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      Methods and Designs                     

     Florian     Schmiedek    

          Introduction 

 Researchers who aim to investigate the effectiveness of cognitive trainings can 
draw on well-established methodology for the evaluation of behavioral inter-
ventions in psychology and education (Murnane and Willett  2010 ; Shadish et al.  2002 ). 
Doing so, they face a long list of potential issues that can be characterized as 
threats to different types of the validity of fi ndings. Here, the most common and 
relevant threats, as well as possible methodological approaches and study design 
elements to reduce or rule out these threats in the context of cognitive training 
studies, will be discussed. 

 The commonly preferred design for investigating cognitive training interventions 
is one with random assignment of a sample of participants to training and control 
groups with  pre- and posttest assessments   of a selection of tasks chosen to represent 
one or more cognitive abilities that the training might potentially improve. 
Signifi cantly larger average improvements on such outcome measures in the training 
than in a control group are taken as evidence that the training benefi ts cognition. 
Such a design indeed clears out a number of potential issues. Certain problems that 
arise when evaluating cognitive trainings, however, require solutions that go beyond, 
or modify, commonly used of-the-shelf study design elements. For example, the 
inclusion of no-treatment control groups for ruling out threats to internal validity and 
the use of single tasks as outcome measures of transfer effects are associated with 
certain defi cits. In the following, methodological problems and challenges will be 
discussed along the established typology of statistical conclusion validity, internal 
and external validity, as well as construct validity (Shadish et al.  2002 ).  
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     Statistical Conclusion Validity   

 Statistical conclusion validity refers to whether the association between the treatment 
and the outcome can be reliably demonstrated. Such demonstration is based on infer-
ential statistics, which can provide evidence that observed differences between exper-
imental groups in posttest scores, or in pretest-to- posttest changes, are unlikely to be 
due to sampling error (i.e., one group having higher scores simply by chance). Given 
that existing training studies mostly have relatively small sample sizes (with experi-
mental groups of more than 30–40 participants being rare exceptions), the statistical 
power to do so often is low, and fi ndings are in danger of being diffi cult to replicate 
and being unduly infl uenced by outliers and violations of statistical assumptions. 

 Furthermore, and in light of recent discussions about the replicability of fi ndings 
and defi cient scientifi c standards in psychological research (e.g., Maxwell et al. 
 2015 ), there is the problem that low power might increase researchers’ propensity 
to lapse into fi shing-for-effect strategies. Given that (a) the researchers’ desired 
hypothesis often will be that a training has a positive effect, (b) training studies are 
resource-intensive, and (c) the non- registered analysis of data allows for a number 
of choices of how exactly to be conducted (Fiedler  2011 ), it has to be considered a 
danger that such choices (like choosing subsamples or subsets of outcome tasks) are 
made post hoc in favor of “fi nding” signifi cant effects and thereby invalidate results 
of inferential test statistics. In combination with publication biases that favor statis-
tically signifi cant over nonsignifi cant results, such practices in a fi eld with typically 
low power could lead to a distorted picture of training effectiveness, even in meta-
analyses. A general skepticism should therefore be in place regarding all fi ndings 
that have not been replicated by independent research groups. Regarding the danger 
of fi shing-for-effects practices, preregistration of training studies, including the spe-
cifi c hypotheses and details of data preparation and analysis, are a possible  solution  , 
which is well established in the context of clinical trials. In general, effort should be 
invested to increase statistical power and precision of effect size estimates. Besides 
large enough sample sizes, this also includes ensuring high reliability of outcome 
measures and of treatment implementation.   

    Internal Validity   

 Internal validity, that is, a study’s ability to unambiguously demonstrate that the 
treatment has a causal effect on the outcome(s), deserves getting a strong weight 
when judging the quality of intervention studies. It involves ruling out alternative 
explanations for within-group changes (including, e.g., practice effects, maturation, 
or statistical regression to the mean from pretest to posttest) and/or between-group 
differences (e.g., systematic selection effects into the treatment condition). Common 
reactions to these problems are requests to (a) use a control group that allows to 
estimate the size of the effects due to alternative explanations and (b) randomly 
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assign participants into the different groups. While intact random assignment 
assures that the mean differences between groups can be unbiased estimates of the 
 average causal effect  of the treatment (Holland  1986 ), several cautionary notes are 
at place regarding this “gold standard” of intervention studies. 

 First, the unbiasedness of the estimate refers to the expected value. This does not 
rule out that single studies (particularly if sample sizes are small) have groups that 
are not well comparable regarding baseline ability or other person characteristics 
that might interact with the effectiveness of the training. Therefore, the amount of 
trust in effect size estimates should only be high for studies with large samples or 
for replicated (meta-analytic) fi ndings. For single studies with smaller samples, 
matching techniques based on pretest scores can help to reduce random differences 
between groups that have an effect on estimates of training effects. 

 Second, the benefi ts of randomization get lost if the assignment is not “intact,” 
that is, if participants do not participate in the conditions they are assigned to or do 
not show up for the posttest. Such lack of treatment integrity or test participation 
can be associated with selection effects that turn an experiment into a quasi- 
experiment—with all the potential problems of confounding variables that can 
affect the estimate of outcome differences. 

 Third, formal analysis of causal inference based on randomized treatment assign-
ment (Holland  1986 ) shows that the interpretation of mean group differences as 
average causal effects is only valid if participants do not interact with each other in 
ways that make individual outcomes dependent on whether or not particular other 
 participants   are assigned to the treatment or the control condition. While this is 
unlikely to pose a problem if training is applied individually, it could be an issue that 
has received too little attention in studies with group-based interventions—where 
interactions among participants might, for example, infl uence motivation. 

 Whenever treatment assignment cannot be random, due to practical or ethical 
considerations, or when randomization breaks down during the course of the 
study, careful investigation of potential selection effects is required. This neces-
sitates the availability of an as-complete-as-possible battery of potential con-
founding variables at pretest. If analyses of such variables indicate group 
differences, fi ndings cannot unambiguously be attributed to the treatment. 
Attempts to remedy such group differences with statistical control techniques is 
associated with strong conceptual (i.e., exhaustiveness of the available informa-
tion regarding selection effects) and statistical assumptions (e.g., linearity of the 
relation with the outcome) and should therefore be regarded with great caution. 
An alternative to regression-based control techniques is post hoc matching and 
subsample selection based on propensity score analyses (Guo and Fraser  2014 ). 
This requires sample sizes that are typically not available in cognitive training 
research, however. Benefi cial alternative design approaches for dealing with 
situations in which randomization is not possible, or likely to not stay intact, are 
available, like regression discontinuity designs or instrumental variable 
approaches (Murnane and Willett  2010 ), but have received little attention in cog-
nitive training research so far.  
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     Construct Validity   

 While the demonstration of causal effects of the treatment undoubtedly is a necessity 
when evaluating cognitive trainings, a strong focus on internal validity and random-
ization should not distract from equally important aspects of construct validity. 
Addressing the question of whether the investigated variables really represent the 
theoretical constructs of interest, construct validity is relevant for both, the treatment 
and the outcome measures. 

 Regarding the treatment, high internal validity does only assure that one or 
more aspects that differentiate the treatment from the control condition causally 
infl uence the outcome. It does not tell which aspect of the treatment it is, however. 
Given the complexity of many cognitive training programs and the potential 
involvement of cognitive processes as well as processes related to motivation, self-
concept, test anxiety, and other psychological variables in producing improve-
ments in performance, the comparison to so-called   no - contact control conditions    
typically cannot exclude a number of potential alternative explanations of why an 
effect has occurred. In the extreme case, being in a no-contact control condition 
and still having to re-do the assessment of outcome variables at posttest is so 
demotivating that performance in the control group declines from pre- to posttest. 
Such a pattern has been observed in several cognitive training studies and renders 
the interpretation of signifi cant interactions of group (training vs. control) and 
occasion (pretest vs. posttest) as indicating improved cognitive ability very diffi -
cult to entertain (Redick  2015 ). As from a basic science perspective, the main 
interest is in effects that represent plastic changes of the cognitive system, “active” 
control conditions therefore need to be designed, which are able to produce the 
same non-focal effects, but do not contain the cognitive training ingredient of 
interest. This is a great challenge, however, given the number and complexity of 
cognitive mechanisms that potentially are involved in processing of, for example, 
working memory tasks and that can be affected by trainings (von Bastian and 
Oberauer  2014 ). For many of these mechanisms, like the use of certain strategies, 
practice-related improvements are possible, but would have to be considered 
exploitations of existing behavioral fl exibility, rather than extensions of the range 
of such behavioral fl exibility (Lövdén et al.  2010 ). If motivational effects are partly 
due to the joy of being challenged by  complex tasks, it also will be diffi cult to 
invent tasks of comparably joyful complexity but little demand on working mem-
ory. In addition to inventive and meticulous creation of control conditions, it is 
therefore necessary to assess participants’ expectations, task-related motivation, 
and noncognitive outcomes, before, during, and after the intervention. 

 Regarding the outcome variables, construct validity needs to be discussed in 
light of the issue of transfer distance and the distinction between skills and abilities. 
When the desired outcome of a training is the improvement of a specifi c skill or the 
acquisition of a strategy tailored to support performing a particular kind of task, the 
assessment of outcomes is relatively straightforward—it suffi ces to measure the 
trained task itself reliably at pre- and posttest. As the goal of cognitive trainings 
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typically is to improve an underlying broad ability, like fl uid intelligence or episodic 
memory, demonstrating improvements on the practiced tasks is not suffi cient, how-
ever, as those confound potential changes in ability with performance improvements 
due to the acquisition of task-specifi c skills or strategies. It is therefore common 
practice to employ transfer tasks that represent the target ability but are different 
from the trained tasks. The question of how different such transfer tasks are from the 
trained ones is often answered using arguments of face validity and classifi cations 
as “near” and “far” that are open to criticism and diffi cult to compare across studies. 
What seems far transfer to one researcher might be considered near transfer by 
another one. Particularly if only single tasks are used as outcome measure for a 
cognitive ability, it is diffi cult to rule out alternative explanations that explain 
improvements with a task-specifi c  skill , rather than with improvements in the 
underlying  ability  (see, e.g., Hayes et al.  2015 , or Moody  2009 ). 

 The likelihood of such potential alternative explanations can be reduced if the 
abilities that a training is thought to improve are operationalized with several het-
erogeneous tasks that all have little overlap with the trained tasks and are dissimilar 
from each other in terms of paradigm and task content. The analysis of effects can 
then be conducted on the shared variance of these tasks, preferably using confi rma-
tory factor models. This allows to analyze  transfer   at the level of latent factors that 
represent the breadth of the ability construct, replacing the arbitrary classifi cation of 
“near vs. far” with one that defi nes “narrow” or “broad” abilities by referring to 
well-established structural models of cognitive abilities (Noack et al.  2009 ). If 
transfer effects can be shown for such latent factors, this renders task-specifi c expla-
nations less likely.  

     External Validity   

 External validity encompasses the generalizability of a study’s results to other sam-
ples, as well as to other contexts, variations of the intervention’s setting, and differ-
ent outcome variables. As few training studies are based on samples that are 
representative for broad populations, mostly little is known regarding generalizabil-
ity to different samples. Furthermore, as fi ndings for certain training programs are 
only rarely replicated by independent research groups, we only have very limited 
evidence so far regarding the impact of variations of the context, setting, and of the 
exact implementation of cognitive trainings. As one rare exception, the Cogmed 
working memory training (  http://www.cogmed.com/    ) has been evaluated in number 
of studies by different research groups and with diverse samples. This has resulted 
in a pattern of failed and successful replications of effects that has been reviewed as 
providing little support for the claims that have been raised for the program 
(Shipstead et al.  2012a ). 

 Similarly, generalizations of effects for certain transfer tasks to real-life cogni-
tive outcomes, like everyday competencies and educational or occupational achieve-
ment, are not warranted, unless shown with direct measures of these outcomes. 
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Even if transfer tasks are known to have strong predictive validity for certain out-
comes, this does not ensure that  changes  in transfer task performance show equally 
strong relations to  changes  in the outcomes (Rode et al.  2014 ). Finally, relatively 
little is known about maintenance and long-term effects of cognitive  trainings  . Here, 
the combination of training interventions and longitudinal studies would be desir-
able. In sum, there is a need for studies that reach beyond the typically used conve-
nience samples and laboratory-based short-term outcomes, as well as beyond 
research groups’ common practice of investigating their own pet training pro-
grams—to explore the scope, long-term effects, and boundary conditions of cogni-
tive trainings in a systematic way.  

     Data Analysis   

 The standard data-analytical approach to the pretest–posttest control-group design 
in most studies still is a repeated measures ANOVA with  group  (training vs. control) 
as a between- and  occasion  (pretest vs. posttest) as a within-subject factor, and with 
a signifi cant interaction of the two factors taken as evidence that observed larger 
improvements in the training than in the control group indicate a reliable effect of 
treatment. If there is interest in individual differences in training effects (Katz et al. 
this volume), either subgroups or interactions of the within-factor with covariates 
are analyzed. This approach comes with a number of limitations, however. 

 First, the associated statistical assumptions of sphericity and homogeneity of 
(co)variances across groups might not be met. For example, when a follow-up occa-
sion (months or years after training) is added, sphericity is unlikely to hold across 
the unequally spaced time intervals. When the training increases individual differ-
ences in performance more than the control condition, homogeneity of variances 
might not be provided. Second, participants with missing data on the posttest occa-
sions have to be deleted listwise (i.e., they are completely removed from the analy-
sis). Third, analyses have to be conducted on a single-task level. This means that 
unreliability of transfer tasks can bias results and that, if several transfer tasks for 
the same ability are available, analyses have to be conducted either one by one or on 
some composite score. 

 All these potential problems can be cleared out by basing analyses on a struc-
tural equation modeling framework and using latent change score models 
(McArdle  2009 ). Provided large enough samples, multigroup extensions of these 
 models   (Fig.  1 ) allow testing all the general hypotheses typically addressed with 
repeated measures ANOVA—and more—while having several advantages: First, 
assumptions of sphericity and homogeneity of (co)variances are not necessary, 
as (co)variances are allowed to vary across groups and/or occasions. Second, 
parameter estimation based on full information maximum likelihood allows for 
missing data. If there are participants who took part in the pretest but dropped 
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out from the study and did not participate in the posttest, their pretest score can 
still be included in the analysis and help to reduce bias of effect size estimates 
due to selective dropout (Schafer and Graham  2002 ). Third, change can be ana-
lyzed using latent factors. This has the advantage that effects can be investigated 
with factors that (a) capture what is common to a set of  tasks   that measure the 
same underlying cognitive ability and (b) are free of measurement error. This 
provides estimates of training effects that are not biased by unreliability of tasks. 
It also allows investigating individual differences in change in a way that is supe-
rior to the use of individual differences scores, which are known to often lack 
reliability. For example, the latent change score factor for a cognitive outcome 
could be predicted by individual differences in motivation, be used to predict 
other outcomes (e.g., wellbeing), or be correlated with latent changes in other 
trained or transfer tasks (e.g., McArdle and Prindle  2008 ).

   Furthermore, these models can be extended using the full repertoire of options 
available in advanced structural equation models. These include multilevel analysis 
(e.g., to account for the clustering of participants in school classes), latent class 
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  Fig. 1     Two-group latent change score model   for pretest–posttest changes in a cognitive training 
study. Changes are operationalized as the latent difference (∆) between latent factors at pretest 
( F  t1 ) and posttest ( F  t2 ). These factors capture the common variance of a set of indicator tasks (A, 
B, and C). Ideally, factor loadings ( λ ), variances of the residual terms ( e ), and task intercepts (not 
shown) are constrained to be equal across groups and occasions (i.e., strict measurement invari-
ance). Based on this model, hypotheses regarding group differences in pretest mean levels ( M  Pre ) 
and mean changes from pre- to posttest ( M  Δ ) can be investigated, as well as hypotheses regarding 
the variance and covariance of individual differences in pretest levels and changes ( double-headed 
curved arrows  on latent factors)       
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analysis (e.g., to explore the presence of different patterns of improvements on a set 
of tasks), item response models (e.g., to model training-related changes at the level 
of responses to single items), and more. 

 Besides a lack of awareness of these advantages, three requirements of latent 
change score models might explain why they have been used relatively little in 
cognitive training research so far (Noack et al.  2014 ). First, these models 
typically require larger sample sizes than those available in many training studies. 
When analyzed in a multigroup model with parameter constraints across groups, 
however, it may be suffi cient to have smaller sample sizes in each group than 
those typically requested for structural equation modeling with single groups. 
Second, the models require measurement models for the outcome variables of 
the training. As argued above, operationalizing outcomes as latent variables with 
heterogeneous task indicators also has conceptual advantages. If only single 
tasks are available, it still might be feasible to create a latent factor using parallel 
versions of the task (e.g., based on odd and even trials) as indicator variables. 
Third, these measurement models need to be invariant across groups and 
occasions to allow for unequivocal interpretation of mean changes and individual 
differences therein at the latent factor level (Vandenberg and Lance  2000 ). 
This includes equal loadings, intercepts, and preferably also residual variances, 
of indicator  variables  . While substantial deviations from measurement invariance 
can prohibit latent change score analyses, they at the same time can be highly 
informative, as they can indicate the presence of task- specifi c effects.  

    Summary and Outlook 

 The fi eld of cognitive training research is likely to stay active, due to the demands 
from societies with growing populations of older adults and attempts to improve 
the fundamentals of successful education and lifelong learning. As reviewed 
along the different  validity types  , this research faces a list of challenges, to which 
still more could be added (for other methodological reviews and recently dis-
cussed issues, see Boot and Simons  2012 ; Green et al.  2014 ; Schubert and 
Strobach  2012 ; Shipstead et al.  2012b ; Tidwell et al.  2014 ). At the same time, 
awareness of the methodological issues seems to be increasing so that there is 
reason to be optimistic that evaluation criteria for  commercial training programs   
(like preregistration of studies) will be established, methodological standards 
regarding research design will rise, and available advanced statistical methods 
and new technological developments (like ambulatory assessment methods to 
assess outcomes in real-life contexts) will be used. Together with basic experi-
mental and neuroscience research on the mechanisms underlying plastic changes 
in cognition, this should lead to better understanding of whether, how, and under 
which conditions different cognitive training interventions produce desirable 
effects.     

F. Schmiedek



17

   References 

    Boot, W. R., & Simons, D. J. (2012). Advances in video game methods and reporting practices (but 
still room for improvement): A commentary on Strobach, Frensch, and Schubert (2012).  Acta 
Psychologica, 141 , 276–277. doi:  10.1016/j.actpsy.2012.06.011    .  

    Fiedler, K. (2011). Voodoo correlations are everywhere—Not only in neuroscience.  Perspectives 
on Psychological Science, 6 , 163–171. doi:  10.1177/1745691611400237    .  

    Green, C. S., Strobach, T., & Schubert, T. (2014). On methodological standards in training and 
transfer experiments.  Psychological Research, 78 , 756–772. doi:  10.1007/s00426-013-0535-3    .  

    Guo, S., & Fraser, W. M. (2014).  Propensity score analysis: Statistical methods and applications . 
Thousand Oaks, CA: Sage.  

    Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). Do we really become smarter when our 
fl uid-intelligence test scores improve?  Intelligence, 48 , 1–14. Retrieved from   http://dx.doi.
org/10.1016/j.intell.2014.10.005    .  

     Holland, P. W. (1986). Statistics and causal inference.  Journal of the American Statistical 
Association, 81 (396), 945–960.  

    Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical 
framework for the study of adult cognitive plasticity.  Psychological Bulletin, 136 , 659–676. 
doi:  10.1037/a0020080    .  

    Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology suffering from a replication 
crisis? What does “failure to replicate” really mean?  American Psychologist, 6 , 487–498. 
Retrieved from   http://dx.doi.org/10.1037/a0039400    .  

    McArdle, J. J. (2009). Latent variable modelling of differences and changes with longitudinal data. 
 Annual Review of Psychology, 60 , 577–605. doi:  10.1146/annurev.psych.60.110707.163612    .  

    McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized clinical trial 
in reasoning training.  Psychology and Aging, 23 , 702–719. doi:  10.1037/a0014349    .  

    Moody, D. E. (2009). Can intelligence be increased by training on a task of working memory? 
 Intelligence, 37 , 327–328. doi:  10.1016/j.intell.2009.04.005    .  

     Murnane, R. J., & Willett, J. B. (2010).  Methods matter: Improving causal inference in educational 
and social science research . Oxford: Oxford University Press.  

    Noack, H., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2009). Cognitive plasticity in adult-
hood and old age: Gauging the generality of cognitive intervention effects.  Restorative 
Neurology and Neuroscience, 27 , 435–453. doi:  10.3233/RNN-2009-0496    .  

    Noack, H., Lövdén, M., & Schmiedek, F. (2014). On the validity and generality of transfer effects 
in cognitive training research.  Psychological Research, 78 , 773–789. doi:  10.1007/
s00426-014-0564-6    .  

    Redick, T. S. (2015). Working memory training and interpreting interactions in intelligence inter-
ventions.  Intelligence, 50 , 14–20. Retrieved from   http://dx.doi.org/10.1016/j.intell.2015.01.014    .  

    Rode, C., Robson, R., Purviance, A., Geary, D. C., & Mayr, U. (2014). Is working memory training 
effective? A study in a school setting.  PLoS One, 9 (8), e104796.  doi:  10.1371/journal.pone.0104796    .  

    Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.  Psychological 
Methods, 7 , 147–177. doi:  10.1037//1082-989X.7.2.147    .  

    Schubert, T., & Strobach, T. (2012). Video game experience and optimized cognitive control 
skills—On false positives and false negatives: Reply to Boot and Simons (2012).  Acta 
Psychologica, 141 , 278–280. doi:  10.1016/j.actpsy.2012.06.010    .  

     Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002).  Experimental and quasi-experimental 
designs for causal inference . Boston, MA: Houghton Miffl in.  

    Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the 
evidence support the claims?  Journal of Applied Research in Memory and Cognition, 1 , 185–
193. doi:  10.1016/j.jarmac.2012.06.003.x    .  

    Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? 
 Psychological Bulletin, 138 (4), 628–654. doi:  10.1037/a0027473    .  

Methods and Designs

http://dx.doi.org/10.1016/j.actpsy.2012.06.011
http://dx.doi.org/10.1177/1745691611400237
http://dx.doi.org/10.1007/s00426-013-0535-3
http://dx.doi.org/10.1016/j.intell.2014.10.005
http://dx.doi.org/10.1016/j.intell.2014.10.005
http://dx.doi.org/10.1037/a0020080
http://dx.doi.org/10.1037/a0039400
http://dx.doi.org/10.1146/annurev.psych.60.110707.163612
http://dx.doi.org/10.1037/a0014349
http://dx.doi.org/10.1016/j.intell.2009.04.005
http://dx.doi.org/10.3233/RNN-2009-0496
http://dx.doi.org/10.1007/s00426-014-0564-6
http://dx.doi.org/10.1007/s00426-014-0564-6
http://dx.doi.org/10.1016/j.intell.2015.01.014
http://dx.doi.org/10.1371/journal.pone.0104796
http://dx.doi.org/10.1037//1082-989X.7.2.147
http://dx.doi.org/10.1016/j.actpsy.2012.06.010
http://dx.doi.org/10.1016/j.jarmac.2012.06.003.x
http://dx.doi.org/10.1037/a0027473


18

    Tidwell, J. W., Dougherty, M. R., Chrabaszcz, J. R., Thomas, R. P., & Mendoza, J. L. (2014). 
What counts as evidence for working memory training? Problems with correlated gains 
and dichotomization.  Psychonomic Bulletin & Review, 21 , 620–628. doi:  10.3758/s13423-
013-0560-7    .  

    Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance 
literature: Suggestions, practices, and recommendations for organizational research. 
 Organizational Research Methods, 3 , 4–70. doi:  10.1177/109442810031002    .  

    von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: 
A review.  Psychological Research, 78 , 803–820. doi:  10.1007/s00426-013-0524-6    .    

F. Schmiedek

http://dx.doi.org/10.3758/s13423-013-0560-7
http://dx.doi.org/10.3758/s13423-013-0560-7
http://dx.doi.org/10.1177/109442810031002
http://dx.doi.org/10.1007/s00426-013-0524-6

	Methods and Designs
	 Introduction
	 Statistical Conclusion Validity
	 Internal Validity
	 Construct Validity
	 External Validity
	 Data Analysis
	 Summary and Outlook
	References


