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Preface

Understanding the mechanisms used by cells to move, to self-organise and to
develop in tissues is not only fundamental in embryogenesis but is also relevant
in tissue engineering and in other environmental and industrial processes involving
the growth and homeostasis of biological systems, e.g. biofilm growth. Growth and
organisation processes are also important in many diseases and tissue degeneration
and regeneration processes, such as tumour growth, tissue vascularization, heart and
muscle functionality and cardiovascular diseases.

In the last decade there has been a burst in the development of mathematical
models aimed at studying the behaviour of such biological systems. In doing that,
the most difficult point to be taken care of is that by definition biological systems
are alive which means that, for instance, they do not respond in a passive way to
external chemical and mechanical stimuli, but react actively. They are also able to
modify their internal state according to the surrounding environment. Modelling
this aspect requires to deeply question and re-analyse whether the classical tools
used to model inert matter are proper enough to describe active behaviours. For
instance, in continuum mechanics, the concept of evolving natural configurations
was proposed to describe the active behaviour of cells, cell ensembles and entire
tissues, e.g. muscle and heart (see, for instance, Chap. 4).

In some cases, it is necessary to link mathematical techniques that appear
very different. For instance, the study of networks describing chemical reactions
occurring inside the cells is interlinking more and more with kinetic theories and
continuum mechanics. In fact, more in general what happens at a certain spatial
scale, i.e. subcellular, cellular or tissue scale, is logically and functionally linked
with what happens at other scales (see, for instance, Chap. 5). For instance, the
behaviour of a cell depends on the one hand on the interaction it has with the
surrounding environment (see, for instance, Chap. 3) and on the other hand on
the chemical reactions occurring inside it (see, for instance, Chap. 1). The two
aspects are then related through feedback loops, so that describing a phenomenon
without considering what happens at a smaller or at a larger scale results in a strong
oversimplification. From the mathematical point of view, this leads to the need of
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vi Preface

using multiscale methods and upscaling techniques to connect phenomena occurring
at different scales, like the diffusive limits described in Chap. 2.

Keeping this in mind, the aim of the C.I.M.E.-C.I.R.M. summer school on
Mathematical Models and Methods for Living Systems was to give an introduction
to several mathematical models and methods used to describe the behaviour of living
systems. In more detail, then

• Chapter 1, authored by Hans Othmer, deals with models of cell motion starting
from the reaction networks occurring at the cytoskeleton level to end with the
motion of cell aggregates. In particular, the chapter gives an overview of how
chemical and mechanical signals are integrated, how spatial differences in signals
are produced and how propulsive and adhesive forces are controlled.

• Chapter 2, authored by Thomas Hillen and Amanda Swan, having in mind
the modelling of cell motion, deals with transport models and their relations
with individual-based random walk models and reaction-diffusion equations. The
model is then applied to bacterial movement, amoeboid movement of cells and
the spread of metastasis in anisotropic tissues like the growth of glioblastoma in
the brain.

• Chapter 3, authored by Luigi Preziosi and Marco Scianna, focuses on the
interaction of cells with the surrounding environment, taking into account several
phenomena occurring at the cellular level, such as the role of the nucleus stiffness
and the adhesion mechanisms between cells and the fibre network forming the
extracellular matrix. With this aim in mind, several mathematical models are
introduced, e.g. age-structured models, cellular Potts models and continuum
mechanics models.

• Chapter 4, authored by Pasquale Ciarletta and Valentina Balbi, deals with a
continuous chemomechanical approach to morphogenesis. The basic evolution
laws for both volumetric and interfacial processes are derived and then applied
to the study of pattern formation in biological systems treated either as fluids or
as solids.

• Chapter 5, authored by Dumitru Trucu, Pia Domschke, Alf Gerisch, and Mark
A.J. Chaplain, deals with a multiscale model of cancer invasion. The main
focus of the modelling is how the molecular processes occurring at the level
of individual cells (micro-scale) and the processes occurring at the tissue level
(cell population or macro-scale) are connected and affect each other. Initially
a single tissue scale model of cancer invasion is presented based around a
system of non-local partial differential equations where the specific roles of cell-
cell adhesion and cell-matrix adhesion are explored. This leads naturally to the
development of a general spatio-temporal-structured cell population modelling
framework which considers the role of cell-receptor dynamics in cancer invasion.
Finally, a multiscale moving boundary modelling framework for cancer invasion
is developed. In each case, computational simulations are presented which all
aim to predict how far cancer cells can invade into healthy normal tissue.

As a concluding remark, we express our deepest gratitude to all the people
that have contributed to the success of this C.I.M.E.-C.I.R.M. summer school: the
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lecturers, the authors that have contributed to this volume, the participants and all
the persons in charge of the organisation. We thank both C.I.M.E. and C.I.R.M.
for their financial support, without which the school and therefore this lecture note
would have never been possible.
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Chapter 1
Cell-Based, Continuum and Hybrid Models
of Tissue Dynamics

Hans G. Othmer

Abstract Movement of amoeboid cells is involved in embryonic development,
wound repair, the immune response to bacterial invasion, and tumor formation and
metastasis. Individual cells detect extracellular chemical and mechanical signals via
membrane receptors, and this initiates signal transduction cascades that produce
intracellular signals. These signals control the motile machinery of the cell and
thereby determine the spatial localization of contact sites with the substrate and the
sites of force-generation needed to produce directed motion. The coordination and
control of this complex process of direction sensing, amplification of spatial differ-
ences in the signal, assembly of the motile machinery, and control of the attachment
to the substratum involves numerous molecules whose spatial distribution serves to
distinguish the front from the rear of the cell, and whose temporal expression is
tightly controlled. How chemical and mechanical signals are integrated, how spatial
differences in signals are produced, and how propulsive and adhesive forces are
controlled are issues that are amenable to mathematical modeling. An overview of
some approaches to these complex problems is the subject of this chapter.

1.1 Introduction

Cell and tissue movement is an integral part of many biological processes, such
as large-scale tissue rearrangements or translocations that occur during embryoge-
nesis, wound healing, angiogenesis, the immune response, and axon growth and
migration. Individual cells such as bacteria migrate toward better environments by a
combination of taxis and kinesis, and macrophages and neutrophils use these same
processes to find bacteria and cellular debris as part of the immune response. Our
understanding of signal transduction and motor control in flagellated bacteria such
as E. coli that move by swimming and bias their movement by control of their run
lengths is quite advanced [2, 93, 108] compared with our understanding of how
amoeboid cells such as macrophages crawl through tissues. Some basic issues in the
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2 H.G. Othmer

latter context include how directional information is extracted from the extracellular
signals, how cells develop and maintain polarity, how cells exert traction on their
environment, and how adhesion to substrates or other cells is controlled.

Many eukaryotic cells can detect both the magnitude and direction of extracel-
lular signals using receptors embedded in the cell membrane. When the signal is
spatially nonuniform they may respond by directed migration either up or down
the gradient of the signal, a process called taxis. When the extracellular signal
is a diffusible molecule the response is chemotactic, and when it is an adhesion
factor attached to the substrate or extracellular matrix (ECM) the process is called
haptotaxis [1]. Cells frequently must integrate several signals downstream of the
respective receptors, but the mechanisms for doing this are not well understood
[45]. Chemotaxis controls the migration of single-celled organisms such as the slime
mold Dictyostelium discoideum (Dd hereafter), toward a source of cyclic AMP
(cAMP), and the movement of leukocytes toward attractants released by bacteria
in a tissue. Movement toward a chemoattractant involves directional sensing and
orientation, assembly of the motile machinery, polarization of the cell, and control
of the attachment to the substratum or ECM. Many eukaryotic cells share common
mechanisms, to be described shortly, for sensing and responding to chemoattractant
gradients via G-protein-coupled receptors (GPCRs), and to adhesion gradients via
integrins or their homologs.

At sufficiently high densities a cell’s movement is strongly influenced by that
of its neighbors. In some cases cells repeatedly form contacts with neighbors to
gain traction, and then break them, only to re-attach to other nearby cells. Examples
occur in the streaming and slug stages of the slime mold Dd, to be described later. In
other cases cells remain attached to one another, and movement involves massive,
coordinated rearrangements of entire tissues, such as folding of the neural plate
to form a tube [26, 103]. Movement in both cases involves the same processes as
for individual cells, with the addition of more-or-less tight coupling between the
movement of neighboring cells, and we refer to both cases as tissue movement.

The classical description of amoeboid cell movement—which roughly speaking
is ’crawling’ movement that involves cell deformation and protrusions of various
types—involves at least four different stages: protrusion, attachment to the substrate,
translocation of the cell body, and detachment of the rear (Fig. 1.1) [71, 88]. (1)
Cells first extend directed protrusions (lamellipodia, filopodia, or pseudopodia) at
the leading edge. The force for this results from localized actin polymerization
(discussed later) into cross-linked networks of filaments in lamellipodia or bundles
of filaments in filopdia or pseudopodia. Behind the protrusion there is a region
of actin disassembly, where filaments are disassembled, crosslinks broken and
actin monomers recycled to the site of active polymerization [1]. (2) To persist,
protrusions must anchor to the substrate, the extracellular matrix (ECM), or another
cell via adhesive complexes, which serve as sites for molecular signaling and force
transmission [91, 92]. In mesenchymal motion such as in fibroblasts, the adhesive
complexes at the leading edge grow into larger focal adhesions that serve as traction
‘pads’ over which the cell body moves [33, 90]. (3) Next, depending on the cell
type, actomyosin filaments contract at the front, in the perinuclear region, or at the
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Fig. 1.1 The four stages of eukaryotic cell motion. From [3]
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rear, to move the cell body forward. (4) Finally, cells release attachments at the rear
[80]. In Dd or keratocytes the adhesion is weak and cells move rapidly, whereas in
fibroblasts it is strong and cells move slowly.

The cytoplasm in many amoeboid cells has been characterized as a viscoelastic
material whose properties are dominated by actin filaments, intermediate fila-
ments and microtubules, collectively termed the cytoskeleton [54]. The controlled
deformation and remodeling of the cytoskeleton that are involved in the shape
deformations and protrusions are essential for movement. Its stress/strain response
can be varied from that of a solid to that of a liquid by controlled assembly,
cross-linking, and disassembly of its components. Thus the cytoskeleton is a
dynamically-reorganizable nanomachine. The biochemical control processes, the
microstructure of the cytoskeleton, and the formation and dissolution of adhesion
sites are coordinated at the whole-cell level to produce the forces needed for
movement [5, 8, 61]. Much is known about the biochemical details of the con-
stituent steps in signaling and force generation, and the focus is now shifting to
understanding whole-cell movement. For this one needs a mathematical model that
links molecular-level behavior with macroscopic observations on forces exerted, cell
shape, and cell speed because the large-scale mechanical effects cannot be predicted
from the molecular biology of individual steps alone. However, how to formulate a
multiscale model that integrates the microscopic steps into a macroscopic model is
poorly understood in this context. What is needed are successively more complex
model systems that will enable one to test the major modules in an integrated model
sequentially. Some of these components are discussed later, and in the following
section we begin with actin dynamics. However we first introduce a model system
that is widely-used for both experimental and theoretical studies.

1.1.1 Dictyostelium Discoideum as a Model System

The cellular slime mold Dictyostelium discoideum is an important system for the
study of many developmental processes, including intercellular communication,
chemotaxis and differentiation. In a favorable environment the free-ranging indi-
vidual amoeba feed on bacteria and divide by binary fission, but if the food supply
is exhausted an elaborate developmental program is initiated (Fig. 1.2). After a
period of starvation the cells attain relay competence and can respond to an external
cyclic AMP signal by synthesizing and releasing cyclic AMP. This is called the
relay response. The fraction of relay competent cells in a population increases with
time after starvation, and at 10 h post-starvation almost all cells are relay competent
[43]. At about 8 h post-starvation the cells begin aggregating in response to periodic
waves of cyclic AMP initiated by randomly-located pacemaker cells. The proportion
of autonomously-signaling cells in an aggregation field rises from zero at about 7 h
post starvation and saturates at a small fraction of the total population within 21 h
[82]. At the end of aggregation the cells form a cylindrical slug or grex which may
migrate on the substrate for some time. Following migration the slug forms a fruiting
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Fig. 1.2 (a)–(i) The life cycle of Dictyostelium. From [86] with permission

body, which consists of an erect stalk that supports a spherical cap containing spores.
Under favorable conditions of temperature and humidity the spores are released and
can germinate, and the cycle begins anew [6].

Many biological networks that occur in higher organisms first appeared in lower
organisms such as Dd, and thus Dd has been widely-used for studying signal
transduction, chemotaxis, and cell motility. Dd uses adenosine 3’,5’-monophosphate
(cAMP) as a messenger for signaling by randomly-located pacemaker cells that
emit cAMP periodically in time to control cell movement in various stages of
development [74]. The production by pacemakers and relay of cAMP pulses by
cells that are excitable but not oscillatory, leads to cAMP waves that propagate
outward from a pacemaker, and this coupled with chemotactic movement toward
the source of cAMP, facilitates the recruitment of widely-dispersed cells (Fig. 1.3).
In early aggregation the cells move autonomously, but in late aggregation and in
the slug stage they interact strongly and the collective motion is tissue-like [74].
In the absence of cAMP stimuli Dd cells extend protrusions called pseudopods
in random directions. Aggregation-competent cells respond to cAMP stimuli by
suppressing existing pseudopods and rounding up (the ’cringe response’), which
occurs within about 20 s after the initial stimulus and lasts about 30 s [20]. Under
uniform elevation of the ambient cAMP this is followed by extension of pseudopods
in various directions, and an increase in the motility [44, 101, 105]. A localized
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Fig. 1.3 Spiral cell density waves observed in aggregation. From [89] with permission

application of cAMP elicits the cringe response followed by a localized extension
of a pseudopod near the point of application of the stimulus [95]. How the cell
determines the direction in which the signal is largest, and how it organizes the
motile machinery to polarize and move in that direction, are major questions from
both the experimental and theoretical viewpoint. Since cAMP receptors remain
uniformly distributed around the cell membrane during a tactic response, receptor
localization or aggregation is not part of the response [55]. Well-polarized cells are
able to detect and respond to chemoattractant gradients with a 2 % concentration
difference between the anterior and posterior of the cell [76]. Directional changes
of a shallow gradient induce polarized cells to turn, whereas large changes lead to
large-scale disassembly of motile components and creation of a new ‘leading edge’
directed toward the stimulus [37].

The first step in developing models for the movement of individuals and
population-level aggregation patterns is to identify the distinct processes involved in
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producing the different types of response. What a cell must do can be summarized
as follows.

• Some cells (or small groups of cells) must become pacemakers. It is known from
theoretical studies that a single cell suffices to create an aggregation wave [29],
but this has not been demonstrated experimentally.

• A cell must detect the external cAMP and transduce it into an internal signal. A
model of this process is discussed later.

• It must choose a direction in which to move and rebuild the cytoskeleton if
needed to exert the necessary forces for movement.

• Cells must amplify and relay the signal, and adapt to the ambient signal.
• They must respond to an oncoming wave but not to a receding wave (this is the

‘back-of-the-wave’ problem), and they must move for an appropriate length of
time.

• Eventually a cell interacts with its neighbors and moves collectively, first in pairs,
then in streams, then in the slug and finally in the erection of the fruiting body.

• Slightly later it has to ‘decide’ what type of cell to become in the final fruiting
body. This is a collective decision reached by the community (absent cheaters!).

• The entire aggregate has to stop migrating and erect the fruiting body.

The central theme in this chapter can be summarized in the question ‘how do we
model and analyze these behaviors, and what do we learn from that process?’ Since
there are many processes involved we approach these steps individually, and for the
description of single cell behavior we modularize it as shown in Fig. 1.4.

1.2 Actin Dynamics

1.2.1 The Basic Biochemistry

Actin is a cellular protein that exists either in the globular, monomeric form,
called G-actin, or in the polymeric two-stranded filament form, called F-actin. In
solution G-actin can self-assemble into long filaments, into bundles, and into higher-
dimensional structures. The filaments are long and flexible in vitro, and buckle
easily, but in vivo cells create a dense dendritic network of short, branched filaments
by tightly coupling nucleation, branching, and cross-linking of filaments in the
lamellipodium, a thin (0.1–0.2�m), sheet-like protrusion at the leading edge of
a moving cell [21, 94]. Figure 1.4 shows the processes and some of the auxiliary
molecules involved in vivo, and suggests the complexity of models to describe
this. Table 1.1—revised from [80]—gives representative concentrations of G- and
F-actin, and various auxiliary molecules.

The stiffness of the network enables new filaments to exert force on the
membrane and provides the structural basis for polymerization-driven protrusion.
The type of structure formed is tightly controlled by extracellular mechanical
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Fig. 1.4 Top: A schematic of the modularization of the processes involved in movement at the cell
level. Center: A schematic of the signal transduction network that activates intracellular processes
involved in movement (From [59] with permission). Green arrows, enzyme activation; blue arrows,
membrane localization; red arrows, production and signalling; dashed arrow, complex regulations
that have yet to be fully established. (Image) Myosin heavy chain (MHC) and actin filament
distribution in polarized cells. Lower: The dendritic actin network, showing some of the major
components involved (From [79], with permission)
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Table 1.1 Concentrations in �M of actin and auxiliary molecules in various systems

Protein Acanthamoeba Dictyostelium Neutrophil Xenopus egg

Polymerized actin 100 90 100 4

Unpolymerized actin 100 160 300 12

Profilin 100 5

ADF/cofilin 20 <100 3

Arp2/3 Complex 2-4 present 1–2

and chemical signals and by intracellular regulatory molecules. Depending on the
context and the signal, a variety of motility structures can be formed, ranging
from microspikes and filopdia, to larger pseudopodia and broad lamellipodia. In
lamellipodia the structure of the dendritic network represents a balance between
the formation of actin polymers at the leading edge, most of which occurs at the
membrane, and the depolymerization of actin from the meshwork in the interior of
the cell. The half-life of actin filaments in the lamellipodium ranges from around
20 s–2 min [98] and is correlated with cell speed: turnover is more rapid in rapidly-
moving cells than in slower ones [66]. In any case the turnover of filaments is
more than two orders of magnitude faster than the turnover of pure actin filaments
in solution [111], and the in vivo system is far from thermodynamic equilibrium
and under tight control. This should be contrasted with man-made polymers, which
typically are static and designed for long-term stability. Additional discussion of the
processes involved is given in [11].

Pollard et al. [80] provide an excellent overview of the basic issues by the series
of questions around which they organize their review of the biochemistry. These
serve here to provide an overview of areas in which mathematical modeling may be
productive.

1. How do cells maintain a pool of unpolymerized actin subunits?
2. How are signals directed to the Arp2/3 complex?
3. How do cells create actin filaments with free barbed ends?
4. How do new filaments elongate?
5. How do growing filaments push the membrane forward?
6. What limits the growth of filaments?
7. How are filaments marked for depolymerization?
8. How do filaments depolymerize?
9. How do stable filaments survive in the cytoplasm?

10. How are subunits recycled to the ATP-actin-profilin pool?

We will not address all of these, but to these we add the question ‘how do these
processes balance to control the length distribution and the dynamic response?’, as
shown in Fig. 1.5.1

1Phalloidin functions by binding and stabilizing F-actin and thus this may not represent the true in
vitro distribution, but later we obtain very similar distributions.
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Fig. 1.5 The size distribution of actin filaments determined by fluorescence of phalloidin-
rhodamine tagged actin (From [63])

In solution and in vivo G-actin can bind to either ATP (the high-energy
triphosphate form) or ADP (the diphosphate form), and the phosphate group in
G-ATP is slowly hydrolyzed to ADP. Thus there are three monomer types, G-
ATP, G-ADP-Pi, and G-ADP, that can bind to a filament, and each filament is
asymmetric in that the rate of monomer addition is higher at the plus (barbed) end
than at the minus (pointed) end for all monomer types (see Fig. 1.6). The asymmetry
of the filament stems in part from the fact that monomeric units are asymmetric
themselves, having a plus and minus end.

Because nucleation of a new filament is energetically less favorable (it requires
formation of a trimer, as seen later) than addition to an existing one, the tendency
in an in vitro solution is to produce longer rather than more filaments. Thus some
insight into the dynamics of a solution can be gotten from a simple model in which
the monomers are not distinguished and only addition and release at the plus and
minus ends are taken into account. At each end of a filament the reaction

Am C cm
kC�!
 �

k�
AmC1 (1.1)

occurs, where Am is the filament and cm is the G-actin monomer concentration. If
we neglect all processes but addition or release at the ends, the evolution at each end
is governed by the equation

dAm

dt
D �kCcm � Am C k�AmC1; (1.2)
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Fig. 1.6 The full set of binding rates. From [79], with permission

and therefore at equilibrium

Kd � k�

kC D cm � Am

AmC1
or cm D Kd � AmC1

Am
:

Consequently for each given form of the monomer there is a critical concentration
c˙ � Kd for each end of a filament at which the on- and off-rates exactly balance.
Above this the filament grows at that end, while below it the end shrinks. G-ATP
has a much higher on-rate at the plus end than at the minus end (cf. Fig. 1.6), and
therefore the critical concentration cC is lower than the critical concentration c� for
the minus end. Now consider what happens as the G-actin concentration is changed.
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0

Fig. 1.7 The growth rates of plus and minus ends for G-ATP as a function of the monomer
concentration

Since cC < c�, the crossover for net growth at the plus end is reached at a lower
concentration than at the minus end. For any c < cC a filament shrinks, and for any
concentration c > c� the filament grows. Thus there is a unique cC < cs < c�
at which net growth at the plus end is balanced by net decay at the minus end,
and the length remains constant (cf. Fig. 1.7). For this reason the process is called
treadmilling at c = cs. Note that the center of mass of the filament does not remain
fixed in space during treadmilling.

In reality, the cycle consists of addition of a G-ATP at the plus end, hydrolysis of
the ATP to ADP as the monomer traverses the filament, and loss of a G-ADP at the
minus end. Obviously this is a highly-simplified picture, since there is a non-zero
rate of addition of G-ADP at the plus end and hydrolysis is probably not obligatory.
There is also a more serious problem—at physiological conditions there is about
100�M unpolymerized actin (Table 1.1), and most of this is in the G-ATP form
[84]. However, if one computes the Kd from Fig. 1.6 one sees that the Kd at both
ends is much less than this, so according to Fig. 1.7, both ends grow and all actin
should be polymerized. Thus there must be other factors involved, some of which
are discussed next in the context of binding proteins.

1.2.2 Regulation of Polymerization, Filament Severing and
Branching

Motility in amoeboid cells requires localized remodeling of actin networks at the
leading edge, or formation of actin bundles in precise locations such as filopodia,
and this usually involves additional proteins that regulate actin filament assembly
and disassembly locally. Proteins involved in actin-filament turnover are usually
localized at the leading edge and are spatially-regulated. The barbed ends of
the filaments face towards the leading edge where actin assembly predominates,
which leads to cycles of assembly at the front and disassembly in the rear of
a lamellipodium. Electron-microscopic images of the lamellipodia of keratocytes
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and fibroblasts show an extensively-branched array of actin filaments [called the
dendritic brush—cf. Fig. 1.4 (lower)] at the leading edge [94].

The proteins involved in local control of filament and network formation can be
grouped according to their function as follows.

• Sequestering proteins: these sequester actin monomers to prevent spontaneous
nucleation of filaments (ˇ�thymosins) or interact with actin monomers to
enhance nucleotide exchange (profilin).

• Crosslinking proteins: these cross-link the actin filaments and can induce a sol-
to-gel transition. Examples are ˛-actinin. Others such as vinculin, talin, and zyxin
link the actin network beneath the membrane, which is called the cortex, to the
plasma membrane.

• Severing proteins: these sever F-actin to generate more filament ends for
assembly or disassembly (the ADF family (actin depolymerization factor/cofilin;
ADC) of proteins, gelsolin).

• Other proteins function to cap filament ends to regulate addition or loss of actin
subunits (capping protein, gelsolin, the Arp2/3 complex), to nucleate filament
growth (the Arp2/3 complex), or to enhance subunit dissociation by cofilin.

A schematic of how the different types of proteins affect the filaments and network
structure is shown in Fig. 1.8. Their role is also illustrated in Fig. 1.4 (lower).

Despite the high concentrations of G-actin in many cells, filaments rarely
nucleate spontaneously in vivo in the presence of the monomer-binding proteins
profilin and thymosin-4 [80]. These sequestering proteins maintain a pool of actin
ready to polymerize upon the creation of barbed ends [80], although as is seen in
Table 1.1, cells such as Dd lack both, so the story may be more complex. Gelsolin

Fig. 1.8 A schematic of the effects of the various types of proteins
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and other capping proteins also serve to prevent filament growth by capping the
ends, as will be discussed later.

The interplay between all the factors involved produces a size distribution of
actin filament lengths. One example is shown in Fig. 1.5, which is for a relatively
simple situation, wherein either there is only actin monomer initially (albeit there is
a protein phallodin that localizes the fluorescent label and stabilizes long filaments).
Others also find an exponential length distribution under normal conditions [87],
and we will see later how these can be reconciled.

1.3 A Mathematical Model for In Vitro Filament Dynamics

To gain some understanding of the evolution of the filament length distribution, we
consider a closed system containing N monomers of a single type, we incorporate
nucleation of filaments, and we analyze the temporal evolution of the distribution.
The development here follows that in Hu et al. [47]. Let Mi denote a filament of
length i and let Ci be the corresponding concentration. Of course this implicitly
assumes that it makes sense to speak of concentrations, since initially there are no
filaments present, but we defer until later a discussion of stochastic effects. Thus we
consider the sequence

M1 C M1

kC1�!
 �

k�1

M2

kC2 M1�!
 �

k�2

M3

„ ƒ‚ …

Nucleation

kC3 M1�!
 �

k�3

M4 � � �Mn

kCn M1�!
 �

k�n
MnC1 � � �

„ ƒ‚ …

Propagation

Define the flux from a filament of length n-1 into a filament of length n as

jn � kC
n�1C1Cn�1 � k�

n�1Cn:

Then the evolution equations can be written

dC1
dt

D �2.kC
1 C

2
1 � k�

1 C2/�PN
nD2.kC

n C1Cn � k�
n CnC1/ D �2j2 �PN

nD3 jn
:::

dCn

dt
D .kC

n�1C1Cn�1 � k�
n�1Cn/ � .kC

n C1Cn � k�
n CnC1/ D jn � jnC1

dCN

dt
D .kC

N�1C1CN�1 � k�
N�1CN/ D jN :

Since the system is closed the evolution is subject to the conservation condition
PN

nD1 nCn D C0, and this implies that solutions exist globally in time for any
finite N.
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The steady state can be found as follows. Define Kn � kC
n =k

�
n ; then the steady

state relations ji D 0 lead to

Cn D Kn�1C1Cn�1 D Kn�1Kn�2C21Cn�2 D � � � D
 

n�1
Y

iD1
Ki

!

Cn
1 � �nC

n
1

and the conservation condition becomes

N
X

nD1
nCn D

N
X

nD1
n�nC

n
1 D C0:

The left-hand side in the last equality is monotone increasing in C1 and vanishes at
zero, and therefore the steady-state is unique. One can also prove [47] that

• The Gibb’s free energy G D PN
nD1 xn�n is a Lyapunov function. Here the

chemical potentials are defined as

�n D �0n.T;P/C RT ln
Cn

CT
D �0n.T;P/C RT ln xn:

Further, xn is the mole fraction of species n and CT is the total concentration,
including water. Since actin solutions are typically in the 10–100�M range
[80], we can ignore the small changes in total concentration that accompany
polymerization and thus assume that CT is constant at constant temperature and
pressure. Thus the solution always converges to the steady state.

• For any fixed N >3, there exists a critical concentration C�
0 such that the profile

is monotone increasing for C0 > C�
0 and n � 4, and monotone decreasing for

C0 < C�
0 . The critical C�

0 gives C1 D K�1, where K D Kj for j � 3.
• For any fixed C0 > 0 there exists an N > 3 such that the profile is monotone

decreasing.

1.3.1 The Initial Evolution of the Distribution

The next objective is to understand the evolution of the length distribution in vitro.
To fix the context, we stipulate that the initial condition is a pure monomer pool
in a volume of 2000�m3, which is a typical cell size. We always the state initial
conditions as concentrations, but we display the results in terms of the numbers
of the different types of species. To convert between them use the fact that 1�M
corresponds to 600 molecules/�m3; thus the total number of monomers in the
standard volume used is 1:2 � 106. We know from the preceding that the final
distribution is monotonic, and for these initial conditions it is monotone increasing,
but the computational result in Fig. 1.10 shows that the evolution is complex. In that
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figure and hereafter we use rate constants from [87] given as follows.

kC
n D 10 for all n k�

1 D 106 k�
2 D 103 k�

n D 1 n � 3

Here first-order rate constants have units s�1 and second-order constants have units
�M�1 � s�1. For these rate constants the critical concentration is 0:1 �M—above
this the filaments grow and below this they shrink. Since the trimer ! dimer and
the dimer! monomer steps are 3 and 6 orders of magnitude faster, resp., than other
first-order steps, it is difficult to nucleate filaments in solution unless the monomer
pool, and hence the forward rate kCC1, is sufficiently large.

To understand the evolution shown in Fig. 1.10, we lump the species into
four pools, comprising monomers, dimers, trimers, and filaments of length four
and longer, respectively. From this diagram one can see that different processes
may balance at different stages of the evolution, as seen in Fig. 1.10. There are
three distinct regimes in Fig. 1.10: the first one characterized by formation of the
maximum peak height in the distribution, the second is a polymerization-driven
advective phase in which the mean length increases in a wave-like movement along
the length axis, and the third is a diffusive stage in which monomers are redistributed
among filaments and the length distribution evolves to the steady-state distribution.
The long final phase in which the profile converges to the steady state distribution
is not shown in the figure.

The disparity between the off-rates for filaments of length greater than three
monomers and those for dimers and trimers leads to four well-defined time scales
in the early dynamics that arise from different balances in Fig. 1.9. In increasing
order in the evolution they are (1) equilibration of monomers and dimers (T1 �
.k�
1 C 4kCC1.0//�1 � O.10�6) s), (2) the time at which the trimers reach their

maximum (T2 � .k�
2 C 9 � kC

2 K1C1.0/
2/�1 � O.10�3) s), (3) establishment of the

total number of filaments (T3: � 30 s), and (4) equilibration of the monomer pool
with the filaments (T4: to be estimated later). T1 only plays a role in a perturbation
analysis done later.

Fig. 1.9 A schematic of the network for nucleation and filament growth
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On the time scale T2 the trimer population peaks, and then dimers and trimers
equilibrate with the monomer pool, whereas the slower formation of filaments can
be neglected on this scale. As is shown in [47], one can truncate the steady-state
equations at trimers and estimate the number of them quite accurately on this time
scale. Following this, filaments are formed from the trimers, and the monomer pool
decreases due to both filament formation and monomer addition to the growing
filaments. In this phase the trimer concentration or number decreases monotonically,
and when it reaches a level at which there is only one trimer, the total number of
filaments essentially stops increasing. Of course at this point stochastic effects will
play a significant role.

Once most of the trimers have been converted into filaments the total number
of filaments of length at least four is fixed, and the system enters a hyperbolic
phase in which the mean length of the filaments increases. This phase corresponds
to the wave-like movement of the peak in the distribution (Fig. 1.10), which ends
at around 30 s. This is followed by the penultimate phase in which the monomer
concentration is approximately at the critical level and the number of filaments is
approximately constant. In this phase there is a slow redistribution of monomers
among the filaments.

To understand the hyperbolic, diffusive and terminal regimes mathematically,
begin with the evolution of the filaments for n D 4; 5; : : : ;N � 1 written as follows.

dCn

dt
D .kC

n C1Cn�1 � k�
n Cn/ � .kC

nC1C1Cn � k�
nC1CnC1/

D �.kCC1 � k�/.Cn � Cn�1/C kCC1 C k�

2
.CnC1 � 2Cn C Cn�1/:
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Fig. 1.10 The time evolution of the filament length distribution, starting from a G-actin concen-
tration of 10�M. The profiles correspond to 1, 3, 6, 30, 103, 3� 103, and 104 s, respectively. From
[47], with permission
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If us denote by C.x/ the concentration of filaments of length x D nı (where ı is the
half length of a monomer), then we have the continuous approximation as

@C.x/

@t
D kCC1.C.x � ı/ � C.x// � k�.C.x/ � C.x C ı//

� �.kCC1 � k�/ı
@C

@x
C kCC1 C k�

2
ı2
@2C

@x2

and from this we see that the convective velocity is .kCC1 � k�/ in monomer/s,
which vanishes at the critical concentration, and that the diffusion coefficient is
.kCC1 C k�/=2 monomer2/s. When the monomer concentration C1 is above the
critical concentration the filaments polymerize as they diffuse, at the rate kCC1�k�
monomer/s, but when the monomer concentration drops to the critical value the
polymerization essentially stops and diffusion dominates. Before establishment
of the monomer-polymer equilibrium, convection dominates diffusion, and one
observes in the computational results that the maximum of the length distribution
increases at a predictable speed [47].

1.3.2 The Long-Time Evolution of the Distribution

In the final stage of the evolution the unimodal distribution evolves, albeit very
slowly, into an exponential steady-state distribution. If one assumes that the
monomer pool is approximately constant at the critical concentration in this phase,
one has the linear system

dC

dt
D
"

K1 K2
K3 K4

#

C C � � KC C �; (1.3)

where

C D .C2;C3; � � � ; /T � D �

kC
1 C

2
1; 0; � � � 0

�T

and the .N � 1/ � .N � 1/ matrix K is given by
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K D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�.kCC1 C k�
1 / k�

2 0 0 � � �
kCC1 �.kCC1 C k�

2 / k� 0 � � �

0 kCC1 �.kCC1 C k�/ k� � � �
::: kCC1 �.kCC1 C k�/ k�
::: kCC1 �.kCC1 C k�/
::: 0

:::

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The following properties are established in [47].

• The matrix K has two large negative eigenvalues given approximately by �k�
1

and �k�
2 , corresponding to the relaxation rate of monomers $ dimers and dimers

$ trimers, respectively.
• The remaining eigenvalues are those of K4 to lowest order. K4 is a perturbation

of a tridiagonal matrix of the form

K4 D .kCC1/J � .kCC1 C k�/I C k�JT

where J is the lower diagonal shift.
• The eigenvalues of this are

�p D �.kCC1 C k�/C 2
p

k�kCC1 cos �p �p � p�

N C 1

• Since kC D 10; k� D 1, the critical concentration is C1;crit D 0:1, it follows
that

�p ! 0 as N ! 1:

This shows that the slowly-evolving quasi-attractor in the diffusive stage is not
an artifact of the assumption that the maximum filament length is finite. A more
detailed spectral analysis of K shows that the slowest mode relaxes on a time scale
of order of N2, which for N D 2000 is of order 106 s [47]. This exceptionally slow
relaxation provides a possible explanation for why different experiments lead to
different conclusions concerning the steady-state distribution.
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1.4 Stochastic Analysis of Actin Dynamics

Thus far we have modeled actin dynamics from a continuum, deterministic view-
point, and the analysis of the resulting models gives significant insights into the
evolution of filaments in solution. However, as we noted at several points, when
there are only a few copies present of a particular species the deterministic model
probably breaks down, and a stochastic description should be used. As we also noted
previously, G-actin is present in three different forms, but to simplify the analysis
we considered only one heretofore. In particular, ATP has not been singled out for
any role beyond supplying the necessary energy, which is stored in some unspecified
way in the filament lattice and dissipated by hydrolysis as a monomer moves from
the plus to the minus end of a filament. Thus a more precise description of filament
dynamics would include adding G-ATP at the plus end, hydrolysis, release of the
inorganic phosphate Pi as ATP is hydrolyzed, and dissociation of G-ADP at the
minus end. We deal with these issues in this section.

Actin rapidly hydrolyzes ATP upon polymerization [4] and releases bound
phosphate several 100 s later [70]. ATP hydrolysis and phosphate dissociation do not
cause immediate filament disassembly, but enable interaction with depolymerizing
factors such as cofilin. ATP hydrolysis by actin thereby determines the overall rate
of filament turnover, and some suggest that the nucleotide bound to actin filaments
serves as a timer to control actin filament turnover [4].

In addition, actin filaments can be stiffened by actin-binding molecules such
as the toxin phalloidin, which has been shown to delay the release of inorganic
phosphate after ATP hydrolysis, i.e., the lifetime of the intermediate F-actin-ADP-
Pi is significantly increased by phalloidin [25]. Thus it seems reasonable to conclude
that the portion of the filament with Pi bound will be stiffer than the part following
release, and this suggests that one should perhaps take position along the filament
into account when considering either or both branching and severing. A summary
of how some of the sequestering and severing proteins contribute to maintaining
the filament length is shown in Fig. 1.11. Obviously unpolymerized actin can be
sequestered in a variety of states so as to maintain a pool for rapid polymerization.

In addition to simple breakup of filaments, they can also exhibit large length
fluctuations, due to the stochastic exchange of monomers between the filament
and the monomer pool. Early theoretical studies on a single-monomer-type model
like that used in the previous section predicted that at the steady ‘treadmilling’
state, the filament length distribution undergoes a diffusion process at the rate
k�, the off rate of monomer at filament ends [72]. However, as we showed in
the previous section, the instantaneous diffusion rate constant is the mean of the
polymerization and depolymerization rates. In these models both the elongation
rate and diffusion constant are linear functions of monomer concentration over the
entire concentration range. However, Carlier et al. showed that the growth rate of
filaments can be described to first order by two distinct linear functions applicable
in different regimes of monomer concentration [14]. Filaments depolymerize below
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Fig. 1.11 A schematic of the effects of ADF/cofilin and profilin on filament length (From [17])

a critical concentration, whereas above it filaments grow at a constant rate and
the slope of the elongation rate below the critical concentration is higher than
that above it. At the critical concentration the growth rate vanishes, and filaments
treadmill. In a seminal experiment, Fujiwara et al. observed that individual filaments
show surprisingly large length fluctuations in the treadmilling phase [34], and other
experiments confirmed this high diffusion rate [60]. A stochastic simulation that
illustrates the large length fluctuations at the barbed end is shown in Fig. 1.12.

One sees there that the pointed end shrinks continuously, with relatively small
fluctuations in the mean position of the end. However, there are large fluctuations
at the barbed (upper) end of the filament. One sees in (b) that when the filament
has an ATP cap (red) it grows, and that it decreases rapidly when the end monomer
contains ADP (see inset to (b) at � 232 s). Furthermore, a significant number of
ADP-Pi monomers, in which both ADP and phosphate are still bound to the protein,
survive to the pointed end in this realization.

This example raises several questions, namely (1) how does one do stochastic
simulations of polymer networks, and (2) what are interesting questions and what
can be learned from them. Some answers to the second one are as follows.
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Fig. 1.12 (a) and (b) The length and nucleotide profile of a single filament during the polymeriz-
ing and treadmilling phase. Here the barbed end is at the top and the pointed end at the bottom—the
former growing and the latter shrinking. Red represents an ATP-containing monomer, yellow ADP-
Pi, and blue ADP-actin-containing monomers. Time in (a) and (b) is divided into 1-s steps, whereas
in the inset to (b) it is divided into 0:1-s blocks. From [46] with permission
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• What is the average nucleotide profile of an actin filament?
• How do different biochemical factors such as ADF/cofilin alter the average

nucleotide profile and conversely, how does the nucleotide profile affect the
action of these factors?

• What is the dynamic response of the distribution of length and nucleotide profiles
to an “external” signal that produces an increased amount of globular actin?

• Can the types of catastrophes described above that occur near the critical
concentration be explained?

• In what regimes are both the continuous and the stochastic models valid, and
when must one use a stochastic model?

1.4.1 The Mathematical Description of Reaction Networks

Suppose we have a set M of s chemical species Mi that participate in a total of r
reactions. We write the reactions as

X

i

reac:
	reacij Mi !

X

i

prod
	
prod
ij Mi j D 1; : : : r;

where 	ij is the stoichiometric coefficient of the ith species in the jth reaction. The
set of reactions gives rise to a directed graph G as follows. Each linear combination
of reactants or products is called a complex, and each complex is identified with a
vertex Vk in G and a directed edge E` is introduced into G for each reaction. The
topology of G is encoded in its vertex-edge incidence matrix E , which is defined as
follows.

Ei` D
8

<

:

C1 if E` is incident at Vi and is directed toward it
�1 if E` is incident at Vi and is directed away from it
0 otherwise

Suppose there p complexes—then E has p rows and r columns, and every column
has exactly one C1 and one �1. Each edge carries a nonnegative weight R`.c/ given
by the intrinsic rate of the corresponding reaction. For example, the simple reaction
M1 C M2 • M3 is written as the two steps C.1/ ! C.2/ and C.2/ ! C.1/,
where C.1/ � M1CM2 and C.2/ � M3: This network gives rise to the following
graph and incidence matrix.

1 2
2

1

E
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The evolution equation for the concentrations .c1; c2/T of M1 and M2 now has
the factored form

dc

dt
D 	ER.c/; c.0/ D c0 	 �

2

4

1 0

1 0

0 1

3

5

The weight functions Rj define a flow on the graph, and one says that the flow is
balanced if ER.c/ D 0 [73]. In this case the fluxes entering and leaving each vertex
are balanced and the solution can be represented in terms of cycles in the graph.
Similar statements apply in general. For a network governed by ideal mass-action
kinetics the composition .c1; c2; � � � ; cs/T satisfies the evolution equations

dc

dt
D 	ER.c/; c.0/ D c0 (1.4)

where

R`.c/ D k`Pj.c/ D k`

s
Y

iD1
c
	ij
i

This class of kinetics is called vertex-controlled, because the flows on an edge are
controlled by the composition of the complex at the source vertex

One can also describe the evolution of a reacting system in terms of the number
of molecules present for each species. Let n D .n1; n2; : : : ; ns/ denote the discrete
composition vector whose ith component ni is the number of molecules of species
Mi present in the volume V . This is related to the composition vector c by
n D NAVc, where NA is Avagadro’s number, and although the ni take discrete
values, they are regarded as continuous when large numbers are present. Thus the
deterministic evolution for n is

dn

dt
D 	E QR.n/ (1.5)

where QR.n/ � NAVR.n=NAV/. In particular, for ideal mass-action kinetics

QR`.n/ D NAVk`Pj.n=NAV/ (1.6)

D NAVk`

s
Y

iD1

�

ni
NAV

�	ij

D k`
.NAV/

P

i 	ij�1
s
Y

iD1
.ni/

	ij (1.7)

D D Ok`
s
Y

iD1
.ni/

	ij : (1.8)
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This is still a deterministic description, and in a stochastic description the
numbers of the individual components are followed in time and the reactions
are modeled as a continuous-time Markov jump process. Let Ni.t/ be a random
variable that represents the number of molecules of species Mi at time t, and let
N denote the vector of Nis. Let P.n; t/ be the joint probability that N.t/ D n, i.e.,
N1 D n1;N2 D n2; : : : ;Ns D ns. Clearly the state of the system at any time is
now a point in Z s

0, where Z0 is the set of nonnegative integers. Formally the master
equation that governs the evolution of P is

d

dt
P.n; t/ D

X

m2S.n/
R.m; n/ � P.m; t/�

X

m2T .n/
R.n;m/ � P.n; t/ (1.9)

where R.m; n/ is the probability per unit time of a transition from state m to state n,
R.n;m/ is the probability per unit time of a transition from state n to state m, S.n/
is the set of all states that can terminate at n after one reaction step, and T .n/ is the
set all states reachable from n in one step of the feasible reactions. The notation is
meant to suggest the ‘source’ and ‘target’ states at n; one could also call S.n/ the
predecessors of state n and T .n/ the successors of state n. The predecessor states
must be positive for conversion, degradation and catalytic reactions. Similar bounds
on the target states are naturally enforced by zero rates of reaction when the reactants
are absent.

The sets S.n/ and T .n/ are easily determined using the underlying graph
structure. It follows from the definition of 	 and E that the `th reaction C.j/ ! C.k/
induces a change 
n.`/ D 	E.`/ in the number of molecules of all species after one
step of the reaction, where subscript ` denotes the `th column. Therefore the state
m D n � 	E.`/ is a source or predecessor to n under one step of the `th reaction.
Similarly, states of the form m D n C 	E.`/ are reachable from n in one step of
the `th reaction. Once the graph of the network and the stoichiometry are fixed, we
can sum over reactions rather than sources and targets, and consequently the master
equation takes the form

d

dt
P.n; t/ D

X

`

R`.n � 	E.`// � P.n � 	E.`/; t/ �
X

`

R`.n/ � P.n; t/ (1.10)

However, the transition probabilities R`.n/ are not simply the macroscopic rates
QR`.n/ if the reactions are second-order (or higher), because as Gillespie [41] and

others have noted, combinatorial effects may play a significant role when the
number of molecules is small. Hereafter we restrict attention to mass-action kinetics,
and we suppose that the `th reaction involves conversion of the jth to the kth
complex: C.j/ ! C.k/. Then using Gillespie’s notation, we can write,

R` D c`hj.`/.n/ (1.11)
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where c` is the probability per unit time that the molecular species in the jth complex
react, j.`/ denotes the reactant complex for the `th reaction, and hj.`/.n/ is the
number of independent combinations of the molecular components in this complex.
Thus

c` D k`
.NAV/

P

i 	ij.`/�1 D Ok` (1.12)

and

hj.`/ D
Y

i

 

ni
	ij.`/

!

: (1.13)

In the definition of h we use the standard convention that
�n
0

� D 1.
The master equation (1.10) is not solvable in general, and it is generally even

difficult to obtain a closed set of equations for the moments of the distribution P.n; t/
when the network involves bimolecular reactions, since the evolution equation
for a kth-order moment typically involves higher-order moments [36]. However,
for linear reaction systems one can solve for first and second moments explicitly
(modulo solving a spectral problem) and one can do this in a distributed system
governed by a reaction-diffusion equation that is discretized in space [35, 56].

Remark 1 In the deterministic description of a reacting system the existence of
a compact invariant set implies that solutions are bounded and exist globally in
time, but the deterministic invariant set may have no significance in the stochastic
description. However, the probabilities of very large numbers of species can be very
small.

Consider the simple process �
k1�! A

k2�! �, and let pn.t/ be the probability of
having n molecules of A in the system at time t. Let ˝ D exp.�k2t/; then

pn.t/ D 1

k2nŠ

�

k1
k2

�n�1
.1 �˝/n�1 �k1.1 �˝/2 C k2n˝

� � exp
�

�k1
k2
.1 �˝/

�

Therefore the stationary distribution is a Poisson distribution given by

lim
t!1 pn.t/ D 1

nŠ

�

k1
k2

�n

exp

�

�k1
k2

�

;

Thus pn.t/ is non-zero for arbitrarily large n in both the transient and stationary
distributions, but it decays rapidly with n. For example, if k1=k2 � O.1/ and n D 25,
pn � O.10�25/ in the stationary distribution. Even if the stationary mean k1=k2 �
O.10/, pn 	 10�10 for n �� 50 (one must always choose n greater than the mean
in order that pk < pn for k > n).
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1.4.2 The Stochastic Simulation Algorithm

Since it is generally impossible to solve the master equation analytically in
interesting cases, numerical simulation methods have to be used. Numerous stochas-
tic simulation algorithms (SSAs) have been proposed since the original exact
algorithms, called the first reaction method and the direct method, were formulated
by Gillespie [42]. Suppose that the system volume V is well-mixed and that there
are r reactions amongst s species, as before. In Gillespie’s notation, the probability
density for reaction type ` is

p`.�/ D h`c`e
�Pr

iD1 hici� D a`e
�a0� (1.14)

where

a` D c`h`; a0 D
r
X

iD1
ai:

In the Monte Carlo simulation algorithm of the direct method, a basic reaction cycle
comprises three steps: first, determine the waiting time for the next reaction; second,
determine which reaction will occur; and lastly, update the system state to reflect
changes in the species involved as reactants or products in the reaction that has
occurred. Accordingly, during each cycle two random numbers r1; r2 2 URN[0,1]
are generated, one of which is used to calculate the waiting time according to

� D � ln.r1/

a0
(1.15)

and the other of which is used to determine the next reaction type ` according to

j�1
X

iD1
ai < r2 � a0 	

X̀

iD1
ai: (1.16)

The detailed algorithm is as follows.

Gillespie’s Direct Method

1. Initialization (set the initial numbers of molecules, and set t D 0).
2. Calculate the reaction rate functions Ri.i D 1; : : : ; r/.
3. Generate two random numbers r1 and r2 from a uniform distribution on .0; 1/.
4. Calculate � as follows:

R0.n/ D
X

Rj.n/; � D 1

R0.n/
ln
1

r1
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5. Determine the smallest integer n0 that satisfies

n0
X

iD1
Ri.n/ > r2R0.n/

6. Update the states of the species to account for changes due to reaction n0 and set
t D t C � .

7. Go to 2.

For large systems the algorithm is computationally costly, especially if there is
a wide disparity in the reaction rates, and many ways of optimizing the original
direct method algorithm by reducing the cost of specific steps have been proposed.
These include pre-ordering the reactions according to their firing frequency and
recomputing only the propensities of reactions which are affected by the current
reaction [13], by an optimal binning algorithm [85], or by an extended enhanced
direct method used for polymer dynamics to be described next [65].

A deficiency in using the direct method or most modifications of it in simulating
polymer systems is that we have to account for the fact that new ‘species’ are
created continuously, and thus the underlying state space can change as the sim-
ulation proceeds. These new species arise from polymerization/depolymerization,
fragmentation of filaments, annealing of filaments, and the hydrolysis of ATP and
the release of phosphate. This has led to a new algorithm described in [65], called
the MO algorithm, that is significantly faster than the direct method. A comparison
of the times for the two methods is shown in Fig. 1.13. A major factor that leads to
the large reduction in computational time as compared with the direct method is the
use of equivalence classes of species, as described in [65].

An example of the results when the method is applied to actin filament dynamics
is shown if Fig. 1.14. In that figure the simulation involves a volume of 1000�m3

initially containing 150 filaments, each 4�m long. The initial actin concentration
is 0:7 �M and the actin filaments are initially composed of ADP-actin monomers
only, while the initial G-actin pool consists of ATP actin only. Each filament is
characterized by its length and nucleotide sequence, and the state of the system
is characterized by the numbers of filaments of various lengths and nucleotide
sequences.The reaction channels incorporated are those mentioned above, namely,
polymerization/depolymerization, fragmentation of filaments, annealing of fila-
ments, and the hydrolysis of ATP and the release of phosphate. With respect to
fragmentation, it was assumed that at each time there is an equal probability of
breakage, modelled as a Poisson process, at every possible position on the filament.
Larger filaments are more prone to fragmentation due to the fact they contain more
locations at which fragmentation can occur.

There are many other outstanding questions to be addressed in the context of
filament dynamics, and next we turn to in vivo experiments and modeling that deal
with the rebuilding of the cytoskeleton following treatment that depolymerizes the
actin network.
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Fig. 1.13 A comparison of the computational times for the direct and modified methods. From
[65] with permission

1.4.3 Actin Wave Dynamics in Dictyostelium Discoideum

A central question in cell motility is how a cell generates the forces necessary to
produce movement by controlled remodeling of the cytoskeleton. In the absence
of directional signals Dd cells explore their environment randomly, and thus the
intracellular biochemical networks that control the mechanics must be tuned to
produce signals that generate this random movement. Thus far there is little
understanding about how the dynamic rebuilding is controlled, but some insights
have been gained by observing the rebuilding of the actin network following
treatment with latrunculin A (latA). LatA sequesters monomers with high affinity
and leads to depolymerization of the network, and following washout of it, the
rebuilding of the actin network can be observed using total internal reflection
microscopy (TIRF) and confocal microscopy. TIRF targets labeled species within
a thin region near the cell-substrate interface (usually less than 200 nm) and thus
allows visualization of components near the surface. An example of the evolution in
time of the reconstruction of the network is shown in Fig. 1.15. The waves shown in
this figure only arise at those parts of the cell membrane in contact with a substrate,
and thus membrane-surface interaction is essential. Actin structures in the shape of
spots initially form on the ventral membrane of the substrate-attached (SA) cell,
and then propagate radially in roughly circular shape with a prominent wave front
and a decaying wave back [40], as seen in Fig. 1.16. TIRF imaging shows that the
wave propagates not via direct transport of existing filaments, but rather, through de
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Fig. 1.14 The results of a typical simulation that includes fragmentation

untreated latrunculin A patches waves recovered

Fig. 1.15 The spatial patterns of actin network re-organization after treatment with latA and
washout of the drug. The images shown, from left to right, are cells moving on a glass surface
before the treatment with latA; cells after 16–20 min of incubation with 5 mM latA; patches that
appear after the wash-out of latA; waves appear at a later stage of reorganization before normal
cell shape is recovered. Patches are formed within the first 15 min after the removal of latA, waves
are most abundant after 20–30 min, and recovered cells are observed after 40 min or longer. From
[40] with permission
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Fig. 1.16 A cross-sectional view of the actin network within a wave, showing net polymerization
at the front and net depolymerization at the top and rear (From [9], with permission)

novo polymerization at the leading edge of the wave and in situ depolymerization
at the trailing edge [40]. Imaging of the three-dimensional actin waves shows that
continual growth of the actin network at the membrane pushes the network upward
into the cytoplasm as shown in the schematic in Fig. 1.16.

Imaging of labeled components has identified the critical actin-binding proteins
(ABP’s) involved in network re-construction [9]. The actin network in the wave
is believed to be dendritic, similar to that in the lamellipodium, due to the high
concentration of Arp2/3 complexes measured. The Arp2/3 complex is composed
of seven subunits, and can be activated by binding to nucleation-promoting factors
(NPF’s), G-actin and existing filaments. This interaction can lead to the formation
of new filaments, in which the Arp2/3 complex caps the pointed end and attaches
it to the primary filament. In latA-treated Dd cells, myosin-IB (MyoB), a single-
headed motor molecule that binds to the membrane and to actin filaments in the
cortex, is localized at the wave front, close to the membrane. The scaffolding
protein CARMIL is probably recruited to the wave front by MyoB, and acts as
an NPF for the Arp2/3 complex. In addition to CARMIL, other NPF’s, such as
WASP and SCAR [81], may activate Arp2/3. However, NPF’s must first be activated
on the membrane by binding to phospholipids. It is also observed that coronin,
which is bound to filaments at the top and the back of the wave (cf. Fig. 1.16),
probably destabilizes the network by removing Arp2/3 from a branch junction, thus
exposing the pointed end to depolymerization [12]. A suggested schematic of these
interactions is shown in Fig. 1.17 [9].

The signaling cascades that initiate and sustain the actin waves are not well-
defined as yet, but a skeleton of the network has been established, and there are
several distinct phases involved. The fact that waves are only initiated on membrane
that is attached to a surface means that there is an unknown dependence on substrate
adhesion. However, the relationship is complex, because it has been shown that a
wave of activated integrin receptor follows F-actin both temporally and spatially
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Fig. 1.17 A schematic of a suggested model for actin wave formation. The tail of Myo-IB (blue)
binds to the plasma membrane while the motor attempts to move toward the plus end of an actin
filament, which maintains attachment of the growing filament to the membrane. The head may also
attach to the scaffold protein CARMIL (yellow), which links it to the Arp2/3 complex, where new
branches are formed via Arp2/3 binding (green). The activity of the Arp2/3 complex is inhibited
by coronin (brown circles). (From [9] with permission)

[15]. Thus one must construct a model that contains the essential processes, and
a schematic of the model developed in [58] is shown in Fig. 1.18. That model is
a continuum model and was shown to capture the essential features of the waves.
However, it is too detailed for our purposes here, and we adopt a simpler scheme to
describe the role of the actin network in the propagating waves. A schematic of the
simplified network is shown in Fig. 1.19.

The following major assumptions have been made in the simplified model (J.
Hu, V. Khamviwath, H.G. Othmer, A stochastic model for actin waves in eukaryotic
cells, 2012. Unpublished manuscript).
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Fig. 1.18 A schematic of the stochastic model for actin waves. From [58], with permission

Fig. 1.19 The interconversion of the three states in the simplified model. From J. Hu, V.
Khamviwath, H.G. Othmer (A stochastic model for actin waves in eukaryotic cells, 2012.
Unpublished manuscript)

1. We assumed that a single molecule, NPF, in its three states is responsible for the
signaling. This retains the main features of the signaling network, such as the
positive feedback loop between signaling and actin dynamics.

2. The existence of an inactive state of NPF, namely NPF**, and its slow recovery
to NPF controls the collapse of actin wave at the rear.
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3. We assume that backbone filament nucleation sites exist on the membrane. They
can generate backbone filaments, which provides a basal level of actin network
on the membrane. We also assume that filament branching always requires a
docking site for Arp2/3 on other filaments, either a backbone or a previously-
formed branched filament.

4. NPF is activated only by free barbed ends that are in close proximity to the
membrane. In other words, only active filament ends in the proximity of the
membrane participate in the positive feedback.

The Mathematical Model The system domain is the rectangular solid ˝3d D
Œ0;Lx� Œ0;Ly� Œ0;Lz, where Lx;Ly;Lz are the lengths in the three axial directions.
The interior of ˝3d represents the cytosol, and the membrane is represented by
the plane ˝2d D Œ0;Lx � Œ0;Ly � Œz D 0. The state variables are divided into
three groups: the diffusible species in the cytosol, membrane-bound species and
filament-associated species. We suppress the presence of time and space variables
in equations for the evolution of the state variables unless they are needed for clarity.
The definitions and values of the parameters used in the equations are defined in the
next section.

The evolution of the mobile cytosolic species—G-actin (g), Arp2/3 (arp), coronin
(cor) and capping proteins (cp)—are governed by

@Œg

@t
D Dgr2ŒgC Rg

@Œarp

@t
D Darpr2ŒarpC Rp1

@Œcp

@t
D Dcpr2ŒcpC Rcp

@Œcor

@t
D Dcorr2Œcor � Rp2 C Rp1

with homogeneous Neumann boundary conditions on the surface @˝3d except on
the membrane˝2d. On that surface the fluxes are given by

�Dg
@

@z
ŒgjzD0 D �kC

bkŒgjzD0 � Fbkfree

�kC
ganŒgjzD0 � Œnpf �_arpC k�

ganŒnpf
�_arp_g

�Darp
@

@z
ŒarpjzD0 D �kC

anŒarpjzD0 � Œnpf �C k�
anŒnpf

�_arp

�Dcp
@

@z
ŒcpjzD0 D �kC

capŒcpjzD0 � Fbkfree

�Dcor
@

@z
ŒcorjzD0 D 0
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where R’s represent various reactions at filament ends, and Fbkfree the concentration
of backbone filaments (J. Hu, V. Khamviwath, H.G. Othmer, A stochastic model for
actin waves in eukaryotic cells, 2012. Unpublished manuscript).

The proteins that reside on the membrane are the various states of NPF’s and
their association with Arp2/3 and G-actin. We allow 2D diffusion for free (non-
complexed) states of NPF’s, but not for complexes. The dynamics of these state
variables satisfy

@Œnpf 

@t
D Dnpfr2Œnpf  � kactvFbrfree � Œnpf C kdegŒnpf

�C krecovŒnpf
��

@Œnpf �
@t

D Dnpf�r2Œnpf �C kactvFbrfree � Œnpf 

�kdegŒnpf
� � kC

anŒarpjzD0 � Œnpf �C k�
anŒnpf

�_arp

@Œnpf �_arp

@t
D kC

anŒarpjzD0 � Œnpf � � k�
anŒnpf

�_arp

�kC
ganŒgjzD0 � Œnpf �_arpC k�

ganŒnpf
�_arp_g

@Œnpf �_arp_g

@t
D kC

ganŒgjzD0 � Œnpf �_arp� k�
ganŒnpf

�_arp_g

�knuclŒnpf
�_arp_g � Fbtot

@Œnpf ��
@t

D Dnpf��r2Œnpf ��C knuclŒnpf
�_arp_g � Fbtot � krecovŒnpf

��

on the domain˝2d, with zero Neumann boundary conditions at @˝2d. The averaged
concentrations of free barbed ends and total barbed ends of branched filaments
within the nucleation zone adjacent to the membrane are

Fbrfree D 1

Lnucl_zone

X

n� 2Lnucl_zone
ı

(

X

nL;ptag

fr.n; nL; 0; ptag/

)

Fbtot D 1

Lnucl_zone

(

X

nL

fk.nL/C
X

n� 2Lnucl_zone
ı

0

@

X

nL;btag;ptag

fr.n; nL; btag; ptag/

1

A

)

:

Backbone filaments are generated on nucleation sites and remain attached to
the sites until they are capped and thus considered as a member of the connected
branched filaments. We assume that the latter is a rigid filament cluster, which
is able to move vertically due to the polymerization at the membrane-adjacent
barbed end of any member filament. The nucleation site is occupied by attached
backbone filament and cannot nucleate new backbone filament until the occupied
one is capped. Let Sf denote the concentration of free nucleation sites for backbone
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filament. These species satisfy the following equations.

@Sf
@t

D � kC
nukŒgjzD0Sf C kC

capŒcpjzD0
X

n�2
fk.n/C k�

nukfk.1/

@fk.1/

@t
D kC

nukŒgjzD0Sf � k�
nukfk.1/C k�

pkfk.2/� kC
bkŒgjzD0fk.1/

@fk.n/

@t
D kC

bkŒgjzD0fk.n � 1/C k�
pkfk.n C 1/

� .kC
bkŒgjzD0 C k�

pk/fk.n/� kC
capŒcpjzD0fk.n/; .n � 2/

The dynamics of the branched filament is dictated by the filament-end reactions,
which include the Arp2/3 removal facilitated by coronin binding and subsequent
depolymerization at the pointed end, and polymerization and capping at the barbed
end. The details are given in J. Hu, V. Khamviwath, H.G. Othmer (A stochastic
model for actin waves in eukaryotic cells, 2012. Unpublished manuscript).

As written these equations appear to describe a continuum description, and as
noted earlier, a related continuum description is analyzed in [58]. However there
are generally few nucleation sites and other species may be present in low copy
numbers, which suggests that a stochastic description is more appropriate. We saw
earlier how this is done for a well-mixed system, and to develop an algorithm here
we have to extend this to incorporate diffusion. This leads to several questions,
which include (1) how does one discretize the domain correctly, and (2) how does
one develop an efficient computational algorithm. The first question is answered in
[57], and the second is addressed is a somewhat simpler context in [48]. A brief
summary of the algorithm is as follows.

The membrane domain is partitioned into square compartments of size lx � ly,
and the cytoplasmic space into cubic compartments of size lx � ly � lz, where the
side lengths are all 0:1 �m. This is small enough that each compartment can be
considered well-mixed. The Monte Carlo method is used to generate realizations
of the stochastic model, and specifically, we implement the numerical algorithm
using a modified Gillespie direct method described earlier and in [65]. In the
original Gillespie direct method, two random numbers are generated for advancing
the model system in each time step: one random number is used to determine the
waiting time for the next reaction, and the other is used to determine which reaction
type occurs [41]. In this method the reactions are distinguished by the reactants
involved, and therefore, for instance, the reaction of monomer depolymerization
from the pointed end of a filament of length n is considered different from that
of size n C 1. In the MO method, the state of the systems consists of equivalence
classes of filaments characterized firstly by their length, and then subdivided into
classes of the same nucleotide profile. In the model developed here the nucleotide
profiles play no role. Then monomer depolymerization from filaments of any size
is considered as one reaction type in an equivalence class of reactants. Another
reaction type consists of all the reactions involving monomer addition at a barbed
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end, irrespective of how long the elongating filament is, which is legitimate since
the on-rate for monomer addition is independent of the filament length. Thus a third
random number is needed after the reaction type that occurs is determined in order
to decide which reaction within the equivalence class occurs. This treatment reduces
the computational cost by 2-3 orders of magnitude by making an optimal use of the
structure of the underlying reaction network (cf. [65] and Fig. 1.13).

The detailed algorithm is as follows. Suppose that the system has Nrct_type

equivalent reaction classes and that the rate constant of the jth reaction type is
rj. Assume that there are Ncmprt computational compartments, in the ith of which
there are RAj

i possible reactions for reaction type j. Therefore, for the jth reaction
class of the domain, the total number of this reaction in the entire domain is
RAj

tot D PNcmprt

iD1 RAj
i. In addition, suppose cRAj

k denotes the total number of reactions
of type j in the k-th subset in the totality of Nsub subsets. After setting the above
system configuration, the state of the system is advanced as follows. At time ti, the
steps proceed as follows.

1. Generate a random number to determine the waiting time
ti for the next reaction
by the reaction propensities derived from RAtotj and rj according to the Gillespie
direct method.

2. Generate a second random number, and decide which reaction type the next
reaction will be from RAtotj and rj according to the Gillespie direct method.

3. Generate a third random number and decide in which compartment the reaction
type determined in Step 2 is located. In this step, instead of checking the Ncmprt

compartment one by one, we first subdivide the compartments into subsets,
determine in which subset the reacting compartment falls, and then within that
subset determine the appropriate reaction compartment. In essence this is done
as in step one, except that we compute total propensities within subsets and use
these to determine the subset, in effect treating subsets as individual steps. (An
optimization of the choice of the number of subsets is shown in Fig. 1.20.)

4. In the chosen compartment, we proceed as follows.

• if the reactants for the chosen reaction are identical molecular species, pick
any reactants to react. For example, for molecular diffusion, which molecule
of the same type diffuses out of the current compartment makes no difference,
since the combinatorial coefficient used in computing propensities reflects the
identity of the species.

• if the reactants are not identical molecular species, then generate another
random number to decide which reactant or reactant pair to react. For example,
if the pointed-end depolymerization is to occur in the reacting compartment,
the filaments whose pointed end lies in the compartment may be of different
lengths, and thus we must randomly choose one of these filaments.

5. Update the system configuration, and advance the time to tiC1 D ti C
ti where

ti is the random time determined in step 1. Repeat Steps 1–4 until the targeted
time is reached.
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Fig. 1.20 The CPU time for a computation as a function of the number of sub-domains in the
domain

The effect of subdividing of the total number of compartments in Step 3 on the
computational time is shown in a simulation trial which produces the results shown
in Fig. 1.20.

The stochastic model of actin assembly at the membrane, one realization of
which is shown in Fig. 1.21, predicts the emergence and propagation of actin waves.
In this simulation, the membrane-bound NPF partially activated at the lower left
corner triggers downstream actin assembly that propagates outward as shown in the
snapshot at 5.0 s in Fig. 1.21. Subsequently, the wave expands radially until it hits a
boundary, where it dies. Occasionally new waves emerge spontaneously in the wake
of the primary wave, as is observed experimentally. If waves are initiated at several
points in the domain the waves annihilate when they meet. Thus the system has the
standard characteristics of an excitable system.

One can analyze the dynamics along a line in the direction of propagation and
one finds that the wave travels at about 0.1�m/s, comparable to what is observed
experimentally. Moreover, the increase in actin density at the wave front is steep,
compared with the decay at the back of the wave. The F-actin level in the area well
behind the wave is stabilized at about 20–25 % of that at the wave peak, consistent
with the qualitative description of experimental results shown in Fig. 1.16.

While much remains to be done, some of the essential processes are embedded
in the model, and some of the experimental observations can be replicated.
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Fig. 1.21 A computational TIRF sequence for the formation and propagation of an F-actin wave.
The initial G-actin concentration is 10�M, and half of the NPF is activated at the lower left
corner. The color index indicates the total F-actin within 100 nm of the membrane projected to
each membrane compartment. The maximal density in the color representation is set to be 70
monomers per compartment, and thus densities larger than 70 are not distinguishable. [From J.
Hu, V. Khamviwath, H.G. Othmer (A stochastic model for actin waves in eukaryotic cells, 2012.
Unpublished manuscript)]

1.5 Signal Transduction, Direction Sensing and Relay

In Sect. 1.1.1 we listed the steps that a single cell must execute to successfully
aggregate. These include signal detection, signal transduction, direction sensing,
signal relay and movement. The mechanics of movement have not been ‘solved’
in previous sections, but some of the issues involved in modeling actin dynamics
have been addressed. In this section we focus on the signaling aspects of the cellular
response, which as was discussed earlier, centers on cAMP. Figure 1.22 shows the
primary steps involved in detection, transduction, relay and the connection with
the actin network. There are two main pathways in this diagram, one that leads to
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Fig. 1.22 Signal transduction in Dictyostelium discoideum. Modified from [59]

production of cAMP via Gˇ� and adenylyl cyclase (ACA) and secretion of cAMP—
the relay response, and one that leads to modification of the cytoskeleton via Gˇ�

PI3K, etc. Despite the number of components shown, the diagram only contains
some of the principal actors, and we will not discuss all the components in that
diagram in detail, but only those directly involved in steps considered later.

The first intracellular response to a change in extracellular cAMP is an increase
in activated G proteins, catalyzed by the increase in cAMP-occupied receptors
(GPCRs). G-proteins consist of an ˛ subunit, G˛ that contains a GTP/GDP binding
domain as well as intrinsic GTPase activity, and a complex of a Gˇ and a G�
subunit. The ˛ and ˇ� subunits dissociate after activation, and each can regulate the
activity of different targets, including adenylyl cyclase, the enzyme that catalyzes
cAMP production. A subsequent step is the generation of pleckstrin homology
(PH) binding sites by the phosphorylation of the membrane lipid PtdIns(4,5)P2
(PIP2) by phosphoinositide 3-kinases (PI3Ks) to produce PtdIns(3,4,5)P3 (PIP3),
which in turn is dephosphorylated to produce PtdIns(3,4)P2 (PI34P2). In Dd PIP3
is produced by a class IA type kinase (PI3K1 and PI3K2) and a class IB type, kinase
designated PI3K� [19]. The former are activated via cytosolic tyrosine kinases,
whereas the latter consists of a catalytic unit and a regulatory unit that is activated
by Gˇ� . Both PIP3 and PI34P2 provide binding sites for various cytosolic proteins
containing PH domains (PHds) and recruitment is rapid: localization of PHds at the
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membrane peaks 5–6 s after global stimulation with cAMP [19, 49]. Both green-
fluorescent-protein (GFP)-tagged CRAC (cytosolic regulator of adenylyl cyclase)
and a PHCRAC-GFP construct accumulate at the membrane following stimulation
[32, 55]. PI3K is constitutively expressed, but both PIP3 and PI34P2 are tightly
regulated by the phosphatases PTEN and SHIP, and within 10–15 s following
uniform cAMP changes the PHds return to the cytoplasm, probably because the
PH binding sites have been destroyed [19, 76]. This burst of PIP3 at the membrane
couples the extracellular signal to actin polymerization [52]. The level of activated
G-proteins in continuously-stimulated cells reaches a stimulus-dependent level,
while membrane-associated CRAC first increases, but then returns to its basal level.
Therefore adaptation of the PIP3 and cAMP responses is downstream of Gˇ� [53],
and a recently-developed model shows that this occurs at the level of Ras [18],
which is activated by Gˇ� (see Fig. 1.22). As is shown in Fig. 1.15, the increase in
PIP3 trails the actin increase in the developing waves, which suggests that there is
a feedback from actin to the earlier steps in signal transduction shown in Fig. 1.22.
Theoretical predictions as to how PI3Ks, PTEN and SHIP are spatially-regulated
help in understanding how cells respond to changes in the signal [18, 58] .

Chemotactic signals also produce a rapid, transient, PI3K-dependent activation
of Akt/PKB, a protein kinase that is essential for polarization and chemotaxis:
mutants lacking Akt/PKB cells cannot polarize properly when placed in a chemotac-
tic gradient and the cells move slowly [68]. Akt/PKB is activated upon recruitment
to the membrane, and in Dd it activates the kinase PAKa, which regulates myosin II
assembly, cortical tension, and retraction of the uropod (the tail) of the cell [19] (see
Fig. 1.22). PIP2 provides another link between signal transduction and mechanical
events in that it acts as a second messenger that regulates the adhesion of the plasma
membrane to the underlying cytoskeleton [67, 83].

There are a number of models for how cells extract directional information
from the cAMP field. It was shown in [23], using what is in essence a model
for the Gˇ� -AC-cAMP part of the network in Fig. 1.22, that a cell experiences a
significant difference in the front-to-back ratio of cAMP when a neighboring cell
begins to signal. This shows that it is certainly possible that PI3K components in the
signal-transduction pathway may also show significant front-to-back differences.
Meinhardt [69] postulated an activator-inhibitor model with a third species that
serves as a local inhibitor. Amplification of small external differences involves a
Turing instability in the activator-inhibitor system, coupled to a slower inactivator
that suppresses the primary activation. While this model produces qualitatively
correct results, there is no biochemical basis for it; it is purely hypothetical and
omits some of the major known processes, such as recruitment of molecules to the
cell membrane from the cytosol. Several methods for achieving perfect adaptation
to any extracellular signal are discussed, some of which are closely related to a
simplified model of adaptation proposed earlier [74].

More recently, a model that takes into account some of the known biochemical
steps, such as activation of PI3K� and subsequent activation of other enzymes
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involved in the phosphorylation and de-phosphorylation of membrane lipids, has
been proposed [62]. The positive feedback in this scheme arises from activation
of PIP2 production, but this model also ignores recruitment of most PHds to the
cell membrane. A recent model based on detailed descriptions of the underlying
biochemistry can replicate a variety of experimental observations that are not
addressed by other models [18]. In particular, it shows that front-to-back symmetry
breaking can occur at the level of Ras, and it provides a solution to the ‘back-of
-the-wave’ problem.

The other main pathway concerns the production and secretion of cAMP, and
we turn to this next. Several methods for achieving perfect adaptation to any
extracellular signal are discussed in [74], and we discuss one of these in detail.

1.5.1 The Model for Signal Transduction and Relay

There are three main configurations that shed light on different aspects of a cell’s
response to cAMP. In the first the cells are perfused with a cAMP stream of known
concentration, and the downstream level of labeled carbon is measured to determine
the cell’s response. These perfusion experiments, done primarily by Devreotes
[27, 28], were the first to characterize the input-output response of cells. In this
configuration the cAMP secreted by cells in response to the stimulus is quickly
washed away, thereby precluding self-stimulation. The second configuration applies
when cells are suspended in a well-mixed solution and feedback via self-stimulation
occurs. Experiments of this type were done before the perfusion experiments
and showed that under certain conditions the extracellular cAMP in the solution
could oscillate periodically in time [39, 107]. The third configuration obtains in
aggregation fields, where cells are simply plated out and allowed to develop. As
shown in Fig. 1.3, complex patterns of cAMP and cell density can emerge. We shall
begin with a model for the first two configurations, and then apply it to the third one.

The network for the main steps in the transduction scheme used in the model
developed in [96] is shown in Fig. 1.23 and the detailed biochemical reactions are
given below it.

There are three major pathways in the transduction of and adaptation to an
extracellular perfusing cAMP signal (cAMP0: H for short) in perfusion experiments.
In the stimulus pathway H binds to GPCRs Rs, and the complex HRs catalyzes the
activation of the stimulatory G protein G0

s. This in turn binds with the inactive form
of adenylate cyclase (UC) and produces the activated form of adenylate cyclase
(G0

sAC). A GTPase activity intrinsic to the ˛ subunit of the G protein terminates
the activation. In the inhibitory pathway, an inhibitory G protein G0

i is produced by
analogous steps. However, the symmetry between the pathways is broken at this
point, because G0

i binds with HRs, and in this bound form HRs cannot activate Gs.
Finally in the pathway for the production and secretion of cAMP, the activated
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Fig. 1.23 A schematic of the interactions in the model. An extracellular cAMP stimulus serves
both as the stimulus and the inhibitory signal. Adaptation arises from the action of G0i on the cAMP-
receptor complex. Legend: cAMPo; extracellular cAMP, Rs; receptor for the stimulatory pathway,
HRs; cAMPo-receptor complex, G0s; activated stimulatory G protein, G0sAC; activated form of
adenylate cyclase, cAMPi; intracellular cAMP, Ri; cAMP receptor in the inhibitory pathway, HRi;
cAMP-receptor complex in the inhibitory pathway, G0i ; activated form of the inhibitory G protein,
HRsG0s; complex between HRs and G0s. The symbols uj indicate the dimensionless concentration of
that species

adenylate cyclase (G0
sAC) catalyzes the turnover of ATP to intracellular cAMP

(cAMPi). cAMPi in turn is hydrolyzed by intracellular phosphodiesterase (iPDE)
or is secreted into the extracellular medium (cAMP�

o ). Here the ‘�’ on cAMP�
o is to

distinguish the secreted cAMP from the stimulatory cAMP in the perfusion solution,
which is denoted by H. Further details about this model as well as kinetic parameters
involved can be found in the original papers [96, 97]. The reader should note that
we use G0

i to activate adenylyl cyclase, which does not agree with Fig. 1.22, where
Gˇ� is used. The latter is probably correct, although at the time the model was
formulated this was not known. The model could easily be re-formulated to use
Gˇ� as the effector in the stimulatory pathway, but this has not been done. On
the inhibitory side of the pathway the best evidence is that a different G˛ is used
for inhibition [10], as in the model, but the details of how this is done are not
known.
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The steps in cAMP production and release
(I) The stimulus pathway (II) The inhibitory pathway

H C Rs

k1�!
 �

k�1
HRs

HRs C Gs

k2�!
 �

k�2
HRsGs

HRsGs C GTP
Ok3�! HRs C G0

s

CGDP C ˇ�

G0
s C UC

k4�!
 �

k�4
G0

sAC

G0
s

k5�! sGDP C Pi

G0
sAC

k5�! ˛sGDP C UC
CPi

˛sGDP C ˇ�
k6�! Gs

H C Ri

h1�!
 �

h�1
HRi

HRi C Gi

h2�!
 �

h�2
HRiGi

HRiGi C GTP
Oh3�! HRi C G0

i

CGDP C ˇ�

G0
i C HRs

h4�!
 �

h�4
HRsG0

i

G0
i

h5�! ˛iGDP C Pi

HRsG0
i

h6�! H C Rs C G0
i

HRsG0
i

h5�! HRs C ˛iGDP
CPi

˛iGDP C ˇ�
h7�! Gi

(III) The production and secretion of intracellular cAMP

G0̨
s
AC C ATP

Ol1�!
 �

l�1
G0̨

s
AC � ATP

G0̨
s
AC � ATP

l2�! cAMPi C G0̨
s
AC

cAMPi C iPDE
l3�!
 �

l�3
cAMPi � iPDE

cAMPi � iPDE
l4�! AMP C iPDE

cAMPi
l5�! cAMP�

o

This system of reactions involves fourteen species and six combinations of
conserved species, and is thus described by eight independent differential equations.
As we showed in [96], this model can describe the input-output behavior in the
perfusion experiments very well. However, in order to better describe certain
aspects of the oscillation experiments and the wave propagation studied in [97], we
introduced a basal activity for the un-activated adenylate cyclase, which produces
the basal cAMP concentration in the cytoplasm in the absence of an extracellular
signal. The additional reaction steps introduced by the basal activity are

UC C ATP
l5�!
 �

l�5
UC � ATP

UC � ATP
l�5�! cAMPi C UC:

(1.17)
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A second modification was to introduce a modified secretion function

dsr.cAMPi/ D
�

dsr1 
 cAMPi if cAMPi < dsw
dsr2 
 .cAMPi � dsw/C dsr1 
 dsw if cAMPi > dsw

(1.18)

and the secretion step

cAMPi
dsr�! cAMP�

o : (1.19)

where dsr1 is the basal secretion rate, dsr2 is the active secretion rate, and dsw
is the threshold concentration. The corresponding dimensionless parameters will
be denoted as sr1; sr2; sw, and sr. The piecewise linear character of the function
dsr.�/ can introduce difficulties for certain numerical schemes that require more
smoothness than C0, and incomputations we use a smoothed version of dsr.�/. In
dimensionless form the governing equations are as follows [97].

du1
d�

D ˛H.�/ � .˛H.�/C ˛1/u1 C .ˇ5 � ˛H.�//u6 � ˇ4u1u5

du2
d�

D ˛2˛3c1u1 � .1C ˛4/u2 � ˛2˛3c1u1.u2 C u3/C ˛4u2u3

du3
d�

D ˛4u2 � u3 � ˛4u2u3

du4
d�

D ˇH.�/� .ˇH.�/C ˇ1/u4 (1.20)

du5
d�

D ˇ2ˇ3c2u4 � ˇ5u5 C ˇ6c3u6 � c3ˇ4u1u5 � ˇ2ˇ3c2u4.u5 C c3u6/

du6
d�

D �.ˇ5 C ˇ6/u6 C ˇ4u1u5

du7
d�

D �1�2u3 � sr.u7/ � �4 u7
u7 C �3

C �5.1 � �7u3/

du�
8

d�
D sr.u7/

To describe the dynamics of suspensions, we only have to append reactions for the
extracellular dynamics and equations for the evolution of extracellular cAMP, and
this leads to the additional differential equations

Vo
dy14
dt

D NVcdsr.y12/C NAcl�6y15 C Vol�8y16 � NAcl6y14z8 � NVcl8y14z9

dy15
dt

D �.l�6 C l7/y15 C l6y14z8 (1.21)

Vo
dy16
dt

D �Vo.l�8 C l9/y16 C NVcl8y14z9:
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Fig. 1.24 The reduced
network for the five primary
variables in the reduced
model. The symbols Ci, Co

and wi i = 1,2,3 beside a
species corresponds to the
symbol used in the equations
at (1.23)
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Here y14 stands for ŒcAMPo, y15 for ŒmPDE � cAMPo , y16 for ŒePDE � cAMPo,
z8 for free ŒmPDE, z9 for the free ŒePDE, Vo for the volume of the extracellular
medium, Vc for the volume of a cell, Ac for the surface area of a cell, and N for the
total number of cells. In addition to the differential equations, there are two other
conservation equations, namely,

y15 C z8 D ŒmPDET

y16 C NVc
Vo

z9 D NVc
Vo
ŒePDET

(1.22)

It is clear that the newly introduced variables y15; y16 are both positive and
bounded. In fact, we have

0 	 y15 	 ŒmPDET 0 	 y16 	 nVc

Vo
ŒePDET :

It follows from this that y14 is also bounded.
The resulting eight-dimensional system can be further reduced by carefully

analyzing the relative time variation of different components. Then, by applying
a singular perturbation reduction,2 the system can be reduced to a five-dimensional
system for the variables shown in Fig. 1.24. To avoid confusion, we use the symbols
wi, Ci and Co to denote the remaining variables, and then have the final form
of the reduced system for perfusion experiments and well-mixed suspensions.
In the following equations Greek letters and lower case c’s represent constants.
The definitions of the following parameters differ from those used earlier [97]:
L5 D .l�5 C l�5 /=.l5ŒATP/, �5 D �5=.1 C L5/ D 2:4, L7 D l1=.l�1 C l2/ and
�7 D 1CL7 D 1:091; the remaining parameter values are the same as those in [97].
Many of the parameters in this model can be obtained from the literature, but the

2A brief introduction to this technique is given in Appendix.
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remainder must be estimated.

dw1
d�

D ˛4u2.1 � w1/ � w1

dw2
d�

D ˇ2ˇ3c2u4.1 � w2 � c3w3/� ˇ5w2 C ˇ6c3w3 � c3ˇ4u1w2

dw3
d�

D �.ˇ5 C ˇ6/w3 C ˇ4u1w2 (1.23)

dCi

d�
D �1�2w1 C �5.1 � �7w1/ � �4 Ci

Ci C �3
� sr.Ci/

dCo

d�
D �

1 � �
�

sr.Ci/� �7
Co

Co C �6
� �9

Co

Co C �8

�

:

To illustrate the interpretation of terms in these equations, consider the fourth
equation, that for the change in cAMPi. The first term represents the production of
cAMPi via the activated cyclase, the second term represents the basal production
of cAMPi, the third term represents the rate at which cAMPi is degraded by PDE,
and the last term represents the rate at which it is secreted. As a result of applying
the singular perturbation, some rapidly-varying variables are related to others via
algebraic equations. Most are eliminated completely, but it is convenient to retain
some of these quantities for the purpose of explaining how the system functions.
They are the fraction of Rs bound, the amount of activated Gs, and the fraction of Ri

bound, which in dimensionless form are given by

u1 D ˛0Co C .ˇ5 � ˛0Co/w3
˛1 C ˛0Co C ˇ4w2

u2 D ˛2˛3c1u1.1 � w1/

1C ˛4 C ˛2˛3c1u1 � ˛4w1

u4 D ˇ0Co

ˇ1 C ˇ0Co
:

1.5.2 The Dynamics Under Imposed and Self-Generated
Stimuli

A qualitative description of how this system responds to stimuli is as follows.
Suppose first that cAMPo is clamped, and that the system is adapted to a given
level of cAMPo. A change in cAMPo is reflected in the stimulatory (inhibitory)
pathway via a change in the term ˛oCo (ˇoCo) that appears in the fraction u1 (u4) of
stimulatory (inhibitory) receptors bound with ligand. On the stimulatory side, this
input is immediately reflected in a change in u2 (G0

s) because the activation is fast.
This increases the amount of activated cyclase (w1), and this in turn produces more
cAMPi and the relay response. Simultaneously, but on a slightly slower time scale,
the inhibitory pathway activates the inhibitory G-protein Gi, which competitively
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interferes with the production of G0
s, and hence the activation of the cyclase.

This interference then leads to adaptation in the model, and the combination of
relay and adaptation qualitatively explains the response in the context of perfusion
experiments. When cAMPo is not clamped a positive feedback loop is created
via the secretion of cAMPi. Depending on how it is tuned, this feedback system
leads either to amplification of a pulse of cAMPo or to sustained oscillations.
Using experimentally-determined parameters where possible, and estimates for the
remaining parameters, this system predicts a time course of cAMP levels and
secretion rates that agrees both qualitatively and quantitatively with experimentally-
observed results in perfusion and suspension experiments.

In Fig. 1.25 we show the response to a single step change and to a four-step
increase in cAMPo in a simulated perfusion experiment, using the model above
developed in [97]. The response shown there is based on experimental parameters
where they are known, and one sees that the system does not adapt fully at large
stimuli. However this can be corrected by a simple modification of the dynamics
[74]. At all stimulus levels the cAMP and secretion responses peak at about 1 min
after stimulation, which is as observed experimentally [16].

In Fig. 1.26 we show the intracellular and extracellular cAMP oscillations in a
suspension of cells. The amplitudes of the intracellular cAMP oscillations matches
well with the experimental observations shown in the right-hand panel, but the
extracellular concentration is lower. This depends on the secretion rate, the amount
of the extracellular phosphodiesterase that degrades the CAMP, and other factors.
Suffice it to say that the model captures the essential aspects of the cellular response,
both to imposed stimuli and in suspensions, and therefore can be used to study
aggregation of spatially-distributed populations.

a b

Fig. 1.25 The predicted secretion rate in response to imposed stimuli. Left: The response to a step
from 0 to 1�M in extracellular cAMP. Right: The response to a sequence of three tenfold steps
from 0 to 1�M in extracellular cAMP
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a b

Fig. 1.26 Left: Periodic oscillations in a numerical simulation of suspension experiments for
�2 D 0:4. Solid line: intracellular cAMP; dashed line: extracellular cAMP. Right: Experimental
measurements of intracellular (open circle) and extracellular (triangle) cAMP concentration.
Redrawn from Fig. 2 of Gerish and Wick [38]

1.5.3 The Reaction-Diffusion Equations for Early Aggregation

In aggregation fields the concentrations vary in space as well as time, and this
leads to new phenomena. At the very least this requires a different equation for the
extracellular cAMP, which can diffuse throughout space. Here one also has to decide
whether to introduce a continuum density for the cells, or retain a hybrid description
in which cAMPo satisfies a reaction-diffusion equation and the cells are treated as
point particles. We adopt the latter description here, and this leads to the following
equations. In these equations the superscript i denotes the ith cell, xi denotes the
spatial position of the ith cell, and the dependence of wi

j and Ci
i on xi is implicit in

the equations.

dwi
1

d�
D ˛4u

i
2 � wi

1 � ˛4u
i
2w

i
1

dwi
2

d�
D ˇ2ˇ3c2u

i
4 � ˇ5wi

2 C ˇ6c3w
i
3 � c3ˇ4u

i
1w

i
2 � ˇ2ˇ3c2ui4.wi

2 C c3w
i
3/

dwi
3

d�
D �.ˇ5 C ˇ6/w

i
3 C ˇ4u

i
1w

i
2

dCi
i

d�
D �1�2w

i
1 C �5.1 � �7w

i
1/ � �4 Ci

i

Ci
i C �3

� sr.Ci
i/

@Co

@�
D 
1r2Co.x/� O�9 Co.x/

Co.x/C �8
C

N
X

iD1

Vc

Vo
ı.x � xi/

�

sr.Ci
i/� �7

Co.x/
Co.x/C �6

�
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ui1 D ˛0Co.xi/C .ˇ5 � ˛0Co.xi//wi
3

˛1 C ˛0Co.xi/C ˇ4wi
2

ui2 D ˛2˛3c1ui1.1 � wi
1/

1C ˛4 C ˛2˛3c1ui1 � ˛4wi
1

ui4 D ˇ0Co.xi/

ˇ1 C ˇ0Co.xi/

The next question is how to solve these equations. The geometry of a two-
dimensional domain is as shown in Fig. 1.27, wherein the size of the cells is
exaggerated.

The computational algorithm can be summarized as follows—for details see
[22].

1. Solve the extracellular equation on a regular grid, using an Alternating-Direction
Implicit (ADI) method for the partial differential equation, lagging the secretion
term.

2. Interpolate cAMP from the grid to the cell positions and update the intracellular
variables and the secretion by an implicit scheme.

3. Update cell movement. If a cell is not moving, should it begin to move? If so,
compute the direction and start movement. If it is moving, should it continue?

4. Transfer the secreted cAMP to the grid and repeat the cycle.

Two examples of the wave patterns in aggregation predicted by the model
are shown in Fig. 1.28. These are certainly qualitatively consistent with the
experimentally-observed waves in Fig. 1.3.

What do the analysis and computations of the continuum and cell-based models
explain and predict? Some of these are discussed here—for others see the original
literature cited above.

Fig. 1.27 The computational grid for the aggregation problem. The black ellipses represent the
cells, but not to scale
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Fig. 1.28 Aggregation waves. On the left is shown a large field in which several pacemakers
organize local aggregation patterns. On the right is the spiral cAMP wave (dark blue) superimposed
on the cell streams. Note that in both images some cells are left behind. The time evolution of these
patterns shows that cells always move toward the highest local concentration of cAMP, which leads
to the observed streams

• A single cell can be a pacemaker. This is not addressed herein, but is done in
[29].

• The continuum model predicts the effect of density and cell excitability on the
frequency of oscillation, the wave speed, and the size of the central core.

• The cell-based model provides an explanation for the origin of streaming and
the origin of spiral waves: computations show that cell movement and random
variations in cell density are necessary for streaming and facilitate the generation
of spirals.

• The model predicts that cells must choose a direction within 10–15 s in order to
orient to the local gradient.

• Computations show that aggregation is very robust with respect to the choice of
direction of movement.

Of course the model for cAMP production is not correct in detail—experiments
since its formulation have contributed greatly to our understanding of the signal
transduction network leading to cAMP production, but the input-output behavior
is quantitatively correct, and thus all questions that depend only on this can be
addressed. As we show here and in the original papers, the exterior problem dealing
with aggregation can be addressed and the predictions are quite accurate. One major
factor that is missing is the cell-cell interaction that occurs when cells make contact.
This is addressed in the following section.
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1.6 Multicellular Problems

Collective cell motion occurs in the streaming, mound and slug stages of Dd [74],
as well as in vertebrate embryos [106]. In Dd streams this involves small numbers
of cells, but the slug is composed of about 105–106 cells (cf. Fig. 1.29). Weijer et
al. [31] have developed techniques to visualize the effects of signal-transduction

Fig. 1.29 A side and top view of a Dd slug gliding on a substrate
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at the single cell level, by imaging the fluorescence from GFP-tagged PHds in
response to cAMP signals. They record the movement of individual cells in three
dimensions, and find that when wild-type cells are imaged in aggregation streams,
their movement is very much like that of cells moving as individuals, despite the
fact that new adhesion systems are expressed at this stage. The cells in the center of
the stream tend to move slightly faster than those at the edge.

Mixing mutants lacking myosin II with wild type cells has shed light on the role
of myosin II in multicellular motility. Mutants lacking myosin II accumulate at the
edges of aggregation streams and the back of the slug, and become distorted by their
adhesive interaction with wild-type cells [109]. There are two adhesion systems,
characterized as A and B, expressed during the aggregation stage, and either or both
may be responsible for excluding the myosin II null cells. Xu et al. postulate that
mhcA� cells cannot generate sufficient protrusive force to disrupt contacts between
adherent cells in streams, but can enter streams where the cells are weakly adherent
[109].

The motion of Dd slugs is mechanically very similar to the motion of single cells.
Vardy et al. [100] show that the slug leaves behind cell prints in the slime sheath
as it migrates. The cell prints are either parabolic or elliptic in shape. Because the
cell prints are sharp, i.e. exhibit no smearing near their boundary, they speculate that
the cells that make up the prints are temporarily stationary and secrete a “traction
protein” that allows the slug to adhere to the substratum. It is not known whether
these traction proteins are related to integrins or contact proteins, but the underlying
mechanics of the motion of a slug is conceptually similar to single cell motion. As
will be clear later, similar computational techniques will apply in the two cases. We
begin with a description of a single cell.

1.6.1 The Mechanics of a Single Cell

As will be clear from the previous sections, the movement of an individual cell
involves the integration of numerous processes, and to incorporate all of these into
a realistic model of a deformable cell is overly ambitious at this point. In particular,
the details of how actin networks are reorganized under the membrane in response
to extracellular signals is a complex process that is only partially understood, and
it is not feasible to incorporate the level of detail required to describe this in a
multicellular model at present. However, it may be possible to understand aspects of
tissue motion, in particular that of the Dd slug, with a relatively simple mechanical
model of a cell. This has been done in [24, 75], and a schematic of the cell model
is shown in Fig. 1.30. In the approach taken in previous work, the opposite extreme
in descriptions is adopted; cells are treated as incompressible viscoelastic solids
and their stress-strain response characteristics are lumped into three elements that
coincide with the three major axes. Along each axis the stress-strain behavior is
described by a nonlinear version of a standard Kelvin element, as shown in Fig. 1.30.
Since there is an elastic element in each branch the immediate response to a step
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Fig. 1.30 A schematic of the model cell and the element of a standard solid, or Kelvin element
along each axis of the ellipsoid. It consists of a nonlinear spring in parallel with a Maxwell element,
which comprises a linear spring in series with a dashpot

change in the applied force is a step change in displacement in the elastic elements,
followed by slower flow in the viscous element. Release of the external forces leads
to a return to the rest length of the element, and since we assume that the elements
are identical along the three axes, the equilibrium shape is spherical.

This is a reasonable first description, since the cytoplasm in many amoeboid cells
has been characterized as a viscoelastic material whose properties are dominated by
actin filaments and microtubules. However, the elastic modulus of actin solutions
is concentration dependent [64], and they exhibit strain hardening [110], a property
that may be important in slug movement.

When the cell deforms due to interactions with other cells or an obstacle, the
three deformations are not arbitrary, because we stipulate that the total volume of
the cell must be conserved.3 In [75] the constant volume constraint was satisfied by
first computing the deformation and then correcting the change in all radii so as to
correct the volume.

In the computational algorithm we can decompose the total stress on an ellipsoid
into the shear along the axes of the ellipsoid and an additional ‘isotropic’ part
reflected in a pressure that constrains the overall deformation so as to satisfy the
constraint that the volume remains constant. In a continuum description of an
incompressible material this pressure serves as a Lagrange multiplier that forces
satisfaction of the incompressibility condition. In [24] and what follows here the
pressure is the deviation from a rest state and therefore may have either sign: a
negative pressure causes the cell to compress and a positive pressure causes the cell
to expand.

3This may not be true in reality, and we could allow small changes without changing the results.
Osmotic fluxes may well change the total volume during deformations, but this has not been
characterized experimentally, and incorporating it would add a great deal of complexity for an
as yet unquantifiable increase in accuracy.



1 Cell Models 55

The equation governing the length of an axis of a cell is

u0
a D

�

ka
�a
Œfa.t/C Np � f2.ua/C f 0

a.t/

��

df2.ua/

dua
C ka

��1
; (1.24)

where ua is the change in the length of the a axis, f2 is the force from the spring
in parallel, �a is the viscous coefficient of the dashpot, ka is the spring constant for
the spring in the Maxwell element, fa is the magnitude of the force applied at each
end in opposite directions, and Np is the force due to pressure. There are three such
equations one for each axis and one equation due to the volume constraint given by

0 D ua
0.ubCb0/.ucCc0/C.uaCa0/ub

0.ucCc0/C.uaCa0/.ubCb0/uc
0; (1.25)

where a0, b0, and c0 are the initial lengths of the cell axes. This system of ordinary
differential equations determines the shape of a cell and is solved numerically.

1.6.2 The Multicell Problem

Suppose there are N cells in an aggregate, sufficiently close so that at least some
cells may be in contact. The forces that a cell may be subject to are classified as
follows [24].

• Active forces Ti;j a cell exerts on neighboring cells or the substrate: the reaction
force to this is denoted Mj;i.

• The reaction to forces exerted by other cells on it.
• Dynamic drag forces that arise as a moving cell forms and breaks adhesive bonds

with neighboring cells.
• Static frictional forces that exist when cells are rigidly attached to each other or

to the substrate.

We let N a
i denote the neighbors, including the substrate, of i upon which a cell

can exert traction. The ‘neighbor’ relation is symmetric for all cells; if cell i can
exert traction on cell j, then cell j can exert traction on cell i, but not true for the
substrate, which is passive in that it does not generate stress. The motive force that
i generates is

Mi D
X

j2N a
i

Mj;i;

and the total traction force which other cells exert on it is

Ti D
X

j2N a
i

Tj;i:
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The dynamic friction force on cell i due to interaction with j is defined as

Dj;i D �ij.vj � vi/;

where �ij is the friction coefficient, which is symmetric. Thus, the total dynamic
friction force on cell i, due to the set N d

i of cells that interact with i via a frictional
force, is

Di D
X

j2N d
i

Dj;i D
X

j2N d
i

�ij.vj � vi/:

By definition, statically-bound cells function as one rigid object, so that if i is
bound to j and j is bound to k, then i is bound to k. In particular, if i is statically
bound to the substrate either directly or indirectly then it can transmit forces applied
to it to the substrate. These are the only type of chains that can transmit stress from
the interior; a chain of say four cells statically bound to each other but not bound
to the substrate simply functions as a larger unit. If Sji denotes the static binding
force on the ith cell when bound to the jth, then Sji D �Sij and the cell-cell forces
cancel on all but those cells attached to the substrate. Let N s

i denote the set of cells
that statically bind to cell i; then the total force on the ith cell is the sum of all the
foregoing, viz.,

Fi D Mi C Ti C Di C
X

j2N s
i

Sji (1.26)

D
X

j2N a
i

Mj;i C
X

j2N a
i

Tj;i C
X

j2N d
i

�ij.vj � vi/C
X

j2N s
i

Sji:

If we sum these over all cells we see that the sum of the tractions and motive forces,
as well as sum of the dynamic friction force, vanish for all cell-cell interactions
in the interior of the slug. The surviving terms are those due to direct interaction
of a cell with the substrate, or the indirect interaction via a chain of statically-
connected cells that is connected to the substrate. The latter takes the form of a force
on an interior cell equal and opposite to the traction force it exerts on a statically-
connected chain of cells. Thus in the absence of static binding there is no mechanism
by which an interior cell can transmit stress to the boundary, and accordingly, there
can be no volumetric forces on the slug in a continuum description in the absence
of other mechanisms.

In any case, one has to define precisely how cells exert forces on one another, how
to model the active forces, the drag forces, etc. This is a rather involved process, the
details of which are given in [24], and will not be repeated here. The computational
algorithm defined in [24, 75] proceeds as follows.

Step 1. Locate all cells that are within a given distance from cell i.
Step 2. Search the cell’s neighborhood to determine if the cAMP levels are above

threshold, and if so find the direction of the highest cAMP concentration.
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Step 3. If necessary, orient the cell towards the direction of the highest cAMP
concentration.

Step 4. Find all the forces that act on the cell, Fnet from each of the neighbor
cells found in Step 1, deform the three axes of the ellipsoid, and move the cell
according to (2).

Figure 1.31 shows one example of the aggregation patterns that results from the
application of this algorithm. This simulation is done with 2500 cells, but the
cAMP output of each computational cell is equivalent to that of 16 real cells
(see [75] for details). Similar results are obtained with 10K cells and a fourfold
reduction of their cAMP output. In these simulations, it was assumed that the cAMP
distribution is uniform in the z direction, which is sufficiently accurate during early
aggregation, because the cell distribution is essentially 2D, but for mound formation

Fig. 1.31 The early aggregation pattern, driven by pacemakers (red) in the center of a field of cells.
The times beginning at the upper left, are 0, 80, 160, and 320 min. From [75], with permission
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and movement of the slug a 3D computation is needed. However, Fig. 1.32 shows
that the initial stages of mound formation results when cells at the center are pushed
upward by the inward movement of the outer cells.

The similarity with the patterns that emerge when the cells are treated as particles
and their movement governed by formal rules, as in Fig. 1.28 (left), is evident.
However the more detailed treatment of the mechanics allows for more realistic
comparisons between the theoretical predictions and the experimental results.

For example, Bonner [7] discovered how to produce two-dimensional slugs that
are only one cell layer thick and migrate between a glass slide and a drop of mineral
oil. In Fig. 1.33 we show the computational equivalent of this experiment with a 2D
slug whose movement is driven by pacemaker cells at the front. In the upper left
panel another group of pacemaker cells is introduced at the side, and subsequent
frames show how this pacemaker organizes a secondary slug which then breaks
away. This also occurs in Bonner’s 2D slugs, although there the new pacemaker
arises spontaneously, presumably due to variations in properties of the cells, whereas
in the computational experiment the second pacemaker is imposed. Aside from this,
the results are quite similar.

Fig. 1.32 A cross-sectional view of the aggregation field at 80 (top) and 320 (bottom) min. From
[75], with permission

Fig. 1.33 A migrating 2D slug with an auxiliary pacemaker. From [75], with permission
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Detailed modeling of the later stages of slug movement is very complicated
because a slug can frequently elevate the leading one third of the slug as if to sample
the environment, and then touch down again, thus moving in a pulsatile motion.
During migration, cAMP waves propagate down the length of the slug [30] and
cells begin to differentiate into pre-stalk and pre-spore cells that eventually become
the stalk and spore cells in the next stage of the life cycle, the fruiting body. How the
proportions of cell types are determined is a long-standing question [77], and some
of the complexities of slug stage movement and patterning are discussed in the work
of Weijer and collaborators [78, 102, 104]. We shall not pursue this further, but for
one final question.

1.6.3 Who Does the Work in the Slug?

According to our earlier discussion of the mechanics, if our description of cell
interactions properly accounts for cell-cell and cell-substrate interactions, then cells
in the interior of the slug can only contribute to movement of the slug if there is a
chain of rigidly-connected cells that attaches to the substrate. In [24] this is called
the bedspring model, since the rigid cells form a network that transmits stress to the
boundary and allows other cells to crawl through it. This is similar to what occurs
when a single cell migrates through a tissue, but in order for this mechanism to work
in the Dd slug, the network must be dynamic and cells must be able to “freeze”
when stress is applied, but also to move. Beautiful experiments in which the total
force exerted by a slug was measured on a rotating table seemed to indicate that the
motive force scales with the number of cells in the slug, rather than the number in
contact with the substrate [50, 51]. These experiments motivated a computational
study of which cells provide the motive force in the slug. Using an extension of the
cell-based model described in the previous section, a large number of simulations
were done using different aspect ratios of the slugs [24]. The initial configurations
ranged through 250 cases having from 1 to 5 cells in the width and height, and from
1 to 10 cells in the length of the slug. In all cases the cells were stimulated to move
in a fixed direction by a traveling wave. The results are shown in Fig. 1.34. It is clear
from the left panel that the force scales with the number of cells in contact with
the surface, but the right panel suggests how one could conclude that it scales with
the volume of the slug. There the force generated by slugs having the same ratio of
volume to area in contact with the surface fall on a straight line, but the slope varies
with that ratio. Thus if this ratio was approximately constant in the experiments one
could conclude that the force scale with the volume.
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Fig. 1.34 Data from 250 different simulations for the translational force of the slug in nanoNew-
tons (vertical axis) and the number of cells in contact with the surface (left), or the total number of
cells in the slug (right) (horizontal axis). Five lines are clear in the right panel—these correspond
to subsets of the data in which the initial height of the slug is held constant, which implies that the
volume of the slug and the surface area in contact with the substrate are proportional. From [24]
with permission

1.7 Conclusion

In these notes we have attempted to describe a number of interesting problems
connected with cell motility and to indicate some aspects on which progress toward
understanding them has been made. Hopefully the reader will have gained some
insight into the role of mathematical modeling and analysis in the resolutions of
these problems, but will also recognize that much is yet to be done. We are in
fact a long way from a complete understanding of cell motility, either from the
experimental side, where experiments can shed light on specific processes, or from
the mathematical side, where the interactions of the underlying processes can only
be understood through mathematical modeling and computational analysis.

Appendix: Singular Perturbation Reduction

We know how to express reaction dynamics as the evolution equation

dx

dt
D f .x; p/ (1.27)

where x 2 M � Rn and p 2 Rp. Suppose there is a separation of variables into those
that vary rapidly and those that change slowly on the chosen time scale. This leads
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to a system of equations of the form

dx

dt
D f .x; y; �; p/

(1.28)

�
dy

dt
D g.x; y; �; p/

wherein � is a small parameter and x (resp., y) is a slow (resp., fast) variable on the
t time scale.

• What are the implications of this separation for understanding the dynamics?
• More precisely, can we use the separation of time scales to reduce the dimen-

sionality of the problem we have to analyze?

The following simple example will illustrate some of the underlying ideas.
Consider the reaction

A
k1�! B

k2�! C; (1.29)

where A, B, and C are generic chemical species. We assume mass action kinetics
and first-order reactions and therefore can write the governing equations as

�
x D k1x
�
y D k1x � k2y (1.30)
�
z D k2y:

where x; y, and z stand for the concentration of A, B, and C, resp. In addition we
have the conservation condition

.x C y C z/.t/ D .x C y C z/.0/: (1.31)

x + y + z = constant

x

y

z
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Clearly A and B will disappear completely in the steady state, and the exact
solution for the transient problem for A and B is

x D x0e
�k1t

y D y0e
�k2t C k1x0

k2 � k1
Œe�k1t � e�k2t:

If k2 � k1, then after a time t � O.1=k2/ we have

y.t/ � k1x0e�k1t

k2
D k1

k2
x.t/:

But this is what we would get directly if we set
�
y D k1x � k2y D 0 since then

y D k1x

k2
:

This is what we call the ‘pseudo-steady-state’ or PSS value of y , (or alternatively,
the ‘quasi-steady-state’ QSS value of y), and the hypothesis that we can do this is
called the ‘pseudo-(or quasi) steady-state hypothesis’—the PSSH or QSSA. Can we
justify setting

�
y D 0 analytically, and how do we understand it geometrically?

To formalize this reduction, consider the system

dx

d�
D f .x; y/ (1.32)

�
dy

d�
D g.x; y/;

where x 2 Rn, y 2 Rm, and � > 0 is a small parameter.
Let y D �.x/ be one of the solutions of the system

g.x; y/ D 0 (1.33)

defined on a closed bounded domain D  Rn. The degenerate or slow system
associated with (1.33) and the solution y D �.x/ is the system

dx

d�
D f .x; �.x//: (1.34)

The solution y D �.x/ is said to be isolated on D if there exists an � > 0 such
that (1.33) has no solution other than � with the property that

ky � �.x/k < �:
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The associated adjoined (or fast) system is

dy

ds
D g.x�; y/; (1.35)

where x� is regarded as a parameter.

• The isolated solution y D �.x/ is said to be positively stable in D if for all x� in
D the points y D �.x�/ are asymptotically stable stationary points, in the sense
of Lyapunov, of the adjoined system.

• The domain of influence of an isolated, positively stable y D �.x/is the set
of points .x�; y�/ such that the solution of the adjoined system with the initial
conditions y.0/ D y� tends to �.x�/ as s ! 1.

One of the earliest formal statements of what is now know as a singular
perturbation reduction is given by Tikhonov’s theorem [99].

Theorem 2 If some root y D �.x/ of g D 0 is an isolated, positively stable root
in some bounded closed domain D, if the initial point .x.0/, y.0// belongs to the
domain of influence of this root, and if the solution of the degenerate system belongs
to D for 0 	 t 	 T, then the solution .x.t; �/; y.t; �// of the original system tends
to the solution .Nx.t/; Ny.t// of the degenerate or slow system , as � approaches 0, the
passage to the limit

lim
�!0

y.t; �/ D Qy.t/ D �.Nx; t/

holding for 0 < t 	 T0 < T, and the passage to the limit

lim
�!0

x.t; �/ D Nx.t/

holding for 0 	 t 	 T0 < T.

The geometry behind the theorem is qualitatively as shown in the following
sketch.

x

y

y = ϕ(x)
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Remarks

(1) This can be generalized to allow � and t dependence in the right-hand side of
the DE.

(2) If y is sufficiently close to �.x/ then on the fast time scale this analysis can be
viewed in the framework of center manifold theory.

(3) There are many variations on the theme and many expositions of it.

1.8 Glossary

Actin is one of the most abundant proteins found in eukaryotic cells and is highly
conserved throughout evolution. Actin monomers polymerize in an ATP-dependent
process to form polarized actin filaments. The helical actin filament has a barbed
end and a pointed end. In non-muscle cells, the dynamic organization of filamentous
actin gives rise to various cell structures, such as filopodia, lamellipodia, and stress
fibers.

AKT/PKB Cellular homologue of AKT retroviral oncogene protein Ser/Thr
kinase. Also called Protein Kinase B because of homology with Protein Kinase
A and Protein Kinase C family members. AKT has an amino-terminal pleck-
strin homology (PH) domain that binds to the lipid products of phosphoinosi-
tide 3-kinase, phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,
5-trisphosphate. This binding locates it at the plasma membrane where it becomes
phosphorylated on Thr-308 (human AKT1) in the activation loop of the catalytic
domain by phosphoinositide-dependent kinase 1 (PDK1). This phosphorylation
leads to activation. Full activation requires phosphorylation at a second site (Ser-
473 of human AKT). Mammals have at least three distinct genes for AKT family
members (AKT1, AKT2 and AKT3) and they appear to at least partially redundant
in function.

Alpha-actinin is an actin cross-linking protein that belongs to the spectrin
superfamily. It forms antiparallel homodimers in a rod-like structure with one actin-
binding domain on each side of the rod. It can, therefore, cross-link two filaments
of actin.

Arp2/3 (Actin-related protein complex) Extracellular and intracellular signals
that initiate actin cytoskeletal rearrangements flow through the Arp2/3 complex.
The Arp2/3 complex is composed of seven subunits, two unconventional actin
proteins, Arp2 and Arp3, and five additional proteins. One copy of each subunit
is present in the complex. In addition to contributing to the nucleation of actin
filaments, the Arp2/3 complex caps the slow-growing pointed ends of actin filaments
and promotes the elongation of the actin filament at the fast-growing barbed end.
Arp2/3 complexes are localized at the branch point of two different filaments,
binding to both the side of the mother filament and the pointed end of the daughter
filament. These interactions create an approximate 70ı angle with the actin barbed
end oriented towards the plasma membrane. These observations serve as the basis
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for the “dendritic nucleation” model in which Arp2/3, through its interaction with
F-actin, is a key regulator of the unique meshwork of F-actin in the lamellipodial
structure. The Arp2/3 complex influences the strictly regulated reorganization of the
actin cytoskeleton in response to various signaling pathways.

B-Raf is a serine/threonine protein kinase that is a member of the Raf family of
protein kinases. Raf-B can be activated by the small GTPase Ras as well as Rap1.
cAMP activates MAP-Kinase through B-Raf.

Cdc42 is a Rho-family GTPase that was first identified as a regulator of cell
polarity and budding in yeast. In mammalian cells, Cdc42 is activated in response to
integrins and bradykinin. Activated Cdc42 induces formation of actin-rich structures
known as filopodia. Cdc42 affects actin directly by binding to its effector WASP, an
activator of Arp2/3 and actin polymerization. During cell migration, Cdc42 is also
responsible for polarization of the cell.

Chemotaxis the directed movement of a microorganism or cell in response to a
chemical stimulus.

G-proteins G-proteins are heterotrimeric proteins comprising alpha, beta and
gamma subunits. When bound to guanine nucleotide diphosphate (GDP), G-proteins
are inactive, and are activated when bound to guanine nucleotide triphosphate
(GTP). When activated, they split into alpha-GTP and beta-gamma subunits that
are separately used for control of downstream processes. The alpha subunit has
intrinsic hydrolysis activity that removes a phosphate group, whereupon the alpha-
GDP subunit recombines with a beta-gamma subunit.

G-protein coupled receptors (GPCRs) G-protein-coupled receptors are integral
membrane proteins with seven membrane-spanning helices. G-protein is bound to
the receptor in its inactive state, and when a ligand is bound, the receptor may
undergo a conformational change that facilitates the GDP-GTP exchange on a
G protein, which then detaches from the receptor. GPCRs can desensitize when
exposed to ligand for a sufficient length of time as a result of phosphorylation of a
cytoplasmic receptor domain by protein kinases.

In vitro the recreation of biological processes in an artificial laboratory environ-
ment.

In vivo biological processes that take place within a living organism or cell.
Kinase an enzyme that catalyzes addition of a phosphoryl group to proteins.
MLCK (Myosin Light Chain kinase) is a serine/threonine kinase that phospho-

rylates the regulatory light chain (RLC) of the molecular motor myosin, resulting
in increased contraction. In nonmuscle cells MLCK is involved in the regulation of
cell motility.

MLCP (Myosin Light Chain phosphatase) dephosphorylates the regulatory light
chain of molecular motor myosin, thus inactivating it. MLCP is involved in the
regulation of the actin cytoskeleton and cell spreading.

PAK (p21-activated kinase) is a serine/threonine kinase that binds to and is
activated by Rho family GTPases. The PAK family of kinases is highly conserved
among species. PAK family members have an N-terminal kinase domain and
a C-terminal p21 Rac and Cdc-42-binding domain. The binding of Rho family
GTPases to the C-terminus of PAK causes a conformational change resulting in
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autophosphorylation and activation of the kinase. PAK family members have been
shown to play a role in actin polymerization and cytoskeletal dynamics.

PI3K Phosphoinositide 3-kinase catalyzes the phosphoryation of
phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,
5-trisphosphate. The enzyme is cytosolic and become localized to the plasma
membrane, which activates the catalytic subunit. Binding of the catalytic subunit to
activated Ras appears to enhance the membrane association and activation.

Phosphatase an enzyme that removes the phosphoryl group from proteins.
Protease (proteinase, proteolytic enzyme) an enzyme that degrades proteins,

such as collagen, laminin, and fibrin.
PTEN is a phosphatase that can dephosphorylate the lipid products or phospho-

inositide 3-kinase, especially phosphatidylinositol-3,4,5-trisphosphate. By dephos-
phorylating these lipids, PTEN attenuates signaling via the phosphoinositide 3-
kinase pathway.

Rac is a small GTP-binding protein which belongs to the Ras superfamily.
Rac activity depends on the ratio of GTP/GDP bound forms. GEFs (guanine
nucleotide exchange factors), GAPs (GTPase activating proteins) and GDIs (gua-
nine nucleotide dissociation inhibitors) thus determine its activity by regulating
of the GTP/GDP bound form. The downstream effectors of Rac are involved in
regulation of the cytoskeleton.

Ras is a small protein that is activated by exchange proteins of the SOS (Son
of Sevenless) or Ras-GRF (Ras GDP Releasing Factor) family. The release of
GDP and binding of GTP ‘activates’ Ras, allowing it to bind to downstream
effectors, including phosphoinositide 3-kinase (PI3K). Ras is anchored at the plasma
membrane via a carboxy-terminal farnesyl group. One function of Ras is to facilitate
localization of its cytosolic effectors at the plasma membrane. Mutant forms of Ras
that stabilize the GTP bound state contribute to tumor formation.

Rho GTPase is a member of Rho family of small GTP binding proteins, which
include Rho A, B, G. It is active in the GTP-bound state and inactive when
bound to GDP. Activation of Rho results in its association with a wide variety
of effector molecules and leads to activation of downstream signaling cascades.
Rho proteins exhibit intrinsic GTPase activity Rho that is significantly stimulated
by GTPase activating proteins (GAPs). Conversely, GTP exchange factors (GEFs)
promote exchange of GDP for GTP, thus activating Rho. Rho GTPase regulates
actin cytoskeleton organization and assembly, in particular actin stress fibers and
focal adhesion formation. It is involved in cellular processes that depend on actin
cytoskeleton such as cell spreading and migration.

RLC (Regulatory Light Chain of myosin) binds to the neck region of Heavy
Chain (HC) of myosin and regulates its motor activity. When RLC is phosphorylated
by myosin light chain kinase on Ser19 it causes conformational changes in myosin
and activates its motor function. Dephosphorylation of RLC by myosin light
chain phosphatase negatively regulates myosin activity. Phosphorylation of RLC in
smooth muscle cells leads to initiation of contraction, whereas in striated muscles it
increases speed and force of contractions. There is also evidence that in nonmuscle
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cells myosins are participating in cell motility, spreading, cytokinesis and vesicle
transport.

ROCK Rho kinase/ROKalpha/ROCK-II and a related protein p160ROCK/
ROCK-I are serine/threonine kinases. Integrin-dependent activation of Rho family
small GTPases induces Rho-Rho kinase interaction and facilitates translocation of
Rho kinase to the cell membrane. Rho kinase facilitates formation of focal adhesions
and actin stress fiber assembly. It cooperates with other Rho effectors to regulate
the formation of actin structures. Rho kinase associates with and phosphrylates
myosin phosphatase. Phosphorylation leads to the inhibition of phosphatase activity
and thereby enhances myosin-mediated contractility. Rho kinase has been shown
to facilitate tumor cell invasion due to its role in cytoskeletal reorganization. In
addition, Rho kinase promotes cytokinesis by phosphorylation of myosin light chain
at the cleavage furrow.

Small G proteins A class of monomeric, low molecular weight (20–25 kDa)
GTP-binding proteins that regulate a variety of intracellular processes. The GTP
bound form of the protein is active and is inactivated by an intrinsic GTPase activity,
which is controlled by GTPase activators (GAPs), GDP dissociation inhibitors
(GDIs), and guanine nucleotide exchange factors (GEFs).

SOS (Son of Sevenless) is an exchange factor that stimulates GDP release from
Ras to allow GTP binding and formation of the active state. SOS has a pleckstrin
homology (PH) domain that mediates binding to the membrane.

WASP (The Wiskott-Aldrich Syndrome protein) mediates a variety of signals
from kinases, receptors, and small G proteins to the Arp2/3 complex and the actin
cytoskeleton. Homologs in the WASP family include SCAR and WAVE. The family
members share two similar domains: one that mediates interactions of WASP with
adaptor proteins such as profilin, and another involved in interaction with Arp2/3
complex and G-actin. GTP-Cdc42 binding to WASP stimulates the Arp2/3 complex
resulting in actin polymerization.
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Chapter 2
The Diffusion Limit of Transport Equations
in Biology
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“A smart model is a good model.” -Tyra Banks

Abstract Transport equations add a whole new level of modelling to our menu of
mathematical models for spatial spread of populations. They are situated between
individual based models, which act on the microscopic scale and reaction diffusion
equations, which rank on the macro-scale. Transport equations are thus often
associated with a meso scale. These equations use movement characteristics of
individual particles (velocity, turning rate etc.), but they describe a population by
a continuous density.
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In this chapter we introduce transport equations as a modelling tool for biological
populations, where we outline the relations to biological measurements. The link
to individual based random walk models and the relation to diffusion equations are
discussed. In particular, the diffusion limit (or parabolic limit) forms the main part
of this chapter. We present the detailed mathematical framework and we discuss
isotropic versus non-isotropic diffusion. Throughout the manuscript we investigate
a large variety of applications including bacterial movement, amoeboid movement,
movement of myxobacteria, and pattern formation through chemotaxis, swarming
or alignment.
We hope to convince the reader that transport equations form a useful alternative
to other models in certain situations. Their full strength arises in situations where
directionality of movement plays an important role.

2.1 Introduction to Movement Models

Many biological problems lend themselves well to mathematical models. Often we
use these models to predict the behaviour of a population. We can attempt to predict
only population size using ordinary differential equation models of the population
dynamics, or attempt to predict spatial characteristics of the population through the
use of partial differential equation models. In either case, certain simplifications are
necessary. A key question, which must be addressed when dealing with population
models, is how to obtain a model for the macroscopic behaviour of a population
based on information about individuals in the population.

2.1.1 Measurements

As a first example, we consider the case of randomly moving individuals, and
discuss how we may use information about these individuals to derive a model for
the population. First, consider a random variable Xt that represents the location of
an individual at time t. On the population level we consider two statistical measures
as illustrated in Fig. 2.1a:

(A) Population measurements:
(A.1) Mean location: NXt D E.Xt/, and
(A.2) Mean quadratic variation: .

Pn
iD1.Xti � NXt/

2/=.n � 1/ D V.Xt/

These two measures represent characteristic values of the population based on
averages of movement of their individuals. In many cases we can also consider
characteristics of the individual particles themselves:
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(a) (b)

Fig. 2.1 (a): schematic of individuals undergoing a random walk; the locations can be used
to estimate a mean location and a mean squared displacement. (b): measurement of individual
movement path for speed, turning rate and turning angle distribution

(B) Individual measurements:
(B.1) The mean speed, �
(B.2) The mean turning rate, �, and
(B.3) The distribution of newly chosen directions, T.v; v0/, where v and v0 are

the new and previous velocities, respectively.

These measures correspond to the situation seen in Fig. 2.1b. The measure
T.v; v0/ is often referred to as a kernel, and can be described as the probability
density of turning into velocity v given previous velocity v0. For a homogeneous
environment, this will typically be a uniform distribution, but for directed environ-
ments, the distribution may not be uniform. For example, for a cancer cell moving
within a brain, it will be more likely to turn into alignment with the fibrous brain
structures than to travel orthogonally. This means that the turning kernel will have a
higher probability in the direction of this fibre.

The aim of this manuscript is to develop mathematical models which are based
on the above observations. In particular, we are interested in the following questions:

Q1: How can we make a mathematical model for these types of measurements?
Q2: How are these models related?

2.1.2 Random Walk on a Grid

To derive a first and simple model on the population level, we first consider a random
walker on a one dimensional grid [45, 60]. In this situation, consider an individual
starting at point 0, and having some probability 0 < q < 1 of moving to the right,
and some probability 1 � q of moving to the left. In this example, we assume that
there is 0 probability of the random walker staying where it is. We let ı be the spatial
step and � be the time step. This situation is illustrated in Fig. 2.2a.

We now consider Xn to be a random variable representing the position of a
random walker that started at 0 after n discrete steps. After one step the expected
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(a) (b)

Fig. 2.2 (a): simple random walk with constant jump probabilities q and 1� q. (b): random walk
with variable jump probabilities T˙i

value of X1 is

E.X1/ D
X

y

xp.x D y/ D ıq C .�ı/.1 � q/ D ı.2q � 1/; (2.1)

where we are summing over the whole domain. Now if we want to compute E.X2/,
we simply take

E.X2/ D E.X1/C
X

y

xp.x D y/ D ı.2q � 1/C ıq C .�ı/.1 � q/ D 2ı.2q � 1/:

We can recursively define the expectation after n steps E.Xn/ to be

E.Xn/ D ı.2q � 1/C E.xn�1/ D nı.2q � 1/: (2.2)

We now notice that if q D 1
2

in Eq. (2.2), we have that E.Xn/ D 0. This makes
sense, as we would expect to find no net displacement when the probabilities for
moving left and right are equal. If however q > 1

2
, then we have a higher probability

of moving to the right, thus we would expect the net movement to be to the right.
We see that in this case E.Xn/ > 0, as expected. Conversely, when q < 1

2
, we have

E.Xn/ < 0, and see net movement to the left.
We can also consider the variance of our random variable. This is computed using

the following formula:

V.X1/ D E.X21/ � E.X1/
2: (2.3)

We have E.X1/ as computed in (2.1), so we easily find that E.X1/2 D ı2.2q�1/2.
We next compute

E.X21/ D
X

y

x2p.x D y/ D ı2q C .�ı/2.1 � q/ D ı2:
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Therefore,

V.X1/ D ı2 � ı2.2q � 1/2 D 4ı2q.1� q/;

and by the same argument as for the expectation,

V.Xn/ D 4nı2q.1� q/:

These measurements are for the discrete time situation, where an individual
performs n jumps, n 2 N. How do these compare to the continuous time situation?
If we consider a time step to have length � , then t D n� and n D t

�
. We then define

a mean velocity c and a diffusion coefficient D as:

c D E.Xt/

t
D ı

�
.2q � 1/; D D 1

2

V.Xt/

t
D 2ı2

�
q.1� q/: (2.4)

2.1.3 A Continuous Random Walk

To derive a mathematical description of the random walk from above, we introduce
p.x; t/ as probability density for the location of the random walker. We begin with
a description of the discrete case discussed above. If we want to define an equation
for p.x; t C �/, we are looking for the probability that an individual will be found at
x at time t C � . We note that the only way for an individual to arrive at position x at
time t C � , is to come from the grid point to the left, or to the right from time t. We
use the Master equation approach

p.x; t C �/ D qp.x � ı; t/C .1� q/p.x C ı; t/; (2.5)

where q; 1 � q are the probabilities for a jump to the right/left per unit of time � ,
respectively. In order to determine the continuous limit of this discrete equation, we
assume that � and ı are small parameters. Then a formal Taylor expansion becomes

p C �pt C �2

2
ptt C h:o:t: D q

�

p � ıpx C ı2

2
pxx � h:o:t:

�

C.1 � q/

�

p C ıpx C ı2

2
pxx C h:o:t:

�

:

Simplifying, we obtain

pt.x; t/ D ı

�
.1 � 2q/px.x; t/C ı2

2�
pxx.x; t/C h:o:t:: (2.6)
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We see that the dominating terms in Eq. (2.6) are the standard advection-diffusion
equation

pt.x; t/C cpx.x; t/ D Dpxx.x; t/

with

c D ı

�
.1 � 2q/ and D D ı2

2�
:

At this stage we can study different possible limit scenarios for ı; � ! 0 and
q ! 1=2. We can do this in a number of ways, and we present three choices below.
Of course, there are many more choices of these scalings, but most of them will not
lead to a useful limit equation. In other words, if ı; �; q do not scale as indicated
below, then this method is not appropriate.

(a) ı
�

! ˛=constant. Then ı2

�
D ı ı

�
! 0, which causes the diffusive term to

vanish, and we are left with a simple transport equation

pt C cpx D 0:

(b) ı2

�
! 2D Dconstant, then we can consider two cases:

(b.1) if q D 1
2
, then c D 0, and we obtain a pure diffusion equation

pt D Dpxx:

(b.2) If q ! 1
2

in such a way that ı
�
.1 � 2q/ ! c, and ı2

2�
D D

4q.1�q/ ! D,
then the scaling results in the advection-diffusion equation

pt C cpx D Dpxx; (2.7)

where c and D are given by the measurements (2.4)

c � E.Xt/

t
;D � 1

2

V.Xt/

t
:

Summary

• When ı and � scale in the same way, then we obtain a transport equation. This
case is called drift dominated.

• When ı2 � � , we have the diffusion dominated case.
• Only in the case where q � 1

2
� � do we get both terms, an advection and a

diffusion term (mixed case).
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2.1.4 Outline of This Manuscript

We have seen that population measurements lead us in a very natural way to drift-
diffusion models of the type (2.7). If individual measurements are available, then
the framework of transport equations becomes available, which we develop in the
next sections. Of course there is a close relation between individual behaviour and
population behaviour. This is reflected in our theory through the parabolic limit or
drift-diffusion limit.

Above, we related population measurements to population drift and diffusion
terms. Using the parabolic limit, we will be able to relate individual measurements
to population drift and diffusion.

In Sect. 2.2 we consider the one-dimensional version of the transport equations.
Individuals can only move up or down a linear feature, so that the movement is
essentially one dimensional. The one-dimensional formulation has the advantage
that most computations can be carried out and even explicit solutions can be found.
We summarize results on invasions and pattern formation as well as applications to
growing and interacting populations, chemotaxis, swarming and alignment.

In Sect. 2.3 we formally define transport equations and then define the mathe-
matical setup. We introduce the basic assumptions (T1)–(T4) and we immediately
explore the spectral properties of the turning operator.

Section 2.4 is devoted to the diffusion limit. Based on biological observations,
we introduce a time and space scaling which, in the limit of macroscopic time and
spaces scales, leads to a diffusion equation. Important is the structure of the resulting
diffusion tensor D, which can be isotropic (D D ˛I), or anisotropic. We find easy-
to-check conditions for the isotropy of the diffusion tensor. In Sect. 2.4 we also
consider examples of bacterial movement, amoeboid movement, myxobacteria and
chemotaxis. Finally, we introduce an important biological concept of persistence,
which leads us back to biological measurements. The persistence, also called mean
cosine, can easily be measured in many situations.

There are interesting further developments for individual movement in oriented
habitats. Unfortunately, we are not able to include all these models and applications
here, hence we chose to give a detailed list of references for further reading in
Sect. 2.5.

2.2 Correlated Random Walk in One Dimension

The one dimensional correlated random walk is an extension of the diffusion
random walks studied earlier, as it allows for correlation of movement from one
time step to the next; in particular correlation in velocity. These models are easy
to understand and they form a basis for the understanding of higher dimensional
transport equations. In fact, many of the abstract methods, which we introduce
later for transport equations, are simply illustrated in the one-dimensional context.
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However, the 1-D model is not only a motivating example, it is a valid model for
random walk on its own and it has been applied to many interesting biological
problems. See for example the review article of Eftimie [10] on animal swarming
models.

In the following sections we will introduce the model and various equivalent
variations, we will discuss suitable boundary conditions, and we will write the
model in an abstract framework, which will become important later.

2.2.1 The Goldstein-Kac Model in 1-D

Taylor [56] and Fuerth [15] developed the one dimensional correlated random walk
model in the same year. Goldstein [18] and Kac [39] formulated it as a partial
differential equation, and this is where we start. Let u˙.x; t/ denote the densities of
right/left moving particles. The Goldstein-Kac model for correlated random walk is

uC
t C �uC

x D ��

2
uC C �

2
u�

u�
t � �u�

x D �

2
uC � �

2
u�; (2.8)

where � denotes the (constant) particle speed and �=2 > 0 is the rate of switching
directions from plus to minus or vice versa. We can also consider an equivalent
formulation as a one-dimensional transport equation

uC
t C �uC

x D ��uC C �

2
.uC C u�/

u�
t � �u�

x D ��u� C �

2
.uC C u�/; (2.9)

where now � > 0 is the rate of directional changes; new directions are chosen as
plus or minus with equal probability 1=2. The systems (2.8) and (2.9) are equivalent,
however the second formulation allows us to consider the system in the transport
equation framework, as well as prepare it for extension to higher dimensions.

Another equivalent formulation arises if we look at the total population u D
uC C u� and the population flux v D �.uC � u�/:

ut C vx D 0

vt C �2ux D ��v; (2.10)

which is also known as Cattaneo system [38]. This formulation will be more
natural for scientists with experience in continuum mechanics, as the first equation
is a conservation of mass equation, while the second equation can be seen as a
momentum equation, where the flux adapts to the negative population gradient
with a time factor or e��t. See Joseph and Preziosi [38] for a detailed connection
to continuum mechanics and to media with memory. Here, we stay with the
interpretation of population models.
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If we assume the solutions are twice continuously differentiable, we get yet
another closely related equation. Indeed, differentiating the first equation of (2.10)
by t and the second by x we get

utt C vxt D 0

vxt C �2uxx D ��vx; (2.11)

which can be rearranged into an equation for u alone, making use of (2.10) in order
to substitute vx D �ut:

1

�
utt C ut D �2

�
uxx; (2.12)

which is the telegraph equation. This equation can be derived for the electrical
potential along a transatlantic telegraph cable; a quite astonishing relation for our
original random walk model. In this equation we then clearly see the relation to
a diffusion equation. Just imagine that � ! 1 and we loose the second time
derivative term. At the same time we let � ! 1 such that

0 < lim
�!1;�!1

�2

�
DW D < 1:

Then D becomes the diffusion coefficient and the parabolic limit equation reads

ut D Duxx: (2.13)

We see that the one-dimensional model for correlated random walk is in fact
closely related to transport in media with memory as well as to transatlantic cables.
This reinforces the universality of mathematical theories, and the fact that often
unexpected relations can be found.

2.2.2 Boundary Conditions

It is an interesting exercise to find appropriate boundary conditions for these models.
Let us focus on the correlated random walk model (2.8). Since the model equations
are hyperbolic, we need to look at the characteristics. For the first equation, the
characteristics are x.t/ D xC � t and for the second equation they are x.t/ D x� � t.
Hence the variable uC needs boundary conditions on the left boundary, while no
boundary condition on the right boundary. In Fig. 2.3 we indicate the characteristics
with arrows. Formally, we define the domain boundary of ˝ D Œ0; l � Œ0; t/ as
hyperbolic boundary

@˝ D ı˝C [ ı˝�
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Fig. 2.3 Illustration of the two parts of the hyperbolic boundary of ˝. Arrows indicate the
directions of the characteristics

with

ı˝C WD f0g � Œ0; t/ [ Œ0; l � f0g; ı˝� WD Œ0; l � f0g [ flg � Œ0; t/:

Then uC needs boundary conditions at @˝C and u� needs boundary conditions at
@˝� (see Fig. 2.3).

Both quantities require initial conditions at time t D 0:

uC.x; 0/ D uC
0 .x/; u�.x; 0/ D u�

0 .x/:

On the sides of the domain we can mimic the classical Dirichlet, Neumann and
periodic boundary conditions.

• Dirichlet boundary conditions describe a given concentration at the boundaries.
In the hyperbolic case this means a given incoming concentration

uC.0; t/ D ˛1.t/; u�.l; t/ D ˛2.t/:

In the case of ˛1 D ˛2 D 0 we call these the homogeneous Dirichlet boundary
conditions.

• Neumann boundary conditions describe the flux at the boundary. Hence in our
case

�.uC.0; t/� u�.0; t// D ˇ1.t/; �.uC.l; t/ � u�.l; t// D ˇ2.t/:

In the no-flux case they become homogeneous Neumann boundary conditions

uC.0; t/ D u�.0; t/; u�.l; t/ D uC.l; t/:
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• Periodic boundary conditions are as expected

uC.0; t/ D uC.l; t/; u�.l; t/ D u�.0; t/:

The corresponding initial-boundary value problems for the correlated random walk
as well as for the Cataneo equations and for the telegraph equation have been studied
in great detail in [28], including results on existence, uniqueness, and positivity. One
curious result is the fact that the Dirichlet problem regularizes, while the Neumann
and periodic problems do not regularize. In the Dirichlet problem singularities or
jumps are washed out at the boundary, while the Neumann case they are reflected
and in the periodic case they are transported around the domain.

2.2.3 Abstract Formulation

The main part of this manuscript provides analysis of a generalization of the
one-dimensional correlated random walk to higher dimensions. We will construct
an abstract framework of function spaces and turning operators, and the one
dimensional model will arise as a special case. To prepare this relation, we now
formulate Eq. (2.8) as a differential equation in a Banach space. In fact, we use the
(equivalent) system (2.9) and introduce an integral operator T for the last term on
the right hand sides:

T W R2 ! RI
�

uC
u�
�

7! 1

2
.uC C u�/:

Here it does not look like an integral operator, but the higher dimensional version
will include an integration. In fact here the integration is over the discrete space
V D fC�;��g. The operator norm of this linear operator can be easily computed to
be

kT k1 D 1

2
;

where the operator norm is defined as

kT k1 D sup
k�k1D1

kT �k1:

It will be important later that this norm is less than or equal to 1. The whole right
hand side of the system (2.9) defines another operator, which we call the turning
operatorL :

L W R2 ! R
2I

�

uC
u�
�

7!
���uC C T .uC; u�/

��u� C T .uC; u�/

�

:
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If we write L as a matrix, we get

L D �

2

��1 1

1 �1
�

we obtain eigenvalues of �1 D 0 and �2 D ��. The zero eigenvalue corresponds to
the fact that the total population size is conserved for Eq. (2.9). The corresponding
eigenspace is spanned by the vector .1; 1/T . Hence the kernel of L is given as

kerL D h
�

1

1

�

i:

The abstract formulation appears a bit staged, but this will form the framework for
the multi dimensional situation.

2.2.4 Explicit Solution Using Bessel Functions

There exists an explicit solution of the correlated random walk model (2.8) using
Bessel functions. Based on Poincare’s [54] Bessel function solutions for the one-
dimensional telegraph equation (2.12) on R, Hadeler [21] modified these solutions
to find explicit solutions to the correlated random walk system (2.8) on R.

Let us recall some basic facts about the modified Bessel functions. For k 2 N

we denote by Jk the Bessel functions of first kind, and by Ik.x/ WD ek� iJk.ix/ the
modified Bessel functions with purely imaginary argument. For k D 0 and k D 1

we have the relations

I0.x/ D J0.ix/ D
1
X

kD0

1

.kŠ/2

� x

2

�2k
and I1.x/ D d

dx
I0.x/:

The functions I0.x/; I1.x/ and I1.x/=x are real analytic and positive for x > 0. For
an initial condition u0 2 Lp the solution of u.t; x/ D .uC.t; x/; u�.t; x// of (2.8) on
R can then be written as

uC.t; x/ D uC
0 .x � � t/e��t=2 C

Z xC� t

x�� t
K.t; x; y/u�

0 .y/dy

C
Z xC� t

x�� t
KC.t; x; y/uC

0 .y/dy

u�.t; x/ D u�
0 .x C � t/e��t=2 C

Z xC� t

x�� t
K.t; x; y/uC

0 .y/dy

C
Z xC� t

x�� t
K�.t; x; y/u�

0 .y/dy
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with integral kernels

K.t; x; y/ WD �e��t=2

4�
I0

�

�

2�

p

�2t2 � .y � x/2
�

K˙.t; x; y/ WD �e��t=2

4�

I1
�

�

2�

p

�2t2 � .y � x/2
�

p

�2t2 � .y � x/2
.� t � .y � x//:

For further reading on where these solutions come from, see [28]. From this
representation we see that solutions are in L1.Œ0;1/ � R/ for initial conditions in
L1. The integrals are absolutely continuous such that possible discontinuities can
only travel along the characteristics x � � t D c and x C � t D c.

Additionally, if u0 is k–times differentiable then u is also. In general we conclude:

u0 2 L1.R/ H) u 2 L1.Œ0;1/ � R/

u0 2 Ck.R/ H) u 2 Ck.Œ0;1/ � R/:

2.2.5 Correlated Random Walk Models for Chemotaxis

Chemotaxis describes the active orientation of individuals, such as cells or bacteria,
on gradients of a chemical signal, which is produced by the cells themselves.
In many examples, such as Dictyostelium discoideum (DD) or Escherichia coli,
this process leads to macroscopic cell aggregations. Chemotaxis is a prototype of
self organization, where the resulting pattern is more than the sum of its parts.
Keller and Segel [40] started a systematic modelling in the 1970s and since then
a large amount of literature has been published on chemotaxis. The models have
been developed to accurately describe biological experiments and the models have
inspired a generation of mathematicians working on finite time blow up as well as
spatial pattern formation. For further details we recommend the two review articles
by Horstmann [37] and by Hillen and Painter [30].

We can model chemotactic behaviour via a correlated random walk model. The
action of the chemical signal on the movement mechanics of cells is very different in
eukaryotic cells versus amoeboid cells. In E. coli, for example, the chemical sensing
receptors are internally coupled to the rotation mechanisms of the flagella. If the
cell encounters an increasing signal concentration, it prolongs straight movement
and reduces reorientations. This in effect leads to oriented movement up a signal
gradient [14, 48]. In our context this corresponds to a change in turning rate �
depending on the signal strength and its gradient. Amoeboid cells, however, are
moving through tread milling of an internal actin-myosin filament mechanism.
Amoeboid cells are able to detect directions of increased chemical signal and they
can actively choose directions and adapt their speed. In this particular case, the
turning rate as well as the speed are affected by the signal S [6]. In one dimension,
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the corresponding hyperbolic chemotaxis model reads

uC
t C .�.S/uC/x D ��C.S; Sx/uC C ��.S; Sx/u�

u�
t � .�.S/u�/x D �C.S; Sx/uC � ��.S; Sx/u�

�St D DSSxx C ˛.uC C u�/� ˇS;

(2.14)

where u˙.x; t/ are as before, the densities of right and left moving particles
respectively. The density of the chemical signal is given by S.x; t/, and �.S/ and
�.S; Sx/ are the density dependent speed and turning rate. Notice that here � is
used without a factor of 1=2, so it is a turning rate (and not a rate of change of
direction). The last equation in (2.14) describes diffusion, production and decay of
the chemotactic signal S.x; t/, where DS > 0 is the diffusion coefficient of the signal,
˛ > 0 is the production rate as produced from the total cell population uC C u� and
ˇ > 0 is a constant decay rate. The parameter � > 0 is used to indicate that signal
diffusion might happen on a faster (or slower) time scale than cell movement.

As in our derivation from (2.12) to (2.13) we can use scaling arguments to
compute a parabolic limit (see [32, 33] for details):

ut D .A.S; Sx/ux � �.S; Sx/uSx/x : (2.15)

It is interesting to see how the diffusivity A and the chemotactic sensitivity � depend
on speed � and turning rate �. The diffusivity is

A.S; Sx/ D �2.S/

�C.S; Sx/C ��.S; Sx/
(2.16)

while the chemotactic flux is

�.S; Sx/Sx D � �.S/

�C.S; Sx/C ��.S; Sx/
�

� 0.S/Sx C .�C.S; Sx/ � ��.S; Sx//
�

:

(2.17)
When � > 0, we have positive taxis, which supports aggregation. Here we have two
effects which can cause positive chemotactic flow:

1. If � D �.S/ and � 0.S/ < 0, then particles slow down at high concentrations of S
which leads to aggregation at high concentrations of S. Or, alternatively,

2. If �C < �� for Sx > 0, then the turning rate is reduced when moving up the
gradient of S, which also leads to aggregation.

Specifically, we study two examples.

Example 1 (And Homework) Assume � Dconst and

�˙.S; Sx/ D �

2A
.� � '.S/Sx/

C :
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Fig. 2.4 Left: two aggregations evolve from a compactly supported initial condition for a case
corresponding to Example 1. Right: occurrence of a sharp gradient due to Burger’s equation terms
as in Example 2. In both simulations the initial signal concentration is linearly increasing from left
to right (not shown)

1. Describe a biological situation for the above choice of � and � . Does this choice
correspond to the bacterial or amoeboid case? Explain.

2. Compute the diffusivity A and the chemotactic flux �Sx.

Example 2 For the second example, we consider the case where � D D D 0, and
�.S/ D S. Then the last equation of (2.14) can be solved as S D ˛

ˇ
.uC C u�/ and

we therefore have that the left hand side of the first equation of (2.14) becomes

uC
t C .�.S/uC/x D uC

t C
�

˛
ˇ
.uC C u�/uC

�

x

D uC
t C ˛

ˇ

�

uC2
�

x
C ˛

ˇ

�

uCu��
x
:

(2.18)

We see that the first two terms on the right hand side come from Burger’s equation.
The standard form of Burger’s equation is ut C .u2/x D 0; and it is well known that
Burger’s equation has shock solutions [2]. Hence in this case we might expect shock
solutions for the chemotaxis model. In [33] we use the method of viscosity solutions
to further analyse the appearance of sharp gradients in chemotaxis invasion waves
[see Fig. 2.4 (right)].

2.2.6 Reaction Random Walk Systems

The above random walk models have been considered under (local) preservation of
particles. However, these models can also be used to describe growing, shrinking
and interacting populations through reaction random walk systems [22]. If using
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diffusion equations, then the most often used assumption is an independence
between species movement and species growth and death, leading to a typical
reaction diffusion equation ut D DuxxCf .u/. In the correlated random walk (2.8) the
population has been split into right and left moving populations, hence the inclusion
of reaction terms must be done carefully. We follow Hadeler [19–21] and present
three ideas from the literature:

(i) A straight forward analog of the reaction diffusion modelling was introduced
in [36] leading to the reaction random walk system

uC
t C �uC

x D �

2
.u� � uC/C 1

2
f .uC C u�/

u�
t � �u�

x D �

2
.uC � u�/C 1

2
f .uC C u�/:

The reaction acts symmetrically between the two classes and newborn particles
choose either direction with the same probability. Holmes [36] showed the
existence of travelling waves for this model, while in [24] and [25] we
developed Turing instabilities and Lyapunov functions, respectively.

(ii) If the reaction is split into growth and death terms, like f .u/ D um.u/�u g.u/,
where m.u/ denotes a birth rate and g.u/ a death rate, then the above splitting
is inappropriate, as death of a right moving particle leads to reduction of left
moving particles. Individuals can only be discounted from their own class.
Hence the reaction random walk model needs to be modified in the form

uC
t C �uC

x D �.u� � uC/C 1

2
.uC C u�/m.uC C u�/ � uC g.uC C u�/

u�
t � �u�

x D �.uC � u�/C 1

2
.uC C u�/m.uC C u�/ � u� g.uC C u�/:

(iii) Here we consider the same reaction terms as in (ii) but we additionally assume
that the movement direction of newborn particles correlates to the direction of
their mother by a parameter � 2 Œ0; 1. The corresponding model equations are

uCt C �uCx D �.u� � uC/C .�uC C .1 � �/u�/m.uC C u�/� uC g.uC C u�/

u�t � �u�x D �.uC � u�/C ..1 � �/uC C �u�/m.uC C u�/� u� g.uC C u�/:

If � D 1=2 we have case (ii). For � > 1=2 the daughter particles tend to prefer
the same direction as the mother and for � < 1=2 they prefer the opposite.

Earlier we derived a Cattaneo system and a telegraph equation (2.12) from a
correlated random walk (2.8). We can do the same transformation for a reaction
random walk model. The corresponding reaction Cattaneo model for the total
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population u D uC C u� and flux v D �.uC � u�/ then becomes

ut C �vx D f .u/

vt C �ux D �h.u/ v;

with

f .u/ D
�

f .u/ in case (i)
um.u/� u g.u/ in case (ii) and (iii);

h.u/ D
8

<

:

� in case (i)
�C g.u/ in case (ii)
�C .1 � 2�/m.u/C g.u/ in case (iii):

The boundary conditions transform as

• homogeneous Dirichlet

u.t; 0/ D �v.t; 0/; u.t; l/ D v.t; l/:

• homogeneous Neumann

v.t; 0/ D 0; v.t; l/ D 0:

• Periodic

u.t; 0/ D u.t; l/; v.t; 0/ D v.t; l/:

To further investigate the relation to a telegraph equation, we focus on the case (i).
The reaction Cattaneo system in this case is

ut C �vx D f .u/

vt C �ux D ��v:

We assume that solutions are twice continuously differentiable and we differentiate
the first equation with respect to t and the second with respect to x and we eliminate
v to obtain the reaction telegraph equation

utt C .� � f 0.u//ut D �2uxx C � f .u/:

The above transformation applied to cases (ii) and (iii) would not lead to a single
telegraph equation, unless � D 1=2 and g D 0, which is case (i) (see also [21, 22]).
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2.2.7 Correlated Random Walk Models for Swarming

The correlated random walk models have also been used to describe animal
alignment and swarming. Pfistner [53] and Lutscher and Stevens [42] developed and
analysed a non-local correlated random walk model for alignment and rippling of
myxobacteria. Myxobacteria are rod shaped bacteria that are known to form tightly
aligned swarms which sometimes show spatial rippling. The following model of
Pfisnter [53] and Lutscher and Stevens [42] was able to explain these patterns:

uC
t C �uC

x D ��CuC C ��u�

u�
t � �u�

x D �CuC � ��u�

with turning rates

�˙ D F

�Z R

�R
˛.r/u˙.t; x ˙ r/C ˇ.r/u�.t; x ˙ r/dr

�

: (2.19)

The turning rates depend non-locally on the surrounding population up to a sampling
radius R > 0. The kernel ˛.r/ describes the influence of individuals that move away
from x, while the ˇ-term describes the contribution of particles that move towards
x. A careful choice of ˛.r/ and ˇ.r/ enabled them to model alignment and rippling.

Eftimie et al. [10, 11] generalized this approach and separated the three major
interaction modes of local repulsion, intermediate alignment and long range
attraction. A schematic is shown in Fig. 2.5. They assume that the turning rate
�˙.yṙ ; yȧl ; yȧ / is a function of a repulsive signal yṙ , an alignment signal yȧl and
an attractive signal yȧ . Each of these signals has a non-local form as in (2.19), where
the corresponding weights ˛r; ˛al; ˛a and ˇr; ˇal; ˇa concentrate their weight in the
corresponding spatial distances around x, as illustrated in Fig. 2.5. There are many
possible choices of these weight functions, and Eftimie [10] presents a detailed
review of relevant possibilities. Depending on the choice of these weight functions,
the model is able to describe travelling pulses, travelling trains, static pulses,
breathers, feathers, ripples and many more. The non local model for correlated
random walk is a rich source of interesting patterns and interesting mathematics

attraction

repulsion
alignment

Fig. 2.5 Illustration of the non-local swarming model of Eftimie. The closest area is repulsive, the
intermediate region supports alignment and the far region is attractive
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and a full mathematical analysis is just beginning. For more details see the excellent
review of Eftimie [10].

2.3 Transport Equations

We can extend the ideas introduced in Sect. 2.2 to higher dimensions in the
form of the transport equation. Transport equations are a powerful tool to derive
mesoscopic models for the spatial spread of populations. With mesoscopic we
denote an intermediate scale, where properties of individual cells are used in the
modelling, however, cells are not represented as individual entities, like in individual
based modelling, rather, they are presented as macroscopic densities. Transport
equations are particularly useful if the movement velocity (= speed � direction) of
the individuals is of importance. The theory of kinetic transport equations developed
from the Boltzmann equation and the thermodynamics of diluted gases (see e.g.
[3]) and has since been developed for biological populations as well [46, 52]. One
major difference between physical and biological applications is the number of
conserved quantities. While in ideal gas theory five quantities are conserved (mass,
three momentum components, energy), in biological populations, we often only
conserve mass. Mathematically the conserved quantities are reflected as linearly
independent functions in the kernel of a so called turning operator. The kernel of the
turning operator in gas theory is five dimensional, while in our applications it is one
dimensional. The kernel of the turning operator sets the stage for the mathematical
details later. Hence this difference in size of the kernel is, in a nutshell, the main
difference between physical and biological applications. The rest is details, which
we will present as fully as possible in this manuscript.

We need to distinguish two important cases. Case 1: the kernel of the turning
operator contains only constant functions and case 2: the kernel is spanned by
a function that depends on the velocity. Such a function is called Maxwellian
in a physical context [52]. The first case allows for a quite general theory as
was developed in Othmer and Hillen in [29, 47], while the second case is more
complicated. We use the remainder of this manuscript to study case 1,where we
explain the mathematical setup, derive the parabolic limit, and apply the method
to chemotaxis. Case 2 is covered in the literature [4, 8, 27, 31, 52] and we plan a
summary of that case in a forthcoming textbook [35].

2.3.1 The Mathematical Set-Up

We begin by parameterizing a population density p.x; v; t/ by space x, velocity v and
time t. This allows us to incorporate individual cell movement into the model, an
important feature which distinguishes transport models from macroscopic models.
As we are typically dealing with biological phenomena, we take t � 0 and x 2 R

n,



92 T. Hillen and A. Swan

with n D 2; 3. The case of n D 1 corresponds to the one-dimensional correlated
random walk, which we discussed already in Sect. 2.2. The velocities v are taken
from V , where V  R

n and V D Œs1; s2�S
n�1 or V D sSn�1. The general transport

equation for a population density p.x; v; t/ is thus

pt C v � rp D ��p C �

Z

V
T.v; v0/p.x; v0; t/dv0; (2.20)

where we omitted the arguments, except in the integral. The terms on the left hand
side describe the particles’ movement in space, while the terms on the right hand
side describe how the particles change direction. The parameter � is the turning
rate, which describes how often the particles change direction. As such, 1

�
describes

the mean run length. In other words, 1
�

represents how long a particle travels on
average in a straight line before it changes direction. The distribution T.v; v0/ inside
the integral is called the turning kernel, or turning distribution, and describes the
probability that a cell traveling in the direction of v0 will turn into the direction
of v. As such, the first term on the right hand side describes cells turning out of
velocity v, while the integral term describes cells turning into velocity v from all
other directions v0 2 V . Together, these two terms are called the turning operator.
Here we follow the theory as developed by Stroock [55], Othmer et al. [46] and
Hillen and Othmer [29, 47].

Given the compact set V of possible velocities, we work in the function space
L2.V/ and we denote by K  L2.V/ the cone of non-negative functions. Given
by the right hand side of Eq. (2.20) we define an integral operator on L2.V/IT W
L2.V/ ! L2.V/ as

T �.v/ D
Z

V
T.v; v0/�.v0/dv0

with adjoint

T ��.v0/ D
Z

V
T.v0; v/�.v0/dv0:

The integral kernel T and the integral operator T set the stage for the theory. In
the context of biological applications, we make the following general assumptions.
We will now list these general assumptions, with a detailed explanation of each
assumption following.

Basic Assumptions

(T1) T.v; v0/ � 0;
R

V T.v; v
0/dv D 1, and

R

V

R

V T
2.v; v0/dv0dv < 1.

(T2) There is a function u0 2 K nf0g, a � > 0 and an N > 0 such that for all
.v; v0/ 2 V � V , either

(a) u0.v/ 	 TN.v0; v/ 	 �u0.v/, or
(b) u0.v/ 	 TN.v; v0/ 	 �u0.v/;
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where the N-th iterate of T is

TN.v0; v/ D
Z

V
: : :

Z

V
T.v0;w/ : : : T.wN�1; v/dw1 : : : dwN�1:

(T3) kT kh1i? < 1, where L2.V/ D h1i ˚ h1i?.
(T4)

R

V T.v; v
0/dv0 D 1:

Assumption (T1) Assumption (T1) implies that T.�; v0/ is a non-negative prob-
ability density on V . The fact that T 2 L2.V � V/ implies that T and T � are
Hilbert-Schmidt operators, defined as follows [23]:

Definition 1 An integral operatorT f .v/ D R

T.v; v0/f .v0/dv0 with T 2 L2.V�V/
is called a Hilbert-Schmidt operator.

Hilbert-Schmidt operators have some compactness properties:

Theorem 1 ([23]) Hilbert-Schmidt operators are bounded and compact.

Furthermore, (T1) implies that T and T � are positive operators.

Assumption (T2) We will show that assumption (T2a) ensures that T � is u0-
positive in the sense of Krasnosleskii [41], while (T2b) ensures that T is u0-positive.
One of these is sufficient. Krasnoselskii defines u0-positivity as follows.

Definition 2 Let X be a Banach space, K the non-negative cone and L W X ! X
linear. Then

(a) L is positive if L W K ! K :

(b) Let L be positive. L is u0-bounded from below if there is a fixed u0 2 K nf0g
such that 8� 2 K nf0g 9N > 0; ˛ > 0 with

˛u0 	 LN�:

(c) Let L be positive. L is u0-bounded from above if there is a fixed u0 2 K nf0g
such that 8 2 K nf0g 9N > 0; ˇ > 0 with

LN 	 ˇu0:

(d) L is u0-positive if conditions (b) and (c) are both satisfied.
(e) K is reproducing if for all � 2 X there exist �C; �� 2 K such that � D

�C � ��.

Using this definition, we can prove the following Lemma:

Lemma 1 Assumption (T2a) implies that T � is u0-positive, while (T2b) implies
that T is u0 positive.
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Proof Consider � 2 K . We compute the iterate

T�N
� D

Z

V
T.v0;w1/ � � �T.wN1 ; v/�.v

0/dw1 : : : dwNC1dv0

D
Z

V
TN.v0; v/�.v0/dv0

�
Z

V
u0.v/�.v

0/dv0 D u0.v/
Z

V
�.v0/dv0 D ˛u0.v/:

The last inequality is a direct consequence of (T2a). Similarly, we have

T�N
� 	

Z

V
�u0.v/�.v

0/dv0 D �

Z

V
�.v/dvu0.v/ D ˇu0.v/:

The second statement has a very similar proof. ut
Condition (T2) has an interesting biological meaning. It is not assumed that the

kernel T is positive. In fact, it is allowed for T to have support that is smaller than V ,
but some iterate of T must cover V . For example if individuals are able to turn for up
to 45 degrees per turn, then they are able to reach any direction after 4 turns. In that
case T4 would be u0 positive. See Fig. 2.6 for an illustrative explanation. Using (T2)
we are more general than most of the publications on transport equations in biology.
It is almost always assumed that T > 0, but here we can relax that assumption.

The u0 positivity is already sufficient to have a Krein-Rutman property:

Theorem 2 (Krasnoselskii, [41], Theorems 2.10, 2.11) Let K be a reproducing
non-negative cone in X. Let L be u0-positive. Let '0 2 K be an eigenfunction of L.
Then

4

2

T2

T3 T3

T(v,v’) T1

T
v’ v’

T4

T

Fig. 2.6 Illustration of the iterates of a turning operator. On the left we indicate the support of a
turning kernel that allows directional changes of up to 45ı. On the right we indicate the range of
the iterates T1; T2; T3; T4. After four turns, all directions are possible
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(i) L'0 D �0'0 and �0 is a simple, leading eigenvalue,
(ii) '0 is unique inK up to scalar multiples, and
(iii) j�0j > j�j for all other eigenvalues �.

In our case we have

T �1 D
Z

V
T.v0; v/1dv0 D 1

by (T1). Hence '0 D 1 2 K is the leading non-negative eigenfunction of T � with
eigenvalue �0 D 1. All of the other eigenvalues are such that j�j < 1. We also have

T 1 D
Z

V
T.v; v0/dv0 D 1

by (T4).This means that we also have that '0 D 1 is the leading non-negative
eigenfunction of T .

Assumption (T3) Note that in Krasnoselskii’s theorem above it is assumed that
there exists an eigenfunction in K . This is not always the case, and assumption
(T3) ensures the existence of a spectral gap between the leading eigenvector '0 D 1

and the remainder of the spectrum. We will show later that if T is a normal operator
(or if T � is normal), then (T2) implies (T3).

Assumption (T4) Condition (T4) looks as natural as the second condition in (T1).
It has, however a very different meaning. The meaning of (T4) is that the eigenvalue
equation

Z

V
T.v; v0/�.v0/dv0 D ��.v/

has a constant solution �.v/ D 1 with eigenvalue � D 1. This is a very special
case that allows us to develop a full theory and to do the macroscopic scalings done
later in this chapter. If the leading eigenfunction '0.v/ is not constant the methods
will change slightly, and particular care must be given to the resulting non-isotropic
diffusion equations, which is discussed elsewhere [31, 35]. Both cases are equally
important in terms of applications.

2.3.2 The Turning Operator

The turning operator describes the whole right hand side of (2.20) and is given by
L W L2.V/ ! L2.V/:

L p.v/ D ��p.v/C �T p.v/
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with adjoint

L �p.v/ D ��p.v/C �T �p.v/:

We can now write down a result about the spectrum of the turning operator.

Lemma 2 Assume (T1)–(T4). Then 0 is a simple eigenvalue of L � and L with
leading eigenfunction '0 D 1. All other eigenvalues � satisfy �2� <Re� < 0. All
other eigenfunctions have integral zero.

Proof Both T and T � have a spectral radius of 1, which implies that �T has a
spectral radius of �. We therefore have

�2� < Re� < 0:

If ' ¤ '0 is another eigenfunction, then ' 2 h1i? which implies

0 D
Z

V
'.v/1dv D

Z

V
'.v/dv:

ut
Condition (T3) allows us to introduce another constant, called�2, which will give

us information about the dissipativity of the turning operator. Consider  2 h1i?
then

Z

V
 L dv D ��

Z

V
 2dv C �

Z

V
 T  dv

	 ��.1 � kT kh1i?/
Z

V
 2dv

D ��2k k22
with �2 D �.1 � kT kh1i?/ and kT kh1i? < 1.

2.3.3 Normal Operators

In this section we discuss what it means for an operator to be normal, and explore
some of the consequences of this characteristic.

Definition 3 An operator A is defined to be normal if AA� D A�A.

Theorem 3 ([5], p. 55, et. seq.) If A is normal, then there exists a complete
orthogonal set of eigenfunctions. A has a spectral representation A D P

�jPj where
�j are the eigenvalues and Pj the spectral projections.
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If T is normal, then we can choose an orthonormal basis �n with k�nk D 1.

Lemma 3 If T is normal, then (T3) follows from (T1) and (T2).

Proof Consider the operator norm of T on h1i?:

kT kh1i? D sup
�2h1i?

k�k2D1

kT �k2

D sup
�

kT
1
X

nD1
˛n�nk2

D sup
�

k
1
X

nD2
˛n�n�nk2

D sup
�

 1
X

nD2
j˛n�nj2

! 1
2

< sup
�

 1
X

nD2
j˛nj2

! 1
2

D k�k2 D 1:

ut
In our case we need to check if T is normal:

T T �� D T

�Z

V
T.v; v0/�.v0/dv0

�

D
Z

V

Z

V
T.v; v00/T.v0; v00/�.v0/dv0dv00

T �T � D
Z

V

Z

V
T.v00; v/T.v00; v0/�.v0/dv0dv00:

In order for our operator to be normal, we thus obtain the necessary symmetry
condition

Z

V
T.v; v00/T.v0; v00/dv00 D

Z

V
T.v00; v/T.v00; v0/dv00:

This is satisfied, for example, when T is a symmetric kernel of the form
T.v; v0/ D T.v0; v/;8.v; v0/ 2 V2.
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2.3.4 Important Examples

We now consider two important examples, and investigate how the theory discussed
so far applies.

2.3.4.1 Example 1: Pearson Walk

For the first example, we will choose our space of directions to be a sphere of
constant radius, i.e. V D sSn�1. This means that our particles can choose any
direction, and will travel with constant speed. We will choose the simplest turning
kernel, which is constant and normalized: T.v; v0/ D 1

jVj .
We will now check (using X) if our four basic assumptions are satisfied for this

simple choice of V and T.

(T1) T � 0X,
R

V Tdv D 1X,
R

V

R

V T
2dvdv0 D 1X, and so the conditions

of assumption (T1) are met.
(T2) Not only do we have that T � 0, but we actually have the stronger condition

T > 0. This implies that T is u0-positive. X
(T3) We have

T �� D
Z

V

1

jVj�.v
0/dv0 D T � D

Z

V

1

jVj�.v/dv:

We can thus conclude that T is self adjoint and henceforth it is normal. Then
by Lemma 3, we can conclude that (T3) is satisfied. X

(T4)
R

V Tdv
0 D 1. X

The Pearson walk satisfies all assumptions (T1)–(T4), and it will form our
prototype for the theory and scaling developed later.

2.3.4.2 Example 2: Movement on Fibre Networks

There are many examples that arise naturally in biology where the particles in
question, whether they be animals or cells, make their turning decisions based on
their environment. For example, glioma cells diffusing in the brain will use the
white matter tracts as highways for their movement [9, 16, 17, 59]. We also see this
phenomenon in ecology, where wolves will use paths that are cut in the forest for oil
exploration to hunt more efficiently [43, 44]. We thus consider in this example these
types of situations, where the turning kernel is given by an underlying anisotropy of
the environment. We use unit vectors � 2 S

n�1 to describe the anisotropies of the
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environment through a directional distribution q.x; �/ with

Z

Sn�1
q.x; �/d� D 1 and q.x; �/ � 0:

In the context of glioma growth, q.x; �/ denotes the distribution of nerve fibre
directions in each location x [50]. In the example of wolf movement the function
q would provide information of preferred movement directions due to roads or
seismic lines [31]. We assume that individuals favour directions that are given
by the environment, and, for simplicity, we consider unit speed jvj D 1;V D
S
n�1. We also make the simplifying assumption that it does not matter which

direction an individual was previously travelling, essentially neglecting inertia. Then
T.v; v0; x/ D q.x; v/. The assumption (T1)–(T4) relate to the v dependence only,
hence in the following we ignore the x dependence in q, noting, however, that q, in
general, would depend on x.

(T1) q � 0 X,
R

V T.v; v
0/dv D R

V q.v/dv D 1, Xand
R

V

R

V q
2.v/dvdv0 D

jVj � RV q2.v/dv < 1, henceforth q 2 L2.Sn�1/. X
(T2) We first compute the iterates:

TN.v0; v/ D
Z

V
� � �
Z

V
T.v0;w1/ � � �T.wN�1v/dw1 � � � dwN�1

D
Z

V
� � �
Z

V
q.v0/q.w1/ � � � q.wN�1/dw1 � � � dwN�1

D q.v0/:

Condition (T2a) therefore becomes:

u0.v/ 	 q.v0/ 	 �u0.v/;

which is satisfied only if q > 0.
The condition (T2b) becomes:

u0.v/ 	 q.v/ 	 �u0.v/;

and so we have a weaker condition, only requiring that q be u0 positive.
(T3) Is T normal? T would be normal if

Z

V
q.v/q.v0/dv00 D

Z

V
q.v00/q.v00/dv00

which is equivalent to the condition

jVjq.v/q.v0/ D kqk22:
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We see that this is true if q Dconst., bringing us back to the Pearson case.
In general then, T.v; v0/ D q.v/ is not normal. We must therefore do some
more work in order to verify (T3). We can compute kT kh1i? directly:

kT kh1i? D sup
�2h1i?

k�kD1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Z

V
q.v/�.v0/dv0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D sup

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
q.v/

Z

V
�.v0/dv0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

Therefore on h1i? the operator T is the zero operator. This satisfies
assumption (T3), but it also shows that the splitting of L2.V/ D h1i ˚ h1i?
is not a good choice here. Indeed, we will later see that we should choose
L2.V/ D hqi ˚ hqi?.
Finally, we check condition (T4).

Z

V
T.v; v0/dv0 D q.v/jVj D 1;

which is only true for q.v/ Dconst.

So for this example, if T.v; v0/ D q.v/ is not constant, then it fails (T4) and (T3)
which is problematic.

2.3.4.3 Example 3 (Homework) Symmetric Kernels

Check if symmetric kernels of the form a), b) or c) satisfy the assumptions (T1)–
(T4):

a/ T.v; v0/ D t.jv � v0j/
b/ T.v; v0/ D t.v � v0/

c/ T.v; v0/ D t.v0/:

2.3.5 Main Spectral Result

In this section, we summarize the results thus far into one main theorem and provide
a proof of the missing pieces.



2 Transport Equations in Biology 101

Theorem 4 ([29]) Assume (T1)–(T4). Then

1) 0 is a simple leading eigenvalue ofL with unique eigenfunction '0 D 1,
2) All other eigenvalues � are such that �2� < Re� 	 ��2 < 0 and all other

eigenfunctions have zero mass.
3) L2.V/ D h1i ˚ h1i? and for all  2 h1i?:

Z

V
 L dv 	 ��2k k22; where �2 D �

�

1 � kT kh1i?
�

;

4) kL k has a lower and upper estimate

�2 	 kL kL .L2.V/;L2.V// 	 2�;

5) Lh1i? has a linear inverseF (pseudo-inverse) with

1

2�
	 kFkh1i? 	 1

�2
:

Proof We have already verified parts 1)–3) earlier in this section, thus we now prove
4) and 5). To verify 4):

kL kL .L2.V/;L2.V// D sup
�2L2.V/
k�kD1

kL �k2

	 sup
�D˛C�?

0

@kL ˛k2
„ ƒ‚ …

D0
CkL �?k2

1

A

D sup
�?2h1i?

kL �?k2

D sup
�?2h1i?

k � ��? C �T �?k2

	 sup
�2h1i?

�k�?k2 C �kT �?k2

	 sup
�?2h1i?

2�k�?k2

and 8� 2 h1i?, k�k2 D 1 we have

�2k�k22 	 �
Z

�L �dv
	

Hölder
k�k2 � kL �k2 	 kL kL .L2.V/;L2.V//;

which implies �2 	 kL k 	 2�.
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Part 5) follows directly from F D �

L jh1i?
��1

. For example, if F� D z and
�; z 2 h1i?, then L z D � and

k�k D kL zk

) �2kzk 	 k�k 	 2�kzk

) 1

2�
k�k 	 kzk 	 1

�2
k�k

) 1

2�
k�k 	 kF�k 	 1

�2
k�k:

ut

2.3.6 Existence and Uniqueness

Since the transport equation as formulated in (2.20) is linear, we immediately get
existence and uniqueness of solutions as follows. We denote the shift operator A WD
�.v � r/ with domain of definition

D.A/ D f� 2 L2.Rn � V/ W �.:; v/ 2 H1.Rn/g:

The shift operator is skew-adjoint and, according to Stone’s theorem [7, 51] it
generates a strongly continuous unitary group on L2.Rn � V/. The right hand side
of (2.20) is given by the bounded operator L , hence it is a bounded perturbation of
the shift group. Consequently, (2.20) also generates a strongly continuous solution
group on L2.Rn � V/. Moreover. given initial conditions u0 2 D.A/, then a unique
global solution exists in

C1.Œ0;1/;L2.Rn � V// \ C.Œ0;1/;D.A//:

2.4 The Formal Diffusion Limit

The computation of the diffusion limit, as presented here, is one of the standard
methods for the analysis of transport equations. The equation type of a transport
equation is hyperbolic, as it is based on pieces of ballistic motion, interspersed
with directional changes. As the frequency of these changes becomes large, and
the speed is large, then the movement looks, on a macroscopic scale, like diffusion
(see Fig. 2.7). Mathematically, this macroscopic limit can be obtained via a formal
asymptotic expansion with a small parameter ". This parameter " relates the ratio
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hours

μ m cmmm

seconds minutes

Fig. 2.7 Illustration of the relevant scalings for E. coli movement. While the time scales vary from
seconds to minutes to hours, the spatial scale changes of the order of �m to mm to cm

of the microscopic spatial scale to a macroscopic spatial scale. We will see that
the above assumptions (T1)–(T4) allow us to obtain a well defined and uniformly
parabolic limit equation, where the diffusivity is given by the turning kernel T.
Before we present the scaling method in Sect. 2.4.2, we discuss realistic scaling
arguments for E. coli bacteria in Sect. 2.4.1

2.4.1 Scalings

We now consider the movement of E. coli bacteria as an example of different time
and spatial scales [1, 14] . E. coli move by rotating their flagella, which are attached
to the outside membrane of the bacterium. If most flagella rotate counterclockwise,
they tend to align and propel the bacterium forward in a straight line. If many flagella
rotate clockwise, then the alignment of the flagella is lost, they point in very different
directions, which leads to a rotation of the cell. The clockwise - counterclockwise
rotation of the flagella is controlled by an internal chemical signalling pathway,
which is influenced by external signals [14]. As seen through a microscope, the
bacteria fulfill a typical run and tumble movement, where longer periods of straight
movement are interspersed by short moments of reorientations. On an individual
scale, E. coli turn about once per second. Hence a mean turning rate � satisfies
1
�

� 1
s . From the point of view of the cell, we call this the timescale of turning

�turn D O.1/. If observed over 50–100 turns, the trajectories appear directed, and
a net displacement can easily be measured. We call this the intermediate drift time
scale �drift � O

�

1
"

�

, and " � 10�2. If we allow for 2500–10,000 turns, then the
trajectories look like diffusion and random movement. Hence we introduce a third
time scale of �diff � O

�

1
"2

�

: Just by the scale of observation, we identify three time
scales, a time scale of turning �turn, a drift time scale �drift and a diffusion time scale
�diff.
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Mathematically, we identify the three scales through nondimensionalization.
This serves to remove dimension from the problem, thus simplifying the model.
In many situations, this will also reduce the number of parameters which we
are dealing with, and it often allows us to identify large and small parameter
combinations. In the case of transport equations, as introduced in the previous
section, we introduce

Qv D v
s : where s is the characteristic speed. In case of E. coli it is about 10–20

�m s�1,
Qx D x

L : where L is the characteristic length scale. For E. coli bacterial colonies
are of the order of 1 mm–1 cm, and

Qt D t
�

: where � is the macroscopic time scale of observation. In the bacterial case
it is about 1–10 h.

If we apply these scalings, then the transport equation becomes

1

�

@p

@Qt C s

L
Qv � rQxp D ��p C �

Z

V
Tpdv0:

Using the values which we identified for E. coli, we find

� � 1 � 10 h D 3600� 36;000 s � 104 s;

and

s

L
� 10�ms�1

10�3m
D 10 � 10�6 ms�1

10�3m
D 10�2s�1:

When " D 10�2, we then have 1
�

� "2 and s
L � ". If we remove the �, then we

obtain the resulting scaled transport equation:

"2pt C "v � rp D L p: (2.21)

2.4.2 The Formal Diffusion Limit

To compute the formal diffusion limit, we will begin by studying a regular
perturbation, or Hilbert expansion of p with respect to ". This gives us

p.x; v; t/ D p0.x; v; t/C "p1.x; v; t/C "2p2.x; v; t/C h:o:t: (2.22)

We will begin by substituting this expansion into Eq. (2.21) and match orders
of ".
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Order "0

L p0 D 0;

which implies that p0 is in the kernel of L , hence

p0.t; x; v/ D Np.x; t/;

which is independent of v. We get this from the first result of Theorem 4.

Order "1

v � rp0 D L p1: (2.23)

This equation can be solved for p1 if v � rp0 2 h1i?, so we need to check if this
solvability condition is satisfied. Computing the following inner product of v � rp0
and 1 we find:

Z

V
v � rp0dv D r

0

B

B

B

B

@

Z

V
vdv

„ƒ‚…

D0 due to
symmetry of V

Np

1

C

C

C

C

A

D 0:

Hence Eq. (2.23) can be solved as p1 D F .v � rp0/ D F .v � r Np/;
Order "2

p0t C v � rp1 D L p2: (2.24)

This case is a bit more complicated to solve than the first two cases. Here we have
two options for how to proceed; a) integrate, or b) use the solvability condition. In
the case studied here, a) and b) are equivalent, however, in other more general cases
we would choose option a) and integrate (see Sect. 2.4.6) .

If we integrate Eq. (2.24), we obtain

Z

V
p0t C v � rp1dv D 0;

since the right hand side integrates to 0. Plugging in the results from the order 0
and order 1 matching, this becomes

Z

V
Npt.x; t/dv C

Z

V
v � rF .v � r Np.x; t//dv D 0:
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Since Npt does not depend on v, we can simplify the first term. Also, since r
is a spatial derivative, and the integral is over the velocity space, we can take the
derivative out of the integral in the second term. This equation thus becomes

jVjNpt.x; t/C r �
Z

V
vFvdv � r Np.x; t/:

We can simplify this to

Npt D r � Dr Np (2.25)

where the diffusion tensor D is defined to be

D D � 1

jVj
Z

V
vFv?dv D � 1

jVj
Z

V
v ˝ Fvdv:

Where we use two equivalent forms to denote an exterior product. We can write this
in index notation as well

r � Dr D
n
X

i;jD1
@iD

ij@j; with Dij D � 1

jVj
Z

V
viFvjdv:

The components in the diffusion tensor D give the relative rates of diffusion in
different directions. This process thus allows for the directional rate of spread to
vary. If D is a constant multiple of the identity matrix of appropriate dimension,
then the resulting diffusion is called isotropic. Alternatively, if the rates of spread
do in fact vary with direction, we have anisotropic diffusion.

2.4.2.1 Example: Pearson Walk

We can once again consider the Pearson walk as an example. Recall from before
that for this example we choose V D sSn�1 and T.v; v0/ D 1

jVj . We first must

compute the inverse operator F . Given � 2 h1i?, we wish to find z 2 h1i? such
that L z D �: We will use the fact that z 2 h1i? implies

R

V z.v/dv D 0.
Now if we apply the operator L , we have that L z D � is equivalent with

��z.v/C �

Z

V

1

jVj z.v
0/dv0

„ ƒ‚ …

D0

D �.v/;

and so z.v/ D � 1
�
�.v/. Hence

F D � 1
�

as multiplication operator.
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Then for this example, we find that the diffusion tensor is

D D 1

�jVj
Z

V
vvTdv:

In order to have an explicit form for D, we must then compute

Z

V
vvTdv; with V D sSn�1:

For example, in 2-dimensions: V D sS1, and v D s
�

cos �
sin�

�

. We can then

explicitly compute

vvT D s2
�

cos2 � cos� sin �
cos� sin� sin2 �

�

;

and so

D D s2

jVj
Z 2�

0

�

cos2 � cos� sin�
cos� sin � sin2 �

�

sd�:

We can then solve by integrating component wise. If we consider this tensor in
3 dimensions, then we have double integrals of trigonometric functions to solve.
This is still possible, but tedious. In higher dimensions the integral becomes more
and more cumbersome. In the proof of the next Lemma we propose a clever use of
the divergence theorem to compute the above integral in any dimension. As shown
by Hillen in [26], this method can be generalized to higher dimensions and higher
velocity moments.

Lemma 4 Let V D sSn�1; !0 D jSn�1j, then jVj D sn�1!0 and
Z

V
vvTdv D !0snC1

n
I;

where I is the n-dimensional identity matrix.

Proof Since
Z

V
vvTdv is a tensor, we use two test vectors a; b 2 R

n and use tensor

notation, i.e. summation over repeated indices

aibi D
n
X

iD1
aibi
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then

aT
Z

V
vvTdv b D

Z

V
aivivjbjdv

D s
Z

V

vi

jvj.aivjbj/dv

D
„ƒ‚…

divergence
theorem

s
Z

Bs.0/

divvi.aivjbj/dv

D s
Z

Bs.0/

aibidv

D sjBs.0/jaibi
We can compute jBs.0/j as follows

jBs.0/j D snjB1.0/j D sn
Z

B1.0/
dv D sn

n

Z

B1.0/
divvvdv:

If we apply the divergence theorem again this becomes

sn

n

Z

Sn�1
� � �d� D sn

n
jSn�1j D sn

n
!0;

where !0 � jSn�1j. Then

aT
Z

V
vvTdv b D aT

sn

n
jSn�1jb D snC1

n
!0a

Tb

for all vectors a; b 2 R
n. We therefore obtain

Z

V
vvTdv D !0snC1

n
I:

ut
Remarks

1. For general symmetric V , there exists � > 0 such that
Z

V
vvTdv D �I:

2. In [26] explicit formulas for all higher velocity moments
R

V vivj � � �vkdv were
computed.
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Now returning to our discussion of the Pearson walk example. We can explicitly
compute the diffusion tensor using the above discussion, i.e.

D D 1

�jVj
Z

V
vvTdv D 1

�jVj
!0snC1

n
I;

and since jVj D sn�1!0, this simplifies to

D D s2

�n
I:

This diffusion tensor corresponds to isotropic diffusion, and so the use of the
tensor is not necessary, and we can simply use a diffusion coefficient. This gives the
isotropic diffusion equation

Npt D s2

�n

Np:

2.4.3 Ellipticity of the Diffusion Tensor

The above limit construction leads to a diffusion-like equation (2.25) and the first
question is under which condition is the operator r � Dr uniformly parabolic.
We will see that here the condition (T3) and the corresponding constant �2 are
important.

Lemma 5 Assume (T1)–(T4). The diffusion tensor D is uniformly elliptic, i.e.

9� > 0 such that' � D' � �j'j2:

Proof Let ' 2 R
n and compute

' � D' D � 1

jVj
Z

V
.' � v/F .' � v/dv:

Since ' �v 2 h1i?, we can apply F i.e. there exists z D F .' �v/ and L z D ' �v.
Then

' � D' D � 1

jVj
Z

V
L z.v/z.v/dv

� �2

jVj kz.v/k
2
2 from our spectral result
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D �2

jVj
Z

V

ˇ

ˇ

ˇ

ˇ
F

�

'

j'j � v
�ˇ

ˇ

ˇ

ˇ

2

dvj'j2

� c0
�2

jVj j'j2

with

c0 D min
j'jD1

Z

V
jF .' � v/j2dv > 0:

Note that indeed c0 > 0 since kFkh1i? > 1
2�

. The integral
R

V jF .' � v/j2dv does
not depend on the choice of ', since V is symmetric. ut
Theorem 5 ([12, 51]) Assume (T1)–(T4). The differential operator r � Dr gen-
erates an analytic semigroup on L2.Rn/. For p.0; :; v/ 2 L2.Rn/ and Np0.x/ D
R

p.0; x; v/dv there exists a unique global solution Np.x; t/ of

Npt D r � Dr Np

with the following properties:

.i/ Np 2 C.Œ0;1/;L2.Rn//

.ii/
@Np
@t

2 C1..0;1/ � R
n/

.iii/ kNp.:; t/k1 is a decreasing function of t:

Corollary 1 (Regularity, [57]) For each m 2 N and each 0 < # < 1 there exists
a constant C0 D C0.m; #; kNp0.:; t/k2/such that

kNpkCm..#;1/�Rn/ 	 C0:

2.4.4 Graphical Representations of the Diffusion Tensor

There are two intuitive ways to graphically represent a diffusion tensor: ellipsoids
and peanuts. Let D denote a three dimensional diffusion tensor.

1. The fundamental solution of the standard diffusion equation in R
n, i.e.

ut D r � Dru

is the multidimensional Gaussian distribution, of the form

G.x; Qx/ D C exp
�

�.x � Qx/TD�1.x � Qx/
�

:
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with an appropriate normalization constant C. This function describes the
probability density of finding a random walker at a distance w D x � Qx from
a starting point Qx. Hence the level sets of wTD�1w describe locations of equal
probability, which is the diffusion ellipsoid:

Ec WD fw 2 R
n W wTD�1w D cg

If the value of the constant is changed, we will obtain different ellipsoids, though
all will be similar in the geometric sense. As such, the constant is often chosen
to be equal to 1.

2. The function from Sn�1 ! R defined as � 7! �TD� gives the apparent
diffusion coefficient in direction � , and also the mean squared displacement in
that direction and it is called the peanut.

These objects are, in fact not the same. While the probability level sets are ellipsoids,
the apparent diffusion coefficient is typically peanut shaped, as can be seen for our
examples in Fig. 2.8.

We chose examples of diffusion tensors in diagonal form. If they are not in
diagonal form, then the ellipsoids or peanuts are rotated relative to the coordinate
axis. The diffusion ellipsoid for a diagonal diffusion matrix D D diag.�1; �2; �3/ is

E1 D
(

w 2 R
n W
�

w1p
�1

�2

C
�

w2p
�2

�2

C
�

w3p
�3

�2

D 1

)

;

which is clearly an ellipsoid. The peanut in this case is the map

� 7! �1�
2
1 C �2�

2
2 C �3�

2
3 :

In Fig. 2.8 we consider

D1 WD
0

@

5 0 0

0 3 0

0 0 1

1

A ; D2 D
0

@

8 0 0

0 1 0

0 0 0:2

1

A :

Having peanuts and ellipsoids, there is a nice way to visualize the condition of
ellipticity of D.

Definition 4 D is uniformly elliptic, if there exists a constant � > 0 such that

�T � D� > �j� j2; (2.26)

for all vectors � 2 R
n.

Lemma 6 1. The diffusion tensor D is uniformly elliptic, iff the peanut of D
contains a ball centered at the origin.
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Fig. 2.8 Left: diffusion ellipsoid. right: the corresponding peanut for the apparent diffusion in
direction � . Top row: example D1, bottom row, example D2

2. The diffusion tensor D is uniformly elliptic, iff the ellipsoid of D contains a ball
centered at the origin.

Proof Let us consider the peanut case first. The map � ! �j� j2 can be written as
� ! ��TI� with the identity matrix I. Hence it is also a peanut. A very special
peanut, in fact, since it is a ball of radius �. Then condition (2.26) says that the
peanut of D contains the peanut of �I.

Related to the diffusion ellipsoid, we need to work a little more.

“H)” Assume D is uniformly elliptic, and consider v with vTD�1v D 1.
Without restriction, we can study the level set of level 1. We claim:
Claim 1: jvj > p

�.
To prove Claim 1. we need to show two more statements:
Claim 2: infj�jD1 kD�k � �.
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Assume Claim 2 is not true. Then there exists �0 with j�0j D 1 such that
kD�0k < �. However,

� D �j�0j2 	 �0D�0 	 j�0jkD�0k < �;

which is a contradiction. Hence Claim 2 is true.
Claim 3: kD�1kop 	 1

�
.

Claim 2 implies that �k�k 	 kD�k, for all � 2 R
n. Let z WD D�, such that

� D D�1z. Then

�kD�1zk 	 kzk H) kD�1zk
jzj 	 1

�
:

Hence Claim 3 is true.
Finally, to prove Claim 1 we estimate:

1 D vTD�1v 	 kD�1kopkvk2 	 1

�
jvj2

Hence jvj � p
� and the ellipsoid E1 contains a ball of radius

p
�.

“(H” If the ellipsoid contains a ball of radius r, then it is non degenerate and
it has n main axis ei, with lengths ˛i, i D 1; : : : ; n. These can be arranged such
that 0 < r 	 ˛1 	 ˛2 	 � � � 	 ˛n. The main axis vectors are eigenvectors or
generalized eigenvectors of D�1 with eigenvalues ˛2i , i D 1; : : : ; n. Then D has
the same eigenvectors and generalized eigenvectors with eigenvalues �i D ˛�2

i ,
i D 1; : : : ; n. Then �TD� � �j� j2 for

� WD min

�

1

˛2i
; ı D 1; : : : ; n

	

D 1

˛2n
:

ut
We show an illustration for the case of example D1 in Fig. 2.9.

2.4.4.1 An Anisotropic Random Walk

In order to get an approximation of the overall behaviour of a population in an
anisotropic random walk, we consider an individual based model in which each
individual performs a random walk. We then show a frequency plot of where each
individual ends up. We show that the frequency plot closely matches the solution of
the corresponding diffusion model.
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Fig. 2.9 Left: the peanut of D1 contains a ball. Right: the ellipsoid of case 1 contains a ball of
radius 1

Fig. 2.10 (a): frequency plot of the population after 2000 iterations of a random walk. Notice that
the highest number of individuals are found near the starting point (x D 0). (b): plot showing the
average frequency plot over 1000 runs of a population after 2000 iterations (solid line), and the
corresponding Gaussian curve (dotted line)

1-Dimensional Simulations

As a first simulation, we can perform a random walk in one-dimension. It is
important to note that in one dimension, there is no such thing as anisotropy since
there is only one direction along which particles can diffuse. Additionally, the one
dimensional diffusion equation does not permit a diffusion tensor, and instead can
only have a diffusion coefficient. For the one dimensional random walk, we begin
with 1000 particles at the origin. At each time step, a random decision is made with
equal probability of moving to the left, moving to the right, or staying where it is.
Figure 2.10a shows the results of such a simulation after 2000 time steps. There is
a higher concentration of individuals near the starting point (x D 0), however for
a single simulation, the results are very noisy. As such, it is better to consider an
average frequency plot over many runs. Figure 2.10b shows the frequency plot that
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results when the average frequency over 1000 runs is computed. This is the solid
line in the plot. We then use the variance of the points in this distribution to plot
the corresponding Gaussian curve. This curve is the dotted line. It is clear from this
that the distribution of particles after a one-dimensional random walk very closely
approximates a Gaussian distribution.

2-Dimensional Simulations

As discussed above, when we are in higher dimensions, we can replace our diffusion
coefficient with a matrix. When this matrix is a constant multiple of the identity,
particles are spreading out with equal rates in all directions, corresponding to
isotropic diffusion. When this matrix is not a constant multiple of the identity,
particles spread at different rates in different directions. This is anisotropic diffusion.
To get a better idea about what anisotropic diffusion looks like, we can compare the
results of an isotropic random walk to those of an anisotropic random walk, both in
two dimensions.

For an isotropic random walk in two dimensions, we started 1000 individuals
at the origin and again let them spread out following some given set of rules.
To determine each individual’s next step, a random angle was generated and a
constant step size was assigned. The distribution of these individuals after 100
time steps is shown in the left column of the top row of Fig. 2.11. We see that
the distribution looks approximately circular with the highest concentration found
where the particles began [at .0; 0/]. A frequency plot of this data would be noisy,
just as in one dimension, so for the frequency plot we considered the average over
150 runs. The result is shown in the right hand column of the top row of Fig. 2.11.
This frequency plot shows a roughly Gaussian distribution, as was seen in one
dimension.

Simulation of an anisotropic random walk in two dimensions followed a similar
procedure with one notable difference. Instead of choosing a fixed step size,
individuals could move further in certain directions. We began with 1000 individuals
at the origin, just as we did in the isotropic case, and once again allowed 100
iterations. A random angle was generated for each individual, however the step size
depended on this angle. A dominant direction was chosen along which individuals
could move further, corresponding to the dominant eigenvector of the diffusion
tensor. The step size was then determined by the diffusion ellipsoid. In this case,
the dominant direction was chosen to be the positive and negative y-axis. Not
surprisingly then, the resulting distribution showed an ellipsoidal shape with the
highest concentration found at the origin. More spread occurred in the chosen
dominant direction. Such a distribution can be seen in the first column of the second
row of Fig. 2.11. The frequency plot for the average distribution over 150 runs is
shown in the right hand column of the second row of Fig. 2.11.

An exercise such as this allows us to visualize anisotropic diffusion. When these
individuals have a preference for diffusing in a given direction, we see that we end
up with a distribution that is “stretched” in that direction. For biological situations,
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Fig. 2.11 Top row: (a). Plot showing the distribution of 1000 particles after 100 iterations of an
isotropic random walk. (b). Frequency plot showing the average frequency over 150 runs of an the
isotropic random walk as described in part (a). Bottom row: (a). Plot showing the distribution of
1000 particles after 100 iterations of an anisotropic random walk. (b). Frequency plot showing the
average frequency over 150 runs of an the anisotropic random walk as described in part (a)

such as cancer cells travelling on white matter tracts in the brain, this means we
would expect to see the cells travel more along this particular direction than in
perpendicular directions. This results in irregular shapes of spread as is commonly
seen in cancer models. As such, anisotropy of diffusion tensors provide us a valuable
tool for making more accurate and useful models.

2.4.5 Anisotropic vs. Isotropic Diffusion

Now, depending on the form of the diffusion tensor D, we can obtain either
anisotropic or isotropic diffusion. As mentioned before, We call the diffusion
isotropic if D D ˛I for some ˛ > 0; otherwise diffusion is called anisotropic. For
isotropic diffusion the rate of spread is equivalent in all directions. The resulting
distributions are spherical in nature. Anisotropic diffusion, however, occurs when
the rate of diffusion varies in different directions. This can arise from many
biological problems where animals have certain preferred directions of motion.
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The rates of spread in these directions are effectively higher, and the resulting
distributions are ellipsoidal in nature, aligned with the dominant direction of spread.

In this section we will derive criteria on the turning kernel T and on the turning
operator L that ensure that the corresponding parabolic limit is isotropic. For this
we introduce the expected velocity

Nv.v/ WD
Z

V
T.v; v0/v0dv0 (2.27)

For the Pearson walk, with V D sSn�1, and T.v; v0/ D 1
jVj we find an expected

velocity of

Nv.v/ D
Z

V

1

jVjv
0dv0 D 0:

More generally, if T has the form T.v/, then Nv.v/ D 0 as well.
Also, if we integrate the expected velocity, then we get zero by condition (T1):

Z

V
Nv.v/dv D

Z

V

Z

V
T.v; v0/v0dv0dv D 0:

To decide if the diffusion limit is isotropic or anisotropic we compare three
statements:

(St1) There exists an orthonormal basis fe1; : : : ; eng  R
n such that the coor-

dinate mappings �i W V ! R; �i.v/ D vi are eigenfunctions of L with
common eigenvalue � 2 .�2�; 0/, for all i D 1; : : : ; n.

(St2) The expected velocity is parallel to v, i.e.

Nv.v/k v and � WD Nv.v/ � v
v2

is the adjoint persistence with � 2 .�1; 1/.
(St3) There exists a diffusion coefficient d > 0 such that D D dI (isotropic).

Theorem 6 Assume (T1)–(T4) and that V is symmetric w.r.t. SO.n/, where SO.n/
is the special orthogonal group of size n. Then we have the inclusions

.St1/ , .St2/ ) .St3/:

The constants �; �; d are related as

� D �C �

�
; d D � KV

jVj� D KV

jVj�.1� �/
;
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where KV is given by

Z

vvTdv D KVI:

Moreover, if there is a matrix M such that Nv.v/ D Mv for all v 2 V then all three
statements are equivalent.

Proof (St1) , (St2):

(St1) , L vi D �vi; 8i
, ��vi C �. Nv.v//i D �vi

, . Nv.v//i D �vi; � D �C �

�

, (St2)

(St1) ) (St3): The coordinate mappings �i are eigenfunctions of L and �i 2
h1i?. Hence �i are also eigenfunctions for F with eigenvalue ��1 for each i D
1; : : : ; n. Then

ekDej D � 1

jVj
Z

V
vkFvjdv

D � 1

jVj
1

�

Z

V
vkvjdv

D � KV

jVj�ıkj

(St3) ) (St1) see Hillen and Othmer [29] ut

2.4.5.1 Examples

Example 1, Pearson Walk As seen earlier, for the Pearson walk we have Nv.v/ D 0

and consequently also � D 0. Still, statement (St2) is true and we find isotropic
diffusion with diffusion coefficient

d D KV

jVj� D s2

n�
:

Example 2, Symmetric T Now we again assume V D sSn�1 but now T is
symmetric of the form T.v; v0/ D t.jv � v0j/. The expected velocity

Nv.v/ D
Z

V
T.v; v0/v0dv0 D

Z

V
t.jv � v0j/v0dv0;
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which is not entirely trivial to compute. To do this, we consider a given v 2 V . Since
V D sSn�1 is a ball of radius s, the level sets

�a WD fv0 2 V W jv � v0j D ag

are circles on S
n�1 surrounding v, for a 2 .�1; 1/. Then on �a we have t.jv�v0j/ D

t.a/. Then we can split our integral

Z

V
t.jv � v0j/v0dv0 D

Z 1

�1

Z

�a

t.jv � v0j/v0dv0da

D
Z 1

�1
t.a/

Z

�a

v0dv0da

D
Z 1

�1
t.a/da c1 v

D c2 v

where we use the fact that the symmetric integral
R

�a
v0dv0 is in direction v and

c1; c2 are appropriate constants (note c1 can be negative). Hence Nv.v/ is parallel to
v, and statement (St2) holds. Hence the diffusion limit is isotropic.

Example 3, Nonisotropic For this example, we will consider a constant kernel T,
perturbed by a second order correction term

T.v; v0/ D 1

jVj C vTM v;withM 2 R
n�nandV D sSn�1:

Then we have

D D s2

n�

 

I C jVjs2
n

M

�

I � jVjs2
n

M

��1!
;

which is non- isotropic (see details in [29]).

Example 4, Chemotaxis For our last example, we will define T to be

T.v; v0/ D 1

jVj C "Q.v; v0; S/rS

which, as we will derive in the next section, gives a chemotaxis model with

D D s2

n�
and�.S/ D 1

jVj
Z

V

Z

V
vQ.v; v0; S/dv0dv:

For many more examples, see [47].
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2.4.6 Chemotaxis

In the case of chemotaxis, the turning rate and the turning kernel might depend on
the signal S.x; t/. We study these as perturbations (see [47]). Note that we cannot
use v for the signal concentration, since it is used for the velocities. Hence here we
use S.

T.v; v0; S.�// D T0.v; v
0/C "kT1.v; v

0; S.�//;

�.v; S.�// D �0 C "`�1.v; S.�//;

and study the four pairwise combinations when k; ` D 0; 1. We assume that T0
satisfies (T1)–(T4), and that for T1 we have

T1 2 L2;
Z

V
T1.v; v

0; S.�//dv D 0;

jT1.v; v0; S/j 	 T0.v; v
0; S/:

Consider then the example generated when

T.v; v0; S.�// D T0.v; v
0/C "˛.S/.v � rS/

which says it is more likely to choose a new direction in the direction of rS. Then

L '.v/ D ��'.v/C �

Z

V
T.v; v0/'.v0/dv0 C "�˛.S/

Z

V
.v � rS/'.v0/dv0

D L0'.v/C "�˛.S/.v � rS/ N'.x; t/;
D L0' C "L1'

where N' D R

V 'dv, and L1' D �˛.S/.v � rS/ N'.x; t/: Because of the perturbed
structure of the right hand side, we cannot directly apply the theory from above.
Instead, we again compare orders of ". The scaled transport equation is now

"2pt C "v � rp D L0p C "L1p

"0

0 D L0p0 ) p0 D p0.x; t/
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"1

v � rp0 D L0p1 C L1p0

which is equivalent with

v � rp0.x; t/ � �˛.S/.v � rS/Np0 D L0p1:

Since Np0 D R

V p0.x; t/dv D jVjp0 we can write this as

v � rp0 � �˛.S/.v � rS/jVjp0 D L0p1:

To solve for p1, we need to check that the left hand side is in the correct space so
that we may invert our operator. We thus check the solvability condition

Z

V
vdv � rp0 � �˛.S/jVj

Z

V
vdv � rSp0 D 0;

which is true due to the symmetry of V . Then

p1 D F0

�

v � rp0 � �jVj˛.S/.v � rS/p0
�

;

where F0 is the pseudo inverse of the unperturbed part L0.

"2

p0t C v � rp1 D L0p2 C �˛.S/.v � rS/Np1
We integrate this last equation to obtain

jVjp0t C
Z

V
v � rF0 .v � rp0 � �jVj˛.S/.v � rS/p0/ dv

D 0C �˛.S/
Z

V
v � rSdv

„ ƒ‚ …

D0

Np1:

Hence

jVjp0t C r �
Z

V
vF0vdv � rp0 � �jVjr �

Z

V
vF0vdv � ˛.S/rSp0 D 0:

We arrive at a (possibly anisotropic) chemotaxis equation

p0t D r .Drp0 � �jVj˛.S/p0DrS/
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where

D D � 1

jVj
Z

V
vF0vdv:

Notice that the diffusion tensor D appears in both terms, this means that the
chemotaxis term carries the same anisotropy as the diffusion term, as it should, since
the cells move in a given (possibly anisotropic) environment and both movement
terms should be affected by anisotropy.

Finally, if we consider the Pearson walk with T0.v; v0/ D 1
jVj and D D s2

n� I, then
we obtain the classical (isotropic) chemotaxis model

p0t D r.drp0 � �.S/p0rS/

with d D s2

n� and �.S/ D jVj˛.S/s2
n .

2.4.6.1 Other Cases

We considered an order " perturbation of T in detail in the previous section. We
can also consider order one perturbations, and perturbations of �. Doing this we
get into technical challenges that we skip in this manuscript. For details we refer to
[47]. Here we simply list the corresponding examples.

Examples

1. In case of bacterial movement, bacteria tend to turn more often if they move
down a gradient and less often if they move up a gradient. This can be expressed
through a perturbed turning rate

�.S/ D �0.1 � "b.S/.v � rS//: (2.28)

If we combine this with the Pearson walk for T D 1=jVj, then we obtain a
chemotaxis model

p0;t D r.drp0 � �.S/p0rS/;

with

�.S/ D s2

n
b.S/:

The function b.S/ describes the signal sensing mechanism of the cells. Here we
see how this term enters the chemotaxis model.

2. Amoeba are able to modify their turning rate as well as actively choose a
favourable direction. This can be modelled by using a perturbed turning rate as
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above (2.28) as well as a perturbed turning kernel as we did above. In a special
case we consider

T.v; v0; S/ D 1

jVj
�

1C "a.S/.v � S/
�

:

Then we obtain a chemotaxis model with chemotactic sensitivity

�.S/ D s2

n
.a.S/C b.S//;

hence both effects combine in a linear way.
3. If myxobacteria encounter a stream of myxobacteria moving in a given direction

b, then they also turn into that direction. This can be expressed through a special
kernel of

T.v; v0/ D �.v � b/.v0 � b/:

In addition we consider the perturbed turning rate (2.28). The parabolic limit is
of chemotaxis form

p0;t D r.Drp0 � V. p0; S/rS/

with nonisotropic diffusion

D D s2

�0n

 

I C jVjs2
n
�bbT

�

I � jVjs2
n
�bbT

��1!
:

Unfortunately, we have not been able to give a biological interpretation of this
diffusion tensor.

4. It is also possible to include volume constraints into the transport equation
framework. For example choosing

�.S/ D �0

�

1 � "b.S/.v � rS/ˇ.
Z

pdv/
�

;

where ˇ is a decreasing function. Then

p0;t D r.drp0 � p0ˇ. p0/�.S/rS/;

which is the volume filling chemotaxis model as introduced by Hillen and Painter
[28].
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2.4.7 Persistence

An important biological quantity is the persistence. It is an indicator for the particles
to keep their heading when doing a turn. A particle which never changes direction,
i.e. performs a ballistic motion, would have persistence 1, while a Brownian
particle has persistence 0. The persistence in the context of transport models is
easily defined. Consider a given incoming velocity v0. Then the expected outgoing
velocity is

Ov.v0/ WD
Z

V
T.v; v0/vdv

and the average outgoing speed is

Os WD
Z

V
T.v; v0/kvkdv:

The index of persistence  ˛ is defined as

 ˛.v
0/ D Ov � v0

Oss0 where s0 D kv0k:

Hence the parameter � , which we introduced in Theorem 6 is the persistence of
the adjoint turning operator, or the adjoint persistence.

Exercise It is an interesting exercise to find out under which conditions is � D  ˛ .
This is certainly true for a symmetric kernel, but is it also true for normal kernels?

2.4.7.1 Example

Assume that turning depends only on the relative angle

� WD arccos

�

v � v0

kvkkv0k
�

:

Then T.v; v0/ D h.�.v; v0// D h.� � � 0/; h.��/ D h.�/: For example, in 2-

dimensions, with s D 1, we have v D
�

cos �
sin �

�

and for normalization we need

Z

V
T.v; v0/dv D

Z 2�

0

h.� � � 0/d� D 1:

This is equivalent to

Z 2��� 0

�� 0
h.˛/d˛ D 2

Z �

0

h.˛/d˛ D 1:
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The expected outgoing velocity is

Ov.� 0/ D
Z

h.� � � 0/
�

cos �

sin �

�

d�; and with ˛ WD � � � 0

D
Z

h.˛/

�

cos.˛ C � 0/
sin.˛ C � 0/

�

d˛

D
Z

h.˛/

�

cos˛ cos � 0 � sin˛ sin � 0

sin˛ cos � 0 C cos˛ sin � 0

�

d˛

D

0

B

B

B

B

B

@

cos � 0 R h.˛/ cos˛d˛ � sin � 0 R h.˛/ sin ˛
„ ƒ‚ …

D0
d˛

cos˛0 R h.˛/ sin ˛
„ ƒ‚ …

D0
d˛ C sin � 0 R h.˛/ cos˛d˛

1

C

C

C

C

C

A

D
Z

h.˛/ cos˛d˛

�

cos � 0

sin � 0

�

:

Then the persistence is given as

 ˛ D Ov.� 0/ � v0 D
Z

h.˛/ cos˛d˛.cos � 0 � sin � 0/
�

cos � 0

sin � 0

�

D
Z

h.˛/ cos˛d˛;

where we can see why the persistence is sometimes called the mean cosine.
It is similar in 3-dimensions, where we normalize as:

2�

Z �

0

h.�/ sin �d� D 1

and the persistence turns out to be (we skip the details):

 ˛ D 2�

Z �

0

h.�/ cos� sin �d�

Again this is a mean cosine using the correct � component of the 2-dimensional
surface element in 3-D: sin�d� .
Persistence indices are easy to measure based on the above formulas, i.e. one follows
individual particle tracks and computes the mean cosine for all the turns. It has
been found that slime mold Dictyostelium discoideum have a persistence of about
 ˛ D 0:7; whereas the persistence of E. coli bacteria is about  ˛ D 0:33.



126 T. Hillen and A. Swan

2.4.8 Summary and Conclusions

In this section we considered the parabolic limit of transport equations in the case
of constant equilibrium distribution. The general conditions (T1)–(T4) allowed us
to develop a full theory including classifications into isotropic and anisotropic
diffusion and including standard chemotaxis models. However, some important
examples such as T.v; v0/ D q.v/ are not included, and the question of what to
do with these cases remains. We recommend the following original publications for
extended theory and applications to glioma growth and wolf movement.

2.5 Further Reading for Transport Equations in Oriented
Habitats

Transport equations for movement in oriented habitats falls outside the theory
developed here. In fact, as we have seen in example Sect. 2.3.4.2, these models
do not satisfy condition (T4), and also condition (T3) is problematic. Hence the
mathematical framework needs to be changed accordingly. The key is a split of the
L2.V/ space into the kernel of L and it’s orthogonal complement. We are unable to
develop this theory here, hence we just refer to the pertinent literature for further
reading on theory and applications. While these applications were not discussed
here, the material of this chapter should provide the reader with the tools that they
need to understand the further readings.

• In [27, 49] we introduced a transport equation model for the migrative movement
of mesenchymal cells in collagen tissues. Careful modelling and simulations
revealed effects to network formations and finger-like invasions of cancer
metastasis.

• In [31] the theory is formally extended to the case of oriented habitats. We
not only consider the parabolic scaling, but we also discuss alternative scaling
methods such as the hyperbolic scaling and the moment closure method, and we
discuss their relations. One example in [31] is an application to wolf movement
along seismic lines.

• In [13, 50] the transport equation framework is developed for application to brain
tumor spread (glioma, glioblastoma multiform). We make extensive use of a new
MRI imaging technique called diffusion tensor imaging (DTI). The nonisotropic
diffusion limit of a transport model allows us to include DTI imaging into a
glioma spread model. The above manuscripts contain the modelling details and
we are currently working on model validation with clinical data.

• In [34] we develop a fully measure-valued solution theory for the transport
equations. Measure valued solutions arise naturally in highly aligned tissues and
the classical L1 or L2 theories for transport equations are no longer sufficient. We
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were able to use this framework to identify non classical pointwise steady states,
which explain observed network structures.

• in [58] we give a full analysis of the one-dimensional transport model for
movement in oriented habitats.

Acknowledgements We are grateful for CIME to support this interesting summer school and who
invited us to contribute this book chapter. We also thank Dr. K. Painter for continued collaboration
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Chapter 3
Mathematical Models of the Interaction of Cells
and Cell Aggregates with the Extracellular
Matrix

L. Preziosi and M. Scianna

Abstract It is nowadays understood that the interactions cells have with the fibrous
environment they live in determine their behaviour. In fact, for instance, they play
a fundamental role in cell motion, in tumour invasion and metastatization, in stem
cell differentiation, and in tissue development.

In this chapter, we will describe several models that deal with different aspects
characterizing these interactions. In particular, from the tutorial point of view, the
topic will be used as a playground to briefly present several modelling frameworks,
e.g., age-structured models, individual cell-based models, continuum mechanics,
and mixture theory.

The models presented will be usually characterised by multiscale aspects
because, for instance, the physical parameters determining cell motion and dupli-
cation are affected by the expression of proteins inside the cell and of receptors at
its membrane. In turn, the behaviour of cellular aggregates and of tissues depends
on the behaviour of single cells. For this reason, some upscaling tool will also be
described.

3.1 Biological Relevance of Cell-ECM Interaction

Soft tissues are made of many cell types that live in a fibrous and aqueous
environment. The fibrous infrastructure, that is generally called extracellular matrix
and shortened as ECM, is a collection of filamentary molecules secreted by specific
cell types, mainly fibroblasts. The ECM provides structural and biochemical support
to the ensemble of cells. Its composition can considerably change, as it is made of
several insoluble constituents like collagen, elastin, proteoglycan, fibronectin, all
interlinked to form a structured network. The ECM is either found in the interstitial
space between cells (in this case it is also called interstitial matrix) or arranged
in thin sheets of fibers called basement membranes, that separate the epithelium
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from the connective tissue. In the following, for sake of simplicity we will often
consider blood and lymphatic vessels as part of the ECM: in fact they are strongly
cross-linked with matrix fibers, though the relative characteristic cross section is
considerably different (collagen-like bundles are at least one order of magnitude less
than a �m in diameter, white blood and lymphatic vessels are at least one order of
magnitude larger than a �m in size) (Fig. 3.1). In this respect, the ensemble of ECM
fibers and vessels will be hereafter denoted as extracellular network and shortened
as ECN.

Cell behavior is significantly regulated by specific interactions between cells and
their surrounding environment, in particular with the ECM. These signal exchanges,
largely mediated by transmembrane adhesion molecules, among which integrins are
the most important ones, give also rise to feedback mechanisms on the environment
itself, as cells has the ability to modify it.

Specifically, cell-ECM interactions are fundamental in determining both
migration-related phenomena, such as wound healing and spread of metastasis,
and proliferation-related phenomena, such as tumor growth, tissue development,
and homeostasis.

It is known that, in addition to the well known phenomenon of chemotaxis,
i.e., the motion toward higher concentration of a soluble chemical factor called
chemoattractant, there are several cell migratory modes affected by cell-matrix
interactions:

Fig. 3.1 Morphological characteristics of bovine (top) and rat tail (bottom) collagen fibrils (left)
and network (right). Images partially modified from [84]. On the right, arrangement of collagen
fibrils in thicker fibers of the lamina radialis of an aortic valve leaflet (scale bar, 8�m)
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• haptotaxis, i.e., cell preferential movement towards regions with higher concen-
trations of cellular adhesion sites or substrate-bound chemoattractants [10];

• durotaxis, i.e., cell migration towards regions of the matrix with a higher rigidity
[43]. In more details, when the substratum is heterogeneous from a mechanical
point of view, cells lying in a softer region tend to move away if they encounter
along their way a stiffer region. Viceversa, cells lying in a stiffer region tend to
stay away from softer regions they encounter along their way;

• cell crawling towards stretching forces and away from compressive forces, in
the sense that if a substratum is stretched (e.g., with a pipette tip) in a point
say leftward, then a cell on the immediate right will move left (toward the
micropipette) and a cell on the immediate left will move left (away from the
micropipette);

• cell directional locomotion along the fibers of a strongly anisotropic substratum
[14].

In addition, it is widely know from experimental data that composition, mechanical
properties, and microstructure of matrix environments can influence cell migration
as well. In this respect, as we shall discuss in more details in the last section,
two important processes are involved in cell response to mechanical cues coming
from the ECM environment, thereby gaining an increasing attention from biologists
and biomedical engineers: Mechanosensing and Mechanotransduction. The former
defines how cells sense the mechanical forces around them, i.e., either through
membrane-bound ion channels, that open or close up under stress or shear to
modulate the influx/outflux of ions, or through a direct transmission of stress
and shear from the ECM to the actin cytoskeleton (via adhesion complexes and
transmembrane adhesion protein, e.g., of the integrin family). The latter has to
do with the effective cell response to mechanical cues. This can be done either
directly, i.e., by the expression of genes in the nucleus when it is pulled by the
actin cytoskeleton, or through the activation of several chemical pathways. As an
example, a stretch acting on an adhesion molecule called Talin causes the unfolding
of the molecule with the consequent exposure of some binding sites that might
trigger selected downstream protein cascades [25, 70] (see Fig. 3.2).

Fig. 3.2 Mechanotransduction by the mechanically induced unfolding of Talin
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Of course, cell behavior and homeostasis, as well as growth, survival, and death,
strongly depend on many chemical factors, that are dissolved in the extracellular
liquid and are uptaken or produced by the cells themselves.

From a mathematical viewpoint, a proper description of such a complex system
can be very hard and strongly depends on the scale of interest. It is clear that what
occurs at the cellular and subcellular level (i.e., the so-called microscopic scale) has
a very relevant role but, in order to describe the behavior of soft tissues, in most cases
it is preferable to work at the super-cellular level (i.e., the so-called macroscopic
scale). The number of cells involved in tissue dynamics is in fact excessive to be
dealt with by single cell-based approaches.

In order to understand the basic difficulties we refer to, it is useful to imagine
the following ideal experiment. Consider a soft tissue (for instance, a liver or a
small tumor mass) or an artificial scaffold: they both look homogeneous. Then
cut from them several smaller specimens: also these specimens may look identical
from a macroscopic point of view. However, their microscopic configuration is
completely different, as each specimen is characterized by an own distribution of
cells, vessels, collagen fibres, matrix pores. This implies that the deformation under
stress of single cells and/or of extra-cellular matrix components, the motion of the
interstitial fluid in the intracellular space, the flow in blood and lymphatic vessels, or
the pathways of diffusing chemicals in the extra-cellular space will be dramatically
different, at the microscopic level, from specimen to specimen. One could even
say that the experiment is not microscopically repeatable, since it is not possible
for other researchers to exactly cut the same specimen. Also the same researcher
would have a very hard time in obtaining the same microscopic measurements,
although he could use the same specimen, since the slightest change in initial or
boundary condition would result in considerable differences in the microscopic
evolution of the system. For this reason, many experiments need be done and some
averaging over the experiments is needed in order to take care of the variability of
the geometric characteristics of the specimen.

In addition, it is technically almost impossible to give an exact description of the
microscopic evolution the system from both the theoretical and the experimental
point of view. Luckily, the interest in achieving such a level of details is very
little. The interest in fact generally lies in obtaining a description of some “gross
features” of the behavior of the tissue, such as the mechanical behavior of the
tissue, the uptake of drug, the growth of the mass, the oxygenation of the tissue,
and so on. These macroscopic features, which might probably be obtained through
some averaging, need to be predictable, repeatable, insensible to small changes
in initial and boundary conditions. Clearly, measuring average concentrations and
velocities gives little information about the microscopic behavior, for instance, of
the living cells of the tissue, but the information is probably quite appropriate for
the biomedical purposes under consideration.

However, understanding the microscopic behavior of cells and their interactions
with the other constituents, and in particular with the ECM, is fundamental to
deduce constitutive modelling that properly reflect the microscopic phenomena.
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In this chapter we will describe several models dealing with different aspects of
cell-ECM interaction. In particular, Sect. 3.2 will describe a mathematical model of
cell-ECM adhesion that takes into account of bond rupture and renewal to get to the
type of macroscopic relationship to be expected as a function of the microscopic
phenomena.

Section 3.3 will describe a continuum mechanics model able to analyze the role
of cell nucleus in cell motion. The nucleus in fact the most voluminous and rigid
subcellular organelle and therefore constitutes a steric hindrance for cell migration
in tight and dense ECM networks.

Section 3.4 will introduce an individual cell-based model called cellular Potts
model that, in this specific case, is able to mimic the dynamics of single cells
moving in microchannels and in fibrous networks. This model points out that the
cell migratory behavior is mainly dependent on the relation between the nucleus
dimensions and the characteristic size of the surrounding matrix environment. In
this respect, optimal cell movement is observed in matrix structures larger than the
nucleus diameter but smaller than the diameter of the overall cell [62, 65]. These
results are also confirmed by a wide range of experimental data, as for instance in
[13, 52].

Section 3.5 will then give the basic knowledge of mixture theory that is applied
in Sect. 3.6 to deduce a macroscopic model of cell aggregates and tumor masses.
As a relevant feature, such an approach accounts the results obtained by the model
described in the previous sections.

Finally, Sect. 3.7 will briefly compare passive and active motion of cell aggre-
gates in an ECN. In particular, chemotaxis will be modelled either as an external
force or as an internal active reaction of the cell, which is able to pull on the ECM
to move towards the source of the chemical factor. Some perspectives on modelling
mechanosensing and mechanotransduction is given in the last section as well.

3.2 A Model of Cell-ECM Adhesion

The modelling of cell movement in physiological environments has to account a
common bias. Even in the “easiest situation” cells do not swim in a liquid, but
rather they struggle to find their way in an extremely thick gel. The reason relies in
the order of magnitude of the Reynolds number that they experience during motion.
The Reynolds number is given by Re D UL=	, where U is the characteristic velocity
of the body, L its characteristic size, and 	 is the kinematic viscosity of the fluid. All
self-propelling bodies that are familiar to us, from fishes to ourselves, from ships to
airplanes, move in situations characterized by high Reynolds numbers. For instance,
being the kinematic viscosity of water about 10�6 m2/s the order of magnitude of
the Reynolds number of swimmers in a swimming pool may range between 105 and
106 according to whether they are practitioners or athletes. Fishes can be faster, but
are usually smaller: so, in this case, the order of magnitude of the Reynolds number
is closer to 103 � 104. Cells are much smaller (i.e., Lcell � 10�m) and move much
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slower. For instance, a fish keratocyte, one of the fastest cell types, crawls on gel
substrata at a speed of 15�m/min, while spermatozoa swim at a speed of 50�m/s.
Indeed, the resulting Reynolds number is of the order of 10�6 for the former and
of the order of 10�4 for the latter. Life at this low Reynolds number is completely
different [59]. As a comparison, a person swimming even in peanut butter (or better
Nutella chocolate cream) at a speed of 1 m/min would only experience a Reynolds
number of the order 0.1. In order to go down to the values experienced by cells, one
should move in asphalt or in just molten glass at 500 ıC at a speed of 1 m/s. This
is probably very hard, because it needs a huge strength. More realistically, fixing
the force that a swimmer can apply to move in a fluid, using Stokes drag law it can
be observed that its velocity will be nearly inversely proportional to the kinematic
viscosity of the fluid he/she is swimming in. This means that in a chocolate cream
the swimmer will move slowlier and the relative Reynolds number will be of the
order of 10�4. However, this motion rather than swimming would be more similar
to grabbing on the “extremely viscous fluid” to make a hole in it and have a stroke
to move forward. In this respect, the motion of a spermatozoum is much closer to
that of a corkscrew penetrating a cork than that of a helix of a boat rotating in the
sea.

Similarly, when cells are moving in the ECM, they are grabbing to the fibers,
exerting forces through the adhesion bonds, and advancing in the tissue by detaching
bonds in their rear part and making new ones at their front edge. In this process, the
life-cycle of each single cell-ECM adhesion bond consists of three phases:

1. formation in a relaxed configuration;
2. stretching while the cell is moving with respect to the ECM;
3. disruption.

3.2.1 Evolution of the Distribution of Adhesion Bonds

In this section we want to present a model describing the attachment-detachment
process of cell-ECM adhesive bonds. In order to do that we consider the ensemble of
cells and the surrounding ECM as two constituents of a mixture, i.e., in any physical
point of the domain both cells and ECM can coexist. Referring to Sect. 3.6 where the
details of mixture theory will be introduced, here it is enough to consider the motion
of cells and ECM as given by two maps �c.Xc; t/ and �m.Xm; t/, respectively.
Referring to Fig. 3.3, an adhesive bond between cells and ECM is activated if the
two constituents locally superpose at a given time (i.e., if a material cell point and a
material ECM point superpose at a given time). In this respect, if a cell-ECM bond
has an age a and is formed in the point xb, then

�m.Xm; t � a/ D �c.Xc; t � a/ D xb:



3 Modelling Cell-ECM Interaction 137

Fig. 3.3 Superposition of material points of cells and ECM. We advice the reader that in spite of
the fact that for descriptive purposes the two components are represented as a fiber network and a
cell, a material point has to be considered much bigger than the one drawn, i.e., it contains many
focal adhesion points and many cells

Following [57], the present stretching of the bond (and its possible rupture) can be
assumed to depend on the present relative distance between the cell and the ECM
points that had come in contact at time t � a, i.e.,

rcm.Xc;Xm; t/ D �c.Xc; t/ � �m.Xm; t/ : (3.1)

Referring to again the diagram in Fig. 3.3 and recalling that the body points Xc and
Xm were superposed at time t � a, we remark that

Xm D ��1
m .xb; t � a/ D ��1

m .�c.Xc; t � a/; t � a/ : (3.2)
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The vector field rcm can then be written as a function of .Xc; a; t/ as

rcm.Xc; a; t/ D �c.Xc; t/ � �m.�
�1
m .�c.Xc; t � a/; t � a/; t/ : (3.3)

The microscopic force bFmic
cm .Xc;Xm; t/ acting on Xc because of the adhesive

interaction with Xm 2 B�
m can be assumed to depend on position, age of the bonds

and time through rcm, i.e.,

bFmic
cm .Xc;Xm; t/ D Fmic

cm .rcm.Xc; a; t// : (3.4)

In [57], it was proved that if the renewal time of a bond is much shorter than the
characteristic time needed by a cell to move across a cell length or, equivalently,
if the stretch of the bond is much smaller than the cell size, then Eq. (3.3) can be
simplified by a Taylor expansion to

rcm ' a .vc.x; t/ � vm.x; t// ; (3.5)

where x D �c.Xc; t/ in order to simplify the notation. Equation (3.5) simply states
that, as a first approximation, the stretching of the bond is proportional to its age and
to the relative velocity of the points of the cell and of the ECM that were connected
by the adhesion bond at time t � a. In other words, (3.5) means that

@rcm
@a

D vc.x; t/� vm.x; t/ : (3.6)

The continuum assumption requires that in a material point of the domain there are
many focal adhesion points that for instance had formed in several instants in the
past. From the modelling point of view, this means that the ensemble of bonds has
to be described through a distribution function over the age. In this respect, the total
interaction force exchanged in Xc at any given time t, which results from all the
active cell-ECM bonds, can be written as

mad
cm.Xc; t/ D

Z C1

0

Fmic
cm .rcm.Xc; a; t//�.da/ ; (3.7)

where the measure �.da/ is related to the density of bonds with age in the interval
Œa; a C da and is given by

�.da/ D fcm.Xc; a; t/ da ;

fcm.Xc; a; t/ being the distribution function of bonds linking Xc to the other point
Xm that was superimposed to Xc at time t � a.
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Therefore, the number density of bonds formed at time t is

Ncm.Xc; t/ D
Z C1

0

fcm.Xc; a; t/ da ; (3.8)

and

A D 1

N

Z C1

0

afcm.Xc; a; t/ da ;

is the bonds mean age.
Recalling classical methods used in structured population dynamics or in kinetic

theories, the distribution function evolves according to

Pfcm WD @fcm
@t

C @fcm
@a

D ��cm; (3.9)

where �cm describes detachment processes while the bond is aging and possibly
stretching.

Focusing on the dependence of the detachment rate �cm on the microscopic force
Fmic, we can assume that a bond breaks up at a rate that depends both on the
magnitude of the microscopic force exerted on it and on its age, that is,

�cm.Xc; a; t/ D �cm.F
mic
cm .rcm.Xc; a; t//; a/fcm.Xc; a; t/ ; (3.10)

where Fmic
cm D jFmic

cm j.
In the next section we will explain how to deduce �cm either from some exper-

imental data or from proper assumptions on its dependence from the microscopic
force.

3.2.2 The Quasi-Stationary Limit

The aim of this section is to relate the microscopic measurement with the macro-
scopic constitutive laws defining the interaction force mad

cm. A way to upscale the
information obtained at the subcellular level is suggested by Ölz and Schmeiser, who
solved in [51] a similar problem when dealing with actin cytoskeleton dynamics.

To do that, we first need to join Eq. (3.9) with a proper boundary condition. We
could take the rate of bond formation to be constant but, as will soon be evident, this
would lead to a paradox. In fact, if the cell barely moves, bonds always form but
hardly break. So, in the limit, an infinite number of bonds forms, resulting therefore
in an infinite adhesion force. To address this issue, it is useful to observe that a cell
can locally expose on its membrane only a maximum amount of integrins. Indeed,
the number density Nmax of active bonds per unit volume is, in a first approximation,
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proportional to the volume ratio occupied by the cells, or better to the ratio of
cell-ECM contact area per unit volume. In this respect, we can assume that the
formation of new bonds is proportional to the bonds that can still be formed, i.e.,
recalling (3.8),

fcm.Xc; a D 0; t/ D ˇ .Nmax � Ncm.Xc; t//

D ˇ

�

Nmax �
Z C1

0

fcm.Xc; a; t/ da

�

: (3.11)

Using again the assumption that the bond breaking length is much smaller than cell
diameter, it is possible to work in the quasi-stationary limit

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

@fcm
@a

.Xc; a/ D ��cm.Fmic
cm .rcm.Xc; a//; a/fcm.Xc; a/ ;

fcm.Xc; a D 0/ D ˇ

�

Nmax �
Z C1

0

fcm.Xc; a/ da

�

:

(3.12)

This limit is studied from the analytic point of view in [49].
Denoting by

Zcm.Xc; a/ D
Z a

0

�cm.F
mic
cm .rcm.Xc; ˛//; ˛/ d˛ ;

for any �cm, the boundary value problem in (3.12) can be solved explicitly to get

f .Xc; a/ D ˇNmax exp Œ�Zcm.Xc; a/

1C ˇ

Z C1

0

exp Œ�Zcm.Xc; a/ da

; (3.13)

and, from (3.7),

mad
cm D

ˇNmax

Z C1

0

Fmic
cm .rcm.Xc; a// exp Œ�Zcm.Xc; a/ da

1C ˇ

Z C1

0

exp Œ�Zcm.Xc; a/ da

: (3.14)

Taking

Fmic
cm .rcm.Xc; a// D �kmiccm rcm.Xc; a/ ; (3.15)
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where kmiccm is the elastic constant of a microscopic bond, and recalling (3.5), we have
that

Fmic
cm D �kmiccm a.vc � vm/ : (3.16)

and therefore

mad
cm D

�kmiccm ˇNmax

Z C1

0

a exp




�
Z a

0

�cm.k
mic
cm vrel˛/d˛

�

da

1C ˇ

Z C1

0

exp




�
Z a

0

�cm.k
mic
cm vrel˛/d˛

�

da

.vc � vm/ ;

with vrel D jvc � vmj.
In the following, it will be useful to rewrite the integrals in (3.14) in terms of the

microscopic force rather than of the age of the bond, i.e.,

jmad
cmj D

Nmax

Z C1

0

Fe.F/ dF

W C
Z C1

0

e.F/ dF

; (3.17)

where W D kmiccm vrel=ˇ and

e.F/ D exp




� 1

kmiccm vrel

Z F

0

�.�/ d�

�

: (3.18)

Equations (3.2.2) or (3.17) state the dependence of the cell-ECM macroscopic
interaction force from the microscopic characteristics of the cell-ECM adhesion
bonds. In particular, cell-ECM macroscopic adhesiveness relies on the density of
bonds exposed along the cell membrane, the contact area between cells and ECM
per unit volume, the rate of bond formation, the bond rigidity, and the detachment
rate. In this respect, it can be regarded as a multiscale link between models operating
at different scales.

3.2.3 Examples of Interaction Forces

Given a proper law of bond detachment �cm, Eq. (3.14) is able to determine the
corresponding interaction force mcm. For instance, assuming a constant renewal of
bonds

�cm D �0 ;
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that is independent from the force acting on them. Then from (3.14) one obtains

mad
cm

Nmax
D � kmiccm

�0

�

1C �
.vc � vm/ ; (3.19)

where � D ˇ=�0. Equation (3.19) is a Darcy’s-like relationship, i.e., a classical drag
law that asserts the proportionality between the adhesive interaction force and the
relative velocity.

In three-dimensional settings, the cell-ECM interaction force, in addition to the
above-mentioned adhesive part, is determined by a further contribution, which is due
to the tortuosity of the extracellular matrix and therefore to the fact that cells have
to move in an intricate network of fibres. In this respect, when a cell moves from
a point to another point of the network (see Fig. 3.4a), even in absence of adhesive
interactions, it crawls in a sort of porous medium. The corresponding contribution

Fig. 3.4 Schematic representation of possible cell-ECM interactions. (a) Effect of fiber tortuosity.
(b)–(c) Effect of cell-ECM adhesiveness
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of the interaction force can be modelled again by a Darcy’s-like law:

mD
cm.x; t/ D � 1

MD.x; t/
.vc.x; t/� vm.x; t// : (3.20)

where MD is a motility coefficient through the porous ECM in absence of adhesive-
ness.

It is useful to remark that the adhesive interaction term (3.19) has a different
origin and therefore it is present even if cells move in an ideal straight channel in
the ECM with the force aligned to it. In this case cells would in fact experience
a traction force mad

cm, resulting from the adhesive interaction with the ECM (see
Fig. 3.4b).

However, it is true that, in the case of a constant renewal of bonds (i.e., indepen-
dent from the force acting on them), the two contributions are similar and therefore
can be merged, obtaining a general linear relationship of the following type

mcm.x; t/ D � 1

M.x; t/
.vc.x; t/ � vm.x; t// ; (3.21)

where M can be interpreted as a motility coefficient. In fact, for a given interaction,
force small values of M result in small relative velocities. In anisotropic situations
the motility coefficient should be replaced by a motility tensor able to describe those
cases in which the motility depends on the direction of motion, e.g., it is easier to
move along ECM fibers than across them. So, Eq. (3.21) rewrites as

mcm.x; t/ D �M�1.x; t/.vc.x; t/ � vm.x; t// : (3.22)

Conversely, from the above discussion it appears evident that when in mathe-
matical models one assumes that the interaction force is proportional to the relative
velocity, it is implicitly assumed that bonds renewal at the membrane is independent
from the force acting on them.

This assumption is sufficiently consistent when dealing with developmental
issues and embryonic tissues as, in those cases, adhesive links are weak and cells
are very motile. However, in the case of mature tissues, different hypotheses need
be done. For example, one can introduce the possibility that bonds constantly renew
only after a threshold microscopic force F0, that is

�cm.F
mic
cm / D �0H.F

mic
cm � F0/ ; (3.23)

where H is the Heavyside function. In this case,

jmad
cmj

Nmax
D F0

1
2

C �! C �2!2

1C .1C �/!
; (3.24)

where ! D kmiccm vrel

ˇF0
.
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Fig. 3.5 Macroscopic adhesion laws when �cm.Fmic/ D �0H.Fmic � F0/

Then, for small relative velocities, jmad
cmj behaves like F0NmaxŒ1 C .� � 1/!=2

while for large relative velocities it goes to the oblique asymptote

jmad
cmj D F0Nmax




�

.1C �/2
C �

.1C �/
!

�

:

This behavior, shown in Fig. 3.5, is compatible with the one proposed in [56]
based on the assumption that if cells are not pulled strong enough, they move
together with the ECM. If the force overcomes the threshold F0Nmax=2, cells instead
detach from the ECM. If, then, the rate of formation of new bonds is faster than
the rate of detachment, i.e., � > 1, then the relative velocity increases with the
force. Otherwise, if the rate of formation of new bonds is slower than the rate
of detachment, i.e., � < 1, then the force-relative velocity relation decreases to
increase back again at higher values of relative velocity. This means that when the
interaction force increases over the threshold, the velocity jumps to the branch on
the right of the graph in Fig. 3.5 following the rightward arrow. If then the force
is lowered again, then upon reaching the minimum the relative velocity jumps
back to zero (following the leftward arrow in Fig. 3.5), giving rise to a sort of
mesenchymal-epithelial transition. Adding Darcy’s contribution (3.20) substantially
does not modify the above discussion but for the identification of the presence of a
minimum or not, now identifiable by the value of � .

In spite of the simplicity of (3.19) and (3.24), however, it is more proper to
obtain �cm from assumptions or experimental data focused on the bond-breaking
distribution b.Fmic

cm / (e.g., those in Fig. 3.6). The distribution b.Fmic
cm / has a compact
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Fig. 3.6 Distribution function of the force of unbinding events (data from [71])

support, namely it vanishes for Fmic
cm > FM as a result of the fact that after a maximal

sustainable force all bonds will break.
In this respect, one has that

�cm.F
mic
cm / D b.Fmic

cm /

B.Fmic
cm /

D � 1

B.Fmic
cm /

dB

da
.Fmic

cm / ; (3.25)

where, because of Eq. (3.16),

�cm.F
mic
cm / D � kmicvrel

B.Fmic
cm /

dB

dFmic
cm

.Fmic
cm / ; for Fmic

cm < FM ; (3.26)

where FM is the sup of the support of b and

B.Fmic
cm / D

Z FM

Fmic
cm

b.�/ d� (3.27)

is the survival function. If, as discussed before, there is a minimal force F0 needed
to break adhesion bonds, then b D 0 for Fmic

cm < F0, and therefore from(3.25)
�cm.Fmic

cm / D 0. For a similar reason �cmFmic
cm D 0 also for Fmic

cm > FM .
Integration by parts gives that the mean value of b.F/ is

mb D F0 C
Z FM

Fm

B.F/

B.F0/
dF ; (3.28)
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where F0 is the inf of the support of b, while the standard deviation � is given by

�2 D F20 C 2

Z FM

Fm

F
B.F/

B.F0/
dF � m2b : (3.29)

Of course, different breaking distributions would give rise to different macroscopic
forces. However, it can be observed that e.F/ in (3.18) is given by

e.F/ D B.F/

B.F0/
: (3.30)

Obviously, e.F/ D 1 for F < F0, and e.FM/ D 0. We can then extend e.F/ and
B.F/ assuming that they vanish for F > FM . Hence, from (3.17), (3.28), and (3.29),
we obtain

jmad
cmj

Nmax
D

F0
2

C
Z FM

F0

FB.F/

F0B.F0/
dF

1C ! C
Z FM

F0

B.F/

B.F0/
dF

D �2 C m2b
2.!F0 C mb/

; (3.31)

that decreases from b0 D .1C �2

m2b
/mb
2

to zero as the relative velocity increases. This

is due to the fact that at high relative velocities, bonds brokage is more frequent
than bonds formation, whose characteristic rate is given by ˇ. Also in this case
there is a threshold stress determining cell detachment. We remark that mb and �
are properties of the bond-breaking distribution function that can be experimentally
measured. For instance, in [71] mb � 28; 29; 29 pN and � � 10; 9; 10 pN,
respectively for Chinese hamster ovary cells, malignant human brain tumor cells,
and human endothelial cells, respectively. Higher values can be deduced from the
data in [2], that gives mb � 73 pN and � � 38 pN in the case of VE-cadherin-Fc
fusion protein.

Referring to Fig. 3.7, it should be noticed that, when mad
cm and mD

cm are summed,
we have

mcm D �Nmax
�2 C m2b

2.!F0 C mb/

vc � vm

vrel
� M.vc � vm/ ; (3.32)

so that jmcmj might have a minimum for

vrel D
s

.�2 C m2b/ˇ

2kmicM
� ˇmb

kmic
; if

2ˇM

kmicNmax
< 1C �2

m2b
:

jmcmj then grows to infinity because jmD
cmj becomes dominant. The behavior is then

similar to the one shown in Fig. 3.5.
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Fig. 3.7 Sketch of the interaction forces. The right-pointed arrows indicate a transition that
resembles the one between mesenchymal and ameboid motion. The left-pointed arrows indicate
either the reverse transition (upper) or a transition to rest (lower). The little square indicates a
transition from rest to a mesenchymal-type motion

Without entering in the details of the computation (we refer to [57] for that), if
we consider in addition to a force-driven detachment, as the one just described, a
continuous renewal of the bonds (as the one giving rise to (3.21)) or a continuous
renewal after a minimal force (as the one giving rise to (3.24)) then one has a total
interaction force characterized by a cubic-like curve, as the one shown in Fig. 3.7.
The branch on the left, that starts from the origin if F0 D 0 and away from it if
F0 ¤ 0, can be denoted as mesenchymal-like branch, whereas the one on the right
can be referred as the ameboid-like branch. The former is in fact characterized by
smaller velocities and is adhesion-dominated, while the latter is characterized by
larger velocities and is more related to cell difficulties in moving within the network
of fibres.

So, if the stress acting on cells is too high they might jump to the ameboid-like
or Darcy branch. Otherwise, when the stress decreases below the minimum, they
will jump to the adhesion-dominated or mesenchymal-like branch. Such a behavior
resembles an ameboid-to-mesenchymal transition (black arrows), or possibly an
ameboid-to-epithelial transition (gray arrows). It is however necessary to advise the
reader that the above description is a strong simplification of reality: we in fact
neglect selected chemical mechanisms and cascades involved in the overall process.

An interesting dynamics can be described by the following reasoning: Referring
to Fig. 3.8, assume that the interaction force is fixed (the dashed line in the
figure) and to have different clones characterized by different relationships between
interaction force and relative velocity, and specifically different intersections with
the interaction force axis. The clone corresponding to the top figure will stay at
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Fig. 3.8 Behavior of a cell experiencing a given interaction force depending on the relationship
between interaction force and relative velocity. In the case of the upper curve, the cell will stay at
rest. In the case of the middle curve it will slowly move (full arrow). In the case of the lower curve
it will move much faster (dotted arrow)

rest, while the one corresponding to the curve in the middle will slowly move
(thicker arrow). For the clone corresponding to the bottom curve the cell can move
even faster (thinner arrow) going directly to what we called ameboid-like branch or
Darcy-dominated branch.

Summarizing, in our opinion, the key features characterizing the relationship
between the microscopic properties of the cell-ECM detachment rate and the
properties of the macroscopic interaction force are the following:

• the absence of a minimal force needed to trigger detachment, i.e., F0 D 0, leads
to an interaction force initially proportional to the relative velocity between cells
and ECM;

• on the opposite, the presence of a minimal force needed to start breaking the
adhesion bonds, i.e., F0 ¤ 0, leads to a threshold behavior also for the interaction
force, in the sense that below a given value there is no relative motion between
cells and ECM;

• finally, the existence of a maximal force sustained by cell-ECM bonds leads to a
regime that is dominated by Darcy’s contribution.

3.3 Modelling the Influence of the Nucleus

The discussion done in the previous section has not taken into account of the
presence of the nucleus, which is the stiffest subcellular organelle. This might be
a plausible hypothesis when dealing with two-dimensional motions of cells over
substrates. In fact, in these cases cell-ECM interactions occur below the cell and
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therefore the nucleus can freely move in the physiological liquid above the ECM. In
three-dimensional set-ups, things are very different. In fact, when passing through
dense and rigid ECMs the nucleus needs to considerably deform and squeeze in the
narrow gaps present in the network. In this respect, the migration capabilities of the
cell mainly relies both on the microstructure of the ECM and on the deformability
of the nucleus because of the high compliance of the cytosol.

In this section, we will briefly describe a continuous model (developed in [21]),
able to describe the effect of nucleus remodelling on a cell trying to penetrate a
narrow 3D structure. Although in vivo fibre structures and bundles are arranged
into really complex networks (i.e., characterized by strongly varying local densities
that create pores and gaps of different dimensions), the problem is here simplified
by considering the ECM as a parallel cylindrical channel, composed of fibres
and bundles that provide directional guidance cues to cells. This is of course a
strong assumption. However, it can represent a good approximation of more regular
scaffolds used in tissue engineering. Moreover, it can help to make a first step
towards the description of the in vivo phenomenon.

3.3.1 Modelling the Deformation of the Elastic Nucleus

In order to penetrate into pores smaller than the its dimension, the nucleus has to
deform. The amount of energy required depends on the mechanical characteristics
both of the nucleus and of its membrane, as well as on the shape adapt to
squeeze within the ECM structure. For sake of simplicity, in [21], the matrix-like
environment is assumed to be organized as a microchannel of radius Rp. Although
in that work different conditions have been analyzed, we here will only present the
case in which the nucleus is assumed to be elastic, with a negligible contribution
from the membrane, and will eventually deform into an ellipsoid, as represented in
Fig. 3.9 (bottom) while the overall cells is assumed to achieve a cigar-like shape.

This is consistent with experimental observations [36, 80], which have provided
that if matrix pores have a cylindrical shape, as in an artificial regular microchannel,
the nucleus acquires an elongated morphology, with the longer axis aligned with the
axis of the microchannel. Cell elongation is also associated with the formation of
actin bundles on either sides of the nucleus, that are responsible of the nuclear defor-
mation and help maintaining the deformed configuration by generating compressive
forces [80]. The shape of the deformed nucleus can therefore be approximated by
a prolate ellipsoid [80, 82], with smaller axis Rp and the larger axis equal to R3n=R

2
p

where Rn is the initial stress-free radius of the nucleus, so that the deformation
preserves the volume of the nucleus. As found in [21] and shown in next Fig. 3.10,
the case in which the cell nucleus is deformed in a cigar-like shape leads to the same
behavior not only from the qualitative but also from the quantitative viewpoint.

Let us assume that all the energy required by the cell to completely penetrate into
the microchannel is spent to deform its internal solid nucleus, which is treated as an
elastic material. We recall once again that in fact the cytoplasm can easily invade
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Fig. 3.9 Schematic representation of cell displacement and nucleus deformation

Fig. 3.10 Entry criterium for cell nucleus deforming on an ellipsoid to penetrate a microchannel.
The result for a cigar-like shape is also show by a dashed line, but it is nearly undistinguishable

the channel due to its high deformability. The energy required to deform the initially
spherical shape of the nucleus to the shape it takes to get in the microchannel can
then be compared with the work that can be done by the adhesion traction forces the
cell can exert in order to advance in the microchannel.
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To compute the energy required to deform the nucleus, we have to set a proper
constitutive equation, that represents the response of the material to deformations,
and then to calculate the deformation gradient F. For sake of simplicity, we assume
that the nucleus behaves like an incompressible neo-Hookean material, so that the
elastic stored energy per unit volume is given by

W D �

2
Œtr C � 3 ; (3.33)

where C D J2=3FTF, J D det F, and � is the shear modulus of the nucleus.
The deformation of a sphere in a prolate ellipsoid with the same volume is simply

given by a uniaxial deformation

F D diag

(

Rp

Rn
;
Rp

Rn
;
R2n
R2p

)

;

where Rn is the radius of the spherical nucleus. Therefore, Eq. (3.33) yields to

W D �

2

 

2
R2p
R2n

C R4n
R4p

� 3

!

;

which, integrated over the total volume V of the initial sphere, gives the total energy
required to pass from the initial to the final configuration, namely

Wtot D
Z

V
W dV D 2

3
��R3n

 

2
R2p
R2n

C R4n
R4p

� 3
!

: (3.34)

The above Eq. (3.34) links the elastic energy of deformation to the mechanical
properties of the nucleus (�) and to the radii both of the nucleus itself (Rn) and
of the pore (Rp).

3.3.2 Modelling the Cell Traction Force

To describe cell entry into ECM channels, a fundamental step is the definition of the
adhesive forces that are necessary for cell deformation and subsequent migration.
Such an adhesive force can be thought as the resultant of all forces generated
by single cell-ECM bonds on the surface of contact through the contraction of
cytoskeletal elements. In this respect, adhesion can be modulated by the density of
expressed and activated integrins on the membrane, i.e., �b D Nintegrin=Scell�ECM

(where Nintegrin is the number of integrins over the surface of contact between
the cell and the ECM, which is identified by Scell�ECM), and by the density of
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substratum ligands (ECM adhesive sites) covering the surface of the microchannel,
here represented by the ECM surface ratio, ˛ECM D SECM=Schannel.

As previously commented, we assume that the cytoplasm can easily penetrate
inside the channel without any effort (see Fig. 3.9), so that the action of adhesive
bonds has the effect of:

• translating the cytosolic region, that keeps the same shape with a tip that is
modelled as a spherical cap;

• leading to the advancement of the nucleus that, being at the entrance of the
microchannel, needs also to deform to penetrate into the structure.

We can say that the length of the region of the cytoplasm in front of the nucleus
and in contact with the channel wall is approximately constant. We can further
assume that on such a cylindrical surface, defined as ˝bond in Fig. 3.9, adhesive
bonds form and traction forces are exerted. The region ˝bond can extend over to
the entire cylindrical portion of the membrane of length Lb, especially when the
size of the microchannel is not too small and therefore the cytoplasm does not
protrude much within the microchannel. However, when the pore dimension is much
smaller than the cell dimension, the cytoplasm will elongate considerably within the
microchannel. In this case, it can be assumed that traction forces are exerted only
in the portion of its membrane closer to the tip. In both cases, when the cytoplasm
is completely inside the microchannel, it can be observed that the dimension of the
domain˝bond is nearly constant throughout the penetration of the nucleus.

Accepting that the density of bonds on cell surface, �b, and the portion of the
channel wall composed of ECM adhesive sites, ˛ECM , do not depend on time, the
total adhesion force is

Fad D
Z

˝bond

�b.x/˛ECM.x/Fbond.x/ d˙ ;

where Fbond is the z-component of the force generated through cytoskeleton
contraction, as a consequence of bond formation.

Although �b and ˛ECM may be generally functions of the space, in the homoge-
neous case, the equation above simplifies into

Fad D �b˛ECM

Z

˝bond

Fbond.x/ d˙ D 2�Rp�b˛ECM

Z Lb

0

Fbond.x; y; z0 C �/ d� :

The total adhesive force pulling the cell is therefore a function of the radius Rp of the
microchannel, the density of bonds �b, the surface fraction of the channel composed
of extracellular matrix, ˛ECM, and the integral of the single bond forces over the
length of contact.

In particular, under the assumption that the length of the cylindrical section for
which bonds are formed is given by the portion of the cell in front of the nucleus in
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contact with the channel (see Fig. 3.9), we have that

Lb D Lcell � Rp � Ln ;

where Lcell is the initial length of the cell inside the channel (which corresponds to
the length of the deformed cytoplasm) and Ln is the portion of the nucleus that can
enter the channel without any deformation. An easy geometrical reasoning, based
on volume conservation both of the cytoplasm and of the nucleus, gives

Lcell D Rp

"

4

3

R3c � R3n
R3p

C 1

3
C L2n

R3p

�

Rn � Ln
3

�
#

;

Ln D Rn �
q

R2n � R2p ; (3.35)

where Rn the radius of the nucleus and Rc the radius of the cell. Once that a
proper function representing bonds forces is provided the process of adhesive force
description is accomplished.

We consider the case in which cells are able to form bonds only over a certain
area of the contact region, e.g., the apical portion of the deformed cell with length
Lf , i.e., ˝bond D fx W r D Rp; � 2 Œ0; 2�/; z 2 Œzf ; zf C Lf g. Therefore, assuming a
constant force Fb in the domain we can take

Fbond.z0 C �/ D FbH.� � .Lb � Lf // ; for 0 < � < Lb ;

where H is the Heaviside function, which means that if Lb < Lf traction forces acts
over the entire cylindrical portion of the domain ahead of the nucleus. Otherwise,
if Lb > Lf they act only on an apical portion having length Lf . Therefore, the total
adhesive force is represented by the following relation

Fad D 2�Rp�b˛ECMFbminfLb;Lf g : (3.36)

A similar relation would be achieved if the adhesive force do not act on a
single interval but on a set of disconnected intervals, whose sum however is the
same. It is in fact the sum of the sizes of the intervals that matters and not the
specific localization and distribution of the “adhesive sites”. Analogously, it would
be possible to use a linear dependence of the force on the distance from the nucleus:
in this case the result would be equal to the case in which the mean force is
constantly exerted in the entire interval.
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3.3.3 A Penetration Criterium from an Energy Balance

In order to penetrate into a microchannel, the total traction that the cell is able to
exert must be larger than the deformation-related force exerted by the nucleus in the
rear of the cell. In order to get an approximated criterium able to state if the cell is
allowed to invade the subnuclear structure, in [21] the work that can be done by the
traction force is compared with the elastic energy necessary to deform the nucleus.

In particular, the work required to have the cell completely inside the channel
should be provided by adhesive forces which, using (3.36), can be written as

Wad D FadL D 2�Rp�b˛ECMFbminfLb;Lf gL ;

where L is the total displacement of the cell nucleus after its penetration inside the
channel, that is given by L D Lfinn � Ln, where Lfinn is the final length of the nucleus
when it is totally inside the channel and Ln is the length of the nucleus that can
freely enter the channel without any deformation (given by Eq. (3.35)). Then, for
the ellipsoidal shape we have that

L D R3n
R2p

� Rn C
q

R2n � R2p :

The criterium relies on the observation that, in order to penetrate into the microchan-
nel, the work done by the adhesion forces must be larger than the energy required
to deform the nucleus, i.e.,

Wad � Wtot D 2

3
��R3n

 

2
R2p
R2n

C R4n
R4p

� 3
!

: (3.37)

By scaling all distances with Rn and writing all material parameters on the right-
hand-side, it is possible to identify a crucial dimensionless number

G D �b˛ECMFM
b

�
; (3.38)

representing the ratio between adhesive bond properties and nuclear mechanical
parameters. This number is characterized by the fact that at the numerator there are
all the quantities related to the traction forces (adhesion bond densities, surface ratio
of ECM, force exerted by bonds) whereas at the denominator we have the parameter
describing the mechanical properties of the cell nucleus, namely its shear modulus.
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From (3.37) we then have the criterium

G � 2

3

2 QR2p C 1

QR4p
� 3

 

2

QR2p
� 1C

q

1� QR2p
!

minf QLb; QLf g
; (3.39)

drawn in Fig. 3.10, where QRp D Rp=Rn, QLb D Lb=Rn, and QLf D Lf =Rn.
The curve starts from 0 when the radius of the nucleus is equal to that of the

microchannel, corresponding to the fact that in this case no work is necessary to
penetrate the structure. On the other hand, it goes to infinity like 1= QR3p, when QRp ! 0.

It can be noticed that, for every QRp, it is possible to uniquely identify a minimum
value of G above which the nucleus can be pulled inside the channel. Conversely,
knowing nuclear mechanical and adhesive properties, it is possible to identify the
minimum value of Rp that allows a nucleus of radius Rn to enter the channel.

Being G the ratio between adhesive and mechanical properties, Eq. (3.39) shows
that cells with a more rigid nucleus (i.e., characterized by higher values of�), should
either increase the number of adhesive bonds (�b), or the number of focal points in
contact with ECM (˛ECM), or even bond strength (Fb).

This finding is in qualitative agreement with a number of experimental works,
such as [3, 61, 84], where cell migratory capability is associated with nuclear
deformations and the existence of critical channel radii above which cell can enter.
Moreover, it is comparable with the results that will be described in the following
section, confirming that mechanical properties of the nucleus can affect the cell entry
into channels. Equation (3.39) can be of great value, for instance, in scaffold design.
In fact, if cell mechanical properties and their capabilities to express bonds are
known, it is then possible to evaluate the pore size that allows the cells to penetrate
the rigid network.

3.4 Cell Migration by Cellular Potts Models

The model described in the previous section gives a criterium determining whether
a cell is able or not to enter a microchannel or a ECM network, but it compares
configurations without giving a dynamic idea on the phenomenon. In this respect,
in order to describe the motion of single cells or of small aggregates, it is more
convenient to use individual cell-based approaches. One of them is the cellular Potts
model (CPM), i.e., a grid-based stochastic method able to mimic the behavior of
cells using an energetic approach. In fact, the model relies on the assumption that
cell behavior and interactions with the local microenvironment can be described by a
generalized energy (or hamiltonian). In this respect, it is useful to clarify in advance
that in reality cells use energy supplies to perform many tasks and actions (e.g., to
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move, proliferate, perform task, do their job, even die). When using a CPM, the
underlying hypothesis is that during their random migratory behavior, deformations
of cells that require more energy are more unlike to happen.

3.4.1 Compartmentalized Cellular Potts Models

CPM simulation domains are d-dimensional regular lattices ˝  R
d, where d D

2; 3 (we will specify the spatial dimensions according to the specific application
described in the following). Each lattice site x 2 ˝  R

d is labeled by an integer
number, �.x/ 2 N, which can be interpreted as a degenerate spin originally coming
from statistical physics [31, 54]. As classically adopted in CPM applications,

• the border of a lattice site x is identified by @x;
• one of its neighbors by x0;
• its overall neighborhood by ˝

0

x, i.e.,

˝
0

x D fx0 2 ˝ W x0 is a neighbor of xg :

Subdomains of contiguous sites with identical spins form discrete objects ˙� , i.e.,

˙� D fx 2 ˝ W �.x/ D �g ;

which are characterized by an object type, �.˙�/.
In all the cell-matrix systems of our interest, following the compartmentalized

approach described in [63], each virtual cell, denoted by �, is defined as a compart-
mentalized element, composed of two subregions which, in turn, are classical CPM
objects˙� (see Fig. 3.11):

• The nucleus, a central cluster of type � D N;
• The surrounding cytosol, of type � D C.

Each cell compartment is obviously characterized, as an additional attribute, by the
cluster id �.˙�/ to identify the individual it belongs to.

The extracellular environment is differentiated in the interstitial fluid and a
polymeric-like state, as typically employed for in vitro assays. The former is
assumed to be reproduced by a single element of type � D M, that is isotropically
distributed throughout the simulation domain. The latter represents either an ECM
fiber network, or a bioengineered scaffold or microchannel structure. Referring to
Fig. 3.11, it is treated as standard, non-compartmentalized CPM objects of type
� D P.

Cell movement results from an iterative and stochastic reduction of a free energy
of the overall system, defined by the hamiltonian H, whose expression will be
clarified below. The core algorithm of CPMs is a modified Metropolis method for
Monte Carlo-Boltzmann dynamics [22, 23, 48]. Procedurally, at each time step t,



3 Modelling Cell-ECM Interaction 157

Fig. 3.11 A typical CPM grid and representation of a compartmentalized cell and of its extra-
cellular environment. The cell is composed of the nucleus, a central cluster of type � D N, and
of the surrounding cytosol of type � D C. The extracellular space is instead differentiated in a
medium-like state (� D M) and a polymeric-like state (� D P). On the right, the eight lattice site
surrounding x represent the neighborhood of x denoted by ˝0x

Fig. 3.12 Possible choices xt for xs to copy its spin and the actually randomly chosen attempt. Red
squares and yellow squares belong to different object types. The neighborhood of xs is represented
by ˝0xs

called Monte Carlo Step (MCS), a lattice site xs (s for source) belonging to a cell
compartment˙�.xs/ is selected at random and attempts to copy its spin, �.xs/, into
one of its unlike neighbors, xt 2 ˝

0

xs W xt … ˙�.xs/ (t for target), also randomly
selected (see Fig. 3.12). Such a trial spin update is accepted with a Boltzmann-like
probability function P.�.xs/ ! �.xt//, which reads as

P.�.xs/ ! �.xt//.t/ D tanh.T˙�.xs/ .t//min

(

1 ; exp

 

�
H
T˙�.xs/ .t/

!)

: (3.40)


H is the net difference of the system energy, which is defined by the hamiltonian
H, due to the proposed change of domain configuration. T˙�.xs/ .t/ > 0 is a
Boltzmann temperature, that measures the agitation rate of the moving object˙�.xs/.
Indeed, for �.˙�.xs// D N, T˙�.xs/ D TN gives the agitation rate of cell nucleus,
while, for �.˙�.xs// D C, T˙�.xs/ D TC is a measure of the intrinsic motility
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of the overall cell, as it gives the frequency of the ruffles of its cytosol (which,
on a molecular level, are determined by polarization/depolarization processes of
the actin cytoskeleton). TN is a low value, resulting in the passive motion of
the nucleus, which, unable to have an autonomous movement, is dragged by the
surrounding cytosol, characterized instead by a higher TC (see [63] for a more
detailed mechanical explanation). The ECM polymeric components are instead
assumed fixed and immutable, only representing a restriction for cell movement.

The first factor in (3.40) takes into account of the fact that the effective motion
of a cell is strongly dependent on subcellular dynamics governing its possibility to
move. For example, a “frozen” cell (i.e., with negligible intrinsic motility) does not
extend its pseudopods toward a chemical source even if it senses a high chemotactic
gradient (which, in the absence of other external forces, results in 
H � 0). This
may occur for example because a cell

• does not have enough chemicals to trigger its motility programme, e.g., ATP or
calcium;

• has been pretreated with motion-inhibiting proteins, such as cytochalasin B, that
prevents the formation of the actin network;

• is simply frozen at a temperature of 4 ıC.

In the cases of our interest, for any given time t, the system hamiltonian, whose
minimization drives the evolution of the system, is composed of at least two terms

H.t/ D Hshape.t/C Hadhesion.t/: (3.41)

Hshape models the geometrical attributes of simulated objects (both subcellular
compartments and matrix components), which are written as non-dimensional
relative deformations in the following quadratic form

Hshape.t/ D Hvolume.t/C Hsurface.t/

D
X

˙�

"

�˙� .t/

�

v˙� .t/ � V�.˙� /
v˙� .t/

�2

C 	˙� .t/

�

s˙� .t/ � S�.˙� /
s˙� .t/

�2
#

; (3.42)

depending on the actual volume and surface of the object, v˙� .t/ and s˙� .t/ (which
reduce, respectively, to its surface and perimeter in two dimensions), as well as
on the same quantities in the relaxed state, V�.˙� / and S�.˙�/, corresponding to
its initial measures. The formulation of (3.42), which is different from standard
CPMs, allows to have finite energetic contributions, as well as a blow up in
the case of v˙� .t/; s˙� .t/ ! 0 (i.e., CPM objects can not artificially disappear,
as it might happen in some cases for the classical CPMs, see again [63] for a
detailed explanation). The coefficients �˙� .t/ > 0 and 	˙� .t/ > 0 play the role
of mechanical moduli in units of energy. In particular, �˙� .t/ refer to volume
changes and therefore to the compressibility of ˙� , while 	˙� .t/ relates to the
degree of deformability/elasticity of the related object, i.e., the ease with which it is
able to remodel. Indeed, assuming that a cell does not significantly grow during
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migration, the fluctuations of its volume are kept negligible with high constant
values �˙� D � � 1, for �.˙� / 2 fN;Cg. Moreover, cells moving in matrix
environments are typically deformable, but their nuclei show a higher rigidity w.r.t.
the cytoplasm region. Indeed, in general, it is consistent to assume

	˙� W�.˙� /DC D 	C < 	˙� W�.˙� /DN D 	N :

However, we will discuss the specific values (and/or constitutive laws) of these
model parameters in the following, analyzing, in particular, their effect on cell
migratory dynamics. The extracellular environment is instead assumed to have
homogeneous mechanical and microstructural properties: in particular the poly-
meric matrix component are assumed to be rigid by setting �P D 	P � 1.

Hadhesion is the general extension of Steinberg’s Differential Adhesion Hypothesis
(DAH) [23, 67, 68]. In particular, it is differentiated in the contributions due either
to the generalized contact tension between the nucleus and the cytoplasm within the
same cell, or to the effective adhesion between a cell and an extracellular component

Hadhesion.t/ D Hint
adhesion.t/C Hext

adhesion.t/

D
X

.@x2@˙� /\.@x02@˙�0 /
�.˙�.x//D�.˙�.x0//

Jint�.˙�.x//;�.˙�.x0//

C
X

.@x2@˙� /\.@x02@˙�0 /
�.˙�.x//¤�.˙�.x0//

Jext�.˙�.x//;�.˙�.x0//; (3.43)

where x and x0 are two neighboring sites (i.e., x0 2 ˝
0

x) and ˙�.x/ and ˙�.x0/ two
neighboring objects. The coefficients J�.˙�.x//;�.˙�.x0// 2 R are binding forces per
unit area, and are obviously symmetric with respect to the indices. In particular,

• JintN;C implicitly models the forces exerted by intermediate actin filaments and
microtubules to anchor the nucleus to the cell cytoskeleton, preventing cell
fragmentation;

• JextC;C represents the local adhesive strength between neighbouring cells, a measure
of the local quantity of active and exposed cadherin molecules;

• JextC;P and JextC;M evaluate the heterophilic contact interactions between a cell and
an extracellular component. On the one hand, JextC;P measures the affinity between
integrins complexes on the cell surface and the insoluble matrix components.
On the other hand, JextC;M possibly accounts for the adhesiveness between the cell
membrane and specific soluble ligands present in the medium.

Specifically, assumed JintN;C � 0 to prevent cell splitting, we give null contribution
to the adhesive interactions between a moving cell and an extracellular component
(i.e., JextC;M D JextC;P D 0). This choice, successfully used in another similar model of in
vitro cell migration [65], is done to analyze the direct influence of cell deformability
on its motile behavior, and is consistent with the experimental literature, which



160 L. Preziosi and M. Scianna

widely demonstrates that most cell lines display sustained ameboid motility in
confined environments in a poorly adhesive mode [39, 61]. JextC;C is finally kept high
to avoid cell-cell adhesive interactions that may affect cell movement. By setting
constant and homogeneous values for the bond energies Js, we here assume a
uniform distribution of adhesion molecules both on cell surfaces and in the external
environment, without any change during the observation time.

In the following set of simulations, we will add (and explain) other contributions
in the hamiltonian functional that will be needed to model specific cell behaviors.

3.4.2 Cell Migration in a 3D Microchannel Device

As a first application in the present section we analyze cell migration in three-
dimensional fixed microchannel architectures. Following [62] the simulation
domain ˝  R

3 indeed reproduces a bioengineered device with channel structures
of various widths and a planar surface just outside their entrances, as shown in
Fig. 3.13. This experimental architecture is typically used in literature to analyze
cell migration both on open spaces and through precisely confined environments
(see [61] and references therein).

The hamiltonian is given by the contributions introduced in Eq. (3.41), as well
as by a further term describing cell persistent migration, which is determined by
the ability of moving individuals to polarize, i.e., to differentiate in a leading and
a trailing surface. For each individual �, this inertial, shape-dependent motion is
modeled with a further energy term, which is coherently a running mean over the

Fig. 3.13 The simulation domain ˝ reproduces a micro-fabricated device with channels of
various width and a planar surface just outside their entrance. In particular, the top channel is
larger than the overall cell diameter, while the bottom channel is smaller than nuclear dimensions.
Initially, the cells are seeded on the flat substrate near the channel walls
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cell past movements [1, 64]

Hpersistence D ��pers.t/jjv�.t/ � v�.t �
t/jj2; (3.44)

where v�.t/ is the instantaneous velocity of the cell center of mass. The parameter
�
�
pers controls the persistence time of cell � and is

��pers.t/ D �pers;0




L�.t/

L0
� 1

�

; (3.45)

where L0 is the initial cell diameter and L� is the current length of the longer axis
of the cell, which is approximated with an ellipsoid [46]. Obviously L� � L0,
since we have assumed that the cell deforms but does not grow during migration.
Equation (3.45) is based on the experimental evidence provided in [28], where in
similar conditions elongated vascular cells have seen to have a longer persistence
time than more rounded cells. This is explained with the observation that cell
polarization is a cytoskeleton-driven process: the more a cell is polarized (i.e., the
longer its main axis is), the more its actin filaments are oriented in such a direction,
thereby requiring a longer time to reorient into a new direction and to establish a
new direction of motion. Coherently, from (3.45), if ��pers D 0 the cell � undergoes
an uncorrelated Brownian motion. Otherwise, if ��pers is very large, its motion is
almost ballistic.

Referring to Fig. 3.13, in all simulations, the cells are initially seeded on the
planar substrate in the close proximity to the channel entrances displaying an
unpolarized morphology. Indeed, they are hemispheres with a radius of 15�m,
while the nucleus is a central sphere with a diameter of 10�m.

The elasticity of the cell cytosolic region is modelled by a low value of 	C < 1,
whereas the nuclear cluster is made stiffer by setting a higher value of 	N � 1.

As reproduced in Fig. 3.14, all individuals initially show a random migration
on the flat surface (i.e., until nearly 2 h). Then, when approaching the channel
walls, they start walking along them. At this regard, it is useful to underline that
this preferred cell movement is completely autonomous, as we do not include in
the model any chemical gradient or bias, or any a priori direction for moving
individuals. In the case of the channel with the largest cross-section, the cell is able
to quickly enter and migrate within the structure, but not to reach the opposite border
within the final time of the simulation, as shown in Fig. 3.14. This individual in fact
fluctuates and “rebounds” between the internal walls of the channel, whose width
does not represent a significant geometrical contact guidance, thereby remaining
almost in the middle of the structure.

At the intermediate channel width (i.e., smaller than cellular dimensions and
bigger than nuclear dimensions), the cell is able to squeeze into and move within
the microstructure, as shown in Fig. 3.14. In particular, it remodels towards an
elongated shape and migrates to the other end of the device. The transition from a
stationary cell morphology to a polarized shape, which is completely self generating
and due to the geometry of the matrix environment, is fundamental in determining
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Fig. 3.14 Migratory behavior within the microchannel structure of cells with an elastic cytosol and
a rigid nucleus (i.e., 	C < 1 	 	N ). Images of a time-lapse simulation taken at t = 1, 2, and 8 h.
By remodelling their cytoskeleton, the cells are able to enter both the largest and the intermediate
channel. However, due to the presence of a stiff nucleus, cell migration into the smallest structure is
prohibited. Magnification of moving cell in the close proximity of the smallest channel entrance. It
is straightforward to see how the stiff voluminous nucleus is not able to pass through the confined
space, allowing only the penetration of part of the cytosol. For better visualization, cell nuclei are
manually encircled

the persistent component in cell movement. From a modelling viewpoint, cell
elongation in fact increases the relative magnitude of the persistence term (3.44)
in the overall hamiltonian, given by coefficient ��pers. Therefore, once the cell
has established the direction of movement within the channel, it is energetically
disadvantageous to change direction and is forced to maintain the direction of
locomotion.

Finally, the corresponding cell is not able to enter the smallest channel. If the
front of its cytoplasm quickly extends into the structure, the voluminous nuclear
region can not deform and pass through such a highly constrained space, therefore
inhibiting the individual from pulling inside its entire body, as clearly reproduced in
Fig. 3.14.

We next address the question to what extent a variation in cell nucleus elasticity
enables cell invasion and movement into highly confined spaces. With a biological
viewpoint, the decrement of 	N corresponds to a modification of the chromatin struc-
ture, a remodelling of lamin filaments or an experimental treatment with micromolar
concentrations of bioactive lipids (such as sphingosylphosphorylcholine, shortened
as SPC), whose activity leads to a substantial translocation of the keratin network
towards a perinuclear rearrangement [4]. More specifically, we set 	C < 	N < 1, as
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Fig. 3.15 Migratory behavior within the microchannel structure of cells with an elastic cytosol
and a deformable nucleus (i.e., 	C < 	N < 1). Images of a time-lapse simulation taken at t =
1, 2, and 8 h. The enhancement in nucleus elasticity enables cells to enter also in the smallest
channel. Magnification of moving cell in the close proximity of the smaller channel entrance. It
is straightforward to see how the nucleus can now squeeze to pass within the channel entrance,
allowing the entire individual to invade the structure. For better visualization cell nuclei are
manually encircled

the cell cytoplasmic region is still softer than the nuclear cluster which is, however,
more deformable w.r.t. the previous simulation setting.

The analysis of the model outcomes, summarized in Fig. 3.15, reveals that,
in the case of the largest channel, the deformability of the nucleus does not
appreciably affect cell migratory behavior. When the channel dimension decreases
to the intermediate range, though the cell morphology looks almost similar to the
previous case, the nuclear elasticity provides a further facilitation for the movement
of the entire individual. This is due both to the fact that the cell can now more
easily and more quickly pass through the channel entrance and to the fact that
it can more efficiently migrate within its walls, as also its voluminous nuclear
region is able to assume a more elongated and “mobile” configuration, allowing
a more efficient deformation of the entire cell body. Finally, the enhancement of
the nucleus elasticity results in a significant change in the migratory phenotype of
the cell approaching the smallest channel, as it is now able to invade the structure.
Such a change in the motile behavior is the obvious consequence of the fact that
it now compresses and pulls its nuclear region within the confined environment, as
represented in Fig. 3.15.

In order to summarize and to analyze from another viewpoint the results
presented so far, in Fig. 3.16, we plot the average velocity of cells, defined as
the average velocity of their center of mass [47, 53, 65], both on the flat surface
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Fig. 3.16 Comparison of the average migration speed of cells moving either on the flat surface
or within the different microchannels. Cell velocity on both the bidimensional substrate and in
the larger channel is substantially low, and does not significantly depend on cytosol and nucleus
rigidities. On the contrary, cell speed within more confined structures is generally two-fold higher
and is further enhanced by the possibility of nucleus deformability

and within the different channel structures. This comparison allows to elucidate
and to further quantify the differences between cell migratory phenotypes in
specific geometric conditions. The random movement of rigid cells on the planar
substrate is characterized by a low 0.4�m/min-speed, which slightly increases
for individuals with a deformable cytoplasm, reaching almost 0.6�m/min. There
is no further variation upon the enhancement of the nuclear compressibility. An
analogous behavior, with almost similar values, is observed for cell migration in the
largest channel, confirming that extracellular environments whose dimensions are
greater than cellular measures do not represent guidance cues, but rather behave
as open spaces. In the case of the intermediate channel, cells with an elastic
cytosol display instead an approximately two-fold increment in cell migration
speed (� 1.1�m/min), which is significantly enhanced when allowing nuclear
deformability (� 1.5�m/min). Finally, in the case of the smallest channel, the
cell average velocity (obviously evaluated only for cells with an elastic nucleus)
slightly decreases again to less than 1�m/min. The explanation resides in the fact
that although the nucleus is deformable, it is however stiffer (and less motile) than
the surrounding cytoplasm and therefore takes more time to remodel and move,
slowering the overall individual.

These results first reveal two distinct migratory phenotypes, that are proposed to
occur for cells placed either in open structures (i.e., 2D surfaces or large channels)
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or in confined architectures (i.e., channels smaller than cellular dimensions). In the
first case, the movement of cells is widely independent from their elastic properties,
whereas it is widely known to strongly rely on their adhesive strengths [39]. On the
contrary, the efficacy of cell migration in 3D constrained environments is mainly
determined by the deformation ability of the moving individuals (in particular, of
their voluminous nucleus), which adapt to the geometrical characteristic of the
environment. At this regard, it is indeed possible to identify an optimal dimension
of an extracellular structure which results in a sustained cell locomotion: Smaller
than the cellular measures but higher than the nuclear diameter.

3.4.3 Cell Migration in Two-Dimensional Matrix Microtracks

In this second part of the section, we present a CPM specifically designed to
analyze MMP-dependent and MMP-independent cell migration in two-dimensional
matrix microtracks. Accordingly, the simulation domain ˝  R

2 reproduces
an in vitro dense collagenous matrix characterized by well-defined microtracks,
which can be experimentally generated by laser ablation (see for instance [29] and
references therein). In particular, the scaffold pattern consists of two perpendicular
channels, which are equal in length (270�m) and width. In order to exploit different
geometries, the diameter of the microtracks varies in the different sets of simulations
similarly to the case of the microchannel structure proposed in the first part of the
section (bottom panels of Fig. 3.17).

In this second CPM application, the hamiltonian functional used is exactly the
same as the one defined in Eq. (3.41). However, the persistent cell movement is no
longer implemented by a further energetic term but by asymmetric biases added in
the Boltzmann probability function, which now reads as

P.�.xs/ ! �.xt//.t/ D tanh.T˙�.xs/ .t//min

(

1 ; exp

 

�
H C w1 C w2
T˙�.xs/ .t/

!)

:

(3.46)

More specifically, following [72–76], w1 models the inertial shape-dependent self-
propulsion of a cell by altering the probability assigned to each spin update as

w1.�.xs/ ! �.xt// D Ppers
p�
jp�j � .xt � xs/; (3.47)

where Ppers sets the magnitude of the cell autonomous motility and p� is the
polarity vector of � (top-left panel of Fig. 3.17), which, on a molecular level, may
represent spatial differences in its biochemical state. The coefficient Ppers is here
set constant in time: However, it may vary with the specific length of an individual
(see for instance Eq. (3.45)) or with the intracellular level of motile proteins. The
cell polarity vector is then updated by considering a spontaneous decay and a
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Fig. 3.17 Top-Left panel: Geometrical characteristics of the moving cell. xCM
�.˙�.xs//

indicates the
center of mass of cell �, whose site xs is attempting to move. The red vector p� represents the cell
polarity vector, which forms the angle � with the direction of the vector (xs � xCM� ). The width of
the leading edge is instead defined by the angle  , which is formed by the segments connecting
xCM� with extreme sites of the frontal part of the cell membrane, see also [72]. Top-right panel:
MMP-production mechanism. Only a cell site located in the frontal part of the border of a cell
can secrete proteolytic enzymes. In particular, the quantity of produced proteases is proportional
to the quantity of ECM insoluble components in its first neighborhood. The bold black border
indicates the membrane of the cell, the red dot its center of mass. Bottom panels: The simulation
domain ˝ reproduces a bidimensional dense collagenous lattice with microtracks of well-defined
dimensions. In particular, we will analyze cell migration within channels (1) larger than the overall
cell diameter, which is 30�m; (2) smaller than the overall cell diameter but larger than the nuclear
diameter, which is 16�m; and (3) smaller than the nucleus size

reinforcement from cell displacements as, for each MCS,


p� D � 1

tp
p� C
xCM

� ; (3.48)

where tp is a characteristic memory length of the polarization vector, which can
be also defined as the inverse of a rate of spontaneous decay, and 
xCM

� is the
net displacement of the cell center of mass during the actual MCS. The term w1
establishes therefore a direct positive feedback loop involving cell movement and
polarity [75], which corresponds to the molecular feedback regulation between the
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activation of rho GTPases and the processes involved in cellular motility such as
expansion of the cytosol and polymerization of cytoskeletal elements.

The term w2 instead models the fact that membrane dynamics (i.e., exten-
sions/retractions of filopods and pseudopods) are more pronounced at the leading
edge of a polarized cell, while they are almost poor at the sides and the trailing
edge. Indeed, defining as  � the width of the leading edge of cell �, we set

w2.�.xs/ ! �.xt// D PdynS

�

 �

2
� �.p� ; xs � xCM

� /

�

; (3.49)

where S. � / is the sign function, Pdyn sets the magnitude of this effect, and �. � ; � /
denotes the absolute value of the angle between vectors p� and .xs � xCM

� /, see
again the top-left panel of Fig. 3.17. It is useful to emphasize that the asymmetric
corrections w1 and w2 replace and are preferable to the standard Hpersistence contri-
bution to the hamiltonian introduced in Eq. (3.44), which only implicitly defines the
polarization process of the moving cell as its ability to maintain the direction of the
velocity characterizing its recent past movements. More in details, Hpersistence forces
the moving individual to choose configurations that do not change its velocity, as
it is a sort of “passive” term. In other words, a cell taking a direction of movement
for a specific reason (i.e., due to chemical or geometrical stimuli) keeps such a
path because it is energetically convenient. On the contrary, the biases w1 and w2
implement an “active” self-propulsion, since at each time step the cell reinforces its
polarization with localized membrane fluctuations.

In all simulations, the cell is initially seeded just near the entrance of the vertical
channel and it is characterized by a polarity vector p� directed towards the vertical
direction. This translates the assumption that the individual has already penetrated
the microtrack and, chosen the direction of movement, it has organized its shape
accordingly. Finally, ten annealed MCS are run before each simulation in order to
let the cell realistically arranges its body within the structure. We recall that the cell
has an overall target area of � 800�m2, which would correspond to a diameter of
30�m in a resting, un-polarized, morphology. The nucleus is instead a central and
round cluster of 8�m of radius.

3.4.3.1 MMP-Independent Cell Migration

In this first simulation setting we analyze the role in cell migration of cell elasticity.
In this respect, cells are allowed to remodel both the cytoplasmic region and the
nucleus, as we set 	C < 	N < 1.

In the case of the microtrack with the largest cross-section, the cell quickly looses
its initial polarization and turns back to a roundish shape. Then, in the absence
of chemotactic (or other) cues, it starts to fluctuate and “rebound” between the
channel walls, without displaying a significant penetration within the structure. As
already commented in Sect. 3.4.2, the largest microtrack does not in fact represent a
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Fig. 3.18 MMP-independent cell migration. Representative images from the simulations showing
cell locomotion within the different matrix microtracks. In all panels, the nucleus is manually
encircled for the reader’s convenience

significant geometrical contact guidance for the moving cell, which remains almost
in the middle of the pattern in a resting, non-motile morphology, see Fig. 3.18.

At the intermediate channel width (i.e., smaller than cellular dimensions but
larger than nuclear dimensions), the cell is able to maintain the polarized mor-
phology and to undergo a persistent movement within the vertical microtrack. Such
an inertial shape-dependent migration is actively reinforced at each MCS by the
asymmetric biases added to the Boltzmann probability function. At the end of
the vertical channel, the individual spontaneously reorganizes and then turns the
direction of motion, thereby invading the horizontal structure. From a modelling
viewpoint, the shape transition is driven by the evolution of the cell polarity vector:
referring to Eq. (3.48), the cell center of mass in fact slowly displaces towards the
open space on the right, as the cell can not overcome the vertical barrier. Once
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Fig. 3.19 Left plot: Bimodal behavior of the average cell migration velocity within the different
microtracks. Right graph: Turning time vs. memory length of the cell polarity vector, tp. All the
values in the plots are represented as means ˙ s.d. over 50 realizations

the cell has repolarized, the new direction of movement is finally established and
maintained by the terms w1 and w2. In this case, the elasticity of the nucleus is not
fundamental for the overall cell movement, since the track is large enough. However,
it allows a more efficient deformation of the entire cell body in the angle between
the channels (see indeed Fig. 3.18).

Finally, in the smallest track, both the cell and its nucleus adopt a cigar-like
shape to invade the structure. Without a proteolytic activity, the only way for the
cell to move within such a confined space is in fact an ameboid motion, which
requires the substantial deformation and squeezing also of its more voluminous
compartment. In particular, the individual is again able to turn morphology and
direction of movement, but it takes a longer time. At the end of the observation
time, the cell still localizes in the central part of the channel, as it does not reach the
opposite border of the scaffold. This is indicative of a slower velocity of migration.

In this respect, Fig. 3.19 (left panel) shows a bimodal behavior of speeds, that
allows to identify an optimal channel dimension for cell migration: Smaller than the
cellular diameter but larger than the nuclear diameter. In particular, the use of subcel-
lular structures as a contact guidance resulting in a sustained cell locomotion relies
upon the deformation ability of the moving individual and, mainly, of its voluminous
nucleus, which needs to adapt to the geometrical characteristic of the tracks. In
particular, the cell velocities measured in the presented CPM are surprisingly similar
to those evaluated in the model proposed in the previous subsection, even if the
persistent cell-dependent motion is, as already underlined, modeled with different
approaches. This is indicative of the fact that both assumptions provide, although
with different viewpoints, a realistic description of the directional locomotion of
polarized cells.

Focusing on the relation between the turning time of the cell, i.e., the time needed
to remodel and establish the new direction of movement, and the value given to the
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memory length of the polarity vector, tp, in Fig. 3.19 (right) we observe that for both
the intermediate and the smallest channel increments in tp correspond to increments
in the cell turning time, until a saturation value. This is biologically realistic, as tp
models the time needed to the intracellular machinery to resynchronize the polarity
in the new direction of movement, i.e., to activate molecular pathways able to
reinforce cytoskeletal actin polymerization towards the open space. The same graph
also gives a further proof of the fact that a subnuclear structure represents a steric
hindrance for cell movement, partially inhibiting its locomotion. In fact, though the
cell is able to compress and pull its nuclear region within the smallest tracks, it takes
a significantly longer time to remodel and turn direction of motion.

3.4.3.2 MMP-Dependent Cell Migration

To overcome situations in which limited space inhibits migration, rigid cells are able
to activate a proteolytic mechanism consisting in the expression of matrix degrading
enzymes, named metalloproteinases (MMP) [82]. As a result, barrier-free matrix
spaces may be created and microtracks can be enlarged enhancing migration and
invasion.

To analyze this phenomenon, in the following sets of simulations, the assumption
of constant nucleus elasticity is dropped and replaced by a dependence from MMP-
dependent cascades. In more details, nucleus elasticity is enhanced when all the
MMP activity is inhibited, as widely demonstrated in the recent experimental
literature for different tumor cell lines [16, 17, 83]. Following these considerations,
we set

	N D 	0

�

1C a �m

1C b �m

�

; (3.50)

where a D 2, b D 1, 	0 < 1 and �m is the MMP production rate, that will be
defined in Eq. (3.53). However, even if �m=0, we opt to maintain 	N > 	C, since
the cytoplasmic region of the cell remains typically softer than the nuclear cluster,
as previously commented.

The matrix metalloproteinases secreted by cells are denoted by m.x; t/ and evolve
following a standard reaction-diffusion equation

@m

@t
.x; t/ D P.x; t/

„ƒ‚…

production

CDmr2m.x; t/
„ ƒ‚ …

diffusion

��mm.x; t/ı.�.˙�.x//;M/
„ ƒ‚ …

decay

; (3.51)

where ı.�.˙�.x//;M/ D 1 in the interstitial medium M and 0 elsewhere. �m and Dm

are, respectively, the decay rate and the effective diffusion coefficient of proteolytic
enzymes, constant and homogeneous in the whole extracellular environment. A low
value of Dm is set to model a proteolytic mechanism strongly localized in the regions
close to cell membranes, in agreement with experimental evidence [84]. The term
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P.x; t/ models the local production of proteases from the cell surface that occurs, as
widely demonstrated in literature both in general [35] and in particular for vascular
[66] and metastatic cells [77], at the leading edge and at the neighboring parts of the
lateral edges of the cell membrane. So,

P.x; t/ D

8

ˆ
<

ˆ
:

X

@˙MMP

�m.@x; t/ if �.p� ; x � xCM
� / 2 .0; �

2
/I

0 else;

(3.52)

where

@˙MMP D @x 2 @˙� W �.˙� D C/ ^ �.˙�.x02˝0x// D P ; (3.53)

that is, referring to the top-right panel of Fig. 3.17, MMP production only occurs
where it is really needed, i.e., only where the cell senses a matrix component in its
close neighborhood, which indeed represents an obstacle for its movement.

Finally, to reproduce matrix degradation, a lattice grid site x belonging to the
polymeric part of the ECM becomes a generalized medium (fluid) site when the
local level of MMPs is sufficiently high. This change is implemented by switching
its type � from P to M.

Given that the largest track does not represent a significative obstacle for cell
migration, therefore not requiring MMP-activity, we first focus on the intermediate
channel. As reproduced in Fig. 3.20a, the cell maintains the polarity and easily
invades the vertical track. In particular, the extracellular scaffold is not significantly
altered by the proteolytic machinery, as the ECM structure does not represent a
steric obstacle for cell persistent migration along the channel walls. The directional
movement is then maintained despite the horizontal wall of the channel: the fully
activated MMP activity is in fact able to generate a de novo vertical track, allowing
the cell to maintain the polarity and the relative direction of motion.

Interestingly, as shown in Fig. 3.20b, as soon as the MMP secretion rate slightly
decreases, a well-defined de novo part of the vertical track is no longer generated.
Consequently, the cell loses its polarity, reverts back to a roundish morphology and
starts wandering in the close proximity, while slowly degrading the surrounding
matrix in a random-isotropic way. This behavior is somewhat consistent for a large
region of values assumed by �m, see again Fig. 3.20b. An almost complete inhibition
of the proteolytic machinery (i.e., �m = 10�5 s�1) eventually results again in an
ameboid movement of the cell.

These results are biologically relevant, as they clearly demonstrate that the most
efficient cell migration within a confined subcellular structure can be achieved

1. with the maximal activity of cell matrix-degrading enzymes, which for instance
allow the migrating individual to maintain the predefined direction of movement
(i.e., mesenchymal locomotion);

2. with an ameboid sustained locomotion, which allows the migrating individual to
use the surrounding environment as a geometric guidance.
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Fig. 3.20 (a)–(b) MMP-dependent cell migration in the intermediate track for different values of
MMP secretion rate. (c) MMP-dependent cell migration in the subnuclear track. Left panels: The
proteolytic machinery generates a lateral widening of the microchannel, allowing the cell to pull
into its voluminous and rigid nucleus. Right graph: The velocity of migration increases with the
value of the MMP secretion rate, �m, until a threshold limit. In particular, the speed of the cell with
fully activated MMPs nearly matches the one observed for the MMP-deprived cell moving within
the intermediate channel, see Fig. 3.19 (left panel). The numerical labels within the graph indicate
the exact values assumed by �m. In each case, we represent mean ˙ s.d. over 50 realizations. In all
representative simulation images, the nucleus is manually encircled for the reader’s convenience

Analogous outcomes would be obtained by keeping fixed �m, while increasing the
value of the amount of MMPs needed to degrade a matrix component.

We then pass to analyze cell migration in the smallest microtrack. In particular,
the initial part of the channel is widened to allow the entrance of the cell nucleus,
which is now characterized by a high stiffness as the cell proteolytic machinery is
fully active activate [refer to Eq. (3.50)]. After the penetration of the cytosolic part of
the cell, the MMPs are able to laterally enlarge the microtrack along its entire length,
so that the resulting space matches the diameter of the (rigid) nuclear cluster. This
way, the cell is then able to maintain the predefined direction of movement, see the
left panels in Fig. 3.20c. The velocity of migration of the cell in such a subnuclear
channel increases with the MMP secretion rate, until a threshold value, which,
interestingly, matches the speed of the MMP-deprived cell within the intermediate
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channel, as the reader can observe by comparing the bottom-right plot in Fig. 3.20
with the left graph in Fig. 3.19.

It is finally useful to remark that, at the end of the vertical channel, only a cell
with a fully active proteolytic machinery would be able to create a de novo track
large enough to maintain its directional movement. In all the other cases, it would
slowly lose its polarity and start an isotropic Brownian movement (these model
outcomes are not explicitly shown since they are very similar to the case of the
intermediate 25�m-channel).

3.4.4 Cell Migration in a Three-Dimensional Fibrous Scaffold

In order to get closer to the in vivo environment cells live in, we now apply the same
modelling set-up to describe the motion of an isolated cell in isotropic 3D scaffolds,
formed by a regular cubic mesh of virtual fibers that are arranged to create pores of
different sizes, see Fig. 3.21a. The cell, initially placed in the middle of the scaffold,
is a sphere with a diameter of 30�m. Its nucleus is then a central spherical cluster
with a diameter of 10�m. The hamiltonian is defined as in Eq. (3.41). In particular,
we assume that the cell cytosol is deformable (i.e., 	C < 1), whereas we vary,
as usual, the elasticity of the nuclear compartment. Moreover, differently form the
simulation settings presented so far, the adhesiveness between the cell and the ECM
components enters the picture. In this respect, we set

0 < JextC;P D 4:5 < JextC;M D 6:5

because, as widely demonstrated in the experimental literature, most cell lines in
standard conditions adhere more strongly to the polymeric (i.e., fibrous) part of the
matrix than to its soluble component.

As summarized in Fig. 3.21, cell velocity is specifically determined by the
correlation between the elastic properties of the nucleus and the dimension of matrix
pores. In particular, at high pore sizes (> 500�m2, i.e., in the same range of cell
diameter), cell migratory behavior remains unaltered regardless of the deformation
abilities of the nuclear compartment. In fact, the moving individual does not sense
significative steric hindrances, since the distance from the nearest matrix fiber is
too high to experience any interaction. As a consequence, in all cases, the cell
exhibits a short-range movement with fluctuations in the interstitial medium around
its initial position. This is consistent with the results previously presented. The
formation of pore diameters of cellular or slightly subcellular ranges (say, 300�m2

and 100�m2, respectively) allows instead the cell to physically interact with fibers
in all three spatial directions and is associated with the most efficient migration
rates. In this case, the cell assumes an elongated morphology to pass through
the matrix network. In particular, nuclear elasticity provides a further facilitation
for cell movement (i.e., the speed slightly increases), since it allows the moving
individual to more easily squeeze and stretch through the existing mesh. This result
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Fig. 3.21 Cell invasion within a 3D network structure, resembling an in vivo fibrous matrix. (a)
Simulation domain ˝ 
 R

3, containing both an isotropic cubic mesh of collagenous threads
(yellow stripes) and the interstitial medium (black). For representative purposes, we depict a
scaffold with a uniform distribution of pores of area of 900�m2 side length. Inset: Magnifications
of the moving cell in the case of pores smaller than nucleus diameters. It is straightforward to see
how the nucleus (manually encircled) has to squeeze to allow the entire individual to pass though
the fiber network. (b) Velocity vs pore size in the case of cells with different nucleus elasticities:
	N � 1 (low elasticity, green line); 	N � 1 (intermediate elasticity, red line); 	N < 1 (high
elasticity, blue line). The values are represented as means ˙ s.d. over 50 realizations. In the plot
we also indicate the values of cell speed measured by Wolf and coworkers in [85] in the case of
HT/MT1 cells seeded in 3D bovine dermal collagen lattices

is indeed consistent with the motile behavior of cells within intermediate channels or
microtracks presented so far. Finally, an increment in the amount of matrix threads
results in a scaffold characterized by small pores (< 50�m2, i.e., smaller than
nuclear size) and therefore by a limited available space. Indeed, only a soft nucleus
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allows the cell to display an appreciable migration speed, which is not achieved in
the other cases (see the inset in Fig. 3.21a). Analogous observations have previously
emerged for cells moving in the subnuclear channels or microtracks.

As represented in the plot in Fig. 3.21b, the values of the cell average velocity in
the case of sufficiently small pores (i.e., 	 20�m2) are also surprisingly similar to
those measured by Wolf and coworkers for HT/MT1 cells, seeded in 3D bovine
dermal collagen lattices [85]. Moreover, the bimodal behavior of cell speed in
response to pore dimensions shown in Fig. 3.21 is consistent with the results
presented in a number of experimental works focused on human adult vascular
smooth muscle cells seeded in type-IV collagen scaffolds [13], human glioma cells
plated on polyacrylamide ECMs [79] and different fibroblastic and cancerous cell
lines migrating within 3D fibrous matrices of similar geometrical and structural
properties, i.e., NR6 mouse fibroblasts in collagen-glycosaminoglycan matrices [26]
or human melanoma cells in collagen lattices [18]. Moreover, neutrophil migration
(both velocity and directional coefficient) has been reported to vary in a biphasic
manner with the gel pore size [38], while mouse fibroblasts have been observed to
migrate more significantly in collagen-glycosaminoglycan scaffolds featuring pore
sizes somewhat smaller than cellular dimensions, whereas they have exhibited less
dispersion in matrices with larger pores [26].

3.5 Multicomponent and Multiphase Modelling

As already mentioned in the introduction, macroscopic models based on continuum
mechanics are more convenient (from a computational viewpoint) than microscopic
approaches when dealing with large cell aggregates, tumor spheroids or tissues
composed of millions of cells. In this respect, keeping also in mind that biological
systems contain many components, the theory of mixtures appears to be a partic-
ularly suitable framework for modelling their behavior. This theory assumes that
cellular and extracellular components are mixed so well that in each actual material
point of the continuum matter there is a co-presence of several constituents. The
proportions of the constituents can then vary from point to point and in time (see,
for instance, [7, 50, 60]).

To define the percentage of volume occupied by a generic constituent ˛,
usually called volume ratio, we can proceed as follows. Given a point in the
mixture, let us consider a sequence of spheres centered in that point. Measuring
the ratio between the volume occupied by the constituent ˛ inside each sphere
and the volume of the overall sphere of interest, one may observe the behavior
shown in Fig. 3.22. For sample volumes (i.e., sample spheres) having the size of
the microscopic constituent, the ratio is likely to oscillate very strongly due to
microscopic inhomogenities. At the other extreme, macroscopic inhomogenities
may affect the ratio for large sample volumes (i.e., large sample spheres). However,
for intermediate sample volumes, i.e., larger than the characteristic cell size and
smaller than the typical tissue scale, the ratio is nearly constant. Such a quantity
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Fig. 3.22 Sample volumes to define the volume ratio

can be defined as the volume ratio of the constituent ˛ and is labeled by �˛ . In this
respect, it is useful to remark that the use of multiphase models at a scale comparable
or even smaller than the cell size with the aim of describing the dynamics of the
entire cell aggregate is at least questionable.

If one includes in the model all the constituents occupying the region of interest,
then the mixture is said to be saturated and

X

˛

�˛ D 1 : (3.54)

Otherwise, if one focuses only on some constituents, neglecting for instance
the contribution of the others (for example, one may focuses only on cellular
components neglecting the presence of the extracellular liquid or even of the
vasculature and/or of the ECM), the mixture is said to be unsaturated and the
unilateral constraint holds

X

˛

�˛ 	 1 : (3.55)

In this respect, in some cases, the upper constraint on the volume ratio (i.e., 1
in (3.54)) can replaced by a constant value � < 1, possibly space dependent,
allowing for some fixed portion of space to be occupied the constituents not
considered in the mixture. To be more specific, if we are fixing the volume ratio
�.x/ occupied for example by vessels or by a general stroma Eqs. (3.54) and (3.55)
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can be replaced by

X

˛

�˛.x; t/ D 1 � �.x/ : (3.56)

From the mathematical viewpoint this geometrical constraint still plays the same
role as the saturation assumption (3.54). In all cases, however, the model, and in par-
ticular the growth terms and the dynamics related to the motion of the constituents,
must be such that the solution always satisfies the proper constraint [56].

3.5.1 Mass Balance Equations

To define the mass balance equations for the different constituents, let us consider
a general volume V fixed in space with boundary @V . In more details, let us focus
on a specific cell population c present in a soft tissue. If �c is the density of the cell
constituent within the host, the corresponding mass V is given by

Mc D
Z

V
�c�c dV :

Mc can change in time because of

• Fluxes caused by the motion of the cell constituent through the boundary @V

�
Z

@V
�c�cvc � n d˙ ;

where vc is the cell velocity and n is an external normal to the boundary @V ;
• Cell mitotic or death processes

Gc D
Z

V
�c�c dV ;

where �c is the growth/death rate of cells.

Indeed, the mass balance equation in the integral form reads as

dMc

dt
D �

Z

@V
�c�cvc � n d˙ C

Z

V
�c�c dV ;

that, using Gauss’s theorem, can be written as

Z

V




@

@t
.�c�c/C r � .�c�cvc/ � �c�c

�

dV D 0 :
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If the integrand is smooth, thanks to the arbitrariety of the volume of integration V ,
we can get the mass balance equation in local form

@

@t
.�c�c/C r � .�c�cvc/ D �c�c ; (3.57)

where �c can be taken constant and equal to the density of water �. In this case we
can simplify (3.57) as

@�c

@t
C r � .�cvc/ D �c : (3.58)

The same procedure can be repeated for each cell population ci, so that if �ci is the
related volume ratio, one has

@�ci
@t

C r � .�civci/ D �ci ; i D 1; : : : ; I ; (3.59)

with the acceptable assumption that all cell constituents have a density that is close
to that of water, i.e., all densities �ci are set equal to �. Actually, defining �c D
P

i �ci as the total cell volume ratio, Eq. (3.58) can be viewed as the mass balance
equation for the overall cell constituent of the mixture, where

�cvc D
X

i

�civci ; and �c D
X

i

�ci :

An identical procedure can be repeated for each other constituent, such as the
different components mj of the ECM, with volume ratio �mj (possibly including
blood and lymphatic vessels), and the liquid `, with volume ratio �`. Indeed, we can
write

@�mj

@t
C r � .�mjvmj/ D �mj ; j D 1; : : : ; J (3.60)

and

@�`

@t
C r � .�`v`/ D �` : (3.61)

Hence, in a compact way we can write the resulting set of mass balance equations as

@�˛

@t
C r � .�˛v˛/ D �˛ : (3.62)

However, as already mentioned, the different ECM constituents and the blood and
lymphatic vasculature form an intricate and interlinked network: in this respect, one
can assume that there is no relative sliding and that all of them move with the same
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velocity vm. This hypothesis, usually named constrained sub-mixture assumption,
allows to simplify (3.60) to obtain

@�mj

@t
C r � ��mjvm

� D �mj ; j D 1; : : : ; J ; (3.63)

which require the identification of only one velocity field, i.e., vm.
If it is not necessary to distinguish the specific role played by the different matrix

and/or vasculature constituents, the equations above can be summed-up to get

@�m

@t
C r � .�mvm/ D �m ; (3.64)

where

J
X

jD1
mj D m ;

J
X

jD1
�mj D �m : (3.65)

When approaching tissue growth and remodelling, a crucial role is played by
the growth terms, i.e., �ci and �mj . In particular, �ci includes terms both related
to growth (or death) due to the absorption (or release) of mass from (or in)
the extracellular liquid. Another important contribution in such terms is due to
population transfers (i.e., processes resulting in the phenotypic differentiation of
cells, that therefore pass from a clone to another of the same cell lines). In this case,
the same term will appear in the growth term of the mass balance equations of two
cell phenotypes, say ch and ck, but with opposite signs. However, it will not appear
in the mass balance equation of the overall cell constituent, because the two mass
transfer terms will cancel out.

Similarly, all terms used for instance to describe cell growth by liquid absorption
should be present also in the mass balance equation for the liquid, but with the
opposite sign.

If mass exchange occurs only between the constituents considered in the mixture,
then the mixture itself is said to be closed and

X

˛

�˛ D 0 : (3.66)

This is for instance the case of an avascular tumor when all constituents are taken
into account, including the extracellular liquid. On the opposite, for a vascular
malignancy, Eq. (3.66) does not hold, because of the fluid flowing in the blood
vessels which is then perfusing the tissue and is absorbed by the lymphatic system.
In this case, the mixture is said to be open. The same considerations are valid also for
unsaturated cases when, for instance, the extracellular liquid may be not considered
and may act as an “external reservoir”.
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3.5.2 Force Balance Equations

To determine the evolution of the velocities appearing in the mass balance equations,
the theory of mixture requires to derive a momentum balance equation for each
constituent. In this respect, at the end of the section we will exploit the fact that
growth phenomena are so slow that inertial terms can be neglected in order to rewrite
the equations in a force balance form.

Focusing again on the cellular constituent of the tissue, the momentum of the
ensemble of cells in the fixed volume V , i.e.,

Qc D
Z

V
�c�cvc dV ;

can change because of

• Momentum flux caused by the motion of the cells through the boundary @V

�
Z

@V
�c�cvc.vc � n/ d˙ I

• Contact forces acting on the cells inside the volume V due to their contact with
other cells outside V (i.e., through the boundary @V)

Z

@V
eTT

c n d˙ ;

whereeTc is called partial stress tensor;
• Interaction forces with the other constituents, e.g., ECM or liquid, through the

microscopic interface separating the constituents, say the cell membrane wet by
the extracellular liquid or in contact with the extracellular matrix through the
adhesion sites, within the volume V

Z

V
emc dV ;

where emc is called interaction force;
• Momentum supply related to phase changes

Z

V
�c�cvc dV ;

e.g., fluid absorbed by a growing cell;
• Body forces

Z

V
�c�cbc dv:
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Such a term may model for instance chemotaxis or haptotaxis although, as
we shall see in Sect. 3.8, they in reality involve also the activation of internal
subcellular mechanisms rather than only an external force (like gravity).

We can the write the integral form of the balance of momentum as

dQc

dt
D
Z

@V

����cvc.vc � n/CeTT
c n


d˙C
Z

V
.��cbcCemcC��cvc/ dV ; (3.67)

which using Gauss theorem can be written as

Z

V




@

@t
.��cvc/C r � .��cvc ˝ vc/� r �eTc � ��cbc � emc � ��cvc

�

dV D 0 :

(3.68)

Finally, if the integrand is sufficiently smooth, considering that (3.68) holds for any
volume of integration V , we can write the following local form of the momentum
balance for the cell constituent in conservative form

@

@t
.��cvc/C r � .��cvc ˝ vc/ D r �eTc C ��cbc C emc C ��cvc : (3.69)

Actually, using the mass balance equation (3.58), Eq. (3.69) can be simplified to

��c

�

@vc

@t
C vc � rvc

�

D r �eTc C ��cbc C emc : (3.70)

The generalization to all cell populations gives

��ci

�

@vci

@t
C vci � rvci

�

D r �eTci C ��cibci C emci ; i D 1; : : : ; I : (3.71)

Similar equations hold for the interstitial liquid

��`

�

@v`
@t

C v` � rv`

�

D r �eT` C ��`b` C em` ; (3.72)

and for the extra-cellular network

��m

�

@vm

@t
C vm � rvm

�

D r �eTm C ��mbm C emm : (3.73)

Of course, one could write a momentum equation for each component of the
extra-cellular network, but the constrained sub-mixture assumption implies that it is
sufficient to write a single equation for the common velocity vm. All the components
of the extra-cellular network, possibly including vessels, will however contribute to
the constitutive equation for the stress tensor according to their relative proportions.
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Growth phenomena are very slow, so that all inertial terms of the equations above
can be neglected and all momentum equations can be simplified to

r �eT˛ C ��˛b˛ C em˛ D 0: (3.74)

If the mixture is closed and therefore the momentum is exchanged only between the
constituents taken into consideration, the mass supplies and the interaction forces
are subject to the constraint [7, 60]

X

˛

.em˛ C ��˛v˛/ D 0 : (3.75)

This results from the fact that if one sums up all momentum equations (3.71), (3.72),
and (3.73) to obtain the momentum equation for the overall mixture, no supply terms
should appear because they represent internal exchange terms of momentum.

However, as discussed in detail in [55], coherently with the fact that inertia can
be neglected, the contribution due to mass exchange can be dropped in (3.75) (it is
negligible with respect to that due to the interaction forces), so that

X

˛

em˛ D 0 : (3.76)

The term em˛ in Eq. (3.74) contains all forces acting on the constituent ˛ due to its
interactions with the other constituents, i.e., em˛ D P

ˇ m˛ˇ where m˛ˇ is the force
acting on the constituent ˛ due to ˇ. The application of an action-reaction principle
for each interaction pair implies that m˛ˇ D �mˇ˛ . Considering in particular the
interaction of the fluid with the other constituents, we can take it to be proportional
to the velocity difference between the constituents, i.e.,

m`ˇ D ��ˇ�` �K�1.�`/.v` � vˇ/ ; (3.77)

where � is the viscosity of the extra-cellular fluid and K is related to the permeabil-
ity tensor. Notice that the permeability tensor is the same for all the constituents, as
water is unable to distinguish whether it is flowing around a constituent or another.
In many applications K is assumed independent of �`. For instance, the classical

Kozeny-Carman relation can be recovered assuming K.�`/ D �2`
1 � �`

OK, where OK is

independent of �`. However, such slightly different choices give rise in practice to
very little discrepancies, because biological applications are characterized by small
variations of �` .

The interaction forces involving cells and ECM or different types of cells are
more complex to be modelled and require to account for the results of Sect. 3.3,
because they depend on adhesive dynamics.
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3.5.3 Model Reduction for the Saturated Case

In the unsaturated case, in which the presence of the interstitial liquid is neglected,
there is no need for an equation for the liquid. Moreover, for each constituent ˛,
em˛ will only include the microscopic interactions not involving the interstitial fluid,
i.e., those only occurring between cell types or between a cell type and a ECM
component.

However, in this section we will show that one can obtain similar conclusions
even in the saturated case, as the just mentioned simplifying assumption holds under
proper physiological conditions on the stiffness of the tissue and the interstitial
pressure drop.

Without entering in details that can be found for instance in [7, 60], it needs to
be mentioned that in the saturated case the geometric constraint (3.54) implies (by
thermodynamic arguments) the presence of a Lagrange multiplier that writes as a
pressure term. Therefore, the force balance equations result as follows:

��˛rP C r � T˛

C
X

ˇ¤˛;`
m˛ˇ C �˛�`�K�1.v` � v˛/C ��˛b˛ D 0 ; ˛ ¤ ` ; (3.78)

��`rP C r � T` �
X

˛

�˛�`�K�1.v` � v˛/C ��`b` D 0 : (3.79)

Considering that the extracellular liquid is flowing in a porous material constituted
by cells and extra-cellular network, its motion can be described using Darcy’s law.
This is classically obtained (see [7, 60]) from the assumption that the extra-stress T`
is negligible with respect, say, to the pressure gradient and the interaction forces, so
that (3.79) can be simplified to

X

˛¤`
�˛.v` � v˛/ D � K

�
.rP � �b`/ : (3.80)

In order to identify the relevant contributions in the momentum equations (3.78),
it is convenient to scale the equations. From Darcy’s law the characteristic velocity

of the liquid is given by Ov` D K
P

�d
, where 
P is the pressure drop within the

tissue between regions close to the arterial and the venous/lymphatic system, K is
a measure of the order of magnitude of the permeability tensor K, and d is the
intercapillary distance. In [12], Chary and Jain, for instance, measured Ov` to be in
the range 0:4–0:9�m/s. On the other hand, the characteristic velocity of cell and
matrix constituents (that move almost with the same speed during growth induced
remodelling) is Ovc D Ovm D �cD, where D � 10�m is a mean cell diameter and
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�c � 1 day�1 � 1:2 � 10�5 s�1. Such a parameter setting results in Ovc D Ovm �
10�4 �m/s.

Dropping the body force acting on the liquid, we can then write the dimensionless
form of (3.80) as

v�̀ D V

1 � �`
X

˛¤`
�˛v�̨ � 1

1 � �`
K�r�P� ; (3.81)

where V D Ovc
Ov` D ��cdD

K
P
that, considering the above-introduced estimates, is much

smaller than 1.
Similarly, for instance, the dimensionless form of the other force balance

equations can be written scaling the stress tensor with the Young modulus of the
tissue E and the cell-ECM interaction force with the corresponding mechanical
response E=d, as

r � T�̨ C
X

ˇ¤˛;`
m�̨̌

C
P

E

2

4� �˛

1 � �`
r�P� C V

X

ˇ¤`

�˛�ˇ�`

1 � �` .K
�/�1.v�̌ � v�̨/

3

5 D 0 ; (3.82)

for ˛ ¤ `.
Certainly, the last term in square parenthesis is negligible compared to the

first one but, if also 
P � E, then the entire parenthesis can be dropped. This
assumption holds in many cases. For instance, it is known that the elastic modulus
of the softest fatty regions of a healthy breast is of the order of 20 kPa. Similarly
for prostatic tissues the elastic modulus ranges between 40 and 70 kPA [37]. On
the other hand, 
P � 1 kPa for normal tissues [32, 78]. In all cases, we have

that

P

E
< 0:1. For tumor tissues, both values increase more or less one order

of magnitude. For instance, for breast tumors and for prostatic cancerous tissues
one has that E > 100 kPa [37] and that
P � 10 kPa [5, 6, 32, 78, 81], so that again

P

E
< 0:1.

In such cases, it is possible to simplify the momentum equations, in the
dimensional form, as

r � T˛ C
X

ˇ¤˛;`
m˛ˇ D 0 ; ˛ ¤ ` ; (3.83)

so that they depend neither on the interstitial pressure, nor on the liquid velocity.
Therefore, they can be in principle solved without determining the evolution of the
interstitial pressure, or of the interstitial velocity. In this case, the relative equations
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are solvable in cascade after integrating Eqs. (3.83), jointly with the mass balance
equations.

It is however useful to remark that this procedure might not be true in other
dynamical phenomena which involve higher pressure gradients, such as fast com-
pression of tissues (e.g., cartilage dynamics) or heart mechanics.

3.6 Linking Multiphase Models to the Result of Microscopic
Models

In Sects. 3.3 and 3.4 we have discussed some models based on the observation that
cell migration strongly depends on ECM stiffness and volume ratio, and in particular
on the relative dimension of pores and channels characterizing the 3D matrix
structures cells move through with respect to the dimension of their nucleus. In this
respect, we have discussed the results of the experiments performed by Wolf and
coworkers [84], who showed that there is a minimal pore (or channel) cross section
(i.e., of about 5–10�m2) necessary to allow cell motion through three-dimensional
ECMs. Above this critical threshold the mean cell speed depends almost linearly
from the pore characteristic dimension, at least in the range considered (i.e., below
20�m2).

Wolf and colleagues observed that a threshold value of pore size exists also for
multicellular spheroids invading across dense ECMs. In particular, the cells at the
border of the spheroid try to penetrate the thick fiber network: however, while their
cytoplasm is able to extend in the pores of the ECM, their nuclei remain trapped
at the border of the aggregate (for instance, due to their rigidity, as previously
commented). Indeed, there is no significant invasion of the tissue and the spheroid
interface after 18 hours is still the same (see the bottom panels of Fig. 3.23). At
this point, if cells are able to express metalloproteinases (MMPs), matrix fibers can
be partially degraded with the consequent formation of paths within the collagen
structure that can be used by the cells themselves for further invasion. Otherwise,
cells with inhibited MMP-activity are able to invade only matrix environments
characterized by a mean pore size that is not too sterically restrictive, as in the case
of a GM6001 cell spheroid seeded within a bovine collagen network (see Fig. 3.23
top panels).

3.6.1 Cell Motility

The phenomenology described above can be properly described with a continuous
model. In particular, we can consider the system as composed of three main
constituents (cells, ECM, and liquid) where, as discussed in Sect. 3.5, the liquid
has a negligible mechanical interaction with the other constituents. As we will see
later on (in Sect. 3.6.3), the cellular population, c, can be possibly distinguished in
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Fig. 3.23 Invasion into rat tail (bottom) and bovine (top) collagen when MMP activity is inhibited.
Referring to Fig. 3.1, the rat tail collagen is characterized by a finer mesh that can not be penetrated
by cells with a rigid nucleus. The right panels show a magnification of the region close to the
spheroid interface. In the bottom-right panel, arrowheads indicate long cytoplasmic extensions
of cells with the nucleus instead stuck below the collagen. Partially modified from [84] (with
permission)

two sub-populations, namely normal and tumour cells, labeled by the subscript i.
However, let us start from (3.83) and assume that the cell-ECM interaction force is
proportional to the relative velocity, i.e.,

mcim D ��ci�mM�1
im .vci � vm/ ; (3.84)

or

vci � vm D � 1

�ci�m
Mimmcim : (3.85)

Recalling the results given in Sect. 3.2, this assumption implies that, at the micro-
scopic level, integrins constantly renew at the cell membrane independently from
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the force exerted on the focal adhesion point. Of course, it is possible to use other
more complex models, as described in Sect. 3.2.

As in (3.77), the multiplicative factor �ci�m takes into account of the fact that the
interaction force is proportional to the volume ratios of the constituents. In fact, if
there are no cells or no ECM, no interaction force can be exchanged as well. On the
other hand, if the number of cells or the density of ECM increase, the interaction
force will increase.

Given the specific problem of interest, the motility tensor Mim can not be
considered constant or simply depending on the volume ratio, like in the Cozeny-
Karman rule. It in fact vanishes below a threshold pore area, NAi that may depend
on mechanical and geometrical properties of the invading cells, such as nucleus
stiffness and size and cell traction abilities. Furthermore, for pore areas slightly
above NAi it appears to be proportional to Am � NAi, where Am is the characteristic pore
area of the ECM of interest.

Considering then the isotropic case for sake of simplicity, the motility Mim can
be assumed of this form:

Mim D 	i
�

Am � NAi
�

C ; (3.86)

where .f /C D fCjf j
2

stands for the positive part of f and the motility coefficient 	i
can be evaluated by the experiments in [84] from the slope of the curve giving the
dependence of the cell velocity from the pore section of the pores in the gel.

Furthermore, we have seen in Sects. 3.3 and 3.4 that in both two- and three-
dimensional environments cell velocity has a bimodal behavior depending on
the ECM structure, porosity, density, adhesion, and stiffness, as shown also by
experimental data [8, 13, 44, 45, 52, 86]. This means that there is a critical pore
size above which traction is not so effective, because the number of focal adhesion
points that cells can form is limited, so that they are unable to pull strongly on the
ECM. Therefore, a generalization of (3.86) could be

Mim D 	i

�

Am � NAi
�

C
�

1C Am�NAi
OAi

�n ; (3.87)

that reduces to (3.86) for n D 0, saturates to 	i OAi for n D 1 and goes to zero for

large pore areas if n > 1 after a maximum in

 

NAi C
OAi

n � 1

!

. Unfortunately, to

our knowledge, there are no quantitative experiments that can help in evaluating
neither OAi nor n. However, some hints can be obtained by the simulations described
in Sect. 3.4.

Going in more detail, the threshold value NAi is not a constant but, as shown by
both the experiments and the mathematical results in Sects. 3.3 and 3.4, it should at
least depend on
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• nucleus stiffness and dimension;
• cell traction ability and compression state of the cellular aggregate.

The former two dependencies measure the strength or the energy required by a cell
in order to suitably change the shape of its nucleus to pass through pores of a given
area. The latter two dependencies measure instead the force that a cell passively
experiences as a consequence of the pressure of the other cells, or the force that a
cell is able to exert by itself attaching and pulling on the ECM fibers, and therefore
the work they can do. As discussed in Sect. 3.3, this last contribution will depend on
the density of integrins expressed at the membrane, on the density of adhesive sites
on the ECM, and on the active force due to myosin activation.

In analogy with Eq. (3.38), we define by

Gi D 1

3�ni

jtr Tci j (3.88)

the ratio between an invariant measure of the stress acting on cells of type i and
their nucleus elastic modulus �ni . Then, using the results from [21] and reported in
Sect. 3.3, we have that the threshold value NAi or, better, the ratio NAi=An, where An is
the cross section area of the cellular nucleus at rest, can be evaluated by formally
inverting the relationshipGi D g. NAi=An/, where, recalling the discussion in Sect. 3.3
and in particular Eq. (3.39)

g

� NAi

An

�

D 2

3

2
NAi
An

C A2nNA2i � 3

2AnNAi
� 1C

q

1 � NAi
An

s

An

NAi
; for NAi < An : (3.89)

that is drawn in Fig. 3.24.

Fig. 3.24 Evaluation of the relationships between ECM pore area and volume ratio (in log�m) (a)
and between the scaled threshold pore area and the ratio of stress versus nucleus stiffness, which
is given by G (b)
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For a given pore dimension Am.�m/ it will be also useful to denote by

Tm
i D �in g

�

Am

An

�

; (3.90)

the traction necessary to pass through pores of area Am.
In the study of problems where ECM remodelling plays an important role, for

example in the case of MMP-dependent cell motion, it is important to evaluate how
the volume ratio of ECM �m is related to the pore area of the ECM, a parameter that,
as shown in Eq. (3.86) is fundamental in determining cell motility within the ECM.
Real ECMs are characterized by randomly distributed fibers, so that the pore area is
a random variable that, however, is strictly related to the volume ratio of the matrix.

An easier evaluation of the relationship between pore area and �m can be obtained
for synthesized artificial scaffolds characterized by a regular structure. For instance,
assuming that fibers are regularly distributed in a lattice-like manner, like that
represented in Fig. 3.25, and that each collagenous thread has a square cross section
with thickness 2r, the following obvious relation holds:

Am D .l � 2r/2 D r2
�

1

x
� 2

�2

; (3.91)

where x D r=l and l is the side of each crystal component of the ECM.
To obtain a relation between �m and Am, we can observe first of all that, in the

case of the approximated ECM structure in Fig. 3.25,

�m D 12lr2 � 16r3

l3
D 4.3x2 � 4x3/ : (3.92)

Then Eq. (3.91) can be inverted to give

x D 1p
Am
r C 2

;

Fig. 3.25 Schematization of
a regular structure of the
ECM
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and substituted back in (3.92) to obtain

�m D 4
3

p
Am
r C 2

�p
Am
r C 2

�3
: (3.93)

From the experiments in [84], NAi � 5�10�m2. So, considering that single collagen
fibrils have a radius of order 10�1 � 10�2 �m (see Fig. 3.1), then both x and r2=Am

are much smaller than one. Even considering thick fiber bundles (i.e., that can reach
a thickness of 1�m) or artificially fabricated fibers, which can nowadays hardly
reach thicknesses smaller than 1�m, it results that r2=Am � 0:05. One can indeed
get the approximate relationship

�m � 12
r2

Am
; for Am � r2 : (3.94)

Results similar to (3.93) can be obtained replacing square section fibers with
cylinders, or assuming that fibers do not cross. Actually, all evaluations collapse
for Am � r2 to Am D 3Af =�m, where Af is the area of the cross section of the fibers.

3.6.2 Compartmentalization and Invasion

As an application of the proposed theory, in this section we model the growth of
a tumor mass in a heterogeneous environment, characterized by the presence of a
thick ECM layer that, in some situations, is able to compartmentalize the tumor
while, under other conditions, can be penetrated by malignant cells that are then
able to invade the tissue beyond it.

Keeping in mind the results of the experiments in [24, 40, 61] and of the
mathematical models in Sects. 3.3 and 3.4, the threshold values both of the pore size
Ai and of OAi in (3.87) are a function of cell geometrical and mechanical properties.

In order to explain the features of the model we first look at the one-dimensional
case. In particular, we consider a single cell population (labeled by c without
subscripts) growing in a liquid environment characterized by a region with lower
ECM density ��

m , i.e., bigger pores, and a region with higher ECM density �C
m , i.e.,

smaller pores. This last region will be named ˝m.
If cells are not able to degrade the ECM, then its density will remain constant in

time. Therefore, we have only to focus on the cell population:

8

ˆ
<

ˆ
:

@�c

@t
C r � .�cvc/ D �c ;

r � Tc C mcm D 0 :
(3.95)
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In principle one could consider, as it will be done in the following section, the
stress tensor split in a passive and an active part, the latter being related to the
traction forces that cells are able to exert by adhering to the ECM and activating
their cytoplasmic molecular motors (myosin). However, for sake of simplicity, this
will not be done here.

We assume that nutrients are abundant everywhere and that growth is limited by
cell-cell compression only, a phenomenon known as contact inhibition of growth
[11]. Cell duplication and death is then regulated by

�c D �

�H". N �  / � ı


�c ; (3.96)

where � is the duplication rate of cells, ı is the apoptotic rate and H" is a continuous
mollificator of the Heaviside function defined as

H". N �  / D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

1 ; if  	 N � "I

 =" ; if N � " <  < N I

0 ; if  � N ;

(3.97)

where  WD �c C �m and N is the threshold value that models contact inhibition.
For sake of simplicity, we assume that the cell aggregate behaves like an elastic

fluid, i.e., Tc D �˙. /I with

˙. / D E
1 �  free

1 �  
. �  free/C ; (3.98)

where E is an analogous of the Young modulus for low compression and  free is the
highest volume ratio below which cells do not experience compression. Obviously,
more complex constitutive equations could be used [19, 20, 57, 58] resorting to the
theory of evolving natural configuration.

Recalling Eqs. (3.85) and (3.87) that, in the case of rigid ECMs, rewrite as

�cvc D Mcm

�m
r � Tc D � 	

�m

�

Am.�m/ � NA�C
�

1C Am.�m/�NA
OA

�n r˙. / ;

one can get to the single equation

@�c

@t
Cr �

8

<

:

	

�m

�

Am.�m/ � NA�C
�

1C Am.�m/�NA
OA

�n˙
0. /r 

9

=

;

D �

�H". N �  / � ı


�c : (3.99)

The solution of this equation would reproduce the behavior that in [84] has been
observed for the so-called GM6001 cells, that are not able to produce MMPs.
Figure 3.26 show two situations that differ only from the thickness of the ECM and
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Fig. 3.26 Compartmentalization of growing aggregate when ��m D 0:2, ıc=�c D 1=8, E=� D 25,
and Af =An D 0:16, shown dimensionless times scaled with 1=� on the left where �Cm D 0:3

and t D 6:872; 7:7. Lengths are scaled with
p
	AnE=� . When reaching the region characterized

by a denser ECM, cells will stop invading because the network is too tight. Cells will also stop
proliferating because of the contact inhibition of growth. On the right cells are able to pass through
because the network is not thick enough as �Cm D 0:25
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therefore from the characteristic size of the pores, i.e., Am. On the left the ECM is too
dense (i.e., Am < NA) thereby hampering cell invasion, as cells remain segregated in
the zone with lower ECM density. Proliferation eventually stops because of contact
inhibition, having the cell population grown to confluence and filled the entire
reachable space. On the right, the lower ECM density due to larger pores leads
to Am > NA: in this case, cells are able to penetrate the denser ECM that only slows
down invasion.

3.6.3 A Two-Population Case

We now consider now the cell aggregate as formed by two cell clones: Normal cells
with volume ratio �c1 and abnormal cancerous cells with volume ratio �c2 . With
respect to the former, the latter are less sensitive to contact inhibition of growth and
may have different mechanical properties, e.g., a softer nucleus. Such phenotypic
differentiations arise from genetic mutations. As before the two cell clones live in a
rigid ECM.

Still considering the MMP-inhibited case, we have only to focus on the following
set of equations:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

@�c1
@t

C r � .�c1vc1/ D �

�1H". N 1 �  / � ı1


�c1 ;

@�c2
@t

C r � .�c2vc2/ D �

�2H". N 2 �  / � ı2


�c2 ;

r � Tc1 C mc1m C mc1c2 D 0 ;

r � Tc2 C mc2m � mc1c2 D 0 ;

(3.100)

where now  WD �c1 C �c2 C �m. It will be crucial in the following that the two
subpopulations are characterized by different threshold values N i leading to different
contact inhibition responses.

Recalling (3.84) and assuming also that the interaction force between cell
populations has a similar form, i.e.,

mc1c2 D ��c1�c2M�1
12 .vc1 � vc2/ ;

the two force balance equations write

r � Tc1 � �c1�mM�1
1mvc1 � �c1�c2M�1

12 .vc1 � vc2 / D 0 ;

r � Tc2 � �c2�mM�1
2mvc2 C �c1�c2M

�1
12 .vc1 � vc2/ D 0 :

(3.101)
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After some algebraic manipulation we can explicit the fluxes of the constituents as

�c1vc1 D �

�mM�1
1m C �c2M

�1
12 C �c1M

�1
12 M2mM�1

1m

��1




r � Tc1 C �c1
�m

M�1
12 M2mr � .Tc1 C Tc2 /

�

;

�c2vc2 D �

�mM�1
2m C �c1M

�1
12 C �c2M

�1
12 M1mM�1

2m

��1




r � Tc2 C �c2
�m

M�1
12 M1mr � .Tc1 C Tc2 /

�

;

that in the isotropic case simplify to

�c1vc1 D 1

�m

M1mŒ.�mM12 C �c1M2m/r � Tc1 C �c1M2mr � Tc2 

�mM12 C �c1M2m C �c2M1m
; (3.102)

�c2vc2 D 1

�m

M2mŒ�c2M1mr � Tc1 C .�mM12 C �c2M1m/r � Tc2 

�mM12 C �c1M2m C �c2M1m
: (3.103)

that could be inserted in the mass balance equations.
In principle, like there is a threshold value for the cell to penetrate in the ECM,

there should be a threshold value for a cell to penetrate a layer of cells, which leads
for instance to the segregation of tumor cells by epithelial layers, or hampering the
transmigration of cells through the endothelial lining of vessel walls. However, the
reader needs to be aware of the fact that the situation is much more complex in this
case for several reasons. In order to understand that, we can think of the dynamics
involved in the extravasation of an immune cell from the endothelial layer of a vessel
wall, or the invasion of the mesothelium by ovarian cancer individuals. First of all,
due the elasticity of the cytoplasm and plasma membrane, cells belonging to the
endothelial or the epithelial layers are much softer and more deformable than ECM
fibers. Therefore, a cell is facilitated to pass through a layer of other cells, as it
can more easily deform the nearby individuals and pass in between. For instance, if
the cell layer is compact, then the invading individual needs to interfere with cell-
cell junction mechanisms (mediated by cadherins) to create a gap. The dynamics
is therefore very complex and has not been modelled yet in a satisfactory way. In
addition, the cell-cell motility coefficient probably is much larger than cell-ECM
motility parameter, i.e., M12 � Mim, for any population i D 1; 2.

Only under this assumption, Eqs. (3.102) and (3.103) can be reduced to the much
simpler form

�civci D Mim

�m
r � Tci D � 	i

�m

�

Am � NAi
�

C
�

1C Am�NAi
OAi
�n r˙i. / ;
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where

˙i. / D Ei
1 �  free

1�  
. �  free/C : (3.104)

Notice that in (3.104)  free is the same for both cell population as well as the shape
of the cell response to stress, while Ei corresponding to the Young modulus for the
two cell population might be different.

Taking all together, the equations that need to be integrated to simulate the
evolution of the cell populations are

@�ci
@t

Cr�
8

<

:

	i

�m

�

Am � NAi
�

C
�

1C Am�NAi
OAi
�n˙

0
i . /r 

9

=

;

D �

�iH". N i �  / � ıi


�ci ; (3.105)

for i D 1; 2. We notice that the numerical integration of Eq. (3.105) is not
straightforward at all, because of the following facts

• the equations present a cross diffusion term represented by the gradient of the
sum of the two volume ratios;

• the equations might degenerate when Am.�m/ D NAi;
• the equations might change type from parabolic, in those time-dependent regions

where Am.�m/ > NAi, to hyperbolic, in those time-dependent regions where
Am.�m/ < NAi;

• the appearance of the degeneracy and the extension of the regions where the
equation changes type will not be the same for the two cell populations, as they
will depend on the evolution of the cell population volume ratios.

Considering that tumor cells typically derive from a genetic mutation of normal
cells, it is consistent to assume that most of the model parameters are identical for
the two populations, e.g., Ei D E, �i D � , ıi D ı, 	i D 	 for i D 1; 2. Then we will
focus on the different evolution of the cell system determined by selected changes
either in the density of the ECM or in the nucleus stiffness �ni which appears in the
definition of NAi in Eqs. (3.88) and (3.89).

As a test case in the following simulations we consider the domain as divided by
a horizontal stripe ˝m D fx W y 2 Œ0:45; 0:55g with higher density of ECM. The
regions below and above ˝m are initially filled with normal cells in equilibrium:
they can not penetrate ˝m because the corresponding pore area Am is smaller than
NA1 at  free.

Some cells in the bottom left corner initially lose the physiological contact
inhibition of growth and because of that they start spreading within the tissue, as
shown in Fig. 3.27. In fact, the misperception of the compression state induces
an abnormal proliferation of tumor cells that, in turn, compress the neighboring
normal individuals. Feeling overcompressed, normal cells do not proliferate. Indeed,
only apoptosis occurs and the normal tissue is gradually replaced by the growing
malignant mass.
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Fig. 3.27 Evolution of the volume ratio of MMP-inhibited tumor cells for ı=� D 1=8, Af =An D
0:16, E=�n1 D 25, and �Cm D 0:3 at scaled times t D 4:046; 6:026; 8:021 on the left while on the
right �Cm D 0:25 and t D 4:047; 6:149; 11:019. Normal cells fill the remaining available space, but
the region ˝m with thick ECM. Before reaching the ECM denser region, the evolution in the two
cases is similar, but on the left the ECM is too thick, tumor cells will stop invading but continue to
grow along the denser region. On the right, cells are able to pass through, although their penetration
is slowed down
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Upon reaching the region ˝m the tumor cells can not penetrate it because the
pore size is smaller than the nucleus size and the compression of the growing tumor
nearly at �2 �  2 >  free is not enough to let the nucleus squeeze into the
microscopic pores. The tumour population then continues to grow along x below
˝m to progressively fill the region. Eventually, the malignant mass will completely
replace the normal tissue reaching a segregated equilibrium with tumor cells below
˝m, normal cells above˝m and no cells in ˝m.

Hence, the simulation shown on the left of Fig. 3.27 describes how under suitable
conditions the development of a tumor mass might be segregated by the presence of
a dense matrix in the region ˝m, giving rise to a behavior that may represent a sort
of growth of an in situ (ductal) carcinoma.

The following simulations shown on the right of Fig. 3.27 show how a change in a
single parameter is able to substantially modify the situation and to induce invasion
across the region ˝m. We have already seen in Fig. 3.26 comparing the left and the
right column how lowering the density of ECM might allow cells to pass through
the region˝m. In this case we have two populations that behave differently in their
interaction with the ECM. In particular, for the normal cells Am < NA1 even when the
density of ECM in the stripe˝m is lowered to �C

m D 0:25, while for the tumor cells
Am > NA2 and therefore they can invade˝m and invade the region above it. Cells are
actually slowed down by the higher density of ECM but they can efficaciously reach
out the upper region even in absence of activation of MMPs.

A qualitatively similar behavior is observed when we change other parameters
that are able to influence the segregation rule. In this respect, we will present here
only the case in which the nucleus of tumor cells is softer than the nucleus of sane
cells, as it is known experimentally, i.e., �n2 < �n1 . This is a very interesting
situation from the biomedical point of view, because it represents a differentiation of
a purely mechanical origin that results in a dramatic change in cell invasive ability,
as shown in Fig. 3.28. In particular, the simulation is represented in one dimension,
in order to give a clear view of the evolution of the volume ratio of both populations
(and of the overall volume ratio  as well). Upon reaching ˝m, tumor cells not
only are able to penetrate it but they also completely populate the matrix, so that the
overall volume ratio is eventually constant everywhere.

The last simulation in Fig. 3.29 gives the tumor evolution in a heterogeneous
tissue. In particular, as shown in the top-left figure, the host is divided in several
subregions with three different ECM densities, namely �m D 0:2; 0:25; 0:3. It is
useful to underline that in this simulation setting, the stiffness of the nucleus is equal
for both populations. As it is possible to see, all cells are able to move in the low
density areas. On the opposite, only tumor individuals penetrate the medium density
regions. Finally, neither malignant nor normal cells are instead able to invade the
regions characterized by the highest density.
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Fig. 3.28 Evolution of
one-dimensional
MMP-inhibited system for
E=�n1 D 25, E=�n2 D 37:5,
and �Cm D 0:3, other
parameters being as in
Fig. 3.27. Tumor cells, thanks
to their softer nucleus, are
able to invade the region ˝m,
that is too dense for the stiffer
nucleus of sane cells, also in
the compressed configuration.
Tumor cells will also
populate ˝m because they are
able to live in there. Hence
the overall volume ratio is
eventually constant
everywhere



3 Modelling Cell-ECM Interaction 199

Fig. 3.29 Evolution of the volume ratio of MMP-inhibited tumor cells for a heterogeneous
distribution of ECM as shown in the top-left figure, other parameters being as in Fig. 3.27. The
tumor grows in the heterogeneous ECM avoiding denser regions

3.6.4 MMP-Induced Invasion

As already described in Sect. 3.4.3, when moving within ECMs cells can express
matrix degrading enzymes, such as MMPs, to create paths for migration. In order to
take into account of this effect, we still consider the ECM as rigid, but assume that
it is now degradable.

Denoting the concentration of MMPs by CMMP we need to add to (3.100) the
following equations for the evolution of �m and CMMP

8

ˆ
ˆ
<

ˆ
ˆ
:

@�m

@t
D �m ;

@CMMP

@t
D �r2CMMP C �MMP ;

(3.106)
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where � is the diffusion coefficient of MMPs. The ECM supply term �m is modelled
assuming both proteolytic fiber degradation and cell production of new peptidic
filaments. In this respect, denoting by �m the deposition rate and ım the MMP
degradation rate, we write

�m D �m�c2 � ımcMMP�m : (3.107)

Finally, the supply �MMP of MMPs is modelled considering their production by
tumor cells and their natural decay, i.e.,

�MMP D �MMP�c2 � CMMP

�
; (3.108)

where �MMP is the secretion rate by the tumor cells and � is the decay time.
Starting from the configuration of the control simulation on the left of Fig. 3.27,

in Fig. 3.30 we observe that the activity of MMPs results in the digestion of the
excessive part of the ECM that, however, is then restored after the passage of the
tumor cells. Therefore, although slowed down, the tumoral invasion is successful
again.

3.7 Chemotaxis as an Active Stress

In dealing with force balance in Eq. (3.70), we allowed the existence of an external
body force acting on the cell populations. In fact, in many continuum models,
chemotaxis, haptotaxis, and durotaxis are introduced either as body forces or by
including in the definition of the velocity field a term proportional to the gradient
of chemoattractants, of adhesion molecules, or of substrate rigidity. Focusing on
chemotaxis as the only body force and neglecting inertia, we can for instance
specialize (3.70) as

r � Tc C ��crC C mcm D 0 ; (3.109)

where � is the cell chemotactic sensitivity and C is the local concentration of
chemoattractant.

To understand the consequences of this assumption, let us consider the simplest
case of a cell population moving in a rigid ECM with an interaction force
proportional to the relative velocity, as done in (3.84) with vm D 0, of course. Then
we have

r � Tc C ��crC � �c�mM�1
c vc D 0 : (3.110)
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Fig. 3.30 Evolution of
one-dimensional system for
�m=� D 0:15,
�=.	AnE/ D 0:005,
�MMPım=�

2 D 50,
�� D 0:02, other parameters
being the same as in Fig. 3.27
(left). Tumour cells grow
compressing the sane cells
against the denser region ˝m.
When malignant individuals
reach such an area, they
remodel the ECM, opening
their own way for further
migration
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This allows to readily explicit

vc D Mc

�m

�

�rC C 1

�c
r � Tc

�

: (3.111)

Notice that the chemotactic component of cell motion is ineffective either if cells
are not sensitive to the chemical gradient (i.e., � D 0), or if cells are not able
to move even though their would like to (i.e., Mc D 0, which might hold for
frozen individuals, or for individuals pretreated with cytochalasin B, or for too dense
ECMs, as described in Sect. 3.6).

The equation above can be then substituted in the mass balance equation (3.58)
to get

@�c

@t
C r �

�

�c

�m
�MrC

�

C r �
�

1

�m
Mcr � Tc

�

D �c :

In this equation, it is possible to recognize in the second term of the l.h.s. the
classical chemotactic term. If in addition Tc D �˙c.�c/i, we then obtain a nonlinear
advection-diffusion equation, which reduces to the classical chemotactic equation
under a suitable assumption of isotropy and in the case of a special choice of˙c.�c/

able to linearize the diffusion term.
In order to understand the consequences of treating chemotaxis as a body force,

we consider now an ensemble of cells in a deformable ECM. This implies that we
have to join (3.83), with ˛ D m, to (3.109) in order to describe the deformation of
the ECM. So, for any general constitutive equation for the stress and for the cell-
ECM interaction force the governing multiphase model will be

8

<

:

r � Tc C mcm C �c�rC D 0 ;

r � Tm � mcm D 0 ;
(3.112)

which, if the two equations are summed up, results in the classical force balance
equation for the overall mixture

r � .Tc C Tm/C �c�rC D 0 : (3.113)

To be specific, referring to Fig. 3.31, we consider a one-dimensional situation in
which only the cells lying in a central interval of the domain, say Œa; b, are sensitive
to the chemical signal, whereas the other individuals of the aggregate are insensitive
to the chemical stimulus. Furthermore, we suppose that central cells respond with a
constant chemotactic force, which means that the chemical gradient is constant. In
this case (3.113) simplifies to

@

@x
ŒTc C Tm C F.x/ D 0 ;
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Fig. 3.31 Difference between passive response (top) and active pulling (bottom) to a chemotactic
signal. F represents chemotaxis when treated as a body force

where

F.x/ D
8

<

:

0 if x < aI
A.x � a/ if a 	 x 	 bI
A.b � a/ if x > b;

which can be easily solved to obtain that Tc C Tm CF.x/ is constant in space. Since
Tc C Tm and F are continuous across the interfaces between the two types of cells,
i.e., at x D a; b, the assumption that the right border is stress-free implies that

Tc C Tm D F.b/� F.x/ ;

and in particular that TcCTm > 0. Similar results can be obtained replacing A.x�a/
with any increasing concentration field yielding to an F.x/ that vanishes below a and
is continuous and constant above b.

Without going to the solution of the mass balance equations, by assuming that
the cell response to the chemotactic force is mainly sustained by the matrix, i.e.,
Tc � Tm, we have that the ECM is in tension in the direction of the chemotactic
force.
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Such a conclusion is easily understandable if one thinks to a heavy ball placed
within a deformable net. Due to gravity both the ball and the net will move
downward thereby stretching the net in the direction of gravity. Even if the ball
is deformable, it will fall down through the net pulling it downward.

Unfortunately, in biological experiments an opposite phenomenology is
observed. In order to move in the direction of chemical gradients, cells in fact
grab on the ECM and activate their internal motor proteins to move forward. This
generates a relative fiber motion in the opposite direction. This is not far from
our everyday walking experience, i.e., in order to move a step forward we are
pulling the ground back. This is particularly evident when walking on a slippery
and deformable surface like a slightly muddy soil.

An easy way to include this effect in continuum models consists in differentiating
the stress tensor of the cellular component into an active and a passive part, that
will be respectively named Ta

c and Tp
c . The former is a way to model the internal

activation of stresses. The latter is instead the classical response to deformation. To
understand the difference, we can think to a spring having a rest length `0. If it is
compressed to a length ` < `0, it will tend to passively respond to the deformation
trying to go back to the length `0. If, instead, without any load, the spring anchored
to two points having a distance `0 is able to shorten its rest length to `1 < `0, then
its extrema will exert on the anchorages a traction force, that can be named active.

In this respect, Eq. (3.112) rewrites

8

<

:

r � .Ta
c C Tp

c/C mcm D 0 ;

r � Tm � mcm D 0 ;
(3.114)

which implies

r � .Ta
c C Tp

c C Tm/ D 0 : (3.115)

It is clear that Eqs. (3.113) and (3.115) are the same if Ta
c D �c�rC (if �c is constant

in space). However mainly due to specific boundary conditions their solution is
different. In fact, let us assume again a one-dimensional situation where the cells
located in the interval Œa; b are pulling on the ECM with an active traction Ta

c D
A.x � a/. The continuity of the stress across the interfaces a and b and the no-stress
boundary condition at the right hand side of the domain imply that

Ta
c C Tp

c C Tm D 0 ;

or that

Tp
c C Tm D �Ta

c ;

which, differently from the previous case, implies that Tp
c C Tm < 0.
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Finally, assuming again that the response to the chemotactic force is mainly
sustained by the ECM, i.e., Tp

c � Tm we have that

Tm � �Ta
c D ��c�rC ;

which means that the ECM is pulled back in the direction opposite to the
chemotactic force.

3.8 Perspectives on Mechanosensing
and Mechanotransduction

As we have discussed so far, the deduction of models able to describe cell-ECM
interactions gives rise to very interesting problems also from the mathematical point
of view. In this respect, we end the chapter by proposing some ideas for further
possible modelling developments, that directly arise from experimental and practical
issues.

From the experimental observations, it turns out that selected interactions
between cells and ECM are fundamental in governing cell fate, e.g., cell survival,
migration, growth, and homeostasis. Hence, understanding such mechanisms is a
fundamental issue in tissue engineering. In particular, the analysis of how cells
sense and react to the mechanical properties of the surrounding environment is very
important for the development of nature-inspired bioengineering mechanosensitive
devices, tactile sensors and micro-sensors, e.g., of pressure and shear. In spite of the
growing interest in this field very little is done from the matematical perspective.

A little more has been done in modelling the important role played by mechanics
in tumor development, starting from the regulation of the contact inhibition of
growth [9, 34] to the fact that ECM stiffness and tensile stresses enhance cell
proliferation.

However, apart from cancer, several other diseases seem to be due to incorrect
mechanosensing or mechanotransduction processes [30]: however, very few articles
focus on the analysis of these mechanisms from the mechanical modelling point of
view. Among others we can mention the following:

• Atrial fibrillation derives from an abnormal conversion of mechanical stress into
intracellular gradient of electrical activity;

• Intimal hyperplasia is related to stretch-activated intracellular signalling cascades
due to the presence of stents and grafts;

• Scleroderma and diabetic nephropathy might be due to abnormal accumulations
of ECM components;

• Glomerulosclerosis is the consequence of the pathologic stretch of mesangial
cells via ECM and integrins due to glomerular hypertension;

• Emphysema might be due to enhanced ECM breakdown;
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• Pulmonary fibrosis and all other fibrosis characterizing many aging diseases
might be due to an excessive production of ECM;

• Pulmonary hypertension might be due to cell hypercontractility;
• One of the causes of osteoporosis is insufficient mechanosensing;
• Many vascular diseases are due to the fact that vasculature remodels in response

to wall shear stresses and indeed the pressure of blood flow and mechanosensing
pathways of the endothelial cells building the vessel walls might be corrupted.

The computational and modeling literature has paid little attention to most of the
above-cited problems. In fact, only few theoretical papers, which typically focused
on cancer modelling, have dealt with the effect of the matrix microenvironment and
on the possibility of healing tumors by normalizing the surrounding tissue (see, for
instance, [11, 27] and references therein).

Understanding the mechanical interplay between cells and the surrounding
environment is of crucial importance in tissue engineering as well. For instance, the
fate of stem cells depends not only on genetic and molecular mediators, e.g., growth
factors and transcription factors, but also on the interactions they have with the
surroundings, which depend on ECM elasticity and morphology and include ECM-
mediated stresses [33]. In this respect, one amazing evidence is the observation that
stem cells differentiate according to the stiffness of the surrounding environment
[9]. In particular, they are likely to become

• neurons, if the ECM rigidity is below 0.1 kPa;
• adipocytes, if the ECM rigidity is in the range 0.1–2 kPa;
• skeletal muscle cells, if the ECM rigidity is in the range 3–20 kPa;
• osteoblasts, if the ECM rigidity is above 20 kPa.

It seems that this is one of the reasons of the present unsuccessful use of stem cells
in the treatment of neurodegenerative diseases (in spite of the suggestive idea and
of its great potential [15, 41, 42]). Scars in the neural tissue are in fact too stiff for
stem cells to be neurogenic.

While, as previously stated, there are not many papers devoted to modeling
mechanosensing and mechanotransduction, there is an increasing effort to under-
stand the mechanisms from the experimental point of view. In fact, the aim is
the construction of proper niches that allow to culture stem cells and to control
their differentiation, in order to build bioengineered tissues [69]. In this respect,
a valuable support could be given by the development of proper mathematical,
mechanical, and computational models.

Another area of interest is the optimization of the geometric characteristics of
scaffolds in which cells can grow to build artificial tissues. In Sects. 3.3 and 3.4 we
have focused on this aspect, stimulated by the practical aim to indentify the optimal
morphological characteristics of an artificial scaffold able to enhance cell motility,
having in mind those cells involved in wound healing. In order to do that, one need
to understand selected aspects that can either favour or hamper cell motion. In this
chapter we have for instance discussed in detail how the elasticity of the nucleus
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plays a crucial role as well as the ability of the cell to actively exert traction forces
via adhesion sites and to activate its proteolytic machinery.
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Chapter 4
Mathematical Modeling of Morphogenesis
in Living Materials

Valentina Balbi and Pasquale Ciarletta

Abstract From a mathematical viewpoint, the study of morphogenesis focuses on
the description of all geometric and structural changes which locally orchestrate
the underlying biological processes directing the formation of a macroscopic shape
in living matter. In this chapter, we introduce a continuous chemo-mechanical
approach of morphogenesis, deriving the balance principles and evolution laws for
both volumetric and interfacial processes. The proposed theory is applied to the
study of pattern formation for either a fluid-like or a solid-like biological system
model, using both theoretical methods and simulation tools.

4.1 Introduction

In developmental biology, morphogenesis can be defined as the ensemble of the
underlying biological processes directing the formation of a macroscopic shape
in living matter. Morphogenetic events span over a wide range of molecular and
cellular mechanisms, often inter-playing for controlling events at individual or
collective level. Thus, the shape of an organism emerges over time as a morpho-
logical transition coordinated by these complex multi-scale interactions, revealing
the intrinsic dynamic nature of its driving forces. Indeed, from a mathematical
viewpoint, the study of morphogenesis focuses on the description of all geometric
and structural changes which locally orchestrate the occurrence of a global shape
in living materials. Accordingly, a mathematical model must consider the two most
fundamental processes during tissue development, namely growth and remodeling,
intended as the biological mechanisms determining any variation of the mass and of
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the micro-structural organization, respectively [110]. Nonetheless, morphogenesis
is by far a more complex phenomenon, since these basic mechanisms often occur
simultaneously, involving a cascade of inter-related developmental events from the
molecular to the tissue scale, provoked by either genetic or epigenetic causes [31].

It is therefore mandatory for a mathematical theory of morphogenesis to provide
a dynamic modelling of the morphology as a function of the interplay between
geometry and physical forces, as well as chemical and biomolecular cues. Moreover,
the suitability of a mathematical model should be evaluated not only for the accuracy
of reproducing the observed morphology in the dynamical fashion, but also for the
ability to identify the most relevant underlying causes, (causas alias ex aliis aptas
et necessitate nexas).1

Before investigating in details the main building blocks for a suitable mathemati-
cal modelling, we briefly give an overview of the development of the morphogenetic
theories over the centuries, highlighting the path towards the contemporary vision
of morphogenesis and its most intriguing open challenges.

4.2 An Historical Overview of Morphogenetic Theories

The scope of this section is to provide an historical survey of the main events
concerning evolutionary theories and biological discoveries, from the ancient times
to the modern and contemporary approaches.

4.2.1 Epigenesis Versus Pre-formationism: From Ancient
Times to the Advent of Microscopy

Although it is known that Babylonians and Egyptians made an earlier use of
geometrical calculations for structural purposes, the first application of geometry
for explaining the origin of a shape can be found in Euclid’s Elements (Book VI,
definition 3, ca.300 BC), where “a straight line is said to have been cut in extreme
and mean ratio when, as the whole line is to the greater segment, so is the greater
to the less”. This definition highlighted a simple proportion already used almost
two centuries earlier by the sculptor Phidia, who seemingly used it to construct
the Parthenon’s statues. The possibility of using such a simple geometrical rule to
decrypt the harmony and symmetry behind several shapes commonly observed in
Nature still creates much fascination in our times, explaining the Medieval belief

1In mathematical terms, this latin expression can be roughly translated as the set of the strictly
necessary causes (from Cicero, Rhetorica, Tusculanae Disputationes, Liber Quintus, 70).
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of a divine number.2 Indeed, the theological doctrine of creationist prevailed for
almost two millennia, and shape was considered as a pre-ordered organization of
matter resulting from an act of divine creation. Opposed to such a pre-formationist
view, Aristotle had already proposed in his books Hystoria Animalium and De
Generatione Animalium (ca.350 BC) the so-called epigenetic hypothesis. According
to Aristotele, after several steps of differentiation, the tissues forme structures which
were not present at the initial steps of life [6]. Such works were mainly based
on teleological concepts, but they reported an impressive number of biological
observations on embryos, although methodologically very far from a rigorous
modern scientific approach.

Notwithstanding, the predominance of preformationism persisted until the sev-
enteenth century, where the advent of microscopy techniques opened a scientific
debate between epigenetists and preformationists about the nature of embryonic
structures. From one side, William Harvey retraced the Aristotelian ideas proposing
the principle ex ovo omnia, i.e. that everything develops epigenetically from an egg
[60]; on the opposite side, Marcello Malpighi and Nicolaas Hartsoeker claimed that
a miniature structure of the adult organism, called homunculus, was present in the
egg from the very beginning, and that the gestation period involved the growth and
unfolding of that pre-existing structure [1, 59].

Few decades in advance, Galileo Galilei had hinted that the shape of organisms
was somehow influenced by the load that they have to hold, proving that the changes
in size of bones over mammals are actually governed by allometric scaling [47]. This
seminal idea of mechanical causation would still take almost two centuries before
influencing the scientific view of morphogenesis.

4.2.2 The Birth of Modern Embryology: Evolutionary Theories
and Mechanical Causation

The nineteenth century was dominated by Darwinism and the advent of genetics,
but also by the theory that plants and organisms are made of cells, and that
reproduction is governed by cell division, according to the principle omnis cellulae
ex cellula proposed by Rudolf Virchow [115]. Furthermore, the technical progress in
microscopy determined the birth of the modern experimental embryology. Inspired
by Darwinism, Ernst Haeckel proposed the recapitulation theory, claiming that
the developmental steps of embryonic growth would be a reflection of the adult
evolution of their ancestors [55]. This biogenetic law formulated that ontogeny
(i.e. the development of an individual organism) recapitulates phylogeny (i.e. the
evolution of a species). Although immediately rejected by Wilhelm His, who
showed with experiments that the gut tube morphogenesis could be modeled by a

2This idea was enforced by Luca Pacioli, a student of Leonardo da Vinci, in his book De divina
proportione, published in 1509.
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mechanical causation principle [92], this biogenetic theory prevailed in the scientific
community until the works of Wilhelm Roux towards the end of the nineteenth
century. In particular, he shifted the focus of developmental biology from evolution
(i.e. the final purpose) to the underlying mechanisms (i.e. the causes), performing
several experiments on embryos in order to investigate the self-differentiation [99].
Although some of his deductions were incorrect [56], Roux inspired a new approach
in experimental embryology, giving seminal results about regulation, i.e. the ability
of the embryo to develop normally even if a part of it is removed, as well as
induction, i.e. the influence of a cell or a tissue on the development of another.
Interestingly, a definitive confirmation of the latter phenomenon had to wait till
1924, when Spemann and Mangold transplanted part of the embryonic tissue from
a amphibian into an embryo of a different amphibian species [106]. They observed
that a partial second embryo developed from the transplanted tissue: the hosting
tissue induced the development of the hosted tissue.

Roux also extended the investigation about the mechanical causation of develop-
ment establishing the concept of functional adaptation as a principle for dependent-
differentiation: cells and tissues respond to change in external conditions in order
to preserve their global organization and functions. Accordingly, any tissue would
adapt under the action of external forces, regulating its growth in order to preserve
lightness and structural robustness.

This fundamental principle contributed to the development of modern physiol-
ogy, which considers that all life phenomena result from the mutual balance between
the living matter and the surrounding media. In the same period, indeed, Claude
Bernard first hypothesized that such a dynamic equilibrium might regulate living
organisms despite the structural complexity of the constituting matter [10]. Initially
focusing on anatomical, biochemical and symphato-adrenal stimuli, novel exper-
iments highlighted the stable equilibrium between the interior matter of a living
entity with respect to external perturbative agents. Accordingly, this physiological
tendency towards a steady state was later called homeostasis, and found to drive the
optimal structural remodelling of both bone to mechanical loading, also known as
Wolff’s law [117], and arterial endothelia to shear stress, also known as Murray’s
law [89].

4.2.3 The Contemporary Approaches to Morphogenesis

The twentieth century has been particularly rich in crucial discoveries and scientific
contributions to the understanding of morphogenesis. In particular, the first half of
the century was characterized by the introduction of mathematical modelling to
investigate the relations between the physical forces exerted by the surroundings
and the steady generation of shapes. The second half was instead dominated by
the many astonishing discoveries in genetics and molecular biology, shifting the
research focus to the dynamical aspects of morphogenesis.
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4.2.3.1 The First Mathematical Approach on Growth and Form

In 1917, D’Arcy Wentworth Thompson published his masterpiece and only sci-
entific book, entitled On growth and form [111], a compendium of more than a
thousand pages, written in wartime, about the use of mathematical theory to describe
the shape of living organisms.

Whilst other contemporary scientists focused on experimental analysis, D’Arcy
Thompson’s investigations were purely based on mathematical foundations. Being
skeptical about a morphogenetic analysis based on evolution theories and natural
selection, which were still dominant in the scientific community at that time, his
original idea of morphogenetic development was instead focused on the role of
physical forces in shaping organisms. The following quote from the Introduction
section is fully explicative in this sense:

It is retained, somewhat crudely, in modern embryology
[. . . ]that the embryonic phenomena must be referred directly
to their usefulness in building up the body of the future animal

which is no more, and no less, to say, with Aristotle,
that the organism is the ���o& , or final cause,

of its own processes of generation and development.
[. . . ] Still, all the while, like warp and woof, mechanism and teleology

are interwoven together, and we must not cleave to the one nor despise the other;
for their union is rooted in the very nature of totality.

Accordingly, the book investigates mechanical causation in the generation of
many shapes in living matter, dealing with living organisms as material bodies
subjected to physical forces and obeying to simple physical and geometrical laws.
An illustrative example of the originality of D’Arcy Thompson’s approach can
be found in the second chapter of his book, where he focused on the physical
scaling effects on the shape of animals of different sizes, complementing Galileo’s
first observations on allometric laws. He proved that, whilst big animals must
have strong and heavy structures which allow to sustain the bulk gravitational
load, the shapes and structures small animals can be calculated from a principle
of functional adaptation to surface forces, e.g. surface tension. Furthermore, he
proposed a grid transformation method, aimed at showing that physical forces can
shape a living organism during either growth or evolution, as depicted in Fig. 4.1.
D’Arcy Thompson’s work had a seminal influence on modern biomechanics and his
book is still read and published in reduced and revised versions. Among many other
examples, it was a source of inspiration for Huxley’s work on allometric growth [67]
as well as for Gould’s mechanistic theory of shape from an evolutionary viewpoint
[51].

4.2.3.2 The Chemical Bases of Morphogenesis

The fast development of experimental techniques in biochemistry promoted an
increasing attention to the chemical and molecular mechanisms underpinning
morphogenetic processes. A new branch of applied mathematics especially focused
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Fig. 4.1 Left: Transformation grid applied to the shape transformation of a small amphiopod
(a) Harpinia Plumosa into the shapes of two other genera belonging to the same family (b)
Stegocephalus Inflatus, and (c) Hyperia Galba, adapted from [29]. Right: Transformation grid
applied to the growth of a skull in human foetus. In both examples the transformation is achieved
by applying physical forces on the considered structure, during evolution and growth respectively

on the description of pattern formation, i.e. the emergence of organized living
structures in space and time. A milestone in biomathematics is the paper by Alan
Turing on the chemical bases of morphogenesis, published in 1952 [113]. Although
it was his only contribution on morphogenesis, it is an extraordinary innovative
work, especially since it proved how a mathematical theory could actually anticipate
biological discoveries. Turing proposed a reaction-diffusion model of at least two
chemical species which undergo chemical reaction within a living material: in order
to highlight their role in generating a new pattern, he called them morphogens. They
practically act as biochemical substances enabling certain shape control abilities
in the embryonic tissue, closely resembling the evocators earlier hypothesized by
Waddington [116]. In the absence of diffusion, the biological system is in a stable
state defined by homogeneous concentrations of the two reactants. Under certain
range of values of the reaction and diffusion parameters, an instability occurs and
a stable non-homogenous pattern arises. This was a counter-intuitive result since it
was thought that diffusion would rather introduce a chaotic behavior in the system,
instead of generating an organized pattern.
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Fig. 4.2 Turing’s reaction-diffusion model: (a) Examples of the six stable states solutions of
Turing’s model. (b) The so-called Turing’s pattern is depicted as the Case VI where a stationary
wave of finite wavelength develops. (C) Reproduction of biological patterns created by modified
reaction-diffusion mechanisms. Adapted from [73]

In particular, Turing’s model predicted the existence of six possible steady-
states as shown in Fig. 4.2. The uniform stationary (I) and oscillatory (II) states,
the short wavelengths stationary (III) and oscillatory (IV) states and the finite
wavelength stationary (V) and oscillatory (VI) states. Of particular interest is
Case VI, which occurs when the diffusion coefficients of the two morphogens
differ substantially and initiate the so-called short-range activation, long-range
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inhibition [48] mechanism. The two morphogens are seen as an activator and an
inhibitor, respectively, which can act on themselves as well as on the other. A
small perturbation in the homogeneous concentration can induce an increase in the
activator concentration and initiate the feedback which lead to the formation of one
of the Turing’s patterns in Fig. 4.2b.

Turing’s model has later been largely employed for modeling the emergence of
several patterns in vertebrates such as the stripes in the zebra-fish pigmentation [72],
the branching pattern in feathers [58], but also the fabulous seashell patterns [94] and
the mechanism of plant phyllotaxis, i.e. the arrangement of leaves on a plant stem
[105].

Nonetheless, Turing’s work did not receive a great attention in the years right
after its publication. Indeed, the problem of emergence of organized cellular patterns
in the tissue was brought back to the attention of developmental biologists only in
the 1970s, when Lewis Wolpert introduced the concept of positional information
(PI). The main idea of Wolpert is that the position of a cell in the tissue specifies
the information about the molecular changes the cell will undergo [118]. In this
sense, morphogens display both positional information and growth orchestration
properties. The key elements of Wolpert’s theory can be summarized in the
definition of:

• A mechanism which specifies the polarity in the tissue. Polarity is the direction in
which PI is specified and is defined with respect to one or more reference points.

• A mechanism for specifying the different responses of the cell.

PI can be specified by a quantitative variation of some factor such as the concen-
tration, or a qualitative variation of some cell parameters such as a combination of
genes or enzymes. A set of cells which have their PI specified with respect to the
same reference points constitutes a field. Interpretation of PI is the process by which
PI specifies the cell state and conversion is the mechanism by which PI is translated
in a particular cellular activity. Furthermore, PI is universal in organisms and size
invariant, meaning that if a part of the tissue is removed, the tissue is still able to
pattern and interpret the PI.

The concept of positional information is well clarified in the French flag model
depicted in Fig. 4.3. In this example, the mechanism which specifies polarity is
the monotonic variation of the morphogen concentration C. T1 and T2 identify
the mechanism for the differential response of the cells. The interpretation acts
according to the following rule: cells with position in the region where C < T1
express the blue pigment, a cell in the region where T1 < C < T2 expresses the
white pigment and cells in the region where C > T2 express the red pigment. This
apparently simplistic model was later confirmed by experimental observations on
the early Drosophila embryo, where the concentration gradient of the protein Bicoid
(i.e. a transcription factor, being the first molecules found to act as a morphogen in
1988 [36]) drives an antero-posterior differentiation in three separated domains [68].

The models proposed by Turing and Wolpert offer two different points of view
on pattern formation. A first difference comes from the fact that Turing aimed at
modeling spontaneous formation of a pattern, while Wolpert asked how a more
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Fig. 4.3 The French Flag model: positional information is specified by the gradient of a
morphogen concentration. Adapted from [69]

complex pattern can arise from an asymmetry (i.e. polarity) within the tissue.
Furthermore, in Turing’s model the concentration of morphogens is directly related
to the spatial pattern, in this sense it is a pre-pattern. Conversely, Wolpert introduced
an interpretation step where the cell activity is specified by the concentration
gradient. Moreover, Wolpert himself later argued that morphogenetic movements
are rather determined by other transport mechanisms than passive diffusion, such
as planar transcytosis and cytonemes [119]. Furthermore, morphogens should be
generally subjected to fluctuations on short length-scales whilst travelling through
individual cells, yet finally delivering precise positional information. Without
discussing in further details such limiting aspects, it is now generally accepted
that more complicated morphogenetic models are needed in the wide scenario of
embryogenesis. For example, recent works have proposed a different mechanism
through which the two models can cooperate in pattern formation [52].

4.2.3.3 The New Course of Genetics and the Return of an Ancient
Dichotomy

Although the origins of genetics date back to the second half of the nineteenth
century, when Gregor Mendel discovered the inheritance of biological traits [87],
its fundamental role in morphogenesis finally emerged only during the twentieth
century [120]. Indeed, the earlier vision of genetics uniquely concerned studying
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the transmission of hereditary properties in the embryo, since Mendel’s theory was
based on the idea that the hereditary package is transmitted from parents to offspring
through a set of discrete hereditary factors. Although proved by experimenting on
pea plants, Mendel’s theory was unable to provide any concrete description of the
nature of such factors. A breakthrough occurred with the discovery that the DNA
carries the genetic information and that genes encode proteins. Thus, the properties
of a cell are determined by the proteins they contain, genes control and act on
proteins in order to drive the cell fate and consequently, the development of a shape.
Right after these discoveries, a lot of experiments focused on finding the genes
responsible for several morphogenetic events in the embryo. The strategy adopted
was to introduce changes in the molecular organization of the DNA in order to
observe abnormal changes in a final structure. In this way, it has been possible to
identify which genes play an active role in the formation of an emerging pattern.

These novel discoveries puzzled researchers about the genetic bases of mor-
phogenesis. Interestingly, the ancient dichotomy between pre-formationism and
epigenesis rephrased in a modern key, whether the shape of an organism emerges
as a results of a set of fixed genetic instructions or it can be influenced by
environmental factors, both at the individual level and during evolution.

Even if many open questions exist in the rapidly developing research branches
of morphogenesis, it is now acknowledged that both the genetic and the epigenetic
factors influence shape at different levels [7]. In the absence of mutations, each cell
within a given organism has the same set of genes, called genotype, whilst only a
small subset is expressed as a function of the environment, defining the phenotype.
Therefore, the epigenetic adaptation can occur both at the level of individual
organism as a change of phenotype and at the evolutionary level as a switch
of ontogenic programs [2]. In summary, it is now clear that the morphogenetic
processes (e.g. cell division and differentiation) are driven by genetic signals, as well
as that the genetic expression involves epigenetic processes by means of morpho-
regulatory biomolecules, that interact with genes through a complex network of
feedback regulatory mechanisms [38].

4.2.4 The Open Quest for the Chemo-Mechanical Cues
of Morphogenesis

Nowadays, there is an increasing research interest in life sciences concerning the
biomolecular mechanisms directing the adaptation of living matter to the physical
forces exerted by the surrounding micro-environment. The ensemble of biologically
processes converting mechanical forces into biochemical factors is called mechano-
transduction. This is a typical multi-scale phenomenon, since living cells may
sense from nano-scale to macroscopic forces often driving the transition from
physiological to pathological conditions [37]. The nano-scale force transduction
occurs by means of cell membrane molecules, typically focal adhesion proteins and
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integrins, converting the mechanical stimulus into a change of membrane potential
through the formation of a ionic current. In physiological condition, a feedback
mechanism, known as mechano-reciprocity, acts for activating the acto-myosin
machinery in order to restore a tensional homeostasis at the macro-scale (e.g. tissue),
i.e. globally balancing endogenous and exogenous forces. Conversely, a loss of
tensional homeostasis often characterizes a hallmark of disease, e.g. directing both
the initiation of solid tumours and the formation of metastasis [15].

Mechano-transduction plays a fundamental role in the modern view of morpho-
genesis, since it allows the regulation of epigenetic and genomic factors at different
time-scales. In fact, it controls the dynamic adaptation of living cells by means of
both switch-like events at their trans-membrane structures [121] and the activation
dynamic molecular processes in response to long time-varying mechanical stimuli
[61]. Many seminal experiments highlighting the crucial role of chemo-mechanical
cue in morphogenesis have been performed in the last decades by the research
group lead by Lev Beloussov. In particular, these works have reported that the
active responses of living matter may overshoot the passive mechanical stimuli,
proposing a hyper-restoration principle for homeostasis [8]. Another open area
of investigation concerns the identification of the local regulation mechanisms,
mainly signalling pathways that spatially and temporally control cell behaviour,
which allow the global orchestration of a macroscopic shape [76]. Therefore, the
current understanding of morphogenetic events gained a further complexity in the
underlying phenomena with respect to the purely chemical bases earlier assumed.
For example, the local concentration of morphogens can trigger growth as a random
cellular proliferation. Nonetheless, polarity can induce preferred orientations in
cellular division, possibly affected also both by competition between different cell
populations and by physical forces, e.g. growth inhibition by compression [77]. At
a more macroscopic level, unknown chemo-mechanical orchestration mechanisms
should transform random or oriented local proliferations into a uniform growth,
which must ultimately cease as the final size is reached. Thus, the morphological
control may depend on both the cell number and the overall size, suggesting that the
spatial gradient of morphogens can provide cells a dimension-sensing mechanism.

The quest for the chemo-mechanical cues in morphogenesis is therefore a
mandatory step for the development of refined mathematical theories [66]. This was
somewhat hinted by Turing himself in his original paper:

In the continuous form of the theory [..] one should take into account
(i) The changes of position and velocity as given by Newton’s laws of motion.

(ii) The stresses as given by the elasticities and motions[. . . ].
(iii) The chemical reactions.

(iv) The diffusion of the chemical substances[. . . ].
This account of the problem omits many features, [. . . ] but even so it is a problem of

formidable mathematical complexity. The interdependence of the chemical and mechanical
data adds enormously to the difficulty [. . . ].

Well aware of such unavoidable complications, we will sketch in the next section
the balance laws for a continuous theory of morphogenesis, using the thermody-
namics of open systems to take into account for the chemo-mechanical coupling.
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4.3 A Continuous Chemo-Mechanical Theory
of Morphogenesis

The thermo-mechanics of open systems is a natural framework for a macroscopic
mathematical description of morphogenesis in living matter, which is hereafter con-
sidered as a continuous distribution of matter. Accordingly, we disregard the micro-
scopic dynamics of the underlying biological phenomena acting at the subcellular or
cellular level, and we model the relevant chemo-mechanical properties by averaged
fields at the tissue scale. In the following, we provide some basic kinematic notions
and we derive the physical balance laws that govern the morphogenetic processes
within living matter as a function of both the mechanical and the chemical cues.

4.3.1 Basic Kinematic Notions

Denoting by E  R
3 be a three-dimensional Euclidean space, let B0;Ba  E be

two regions occupied by the living body in two different instants of time. Let � be
the mapping which transforms the tissue from its initial configuration B0 to its final
configuration Ba, which can be defined as the following C 1-diffeomorphism:

� W B0 ! Ba x D �.X/; with inverse X D ��1.x/ (4.1)

where X, x are the position vectors in the reference and actual configurations B0

and Ba, respectively. The deformation gradient, associated to the deformation in
Eq. (4.1), is the second order two-point tensor defined as:

F W TB0 ! TBa F D Grad x D @�.X/
@X

D @xi
@Xj

ei ˝ Ej; (4.2)

where Ej; ei (with i; j 2 f1; 2; 3g) are the basis unit vectors in the reference and
actual configurations, respectively, and TB0;TBa are the collections of all tangent
spaces on B0 and Ba, respectively. A tangent space is the set of all line elements
attached to a body point. The capital notation Grad in Eq. (4.2) indicates the gradient
operator with respect to the material position Xj in the reference configuration B0

and the symbol ˝ indicates the dyadic product between two vectors, in indicial
form : (a ˝ b/˛ˇ D a˛bˇ.

According to Eq. (4.2), the following relations for the transformation of line,
surface and volume elements, respectively, hold:

dx D FdX (4.3)

nds D JF�TNdS (4.4)

dv D JdV (4.5)
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where J D det F and the quantities dX;NdS; dV and dx;nds; dv are defined in the
reference and actual configurations, respectively, with N and n being the unit normal
vectors to dS and ds, respectively. Eq. (4.5) can be directly derived from Eq. (4.3),
while Eq (4.4) is also known as Nanson’s Formula.

Before deriving the thermo-mechanical laws for a morphogenetic process, it is
useful to introduce some relations that will be used in the following.

Let f.x; t/ be a continuously differentiable spatial vector field, its total time
derivative writes as:

Pf.x; t/ D df.x; t/
dt

D @f.x; t/
@t

C v.x; t/ grad f.x; t/; (4.6)

Moreover, considering the integral of the spatial field f on a volume changing with
time, the Reynolds theorem allows for the time derivative to be calculated as:

d

dt

Z

Ba

f.x; t/ dv D
Z

Ba

ŒPf.x; t/C f.x; t/ div v.x; t/ dv; (4.7)

where v.x; t/ is the spatial velocity, and div is the spatial divergence operator.
Moreover, we will use the divergence theorem in the form :

Z

@Ba

n � f.x; t/ ds D
Z

Ba

div f.x; t/ dv; (4.8)

so that div.f/ D fih;i for any given tensor field f, assuming saturation on repeated
indices unless explicitly stated.

4.3.1.1 Balance of Mass

Since morphogenetic processes usually involve growth and remodelling, let us first
derive the mass balance for a living material as a function of the biochemical factors
[23, 40]. The global form of the mass balance for a growing body X in spatial
coordinates reads:

d

dt

Z

Ba

� dv D
Z

Ba

! dv (4.9)

where � is the spatial mass density and d=dt denotes the total time material
derivative. Accordingly, ! is the internal mass production rate per unit current
volume, and we neglected any non-convective mass flux for the sake of brevity.
The interested reader is referred to [39] for the introduction of mass self-diffusion
terms.

The mass production rate represents the cellular proliferation within the material
which is possibly driven by some biochemical fields, e.g. growth signals, nutrients,
morphogens. Indicating with ci.x; t/ the concentration of the generic i � th species
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per unit volume, we can generically assume that ! D !.ci;F/. Moreover, since we
deal with signals or low weight molecules, such species can me modeled as internal
variables with negligible inertia [24], having the following balance laws:

d

dt
ci � div Jci D ��i.F;GradF/ (4.10)

where �i is the absorption rate of the i� th species, whose value may depend both on
the first and on the second gradient of the deformation field, the latter reproducing,
for example, curvature-dependent effects in the absorption of angiogenetic factors
[79]. The diffusion of a morphogen from the source through the extracellular matter,
with a sink function possibly regulated by receptor endocytosis, has been proved
to describe the morphogens gradient in multicellular embryonic tissues [122]. As
discussed in [4], the simpler expression for the flux of nutrients Jc is given:

Jci D D.ci/J grad ci (4.11)

where D.ci/ represents a diffusion tensor, whose positive definiteness and mono-
tonicity on ci ensure the well posedness of the mathematical problem.

The local spatial form of Eq. (4.51), can now be easily derived by substituting
Eq. (4.7) and permuting integration and differentiation, being:

P� C � div v D !.ci;F/; (4.12)

where the dot symbol indicates the total time derivative defined in Eq. (4.6). For
problems involving solids, it is useful to derive its material counterpart using a
similar procedure after recasting Eq. (4.51) in the reference volume. It reads:

P�0 D ˝: (4.13)

where �0 D J� is the material density and ˝ D J! is the internal mass production
rate per unit reference volume.

In summary, Eqs. (4.12) and (4.13) are the mass balance laws of biological
material during a morphogenetic process guided by the reaction diffusion Eq. (4.10).
We remark that the driving chemo-mechanical cues will be defined by the proper
constitutive choices of the coupling terms ! and �.

4.3.2 Balance of Linear and Angular Momentum

Let us first consider the balance of the physical linear momentum p D �v inside the
biological system. Its conservation law in the global form rewrites:

d

dt

�Z

Ba

pdv
�

D
Z

Ba

.�bv C !v/dv C
Z

@Ba

n:� ds (4.14)
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where � is the Cauchy stress tensors , and bv is an external bulk force. Substituting
Eq. (4.12) while developing the integral terms in Eq. (4.14), we obtain after some
standard manipulations the following local form in the spatial configuration:

�
dv
dt

D �bv C div � (4.15)

In order to derive the material counterpart of Eq. (4.14), let us substitute the
Nanson’s formula in Eq. (4.4), so that:

D

Dt

Z

B0

�0v dV D
Z

@B0

N:S dS C
Z

B0

.�0bv C !v/ dV (4.16)

where the volume element transformation in Eq. (4.5) and the relation in Eq. (4.12)
have been used. The stress tensor S in Eq. (4.16) is called the Nominal stress and
is related to the Cauchy stress by S D JF�1� .3 Thus, its local form in material
coordinates reads:

�0
dv
dt

D �obv C Div S (4.17)

where Div is the material divergence.
Furthermore, the global form of the angular momentum balance in presence of

growth can be written in spatial coordinates as:

D

Dt

Z

Ba

y � �v dv D
Z

@Ba

y � �n ds C
Z

Ba

y � .�bv C !v/ dv (4.18)

where � is the cross product and the position vector y has been introduced as y D
x�x0 with x0 being a fixed vector position. Using the Reynolds theorem in Eq. (4.7),
the l.h.s of Eq. (4.18), rewrites:

D

Dt

Z

Ba

y � �v dv D
Z

Ba

Œy � . P�v C � Pv/C .y � �v/ div v dv (4.19)

where the second equality follows from Py D Px D v and the product differentiation
rule of the cross product.

Using the divergence theorem in Eq. (4.8) and the properties of the cross product,
the first term in the r.h.s of Eq. (4.18) transforms into the volume integral:

Z

@Ba

y � �n ds D
Z

Ba

Œy � div� C E W � T  dV (4.20)

3Since S is related to � through a Piola transformation, it is often called first Piola-Kirchhoff
stress tensor [85]. Nonetheless, some authors consider the latter being the transpose of S [90].
Accordingly we prefer to call it nominal stress in order to avoid misunderstanding to the readers.
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where E D �jklej ˝ ek ˝ el is the third-order permutation tensor with components
�jkl D .ej � ek/ � el. Now, using the mass balance in Eq. (4.12), the balance of linear
momentum in Eq. (4.15) and substituting Eqs. (4.19) and (4.20) into Eq. (4.18), it
follows that:

Z

Ba

E W � T dV D 0 (4.21)

whose local eulerian form is:

� D � T (4.22)

with material counterpart:

FS D STFT (4.23)

Hence, the Cauchy stress tensor � must be symmetric whilst the Nominal stress S is
not. In the following, we will derive the thermodynamic principles for the growing
biological system.

4.3.3 Balance of Internal Energy and Entropy Inequality

Following the approach in [40], let " be the internal energy per unit mass and with
�i a scalar function representing the source of internal energy associated with the
i� th solute ci. Accordingly, the global form of the first law of thermodynamics can
be expressed as follows:

d

dt

Z

Ba

�"dv D
Z

Ba

.!" � �ici�i C r0 C tr.�d// dv C
Z

@Ba

n:.�iJci � Q/ds

(4.24)

were d D .grad v C .grad v/T/=2, r0 is the external heat supply per unit of volume,
Q is the heat flux, �i is the chemical potential of the i-th species and represents
the increase of the internal energy of the continuum by physical absorption of the
diffusing chemicals. Irreversible terms and the temperature gradient dependence
have been neglected for the sake of simplicity. Substituting Eqs. (4.10), (4.12) and
(4.15) in Eq. (4.24), we obtain the following local form for the balance of the internal
energy in a growing material:

� P" D tr.�d/C �i Pci � divQ C r0 C Jci: grad�i (4.25)

The global form of Clausius-Duhem entropy inequality reads:

d

dt

Z

Ba

�0� dv �
Z

Ba

�

!� � �i�i Pci C r0
�

�

dvC
Z

@Ba

n:
�

Jci�i � Q
�

�

ds (4.26)
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where �; �i are the entropy density per unit mass and per unit of solvent concentra-
tion, respectively. Substituting Eq. (4.12) in Eq. (4.26), the local form of the entropy
inequality, reads:

� P� � �i Pci C Jci: grad �i C r0
�

� div

�

Q
�

�

(4.27)

Recalling the expression of the Helmholtz free energy per unit of mass, � D ." �
��/, and per unit of solvent concentration, �i D .�i � ��i/, we can put together
Eqs. (4.25) and (4.27) in order to obtain an equivalent form of the entropy inequality:

�. P� C P��/ 	 tr.�d/C �iPci C Jci � .rR�i C �irR�/ � Q
�

� rR� (4.28)

The latter inequality describes the thermodynamical consistency for the energy dis-
sipation during a morphogenetic process, accounting both for mass production and
for the reaction-diffusion of the biochemical species. Once defined the constitutive
equation for the stresses, Eq. (4.28) gives a suitable chemo-mechanical coupling
regulating the evolution of the biological system. An extension of the presented
thermo-mechanic framework to strain gradient continua can be found in [25].

4.3.4 Balance Laws for Interfacial Morphogenetic Processes

Morphogenetic processes can occur at different scales, which are governed by the
typical lengths characterizing the local interplay between mass production and the
reaction- diffusion properties of biomolecules. For example, cells duplicate inside
narrow regions created by the diffusion fronts of morphogenetic signals, whilst a
macroscopic remodelling occurs in order to reach an homeostatic state at the tissue
level [76]. It is therefore useful to extend the balance laws derived in the previous
paragraphs to the case in which the bulk mass changes are localised into a small
volume. For the sake of clarity, let us consider a biological system made by two
different materials occupying growing adjacent regions V�.t/ and VC.t/ , separated
by the moving surface ˙.t/ with outer normal n˙ . Such surface will be considered
as a non-material interface [27], i.e. carrying thermo-mechanical properties. It can
be described by using a local parametrization expressing its spatial position as x D
x.u1; u2/, with tangent bases al D x;ul and l D .1; 2/. The parametric velocity Nv˙ of
the surface can be decomposed as:

Nv˙ D Nv˙s C Nv˙n n˙ (4.29)
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where Nv˙s is assumed to correspond to the projection of the physical velocity on the
surface, whose value depends on the parametrization. Moreover, every point on˙.t/
has a physical velocity v˙ , and we assume that the compatibility condition v˙s D
Nv˙s holds. In the following the superscripts � and C will be used to indicate the
physical fields inside the volumes having outer normal n�=�nC=n˙ , respectively.
The volumetric physical fields must obey the balance principles previously derived.

Morphogenetic processes occur in a very narrow layer of thickness ", defined as:


V" D
[

.x C 	n˙/ I 8 x 2 ˙.t/; �"=2 	 	 	 "=2 (4.30)

so that we can obtain surface fields on ˙.t/ by homogenization of the volume
fields, calculating their finite limit for " ! 0. Indicating with the subscript ˙ such
interfacial physical fields, we can therefore derive the mechanical balance laws and
write the thermo-dynamic principles for the entire system. Dealing with a moving
discontinuity, we define the Thomas derivative as ıt.�/

ıtt
D @.�/

@t C Nv˙nn˙:r.�/, and we

introduce the jump operator ��� D .�/C � .�/�.
For matters of generality, we assume that generic mass fluxes m� and mC may

exist between the volumes and the moving interface.4 Therefore, by applying the
transport and divergence theorems to a system with a non-material discontinuity
[98], the surface mass balance takes the following form:

ıt�˙
ıt t

C div˙ :.�˙v˙s/ � K�˙ Nv˙n D �˙!˙ C ��. Nv˙n � vn/C n˙:m� (4.31)

where div˙ � is the surface divergence, K is twice the local mean curvature, vn is
the normal component of the physical velocity and !˙ is the surface mass source.

Using Eq. (4.31) and neglecting surface external forces, the balance of linear
momentum on ˙.t/ reads:

�˙
ıtv˙
ıtt

C .�˙v˙s: grad˙/v˙ D div˙ :�˙C
�.v � v˙/ .�. Nv˙n � vn/C n˙:m/C n˙ :� �

(4.32)

where �˙ is the Cauchy stress tensor acting on the surface. We remark that
Eq. (4.32) generalizes the Young-Laplace law for a growing non-material interface.

The balance of angular momentum on the surface reads:

al:�˙ � al D 0 l D .1; 2/ (4.33)

where � is the cross-product and al indicate the reciprocal tangent bases. Thus, �˙
must be a tangential field on ˙.t/ with symmetric surface components.

4We remark that for Galilean invariance they should be somehow dependent on a relative velocity
field.
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The first and second laws of thermodynamics after standard manipulations
rewrite:

�˙ P�˙ D al:�˙: grad˙ v˙ � div˚ : Q˙ C r˙

C �n˙:� :.v � v˙/ C
 

.v � v˙/2

2
C � � �˙

!

.�. Nv˙n � vn/C n˙:m/ � n˙:Q

�

(4.34)

�˙ P�˙ � r˙
�

� r:
�

Q˙

�

�

�
�

n˙:.
Q
�

C NQ/ � .� � �˙/ .�. Nv˙n � vn/C n˙:m/�

(4.35)

where NQ represents a bulk extra-entropy flux, whose jump may represent the
transfer of biochemical energy within the interface. Putting together Eqs. (4.34) and
(4.35) and defining a surface free energy�˙ per unit mass, the dissipation inequality
on the surface can be written as:

�˙ P�˙ 	 al:�˙:v˙;l C �n˙ :� :.v � v˙/ ��n˙ : NQ
C
�

.v�v˙/2

2
C � � �˙

�

.�. Nv˙n � vn/C n˙:m/
� (4.36)

where we have assumed isothermal, uniform conditions for simplicity of notation.
In particular the term between the bracket operator represents the flux of the chemo-
mechanical energy flux vector, i.e. a generalization of the Poynting vector for the
moving non-material interface. In summary, once defined the constitutive equation
for the surface stress, the dissipation inequality in Eq. (4.36) allows defining
thermodynamically consistent evolution laws for the interfacial morphogenesis.

An Application: Morphogenesis of Seashells Let us consider the proposed
thermo-mechanical model of interfacial growth to describe the morphogenesis of
seashells [26]. As accurately investigated by D’Arcy Thompson [111], seashells
also display a great variety of shapes and patterns, often characterized by a self-
similar geometric structure, following a logarithmic (equiangular) helico-spiral.

The growing shell is generated by a tongue-like protrusion of the mollusc, known
as the mantle, which wraps around the grown shell edge for depositing both new
material and pigments. The surface growth process here occurs at a moving surface
˙.t/ at the edge of the shells, and the secretion velocity is found to be controlled
by the neural system of the mantle [12]. Indeed, the position �.�/=

p

x2 C y2 C z2

of the mantle can be expressed in a logarithmic helico-spiral as a function of the
turning angle � , reading:

8

<

:

x D �0sinˇ cos� e�cot˛

y D �0sinˇ sin� e�cot˛

z D �0cosˇ e�cot˛
(4.37)
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where ˇ is the enlarging angle and ˛ the wrapping (equiangular) angle of the spiral,
as shown in Fig. 4.4a. In practice, if R D p

x2 C y2, the components of the mantle
velocity are linked by the following relation: Pz tanˇ D PR.

Considering a moving reference framework whose origin represents the mantle
position, the deposition of new material occurs on a generating curve on the moving
surface ˙.t/, with unit vectors ez and e� D excos� C eysin� . The volumetric mass
balance equation in Eq. (4.12) for the shell imposes:

�� div v� D 0 (4.38)

where �� is the constant volume density of the fabricated material. Choosing a
generating circular section for the sake of simplicity, its outer radius r.�/ can be
given on a polar parametric representation .r; s/ on ˙.t/. If the mantle deposit
a surface mass source �˙ , a solution of the surface mass balance in Eq. (4.38) is
given by:

m� D Œ��.v� � Nv˙/ � enenI div˙ :Nv˙s D �˙ ) r.t/ D r.0/e
�˙ t
2

(4.39)

with en D ez ^ e� being the normal unit vector of the growing surface, setting
Nv˙n D .Nv˙ � en/ D �.�/ P� in virtue of Eq. (4.37). Moreover, the parametrization is
chosen such that the ˙.t/ moves with the center of mass of the growing mass, i.e.
Nv˙n D v˙n. Under these assumptions, Eq. (4.36) ensures that the seashell growth is
thermodynamically consistent.

The shell morphology depends on the combination of the helico-spiral movement
of the mantle, through the angles ˛; ˇ in Eq. (4.37), and the displacement of the edge
radius, given by the surface mass source �˙ in Eq. (4.39). Assuming that the spiral
velocity of the mantle is constant, so that P� D m, we can impose that the growing
material is always deposited tangentially to the shell, reading:

�.� C 2�/� �.�/ D r

�

� C 2�

m

�

C r

�

�

m

�

I

�0 e
�cot˛

�

e2�cot˛ � 1
� D r.0/e

�˙ �
2k

�

e
�˙�
m C 1

�

(4.40)

The proposed model is applied to describe the shape of Turritella communis, a
marine gastropod of the family of the Turritellidae, depicted in Fig. 4.4b. Its coiling
edge remains tangent to the z axis, so that �.�/ D r.�=k/sinˇ.

This geometrical property, used in combination with Eq. (4.40), allows a correla-
tion between the movement of the mantle and its mass supply, being:

2�cot˛ D log

�

1C sinˇ

1 � sinˇ

�

I �˙ D 2kcot˛ (4.41)
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Fig. 4.4 (a) Parametric description of the growing seashell: the generating line is given by the
mantle position �.�/ along a helico-spiral (blue line), while new material is deposited on a circular
border with radius r.�/ (red circles). (b) Picture of the seashell turritella communis (b) and its
simulated morphology (c). The simulation is performed using Eqs. (4.38)–(4.41), setting the values

v� D 0; ˇ D 4o; ˛ D cot�1
�

log
�

1Csinˇ
1�sinˇ

�

=2�
�

D 87:72o;m D 1; � D 2mcot˛ D 0:044
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The resulting simulated morphology is depicted in Fig. 4.4c, demonstrating that the
neural system of the gastropod is somehow able to regulate mass production with
respect to the coiling angle.

4.4 Free-Boundary Morphogenesis for Fluid-Like Living
Matter

In the previous section, we have introduced a general chemo-mechanical theory
of morphogenesis, which requires the specification of the constitutive equations
describing the biorheological properties of living matter, possibly spanning from
viscous fluids to soft solids. Let us first discuss a simple free-boundary morpho-
genetic problem for a fluid-like biological system as in [18]. In particular, we will
consider the chemotactic expansion of an aggregate of living cells, which will be
modelled as an incompressible newtonian fluid, such that:

� D �pI C �d (4.42)

where p is an hydrostatic pressure and � is the fluid viscosity.
From Eq. (4.15), the motion is governed by the Navier-Stokes equations:

�
dv
dt

D �bv � grad p C �r2v (4.43)

where r2 is the spatial laplacian operator, and � is the constant spatial density of
the cell, which is almost equal to the one of water.

4.4.1 Definition of the Chemotactic Model in a Hele Shaw Cell

We consider an aggregate of living cells occupying the domain x 	 xb, where xb
is the rectilinear border, of an Hele Shaw cell, i.e. confined between two parallel
flat plates separated by an small gap of length `. The cells are bounded by an
inviscid fluid which occupies the domain x > xb, as sketched in Fig. 4.5a. Let
z D 0 be the plane in between the plates and ` << L, where L is the characteristic
macroscopic size of the morphogenetic pattern that we aim to observe. Accordingly,
the component of the velocity in z is much smaller than the two others, which are
also governed by the following scaling [54]:

@2vi

@x2
<<

@2vi

@z2
(4.44)
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Fig. 4.5 Schematics of the Hele Shaw cell containing a living material (orange) expanding with
a rectilinear free border at x D xb (a). Distribution of the morphogen concentration n (green line)
inside the cell (b). Perturbation of the rectilinear border with wavenumber k and growth rate � (c)

where the subscript i D .x; y/ indicates the component of the velocity. Since the
typical duplication time of cells is about a day and the fluid is highly viscous,
the corresponding flow occurs at a low Reynolds number, so that the terms �r2v
dominate with respect to convective and gravitational effects. Therefore Eq. (4.43)
simplifies in virtue of Eq. (4.44) as:

grad p D �
@2vi

@z2
(4.45)

We assume that the necessary symmetry and boundary conditions at the plates hold.
We can therefore assume that:

vi.x; y; zI t/ D vi.x; y; 0I t/
�

1 � 4z2

`2

�

i D .x; y/ (4.46)

so that Eq. (4.45) reduces to a classical Darcy equation for the planar velocity v D
v.x; y; 0; I t/, being:

v D `2

8�
grad p D Kp grad p (4.47)
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where all fields and operators are planar. The parameter Kp D `2=.8�/ is the
equivalent of the porosity coefficient, and represents here the friction forces
resulting from the shallow geometry. It is therefore possible to solve the problem
using a fully two-dimensional model.

We assume that the cell proliferation if driven by a morphogenetic signal
diffusing inside the Hele-Shaw cell, and possessing an infinite reservoir at x !
1, which is independent on the local dynamics (Fig. 4.5b). The cells possess
specific surface receptors which capture the morphogen at a typical uptake rate �c.
Accordingly, the concentration c D c.x; yI t/ of the morphogen is governed by the
following reaction-diffusion equations inside the Hele-Shaw cell:

Pc D
�

Dcr2c � �cc if x 	 xb
Dcr2c if x > xb

(4.48)

where Dc is the diffusion coefficient inside the cell.
The living cells respond to a gradient of the morphogen concentration by

generating a mass flux m. In particular, we assume the classical Keller-Siegel
constitutive equation [71], being:

m D Kc grad c (4.49)

whereKc is a positive definite mobility parameter. Although possibly dependent on c
for representing a degenerate mobility in different classes of biochemical reactions,
for the sake of simplicity we assume Kc to be a constant. From Eq. (4.12), the
balance of mass within the expanding cellular domain is given by:

d�

dt
D divm � � divv D 0 (4.50)

which vanishes in virtue of the incompressibility of the living cells. In Eq. (4.50) we
considered that the morphogenesis only resides on mass diffusion, neglecting the
presence of volumetric sources of mass.

Substituting Eqs. (4.47) and (4.49) in Eq. (4.50), the equation of motion reads:

Kp�r2p � Kcr2c D 0 (4.51)

Thus, the Eqs. (4.48) and (4.51) govern the morphogenesis of the free boundary
domain in this model. The mathematical model is complemented by four boundary
conditions at the free border. First, the Young-Laplace equation imposes the
mechanical equilibrium at the interface, being:

p D p0 � �C at x D xb (4.52)
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where C is the local curvature (initially equal to zero for a planar front), � is the
surface tension and p0 is the constant outer pressure of the inviscid fluid. Second, for
compatibility we must impose the continuity of the normal velocity at the interface:

dxb

dt
� nb D v.xb/ � nb at x D xb (4.53)

where nb is the outward unit vector at the free surface. Finally, two conditions must
be imposed for c and its normal gradient at the interface:

c.x�
b / D c.xC

b /I grad c.x�
b / � nb D grad c.xC

b / � nb (4.54)

Eq. (4.54) enforces the continuity of the morphogen concentration and of the
chemical flux across the free boundary, given the absence of any interfacial
phenomenon.

4.4.2 Dimensionless Form of the Governing Equations

The governing equations can be recast in a dimensionless form using the following
values:

tc D ��1
n I Lc D

s

Dc

�c
I vc D p

Dc�cI (4.55)

pc D Dc

Kp
I cc D c.x ! 1/

where tc;Lc; vc; pc; cc are characteristic time, length, velocity, pressure, and chem-
ical concentration, respectively. Defining dimensionless variables with respect to
such characteristic values to obtain, we can rewrite the Eqs. (4.48), (4.15) and (4.51)
in their dimensionless form as follows:

PNc D
� Nr2 Nc � Nc if Nx 	 Nxb

Nr2 Nc if Nx > Nxb (4.56)

Nv D � NgradNp (4.57)

Nr2 Np D � Nr2 NcI with G D Kccc

�Dn
(4.58)

where the bar indicates dimensionless variables. Interestingly, the only resulting
dimensionless parameter is G in Eq. (4.58), which represents a ratio between
morphogen-driven mass production and the mass evacuation rate driven by viscous
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effects. Furthermore, the boundary conditions given by Eqs. (4.52)–(4.54) rewrite
as:

Np D Np0 � N� NCI with N� D �Kp

Dn

s

�n

Dn
D �`2

8�vcL2c
at Nx D Nxb

(4.59)

d Nxb

dNt � nb D Nv.xb/ � nb (4.60)

Nc.Nx�
b / D Nc.NxC

b /I Nr Nc.Nx�
b / � cb D NrNc.NxC

b / � nb (4.61)

In accordance with the Buckingham˘ theorem [13], the mathematical model given
by Eqs. (4.56)–(4.61) is entirely governed by the dimensionless parameters G and N�
defined in Eqs. (4.58) and (4.59), which will control the evolution of the biological
system during morphogenesis. In physical terms, N� represents the ratio between the
surface tension and the viscous forces.

For simplicity of notation, we’ll drop the bars in the following analysis.

4.4.3 Traveling Wave Solution

Equations (4.56)–(4.61) allow the existence of a traveling wave solution of the
problem. Thus, we hypothesize that the front moves with a constant dimensionless
velocity U going from left to right, i.e. assuming a positive chemotaxis driving
towards the highest concentration of the morphogen. Considering a dimensionless
variable � D .x � U t/, we can solve the reaction-diffusion dynamics in Eqs. (4.56)
and (4.61), deriving the following morphogen concentration:

c0.�/ D
(

c0.0/ � e�UC
p

U2C4
2 � if � 	 0

1C .c0.0/� 1/ � e�U� if � > 0
(4.62)

where c.�1/ D 0, c.1/ D 1 and c0.0/ D 2U
UCp

U2C4 is the morphogen
concentration at the rectilinear front. We remark that c0 must be positive definite,
so that the boundary expands with U > 0. Imposing in Eqs. (4.58) and (4.59) that
p0.0/ D p0 and that p.�1/ must be bounded, the traveling wave for the pressure
field reads:

p0.�/ D �G.c0.�/� c0.0//C p0 if � 	 0 (4.63)
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Finally, the Dirichlet condition at the free boundary in Eq. (4.60) gives the velocity
of the traveling wave as:

U D G � 1p
G

(4.64)

revealing that a traveling wave solution can appear if and only if G > 1, i.e. if the
chemotactic growth production is faster than diffusion-driven mass evacuation.

4.4.4 Linear Stability Analysis

Let us now study the stability of the traveling wave solution given by Eqs. (4.62)
and (4.63), in order to investigate the existence of a morphological transition during
the morphogenetic process. For this purpose, we impose a perturbation �.0/ at the
free boundary, whose dimensionless expression in the moving frame is given by :

�.0/ D xb � Ut D � � e�tcos.�y/ (4.65)

where � is the spatial wavenumber and � is its time growth rate, as depicted in
Fig. 4.5c and � � 1 is a small parameter.

We write p and c as a series expansion around the traveling wave solution in the
moving frame, as follows:

p.x; yI t/ D p0.�/C � � p1.�/e�tcos.�y/ (4.66)

c.x; yI t/ D c0.�/C � � c1.�/e�tcos.�y/ (4.67)

where p0.Z/; c0.Z/ are the known traveling wave solutions.
The solution for c1.�/ can be found from Eq. (4.56), imposing the continuity of

the chemical concentration and its flux across the boundary:

c1.�/ D
8

<

:

c1.0/ � e�UC
p

U2C4.1C�C�2/
2 � if � 	 0

c1.0/ � e�U�
p

U2C4.�C�2/
2 � if � > 0

(4.68)

where:

c1.0/ D � 4U � .U C p
U2 C 4/�1

p

U2 C 4.1C �C �2/Cp

U2 C 4.�C �2/
(4.69)
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Substituting the solution for c1.�/ in Eq. (4.58), we derive the leading order
governing equation for the perturbed pressure field, being:

p1
00

.�/ � �2p1.�/C
CBc1.0/ �

"
�

�UC
p

U2C4.1C�C�2/
2

�2

� �2
#

e
�UC

p
U2C4.1C�C�2/

2 � D 0
(4.70)

which is valid for � 	 0.
The prime denotes derivative on �. Eq. (4.70) has the following general solution:

p1.�/ D �Gc1.0/e
�UC

p
U2C4.1C�C�2/

2 � C A � e�� (4.71)

The constant A in Eq. (4.71) can be fixed imposing the boundary solution in
Eq. (4.59). Recalling that the curvature can be written as:

C D @2�.0/=@y2
h

1C .@�.0/=@y/2
i3=2

; (4.72)

we find that :

p1.��e�tcos.�y// D p0.0/C. p00.0/Cp1.0//��e�t D poCN��2��e�tcos.�y/ (4.73)

giving at the leading order:

A D N��2 C GŒc1.0/C c0
0

.0/ D N��2 C U C Gc1.0/ (4.74)

Finally, the boundary condition in Eq. (4.60) allows to derive the dispersion equation
for the perturbed mode. Accordingly, we find that:

� p0
00

.0/� p1
0

.0/ D � (4.75)

which can be simplified as:

� D �N��3 � �U C G

"

c0
00

.0/C c1.0/

 

�� C �U Cp

U2 C 4.1C �C �2/

2

!#

(4.76)
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Substituting Eqs. (4.64) and (4.69) in Eq. (4.76), we can write an implicit
dispersion equation uniquely as a function of the two dimensionless parametersG; N�
of the problem, reading:

� D �N��3��G � 1p
G

C G � 1
G

�
.G � 1/ �

�

�2� � G�1p
G

C
q

.GC1/2
G C 4.�C �2/

�

q

.G�1/2
G C 4.�C �2/C

q

.GC1/2
G C 4.�C �2/

(4.77)

Since Eq. (4.77) involves the dimensionless growth mode � and wavenumber �
in an implicit way, we solved it numerically. The resulting curves are depicted in
Figs. 4.6 and 4.7 for different values of G and N� . Even if both the surface tension and
the boundary velocity have a stabilizing effect at small wavelengths, the rectilinear
front is always unstable at large wavelengths, having a maximum value �max of the
time growth rate. Although the a nonlinear stability analysis would be required for
investigating the pattern dynamics, we expect the emergence of undulated structures
with a typical length of about 2�=�.�max/ �pDn=�n.

G=1.1

G=1.5

G=2.5

G=2

k

λ

0.40.10.0 0.3

-0.50

-0.40

-0.10

0.00

-0.30

Fig. 4.6 Dispersion diagrams shown at different values of the dimensionless parameter G D
KmK� nc
�Dn

. The curves have been numerically obtained using the Newton algorithm, setting �=0.5
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k

λ
σ=0.1

σ=0.5

σ=2
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0.60.40.20.0

Fig. 4.7 Dispersion diagrams shown at different values of the dimensionless parameter N� D
�Kp

Dn

q

�n
Dn

. The curves have been numerically obtained using the Newton algorithm, setting G=1.5

4.4.5 Pattern Formation in the Nonlinear Regime

The dispersion diagrams resulting from the linear stability analysis highlighted that
the rectilinear border is always unstable at large wavelengths. The dispersion curves
are qualitatively similar to the one encountered in other hydrodynamic problems,
such as the Saffmann-Taylor [100] or the Mullins-Sekerka [88] instabilities. Sim-
ilarly, we expect that the moving front will rapidly develop growing undulations,
whose shape will be fixed by fully nonlinear effects. In the following we numerically
investigate the nonlinear pattern formation for the proposed model in order to
describe some experimental results on epithelial cells [93].

The results show the formation of fingering instabilities in expanding free recti-
linear surfaces of cellular monolayers. In order to provide a computational solution,
we implemented the problem into a finite element code [49]. Equations (4.56) and
(4.58) have been solved on a triangular grid, fitting at every iteration the moving
interface. Briefly, given the concentration of nutrients at time tm, the pressure pm is
first computed, through Eq. (4.58) and then the velocity field, using the Darcy’s
law. Thus, the boundary can be explicitly moved and Eq. (4.56) can be solved
for the concentration at time tmC1, using an implicit-Euler scheme. In order to
guarantee the robustness of the semi-implicit algorithm, at every iteration the time
step 
t D .tmC1 � tm/ is set equal to the ratio between the minimum mesh size and
the modulus of the maximum boundary velocity at the mth iteration. Finally, a spatial
discretization with finite element is performed using continuous piecewise quadratic
P2 Lagrangian elements. Since the mesh size affects the minimum observable
unstable wavelength, we adaptively refined the mesh in order to control the number
of elements on the contour at every time step.
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Fig. 4.8 (a) Wound healing experiment showing the propagation over 24 h of a monolayer of
tumour cells. Adapted from [107]. (b) Fully nonlinear numerical simulation of the proposed free-
boundary morphogenetic model

Simulation results are shown in Fig. 4.8 together with some pictures of a
wound healing experiment showing the propagation over 24 h of a monolayer of
tumour cells. The qualitative agreement of the emerging morphology highlights
the importance of chemo-mechanical cues on the dynamics of the wound healing
processes, whose effectiveness is known depend on the coupling between the
motility and the cell proliferation rate [81].

4.5 Growth, Remodelling and Morphogenesis for Soft Elastic
Matter

The proposed morphogenetic theory should be refined to account for further
important issues arising when dealing with solid living matter. Firstly, biological
tissues undergo large deformations. Therefore, the undeformed and deformed
configurations are not necessarily close, so that the classical infinitesimal elastic
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theory cannot be used. Secondly, soft biological matter exhibits residual stresses,
i.e. a self-equilibrated distribution of internal stresses persists in the tissue when all
external loads have been removed. Indeed, as discussed in the previous sections,
living materials have the striking ability to change actively their micro-structure
for adjusting to the surrounding media, developing a state of internal tension
aimed at optimizing their structural behavior. Residual stresses in living materials,
closely resembling the ones originated by misfits within inert matter [3], are almost
ubiquitous in Nature. Their magnitude has been measured in several tissues (e.g.
arteries [17], airways [57], hearth [123], gastro-intestinal tissues [53]), using simple
cutting experiments. In arteries, for instance, they can be inferred by measuring the
opening angle of an excised tissue ring after a radial cut. Thirdly, residual stress
may accumulate in the tissue during a morphogentic process, possibly triggering
an elastic instability beyond a critical value. Accordingly, they can orchestrate a
morphological transition even in the absence of either external loads or geometrical
constraints. Lastly, soft tissues exhibit a nonlinear elastic behavior which should be
taken into account when making constitutive assumptions.

In the following, we will extend the proposed chemo-mechanical theory of open
systems in view of these key considerations.

4.5.1 An Interpretation of Morphogenesis in Solids Using
the Theory of Configurational Forces

The theory of configurational forces allows to provide a straightforward interpreta-
tion of the driving forces acting during the morphogenetic processes in living matter
[82]. For a soft elastic solid, we can postulate the existence of an Helmholtz free
energy � having the following functional form:

� D �.F; ci; �I X; t/ (4.78)

where the explicit dependence on X and t may represent growth and ageing
phenomena, respectively. Applying the chain rule for the differentiation of � in
in Eq. (4.28), we obtain the following set of constitutive equations [30] :

S D �0
@�

@F
I �i D �0

@�

@ci
I � D �@�

@�
(4.79)

Accordingly, the reduced Clausius-Duhem inequality rewrites:

Jci � .Grad�i C �i Grad�/ � �0 @�
@t

jexpl � Q
�

� Grad� � 0 (4.80)

where the explicit derivative over time accounts for the possible dissipation during
ageing phenomena [84].
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According to the theory of configurational forces, the canonical projection of
the balance of the linear momentum in the material setting allows to account for
the momentum associated to all the degrees of freedom of the deformation field,
whilst the balance of p involves only the translational momentum [86]. This is of
fundamental importance for morphogenetic processes, which are characterized by
the presence of inhomogeneities in the material set.

Let V D @X
@t jx D �F�1v be the inverse motion velocity, i.e. the material velocity

field, we can define a pseudomomentum density or canonical momentum density as
follows:

Pm D @K

@V
D �0FTFV D �FTp D �pF (4.81)

where K D 1=2�0v2 is the kinetic energy. Let us now perform a right-multiplication
of Eq. (4.17) times F, as follows:

d

dt
.�0v/F D �dPm

dt
� �0v PF D bvF � ˝

�0
Pm C .Div S/F (4.82)

Using the constitutive assumptions in Eq. (4.142), let us recall the useful
identities:

.Div S/ :F D Div.SF/ � tr.S GradF/ (4.83)

tr.S GradF/ D Div.�0� I/ � @.�0�/

@X
jexpl � �i Gradci C � Grad� (4.84)

�0v PF D GradK � 1

2
v2.Grad �0/ (4.85)

By substituting Eqs. (4.13) (4.83)–(4.85) in Eq. (4.82), we find the the canonical
balance of pseudomomentum density in the material framework:

dPm

dt
D fext C fg C finh C fc C f� C Div b (4.86)

Equation (4.86) states that there are five sources of material inhomogeneities: the
convection of the body forces in fext, the mass growth in fg, the true material
inhomogeneities in finh, the internal variables in fc, and the temperature in f�. They
are defined as:

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

fext D �bvF
fg D P�0

�0
Pm

finh D @.K��0�/
@X jexpl

fc D ��iGradci
f� D �0�Grad�

(4.87)
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Moreover, we find the stress measure that drives the evolution of material inhomo-
geneities is the Eshelby tensor b, defined as:

b D �Œ.K � �0�/I C SF (4.88)

This stress measure is a fundamental importance since it governs the configurational
changes during morphogenesis, as it will be highlighted in the following. Finally,
we recall that the frame indifference of the Helmholtz free energy in Eq. (4.79)
with respect of arbitrary rotations of the actual configuration allows to derive the
conservation of the angular momentum.

4.5.2 Mathematical Theory of Volumetric Growth in Soft Solids

At the beginning of the 1980s, Skalak and coworkers proposed the first kinematic
descriptions of finite volumetric and surface growth [102, 103] in a continuum
mechanics framework. They introduced the idea that growth can induce geometric
incompatibilities in the microstructure, which would provoke the transition from an
unloaded stress-free configuration to a pre-stressed reference configuration. Con-
versely, no internal stresses arise in the tissue if the growth strains are compatible,
i.e. do not induce material distortions.

The seminal work of Skalak opened the door to a number of experimental
studies which aimed at characterizing the residual stress distribution in biological
tissues. From a modeling viewpoint, much work has been done by Anne Hoger
and coworkers [62–65, 70] to define a hyperelastic constitutive theory of soft
materials with residual stresses. In particular, a multiplicative decomposition has
been proposed for dealing with volumetric growth in living materials [97, 104]. The
mechanical approach based on a multiplicative decomposition was first introduced
in the theory of elasto-plasticity by Kröner [74] and Lee [78] in order to split the
inelastic and the elastic components and it has been widely employed in continuum
mechanics models.

According to this mathematical theory, the mapping � introduced in Eq. (4.1)
can be split into two components. The first is associated to the a change of the
unstressed state of the material and it transforms the tissue from its initial stress free
configuration B0 into a new stress-free grown (remodeled) state, denoted as Bg in
Fig. 4.9. In mathematical terms, the deformation gradient F defined in Eq. (4.2) can
be split into two components, as follows:

F D FeFg (4.89)

where Fg represents the volumetric growth (remodeling) tensor and Fe is the elastic
tensor. We remark that the intermediate state is not necessarily a configuration that
could be physically observable for the material. Indeed, this grown or remodeled
state Bg can be seen as the collection of local states obtained at each material point
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Fig. 4.9 The multiplicative decomposition of the deformation gradient F: the growth (remodeling)
component Fg defines a natural grown or remodeled state Bg, in which geometrical incompatibil-
ities are allowed, and the elastic component Fe, which restores the physical compatibility in the
spatial configuration

if all the surrounding constraints would be removed. The ensemble of these stress-
free parts defines the natural grown state of the tissue Bg. Since they may not be
geometrically compatible with each other, overlapping and intersections are allowed
in Bg. The elastic component later restores the global compatibility in the spatial
configuration Ba from the intermediate state Bg.

It is worth noting that even if F is the geometrical gradient of a deformation, this
may not be the case for its components Fg and Fe, which are defined as tangent
maps as follows:

Fg W TB0 ! TBg Fe W TBg ! TBa: (4.90)

The multiplicative decomposition in Eq. (4.89) implies that the morphogenetic
effects on the tissue strain can be considered separately from the elastic defor-
mations. This assumption resides on the physical observation that the typical
time-scales involving elasticity and growth (remodeling) are very different.
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Let �g; �v; �l; �e be the four characteristic times of the growth elastic problem:

• The characteristic time of growth �g can range from hours to days, e.g. being
characterized by the typical doubling time of living cells.

• The viscoelastic characteristic time �v is of the order of hundreds of seconds and
is considered as the relaxation time of the tissue [46].

• The elastic time �e is associated to the characteristic propagation time of elastic
waves, in the order of seconds.

• The loading time �l of the external loading.

Therefore the growth time scale is much bigger than the others, so that the growth
strains can be separated from the elastic deformations. Furthermore, since the elastic
response is much faster than the growth processes, the soft matter is always in a state
of elastic equilibrium at times comparable to �g [50].

Under these assumptions, it is possible to introduce a material isomorphism for
the Helmholtz free energy [40], so that:

�0�.F; ci; �I X; t/ D �0�.F;Fg.XI t/; cˇ;�; t/ D �g.detFg/ �0.Fe; cˇ;�; t/
(4.91)

where �g D .�0=detFg/ represents the mass density with respect the intermediate
state. In practice, the mechanical behavior of the materials uniquely depends on
the elastic part of the deformation gradient, whilst the growth tensor may introduce
volume changes and geometrical distortions.

Before considering the constitutive equation and the evolution laws for the
growth tensor in the next paragraph, let us finally clarify the morphogenetic
information carried within Fg. Since most living materials are mainly composed
by water, the incompressibility constraint reads:

detFe � 1 D 0 (4.92)

so that in general � D �g. Accordingly det Fg represent the volume ratio between
the grown and the ungrown matter. If we assume that the material is produced at a
constant density �, the mass balance in Eq. (4.13) rewrites:

P�0
�0

D ˝

�0
D

P.detFg/

detFg
D tr. PFgF�1

g / (4.93)

Equation (4.93) highlights a fundamental issue: for an incompressible material,
the specification of the functional dependence of Fg over time is equivalent to a
constitutive assumption on ˝ . Therefore, only one of the two can be constitutively
imposed. Whilst modeling fluid-like materials it was mandatory to define˝ , in solid
materials this could be equivalently done by imposing an evolution law for Fg.
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4.5.3 Constitutive Assumptions and Evolution Laws
for Growth and Remodelling

Let us now discuss the thermodynamic restrictions arising from the application of
the multiplicative decomposition in Eq. (4.89) with the material isomorphism in
Eq. (4.91). Substituting Eq. (4.91) in the reduced dissipation inequality in Eq. (4.28),
developing the derivatives using the chain rule one obtains after straightforward
calculation the following constitutive laws:

� D �Fe
@�0

@Fe
(4.94)

S D �0F�1
g

@�0

@Fe
(4.95)

Using Eqs. (4.95) and (4.93), the residual dissipation inequality inside the control
volume reads:

� trŒb.F�1
g

PFg/C P�0�0 � �0 @�0
@t

� 0 (4.96)

Equation (4.96) highlights that the static material Eshelby stress tensor b D
�0�0I � SF is the driving stress measure directing the evolution dynamics of the
morphogenetic processes. The frame indifference for the material isomorphism in
Eq. (4.91) imposes that b is a symmetric tensor. Accordingly, thermodynamically
consistent evolution laws for growth and remodelling read:

PFg D �fC.ci; �/�0Fgb (4.97)

where fC.ci; �/ is a positive definite scalar function, whose expression may rep-
resents a specific temperature-dependent (e.g. Arrhenius-based relations) chemical
kinetics in the reactions occurring during the morphogenetic processes [25]. The
evolution law in Eq. (4.97) is a generalization of the classical results obtained for
inelastic continua, since the Eshelby tensor is the symmetric stress conjugate of
the growth velocity gradient [83]. Moreover, the symmetry of the driving force
expressed by b is a necessary requirement, as pointed out by Skalak [102]: indeed,
the symmetric part of Fg is the only shape-changing deformation of the growth
tensor.

Let us now provide a geometrical interpretation of the coupling between stress
and growth in the proposed mathematical model. For this purpose, we perform the
explicit gradient of the free energy expressed by Eq. (4.91), and we derive the quasi-
static driving force finh of true material inhomogeneities in Eq. (4.87):

finh D ��0 @�0
@X

jexpl D ��0
�

@�

@Fg
W Grad Fg

�

D ��0b W T (4.98)
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where we used the two dots to indicate double contraction, i.e. .b W T /k D
bji.T /ijk. In Eq. (4.98), the third-order tensor T D F�1

g Grad Fg is the generally
not-symmetric torsional material connection associated with Fg. Accordingly, the
expression of the driving force in Eq. (4.98) reflects the geometrical interpretation
that the Eshelby force is the stress measure driving the torsion of the material
connection during morphogenesis. Evolution laws coupling stress, growth and mass
transport, extended to the second gradient of the deformation have been discussed in
further details in [25], showing that the strain gradient Eshelby stress is associated
to the curvature of the material connection.

4.5.4 Morpho-Elasticity of Growing Living Matter

Morpho-elasticity is the recently developed branch of continuum mechanics inves-
tigating the emergence of complex patterns in living matter after the occurrence
of an elastic instability. Indeed, the accumulation of residual stresses during mor-
phogenetic processes can trigger a morphological transition within the biological
material as a result of an elastic bifurcation. In the following, we will present the
basic theoretical tools in the field.

4.5.4.1 Basic Solution of the Quasi-Static Elastic Problem

In previous sections of this section, we have shown that the thermo-mechanics of
open systems and the theory of configurational forces are useful frameworks to
model the chemo-mechanical cues of morphogenesis in soft elastic tissues.

Summarizing, the resulting boundary value problem in nonlinear elasticity is
given by the following set of equations in the current configuration Ba:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

� Pv � div � � bv D 0

! D � tr. PFgF�1
g /

det Fe D 1

� D �Fe
@ 0

@Fe
� pI

PFg D �fC.ci; �/�0Fgb

(4.99)

which contains the balances of linear momentum and mass, the incompressibility
constraint, the constitutive equation for the Cauchy stress tensor and the evolution
law for the growth tensor, respectively. Such governing equations are typically
complemented by three possible sets of boundary conditions, which will be briefly
discussed.
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Let @B0; @Bx
0 ; @B

�
0 be the boundary in the reference configuration and two

portions of the boundary, respectively, such that @B0 D @Bx
0 [ B�

0 . Let
@Ba; @Bx

a ; @B
�
a the associated quantities in the actual configuration, where

@Ba D @Bx
a [ B�

a . Let us consider a quasi-static growth process, so that we are
not interested in determining the evolution of the growth tensor Fg over time, but
we aim at deriving the elastic solution at a fixed value of Fg. Under this assumption,
the three possible sets of boundary conditions read:

• Dirichlet boundary conditions: the displacements for all points belonging to
@B0 and @Ba are specified in the following forms, respectively:

�

u0.X/ D x.X/� X D u�
0 on @B0

ua.x/ D x � X.x/ D u�
0 on @Ba

(4.100)

where u0;ua are the displacements in material and spacial form, respectively and
u�
0 is the displacement vector to be assigned at the boundaries.

• Neumann boundary conditions: the traction loads at all points belonging to
@B0 and @Ba are given in the following forms, respectively:

�

STN D t�
0 on @B0

�n D t� on @Ba;
(4.101)

where S; � are the Nominal and Cauchy stress respectively and t�
0 ; t

� are traction
vectors to be assigned.

• Mixed boundary conditions: the displacements are specified on a portion of
the boundary @Bx

0 , @Bx
a and traction loads are given on the remaining subset

@B�
0 ,@B�

a , in the following forms:

�

u0.X/ D u�
0 on @Bx

0

STN D t�
0 on @B�

0 ;
(4.102)

in the reference configuration or:
�

ua.x/ D u�
0 on @Bx

a

�n D t� on @B�
a ;

(4.103)

in the actual configuration.

In quasi-static conditions, let x.0/ D �.0/.X/ be the basic solution of the gov-
erning equation in Eq. (4.99) with one of the possible sets of boundary conditions
in Eqs. (4.100)–(4.103). The solution x.0/ depends on a control parameter which is
related to the given expression of Fg. In the following, we will introduce the theory
of incremental deformations superposed on finite strains to investigate the linear
stability analysis of this basic solution.
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4.5.4.2 Method of Incremental Deformations Superposed
on Finite Deformations

Following Ogden [90], the fundamental idea of the method of incremental defor-
mations superposed on finite deformations is to perturb the basic solution x.0/ to
the elastic problem, with a small incremental deformation. Performing a series
expansion, the zeroth order term is a finite deformation, representing the basic
solution with the initial shape of the material. The first order term is an incremental
deformation, defining the possible morphology after an elastic bifurcation.

Kinematics of the Incremental Deformation Let x.0/ be the basic position
vector in Ba identified by the basic finite deformation �.0/ and let "Ox be a small
displacement from x.0/. Accordingly, the perturbed position Nx can be written as:

Nx D x.0/ C "Ox D �.0/.X/C "�.1/.x.0// (4.104)

where j"j � 1 and "�.1/.x.0// is a small deformation which in the following will be
referred to as the incremental deformation. Note that �.1/ maps the basic position
vector x.0/ into its incremental displacement Ox in the perturbed actual configuration
OBa. Adopting the convention of summation on repeated indexes, the incremental

deformation can be written:

�.1/.x/ D uj.x/ej (4.105)

where the components uj ( j D 1; 2; 3) are the displacements along the principal
directions ej ( j D 1; 2; 3), respectively. Figure 4.10 gives a graphical representation
of the basic and perturbed fields. In the following, the variables after perturbation
will be indicated with the symbol N.�/, and the incremental variables with the
symbol O.�/. Using the definition of deformation gradient in Eq. (4.2), the perturbed
deformation gradient NF rewrites:

NF D F.0/ C " OF D @�.0/.X/
@X

C "
@�.1/.x.0//

@X
D

D @�.0/.x.0//
@X

C "
@�.1/.x.0//
@x.0/

@x.0/

@X
D F.0/ C "� F.0/

(4.106)

where the material and the spatial displacement gradient OF D Grad.�.1/.x.0/// and
� D grad.�.1/.x.0/// respectively, have been introduced and are related through the
following relation:

OF D � F.0/: (4.107)
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Fig. 4.10 Schematic diagram of the incremental deformation superposed on a finite strain. The
zeroth order fields are the finite deformation �.0/, the basic position vector x.0/, the basic
deformation gradient F.0/ and its elastic component F.0/e , the basic Nominal stress S.0/ and its

push-forward S.0/0 . The perturbed fields after the introduction of the incremental deformation �.1/

are the perturbed position vector Nx, the perturbed deformation gradient NF and its elastic component
NFe, the push forward of the perturbed Nominal stress NS.0/

Accordingly, the incremental incompressibility condition in Eq. (4.92) reads:

tr� D 0: (4.108)

Incremental Equilibrium Equations Let us now consider the incremental consti-
tutive equation for the stress tensor fields. The perturbed Nominal stress NS is given
by:

NS D S.0/ C " OS; (4.109)

where the S.0/ is the zeroth order term of the series expansion of the Nominal stress
in Eq. (4.99). The leading order increment OS can be derived by differentiating the
constitutive equation in Eq. (4.95) and it reads:

OS D A 1 OF C p.F.0//�1 OF.F.0//�1 � q.F.0//�1: (4.110)
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In Eq. (4.110), the term q D Op is the increment in p and A 1 is the fourth-order
tensor of the elastic moduli, defined as:

A 1 D @ 0

@F@F
; with A 1

�kˇj D @2 0

@Fk�@Fjˇ
: (4.111)

The perturbed Cauchy stress tensor in the perturbed configuration OBa, is given by
N� D NF NS, but since OBa is unknown, it is more practical to use the push-forward of
the perturbed Nominal stress, defined as:

NS0 D F.0/ NS D S.0/0 C " OS0 (4.112)

where, S.0/0 D F.0/S.0/ is the push forward of the zeroth-order term S.0/. Using
Eq. (4.107) the push-forward OS0 of the first order term OS is given by:

OS0 D F.0/ OS D A 1
0� C p� � qI (4.113)

with:

A 1
0hklj D F.0/h� F

.0/

lˇ A 1
�kˇj: (4.114)

being the component of the fourth-order tensor A 1
0 , also known as the fourth-order

tensor of instantaneous elastic moduli.
Using the properties of the Piola transformation, the incremental equilibrium

equations in Ba simplify as:

div OS0 D 0; (4.115)

where OS0 is given by Eq. (4.113).
Let Ou�

0 and Ot�
0 be the increments of the assigned displacement and traction vectors

u�
0 and t�

0 respectively and Ot�
the increment of the assigned traction vector t�. The

Dirichlet boundary conditions in the incremental form rewrite:

Ox.X/ D Ou�
0 on @Bx

0 (4.116)

Ox.x/ D �.1/.x/ D Ou�
0 on @Bx

a (4.117)

and the corresponding incremental boundary conditions for traction loads read:

OSTN D Ot�
0 on @B�

0 (4.118)

OST
0n D Ot�

on @B�
a : (4.119)

We remark that the increment Ot�
in the nominal traction depends in general on the

incremental deformation other than on any loading parameter.
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4.5.4.3 Summary of the Incremental Boundary Value Problem

In summary, the emergence of a morphological transition in living materials
resulting from an elastic instability can be studied by solving the following boundary
value problem in nonlinear elasticity:

�

div OS0 D 0

tr� D 0
(4.120)

with boundary conditions in the general mixed form:

Ox.x/ D �.1/.x/ D Ou�
0 on @Bx

a ;
OST
0n D Ot�

on @B�
a : (4.121)

Equations (4.120) and (4.121) represent a system of four partial differential
equations, where the four unknowns are the three incremental displacements
u1.x/; u2.x/; u3.x/ in Eq. (4.105) and the increment q of the Lagrange multiplier.

4.6 Pattern Formation in a Growing Bilayer Under Lateral
Constraint

During embryogenesis, a differential growth between the layers constituting a soft
tissue has been found to control the emergence of a pre-patterning, which may drive
the later tissue differentiation. For example, it has been shown that both elastic
properties and the geometry of the growing layers are key factors determining
the pattern selection and the emergence of several functional structures on the
epithelium of gastro-intestinal tissues [28, 101].

In the following, we define a morpho-elastic model of a hyperelastic soft tissue
made of two flat layers growing under a spatial constraint. Such a bilayered
geometry is widely encountered in epithelial tissues, e.g. the dermis and the
epidermis for the skin [20, 75]. Our aim is to investigate the pattern formation in
this system model in the absence of differential growth process, simply considering
a uniform, homogeneous swelling constrained by the presence of lateral rigid walls.

4.6.1 Definition of the Model and Basic Morpho-Elastic
Solution

In a Cartesian coordinate system with unit base vectors ei, with i D .x; y; z/,
let us consider a soft elastic tissue attached at the surface Z D 0, and having a
vertical thickness H much smaller than the horizontal lengths Lx;Ly. Moreover, we
assume Ly >> Lx so that a plain strain condition applies in fulfillment of symmetry
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Fig. 4.11 Schematic diagram of the reference (left) and the basic spatial (right) configurations of
a soft bi-layered materials with lateral constraint along the x-axis. Both the layers are subjected to
a isotropic volumetric growth with Fg D gI, where the scalar g indicates the growth rate

requirements. Accordingly, we will consider the equivalent 2D problem in .x; z/ in
the following, unless explicitly stated, as depicted in Fig. 4.11.

The tissue is composed by two layers, with thicknesses Hb and Ht, so that .Hb C
Ht/ D H. In the following, we will denote with subscripts b and t the fields related to
the bottom and top layer, respectively. Indicating with X D X.X;Z/ and x D x.x; z/
its material and spatial position vectors, respectively, the kinematics is described by
the geometrical deformation tensor F D @x=@X. The elastic layers can undergo a
isotropic volume variation (e.g. swelling for a polymeric gel, or growth for a living
material). Assuming the multiplicative decomposition in Eq. (4.122), their grown
natural states are defined by the growth tensor:

Fg D gI; with g > 1 (4.122)

where g is the isotropic growth rate and I is the unit tensor. Considering the
presence on rigid walls at X D �Lx=2;Lx=2, Fg is not compatible with such spatial
constraints, therefore an elastic deformation must restores the overall compatibility
of the tissue deformation, whilst residual stresses arise.

From a constitutive viewpoint, each layer is modeled as an isotropic neo-
Hookean incompressible material, so that strain energy �0 per unit mass reads

�0 D �

2

“

�

tr FeFT
e � 3� dX dZ; (4.123)

where � is the shear modulus.
The base solution for a growing layer, whose fields are indicated with superscript

.0/ in the following, corresponds to a homogeneous elastic deformation:

F.0/e D F.0/F�1
g D diag.�x; �z/ D diag.1=g; g/ (4.124)
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whose principal stretches �x D 1=g and �z D g enforce the incompressibility
constraint , i.e. det F.0/e D 1. Using the constitutive assumptions in Eqs. (4.94) and
(4.95), the residual Cauchy stress � .0/ and first Piola-Kirchoff stress tensor P.0/ for
each layer read:

� .0/ D �F.0/e F.0/Te � p0I; S.0/ D �F.0/e
T � p0F.0/e

�1
(4.125)

where p0 is the basic Lagrange multiplier, which can be fixed through the boundary
conditions. In particular, considering a stress-free surface at Z D H, we have p0t D
�t�

2
z D �tg2. Moreover, the continuity of the normal stress and displacements at

the layers’ interface read:

�
.0/
t ez D �

.0/
b ezI xt.x;Hb/ D xb.x;Hb/ (4.126)

so that p0b D �b�
2
z D �bg2. Therefore each layer is subjected to a uniaxial stress

with:

S.0/xx D �.g�1 � g3/I �.0/xx D �.g�2 � g2/ (4.127)

which is compressive if g > 1, i.e. if the tissue is increasing its volume. Therefore,
such a uniaxial compressive stress is discountinous within the tissue if the layers
have different shear moduli. The goal of the next section is to perform a linear
stability analysis of this basic solution, with the aim to investigate the condition
driving the onset of a morphological transition.

4.6.2 Linear Stability Analysis

Let us now apply the theory of incremental deformations superposed on the
finite homogeneous solution given by Eq. (4.124). Hence, let u.1/.x; z; t/ be the
infinitesimal incremental displacement field. In the case of a neo-Hookean material
as in Eq. (4.123), it is easy to check that the components of the elastic tensor of
instantaneous moduli in Eq. (4.114) read:

A 1
0jikl D ��2j ıjkıil (4.128)

where the subscripts run over .x; z/ and ı is the Kronecker delta. Equation (4.128)
applies in a coordinate system aligned with the directions of the principal stretches,
whilst higher order instantaneous moduli vanish. Accordingly, the neo-Hookean
constitutive equation allows to take into account only for geometrical non-
linearities. From Eq. (4.113), the constitutive equation for the incremental stress
reads:

OS0 D �. Qgradu.1//T C p0 grad u.1/ � qI (4.129)
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where q is the linear increment in the Lagrange multiplier and we defined the
operator Qgrad D Œ�2x@x; �

2
z@z

T . In the absence of body forces, the equations of
motion in Eq. (4.115) rewrite:

div OS0 D 0: (4.130)

Using Eq. (4.129), the incremental equations of in Eq. (4.130) take the following
simplified expressions:

� q;x C ��2i u
.1/
x;ii D 0; �q;z C ��2i u

.1/
z;ii D 0; (4.131)

where the comma denote partial differentiation and Einstein’s summation rule on
repeated indices is assumed. Differentiating these incremental equations of motion
with respect to x, and z, respectively, and using the incremental incompressibility
condition in Eq. (4.134), we find that:

r2q D 0; (4.132)

implying that the incremental Lagrange multiplier is a Laplacian field [41].
Conversely, by differentiating the first and second of Eq. (4.131) by z and x,

respectively, and subtracting the resulting equations, we find that:

�2xu
.1/
x;zxx C �2z u

.1/
x;zzz � �2z u

.1/
z;xzz � �2xu

.1/
z;xxx D 0; (4.133)

At the leading order, the linear incremental incompressibility condition rewrites:

div u.1/ D u.1/x;x C u.1/z;z D 0: (4.134)

The bulk Eqs. (4.133) and (4.134) will be solved in the following using two different
methods: the stream function approach and the Stroh formalism.

4.6.2.1 Solution Using an Elastic Stream Functions

First, let us define an elastic stream function � D �.x; z/, so that [90]:

u.1/x D ��;z; u.1/z D �;x; (4.135)

and Eq. (4.134) is automatically satisfied. Thus, substituting Eq. (4.135) in
Eq. (4.133), the incremental equilibrium is governed by the following bulk equation:

�2z�;zzzz C .�2x C �2z /�;zzxx C �2x�;xxxx D 0; (4.136)
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In particular, it is useful to recast the previous equation in the following form [9]:

r2 Qr2� D 0; (4.137)

where Qr2.:/ D �2x.:/;xx C �2z .:/;zz D .:/;XX C .:/;ZZ . Accordingly, Eq. (4.137)
states that the equilibrium is governed by a forth order partial differential equation
obtained by combination of the material and spatial Laplacian operators. Thus,
the growth tensor acts as a distortion of the original metrics which changes
the differential incremental problem. In the absence of growth Eq. (4.137) would
represent the classical bilaplacian problem found for plane strain problems in linear
elasticity.

Let us now impose the required set of boundary conditions. First, since the
bottom z D 0 of the bilayer is fixed, the two corresponding incremental boundary
conditions read:

u.1/b .x; 0/ D 0: (4.138)

The top surface z D .�z=�x/H D g2H D h is free of incremental tractions, thus:

.u.1/t /x;z C .u.1/t /z;x D 0;

��2z q.1/t C 2�t�
2
z .u

.1/
t /z;z D 0: (4.139)

Moreover, the four remaining equations are given by the continuity of the incremen-
tal displacements and the normal stresses across the interface at z D g2Hb, being:

u.1/b D u.1/t ;

�t..u
.1/
t /x;z C .u.1/t /z;x/ D �b..u

.1/
b /x;z C .u.1/b /z;x/;

��2z q.1/t C 2�t�
2
z .u

.1/
t /z;z D ��2z q.1/b C 2�b�

2
z .u

.1/
b /z;z: (4.140)

Let us search for a solution to Eq. (4.137) using the variable separation.
Thus we set:

�.x; z/ D ˚.z/e{kx C c:c:; (4.141)

corresponding to the occurrence of a surface undulation with wavenumber k along
the x-axis, where { is the imaginary unit and c.c. indicates the complex conjugate.
the corresponding solution is given by:

˚i.z/ D a1ie
�kz C a2ie

kz C a3ie
� �x
�z

kz C a4ie
�x
�z

kzI with i D .t; b/ (4.142)
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where a1i; a2i; a3i; a4i are coefficient to be determined by boundary conditions, and
we remind that �x=�z D 1=g2. Substituting Eqs. (4.135) and (4.142) in Eqs. (4.138)
and (4.140), the boundary conditions can be rewritten in the following form:

Ma D 0 (4.143)

where a D Œa1t; a2t; a3t; a4t; a1b; a2b; a3b; a4bT and M is a 8x8 square matrix, whose
detailed expression is given by:

M D



M1;M2

M3;M4

�

(4.144)

with sub-blocks given by:

M1 D

2

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

� e
�

ikhb�x
�z

2k�2z�t
� e
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�z
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� e�ikhb
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�

ikhb�x
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� e
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� eikhb
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5

; (4.145)

M2 D
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; (4.146)

M3 D
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�
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M4 D
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�

ikhb�x
�z .�2xC�2z/
2�x�z
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: (4.148)

Accordingly, the onset of a marginal stability is given by the following condition:

det M D 0 (4.149)
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which gives an implicit relation between the marginally stable growth rate g for each
wavenumber k as a function of two dimensionless parameters governing the elastic
problem, namely the shear ratio �t=�b and the aspect ratio Ht=Hb.

4.6.2.2 Solution Using the Stroh Formalism

Let us now solve the incremental boundary value problem by recasting the govern-
ing equations and by using the so-called Stroh formalism, originally developed by
Stroh [109] for steady state elastic problems. Let the traction vector in the direction
ez be:

t D OST
0 ez D Œ OS0zx; OS0zzT : (4.150)

In a Cartesian reference system, we can write:

t D QAzzu;z C QAT
zxu;x � q ez (4.151)

tx D OST
0 ex D QAzxu;z C QAxxu;x � q ex; (4.152)

where the following matrices have been introduced:

QAxx D A 1
0zjzl C p ez ˝ ez; QAzz D A 1

0xjxl C p ex ˝ ex;
QAzx D A 1

0zjxl C p ez ˝ ex:
(4.153)

The incompressibility condition in Eq. (4.134) rewrites:

ez � u;z C ex � u;x D 0: (4.154)

Substituting Eqs. (4.151) and (4.152) into Eq. (4.130), the equilibrium equations
rewrite:

t;z C QAzxu;zx C QAxxu;xx � q;x ex D 0: (4.155)

Now, u;z can be calculated from Eq. (4.151) as:

u;z D QA�1
zz .t � QAT

zxu;x C q ez/ (4.156)

Deriving Eq. (4.156), it follows:

u;zx D QA�1
zz .t;x � QAT

zxu;xx C q;x ez/ (4.157)
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Substituting Eq. (4.157) into Eq. (4.155), the equilibrium equations in Eq. (4.155)
rewrite:

t;z C QAzx QA�1
zz .t;x � QAT

zxu;xx C q;x ez/C
C QAxxu;xx � q;x ex D 0:

(4.158)

Now, the aim is to eliminate the unknown q from Eq. (4.158).
Therefore, the scalar product e1� is applied to Eq. (4.156). Then, using the

incompressibility condition in Eq. (4.154) the term e1 � u;1 can be eliminated and
after some rearrangements the expression for q can be derived as follows:

q D �
�

e1 � QA�1
zz

QAT
zxu;x � ex � u;x � ez � QA�1

zz t
�

; (4.159)

where � D 1=.ez � QA�1
zz ez/.

Assuming that separation of variables holds, wee search for solutions a in the
form:

u D U.z/ eikx

t D S.z/ eikx;
(4.160)

where k is the wavenumber in the x direction, i is the imaginary unit and U.z/;S.z/
are the amplitude of the incremental displacement and traction vectors, respectively.
Using Eqs. (4.159)–(4.160), (4.156) and (4.158) rewrite:

d

dz
U.z/ D �i

n QA�1
zz

� QAT
zx.k/C �ez ˝ .k˛/


o

U.z/C
�i
n QA�1

zz � �ez ˝ ez QA�1
zz

o

.iS.z//
(4.161)

d

dz
.iS.z// D i

n

� k2
� QAzx QA�1

zz
QAT
zx � QAxx � �˛˝ ˛


o

U.z/C
�i
n
� QAzx.k/C �k˛˝ ez

 QA�1
zz

o

.iS.z//
(4.162)

respectively, where ˛ D .ex � QAzx
QA�1
zz ez/. Equivalently, we can use the compact

form:

d

dz
�.z/ D iG�.z/ with �.z/ D




U.z/
iS.z/

�

(4.163)
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where the vector �.z/ is the six-component displacement-traction vector and G is
the so-called Stroh matrix, having the following block-type structure:

G D



G1 G2

G3 G4

�

(4.164)

Therefore, the blocks which constitute the Stroh matrix in the case of incom-
pressible materials take the form:

G1 D � QA�1
zz

� QAT
zx.k/C �ez ˝ .k˛/



G2 D � QA�1
zz C �ez ˝ ez QA�1

zz

G3 D �k2
� QAzx QA�1

zz
QAT
zx � QAxx � �˛˝ ˛



G4 D GC
1 ;

(4.165)

In particular, the hermitian property G4 D GC
1 is crucial for the Stroh formalism

to provide an optimal form in a great variety of elasticity problems. Optimal here
is used in the sense that an efficient numerical procedure can be implemented in
order to solve the incremental problem [21, 33, 34]. The hermitian property, also
implies that the matrix i OIG is symmetric, where OI is defined as the block matrix
with 0-blocks on the diagonal and identity blocks elsewhere. This property can
be used to derive the orthogonality and closure relations which provide useful
information on the nature of the blocks of the Stroh matrix [112]. Furthermore, the
hermitian property is a direct consequence of the Hamiltonian nature of the Stroh
formalism. Indeed, every Hamiltonian system in which the variables u and t are
work conjugates owns this fundamental property [42, 43].

In the case of the incremental problem for the growing bilayer, the blocks of the
Stroh matrix simplify as follows:

G1 D



0 �m
�m 0

�

I G2 D

�1=.��2z / 0

0 0

�

I

G3 D



k2�.�2x C 3�2z / 0

0 k2�.�2x � �2z /

�

:

(4.166)

The Stroh formalism allows to transform the boundary value problem into a first-
order system of ordinary differential equation. In particular, its solution is given in
terms of displacements as [32]:

�i.z/ D
4
X

jD1
ajt�je

ˇjzI with i D .t; b/ (4.167)
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where ˇ D f�k; k;�k�x=�z; k�x=�zg and �j are the eigenvalues and the j � th
eigenvector ( j D 1; 2; 3; 4) of G, respectively. Thus, Eq. (4.167) corresponds to
the previous result in Eq. (4.78) found with the stream function approach. Similarly,
it is possible to recast the eight boundary conditions in the form of Eq. (4.143), and
obtain the dispersion relation expressed in Eq. (4.149).

4.6.2.3 Theoretical Results: Critical Growth Threshold and Pattern
Selection

We implemented an iterative numerical scheme to solve the dispersion relation in
Eq. (4.149) as a function of the marginal value � D .1 � �x/ D .g � 1/=g for each
wavenumber k D 2�nx=L, with nx integer, at given values of the elastic ratio �t=�b

and aspect ratio Ht=Hb. We identify the critical strain �cr as the highest marginally
stable value associated to the critical wavelength kcr, which will be considered in
the following as a continuous function for the sake of graphical clarity.

In Fig. 4.12, we depict the corresponding critical threshold for the onset of a
morphological transition for a growing bi-layered material with Hb D 10Ht (blue
curves) and Hb D 20Ht (green curves) as a function of the elastic ratio �t=�b.
In particular, we observe that if the top layer is stiffer, the critical strain and the
corresponding wavenumber decrease for increasing �t=�b. Moreover, we find that
the emerging pattern wavelength is of the order of the thickness of the top layer,
whilst the results do not depend much on the aspect ration if Ht << Hb.

We also note that the marginally stable curve for kcrHt has a singular behaviour
for �t=�b ! 1 and �t=�b ! 0. Both cases represent the confined compression of a
homogeneous slab, which is known to experience a surface instability at kcr ! 1,
as first predicted for an elastic half-space by Biot [11]. In this case, the dispersion
relation in Eq. (4.149) can be greatly simplified, and its marginally stable solution

Fig. 4.12 Curves of the critical dimensionless wavenumber kcrHt (left) and compressive strain
�cr D .1 � �x/ D .g � 1/=g (right) for a growing bi-layered material with Hb D 10Ht (blue
curves) and Hb D 20Ht (green curves) as a function of the elastic ratio �t=�b
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Fig. 4.13 Zoom of the marginally stable curves for the critical dimensionless wavenumber kcrHt

(left) and compressive strain �cr D .1� �x/ D .g� 1/=g (right) for a growing bi-layered material
with Hb D 10Ht (blue curves) and Hb D 20Ht (green curves) as a function of the elastic ratio
�t=�b

occurs at kcr ! 1 for the real root of .�6x C �4x C 3�2x � 1/ D 0, being:

.�x/cr D 1

3

 

3

q

17C 3
p
33� 2

3
p

17C 3
p
33

� 1
!

Š 0:5436: (4.168)

Eq. (4.168) implies a critical growth ratio of gcr Š 1:8393 or a critical strain of
�cr Š 0:4563, as depicted in greated detail in Fig. 4.13.

It is also possible to show that the critical wavenumbers in such singular branches
have a logarithmic dependence on the surface stiffening effect given by the top layer
[9, 20].

From an energetic viewpoint, the onset of a morphological transition is driven by
a competition between the two bulk elastic energies, through a complex interplay
between geometric and elastic parameters. The linear stability analysis allows to
identify the critical threshold of such a bifurcation, but it cannot describe its
evolution beyond this threshold value. For this purpose, it would be necessary to
solve the incremental problem beyond the linear approximation. Although out of
the scopes of this chapter, we highlight that a weakly nonlinear stability analysis
could be performed using a multiple scale expansion [19]. Accordingly, it is possible
to derive a compatibility condition by imposing the vanishing of secular terms in
higher-order elastic solutions, thus unveiling the nature of the elastic bifurcation
[22]. For example, instead of a substrate of finite thickness we could consider a
half space, i.e. we could assume Hb << Ht. In this case, the elastic bifurcation
would be supercritical if �t=�b > 1:74 and subcritical if �t=�b < 1:74. In the
subcritical regime for �t ! �b there exists a localized solution that arises as the
limit of modulated periodic solutions with increasingly longer and longer decaying
tails. The evolution of each modulated periodic solution can be followed as �t=�b
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decreases, finding that there exists a critical value at which the deformation gradient
develops a discontinuity and the solution becomes a static shock, highlighting the
spontaneous formation of a crease [45].

4.6.2.4 Numerical Results: Post-buckling Behavior

In order to explore the behavior of the system in the post-critical regime, we
implemented numerical simulations using a user defined finite element (FE) code
implemented in Matlab (The MathWorks, Inc., Natick, Massachusetts, United
States; version 2013a). The geometrical model is composed by two layers, a top
layer superposed on a substrate with initial thicknesses Ht and Hb, respectively. The
bi-layer has initial width Lx. Since the value of k is predicted by the linear stability
analysis, Lx can be calculated at nx arbitrarily fixed. The two layers are modeled
as incompressible and hyperelastic materials. A neo-Hookean model is used, and
boundary conditions of zero-displacement at the bottom of the bi-layer and zero-
horizontal displacement at the side edges are imposed.

We model the growth using a pseudo-dynamic method similar to the one
classically implemented for thermal dilatation. We adopt the following linear
evolution law:

g.t/ D g.tn�1/dt; (4.169)

with g.0/ D 1 and where t is the time and dt D .tn � tn�1/ is the time
increment. An ad hoc time adaptive scheme is implemented, where the time step
automatically decreases by 50% once the number of Newton iterations exceeds
seven, and increases the time step size by 10% otherwise, as done in [91]. The
initial, the minimum and the maximum time steps are manually set to 102, 103 and
102, respectively. A sinusoidal perturbation is introduced as a small imperfection
in the initial mesh, with a small amplitude of 0:005Ht and the critical wavenumber
predicted by the linear stability analysis.

We used linear elements with 4 integration points, building the mesh with 400
elements in the x-direction and 150 elements in the z-direction, respectively 100
elements for the substrate and 50 for the film.

Validation of the Numerical Code Against the Theoretical Results First, we
validate the FE code by comparing the critical strain values in numerical simulation
with the theoretical predictions from the linear stability analysis. The criterion for
such a comparison is based on the energy considerations, since we expect that
the selected pattern will minimizes the total elastic energy of the system. Before
the onset of the pattern transition, the solution with the minimal elastic energy
is the basic homogeneous deformation. Due to the spatial incompatibility of the
growth process, residual stresses accumulate until a marginally stable growth value
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Fig. 4.14 Left: Ratio between the total current elastic energy in the numerical simulations E and
the elastic energy of the basic homogeneous solution E0 versus the axial strain � D .1 � �x/

at different values of the elastic ratio �t=�b . Right: Comparison between the marginally stable
thresholds in numerical FE simulations (circles) and the theoretical predictions (solid line) from
the linear stability analysis. We set Hb D 10Ht in all the simulations

is reached. At this point, the system bifurcates into a solution with a lower energy
than the one associated with the basic homogeneous solution.

Here we identify the critical strain as the value of �cr D .1 � �x/ D .g � 1/=g at
which the ratio E=E0 between the total current elastic energy and the basic elastic
energy has decreased by more than 1% of its initial value. The corresponding energy
plots are depicted in Fig. 4.14(left) at different values of the elastic ratio �t=�b.

In particular, Fig. 4.14(right) shows that the critical values resulting from the
numerical simulations are in good agreement with the corresponding theoretical
predictions, thus validating the numerical code.

FE Simulations of the Post-critical Regime Once the FE code has been validated,
we performed numerical simulations in order to investigate the nonlinear pattern
evolution in the post-critical regime. We depict the emerging morphology of the
growing bi-layer for �t=�b D 30;100 in Figs. 4.15 and 4.16 respectively.

Before the critical point is reached, the bi-layered material remains flat. As soon
as the compression reaches the critical value, an undulated pattern develops at the
top surface, forming wrinkles with wavenumber kcr. The depth of the wrinkles
increases whilst increasing the growth, which increases the axial compression. In
both cases we set Hb D 10Ht. The critical values for the wavenumber and the
compression given by the linear stability analysis are kcr D 0:4, �cr D 0:05 for
�t=�b D 30, and kcr D 0:23 , �cr D 0:02 for �t=�b D 100.

In practice, we observe that the surface undulation rapidly grows to form a stable
fold, whose amplitude increases whilst increasing the growth ratio. The amplitude
of the emerging surface fold is depicted in Fig. 4.17 for different values of the
elastic ratio �t=�b. In particular, we show that for �t >> �b the amplitude
grows continuously, thus highlighting the existence of a supercritical bifurcation,
as predicted for the coated elastic half-space.
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Fig. 4.15 Morphological evolution of the bi-layered material at different growth ratios. We set
�t=�b D 30, Hb D 10Ht, nx D 1, for which the linear stability analysis predicts kcr D 0:4,
�cr D 0:05. The snapshots are taken for � D .g � 1/=g D 0 (a), 0:063004 (b), 0:075409 (c),
0:108321 (d), 0:165309 (e), 0:283784 (f)
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Fig. 4.16 Morphological evolution of the bi-layered material at different growth ratios. We set
�t=�b D 100, Hb D 10Ht , nx D 2, for which the linear stability analysis predicts kcr D 0:23,
�cr D 0:02. The snapshots are taken for � D .g � 1/=g D 0 (a), 0:033173 (b), 0:042321 (c),
0:059083 (d)

It is important to highlight that we used linear elements for illustrative purposes.
Nonetheless, it is known that they do not allow to capture the occurrence of
secondary bifurcations, which have been observed in bi-layered materials, possibly
leading to the emergence of more complex patterns characterized by sub-harmonic
resonances [14]. Although out of the scopes of this work, we remind that secondary
bifurcations can be studied using analytic perturbation techniques [44] or more
advanced numerical tools [80].
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Fig. 4.17 Amplitude of the surface folds in numerical simulations for different values of the elastic
ratio �t=�b at Hb D 10Ht

4.7 Concluding Remarks

In this chapter, we have introduced a continuous chemo-mechanical approach
of morphogenesis, deriving the balance principles and evolution laws for both
volumetric and interfacial processes. The proposed theory has been applied to
the study of pattern formation for either a fluid-like and a solid-like biological
system model, using both theoretical methods and simulation tools. Nonetheless,
it should be reminded that biological materials have a wide range of rheological
properties in between such limiting ideal behaviors [114]. Furthermore, it has
been recently highlighted that morphogenetic processes may involve microstructural
rearrangement processes, such cell duplication and/or migration, which provoke
fluid-like stress relaxation phenomena up to the timescale of days [95, 96]. Thus,
there will be the necessity to integrate the continuous approach with methods of
individual cell-based models in order to capture the microscopic processes at the
grain cell scale [35].

Finally, further modelling work should be done to investigate the role of
morphogens in the regulation of growth, shape and size. On one hand, their
local concentration can trigger an increase of mass resulting from a random
cellular proliferation. Preferred orientation may exists in cellular division as well
as competition between different cell populations. On the other hand, further
spatial orchestration is needed in order to transform random proliferations into a
uniform growth, which must ultimately ceases as the correct size is reached. The
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control of shape can therefore depend both on cell number and on overall size,
suggesting that the spatial gradient of morphogens can provide cells a dimension-
sensing mechanism. This early vision was also supported by the discovery that cells
have the ability to measure gradients comparing their own signalling level with
those of their neighbours through specific regulatory pathways [124]. Nevertheless
other interpretations are also possible. In fact, cells can change relative position
undergoing a rearrangement process (e.g. during intercalation), implying that they
are able to remodel their adhesive contacts making use of a mechanical feedback
with their environment to adjust their position [76]. Giving a practical example,
the stop signal for growth, thus determining the final size, could be triggered by a
morphogen gradient level below a minimal threshold, as well as by a critical increase
in tissue compression, causing a progressive inhibition of growth [5]. In summary,
the orchestration of shape and size in the biological realm is more likely based on
a combination of mechanical and biochemical feedbacks. Despite of the explosive
rate of new knowledge on the biochemistry of morphogenesis, a major challenge for
mathematical modeling is to understand the local coordination between mechanical
properties of the cells and the morphogenetic signals for the global orchestration of
a macroscopic shape [108].
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Chapter 5
Multiscale Computational Modelling
and Analysis of Cancer Invasion

Dumitru Trucu, Pia Domschke, Alf Gerisch, and Mark A.J. Chaplain

Abstract Recognised as a key stage in cancer growth and spread in the human
body, the cancer cell invasion process is crucial for metastatic spread and the subse-
quent development of secondary cancers. Tissue scale proliferation and migration in
conjunction with a pallet of arising cell-scale dynamics including altered adhesion
and secretion of matrix degrading enzymes enable the cancer cells to actively
spread locally into the surrounding tissue. This biological multiscale character that
cancer invasion exhibits therefore explores the natural two-way link between the
molecular processes occurring at the level of individual cells (micro-scale) and the
processes occurring at the level of cell population (macro-scale). This chapter will
address these multiscale biological processes from a mathematical modelling and
analysis perspective, gradually paving the way towards an integrated multiscale
framework that explores the tight connection between the tissues scale changes
in tumour morphology and the cell-scale dynamics of proteolytic enzymes in the
neighbourhood of the tumour interface.

5.1 Introduction

Known as one of the hallmarks of cancer [22], cancer invasion is a complex,
multiscale phenomenon involving many inter-related genetic, biochemical, cellular
and tissue processes at different spatial and temporal scales. Its complicated spatio-
temporal multiscale dynamics enables a localised solid tumour to transform into a

D. Trucu (�)
Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK
e-mail: trucu@maths.dundee.ac.uk

P. Domschke • A. Gerisch
Fachbereich Mathematik, Technische Universität Darmstadt, Dolivostrasse 15, 64293 Darmstadt,
Germany
e-mail: domschke@mathematik.tu-darmstadt.de; gerisch@mathematik.tu-darmstadt.de

M.A.J. Chaplain
School of Mathematics and Statistics, Mathematical Institute (MI), University of St Andrews,
St Andrews KY16 9SS, UK
e-mail: majc@st-andrews.ac.uk

© Springer International Publishing Switzerland 2016
L. Preziosi et al. (eds.), Mathematical Models and Methods for Living Systems,
Lecture Notes in Mathematics 2167, DOI 10.1007/978-3-319-42679-2_5

275

mailto:trucu@maths.dundee.ac.uk
mailto:domschke@mathematik.tu-darmstadt.de
mailto:gerisch@mathematik.tu-darmstadt.de
mailto:majc@st-andrews.ac.uk


276 D. Trucu et al.

systemic, metastatic and fatal disease. This process explores and takes advantage of
the reciprocal relation that the solid tumours establish with the extracellular matrix
(ECM) components and other multiple distinct cell types from the surrounding
microenvironment. Combining abnormal proliferation and migration, which is
enabled and enhanced by altered cell-cell and cell-matrix adhesion and the secretion
of various proteolitic enzymes, the cancer cells population affects the configuration
of the surrounding ECM composition and overcomes the physical barriers to
ultimately achieve local cancer spread into the surrounding tissue.

During the growth and spread of malignant tumours, several classes of matrix-
degrading enzymes (MDEs) [17, 55] such as matrix metalloproteinases (MMPs)
[38] or the urokinase-type plasminogen activator (uPA) are secreted by the cancer
cells and contribute to significant degradation or changes in the composition of
the extracellular matrix (ECM) [2, 3, 41]. The degradation of the matrix by these
proteolytic enzymes creates space that can be exploited by highly migratory cancer
cells, leading to further local expansion of the tumour [37]. Whether distributed
freely in the ECM or bound to the cancer cell membrane, once secreted, the
different MMPs degrade at least one component of the ECM enabling further
tumour progression [45, 46, 52].

In parallel to secreting proteolytic enzymes, the processes of cell-cell and
cell-matrix adhesion play a particularly important role during cancer invasion
[5, 8, 31, 32, 50, 58]. In vivo and in vitro investigations focused on exploring the
impact of adhesion on the morphology and direction of migratory tumour cell
patterns arising in cancer invasion [16, 30, 42]. In this regard, a major contribution
to cell adhesion was identified to be brought by the calcium-dependent adhesion
molecules called cadherins [54]. These interact with intra-cellular proteins, most
notably ˇ-catenin, to form adherence junctions between cells in human tissue [28].
This important molecular process is strongly perturbed during cancer growth. It has
been observed that reduced cell-cell adhesion levels favour an increase in motility
of the invading cancer cells [50]. A significant contribution to the cell-cell adhesion
is featured by cell-cell signalling mechanisms based on the interactive dynamics
occurring between the Ca2C ions from the ECM and the calcium-sensing receptor
distribution on the cell surface [24, 25, 29], this process being strongly altered during
cancer invasion, as observed for instance in colon carcinoma [7].

Alongside cell-cell adhesion, cell-matrix adhesion is equally important in indi-
vidual and collective cancer cell motility during cancer growth [57]. This is enabled
by a class of cell-surface receptors known as integrins that bind to ECM ligands [6].
Furthermore, the integrins interact with various intracellular actin-based dynamics,
which enable the cells to acquire directionality by establishing a leading edge and
a trailing edge [36]. In addition to mediating the creation of new protrusions at the
leading edge, actin molecules also influence the contractile properties of the cell,
which are then exploited by the cancer cells to enhance their migration [35, 43].
Additionally, tumour cells exploit the ECM confinement and facilitate changes in
the ECM stiffness to invade the surrounding tissue [26, 39, 56].
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Despite the progress made through in vivo and in vitro research, the profound
understanding of the cross-talk between the molecular signalling mechanisms and
the individual and collective cell dynamics either in pathological situations such as
cancer and would healing or in general human tissue remains a great scientific chal-
lenge. In this context, modelling the coupling between the collective cell dynamics
and the contribution of the signalling molecules that are traveling along and are
exercising their dynamics in conjunction with the moving cell population remains
a particularly difficult open question. The active interplay between the tissue-scale
tumour dynamics and the molecular mechanics of the involved proteolitic enzymes
at cell-scale underlines the biologically multiscale character of invasion, and raises
the challenge of modelling this process with an appropriate multiscale approach.
The development of a suitable theoretical framework coupling dynamics at the cell
population level with dynamics at the level of cell-surface receptors and molecules is
crucial in understanding many important normal and pathological cellular processes.
These are naturally spatially multi-scale processes where the structural information
at each scale plays a major role in the overall dynamics.

In this chapter we will assume a systematic modelling approach to cancer
invasion, ranging from “classical” and “structural” single scale modelling consid-
erations exploring cell adhesion and the effect of the secreted proteolytic enzymes to
a general multiscale modelling framework where the spatial scale are linked together
in a three-scale approach. This will start in Sect. 5.2 by formulating a basic cancer
invasion modelling for two cancer cell subpopulation that accounts for the adhesion
properties and explore its possible extensions to n subpopulations.

Section 5.3 will address the molecular binding in the uPA system, which gives
rise to general macroscale spatio-temporal-structural modeling framework. This
framework will be able to explore the binding, activation and inhibition processes
that occur between cell surface-bound and free molecular species and their effect on
the overall cell-population dynamics.

Section 5.4 will detail a multiscale moving boundary modelling platform which
links the macro-scale dynamics to the micro-scale molecular processes exercised
by matrix degrading enzymes. This will explore the multiscale moving boundary
method proposed in [47], allowing us to characterize the changes in tissue-scale
(macro) tumour morphology caused by the cell-scale matrix degrading enzymes
micro-dynamics occurring in a cell-scale (micro) neighbourhood of the tumour
invasive edge.

Finally, Sect. 5.5 will comment on the conclusions that can be drawn from each
of the modelling approaches exposed in the chapter and reflect on the future research
perspectives in this area.
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5.2 A Basic Tissue-Scale Cancer Invasion Model

5.2.1 Model Formulation

The past two decades have witnessed intensive efforts in macro-scale modelling of
cancer invasion. In this section we will describe the model proposed in [13] which
builds on the earlier modelling framework introduced in [4, 18]. This explores the
effects of varying the cell-cell and cell-matrix adhesion properties of the cancer
cells through time-dependent parameters within the context of n cancer cell sub-
populations c1; c2; : : : cn, which may mutate sequentially into each other, ci ! ciC1.

In order to describe the general framework of the modelling approach, let us
consider a fixed tissue region˝  R

p, p 2 f1; 2; 3g and a time interval IT D .0;T,
0 < T 2 R. The macroscopic model that we describe in this section has three time-
and space-dependent variables, namely:

• the vector-valued cancer cell density c D .ci/ W IT � ˝ ! R
n representing

several cell populations;
• the extracellular matrix (ECM) density, v W IT �˝ ! R; and
• a matrix-degrading enzyme (MDE) density, m W IT �˝ ! R.

For a compact notation, we define the combined vector of the cell and ECM densities

u.t; x/ WD .c.t; x/T; v.t; x//T :

The spatial considerations play an important role in this model. While assuming
that we assume that the amount of MDEs occupy a negligible amount of space, the
volume fraction of occupied space is defined here as

�.t; x/ � �.u.t; x// WD #vv.t; x/C #c

n
X

iD1
ci.t; x/ ;

where #cci represents the volume fraction occupied by ci, and #vv represents
volume fraction of ECM consisting of various fibrous proteins, such as collagen.

We will now present the mathematical model proposed in [13] to capture the
spatio-temporal dynamics of c, v, and m. The evolution of the cancer cell sub-
population densities is assumed to be driven by cell random motility, cell-cell
and cell-matrix adhesion-mediated directed migration, proliferation, and mutations
between the cancer cell sub-populations. This can be expressed as

@c
@t

D r � ŒDrc � diag.c/A .t; x;u.t; �//C P.t;u/c C M.t;u/c : (5.1)

where rc.t; x/ 2 R
n;p and rm.t; x/ 2 R

1;p denote the Jacobian matrices in .t; x/
of the vector field c and of m, respectively, with r� notation standing for the



5 Multiscale Computational Modelling and Analysis of Cancer Invasion 279

divergence operator. The diagonal matrix D D diag.D1;1; : : : ;D1;n/ 2 R
n;n contains

the constant diffusion coefficients D1;i > 0 of the tumour sub-populations ci.
The influence of cell adhesion in cancer cell migration is represented in (5.1) via

the non-local operator

A .t; x;u.t; �// WD

2

6

6

6

4

A1.t; x;u.t; �//T
A2.t; x;u.t; �//T

:::

An.t; x;u.t; �//T

3

7

7

7

5

2 R
n;p ;

which maps any triplet formed by a given spatio-temporal node .t; x/ together with
the space-dependent function u.t; �/ to an n � p matrix. Row i in that matrix, i.e.
Ai.t; x;u.t; �//T, represents the velocity of directed cancer cell migration of sub-
population ci that is induced by its cell-cell and cell-matrix adhesion properties.
Here the cell-cell adhesion aggregate both adhesion between cells of the same sub-
population ci, referred to as self-adhesion, and adhesion between cells of different
sub-populations ci and cj, which is usually called cross-adhesion. Therefore, using
the ideas introduced in [4, 18], the velocity of ci due to adhesion is defined by

Ai.t; x;u.t; �// D 1

R

Z

B.0;R/
n.y/ �Ki.kyk2/ �gi.t;u.t; xCy// ��˝ .xCy/ dy : (5.2a)

Here, R > 0 is the sensing radius, B.0;R/  R
p is the ball of radius R centred at

zero, thus for x 2 ˝ the set x C B.0;R/ is the sensing region at x. Finally, �˝.�/,
which represents the characteristic function of ˝ , ensures that we account only for
adhesion signals within the domain ˝ . For y 2 B.0;R/, the unit vector pointing
from x to x C y, is denoted by n.y/, i.e.

n.y/ WD
(

y= kyj2 if y ¤ 0

0 2 R
p otherwise

: (5.2b)

Furthermore, Ki.r/ is a radial dependency kernel for that characterizes the relative
importance of points at distance r 2 .0;R/ from x for adhesion-mediated cell
migration of sub-population ci. This function is non-negative and normalised such
that

1 D
Z

B.0;R/
Ki.kyk2/ dy ; (5.2c)

and specific instances of Ki are specified later. Finally, the function gi.t;u/ is the
ith component of

g.t;u/ � g.t; c; v/ D ŒScc.t/c C Scv.t/1v � .1 � �.u//C : (5.2d)
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where 1 2 R
n is the all-one vector, Scv.t/ 2 R

n;n is the diagonal matrix containing
the non-negative cell-matrix adhesion coefficients of all cancer cell sub-populations
with the ECM, and Scc.t/ 2 R

n;n represents the symmetric matrix containing the
non-negative cell-cell adhesion coefficients. Specifically, in this notation, we have
that

Sci;cj WD .Scc/i;j D
�

self-adhesion coefficient of ci if i D j;
cross-adhesion coefficient of ci and cj if i ¤ j:

(5.2e)

and

Sci;v WD .Scv/i;i is the cell-matrix adhesion coefficient of ci. (5.2f)

Finally, as usual, the positive part of an expression is denoted by .�/C WD maxf0; �g,
and in this context the factor .1 � �.u//C models an inhibition of migration due to
volume filling effects, see e.g. [23].

The diagonal matrix P.t;u.t; x// 2 R
n;n multiplied by c in (5.1) represents cancer

cell proliferation. With the factor c we make explicit that cells of sub-population i
may proliferate only if they already exist.

Finally, in (5.1) we assume that cancer cells mutate from one cancer cell sub-
population to another one and we capture this through the term M.t;u.t; x// 2 R

n;n

multiplied by c, where M is the matrix of mutation coefficients. As in the case
of the proliferation term, the factor c makes explicit that cells of sub-population i
may mutate only if they already exist. Since mutations of cells of sub-population
i correspond to a loss of cells in ci and mutations of other cells into cells of sub-
population i correspond to a gain of cells in ci, the diagonal elements of M must
be non-positive and the off-diagonal elements of M must be non-negative. Hence,
due to cell mass conservation reasons for each sub-population cj, we obtain that the
matrix M must have the property that

n
X

iD1
Mij D 0 ; for j D 1; 2; : : : ; n:

As in this work we consider only mutations ci ! ciC1, i D 1; 2; : : : ; n � 1, here the
matrix M is lower bidiagonal. However, in other situations different structural cell
population conditions may apply and give rise to a lower triangular or even a full
matrix M.

The evolution of the ECM density is governed by MDE-mediated matrix
degradation as well as ECM remodelling. This is expressed as

@v

@t
D ��mv C  .t;u/; (5.3)
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where  .t;u/ represents the ECM remodelling term, and � is the rate constant of
ECM degradation due to the presence of MDEs. We require that v D 0 implies that
 .t;u/ � 0 as this will ensure the non-negativity of the ECM density.

Finally, the evolution of the MDE concentration is determined by molecular
diffusion of the enzymes, by natural decay, and by the secretion of MDEs by the
cancer cell sub-populations into the tumour microenvironment. Hence we obtain

@m

@t
D r � ŒD3rmC ˛Tc � �m : (5.4)

In the above equation, D3 is the positive MDE diffusion constant, ˛ 2 R
n is the

non-negative vector of MDE secretion rates by the cancer cell sub-populations, and
� is the non-negative decay constant.

The system (5.1)–(5.4) is supposed to hold for x 2 ˝ and t 2 IT and is
complemented with zero-flux boundary conditions for c and m, that is

ŒDrc � diag.c/A .t; x;u.t; �// � n.x/ D 0

rm � n.x/ D 0
for t 2 IT ; x 2 @˝ ; (5.5)

where n.x/ denotes here the unit outer normal vector on @˝ in x 2 @˝ , and initial
conditions for all equations

c.0; x/ D c0.x/ ; v.0; x/ D v0.x/ ; m.0; x/ D m0.x/ for x 2 ˝ : (5.6)

The zero-flux boundary conditions for the cancer cell sub-populations imply that
cells cannot cross the boundary of the domain˝ and in particular cannot sense any
adhesive signals outside ˝ .

5.2.2 Specific Choices for Simulations in Two Spatial
Dimensions

In this study we consider spatially two-dimensional (p D 2) simulations. The spatial
domain ˝ D .�1:5; 1:5/2 and the final simulation time is set to T D 60. However,
in all figures with simulation results in this subsection, in all plots, as in [13], we
display the central part .�1; 1/2 of ˝ only. In this region the formation of the
different patterns can be seen and in most of the plots the invasion of the cancer cells
has not yet reached the boundary of ˝ at final time T D 60 such that influences of
the boundary conditions on the invasion patterns are negligible.

In the definition of the non-local term, Eq. (5.2a), we use the radial dependency
kernel, see [13, 18],

Ki.r/ WD K .r/ D 3

�R2

�

1 � r

R

�

for i D 1; : : : ; n : (5.7)
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This implies that points in the sensing region at x have, with increasing distance r
from x, a decreasing influence on adhesion-driven migration in x.

In our simulations we use the following initial functions in (5.6). First of all, only
cancer cell sub-population c1 is present initially forming a cancerous mass centred
at the origin

c1;0.x/ WD exp.� kxk22 =�/ ; � WD 10�2 ; ci;0.x/ WD 0 ; i D 2; : : : ; n : (5.8a)

For the initial ECM density we assume a heterogeneous distribution such that
�.u.0; x// 	 1 is satisfied. This is achieved using

.x1; x2/ WD 1

3
.x C 1:5/ 2 Œ0; 12 for x 2 ˝ ; � WD 6� ;

h.x1; x2/ WD 1

2
C 1

2
sin.�x1=.x2 C 1// � sin.�x1x2/ � sin.�.1� x1/=.x2 C 1//

� sin.�.x1 � 1/.x2 � 1// ;

v0.x/ WD min

�

h.x1; x2/;
1 � #cc1;0.x/

#v

	

:

(5.8b)
Finally, we assume that cancer cells have already released some MDE into their
environment and set

m0.x/ WD 0:5c1;0.x/ : (5.8c)

In the simulations that we show in the following two subsections, a parameter
p that will be specified in each of the considered cases will observe changes in its
values from an initial value p� to a final value pC around a given time point t�.
In order to express this parameter behaviour, we consider the following transition
function

p.T/.tI p�; pC; t�/ WD 1

2
.p� C pC/� 1

2
.p� � pC/ tanh .C.t � t�// ; (5.9)

which enable a gradual, smooth change from p� to pC around t�. The constant
C > 0 accounts for the width of the “transition” from p� to pC and is chosen to be
C D 1=3 in all simulations.

In the following two sub-sections, we explore of the macro-scale cancer invasion
modelling framework given in (5.1)–(5.4). Specifically, we focus on one and
two cancer cell sub-populations situations, with both constant and time-dependent
adhesion coefficients.
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5.2.3 The Non-local Model for a Single Cancer Cell Population

Considering a single cancer cell population c1 DW c, the model equations (5.1),
(5.3), and (5.4) translate in this situation as follows:

@c

@t
D r � ŒD1;1rc � cA .t; x;u.t; �//C �1;1.t/c.1 � �.u// ;

@v

@t
D ��mv C �2.1 � �.u//C ;

@m

@t
D r � ŒD3rmC ˛1c � �m ;

(5.10)

with the non-local term A as given in (5.2a), and the function g defined in (5.2d) is
specified by:

g.t;u/ D ŒScc.t/c C Scv.t/v � .1 � �.u//C :

We have further chosen P.t;u/ D �1;1.t/.1 � �.u// yielding a logistic-type growth
law for the cancer cells with competition for space with the ECM, M.t;u/ D 0

since with a single cancer cell sub-population we have no mutations, and  .t;u/ D
�2.1 � �.u//C for the remodelling of ECM. Finally, we note that for �2 > 0 the
ECM remodelling process takes place as long as the locally available space is not
entirely occupied, i.e., as long as 1 � �.u/ > 0.

The basic parameter set ˙1 that we use in the simulations is the one considered
in [13], namely:

D1;1 D 10�4 �1;1 D 0:1 � D 10 �2 D 0:05 D3 D 10�3

˛1 D 0:1 � D 0:5 R D 0:1 Scc D 0:5 Scv D 0:1 :
(˙1)

The values given in (˙1) apply whenever no other values for a certain parameter
are specified. Also, as indicated in (5.10), the parameters �1;1, Scc, and Scv can be
time-dependent, and in that case their default constant values, as given in (˙1), do
not apply. Finally, using Eq. (5.9), we will be able to define the time dependent
adhesion matrices

Scc.t/ D S.T/cc .tI Scc;�; Scc;C; tcc/ (5.11)

Scv.t/ D S.T/cv .tI Scv;�; Scv;C; tcv/ (5.12)

for values of the parameter triplets .Scc;�; Scc;C; tcc/ and .Scv;�; Scv;C; tcv/ that will
be appropriately specified in the considered context.
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5.2.3.1 Constant Cell-Cell Adhesion Coefficient

In what follows, we focus on assessing the effect of ECM remodelling on the
invasive behaviour. We use the basic parameter set (˙1) with the constant cell-cell
adhesion coefficient Scc D 0:5. The cell-matrix adhesion coefficient function Scv.�/
is chosen according to (5.11) with the parameters .Scv;�; Scv;C; tcv/ D .0:1; 0:3; 10/.

In the simulation results shown in Fig. 5.1, we observe a well-defined pattern
that the cancer cell population follows in its evolution. Because of the remodelling
of the ECM inside the outer boundary of the evolving cancer cells, i.e. within the
developing tumour mass, the cancer cells invade not only outward into surrounding
tissue but also tend to move back inwards. Furthermore, due to the disappearance
of the heterogeneous, structured ECM due to remodelling, the invasive cell front is
much more uniform.

5.2.3.2 Time-Dependent Cell-Cell Adhesion Coefficient

We now explore the cancer cell dynamics by incorporating the remodelling of the
ECM in the context of time-dependent cell-cell and cell-matrix adhesive properties
and set the corresponding parameter �2 D 0:05. We consider two different settings
of the time-dependent cell-matrix adhesion parameter, in both cases using the same
time-dependent cell-cell adhesion parameter of the form given in (5.11). Figure 5.2
shows the corresponding simulation results in two subplots, namely:

Fig. 5.2a: Scv.t/ D S.T/cv .tI 0:1; 0:3; 10/ ; Scc.t/ D S.T/cc .tI 0:5; 0:25; 40/ ;
Fig. 5.2b: Scv.t/ D S.T/cv .tI 0:25; 0:5; 10/ ; Scc.t/ D S.T/cc .tI 0:5; 0:25; 40/ :

We observe that, while the main features of the invasive pattern that are present
in Fig. 5.1 are preserved in the current simulations, the additional time-dependent

Fig. 5.1 This figure is a reproduction under granted copyright from JTB of Fig. 7 from [13].
This shows simulation results of model (5.10) with cell-matrix adhesion coefficient Scv.t/ D
S.T/cv .tI 0:1; 0:3; 10/ and parameter set ˙1
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Fig. 5.2 This figure is a reproduction under granted copyright from JTB of Fig. 9 from [13].
This shows simulation results of model (5.10) with cell-cell and cell-matrix adhesion coefficients
as given in each subplot and parameter set ˙1. (a) Scv.t/ D S

.T/
cv .tI 0:1; 0:3; 10/ and Scc.t/ D

S.T/cc .tI 0:5; 0:25; 40/. (b) Scv.t/ D S.T/cv .tI 0:25; 0:5; 10/ and Scc.t/ D S.T/cc .tI 0:5; 0:25; 40/

decrease of Scc.t/ causes a more diffuse and heterogeneous invasive pattern in
Fig. 5.2. Furthermore, as can be observed in Fig. 5.2b, increasing Scv.t/ further
compared to the simulation shown in Fig. 5.2a, leads to an even more pronounced
heterogeneous pattern with cancer cells and ECM inter-mixed throughout the
domain.

5.2.4 The Non-local Model with Two Cancer Cell
Sub-Populations

It is well known that over time cancers become more malignant, with some of
the cancer cells mutating into more aggressive phenotypes. In this subsection, we
explore this situation by modelling the overall tumour dynamics where there are
two cancer cell sub-populations, c1 and c2. During the development of the cancer,
we assume that the second sub-population emerging in the tumour mass arises
from mutations in the cells of the first sub-population. Using the general model



286 D. Trucu et al.

formulation (5.1), (5.3), and (5.4), we consider the following (nondimensionalized)
model for the two sub-populations c1 and c2:

@c1
@t

D r � ŒD1;1rc1 � c1A1.t; x; u.t; �//C �1;1c1.1� �.u//C M1;1.t;u/c1 ;

@c2
@t

D r � ŒD1;2rc2 � c2A2.t; x; u.t; �//C �1;2c2.1� �.u//C M2;1.t;u/c1 ;

@v

@t
D ��mv C �2.1 � �.u//C ;

@m

@t
D r � ŒD3rmC ˛1c1 C ˛2c2 � �m : (5.13)

In the above, as in the case of a single cancer cell population, we have chosen a
logistic-type growth law for each cancer cell sub-population; note however that the
proliferation rates �1;1 and �1;2 are constants here. The mutation of cancer cells
from type c1 to type c2 is modelled as in [1], that is, the non-zero elements of the
matrix M.t;u.t; x// are given by

�M1;1.t;u/ D M2;1.t;u/ D ıH.t � t1;2/ � H.v.t; x/ � vmin/ :

Here, H.�/ denotes the Heaviside function, t1;2 is the time point after which
mutations from sub-population 1 to sub-population 2 begin to occur, vmin is the
minimum ECM density that is needed for mutations to take place, and ı > 0 is
the mutation rate. The non-local terms A1 and A2 are as defined in (5.2a) with the
function g, cf. (5.2d), fully specified when the 2 � 2 matrices Scc.t/ and Scv.t/ are
given. We note already here that only the components Sc2;c2 and Sc2;v are considered
time-dependent in our simulations below; all other components of these matrices are
constants. The ECM remodelling process is represented as in the case of a single cell
population, that is  .t;u/ D �2.1 � �.u//C.

In this section we use the basic parameter set (˙2), which is an extension of the
basic parameter set (˙1) used in Sect. 5.2.3 and is given by:

Parameter values defined in basic parameter set (˙1) together with

D1;2 D 10�4 ; �1;2 D 0:25 ; ˛2 D 0:1 ; Scc D
�

0:5 0

0 0:3

�

;

ı D 0:3 ; t1;2 D 10 ; vmin D 0:3 ; Scv D
�

0:1 0

0 0:5

�

:

(˙2)
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The values given in (˙2) apply whenever no other values for a certain parameter are
specified. Finally, in the following simulations, sub-population c1 is shown in black,
while sub-population c2 is shown in red.

5.2.4.1 The Effect of ECM Remodelling and the Influence of the
Cross-Adhesion Coefficient

We consider again the effect that ECM remodelling has on the cancer cell dynamics.
Figure 5.3 shows the results obtained using the basic parameter set (˙2). Despite
the fact that we have time-independent adhesive properties in this simulation, the
two cancer cell sub-populations alongside the continuously remodelling ECM form
together a strongly heterogeneous pattern. We also observe that since the cell-cell
cross-adhesion parameter Sc1;c2 D 0, the two sub-populations do not mix.

However, by increasing the cross-adhesion coefficient Sc1;c2 from its default value
zero, the results that we obtain, shown here in Fig. 5.4a–c, reveal that the two
cancer cell sub-populations get generally closer to each other. The dominant features
in the distributions of the two cancer cell sub-populations shown in Fig. 5.4a–c
complement each other within close proximity, and as observed in [19] for two
species without ECM, cell sub-populations mixing may occur here as well for high
cross-adhesion values.

If we consider a higher cell-matrix adhesion value for the first cancer cell sub-
population, we observe a faster spread of both cancer cell sub-populations and an
increased number of cancer/ECM nests inside the tumour. Figure 5.5 shows the
result for the same set of parameters as for Fig. 5.4a except that the cell-matrix
adhesion coefficient of the first sub-population is increased to Sc1;v D 0:3. If we
further increase the cross-adhesion parameter, as was done in Figs. 5.3 and 5.4, the
results follow the same principle from separation towards mixing of cancer cell sub-
populations (not shown).

Fig. 5.3 This figure is a reproduction under granted copyright from JTB of Fig. 11 from [13].
This shows simulation results of model (5.13) for the parameter set (˙2)
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Fig. 5.4 This figure is a reproduction under granted copyright from JTB of Fig. 12 from [13].
This shows simulation results of model (5.13) for the parameter set (˙2), but with positive cross-
adhesion coefficient Sc1;c2 as indicated in the subplots. (a) Sc1;c2 D 0:075. (b) Sc1;c2 D 0:15.
(c) Sc1;c2 D 0:3

Fig. 5.5 This figure is a reproduction under granted copyright from JTB of Fig. 13 from [13].
This shows simulation results of model (5.13) for the parameter set (˙2), but with cross-adhesion
coefficient Sc1;c2 D 0:075 and cell-matrix adhesion coefficient Sc1;v D 0:3
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5.3 Macroscopic Spatio-Temporal-Structural Modelling
Approach with Application to the uPA System

Expanding now the modelling perspective of the previous section, in the following
we will describe the fundamentals of a general framework proposed initially in
[14] that captures the overall coupled interaction of a spatio-temporal-structurally
distributed cell population accompanied by a number of binding spatio-temporal
distributed molecular species. This will explore the binding, activation and inhi-
bition processes between cell surface-bound and free molecular species and their
effect on the overall cell-population dynamics.

5.3.1 General Spatio-Temporal-Structured Cell Population
Modelling Framework

In order to describe the general spatio-temporal-structural modelling framework
proposed initially in [14], we start by introducing the necessary concepts and
notations. Let ˝  R

d, d 2 f1; 2; 3g, be a bounded spatial domain, I D .0;T,
0 < T 2 R, be the time interval, and P  R

p, p 2 N, be a convex domain of
admissible molecular binding structure states that contains 0 2 R

p as accumulation
point. The set P will be referred to as the i-state space (= individual’s state) [34].

In this context, we aim to explore the spatio-temporal-structural dynamics of a
tissue consisting of

• the structured cell population density c.t; x; y/, with .t; x; y/ 2 I �˝ � P;
• the extracellular matrix (ECM) density v.t; x/, with .t; x/ 2 I �˝;
• q free molecular species, of concentration mi.t; x/, with .t; x/ 2 I � ˝ , i D
1; : : : ; q, which may be written in vector notation as

m D .m1; : : : ;mq/
T W I �˝ ! R

q :

We consider that p 	 q out of the total number of q molecular species are able to
bind to the cell surface, and so, without loss of generality, these are assumed to be
mi, i D 1; : : : ; p. The binding of the p molecular species affects the macroscopic
dynamics of the cell population density, and therefore at each spatio-temporal node
.t; x/, this gives rise to a cell-surface binding signature

c.t; x; �/ W P ! R

of the p molecular species attached to the cell mass distributed at .t; x/. Adopting
a similar approach to size-structured population models, see for example [11, 12]
or [48], the surface concentration of bound molecules on the surface of the cells
is represented here by the structure or i-state variable y 2 P , which leads to
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the structured cell population density c.t; x; y/. Therefore, if we ignore the binding
structure, the total cell density at .t; x/ is given by

C.t; x/ D
Z

P

c.t; x; y/ dy : (5.14)

Denoting the combined vector of the cell and ECM densities with

u.t; x/ WD .c.t; x; �/; v.t; x//T ; (5.15)

we define the volume fraction of occupied space by

O�.t; x/ � �.u.t; x// WD #c

Z

P

c.t; x; y/ dy C #vv.t; x/ D #cC.t; x/C #vv.t; x/

for suitable parameters #c and #v . This definition assumes therefore that the amount
of free and bound molecular species is negligible for the volume fraction of occupied
space.

Of further interest for us is also the concentration of surface-bound reactants
per volume fraction at, i.e., the part of molecular species that are bound to the cell
surface. To this end, assuming a fixed cell surface " for all cells in the tissue, the
surface density per i-state at .t; x/ is therefore given by

s.t; x; y/ D "c.t; x; y/ :

Thus, the total concentration of all bound molecular species at .t; x/ 2 I �˝ is the
expectation vector of the surface density s with respect to the structural variable y,
namely

E.t; x/ WD
Z

P

ys.t; x; y/ dy 2 R
p : (5.16)

Obviously, for each individual bound molecular species mi, this expectation spe-
cialises to

Ei.t; x/ WD
Z

P

yis.t; x; y/ dy ;

and we can immediately observe that E.t; x/ D .E1.t; x/; : : : ;Ep.t; x//T. Finally, for
a compact notation, we define the combined vector of bound and free molecular
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species to be

r.t; x/ D
 

E.t; x/

m.t; x/

!

2 R
pCq : (5.17)

In the following, we discuss the model equations for the evolution of c, v and m.

5.3.2 Cell Population Dynamics

Let us start by considering an arbitrarily small control volume V � W inside the
spatio-structural space ˝ � P , with V and W assumed to be compact and with
piecewise smooth boundaries @V and @W. In this context, the total amount of cells
in V � W at time t is

Nc.t/ D
Z

W

Z

V

c.t; x; y/ dx dy :

Per unit time, the rate of change in Nc.t/ is given by the combined effect of the sources
of cells of the structural types considered over the control volume and the flux of
cells into the control volume over the spatial and structural boundaries. Therefore,
this is given by

dNc
dt

D
Z

W

Z

V

S.t; x; y/ dx dy

„ ƒ‚ …

source

�
Z

W

Z

@V

F.t; x; y/ � n.x/ d�n�1.x/ dy

„ ƒ‚ …

flux over spatial boundary

�
Z

V

Z

@W

G.t; x; y/ � n.y/ d�p�1.y/ dx

„ ƒ‚ …

flux over structural boundary

;

where �n�1 and �p�1 are the surface measures on @V and @W, respectively.
Assuming now that the vector fields F and G are and continuously differentiable,
via Divergence Theorem we obtain that

dNc
dt

D
Z

W

Z

V

S.t; x; y/ dx dy �
Z

W

Z

V

rx � F.t; x; y/ dx dy

�
Z

V

Z

W

ry � G.t; x; y/ dy dx :
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Assuming further that c and ct are continuous, the Dominated Convergence
Theorem allows us to interchange the derivative with the integral [21], and so we
obtain that

Z

W

Z

V

@

@t
c.t; x; y/ dx dy D

Z

W

Z

V

S.t; x; y/ dx dy �
Z

W

Z

V

rx � F.t; x; y/ dx dy

�
Z

W

Z

V

ry � G.t; x; y/ dx dy :

This can be equivalently written as

Z

RdCp

@

@t
c.t; x; y/1V�W .x; y/ dx dy D

Z

RdCp

S.t; x; y/1V�W .x; y/ dx dy

�
Z

RdCp

Œrx � F.t; x; y/1V�W .x; y/ dx dy

�
Z

RdCp

Œry � G.t; x; y/1V�W .x; y/ dx dy ;

where 1A generally denotes the indicator function of an arbitrary subset A of˝�P .
Therefore, since

fV � W  ˝ � Pj V and W - compact with piecewise smooth boundariesg
is a family of generators for the borelian ��algebra on ˝ � P ,

we obtain that
Z

RdCp

@

@t
c.t; x; y/1A.x; y/ dx dy D

Z

RdCp

S.t; x; y/1A.x; y/ dx dy

�
Z

RdCp

Œrx � F.t; x; y/1A.x; y/ dx dy

�
Z

RdCp

Œry � G.t; x; y/1A.x; y/ dx dy ;

for any borelian set A in the ��algebra on˝ �P . Thus, this equality remains valid
if we replace 1A.x; y/ with any simple function, and so using now the fact that the
family of simple functions is dense within L1.˝�P/ in the family of test functions
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with respect to the L1�norm on ˝ � P [21], we obtain

Z

R
dCp

@c

@t
�.x; y/ dx dy D

Z

R
dCp

S.t; x; y/�.x; y/ dx dy�
Z

R
dCp

Œrx �F.t; x; y/�.x; y/ dxdy

�
Z

R
dCp

Œry �G.t; x; y/�.x; y/ dx dy ; 8� 2 C1
0 .˝ � P/:

Since this equality holds for any test function � 2 C 1
0 .˝ � P/, we obtain the

following spatio-temporal-structural governing partial differential equation for the
structured cell population dynamics, namely:

@

@t
c.t; x; y/ D S.t; x; y/� rx � F.t; x; y/ � ry � G.t; x; y/ : (5.18)

5.3.2.1 Source

For simplicity, we ignore apoptosis and we assume here that the source of the
cell population is determined only by the cell proliferation process enabled by cell
division. In this context, denoting by ˚.y;u/ the rate at which cells undergo mitosis
(proliferation rate), we assume that, as cells divide, the daughter cells share the p
different bounded molecular species uniformly. This means that the cells distributed
at .t; x; y/ divide into pairs of daughter cells distributed at .t; x; 1

2
y/, as shown in

Fig. 5.6.
Let us now consider an arbitrary compact subset with piecewise smooth bound-

ary W  P . Considering now the extended mapping Oc.t; x; Qy/ given by

Oc.t; x; Qy/ D
(

c.t; x; Qy/; Qy 2 P;

0; Qy 62 P;
(5.19)

W

2Wmitosis

mitosis

Fig. 5.6 This figure is a reproduction of Fig. 1 from [14]. This illustrate individuals leaving and
entering the control volume W 
 P through mitosis
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at any .t; x/ 2 I �˝ , the source of cells in the structural region W is given by

Z

W

S.t; x; y/ dy D 2

Z

2W

˚.Qy;u/Oc.t; x; Qy/ dQy �
Z

W

˚.y;u/Oc.t; x; y/ dy :

Thus, using now the change of variables Qy.y/ D 2y, for which det.JQy/ D 2p, we get

Z

W

S.t; x; y/ dy D
Z

W

2pC1˚.2y;u/Oc.t; x; 2y/ dy �
Z

W

˚.y;u/Oc.t; x; y/ dy :

Therefore, since

fW  PjW - compact with piecewise smooth boundariesg
is a family of generators for the borelian ��algebra on P

we obtain that
Z

R
p

S.t; x; y/1B.y/ dy D
Z

R
p

2pC1˚.2y; u/Oc.t; x; 2y/1B.y/ dy �
Z

R
p

˚.y; u/Oc.t; x; y/1B.y/ dy :

for any borellian set B in the ��algebra on P . Thus, this equality remains valid if
we replace the indicator 1B.y/ with any simple function, and so using again the fact
that the simple functions are dense within L1.P/ in the family of test functions, we
obtain
Z

R
p

S.t; x; y/ Q�.y/ dyD
Z

R
p

2pC1˚.2y;u/Oc.t; x; 2y/ Q�.y/ dy�
Z

R
p

˚.y;u/Oc.t; x; y/ Q�.y/ dy ;

for all Q� 2 C 1
0 .P/. Therefore, we finally obtain that, for any .t; x/ 2 I �˝ , we

have

S.t; x; y/ D 2pC1˚.2y;u/Oc.t; x; 2y/ �˚.y;u/Oc.t; x; y/ ; 8y 2 P : (5.20)

5.3.2.2 Spatial Flux

There are various processes that lead to the flux over the spatial boundary. These
include diffusion (random motion), chemotaxis with respect to various chemoattrac-
tants or haptotaxis with respect to the ECM, as well as cell adhesion. A combination
of these spatial flux contributing factors can for example be chosen as in [1, 13, 18],
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and can be formulated as

F.t; x; y/ D FD C FT C FA

D �Dcrxc C c.1 � �.u//

 

q
X

kD1
�krxmk C �vrxv

!

C cA (5.21)

where the free molecular species mk are either chemoattractants or chemorepellents.
Here we assume that the diffusion coefficient Dc.�/ as well as the taxis coeffi-
cients �v.�/ and �k.�/, k D 1; : : : ; q, are dependent on the i-state y 2 P . Under
similar considerations those that led to (5.2a), the adhesion term A is defined also
in this case as

A .t; x; y;u.t; �// D 1

R

Z

B.0;R/

n.Qx/K .kQxk2/g.t; y;u.t; x C Qx// dQx

with the sensing radius R > 0, n.Qx/ a unit normal vector pointing from x to x C Qx,
and the radial dependency kernel K .r/ with r WD kQxk2. Finally, using the same
arguments that led to (5.2d), the adhesion coefficient function g.t; y;u.t; x�// is
given here by

g.t; y;u.t; x�// D
0

@

Z

P

Scc.t; y; Qy/c.t; x�; Qy/ dQy C Scv.t; y/v.t; x
�/

1

A

� .1 � �.u.t; x�///C ;

where Scc.t; y; Qy/ represents the cell-cell adhesion coefficient between cells of
i-states y and Qy, and Scv.t; y/ denotes the cell-matrix adhesion coefficient between
cells with i-state y and the ECM.

5.3.2.3 Structural Flux

The flux over the structural boundary arises from the binding and unbinding
processes of the p molecular species to the cells surface. Thus, denoting by
B.P/ the Borel ��algebra on P , given a density of molecular species m.t; x/,
the structural measure of their binding process to the total cell density C.t; x/ is
denoted by

�b.�I m/ W B.P/ ! R
p
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and is assumed to be known and absolutely continuous with respect to the Lebesgue
measure on P . Therefore, the induced Lebesgue-Radon-Nikodym density

b.�I m/ D

0

B

@

b1.�I m/
:::

bp.�I m/

1

C

A W P ! R
p (5.22)

is uniquely defined by

�b.WI m/ D
Z

W

b.� I m/ d� ; 8W 2 B.P/ ; (5.23)

[21], and represents the binding rate of the molecular species m to the total cell
population density C.

Similarly, the structural measure of the unbinding process of the bound molecular
species E.t; x/ is denoted by

�d.�/ W B.P/ ! R
p

and is again assumed to be absolutely continuous with respect to the Lebesgue
measure on P . Thus, this leads to an unbinding rate depending only on the i-state
given by the Lebesgue-Radon-Nikodym density

d.�/ D

0

B

@

d1.�/
:::

dp.�/

1

C

A W P ! R
p (5.24)

which is uniquely defined by

�d.W/ D
Z

W

d.�/ d� ; 8W 2 B.P/ : (5.25)

and represents the unbinding rate of the molecular species m from the total cell
population density C. Hence, these binding and unbinding rates lead to an associated
net variation of the i-state given by

b.y;m/ � d.y/ :

Thus adopting the same interpretation of the flux G.t; x; y/ as growth in size-
structured populations [11, 34, 48, 53], this is then given by the product of the
density of the population/species and the net growth rate. Therefore, the structural
flux has the form

G.t; x; y/ D c.t; x; y/
�

b.y;m/� d.y/
�

: (5.26)
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5.3.3 Extracellular Matrix

Given the constitutive structure of the ECM, this is not considered to be diffusing.
However, the ECM is assumed to be degraded by one or more of the free molecular
species or the surface-bound molecules and is remodelled by the stroma cells present
in the tissue (which are not modelled here explicitly). Thus, in this context, the
governing equation for ECM is

@

@t
v.t; x/ D � ıTvr.t; x/v.t; x/

„ ƒ‚ …

degradation

C v.t;u.t; x//
„ ƒ‚ …

remodelling

;

where ıv 2 R
pCq is an appropriate non-negative vector of ECM degradation rates

and  v.t;u/ represents the remodelling term. We note that this generalises Eq. (5.3)
where we only considered one type of molecular species, namely the MDEs. Finally,
to ensure positivity of the ECM density, we require  v.t;u/ � 0 for v D 0.

5.3.4 Molecular Species

Adopting a similar line of reasoning as for (5.4), we assume here that the molecular
species mi, i D 1; : : : ; q are driven by diffusion, are produced by either the cells or
by chemical reactions, and are subject to natural decay. However, depending on the
i-state y, the first p species mi, i D 1; : : : ; p, may also bind to the cells surface with
the binding rates bi. Further, due to the unbinding processes for each of the boundmi

with rates �i, part of the previously bounded molecular species reenter the molecular
dynamics. Therefore, under these considerations, by extending the vectors b.y;m/
and d.y/ by an appropriate number of zero components, i.e.,

Ob.y;m/ D
 

b.y;m/

0

!

2 R
q and Od.y/ D

�

d.y/
0

�

2 R
q ;

the spatio-temporal dynamics of the molecular species is considered to be described
by

@

@t
m.t; x/ D rx � Dmrxm.t; x/

„ ƒ‚ …

diffusion

�
Z

P

� Ob.y;m/ � Od.y/
�

s.t; x; y/ dy

„ ƒ‚ …

binding/unbinding

C m.u.t; x/; r.t; x//
„ ƒ‚ …

production

� diag.ım/m.t; x/
„ ƒ‚ …

decay

:

(5.27)

Here, Dm D diag.Dm1 ; : : : ;Dm2 / 2 R
q;q denotes the diagonal matrix containing the

diffusion constants of the individual species. The vector  m D  m.u; r/ represents
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the production term, and ım is the vector of non-negative rates of decay for each
molecular species mi, i D 1; : : : ; q.

5.3.5 Summary of the General Spatio-Temporal-Structural
Model for Cell Migration

The structured-population model introduced in Sects. 5.3.2–5.3.4 for the cell and
ECM density and the molecular species densities reads as follows:

@c

@t
D rx �

"

Dcrxc � c.1 � �.u//
 

q
X

kD1
�krxmk C �vrxv

!

C cA

#

� ry � Œ.b.y;m/ � d.y// c

C 2pC1˚.2y;u/c.t; x; 2y/�˚.y;u/c.t; x; y/:

(5.28a)

@v

@t
D �ıTvrv C  v.t;u/ (5.28b)

@m
@t

D rx � ŒDmrxm �
Z

P

� Ob.y;m/� Od.y/
�

s.t; x; y/ dy

C m.u; r/ � diag.ım/m

(5.28c)

where, for notational simplicity, we omitted here the O notation that we introduced
in Eq. (5.19) to extend the mapping c (but we assume that the extended mapping Oc
is used implicitly wherever this is necessary).

System (5.28) is assumed to hold for t 2 I , x 2 ˝ and y 2 P and is
complemented by initial conditions

c.0; x; y/ D c0.x; y/ ; v.0; x/ D v0.x/ ; m.0; x/ D m0.x/ for x 2 ˝; y 2 P ;

(5.29a)

and zero-flux boundary conditions in space, that is

"

Dcrxc � c.1 � �.u//
 

q
X

kD1
�krxmk C �vrxv

!

C cA

#

� n.x/ D 0

ŒDmrxm � n.x/ D 0

(5.29b)

for t 2 I , x 2 @˝ , y 2 P , where n.x/ denotes the outer normal vector on @D
in x 2 @˝ . Since we assume that no cells with i-states outside P exist, the boundary
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condition for the i-state space is

c.t; x; y/ D 0 for t 2 I ; x 2 ˝; y 2 @P : (5.29c)

5.3.6 Application of the Structured-Population Approach to a
Model of Cancer Invasion Based on the uPA System

A key enzymatic system in cancer invasion is the urokinase plasminogen activation
system, known as the uPA system [3, 15, 44, 49, 51]. Playing a major role in ECM
degradation during cancer invasion, this is a proteolytic system that is based on the
dynamic interplay of four major populations on molecules, namely: (1) urokinase
plasminogen activator (uPA); (2) plasminogen activator inhibitor type-1 (PAI-1)
proteins; (3) the urokinase plasminogen activator receptors (uPAR) which are bound
to the cancer cell membranes; and (4) the matrix degrading enzyme plasmin.

In a brief description, the uPA is an extracellular serine protease produced by
cancer cells and that has two major functional domains namely: (1) the protease
domain; and (2) the growth factor domain. The protease domain activates plasmin
from its pro-enzyme plasminogen form which is then able to bind to the uPAR
receptors on the cancer cells. At the same time, the inhibitor PAI-1 is able to bind to
membrane-bound uPA, and this way to inhibit plasminogen activation into plasmin.
Finally, once activated, plasmin is able to degrade several classes of ECM proteins
such as fibronectin, laminin, vitronectin and thrombospondin.

While over the past decade the role of uPA system in cancer invasion attracted
significant non-structured mathematical modelling [1, 9, 10, 40], in this subsection
we address the following structural dynamics. Under the assumption that cancer
cells carry an amount M of uPAR bound to their surface, free uPA molecules may
bind to these receptors and free PAI-1 enzymes bind to the bound uPA, and so
denoting

y1 WD the amount of uPA that gets bound to the cell surface receptors,
y2 WD the amount of bound inhibitor PAI-1 attached to the bound uPA enzymes,

we arrive at the following 2-dimensional binding structure i-state space:

P D fy 2 Œ0;M2 j y2 	 y1g (5.30)

which is illustrated in Fig. 5.7. Therefore, in the following we explore the particular
spatio-temporal-structural modelling formulation that the general framework (5.28)
induces for cancer invasion when the uPA system is considered. In this context, the
tumour assumes a tissue-scale configuration consisting of:

• a structured cancer cell distribution c.t; x; y/;
• an extracellular matrix density v.t; x/;
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Fig. 5.7 This figure is a
modified reproduction of a
part of Fig. 5 from [14]. This
is a schematic diagram of
binding structure i-state
space P

y

y

M

M

• three molecular species, written as in vector form as

m D
0

@

m1
m2
m3

1

A ;

where m1.t; x/ represents the uPA that binds to cell surface, m2.t; x/ stands for
the PAI-1 that attach to and this way inhibit the bounded uPA , and m3.t; x/ is the
plasmin that is not able to bind to the cell surface.

Therefore, using the terminology from Sect. 5.3.1,m1 and m2 are the species that are
able to bind and unbind from the cell surface, while m3 is not assumed to bind, and
so the number of bound molecular species is p D 2, the total number of molecular
populations that are considered here is q D 3. Moreover, the vector of the binding
rates defined in (5.22)–(5.23) translates here as

b.y;m/ D
�

b1.y;m/
b2.y;m/

�

;

which are derived as follows. On one hand, the binding rate of free uPA is assumed
to be proportional to the available amount of P�distributed unoccupied receptors
M � y1, and so this way obtain that

b1.y;m/ D .M � y1/
R

P

.M � y1/ dy
ˇ1m1 D 6

M3
.M � y1/ˇ1m1 : (5.31)

On the other hand, the binding rate of the free inhibitor PAI-1 is assumed to be
proportional to the available P�distributed amount of uninhibited bound uPA
molecules y1 � y2, and so we obtain that

b2.y;m/ D .y1 � y2/
R

P

.y1 � y2/ dy
ˇ2m2 D 6

M3
.y1 � y2/ˇ2m2 : (5.32)
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Finally, while the uPA is produced by the cancer cells, and the inhibitor PAI-1 is
produced via plasmin activation, plasmin itself is activated from plasminogen by
uninhibited bound uPA. Thus, in the notations from Sects. 5.3.1–5.3.5, we obtain
that the vector of molecular production terms  m.u; r/ is given by

 m.u; r/ D

0

B

@

˛m1C

˛m2m3

˛m3 .E1 � E2/

1

C

A

Therefore, in the special case of uPA based cancer invasion, under the presence of
logistic proliferation law ˚.c; v/ D �c.1 � �.c; v//, the general framework (5.28)
gives the following spatio-temporal-structural dynamics, namely:

@c

@t
D rx �

�

Dcrxc � c.1 � �.c; v// .�1rxm1 C �2rxm2 C �vrxv/
�

� ry �
�

cb.y;m/
�

C ˚.u/ .8c.2y; t; x/� c.y; t; x// ;

(5.33a)

@v

@t
D �ıvm3v C �v.1 � �.c; v//C ; (5.33b)

@m1
@t

D rx � ŒDm1rxm1 �
Z

P

b1.y;m/s.t; x; y/ dy C ˛m1C ; (5.33c)

@m2
@t

D rx � ŒDm2rxm2 �
Z

P

b2.y;m/s.t; x; y/ dy C ˛m2m3 ; (5.33d)

@m3
@t

D rx � ŒDm3rxm3C ˛m3 .E1 � E2/� ım3m3 ; (5.33e)

which is assumed to be appropriately accompanied by initial and boundary
conditions of the type described in (5.29).

Finally, we would like to conclude this section by remarking that by performing
an i-state integration of the system (5.33), see [14] for details, the resulting
unstructured model is similar in flavour to the one initially proposed by Chaplain
and Lolas [9, 10], which, in the above notations, is briefly stated here as

@C

@t
D DC
C � r � Œ�1Crm1 C �2Crm2 C �vCrvC �1C.1 � C/ ;

(5.34a)

@v

@t
D �ıvm3 C �21um2 � �22vm2 C �2v.1 � v/ ; (5.34b)
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@m1
@t

D Dm1
m1 � �31m1m2 � �33cm1 C ˛31C; (5.34c)

@m2
@t

D Dm2
m2 � �41m1m2 � �42vm2 C ˛41m3; (5.34d)

@m3
@t

D Dm3
m3 C �52vm2 C �53Cm1 � �54m3 : (5.34e)

5.4 Multiscale Moving Boundary Modelling Framework for
Tumour Invasion

Extending the single-scale modelling perspective discussed so far, in this section we
present the general multiscale modelling framework for cancer invasion introduced
in [47] and its application to the specific case of the uPA proteolitic system discussed
in [40]. This aims to explore the inherently a multi-scale character of cancer
invasion, whose processes occurring at several spatial and temporal scales e.g.
molecular, cellular and tissue levels.

The general modeling approach introduced in [47] explores in an integrated
manner the tissue-scale cell population dynamics and relevant cell-scale molecular
mechanics together with the permanent link between these two biological scales.
This explores the biological evidence that specific MDEs, such as the matrix
metalloproteinases (MMPs or the uPA) (secreted from the outer proliferating rim
and released within the tumour microenvironment), play a crucial role in the local
cancer invasion [22, 54]. The tissue-scale progression of tumour morphology is
captured here in a multiscale moving boundary approach where the contribution
arriving from the cell-scale activity to the cancer invasion pattern is realised by the
micro-scale MDEs dynamics (occurring along the tumour invasive edge), which, for
its part, is induced by the cancer macro-dynamics.

5.4.1 Modelling Framework Set-Up: The Macroscopic
Dynamics and Top-Down Link

As from a topological perspective, we regard an invading solid tumour within a
human body as a growing compact ˝.t/, it is therefore natural to assume that its
development is taking place within a large enough spatial cube Y  R

n.n D 2; 3/

(say, in 3D, of the size of a classroom), i.e., ˝.t/  Y, 8t > 0. Without loss of
generality, we set the origin of the space at the centre of Y, and let t0 be an arbitrarily
chosen time during tumour evolution. In this context, we assume that the tissue-scale
macro-dynamics is given by a coupled system of reaction-diffusion-taxis equations,
generally written in terms of differential operators as

M.c; v;m; t/ D 0; t 2 Œ0;T; (5.35)
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where c; v;m are the cancer cell population, the ECM density, and the vector of
proteolytic enzymes densities, respectively. Depending on the particular question
under investigation, examples of such tissue scale operator equations include for
instance the spatio-temporal system (5.1)–(5.4) discussed in Sect. 5.2.1, or the
spatio-temporal-structural dynamics (5.28) in summarised in Sect. 5.3.5, or other
macroscopic systems proposed in the literature such as the one introduced in initially
in [9, 10] and summarised here in (5.34).

However, large biological evidence [2, 3, 15, 22, 41, 49, 54] reveal that the
invasive edge cell-scale molecular dynamics exercised by several classes of MDEs,
such as MMPs or the uPA system, play a key role in local cancer invasion.
Specifically, those cancer cells that during their dynamics arrive within the tumour
outer proliferating rim are able to secrete these MDEs, and once secreted, these
molecular populations of enzymes are exercising a local parabolic dynamics in a
cell-scale neighbourhood of the tumour interface @˝.t0 /, degrading the surrounding
tissue and this way causing further tumour progression.

To formalise mathematically this top-down link between tissue-scale dynamics
of cell population and the cell scale dynamics of a generic MDE m that is secreted by
the cancer, let us denote by � > 0 the maximal thickness of the outer proliferating
rim. Therefore, considering now a cell-scale neighbourhood H of @˝.t0 /, at any
point y 2 @˝.t0 / \ H and any instance � 2 Œ0;
t during the tumour evolution
over the period Œt0; t0 C 
t, a source of MDEs fH W Œ0;
t � H ! RC arises as
a collective contribution of all the cancer cells within distance � . Thus, using the
Smooth Urysohn Theorem [20], we obtain a space-wise smooth compact support
source fH such that, for any � 2 Œ0;
t, f�Y .�; �/ has the following properties:

1: f
H
.�; y/ D 1

�.B.y;�/\˝.t0 //
R

B.y;�/\˝.t0 /
c
˝.t0 /

.x; t
0

C �/; dx; y 2 H \˝.t
0
/;

2: fH .�; y/ D 0; y 2 H n �˝.t0 /C fz 2 Y j kzk2 < �g
�

; (5.36)

where �.�/ is the standard Lebesgue measure on R
n, B.y; �/ is the usual L1-ball,

i.e., B.y; �/ WD fx 2 Y j ky � xk1 	 �g, and � is a small enough constant that
enable fast and smooth decay to 0 of the fH .�; y/ outside the tumour region˝.t0/.

In the following subsection we will focus on the development of a constructive
topological approach that will allow us to obtain a cell-scale neighbourhood of
@˝.t0 / which will enable the exploration of the MDEs molecular dynamics.

5.4.2 Exploring the MDEs Micro-Dynamics

Given the importance of the interface cell-scale processes in the overall cancer
invasion, in the following we will develop a mathematical setting that will enable
us to explore the micro-scale MDEs dynamics in a computationally feasible
way. For this purpose, we focus first on developing a flexible boundary tracking
technique that will enable the decoupling the micro-dynamics occurring in a cell-
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scale neighbourhood of the tumour interface in a bundle of reaction-diffusion-type
processes occurring on finite family of half-way overlapping micro-domains.

Given a fixed � representing a negative power of 2 (i.e., 0 < � < 1), we
decompose uniformly the cube Y in the corresponding collection of �-size cubes,
�Y, whose union will provide an �-resolution of Y. For any small cube �Y from this
decomposition, for any triplet .i; j; k/ 2 f.i; j; k/ji; j; k 2 f�1; 0; 1gg, we define the
“half-way shifted” cubes in the direction iNe1 C jNe2 C kNe3 as

�Y i
2 ;

j
2 ;

k
2

D �Y C �.iNe1 C jNe2 C kNe3/
2

; (5.37)

where,

Ne1 W D e1; Ne2 W D e2; and; Ne3 W D
�

e3 for N D 3;

0 for N D 2;
(5.38)

and fe1; e2; e3g is the standard Euclidean basis of R3. Collecting now all the cubes
from the initial �-resolution together with the associated half-way shifted cubes, we
obtain the following family of ��cubes

F� WD
[

i;j;k2f�1;0;1g

˚

�Y i
2 ;

j
2 ;

k
2

ˇ

ˇ�Y is in the �-resolution of Y
�

: (5.39)

The mathematical setting constructed so far is schematically illustrated in 3D in
Fig. 5.8.

0

e 3

e2

e1

Y Ω(t0)

Fig. 5.8 This figure is a reproduction under granted copyright from SIAM MMS of Fig. 1 from
[47]. This is a schematic diagram showing the cubic region Y centred at 0 2 R

3. The dashed blue
lines represent the Euclidean directions fe1; e2; e3g, the pink region illustrates the cancer cluster
˝.t0 /, and the solid blue line represents the family of microscopic cubic domains �Y placed at the
boundary of ˝.t0 /. Copyright ©2013 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved
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As at this stage our focus is to characterise the microdynamics occurring in a
cell-scale neighbourhood of the tumour boundary @˝.t0/, we select a subfamily
denoted by F�;˝.t0/  F� , consisting only the ��cubes from F� that cross the
tumour interface @˝.t0/ and have exactly one face included in the interior of˝.t0/,
namely

F�;˝.t0/ WD f�Y 2 F�j�Y \ .Yn˝.t0// ¤ ;;
and �Y has only one face included in int.˝.t0//g; (5.40)

where int(˝.t0/) is the topological interior of ˝.t0/ with respect to the natural
topology on R

n.
By taking now a closer look at each �Y 2 F�;˝.t0/, we distinguish several

geometrical features, and we denote these as follows:

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

� int
�Y denotes the face of �Y that is included in int.˝.t0//;

�
j;?
�Y ; j D 1; : : : ; 2N�1; denote the faces of �Y that are perpendicular to � int

�Y

�
k
�Y denotes the face of �Y that is parallel to � int

�Y : (5.41)

Furthermore, for each �Y 2 F�;˝.t0/, as illustrated in Fig. 5.9, while it is possible
to have a multiple connected component intersection between ˝.t0/ and �Y, there
is only one connected component that contains the face included in int.˝.t0 //. The
topological closure of this particular connected component of ˝.t0/\ �Y, which is
confined between @˝.t0/\ �Y and � int

�Y , is denoted by Œ˝.t0/�Y , i.e.,

Œ˝.t0/�Y WD
8

<

:

x 2 ˝.t0/ \ �Y
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8y 2 � int
�Y ; 9 �x;y W Œ0; 1 ! ˝.t0/\ �Y

such that �x;y is continuous and
�x;y.0/ D x and �x;y.1/ D y

9

=

;

(5.42)

Additionally, denoting by Œ@˝.t0/�Y the connected component part of @˝.t0/\ �Y
that corresponds to Œ˝.t0/�Y , i.e.,

Œ@˝.t0/�Y WD Œ˝.t0/�Y \ @˝.t
0
/ (5.43)

we can immediately observe that this is the only connected component of the
set @˝.t0/ \ �Y that has non-empty intersection with any of the �

j;?
�Y , j D

1; : : : ; 2n�1. Therefore, since we are interested in characterising the MDEs micro-
dynamics occurring on both sides of tumour interface, using these last topological
observations, we perform now a filtering of the family F�;˝.t0/ and select a special
subfamily, denoted by F�

�;˝.t0/
 F�;˝.t0/, which consists only of those ��cubes
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Ω(t0)

Γj2,⊥

Γint

Γj1,⊥

µ

Γ

xcx∗

i
2 ,

j
2 ,

k
2

Fig. 5.9 This figure is a reproduction under granted copyright from SIAM MMS of Fig. 2
from [47]. This is a schematic diagram illustrating the notations introduced in Eqs. (5.37)–(5.41)
and (5.45). For the arbitrary micro-domain �Y, we indicate with a black arrow the features: � int

�Y
,

� j1;?
�Y

and � j2;?
�Y

, j1; j2 2 f1; : : : ; 2n�1g, � k
�Y

, xc
�Y

, ��Y , and x�
�Y

. Copyright ©2013 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights reserved

that have the connected component Œ˝.t0/�Y not intersecting � k
�Y , namely:

F�
�;˝.t0/

WD f�Y 2 F�;˝.t0/j Œ˝.t0/�Y  �Y and Œ@˝.t0/�Y \ �
k
�Y D ;g: (5.44)

We can immediately remark that, for the fixed � that we started with, due to
the topological constraints imposed in selecting the �-cubes, the resulting family
F�
�;˝.t0/

may not be able to provide us with a complete covering of the entire tumour
interface. However, leaving now � to take all the negative powers of 2, the union

[

�2f2�k j k2Ng
F�
�;˝.t0/

provides an infinite covering of @˝.t0/. Since @˝.t0/ is compact, using standard
compactness arguments combined with the dyadic structure of the �-cubes from
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the infinite covering of @˝.t0/, we obtain that we can sub-select a finite complete
sub-covering

H 
[

�2f2�pjp2Ng
F�
�;˝.t0/ formed of small cubes of equal size �H

such that
[

�H Y2H
�H Y�@˝.t0 /:

Therefore, the size of the micro-scale �
˝.t0 /

will be given by the coarsest finite
interface covering of this kind, namely

�
˝.t0 /

WDsup

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9H�  S

�2f2�pjp2Ng
F�
�;˝.t0/

; with jH�j < 1;

formed of small cubes of equal size �
such that

S

�Y2H�

�Y �@˝.t
0
/

9

>
>
>
=

>
>
>
;

;

and the corresponding family of �˝.t0 /-cubes, H�˝.t0 /
, represents the desired cell-

scale covering of the tumour interface @˝.t0/. Thus, together with the covering
bundle of the interface we also obtain the size of the micro-scale [47].

For simplicity of notation, for the rest of the discussion in this chapter, we will
drop the index notation ˝.t0 /

for the size of the micro-scale �˝.t0 /, and we will simply
denote this by �. As a consequence, for the rest of the chapter, also the associated
covering bundle H�˝.t0 /

will be correspondingly denoted simply by H� . Moreover,
any �Y cube in H� will be referred to as micro-cube or micro-domain. Finally, for
any micro-domain �Y 2 H� , we distinguish the following topological details:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

xc�Y denotes the centre of the face � int
�Y ;

��Y ; is the line that passes through xc�Y and is perpendicular on � int
�Y

x�
�Y 2 Œ@˝.t0/�Y which will be referred to as the “midpoint” of Œ@˝.t0/�Y ;

represents the point from the intersection ��Y \ Œ@˝.t0/�Y that is located
at the smallest distance with respect to xc�Y : (5.45)

which are illustrated in Fig. 5.9, with further discussions on their well-posedness
being available in [47].

Given the particular overlapping micro-domains structure of the covering H� for
@˝.t0 /, the local cell-scale cross-interface parabolic dynamics of the MDEs that
arises on H� in the presence of source defined (5.36) can this way be decomposed
into a bundle of micro-processes occurring on each micro-domain �Y 2 H� . The
midpoints introduced above will turn out to play a key role in the forthcoming
discussion as the choreographic movement of the tumour interface captured by a
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given micro-domain �Y will be characterised and represented back at macro-scale
through the movement of the associated x�

�Y .
In the following, we describe the MDEs dynamics that emerges at micro-scale

when considering the uPA system as the main cell-scale proteolytic process that is
responsible for the ECM degradation at the invasive edge @˝.t/ of the tumour˝.t/.
This, of course, is just one example of micro-scale MDEs processes, however, the
modelling techniques remains unchanged should other proteolytic enzymes need to
be considered.

5.4.2.1 The uPA Micro-Dynamics on Each Micro-Domain in H�

On any micro-domain �Y, at any instance � 2 Œ0;
t and any micro-scale spatial
point y 2 �Y \ ˝.t0 /, a source of uPA arises as a collective contribution of the
cancer cell population that arrive within its neighbourhood, and so this is given
by the following particular form general MDEs source operator defined in (5.36),
namely by a smooth function f 1

�Y
W Œ0;
t � �Y ! RC that is defined by

1: f 1
�Y
.�; y/ D 1

�.B.y;�/\˝.t0 //
R

B.y;�/\˝.t0 /
c
˝.t0 /

.x; t0 C �/; dx; y 2 �Y \˝.t0/;

2: f 1
�Y
.�; y/ D 0; y 2 �Y n �˝.t0/C fz 2 Y j kzk2 < �g

�

; (5.46)

with the parameters � and � considered as in (5.36). Per unit time, under the
presence of the source (5.46), the uPA molecular population h1.�; �/ exercises a local
diffusion is inhibited by the interaction with the h2.�; �/ density of PAI-1 inhibitors
and binds to the cell receptors uPAR (to activate plasmin). Therefore, the uPA
dynamics on the micro-domain �Y is governed by

@h1
@�

D Dh1
h1
„ ƒ‚ …

diffusion

� �11h1h2
„ ƒ‚ …

uPA/PAI-1

C . ˛1
„ƒ‚…

production

� �12u
„ƒ‚…

uPA/uPAR

/f 1
�Y
.y; �/ (5.47)

Further, per unit time, the change in the inhibitor PAI-1 density h2.�; �/ is due to
diffusion, production caused by plasmin activation density h3.�; �/, and loss triggered
by binding to uPA and ECM. As the binding of PAI-1 to ECM corresponds to the
local distribution of ECM distribution in the neighbourhood of any point y 2 �Y,
proceeding similarly to the case of the source term (5.46), we explore this aspect by
accounting for a binding coefficient that is defined as

f 2
�Y
.y; �/ D 1

�.B.y; �//

Z

B.y;�/

v .x; t0 C �/ dx; y 2 �Y;
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where the involved notations have the same meaning as in (5.46). Therefore, the
micro-dynamics of the PAI-1 inhibitor in �Y is given by

@h2
@�

D Dh2
h2
„ ƒ‚ …

diffusion

� �21h1h2
„ ƒ‚ …

uPA/PAI-1

� �22h2 f 2�Y .y; �/
„ ƒ‚ …

PAI-1/ECM

C ˛2h3
„ƒ‚…

production

: (5.48)

Finally, under the presence of appropriate sources and natural decay, per unit
time the evolution of the plasmin density h3.�; �/ is governed by local diffusion.
Specifically, as the molecular proteolytic activity requires the binding of uPA to the
cell receptors uPAR, a direct source of plasmin density h3 results from the binding
of uPA to the surface of the readily available cells from the same maximal spatial
neighbourhood where the uPA is secreted in the first place. On the other hand, the
binding of PAI-1 to the neighbouring ECM enables additional opportunities for uPA
to bind the cell receptors uPAR, and so this indirectly results in a corresponding
formation of plasmin. Therefore, the dynamics of plasmin on �Y is given by

@h3
@�

D Dh3
h3
„ ƒ‚ …

diffusion

C �31h1 f
1
�Y
.y; �/

„ ƒ‚ …

uPA/uPAR

C �32h2 f
2
�Y
.y; �/

„ ƒ‚ …

PAI-1/ECM

� ˛3h3
„ƒ‚…

degradation

(5.49)

During its dynamics, plasmin degrades the ECM that it meets within the micro-
domain �Y, this way enabling the progression of the tumour in the space created. It
is therefore the pattern of the ECM degradation caused by the micro-dynamics of
the matrix degrading enzyme plasmin that we are seeking to characterise in order
to learn the way the macro-scale tumour boundary will evolve. In the following
subsection we focus on exploring the law for the tissue scale boundary movement
that is induced by the micro-dynamics on each micro-domain �Y.

5.4.3 The Macroscale Boundary Movement Induced by the
Invasive Edge MDE Micro-Dynamics

In the following, we focus on characterising the choreographic movement of the
part of the tumour interface captured by a given micro-domain �Y 2 H� , i.e., the
evolution of Œ@˝.t0/�Y , that will be represented back at macro-scale through the
movement of the associated midpoint x�

�Y .
Based on biological evidence, on any micro domain �Y 2 H� , the pattern of

ECM degradation corresponds to the pattern of the front of the advancing spatial
distribution of the matrix-degrading enzyme plasmin. This determines the evolution
of Œ@˝.t0/�Y and paves the way for defining appropriate movement laws for the
associated midpoint x�

�Y that will represent this back at macro-scale. However, in
order to characterise this pattern of significant ECM degradation globally, on the
entire bundle of micro-domains H� , it of interest to identify with the same fixed
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accuracy � > 0 the part of the level set of the expectation of degrading enzyme
plasmin on �Y n˝.t0 / distributed during the entire micro-dynamics that is located
at the biggest possible distance from x�

�Y .
For any given � > 0, we use the regularity property of Lebesgue measure [21]

as a stopping criterion to select the first dyadic decomposition fDjgj2J� of �Y such
that

�

�

Œ�Yn˝.t0/ n
[

fj2J� jDj
�Yn˝.t0/g
Dj

�

	 �: (5.50)

This simply means that the union of all the dyadic cubes from fDjgj2J� that are
included in �Y n ˝.t0/ approximates �Y n ˝.t0 / to accuracy �. Further, let us
denote by yj the barycenters of Dj, for all j 2 Jı. As announced earlier and widely
explained in [47], for all �Y 2 H� , this provides a resolution for the �Y at which
we identify the part of the level set 1

�.�Yn˝.t0//
R

�Yn˝.t0/ h3.y; �/dy in the distribution
of the advancing front of degrading enzymes h3.�; �/ outside ˝.t0/ that is located
at maximal distance in radial direction with respect to the midpoint x�

�Y . Thus, this
resolution allows us to identify the dyadic pixels Dl that support the peaks at the tip
of the plasmin front at the final time of micro-dynamics �f D 
t that still have
significant contribution in degrading the ECM. Hence, as described in [40, 47],
the pixels supporting these peaks represent the furthest away part of the level set

1
�.�Yn˝.t0//

R

�Yn˝.t0/ h3.y; �/dy with respect to x�
�Y and are identified by the following

subset of indices, namely

I� WD

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

l 2 J�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

9r 2 S1 such that, if the index i 2 J� has the properties:
1/ Di \ fx 2 R

n jx D x�
�Y C ˛r; ˛ 2 Rg ¤ ;;

2/ Di  �Yn˝.t0/;
3/ 1

�.Di/

R

Di
h3.y; �f /dy � 1

�.�Yn˝.t0//
R

�Yn˝.t0/ h3.y; �f /dy;
then
l D argmaxfd.x�

�Y; yi/ j i 2 J� satisfies:1/; 2/; and 3/g

9

>
>
>
>
>
>
>
=

>
>
>
>
>
>
>
;

;

(5.51)

where S1  R
n is represents the unit sphere, and d.�; �/ is the standard Euclidean

distance on R
n; n D 2; 3.

Thus, as the local ECM degradation driven by each of these peaks at the tip of
advancing front of plasmin depends directly both on the location of the supporting
pixel Dl and on the amount on plasmin distributed on Dl, the direction ��Y for the
potential displacement of x�

�Y is defined by the revolving direction determined by

the position vectors
���!
x�
�Y ; yl that are appropriately magnified by the corresponding

plasmin mean-value on Dl, 8l 2 I�, namely

��Y D x�
�Y C 	

X

l2I�

�

1

�.Dj/

Z

Dl

h3.y; �f /dy

�

.y � x�
�Y /; 	 2 Œ0;1/: (5.52)
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Furthermore, the displacement magnitude of the point x�
�Y is obtained as a convex

combination of the magnitudes of these position vectors whose weight accounts for
the relative MDEs strength of the peak supported by a given Dl with respect to all
the selected peaks supported by fDlgl2I� , and so this is defined by:

��Y WD
X

l2I�

R

Dl
h3.y; �f /dy

P

l2I�

R

Dl
h3.y; �f /dy

ˇ

ˇ

��!
x�
�Yyl

ˇ

ˇ: (5.53)

Finally, as discussed in [40, 47], although a displacement magnitude and a moving
direction is derived for each x�

�Y , with �Y 2 H� , this will only exercise the movement
if and only if the ECM degradation attain a certain local strength. The local strength
of ECM degradation within a given cross-interface region A�Y corresponds to the
amount of MDEs release on �Y n˝.t0 / relative to the total amount of MDEs on A
and is explored by the local transitional probability

q� W B��Y� ! RC

defined as

q�.G/ WD 1
R

�Y
h3.y; �f /dy

Z

G

h3.y; �f /dy; for all G 2 B
�

�Y
�

(5.54)

where B
�

�Y
�

represents the Borel ��algebra of �Y. In conjunction with the local
tissue conditions, this characterises whether the point x�

�Y is likely to relocate to the
new spatial position fx�

�Y or not. Thus, the midpoint x�
�Y is moved to the new position

fx�
�Y if and only if

q�.x�
�Y / WD q�.�Y n˝.t0// exceeds a certain threshold !�Y 2 .0; 1/.

Therefore, we finally obtain that the new tumour boundary @˝.t0 C
t/ will be the
interpolation of the following set of points:

fx�
�Y j�Y 2 H� and q�.x�

�Y/ < !�Y g [ ffx�
�Y j�Y 2 H� and q�.x�

�Y / � !
�Y g (5.55)

Therefore, the invasion process will now continue on the new expanded domain
˝.t0 C 
t/, with a new macro-micro stage dynamics on the next multiscale
timeframe Œt0 C
t; t0 C 2
t, as detailed in [47].
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5.4.4 Multiscale Computational Simulation Results

We implemented the multiscale model of cancer invasion described in this section
using the multiscale numerical approach introduced in [47], which involves finite
differences at macro-scale combined with finite element at micro-scale [40]. Here
we consider that the cancer cell population is initially distributed on the tumour
region ˝.0/ WD B

k�k2
..2; 2/; 0:5/, centred at the centre of the environmental cube

Y WD Œ0; 4 � Œ0; 4, and is assumed to be given by

c.x; 0/ D

�

exp
� � jjx�.2;2/jj22p


x
y

� � exp.�28:125/
�

�

�B
k�k2

..2;2/;0:5�r/ 
  r

�

.x/

2
; x 2 Y;

(5.56)

where B
k�k2
.�; r/ represents the usual L2-ball centred at � 2 R

n and of radius
r, �B

k�k2
..2;2/;0:5�r/ represents the characteristic function, and  � is defined by the

standard mollifier  W Rn ! RC,

 .x/ WD

8

ˆ
ˆ
<

ˆ
ˆ
:

exp
�

1

x2�1

�

R

B
k�k2

.0;1/

exp
�

1

z2�1

�

dz
if kxk2 < 1;

0 if kxk2 � 1;

(5.57)

via the formula

 r.x/ WD 1

rn
 .

x

r
/: (5.58)

Further, given the heterogeneous nature of both the tumour and the tissue, to
illustrate the modelling described in the previous section we consider here the
following initial conditions for the ECM, namely

v.x; 0/ D 1C0:3 sin .4�jjxjj2/Csin .4�jj.4;0/�xjj2/
2

; x 2 Y: (5.59)

Figure 5.10 shows the initial conditions (5.56) and (5.59) of ECM and cancer cell
distributions that are used in all the simulations presented in this chapter.

For the enzymatic components entering the system (5.34), we consider the
following initial conditions, namely:

u.x; 0/ D 1 � 1
2
c.x; 0/; x 2 Y

p.x; 0/ D 1
2
c.x; 0/; x 2 Y

m.x; 0/ D 1
20
c.x; 0/; x 2 Y

(5.60)
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Fig. 5.10 This is a partial reproduction of Fig. 1 from [40]. It shows initial conditions of the
distributions of cancer cells (left column) and ECM (right column) and the invasive boundary of
the tumour (white line)

Finally, in the absence of tissue data at the invasive edge of the tumour, the
tissue threshold !�Y controlling whether or not a point on the boundary exercises
the movement is taken here in the following functional form:

!�Y .ˇ/WD

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

sin

�

�
2

�

1� 1
ˇ

v!.t0/.x
�
�Y ;t0C
t/

sup
�2@˝.t0/

v˝.t0/.�;t0C
t/

��

if
v!.t0/.x

�
�Y ;t0C
t/

sup
�2@˝.t0/

v˝.t0/.�;t0C
t/ 	ˇ

sin

�

�
2.1�ˇ/

�

v!.t0/.x
�
�Y ;t0C
t/

sup
�2@˝.t0/

v˝.t0/.�;t0C
t/�ˇ
��

if
v!.t0/.x

�
�Y ;t0C
t/

sup
�2@˝.t0/

v˝.t0/.�;t0C
t/ >ˇ

(5.61)

where ˇ 2 .0; 1/ is a parameter that explores the level of ECM degradation,
indicating the most favourable conditions for invasion in the peritumoural region,
[47]. We can immediately observe that this functional form of !�Y .�/ does not allow
for any invasion if the MDEs cause either a complete destruction or a very superficial
degradation of the surrounding ECM.

In this context, the following three figures present here the computational results
published first in [40], Figs. 7, 8, and 9.

Figure 5.11 show the results of the evolving cancer cell and ECM spatial
distributions and of the invasive tumour boundary at macro-time stage 20, 40, 60.
Even though we started from the symmetric distribution of cancer cells shown in
Fig. 5.10, in each macro-micro stage of the multiscale invasion process, the macro-
scale cancer dynamics gives rise to a heterogeneous distribution of sources for the
bundle of micro-processes occurring at the tumour invasive edge. As described
by the model, these micro-processes determine the macro-scale movement char-
acteristics of the tumour boundary, ultimately resulting in pronounced changes in
tumour morphology. These morphological changes lead to the pronounced fingering
and lobular patterns in the evolution of the invading tumour shown in Fig. 5.11.
Furthermore, focussing now on the effect of the ECM proliferation rate�2 and ECM
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Fig. 5.11 This is a reproduction of Fig. 7 from [40]. It consists of simulation results showing
distributions of cancer cells (left column) and ECM (right column) and the invasive boundary of
the tumour (white line) at various macro-micro stages: Stage 20, 40, 60. Starting from the initial
conditions shown in Fig. 5.10 in this chapter, these results were obtained for the standard parameter
set considered in [40], with Dc D 4:3� 10�3, ˇ D 0:7625, �2 D 0 and ı D 0:75
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Fig. 5.12 This is a reproduction of Fig. 8 from [40]. It consists of simulation results showing
distributions of cancer cells (left column) and ECM (right column) and the invasive boundary of
the tumour (white line) at macro-micro stage 60. Starting from the initial conditions shown in
Fig. 5.10 in this chapter, these results were obtained for the standard parameter set considered in
[40], with Dc D 4:3 � 10�3 , ˇ D 0:7625, ı D 1:5, and for rows 1–3 of images we consider
�2 D 0:0005, �2 D 0:001, and �2 D 0:005, respectively
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Fig. 5.13 This is a reproduction of Fig. 9 from [40]. It consists of simulation results showing
distributions of cancer cells (left column) and ECM (right column) and the invasive boundary of
the tumour (white line) at macro-micro stage 60. Starting from the heterogeneous initial conditions
shown in Fig. 5.10 in this chapter, these results were obtained for the standard parameter set
considered in [40], with Dc D 4:3 � 10�3 , �2 D 0, ˇ D 0:7625, and for rows 1–3 of images we
consider ı D 0:5, ı D 0:75, and ı D 1, respectively
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degradation rate ı, as discussed in [40]. Figures 5.12 and 5.13 show consistency
in the invasion patterns when we vary the parameters �2 2 Œ0:0005; 0:005 and
ı 2 Œ0:5; 1. Finally, although not shown here, consistent changes in the invasion
patterns have also been observed when the tissue parameter ˇ was perturbed, see
[40] for details.

5.5 Concluding Remarks

This chapter offered a multiscale perspective in modelling cancer invasion based on
the recent advances in the area proposed in [13, 14, 40, 47]. Having started by pre-
senting two macro-scale modelling approaches concerning the role of cell-adhesion,
molecular signalling and matrix degrading enzymes in cancer invasion, we contin-
ued the discussion by revisiting some of these important invasion processes from a
multiscale moving boundary modelling perspective, which incorporated key aspects
of both tissue-scale and cell-scale dynamics as well as the top-down and bottom-up
links between the scales.

We began our discussion with the macro-scale non-local modelling described in
Sect. 5.2 focused on aspects concerning the effect of cell-adhesion on the growth
and development of cancerous tissue. While the approach involving n cancer cell
subpopulations was extending previous modelling [18], the invasion results obtained
for both one and two cancer cell subpopulations were in line with the infiltrative
patterns observed in [27, 33] for esophageal and lung cancer.

Section 5.3 described the development a of a general macroscopic spatio-
temporal-structural modelling approach with application to the uPA system in
cancer invasion. This allowed us to explore the coupled dynamics of a cancerous
tissue consisting of a mixture of tumour cells structured in terms of their enzymatic
ability, ECM, and q free molecular species out of which only a subselection of p < q
molecular species could bind to the cell surface. After a rigorous derivation of the
general spatio-temporal-structural framework, we apply this to the specific case of
the uPA system, obtaining this way a structural model that incorporates the binding
and unbinding properties of the uPA and PAI-1. Moreover, as expected, an i-state
integration of system (5.33) leads to a local non-structural system that is similar in
flavour to the one initially proposed by Chaplain and Lolas [9, 10].

Finally, Sect. 5.4 expanded the approach from a multiscale moving boundary
perspective. The general multiscale modeling approach that was described here
explores in an integrated manner the tissue-scale cell population dynamics and key
proteolytic cell-scale molecular mechanics (occurring in a cell-scale neighbourhood
of the tumour invasive edge) together with the top-down and the bottom-up link
between these two biological scales. This explores the key role that is played in
cancer invasion by the matrix-degrading enzymes which are secreted from the outer
proliferating rim. The evolution of tissue-scale tumour morphology is expressed
here in multiscale manner, by accounting for the invasive edge cell-scale micro-
dynamics (induced by the macro-scale), which determines the law for macro-scale
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tumour boundary relocation. The computational experiments presented here reveal
a pronounced fingering and lobular character in the evolution of the cancer invasion
pattern.

Looking forward, all the modelling approaches presented in this chapter could be
taken forward by bringing in more details either at the level of cell population, by
accounting for instance for tumour cells heterogeneity, or at the level of cell-scale
dynamics, by accounting for more complex signalling pathways.
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