl2 = TEMPORAL(3) \/ NOT EXISTS{inArea(7agl,?ar)}

In this way, both the expiration of the temporal deadline or ub exiting area?2
before being intercepted trigger a violation of nd2, thus activating an instance
of nd3. By applying model checking we can see that compliance with revised
norms nd2 and nd3 guarantees that the boat is intercepted or reported.

7 Discussion

The formalism we use to represent norms builds upon a number of approaches
to formalise norms for practical applications. For example Tinnemeirer et al.
[17] describe the operational semantics of a normative language with support
for norms with deadlines and CTD obligations. Hiiber et al. [11] adopt an SOS-
approach to formalise the norm lifecycle (activation, fulfilment, violation, etc.)
and for monitoring the execution of norm-governed systems, which provides the
underpinning for a language (NOPL) for programming such systems. Alvarez-
Napagao et al. [2] propose a semantics based on production systems for a norm
monitoring component that supports norms with deadlines. Similarly, Hindriks
and Van Riemsdijk [10] propose a semantics based on timed transition systems
to keep track of activation, fulfilment and violation of obligation with real time
relative deadlines. This semantics could be used for verification purposes, for
example with tools such as Real-Time Maude [13]. This issue, however, is only
discussed briefly by the authors and no details are offered. We complement this
existing research by addressing the issue of verifying temporal logic properties
of such systems. COIR also permits the representation of collective imperatives,
which are not considered in existing models defined using semantics at the oper-
ational level.

Existing research on the verification of properties of normative systems has
focussedon restricted representations of norms, considering only variations of
conditional deontic logic, without considering deadlines, event-driven norms, or

COIR: Verifying Normative Specifications of Complex Systems 151

collective imperatives. Dennis et al. [6], for example, integrate the ORWELL
normative language in the MCAPL verification framework in order to verify
properties of agents’ organisations. In ORWELL norms are represented through
counts as rules, which label states as compliant or non-compliant by saying that
a brute fact counts as an institutional fact (e.g. a violation) in a certain context.
Our results (Table 2), show that, despite using a more expressive representation,
verification times are comparable to those reported by Dennis et al. [6].

In research that shares some similarities with ours, Cliffe et al. [5] describe a
formalism for specifying obligations with deadlines, permissions and contrary to
duty norms. They use answer set programming to verify properties of systems.
Their approach is, however, only able to analyse execution traces up to a certain
length, and in this regard, is equivalent to bounded model checking.

Agotnes et al. [1] consider transitions of a Kripke structure that are labelled
as compliant or non compliant. It is then possible to use model checking to verify
properties of the system under different compliance assumptions. While such a
labelling might be expressive enough to represent the kind of norms captured by
our formalism, it is not clear how to compute it from a declarative normative
specification.

We believe that this mismatch between formalisms used to specify and mon-
itor norms and those used to verify and analyse normative systems makes it dif-
ficult to ensure that norms satisfy certain desired properties. Our work attempts
to bridge the gap between norm specification, monitoring and verification by
providing an executable specification that is verifiable through model checking.

For future research we plan to explore techniques to exploit domain symme-
tries in order to improve performance and to extend our model to allow agents
to issue imperatives at run-time.

8 Conclusion

In this paper we proposed COIR, a language for the specification of obligations
and prohibitions with support for common features of real world norms, including
deadlines, contrary to duty and event-based activation/deactivation. We showed
how, thanks to the fact that we allow existential and universal quantification over
variables, our formalism can be used to specify common patterns of collective
obligations. We then formalized how norms are to be interpreted by means of
an operational semantics which we then implemented in Maude. We discussed
how the fact that we explicitly represent time in our model leads to an infinite
state space, and hence proposed an abstraction that preserves the semantics
and makes unbounded model checking decidable. We then used the Maude LTL
model checker to validate our normative specification and to verify its robustness
to violations.

Acknowledgments. This research was sponsored by Selex ES.

152

L. Gasparini et al.

References

10.

11.

12.

13.

14.

15.

16.

. Agotnes, T., Van der Hoek, W., Wooldridge, M.: Robust normative systems and a

logic of norm compliance. Logic J. IGPL 18(1), 4-30 (2010)

. Alvarez-Napagao, S., Aldewereld, H., Vazquez-Salceda, J., Dignum, F.: Normative

monitoring: semantics and implementation. In: De Vos, M., Fornara, N., Pitt, J.V.,
Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 321-336. Springer, Heidelberg
(2011)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press,
Cambridge (1999)

Clavel, M., Duran, F., Eker, S., Lincoln, P., et al.: All About Maude - A High-
Performance Logical Framework. Springer, Heidelberg (2007)

Cliffe, O., De Vos, M., Padget, J.: Modelling normative frameworks using answer
set programing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 548-553. Springer, Heidelberg (2009)

Dennis, L., Tinnemeier, N., Meyer, J.-J.: Model checking normative agent
organisations. In: Dix, J., Fisher, M., Novédk, P. (eds.) CLIMA X. LNCS, vol.
6214, pp. 64-82. Springer, Heidelberg (2010)

Dignum, F.P.M., Broersen, J., Dignum, V., Meyer, J.-J.: Meeting the deadline:
why, when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff,
C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30—40. Springer, Heidelberg
(2004)

Gasparini, L., Norman, T.J., Kollingbaum, M.J., Chen, L.: Severity-sensitive
robustness analysis in normative systems. In: Ghose, A., et al. (eds.) COIN
2014. LNCS, vol. 9372, pp. 72-88. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25420-35

. Grossi, D., Dignum, F.P.M., Royakkers, L.M.M., Meyer, J.-J.C.: Collective oblig-

ations and agents: who gets the blame? In: Lomuscio, A., Nute, D. (eds.) DEON
2004. LNCS (LNAI), vol. 3065, pp. 129-145. Springer, Heidelberg (2004)
Hindriks, K.V., Van Riemsdijk, M.B.: A real-time semantics for norms with dead-
lines. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS 2013, pp. 507-514. International Foundation
for Autonomous Agents and Multiagent Systems, Richland (2013)

Hiibner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Padget, J., Artikis,
A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.)
COIN@QAAMAS 2009. LNCS, vol. 6069, pp. 114-129. Springer, Heidelberg (2010)
Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162-175. Springer, Heidelberg (2005)
Lepri, D., Abmhéma7 E., Olveczky7 P.C.: Timed CTL model checking in real-time
maude. In: Durédn, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 182-200. Springer,
Heidelberg (2012)

Norman, T.J., Reed, C.: A logic of delegation. Artif. Intell. 174(1), 51-71 (2010)
Plotkin, G.D.: A structural approach to operational semantics. Technical report,
DAIMI FN-19, University of Arhus (1981)

Sensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.: OWL-POLAR: a frame-
work for semantic policy representation and reasoning. Web Semant.: Sci. Serv.
Agents World Wide Web 12—-13, 148-160 (2012)

http://dx.doi.org/10.1007/978-3-319-25420-3_5
http://dx.doi.org/10.1007/978-3-319-25420-3_5

17.

18.

19.

COIR: Verifying Normative Specifications of Complex Systems 153

Tinnemeier, N., Dastani, M., Meyer, J.J.C., van der Torre, L.: Programming
normative artifacts with declarative obligations and prohibitions. In: Interna-
tional Joint Conference on Web Intelligence and Intelligent Agent Technologies,
pp. 145-152 (2009)

van der Torre, L.: Contextual deontic logic: normative agents, violations and inde-
pendence. Ann. Math. Artif. Intell. 37(1-2), 33-63 (2003)

Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict reso-
lution in multi-agent systems. Auton. Agents Multi-agent Syst. 19(2), 124-152
(2009)

The Role of Knowledge Keepers in an Artificial Primitive
Human Society: An Agent-Based Approach

Marzieh J. ahanbazi@), Christopher Frantz, Maryam Purvis,
and Martin Purvis

Department of Information Science, University of Otago,
Dunedin, New Zealand
marzieh.jahanbazi@postgrad.otago.ac.nz,
{christopher. frantz,maryam.purvis,
martin.purvis}@otago.ac.nz

Abstract. This paper discusses knowledge accumulation and diffusion mecha-
nisms and their effect on social and institutional change in an artificial society.
The focus of this paper is to model the role of knowledge keepers in the context
of social control in the CKSW institutional meta-role framework. In literature this
role has been associated with helping to maintain social order by spreading social
awareness and resolving disputes. In addition to outlining the model of a complex,
adaptive, and self-sustaining artificial society, we examine in this context the
societal mechanism of violence control.

Keywords: Artificial social systems - Social simulation - Institutions - Complex
social systems - Agent-based modelling

1 Introduction

An increasingly popular approach for understanding complex social interactions in the
social sciences is agent-based modelling and simulation [1-5]. Most of the works in this
area take a specific perspective on the complex world of human societies and model
phenomena related to that perspective in isolation from any other aspects of the society.
However, agent-based modelling affords the opportunity to see how multiple intercon-
nected factors may interact and affect an overall outcome.

This paper exemplifies this using a model of primitive human communities with
thousands of agents across multiple generations. Apart from representing an archetypical
primitive society, the model affords measuring changes of social relationships over time
and their effects on societal functioning. Furthermore, it demonstrates how these
modelled individuals dynamically adapt to different levels of resource availability or
different demographic compositions. The model introduces a set of specific social inter-
actions, such as mutual sharing, maintaining personal relationships, and keeping up with
social reputation changes. We deem those to be applicable to primitive societies in
particular in order to measure their long-term effect on the society’s structural makeup
and socio-economic development.

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAI 9628, pp. 154-172, 2016.
DOI: 10.1007/978-3-319-42691-4_9

The Role of Knowledge Keepers 155

A notable feature of our model is its representation of generic roles that characterize
some of the fundamental social activities in the society and how they are coordinated.
In particular the generic role of the knowledge keeper will be shown below to be a key
element in the coordination of the society’s activities. It is our belief that such generic
agent roles, such as that of the knowledge keeper, shape a society’s social interactions
and are as fundamental to social sustainability as the coordination by norms and insti-
tutions.

2 Background

As discussed in [6], primitive communities can be considered a good starting point for
modelling human interactions and societies’ structures. Agent-based models of such
societies typically have agents operate according to simple rules that are derived from
ethnographic field studies. We built our model based on the earlier extensive studies of
primitive cultures that were initiated by Younger [6—10]. Younger’s work was based on
his observations of pre-contact Pacific Island societies, and serve as an archetype for
pre-modern societies without advanced and explicit institutional structures. In order to
define both the society’s and agents’ internal structure we apply the CKSW approach
of Purvis and Purvis [11, 12] that identifies four fundamental meta roles of social inter-
action that are believed to be found in every society. The CKSW Meta-Role Model
consists of four basic meta roles:

o C - the Commander role. It characterizes leaders and those who are in charge of
decision-making and have access to coercive authority to control others.

o K - the Knowledge role. The Knowledge role has the responsibility to create, main-
tain, control, and transmit institutional knowledge. Since its central feature lies in the
management of knowledge, we refer to it as knowledge keeper in the remainder of
the text.

e S —the Skill role characterizes know-how intelligence. Skilled people develop tools
to enhance their operations, and they have historically engaged in trade to exchange
these tools with other groups.

o W —the Worker role represents the general working population which can use tools
to engage in productive activities.

The reflection of the CKSW meta-role model in real human societies suggests
that it can provide a natural structural scaffolding for agent-based models in artifi-
cial societies. Its application to our model of an evolving primitive society is partic-
ularly suitable, since it allows us to model and retrace structural developments of a
society both on an individual-centred micro level, an intermediate level (classes of
agents that are primarily dedicated to a particular role), and a macro level (the
overall structural outcome). The internal (individual level) CKSW element defines
different types of agents with varying preferences in the light of similar opportuni-
ties. For example an individual with a relatively high K (knowledge)-value would be
more able to use and exploit knowledge that becomes available. In earlier work by

156 M. Jahanbazi et al.

Jahanbazi et al. [13], covering social interaction in primitive societies, only the C and
W meta roles were included in the social model. In general, when societies become
more organized, it is natural for them to start keeping track of and managing knowl-
edge of general value, thereby shaping their value system and culture. For example,
a K-specific aspect is the interpretation of the natural environment and phenomena.
Thus special social roles with a focus on K-management have arisen in early soci-
eties, such as the “medicine man” or priest that managed and interpreted knowledge.
Thus we believe that societies first emerged with C and W meta-role sectors (the
most primitive societies) and then developed into societies with C, W, and K meta-
role sectors. Only later were all four C, K, W, and S meta-role sectors present in
more developed societies. The work presented here describes a model for early C-K-
W societies that have agents that activate the C, K, and W meta roles.

Work on the part of other social scientists and agent-based modelers has investigated
building artificial societies, but without the CKSW scaffolding. Each uses a different
approach and different angle to define the complex world in their model. The models
developed in [3, 14] share our objective for developing a model which allows endoge-
nous progression of institutional development. There are many works which only focus
on singular aspects captured in our model, for instance population dynamics [15-17],
mate selection [18-20], kinship [21], leadership and governance [3, 6], institutions [3,
14], economic development [2, 5, 22] or modelling the society’s history [23, 24].

Due to the multifaceted nature of our model and limited space, in the upcoming
section we can only briefly introduce the various elements of the model as well as
features relevant to the knowledge keeper role.

3 Model Description

Our model consists of one or more villages of people, each with a leader. All agents
have a finite lifetime (they can die of “old age”) and need to eat food resources in order
to sustain themselves. If an agent doesn’t eat enough food, it can die of hunger. For this
reason agents may sometimes be motivated to steal food from others. But agents may
be killed for either stealing food or for reasons of revenge due to negative opinions of
each other or previous negative experience. During their fertility ages, agents find mates
(based on the matching of their mutual relationship values) and reproduce offspring that
inherits (with a small possibility of mutation) their parents’ characteristics.

Model Overview. In summary, our core model follows the idea that ordinary worker
agents live in a village that is ruled by a leader agent and undergo a regular daily life
cycle. They gather food from the environment and bring it to storage locations controlled
by the leader. In our model an agent’s time schedule is based on its own characteristics.
For example, while the length of day is a universal parameter and is the same for all
agents, an agent’s “productive time” depends on its loyalty and defines how many time
units during the day they must work for the village leader. During their productive time

period, the follower (i.e. non-leader) agents are under the command of the leader and

The Role of Knowledge Keepers 157

gather food from the surrounding area which they then deposit into a central storage
controlled by the leader.

After an agent’s productive time period has elapsed, it is free from obligations to the
leader. At this point agents can keep the collected food. Agents can carry this food
around, or can store it in their home. The stored food at home is accessible by all members
of a household and is secure from theft, while the food that agents carry might be subject
to theft. Beyond these activities, agents engage in other activities, such as sharing food
(in order to increase their reputation and hence increase their chance of finding a mate),
stealing, socializing (sharing what they know about other agents’ reputations with third
parties), and taking revenge if they hold a negative relationship value towards another
agent. An agent could have a negative relationship value towards another agent if it were
to witness that agent’s stealing and/or killing acts, or witness an out-group agent (an
agent from another village) collecting food from the observer’s village’s food sources.
Apart from these actions, agents also perform automated activities that do not require
deliberation. Those include growing older, experiencing increase in the hunger level due
to energy consumption, eating (if they carry food and their hunger level is high),
observing other nearby agents, and mating (under the condition that they had already
found a mate).

Leaders maintain order in the village, but they do not gather food. They have control
over the village’s storage, however. They issue orders to collect food. Furthermore, they
might share food with hungry follower agents based on their own loyalty and altruism
level. They also have the power based on their aggression level to arrest agents who
commit crimes in their vicinity. The overall social climate is affected by the leader’s
behavior. For example, leaders with high personal altruism levels tend to share more
food with their followers, which can lead to social welfare without starvation (but also
possibly to overexploitation with deleterious results). On the other hand, leaders with
high personal aggression levels prevent more crimes and therefore decrease overall
deaths due to crime. A schematic and high-level overview of the simulation is shown in
Algorithm 1.

158 M. Jahanbazi et al.

Schematic overview of the simulation run

1: Initialize global parameters and physical environment
2: Instantiate agents

3: Assign Leader to each village

4: for simulation duration do

5: if clock < (Loyalty * LengthOfDay) and Is Follower and
6: Leader’s order = collect food do
7: Move toward food sources

8: Collect food

9: Move back to individual’s village

10: Deposit food into central storage

11: else if Leader’s order = share food do
12: Get a share of food

13: end if

14: Eat food at food source

15: Share food

16: Move back to individual’s home

17: Deposit food into home storage

18: Steal

19: Take revenge

20: Share normative reputation

21: Observe others

22: Eat food from home storage

23: Procreate

24: while Death Condition = False do

25: Grow older

26: Consume energy

27: Forget old or unimportant relationships
28: Find mate

29: end while

30: Update food resources

31: Update statistics

32: Update leaders

33: end for

Algorithm 1. High-level schematic overview of the simulation.

Functional Aspects of the Model. Our agent-based model is implemented in Netlogo
[25], in which locations are referred to as “patches”, and relationships between agents
are represented as “links”. In the following we will give insight into the functional
aspects of the model.

The individual agents in our model have the following feature categories:

o Simulation-related variables. These track an individual’s states, such as its needed
food resource level, the amount of food resources it may be carrying, its current
chosen goal, or the location of its home (its “patch”). This also includes a list of
known resource locations.

o Demographic variables. Age, sex, and fertility rate are part of this group.

o Kinship-related variables. These include references to parents, children, mate,
lineage, siblings, and their village.

The Role of Knowledge Keepers 159

o Personal variables. These include Altruism, Aggression, Loyalty, Physical Ability,
and they are represented by a value between 0 and 1.0. These variables are adopted
from [6].

o Role-related variables. Agents can be Leaders or Followers (corresponding to
Commanders (C) and Workers (W)). In addition we consider a notion of Leader Class
in the form of agents with family ties to the current leader (they are still follower
agents but they may have special privileges). In this connection with this there is a
loyalty-level parameter. For the leader of a village, it determines the extent to which
his ruling is coercive. But for followers, this parameter determines how likely they
are to obey orders.

o Agents’ internal CKSW variables. Each agent has C, K, S, and W attributes, and
for each such attribute there are two values — a capability value and an achievement
value. The capability variable reflects how an agent will react to various opportunities
available in the environment. For example, if an agent must choose between
(1) exploring ways to be able to collect more food resources, and (2) exchanging
information with other agents about known resources, then its choice will be deter-
mined by the dominance of either its knowledge (K) capability or skill (S) capability.
If its knowledge capability is dominant, then the agent will choose to exchange
information. This achievement level can be enhanced over time according to defined
individual learning rates.

Agents’ Interactions. Agents keep track of their relationships with other agents. The
relationships of agents are maintained using an internal interaction matrix maintained
by each agent that holds information about other agents it has encountered. The matrix
is modified based on the observation of ‘good deeds’, such as sharing, and likewise
adjusted based on negative experiences with an agent, such as observing or being the
victim of stealing. Associated with this is the essential action of socialization. Similar
to the notion of gossiping, whenever agents socialize they align their interaction matrix
values in congruence with shared common acquaintances.

Relationships are represented by Netlogo “links”. Each agent has a set of incoming
links which are carrying another agent’s opinion of the agent. Additionally each agent
has a set of outgoing links that hold its opinion about other agents. The reputation of
one agent is the sum of all the observational values on incoming links.

Links have the following attributes:

Age: the creation time of the link.
Frequency: the number of interactions so far with the agent at the end of this link.
Material exchange value: the amount of resources exchanged with this agent by
sharing or stealing.

e Observational Values: the “strength” of the relationship based on observing the
other agent’s actions or by being informed about that agent from other sources (for
example by gossiping about a known third agent’s reputation).

Agents’ Decision-Making. Agents choose actions based on their internal state, which
can include their hunger level, levels of altruism or aggression, as well as external state,
which can be changed by the presence of a leader or enforcer agent in their vicinity.

160 M. Jahanbazi et al.

In general, we aim to use a minimum of fixed behaviour parameters to determine an
agent’s actions, and instead make use of social comparison in most decision-making
activities. For example, aggressive agents are not necessarily just those with aggression
levels higher than 0.5 (or any other hard-wired parameter); instead, they define a personal
threshold based on self-comparison with other people that they know in their village.
This implies that an agent with an aggression level of 0.6 who lives near another agent
whose aggression level is 0.4 might act more aggressively compared to a similar 0.6
aggression level agent who lives next to an agent with a 0.8 aggression level. (If an
agent’s aggression level is higher than those in its vicinity, then it is more likely to act
aggressively.)

Another example of how an agent’s activities can vary according to the social context
concerns the conditions under which an agent might be motivated to steal. Ordinarily
the conditions determining when an agent might commit a crime are dependent on
whether a composite set of threshold conditions is met (the MaxHunger value is the level
of hunger at which the agent will die of starvation):

(1) There is no law enforcer (e.g. a leader) nearby.

(2) The perpetrating agent is not carrying food.

(3) Another agent is nearby who carries food.

(4) HungerLevel/(MaxHunger) > AltruismLevel

(5) HungerLevel/l(MaxHunger) > (1- AggressionLevel).

In addition to such situations, however, there are other conditions that could prevail. A
potential crime perpetrator could evaluate the risk of getting caught and decide that it is
worth committing the crime, for example, when condition (1) is not met. In that case the
perpetrator agent might temporarily elevate its aggression level and commit the crime
anyway.

3.1 The Incorporation of Knowledge into the Model

Having discussed the fundamental features of this model, we proceed with introducing
new features added to the model. In order to make the model more comprehensible, we
have classified its main features based on their related structural components, which we
use as a rough guide for the introduction of the model additions. Figure 1 shows the
defined model components. The Physical Environment covers infrastructural aspects
related to the simulation environment, such as the locations of resources, growth rates,
defining distances between different locations, the distances between villages, village
settings, and the locations of distributed village storages. The Institutional Structure is
the social structure we impose upon the agents; it defines the structure of the society in
which agents live, including the norms and the rules they must consider in their decision-
making. The Individual Agent covers anything related to features and capabilities of
individual agents.

The Role of Knowledge Keepers 161

Physical Environment

Institutional Structure

Individual Agent

Fig. 1. Model components.

Physical Environment. As shown in Fig. 2 at the center of each village is a central
storage area that the leader controls. In addition, each village has four distributed storage
locations, which are also controlled by the leader and which make it easier for villages
to deposit food so that there is less time spent commuting from and to food sources.
There is also a common food source area between the villages, for which each village
claims ownership. Collecting food from this area may lead to revenge attacks or negative
reciprocity relationships (since villagers look negatively on any other agent from another
village who collects food from the common area that they claim as theirs). We gener-
alized this model to permit a varying number of villages.

Fig. 2. Multi-Village Configurations. Each village has a central storage in the center that is
surrounded by four distributed storage locations (small houses). Food sources, shown by black
squares, are organized in a circle around the center. A common food source area is located between
villages with the same distance to the center of each village.

Institutional Structure. As a society grows in size, it becomes increasingly difficult
for a leader to maintain a monopoly on coercive control. For social scalability we have
thus introduced a class of people appointed by the leader who monitor and prevent
crimes. Those agents are recruited from the “Worker Class” (i.e. regular villagers) and
selected based on the strength of their kinship relationships to the leader. This is asso-
ciated with the leader selection strategy that builds on heredity. That is, when a leader
dies, either his son, or his next closest kin will step up to become the new leader. And

162 M. Jahanbazi et al.

the new leader class will be selected based on the new leader’s kinship relationships;
members of the old “Leader class” will be ‘converted’ back to regular workers.

The daily course of action of people in the “Leader class™ group is similar to that of
the normal worker class. They have all basic responsibilities, but in addition they have
the authority to secure locations identified by the leader to prevent crimes. This is
governed by a probability related to their aggression and loyalty levels. The aggression
level determines the successful prevention of crimes, while the loyalty level determines
how long (how many time units) these agents are under orders to maintain security at a
location. They have the power to arrest agents who dare to commit a crime in their
presence. Resulting prisoner agents are required to work full time for the public good
and collect food and deposit it into village storage. This strategy is in accordance with
Boehm [26], who argues that in Pacific Island societies, instead of elimination of the
offender, a sort of temporary punishment had been applied, which motivated the offender
to regain group acceptance again and be able to return to life in the society. Whenever
agents do get arrested, their reputation values will decrease significantly based on their
current reputation level and the type of the crime they were caught committing. The
secondary form of punishment is in accordance with [27], which discusses the effec-
tiveness of combining material punishment (having to collect certain amounts of food
for the leader) with normative punishment (lowering one’s reputation), which is a form
of group punishment [28] in that it decreases the chance of the offending agent in finding
a mate or receiving shared food (since an agent’s reputation is publicly visible).

But this system of law enforcement only works if knowledge about notable events
is shared widely. Ordinarily whenever any notable event such as a crime occurs, nearby
agents who have a high Knowledge Capability may observe this event and record it. But

* (1) Observation

Information
‘ by K- Agents

* (2) Delegation
of enforcements
by leader Agent

Decision

* (3) Execution by
appointed
enforcers

Distributed
enforcement

Fig. 3. Different elements and parties in distributed enforcement.

The Role of Knowledge Keepers 163

ordinary agents have only information about the areas that they visited and they don’t
have a big picture of the whole village. However, a group of agents with high loyalty
have the opportunity to share their observations with the leader. This is in line with the
notion of having a group of people who care more for their society’s wellbeing and see
themselves responsible to report crimes whenever they see them and take action in order
to make their society safer [29]. Then the leader can decide on locations which need
more control of violence. Since agents with a high Knowledge Capability have the
motivation to share and distribute their knowledge, if they collocate with another agent
with a similar Knowledge Capability, they can share information about their observa-
tions of events and agents they know.

Thus the distributed enforcement relies on three essential elements (see Fig. 3): (1)
distributed knowledge accumulation of K-agents, (2) transmission of this information
by a loyal subset of K-agents to the leader who will accumulate a global overview of
what’s happening in his territory, and (3) the leader’s decisions on whether to send
enforcers to a certain area.

Conflict Mediation. Historians have observed that people living in small groups often
goto an elder to resolve their disputes [26, 30]. An elder with good reputation can resolve
the intra-group conflicts, whereas inter-group conflicts should be resolved by the leader
himself. Different cultures qualify different individuals as the ones who can resolve
disputes — sometimes a person with high verbal skills, a good warrior reputation or a
warm personality can be considered a good candidate. In some other groups, wealth (or
the ability to offer a material gift), generosity, aggression, self-assertion, and reputation
are considered to be important. We employ the most often mentioned property, which
is reputation. In our model, reputation is also a signal of kindness, since it improves by
sharing, and as kind agents grow old, they have more opportunities to share. If they have
high Knowledge Capability, they have a higher chance of getting to know other agents
and thereby have more knowledge to make judgment about contesting agents inasmuch
as they know all parties involved in a dispute. Therefore high-reputation agents who
have a high Knowledge Capability are good candidates for resolving intra-group
disputes.

A significant aspect of dispute mediation is the procedure itself. In some cultures a
material gift from the offending person will work, while in some other situations a duel,
physical harm, or ostracism is needed to resolve the dispute [30, 31]. In our model, we used
a practice of gift exchange. The amount required for this material exchange is the quantity
of food units needed to make the relationship between two agents reach a neutral value.

In simulation runs which have this feature enabled, whenever an agent is collocated
with another agent with whom he has a negative relationship and his aggression level is not
sufficiently high to trigger revenge, a dispute resolution mechanism will be sought. In this
case the offended agent will identify another agent in the vicinity with a high reputation.
Then both parties will move toward the identified mediator, and the “neutral” mediator
will prescribe a penalty based on the relationship values. The target agent must pay the
penalty amount to the other party to restore his reputation. The cost involved in this proce-
dure is mostly the time both agents spend finding the mediator agent and moving towards
him. The mediator agent increases its own reputation in return, which makes him more

164 M. Jahanbazi et al.

likely to be chosen in connection with future disputes. Thus, over time, agents with higher
reputation are expected to become experienced dispute mediators [13].

The combination of these two new features empowers our artificial society with a
simplified version of both legal and civil justice. Legal justice aims to prevent crimes,
and if enforcers catch someone committing a crime, there is a penalty of imprisonment
and loss of reputation. On the other hand, civil justice attempts to resolve issues between
agents by a reputable mediator agent without any actual penalty. Figure 4 shows different
parties in both mechanisms.

Enforcement (C)

Agent (W)

Mediator Agent (K)
Agent (W) —————) Agent (W),

Fig. 4. Crime prevention and mediation mechanisms.

At this stage we have introduced the essential aspects of our relatively feature-rich
agent model. Below, we present the results of our sensitivity analysis which we used to
test the system for plausibility, but also to inform further parameter choices for selected
scenarios.

4 Sensitivity Analysis

By using multi-agent modelling as a research tool, a repetitive process of defining and
re-defining model requirements based on extensive literature in different disciplines can
be followed in order to validate the model based on observational studies and reports
from related literature. Thereafter simulations of different scenarios can help to gain
deeper understanding of the causes of deviations or optimal ways to trigger the desired
outcomes [11]. We have followed a systematic approach in this fashion by tuning each
model parameter to find the most reasonable value (or range of values). As defined in
[32], ‘reasonable parameters’ are those which help the model to reproduce patterns
observed in reality. We tested hundreds of configurations for single parameters, even
for the most trivial ones, such as the degree in which agents change their direction when
exploring, or the hunger level at which they start eating.

We began our simulation study by starting with similar parameters used as reported
in previous work [7, 13, 33]. In our attempts to extend those models with new features,
whenever we needed a new parameter, we have tested wide ranges of values for each
one of them. Nevertheless, the selection of the range of possible values in itself is not
straightforward. In order to illustrate how we went about it, we provide an example

The Role of Knowledge Keepers 165

showing the steps we went through to define one of the parameters used. Although in
this example we ended up with a different tactic (using social comparison instead of
using a parameter), we basically followed similar steps for most of the used parameters.

Initially, by adopting a perspective similar to [7, 13, 33], we decided to use the
revenge threshold parameter, which could be set at any negative value. We tested arange
from 0 to —1000 (in decrements of 20) to see how it affected the simulation outcomes.
Each value was tested with 20 different random number generator seeds which led to
1000 rounds for a single-village setting. The outcomes revealed that having high-magni-
tude values led to the collapse of the simulation (values higher than —100), due to high
numbers of revenge killings (since revenge killing could start a vicious cycle of revenge
attacks and thereby lead to a population collapse). On the other hand, by using very low-
magnitude values, revenge attacks never happen (—600 and lower). However, since our
overall approach was to employ a minimal number of parameters and by considering
that not all the people have the same threshold, we took a step back and considered other
factors which helped us to facilitate parameter estimation. We observed the minimum
and maximum relationship values for each agent and used this range for each individual
agent in the following way:

RevengeThreshold = Max — (Max—Min) * AggressionLevel)

Accordingly, an agent will take revenge if (a) the agent has a negative revenge
threshold (indicating negative reciprocity) and (b) is collocated with an agent who has
a lower-than-threshold relationship value toward him. In summary, we tested every
single parameter with hundreds of experiments and used those which seemed more
plausible and led to results closest to [33]. Of course the issue of “plausibility” can be
subjective and is not objectively measurable, which is a framing consideration for all
agent-based models.

In summary, as we stated earlier we avoided hard-wired thresholds to introduce new
institutional activities that keep the social order intact. Instead we have used notions of
social comparison among the agents to define their own views towards welfare at the
societal level and at the individual level. This is also in accordance with theories of the
social self and the idea that we are influenced by people around us, and have a tendency
to adopt the characteristics of those who are close to us [34]. We believe that this is
missing in many agent-based models, inasmuch as they mostly define arbitrary global
parameters for such thresholds set at low, medium, or high values. We argue that it is
preferable to look from a situated perspective and ask whether the effects of a particular
parameter can be shown to emerge from the social and environmental context.

5 Experimental Design

We used 30 different random seeds for each pair of experiments in 2-village configura-
tions with 100 agents as initial populations for each village. Agents can live up to 4,000
time units, and we used 40,000 time units as the total duration of the each simulation
run. There were three major scenario categories that we examined:

166 M. Jahanbazi et al.

(1) Scenarios without distributed control of violence (or distributed enforcement).

(2) Scenarios with distributed control of violence but without the use of observation
of events by agents with high Knowledge Capability. Instead we simulated global
knowledge of criminal occurrences by storing the criminal events locally in the
patch and making them globally visible to the enforcers.

(3) Scenarios with distributed control of violence and with the use of observation of
events by agents with high Knowledge Capability.

For each scenario we tested it with and without conflict resolution, which made a
total of 6 experiments per random seed (180 in total). We considered Scenario (2) and
(3) in order to compare the relative efficiency difference between global knowledge
about crime and knowledge about crime that is passed through knowledge-aware agents.
For simulation efficiency it can be useful to store the criminal results in the patches, but
it is less realistic. We found that Scenario (3), which employed criminal event obser-
vation and communication by high Knowledge-Capability agents to be almost as effi-
cient as Scenario (2) and a more realistic representation.

6 Results and Discussion

In this section we summarize our experimental results with regard to specific features.

Effectiveness of Distributed Information Gathering. Before moving to our main
features and their effects, the scenarios that test the accuracy of information will be
discussed. The results show that the correlation between decline in death due to revenge
and enabling enforcers who use crime information stored in the patches is —0.80, while
the correlation between decline in death due to revenge and enabling enforcers who use
the information collected by distributed knowledge gathering is —0.78. The results indi-
cate that distributed information gathering is almost as effective as using accurate infor-
mation stored in the history of patches.

Enabling Distributed Control of Violence. Other than a leader’s control of the distri-
bution of food based on his altruism level, there is only one institutional element that
prevents agents from stealing and violence: this is provided by the authorized members
of the Leader class engaged in distributed violence control. The correlations between
enabling this distributed form of crime control and different causes of death are signif-
icant. Correlation with the death rate due to (a) revenge is —0.78, (b) thefts is —0.54,
and (c) hunger is +0.8. The correlation of distributed violence control and the total
number of thefts is —0.77. In general, theft and killings are reduced considerably by
implementing distributed control of violence, while death due to hunger rises. This could
suggest that even in this artificial society, mere prevention of violence is not enough.
There should be further institutions beyond stopping crime, such as providing the
deprived agents with assistance for food acquisition. Additionally, since agents who are
enforcing the rules are not productive anymore, they do not contribute to central storage
sites any longer, leaving the society has fewer contributors and more consumers. This
result raises the question concerning to what degree can distributed law enforcement be

The Role of Knowledge Keepers 167

tailored to achieve a balance between crime and starvation. Figure 5 shows the average
percentages of different causes of death for all scenarios with activated observation of
events for configurations with and without distributed enforcement. As shown in Fig. 5,
death due to old age is hardly affected by this feature.

Theft

Revenge

-
Hunger g

Old Age

0 10 20 30 40 50 60
Death Rate %

B Distributed Enforcement @No Distributed Enforcement

Fig. 5. Effect of distributed enforcement on different causes of death.

Conflict Mediation. Introducing conflict mediation made much more of a difference in
the absence of other types of crime prevention (see Figs. 6 and 7). Unsurprisingly, it has
a correlation of +0.8 with the Reputation Gini, which defines the inequality in agent
reputations!. The reason behind this effect is due to the role of the mediator who gains
in reputation as he resolves the disputes. In addition, those with negative reciprocity
towards each other have the chance to remedy their relationship and thus improve it.
However, this indicates the emergence of class stratification based on reputation. While
we expected that conflict mediation improves the overall welfare of the society, it has
the unforeseen effect in population rise which leads resource scarcity and more conflict
over resources. This is schematically illustrated in Fig. 8.

1 The reputation Gini index shows the relative reputation inequality in a group. In particular, it
reveals the gap between agents with very high reputation and agents with low reputation. In
order to calculate the Gini index, we implement formula used by [35]. Agent;’s reputation
represented by y,. Then we sort y,, i = 1fon in ascending order (y, <=y, +1). Finally, Gini is

n _ al
i |
Z,‘=1 Yi

calculated as G =

S|

168 M. Jahanbazi et al.

250
2200
5
8
<150 ST
4 e
| v S5
Y I Y 0 T P A O O o
2100
£
E]
Z 50

0

0 5000 10000 15000 20000 25000 30000 35000 40000

Time Unit
----Without Conflict Resolution =~ ——With Conflict Resolution

Fig. 6. Population change over 10 generations for scenarios with and without conflict resolution.

Theft — Without Dispute Resolution
Revenge
Lo @With Dispute Resolution
Hunger i—
Age
0 20 40 60
Death Rate %

Fig. 7. Average rates of different causes of death with and without dispute resolution.

* Better

Higher Reputation | chance to
find a mate

More Married ¢ More
Agents offspring

* More
. . conflict due
>| Higher Population to lack of
resources

Fig. 8. Effect of higher reputation results from conflict resolution.

The Role of Knowledge Keepers 169

The correlations between population increase and different causes of death are
significant (see Figs. 6 and 7). The correlation between the number of agents and: (a)
death due to hunger is +0.51, (b) death due to thefts is +0.63, and (c) death due to old
age —0.8. Moreover, it decreases the life expectancy of agents in such a way that the
average age at death decreases considerably when population size increases (correlation
is —0.8). Figure 6 shows the average population change for scenarios with and without
dispute resolution, and Fig. 7 shows the average rates of different causes of death in
scenarios with and without dispute resolution.

In addition to calculating the correlations between each feature and different outputs,
we have used regression analysis to confirm the results. Table 1 summarizes the regres-
sion analysis of 180 experiments which shows the p-values and coefficients of regression
test with a confidence level of 95 %.

Table 1. Regression results.

Revenge Hunger Thefts

P-value | Coefficients | P-value | Coefficients | P-value | Coefficients
Intercept 0.79 661.29 0.46 —2196.00 |0.69 317.62
Distributed 4E-40 | -8.53 5E-50 12.47 |5E-20 | -1.70

enforcement

Event observation 0.020 1.27 0.00 -2.14 |0.11 0.28
Conflict resolution 0.000 —1.59 8E—07 2.52 |7E-13 1.03
Adjusted R square 0.685 0.73 0.48

Distributed enforcement has significant p-values for all three output variables. It is
worth mentioning that the reason behind less significant p-values for event observation
compared to distributed enforcement lies in its comparison with scenarios in which
enforcers had actual knowledge of crime areas. As shown in the results, distributed
enforcement comes with the cost of higher death due to hunger. As mentioned earlier,
this can be due to more consumers and less contributors. In the same way, in the real
world, enforcement comes at a cost too, and this brings up the challenge of balancing
enforcement and the cost of enforcement.

Prevention and Medinion . |
Base Scenario W 5555 555555

0 5 10 15 20 25 30 35
Death Rate %

ERevenge-Rate M Hunger-Rate

Fig. 9. Death rates due to revenge and hunger for different scenarios.

170 M. Jahanbazi et al.

Figure 9 compares the average values for three main scenarios at once. It can be seen
that as crime prevention features are added, deaths due to revenge decrease, but deaths
due to starvation increase which shows the cost of resolving conflicts or its prevention.

7 Conclusion and Future Work

As supported by the claim made in [36] that agent-based modelling is “a new standard
of explanation”, there has been a growing interest in agent-based modelling of complex
social phenomena. However, perhaps partly due to computational limitations, the
complexity and interactive scope of the modelled agents is often limited. In the work
presented in this paper and by expanding the model developed by [33], we have included
a wider range of aspects found in real societies and studied their interaction in different
simulation settings. In this work we have explored the impact of compliance and dispute
resolution mechanisms on the functioning of a society, along with the structural change
of the society’s configuration based on the different social roles.

However, our path toward building more realistic artificial human societies has much
ahead of it. We believe that continued development of CKSW-based meta-role models
can offer new opportunities in the area of social modelling. The CKSW perspective takes
into account social ordering activities that have been observed across the history of
human societies. Building models using agents with these meta-role capabilities will
enable us to reproduce some of the observed higher-level social structures in an organic
fashion. These general role scenarios offer a more realistic representation of how prim-
itive societies of autonomous agents achieve a measure of societal coordination.

Considerably more work will need to be done to achieve our main objective of
modelling a human society with the internal ability to construct essential institutions to
sustain and enhance the overall social prosperity. A number of important limitations
need to be considered in order to refine and improve the current model. Some immediate
extensions we will be pursuing include improving the current simplistic view of mate
selection (the selected mate cannot reject the proposal) by considering real mate selec-
tion criteria in different cultures. Furthermore, we will be introducing more variation in
food resource fertility rates and transportation channels. The next major extension of
the model will be implementing the skill (S) class and introducing concepts such as
agricultural technology for different societies.

References

1. Huang, H.Q., Macmillan, W.: A generative bottom-up approach to the understanding of the
development of rural societies. Agrifood Res. Rep. 68, 296-312 (2005)

2. Macmillan, W., Huang, H.Q.: An agent-based simulation model of a primitive agricultural
society. Geoforum 39, 643-658 (2008)

3. Makowsky, M.D., Smaldino, P.E.: The evolution of power and the divergence of cooperative
norms. J. Econ. Behav. Org. 126, 75-88 (2016)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

The Role of Knowledge Keepers 171

. Gilbert, N., den Besten, M., Bontovics, A., Craenen, B.G.W., Divina, F., Eiben, A.E.,

Griffioen, R., Hévizi, G., Lorincz, A., Paechter, B., Schuster, S., Schut M.C., Tzolov, C.,
Vogt, P., Yang, L.: Emerging artificial societies through learning. J. Artif. Soc. Soc. Simul.
9 (2006)

. Tesfatsion, L.: Agent-based computational economics: growing economies from the bottom

up. Artif. Life 8, 55-82 (2002)

. Younger, S.: Leadership, violence, and warfare in small societies. J. Artif. Soc. Soc. Simul.

14, 8 (2011)

. Younger, S.: Leadership in small societies. J. Artif. Soc. Soc. Simul. 13, 5 (2010)
. Younger, S.: Reciprocity, sanctions, and the development of mutual obligation in egalitarian

societies. J. Artif. Soc. Soc. Simul. 8, 9 (2005)

. Younger, S.M.: Discrete agent simulations of the effect of simple social structures on the

benefits of resource sharing. J. Artif. Soc. Soc. Simul. 6 (2003)

Younger, S.: Reciprocity, normative reputation, and the development of mutual obligation in
gift-giving societies. JASSS-THE J. Artif. Soc. Soc. Simul. 7 (2004)

Purvis, M.K., Purvis, M.A.: Institutional expertise in the service-dominant logic: knowing
how and knowing what. J. Mark. Manag. 28, 1626-1641 (2012). doi:10.1080/0267257X.
2012.742454

Purvis, M., Purvis, M., Frantz, C.: CKSW: a folk-sociological meta-model for agent-based
modelling. Social Path Workshop (2014)

Jahanbazi, M., Frantz, C., Purvis, M., Purvis, M.: Building an artificial primitive human
society: an agent-based approach. In: Ghose, A., et al. (eds.) COIN 2014. LNCS, vol. 9372,
pp- 89-96. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25420-3_6

Makowsky, M.D., Rubin, J.: An agent-based model of centralized institutions, social network
technology, and revolution. PLOS ONE 8 (2013)

Cervellati, M., Sunde, U.: Life expectancy and economic growth: the role of the demographic
transition. J. Econ. Growth 16, 99—133 (2011). doi:10.2307/41486924

Read, D.W.: Emergent properties in small-scale societies. Artif. Life 9, 419-434 (2003). doi:
10.1162/106454603322694852

Axtell, R.L., Epstein, J.M., Dean, J.S., Gumerman, G.J., Swedlund, A.C., Harburger, J.,
Chakravarty, S., Hammond, R., Parker, J., Parker, M.: Population growth and collapse in a
multiagent model of the Kayenta Anasazi in Long House Valley. Proc. Natl. Acad. Sci. U.S.A.
99(Suppl 3), 7275-7279 (2002)

Diaz, B.A., Fent, T.: An agent-based simulation model of age-at-marriage norms, pp. 85-116
(2006)

Billari, F.C., Prskawetz, A., Diaz, B.A., Fent, T.: The “Wedding-Ring”: an agent-based
marriage model based on social interaction. Demogr. Res. 17, 59-82 (2008)

Bentley, G.R.: Hunter-gatherer energetics and fertility: a reassessment of the! Kung San.
Hum. Ecol. 13, 79-109 (1985)

Read, D.: Kinship based demographic simulation of societal processes. J. Artif. Soc. Soc.
Simul. 1 (1998)

Ewert, U.C., Roehl, M., Uhrmacher, A.M.: Hunger and market dynamics in pre-modern
communities: insights into the effects of market intervention from a multi-agent model. Hist.
Soc. Res. Sozialforsch, 122—-150 (2007)

Lake, M.: Explaining the Past with ABM: On Modelling Philosophy (2015). doi:
10.1007/978-3-319-00008-4_1

Barceld, J., Del Castillo, F., Del Olmo, R., Mameli, L., Quesada, F.M., Poza, D., Vila, X.:
Simulating Patagonian territoriality in prehistory: space. Front. Netw. Among Hunter-
Gatherers (2015). doi:10.1007/978-3-319-00008-4_10

http://dx.doi.org/10.1080/0267257X.2012.742454
http://dx.doi.org/10.1080/0267257X.2012.742454
http://dx.doi.org/10.1007/978-3-319-25420-3_6
http://dx.doi.org/10.2307/41486924
http://dx.doi.org/10.1162/106454603322694852
http://dx.doi.org/10.1007/978-3-319-00008-4_1
http://dx.doi.org/10.1007/978-3-319-00008-4_10

172

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

M. Jahanbazi et al.

Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity. Int. Conf.
Complex Syst., pp 16-21 (2004)

Boehm, C.: Hierarchy in the Forest: The Evolution of Egalitarian Behavior. Harvard
University Press, Cambridge (2009)

Villatoro, D., Andrighetto, G., Brandts, J., Nardin, L.G., Sabater-Mir, J., Conte, R.: The norm-
signaling effects of group punishment combining agent-based simulation and laboratory
experiments. Soc. Sci. Comput. Rev. 32, 334-353 (2014)

Boyd, R., Gintis, H., Bowles, S.: Coordinated punishment of defectors sustains cooperation
and can proliferate when rare. Science 328, 617-620 (2010)

Fry, D.P., Bjrkqvist, K., Bjorkqvist, K.: Cultural Variation in Conflict Resolution Alternatives
to Violence. Taylor & Francis, New York (2013)

Wagner, G. The political organization of the Bantu of Kavirondo. Afr. Polit. Syst., 197 (1940)
Wolft, P.M., Braman, O.R.: Traditional dispute resolution in Micronesia. South Pac. J.
Psychol. 11, 44-53 (1999)

Thiele, J.C., Kurth, W., Grimm, V.: Facilitating parameter estimation and sensitivity analysis
of agent-based models: a cookbook using NetLogo. R. J. Artif. Soc. Soc. Simul. 17(3), 11
(2014)

Jahanbazi, M., Frantz, C., Purvis, M., Purvis, M., Nowostawski, M.: Agent-based modelling
of primitive human communities. In: Intelligent Advanced Technology, vol. 3, pp. 64-71
(2014)

Gould, M.: Culture, personality, and emotion in George Herbert mead: a critique of
empiricism in cultural sociology. Sociol. Theor. 27, 435-448 (2009). doi:10.2307/40376122
Gastwirth, J.L.: The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 54(3),
306-316 (1972)

Epstein, J.M.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 12 (2008)

http://dx.doi.org/10.2307/40376122

Modeling and Detecting Norm Conflicts
in Regulated Organizations

Jie Jiang and Huib Aldewereld ™9

Delft University of Technology, Delft, The Netherlands
{jie.jiang,h.m.aldewereld}@tudelft.nl

Abstract. In regulated organizations, norms may come from various
regulation sources imposed by different institutions. With possibly con-
flicting values and interests, inconsistencies are likely to occur among
these norms, e.g., one norm obliges some actions to be done while another
norm prohibits the same actions. In this paper, we propose a formal-
ization of norm conflicts based on the normative states of interrelated
norms. Then via operationalizing the normative structure based on Col-
ored Petri Nets, we propose a method for detecting such conflicts.

Keywords: Regulated organizations - Normative systems - Norm con-
flicts - Agent organizations

1 Introduction

A common problem for organizations is the increasing amount and complexity
of norms that they have to consider in the design of their business processes.
For example, when dairy products are exported, besides the internal process
control of the dairy exporter, many other sources of norms are imposed by dif-
ferent institutions [4]. For instance, customs regulates the activities concerning
export declaration, and transportation. An health agency regulates the activity
of health certification. An agriculture agency puts information requirements on
export declaration. A tax agency regulates the activities of Value-Added Tax
settlement and invoicing. Given the diversity of regulation sources and possibly
conflicting interests, it is likely that the norms imposed by these institutions
are not consistent. In such cases, it is impossible to reach an agreement on
whether the organizations comply with the regulations, which may cause misun-
derstanding and decrease the effectiveness of laws and regulations. To this end,
mechanisms are needed to detect the norm conflicts.

Such a problem has been extensively investigated by researchers in the
domain of normative systems. An early work is presented by [14], in which the
concept of normative conflict is formally analyzed and two approaches of reason-
ing with normative conflicts are discussed. [16,17] applied first-order unification
to discover overlapping substitutions to the variables of laws/norms in which
legal /norm conflicts may occur. Targeting distributed management of norms, [2]
proposed a normative model based on the propagation of normative positions

© Springer International Publishing Switzerland 2016
V. Dignum et al. (Eds.): COIN 2015, LNAT 9628, pp. 173-190, 2016.
DOI: 10.1007/978-3-319-42691-4_10

174 J. Jiang and H. Aldewereld

as consequences of agents’ actions, and realized conflict detection by providing
a mapping of the normative model into Colored Petri Nets. Focused on nor-
mative conflicts in electronic contracts, [3] presented a set of primitive conflict
patterns and proposed the representation of e-contracts in default logic to facil-
itate conflict detection. [10,11] proposed a computational model for detecting
norm conflicts given traces of agent actions by means of Answer Set Program-
ming. Focused on identifying conflicts between obligations in dynamic settings,
[15] introduced a new semantics for the obligations to identify the necessary and
sufficient conditions to detect conflicting obligations. Though these approaches
provide useful formalisms and detection techniques, there are two issues that
have not been discussed. One is the analysis of how the interrelations between
norms might influence the existence of norm conflicts. The other one is how
compliance status of norms is linked to the existence of norm conflicts.

Targeting these two issues, this paper investigates the concept of norm con-
flicts in the setting of interrelated norms. To formalize the specification of norms,
we adopt the normative language Norm Nets (NNs) [8] which provide formalisms
for representing the interrelations between norms. Based on NNs, we present an
analysis of norm conflicts in terms of the compliance status of norms and show
how interrelations between norms may influence the formation of norm conflicts.
Moreover, we distinguish between two types of norm conflicts, i.e., weak conflicts
and strong conflicts. To detect the conflicts, a computational model is developed
by using Colored Petri Nets [5].

The rest of the paper is organized as follows. Section 2 introduces the for-
malisms that are used to model norms. Section 3.2 gives the definition of norm
conflicts and presents the mechanism of detecting such conflicts. Section4 pro-
vides a case study. Finally, Sect. 5 concludes this paper and identifies the direc-
tions for future work.

2 Normative Structure

In this paper, we consider an institution as a set of norms used to regulate the
behavior of participating agents in organizations [12], which is formalized by
Norm Nets (NNs) [8].

2.1 Conceptual Model

(i) Preliminaries. Events are defined to represent the actions available to the
roles in organizations.

Definition 1 (Event). Let R be a finite set of roles and A be a finite set of
actions. The set of events E C R x A where an element from E is denoted as
e=(r,a),r € R,a € A.

An event € = (r,) describes an action « available to a role r. For example, we
can express an institutional observation “a student enters the library” by defining
an event (Student, enter_library). Using the notion of events, a propositional
language L is defined over the set of events.

Modeling and Detecting Norm Conflicts in Regulated Organizations 175

Definition 2 (Event Language). Given an event e € E, let the event lan-
guage Ly be the set of expressions generated by the following grammar:

pu=elleAP)l(eVe)llp <e)lr

©1 A\ 2 indicates both 1 and @9 occur (conjunction), ¢1 V @2 indicates either
1 or g occurs (disjunction), ¢1 < @9 indicates 7 occurs before ¢y (sequence),
and A represents a null event. F, is used to indicate all the events contained in ¢.
The event expressions can be evaluated to true or false based on the occurrence
of prescribed events and their relations.

For example, given ¢ = (Student, enter_library) and @9 = (Librarian, check_-
identity), ¢1 N p2 means that the student enters the library and the librarian
checks the identity; ¢1 V @2 means that either the student enters the library or
the librarian checks the identity; ¢1 < @2 means that the student enters the
library and then the librarian checks the identity.

(ii) Norms. Norms are defined to prescribe how agents ideally should (not)
behave in terms of the roles they enact. In NNs, two types of norms are defined,
i.e., obligations and prohibitions, as formalized in Definition 3.

Definition 3 (Norm). 4 norm n = (D, p,d,0) where (1) D € {O, F} indi-
cates the deontic type of the norm, i.e., Obliged, Forbidden, (2) p € E, describ-
ing a non-empty target to which the deontic modality is assigned, (3) 6 € Lg,
describing the deadline of the norm, and (4) o € Lg, describing the precondition
of the norm.

The target is indicated by a role-action pair in which the role specifies to whom
the norm applies and the action specifies the behavior that is constrained by
the norm. Both the precondition and the deadline are event formulas. The pre-
condition determines when the norm is activated and enforced, and the deadline
determines when an obligation has to be ensured or a prohibition ceases.

For example, we can model a regulation that “If a student borrows a book
from the library, the student should return the book within 1month” by defin-
ing a norm n = (O, (Student, return_book), (Timeline, pass_1month), (Student,
borrow_book)). In this norm, we have defined two roles Student and Timeline, in
which Timeline is a reserved role used to indicate the elapsing of time.

(iii) State Transitions of Norms. A norm is instantiated when it is created.
As soon as the precondition holds, the norm is activated. An obligation is consid-
ered satisfied when both its precondition and target are true while its deadline is
false, and considered violated when both its precondition and deadline are true
while the target is false. A prohibition is considered satisfied when both its pre-
condition and deadline are true while its target is false, and considered wviolated
when both its precondition and target are true while its deadline is false.

176 J. Jiang and H. Aldewereld

(iv) Norm Nets. To capture the interrelations between norms, the concept of
Norm Net is introduced.

Definition 4 (Norm Net). A norm net NN is defined by the following BNF':
NN :=n|AND(NN, NN)|OR(NN, NN)|OE(NN, NN)

where n is a norm; Syy s used to denote the set of component norm mnets
contained in NN and Enpn is used to denote the set of events contained in NN .

A norm net can be a single norm or a nested structure composed of norms with
three different relations. AND indicates that both component norm nets should
be satisfied and the violation of either component will result in a violation to
the combination. OR indicates a choice between the two component norm nets
and only when both are violated the combination is considered as violated. OE
indicates that the two component norm nets are conditional and exclusive, i.e.,
(1) only when the first component is violated can the second component be
activated, (2) the violation of the first component can be repaired by the second
component being satisfied. Based on the state transitions of single norms, the
state transitions of NNs can be derived according to the interrelations between
its component norms.

For example, consider the following normative constraint “students should
return the book within 1 month after they borrow the book, otherwise they
have to pay a fine within 1week.” This piece of constraint indicates a repa-
ration/sanction relation between two norms, which can be represented by
a norm net OFE(ni,ng) where n; = (O, (Student, return_book), (Timeline,
pass_1lmonth), (Student, borrow_book)) and ne = (O, (Student,pay_fine),
(Timeline, pass_lweek), \).

Note that while no has an empty activation condition A, the norm is still
only triggered after my is violated, due to the semantics of the OF operator.
The activation condition of the second norm in an O E-construction (the sanction
norm) can thus be used to further specify conditions that should hold to activate
the sanction (or, create exceptions when not to activate the sanction norm).

2.2 Operational Semantics

The operational semantics of NNs are obtained by a mapping to Colored Petri
Nets (CPNs) following the approach presented by [8].

(i) Colored Petri Nets. A CPN [5] is a directed graph consisting of two types
of nodes, called places and transitions, where arcs are either from a place to a
transition or from a transition to a place. Tokens in CPNs may have different
colors or data types and carry data attributes that characterize the entities the
tokens represent.

A place serves as a placeholder for the entities in the system being modeled.
Each place is associated with a type or a color set that determines the kind of tokens
the place may contain. Besides a type, each place has a marking (denoted as M)

Modeling and Detecting Norm Conflicts in Regulated Organizations 177

to indicate its state, which is defined as a multiset of values over the type of the
place. A multiset is similar to an ordinary set except that the same element can
occur multiple times. A token is an element of such a marking, i.e., it has a value
and resides in a place. If a marking consists of tokens with different values, we sep-
arate them with two pluses (++). The subtraction of tokens with different values
is expressed as two minuses (——).

An arc has an inscription which may contain one or more free variables.
Transitions represent the events that can occur in the system being modeled.
A transition has a set of variables, i.e., the ones occurring on all the arcs con-
necting to it. Each of these variables can be assigned a value from the set repre-
sented of its type. A transition along with an assignment of each of its variables
is referred to as a binding (denoted as b). Given a CPN with a marking and a
binding, the binding is considered to be enabled if all input places contain at
least the tokens specified by the evaluation of the expression on the correspond-
ing input arcs in the binding. A transition is enabled in a marking if there exists
at least one binding which is enabled in the marking. If a binding or a transition
is enabled, it can occur or be fired. This results in consuming all the tokens
from input places corresponding to the evaluations of the expressions on input
arcs and producing new tokens on output places corresponding to the evalua-
tions of the expressions on output arcs. The marking of a model before we start
simulation is called the initial marking.

Based on the description above, the formalization of a CPN is shown in
Definition 5.

Definition 5 (CPN). A CPN is a tuple (P, T, A, X, V, C, E, I) where (1) P
is a finite set of places, (2) T is a finite set of transitions such that PNT =,
(8) ACPxTUT x P is a set of directed arcs, (4) X is a finite set of non-
empty color sets (data types), (5) V is a finite set of typed variables such that
Type[v] € X for all variables v € V, (6) C : P — X is a color set function
that assigns a color set to each place, (7) E: A — EX PRy is an arc expression
function that assigns an arc expression to each arc a € A such that Type[E(a)] =
C(p)ms, where p is the place connected to the arc a and M S indicates C(p)ars
is a multiset, (8) I : P — EXPRy is an initialization function that assigns a
closed expression to each place p such that Type[I(p)] = C(p)ums-

(ii) Mapping from NNs to CPNs. In organizations, roles are enacted by
agents, and the agents’ behavior is constrained by the norms regulating the
roles they enact. In this paper, we assume a set of agents Ag participating in
a regulated organization and an explicit enactment relation REA between the
agents and the roles specified in the norms. Based on the definition of NNs and
their state transitions, correspondences between a norm net and a Colored Petri
net can be generalized as follows.

e R — X each role corresponds to a color set which can be assigned to the
places,
e A — T: actions are represented by the transitions,

178 J. Jiang and H. Aldewereld

e [/ — P xT: events are indicated by the connections from places to transitions,

e (REA C Ag x R) — I: role-enacting agents are indicated by the initial distri-
bution of tokens in the places (i.e., initial marking),

e Satisfied C P, Violated C P, Satisfied N Violated = (}: the satisfied and violated
states of norms are indicated by two disjoint subsets of the places.

Agents are represented by the tokens which can only reside in the places with
the matching colors according to the roles the agents are enacting.

Based on the correspondences between the elements in NNs and that in
CPNs, we follow the approach presented by [8] and the CPN patterns in [13] to
construct the CPN model of NNs. The resulting CPN model of a norm net is
given as follows.

Definition 6 (CPN Model of NNs). The CPN model of a norm net NN with
an enactment relation REA is denoted as O(NN,REA) = (N, Satisfied, Vio-
lated, ps,py) where (1) N is a CPN according to Definition 5, (2) Satisfied € Py
is a subset of the places of N, indicating the satisfied states of all the component
norm nets in NN, (3) Violated € Py is a subset of the places of N, indicating
the violated states of all the component norm nets in NN, (4) ps € Satisfied is
a place of N such that Pt € Tnr : (ps,t) € Apr, indicating the overall satisfied
state of NN, (5) p, € Violated is a place of N such that Bt € T : (py,t) € A,
indicating the overall violated state of NN.

(iii) Visual Mapping of Norms to CPN. Following the approach presented
in [8], we briefly present a visual guidance how norms are translated to CPN
models. Given a regulative norm n” = (D, p,d, o), the construction of its CPN
model follows three steps:

1. constructing CPN snippets for each event in the construction of the target p,
the deadline § and the precondition o (see top-left of Fig. 1);

2. combining the CPN snippets obtained from the first step according to the
relations (A, V, <) between the corresponding institutional events in the pre-
condition o and deadline ¢ (see bottom of Fig.1); and

3. connecting the combined CPN snippets obtained from the second step to
obtain the CPN model of a regulative norm according to the deontic type of
the norm (see Fig. 2).

An event (r,«) is replaced by a two places (input and output) connected
by a transition. Both places are associated with a color set r,q indicating that
agents represented by the residing tokens are enacting the role r. Note that the
“color” of a token is only a data-type/label, not per se an actual color (black,
green, red, etc.). The transition refers to action «, thus indicating that the firing
of that transition represents that an agent playing role r has performed «.

The combination of events (bottom part of Fig.1) is realized through the
three operators in Lg: A (and), V (or), < (before). Based on the workflow pat-
terns presented in [13], the CPN patterns for the three types of combination are
described as follows.

Modeling and Detecting Norm Conflicts in Regulated Organizations 179

@ ® Ly Aty
er(r,a)

)=« ()

r_ag r_ag

(©)

union

Fig. 1. CPN patterns for events, conjunction, disjunction, and before.

A relation: top-right of Fig. 1 shows the CPN pattern for two event formulas),
and 15 combined with a A relation which indicates that only when both
and 1 occur, the combination of these two occurs. Accordingly, the output
places of both branches are connected to a single transition, thus converging
the thread of control only when both output places contain a token.

V relation: the middle of Fig. 1 shows the CPN pattern for two event formulas
11 and 1o combined with a V relation which indicates that as long as one of
11 or 1)y occurs the combination of the two occurs. Accordingly, the output
places of both branches are connected to the same place in such a way that
the thread of control is converged when either branch has a token in its
output place.

For both the A and V relation, the places in the succeeding branch are assigned
a new color set, being the union of the color sets of the input branches. This
is to enable the conjunction/disjunction of events with different roles, allowing
either role from the input branches to proceed to the output place.

< relation: the bottom of Fig. 1 shows the CPN pattern for two event formulas
11 and 1y combined with a < relation, which indicates that only when
occurs first and then 1 occurs the combination occurs. To achieve this,
the output places of the pattern representing ; are connected to the first
transitions occuring in 5. This ensures that those transitions (of 12) can
only fire when 1, has finished (i.e., ¥; has tokens in its output places).

180 J. Jiang and H. Aldewereld

Notice that there is a set of transitions labelled null, which are necessary in
order to apply the synchronization mechanism of CPNs. These transition will
fire as soon as their input places have sufficient tokens.

obligation: (O, p, 5, 0) prohibition: (F, p, 5, 0)

target: p target: p

deadline: § deadline: §

Fig. 2. CPN patterns for obligation (left) and prohibition (right).

The combination of the target, precondition, and deadline of a regulative
norm should follow the logic that after the occurrence of the precondition, the
target should (not) occur, before the occurrence of the deadline (otherwise a
violation is generated). The precondition determines when the regulative norm
is activated, while the deadline determines when the norm can be evaluated to be
satisfied or violated (depending on the deontic type of the norm). To represent
these correlations in a norm, the construction of its CPN model follows these
two steps (see Fig. 2):

(1) activation: connecting the output place of the precondition to the transition
of the target, and to the last transition of the deadline, such that only when
the precondition is fulfilled, the target and the deadline are enabled to fire.

(2) evaluation: connecting the first place of the target to the last transition of
the deadline, such that (a) when the target occurs first (the deadline has not
finished), the token in the source place of the target, representing the agent,
moves to the last place of the target, or (b) when the deadline finished first
(and the target has not occurred), the token moves to the output place of the
deadline instead. The label of these output places depends on the deontic type
of the norm; for an obligation the output of the target is labelled ‘Satisfied’
and the one of the deadline ‘Violated’, in the case of a prohibition, the labels
are reversed.

The places in Fig.2 labelled A, S, V represent the state of the norm, being
respectively ‘Activated’, ‘Satisfied’, or ‘Violated’.

For more details on the mapping from norms to CPN, and the combination of
the CPN models using the NN operators AND, OR and OE, we refer interested
readers to [7,8].

Modeling and Detecting Norm Conflicts in Regulated Organizations 181

3 Norm Conflicts

Based on the formalism of NNs, in this section, we propose a definition of norm
conflicts in terms of the compliance status of norms. Taking into account the
interrelations between norms, the definition gives a comprehensive representation
of norm conflicts. Furthermore, a computational model is developed to detect
the conflicts.

3.1 Definition

A conflict occurs between an obligation and a prohibition when they constrain
on the same behavior and have an overlapped activation period (cf. [17]). That
is, if some behavior of the same role is obliged and forbidden at the same time, a
conflict arises. From this definition, we differentiate between two types of norm
conflicts. First, weak conflicts: the activation period of the prohibition does not
cover the whole activation period of the obligation. In this sense, a weak conflict
can be avoided when the event constrained by the two norms, occurs during
the time period when the obligation is activated while the prohibition is not. In
this way, both norms can be satisfied. Second, strong conflicts: the activation
period of the prohibition covers the whole activation period of the obligation.
That is, whenever the event constrained by the two norms occurs, or whether
or not it occurs, one of the norms will be violated. In essence, a conflict occurs
between an obligation and a prohibition when the two norms cannot be satisfied
at the same time, i.e., the compliance status of the two norms is evaluated to be
contradictory with respect to the occurrence of an event.

Furthermore, to determine whether a norm conflict exists, there is another
criterion that has to be considered, i.e., the compliance relation between norms.
In Sect. 2, we have introduced three compliance relations between norms, i.e.,
AND, OR and OE. Therefore, with an event occurring, if two (or more) norm
nets with contradictory compliance evaluations are combined, the conflicting
status of the combined norm net depends on the compliance relations of the
component norm nets. If the compliance relation is AND, a conflict occurs since
the combined norm net cannot reach an agreement on the compliance of the
event. If the compliance relation is OR, there is no conflict since the combined
norm net only picks up the positive evaluation result, i.e., satisfied. As for the
compliance relation of OE, there is never a conflict since the activation period
of the two component norm nets will never overlap, i.e., only when the origin is
violated can the reparation be activated. Therefore, a norm conflict between two
norm nets may occur only when the two norm nets are connected by an AND
compliance relation.

Based on the description above, we give the definition of a norm conflict as
follows.

Definition 7 (Norm Conflict). Given the occurrence of an event e, a norm
conflict arises in a norm net NN iff 3 NN, NN, € Syn(NN) such that
(1) NN, and NN, have an AND compliance relation, and (2) NN, is eval-
uated to be satisfied and NN, is evaluated to be violated.

182 J. Jiang and H. Aldewereld

Given the occurrence of an event, a conflict occurs in a norm net when there are
two AND-related component norm nets in the norm net whose normative states
are respectively evaluated to be satisfied and violated. While for the conflicting
component norm nets themselves, they may have a nested structure of norms
connected by other compliance relations such as OR and OE.

It can be seen that our definition of norm conflicts is from the perspective
of norm compliance, which is different from other definitions provided in the
literature (e.g., [11,17]). The advantage of our definition is that it can be eas-
ily extended to other types of norms or normative structures since it captures
the root cause of norm conflicts. For example, it is possible that a role-enacting
agent is regulated by both an obligation to sit and another obligation to stand
whose activation period have an overlap. In this case, a conflict occurs since the
two actions “sit” and “stand” are physically exclusive to each other, which can
be reflected from the compliance evaluation results of the two norms. While, if
defining a norm conflict at the level of norm specification between an obligation
and prohibition, such conflicts may not be covered. The differentiation between
weak and strong conflicts is based on whether there are possible event sequences
that can avoid introducing conflicting normative states (i.e., satisfied and vio-
lated), which will be detailed in Sect.3.3. Moreover, we take into account the
impact of the compliance relations between norms.

3.2 Detection

Given the definition above, we now illustrate how to make use of the CPN
models of NNs to computationally detect the norm conflicts. To do this, there
are three steps. The first step is to construct the CPN model of the norm net
NN, following the procedure presented in [8]. The second step is to obtain the
new marking of the CPN model with respect to the occurrence of the enabled
transitions given the event e. Comparing the new marking with the previous
marking, we can derive the changes of the normative state of all the component
norm nets in NN by looking at the satisfied places and the violated places.
The third step, including two sub-steps, is to determine whether there is any
norm conflict in NN with respect to the occurrence of the event e. The first
sub-step checks whether NN is evaluated to be violated. If so, the second sub-
step is to further check whether there are any two component norm nets in NN
that are respectively evaluated to be satisfied and violated, by looking at the
token distribution in the places representing the satisfied and violated states.
Algorithm 1 gives the procedure of detecting norm conflicts in a norm net with
respect to the occurrence of an event.

The problem of detecting whether a sequence of events will cause any conflicts
in a norm net can be transformed into the problem of pattern matching of CPN
markings/states, the complexity of which is shown to be O(L - W?) where L is
the size of the event sequence and W is the size of the CPN model (i.e., the
number of nodes in the CPN model).

Modeling and Detecting Norm Conflicts in Regulated Organizations 183

Algorithm 1. Conflict Detection

Require: (NN, REA,e) > A norm net with an enactment relation and an event
Ensure: CFS > Conflicting status
1: > Obtain the enabled bindings of the CPN model N given the occurrence of event e and
the current marking M
2: function ENABLEDSTEP (e, M, N)
3: Y —0
4: (r,o) — e
5: for all (p,t) € Ay do
6: if C(p) =r and t = @ and E(p,t)(b) < M(p) then
7 Y —YU(tb)
8: end if
9: end for
10: return Y
11: end function
12: > Obtain the new marking of the CPN model N given the occurrence of event e and
the current marking M
13: function UPDATESTATE(Y, M, N)
14: for all p € Py do
15: M'(p) = M@) == (§i5) Semer Eo00) ++ (i) Seener BED)E)
16: end for
17: Y «— EnabledStep((x, null), N, M’)
18: if Y # 0 then
19: M’ — UpdateState(Y, M',N)
20: end if
21: return M’
22: end function
23: > (Step 1) Obtain the CPN model of the norm net NN with the role enactment REA
24: (N, Satisfied, Violated, ps,py) — O(NN, REA)
25: > (Step 2) Obtain the new normative state of NN given the occurrence of the event e
26: M — In
27: Y < EnabledStep(e, M, N)
28: M’ « UpdateState(Y, M, N)
29 > (Step 3) Check the normative state changes of all the component norm nets in NN
30 > (Step 3.1) Check whether the normative state of NN is evaluated to be violated
31: CFS « false
32: if M'(py) — —M(py) > 0 then
33: for all (p,p’) € Satisfied X Violated do
34: > (Step 3.2) Check whether there are two component norm nets in NN such that
one is evaluated to be satisfied and the other is evaluated to be violated
35 if (M'(p) —— M(p)) >0 and (M'(p') —— M(p')) > 0 then
36: CFS «— true
37: end if
38 end for

: end if

184 J. Jiang and H. Aldewereld

3.3 Weak and Strong Conflicts

We have shown the mechanism of detecting norm conflicts using the CPN models
of NNs. Now we continue with the question of whether a norm conflict found
in a norm net is a weak or strong conflict. To this end, we assume the set N of
all the possible instances of a norm net (i.e., all the possible states of the real
system) and give the following definition.

Definition 8 (Weak Conflict). A weak conflict is detected in a norm net NN
with respect to an event e iff

1. there exists an instance of NN from the set of all possible instances N such
that a norm conflict exists in the instance, and

2. there exists an instance of NN from the set of all possible instances N such
that no norm conflict exists in the instance.

The first condition indicates that there exists a norm net instance of NN in
which a conflict is found with respect to the occurrence of the event e. The
second condition indicates that there exists a norm net instance of NN in which
no conflict is found with respect to the occurrence of the event e.

In a similar way, a strong conflict is defined as follows.

Definition 9 (Strong Conflict). A strong conflict is detected in a norm net
NN with respect to an event e iff for every instance of NN from the set of
all possible instances X, there is always a norm conflict existing in the instance
according to Definition 7.

The condition of a strong conflict indicates that for every possible instance of
the norm net VN there is always a conflict found with respect to the occurrence
of the event e. Given the definition of a weak conflict and strong conflict, we
define a consistent norm net as follows.

Definition 10 (Consistent Norm Net). A norm net NN is consistent iff
Ve € Enn, neither a weak conflict nor a strong conflict is detected in NN.

A norm net is consistent if and only if the occurrence of any event specified in
the norm net does not lead to a norm conflict (weak and strong).

The complexity of determining whether the occurrence of an event causes a
weak conflict or a strong conflict in a norm net is O(W?- V) where W is the size
of the CPN model of the norm net and V' is the number of nodes in the state
space of the CPN model. That is, in the worst case, we have to search over the
complete state space of the CPN model.

3.4 Design-Time vs. Run-Time Verification

The approach mentioned above was initially meant as a design-time verification
of the consistency of the norms (as part of the Consistency and Compliance
Checker Toolkit (CCCT) [9]). As the detection of weak and strong conflicts

Modeling and Detecting Norm Conflicts in Regulated Organizations 185

requires a search over all the states of the system (state space search), the veri-
fication of the existance of such conflicts can only be done during the design of
a system.

However, during run-time the consistency of the Norm Net can also be veri-
fied, because conflicts are identified by the occurrence of both a ‘Satisfied’ as well
as a ‘Violated” with respect to a single event. One can monitor the evaluation
of the different (parts of) the Norm Net and fire the enabled transitions based
on the events that are occuring (in real-time). Monitoring and comparing the
evaluation states of the (parts of the) Norm Net gives you not only information
about the compliance of the system (as presented in [9]), but also about possible
conflicts.

However, it has to be noted, that such an evaluation during the run-time of a
system cannot detect whether a conflict is a strong conflict or a weak conflict, as
the amount of information (i.e., a single trace/run of the system) is not enough
to make that distinction.

4 Case Study

4.1 Case Description

The World Customs Organization has defined a framework called the Authorized
Economic Operator (AEO) program [1] in order to address the tensions created
by the simultaneous growth in international trade and requirements for increased
security. The European Communities’ implementation of AEO permits various
customs administrations to grant AEO certificates to qualified companies under
which they enjoy special privileges. Taking the scenario of importing food from a
country outside the EU to the Netherlands, a number of governmental authorities
and companies are involved, which are governed by different sets of regulations
concerning different aspects of the food importation process. For example, the
EU has a set of general regulations, one of which specifies that the food authority
is obliged to carry out a food quality inspection. With the introduction of the
AEQO programme, the Dutch government introduced new regulations for the
specific domain of AEO-certified goods in order to improve trading efficiency.
For example, one regulation specifies that a food authority is forbidden to carry
out a food quality inspection, if the customs has already done so. Additionally,
companies such as container terminals play an important role and bring their
own regulations, e.g., a regulation at one container terminal is that carriers
are obliged to transport their goods thence within two days of unloading. With
different values and interests, the regulations from these institutions are likely
to be inconsistent.

4.2 Modeling Norms

In this case study, we consider three institutions 7y, Z5 and Z3 respectively corre-
sponding to the regulation of EU, Dutch government and a Container terminal,
captured by three norm nets NN7, NNy, and N N3 described as follows.

186 J. Jiang and H. Aldewereld

(] NN1 = AND(AND(TLH,TMQ),TLB) where
ni1 = (0, (Food_authority, inspect_quality), (Carrier, transport_goods),
(Carrier, arrive)); ni2 = (F, (Carrier, unload_food), (Food_authority,
inspect_quality), A); niz = (F, (Carrier, choose_inspectLocation), A, X))

e NNy = AND(ns1,n92) where
nay = (F, (Food_authority, inspect_quality), A, (Customs, inspect_quality));
nagy = (F, (Carrier, unload_food), (Food_authority, inspect_quality), \)

e NN3 = OE(n31,n32) where
n31 = (0, (Carrier, transport_goods), (Timeline, pass_2days), (Carrier,
arrive)); ngz = (O, (Carrier, pay_fine), (Timeline, pass-1month), \)

Four roles are defined in the three norm nets, i.e., Carrier, Food_authority, Cus-
toms and Timeline. In particular, Timeline is a reserved field for representing the
pass of time. At the moment, we assume an equal status of regulation between
different institutions, i.e., the norm nets representing the three institutions are
combined with an AND relation, represented as AND(AND(N Ny, NN3), NN3).
We will explore more advanced relations between institutions such as priority
relation in future work.

1" (food_authority, "ag2")
1" (carrier, "ag1")

si1

Carrier

1 (carrier, "

1" (carrier, "

2" (food_authority, "ag2")

1" (carrier, "ag1")

Carrier

Food_authority REA REA

‘ 113 h [Scr(t13)] vi3
1°(carrier, "ag1") G@ mspiﬁfiisnon v3 ©
13 s14

Carrier REA

. d13 [Scr(tlB)]\/\ 513 O
1" (ending) 1 ending s3 t4 S
' L] N L

Ending REA REA

Fig. 3. The CPN model of NN;.

In this case study, we assume three agents ag1, ags, ags respectively enacting
the roles Carrier, Food_authority, Customs. To operationalize the regulation of
the three institutions, we build for each norm net a CPN model following the
approach presented by [8]. As an example, we show the CPN model of NN;
in Fig.3. Places are drawn as ellipses and transitions are drawn as rectangles.
Enabled transitions are indicated by bold outlines. The color assigned to each

Modeling and Detecting Norm Conflicts in Regulated Organizations 187

place is indicated by the label below the ellipses. The action each transition
represents is indicated by the label inside the rectangles. Role-enacting agents
are represented by the dots with a number inside. For example, there is a token
valued 1‘(carrier, “ag1”) in place p1, representing an agent named ag! enacting
the role carrier. The satisfied and violated states of all the component norm
nets are indicated by the places whose labels start with s and v. Specifically, a
color set REA is assigned to all these satisfied and violated places/states in the
CPN model, which is defined as a union of the set of all the roles specified in the
corresponding norm net, indicating that any role-enacting agents may satisfy or
violate the norms. The color set Fnding together with the transition ending is
defined specifically to signal the ending of an event sequence such that norms
whose deadline is null can be evaluated accordingly, e.g., the prohibition nqs.

4.3 Detecting Conflicts

Figure 4 shows a part of institutional evolutions with respect to three sequences
of events in this case study. In general, when an event occurs (shown above/below
the arrows), the system will identify which norms in the relevant institutions
are triggered/activated. Each circle represents a normative state of the three
institutions. With more than one norm from different institutions being triggered
simultaneously, conflicts might occur. For example, three norms from the three
institutions are triggered simultaneously at Ms, between which two conflicts
occur. In this case study, there are in total three pairs of conflicts (indicated by
a line with a cross).

[ﬂ n;,

L] n'y

(Carrier, (Carrier, 3] n",
topﬁlorry.transportfgoods.

d(gcaf;'r:‘f‘ir') (Customs, "
_ship, test_sample) (Customs, {% o
assess_risk) o

(Carrier,

(Timeline, [13] violation (Food_authority, (Food_authority,
pass_2days) test_sample) assess_risk)

Fig. 4. Institution evolution and norm conflicts.

As an example, we show how the normative states of the three institutions
change along with the first event sequence in terms of the markings of the corre-
sponding CPN models implemented in CPN tools [6], as shown in Fig. 5. There
are three markings, denoted as nodes 1, 2 and 3, each of which is indicated by

(2 | ({(carrier, transport_goods)

3

188 J. Jiang and H. Aldewereld
(Carrier, arrive)
0:0
1 78

Institution2'p1 1: 1" (customs,"ag3")

Institution2'Al 1: empty Institution2'Al 1: empty Institution2'A1 1: empty

Institution2'tl 1: 1" (food_authority,”ag2") | Institution2't1 1: 17 (food_authority,"ag2") | Institution2't1 1: 1 (food_authority,"ag2")
Institution2'dl 1: 1" ending Institution2'd1 1: 1" ending Institution2'd1 1: 1" ending

Institution2'vl 1: empty Institution2'vl 1: empty Institution2'vl 1: empty

Institution2's1 1: empty Institution2's1 1: empty Institution2's1 1: empty

Institution2't2 1: 1° (carrier,"agl") Institution2't2 1: 1" (carrier,"agl") Institution2't2 1: empty

Institution2'd2 1: 1" (food_authority,”ag2")| Institution2'd2 1: 17 (food_authority,"ag2")| Institution2'd2 1: 1" (food_authaority,"ag2")
Institution2'v2 1: empty Institution2'v2 1: empty Institution2'v2 1: empty

Institution2's2 1: empty Institution2's2 1: empty Institution2's2 1: empty

Institution2'p1 1: 1 (customs,"ag3")

RER

0:0

Institution2'pl 1: 1" (customs,"ag3")

Institution2'Vv 1: empty
nstitution2's 1: empty

(Institution'_fv 1: empty
nstitution2's 1: empty

nstitution2' 1: 1" [Ser((carrier,"agl")
nstitution2's 1: empty

Institution1'pl 1: 1" (carrier,"agl")
Institution1'Al 1: empty

Institution1'tl 1: 1’ (food_authority,"ag2")
Institution1'dl 1: 1° (carrier,"ag1")
Institution1's1 1: empty

Institution1'vl 1: empty

Institution1'p2 1: 1" (carrier,"agl")
Institution1'A2 1: empty

Institution1't2 1; 1’ (carrier,"ag1")
Institution1'd2 1: 2" (food_authority,"ag2")
Institution1'v2 1: empty

Institution1's2 1: empty

Institution1't3 1: 1° (carrier,"agl")
Institution1'v3 1: empty

Institution1'd3 1: 1" ending

Institution1's3 1: empty

Institution1'v12 1: empty

Institution1's12 1: empty

Institution1'pl 1: empty

Institution1'A1 1: 17 (carrier,"agl")
Institution1'tl 1: 1" (food_authority,"ag2")
Institution1'dl 1: 17 (carrier,"ag1")
Institution1's1 1: empty

Institution1'vl 1: empty

Institution1'p2 1: empty

Institution1'a2 1: 17 (carrier,"agl")
Institution1't2 1: 1" (carrier,"ag1")
Institution1'd2 1: 2" (food_authority,"ag2"),
Institution1'v2 1: empty

Institution1's2 1: empty

Institution1't3 1: 1" (carrier,"ag1")
Institution1'v3 1: empty

Institution1'd3 1: 1" ending

Institution1's3 1: empty

Institution1'v12 1: empty

Institution1's12 1: empty

)i)
Institution1'pl 1: empty

Institution1'aAl 1: 1" (carrier,"agl")
Institution1'tl 1: 1° (food_authority,"ag2")
Institution1'dl 1: 1" (carrier,"ag1")
Instituti