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Abstract. Optimizing performance of Fully Homomorphic Encryption
(FHE) is nowadays an active trend of research in cryptography. One way
of improvement is to use a hybrid construction with a classical sym-
metric encryption scheme to transfer encrypted data to the Cloud. This
allows to reduce the bandwidth since the expansion factor of symmet-
ric schemes (the ratio between the ciphertext and the plaintext length)
is close to one, whereas for FHE schemes it is in the order of 1,000 to
1,000,000. However, such a construction requires the decryption circuit
of the symmetric scheme to be easy to evaluate homomorphically. Sev-
eral works have studied the cost of homomorphically evaluating classical
block ciphers, and some recent works have suggested new homomorphic
oriented constructions of block ciphers or stream ciphers. Since the multi-
plication gate of FHE schemes usually squares the noise of the ciphertext,
we cannot afford too many multiplication stages in the decryption cir-
cuit. Consequently, FHE-friendly symmetric encryption schemes have a
decryption circuit with small multiplication depth.

We aim at minimizing the cost of the homomorphic evaluation of
the decryption of symmetric encryption schemes. To do so, we focus
on schemes based on learning problems: Learning With Errors (LWE),
Learning Parity with Noise (LPN) and Learning With Rounding (LWR).
We show that they have lower multiplicative depth than usual block
ciphers, and hence allow more FHE operations before a heavy bootstrap-
ping becomes necessary. Moreover, some of them come with a security
proof. Finally, we implement our schemes in HElib. Experimental evi-
dence shows that they achieve lower amortized and total running time
than previous performance from the literature: our schemes are from 10
to 10,000 more efficient for the time per bit and the total running time is
also reduced by a factor between 20 to 10,000. Of independent interest,
the security of our LWR-based scheme is related to LWE and we provide
an efficient security proof that allows to take smaller parameters.

1 Introduction

Fully Homomorphic Encryption (FHE) is nowadays one of the most active trend
of research in cryptography. In a nutshell, a FHE scheme is an encryption scheme
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that allows evaluation of arbitrarily complex programs on encrypted data. This
idea has been introduced by Rivest et al. [26] in 1978, while the first plausible
construction has been given by Gentry [16] in 2009. Since, numerous papers
have focused on improving the efficiency of the constructions. Even if there still
remains works before FHE becomes practical, it arouses more and more interest
and the scope of application goes from genomics to finance [24].

One way of improvement has been introduced in [24]. It focuses on minimiz-
ing the communication complexity of the scheme. The idea is to use a “hybrid”
encryption scheme: some parts of the scheme are replaced by a symmetric encryp-
tion scheme. Instead of encrypting the data under the FHE scheme, the client
will only encrypt its symmetric key under the FHE scheme, and encrypt its data
under the symmetric scheme. The cloud will then homomorphically evaluate
the decryption of the symmetric scheme on the symmetrically encrypted data
and the homomorphically encrypted symmetric key, to get a ciphertext corre-
sponding to a homomorphic encryption of the data. Clearly, such a construction
has low communication complexity, since the only online data transfer is made
under the symmetric scheme. However, the cloud might pay a huge cost at the
homomorphic evaluation of the symmetric decryption. Thus, one can look for
the most “FHE-friendly” symmetric encryption scheme to use in the hybrid.

Being “FHE-friendly” consists in optimizing several criteria. First, as the
application we gave suggests, we want a scheme with a small expansion factor,
so that the communication complexity stays low. Then, other criteria depend on
the FHE construction we are building upon. All current FHE schemes are based
on variants of Gentry’s initial idea: ciphertext consists of encryption of data with
noise, and homomorphic operations increase this noise. When the upper bound of
noise is reached, one has to “bootstrap”, to reduce the noise to its initial level.
Typically, functions are represented as arithmetic circuits and multiplications
have a far higher cost than additions in terms of noise. Thus, we will want to
minimize the multiplicative depth of the decryption circuit of our symmetric
scheme. In addition, we will also take into account the total running time of our
homomorphic evaluation step. This metric highly depends on the chosen FHE
scheme, but multiplications often happen to be the main bottleneck again.

Our Contributions. In this paper, we focus on symmetric schemes having shal-
low decryption circuits. We build secure schemes with constant or small decryp-
tion circuit, namely with small multiplication depth. Contrary to the direction
followed by many recent work, that tweak block ciphers or stream ciphers [3,9],
our approach is related to provable security. Indeed, we notice that one can
construct lattice-based schemes with very small decryption circuit and then, we
evaluate the performances of our schemes using HElib to compare them with
other symmetric ciphers. Finally, we try to use HElib features (full packing and
parallelization) in order to achieve better performances. We describe two kinds
of ciphers: the first family has its security related to the difficulty of solving
the LPN problem in specific instances, while the second family has a security
proof based on the LWE problem. The first construction is similar to “symmet-
ric cryptography” since we do not have a clean security proof and consequently,
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we provide a more thorough security analysis. However, the security seems to
be easier to understand than ad-hoc constructions usually used in symmetric
cryptography, since the security problem on which the scheme is based can be
formally stated. We present a very efficient construction specifically tailored to
this problem to secure our construction from Arora-Ge type of attack on LPN.
The performance of the schemes from this family can be 10 times more effi-
cient than the most efficient previous cipher. For the second family, we have
a rigorous security proof related to LWE, while the scheme is based on LWR.
The performance of the second family can be very efficient, about 10,000 times
faster, but the caveat is that the decrypted plaintext contains random bits in the
least significant bits if we do not compute homomorphically the truncation using
the costly ExtractDigits function. Therefore, if we want to remove the erroneous
bits, the performances become equivalent to previous ciphers, while being more
efficient than AES. In some cases, we can compute with such noise.

We notice that contrary to what is claimed in many works [24], it is not
necessary to re-encrypt the symmetrically-encrypted ciphertext using the FHE
scheme when the server receives the data. We show that the evaluation of the
homomorphic decryption procedure gives ciphertexts encrypted with FHE. This
improves the performance of the scheme, since we homomorphically evaluate the
function that maps the key K to the Dec(K, c), given the ciphertext c and some
multiplications in Dec will be simplified once c is known.

Then, we describe our efficient FHE-friendly symmetric schemes based on
lattices, and more precisely on learning problems. Our results show that we can
get circuits with very small multiplication depth for the decryption algorithms
of these schemes. In addition, their security relies on hard problems or on hard
instances of lattice problems in the worst cases, as opposed to usual block ciphers.

We present a scheme whose security is based on the Learning Parity With
Noise problem (LPN) introduced in [18]. We have to specify an error correcting
code (ECC) for this scheme so that the decryption circuit is small. We choose to
use a repetition code in order to simplify the decoding and reduce its circuit in
term of multiplications. More complex ECC exist with constant decoding such
as [19] but they are only interesting from an asymptotic point of view. However,
prohibiting decryption failures makes the scheme vulnerable to the Arora-Ge [6]
attack and to avoid its most efficient variant [2] using Gröbner basis algorithms,
we use a very efficient transformation, similar to random locally function [5],
which increases the algebraic degree of the polynomials system. We provide a
detailed analysis of this attack. The function we propose is also very similar to [1]
and we can show that our construction achieves better influence parameters, but
it has higher complexity class since we need a logarithmic depth circuit.

Then, we introduce another scheme whose security is based on the Learn-
ing With Rounding problem (LWR) and a very similar version whose security
relies directly on the Learning With Errors (LWE) problem. In order to encrypt
many bits using small parameters, we provide a direct proof from LWE to the
security of the scheme. We do not rely on any reduction from LWE to LWR
since the first reduction given by Banerjee et al. [7] requires exponential para-
meters and the one by Alwen et al. [4] requires parameter linear in the number
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of samples. Here, our reduction is only logarithmic in the number of samples.
Furthermore, we extend both schemes to their ring versions. In this case, we
optimized the number of multiplications using a FFT algorithm to compute the
polynomial multiplications. Finally, we extend them to their module versions,
which generalizes standard and ring versions.

Along with a theoretical analysis, we give a homomorphic evaluation in HElib
to make practical comparisons. While the homomorphic evaluation of AES went
down to 11 ms per bit [17] and LowMC, a block cipher designed to be FHE-
friendly (and whose security has recently been analyzed [11,12]), went down to
3 ms per bit [3], which was the best so far, we go under a millisecond per bit
(with the module version of our LPN scheme). In some scenario, our performance
for the scheme based on LWR are drastically better if we allow FHE-encrypted
plaintexts to contain noise in the least significant bits. Moreover, our schemes
are a lot more flexible, in the sense that they need smaller FHE parameters,
and while these performance were amortized over a computation taking several
minutes, the evaluation of our schemes takes only from a second to a minute.

Related Work. Many papers have presented homomorphic evaluations of block
ciphers. It has started in [17], where AES has been chosen as a benchmark for
measuring the performance of HElib. Then, performance has been improved in
[23]. AES has then been used as benchmark for comparing FHE schemes in
[10,13]. Similarly, Simon has been used to compare FHE schemes [21]. Recently,
the problem has been taken the other way round, with works trying to find the
most FHE-friendly block cipher. First, a lightweight block cipher like Prince has
been suggested and evaluated [14]. Then, a new block cipher, LowMC, has been
designed specifically for this kind of application [3], as well as for multiparty
computations. Finally, using stream ciphers has also been proposed [9].

Organization of the Paper. In Sect. 2 we recall definitions about symmetric
encryption and Lattice problems in Cryptography. In Sect. 3, we explain how
we use homomorphic operation more efficiently. Then we introduce in Sect. 4
our symmetric schemes based on learning problems: LPN, LWR and LWE. The
security and performance analysis of the schemes are proved in the final version.

2 Preliminaries

Symmetric Encryption. We will say that a function of k (from positive inte-
gers to positive real numbers) is negligible if it approaches zero faster than any
inverse polynomial, and noticeable if it is larger than some inverse polynomial
(for infinitely many values of k).

Definition 1. A symmetric encryption scheme is a tuple (Gen,Enc,Dec) of
Probabilistic Polynomial-time (PPT) algorithms as follows:

– Gen(1λ): given a security parameter λ, output a secret key k;
– Enc(k,m): given a key k and a message m, output a ciphertext c;
– Dec(k, c): given a key k and a ciphertext c, output a message m′;
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and which satisfies the correctness property: if k := Gen(1λ), then for all mes-
sages m,Pr[Dec(k,Enc(k,m)) �= m] is negligible (in λ).

For the sake of clarity, we will often write the key as a subscript and the
scheme name as a superscript of our algorithms, like in EncS

k . Semantic security
is implied by the following property, which will be satisfied by our schemes.

Definition 2. A symmetric encryption scheme S has pseudo-random cipher-
texts (ciphertexts indistinguishable from random) if no PPT A can distin-
guish between ciphertexts from the scheme and the uniform distribution, i.e.
for all PPT A and for all messages m, it holds that

∣
∣ Pr[A(EncS

k (m), 1λ) =
1] − Pr[A(r, 1λ) = 1]

∣
∣ is negligible (in λ), where r is drawn randomly over the

ciphertext space.

Learning Problems. Given a finite set S and a probability distribution D on
S, s ← D denotes the drawing of an element of S according to D and s ← S the
random drawing of an element of S endowed with uniform probability.

Learning with Errors. The Gaussian distribution with standard deviation σ is
defined on R by the density function 1√

2πσ
exp(− 1

2 ( x
σ )2). The Learning With

Errors problem (LWE) has been introduced in [25]. For s ∈ Z
k
q , the LWE dis-

tribution DLWE
s,χ is defined over Z

k
q × Zq and consists in samples (a, 〈a, s〉 + e)

where a ← Z
k
q and e ← χ for some distribution χ over Zq. Typically, χ is taken

to be some integral Gaussian distribution when assuming that LWE is hard. As in
most works [25], we will consider here rounded Gaussian distributions: it basically
consists in sampling a Gaussian distribution, reducing the result modulo 1, mul-
tiplying it by q and rounding it to the nearest integer. LWE consists, for s chosen
according to some distribution over Z

k
q (typically, the uniform distribution), in

distinguishing between any desired number of samples from DLWE
s,χ and the same

number of samples drawn from the uniform distribution over Zk
q ×Zq. For rounded

Gaussian distributions, LWE is usually considered to be hard when the standard
deviation σ verifies σ >

√
k [25].

LWE can be extended into a ring version RLWE [22]. Let R = Z[X]/(P (X))
for a monic irreducible polynomial P of degree k, and let Rq = R/qR. Generally,
P is chosen to be some power-of-two cyclotomic polynomial, which are of the
form X2z +1. For an element s ∈ Rq, we define the RLWE distribution DRLWE

s,χ

over Rq ×Rq by samples (a, a.s+e) where a ← Rq and e ← χk where χk consists
in k independent samples from χ and e is interpreted as an element of Rq. The
Ring-LWE problem (RLWE) consists, for s drawn according to some distribution
over Rq, in distinguishing DRLWE

s,χ from the uniform distribution over Rq × Rq.
We will also use the Module-LWE problem (MLWE). It has been introduced

in [8] under the name of GLWE, for General LWE. However, we will call it MLWE
as in [20], because it indeed corresponds to introducing a module structure over
LWE. For an element s ∈ Rk

q , where the underlying ring polynomial has degree d,
we define the MLWE distribution DMLWE

s,χ over Rk
q ×Rq by samples (a, 〈a.s〉+e)

where a ← Rk
q and e ← χd is interpreted as an element of Rq. MLWE generalizes

LWE and RLWE: LWE is when d = 1 and RLWE when k = 1.
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By a standard hybrid argument, LWE can be extended to several secrets.
It can be shown that the problem which consists in distinguishing samples
(a, 〈a, s1〉 + e1, . . . , 〈a, sn〉 + en) ∈ Z

k
q × Z

n
q from the uniform distribution over

Z
k
q × Z

n
q , where each sj ∈ Z

k
q is chosen independently for any n = poly(k), is

at least as hard as LWE for a single secret s. An analogous statement can be
shown for RLWE and MLWE. Finally, the LWE [25], RLWE [22] and MLWE [20]
hardness assumptions have been reduced to standard lattice assumptions. The
security of MLWE seems to be intermediate between that of LWE based on
hardness results in arbitrary lattices and the security of RLWE in ideal lattices.

Learning Parity with Noise (LPN). We denote by Bη the Bernoulli distribution
of parameter η ∈ [0, 1], i.e. a bit b ← Bη is chosen such that Pr[b = 1] = η and
Pr[b = 0] = 1 − η. The LPN problem consists in LWE for q = 2. The distribution
χ chosen over Z2 corresponds to a Bernoulli distribution. We extend LPN to
RLPN and MPLN. The only difference is that the underlying polynomial will not
be cyclotomic anymore, but some irreducible polynomial modulo 2. Similarly,
these problems are also extended to a polynomial number of secrets. The main
difference between LWE and LPN is that the security of LPN remains heuristic
because no reduction has been made so far to lattice problems.

Learning with Rounding ( LWR). The LWR problem has been introduced in [7] as
a derandomization of LWE. The idea is to replace the addition of a random noise
by a rounding function. Let k be the security parameter and moduli q ≥ p ≥ 2 be
integers. We define the function 	.
p : Zq → Zp by 	x
p = 	(p/q).x̄
, where x̄ is
an integer congruent to x mod q. We extend 	.
p component-wise to vectors and
matrices over Zq. Let R denote the cyclotomic polynomial ring R = Z[z]/(zk +1)
for k a power of two. For any modulus q, we define the quotient ring Rq = R/qR
and extend 	.
p coefficient-wise to it. Note that we can use any common rounding
method, like the floor or ceiling functions. In our implementations, we use the
floor, because it is equivalent to dropping the least-significant digits in base 2
when q and p are both powers of 2.

For a vector s ∈ Z
k
q , the LWR distribution DLWR

s is defined over Z
k
q × Zp

by elements (a, 	〈a, s〉
p) with a ← Z
k
q . For a vector s ∈ Rq, the ring-LWR

(RLWR) distribution DRLWR
s is defined over Rq × Rp by elements (a, 	a.s
p)

with a ← Rq. And for a vector s ∈ Rk
q , the module-LWR (MLWR) distribution

DMLWR
s is defined over Rk

q × Rp by elements (a, 	〈a.s〉
p) with a ← Rk
q . For a

given distribution D over s ∈ Z
k
q , LWR consists in distinguishing between any

desired number of independent samples from DLWR
s and the same number of

samples drawn uniformly and independently from Z
k
q × Zp. RLWR and MLWR

are defined analogously. All these problems can be extended to several secrets,
as stated for LWE. The LWR has been reduced to LWE when q/p is exponential
in k [7], and when q/p is poly(k) and linear in the number of samples by [4].

3 Fully-Homomorphic Encryption (FHE)

While classical encryption preserves the privacy of information, homomorphic
encryption aims also at making some computation on the encrypted data.
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FHE Definitions. Formally, we have a message space M with a set of func-
tions f we would like to compute on messages, and we want an algorithm
which efficiently computes functions f ′ on the ciphertext space C such that
Dec(f ′({ci}i)) = f({Dec(ci)}i). Thus, we want the decryption function to be a
homomorphism from C to M for these functions f . This notion, originally called
a privacy homomorphism, was introduced in [26]. Here is a formal definition of
a homomorphic scheme, sometimes referred to as “somewhat homomorphism”.

Definition 3. Let F be a set of functions. A F-homomorphic encryption (HE)
scheme is a tuple of PPT algorithms (Gen,Encrypt,Decrypt,Eval) as follows:

– Gen(1λ): given a security parameter λ, output a public key pk, a secret key sk
and an evaluation key ek;

– Enc(pk,m): given the public key pk and a message m, output a ciphertext c;
– Dec(sk, c): given the secret key sk and a ciphertext c, output a message m′;
– Eval(ek, f, Ψ = (c1, . . . , cl)): given the evaluation key, a function f and a tuple

Ψ of l ciphertexts, where l is the arity of f , output a ciphertext c′;

satisfying the correctness property: for all functions f ∈ F and messages
{mi}i≤l, where l is the arity of f , if (pk, sk, ek) := Gen(1λ) and ci := Enc(pk,mi)
for all i, then Pr[Dec(sk,Eval(ek, f, (c1, . . . , cl))) �= f(m1, . . . , ml)] is negligible
(in λ).

Homomorphic Evaluation of Symmetric Encryption Schemes. We now
give a more precise description of the scenario where a symmetric encryption
scheme is used to improve FHE performance, as described in [24], and on which
we will to rely to analyse the performance of our schemes.

Optimizing Communication with the Cloud. Consider the setting where a client
uploads its data encrypted under a FHE scheme on a cloud service and wants
the cloud to compute on this data and return encrypted outputs. Typically,
FHE schemes come with an expansion factor of the order of 1,000 to 1,000,000.
To mitigate this problem, the client will send its data encrypted under some
semantically secure symmetric encryption scheme (which, by itself, is not homo-
morphic at all) along with the homomorphic encryption of its symmetric key.
Then, the steps of symmetric decryption can all be carried out on homomorphi-
cally encrypted entries. Thus, the cloud can obtain the data encrypted under
the FHE scheme by homomorphically evaluating the decryption circuit.

Here is a formal description of the protocol. Let H = (GenH ,EncH ,DecH ,EvalH)
be a FHE scheme and let S = (GenS ,EncS ,DecS) be a symmetric encryption
scheme. Let λ be the security parameter and m be the data the client wants to
send to the cloud. Let (pk, sk, ek) := GenH(1λ) and k := GenS(1λ).

– The client sends messages c1 := EncH
pk(k) and c2 := EncS

k (m) to the cloud.
– Given a couple of ciphertexts (c1, c2) received from the client, the cloud com-

putes (either at the reception or just before further computing) x = EncH
pk(c2)

and then c = Evalek(DecS , c1, x): this is why we need an efficient homomorphic
evaluation of the decryption circuit of our symmetric scheme.
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– Now, the cloud possesses a FHE-encrypted ciphertext c, which means that
DecH

sk(c) = m. Furthermore, it can now homomorphically evaluate any func-
tion f : for all f , DecH

sk(EvalHek(f, c)) = f(c).

Indeed, if the evaluation algorithm allows constant arguments, i.e. argu-
ments which are not homomorphically encrypted, this scenario can be opti-
mized further, simply by noticing that c2 does not have to be homomorphically
encrypted. Thus, when receiving c1 and c2, the cloud will just directly compute
c = Evalek(DecS , c2, c1). It still has to homomorphically evaluate the decryption
circuit of the symmetric scheme, but it saves a homomorphic encryption, and
operations with constants might be faster. This can also be seen as evaluating
the function K �→ DecS(K,m), which depends on m.

All the symmetric encryption schemes we will use are based on lattices, and,
more precisely, on learning problems. Some of them will rely on the LPN problem,
while the others will rely on the LWR or on the LWE problem. Our initial goal is
to construct efficient FHE-friendly encryption schemes. Symmetric encryptions
are used in FHE scenario in order to transfer the cloud. Here, we first describe a
much more efficient scenario for symmetric and homomorphic encryption than
the classical scenario described in [24].

4 FHE-Friendly Symmetric Encryption Based
on Learning

An Encryption Scheme Based on MLPN. Our first encryption scheme is
a generalization of the scheme introduced in [18], under the name of LPN − C
by Gilbert et al. A [n,m, d] linear binary (error-correcting) code C is a linear
subspace of Fn

2 with dimension m such that d is the minimum �1 distance between
two elements of the code. We associate it with an encoding function E : Fm

2 →
C and a decoding function D : C → F

m
2 . LPN − C is a symmetric encryption

scheme whose security can be reduced to the hardness of LPN. Let E and D
be respectively the encoding and decoding functions of a [n,m, d] linear binary
code.

Here, we describe the more general version of our scheme. Similarly, we can
define LPN − C and RLPN − C based on LPN and RLPN problems.

Definition 4 (MLPN − C). Let d, k and n be polynomials in λ. Let consider F2d

a finite field defined by an irreducible polynomial P of degree d. The symmetric
encryption scheme MLPN − C is defined as follows: Gen(1λ): output S ← F

k×n
2d

;
EncS(x): output (a,E(x)⊕a.S ⊕ e), where a ← F

k
2d and e ← Bd×n

η is interpreted
as an element of Fn

2d ; and DecS(a, y): output D(y ⊕ a.S).

For a message of m bits, this scheme produces a ciphertext of n + k bits.
Indeed, the expansion factor can tend to the one of the linear code we are using,
which is n/m, since n is any polynomial in k. Furthermore, one can consider
that a does not have to be sent, and can be replaced, for example, by the seed
used in order to generate it.
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We choose the 3-repetition code to have a small multiplication depth circuit
of degree 2. We define the encoding scheme for a ∈ F2d as (a2d−1

, a2d−1
, a2d−1

).
In order to decode a code word (a, b, c) ∈ (F2d)3, we compute ab + bc + ac. (The
normal encoding with would be (a, a, a) and the decoding (ab+ac+ bc)2

d−1
, but

we prefer to incorporate the power 2d−1 in the encoding in order to make the
homomorphic part more efficient.)

Proposition 1 [18]. LPN − C (resp. RLPN − C, MLPN − C) is semantically secure
as soon as the corresponding LPN (resp. RLPN, MLPN) problem is hard.

As it stands, if we do not bound the number of errors sent along with a mes-
sage, this scheme will produce decryption failures. They will happen when the
Hamming weight of the noise vector e is greater than the correction capacity of
the error-correcting code. We study the probability of decryption failures and we
can choose the noise parameter η so that this probability is very low. However,
in this case, more efficient attacks than BKW algorithm O(2k/ log(k/−log(1−2η)))
can be used to recover the secret in time O(k3/(1 − η)k). To thwart attacks, we
will increase their complexity using delinearization steps described later.

An important point is the choice of the error-correcting code used in the
scheme. In our context, we would like a code with shallow decoding circuit, and
indeed, codes with shallow decoding circuits are quite rare. For example, linear
codes, which have really simple encoding circuits, have complicated decoding
circuits. We would like to use a 3-repetition code, which has decoding depth 1. We
will keep using such a code in practice as it leads to very efficient homomorphic
performance, but the particular structure given to the noise requires a careful
analysis of the security, that we will do in the following section. Consequently,
in order to also thwart this attack, the delinearization steps can be useful.

Delinearization Steps. In order to counter the Arora-Ge attack, we choose to
add some noise on our values after computing the scalar product. In practice,
the ciphertext we send consists of (a,E(x) ⊕ F (a.S) ⊕ e) where F is some func-
tion involving enough layers of multiplication so that the Arora-Ge attack does
not work. Of course, this step increases the parameters we have to choose for
homomorphically evaluating our scheme, however, a few steps (3 in order to
have a sufficient security parameter) are needed in order to prevent the attacks.
We admit that such techniques are far away from provable security and come
from symmetric cryptography since F is a kind of cheap non-linear operation.
However, contrary to the symmetric setting, here the adversary cannot control
the inputs to this function and many well-known chosen plaintext attacks are
then prohibited and only known plaintext attacks need to be studied. It is easy
to see how to adapt the decryption process. The function F we choose works as
follows: on a vector V , it consecutively applies several transformations Ti, for
i ≤ d, such that [Ti(V )]j = Vj +Vxij

∗Vyij
, where the set of indices xij and yij is

chosen so that monomials do not cancel. The degree of F in the inputs is 2d. We
estimated the number of applications of such transformations needed in order
to counteract the most efficient variant of the Arora-Ge attack and for n = 512,
three steps seem reasonable.
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Even though, our scheme has a security proof, the parameters we choose
do not allow us to use the reduction. Indeed, we pick either a structured noise
(and Arora-Ge algorithms must be taken into account) or a very small noise to
reduce the decryption failure. Therefore the delinearization steps increase the
complexity of these attacks and a thorough security analysis is needed. These
steps are similar to local random functions [1,5] and we can show similar security.

An Encryption Scheme Based on LWR. We present a symmetric encryption
scheme whose security can be reduced to the LWE problem. We describe the more
general MLWR − SYM and we can similarly define LWR − SYM and RLWR − SYM.

Definition 5 (MLWR − SYM). Let d, k and n be polynomials in λ. Let consider
R, with underlying polynomial P of degree d. The symmetric encryption scheme
MLWR − SYM is defined as follows: Gen(1λ): output S ← Rk

q ; EncS(x): output
(a, x + 	a.S
p), where a ← Rk

q and DecS(a, y): output (y − 	a.S
p).

For a message of size n over Zp, this scheme produces a ciphertext consisting
of a random vector of length k over Zq and a vector of length n of Zp. Thus,
the expansion factor is 1 + log q

log p
k
n . Now, for the same reasons as for LPN − C,

this expansion factor can basically be considered as 1. The decryption circuit
has depth one plus the depth of the rounding function. When using the floor
function and if q and p are power of two, then the rounding consists in dropping
the least significant bits of the result. The most efficient FHE-friendly encryption
scheme works in only adding the plaintext on the log p most significant bits of
	a.S
p to avoid the costly ExtractDigits homomorphic function and the returned
plaintext contains noise.

Proposition 2. LWR − SYM (resp. RLWR − SYM, MLWR − SYM) is semantically
secure as soon as the corresponding LWR (resp. RLWR, MLWR) problem is hard.

An Encryption Scheme Based on LWE. We can adapt LWR − SYM so that
its security proof relies directly on the LWE assumption. This new scheme will
basically be the same as the previous one, except that the vector a will be chosen
according to some biased distribution DS . The distribution DS we will use is
defined on Z

n
q and depends on some matrix S ∈ Z

k×n
q and a distribution χ.

We will quickly present it in the case where k = 1. It verifies the property
that Pr[Ds = a] is proportional to Pr[|	p

q .(〈a, s〉 + e)
 − p
q .(〈a, s〉 + e)| < 1

4 ],

where e ← χ and 〈a, s〉 + e means that 〈a, s〉 + e is interpreted as an element
of Z. This basically means that we want the value (p/q).(〈a, s〉 + e) to be close
to its rounding for our samples a. One can efficiently sample according to this
distribution Ds: sample a uniformly, and output it if and only if, when sampling
e according to χ, the value (p/q).(〈a, s〉 + e) is at distance less than 1/4 from its
rounding. Since the distribution of 〈a, s〉 + e is indistinguishable from uniform,
the probability that a vector a gets rejected is (around) 1/2. To extend this
distribution to a matrix S, we will take a distance of 1/2 − 1/4n instead of 1/4.

Definition 6 (LWE − SYM). Let k and n be polynomials in λ. The symmetric
encryption scheme LWE − SYM is defined as follows: Gen(1λ): output S ← Z

k×n
q ;

EncS(x): output (a, x+	a.S
p), where a ← DS and DecS(a, y): output y−	a.S
p.
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Our scheme relying on RLWR and MLWR can also be adapted to schemes
called RLWE − SYM and MLWE − SYM in a similar way, that we do not explicit here.
We now show that the security of LWE − SYM (resp. RLWE − SYM, MLWE − SYM)
directly reduces to the LWE (resp. RLWE, MLWE) hardness assumption. Our
reduction is better than previous ones in the case of one secret. We introduce
the problem LWRD (resp. RLWRD, MLWRD) as the same problem as LWR (resp.
RLWR, MLWR) except that a is drawn according to the distribution D. To choose
secure parameters for LWR, we picked k = 128 and p <

√
q according to [15].

Proposition 3. LWE − SYM (resp. RLWE − SYM, MLWE − SYM) is semantically
secure as soon as the corresponding LWE (resp. RLWE, MLWE) problem is hard.

Since σ is usually chosen to be at least
√

k in LWE, our modulus-to-error
ratio q/p verifies q/p > O(n

√
k log m), which is an improvement compared to

previous reductions which depend on m rather than log m.
The schemes LWR − SYM and LWE − SYM are similar, except that LWE − SYM

involves some checking when generating vectors a. Thus, LWE − SYM has exactly
the same efficiency as LWR − SYM for the homomorphic part. The only difference
of performance lies in the symmetric encryption, because the generation of the
vectors a is a constant factor longer. Thus, we only present the implementation
of LWR − SYM, because we are only interested in the homomorphic part.
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