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Abstract. Security against adaptive chosen-ciphertext attack (CCA) is
a de facto standard for encryption. While we know how to construct
CCA-secure encryption, there could be pragmatic issues such as black-
box design, software mis-implementation, and lack of security-oriented
code review which may put the security in doubt. On the other hand,
for double-layer encryption in which the two decryption keys are held
by different parties, we expect the scheme remains secure even when
one of them is compromised or became an adversary. It is thus desirable
to combine two encryption schemes, where we cannot be assured that
which one is really CCA-secure, to a new scheme that is CCA-secure. In
this paper we propose new solutions to this problem for symmetric-key
encryption and public-key encryption. One of our result can be seen as
a new application of the detectable CCA notion recently proposed by
Hohenberger et al. (Eurocrypt 2012).
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1 Introduction

Secure systems are usually complex and involve multiple components. If a com-
ponent turns out to be problematic, the whole system may become totally inse-
cure. For security-critical applications, a prudent practice is to have a robust
design, such that the system remains secure even if a component is insecure. Of
course, if one could identify which component is insecure, the designer can simply
replace it with a secure one. Yet, it is notoriously difficult to ensure that a system
component is secure in general. One example is that a component primitive is
implemented as a black-box which the combiner cannot assert its security. On
the other hand, even if the source code (of the software) or the circuit footprint
(of the hardware) were available, asserting its security depends on the rigor and
quality of the corresponding security-oriented review.
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In this paper, we look into a basic cryptographic tool which is encryption.
We consider both public-key encryption (PKE) and symmetric-key encryption
(SKE). The work of Herzberg [7] motivated the need of robust design of cryp-
tosystem, which features a combination of multiple instantiation of the same
primitives (e.g., one may consider ElGamal encryption and RSA encryption as
examples), such that as long as one of them ensures a certain level of security,
the same security guarantee is preserved by the combined design, without know-
ing beforehand which one is that. Robust combiner achieving this property can
ensure security even if there is doubt in the security of the component primi-
tives [6]. It is also termed as tolerant cryptographic schemes [7] or cryptanalysis-
tolerant schemes [5] in the literature.

Herzberg [7] proposed combiners that are secure against chosen-plaintext
attack (CPA) or chosen-ciphertext attack. However, it is hard to achieve security
against adaptive chosen-ciphertext attack (CCA in this paper1) if one of the
component schemes turns out to be malleable. In the CCA attack, the adversary
can query to a decryption oracle even after the adversary has obtained the
challenge ciphertext, and the only disallowed query is the challenge ciphertext
itself. Hence, if a part of the ciphertext is malleable, an adversary can simply
maul it and obtain the plaintext from the decryption oracle. Dodis and Katz [5]
proposed a cryptanalysis-tolerant CCA-secure encryption scheme, which remains
secure when only an unknown one of the component schemes is CCA-secure.

Another usage of such a combiner is to achieve security for cryptosystems in
which the decryption requires two private keys held by different parties. Security
remains preserved when one of the parties is compromised by the adversary. An
application is to support revocation via a security-mediator, a party whom needs
to help the non-revoked users in every decryption request. Immediate revocation
can be achieved once it is instructed to stop entertaining any further (partial)
decryption request of the revoked user. For example, Chow et al. [2] proposed a
CCA-secure security-mediated certificateless encryption scheme, combining an
identity-based encryption with a public-key encryption generically. Without a
combiner, a specific ad-hoc construction is probably needed [3].

Our Results. In this paper, we give two other cryptanalysis-tolerant CCA-secure
encryption schemes, one for PKE and one for SKE. Our PKE combiner matches
well with the notion of detectable chosen-ciphertext attack (DCCA) proposed by
Hohenberger et al. [8] recently. Intuitively, DCCA is a weaker version of CCA,
where “dangerous” ciphertexts are not allowed to be queried to the decryption
oracle. Here, whether a ciphertext is dangerous can be checked by a polynomial-
time function. Our combiner aims to achieve indistinguishability against DCCA
attack, by detecting whether a query is originated from the challenge ciphertext
of a component scheme. If so, such decryption query is disallowed. This gives a
conceptually simple combiner with an elementary security proof. Furthermore,
it illustrates yet another application of this DCCA notion.2

1 We remark that it is called CCA2 in the literature when the adaptiveness matters.
2 While the original paper has discussed the application of DCCA in ruling out some

known implementation bug of a “sloppy” encryption scheme [8], our combiner does
not assume the bug from the component scheme can be easily detected.
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Yet, our combiner is downgrading the security of the component scheme since
one of them is CCA-secure, but the resulting scheme is only DCCA-secure. For
getting CCA-security, we resort back to the result of Hohenberger et al. [8]. Their
work showed that we can construct a CCA-secure encryption scheme by a nested
encryption approach, taking a DCCA-secure scheme, a CPA-secure scheme, and
a 1-bounded CCA-secure scheme [4]. A q-bounded CCA-secure encryption sys-
tem is secure against q chosen ciphertext queries, which can be constructed via
a CPA-secure encryption primitive [4].

We then propose another combiner to directly obtain an SKE scheme with
CCA security, by taking two SKE schemes in which only one of them is CCA-
secure. This is different from our combiner for PKE. Note that an SKE scheme
with security against chosen-plaintext attack and integrity of the ciphertext
implies that this scheme is also CCA-secure [1]. For this combiner, our strategy
is to work on these two properties instead, by taking two component schemes
where an unknown one of them possesses of both properties.

Finally, we review in appendix the nested encryption technique of
Hohenberger et al. [8] for obtaining CCA security.

2 Preliminaries

2.1 CCA Security for PKE

Definition 1 (Public-Key Encryption). A public-key encryption scheme
PKE consists of the following three probabilistic polynomial-time (PPT) algo-
rithms (KeyGen,Enc,Dec).

– (EK ,DK ) ← KeyGen(1λ): the algorithm outputs a pair of keys consisting of
the public encryption key EK and the private decryption key DK, according
to the input security parameter 1λ.

– C ← Enc(EK ,m): the algorithm takes a public key EK and a plaintext m as
inputs, and outputs a ciphertext C.

– m ← Dec(DK , C): the algorithm uses the private key DK to decrypt a cipher-
text C to recover the plaintext m, or to output ⊥ denoting C is invalid.

When the context is clear, we may put the input key as a subscript instead,
or simply omit it.

We recall the definition of CCA security. Consider the following experiment
ExpccaA,PKE(1λ) for PKE :

– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives A EK , and keeps DK to itself.

– Query Phase 1: A is given full access to the decryption oracle Dec(DK , ·).
When the adversary A decides to terminate the query phase, it outputs a pair
of messages m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(EK ,mb) and sends C∗ to A.
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– Query Phase 2: A continues to have access to Dec(DK , ·), but is not allowed
to request for a decryption of C∗. Finally A outputs a bit b′.

– Output: The output of the experiment is defined to be 1 if b′ = b, otherwise 0.

A PKE scheme PKE = (KeyGen,Enc,Dec) is CCA secure if for all PPT
adversaries A, there exists a negligible function negl() such that:

Pr[ExpccaA,PKE(1λ) = 1] ≤ 1
2

+ negl(λ).

2.2 Detectable Chosen Ciphertext Security

Detectable chosen ciphertext attack (DCCA) is an attack mode against PKE
introduced by Hohenberger et al. [8], which is weaker than the standard CCA
notion. Considering a DCCA-secure PKE (or detectable encryption) suggests
a new way to build CCA-secure encryption scheme. Their results show that
one can construct a CCA-secure PKE scheme by applying nested encryption
techniques on three primitives that are DCCA-secure, 1-bounded CCA-secure,
and CPA-secure respectively.

A detectable encryption scheme is defined by Π = (KeyGen,Enc,Dec, F ),
where KeyGen, Enc, and Dec behave as those in traditional encryption schemes,
but with an additional efficient boolean function F () available, which is designed
to detect “dangerous” ciphertext. Specifically, F () will be applied before any
decryption query in Phase 2 of the original CCA game. When the queried
ciphertext C “is related to” the challenge ciphertext C∗, meaning that adversary
can infer “useful” information about C∗ from the decryption query of C, F ()
will return 1 and the query is rejected; else the decryption result of C will
be returned to the adversary. Definition 2 formally describes the syntax of a
detectable encryption scheme.

Definition 2 (Detectable Encryption). A detectable encryption scheme con-
sists of the following PPT algorithms (KeyGen,Enc,Dec, F ).

– KeyGen,Enc,Dec are defined as those in a regular PKE scheme.
– {0, 1} ← F (EK , C, C∗): The detecting function F takes as inputs a public

key EK and two ciphertexts C and C∗, and outputs 1 if C and C∗ has some
relations, else outputs 0.

The definition of F () above is at its full generality. We may omit the input
of EK from F () when the function F () does not need it.

Correctness is defined as in a regular encryption scheme. A DCCA-secure
scheme must satisfy unpredictability for F and indistinguishability under DCCA.

Unpredictability of the Detecting Function [8]. Intuitively, it is hard for the adver-
sary to find a useful ciphertext C, given the detectable function F () and a pub-
lic key EK . This is formally defined via the game ExpunpA,Π(1λ) for a detectable
scheme Π = (KeyGen,Enc,Dec, F ) played by an adversary A.
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– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives EK to A, and keeps DK to itself.

– Query: A can fully access the decryption oracle Dec(DK , ·). When A concludes
the query phase, it outputs a message m and a ciphertext C.

– Challenge: The challenger C outputs a ciphertext C∗ ← Enc(EK ,m).
– Output: The experiment outputs F (EK , C, C∗).

A detectable encryption scheme Π is said to have unpredictability for F if,
for any PPT adversary A, we have Pr[ExpunpA,Π = 1] ≤ negl(λ).

One can formulate a stronger version of the above game, in which the adver-
sary is given the decryption key instead of the oracle [8]. This implies the basic
version of undetectability since the adversary can simulate the decryption oracle
when given DK .

Indistinguishability under DCCA [8]. Now we formalize the confidentiality guar-
antee according to the following experiment ExpdccaA,Π(1λ):

– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives A EK , and keeps DK to itself.

– Query Phase 1: A is given full access to the decryption oracle Dec(DK , ·).
When the adversary A decides that the query phase ends, it outputs messages
m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(EK ,mb) and sends C∗ to A.

– Query Phase 2: A continues to have access to Dec(DK , ·), but is not allowed
to issue a decryption query such that F (EK , C, C∗) = 1.

– Output: A wins the game and the experiment outputs 1 if and only if b′ = b.

A detectable encryption scheme Π is said to have indistinguishability under
DCCA, if we have Pr[ExpdccaA,Π = 1] ≤ 1

2 + negl(λ) for any PPT adversary A.

2.3 Authenticated (Symmetric-Key) Encryption

Definition 3 (Symmetric-Key Encryption). A symmetric-key encryption
scheme SKE consists of the following three probabilistic polynomial-time (PPT)
algorithms (KeyGen,Enc,Dec).

– SK ← KeyGen(1λ): the algorithm outputs a secret key SK according to the
input security parameter 1λ.

– C ← Enc(SK ,m): the algorithm takes a secret key SK and a plaintext m as
inputs, and outputs a ciphertext C.

– m ← Dec(SK , C): the algorithm decrypts a ciphertext C to the corresponding
plaintext m, or outputs ⊥, by using the secret key SK .
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Confidentiality. We recall the definition of CPA security and CCA security.
Consider the following experiment, ExpatkA,SKE(1λ) for SKE :

– Setup: The challenger C runs KeyGen(1λ) and obtains the secret key SK .
– Query Phase 1: A is given full access to the encryption oracle Enc(SK , ·)

for atk = cpa, and an additional decryption oracle Dec(SK , ·) for atk = cca.
When the adversary A decides to terminate the query phase, it outputs a pair
of messages m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(SK ,mb) and sends C∗ to A.

– Query Phase 2: A continues to have access to Enc(SK , ·) for atk = cpa. For
atk = cca, the adversary also has access to the decryption oracle, but is not
allowed to request for a decryption of C∗. Finally A outputs a bit b′.

– Output: The output of the experiment is defined to be 1 if b′ = b, otherwise 0.

An SKE scheme SKE = (KeyGen,Enc,Dec) is CPA/CCA-secure if for all
PPT adversaries A, there exists a negligible function negl() such that:

Pr[ExpatkA,SKE(1λ) = 1] ≤ 1
2

+ negl(λ)

for atk = cpa or atk = cca respectively.

Integrity. Integrity of ciphertexts (INT) or integrity of plaintexts (INT-PTXT)
is formally defined via the following experiment, ExpatkA,SKE(1λ), played by an
adversary A for an SKE scheme SKE , where atk = int or atk = int-ptxt respec-
tively.

– Setup: The challenger C runs KeyGen(1λ) and obtains the secret key SK .
– Query: A is given full access to the encryption oracle Enc(SK , ·) and the

decryption oracle Dec(SK , ·).
– Challenge: When the adversary A decides to terminate the query phase, it

outputs a forgery C∗.
– Output: The challenger C decrypts C∗ to obtain M∗.

• For atk = int, if M∗ �=⊥ and C∗ has never appeared as a response by the
challenger to any encryption oracle query of A, A is considered to have
won the game, and the experiment outputs 1; otherwise, outputs 0.

• For atk = int-ptxt, if M∗ �=⊥ and M∗ has never appeared in any encryption
oracle query, A is considered to have won the game, and the experiment
outputs 1; otherwise, outputs 0.

An SKE scheme SKE = (KeyGen,Enc,Dec) is INT-secure/INT-PTXT-secure
if for all PPT adversaries A, there exists a negligible function negl() such that:

Pr[ExpatkA,SKE(1λ) = 1] ≤ negl(λ)

for atk = int or atk = int-ptxt respectively.
An INT-secure scheme is also INT-PTXT-secure [1].
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3 Combiner from CCA Security to DCCA Security

Given two public-key encryption schemes, PKE1 and PKE2 where PKE1 =
(KeyGen1,Enc1,Dec1), PKE2 = (KeyGen2,Enc2,Dec2) such that only one of
them is CCA-secure, we can build a detectable public-key encryption scheme
PKE = (KeyGen,Enc,Dec, F ) that achieves DCCA security.

– (EK ,DK ) ← KeyGen(1λ): KeyGen(1λ) executes the key generation algorithm
of PKE1 and PKE2: (EK 1,DK 1) ← PKE1.KeyGen1(1λ), (EK 2,DK 2) ←
PKE2.KeyGen2(1λ); and outputs EK = (EK 1,EK 2) and DK = (DK 1,DK 2).

– C ← Enc(m): this algorithm chooses a random string r which is as long as the
message m, and sets C = (C1, C2) = (PKE1.Enc1(r),PKE2.Enc2(r ⊕ m)).

– m ← Dec(DK , C): this algorithm returns m = DecDK1(C1) ⊕ DecDK2(C2).
– {0, 1} ← F (EK , C, C∗): Let C∗ = (C∗

1 , C∗
2 ) be the challenge ciphertext. Simi-

larly, parse C as (C1, C2). We define the detecting function F (EK , C, C∗) to
output 1 if and only if:

C1 = C∗
1 or C2 = C∗

2 ;

otherwise, i.e., C1 �= C∗
1 and C2 �= C∗

2 , it outputs 0.
In the following, we will show that this construction achieves DCCA security.

Lemma 4. The detecting function F satisfies unpredictability.

Proof. Since both PKE1,PKE2 are probabilistic schemes, without receiving the
challenge ciphertext and with no decryption key, no adversary can output a
ciphertext C such that F (EK , C, C∗) = 1 with non-negligible probability. Thus
the unpredictability of the detecting function F for the combiner scheme is satis-
fied. Next we prove indistinguishability of encryptions, which will then complete
the proof of DCCA security. ��
Lemma 5. If PKE1 is CCA-secure, then PKE is DCCA-secure.

Proof. Since PKE satisfies unpredictability of the detecting function F , it suffices
to show that PKE is indistinguishable. If there is an adversary A which can break
the indistinguishability experiment of PKE with non-negligible probability ε,
then we can construct a simulator B to break the CCA experiment of PKE1

with probability ε.
Given EK 1 of PKE1, B calls KeyGen2() of PKE2, and sends EK =

(EK 1,EK 2) to A. B can simulate the decryption oracle in Phase 1, by using
that of PKE1 and the private decryption key DK 2.

During the challenge phase, A submits m0, m1 (of the same length) to B.
B chooses a randomness r0, calculates r1 = r0 ⊕ m0 ⊕ m1, and sends r0, r1 to
the challenger C. Then the challenger C chooses b

$← {0, 1} and sends Enc1(rb)
to B. Receiving Enc1(rb), B computes Enc2(r0 ⊕ m0) and sends the challenge
ciphertext C∗ = (C∗

1 , C∗
2 ), where C∗

1 = Enc1(rb), C∗
2 = Enc2(r0 ⊕ m0) to A.
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If b = 0, this challenge ciphertext is correctly distributed for m0. If b = 1, we
view rb as r1 = r0 ⊕ m0 ⊕ m1, then r1 is randomly distributed, and r0 ⊕ m0 =
r1 ⊕ m1, so the challenge ciphertext is also correctly distributed for m1.

In Phase 2, the adversary is only allowed to submit C to the decryption
oracle if F (EK , C, C∗) = 0. Parsing C as (C1, C2) and C∗ as (C∗

1 , C∗
2 ). Under

this condition, we have C1 �= C∗
1 . B can submit C1 to the decryption oracle of its

own challenger. Thus, B can also properly simulate the decryption oracle for A
in Phase 2.

Finally, A outputs its guess b′. B simply forwards b′ as its own guess. When A
guesses it is b′ = 0, it means C∗

1 = Enc1(r0). When A guesses it is b′ = 1, it
means C∗

1 = Enc1(r1). The messages just match with those chosen by B in its
own game. Hence, the probability of B to win its game is also ε. ��

Since our encryption scheme does not look symmetric regarding the choice
of PKE1,PKE2 (versus the ordering of PKE2 then PKE1), we will now consider
the case that PKE2 is CCA-secure.

Lemma 6. If PKE2 is CCA-secure, then PKE is DCCA-secure.

Proof. In this case, the challenger C is for PKE2. Our goal is to construct a
simulator B to win the CCA experiment of PKE2 with the help of adversary A.

Given EK 2 of PKE2, B calls KeyGen1() of PKE1, and sends EK =
(EK 1,EK 2) to A. Simulation of the decryption oracle in Phase 1 is similar
to the corresponding treatment in the previous proof.

In the challenge phase, A submits m0,m1 (of the same length) to B. B choose
a randomness r, calculates r0 = r ⊕ m0, r1 = r ⊕ m1, and sends r0, r1 to
the challenger C. Then the challenger C chooses b

$← {0, 1} and sends Enc2(rb)
to B. Receiving Enc2(rb), B computes Enc1(r) and sends the challenge ciphertext
C∗ = (C∗

1 , C∗
2 ), where C∗

1 = Enc1(r), C∗
2 = Enc2(rb) to the adversary A. The

challenge ciphertext is correctly distributed since rb = r ⊕ mb for b ∈ {0, 1}.
In Phase 2, the adversary is only allowed to query the decryption for C

where F (EK , C, C∗) = 0. Parsing C as (C1, C2) and C∗ as (C∗
1 , C∗

2 ), we thus
have C2 �= C∗

2 . B can then submit C2 to the decryption oracle in its own game.
Finally, B outputs what A outputs. Similar to our analysis of the distribution

of the challenge ciphertext, the guess of A just matches with the guess of B.
Therefore B can win with probability ε. ��

Combining Lemmas 4, 5 and 6, we can see that PKE is DCCA-secure if one
of PKE1,PKE2 is CCA-secure. We can then construct a CCA-secure scheme by
using the nested encryption technique [8], which we review in Appendix.

4 Combiner for Secret Key Encryption

Similar to our analysis above, we can get a combiner for SKE if the nested encryp-
tion scheme of Hohenberger et al. [8] also applied on SKE. However, apart from
the two component schemes, it also requires a 1-bounded CCA-secure scheme
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and another CPA-secure scheme. This appears to be complicated for an SKE
scheme. We thus give a direct CCA-combiner for SKE below.

One of the advantages that SKE possesses over PKE is that the encryption
needs the secret key, so that an adversary might not easily obtain by itself a
ciphertext which decrypts to a valid message. This property is called integrity
(INT). An SKE which is both CPA-secure and INT-secure is called authenticated
encryption, and is CCA-secure [1]. Below we aim to propose a combiner for
authenticated encryption, which achieves both CPA and INT security.

We require the ciphertext produced by Enc(SK ,m; r) of the SKE schemes,
is in the form of C = (r,ESK (m, r)) where r is the randomness used in the
implicitly-defined deterministic key-ed function ESK (m, r). We also assume that
they are perfectly correct, i.e., Pr[Dec(SK ,Enc(SK ,m)) = m] = 1, ∀SK ←
KeyGen(1λ).

Given two encryption schemes SKE1,SKE2, one of which is CPA+INT-
secure, and both have the stated ciphertext form and perfect correctness, our
combiner for CPA+INT-secure SKE SKE = (KeyGen,Enc,Dec) is as follows.

– KeyGen(1λ): takes the security parameter 1λ, sets the SK = (SK 1,SK 2),
where SK i is the secret key generated by SKE i.KeyGeni(1λ) for i ∈ {1, 2}.

– Enc(SK ,m): chooses randomness R1, R2 such that R1 ⊕ R2 = m and sets

C1 = (r1,E1(R1, r1))
C2 = (r2,E2(R2, r2))
C3 = (r3,E1(C1||C2||r4, r3))
C4 = (r4,E2(C2||C1||r3, r4))

where r1, r2, r3, r4 are the randomness used in the corresponding encryption
algorithm. Outputs C = (C1, C2, C3, C4).

– Dec(SK , C): firstly parses C into (C1, C2, C3, C4), checks if both of C3 =
(r3,E1(C1||C2||r4, r3)) and C4 = (r4,E2(C2||C1||r3, r4)) hold. If no, outputs ⊥.
Otherwise, gets R′

1 = Dec(SK 1, C1) and R′
2 = Dec(SK 2, C2). If none of them

is ⊥, returns R′
1 ⊕ R′

2.

The two lemmas below assert the security of this combiner scheme SKE .

Lemma 7. SKE is CPA-secure.

Proof. Since SKE is symmetric for SKE1 and SKE2, without loss of the general-
ity, we suppose SKE1 is CPA+INT-secure and SKE2 is an arbitrary encryption
scheme.

If SKE is not CPA-secure, we can construct a simulator B to win the CPA
game of SKE1. Given the encryption oracle of SKE1, B generates the parame-
ters of SKE2 and runs Enc2() by itself. In Phase 1, when A issues an encryp-
tion query for message m, B randomly picks Ri calls the Enc1() oracle to
get C1 = (r1,E1(m ⊕ Ri, r1)), then B randomly chooses r2 and r4, computes
C2 = (r2,E2(Ri, r2)) and sends C1||C2||r4 to the encryption oracle. Receiving
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C3 = (r3,E1(C1||C2||r4, r3)), the simulator B also calculates C4 with r3 and r4.
Note that the messages encrypted in C1 and C2 follows the distribution of the
real scheme, and C3 and C4 simply follow the construction as in the real scheme.

In the challenge phase, the adversary A submits m0,m1 to B, and B ran-
domly picks R and sends m′

0 = m0 ⊕ R and m′
1 = m1 ⊕ R to the chal-

lenger C. Then the challenger C flips a coin b ∈ {0, 1}, encrypts m′
b to

obtain C ′
b = (r1,E1(m′

b, r1)), and sends it to B. B then randomly picks r2, r4,
and computes C∗

2 = (r2,E2(R, r2)) and submits C ′
b||C∗

2 ||r4 to the encryp-
tion oracle. After receiving C∗

3 = (r3,E1(C ′
b||C∗

2 ||r4)), the simulator calculates
C∗

4 = (r4,E2(C ′
b||C∗

2 ||r3)) and sends (C ′
b, C

∗
2 , C∗

3 , C∗
4 ) as the challenge ciphertext

for A. It is a well-distributed challenge ciphertext, following the same analysis
as that for the simulation of encryption oracle by B.

In Phase 2, the simulator acts exactly as in Phase 1, and outputs what the
adversary A outputs. We can see that the guess of A is correct if and only that of
B is correct. Thus if A can guess correctly with non-negligible advantage over 1

2 ,
so does B in breaking the CPA security of SKE1. ��
Lemma 8. SKE is INT-secure.

Proof. Without loss of the generality, we suppose that SKE1 is CPA+INT-
secure. If SKE is not INT-secure, we construct a simulator B that breaks the
INT-security of SKE1.

B is given the encryption oracle Enc1() of SKE1, and runs Enc2() normally by
itself. In Phase 1, when the adversary A queries for an encryption of message m,
B randomly picks an R and calls the Enc1() oracle to gets C ′

1 = (r′
1,E1(R, r′

1)),
then B randomly picks r′

2 and r′
4, computes C ′

2 = (r′
2,E2(M ⊕ R, r′

2)) and sends
C ′

1||C ′
2||r′

4 to Enc1() oracle. Receiving C ′
3 = (r′

3,E1(C ′
1||C ′

2||r′
4, r

′
3)), the simula-

tor B also calculates C ′
4 with r′

3 and r′
4. Finally B returns C ′ = (C ′

1, C
′
2, C

′
3, C

′
4)

as the response. Note that C ′
1 and C ′

3 obtained by B from its own encryption
oracle Enc1() are always directly forwarded to A as is.

In the challenge phase, the adversary A returns the forgery C∗. B parses
C∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ). If C∗

1 or C∗
3 has not been forwarded by B to A before, B

returns it to break the INT security of SKE1.
Consider to the contrary that both C∗

1 and C∗
3 directly came from the

response of the encryption oracle due to some queries of B. Note that for any
valid forgery, C∗

3 = (r∗
3 ,E1(C∗

1 ||C∗
2 ||r∗

4 , r
∗
3)), which is ensured by the validity

checking of the decryption algorithm. From the perfect correctness of SKE1,
every valid ciphertext can only be decrypted to a single message. Since C∗

3 was
created from Enc1(), the corresponding query supplied to Enc1(), and hence the
decryption result of C∗

3 , must be C∗
1 ||C∗

2 ||r∗
4 , Also note that every Enc1() ora-

cle query B has ever made is for returning a ciphertext C ′ = (C ′
1, C

′
2, C

′
3, C

′
4)

to A. When C∗
3 was returned by Enc1(), it must be triggered by an encryption

oracle query by A which leads to the creation of C ′ = (C∗
1 , C∗

2 , C∗
3 , C ′

4), where
C ′

4 = (r∗
4 ,E2(C∗

2 ||C∗
1 ||r∗

3 , r
∗
4)) = C∗

4 . So the forgery C∗ = (C∗
1 , C∗

2 , C∗
3 , C∗

4 ) is
exactly the same as C ′ given by B to A before, violating the rule of the game
played by A. Contradiction occurs and this concludes the proof. ��
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5 Conclusion

We show two provably-secure robust combiners for ensuring security against
chosen-ciphertext attack (CCA). Our robust combiner for public-key encryption
(PKE) is inspired by the detectable chose-ciphertext attack (DCCA) notion
proposed by Hohenberger et al. [8]. Instead of directly obtaining a combiner
to get a CCA-secure PKE from two possibly CCA-secure PKE schemes, our
goal is to devise a combiner for DCCA security, given that only one of the
schemes is CCA-secure. A CCA-secure scheme can thus be obtained following the
nested encryption approach proposed by Hohenberger et al. [8]. For our robust
combiner for symmetric-key encryption (SKE), instead of directly working on
CCA-security, we work on the CPA-security and the ciphertext integrity, in
which a combination of both implies CCA-security of an SKE scheme [1].

It is our future work to build a more efficient SKE combiner.

A CCA Security from DCCA Security

CCA-secure PKE can be obtained by combining DCCA PKE, 1-bounded CCA
PKE, and CPA PKE [8]. We remark that the same technique also works in
identity-based encryption (IBE), attribute-based encryption (ABE), and thresh-
old PKE/IBE. The same holds true for our combiner in Sect. 3.

We use ΠDCCA, ΠCPA, and Πqb to denote the encryption primitives which are
DCCA-secure, CPA-secure, and q-bounded-CCA-secure (where q = 1) respec-
tively. For a probabilistic algorithm Enc(·), we can transform it to a deterministic
one Enc(·.; r) where r is a well-distributed random value.

We describe the CCA-secure encryption scheme in the context of IBE. It can
easily degenerated to SKE/PKE, or extended into threshold PKE/IBE or ABE.

A.1 Syntax of IBE

In IBE, any user can request for a secret key SK ID related to her identity ID
from a trusted private key generator. The secret key SK ID can decrypt the
ciphertext encrypted for ID correctly. An IBE scheme is defined as follows.

– (MPK ,MSK ) ← Setup(1λ): This algorithm takes as the security parameter 1λ

and returns a master public key MPK and a master secret key MSK . MPK
is omitted from the input of the rest of the algorithms.

– SK ID ← Extract(MSK , ID): This algorithm takes as inputs the master secu-
rity key MSK and an user identity ID , and it returns a user secret key SK ID .

– C ← Enc(ID ,m): This algorithm takes as inputs a user identity ID , and a
message m, it then returns a ciphertext C encrypting m for ID .

– m ← Dec(ID ,SK ID , C): It takes as inputs a secret key SK ID corresponding
to the identity ID , and a ciphertext C. It returns m or an invalid symbol ⊥.
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A.2 CCA-Secure Construction

– (MPK ,MSK ) ← Setup(1λ): Run all the underlying IBE setup algorithms:
SetupDCCA(1λ) to get (MPKDCCA,MSKDCCA), then SetupCPA(1λ) to obtain
(MPKCPA,MSKCPA) and Setupqb(1λ) to get (MPK qb,SK qb). Keep MSK =
(MSKDCCA,MSKCPA,MSK qb) in secret and output the master public key as
MPK = (MPKDCCA,MPKCPA,MPK qb).

– SK ID ← Extract(ID): Run ExtractDCCA(ID) to obtain SKDCCA.ID , then
ExtractCPA(ID) to obtain SKCPA.ID , and Extractqb(ID) to obtain SK qb.ID .
Finally, output SK ID = (SKDCCA.ID ,SKCPA.ID ,SK qb.ID).

– C ← Enc(ID ,m): First pick three random values rDCCA, rCPA, rqb ∈ {0, 1}λ,
encrypt two of them with the message m in CDCCA using rDCCA as the
encryption randomness, i.e., EncDCCA(ID , (rCPA||rqb||m); rDCCA); then com-
pute two more encryption of it via Cqb = Encqb(ID , CDCCA; rqb) and CCPA =
EncCPA(ID , CDCCA; rCPA). Finally, we set C = (CCPA, Cqb).

– m ← Dec(ID ,SK ID , C): Parse C into (CCPA, Cqb). Decrypt the second
ciphertext Decqb(ID , SKID , Cqb) to obtain CDCCA. Then decrypt it to obtain
(rCPA||rqb||m). Check that both Cqb = Encqb(ID , CDCCA; rqb) and CCPA =
EncCPA(ID , CDCCA; rCPA) holds. If so, output m; otherwise output ⊥.
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