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Preface

The 22nd International Computing and Combinatorics Conference (COCOON 2016)
was held during August 2–4, 2016, in Ho Chi Minh City, Vietnam. COCOON 2016
provided a forum for researchers working in the area of theoretical computer science
and combinatorics.

The technical program of the conference included 50 regular papers selected by the
Program Committee from 113 full submissions received in response to the call for
papers. All the papers were peer reviewed by at least three Program Committee
members or external reviewers. The papers cover various topics, including algorithms
and data structures, algorithmic game theory, approximation algorithms and online
algorithms, automata, languages, logic, and computability, complexity theory, com-
putational learning theory, cryptography, reliability and security, database theory,
computational biology and bioinformatics, computational algebra, geometry, number
theory, graph drawing and information visualization, graph theory, communication
networks, optimization, and parallel and distributed computing. Some of the papers
will be selected for publication in special issues of Theoretical Computer Science
(TCS) and Journal of Combinatorial Optimization (JOCO). It is expected that the
journal version of the papers will be in a more complete form.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review conference papers. We would like to extend special
thanks to the publication, publicity, and local organization chairs for their hard work in
making COCOON 2016 a successful event. Last but not least, we would like to thank
all the authors for presenting their works at the conference.

August 2016 Thang N. Dinh
My T. Thai
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Clairvoyant Mechanisms for Online Auctions

Philipp Brandes1(B), Zengfeng Huang2, Hsin-Hao Su3, and Roger Wattenhofer1

1 ETH Zurich, Zürich, Switzerland
{pbrandes,wattenhofer}@ethz.ch
2 UNSW, Kensington, Australia
zengfeng.huang@unsw.edu.au

3 MIT, Cambridge, USA
hsinhao@csail.mit.edu

Abstract. In this paper we consider online auctions with buyback;
a form of auctions where bidders arrive sequentially and the bidders
have to be accepted or rejected immediately. Each bidder has a valua-
tion for being allocated the good and a preemption price. Sold goods
can be bought back from the bidders for a preemption price. We allow
unbounded valuations and preemption prices independent from each
other. We study the clairvoyant model, a model sitting between the tra-
ditional offline and online models. In the clairvoyant model, a sequence
of all potential customers (their bids and compensations) is known in
advance to the seller, but the seller does not know when the sequence
stops. In the case of a single good, we present an algorithm for computing
the difficulty Δ, the optimal ratio between the clairvoyant mechanism
and the pure offline mechanism (which knows when the sequence stops,
and can simply sell the good to the customer with the highest bid, with-
out having to pay any compensations). We also present an optimal clair-
voyant mechanism if there are multiple goods to be sold. If the number
of goods is unbounded, however, we show that the problem in the clair-
voyant model becomes NP-hard. Based on our results in the clairvoyant
model, we study the Δ-online problem (where the sequence is unknown
to the mechanism, but the difficulty Δ of the input sequence is known).
We show that there is a tight gap of Θ(Δ5) between the offline and the
online model.

1 Introduction

Traditional auctions have a rich theory but only make sense in the presence of at
least two bidders. In reality, however, many auctions have a rather low demand,
and bidders do not compete concurrently. Instead, bidders appear online, one
after the other.

A familiar example is booking a seat in an airplane. Prices for a flight fluctu-
ate over time, a known pattern is that seats become more expensive as a flight
fills up, because the airline starts to learn that there is demand for the flight.
Selling seats in an airplane is not a traditional auction since customers are not
bidding against each other. Rather, potential customers check the price well in
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-42634-1 1
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advance of a flight. If the price is right, they book a seat, sealing the deal with
the airline. Airlines generally try to marginally overbook flights, i.e., they sell
more tickets than available, assuming that not all customers will actually show
up at the gate. Sometimes there are more customers than seats, and the air-
line must get some customers off the plane. This is usually achieved by having
them fly later and giving them some cash as compensation. We believe that such
compensations are easily covered by the high premium of late customers.1

In this paper we analyze these online auctions. Our bidders come in an online
fashion and name their price for a good. The seller can choose to sell the good
for that price, or not sell the good (and hope for a better bid to come in later).
Bidder and seller also establish a compensation, in case the good is sold to the
customer but the deal is later canceled (in the case of a better bidder showing
up, worth paying the compensation). These online auctions need two ingredients:
First, a good with a price that may fluctuate over time. Second, customers which
want to receive the good (or a reservation for the good) quickly. In particular,
the time between the arrivals of two customers should generally be larger than
the time a customer is willing to wait for the outcome of her bid. In this case
online auctions seem to be a better suitable model than traditional auctions. We
believe that such online auctions happen often in practice. Booking flights is the
running example in this paper, but there are plenty of other examples. Selling
ad slots on web pages is a popular one. Since the number of page views is not
known beforehand, some sold slots might not be served and thus those slots need
to be bought back. More examples are real estate sales, selling network services
with quality of service guarantees, or concert tickets.

A simple example will show that online auctions become academically inter-
esting for a worst case analysis only if reasonable compensations are present.
Let us assume that a first customer offers a low price but a prohibitively high
compensation. If the seller accepts the deal, a next customer offering a much
higher price will show up. On the other hand, if the seller does not accept the
deal, no other customer will show up. No matter how the seller decides regarding
the first customer, the mistake could be devastating.

The starting point for our analysis is what we call the clairvoyant model,
a hybrid online/offline model. In the clairvoyant model, a sequence of all potential
customers (their bids and compensations) is known in advance to the seller, but
the seller does not know when the sequence stops, i.e., who the last customer of
the sequence is. No matter who the last customer is, the seller wants to do a good
job, i.e., the seller wants to sell the good to a customer with a high bid and keep
compensations that accumulated so far low. It turns out that the clairvoyant
model is a stepping stone for a deeper understanding of online auctions, sitting
nicely between the pure online and offline models. It introduces a novel technique
for analyzing online auctions from a theoretical point of view.

1 In reality, airlines do not implement online auctions in the clean form described
in this paper. Airlines do not seem to maximize their profits with this mechanism,
probably for psychological reasons. As such, on web pages, flights still can be sold
out, instead of just asking for a higher and higher premium for an unexpectedly
popular flight.
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Our contributions are as follows: After introducing the clairvoyant model, we
present an optimal mechanism for it in the case of a single good. The result of
that mechanism is a factor Δ worse than a pure offline mechanism (that knows
when the sequence stops, and can simply sell the good to the customer with
the highest bid, without having to pay any compensations). In other words, the
parameter Δ tells us how nasty the compensations are. It directly tells us the
difficulty of an input sequence. If compensations are minimal (just return the
money to canceled customers), then we have by definition Δ = 1. We also show
an optimal clairvoyant mechanism if there are multiple goods to be sold. If the
number of goods is unbounded, however, we prove that the clairvoyant model
becomes NP-hard. Based on the results in the clairvoyant model, we study the
pure online problem (where the sequence is unknown to the mechanism) in a
deterministic setting. If Δ is known, we show that there is a tight gap of Θ(Δ5)
between the online and the offline model.

2 Related Work

There has been a lot of research of traditional (“offline”) auctions, inspired by
the seminal papers of Vickrey, Clarke, and Groves (“VCG”) [5,11,26]. They
introduce the notion of truthfulness, which means that no bidder has an advan-
tage if she is not telling the truth about her valuation. There is a large amount
of work on traditional auctions, for an overview see, e.g., Nisan et al. [22].

Online mechanisms have been introduced in [8,18]. In those online mech-
anisms, the bidders have an arrival and departure time and a valuation for
the good. It is assumed that the good expires after a certain period of time,
and that a replacement becomes available. In this setting, it was shown that
something similar to VCG style second price auctions is still a viable allocation
strategy. The initial motivation behind these kind of online auctions is the WiFi
at Starbucks [8]. Customers arrive and then depart some time later with each
customer having a valuation for the WiFi. Many papers on online mechanisms
mainly focus on truthfulness or other incentive compatible solution concepts,
e.g., [12,19,23,24]. An overview of online auctions can be found in [22].

Somewhat related to our online auctions are not even auctions, but the sec-
retary problem [20]. In the classic setting one employer interviews n secretaries,
with the goal to hire the best secretary. The employer has to decide right after
an interview whether to hire or discard a secretary. Unlike our model, previous
decisions cannot be recalled. If secretaries are interviewed in random order, it
has been shown that the optimal strategy is to first interview n/e secretaries,
and then simply hire the first secretary that is better than all previously inter-
viewed secretaries [20]. It has also been shown that, if the input is adversarial (as
in our work), the situation is hopeless; the best strategy is to just hire a random
secretary, without any interview process [10]. This setting has been adapted to
the online auctions in [13]. Instead of secretaries, there are buyers and instead
of a job there is a single indivisible good. They present a mechanism that is,
if the buyers appear in random order – as in the original problem – e + o(1)
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competitive for efficiency and e2 + o(1) competitive for revenue. Since we have
the possibility to cancel previous decisions with financial compensations, our
model allows more freedom.

The work closest to ours considers online auctions with buyback, introduced
independently by Babaioff et al. and Constantin et al. [3,6]. Both limit the pre-
emption price (paid to reacquire the good) to a constant fraction of the valuation
v of a bidder and this fraction is independent of the individual bidder. Lower
and upper bounds for deterministic and randomized algorithms depending on
the fraction of the preemption price are presented in their work. Our work allows
arbitrary values for the preemption price (that can depend on the specific cus-
tomer) and we analyze how to deal with this very heterogeneous set of customers.
This kind of auction is not truthful since a buyer can overstate her preemption
price and thus gain if her good is bought back [6]. In [2] the goods cannot be
allocated to any subset of bidders, but bidders form a matroid, This is extended
to an intersection of matroids in [1], while still limiting the buyback factor. The
concept of buyback has also been applied to the knapsack problem [3,14,17]
where the goods appear in an online fashion and can be removed later on from
the knapsack. Buyback is also used in scheduling with eviction [9].

Online algorithms often face two different types of problems: First, they do
not know the future, and second, they have to deal with past mistakes. Hartline
and Sharp [15,16] formalized the two types of problems. When problems are
analyzed in this framework, they are called incremental problems. This approach
has been applied to various problems, e.g., to maximum flow, online median,
facility location, and clustering [4,7,21,25]. Our setting is different as we can
potentially fix past mistakes with compensations. Nevertheless, our clairvoyant
analysis is a relative of incremental problems.

3 Model

We consider an online auction. There are r indivisible and identical goods. Each
bidder bi is willing to buy exactly one good, and has a valuation vi for being
allocated a good. The bidders arrive one after another; whether to allocate a
good to a bidder must be decided immediately. Bidders that are not allocated a
good cannot be recalled, but bidders that are allocated a good can be recalled.
A recalled bidder bi is willing to return her good if she receives adequate com-
pensation. We call the value preemption price, which is paid if the good is bought
back. The preemption price of bidder bi is denoted by πi. In summary, bidder bi

is fully specified by bi = (vi, πi). Neither vi nor πi are bounded, any value in R
+

is allowed. We assume that the input sequence of bidders b1, . . . , bn is created
in advance by an adversary who knows the mechanism that is used to allocate
the goods. As described above, if the good of a bidder bi is bought back, the
mechanism has to pay the preemption price. For now, we assume that the mech-
anism retains the initial valuation vi of the bidder. We denote this the retaining
model. In this model we assume that vi ≤ πi for every bidder bi. We will show
later that this is not necessary and in fact use the model when the value is not
retained, which is called the non-retaining model.
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Let us concentrate on the case of a single good (r = 1). Let offline(�) denote
the highest valuation of the first � bidders, i.e., offline(�) = max1≤i≤� vi. Since
the pure offline mechanism knows the whole input sequence and when it stops, it
can sell the good just to one single bidder, the bidder with the highest valuation.

As discussed in the introduction, the online mechanism cannot be competitive
with the offline model. Essentially, an online mechanism has to deal with two
different issues: First, it does not know the future, and second, it needs to offer
a solution at all times. We will now introduce the clairvoyant model, a model
between pure online and offline. The clairvoyant model knows the whole sequence
b1, . . . , bn of future potential bidders, but does not know when the sequence
stops, i.e., who the last bidder of the sequence is. Because of this, a clairvoyant
mechanism must offer a solution at all times.

Both pure online and clairvoyant mechanisms may need to accept more than
one bidder (and hence buy the good back). Let S be the set of all bidders that
have been accepted during the course of a mechanism and let [�] denote the set
of the first � bidders, i.e., {b1, . . . , b�}. We define gain(S, �) =

∑
bi∈S∩[�](vi−πi)+

maxbi∈S∩[�] πi. It is the sum of valuations of bidders in S up to bidder b�, minus
the preemption prices for the bidders whose good were bought back. Since we
retain the value of a bidder, we have vi ≤ πi for every bidder bi and thus the
bidder with the highest preemption price is also the last accepted bidder.

Since the mechanism does not know when the input sequence stops and it thus
can stop anytime, we evaluate any mechanism in its worst round. Specifically,
given S, the gain competitiveness is defined to be max1≤�≤n

offline(�)
gain(S,�) . If we now

minimize this over the best mechanism (the set S of accepted bidders), we get
the optimal gain competitiveness

Δ = min
S

max
1≤�≤n

offline(�)
gain(S, �)

.

This can be interpreted as the difficulty of the input sequence. In other words,
our mechanisms are evaluated in their worst round, i.e., the round in which it
has the highest competitive ratio compared to the pure offline mechanism. This
forces our mechanisms into accepting bidders early, and possibly repeatedly,
thus paying preemption prices repeatedly. The task is to design mechanisms
that choose a set S and thereby allocate the goods to the bidders minimizing
gain competitiveness.

We will clarify the terms defined above by presenting a simple example.
Let the input sequence be (1, 2), (4, 100), (50, 60). A pure offline mechanism will
accept b3 = (50, 60) since this is the bidder with the highest valuation. A clair-
voyant mechanism must always accept the first bidder since it could also be the
last one. Assume that it also accepts the third bidder. We now calculate the gain
competitiveness for this set as

max
{

offline(1)
v1

=
1
1
,
offline(2)

v1
=

4
1
,

offline(3)
v1 + v3 − π1

=
50

1 + 50 − 2

}

= 4.

Note that this is also optimal since accepting bidder b2 prevents the mecha-
nism from choosing b3, hence Δ = 4. This gives us a theoretical insight on the



8 P. Brandes et al.

input sequence. No online mechanism could have done better. As explained, the
clairvoyant model sits between pure offline and online models. It turns out that
it is comparable to both pure models, even though the pure models are not
comparable to each other.

4 Auctioning Off a Single Good

We start our analysis by considering the special case of just a single good being
sold, i.e., r = 1.

4.1 Clairvoyant Mechanism

We now present a mechanism that optimally solves the clairvoyant model, giving
us insights into what is possible for an online mechanism.

Theorem 1. There exists a clairvoyant mechanism that calculates the set of
bidders that should be accepted to solve the online auction for one good opti-
mally, i.e., it calculates Δ. If the inputs are integers, its runtime is polynomial;
otherwise it is a FPTAS.

We now formalize and extend the impossibility result from the introduction.
Due to space limitations, the proofs have been moved to the full version.

Lemma 1.

(1) The value of Δ depends on the input sequence and is unbounded.
(2) The gain competitiveness of the pure online mechanism is unbounded and

independent of Δ.
(3) No randomized online mechanism can achieve bounded gain competitiveness

if the number r of items is in o (n), i.e., r ∈ o (n).

4.2 Bounded Preemption Prices

The impossibility results from the introduction and the previous section
exploited that the preemption price could be arbitrarily large. Thus, in the fol-
lowing we restrict the previously arbitrarily large preemption prices to be at
most ρ times as large as the valuation, i.e., ρ ≥ πi

vi
for all 1 ≤ i ≤ n. Intuitively,

this can either be seen as a simple, reasonable constraint for the customers. If
someone values a seat on an airplane with some value v, then losing this seat
should not be arbitrarily larger than v. One could also model this scenario in
such a way that every customer also has to buy an insurance whose compen-
sation depends on the premium. If she loses her seat, then the insurance will
pay her the preemption price. Now the price of the insurance is closely related
to the preemption price. This interpretation also guarantees us that at most a
factor of ρ between vi and πi for every bidder bi. The following results resemble
closely those in [3,6]. The factor ρ allows us to design a mechanism that is 4ρ
gain competitive. It accepts a bidder if her valuation is at least by a factor 2
larger than the preemption price of the bidder that is currently allocated the
good.
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Theorem 2. There exists a mechanism that has 4ρ factor gain competitiveness.

Corollary 1. If ρ ≥ πi

vi
for every bidder bi, then Δ ≤ 4ρ.

4.3 Online Mechanism with Δ

This raises the question whether restricting the preemption price is the only way
to go. We already know that Δ contains valuable information about the input
sequence. But does it contain all the necessary information for an online mecha-
nism to be competitive? We now provide the mechanisms with this information
and denote them Δ-online mechanisms. These more powerful online mechanisms
can achieve a O(Δ5) factor approximation of the clairvoyant mechanisms. Note
that this information is not as strong as knowing that the preemption price of
every bidder is at most a factor of ρ larger. The clairvoyant mechanism might
accept someone whose preemption price is much larger than its valuation. We
briefly describe the mechanism. Simply put, this mechanism accepts bidders
with a sufficiently small preemption price (and a high enough valuation to pay
back the last bidder). Furthermore, it also accepts bidders that have such a high
valuation that the clairvoyant mechanism also had to accept it.

We denote the current bidder with b = (v, π). We call the last accepted
bidder b∗ = (v∗, π∗). The online mechanism accepts the first bidder for sure, so
initially b∗ = (v1, π1). After the first bidder, the current bidder b is accepted for
two different reasons: We call bidders good if π ≤ 2Δ2v; if a bidder is not good,
it is bad. The mechanism will accept a good bidder if its valuation v > 2π∗. We
call bidders crucial if v > 2Δv∗∗, where v∗∗ ≥ v∗ is the largest valuation seen so
far. The mechanism will accept a crucial bidder if its valuation v > π∗/(1− 1

Δ2 ).
The pseudocode is shown in Algorithm 1.

In this section a Δ-online mechanism is presented that is O(Δ5) competitive.
But first, we need some additional notation.

Theorem 3. Given the value of Δ, there exists a mechanism that has gain
competitiveness O(Δ5) compared to the offline solution.

Algorithm 1. A Δ-online mechanism
accept the first bidder and set (v∗, π∗) = (v1, π1) and v∗∗ = v1 ;
while there is a new bidder bi do

if πi ≤ 2Δ2vi and vi > 2π∗ then
buy good back and give it to bidder bi;
π∗ ← πi and v∗ ← vi ;

end
else if vi ≥ 2Δv∗∗ and vi > π∗/(1 − 1

Δ2 ) then
buy good back and give it to bidder bi;
π∗ ← πi and v∗ ← vi;

end
v∗∗ = max{v∗∗, vi};

end
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Proof. Notice that the clairvoyant mechanism will accept every crucial bidder.
Let b̄1 = (v̄1, π̄1), b̄2 = (v̄2, π̄2), . . . be the subsequence of bidders who are cru-
cial, and let b̄0 = b1 be the very first bidder, who will also be accepted by the
clairvoyant mechanism. We will prove the theorem by induction over the crucial
bidders. Our induction hypothesis is that before b̄i came, the gain competitive-
ness of the mechanism is at most 8Δ5, we then prove that before b̄i+1 came, the
gain competitiveness remains 8Δ5. Before we can continue our proof, we need
two helper lemmas.

As before, let b∗ = (v∗, π∗) be the last bidder our mechanism has accepted.

Lemma 2. If the clairvoyant mechanism accepts a bad bidder b̂ = (v̂, π̂), then
the next bidder it will accept must be the first crucial bidder that comes afterward.

Proof. Let b̄ = (v̄, π̄) be the next bidder clairvoyant mechanism accepts after
b̂ = (v̂, π̂), and v∗∗ be the maximum valuation of all bidders before b̄. Then
we must have v̄ > π̂ > 2Δ2v̂. Note that v∗∗ ≤ Δv̂, since otherwise the gain
competitiveness of the clairvoyant mechanism will be larger than Δ, and thus
we have v̄ > 2Δv∗∗, and therefore b̄ must be crucial. As clairvoyant mechanism
needs to accept all crucial bidders, b̄ must be the first crucial bidder after (v̂, π̂).

Lemma 3. If b∗ is bad, then the next bidder our mechanism accepts must be the
first crucial bidder b̄ = (v̄, π̄) that comes afterward. Furthermore, the gain after
accepting b̄ is at least 1

Δ2 v̄.

Proof. Let b̄ be the next crucial bidder after b∗. If b∗ is bad, then b∗ must be
crucial since our mechanism only accepts bad bidders that are crucial. So the
clairvoyant mechanism will also accept b∗ since it accepts every crucial bidder. By
Lemma 2, the next bidder after b∗ the clairvoyant mechanism will accept is b̄. So
v̄−π∗ ≥ 1

Δ v̄, since otherwise the gain of clairvoyant mechanism will be less than
1
Δ v̄. This implies that v̄ ≥ π∗ + 1

Δ v̄ > π∗ + 1
Δ2 v̄ and therefore v̄ > π∗/(1 − 1

Δ2 ).
Thus, our mechanism will also accept b̄. Let v∗∗ be the maximum valuation
before b̄, then v∗∗ ≤ Δv∗. So between b∗ and b̄, our mechanism will not accept
any bidder.

By our assumption, b∗ is last bidder our mechanism accepts before b̄i, so if b∗ is
bad, b̄i must be the first crucial bidder after b∗, and our mechanism will accept
b̄i. The gain after accepting b̄i is at least 1

Δ2 v̄i, and the gain competitiveness is
at most Δ2.

If our mechanism does not accept b̄i, then v̄i < π∗ + 1
Δ2 v̄i. Moreover, by

Lemma 3, if our mechanism does not accept b̄i, then b∗ is good, and thus v̄i <
π∗ + 1

Δ2 v̄i ≤ 2Δ2v∗ + 1
Δ2 v̄i. Thus, we have v̄i − 1

Δ2 v̄i < 2Δ2v∗ or equivalently
v̄i < 2Δ2v∗/(1 − 1

Δ2 ) ≤ 3Δ2v∗ (wlog assuming Δ > 2, otherwise we can achieve
constant factor competitiveness by treating Δ as two in the mechanism). This
implies that the current gain competitiveness is at most 6Δ2 using that b∗ is a
good bidder.

Based on the above analysis and a simple induction we conclude that if our
mechanism accepts a bad bidder b∗ = (v∗, π∗), the gain is at least 1

Δ2 v∗ at
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this moment. It is also easy to see, if b∗ is good, then the gain is at least v∗/2
(analogue to the proof of Theorem 2).

We now combine the previous observations. Let c = {b̄i, c1, c2, · · · ct} be the
sequence of bidders that arrive between b̄i and b̄i+1 (excluding b̄i+1). Let b′ =
(v′, π′) be the last bidder the clairvoyant mechanism accepts. If the clairvoyant
mechanism only accepts good bidders in c, then the gain competitiveness between
our online mechanism and the clairvoyant mechanism is at most 4Δ4, because
v′ ≤ 2π∗ ≤ 4Δ2v∗ holds at all time (otherwise, our online mechanism will accept
(v′, π′)) and the gain of our online mechanism is at least v∗/Δ2, which implies
the gain competitiveness is at most 4Δ4.

Thus, we only need to consider the case when clairvoyant mechanism accepts
at least one bad bidder in c (possibly b̄i). By the above analysis, we know that if
the clairvoyant mechanism accepts some bad bidder ĉ = (v̂, π̂), then the next bid-
der it accepts is b̄i+1. Furthermore, v∗∗ ≤ Δv̂, where v∗∗ is maximum valuation
before b̄i+1.

Before accepting ĉ = (v̂, π̂) the clairvoyant mechanism only accepts good
bidders. Now suppose we are at the time right before ĉ comes. Suppose, at this
time, our online mechanism accepts b∗ = (v∗, π∗) and clairvoyant mechanism
accepts (v′, π′). We first consider the case when b∗ is good. Then we have v′ ≤
2π∗ ≤ 4Δ2v∗. Let m be the maximum valuation before ĉ. We have m ≤ Δv′, and
b̂v ≤ 2Δm (otherwise b̄i+1 = ĉ). Remember that v∗∗ is the maximum valuation
before b̄i+1. Hence, v∗∗ ≤ Δv̂ ≤ 2Δ2m ≤ 2Δ3v′ ≤ 8Δ5v∗.

We now conclude this proof with a simple case distinction. If b∗ = (v∗, π∗)
is good, then the gain competitiveness of our mechanism will never be worse
than 8Δ5 after it accepts b∗ = (v∗, π∗), as the gain is at least v∗/2. Moreover,
before b̂ (with v̂) came, both our mechanism and clairvoyant mechanism only
accept good bidders, so the gain competitiveness of our mechanism is at most
8Δ5 before this time. So the gain competitiveness of our mechanism is at most
8Δ5 before b̄i+1 comes.

On the other hand, if b∗ = (v∗, π∗) is bad, which implies that ĉ = b∗ = b̄i,
and that the clairvoyant mechanism does not accept any bidder before b̄i+1. This
implies that v∗∗ ≤ Δv∗, and the gain competitiveness of our mechanism in this
period is at most Δ3, since the gain is at least 1

Δ2 v∗.
The bound from Theorem 3 is tight. We proceed by showing the matching

lower bound for any deterministic mechanism.

Theorem 4. Any deterministic Δ-online mechanism has gain competitiveness
of Ω(Δ5) compared to the offline solution.

Proof. For any d > 0, we will present a sequence of bidders, for which the gain
competitiveness between the offline mechanism and the clairvoyant mechanism
is at most 2d, but for any online mechanism, the gain competitiveness is at least
4d5. Given Δ, we can set d = Δ/2. Thus, any online mechanism is at least Ω(Δ5)
worse than the offline mechanism. The input sequence is depicted in Fig. 1.

The input sequence starts with bidder b1 with (v1, π1) = (1, 1), then the
adversary inserts a sequence of bidders bi+1 = (vi+1, πi+1), for i = 1, 2 . . .,
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(a) The bidders bj−1 and bj+1 are
accepted by the clairvoyant mecha-
nism. The bidders bj and bj+1 are
accepted by the online mechanism
resulting in negative gain.

(b) The bidders bj−1 and bj+1 are
accepted by the clairvoyant mech-
anism. The bidders bj and bj+2

are accepted by the online mech-
anism. Thus, a bidder bj+3 =
(vjd

999, vjd
1337) would inevitably

lead to a gain competitiveness of
ω(Δ5).

(c) The bidders bj−1, bj+1, and
bj+2 are accepted by the clairvoy-
ant mechanism. The bidders bj and
bj+3 are accepted by the online
mechanism. Thus, a bidder bj+4 =
(vjd

1336, vjd
2000) would inevitably

lead to a gain competitiveness of
ω(Δ5).

(d) The bidders bj−1, bj+1, and
bj+3 are accepted by the clairvoy-
ant mechanism. The bidders bj and
bj+4 are accepted by the online
mechanism. Thus, a bidder bj+5 =
(vjd

1999, vjd
2000) would inevitably

lead to a gain competitiveness of
ω(Δ5).

Fig. 1. The bidders accepted by the clairvoyant mechanism are marked with (thinly)
dashed lines. The online mechanism accepts by definition bj . If the online mechanism
accepts the bottom left bidder, the bidder on the bottom right appears; resulting in a
ω(Δ5) gain competitiveness.
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where (vi+1, πi+1) = (2di, di+2). Let bj be the first bidder in this sequence
that the online mechanism accepts. Notice that the online mechanism has
to accept one, since otherwise the gain competitiveness is infinity. The clair-
voyant mechanism accepts bidder bj−1, but not bj . The adversary then sets
(vj+1, πj+1) = ((d2/2)vj , d

2vj), so that the online mechanism cannot accept this
bidder because the new gain would be at most vjd

2/2 − vjd
2/2 − π1 < 0. The

clairvoyant mechanism accepts bidder bj+1 to maintain gain competitiveness
O(Δ).

The next bidder bj+2 that comes has (vj+2, πj+2) = (d3vj , d
1000vj), so the

online mechanism cannot accept this bidder either, since otherwise the adversary
can make the next bidder have a valuation of d999vj , which makes the gain com-
petitiveness much larger than 4d5. The clairvoyant mechanism does not accept
bidder bj+2 and still maintains gain competitiveness O(Δ).

Bidder bj+3 is then (vj+3, πj+3) = (2d4vj , d
1337vj). For the same reason, the

online mechanism cannot accept this one. The clairvoyant mechanism accepts
bidder bj+3 to maintain gain competitiveness O(Δ). If the online mechanism
accepts this bidder, then the clairvoyant mechanism accepts bidder bj+2, but
not bidder bj+3 (see Fig. 1).

Bidder bj+4 is (vj+4, πj+4) = (4d5vj , d
2000vj), and again the online mecha-

nism cannot accept this one. The clairvoyant mechanism does not accepts bidder
bj+4 and still maintains gain competitiveness O(Δ).

At this point, the online mechanism accepted (vj , πj), and the gain compet-
itiveness is at most 4d5vj

vj
= 4d5. Thus, the claim follows.

5 Auctions with Several Goods

In this section we consider auctions with r goods. The pure offline mechanism
chooses the best r bidders and never has to pay a preemption price. If r is
constant, then we show the following constructive result.

Theorem 5. Checking whether there is a solution with gain competitiveness of
δ in an online auction is r goods can be computed in O(nr+1).

Similar to the problem of checking whether there is a k-clique in a graph, the
general version of this problem is NP-hard.

Theorem 6. Checking whether there is a solution with gain competitiveness of
δ in an online auction is NP-hard.
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Abstract. We consider the problem of designing truthful mechanisms
for scheduling selfish tasks on a single machine or on a set of m paral-
lel machines. The objective of every selfish task is the minimization of
its completion time while the aim of the mechanism is the minimiza-
tion of the sum of weighted completion times. For the model without
payments, we prove that there is no (2 − ε)-approximate deterministic
truthful algorithm and no ( 3

2
−ε)-approximate randomized truthful algo-

rithm when the tasks’ lengths are private data. When both the lengths
and the weights are private data, we show that it is not possible to get an
α-approximate deterministic truthful algorithm for any α > 1. In order
to overcome these negative results we introduce a new concept that we
call preventive preemption. Using this concept, we are able to propose
a simple optimal truthful algorithm with no payments for the single-
machine problem when the lengths of the tasks are private. For multiple
machines, we present an optimal truthful algorithm for the unweighted
case. For the weighted-multiple-machines case, we propose a truthful
randomized algorithm which is 3

2
-approximate in expectation based on

preventive preemption. For the model with payments, we prove that there
is no optimal truthful algorithm even when only the lengths of the tasks
are private data. Then, we propose an optimal truthful mechanism using
preventive preemption and appropriately chosen payments.

1 Introduction

A lot of attention has been devoted to scheduling problems in the literature
of algorithmic game theory starting from the seminal paper of Koutsoupias
and Papadimitriou [18]. Most of these papers consider that the social welfare
is expressed as the makespan of the obtained schedule [2–7,9,18,19]. However,
in environments where jobs are owned by independent and competing agents
for the same resource(s), it is more natural to measure the social welfare using
another classical measure of performance, the average (weighted) completion
time of the tasks [21]. A few papers consider this objective [1,11,12,15], but not
in the context of truthfulness (they focus on coordination mechanisms and the
price of anarchy). Given the interest of the algorithmic-game-theory community
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 15–26, 2016.
DOI: 10.1007/978-3-319-42634-1 2
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to mechanism design aspects of scheduling problems, it is a natural question to
know what is the difficulty of conceiving a truthful mechanism when the social
welfare is the weighted completion time of the tasks. In some applications, for
ethical or practical reasons, pricing is undesirable and so it is important to con-
ceive mechanisms without payments [8,16]. In other applications however this
is not the case. Hence we consider both cases in the sequel. We focus on the
following problem: we are given a set of tasks where each task is owned by a
selfish agent who is the only one to know the length and/or the weight of his
task. The tasks have to be executed on a single-machine or on a set of identical
machines. The valuation of each agent/task is the opposite of his completion
time. The weight of a task models the importance of the task for the system
(and not the agent) and in that case it is more natural to consider that the
valuation of the agent is just the completion time of his task1. We study this
problem both with payments and without payments. When we use payments,
the objective of each agent is the maximization of his utility which is defined
as the difference between his valuation and his payment. When payments are
not allowed, the objective of each agent is the minimization of his (weighted)
completion time. Agents may lie concerning their length and/or weight if by
doing so, they are able to increase their utility. Our aim is to find a truthful
mechanism that minimizes the weighted sum of completion times.

Our contribution. In the first part of the paper, we study the model without
payments. When the lengths of the tasks are private data, we prove that there
is no (2 − ε)-approximate deterministic truthful algorithm even in the case of a
single machine where the weights of all the tasks are unitary. We also show that
there is no (32 −ε)-approximate randomized truthful algorithm for the same envi-
ronment. When both the lengths and the weights are private data, then we show
that it is not possible to get an α-approximate deterministic truthful algorithm
for any α > 1. In order to overcome these negative results we introduce a new
concept that we call preventive preemption. The intuitive idea behind preventive
preemption is simple: whenever a task bids a length smaller than its real length,
the scheduler will preempt it at the end of the declared processing time and he
will resume it later. Think for instance a planning of a meeting room. Once the
schedule of meetings is done, then every meeting has to finish or be interrupted
at the planned time. An interrupted meeting could continue only after all other
meetings are finished. Notice that as our mechanism is proved to be truthful no
task will be interrupted during the constructed schedule. This is in the same vein
as the approach used recently by Fotakis et al. [13] where selective verification
is used as a threat in order to construct a truthful mechanism. Using preven-
tive preemption as a threat, we are able to propose a simple optimal truthful
algorithm with no payments for the single-machine problem where the lengths
of the tasks are private and the weights are public. For multiple machines, we
are able to prove that this approach gives an optimal truthful algorithm for

1 Notice however that our results can be generalized to the case where the valuation
of the tasks is their weighted completion time.
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the unweighted case. For the case of multiple machines with weights, given that
the problem is NP-hard even if all data are public, we turn our attention to
the development of approximate truthful mechanisms. We propose a truthful
randomized algorithm which is 3

2 -approximate in expectation based on preven-
tive preemption. We also show that the natural WSPT algorithm of Smith [21]
is not truthful. In the second part of the paper, we consider the model with
payments. For the single-machine case, given that the optimal solution can be
computed in polynomial time and the social welfare is utilitarian, one may think
that it is sufficient to apply the well known Vickrey-Clarke-Groves (VCG) mech-
anism [10,14,22]. However, in what follows we prove that this is not true even
when only the lengths of the tasks are private data. Then, we propose an optimal
truthful mechanism for the single-machine case using preventive preemption and
appropriately chosen payments. Our results are summarized in Table 1.

Table 1. Summary of the results presented in this paper. TA means “truthful algo-
rithm”, det means “deterministic” and rand means “randomized”. The number before
TA is the approximation ratio. For example, the sentence “� det (2 − ε) TA (thm 1)”
in the first cell means that Theorem 1 shows that there does not exist any determinis-
tic truthful algorithm which has an approximation ratio of 2 − ε (when payment and
preemption are not allowed, and when the lengths of the tasks are private). Unless
otherwise specified, the results hold for any number of machines.

Without preemption With preventive preemption

Without payment Private lengths: Private lengths:

• � det (2 − ε) TA (thm 1) • m = 1: ∃ optimal det TA (thm 4)

• � rand (1.5 − ε) TA (thm 2) • m ≥ 2, identical w: ∃ optimal det TA (thm 5)

• m ≥ 2: ∃ rand 1.5 TA (thm 6)

Private lengths and weights: Private lengths and weights:

• � det α TA, for all α (thm 3) • � det (2 − ε) TA (thm 8)

With payment Private lengths: Private lengths and weights:

• � optimal TA (thm 7) • m = 1: ∃ optimal det TA (thm 9)

• m ≥ 2: ∃ rand 1.5 TA (cor 2)

1.1 Formal Definition of the Problem

We consider n agents, N = {1, 2, · · · , n}, and a single machine or a set of m
parallel identical machines. Each agent i is the owner of a single task and he is
the only one to know the private data of his task. The private data of a task
can be either its length ti > 0 or both its length ti > 0 and its weight wi > 0.
When both the length and the weight of a task are private, we call these data
(ti, wi), the agent’s true data or the agent’s type (if only the length of the task
is private, then the agent’s type is just ti). Everything else is public knowledge.
From now on in this section, we assume for simplicity that both the length and
the weight of the tasks are private data. Each agent will report a pair (bi, w

b
i ) to

the mechanism that we call the agent’s bid. By B, we denote the set of all bids,
i.e. B = {(b1, wb

1), . . . , (bn, wb
n)}. We adopt an extension of the strong model of
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execution [4] where, once task i starts to be executed, it is executed during ti
units of time, independently of the value of his bid bi (i.e. even if bi �= ti). In the
model of [4], the bid value bi should always be larger than or equal to ti while
here, bi may get any positive value (bi < ti or bi ≥ ti). By Ci, we denote the
completion time of task i.

For the model with payments, a mechanism is a pair M = (A,P ), where
A is an algorithm that finds an output o(B) and P is a payment function:
P (o(B), B) = (p1, p2, . . . , pn). The output o(B) computed by A is a function of
the bids, B, of the agents, while the payment is a function of the output o(B)
and of the agents’ bids B. This means that, contrary to the framework with
verification introduced by Nisan and Ronen for scheduling problems [19], the
payments have to be computed without knowing the true types of the tasks.
Let us now define the output of A. Since the true types of the tasks are not
known by the mechanism, A is not able to produce a feasible schedule in which
the completion time of every task is known in advance. In the case where the
preemption of the tasks is not allowed, o(B) is defined as the order in which the
tasks will be executed on each machine along with the lengths of the idle-periods
that precede the tasks, if such idle periods exist. More formally, in the single-
machine case when the preemption of the tasks (the possibility of interrupting
and resuming the execution of the task later) is not allowed, we define the output
o(B) of algorithm A as a sequence of n pairs (Ii, i) where i is a task and Ii is
the length of the idle-period just before task i. Notice that when no idle-periods
exist between the tasks, all Ii’s will be equal to 0 and we will simply denote the
output by a sequence of n tasks. In the case where the preemption of the tasks
is allowed, the output o(B) will be defined in a similar way, the only difference
being that more than one time-intervals may represent a task, one time-interval
for each piece of the preempted task. For multiple machines, the above definitions
generalize in the natural way. The objective of the mechanism is to determine
a schedule of the tasks minimizing the sum of weighted completion times, or
equivalently maximizing the social welfare which is defined as −∑

1≤i≤n wiCi.
For every task i, we define Si as the set of tasks scheduled before i on the same
machine in the output o(B), and Ti as the set of real lengths of the tasks of Si (i.e.
Ti = {tj : j ∈ Si}). The completion time of task i is Ci =

∑
j∈Si

(Ij + tj)+Ii+ti
and the utility of task i is ui(ti, o(B), B, Ti) = −Ci(ti, o(B), B, Ti)−pi(o(B), B),
where pi(o(B), B) is the payment, or in other words the amount that i must pay.
It is important here to notice that the payments are computed before the real
execution of the tasks.

For the model without payments, a mechanism for this problem is an algo-
rithm A that determines an output o(B).

In both models, every task/agent i is considered as selfish: the strategy of
agent i is to declare a bid (bi, w

b
i ) in order to maximize his utility ui. Our aim

is to propose a truthful mechanism, i.e. a mechanism that gives incentive to the
agents/tasks to declare their true types. We say that a mechanism is truthful if
and only if for every i, 1 ≤ i ≤ n, and for every bid (bj , w

b
j), j �= i, the utility ui

of task i reaches its maximum when i bids its true data, i.e. (bi, w
b
i ) = (ti, wi).
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In other words, a mechanism is truthful if truth-telling is the best strategy for
a player i regardless of the strategies adopted by the other players.

2 No Payments

In this section, we consider the problem of designing a truthful mechanism with-
out payments. We start by proving some negative results for truthful deter-
ministic or randomized algorithms. Then, we introduce the notion of preventive
preemption, and we show that by using it we are able to design optimal or
approximate truthful mechanisms.

2.1 Negative Results: Private Lengths

We first consider deterministic algorithms.

Theorem 1. Let ε > 0. There is no truthful deterministic (2 − ε)-approximate
algorithm, even if all the tasks have the same weights.

Proof. Let A be a deterministic algorithm which is α-approximate, with α < 2.
Let us show that A is not a truthful algorithm.

Let us consider a first instance I1: a single machine and two tasks T1 and
T2 of lengths M and M2 respectively (with M > 1). Both tasks have the same
weight (in the sequel we will thus consider the criteria

∑
Ci, which is equivalent

to
∑

wiCi in this case). In an optimal schedule, T1 is executed at time 0 and
T2 starts when T1 has been executed, at time M . The cost of such a schedule is∑

i∈{1,2} Ci = M + (M + M2) = M2 + 2M . In such a schedule task T2 starts at
time M .

Let S be a schedule of I1 in which task T2 starts before time M . In such
a schedule task T1 cannot be completed before the start of T2. The cost of
S is thus larger than or equal to M2 + (M2 + M) = 2M2 + M (in the
best case there is no idle time: task T2 is scheduled at time 0 and task T1

starts as soon as T2 is completed, i.e. at time M2). The ratio between the
cost of S and the optimal cost is larger than or equal to 2M2+M

M2+2M = 2M+1
M+2 ,

which tends towards 2 when M tends towards the infinity. Since A is an
α-approximate algorithm, with α < 2, A cannot return schedule S. Therefore,
in the schedule returned by A on instance I1, T2 starts at the soonest at time
M .

Consider now a second instance, I2: a single machine and two tasks T1 and T3

of lengths M and 1 respectively. Both tasks have the same weight. In an optimal
schedule T3 is executed at time 0 and T1 starts when T3 has been executed, at
time 1. The cost of such a schedule is 1 + (1 + M) = M + 2.

Let S be a schedule of I2 in which task T3 does not start before time M . The
cost of S is thus larger than or equal to M+(M+1) = 2M+1 (in the best case task
T1 is scheduled at time 0 and task T3 starts as soon as T1 is completed, i.e. at time
M). The ratio between the cost of S and the optimal cost is larger than or equal
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to 2M+1
M+2 , which tends towards 2 when M tends towards the infinity. Since A is an

α-approximate algorithm, with α < 2, A cannot return schedule S. Therefore, in
the schedule returned by A on instance I2, T3 starts before time M .

Let us now consider the following situation: task T1 bids a length M and task
T2 has a true length of M2. Given the values bid by T1, if T2 bid its true value,
then the instance corresponds to instance I1. As seen above, in the schedule
returned by A on instance I1, T2 starts at the soonest at time M .

Assume that task T2 lies and bids a length of 1 instead of M2. The input of
the algorithm is now two tasks of length M and 1: it is instance I2 (the algorithm
cannot know that T2 lies). As seen above, since A is an α-approximate algorithm,
with α < 2, in the schedule returned by A on instance I2, T2 starts before time
M . Task T2 decreases its starting time (and thus its completion time) by bidding
a false value. Therefore A is not a truthful algorithm.

If we consider the case of randomized algorithms, we are able to prove the
following result (the proof is omitted).

Theorem 2. Let A be a (randomized) truthful algorithm which does not intro-
duce idle times between the tasks. Then A is not α-approximate, with α < 3

2 .

2.2 Negative Results: Private Lengths and Weights

If both the lengths and the weights of the tasks are private data then it is not
possible to obtain a truthful deterministic approximation algorithm.

Theorem 3. Let α > 1. There is no truthful deterministic α-approximate algo-
rithm if both the lengths and the weights of the tasks are private values.

Proof. Let A be a deterministic algorithm which is α-approximate. Let us show
that A is not a truthful algorithm. Let M = 3α.

Let us consider a first instance I1: a single machine and two tasks T1 and
T2. Task T1 has a length of M2 and a weight of 1. Task T2 has a length of M
and a weight of M . In an optimal schedule, T2 is executed at time 0 and T1

starts when T2 has been executed, at time M . The cost of such a schedule is
M2 + (M + M2) = 2M2 + M .

Let S be a schedule of I1 in which task T1 starts before time M . In such a
schedule, task T2 cannot be completed before the start of T1: since no preemption
is allowed, T1 is executed before T2. The cost of S is thus larger than or equal
to M2 + (M2 + M)M = M3 + 2M2 (in the best case there is no idle time: task
T1 is scheduled at time 0 and task T2 starts as soon as T1 is completed, i.e. at
time M2). The ratio between the cost of S and the optimal cost is thus larger
than or equal to M3+2M2

2M2+M = M2+2M
2M+1 > M

3 = α. Since A is an α-approximate
algorithm, A cannot return schedule S. Therefore, in the schedule returned by
A on instance I1, T1 starts at the soonest at time M .

Let us now consider a second instance, I2: a single machine and two tasks
T1 and T2. Task T1 has a length of 1 and a weight of M2. Task T2 has a length
of M and a weight of M . In an optimal schedule T1 is executed at time 0 and
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T2 starts when T1 has been executed, at time 1. The cost of such a schedule is
M2 + (1 + M)M = 2M2 + M .

Let S be a schedule of I2 in which task T1 does not start before time M . The
cost of S is thus larger than or equal to M2 + (M + 1)M2 = M3 + 2M2 (in
the best case task T2 is scheduled at time 0 and task T1 starts as soon as T2

is completed, i.e. at time M). The ratio beween the cost of S and the optimal
cost is larger than or equal to M3+2M2

2M2+M = M2+2M
2M+1 > M

3 = α. Since A is an α-
approximate algorithm, A cannot return schedule S. Therefore, in the schedule
returned by A on instance I2, T1 starts before time M .

Let us now consider the following situation: task T1 has a length M2 and
weight 1 and task T2 bids a length M and a weight M . Given the values bid
by T2, if T1 bids its true values, then the instance corresponds to instance I1.
As seen above, in the schedule returned by A on instance I1, T1 starts at the
soonest at time M .

Let us now consider that task T1 lies and bids a length of 1 and a weight of
M2. The input of the algorithm is now identical to instance I2 (the algorithm
cannot know that T1 lies). As seen above, since A is an α-approximate algorithm,
in the schedule returned by A on instance I2, T1 starts before time M . Task T1

decreases its starting time (and thus its completion time) by bidding false values.
Therefore A is not a truthful algorithm.

2.3 Positive Results: Single Machine with Preventive Preemption

In the remaining of this section, we show that if preventive preemption is used,
then it becomes possible to design a truthful mechanism without payments which
is optimal with respect to the social welfare. A preemptive schedule on a sin-
gle machine can be defined as a vector σ = (ρ1, . . . , ρn) where for every task i,
1 ≤ i ≤ n, ρi corresponds to the set of time-intervals during which task i is exe-
cuted, i.e. ρi = [l1i , r

1
i ) ∪ · · · ∪ [lki , rk

i ) with l1i < r1i ≤ l2i < r2i ≤ · · · ≤ lki < rk
i and

∑k
j=1

(
rj
i − lji

)
= ti, where ti is the true length of task i. In addition, for every

pair of tasks i, j, we have ρi ∩ ρj = ∅. Hence, in schedule σ, task i starts at time
l1i , it is preempted at time r1i , then its execution continues at time l2i , it is again
preempted at time r2i and so on until its completion. Clearly, for the considered
objective function, i.e. the sum of weighted completion times, any schedule where
at least one task is preempted is strictly worse than the optimal non-preemptive
schedule. Hence, given that we are interested in obtaining a truthful algorithm
which outputs an optimal outcome, we need to design an algorithm which pre-
empts the execution of a task only when the task bids a false value of its length.
However, there is no possibility for the mechanism to know a priori if a task lies,
and the mechanism has to define a (perhaps preliminary) schedule based only on
the values that the tasks bid, i.e. before their real execution. Our algorithm is the
following one: it schedules the tasks following the increasing order of the ratio of
the declared length to weight, i.e. following Smith’s rule, and it executes each task
i during bi units of time in the time interval [l1i , l

1
i +bi). Whenever the real length of

a task is greater than its declared one, then the task will be preempted at l1i + bi
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and restarted after the completion of all the bi’s, 1 ≤ i ≤ n, following a round
robin policy if more than one tasks are preempted. We now introduce what we
will call preventive preemption.

Definition 1. An algorithm uses preventive preemption if it constructs a sched-
ule in which a task i is preempted (and resumed later), if and only if, bi < ti.

Our algorithm, that we call Weighted Shortest Processing Time with Preventive
Preemption (WSPT-PP), uses the concept of preventive preemption. Our algo-
rithm is based on the classical Smith’s rule WSPT (Weighted Shortest Process-
ing Time) which is optimal for the sum of the weighted processing times for the
single-machine case. As we prove below an important property of WSPT-PP is
that it is truthful and consequently no task is finally preempted, since for every
task i, we have bi = ti. Let us now define more formally this algorithm2.

Algorithm WSPT-PP

1 Sort all tasks in the WSPT order (i.e. such that b1
wb

1
≤ b2

wb
2

≤ · · · ≤ bn
wb

n
).

2 Schedule the first interval [l1i , r
1
i ) of every task i such that l1i =

∑i−1
j=1 bj

and r1i = l1i + bi.

3. After time t =
∑n

j=1 bj , schedule the tasks which are not already com-

-pleted using the round robin policy: For each x ≥ 2, if Task i is not

completed at time
(∑n

j=1 bj
)

+ n(x − 2) + i − 1, schedule this task in

the time interval [lxi , rxi ), with lxi =
(∑n

j=1 bj
)

+ n(x − 2) + i − 1

and rxi =
(∑n

j=1 bj
)

+ n(x − 2) + i.

Theorem 4. WSPT-PP is a polynomial-time, optimal and truthful algorithm
for the single machine case where the private data of every task is its length and
the social welfare is the weighted sum of completion times.

Proof. Assume that task i bids bi > ti. By the definition of WSPT-PP, task i
will not start earlier than if it bids bi = ti (and thus it will not decrease its
completion time by lying). On the other hand, if task i bids bi < ti, again by the
definition of WSPT-PP, it will be preempted bi units of time after its starting
time and it will be continued after date

∑n
j=1 bj . Thus, its completion time will

be at least ti − bi +
∑n

j=1 bj = ti +
∑n

j=1
j �=i

bj . If it bids bi = ti, it will not be

preempted and its completion time will be at most
∑n

j=1 bj = ti +
∑n

j=1
j �=i

bj . In
both cases task i has no incentive to lie, and so WSPT-PP is truthful. Thus the
obtained schedule is without preemption, i.e. identical to the one obtained by
the classical WSPT algorithm. Given the optimality of WSPT, we obtain that
WSPT-PP is also optimal. 	

Remark. Notice that the previous results hold also if the valuation of each task
is defined as its weighted completion time.

2 Recall that in this section wb
i = wi.
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2.4 Positive Results: Parallel Machines with Preventive Preemption

It is well known that the Shortest Processing Time (SPT) algorithm computes an
optimal solution for the problem of minimizing the sum of completion times on
identical parallel machines [21]. Based on that, we can apply SPT with preventive
preemption (SPT-PP) on identical parallel machines and obtain a polynomial-
time optimal and truthful algorithm for the parallel machines case where the
social welfare is the minimization of the sum of completion times.

The proof of the truthfulness of SPT-PP is similar than the one of WSPT-
PP for the single-machine case and it is omitted here. Given the truthfulness of
SPT-PP, it is easy to see that no task will be preempted by SPT-PP and the
produced schedule will be the same as the one of SPT.

Theorem 5. SPT-PP is an optimal and truthful algorithm for the parallel
machine case where the private data of every task is its length and the social welfare
is the sum of completion times.

For the multiple machines case with weights, given that the problem is NP-
hard even if all data are public, we turn our attention to the development of
approximate truthful mechanisms. We propose the following simple algorithm
that we call RAND-WSPT-PP: Assign tasks independently and uniformly at ran-
dom to the machines, and on each machine schedule the tasks using the WSPT
rule by applying preventive preemption if necessary. It is easy to see that a task
i has no influence on the choice of the machine on which it will be scheduled by
lying on its length. In addition, according to the proof of Theorem 4 whatever
the machine it is scheduled on, its best strategy is to declare bi = ti. This means
that all the tasks will declare their true lengths and the algorithm will produce
a non-preemptive schedule. It has been proved in [20] that this algorithm is 3/2-
approximate in expectation. Consequently, we get the following result.

Theorem 6. RAND-WSPT-PP is a truthful randomized 3/2-approximate in
expectation algorithm for the parallel machine case where the private data of every
task is its length and the social welfare is the weighted sum of completion times.

Remark. The derandomization of this algorithm is WSPT-PP: the tasks are
sorted according to the non decreasing ratio of bi/wi’s, and they are scheduled
following this order as soon as a machine becomes available [21]. If we impose
large penalties on liars, e.g. by starting the exceeding part of a task at a time
equal to the sum of all the declared processing times of the tasks, then it is
easy to see that preventive preemption guarantees that no agent will lie when
we apply WSPT-PP. This gives a (1+

√
2)/2-approximation [17]. If however, we

impose that the exceeding part is started after the completion of the last task
on the same machine or on any machine, then the tasks have incentive to lie. To
see this consider the following example.

Example. Consider the following instance: two machines and three tasks: w1 =
t1 = 1, w2 = t2 = 1, w3 = 2 and t3 = 2 + ε (where ε is a small positive value,
e.g. ε = 0.1). The schedule returned by WSPT-PP is the following one: each
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task of length 1 is scheduled at time 0 on a machine. Task 3 is scheduled at
time 1, after a task of length 0. Its completion time is thus 3 + ε. Task 3 has
incentive to bid 2 − ε. In this case, WSPT-PP schedules task 3 at time 0, and
tasks 1 and 2 are scheduled on the other machine. Since task 3 is alone on its
machine, it will be completed at time 2 + ε even with preventive preemption.
Even if we consider a stronger version of preventive preemption, that we may
call preventive preemption with migration, where we execute the remaining part
of the preempted task on the machine of maximum load, then task 3 will finish
at time 2 + 2ε instead of 3 − ε : task 3 has still incentive to bid a false value.

3 Introducing Payments

3.1 Private Lengths

Let us first prove that the VCG method cannot be applied for the single-machine
case without preventive preemption.

Theorem 7. There is no optimal truthful mechanism with payment for the sin-
gle machine case even in the unweighted case.

Proof. By contradiction, assume that there is an optimal truthful mechanism min-
imizing the sum of completion times of the tasks on a single machine. It is well
known that the Shortest Processing Time first (SPT) algorithm, which schedules
the tasks in non-decreasing order of their lengths, is the only algorithm that max-
imizes the social welfare −∑

1≤i≤n Ci. Given that SPT does not insert any idle
time, a schedule can be defined as an ordering of the tasks. Let 1 and 2 be the two
tasks to schedule (i.e. N = {1, 2}) and consider the following scenario: when task
2 tells the truth, we have t2 = b2 > b1. In this case, SPT constructs a schedule
σ where task 1 is scheduled before task 2 (σ = (1, 2)). Then the utility of task 2
is u2 = −C2 − p2 = −t1 − t2 − p2. On the other hand, when task 2 lies and bids
b′
2 < b1, SPT constructs σ′ where task 2 is scheduled before task 1 (σ′ = (2, 1))

and the utility of task 2 becomes u′
2 = −C ′

2−p′
2 = −t2−p′

2. Given that the mech-
anism is assumed to be truthful, we must have u2 ≥ u′

2 (i.e. task 2 should not have
incentive to lie) and thus −t1 − t2 − p2 ≥ −t2 − p′

2 ⇒ p′
2 − p2 ≥ t1. However,

since t1 is not known to the mechanism when the payments are computed, it is
clear that there is no any payment function satisfying this property. 	

Corollary 1. The VCG method cannot be applied for the single-machine case.

3.2 Private Lengths and Weights

In this section, we show that preventive preemption associated with payments
helps even when both the length and the weight of the tasks are private data.
Since now each agent can lie on his weight, algorithm WSPT-PP is not truthful
anymore. Indeed any task i has incentive to bid bi = ti and wb

i > wi in order to
get a smaller ratio bi

wb
i

, and then to decrease its completion time Ci. Moreover, as
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shown by Theorem 8 below, when both weights and lengths are private values,
there is no optimal algorithm even if preemptive preemption is allowed (the proof
is omitted due to lack of space). We then propose an optimal truthful algorithm
which uses payment and preventive preemption.

Theorem 8. Let ε > 0. There is no truthful deterministic (2 − ε)-approximate
algorithm which does not use payment when the weights of the tasks is a private
value, even when preventive preemption is allowed.

Theorem 9. For every task i, let si be the starting time of task i in the schedule
obtained by WSPT-PP. The mechanism using algorithm WSPT-PP and the
following payment function pi = −si +

∑
j �=i bj is polynomial-time computable,

optimal and truthful for the single machine case.

Proof. By the definition of algorithm WSPT-PP, −si +
∑

j �=i bj is a posi-
tive value and it can be computed by the scheduler using only the values
(b1, wb

1), . . . , (bn, wb
n). Thus, pi = −si +

∑
j �=i bj is a valid payment function.

Moreover, for every task i, if i tells the truth, we have ui = −Ci − pi =
−(si + ti) − (−si +

∑
j �=i bj) = −ti − ∑

j �=i bj whereas if i lies, by the defin-
ition of algorithm WSPT-PP, it cannot be completed before time si + ti and
thus we have ui ≤ −ti −∑

j �=i bj . Hence, task i takes no advantage of not telling
the truth and so the mechanism is truthful. Moreover, given the truthfulness
of the mechanism, WSPT-PP constructs the same schedule as WSPT without
preemption. Thus, as WSPT constructs an optimal solution minimizing the sum
of the weighted completion times, so does WSPT-PP. 	


For applications where the valuation of a task is its weighted completion time,
it is also possible to obtain payments that ensure that WSPT-PP is truthful (the
details will be given in the full version of the paper).

Multiple machines. Notice that for multiple machines we can use the algorithm
RAND-WSPT-PP (see Sect. 2.4) with appropriate payments in order to obtain
a randomized truthful approximation algorithm.

Corollary 2. There exists a truthful 3
2 -approximate in expectation algorithm for

the parallel machine case with payments when the private data of every task are
its length and its weight.
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Abstract. In this paper we study the model of nonatomic selfish rout-
ing and characterize the topologies of undirected/directed networks in
which every Nash equilibrium is weakly Pareto optimal, meaning that
no deviation of all players could make everybody better off. In particular,
we first obtain the characterizations for single-commodity case by apply-
ing relatively standard graphical arguments, and then the counterpart
for two-commodity undirected case by introducing some new algorithmic
ideas and reduction techniques.

Keywords: Nonatomic selfish routing · Weakly Pareto optimal · Single-
commodity networks · Multi-commodity networks · Extension-parallel
networks

1 Introduction

A basic task of network management is routing traffic to achieve the highest
possible network efficiency. However, it is usually difficult or even impossible to
implement centralized optimal routing in many large systems, as modeled by
selfish routing games [9]. In these games, a number of players (network users)
selfishly choose routes in the network for traveling from their origins to their
destinations, aiming to minimize their own latencies. The selfish behaviors often
lead to Braess’s paradox [2], which exposes the seemingly counterintuitive phe-
nomenon that less route options lead to shorter travel time at the Nash Equi-
librium (NE). The paradox in particular reflects the fact that there is a feasible
routing which is better for all players than the NE. This stands on the contrary
to the spirit of weak Pareto optimality – no alternative solution could make
every individual strictly gain. The absence of weak Pareto optimality exhibits
not only the inefficiency, but also a kind of unstable state where players might
have incentive to form a grand coalition to deviate. A natural question on net-
work design arises as to in which network topologies the NE of any routing
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instance is always Weakly Pareto Optimal (WPO). Once such a WPO network
is established, regardless of the latency functions and the locations of origins
and destinations, the strategic interactions among players would lead to equilib-
rium outcomes that enjoy sort of efficiency and stability, and the occurrence of
Braess’s paradox is particularly prevented. The purpose of this paper is to iden-
tify the network structures that inherently guarantee weak Pareto optimality for
not only any single origin-destination pair (i.e., the single-commodity case) and
but also any multiple origin-destination pairs (i.e., the multi-commodity case).

Related Work. Milchtaich [8] studied under the model of nonatomic selfish
routing the weak Pareto optimality of NE in undirected networks w.r.t. a fixed
origin-destination pair (s, t). In the nonatomic model, there are an infinite num-
ber of players each controlling a negligible portion of the total traffic from s
to t. It was shown that all NE are WPO for any nonnegative, continuous and
nondecreasing latency functions if and only if the network has linearly indepen-
dent routes, meaning that every s-t path has at least an edge which does not
belong to any other s-t path. Milchtaich’s result [8] parallels an earlier necessary
and sufficient condition of Holzam and yone (Lev-tov) [5] for atomic selfish rout-
ing games played by a finite number of players each controlling a nonsplittable
unit traffic from origin s to destination t in a directed network. The condition
ensures that all (pure strategy) NE are WPO by excluding from the network the
so-called bad configuration. Holzam and yone (Lev-tov) [6] then related the for-
bidden structure with a recursive extension-parallel construction for irredundant
networks, i.e., networks that are unions of their s-t paths. The authors proved
that an irredundant directed network does not contain any bad configuration if
and only if it is extension-parallel. Later, Milchtaich [8] established the equiv-
alence between the extension-parallel structure of an irredundant network and
the linearly independent route property of its underlying undirected network.

Strengthening the stability of weak Pareto optimality, which in some sense
only excludes the coalition of all players, a Strong Equilibrium (SE) prevents
any subset of players from deviating. In particular, every SE (if exists) is an NE
that is WPO. For atomic routing restricted to irredundant single-commodity
directed networks, Holzman and yone (Lev-tov) [6] proved that extension-parallel
networks are exactly the ones that guarantee the existence of SE. Regarding the
multi-commodity counterpart, the network characterization was given in terms
of forbidden bad configurations [5]. Recently, Holzman and Monderer [7] studied
the atomic routing game on a special directed network consisting of paths from
a specific source to a specific sink, and proved for the multi-commodity case that
the sets of NE and SE are identical if and only if the network is extension-parallel.

The network structures that guarantee NE of selfish routing to possess other
kinds of properties stronger or weaker (in some sense) than weak Pareto opti-
mality were also discussed in literatures, such as Pareto optimality [5,8], social
optimality [4] and Braess’s paradox freeness [3,8].

Our Contributions. We focus on nonatomic selfish routing model. First, we
extend the Milchtaich’s linearly independent route characterization [8] for the
single-commodity undirected networks to directed ones; we prove that
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– Extension-parallel networks are essentially the networks that guarantee the
NE of every single-commodity routing instance is always WPO (Theorem 1).

The proof relies on applications and extension of previous results from [6–8]. In
particular, for the undirected case, we further transfer the relatively local pic-
ture, expressed in terms of forbidden minors (Theorems 2(iii) and 4(ii)) or every
two-terminal subnetwork (Theorem 1), to a global one that gives the explicit
structure of the whole graph (Theorem 3). Then, by utilizing algorithmic ideas
on flow, graph theory tools, and double-counting method, we show that

– A connected undirected network with the NE of every 2-commodity routing
instance being WPO is either a tree, or contains only one non-edge block
(a maximal subgraph without cut-vertices); in the latter case, the non-edge
block is a cycle or consists of a number of parallel edges or is obtained from a
triangle by duplicating an edge for a number of times (Theorem 5).

The theoretical result and technical methods constitute our main contribution.
The restrictive topologies indicate more or less the scarcity of WPO NE in multi-
commodity routing practice. The ideas and approaches might be useful for future
research on selfish routing. Furthermore, for k-commodity case with k ≥ 3, we
show that undirected WPO networks are extremely limited (Theorem 6).

2 Routing Model

We consider both undirected and directed networks, and model them by graphs
or digraphs G = (V,E) with vertex set V and link set E, respectively. Loops are
not allowed, while more than one link can join the same pair of vertices. Each
link e ∈ E is associated with a nonnegative, continuous, nondecreasing latency
function �e(·) which specifies the time needed to traverse e as a function of the
link congestion on e. Undirected links are called edges while directed ones are
called arcs. Let u, v ∈ V , a path in G from u to v is called a u-v path. We use
the standard definition of a path that does not allow any vertex repetition. We
will often abbreviate “undirected graphs” as “graphs”, and collectively refer to
graphs and digraphs as (di)graphs.

Let k be a positive integer. Given k origin-destination pairs of vertices (si, ti),
i ∈ [k] = {1, . . . , k}, in G, we call (G, (si, ti)ki=1) a k-commodity network embedded
in G if for each i ∈ [k], si �= ti and G contains at least an si-ti path.

We focus on nonatomic selfish routing for traffic flow. Given a positive demand
r = (ri)ki=1, the traffic in (G, (si, ti)ki=1) comprises k flows, each for one commodity.
The flow of commodity i ∈ [k] with a total amount of ri is formed by an infinite
number of players traveling from si and ti. Each player (who is associated to a
unique origin-destination pair) selects a single path from his origin to his desti-
nation that has a minimum latency, given the congestion imposed by the rest of
players. The nonatomic routing model assumes that the choice of each individual
player has a negligible impact on the experiences of others.

Formally, let (G, (si, ti)ki=1, r, �) denote a k-commodity selfish routing
instance, where latency functions �e(·), e ∈ E, are collectively represented by �.
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For each i ∈ [k], let Pi be the set of si-ti paths in G; a flow of commodity i is a
nonnegative vector fi = (fi(P ))P∈Pi

with
∑

P∈Pi
fi(P ) = ri. The combination

of f1, . . . , fk gives rise to a (k-commodity) flow f = (fi)ki=1 for (G, (si, ti)ki=1, r).
Under f , each link e that is contained by some path in ∪k

i=1Pi experiences a con-
gestion f(e) =

∑k
i=1

∑
P∈Pi:e∈P fi(P ), and thus a link latency �e(f(e)). Accord-

ingly, each path P contained by ∪Q∈∪k
i=1Pi

Q and any player traveling through
P suffer from a path latency �P (f) =

∑
e∈P �e(f(e)).

In nonatomic routing games, Nash equilibria are characterized by Wardrop’s
principle in a way that all players travel only on the minimum latency paths
from their own origins to their own destinations. A flow π of (G, (si, ti)ki=1, r, �)
is called anNE (flow) of the instance if it satisfies the following NE property:

∀ i ∈ [k] and ∀ P ∈ Pi with πi(P ) > 0, there holds �P (π) = minQ∈Pi
�Q(π).

By the classical result of Beckmann et al. [1], the NE of (G, (si, ti)ki=1, r, �) exist,
and are essentially unique in the sense that the link latencies are invariant under
any NE of (G, (si, ti)ki=1, r, �). Thus, for each i ∈ [k], the common latency expe-
rienced by all players traveling from si to ti in any NE of (G, (si, ti)ki=1, r, �) is
also an invariant, which we denote by �i(G, (sj , tj)kj=1, r).

Given a k-commodity routing instance (G, (si, ti)ki=1, r, �), its “unique” NE
flow is weakly Pareto optimal (WPO) if for every feasible flow f , there exist
h ∈ [k] and P ∈ Pi such that fi(P ) > 0 and �P (f) ≥ �h(G, (si, ti)ki=1, r), i.e.,
some players travelling from sh to th experience a lentency under f not smaller
than that they experience under a NE flow. We say that a k-commodity network
(G, (si, ti)ki=1) embedded in G is WPO if for any positive traffic demand r ∈ Rk

>0,
and any nonnegative, continuous, nondecreasing latency functions � on E, the NE
of (G, (si, ti)ki=1, r, �) is WPO. A (di)graph G is called WPO w.r.t. k commodities
if every k-commodity network embedded in G is WPO.

The concept of minors in graph theory is useful in characterizing WPO
(di)graphs. Given (di)graphs G and H, we call H a minor of G if it could be
obtained from a sub(di)graph of G by contracting links (possibly none); we call
H a topological minor of G if G contains a subdivision of H as a sub(di)graph.
If H is not a (topological) minor of G, then we say that G does not have a
(topological) minor isomorphic to H, or simply G has no H-(topological) minor.

Lemma 1. Let G be a (di)graph and G′ a topological minor of G. If G is WPO
w.r.t. k commodities, then so is G′. ��

Due to the limitation on pages, we omit some proofs in this extended abstract,
and postpone them the full version of the paper.

3 Single-Commodity Networks

We start this section by introducing some definitions for both undirected and
directed networks, which are followed by a unified characteristic description for
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WPO (di)graphs w.r.t. single commodity. Then we discuss the undirected and
directed cases in Sects. 3.1 and 3.2, respectively.

Considering a network G with origin-destination pair (s, t), we say that G has
linearly independent routes, or linearly independent s-t routes to be more specific,
if in G every s-t path has at least a link that does not belong to any other s-t
path. We call G a two-terminal network (with terminals s, t), or an (s, t)-terminal
network, if each link and each vertex of G are contained in at least an s-t path.
Note that if a two-terminal network is directed, then its terminals must be its
unique source and unique sink.

Definition 1 [6,8]. The terminal extension of an (s, t)-terminal network G is
the operation that adds a new vertex together with a new link from it to s (or
from t to it), where the new vertex becomes the origin (or destination) of the
resulting network.

Definition 2 [6]. A single-commodity network G with origin-destination pair
(s, t) is (s, t)-extension parallel or extension-parallel for short if

– G has a single link with ends s and t; or
– G is a terminal extension of a smaller extension-parallel network; or
– G is obtained by connecting two smaller extension-parallel networks in paral-

lel – identifying their origins (resp. destinations) to form s (resp. t).

It has been known that an (s, t)-terminal undirected network is (s, t)-
extension-parallel if and only if it has linearly independent s-t routes (see Propo-
sition 5 of [8]). In view of the 1–1 correspondence between the sets of s-t
paths of an (s, t)-extension-parallel directed network and its underlying undi-
rected network, we have the following equivalent definition for extension-parallel
(un)directed networks, where a graph is considered as the underlying graph of
itself.

Definition 3 [6,8]. A two-terminal network is extension-parallel if its underly-
ing undirected network has linearly independent routes.

The following unified characterization combines Theorems 2(ii) and 4(iii) to
be discussed in the next two subsections.

Theorem 1. A (di)graph G is WPO w.r.t. single commodity if and only if every
maximal two-terminal network embedded in G is extension-parallel. ��

3.1 Undirected Networks

In this subsection, we formally state Milchtaich’s result [8] on single-commodity
networks where the origin and destination are fixed. The result implies a forbid-
den minor characterization for WPO graphs straightforwardly. Our efforts are
devoted to transferring the forbidden minor description to a constructive one
(Theorem 3) which gives the explicit global graphical structures.
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Fig. 1. The forbidden terminal-reduced topological minors for WPO single-commodity
networks with origin-destination pair (s, t).

Let G be an undirected network with origin-destination pair (s, t). A sub-
network of G is a network with the same origin and destination obtained from
G by removing vertices and edges (possibly none). A single-commodity network
G′ is an terminal-reduced topological minor of G if some subnetwork of G can be
obtained from G′ by applying edge subdivisions and terminal extensions (cf. Def-
inition 1) for any number of times (possibly none) in any order.1 An (s, t)-minor
of G is a network obtained from some sub(di)graph of G that contains s, t by
contracting links (possibly none), where when contracting any link incident with
s (or t), the resulting vertex is named as s (or t). Milchtaich [8] characterized
WPO graphs G w.r.t. a fixed single origin-destination pair via two (equivalent)
necessary and sufficient conditions: (i) none of Fi, i = 1, 2, 3, depicted in Fig. 1
is a terminal-reduced topological minor of G, and (ii) the maximal two-terminal
network embedded in G has linearly independent routes.

We observe that in any graph with origin-destination pair (s, t), the presence
of any Fi, i ∈ [3] as a terminal-reduced topological minor implies the presence
of F1 as an (s, t)-minor, and vice versa. It follows that a graph is WPO w.r.t.
single commodity if and only if it does not contain F1 as a minor.

Theorem 2 [8]. Let G be a graph and (G, (s, t)) be a single commodity network
embedded in G. Then:

(i) (G, (s, t)) is WPO if and only if G has linearly independent s-t routes.
(ii) (G, (s, t)) is WPO if and only if the maximal (s, t)-subnetwork of G is (s, t)-

extension parallel.
(iii) G is WPO w.r.t. single commodity if and only if G does not contain any

minor isomorphic to F1.

To interpret the above forbidden minor characterization (iii) in a constructive
way, we next study the structures of graphs without F1-minor. Given a graph
G, a maximal connected subgraph of G without cut-vertices is called a block of
G. A block is trivial if it consists of an edge or a vertex. Let S denote the set of
graphs each of which is obtained from a cycle by adding duplications of one of
its edges (possibly none). See Fig. 2(a) for an illustration.

Lemma 2. A connected graph G does not contain a minor isomorphic to F1 if
and only if G has at most one nontrivial block and this nontrivial block (if exists)
belongs to S. ��

1 In terminologies of [8], G′ is said to be embedded in G.
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Fig. 2. Graphs without F1-minor.

The combination of Theorem 2(iii) and Lemma 2 provides the following con-
structive characterization for WPO graphs w.r.t single commodity.

Theorem 3. A graph G is WPO w.r.t. single commodity if and only if every
component of G has at most one nontrivial block, and all nontrivial blocks of G
(if any) belong to S. ��

3.2 Directed Networks

In this subsection, we characterize WPO digraphs w.r.t. single commodity by
excluding the orientations �Fi of Fi, i = 1, 2, 3 (see Fig. 3) as topological minors.
The result, on one hand, parallels to the exclusion of terminal-reduced topo-
logical minors F1, F2, F3 to assure a WPO undirected network w.r.t. a fixed
origin-destination pair [8]. On the other hand, it stands in contrast to the single
forbidden minor (i.e., F1) characterization for WPO graphs (see Theorem 2(iii)).

Our proof involves series-parallel networks, for which the following recursive
definition (see e.g., [10]) turns out to be helpful.

Definition 4. A single-commodity directed network G with origin-destination
pair (s, t) is two-terminal series-parallel or (s, t)-series-parallel if

(i) G has a single arc from s to t; or
(ii) G is obtained by connecting two smaller (oi, di)-series-parallel directed net-

works Hi, i = 1, 2, in series – identifying d1 and o2, and naming o1 as s,
and d2 as t; or

(iii) G is obtained by connecting two smaller (oi, di)-series-parallel directed net-
works Hi, i = 1, 2, in parallel – identifying o1 and o2 to form s and identi-
fying d1 and d2 to form t.

Fig. 3. The forbidden topological minors for WPO digraphs w.r.t. single commodity.
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Holzman and Monderer (Proposition 2 of [7]) obtained the follow-
ing forbidden-minor characterization of two-terminal series-parallel directed
networks.

Lemma 3 [7]. A two-terminal directed network is two-terminal series-parallel
if and only if it does not have any topological minor isomorphic to �F3. ��
Theorem 4. Let G be a digraph. The following are equivalent:

(i) G is WPO w.r.t. single commodity;
(ii) G does not have any topological minor isomorphic to �F1, �F2 or �F3;
(iii) Every maximal two-terminal network embedded in G is extension-parallel.

Proof. (i) ⇒ (ii): By Lemma 1, it suffices to show that �Fi = (Vi, Ei), i ∈ {1, 2, 3},
is not WPO. Let s and t denote the unique source and sink of �Fi, respectively.
Let the four links e1, e2, e3, e4 ∈ Ei be as depicted in Fig. 3, and let P denote
the set of s-t paths in �Fi. Let P1, P2, P3 ∈ P be the unique s-t paths in �Fi

that contain {e1, e2}, {e3, e4} and {e1, e4}, respectively. Consider the single-
commodity routing instance (�Fi, (s.t), r, �), where r = (2), �e1(x) = x = �e4(x),
�e2(x) = 2 = �e3(x), and �e(x) = 0 for any e ∈ Ei \ {e1, e2, e3, e4}. It is easy
to see that the unique NE flow π of this instance is given by π(P3) = 2 and
π(P ) = 0 for each P ∈ P \ {P3}, and incurs a latency �(�Fi, (s, t), r) = 4. On the
other hand, (�Fi, (s.t), r, �) admits a feasible flow f given by f(P1) = 1 = f(P2)
and f(P ) = 0 for each P ∈ P \ {P1, P2}. Now maxP∈P,f(P )>0 �(P ) = �(P1) =
�(P2) = 3 < �(�Fi, (s, t), r) implies that π is not WPO.

(ii) ⇒ (iii): By contradiction, take G = (V,E) to be a counterexample with
a minimum number m of arcs. Clearly m ≥ 2. The minimality of G says that G is
a two-terminal network, which is therefore not extension-parallel. By Lemma 3,
condition (ii) implies that G is two-terminal series-parallel. Since m ≥ 2, by
Definition 4, there exist two smaller two-terminal series-parallel digraphs H1

and H2 whose connection in series or in parallel gives G. It follows from the
minimality of G that both H1 and H2 are extension-parallel. Because G is not
extension-parallel, it must be the case that H1 and H2 are connected in series
and both H1 and H2 have more than one arc, which shows that G contains a
subdivision of �F1 or �F2, a contradiction to (ii).

(iii) ⇒ (i): Consider an arbitrary maximal two-terminal network (G′, (s, t))
embedded in G. Since G′ is extension-parallel, its underlying graph, written as
G′, has linearly independent s-t routes. Thus (G′, (s, t)) is WPO by Theorem 2(i).
As G′ and G′ have the same set of s-t paths, (G′, (s, t)) is also WPO. From the
arbitrary choice of (G′, (s, t)), we see that G is WPO w.r.t single commodity. ��

4 Two-Commodity Networks

In this section, we characterize WPO undirected graph w.r.t. two commodities,
and leave the characterization of the directed counterpart as an open question.
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Let R be the set of graphs each of which is formed by a number (at least
two) of parallel edges between two vertices. Let T be the set of graphs each of
which is obtained from a graph in R by dividing exactly one edge with a new
vertex. Let C be the set of undirected cycles of lengths at least four. Note that
R ∪ T ∪ C is a proper subset of the graph class S defined in Sect. 3.1.

The goal of this section is to establish the following theorem. Since R∪T ∪C �
S, the result can be viewed as a natural evolvement of Theorem 3. Let F4 be
the graph as depicted in Fig. 4.

Theorem 5. Let G be an undirected graph. The following are equivalent:

(i) G is WPO w.r.t. two commodities;
(ii) Every component of G has at most one nontrivial block, and all nontrivial

blocks of G (if any) belong to R ∪ T ∪ C.
(iii) G does not contain any minor isomorphic to F1 or F4.

The equivalence between (ii) and (iii) is straightforward. We concentrate on
the proof of (i) being equivalent to (ii).

The proof for implication from (i) to (ii) is relatively easy: any WPO graph
must be F1-minor free; the freeness enforces that each component of the graph
can contain at most one nontrivial block and this block can only belong to S
(Lemma 2 in Sect. 3.1); in turn the weak Pareto optimality w.r.t. two commodi-
ties guarantees the membership of R∪T ∪C for this block, as otherwise routing
instances with non-WPO NE flows could be constructed (see Lemma 4).

The proof of the reverse implication reduces to proving that every graph in
R ∪ T ∪ C is WPO. By Milchtaich’s linearly independent route characterization
(Theorem 2(i)), we only need to consider two cases: (1) the graph belongs to C
and (2) the graph belongs to T (see Lemmas 6 and 7).

Non-WPO Graphs. We focus on 2-connected graphs without F1-minor which
do not belong to R ∪ T ∪ C, i.e., graphs in S \ (R ∪ T ∪ C).

Lemma 4. If G ∈ S \ (R ∪ T ∪ C), then G is not WPO w.r.t. two commodities.

Proof. It is easy to see that G contains F4 as a topological minor. By Lemma 1,
it suffices to show that F4 is not WPO w.r.t. two commodities. Indeed, a 2-
commodity routing instance (F4, (si, ti)2i=1, r, �) whose NE is not WPO can be
constructed as follows: Let the vertices and edges of F4 be labeled as in Fig. 4.
Let the demand r be defined by r1 = r2 = 10. The nonnegative, continuous
nondecreasing latency functions � satisfy �e1(5) = 0 < 2 = �e1(6), �e2(3) = 2 =
�e2(5), �e3(12) = 0 < 2 = �e3(13), �e4(10) = 0 < 2 = �e4(11) and �e5(7) = 2 =
�e5(8).

Observe that the set of s1-t1 paths in F4 is {e1 ∪ e5, e2 ∪ e5, e3 ∪ e4} and the
set of s2-t2 paths in F4 is {e1 ∪ e3, e2 ∪ e3, e5 ∪ e4}. Clearly (F4, (si, ti)2i=1, r, �)
admits 2-commodity flows π and f defined respectively by π1(e1 ∪ e5) = 3,
π1(e3∪e4) = 7, π1(e2∪e5) = 0, π2(e1∪e3) = 3 = π2(e2∪e3) = 3, π2(e5∪e4) = 4
and f1(e1∪e5) = 4, f1(e3∪e4) = 6, f1(e2∪e5) = 0, f2(e1∪e3) = 1, f2(e2∪e3) = 5,
f2(e5 ∪ e4) = 4. A routine check gives the congestions and latencies in Table 1.
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Fig. 4. Graph F4.

Table 1. Edge congestions and laten-
cies in F4.

j 1 2 3 4 5

π(ej) 6 3 13 11 7

�ej (π(ej)) 2 2 2 2 2

f(ej) 5 5 12 10 8

�ej (f(ej)) 0 2 0 0 2

Since each si-ti path (i = 1, 2) has exactly two edges, each of which suffers
from a link latency 2 under π, we deduce that π is a NE for (F4, (si, ti)2i=1, r, �),
with �1(F4, (si, ti)2i=1, r) = �2(F4, (si, ti)2i=1, r) = 4. On the other hand, from
f1(e2 ∪ e5) = 0 we see that for any i ∈ [2] and any path P ∈ Pi with fi(P ) > 0,
there holds �P (f) ≤ 2. So F4 is not WPO, proving the lemma. ��

Building Blocks of WPO Graphs. Our goal is to prove weak Pareto optimal-
ity for building blocks of WPO graphs w.r.t. two commodities. As each graph in
R has linearly independent routes, in view of Theorem 2(i), we focus on building
blocks in C ∪ T . The following lemma is crucial to our proofs; it exhibits a basic
property of flow allocations on cycles.

Lemma 5. If f and g are flows for 2-commodity routing instance
(G, (si, ti)2i=1, r) on undirected cycle G, then there exist i ∈ {1, 2} and P ∈ Pi

with fi(P ) > 0 such that f(e) ≥ g(e) for all edges e ∈ P . ��
Lemma 6. All undirected cycles are WPO w.r.t. two commodities.

Proof. Given any 2-commodity routing instance (G, (si, ti)2i=1, r, �) on cycle G,
for any flow f and the NE flow π of the instance, by Lemma 5, there exist
i ∈ {1, 2} and P ∈ Pi with fi(P ) > 0 such that f(e) ≥ π(e) for all links e ∈ P .
It follows from the nondecreasing property of � and the NE property of π that
�P (f) ≥ �P (π) ≥ �i(G, (si, ti)2i=1, r), implying that π is WPO. ��

When studying any flow f and the NE flow π of a 2-commodity routing
instance on G ∈ T , an important step is to “sum up” flows on the parallel edges
of G to obtain an imaginary flow on a triangle (which is a cycle), and then apply
Lemma 5 to the imaginary flows on the triangle. This provides four inequalities
comparing the flow allocations of f and π such that one of them must be true.
From the valid inequality, we elaborate on the detailed flow allocations on the
parallel edges and reach contradictions assuming f shows that π is not WPO.

Lemma 7. All graphs in T are WPO w.r.t. two commodities. ��

The proof of Theorem 5. We are now ready to give a wrap-up proof of our
main result on 2-commodity networks.

Proof (of Theorem 5). Assume without of generality that G is connected.
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(i) ⇒ (ii): It suffices to consider the case where G contains a nontrivial block
B. Since G is WPO w.r.t. two commodities, it is WPO w.r.t. single commodity
(considering two origins and two destinations as one, respectively). By Theorem
2(ii), F1 is not a minor of G. It follows from Lemma 2 that B is the only one
nontrivial block of G and B ∈ S. If B �∈ R∪T ∪C, then B is not WPO w.r.t. two
commodities by Lemma 4. On the other hand, as B is a subgraph, and hence
a topological minor of G, it follows from Lemma 1 that B is WPO w.r.t. two
commodities, a contradiction. So we have B ∈ R ∪ T ∪ C as desired.

(ii) ⇒ (i): If G has no nontrivial block, then G is a tree. Any routing instance
on G has a unique flow because, given any pair of vertices of G, there is only one
path between them in G. It is instant that G is WPO w.r.t. two commodities.

So we consider the case where G contains a unique nontrivial block B and
B ∈ R ∪ C ∪ T . Lemmas 6 and 7 say that B is WPO w.r.t. two commodities in
case of B ∈ C ∪ T . When B ∈ R, it reduces to a single-commodity network, and
Theorem 2(i) implies B is WPO w.r.t. two commodities.

Suppose for a contradiction that the NE flow π of some 2-commodity instance
(G, (si, ti)2i=1, r, �) is not WPO. So the instance admits a flow f such that

for each i ∈ [2], �P (f) < min
Q∈Pi

�Q(π) holds for allP ∈ Pi with fi(P ) > 0. (4.1)

Observe that for any trivial block (which must be a single edge) of G and
any i ∈ [2], either all si-ti paths pass through this edge or none of them passes
through it. Thus f(e) = π(e) and �e(f(e)) = �e(π(e)) for any trivial block e of
G. Therefore (4.1) implies that for each i ∈ [2], B contains at least one edge
from some si-ti path, and therefore at least one edge from all si-ti paths. Since
B is a block, it follows that for each i ∈ [2], there exist two vertices s′

i and t′i
in B such that P ′

i = {P ∩ B : P ∈ Pi} is the set of s′
i-t

′
i paths in B. We now

construct a 2-commodity routing instance (B, (s′
i, t

′
i)

2
i=1, r, �

′), where �′ is the
restriction of � to B. For each g ∈ {f ,π}, define g′

i : P ′
i → R+ (i = 1, 2) by

g′
i(P ∩ B) = g(P ), P ∈ Pi. It is easy to see that f ′ and π′ are, respectively, a

flow and a NE flow of (B, (s′
i, t

′
i)

2
i=1, r, �

′). Notice from (4.1) that for each i ∈ [2],
�P ′(f ′) < minQ′∈P′

i
�Q′(π′) holds for all P ′ ∈ P ′

i with f ′
i(P

′) > 0, which shows
that B is not WPO w.r.t. two commodities, a contradiction.

(ii) ⇔ (iii): The implication (ii) ⇒ (iii) is trivial. Conversely, given graph G
without F1-minor or F4-minor, no nontrivial block of G belongs to S\(R∪T ∪C)
as noted in the proof of Lemma 4. Then (ii) is instant from Lemma 2. ��
WPO Digraphs. The task of characterizing WPO digraphs w.r.t. two com-
modities would be very challenging if not intractable. A good starting point
might be investigating the relations between WPO digraphs w.r.t. two com-
modities and those w.r.t. single commodity. Clearly, the former digraph class D2

is a subset of the latter digraph class D1. On the other hand, all digraphs we have
found in D1 belong to D2. It would be interesting to discover a digraph to show
the nonemptyness of D1 − D2, or prove the surprising relation that D1 = D2.
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5 Concluding Remarks

In the paper, we have obtained network characterizations for weak Pareto opti-
mality of nonatomic selfish routing in the cases of single commodity and undi-
rected two commodities.

As far as directed networks are concerned, Theorem 4 is a natural extension
of Milchtaich’s characterization [8] for single-commodity undirected networks to
the directed case. On the other hand, the study for two or more commodities
might be inherently difficult, due to directional structures which usually do not
admit concise descriptions, and are not so algorithmically friendly.

Regarding the undirected case, we have an almost complete solution for char-
acterizing weak Pareto optimality. Complementary to Theorems 2 and 5, the
investigation of 3-commodity case provides the following negative result.

Theorem 6. If G is a graph that contains a cycle of length at least 6, then G
is not WPO w.r.t. k commodities for any k ≥ 3. ��

Theorem 6 implies that the class of WPO graphs G w.r.t more than two
commodities would be extremely limited. Assuming G is connected, we deduce
from Theorems 5 and 6 that G is a tree, or G has a unique nontrivial block and
it belongs to R, or G has a unique nontrivial block and it belongs to T or is a
cycle of length at most 5. In the first two cases, G is WPO w.r.t. any number of
commodities. It remains to investigate the weak Pareto optimality w.r.t. k (≥ 3)
commodities for graphs in T and cycles of length at most 5. To fulfill the task,
we need develop new tools that help us to avoid tedious case analysis.
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Abstract. We study a newly introduced network model of the pollution control
and design approximation algorithms and truthful mechanisms with objective to
maximize the social welfare. On a high level, we are given a graph whose nodes
represent the agents (sources of pollution), and edges between agents represent
the effect of pollution spread. The government is responsible to maximize the
social welfare while setting bounds on the levels of emitted pollution both locally
and globally. We obtain a truthful in expectation FPTAS when the network is
a tree (modelling water pollution) and a deterministic truthful 3-approximation
mechanism. On planar networks (modelling air pollution) the previous result was
a huge constant approximation algorithm. We design a PTAS with a small viola-
tion of local pollution constraints. We also design approximation algorithms for
general networks with bounded degree. Our approximations are near best possi-
ble under appropriate complexity assumptions.

Keywords: Algorithmic mechanism design ·Approximation algorithms · Planar
and tree networks

1 Introduction

Environmental degradation accompanies the advance in technology, resulting in global
water and air pollution. As an example, in 2012, China discharged 68.5 billion tons
of industrial wastewater, and the SO2 emissions reached 21.2 million tons (National
Bureau of Statistics of China, 2013). The recent annual State of the Air report of the
American Lung Association finds 47% of Americans live in counties with frequently
unhealthy levels of either ozone or particulate pollution [2]. The latest assessment of
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air quality, by the European Environment Agency, finds that around 90% of city inhab-
itants in the European Union are exposed to one of the most damaging air pollutants
at harmful levels [1]. Environmental research suggests that water pollution is on of the
very significant factor affecting water security worldwide [19]. It is the role of regula-
tory authorities to make efficient environmental pollution control policies in balancing
economic growth and environment protection.

We give new algorithmic results on the pollution control model called a Pollution
Game (PG), introduced in [3], and inspired by [6,15]. We briefly describe applications
of PG to air pollution control presented in [3]; for precise definition of PG see Sect. 2.
In the first application, the graph’s vertices represent pollution sources (agents) and
edges are routes of pollution transition from one source to another. The government as
the regulator can decide to either shut down or keep open a pollution source (by selling
licences to agents) taking into account the diffusion nature of pollution (emission at one
source affects the neighbors at diminishing level). It sets bounds on global and local
levels of pollution (called global and local constraint(s), resp.), aiming to optimize the
social welfare. The emissions exceeding licences, if any, must be cleaned-up (hence,
agent’s clean-up cost). In the second application [3], vertices represent mayors of cities
and edges the roads between cities. The percentage of cars moving from one city to
another is represented by the weight of the corresponding edge. The model allows the
regulator to auction pollution licences for cars to mayors. The pollution level of an agent
(mayor), i.e., the number of allocated licences and their prices, is set by the regulator.

Here we also consider an application of PG to water pollution in rivers, modelled
by tree networks. In water pollution the government decides which pollution sources
should be shut down so that the effluent level in water is as low as possible. Water
pollution cost sharing was introduced in [17] and the network is a path (single river).
This model was extended to tree networks (a system of rivers) in [10]. We also model a
system of rivers as a tree, but study a different pollution control model, i.e., [3].

Our Results. We present best possible algorithmic results for trees and planar graphs
when we allow a small violation of the constraints on local pollution of every agent
(called a local constraint). Suppose first that the objective function is linear. Then, for
PG on trees we obtain an FPTAS and this is the best we can achieve as PG is weakly
NP-hard [3] on stars. For planar graphs the best known result was a big constant approx-
imation algorithm [3]. We design a PTAS with (1 + δ)-violation of the local pollution
constraints for any δ > 0, and this is tight as we prove that the problem is strongly NP-
hard on planar graphs even with (1 + δ)-violations. By using a Lavi-Swamy technique
[16] we prove that our FPTAS for trees leads to a randomized truthful in expectation
mechanism. In addition, we also design a deterministic truthful mechanism on trees
with an approximation ratio 3 + ε. Suppose now that the objective function is 2-piece-
wise linear or general and monotone. Then for graphs with degree at most Δ we obtain
O(Δ)-approximation algorithms and a Unique Games-hardness within Δ/ log2 Δ.

Technical Contributions/Approaches. Suppose that the objective functions are linear.
When the network is a directed tree, a somehow non-standard two level dynamic pro-
gramming approach is designed to obtain an FPTAS for PG with binary variables. This
approach is crucial to deal with the global constraint. For that we design an FPTAS for a
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Table 1. Our results. TiE/DT: truthful in expectation/deterministic truthful mechanism. PG(poly)
is PG with poly-size integer variables, PG(general) without this assumption.

General objective function Linear objective function

Bounded degree Δ Trees Planar

Lower bound Ω( Δ
log Δ2 ) NP-hard Strongly NP-hard (δ violation)

PG(poly) O(Δ)a FPTAS TiE | O(1) DT PTAS (δ violation)

PG(general) O(Δ) TiEb FPTAS TiEc O(1) TiE [3]
aMonotone increasing obj. function. bPiece-wise linear obj. function with one shift and an
additional mild assumption. cRunning time is polynomial in q.

special multiple choice, multi-dimensional knapsack problem where coefficients of all
constraints except one are bounded by a polynomial of the input size; this generalizes
the results in [7]. A similar idea is applied to design deterministic truthful mechanisms
on trees and a PTAS for PG on planar graphs with (1 + δ)-violations.

To obtain our PTAS for planar PG with (1 + δ)-violations, we first use known
rounding techniques (e.g., [8,14]) to make all the coefficients polynomially bounded.
Then, we design a dynamic programming approach to solve PG on graphs with bounded
tree-width tree decomposition. Finally, we combine a special (called nice) tree decom-
position of k-outerplanar graphs, Baker’s shifting technique and our two-level dynamic
programming approach for dealing with the global constraint, obtaining our PTAS.

Even when polluters’ cost functions are linear with a single parameter, simple
monotonicity is not sufficient to turn our algorithms into truthful mechanisms. This
is because polluters’ utility functions have externalities – they are affected by their
neighbours. Thus, we need to use general techniques to obtain truthful mechanisms:
maximal in range mechanisms (for deterministic truthfulness) and maximal in distrib-
utional range mechanisms (for truthfulness in expectation). The deterministic truthful
mechanism for trees uses a maximum in range technique (Chaps. 11 and 12 in [18]).

For piece-wise linear objective functions on bounded degree graphs we prove that
PG is Δ column sparse so a randomized algorithm of [5] is applicable. For general
monotone objective functions on bounded degree graphs we prove that the objective
function is submodular and use randomized rounding with alterations.

Organization. Our results are summarized in (Table 1). Section 2 contains definitions
and preliminaries, and our results on trees are in Sect. 3. Section 4 presents our results
on planar graphs, and, finally, Sect. 5 discusses general objective functions. All missing
details and proofs will appear in the full version.

2 Preliminaries

Model and Applications.We describe the model and mention two applications follow-
ing [3] to gain an intuition. Consider an area of pollution sources (e.g. factories) each
owned by an agent. The government’s goal as a regulator is to optimize the social wel-
fare, restricting levels of emitted pollution. Thus, given a weighted digraphG = (V,E),
where V is the set of n pollution sources (players, agents) and edge (u, v) ∈ E means
u and v are geographic neighbours, i.e., (u, v) ∈ E if the pollution emitted by u affects
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v. For each (u, v) ∈ E weight w(u,v) = wuv is a discount factor of the pollution dis-
charged by player u affecting its neighbour v. W.l.o.g., wuv ∈ (0, 1], ∀(u, v) ∈ E.

The government sets the total pollution quota discharged to the environment (by the
number of pollution sources that remain open) to be p ≥ ∑

v ∈ V xv , where xv ∈ {0, 1}
denotes if pollution source v ∈ V will be shut down or not. Each agent v has a non-
decreasing benefit function bv : R≥0 −→ R≥0, where bv(xv) is a concave increasing
function with bv(0) = 0, representing v’s benefit. Each v has a non-decreasing damage
function dv : R≥0 −→ R≥0, and bv is concave increasing, bv(0) = 0 and dv is convex
increasing1. Player v’s total welfare rv is v’s benefit minus damage cost: bv(xv) −
dv

(
xv +

∑
u ∈ δ−

G(v) wuvxu

)
, where, δ−

G(v) = {u ∈ V : (u, v) ∈ E}, δ+G(v) =
{u ∈ V : (v, u) ∈ E}. Thus, v is affected via the damage function by his own
pollution if xv �= 0 and by the total discounted pollution neighbours. This models that
pollution spreads along the edges of G. The government decides on the allowable local
level of pollution pv, for every v ∈ V , which imposes the following constraints for
every v ∈ V : xv ≤ qv, xv +

∑
u ∈ δ−

G(v) wuvxu ≤ pv. The first application assumes

xv ∈ {0, 1} and qv = 1, ∀v ∈ V and the second xv ∈ {0, 1, . . . , qv} and qv ∈ N.

max R(x) =
∑

v ∈ V

(bv(xv) − dv(xv +
∑

u ∈ δ−
G(v)

wuvxu))(1)

s.t.
∑

v ∈ V

xv ≤ p (2)

xv +
∑

u ∈ δ−
G(v)

wuvxu ≤ pv, ∀v ∈ V (3)

xv ∈ {0, 1, . . . , qv}, ∀v ∈ V (4)

The problem of soc-
ial welfare maximiza-
tion is the following
convex integer program
(1)–(4), called a pol-
lution game (PG) on
G, where (2) is called
global constraint, (3)
are local constraints,
and xv +

∑
u ∈ δ−

G(v) wuvxu is the local level of pollution of v. Value qv is decided
by the government and for this application qv = 1. We call (1)–(4), PG with integer
variables (if xv ∈ Z) or with binary variables (if xv ∈ {0, 1}). For an instance I of
PG, |I| is the number of bits to encode I , and if q ∈ poly(|I|), q = maxv ∈ V {qv}+1,
we call (1)–(4), PG with polynomial size integer variables.

Basic Definitions. Let I = (G,b,d,p,q) be an instance of PG, b = (bv)v ∈ V ,
d = (dv)v ∈ V , p = (pv)v ∈ V and q = (qv)v ∈ V (bv is private information of
v and other parameters are public). Let I be the set of all instances, and X the set
of feasible allocations. Given a digraph G = (V,E), Gun = (V,Eun), where
Eun = {(u, v) : (u, v) ∈ E or (v, u) ∈ E}. A mechanism φ = (X,P ) con-
sists of an allocation X : I → X and payment function P : I → R

|V |
≥0 (X(I) sat-

isfies (2)–(4)). For any vector x, x−u denotes vector x without its u-th component.
Note, rv(X(I)) = bv(Xv(I)) − dv(Xv(I) +

∑
u ∈ δ−

G(v) wuvXu(I)) is the welfare of
player v under X(I). A mechanism φ = (X,P ) is truthful, if for any b−v , bv and
b′
v , rv(X(bv, b−v)) − Pv(bv, b−v) ≥ rv(X(b′

v, b−v)) − Pv(b′
v, b−v). A randomized

mechanism is truthful in expectation if for any b−v , bv and b′
v , E(rv(X(bv, b−v)) −

1 [15] uses cost function rather than benefit function, viewed as Mv − bv(xv), with Mv a large
constant for any v ∈ V . The cost function is convex decreasing and it is equivalent to bv(xv)
being a concave increasing function. We use benefit function rather than cost function.
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Pv(bv, b−v)) ≥ E(rv(X(b′
v, b−v)) − Pv(b′

v, b−v)), where E(·) is over the algorithm’s
random bits. OPT fr

G (PG) (OPT in
G (PG), resp.) denotes the value of the optimal

fractional (integral, resp.) solution of PG on G. A mechanism is individually rational
if each agent v has non-negative utility when he declares bv , regardless of the other
agents’ declarations. The approximation ratio of an algorithm A w.r.t. OPT in

G (PG)

(resp. OPT fr
G (PG)) is ηin(A) = OPT in

G (PG)
R(A) (ηfr(A) = OPT fr

G (PG)

R(A) ), where R(A)
is the objective value of theA’s solution. If unspecified, the approximation ratio refers to
ηin. An FPTAS (PTAS, resp.) for a problem P is an algorithm A that for any ε > 0 and
any instance I ofP , outputs a solution with the objective value at least (1−ε)OPT in

I (P)
and terminates in time poly(1ε , |I|) (( 1ε |I|)g( 1

ε ), resp.), where g is a function indepen-
dent from I . Let γk = min{2k2 +2, 8k, k

(1− 1
k (1+( 2

k )
1
3 ))k

} = (e+ o(1))k = O(k), and

[n] = {1, . . . , n}. We use ‘vertex’ to denote the vertex in a graph and ‘node’ to denote
a vertex of the tree obtained from a tree decomposition of a graph. An undirected graph
is an outerplanar if it can be drawn in the plane without crossings in such a way that all
of the vertices belong to the unbounded face of the drawing. An undirected graph G is
k-outerplanar if for k = 1, G is outerplanar and for k > 1, G has a planar embedding
such that if all vertices on the exterior face are deleted, the connected components of
the remaining graph are all (k−1)-outerplanar. An planar graph is k outerplanar where
k can be equal to +∞. A digraph is called a planar graph if its undirected version is
planar. We consider some standard embedding of a planar graph and define level k ver-
tices in a planar embedding E of a planar graph G. A vertex is at level 1 if it is on
the exterior face. Call a cycle of level i vertices a level i face if it is an interior face
in the subgraph induced by the level i vertices. For each level i face f , let Gf be the
subgraph induced by all vertices placed inside f in this embedding. Then the vertices
on the exterior face of Gt are at level i + 1.

In Sects. 3 and 4 we assume that bv and dv are both linear with slopes s0v and s1v
respectively, i.e., bv(x) = s0vx and dv(y) = s1vy, for any v ∈ V . The social wel-
fare function is R(x) =

∑
v ∈ V ωvxv , where ωv = s0v − s1v − ∑

u ∈ δ+
G(v) s1uwvu

(R(x) =
∑

v ∈ V bv(xv) − dv(xv +
∑

u ∈ δ−
G(v) wuvxu) =

∑
v ∈ V s0vxv − s1v(xv +

∑
u ∈ δ−

G(v) wuvxu) =
∑

v ∈ V ωvxv).

3 Directed Trees

Truthful in Expectation Mechanisms. A digraph G is called a directed tree if the
undirected graph Gun is a tree. We consider trees where arcs are directed towards the
leaves. We obtain our truthful in expectation FPTAS for PG with binary variables on
any directed trees by a two-level dynamic programming (DP) approach (used also in
Sect. 4). The first bottom-up level is based on a careful application of the standard single-
dimensional knapsack FPTAS. The second level is by an interesting generalization of an
FPTAS of [7] for a special multi-dimensional knapsack problem, see (IP2) below, with
a constant number of constraints most of which have poly(|I|) size of coefficients. This
FPTAS generalizes the results in [7], where the authors consider the one dimensional
knapsack problem with cardinality constraint; it will appear in our paper’s full version.
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We will also need the following tool from mechanism design for packing problems.
An integer linear packing problem with binary variables is a problem of maximising
a linear objective function over a set of linear packing constraints, i.e., constraints of
form a · x ≤ b where x ∈ {0, 1}n is a vector of binary variables, and a, b ∈ R

n
≥0.

Proposition 1 [11].Given an FPTAS for an integer linear packing problem with binary
variables, there is a truthful in expectation mechanism that is an FPTAS.

We first present an FPTAS without constraint (2) which captures our main technique.
max

∑
i ∈ [nv]

(Mvin
uiinxui

+ Mvin
uiout(1 − xui

)) + ωv

s.t. 1 + wv′v +
∑

i ∈ [nv]
wuivxui

≤ pv, (IP1)
xui

∈ {0, 1}, ∀i ∈ [nv]

Warmup (Without Global
Constraint). The algorithm
uses a DP and FPTAS for
knapsack as a subroutine. Note, on a star, any instance of knapsack can be reduced
to PG without global constraint. Thus FPTAS is the best possible for such PG unless
P = NP .

We keep four values for each v ∈ V . Suppose v’s father is v′, let Mv′in
vin denote

the optimal value of PG on subtree rooted at v when both v′ and v are selected in the
solution. Similarly, we have Mv′in

vout , Mv′out
vin and Mv′out

vout . Let ui, i = 1, 2, ..., nv denote
children of v. Suppose Mvin

uiin, M
vin
uiout, M

vout
uiin and Mvout

uiout have been calculated, for any

i = 1, ..., nv . Some of them are undefined due to infeasibility. Now, calculate Mv′in
vin .

Observe, Mv′in
vin is equal to the optimal value of the knapsack (IP1), where Mvin

uiin and
Mvin

uiout have finite values (otherwise remove them). If this knapsack problem has a fea-
sible solution, we get value Mv′in

vin , otherwise set Mv′in
vin undefined. Similarly, calculate

Mv′in
vout , M

v′out
vin and Mv′out

vout . Thus, at each step if we calculate an optimal solution, it will
be obtained by above DP approach. For knapsack with nv variables, there is an FPTAS.
Hence, at each step we get approximate value M̄v′in

vin ≥ (1− ε)Mv′in
vin in poly-time in nv

and 1
ε by knapsack’s FPTAS; similarly for other three values. Thus, in the final solution,

M̄root ≥ (1 − ε)kMroot, where k is the number of levels of the tree and Mroot is PG’s
optimal value without global constraint, terminating in poly(|I|, 1

ε ) time; |I| is the input
size. Set 1−ε′ = (1−ε)k, then ε = Θ( ε′

k ). The run time is poly(|I|, k
ε′ ) = poly(|I|, 1

ε′ )
due to k ≤ |I|, giving FPTAS for PG without global constraint.

max
∑

i ∈ [nv]

∑
s ∈ [p](M

vin
uiin(s)xis + Mvin

uiout(s)yis)
s.t.

∑
i ∈ [nv]

∑
s ∈ [p] s(xis + yis) ≤ 
 − 1,

∑p
s=0(xis + yis) = 1, ∀i ∈ [nv] (IP2)

1 + wv′v +
∑

i ∈ [nv]
[wuiv(

∑p
s=0 xis)] ≤ pv,

xis, yis ∈ {0, 1}, ∀i ∈ [nv], s ∈ [p]

W.l.o.g., suppose p ≤ n, other-
wise let p = n. For each vertex
v, we keep 4p values. Let v’s
father be v′, and let Mv′in

vin (s)
be the optimal value of PG on
the subtree rooted at v when
both v′ and v are selected in the solution, and the total pollution level allocated to
the subtree rooted at v is ≤ s, s = 0, 1, ..., p. Similarly, we have Mv′in

vout(s), Mv′out
vin (s)

and Mv′out
vout (s). Let ui, i ∈ [nv] denote the children of v. Suppose Mvin

uiin(s), M
vin
uiout(s),

Mvout
uiin (s) and Mvout

uiout(s) have been calculated, for any i ∈ [nv] and s = 0, 1, ..., p.
Some of them are undefined due to infeasibility. Note, Mvin

uiin(0), Mvout
uiin (0) are unde-

fined and Mvout
uiout(0) = Mvin

uiout(0) = 0. Now, calculate Mv′in
vin (
). Observe, Mv′in

vin (
)
is equal to the optimal value of the knapsack problem (IP2) (called KNAPSACKv (
))
plus ωv . If Mvout

uiin (s) and Mvout
uiout(s) are undefined, they are removed from KNAPSACKv
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(
). Note, xi0 ≡ 0, for any i ∈ [d]. If KNAPSACKv (
) has a feasible solution, we
get the value Mv′in

vin (
), otherwise set Mv′in
vin (
) undefined. Similarly, calculate Mv′in

vout(
),
Mv′out

vin (
), Mv′out
vout (
), 
 = 0, 1, ..., p. From the analysis of DP without global constraint,

if there is an FPTAS for KNAPSACKv (
), then there is one for KNAPSACKroot (p), and
so an FPTAS for PG with binary variables on directed trees. Note, the second constraint
in (IP2) can be replaced by

∑p
s=1(xis + yis) ≤ 1, ∀i ∈ [nv]. Then, by Proposition 1:

Theorem 1. There is a truthful in expectation mechanism for PG with binary variables
on directed trees, which is an FPTAS.

For xv ∈ Z, we can replace each xv by qv duplicated variables xvj , j = 1, · · · , qv ,
i.e., {xv ∈ {0, 1, . . . , qv}} = {∑j ∈ [qv]

jxvj | ∑
j ∈ [qv]

xvj ≤ 1, xvj ∈ {0, 1}}.
This transforms a poly-size integer constraint into a multiple choice, one dimensional
knapsack constraint. Hence, for directed trees, by a DP, we can construct a pseudo poly-
time algorithm to compute the exact optimal value of PG with integer variables, in time
poly(|V |, q, OPT in(PG)). And, we can remove OPT in(PG) from the running time
losing an ε by scaling techniques, implying a (1 − ε)-approximation algorithm for PG
with integer variables with time poly(|V |, q, 1/ε). By Proposition 1:

Theorem 2. There is a truthful in expectation mechanism for PG with polynomial size
integer variables on directed trees, which is an FPTAS.

Deterministic Truthful Mechanisms. We use a maximal in range (MIR) mechanism
for PG with polynomial size integer variables on directed trees. By transformation from
integer constraint into multiple choice and one dimensional knapsack constraint, we
know we only need to show such approximation algorithm for binary variables. Based
on recent deterministic truthful PTAS for 2 dimensional knapsack2 [8,9,14] we obtain:

Theorem 3. There is a deterministic (ηin = 3+ ε)-approximation truthful mechanism
for PG with polynomial size integer variables on directed trees, which for binary vari-
ables terminates in O(|V |2Δ6+ 1

ε ) time.

4 Planar Graphs

A PTAS with δ-violation: Our approach to obtain a PTAS has three main steps:

1. Round PG to an equivalent problem P̄G2 with polynomial size integer variables.
2. Using the nice tree decomposition, we present a dynamic programming approach to

solve P̄G2 optimally on an k-outerplanar graph.
3. By a shifting technique similar to [4], we obtain a PTAS with 1 + δ violation.

Step 1: Rounding Procedure.Recall that PG is equivalent to maximizing
∑

v ∈ V ωvxv

subject to constraints (1)–(3) where ωv = max{0, s0v − s1v − ∑
u ∈ δ+

G(v) s1uwvu} and

wv,v = 1 ∀v ∈ V , and bv and dv are both linear with slopes s0v and s1v . For each

2 This PTAS also works for multiple choice and constant dimensional knapsack problem, which
will be used for PG with polynomial size integer variables.
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v ∈ V , suppose qv ∈ [2ov−1 −1, 2ov −1). Let ov = 
log2(qv)�+1 if qv �= 2ov−1 −1
and ov = 
log2(qv)�+2 otherwise; ci

v = 2i−1, i ∈ [ov −1] and cov
v = qv −2ov−1+1.

Notice, {xv |xv ∈ Z, 0 ≤ xv ≤ qv} = {∑ov

i=1 ci
vyi

v | yi
v ∈ {0, 1}, i ∈ [ov]}, for any

v ∈ V . Thus, PG is equivalent to the following integer program (denoted as PG′):

max
∑

v ∈ V

∑ov

i=1 ωvci
vyi

v (PG′) | max
∑

v ∈ V

∑ov

i=1 ωvbi
vyi

v (P̄G1)
s.t.

∑
v ∈ V

∑ov

i=1 ci
vyi

v ≤ p, | s.t.
∑

v ∈ V

∑ov

i=1 ci
vyi

v ≤ p
∀v ∈ V :

∑ov

i=1 wvvci
vyi

v+ | ∀v ∈ V :
∑ov

i=1 w̄i
vvyi

v+
+

∑
u ∈ δ−

G(v)

∑su

i=1 wuvci
uyi

u ≤ pv, | +
∑

u ∈ δ−
G(v)

∑su

i=1 w̄i
uvyi

v ≤ p̄v

∀v ∈ V, i ∈ [ov] : yi
v ∈ {0, 1}, | ∀v ∈ V, i ∈ [ov] : yi

v ∈ {0, 1}

Let o∗ = maxv ∈ V ov and ρ = o∗|V |. Recall that q = maxv ∈ V {qv} + 1. For any
δ > 0, let w̄i

uv = 
 2wuvci
vρ

pvδ � and p̄v = � 2pvρ
pvδ 
 = � 2ρ

δ 
, for any u, v ∈ V . Then we

have the following modified PG′ (denoted as P̄G1 – see above).

Lemma 1. Any feasible solution of PG′ is feasible in P̄G1, and any feasible solution
of P̄G1 is feasible for PG except violating each local constraint by a factor of 1 + δ.

Proof. We only prove local constraints for each direction since the proof of the global
constraint is similar. Let {yi

v}v ∈ V, i ∈ [ov ] be a feasible solution of PG′. We know that∑ov

i=1 wvvci
vyi

v +
∑

u ∈ δ−
G(v)

∑su

i=1 wuvci
uyi

v ≤ pv , ∀v ∈ V . Then
∑ov

i=1 w̄i
vvyi

v +
∑

u ∈ δ−
G(v)

∑su

i=1 w̄i
uvyi

v ≤ 2ρ
pvδ (

∑ov

i=1 wvvci
vyi

v +
∑

u ∈ δ−
G(v)

∑su

i=1 wuvci
uyi

v) ≤
2ρ
pvδ pv ≤ p̄v as desired. On the other hand, suppose {yi

v}v ∈ V, i ∈ [ov] is a feasible solu-

tion of P̄G1. We know
∑ov

i=1 w̄i
vvyi

v +
∑

u ∈ δ−
G(v)

∑su

i=1 w̄i
uvyi

v ≤ p̄v , ∀v ∈ V . Then
∑ov

i=1 wvvci
vyi

v+
∑

u ∈ δ−
G(v)

∑su

i=1 wuvci
uyi

v ≤ pvδ
2ρ [

∑ov

i=1(w̄
i
vv + 1)yi

v+
∑

u ∈ δ−
G(v)

∑su

i=1(w̄
i
uv + 1)yi

v] ≤ pvδ
2ρ w̄i

vvyi
v +

∑
u ∈ δ−

G(v)

∑su

i=1 w̄i
uvyi

v + pvδρ
2ρ ≤ pvδp̄v

2ρ + pvδ
2 ≤

pvδ
2ρ ( 2ρ

δ + 1) + pvδ
2 ≤ pv(1 + δ), ∀v ∈ V . ��

max
∑

v ∈ V ωvxv (P̄G2)
s.t.

∑
v ∈ V xv ≤ p

∀v ∈ V : w̄vv(xv) +
∑

u ∈ δ−
G(v) w̄uv(xu) ≤ p̄v

∀v ∈ V : xv ∈ Λv

Note, for each 
 ∈ [qv],
there is a solution {yi

v}i ∈ [ov ] s.t.∑ov

i=1 ci
vyi

v = 
. We use the fol-
lowing solution: If 
 ≤ 2ov−1 − 1,

set yov
v = 0 and there is a unique solution

∑ov

i=1 ci
vyi

v = 
; If 2ov−1 − 1 < 
 ≤ qv ,
set yov

v = qv − 2ov−1 + 1 and there is also a unique solution s.t.
∑ov

i=1 ci
vyi

v = 
.
Hence, there is one-to-one correspondence from xv to {yi

v}i ∈ [ov]. Notice that for a
given xv, the above defined solution {yi

v}i ∈ [ov ] is the one such that
∑ov

i=1 w̄i
vvyi

v +∑
u ∈ δ−

G(v)

∑su

i=1 w̄i
uvyi

v is minimized. Now let w̄vu(xv) =
∑ov

i=1 w̄i
vuyi

v, for any

v, u ∈ V , where {yi
v}i ∈ [ov ] is according to the above solution corresponding to xv.

Let Λv = [qv]∪{0}. Thus, P̄G1 (also PG) is equivalent to the integer program (denoted
as P̄G2, see above).

Step 2: Preliminaries of Tree Decompositions on k-Outerplanar Graphs.
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Definition 1. A tree decomposition of an undirected graph G = (V,E) is a pair
({Xi|i ∈ I}, T = (I, F )), with {Xi|i ∈ I} a family of subsets of V , one for each
node of T , and T a tree such that: (1)

⋃
i ∈ I Xi = V , (2) for all edges (v, w) ∈ E,

there exists an i ∈ I with v ∈ Xi and w ∈ Xi, (3) for all i, j, k ∈ I: if j is
on the path from i to k in T , then Xi ∩ Xk ⊆ Xj . The width of a tree decomposi-
tion ({Xi|i ∈ I}, T = (I, F )) is maxi ∈ I |Xi| − 1. The minimum width of all tree
decompositions of G is called treewidth.

Definition 2. A tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G = (V,E) is called
a nice tree decomposition if T is a rooted binary tree and (1) if a node i ∈ I has two
children j and k, then Xi = Xj = Xk (joint node), (2) if a node i ∈ I has one child
j, then either Xi ⊂ Xj , and |Xi| = |Xj | − 1 (forget node), or Xj ⊂ Xi and |Xj | =
|Xi| − 1 (introduce node), (3) if node i ∈ I is a leaf of T , then |Xi| = 1 (leaf node).

Lemma 2 [12]. For any k-outerplanar graph G = (V,E), there is an algorithm to
compute a tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G with treewidth at most
3k − 1 = O(k), and I = O(|V |) in O(k|V |) time.
Given a tree decomposition ({Xi|i ∈ I}, T = (I, F )) forG = (V,E)with treewidth k
and I = O(|V |), we can obtain a nice tree decomposition with the same treewidth k and
the number of nodes O(k|V |) in O(k2|V |) time [13]. Thus, for any k-outerplanar graph
G = (V,E), we can compute a nice tree decomposition ({Xi|i ∈ I}, T = (I, F )) of
G with treewidth at most 3k − 1 = O(k), and I = O(k|V |) in O(k2|V |) time. In the
following, we suppose there is a nice tree decomposition for any k-outerplanar graph.

Dynamic Programming (DP). A DP to solve P̄G2 on a k-outerplanar digraph is pre-
sented by using a nice tree decomposition of its undirected version. Note, a nice tree
decomposition of an undirected version of digraph is also a nice tree decomposition of
itself. Given nice tree decomposition ({Xi|i ∈ I}, T = (I, F )) of a k-outerplanar
digraph G = (V,E), using a bottom-up approach, DP for P̄G2 works as follows.

For any node i ∈ I , suppose Xi = {vi
1, v

i
2, · · · , vi

t}, where t ≤ 3k. We also say
vertex vi

1 belongs to node Xi, similarly we can say a vertex belongs to a subtree of T ,
meaning this vertex belongs to some node of this subtree. Given any emission amount
{xv}v ∈ V , recall w̄vv(xv)+

∑
u ∈ δ−

G(v) w̄uv(xu) is the local level of pollution of vertex
v. We use ai = (ai

1, a
i
2, · · · , ai

t) to denote the emission amount allocated to vertices in
Xi, i.e., ai

s denotes the emission amount allocated to the vertex vi
s, s ∈ [t]. Similarly

�i denotes the local levels of pollution of vertices in Xi. Let Gi denote the subgraph
generated by all the vertices belonging to the subtree (node Xi) rooted at Xi. We use Qi

to denote the total emission quota allocated toGi. LetΩi(ai, �i, Qi) denote the optimal
objective value of P̄G2 restricted on the subgraph Gi, when the emission amount and
local level of pollution of vi

s are exactly ai
s and 
i

s, s ∈ [t], and the total emission
amount allocated to Gi is exactly Qi. If there is no feasible solution for Ωi(ai, �i, Qi),
we will see that our DP approach will automatically set Ωi(ai, �i, Qi) to be −∞. Let
w̄uv(xv) ≡ 0 if (u, v) is not an edge in G. Note that the range of ai

s we need to compute
is in Λv, and 
i

s is from 0 to p̄vi
s
, s ∈ [t], Qi is from 0 to p. We present the DP approach
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– Xi is a leaf node or a start node, where t = 1. Ωi(ai
1, 


i
1, Q

i) = ωvi
1
ai
1 if the triple

(ai, 
i, Qi) is feasible, which can be verified easily e.g.Qi = ai
1 and 
i

1 = w̄vi
1vi

1
(ai

1).
Let Ωi(ai

1, 

i
1, Q

i) = −∞ if the triple (ai, 
i, Qi) is not feasible.
– Xi is a forget node, and suppose its child is Xj = Xi ∪ {vj

t+1}.
Ωi(ai, �i, Qi) = maxaj

t+1,�j
t+1

Ωj(ai, aj
t+1, �

i, 
j
t+1, Q

i)

– Xi is an introduce node, and suppose its child is Xj = Xi\{vi
t}. Let aj

s = ai
s and


j
s = 
i

s − w̄vi
tvi

s
(ai

t), ∀s ∈ [t − 1]. Ωi(ai, �i, Qi) = Ωj(aj , �j , Qi − ai
t) + ωvi

t
ai

t if∑
s ∈ [t] w̄vi

svi
t
(ai

s) = 
i
t, and Ωi(ai, �i, Qi) = −∞ otherwise.

– Xi is a joint node, and suppose its two children areXj = Xk = Xi.Ωi(ai, �i, Qi) =
maxA{Ωj(aj , �j , Qj) + Ωk(ak, �k, Qk)}, where the condition
A = {(aj , �j , Qj), (ak, �k, Qk) |aj + ak = ai, �j + �k = �i, Qj + Qk = Qi}.

– Xi is the root of T , OPT (Qi) = maxai,�i{Ωi(ai, �i, Qi)} is the optimal value
(social welfare) of P̄G2 when total scaled emission amount is exactly Qi, i.e., the
global constraint satisfies

∑
v ∈ V bvxv = Qi.

Analysis of Running Time of DP. It is not difficult to see that the above DP approach
gives the correct solution of P̄G2 on k-outerplanar graphs. For each node Xi, we need
to keep O(pq3k� 2ρ

δ 
3k) = O(|V |q3k+1� 2ρ
δ 
3k) number of Ωi values. Each Ωi can be

computed in O(|V |q3k+1� 2ρ
δ 
3k) time (this is the worst case running time when Xi is

a joint node). There are O(k|V |) nodes in T . Therefore, the total running time of the
DP approach (by multiplying above three numbers) is O(k|V |3q6k+2� 2ρ

δ 
6k).
Based on the above DP approach, we can solve P̄G2 on any k-outerplanar graph

optimally for any fixed k (which includes any directed tree whose treewidth is 2). There-
fore, for any δ > 0 and fixed k, we can use VCG (see, e.g., Chap. 9 in [18]) to get an
optimal deterministic truthful mechanism for PG on any directed k-outerplanar graph
that violates each local constraint by a factor of δ and runs in O(k|V |3q6k+2� 2ρ

δ 
6k)
time (note that Theorem 4 also works for bounded treewidth graphs).

Theorem 4. For any δ > 0 and fixed k, there is an optimal deterministic truthful mech-
anism for PG on any directed k-outerplanar graph G = (V,E) that violates each
local constraint by a factor of 1 + δ and runs in O(k|V |3q6k+2� 2ρ

δ 
6k) time, where
ρ = |V |(
log2(q)� + 2).

Step 3: PTAS for Planar Graphs. Observe that when there are some boundary con-
ditions on k-outerplanar, the above DP approach still works. For example, if the emis-
sion amount of any vertex in any first and last face (level 1 and level k face) of the
k-outerplanar graph is zero, we just modify the dynamic programming approach in a
bottom-up manner to set Ωi = −∞ if any vertex v in any first and last face is a para-
meter of Ωi and its emission amount ai

v > 0. Then the modified DP approach is the
desired algorithm for P̄G2 on the k-outerplanar graph under this boundary condition.

Proposition 2. PG is strongly NP-hard on planar graphs with degree at most 3 when
we allow a (1 + δ)-violation of local constraints.

Theorem 5. For any fixed k and δ > 0, there is an O(k2|V |3q6k+2� 2ρ
δ 
6k) algorithm

for PG with integer variables on directed planar graph G = (V,E) that achieves



New Results for Network Pollution Games 49

(ηin = k
k−2 )-approximation and violates each local constraint by a factor of 1 + δ,

where ρ = |V |(
log2(q)� + 2).

Proof. We use OPT (P̄G2) to denote OPT in
G (P̄G2) and omit the superscript and sub-

script. By Lemma 1, we know OPT = OPT (PG) ≤ OPT (P̄G2). Let P̄G2(i) denote
the P̄G2 restricted on G by setting xv = 0 for each v who belongs to any face f ≡ i
or i + 1 (modk). Let {x∗

v}v ∈ V be an optimal solution for P̄G2. Then we know∑
i ∈ [k]

∑
v ∈ f :f≡i or i+1(mod k) x∗

v = 2OPT (P̄G2). As a consequence, there exists

i ∈ [k] such that
∑

v ∈ f :f ≡ i or i+1(mod k) x∗
v ≤ 2OPT (P̄G2)

k . Observe that {xv}v ∈ V

is a feasible solution for P̄G2(i), where xv = 0 if v belongs to any face f ≡ i or
i+1 (modk) and xv = x∗

v otherwise. Thus, OPT (P̄G2(i)) ≥ (1− 2
k )OPT (P̄G2) ≥

(1− 2
k )OPT . Solving each P̄G2(i), i ∈ [k], then choosingmaxi ∈ [k]{OPT (P̄G2(i))}

(which is at least (1 − 2
k )OPT ) gives the desired result. Now let us see how to solve

P̄G2(i). Note that for P̄G2(i), xv = 0 for any v who belongs to any face f ≡ i or
i + 1 (modk). P̄G2(i) consists of independent k′−outerplanar graphs, each of which
has some boundary condition i.e. the emission amount of any vertex in any first and
last face is zero and k′ ≤ k. Suppose the number of these independent k′-outerplanar
graphs is Li. W.l.o.g. suppose these k′-outerplanar graphs are ordered from exterior to
interior as Gs = (Vs, Es), s ∈ [Li] (e.g. Gs is the subgraph of G constructed by all
the vertices of levels from (s − 2)k + i + 1 to (s − 1)k + i, s = 2, · · · , Li − 1, with
boundary xv = 0 if v is of level (s − 2)k + i + 1 or (s − 1)k + i).

Let Ωs(Qs) denote the optimal value if there is a solution such that the total
allocated scaled emission amount to Gs is exactly Qs with boundary condition and
Ωs(Qs) = 0 otherwise, which can be solved by the above DP approach on k′-
outerplanar graphs with boundary conditions. Then, it is not difficult to see the opti-
mal solution for P̄G2(i) is the optimal solution of the following integer linear program
(denoted SUB):

max
∑

s ∈ [Li]

∑p
Qs=0 Ωs(Qs)ysQs

s.t.
∑

s ∈ [Li]

∑p
Qs=0 QsysQs ≤ p

∑p
Qs=0 ysQs = 1

ysQs ∈ {0, 1}∀s ∈ [Li], Qs ∈ [p]

Let gt(Q) denote the optimal integer
value of SUB when only Gs, s ∈ [t] is
considered and the total emission amount
allocated to these graphs is exactly Q.

Then we have the following recursion function: gt(Q) = maxQt =0,1,··· ,Q{gt−1(Q −
Qt) + Ωt(Qt)}. The optimal value of SUB is maxQ=0,1,··· ,p{gLi(Q)}, which
gives the optimal solution of P̄G2(i) by tracking the optimal value of this
dynamic programming approach. The running time of this approach is O(|Li|p2).
Hence, the total running time for obtaining and solving P̄G2(i) is O(|Li|p2) +∑

s ∈ [Li] O(k|Vs|3q6k+2� 2ρ
δ 
6k) = O(k|V |3q6k+2� 2ρ

δ 
6k). We need to solve P̄G2(i),
for each i ∈ [k] and then get maxi ∈ [k]{OPT (P̄G2(i))}. Therefore, the overall run-
ning time is O(k2|V |3q6k+2� 2ρ

δ 
6k), and Theorem 5 is proved. ��
Let 2

k = ε in Theorem 5. Also note that ρ = |V |(
log2(q)� + 2). We have:

Theorem 6. There is O
(

1
ε2 |V |12/ε+3q2� 2(�log2 q	+2)q

δ 
12/ε+1
)
=

(
|V |q(log2 q+2)

δ

)O( 1
ε )

time algorithm for PG for fixed δ, ε > 0 on directed planar graph G = (V,E) that
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achieves social welfare (1 − ε)OPT in(PG) and violates each local constraint by a
factor of 1 + δ. This is a PTAS for PG with polynomial size integer variables.

5 General Objective Function for Bounded Degree Graphs

Full details of our results for general objective functions will appear in the full version
of the paper. Our most general algorithmic result is given in Theorem 7.

Theorem 7. Let xv ∈ {0, 1} for any v ∈ V . Assume that R(x) is monotone
increasing as set function on sets S ⊆ V s.t. v ∈ S iff xv = 1. Then there is an
(ηfr = eγΔ+2

e−1 + 1)-approximation algorithm for PG with integer variables on graphs
with degree ≤ Δ.

Our hardness results for general objective functions are Theorems 8 and 9. By a reduc-
tion from independent set we get the following:

Theorem 8. PG is Unique Games-hard to approximate within n1−ε and within Δ
log2 Δ

for G with degree Δ when pv is any constant number ≥ 1 , bv(xv) is linear and dv(y)
is piecewise linear (with 2 pieces) ∀v ∈ V and wvu is positive constant ∀(v, u) ∈ E.

Theorem 9. It is strongly NP-hard to find an optimal solution to Pollution Game (PG)
when pv is any constant number ≥ 1 , bv(xv) is linear and dv(y) is piecewise linear
(with two pieces) ∀v ∈ V and wvu is positive constant for any (v, u) ∈ E.
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of Graphs with Clique-Width at Most Three
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Abstract. The clique-width is a measure of complexity of decomposing
graphs into certain tree-like structures. The class of graphs with bounded
clique-width contains bounded tree-width graphs. We give a polynomial
time graph isomorphism algorithm for graphs with clique-width at most
three. Our work is independent of the work by Grohe and Schweitzer [17]
showing that the isomorphism problem for graphs of bounded clique-
width is polynomial time.

1 Introduction

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijec-
tion f : V1 → V2 such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.
Given a pair of graphs as input the problem of deciding if the two graphs are
isomorphic is known as graph isomorphism problem (GI). Despite nearly five
decades of research the complexity status of this problem still remains unknown.
The graph isomorphism problem is not known to be in P. It is in NP but very
unlikely to be NP-complete [5]. The problem is not even known to be hard for P.
Recently Babai [2] designed a quasi-polynomial time algorithm to solve the GI
problem improving the previously best known 2O(

√
n log n) time algorithm [1,27].

Although the complexity of the general graph isomorphism problem remains elu-
sive, many polynomial time algorithms are known for restricted classes of graphs
e.g., bounded degree [21], bounded genus [23], bounded tree-width [3], etc.

The graph parameter clique-width, introduced by Courcelle et al. in [7], has
been studied extensively. The class of bounded clique-width graphs is fairly large
in the sense that it contains distance hereditary graphs, bounded tree-width
graphs, bounded rank-width graphs [19], etc. Fellows et al. [15] shows that the
computing the clique-width of a graph is NP-hard. Oum and Seymour [24] gave
an elegant algorithm that computes a (23k+2 − 1)-expression for a graph G of
clique-width at most k or decides that the clique-width is more than k.

The parameters tree-width and clique-width share some similarities, for
example many NP-complete problems admit polynomial time algorithms when
the tree-width or the clique-width of the input graph is bounded. A polynomial

B. Das—Part of the research was done while the author was a DIMACS postdoctoral
fellow.
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time isomorphism algorithm for bounded tree-width graphs has been known for a
long time [3]. Recently Lokhstanov et al. [20] gave an fpt algorithm for GI parame-
terized by tree-width. The scenario is different for bounded clique-width graphs.
The complexity of GI for bounded clique-width graphs is not known. Polynomial
time algorithm for GI for graphs with clique-width at most two, which coincides
with the class of co-graphs, is known probably as a folklore. The complexity of
recognizing graphs with clique-width at most three was unknown until Corneil
et al. [6] came up with the first polynomial time algorithm. Their algorithm
(henceforth called the CHLRR algorithm) works via an extensive study of the
structure of such graphs using split and modular decompositions. Apart from
recognition, the CHLRR algorithm also produces a 3-expression for graphs with
clique-width at most three. For fixed k > 3, though algorithms to recognize
graphs with clique-width at most k are known [25], computing a k-expression
is still open. Recently in an independent work by Grohe and Schweitzer [17]
designed an isomorphism algorithm for graphs of bounded clique-width sub-
suming our result. Their algorithm uses group theory techniques and has worse
runtime. However our algorithm has better runtime and uses different simpler
intuitive techniques.

In this paper we give isomorphism algorithm for graphs with clique-width
at most three with runtime O(n3m). Our algorithm works via first defining
a notion of equivalent k-expression and designing O(n3) algorithm to test if
two input k-expressions are equivalent under this notion. Next we modify the
CHLRR algorithm slightly to output a linear sized set parseG of 4-expressions
for an input graph G of clique-width at most three which runs in O(n3m) time.
Note that modified CHLRR algorithm will not output a canonical expression.
However we show that for two isomorphic graphs G and H of clique-width at
most three, parseG contains an equivalent k-expression for each k-expression in
parseH and vice versa. Moreover, if G and H are not isomorphic then no pair
in parseG × parseH is equivalent.

2 Preliminaries

In this paper, the graphs we consider are without multiple edges and self loops.
The complement of a graph G is denoted as G. The coconnected components of
G are the connected components of G. We say that a vertex v is universal to a
vertex set X if v is adjacent to all vertices in X \ {v}. A biclique is a bipartite
graph (G,X, Y ), such that every vertex in X is connected to every vertex of Y . A
labeled graph is a graph with labels assigned to vertices such that each vertex has
exactly one label. In a labeled graph G, lab(v) is the label of a vertex v and lab(G)
is the set of all labels. We say that a graph is bilabeled (trilabeled) if it is labeled
using exactly two (three) labels. The set of all edges between vertices of label a
and label b is denoted Eab. We say Eab is complete if it corresponds to a biclique.

The subgraph of G induced by X ⊆ V (G) is denoted by G[X], the set
of vertices adjacent to v is denoted NG(v). The closed neighborhood NG[v] of
v is NG(v) ∪ {v}. We write G ∼=f H if f is an isomorphism between graphs
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G and H. For labeled graphs G and H, we write G ∼=π
f H if G ∼=f H and

π : lab(G) → lab(H) is a bijection such that for all x ∈ V (G) if lab(x) = i then
lab(f(x)) = π(i). The set of all isomorphisms from G to H is denoted ISO(G,H).

Definition 1. The clique-width of a graph G is defined as the minimum num-
ber of labels needed to construct G using the following four operations:

i. v(i): Creates a new vertex v with label i
ii. G1 ⊕ G2 · · · ⊕ Gl: Disjoint union of labeled graphs G1, G2, · · · , Gl

iii. ηi,j: Joins each vertex with label i to each vertex with label j (i �= j)
iv. ρi→j: Renames all vertices of label i with label j

Every graph can be constructed using the above four operations, which is repre-
sented by an algebraic expression known as k-expression, where k is the number
of labels used in expression. The clique-width of a graph G, denoted by cwd(G),
is the minimum k for which there exists a k-expression that defines the graph G.
From the k-expression of a graph we can construct a tree known as parse tree of
G. The leaves of the parse tree are vertices of G with their initial labels, and the
internal nodes correspond to the operations (ηi,j , ρi→j and ⊕) used to construct
G. For example, C5 (cycle of length 5) can be constructed by

η1,3((ρ3→2(η2,3((η1,2(a(1) ⊕ b(2))) ⊕ (η1,3(c(3) ⊕ d(1)))))) ⊕ e(3)).

The k-expression for a graph need not be unique. The clique-width of any induced
subgraph is at most the clique-width of its graph [9].

Now we describe the notions of modular and split decompositions. A set
M ⊆ V (G) is called a module of G if all vertices of M have the same set of
neighbors in V (G) \ M . The trivial modules are V (G), and {v} for all v. In
a labeled graph, a module is said to be a l-module if all the vertices in the
module have the same label. A prime (l-prime) graph is a graph (labeled graph)
in which all modules (l-modules) are trivial. The modular decomposition of a
graph is one of the decomposition techniques which was introduced by Gallai
[16]. The modular decomposition of a graph G is a rooted tree TG

M that has the
following properties:

1. The leaves of TG
M are the vertices of G.

2. For an internal node h of TG
M , let M(h) be the set of vertices of G that are

leaves of the subtree of TG
M rooted at h. (M(h) forms a module in G).

3. For each internal node h of TG
M there is a graph Gh (representative graph)

with V (Gh) = {h1, h2, · · · , hr}, where h1, h2, · · · , hr are the children of h in
TG

M and for 1 ≤ i < j ≤ r, hi and hj are adjacent in Gh iff there are vertices
u ∈ M(hi) and v ∈ M(hj) that are adjacent in G.

4. Gh is either a clique, an independent set, or a prime graph and h is labeled
Series if Gh is clique, Parallel if Gh is an independent set, and Prime
otherwise.

James et al. [18] gave first polynomial time algorithm for finding a modular
decomposition which runs in O(n4) time. Linear time algorithms to find modular
decompositions are proposed in [10,26].



58 B. Das et al.

A vertex partition (A,B) of a graph G is a split if Ã = A ∩ N(B) and B̃ =
B∩N(A) forms a biclique. A split is trivial if |A| or |B| is one. Split decomposition
was introduced by Cunningham [11]. Loosely it is the result of a recursive process
of decomposing a graph into components based on the splits. Cunningham [11]
showed that a graph can be decomposed uniquely into components that are stars,
cliques, or prime (i.e., without proper splits). This decomposition is known as
the skeleton. For details see [12]. A polynomial time algorithm for computing
the skeleton of a graph is given in [22].

Theorem 1 [12] (See [6]). Let G be a connected graph. Then the skeleton of G is
unique, and the proper splits of G correspond to the special edges of its skeleton
and to the proper splits of its complete and star components.

Organization of the Paper: In Sect. 3 we discuss GI-completeness of prime
graph isomorphism. In Sect. 4 we define a notion of equivalence of parse trees
called structural isomorphism, and give an algorithm to test if two parse trees
are structurally isomorphic. We give an overview of the CHLRR algorithm [6]
in Sect. 5. In Sect. 6, we present the isomorphism algorithm for prime graphs of
clique-width at most three. We modify the CHLRR algorithm suitably to output
structurally isomorphic parse trees for isomorphic graphs, the proof of this can
be found in full version of the paper [14].

3 Completeness of Prime Graph Isomorphism

It is known that isomorphism problem for prime graphs is GI-complete [4]. There
is an easy polynomial time many-one reduction from GI to prime graph isomor-
phism1 (see [14]). Unfortunately, this reduction does not preserve the clique-
width. We also give a clique-width preserving Turing reduction from GI to prime
graph isomorphism which we use in our main algorithm. The reduction hinges
on the following lemma.

Lemma 1 [8]. G is a graph of clique-width at most k iff each prime graph asso-
ciated with the modular decomposition of G is of clique-width at most k.

We next show that if we have an oracle for GI for colored prime graphs of
clique-width at most k then there is a GI algorithm for graphs with clique-width
at most k.

Theorem 2. Let A′ be an algorithm that given two colored prime graphs G′ and
H ′ of clique-width at most k, decides if G′ ∼= H ′ via a color preserving isomor-
phism. Then there exists an algorithm A that on input any colored graphs G and
H of clique-width at most k decides if G ∼= H via a color preserving isomorphism.

Proof. Let G and H be two colored graphs of clique-width at most k. The
algorithm is similar to [13], which proceeds in a bottom up approach in stages
starting from the leaves to the root of the modular decomposition trees TG and
1 In fact, it is an AC0 reduction.
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TH of G and H respectively. Each stage corresponds to a level in the modular
decomposition. In every level, the algorithm A maintains a table that stores
whether for each pair of nodes x and y in TG and TH the subgraphs G[x] and
H[y] induced by leaves of subtrees of TG and TH rooted at x and y are isomorphic.
For the leaves it is trivial to store such information. Let u and v be two internal
nodes in the modular decomposition trees of TG and TH in the same level. To
decide if G[u] and H[v] are isomorphic A does the following.

If u and v are both series nodes then it just checks if the children of u and
v can be isomorphically matched. The case for parallel node is similar. If u and
v are prime nodes then the vertices of representative graphs Gu and Hv are
colored by their isomorphism type i.e., two internal vertices u1 and u2 of the
representative graphs will get the same color iff subgraphs induced by leaves of
subtrees of TG (or TH) rooted at u1 and u2 are isomorphic. To test G[u] ∼= H[v],
A calls A′(Ĝu, Ĥv), where Ĝu and Ĥv are the colored copies of Gu and Hv

respectively. At any level if we can not find a pairwise isomorphism matching
between the internal nodes in that level of TG and TH then G ∼= H. In this
manner we make O(n2) calls to algorithm A′ at each level. The total runtime of
the algorithm is O(n3)T (n), where T (n) is run time of A′. Note that by Lemma 1
clique-width of Gu and Hv are at most k. ��

4 Testing Isomorphism Between Parse Trees

In this section we define a notion of equivalence of parse trees called struc-
tural isomorphism, and we give an algorithm to test if two given parse trees are
equivalent under this notion. As we will see, the graphs generated by equivalent
parse trees are always isomorphic. Thus, if we have two equivalent parse trees
for the two input graphs, the isomorphism problem indeed admits a polynomial
time algorithm. In Sect. 6, we prove that the CHLRR algorithm can be tweaked
slightly to produce structurally isomorphic parse trees for isomorphic graphs
with clique-width at most three and thus giving a polynomial-time algorithm
for such graphs.

Let G and H be two colored graphs. A bijective map π : V (G) → V (H)
is color consistent if for all vertices u and v of G, color(u) = color(v) iff
color(π(u)) = color(π(v)). Let π : V (G) → V (H) be a color consistent map-
ping, define π/color : color(G) → color(H) as follows: for all c in color(G),
π/color(c) = color(π(v)) where color(v) = c. It is not hard to see that the map
π/color is well defined. Recall that the internal nodes of a parse tree are ηi,j ,
ρi→j and ⊕ operations. The levels of a parse tree correspond to ⊕ nodes. Let
Tg be a parse tree of G rooted at ⊕ node g. Let g1 be descendant of g which is
neither η nor ρ. We say that g1 is an immediate significant descendant of g if
there is no other ⊕ node in the path from g to g1. For an immediate significant
descendant g1 of g, we construct a colored quotient graph Qg1 that corresponds
to graph operations appearing in the path from g to g1 performed on graph Gg1 ,
where Gg1 is graph generated by parse tree Tg1 . The vertices of Qg1 are labels of
Gg1 . The colors and the edges of Qg1 are determined by the operations on the
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path from g1 to g. We start with coloring a vertex a by color a and no edges. If
the operation performed is ηa,b on Gg1 then add edges between vertices of color
a and color b. If the operation is ρa→b on Gg1 then recolor the vertices of color a
with color b. After taking care of an operation we move to the next operation on
the path from g1 to g until we reach ⊕ node g. Notice that if the total number
of labels used in a parse tree is k then the size of any colored quotient graph is
at most k.

Definition 2. Let Tg and Th be two parse trees of G and H rooted at ⊕ nodes
g and h respectively. We say that Tg and Th are structurally isomorphic via a
label map π (denoted Tg

∼=π Th)

1. If Tg and Th are single nodes2 or inductively,
2. If Tg and Th are rooted at g and h having immediate significant descendants

g1, · · · , gr and h1, · · · , hr, and there is a bijection γ : [r] → [r] and for each
i there is a πi ∈ ISO(Qgi

, Qhγ(i)) such that Tgi
∼=πi Thγ(i) and πi/color =

π|color(Qgi
), where Tg1 , · · · , Tgr

and Th1 , · · · , Thr
are the subtrees rooted at

g1, · · · , gr and h1, · · · , hr respectively3

We say that Tg and Th are structurally isomorphic if there is a π such that
Tg

∼=π Th.

The structural isomorphism is an equivalence relation: reflexive and sym-
metric properties are immediate from the above definition. The following lemma
shows that it is also transitive.

Lemma 2. Let Tg1 , Tg2 and Tg3 be the parse trees of G1, G2 and G3 respectively
such that Tg1

∼=π1 Tg2 and Tg2
∼=π2 Tg3 then Tg1

∼=π2π1 Tg3 .

Proof. The proof is by induction on the height of the parse trees. The base
case trivially satisfies the transitive property. Assume that g1, g2 and g3 are
nodes of height d + 1. Let g1i be an immediate significant descendant of g1.
Since Tg1

∼=π1 Tg2 , there is an immediate significant descendant g2j of g2
and π1i ∈ ISO(Qg1i

, Qg2j
) such that π1i/color = π|color(Qg1i

) and Tg1i
∼=π1i

Tg2j
. Similarly, g2j will be matched to some immediate significant descendant

g3k of g3 via π2j ∈ ISO(Qg2j
, Qg3k

) such that π2j/color = π|color(Qg2j
) and

Tg2j
∼=π2j Tg3k

. The nodes g1i, g2j and g3k has height at most d. Therefore,
by induction hypothesis Tg1i

∼=π2jπ1i Tg3k
. By transitivity of isomorphism we

can say π2jπ1i ∈ ISO(Qg1i
, Qg3k

). To complete the proof we just need to show
π2jπ1i/color = π2π1|color(Qg1i

). This can be inferred from the following two facts:

(1) π2jπ1i/color = π2j/color π1i/color
(2) π2π1|color(Qg1i

) = π2|color(Qg2j
) π1|color(Qg1i

). ��
2 In this case they are trivially structurally isomorphic via π.
3 Notice that this definition implies that Ggi and Hhγ(i) are isomorphic via the label
map πi where Ggi and Hhγ(i) are graphs generated by the parse trees Tgi and Thγ(i)

respectively.
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Algorithm to Test Structural Isomorphism: Next we describe an algorithm
that given two parse trees TG and TH tests if they are structurally isomorphic.
From the definition if TG

∼=π TH then we can conclude that G and H are
isomorphic. We design a dynamic programming algorithm that basically checks
the local conditions 1 and 2 in Definition 2.

The algorithm starts from the leaves of parse trees and proceeds in levels
where each level corresponds to ⊕ operations of parse trees. Let g and h denotes
the ⊕ nodes at level l of TG and TH respectively. At each level l, for each pair of
⊕ nodes (g, h) ∈ (TG, TH), the algorithm computes the set Rg,h

l of all bijections
π : lab(Gg) → lab(Hh) such that Gg

∼=π
f Hh for some f , and stores in a table

indexed by (l, g, h), where Gg and Hh are graphs generated by sub parse trees Tg

and Th rooted at g and h respectively. To compute Rg,h
l , the algorithm uses the

already computed information R
gi,hj

l+1 where gi and hj are immediate significant
descendants of g and h.

The base case correspond to finding Rg,h
l for all pairs (g, h) such that g and

h are leaves. Since in this case Gg and Hh are just single vertices, it is easy to
find Rg,h

l . For the inductive step let g1, · · · , gr and h1, · · · , hr′ be the immediate
significant descendants of g and h respectively. If r �= r′ then Rg,h

l = ∅. Otherwise
we compute Rg,h

l for each pair (g, h) at level l with help of the already computed
information up to level l + 1 as follows.

For each π : lab(Gg) → lab(Hh) and pick g1 and try to find a hi1 such
that Tg1

∼=π1 Thi1
for some π1 ∈ ISO(Qg1 , Qhi1

) ∩ R
g1,hi1
l+1 such that π1/color =

π|color(Qg1 )
. We do this process to pair g2 with some unmatched hi2 . Continue in

this way until all immediate significant descendants are matched. By Lemma 3,
we know that this greedy matching satisfies the conditions of Definition 2. If all
the immediate significant descendants are matched we add π to Rg,h

l . It is easy
to see that if Rg,h

l �= ∅ then the subgraphs Gg
∼=π

f Hh for π ∈ Rg,h
l . From the

definition of structurally isomorphic parse trees it is clear that if Rg,h
0 �= ∅ then

G ∼= H. The algorithm is polynomial time as the number of choices for π and
π1 is at most k! which is a constant, where |lab(G)| = k.

Note that for colored graphs, by ensuring that we only match vertices of
same color in the base case, the whole algorithm can be made to work for colored
graphs. In Lemma 2 we prove that structural isomorphism satisfies transitivity.
In fact, structural isomorphism satisfies a stronger notion of transitivity as stated
in the following lemma.

Lemma 3. Let Tg and Th be two parse trees of graphs G and H. Let g1 and g2
be two immediate significant descendants of g, and h1 and h2 be two immediate
significant descendants of h. Suppose for i = 1, 2, Tgi

∼=πi Thi
for some πi ∈

ISO(Qgi
, Qhi

) with πi/color = π|color(Qgi
). Also assume that Tg1

∼=π3 Th2 where

π3 ∈ ISO(Qg1 , Qh2) and π3/color = π|color(Qg1 )
. Then, Tg2

∼=π1π−1
3 π2 Th1 where

π1π
−1
3 π2 ∈ ISO(Qg2 , Qh1) and π1π

−1
3 π2/color = π|color(Qg2 )

.

Proof. By Lemma 2, Tg2
∼=π1π−1

3 π2 Th1 . The rest of the proof is similar to the
proof of the inductive case of Lemma 2. ��
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5 Overview of the CHLRR Algorithm

Corneil et al. [6] gave the first polynomial time algorithm (the CHLRR algo-
rithm), to recognize graphs of clique-width at most three. We give a brief descrip-
tion of their algorithm in this section. We mention that our description of this
fairly involved algorithm is far from being complete. The reader is encouraged
to see [6] for details. By Lemma 1 we assume that the input graph G is prime.

To test whether clique-width of prime graph G is at most three the algorithm
starts by constructing a set of bilabelings and trilabelings of G. In general the
number of bilabelings and trilabelings are exponential, but it was shown (Lem-
mas 8 and 9 in [6]) that it is enough to consider the following linear size subset
denoted by LabG.

1. For each vertex v in V (G)
[B1] Generate the bilabeling4{v} and add it to LabG.
[B2] Generate the bilabeling {x ∈ N(v) | N [x] ⊆ N [v]} and add it to LabG.

2. Compute the skeleton of G search this skeleton for the special edges, clique
and star components.
[T1] For each special edge s (corresponds to a proper split), generate the

trilabeling X̃, Ỹ , V (G) \ (X̃ ∪ Ỹ ) where (X,Y ) is the split defined by s
and add it to LabG.

[B3] For all clique components C, generate the bilabeling C and add it to
LabG.

[B4] For all star components S, generate the bilabeling {c}, where c is the
special center of S, and add it to LabG.

Lemma 4 [6]. Let G be a prime graph. Clique-width of G is at most three if and
only if at least one of the bilabelings or trilabelings in LabG has clique-width at
most three.

By Lemma 4 the problem of testing whether G is of clique-width at most three
is reduced to checking one of labeled graph in LabG is of clique-width at most
three. To test if a labeled graph A taken from LabG is of clique-width at most
three, the algorithm follows a top down approach by iterating over all possible
last operations that arise in the parse tree representation of G. For example, for
each vertex x in G the algorithm checks whether the last operation must have
joined x with its neighborhood. In this case the problem of testing whether G
can be constructed using at most three labels is reduced to test whether G \ {x}
can be constructed using at most three lables. Once the last operations are fixed
the original graph decomposes into smaller components, which can be further
decomposed recursively.

For each A in LabG, depending on whether it is bilabeled or trilabeled the
algorithm makes different tests on A to determine whether A is of clique-width at
most three. Based on the test results the algorithm either concludes clique-width
of A is more than three or returns top operations of the parse tree for A along with
some connected components of A which are further decomposed recursively.
4 Bilabeling of a set X ⊆ V indicates that all the vertices in X are labeled with one
label and V \ X is labeled with another label.
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If A in LabG is connected, trilabeled (with labels l1, l2, l3) and l-prime then
by the construction of LabG, A corresponds to a split (possibly trivial). If A has a
proper split then there exists a �= b in {l1, l2, l3} such that A will be disconnected
with the removal of edges Eab. This gives a decomposition with top operations
ηa,b followed by a ⊕ node whose children are connected components of A \ Eab.
If A has a universal vertex v (trivial split) labeled a in A then by removing edges
Eab and Eac we get a decomposition with top operations ηa,b and ηa,c followed
by a ⊕ operation with children connected components of A \ (Eab ∪ Eac).

To describe the bilabeled case we use Vi to denote the set of vertices of A
with label i. If A in LabG is connected, bilabeled (with labels l1, l2) and l-prime,
then the last operation is neither ηl1,l2 (otherwise A will have a l-module) nor ⊕
(A is connected). So the last operation of the decomposition must be a relabeling
followed by a join operation i.e., we have to introduce a third label set Vl3 such
that all the edges are present between the two of three labeled sets.

After introducing third label if there is only one join to undo, then we have a
unique way to decompose the graph into smaller components. If there are more
than one possible join to be removed, then it is enough to consider one of them
and proceed (see Sect. 5.2 in [6]). There are four ways to introduce the third
label to decompose the graph, but they might correspond to overlapping cases.
To overcome this the algorithm first checks whether A belongs to any of three
simpler cases described below.

PC1: A has a universal vertex x of label l ∈ {l1, l2}. In this case relabel vertex x
with l3 and remove the edges El3l2 , and El3l1 to decompose A. This gives a decom-
positionwith ρl3→l, ηl3,l2 , ηl3,l1 followedby⊕ operationwith childrenx andA\{x}.

PC2: A has a vertex x of label l ∈ {l1, l2} that is universal to all vertices of
label l′ ∈ {l1, l2}, but is not adjacent to all vertices with the other label, say
l̄′. In this case relabel vertex x with l3 and remove the edges El3l′ . This gives a
decomposition with ρl3→l, ηl3,l′ above a ⊕ operation with children x and A\{x}.

PC3: A has two vertices x and y of label l, where y is universal to everything
other than x, and x is universal to all vertices of label l other than y, and non-
adjacent to all vertices with the other label l̄. In this case the algorithm relabels
vertices x and y with l3, and by removing edges El3l disconnects the graph A,
with two connected components x and A \ {x}. Now in graph A \ {x} again
remove the edges El3 l̄ to decompose the graph into two parts y and A \ {x, y}.

If A does not belongs to any of above three simpler cases then there are
four different ways to introduce the third label set to decompose the graph as
described below.

Let E be the set of all connected, bilabeled, l-prime graphs with clique-width
at most three and not belonging to above three simpler cases. For l ∈ {1, 2} we
define the following four subsets of E .

1. Ul: V a
l �= ∅ and removing the edges between the V a

l and Vl̄ disconnects the
graph.

2. Dl: V l is not connected and removing the edges between the coconnected
components of V l disconnects the graph.
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In these four cases the algorithm introduces a new label l3 and removes the edges
Ell3 , l ∈ {l1, l2} to disconnect A. This gives a decomposition with ρl3→l and ηl,l3

followed by ⊕ operation with children that are the connected components of
A \ Ell3 . For more details about decomposition process when A is in Ul or Dl,
l ∈ {1, 2} the reader is encouraged to see Sect. 5.2 in [6].

The following Lemma shows that there is no other possible way of decompos-
ing a clique-width at most three graphs apart from the cases described above.

Lemma 5 [6]. E = U1 ∪ U2 ∪ D1 ∪ D2, and this union is disjoint.

In summary, for any labeled graph A in LabG the CHLRR algorithm tests
whether A belongs to any of the above described cases, if it is then it outputs
suitable top operations and connected components. The algorithm continues
the above process repeatedly on each connected component of A until it either
returns a parse tree or concludes clique-width of A is more than three.

6 Isomorphism Algorithm for Prime Graphs
of Clique-Width at Most Three

In Sect. 4 we described algorithm to test structural isomporphism between two
parse trees. In this Section we show that given two isomorphic prime graphs G
and H of clique-width at most three, the CHLRR algorithm can be slightly mod-
ified to get structurally isomorphic parse trees. We have used four labels in order
to preserve structural isomorphism in the modified algorithm [14]. Recall that
the first step of the CHLRR algorithm is to construct a set LabG of bilabelings
and trilabelings of G as described in Sect. 5.

Definition 3. We say that LabG is equivalent to LabH denoted as LabG ≡
LabH if there is a bijection g : LabG → LabH such that for all A ∈ LabG, there
is an isomorphism f : V (A) → V (g(A)) and a bijection π : lab(A) → lab(g(A))
such that A ∼=π

f g(A).

Lemma 6 [14]. LabG ≡ LabH iff G ∼=f H.

Lemma 7. Let A ∈ LabG and B ∈ LabH. If A ∼=π
f B for some f and

π then parse trees generated from Decompose function (Algorithm2 [14]) for
input graphs A and B are structurally isomorphic. i.e., Decompose(A) ∼=π

f

Decompose(B).

Proof. Follows from Lemma 11 and Lemma 12 described in [14]. The major modi-
fications are done in PC2 case, where we have used four labels in order to preserve
structural isomorphism between parse trees. ��
Isomorphism Algorithm
For two input prime graphs G and H the algorithm works as follows. Using
modified CHLRR algorithm, first a parse tree TG of clique-width at most three
is computed for G. The parse tree TG of G is not canonical but from Lemmas 6
and 7, we know that if G ∼= H then there exists parse tree TH of H, structurally
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isomorphic to TG. Therefore we compute parse tree of clique-width at most three
for each labeled graph in LabH. For each such parse tree TH , the algorithm uses
the structural isomorphic algorithm described in Sect. 4 to test the structural
isomorphism between parse trees TG and TH . If TG

∼= TH for some TH , then
we conclude that G ∼= H. If there is no parse tree of H which is structurally
isomorphic to TG then G and H can not be isomorphic.

Computing a parse tree TG of G takes O(n2m) time. As there are O(n) many
labeled graphs in LabH, computing all possible parse trees for labeled graphs
in LabH takes O(n3m) time. Testing structural isomorphism between two parse
trees need O(n3) time. Therefore the running time to check isomorphism between
two prime graphs G and H of clique-width at most three is O(n3m). ��

The correctness of the algorithm follows from Lemma 8 and Theorem 3.
Lemma 8 shows that if G ∼= H then we can always find two structurally iso-
morphic parse trees TG and TH using the modified CHLRR algorithm.

Lemma 8. Let G and H be prime graphs with clique-width at most three. If
G ∼=f H then for every TG in parseG there is a TH in parseH such that TG

is structurally isomorphic to TH where parseG and parseH are the set of parse
trees generated by Algorithm1 [14] on input LabG and LabH respectively.

Proof. If G ∼=f H then from Lemma 6 we have LabG ≡ LabH i.e., for every A
in LabG there is a B = g(A) in LabH such that A ∼=π

f B for some f and π. On
input such A and B to Lemma 7 we get two parse trees TA and TB which are
structurally isomorphic. ��
Theorem 3. Let G and H be graphs with clique-width at most three. Then there
exists a polynomial time algorithm to check whether G ∼= H.

Proof. The proof follows from the prime graph isomorphism of graphs with
clique-width at most three described in Lemma 8 and Theorem 2. ��
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Martin Koutecký, and Jan Kratochv́ıl

Department of Applied Mathematics, Charles University,
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Abstract. We study computational complexity of the class of distance-
constrained graph labeling problems from the fixed parameter tractabil-
ity point of view. The parameters studied are neighborhood diversity and
clique width.

We rephrase the distance constrained graph labeling problem as a
specific uniform variant of the Channel Assignment problem and show
that this problem is fixed parameter tractable when parameterized by the
neighborhood diversity together with the largest weight. Consequently,
every L(p1, p2, . . . , pk)-labeling problem is FPT when parameterized by
the neighborhood diversity, the maximum pi and k.

Finally, we show that the uniform variant of the Channel Assign-
ment problem becomes NP-complete when generalized to graphs of
bounded clique width.

1 Introduction

The frequency assignment problem in wireless networks yields an abundance
of various mathematical models and related problems. We study a group of
such discrete optimization problems in terms of parameterized computational
complexity, which is one of the central paradigms of contemporary theoretical
computer science. We study parameterization of the problems by clique width
and particularly by neighborhood diversity (nd), a graph parameter lying between
clique width and the size of a minimum vertex cover.

All these problems are NP-hard even for constant clique width, including the
uniform variant, as we show in this paper. On the other hand, we prove that
they are in FPT with respect to nd. Such fixed parameter tractability has so far
only been known only for the special case of L(p, 1) labeling when parameterized
by vertex cover [7].

Paper supported by project Kontakt LH12095 and by GAUK project 1784214.
Second, third and fourth authors are supported by the project SVV-2016-260332.
First, third and fifth authors are supported by project CE-ITI P202/12/G061 of
GAČR.
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1.1 Distance Constrained Labelings

Given a k-tuple of positive integers p1, . . . , pk, called distance constraints, an
L(p1, . . . , pk)-labeling of a graph is an assignment l of integer labels to the
vertices of the graph satisfying the following condition: Whenever vertices u
and v are at distance i, the assigned labels differ by at least pi. Formally,
dist(u, v) = i =⇒ |l(u) − l(v)| ≥ pi for all u, v : dist(u, v) ≤ k. Often only
non-increasing sequences of distance constraints are considered.

Any L(1)-labeling is a graph coloring and vice-versa. Analogously, any color-
ing of the k-th distance power of a graph is an L(1, . . . , 1)-labeling. The concept
of L(2, 1)-labeling is attributed to Roberts by Griggs and Yeh [13]. It is not diffi-
cult to show that whenever l is an optimal L(p1, . . . , pk)-labeling within a range
[0, λ], then the so called span λ is a linear combination of p1, . . . , pk [13,16]. In
particular, a graph G allows an L(p1, . . . , pk)-labeling of span λ if and only if it
has an L(cp1, . . . , cpk)-labeling of span cλ for any positive integer c.

For computational complexity purposes, we define the following class of deci-
sion problems:

Problem 1. L(p1, . . . , pk)-labeling:

Parameters: Positive integers p1, . . . , pk

Input: Graph G, positive integer λ
Query: Is there an L(p1, . . . , pk) labeling of G using labels from

the interval [0, λ]?

The L(2, 1)-labeling problem was shown to be NP-complete by Griggs and
Yeh [13] by a reduction from Hamiltonian cycle (with λ = |VG|). Fiala
et al. [8] showed that L(2, 1)-labeling remains NP-complete also for all fixed
λ ≥ 4, while for λ ≤ 3 it is solvable in linear time.

Despite a conjecture that L(2, 1)-labeling remains NP-complete on
trees [13], Chang and Kuo [2] showed a dynamic programming algorithm for
this problem, as well as for all L(p1, p2)-labelings where p2 divides p1. All the
remaining cases of the L(p1, p2)-labeling problem on trees have been shown
to be NP-complete by Fiala et al. [6]. The same authors showed that L(2, 1)-
labeling is already NP-complete on series-parallel graphs [5], which have of tree
width at most 2. Note that these results imply NP-hardness of L(3, 2)-labeling
on graphs of clique width at most 3 and of L(2, 1)-labeling for clique width at
most 6 [3].

On the other hand, when λ is fixed, then the existence of an L(p1, . . . , pk)-
labeling of G can be expressed in MSO1, hence it allows a linear time algorithm
on any graph of bounded clique width [15].

1.2 Channel Assignment

Channel assignment is a concept closely related to distance constrained graph
labeling. Here, every edge has a prescribed weight w(e) and it is required that
the labels of adjacent vertices differ at least by the weight of the corresponding
edge. The associated decision problem is defined as follows:
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Problem 2. Channel Assignment:

Input: Graph G, a positive integer λ, edge weights w : EG → N

Query: Is there a labeling l of the vertices of G by integers from
[0, λ] such that |l(u) − l(v)| ≥ w(u, v) for all (u, v) ∈ EG?

The maximal edge weight is an obvious necessary lower bound for the span
of any labeling. Observe that for any bipartite graph, in particular also for all
trees, it is also an upper bound — a labeling that assigns 0 to one class of the
bipartition and wmax = max{w(e), e ∈ EG} to the other class satisfies all edge
constraints. McDiarmid and Reed [19] showed that it is NP-complete to decide
whether a graph of tree width 3 allows a channel assignment of given span λ. This
NP-hardness hence applies on graphs of clique width at most 12 [3]. It is worth
noting that for graphs of tree width 2, i.e. for subgraphs of series-parallel graphs,
the complexity characterization of Channel Assignment is still open. Only a
few partial results are known [20], among others that Channel Assignment is
polynomially solvable on graphs of bounded tree width if the span λ is bounded
by a constant.

Any instance G, λ of the L(p1, . . . , pk)-labeling problem can straightfor-
wardly be reduced to an instance Gk, λ, w of the Channel Assignment prob-
lem. Here, Gk arises from G by connecting all pairs of vertices that are in G
at distance at most k, and for the edges of Gk we let w(u, v) = pi whenever
distG(u, v) = i.

The resulting instances of Channel Assignment have by the construction
some special properties. We explore and generalize these to obtain a uniform
variant of the Channel Assignment problem.

1.3 Neighborhood Diversity

Lampis significantly reduced (from the tower function to double exponential) the
hidden constants of the generic polynomial algorithms for MSO2 model checking
on graphs with bounded vertex cover [17]. To extend this approach to a broader
class of graphs he introduced a new graph parameter called the neighborhood
diversity of a graph as follows:

Definition 1 (Neighborhood Diversity). A partition V1, . . . , Vd is called a
neighborhood diversity decomposition if it satisfies

– each Vi induces either an empty subgraph or a complete subgraph of G, and
– for each distinct Vi and Vj there are either no edges between Vi and Vj, or

every vertex of Vi is adjacent to all vertices of Vj.

We write u ∼ v to indicate that u and v belong to the same class of the decom-
position.

The neighborhood diversity of a graph G, denoted by nd(G), is the minimum
τ such that G has a neighborhood diversity decomposition with τ classes.
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Observe that for the optimal neighborhood diversity decomposition it holds
that u ∼ u′ is equivalent with N(u) \ v = N(v) \ u. Therefore, the optimal
neighborhood diversity decomposition can be computed in O(n3) time [17].

Classes of graphs of bounded neighborhood diversity reside between classes
of bounded vertex cover and graphs of bounded clique width. Several non-MSO1

problems, e.g. Hamiltonian cycle can be solved in polynomial time on graphs
of bounded clique width [21]. On the other hand, Fomin et al. stated more pre-
cisely that the Hamiltonian cycle problem is W [1]-hard, when parameter-
ized by clique width [9]. In sequel, Lampis showed that some of these problems,
including Hamiltonian cycle, are indeed fixed parameter tractable on graphs
of bounded neighborhood diversity [17].

Ganian and Obdržálek [12] further deepened Lampis’ results and showed that
also problems expressible in MSO1 with cardinality constraints (cardMSO1) are
fixed parameter tractable when parameterized by nd(G).

Observe that a sufficiently large n-vertex graph of bounded neighborhood
diversity can be described in significantly more effective way, namely by using
only O(log nnd(G)2) space:

Definition 2 (Type Graph). The type graph T (G) for a neighborhood diver-
sity decomposition V1, . . . , Vd of a graph G is a vertex weighted graph on vertices
{t1, . . . , td}, where each ti is assigned weight s(ti) = |Vi|, i.e. the size of the
corresponding class of the decomposition. Distinct vertices ti and tj are adjacent
in T (G) if and only if the edges between the two corresponding classes Vi and Vj

form a complete bipartite graph. Moreover, T (G) contains a loop incident with
vertex ti if and only if the corresponding class Vi induces a clique.

For our purposes, i.e. to decide existence of a suitable labeling of a graph G,
it suffices to consider only its type graph, as G can be uniquely reconstructed
from T (G) (up to an isomorphism) and vice-versa.

Moreover, the reduction of L(p1, . . . , pk)-labeling to Channel Assign-
ment preserves the property of bounded neighborhood diversity:

Observation 3. For any graph G and any positive integer k it holds that
nd(G) ≥ nd(Gk).

Proof. The optimal neighborhood diversity decomposition of G is a neighbor-
hood diversity decomposition of Gk. �	

1.4 Our Contribution

Our goal is an extension of the FPT algorithm for L(2, 1)-labeling on graphs
of bounded vertex cover to broader graph classes and for rich collections of
distance constraints. In particular, we aim at L(p1, . . . , pk)-labeling on graphs
of bounded neighborhood diversity.

For this purpose we utilize the aforementioned reduction to the Channel
Assignment problem, taking into account that the neighborhood diversity
remains bounded, even though the underlying graph changes.
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It is worth to note that we must adopt additional assumptions for the Chan-
nel Assignment since otherwise it is NP-complete already on complete graphs,
i.e. on graphs with nd(G) = 1. To see this, we recall the construction of Griggs
and Yeh [13]. They show that a graph H on n vertices has a Hamiltonian path if
and only if the complement of H extended by a single universal vertex allows an
L(2, 1)-labeling of span n+1. As the existence of a universal vertex yields diam-
eter at most two, the underlying graph for the resulting instance of Channel
Assignment is Kn+1.

On the other hand, the additional assumptions on the instances of
Channel Assignment will still allow us to reduce any instance of the
L(p1, . . . , pk)-labeling problem. By the reduction, all edges between classes
of the neighborhood diversity decomposition are assigned the same weight. We
formally adopt this as our additional constraint as follows:

Definition 3. The edge weights w on a graph G are nd-uniform if w(u, v) =
w(u′, v′) whenever u ∼ u′ and v ∼ v′ with respect to the optimal neighborhood
diversity decomposition. In a similar way we define uniform weights with respect
to a particular decomposition.

Our main contribution is an algorithm for the following scenario:

Theorem 4. The Channel Assignment problem on nd-uniform instances is
FPT when parameterized by nd and wmax, where wmax = max{w(e), e ∈ EG}.

Immediately, we get the following consequence:

Theorem 5. For p1, . . . , pk, the L(p1, . . . , pk)-labeling problem is FPT when
parameterized by nd, k and maximum pi (or equivalently by nd and the k-tuple
(p1, . . . , pk)).

One may ask whether the uniform version of Channel Assignment allows
an FPT algorithm also for a broader class of graphs. Finally, we show that a
natural generalization of this concept on graphs of bounded clique width yields
an NP-complete problem on graphs of clique width at most 5.

2 Representing Labelings as Sequences and Walks

We now focus on the nd-uniform instances of the Channel Assignment
problem. It has been already mentioned that the optimal neighborhood diver-
sity decomposition can be computed in cubic time. The test, whether it is
nd-uniform, could be computed in quadratic additional time. On the other hand,
on nd-uniform instances it suffices to consider only the type graph, whose edges
take weights from the edges of the underlying graph (see Fig. 1), since such a
weighted type graph corresponds uniquely to the original weighted graph, up to
an isomorphism.

Hence without loss of generalization assume that our algorithms are given
the type graph whose edges are weighted by separation constraints w, however
we express the time complexity bounds in terms of the size of the original graph.
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G and its L(2, 1, 1)-labelling
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Fig. 1. An example of a graph with its neighborhood diversity decomposition. Vertex
labels indicate one of its optimal L(2, 1, 1)-labelings. The corresponding type graph.
The weighted type graph corresponding to the resulting instance of the Channel
Assignment problem.

Without loss of generality we may assume that the given graph G and its
type graph T (G) are connected, since connected components can be treated
independently.

If the type graph T (G) contains a type t not incident with a loop, we may
reduce the channel assignment problem to the graph G′, obtained from G by
deleting all but one vertices of the type t. Any channel assignment of G′ yields a
valid channel assignment of G by using the same label on all vertices of type t in
G as was given to the single vertex of type t in G′. Observe that adding a loop to
a type, which represents only a single vertex, does not affect the resulting graph
G′. Hence we assume without loss of generality that all types are incident with
a loop. We call such type graph reflexive.

Observation 6. If the type graph T (G) is reflexive, then vertices of G of the
same type have distinct labels in every channel assignment.

Up to an isomorphism of the graph G, any channel assignment l is uniquely
characterized by a sequence of type sets as follows:
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Lemma 1. Any weighted graph G corresponding to a reflexive weighted type
graph T (G), w allows a channel assignment of span λ, if and only if there exists
a sequence of sets T = T0, . . . , Tλ with the following properties:

(i) Ti ⊆ VT (G) for each i ∈ [0, λ],
(ii) for each t ∈ VT (G) : s(t) = |{Ti : t ∈ Ti}|,
(iii) for all (t, r) ∈ ET (G) : (t ∈ Ti ∧ r ∈ Tj ∧ (t �= r ∨ i �= j)) ⇒ |i − j| ≥ w(t, r)

Proof. Given a channel assignment l : VG → [0, λ], we define the desired sequence
T , such that the i-th element is the set of types that contain a vertex labeled
by i. Formally Ti = {t : ∃u ∈ Vt : l(u) = i}. Now

(i) each element of the sequence is a set of types, possibly empty,
(ii) as all vertices of Vi are labeled by distinct labels by Observation 6, any type

t occurs in s(t) many elements of the sequence
(iii) if u of type t is labeled by i, and it is adjacent to v of type r labeled by j,

then |i − j| = |l(u) − l(v)| ≥ w(u, v) = w(t, r), i.e. adjacent types t and r
may appear in sets that are in the sequence at least w(t, r) apart.

In the opposite direction assume that the sequence T exists. Then for each
set Ti and type tj ∈ Ti we choose a distinct vertex u ∈ Vj and label it by i, i.e.
l(u) = i.

Now the condition (ii) guarantees that all vertices are labeled, while condition
(iii) guarantees that all distance constraints are fulfilled. �	

Observe that Lemma 1 poses no constraints on pairs of sets Ti, Tj that are
at distance at least wmax. Hence, we build an auxiliary directed graph D on all
possible sequences of sets of length at most z = wmax − 1.

The edges of D connect those sequences that overlap on a fragment of length
z − 1, i.e. when they could be consecutive in T . This construction is well known
from the so-called shift register graph.

Definition 4. For a general graph F and weights w : EF → [1, z] we define a
directed graph D such that

– the vertices of VD are all z-tuples (T1, . . . , Tz) of subsets of VF such that for
all (t, r) ∈ EF : (t ∈ Ti ∧ r ∈ Tj) ⇒ |i − j| ≥ w(t, r)

– ((T1, . . . , Tz), (T ′
1, . . . , T

′
z)) ∈ ED ⇔ T ′

i = Ti+1 for all i ∈ [1, z − 1].

As the first condition of the above definition mimics (iii) of Lemma 1 with
F = T (G), any sequence T that justifies a solution for (T (G), w, λ), can be
transformed into a walk of length λ − z + 1 in D.

In the opposite direction, namely in order to construct a walk in D, that
corresponds to a valid channel assignment, we need to guarantee also an ana-
logue of the condition (ii) of Lemma 1. In other words, each type should occur
sufficiently many times in the resulting walk. Indeed, the construction of D is
independent on the function s, which specifies how many vertices of each type
are present in G.
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In this concern we consider only special walks that allow us to count the
occurrences of sets within z-tuples. Observe that VD also contains the z-tuple
∅z = (∅, . . . , ∅). In addition, any walk of length λ − z + 1 can be converted into
a closed walk from ∅z of length λ + z + 1, since the corresponding sequence T
can be padded with z additional empty sets at the front, and another z empty
sets at the end. From our reasoning, the following claim is immediate:

Lemma 2. A closed walk W = W1, . . . ,Wλ+z+1 on D where W1 = Wλ+z+1 =
∅z, yields a solution of the Channel Assignment problem on a nd-uniform
instance G,w, λ with reflexive T (G), if and only if s(t) = |{Wi : t ∈ (Wi)1}|
holds for each t ∈ VT (G).

We found interesting that our representation of the solution resembles the
NP-hardness reduction found by Griggs and Yeh [13] (it was briefly outlined in
Sect. 1.4) and later generalized by Bodlaender et al. [1]. The key difference is
that in their reduction, a Hamilton path is represented by a sequence of vertices
of the constructed graph. In contrast, we consider walks in the type graph, which
is assumed to be of limited size.

3 The Algorithm

In this section we prove the following statement, which directly implies our main
result, Theorem 4:

Proposition 1. Let G,w be a weighted graph, whose weights are uniform with
respect to a neighborhood diversity partition with τ classes.

Then the Channel Assignment problem can be decided on G,w and any
λ in time 22

O(τwmax)
log n, where n is the number of vertices of G, provided that

G,w are described by a weighted type graph T (G) on τ nodes.
A suitable labeling of G can be found in additional 22

O(τwmax)
n time.

Proof. According to Lemma 2, it suffices to find a closed walk W (if it exists)
corresponding to the desired labeling l. From the well-known Euler’s theorem
it follows that any directed closed walk W yields a multiset of edges in D that
induces a connected subgraph and that satisfies Kirchhoff’s law. In addition, any
such suitable multiset of edges can be converted into a closed walk, though the
result need not be unique.

For this purpose we introduce an integer variable α(W,U) for every directed
edge (W,U) ∈ ED. The value of the variable α(W,U) is the number of occurrences
of (W,U) in the multiset of edges.

Kirchhoff’s law is straightforwardly expressed as:

∀W ∈ VD :
∑

U :(W,U)∈ED

α(W,U) −
∑

U :(U,W )∈ED

α(U,W ) = 0

In order to guarantee connectivity, observe first that an edge (W,U) and
∅z would be in distinct components of a subgraph of D, if the subgraph is
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formed by removing edges that include a cut C between (W,U) and ∅z. Now,
the chosen multiset of edges is disconnected from ∅z, if there is such an edge
(W,U) together with a cut set C such that α(W,U) has a positive value, while
all variables corresponding to elements of C are zeros. As all variable values are
bounded above by λ, we express that C is not a cutset for the chosen multiset
of edges by the following condition:

α(W,U) − λ
∑

e∈C

αe ≤ 0

To guarantee the overall connectivity, we apply the above condition for every
edge (W,U) ∈ ED, where W,U �= ∅z, and for each set of edges C that separates
W or U from ∅z.

The necessary condition expressed in Lemma 2 can be stated in terms of
variables α(W,U) as

∀t ∈ VT (G) :
∑

W :t∈(W )1

∑

U :(W,U)∈ED

α(W,U) = s(t)

Finally, the size of the multiset is the length of the walk, i.e.
∑

(W,U)∈ED

α(W,U) = λ + z + 1

Observe that these conditions for all (W,U) and all suitable C indeed imply
that the ∅z belongs to the subgraph induced by edges with positively evaluated
variables α(W,U).

Frank and Tardos [10] (improving the former result due to Lenstra [18])
showed that the time needed to solve the system of inequalities with p integer
variables is O(p2.5p+o(p)L), where L is the number of bits needed to encode
the input. As we have 2O(τz) variables and the conditions are encoded in space
22

O(τz)
log n, the time needed to resolve the system of inequalities is 22

O(τz)
log n.

�	
We are aware the the double exponential dependency on nd and wmax makes our
algorithm interesting mostly from the theoretical perspective. Naturally, one may
ask, whether the exponential tower height might be reduced or whether some
nontrivial lower bounds on the computational complexity could be established
(under usual assumptions on classes in the complexity hierarchy).

4 NLC-Uniform Channel Assignment

One may ask whether the concept of nd-uniform weights could be extended to
broader graph classes. We show, that already its direct extension to graphs of
bounded clique width makes the Channel Assignment problem NP-complete.
Instead of clique width we express our results in terms of NLC-width [21]
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(NLC stands for node label controlled). The parameter NLC-width is linearly
dependent on clique width, but it is technically simpler.

We now briefly review the related terminology. A NLC-decomposition of a
graph G is a rooted tree whose leaves are in one-to-one correspondence with the
vertices of G. For the purpose of inserting edges, each vertex is given a label (the
labels for channel assignment are now irrelevant), which may change during the
construction of the graph G. Internal nodes of the tree are of two kinds: relabel
nodes and join nodes.

Each relabel node has a single child and as a parameter takes a mapping ρ
on the set of labels. The graph corresponding to a relabel node is isomorphic to
the graph corresponding to its child, only ρ is applied on each vertex label.

Each join node has a two children and as a parameter takes a binary relation
S on the set of labels. The graph corresponding to a join node is isomorphic to
the disjoint union of the two graphs G1 and G2 corresponding to its children,
where further edges are inserted as follows: u ∈ VG1 labeled by i is made adjacent
to v ∈ VG2 labeled by j if and only if (i, j) ∈ S.

The minimum number of labels needed to construct at least one labeling of
G in this way is the NLC width of G, denoted by nlc(G).

Observe that nlc(G) ≤ nd(G) as the vertex types could be used as labels for
the corresponding vertices and the adjacency relation in the type graph could
be used for S in all join nodes. In particular, in this construction the order of
performing joins is irrelevant and no relabel nodes are needed.

Definition 5. The edge weights w on a graph G are nlc-uniform with respect
to a particular NLC-decomposition, if w(u, v) = w(u′, v′) whenever edges (u, v)
and (u′, v′) are inserted during the same join operation and at the moment of
insertion u, u′ have the same label in G1 and v, v′ have the same label in G2.

Observe that our comment before the last definition justifies that weights
that are uniform with respect to a neighborhood diversity decomposition are
uniform also with respect to the corresponding NLC-decomposition.

Gurski and Wanke showed that the NLC-width remains bounded when tak-
ing powers of trees [14]. It is well known that NLC-width of a tree is at most
three. Fiala et al. proved that L(3, 2)-labeling is NP-complete on trees [6].
To combine these facts together we show that the weights on the graph arising
from a reduction of the L(3, 2)-labeling on a tree to Channel Assignment are
nlc-uniform.

Theorem 7. The Channel Assignment problem is NP-complete on graphs
with edge weights that are nlc-uniform with respect to an NLC-decomposition of
width at most four.

5 Conclusion

We have shown an algorithm for the Channel Assignment prob-
lem on nd-uniform instances and several complexity consequences for the
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L(p1, . . . pk)-labeling problem. In particular, Theorem 5 extends known results
for the L(p, 1)-labeling problem to labelings with arbitrarily many distance
constraints, answering an open question of [7]. Simultaneously, we broaden the
considered graph classes by restricting neighborhood diversity instead of vertex
cover.

While the main technical tools of our algorithms are bounded-dimension ILP
programs, ubiquitous in the FPT area, the paper shows an interesting insight on
the nature of the labelings over the type graph and the necessary patterns of
such labelings of very high span. Note that the span of a graph is generally not
bounded by any of the considered parameters and may be even proportional to
the order of the graph.

Solving a generalized problem on graphs of bounded neighborhood diversity
is a viable method for designing FPT algorithms for a given problem on graphs
of bounded vertex cover, as demonstrated by this and previous papers. This
promotes neighborhood diversity as a parameter that naturally generalizes the
widely studied parameter vertex cover.

We would like to point out that the parameter modular width, proposed
by Gajarský et al. [11], offers further generalization of neighborhood diversity
towards the clique width [4].

As an interesting open problem we ask whether it is possible to strengthen
our results to graphs of bounded modular width or whether the problem might
be already NP-complete for fixed modular width, as is the case with clique width.
For example, the Graph Coloring problem ILP-based algorithm for bounded
neighborhood diversity translates naturally to an algorithm for bounded modular
width. On the other hand, there is no apparent way how our labeling results could
be adapted to modular width in a similar way.
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Abstract. The d-bounded-degree vertex deletion problem, to delete at
most k vertices in a given graph to make the maximum degree of the
remaining graph at most d, finds applications in computational biology,
social network analysis and some others. It can be regarded as a spe-
cial case of the (d + 2)-hitting set problem and generates the famous
vertex cover problem. The d-bounded-degree vertex deletion problem
is NP-hard for each fixed d ≥ 0. In terms of parameterized complex-
ity, the problem parameterized by k is W[2]-hard for unbounded d and
fixed-parameter tractable for each fixed d ≥ 0. Previously, (randomized)
parameterized algorithms for this problem with running time bound
O∗((d + 1)k) are only known for d ≤ 2. In this paper, we give a uni-
form parameterized algorithm deterministically solving this problem in
O∗((d+1)k) time for each d ≥ 3. Note that it is an open problem whether
the d′-hitting set problem can be solved in O∗((d′ − 1)k) time for d′ ≥ 3.
Our result answers this challenging open problem affirmatively for a spe-
cial case. Furthermore, our algorithm also gets a running time bound of
O∗(3.0645k) for the case that d = 2, improving the previous deterministic
bound of O∗(3.24k).

Keywords: Parameterized algorithms · Graph algorithms · Bounded-
degree vertex deletion · Hitting set

1 Introduction

The d-bounded-degree vertex deletion problem is a natural generation of the
famous vertex cover problem, which is one of the best studied problems in com-
binatorial optimization. An application of the d-bounded-degree vertex deletion
problem in computational biology is addressed by Fellows et al. [5]: A clique-
centric approach in the analysis of genetic networks based on micro-array data
can be modeled as the d-bounded-degree vertex deletion problem. The prob-
lem also plays an important role in the area of property testing [12]. Its “dual
problem”– the s-plex problem was introduced in 1978 by Seidman and Foster [14]
and it becomes an important problem in social network analysis now [1].
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The d-bounded-degree vertex deletion problem is also extensively studied in
theory, especially in parameterized complexity. It has been shown that the prob-
lem parameterized by the size k of the deletion set is W[2]-hard for unbounded d
and fixed-parameter tractable for each fixed d ≥ 0 [5]. Betzler et al. [2] also stud-
ied the parameterized complexity of the problem with respect to the treewidth
tw of the graph. The problem is FPT with parameters k and tw and W[2]-hard
with only parameter tw. Fellows et al. [5] generated the NT-theorem for the
vertex cover problem to the d-bounded-degree vertex deletion problem, which
can imply a linear vertex kernel for the problem with d = 0, 1 and a polyno-
mial vertex kernel for each fixed d ≥ 2. A linear vertex kernel for the case that
d = 2 was developed in [4]. Recently, a refined generation of the NT-theorem
was proved [17], which can get a linear vertex kernel for each fixed d ≥ 0.

In terms of parameterized algorithms, the case that d = 0, i.e., the vertex
cover problem, can be solved in O∗(1.2738k) time now [3]. When d = 1, the
problem is known as the P3 vertex cover problem. Tu [15] gave an O∗(2k)-
time algorithm and the running time bound was improved to O∗(1.882k) by
Wu [16] and to O∗(1.8172k) by Katrenič [11]. When d = 2, the problem is
known as the co-path/cycle problem. For this problem, there is an O∗(3.24k)-
time deterministic algorithm [4] and an O∗(3k)-time randomized algorithm [6].
For d ≥ 3, a simple branch-and-reduce algorithm that tries all d + 2 possibilities
for a (d + 1)-star in the graph gets the running time bound of O∗((d + 2)k).
In fact, the d-bounded-degree vertex deletion problem can be regarded as a
special case of the (d + 2)-hitting set problem and the latter problem has been
extensively studied in parameterized algorithms [7–9,13]. For a graph G, we
regard each vertex in the graph as an element and each (d + 1)-star as a set
of size d + 2 (a vertex of degree d0 > d will form

(
d0
d+1

)
sets). Then the d-

bounded-degree vertex deletion problem in G becomes an instance of the (d+2)-
hitting set problem. There are several parameterized algorithms for the d′-hitting
set problem running in O∗((d′ − 1 + c)k) time [9,13], where 0 < c < 1 is a
function of d′−1. It leaves as an interesting open problem whether the d′-hitting
set problem can be solved in O∗((d′ − 1)k) time. Note that it is marked in [9]
that “(d′−1)k seems an unsurpassable lower bound”. By using fastest algorithms
for the (d + 2)-hitting set problem, we can get an algorithm with running time
bound of O∗((d + 1 + c0)k) with 0 < c0 < 1 for each fixed d.

In this paper, we design a uniform algorithm for the d-bounded-degree vertex
deletion problem, which achieves the running time bound of O∗((d+1)k) for each
d ≥ 3. Although our problem is a special case of the (d + 2)-hitting set problem,
the above bound is not easy to reach. We need a very careful analysis and some
good graph structural properties. It is also worthy to mention that our algorithm
also works on the case that d = 2 and runs in O∗(3.0645k) time, improving the
previous deterministic bound of O∗(3.24k) [4] and comparable with the previous
randomized bound of O∗(3k) [6].
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2 Preliminaries

Let G = (V,E) be a simple undirected graph, and X ⊆ V be a subset of vertices.
The subgraph induced by X is denoted by G[X], and G[V \X] is written as G\X.
We may simply use v to denote the set {v} of a single vertex v. Let N(X) denote
the set of neighbors of X, i.e., the vertices in V \ X adjacent to a vertex x ∈ X,
and denote N(X) ∪ X by N [X]. The degree d(v) of a vertex v is defined to be
|N(v)|. A graph of maximum degree p is also called a degree-p graph. For an
integer q ≥ 1, a star with q + 1 vertices is called a q-star. A set S of vertices is
called a d-deletion set of a graph G, if G \ S has maximum degree at most d.
In our problem, we want to find a d-deletion set of size at most k in a graph.
Formally, our problem is defined as following.

d-Bounded-Degree Vertex Deletion
Instance: A graph G = (V,E) and two nonnegative integers d and k.
Question: To decide whether there is a subset S ⊆ V of vertices such that
|S| ≤ k and the induced graph G[V \ S] has maximum degree at most d.

In the above definition, S is also called a solution set.

2.1 Some Basic Properties

The following lemmas are basic structural properties used to design branching
rules in our algorithms.

Lemma 1. Let v be a vertex of degree ≥ d + 1 in a graph G. Any d-deletion set
contains either v or d(v) − d neighbors of v.

A vertex v dominates a vertex u if all vertices of degree ≥ d + 1 in N [u] are
also in N [v]. Note that in this definition, we do not require N [u] ⊆ N [v].

Lemma 2. If a vertex v of degree d+1 dominates a neighbor u of it, then there
is a minimum d-deletion set containing at least one vertex in N [v] \ {u}.
Proof. Since v is of degree d+1, any d-deletion set S contains at least one vertex
in N [v]. Assume that S contains only u in N [v]. We can see that S′ = S∪{v}\{u}
is still a d-deletion set and |S′| ≤ |S|. Thus, the lemma holds. ��
Lemma 3. If a vertex u dominates a vertex v of degree d + 1, then there is a
minimum d-deletion set containing at least one neighbor of v.

Proof. Since u dominates v and v is of degree d + 1, we know that u is a
neighbor of v. Any d-deletion set S contains at least one vertex in N [v] since it
is of degree d+1. Assume that S∩N [v] = {v}. We can see that S′ = S∪{u}\{v}
is a d-deletion set containing a neighbor of v and |S′| ≤ |S|. Thus, the lemma
holds. ��
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If there is a vertex of degree ≥ d + 1 dominating a neighbor of it or being
dominated by another vertex, we say that the graph has a proper domination.
Note that if a vertex u of degree ≥ d + 1 has at most one neighbor v of degree
≥ d + 1, then u is dominated by v and then there is a proper domination. In
fact, we have:

Lemma 4. If a graph has no proper domination, then each vertex of degree
≥ d + 1 in it has at least two nonadjacent neighbors of degree ≥ d + 1.

2.2 Branch-and-Search Algorithms

Our algorithm is a typical branch-and-search algorithm. In our algorithm, we
search a solution for an instance by recursively branching on the current instance
into several smaller instances until the instances become trivial instances. Each
simple branching operation creates a recurrence relation. Assume that the
branching operation branches on an instance with parameter k into l branches
such that in the i-th branch the parameter decreases by at least ai. Let C(k)
denote the worst size of the search tree to search a solution to any instance with
parameter k. We get a recurrence relation1

C(k) ≤ C(k − a1) + C(k − a2) + · · · + C(k − al) + 1.

The largest root of the function f(x) = 1 − ∑l
i=1 x−ai is called the branching

factor of the recurrence relation. Let α be the maximum branching factor among
all branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an instance with parameter k
is given by O(αk). More details about the analysis and how to solve recurrences
can be found in the monograph [10].

3 The Idea and Organization of the Algorithm

Our purpose is to design a branch-and-search algorithm for the d-bounded-degree
vertex deletion problem such that the branching factor of each recurrence relation
with respective to the parameter k is at most d + 1. Lemma 1 provides a simple
branching rule: for a vertex v of degree ≥ d + 1, branching by either including v
or each set of d(v)−d neighbors of v to the solution set. We will show that when
d(v) ≥ d + 2, this simple branching operation is good enough to get a branching
factor ≤ d + 1 for each d ≥ 2 (See Step 1 in Sect. 4). Thus, we can use this
operation to deal with vertices of degree ≥ d + 2. Lemma 1 for a degree-(d + 1)
vertex v can be interpreted as: at least one vertex in N [v] is in a d-deletion set.
This branching operation will only get a branching factor of d + 2 for this case.
But when there is a proper domination in a degree-(d + 1) graph, we still can

1 In fact, we may simply write a recurrence relation as C(k) ≤ C(k − a1) + C(k −
a2)+ · · ·+C(k−al). This difference will only affect a constant behind O in the finial
running time.
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branch with branching factor d+1, since we can ignore one branch by Lemmas 2
and 3. The detailed analysis is given in Step 2 in Sect. 4. When the graph is
of maximum degree d + 1 and has no proper domination, we need to use more
structural properties.

To find a d-deletion set in a degree-(d + 1) graph is equivalent to find a
vertex subset intersecting N [v] for each degree-(d + 1) vertex v. If there are
some vertices in N [v1] ∩ N [v2] for two degree-(d + 1) vertices v1 and v2, some
information may be useful for us to design a good branching rule. Note that for
two adjacent degree-(d + 1) vertices v1 and v2, there are at least two vertices in
the intersection of N [v1] and N [v2]. Lemma 4 guarantees that each degree-(d+1)
vertex has at least two nonadjacent degree-(d + 1) neighbors if a degree-(d + 1)
graph has no proper domination. So we will focus on adjacent degree-(d + 1)
vertices.

We define three relations between two degree-(d+1) vertices. A pair of adja-
cent degree-(d + 1) vertices is a good pair if they have at least one and at most
d − 2 common neighbors. A pair of adjacent degree-(d + 1) vertices is a close
pair if they have exactly d−1 common neighbors. A pair of nonadjacent degree-
(d + 1) vertices is a similar pair if they have the same neighbor set. We have a
good branching rule to deal with good pairs. See Step 3 in Sect. 4. After dealing
with all good pairs, for any pair of adjacent degree-(d + 1) vertices, either it is
a close pair or the two vertices have no common neighbor. We do not have a
simple branching rule with branching factor d + 1 for these two cases. Then we
change to consider three adjacent degree-(d + 1) vertices.

Let v1, v2 and v3 be three degree-(d + 1) vertices such that v2 is adjacent to
v1 and v3. We find that the hardest case is that exact one pair of vertices in
{v1, v2, v3} is a close or similar pair, for which we still can not get a branching
factor ≤ d + 1. We call this case a bad case. If no pair of vertices in {v1, v2, v3}
is a close or similar pair, we call {v1, v2, v3} a proper triple of degree-(d + 1)
vertices. Our idea is to avoid bad cases and only branch on proper triples.

Consider four degree-(d+1) vertices v1, v2, v3 and v4 such that there is an edge
between vi and vi+1 for i = 1, 2, 3. If at most one pair of vertices in {v1, v2, v3, v4}
is a close or similar pair, then at least one of {v1, v2, v3} and {v2, v3, v4} will be
a proper triple. Thus the only left cases are that at least two pairs of vertices in
{v1, v2, v3, v4} are close or similar pairs. Luckily, we find good branching rules to
deal with them. When both of {v1, v2} and {v2, v3} are close pairs, {v1, v2, v3} is
called a close triple. See Fig. 1(a) for an illustration of close triple. Our algorithm
deals with close triples in Step 4 in Sect. 4. When both of {v1, v2} and {v3, v4}
are close pairs, {v1, v2, v3, v4} is called a type-I close quadruple. See Fig. 1(b) for
an illustration of type-I close quadruple. Our algorithm deals with type-I close
quadruples in Step 5 in Sect. 4. When both of {v1, v3} and {v2, v4} are similar
pairs, {v1, v2, v3, v4} is called a type-II close quadruple. See Fig. 1(c) for an illustra-
tion of type-II close quadruple. Our algorithm deals with type-II close quadruples
in Step 6 in Sect. 4. When {v1, v2, v3, v4} has one close pair and one similar pair,
we can see that there is always a close triple in it. Therefore, we have considered
all possible cases. The last step of our algorithm is then to deal with proper triples.
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Fig. 1. Illustrations of some structures

4 The Algorithm and Its Analysis

We are ready to describe the whole algorithm. Our algorithm works for any d ≥ 0
but can only achieve the running time bound of O∗((d + 1)k) for each d ≥ 3.
Our algorithm is a recursive algorithm containing seven major steps, each of
which will branch on the current instance into several sub-instances and invoke
the algorithm itself on each sub-instance. Next, we describe these steps. When
we introduce one step, we assume that all previous steps can not be applied
anymore. For the purpose of presentation, we will analyze the correctness and
running time of each step after describing it.

Step 1 (Vertices of degree ≥ d + 2)
If there is a vertex v of degree ≥ d + 2 in the graph, we branch on v into

1 +
(

d(v)
d(v)−d

)
branches according to Lemma 1 by either including v or each set of

d(v) − d neighbors of v to the solution set.
In the branch where v is included to the solution set, we delete v from the

graph and decrease the parameter k by 1. In the branch where a set N ′ ⊆ N(V )
of d(v) − d neighbors of v are included to the solution set, we delete N ′ from
the graph and decrease the parameter k by d(v) − d. For this operation, we get
a recurrence relation

C(k) ≤ C(k − 1) +
(

d(v)
d(v) − d

)

· C(k − (d(v) − d)). (1)

Let γ denote the branching factor of (1).

Lemma 5. If d(v) − d ≥ 2, the branching factor γ of (1) satisfies that

γ ≤ 1 +
√

2d2 + 6d + 5
2

. (2)

A proof of this lemma can be found the full version of this paper. It is easy to
verify that γ ≤ d+1 for d ≥ 2. After Step 1, the graph has maximum degree d+1.

Step 2 (Proper dominations)
If a vertex v of degree d + 1 is dominated by a vertex u (or dominates a

neighbor u of it), we branch on v into d(v) branches by including each vertex in
N(v) (or N [v] \ {u}) to the solution set. The correctness of this step is based on
Lemmas 2 and 3.



A Parameterized Algorithm for Bounded-Degree Vertex Deletion 85

In each branch, a vertex is included to the solution set and k decreases by 1.
Vertex v is of degree d + 1 since the graph has maximum degree at most d + 1
after Step 1. We get a recurrence relation

C(k) ≤ d(v) · C(k − 1) = (d + 1) · C(k − 1),

the branching factor of which is d + 1.

Step 3 (Good pairs of degree-(d + 1) vertices)
Recall that a pair of adjacent degree-(d+1) vertices is a good pair if they have

at least one and at most d−2 common neighbors. we use the following branching
rule to deal with a good pair {v1, v2}. Let N+ = (N(v1) ∩ N(v2)) ∪ {v1, v2},
N1 = N(v1)\N+ and N2 = N(v2)\N+. Assume that v1 and v2 have x common
neighbors. Note that for any d-degree deletion set S′, if S′ does not contain
any vertex in N+, then S′ contains at least one vertex in N1 and one vertex
in N2. We branch into |N+| + |N1||N2| = (x + 2) + (d − x)2 branches. In the
first |N+| branches each vertex in N+ is included to the solution set; and in
the last |N1||N2| branches each pair of vertices in N1 and N2 is included to the
solution set. In each branch, if z vertices are included to the solution set, then
the parameter k in this branch decreases by z. This branching operation gives a
recurrence relation

C(k) ≤ (x + 2) · C(k − 1) + (d − x)2 · C(k − 2),

the branching factor of which is

1
2

(
2 + x +

√
5x2 − 8dx + 4d2 + 4x + 4

)
.

It is easy to verify that when 1 ≤ x ≤ d− 2, the branching factor is at most d+1.

Step 4 (Close triples of degree-(d + 1) vertices)
Recall that a pair of adjacent degree-(d+1) vertices is a close pair if they have

exactly d−1 common neighbors. The formal definition of close triple is that: the
set of three degree-(d+1) vertices v1, v2 and v3 is called a close triple if {v1, v2}
and {v2, v3} are two close pairs and v1 and v3 are not adjacent. According
to the definition of close triples, we can see that N(v1) ∩ N(v2) ∩ N(v3) =
N(v2) \ {v1, v3}. For a close triple {v1, v2, v3}, we observe the following. Vertex
v1 (resp., v3) is adjacent to a degree -(d+1) vertex v0 �∈ N [v2] (resp., v4 �∈ N [v2])
by Lemma 4. Let N−

2 = N [v2] \ {v1, v3}. For any d-degree deletion set S′, if
S ∩ N−

2 = ∅, then S′ contains either v1 and a vertex in {v3, v4} (since S′ must
contain a vertex in N [v2] and a vertex in N [v3]) or v3 and a vertex in {v0, v1}
(since S′ must contain a vertex in N [v2] and a vertex in N [v1]). Then we can
branch by either including each vertex in N−

2 to the solution set or including each
of {v1, v3}, {v1, v4} and {v0, v3} to the solution set. This branching operation
gives a recurrence relation

C(k) ≤ (d − 1) · C(k − 1) + 3 · C(k − 2),

the branching factor of which is

1
2

(
d − 1 +

√
d2 − 4d + 13

)
.
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It is easy to verify that when d ≥ 2, the branching factor is less than d + 1.

Step 5 (Type-I close quadruples of degree-(d + 1) vertices)
A set of four degree-(d + 1) vertices {v1, v2, v3, v4} is called a type-I close

quadruple if {v1, v2, v3, v4} induces a cycle or a path of 4 vertices, and {v1, v2} and
{v3, v4} are two close pairs. Let N−

12 = N(v1)∩N(v2) and N−
34 = N(v3)∩N(v4).

When the graph has no proper dominations, good pairs or close triples, it holds
that N−

12 ∩ N−
34 = ∅.

Let S′ be an arbitrary d-degree deletion set. Our branching rule for type-I
close quadruples is different for the cases whether {v1, v2, v3, v4} induces a cycle
or a path.

Case 1. {v1, v2, v3, v4} induces a cycle of 4 vertices: We consider the following
different subcases.

Case 1.1. S′ ∩ {v1, v2, v3, v4} = ∅: Then S′ ∩ N−
12 �= ∅ and S′ ∩ N−

34 �= ∅. For
this case, we included each pair of vertices in N−

12 and N−
34 to the solution set to

create |N−
12||N−

34| = (d − 1)2 branches, each of which decreases k by 2.

Case 1.2. S′ ∩ {v1, v2, v3, v4} = {v1} or S′ ∩ {v1, v2, v3, v4} = {v2}: Then S′ ∩
N−

34 �= ∅, otherwise no vertex in N [v3] or N [v4] would be in S′ and then S′ would
not be a d-degree deletion set. Furthermore, if S′ ∩ {v1, v2, v3, v4} = {v2}, then
S′\{v2}∪{v1} is still a d-degree deletion set of the same size, since N [v2]\N [v1] =
{v3}, v3 is adjacent to all vertices in N−

34 and S′ ∩ N−
34 �= ∅. So for this case,

we include {v1, x} to the solution set for each x ∈ N−
34 to create |N−

34| = d − 1
branches, each of which decreases k by 2.

Case 1.3. S′ ∩ {v1, v2, v3, v4} = {v3} or S′ ∩ {v1, v2, v3, v4} = {v4}: Then S′ ∩
N−

12 �= ∅. For the same reason, we include {v3, x} to the solution set for each
x ∈ N−

12 to create |N−
12| = d − 1 branches, each of which decreases k by 2.

Case 1.4. |S′ ∩ {v1, v2, v3, v4}| ≥ 2: Then S′ \ {v1, v2, v3, v4} ∪ {v1, v3} is a
d-degree deletion set of size not greater than that of S′, since N [{v1, v2, v3, v4}] ⊆
N [{v1, v3}]. For this case, we can simply include {v1, v3} to the solution set.

The branching operation gives a recurrence relation

C(k) ≤ (d − 1)2 · C(k − 2) + (d − 1) · C(k − 2) + (d − 1) · C(k − 2) + C(k − 2)
= d2 · C(k − 2),

(3)

the branching factor of which is d < d + 1.

Case 2. {v1, v2, v3, v4} induces a path of 4 vertices: Let {v0} = N(v1) \ N [v2]
and {v5} = N(v4) \ N [v3], where it is possible that v0 = v5. We observe the
following different cases.

Case 2.1. S′ does not contain any vertex in N−
12 ∪ N−

34: Then S′ contains at
least one vertex in {v0, v1, v2} and at least one vertex in {v3, v4, v5}, since S′

must contain at least one vertex in N [v1] and at least one vertex in N [v4].
If |S′ ∩ {v1, v2, v3, v4}| ≥ 2, then S′′ = S′ \ {v1, v2, v3, v4} ∪ {v1, v4} is still a
d-degree deletion set with |S′′| ≤ |S′|, since N [{v1, v2, v3, v4}] ⊆ N [{v1, v4}].
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Otherwise, it holds either S′ ∩ {v0, v1, v2} = {v0} or S′ ∩ {v3, v4, v5} = {v5}. If
S′ ∩{v0, v1, v2} = {v0}, then v3 ∈ S′ since S′ must contain at least one vertex in
N [v2]. If S′ ∩{v3, v4, v5} = {v5}, then v2 ∈ S′ since S′ must contain at least one
vertex in N [v3]. So for this case, we conclude that there is a solution contains one
of {v1, v4}, {v0, v3} and {v2, v5}. In our algorithm, we generate three branches
by including each of {v1, v4}, {v0, v3} and {v2, v5} to the solution set. In each of
the three branches, the parameter k decreases by 2.

Case 2.2. S′ does not contain any vertex in N−
12 but contain some vertex in N−

34:
Since S′ ∩N [v1] �= ∅, we know that S′ contains at least one vertex in {v0, v1, v2}.
If v2 ∈ S′, then S′′ = S′ \ {v2} ∪ {v1} is still a d-degree deletion set. The reason
relies on that N [v2] \ N [v1] = {v3}, v3 is adjacent to each vertex in N−

34, and S′′

contains at least one vertex in N−
34. So for this case, there is a solution contains

one vertex in {v0, v1}. In our algorithm, we create 2|N−
34| = 2(d − 1) branches

by including to the solution each pair of vertices x and y such that x ∈ {v0, v1}
and y ∈ N−

34. In each of the 2(d − 1) branches, the parameter k decreases by 2.

Case 2.3. S′ does not contain any vertex in N−
34 but contain some vertex in

N−
12: For the same reason in Case 2.2, there is a solution contains one vertex in

{v4, v5}. In our algorithm, we create 2|N−
12| = 2(d − 1) branches by including to

the solution each pair of vertices x and y such that x ∈ {v4, v5} and y ∈ N−
12. In

each of the 2(d − 1) branches, the parameter k decreases by 2.

Case 2.4. S′ contains some vertex in N−
12 and some vertex in N−

34: For this case,
Our algorithm simply generates |N−

12||N−
34| = (d − 1)2 branches by including to

the solution each pair of vertices x and y such that x ∈ N−
12 and y ∈ N−

34. In
each of the (d − 1)2 branches, the parameter k decreases by 2.

The above branching operation gives a recurrence relation

C(k) ≤ 3C(k − 2) + 2(d − 1) · C(k − 2) + 2(d − 1) · C(k − 2) + (d − 1)2 · C(k − 2)
= d(d + 2) · C(k − 2),

the branching factor of which is
√

d(d + 2) < d + 1.

Step 6 (Type-II close quadruples of degree-(d + 1) vertices)
Two nonadjacent degree-(d + 1) vertices are similar if they have the same

neighbor set. A set of four degree-(d + 1) vertices {v1, v2, v3, v4} is called a type-
II close quadruple if {v1, v3} and {v2, v4} are two similar pairs and there is
an edge between vi and vi+1 for i = 1, 2, 3. Note that there must be an edge
between v1 and v4 since {v1, v3} is a similar pair. So as a type-II close quadruple,
{v1, v2, v3, v4} always induces a cycle of 4 vertices.

Let {v1, v2, v3, v4} be a type-II close quadruple. We use N−
13 to denote N(v1)\

{v2, v4} and N−
24 to denote N(v2) \ {v1, v3}. Note that it holds N−

13 ∩ N−
24 = ∅,

if we assume that there is no good pairs or close triples. Let S′ be a d-degree
deletion set. We consider the following different subcases.

Case 1. S′ ∩ {v1, v2, v3, v4} = ∅: Then S′ ∩ N−
13 �= ∅ and S′ ∩ N−

24 �= ∅. For
this case, we included each pair of vertices in N−

13 and N−
24 to the solution set to

create |N−
13||N−

24| = (d − 1)2 branches, each of which decreases k by 2.
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Case 2. S′∩{v1, v2, v3, v4} = {v1} or S′∩{v1, v2, v3, v4} = {v3}: Then S′∩N−
13 �=

∅, otherwise S′ would not be a d-degree deletion set since no vertex in N [v3] or
N [v1] is in S′. Furthermore, if S′ ∩{v1, v2, v3, v4} = {v3}, then S′ \{v3}∪{v1} is
still a d-degree deletion set of the same size. So for this case, we include {v1, x}
to the solution set for each x ∈ N−

13 to create |N−
13| = d − 1 branches, each of

which decreases k by 2.

Case 3. S′∩{v1, v2, v3, v4} = {v2} or S′∩{v1, v2, v3, v4} = {v4}: Then S′∩N−
24 �=

∅. For the same reason, we include {v2, x} to the solution set for each x ∈ N−
24

to create |N−
24| = d − 1 branches, each of which decreases k by 2.

Case 4. |S′ ∩{v1, v2, v3, v4}| ≥ 2: Then S′ \{v1, v2, v3, v4}∪{v1, v2} is a d-degree
deletion set of size not greater than S′, since N [{v1, v2, v3, v4}] ⊆ N [{v1, v2}].
For this case, we can simply include {v1, v2} to the solution set.

The branching operation gives a recurrence relation

C(k) ≤ (d − 1)2 · C(k − 2) + (d − 1) · C(k − 2) + (d − 1) · C(k − 2) + C(k − 2)
= d2 · C(k − 2),

the branching factor of which is d < d + 1.

Step 7 (Proper triples of degree-(d + 1) vertices)
A set of three degree-(d + 1) vertices {v1, v2, v3} is called a proper triple if

{v1, v2, v3} induces a path and no pair of vertices in {v1, v2, v3} is close or similar.

Lemma 6. Let G be a graph of maximum degree d + 1 for any integer d > 0. If
G has no proper dominations, good pairs, close triples, type-I close quadruples
or type-II close quadruples, then G has some proper triples.

A proof of this lemma can be found in the full version.
For a proper triple {v1, v2, v3} in a graph having none of dominated vertices,

good pairs, close triples, type-I close quadruples and type-II close quadruples,
we have the following properties: N(v1) ∩ N(v2) = ∅, N(v2) ∩ N(v3) = ∅ and
1 ≤ |N(v1) ∩ N(v3)| ≤ d.

Let N−
13 = N(v1) ∩ N(v3) \ {v2}, N−

1 = N(v1) \ N(v3), N−
3 = N(v3) \ N(v1),

N−
2 = N(v2) \ {v1, v3} and x = |N−

13|. Since {v1, v3} is not a similar pair, we
know that 0 ≤ x ≤ d − 1. Let S′ be a d-deletion set. To design our branching
rule, we consider the following different cases.

Case 1. v2 ∈ S′: We simply include v2 to the solution set and the parameter k
decreases by 1. For all the remaining cases, we assume that v2 �∈ S′.

Case 2. v2 �∈ S′ and v1, v3 ∈ S′: We simply include v1 and v3 to the solution
set and the parameter k decreases by 2.

Case 3. v1, v2 �∈ S′ and v3 ∈ S′: For the case, S′ ∩ (N(v1) \ {v2} �= ∅. We create
|N(v1) \ {v2}| = d branches by including v3 and each vertex in N(v1) \ {v2} to
the solution set and the parameter k in each branch decreases by 2.
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Case 4. v2, v3 �∈ S′ and v1 ∈ S′: For the case, S′ ∩ (N(v3) \ {v2} �= ∅. We create
|N(v3) \ {v2}| = d branches by including v1 and each vertex in N(v3) \ {v2} to
the solution set and the parameter k in each branch decreases by 2.

Case 5. v1, v2, v3 �∈ S′: Then S′ must contains (i) a vertex in N−
2 and (ii) either

a vertex in N−
13 or two vertices from N−

1 and N−
3 respectively. Our algorithm

generates |N−
2 ||N−

13| + |N−
2 |||N−

1 ||N−
3 | = (d − 1)x + (d − 1)(d − x)2 branches.

Each of the first (d − 1)x branches includes a vertex in N−
2 and a vertex in N−

13

to the solution set and the parameter k decreases by 2. The last (d − 1)(d − x)2

branches are generated by including each triple {w1 ∈ N−
2 , w2 ∈ N−

1 , w3 ∈ N−
3 }

to the solution set, where the parameter k decreases by 3.
The above branching operation gives a recurrence relation

C(k) ≤ C(k − 1) + C(k − 2) + d · C(k − 2) + d · C(k − 2)+
(d − 1)x · C(k − 2) + (d − 1)(d − x)2 · C(k − 3)

= C(k − 1) + ((2d + 1) + (d − 1)x) · C(k − 2) + (d − 1)(d − x)2 · C(k − 3),
(4)

where 0 ≤ x ≤ d − 1.

Lemma 7. When d ≥ 3, the branching factor of (4) is at most d + 1 for each
0 ≤ x ≤ d − 1.

A proof of this lemma can be found in the full version.

4.1 The Results

Lemma 6 guarantees that when the graph has a vertex of degree ≥ d + 1, one of
the above seven steps can be applied. When d ≥ 3, the branching factor in each
of the seven steps is at most d + 1. Thus,

Theorem 1. The d-bounded-degree vertex deletion problem for each d ≥ 3 can
be solved in O∗((d + 1)k) time.

Note that all the seven steps of our algorithm work for d = 2. In the first six
steps, we still can get branching factors at most d+1 for d = 2. In Step 7, when
d = 2 and x = d − 1 = 1, (4) becomes

C(k) ≤ C(k − 1) + 6C(k − 2) + C(k − 3),

which has a branching factor of 3.0645. This is the biggest branching factor in
the algorithm. Then

Theorem 2. The co-path/cycle problem can be solved in O∗(3.0645k) time.

Note that previously the co-path/cycle problem could only be solved determin-
istically in O∗(3.24k) time [4].
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5 Concluding Remarks

In this paper, by studying the structural properties of graphs, we show that the
d-bounded-degree vertex deletion problem can be solved in O∗((d + 1)k) time
for each d ≥ 3. Our algorithm is the first nontrivial parameterized algorithm for
the d-bounded-degree vertex deletion problem with d ≥ 3.

Our problem is a special case of the (d + 2)-hitting set problem. It is still
left as an open problem that whether the d′-hitting set problem can be solved in
O∗((d′ − 1)k) time. Our result is a step toward to this interesting open problem.
However, our method can not be extended to the d′-hitting set problem directly,
since some good graph structural properties do not hold in the general d′-hitting
set problem.
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Abstract. We present an efficient parallel algorithm for the general
Monotone Circuit Value Problem (MCVP) with n gates and an under-
lying graph of bounded genus k. Our algorithm generalizes a recent
result by Limaye et al. who showed that MCVP with toroidal embed-
ding (genus 1) is in NC when the input contains a toroidal embedding
of the circuit. In addition to extending this result from genus 1 to any
bounded genus k, and unlike the work reported by Limaye et al., we do
not require a precomputed embedding to be given. Most importantly,
our results imply that given a P-complete problem, it is possible to find
an algorithm that makes the problem fall into NC by fixing one or more
parameters. Hence, we deduce the interesting analogy: Fixed Parameter
Parallelizable (FPP) is with respect to P-complete what Fixed Parame-
ter Tractable (FPT) is with respect to NP-complete. Similar work that
uses treewidth as parameter was also presented by Elberfeld et al. in [6].

1 Introduction

Parameterized complexity theory provides a refined classification of computa-
tionally intractable problems based on a multivariate complexity analysis of
(exact) algorithms. The class FPT occupies the bottom of parameterized com-
plexity hierarchy just as the class P is in the classical (polynomial) hierarchy. In
short, a problem is Fixed Parameter Tractable (FPT) if it has an algorithm that
runs in O(f(k) ·nO(1)), where n is the problem size and k is the input parameter
that is independent of n, for an arbitrary computable function f . A well-known
example is the parameterized version of the Vertex Cover Problem which can be
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solved in O(kn + 1.274k) time, where n is the number of vertices of the input
graph and k is an upper bound on the size of the sought vertex cover [4].

The study of Parameterized Complexity has been extended to parallel com-
puting and this is broadly known as Parameterized Parallel Complexity. The first
systematic work on Parameterized Parallel Complexity appeared in [3] where the
authors introduced two classes of efficiently parallelizable parameterized prob-
lems known as PNC and FPP respectively, both based on the degree of efficiency
required. The class of PNC (parameterized analog of NC ) contains all parame-
terized problems that have a parallel deterministic algorithm with running time
O(f(k) · (log n)h(k)) and O(g(k) ·nβ) processors, where n is the size of input, k is
the parameter, f , g, h are arbitrary computable functions, and β is a constant
independent of n and k. A noticeable drawback to the definition of PNC is the
exponent in the logarithm bounding the running time. Since the latter depends
on k, it grows at a rapid rate thus making the running time very close to a
linear function, even for not too large values of the parameter. On the other
hand, the class of FPP (Fixed Parameter Parallelizable) contains all parame-
terized problems that have a parallel deterministic algorithm with running time
O(f(k) · (log n)α) and O(g(k) · nβ) processors, where n is the size of input, k is
the parameter, f and g are arbitrary computable functions, and α, β are con-
stants independent of n and k. It was shown in [3,6] that some problems with
bounded treewidth (i.e., treewidth is the parameter) belong to FPP. In fact,
this parameter is somehow coarse since using it leads to numerous NP-complete
problems ending up in FPP as well.

Motivated by the above, we restrict our attention to P-complete problems and
consider a more natural parameter − the genus of a graph. Our result becomes
more helpful in understanding the intrinsic difficulty of P-complete problems and
whether P = NC. This is the primary motivation behind this paper. Consider,
as an example, one of the most studied P-complete problems, the Circuit Value
Problem (CVP). A Boolean Circuit is a directed acyclic graph consisting of NOT,
AND and OR gates. CVP is the problem of evaluating a Boolean Circuit on a given
input. It was shown to be P-complete with respect to logarithmic space reductions
in [9]. In addition, some restricted variants of CVP have also been studied. The
Planar Circuit Value Problem (PCVP), for example, is a variant of CVP in which
the underlying graph of the circuit has a planar embedding. Another variant is
the Monotone Circuit Value Problem (MCVP) in which the circuit has only AND
and OR gates. Both PCVP and MCVP were also shown to be P-complete in [7].
Interestingly, if the circuit is simultaneously planar and monotone, then it can be
evaluated in NC. This variant is known as PMCVP and its first NC algorithm was
given in [13]. The latter employs the straight-line code parallel evaluation tech-
nique and has a running time in O(log3 n) with Ω(n6) processors. Subsequently,
a more sophisticated algorithm with the same running time but requiring only a
linear number of processors was presented in [11].

Our Contribution: In this paper, we explore the class of Parameterized Par-
allel Complexity by presenting an efficient parallel algorithm for the general
MCVP with n gates and an underlying graph of bounded genus k. Our algorithm
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improves and generalizes the result in [10], which shows that the MCVP with
toroidal embedding (genus 1) is in NC. The work in [10] was non-constructive
and assumed that the input contains a fixed toroidal embedding of the circuit.
We extend the result from genus 1 to a bounded constant genus k and unlike
in [10], we do not require such an embedding to be given. Moreover, our results
imply that given a P-complete problem, it is possible to find an algorithm that
makes the problem fall into NC by fixing one or more parameters. Hence, we
deduce the interesting analogy: FPP is with respect to P-complete what FPT is
with respect to NP-complete. Similar work appeared in [6] where they consider
the treewidth as a parameter.

Structure of the Paper: The rest of this paper is structured as follows. In
Sect. 2, we give some preliminaries, including the PQ-tree data structure along
with some parallel operations on it. These are essential for the understanding
of our algorithm, which we present in the following sections. In Sect. 3, we give
a sketch of our algorithm. Then we decompose the algorithm and prove its
correctness in Sects. 4 to 6. We conclude our paper with some remarks and
future work in Sect. 7.

2 Preliminaries

We assume familiarity with basic graph theoretic terminology but we shall give
a few general definitions and notations.

The (orientable) genus of a graph is the minimal integer g such that the
graph can be drawn without edge-crossing on a sphere with g handles. In a
connected graph, a block (or 2-connected component) is a maximal 2-connected
subgraph. The block decomposition of a graph is the set of all the blocks of the
graph. It is not hard to compute a block decomposition of a connected graph
G in NC [12]. We may assume throughout the rest of this paper that G is
a 2-connected graph. This is especially needed for the relation between genus
and block decomposition described in Lemma 1. Otherwise, we can apply the
algorithms mentioned above to obtain a block decomposition of the input graph
and process each block independently.

Lemma 1 [1]. The genus of a connected graph is the sum of the genus of its blocks.

Given a universe U = {e1, . . . , em}, a PQ-tree is a tree-based data structure
that represents a class of permissible permutations over the set U in which the
leaves are elements of U and the internal nodes are distinguished as being labeled
either P-nodes or Q-nodes. Let T be a PQ-tree over the universe U . We denote
by L(T ) the set of linear orders represented by T , and say that T generates L(T ).
One element of L(T ) is obtained by reading off the leaves from left to right in
the order in which they appear in T . The other elements are those linear orders
obtained in the same way according to the following conditions:

– Every element of U appears precisely once as a leaf node;
– The P-node has at least two children and they might be arbitrarily permuted;



The Monotone Circuit Value Problem with Bounded Genus Is in NC 95

– The Q-node has at least three children and they are allowed only to be placed
in reverse order.

Since there is no way a PQ-tree over a non-empty ground set can represent
the empty set of orderings, we use a special null tree Tnull to represent the empty
set. With each linear ordering λ we associate the cyclic ordering co(λ) obtained
from λ by letting the first element of λ follow the last. Then the PQ-tree T
represents the set of cyclic orderings CO(T ) = co(L(T )).

Let A be a subset of the universe U . We say a linear ordering λ = e1, . . . , em

of U satisfies the set A if all the elements of A are consecutive in λ. For a PQ-tree
T , let

Ψ(T,A) = {λ : λ ∈ L(T ), λ satisfies A} (1)

Given any T and A ⊆ U , there is a PQ-tree T̂ such that

L(T̂ ) = Ψ(T,A) (2)

called the reduction of T with respect to A. In order to parallelize the planarity
testing algorithm presented in [2], Klein and Reif in [8] introduced three new
operations on PQ-trees: multiple-disjoint-reduction, intersection and join.

Given any T and A1, . . . , Ak ⊆ U , there is a PQ-tree T̂ such that

L(T̂ ) = Ψ(T, {A1. . . . , Ak}) (3)

called the multiple-disjoint-reduce of T with respect to {A1, . . . , Ak}. They pro-
posed Algorithm MREDUCE(T, {A1, . . . , Ak}) which modifies T to obtain a PQ-
tree T̂ such that L(T̂ ) = Ψ(T, {A1, . . . , Ak}) if all subsets Ai’s are pairwise dis-
joint. Their algorithm works in O(log m) time using a linear number of processors,
where m = |U |. Note that if no ordering generated by T satisfies {A1, . . . , Ak},
then the result of multiple-disjoint-reduce T̂ is just the null tree Tnull.

A PQ-tree T̂ is the intersection of two PQ-trees T and T ′ over the same
ground set if L(T̂ ) = L(T ) ∩ L(T ′). Klein and Reif also proposed Algorithm
INTERSECT(T, T ′) to reduce the given PQ-trees simultaneously with respect
to multiple sets that are not necessarily disjoint, using the multiple-disjoint-
reduce as a subroutine. The algorithm modifies T ′ to be the intersection of the
two original trees. INTERSECT can be computed in O(log2 m) time using m
processors, where m is the size of the ground set.

The last operation is join. Suppose T0, . . . , Tk are PQ-trees over U0, . . . , Uk,
respectively, and for some Ui, Uj may overlap. We say that T is the join of T0

with T1, . . . , Tk if CO(T ) = CO(T0) join (CO(T1), . . . , CO(Tk)). To be more
specific, we can compute a new PQ-tree T such that the cyclic ordering of T
satisfies U0, . . . , Uk. The join of T0 with T1, . . . , Tk can be computed in O(log2 m)
time using m processors, where m is the total number of ground elements, using
the multiple-disjoint-reduce and the intersection as subroutines.

3 The Algorithm

Our main result can be summarized in the following theorem.
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Theorem 1. Given a general monotone boolean circuit with n gates and
an underlying graph of bounded genus k, the circuit can be evaluated in
O (

(k + 1) · log3 n
)
time using O(nc) processors, where O(nc) is the best proces-

sors boundary for parallel matrix multiplication. Therefore, the monotone circuit
value problem with bounded genus k is in FPP.

Throughout the rest of this paper, we will respectively use the terms “graph”
and “circuit”, “node” and “gate”, “edge” and “wire” interchangeably. The basic
strategy of our algorithm is as follows, first we transform the input graph into
a layered graph by subdividing the edges. It is well known that subdivision will
not increase the genus of a input graph. Then the algorithm greedily contracts
planar subgraphs in parallel until it observes a subgraph that is not planar. Due
to the particular contraction process, which is based on working on the layered
version of the input graph, this situation allows to split the circuit into two
parts of a smaller total genus. Then the algorithm proceeds on both parts in
parallel. In fact, we cannot merely choose a single embedding for each subgraph
since the embeddings of two subgraphs might be inconsistent thus preventing
the embeddings from being combined. Instead, we use PQ-trees to represent the
set of all embeddings of each planar subgraph.

It is obvious that any circuit can be considered as a directed acyclic graph
(DAG). If the circuit has multiple sinks, then each of them can be evaluated
independently. We therefore assume throughout the rest of this paper that there
is only one single sink t in the circuit.

Algorithm 1. Parallel algorithm for MCVP
1: procedure ALG(G)
2: Transform the input graph G into a layered graph G′ with procedure SPLIT(G).
3: Parallel construct PQ-tree for each node v ∈ G′ except the sink node t. Each

PQ-tree represents a plan subgraph.
4: Take subgraphs that consist of nodes in consequent layers and apply the join

operation on the PQ-trees in even layer with odd layer in parallel.
5: if the join operation is not Tnull then
6: Contract the subgraphs represented by PQ-trees and update layer numbers.
7: Run ALG(·) on the new graph.
8: else
9: Delete all directed edges between layers i and i + 1 and then add one new

node t′ as the sink node of the second part.
10: Run ALG(·) on both subgraphs recursively.
11: end if
12: Evaluate the planar sub-circuits in k + 1 steps.
13: end procedure

4 Layered Computation

The first step of our algorithm is to transform the input graph into a layered
graph with the same genus. To do so, we first flip the directions of edges in G to
obtain G∗, and let d(t, v) be the length of the longest directed path from sink t
to node v in G∗.
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The layer number d(v) of the node v defined as follows:

d(v) = d(t, v). (4)

In this step, we assign to each node v of the given DAG G the layer num-
ber d(v), and then add some dummy nodes to make the input graph layered.
Algorithm 2 formally describes this procedure.

Algorithm 2. Split of DAG
1: procedure SPLIT(G)
2: Calculate the layer number d(v) for every node v ∈ G.
3: for all directed edges (u, v) in G do
4: Let l = d(u) − d(v) − 1.
5: if l > 0 then
6: Add dummy nodes n1, . . . , nl and directed edges (u, n1), (n1, n2), . . . ,

(nl, v) to the graph G.
7: end if
8: end for
9: Together with added dummy nodes and edges we obtain DAG G′, such that for

any edge (u, v), l = d(u) − d(v) − 1 = 0.
10: end procedure

Note that for any directed edge (u, v) ∈ G′, it holds that l = 0. In other
words, all edges are situated between adjacent layers, i.e., there are no edges
crossing more than two layers and no edges in the same layer.

We still need to show that Algorithm 2 can be accomplished in NC time and
the layered graph G′ has the same genus as G. It is easy to see that the layer
number for each node can be computed in NC time, and more precisely in NC2

by using parallel topological sorting algorithms, such as that in [5]. So, we only
need to observe that:

Lemma 2. Graphs G and G′ have the same genus.

Proof. Since graph G′ is obtained only by edge subdivision of graph G and the
edge subdivision operation will not change the genus of a graph, then G and G′

have the same genus. ��

5 Parallel Contraction

The second step of our algorithm can be viewed as a greedy contraction process
in parallel on the layers. First, we describe how to represent the set of embeddings
of a subgraph with a PQ-tree in the following lemma.

Lemma 3. For any gate in a planar circuit, all input wires and all output wires
of the gate are placed consecutively in the cyclic ordering of the wires around the
gate in the plane.
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Fig. 1. An example of a DAG and a PQ-tree constructed for node 1 with P-nodes
represented as circles and a Q-node represented as a rectangle

Proof. Let c be a gate in C ′. Assume that i1 and i2 are the two input wires of c
and o1 and o2 are the two output wires of c, such that o1 and o2 interlace with
i1 and i2 in the cyclic ordering of the wires around c. Suppose s is the single
source of C ′ and t is the single sink of C ′, then there are four directed paths P1,
P2, P3 and P4 in C ′: P1 = (c, o1, . . . , t), P2 = (c, o2, . . . , t), P3 = (s, . . . , i1, c),
and P4 = (s, . . . , i2, c). These four paths cannot be embedded in a plane without
having crossing edges. This contradicts with the fact that C ′ is a plane graph
and concludes the proof. ��

It has been shown in [8] that any planar graph can be represented by a
PQ-tree. Suppose v ∈ G, then we can directly construct a valid PQ-tree T (v)
corresponding to node v, and any cyclic ordering of the edges incident to v will
be an arrangement of v, provided that the incoming edges and the outgoing
edges are consecutive, respectively. In this case, we let T (v) be the tree whose
root is a Q-node with two P-nodes children, in and out, where the children of in
are the incoming edges of v and the children of out are the outgoing edges of v.
Figure 1 illustrates an example of DAG and an initial PQ-tree T (1) constructed
from node 1.

It is easy to see that this parallel construction of PQ-trees for each node
v ∈ G′, except for the sink node t, takes only constant time with a linear number
of processors, since we only need to rearrange the input and output edges of a
node.

Next we describe how to contract the subgraphs. We start with the original
layered graph and let G(0) = G′. In the ith stage, we choose a collection of
subgraphs of the graph G(i) in accordance with the layer number, contract these
subgraphs and update the layer number. This results in the graph G(i+1).

For each node v ∈ G(i+1) and each stage j ≤ i, we denote by H(j)(v) the
subgraph of G(j) that was contracted over steps j + 1, . . . , i forming v. We use
H(v) for H(0)(v). If u ∈ H(j)(v) for v ∈ G(i+1), we use ui+1 to denote v.

We choose our subgraphs to contract at each stage i such that the following
properties are always guaranteed:
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– At most O(log n) stages are needed.
– The sink node is never contracted with any other node;
– For each node v �= t in G(i), the subgraph H(v) permits a PQ-tree represen-

tation of the set of its embeddings;
– The layer number is easy to update, following the contraction of the edges.

We first show that the algorithm terminates in O(log n) stages. Then we
show how the subgraphs are chosen and prove that our method of choosing the
subgraphs satisfies the above properties.

Lemma 4. Algorithm1 terminates in O(log n) stages.

Proof. We already showed in Algorithm 2 how to transform the input DAG into
a layered DAG such that all directed edges go from layer i + 1 to layer i in the
layered DAG. To ensure that only O(log n) stages are needed, we contract the
nodes as follows. Suppose that there is one node u at layer i+1 and its neighbor
set in layer i is {v1, . . . , vm}. Moreover, assume that the other neighbor of each
vi in the neighbor set of u in layer i + 1 is {u1, . . . , uh}. Since the input is a
monotone boolean circuit, there are only two input wires for each gate. If (u, vi)
is already an input wire for gate vi, then there must exist another input wire
coming from gate {u1, . . . , uh} to gate vi. We will contract the edges incident to
u, {v1, . . . , vm}, and {u1, . . . , uh} together.

In each stage, either the number of layers are reduced by two (contract suc-
cess) or the nodes in adjacent layers cannot be contracted to form a larger planar
subgraph. Hence, for the latter, we cut all edges between layer i+1 and i. After
cutting the edges between layer i+1 and i, the graph is split into two parts. One
part is below layer i (including layer i) which has some hanging incoming edges,
and the other part is above layer i + 1 (including layer i + 1) which has some
hanging outgoing edges. It is easy to see that the first part is still a connected
directed acyclic graph with sink node t. However, the second part could be a
disconnected graph because the adjacent layers may not be a complete bipar-
tite graph. So, we add a new sink node t′ to the second part and draw all the
hanging outgoing edges to t′. Clearly, this step guarantees that the second part
is a connected directed acyclic graph (refer to Fig. 2 for an illustration). Then,
we handle these two subgraphs in parallel. ��

At every stage i, we compute these PQ-trees for each new node v ∈ G(i+1)

in parallel from the PQ-trees for the nodes H(i)(v) identified to form v.
If a null tree Tnull arises as T (v) for some node v, then there are no arrange-

ments of v. So, the candidate subgraphs cannot form a larger planar subgraph.
Assume on the other hand that the contraction process continues until there is
only one node left other than the sink node in Gi. Then every internal node is
adjacent only to the sink node. Let {v1, . . . , vm} be these nodes. For j = i, . . . , m,
if T (vj) is not Tnull, then there is a planar embedding for each internal node vj .
So both the input edges and the output edges form a consecutive subsequence,
and the graph is planar.
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v1 v2 . . . vmlayer i

u u1 uhlayer i+1

t

v1 v2 . . . vmlayer i

u u1 uhlayeri+1

t

t′

Fig. 2. Cut operation with a new sink node.

6 Split Process

In this section, we show why the cut operation reduces the genus of both parts
by at least 1 and how the circuit will be split into k + 1 planar sub-circuits.

Lemma 5. The cut operation reduces the genus of subgraphs by at least 1.

Proof. Suppose that some nodes in layer i + 1 and i cannot be contracted, then
either there exists at least one node u in layer i+1 such that its incoming edges
from layer i + 2 interlace with the outgoing edges to layer i, or there exists at
least one node v in layer i such that its incoming edges from layer i+1 interlace
with the outgoing edges to layer i−1. Irrespective of both of these scenarios, we
do the following and obtain a new graph containing only two blocks. We delete
all directed edges between layers i and i + 1 and then add one new node t′ as
the sink node of the second part and the source node of the first part. Suppose
the genus of the first block is g1 and the genus of the second block is g2. Then
the genus of the first block is equal to the genus of the first part of the graph
after cutting, and the genus of the second block is equal to the genus of the
second part of the graph after cutting. The cut operation will definitely reduce
the genus of the layered graph by 1. Hence, we have g1 +g2 +1 = k. This implies
that g1 + g2 < k. Since g1 ≥ 0 and g2 ≥ 0, then g1 < k and g2 < k. ��
Lemma 6. Algorithm1 splits the input circuit with bounded genus k into k + 1
planar circuits.

Proof. We prove this lemma by induction. Without loss of generality, after the
first cut, we observe that g1 ≤ g2 and the genus of the layered graph reduces
by 1. Now, we have two separate graphs. We consider different combinations of
g1 and g2 as follows:

– if g1 is 0, then it is a planar subgraph. This graph is represented by one
PQ-tree. The other part will have genus g2 = k − 1. In this case, the genus
reduces by 1 and the number of subgraphs increases by 1.
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– if g1 is 1, then it is not a planar subgraph and it will be cut into two subgraphs
later. The other part will have genus g2 = k − 2.

Hence we conclude that every cut will reduce the genus, at least by 1, and
hence there are at most k + 1 planar subgraphs. ��

Our main result follows from the lemmas above together with the parallel
evaluation technique for PMCVP that has a running time in O(log3 n) with a
linear number of processors. We note that the number of processors needed is
bounded by O(nc), which is the processors boundary for the parallel matrix
multiplication algorithm. This is only because we need a parallel topological
sorting algorithm to compute the layer number. Otherwise, our algorithm will
only need a linear number of processors.

7 Concluding Remarks and Future Work

We presented an efficient parallel algorithm for the general MCVP problem with
bounded genus. We deduce that MCVP with genus k is in FPP. This implies that
given a P-complete problem, it is possible to find an algorithm that makes the
problem fall into NC by fixing one or more parameters. Hence, with the results
in this paper, we initiate the study of a new class of problems analogous to the
class FPT. Subsequently, many questions remain unanswered. For example, can
we construct a hierarchy for P-problems analogous to the one for NP-problems?

Acknowledgments. We wish to thank the anonymous referees for their valuable
comments to improve the structure and presentation of this paper.
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Abstract. In this paper, we show a construction of locality-sensitive hash
functions without false negatives, i.e., which ensure collision for every pair
of points within a given radius R in d dimensional space equipped with lp
norm when p ∈ [1, ∞]. Furthermore, we show how to use these hash func-
tions to solve the c-approximate nearest neighbor search problem without
false negatives. Namely, if there is a point at distance R, we will certainly
report it and points at distance greater than cR will not be reported for

c = Ω(
√

d, d
1− 1

p ). The constructed algorithms work:
– with preprocessing time O(n log(n)) and sublinear expected query

time,
– with preprocessing time O(poly(n)) and expected query

time O(log(n)).
Our paper reports progress on answering the open problem presented
by Pagh [8], who considered the nearest neighbor search without false
negatives for the Hamming distance.

1 Introduction

The Nearest Neighbor problem is of major importance to a variety of applications
in machine learning and pattern recognition. Ordinarily, points are embedded
in R

d, and distance metrics usually measure similarity between points. Our task
is the following: given a preprocessed set of points S ⊂ R

d and a query point
q ∈ R

d, find the point v ∈ S, with the minimal distance to q. Unfortunately,
the existence of an efficient algorithm (i.e., whose query and preprocessing time
would not depend exponentially on d), would disprove the strong exponential
time hypothesis [8,10]. Due to this fact, we consider the c-approximate nearest
neighbor problem: given a distance R, a query point q and a constant c > 1, we
need to find a point within distance cR from point q [4]. This point is called a
cR-near neighbor of q.

Definition 1. Point v is an r-near neighbor of q in metric M iff M(q, v) ≤ r.

One of the most interesting methods for solving the c-approximate nearest
neighbor problem in high-dimensional space is locality-sensitive hashing (LSH).
The algorithm offers a sub-linear query time and a sub-quadratic space complex-
ity. The rudimentary component on which LSH method relies is locality-sensitive
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 105–118, 2016.
DOI: 10.1007/978-3-319-42634-1 9
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hashing function. Intuitively, a hash function is locality-sensitive if the proba-
bility of collision is much higher for “nearby” points than for “far apart” ones.
More formally:

Definition 2. A family H = {h : S → U} is called (r, c, p1, p2)-sensitive for
distance D and induced ball B(q, r) = {v : D(q, v) < r}, if for any v, q ∈ S:

– if v ∈ B(q, r) then P [h(q) = h(v)] ≥ p1,
– if v /∈ B(q, cr) then P [h(q) = h(v)] ≤ p2.

For p1 > p2 and c > 1.

Indyk and Motwani [7] considered randomized c-approximate R-near neigh-
bor (Definition 3).

Definition 3 (The Randomized c-Approximate R-Near Neighbor or
(R,c)-NN). Given a set of points in a P ⊂ R

d and parameters R > 0, δ > 0. Con-
struct a data structure D such that for any query point q, if there exists a R-near
neighbor of q in P , D reports some cR-near neighbor of q in P with probability 1−δ.

In this paper, we study guarantees for LSH based (R,c)-NN such that for
each query point q, every close enough point ‖x − q‖p < R will be certainly
returned, i.e., there are no false negatives.1 In other words, given a set S of size
n and a query point q, the result is a set P ⊆ S such that:

{x : ‖x − q‖p < r} ⊆ P ⊆ {x : ‖x − q‖p ≤ cr}.

R

√
dR

cR

q

•p1

•p3

•p2

•p4

Fig. 1. The presented algorithms guarantee that points in the dashed area (p1) will be
reported as neighbors. Points within the dotted circle (p2) will be reported as neighbor
with high probability. Points (p3) within a distance cR might be reported, but not nec-
essarily. Points (p4) outside circle cR cannot be reported. The schema picture presents
an example for the euclidean distance (p = 2).

1 ‖·‖p denotes the standard lp norm for fixed p.
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Moreover, for each distant point (‖x − q‖p > cR), the probability of being
returned is bounded by pfp – probability of false positives. In [8] this type of
LSH is called LSH without false negatives. The fact that the probability of
false negatives is 0 is our main improvement over Indyk and Motwani algo-
rithm [7]. Furthermore, Indyk and Motwani showed that p-stable distributions
(where p ∈ (0, 2]) are (r, c, p1, p2)-sensitive for lp. We generalized their results
on any distribution with mean 0, bounded second and fourth moment and any
p ∈ [1,∞] (see Lemma 1, for rigorous definitions). Finally, certain distributions
from this abundant class guarantee that points within given radius will always
be returned (see Fig. 1). Unfortunately, our results come with a price, namely
c ≥ max{√d, d1−1/p}.

2 Related Work

2.1 Nearest Neighbor in High Dimensions

Most common techniques for solving the approximate nearest neighbor search,
such as the spatial indexes or k-d trees [3] are designed to work well for the
relatively small number of dimensions. The query time for k-d trees is O(n1− 1

d )
and when the number of dimensions increases the complexity basically con-
verges to O(n). For interval trees, query time O(logd n) depends exponentially
on the number of dimensions. The major breakthrough was the result of Indyk
and Motwani [7]. Their algorithm has expected complexity of O(dn

1
c ) for any

approximation constant c > 1 and the complexity is tight for any metric lp
(where p ∈ (0, 2]). Indyk and Motwani introduced the following LSH functions:

h(v) =
⌊ 〈a, v〉 + b

r

⌋

,

where a is the d-dimensional vector of independent random variables from a
p-stable distribution and b is a real number chosen uniformly from the range
[0, r].

Our algorithm is based on similar functions and we prove compelling results
for more general family of distributions (we show bounds for any distribution
with a bounded variance and an expected value equal to 0). Furthermore, our
algorithm is correct for any p ∈ [1,∞]. Indyk and Motwani‘s LSH algorithm was
showed to be optimal for l1 metric. Subsequently, Andoni et al. [1] showed near
optimal results for l2. Recently, data dependant techniques have been used to
further improve LSH by Andoni and Razenshteyn [2]. However, the constant ρ
in a query time O(nρ) remains:

ρ =
log p1
log p2

.

When a formal guarantee that p1 = 1 is needed their algorithm does not apply.
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2.2 LSH Without False Negatives

Recently, Pagh [8] presented a novel approach to nearest neighbor search in
Hamming space. He showed the construction of an efficient locality-sensitive
hash function family that guarantees collision for any close points. Moreover,
Pagh showed that bounds of his algorithm for cr = log n/k (where k ∈ N)
essentially match bounds of Indyk and Motwani (differ by at most factor ln 4 in
the exponent). More precisely, he showed that the problem of false negatives can
be avoided in the Hamming space at some cost in efficiency. He proved bounds
for general values of c. This paper is an answer to his open problem: whether is
it possible to get similar results for other distance measures (e.g., l1 or l2).

Pagh introduced the concept of an r-covering family of hash function:

Definition 4. For A ⊆ {0, 1}d, the Hamming projection family HA is
r-covering if for every x ∈ {0, 1}d with ‖x‖H ≤ r, there exist h ∈ HA such
that h(x) = 0.

Then, he presented a fast method of generating such an r-covering family.
Finally, he showed that the expected number of false positives is bounded by
2r+1−‖x−y‖H .

3 Basic Construction

We will consider the lp metric for p ∈ [1,∞] and n fixed points in R
d space.

Let v be a d-dimensional vector of independent random variables drawn from
distribution D. We define a function hp as:

hp(x) =
⌊ 〈x, v〉

rρp

⌋

,

where 〈, 〉 is a standard inner product and ρp = d1− 1
p . The scaling factor ρp is

chosen so that: ‖z‖1 ≤ ρp‖z‖p. The rudimentary distinction between the hash
function hp and LSH is that we consider two hashes equal when they differ
at most by one. In Indyk and Motwani [7] version of LSH, there were merely
probabilistic guarantees, and close points (say 0.99 and 1.01) could be returned
in different buckets with small probability. Since our motivation is to find all
close points with absolute certainty, we need to check the adjacent buckets as
well.

First, observe that for given points, the probability of choosing a hash func-
tion that will classify them as equal is bounded on both sides as given by the
following observations. The proofs of these observations are in Appendices A
and B.

Observation 1 (Upper Bound on the Probability of Point Equivalence)

P [|hp(x) − hp(y)| ≤ 1] ≤ P [| 〈x − y, v〉 | < 2ρpr] .
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Observation 2 (Lower Bound on the Probability of Point Equivalence)

P [|hp(x) − hp(y)| ≤ 1] ≥ P [| 〈x − y, v〉 | < ρpr] .

Interestingly, using the aforementioned observations we can configure a dis-
tribution D so the close points must end up in the same or adjacent bucket.

Observation 3 (Close Points Have Close Hashes). For distribution D
such that every vi ∼ D: −1 ≤ vi ≤ 1 and for x, y ∈ R

d, if ‖x − y‖p < r then
∀hp

|hp(x) − hp(y)| ≤ 1.

Proof. We know that ‖z‖1 ≤ ρp‖z‖p and |vi| ≤ 1 (because vi is drawn from
bounded distribution D), so:

ρp‖x − y‖p ≥ ‖x − y‖1 =
∑

i

|xi − yi| ≥
∑

i

|vi(xi − yi)| ≥
∣
∣
∣
∑

i vi(xi − yi)
∣
∣
∣

= | 〈x − y, v〉 |.
Now, when points are close in lp:

‖x − y‖p < r ⇐⇒ ρp‖x − y‖p < ρpr =⇒ | 〈x − y, v〉 | < ρpr.

Next, by Observation 2:

1 = P [| 〈x − y, v〉 | < ρpr] ≤ P [|hp(x) − hp(y)| ≤ 1] .

Hence, the points will inevitably hash into the same or adjacent buckets. ��
Now we will introduce the inequality that will help to bound the probability

of false positives.

Observation 4 (Inequality of Norms in lp). Recall that ρp = d1− 1
p . For

every z ∈ R
d and p ∈ [1,∞]:

‖z‖2 ≥ ρp

max{d
1
2 , d1− 1

p }
‖z‖p.

This technical observation is proven in Appendix C.
The major question arises: what is the probability of false positives? In con-

trast to the Indyk and Motwani [7], we cannot use p-stable distributions because
these distributions are not bounded. We will present the proof for a different
class of functions.

Lemma 1 (The Probability of False Positives for General Distribution).
Let D be a random variable such that E(D) = 0, E(D2) = α2, E(D4) ≤ 3α4 (for

any α ∈ R
+). Define constant τ1 = 2

α max{d
1
2 , d1− 1

p }.
When ‖x − y‖p > cr, x, y ∈ R

d and c > τ1 then:

pfp1 = P [|hp(x) − hp(y)| ≤ 1] < 1 −
(
1 − τ2

1
c2

)2

3
,

for every metric lp, where p ∈ [1,∞] (pfp1 is the probability of false positive).
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Proof. By Observation 4:

‖z‖2 ≥ 2‖z‖p

ατ1
ρp

Subsequently, let z = x − y and define a random variable X = 〈z, v〉. Therefore:

E(X2) = α2‖z‖22 ≥ (
2‖z‖p

τ1
ρp)2 > (2rρp

c

τ1
)2.

Because c
τ1

> 1 we have θ = (2rρp)
2

EX2 < 1. Variable θ and a random variable
X2 > 0 satisfy Paley-Zygmunt inequality (analogously to [9]):

P [|hp(x) − hp(y)| > 1] ≥ P [| 〈z, v〉 | ≥ 2rρp] ≥ P
[
X2 > (2rρp)2

]

≥
(

1 − (2rρp)2

E(X2)

)2
E(X2)2

E(X4)
.

Eventually, we assumed that E(X4) ≤ 3(α‖z‖2)4:

P [|hp(x) − hp(y)| > 1] ≥
(
1 − (2rρp)

2

E(X2)

)2

3
>

(
1 − τ2

1
c2

)2

3
.

��
Simple example of a distribution that satisfies both Observation 3 and Lemma 1

is a uniform distribution on (−1, 1) with a standard deviation α equal to
√

1
3 .

Another example of such distribution is a discrete distribution with uniform
values {−1, 1}. As it turns out, Lemma 2 shows that the discrete distribution
leads to even better bounds.

Lemma 2 (Probability of False Positives for the Discrete Distribu-
tion). Let D be a random variable such that P [D = ±1] = 1

2 . Define constant
τ2 =

√
8 max{d

1
2 , d1− 1

p }. Then for every p ∈ [1,∞], x, y ∈ R
d and c > τ2 such

that ‖x − y‖p > cr, it holds:

pfp2 = P [|hp(x) − hp(y)| ≤ 1] < 1 − (1 − τ2
c )2

2
.

Proof. Because of Observation 4 we have the inequality:

‖z‖2 ≥
√

8
‖z‖p

τ2
ρp.

Let z = x − y and X = 〈z, v〉, be a random variable. Then:

P [|hp(x) − hp(y)| > 1] ≥ P [|X| > 2rρp] .

Khintchine inequality [5] states E|X| ≥ ‖z‖2√
2

, so:

E(|X|) ≥ ‖z‖2√
2

≥ 2ρp‖z‖p

τ2
> 2rρp

c

τ2
.
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Note that, a random variable |X| and θ = 2rρp
E(|X|) < 1, satisfy the Paley-Zygmunt

inequality (because c
τ2

> 1), though:

P [hp(x) − hp(y)| > 1] ≥
(

1 − 2rρp

E(|X|)
)2

E(|X|)2
E(|X|2)

>

(

1 − 2rρp

2rρp
c
τ2

)2
1
2

=

(
1 − τ2

c

)2

2
.

��
Altogether, in this section we have introduced a family of hash functions hp

which:

– Guarantees that, with an absolute certainty, points within the distance R will
be mapped to the same or adjacent buckets (see Observation 3),

– Maps “far away” points to the non-adjacent hashes with high probability
(Lemmas 1 and 2).

These properties will enable us to construct an efficient algorithm for solving the
c-approximate nearest neighbor search problem without false negatives.

3.1 Tightness of Bounds

We showed that for two distant points x, y : ‖x − y‖p > cr, the probability of
a collision is small when c = max{ρp,

√
d}. The natural question arises: Can we

bound the probability of a collision for points ‖x − y‖p > c′r for some c′ < c?
We will show that such c′ does not exist, i.e., there always exists x̃ such

that ‖x̃‖p will be arbitrarily close to cr, so x̃ and �0 will end up in the same
or adjacent bucket with high probability. More formally, for any p ∈ [1,∞],
for hp(x) =

⌊
〈x,v〉
rρp

⌋
, where coordinates of d-dimensional vector v are random

variables vi, such that −1 ≤ vi ≤ 1 with E(vi) = 0. We will show that there
always exists x̃ such that ‖x̃‖p ≈ r max{ρp,

√
d} and |hp(x̃) − hp(�0)| ≤ 1 with

high probability.
For p ≥ 2 denote x0 = (rρp − ε, 0, 0, . . . , 0). We have ‖x0 −�0‖p = rρp − ε and:

|hp(x0) − hp(�0)| =
∣
∣
∣
∣

⌊
rρp − ε

rρp
· v1

⌋

− 0
∣
∣
∣
∣ ≤ 1.

For p ∈ [1, 2), denote x1 = rd− 1
p+ 1

2−ε�1. We have ‖x1‖p = rd
1
2−ε and by

applying Observation 2 for complementary probabilities:

P

[
|hp(x1) − hp(�0)| > 1

]
≤ P [| 〈x1, v〉 | ≥ ρpr] = P

[
|
〈
�1, v

〉
| ≥ d

1
2+ε

]

= P

[∣
∣
∣
∣

∑d
i=1 vi

d

∣
∣
∣
∣ ≥ d− 1

2+ε

]

≤ 2 · exp
(−d2ε

2

)

.
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The last inequality follows from Hoeffding [6] (see Appendix D for technical
details).

So the aforementioned probability for p ∈ [1, 2) is bounded by an expression
exponential in d2ε. Even if we would concatenate k random hash functions (see
proof of Theorem 1 for more details), the chance of collision would be at least

(1 − 2e
−d2ε

2 )k. To bound this probability, the number k needs to be at least
Θ(e

d2ε

2 ). The probability bounds do not work for ε arbitrary close to 0: we
proved that introduced hash functions for c = d1/2−ε do not work (may give
false positives).2

Hence, to obtain a significantly better approximation factor c, one must intro-
duce a completely new family of hash functions.

4 The Algorithm

In this section, we apply the LSH family introduced in Sect. 3 to construct an
c-approximate algorithm without false negatives. To begin with, we will define
a general algorithm that will satisfy our conditions. Subsequently, we will show
that complexity of the query is sublinear, and it depends linearly on the number
of dimensions.

Theorem 1. For any c > τ and the number of iterations k ≥ 0, there exists
a c-approximate nearest neighbor algorithm without false negatives for lp, where
p ∈ [1,∞]:

– Preprocessing time: O(n(kd + 3k)),
– Memory usage: O(n3k),
– Expected query time: O(d(|P | + k + npfp

k)).

Where |P | is the size of the result and pfp is the upper bound of probability of
false positives (note that pfp depends on a choice of τ from Lemmas 1 or 2).

Proof. Let g(x) := (h1
p(x), h2

p(x), . . . , hk
p(x)) be a hash function defined as a con-

catenation of k random LSH functions presented in Sect. 3. We introduce the clus-
tering m : g(Rd) → 2n, where each cluster is assigned to the corresponding hash
value. For each hash value α, the corresponding cluster m(α) is {x : g(x) = α}.

Since we consider two hashes to be equal when they differ at most by one
(see Observation 3), for hash α, we need to store the reference for every point
that satisfies ‖α − x‖ ≤ 1. The number of such clusters is 3k, because the result
of each hash function can vary by one of {−1, 0, 1} and the number of hash
functions is k. Thus, the memory usage is O(n3k) (see Fig. 2).

To preprocess the data, we need to compute the value of the function g
for every point in the set and then put its reference into 3k cells. Hence, the
preprocessing time complexity equals O(n(kd + 3k)).

2 However, one may try to obtain tighter bound (e.g., c = d1/2/ log(d)) or show that
for every ε > 0, the approximation factor c = d1/2 − ε does not work.
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k

Fig. 2. Blue dots represent value of g(q) for query. Green dots are always distant by 1,
hence green and blue points are considered close. At least one red dot is distant from
blue dot by more than 1, hence red dots will not be considered close to blue. Thus,
algorithm needs to check 3k various possibilities. (Color figure online)

Eventually, to answer a query, we need to compute g(q) in time O(kd) and
then for every point in ‖g(x)−g(q)‖∞ ≤ 1 remove distant points ‖x− q‖p > cR.
Hence, we need to look up every false-positive to check whether they are within
distance cr from the query point. We do that in expected time O(d(|P | + k +
npfp

k)), because npfp
k is the expected number of false positives. ��

The number of iterations k can be chosen arbitrarily, so we will choose the
optimal value to minimize the query time. This gives the main result of this
paper:

Theorem 2. For any c > τ and for large enough n, there exists a c-approximate
nearest neighbor algorithm without false negatives for lp, where p ∈ [1,∞]:

– Preprocessing time: O(n(γd log n + (n
d )γ)) = poly(n),

– Memory usage: O(n(n
d )γ),

– Expected query time: O(d(|P | + γ log(n) + γd)).

Where |P | is the size of the result, γ = ln 3
− ln pfp

and pfp and τ are chosen as in
Theorem 1.

Proof. Denote a = − ln pfp, b = ln 3 and set k =
⌈
ln na

d

a

⌉
.

Let us assume that n is large enough so that k ≥ 1. Then using the fact that
x1/x is bounded for x > 0 we have:

3k ≤ 3 · (3ln
na
d )1/a = 3 · (

na

d
)b/a = O((

n

d
)b/a) = O((

n

d
)γ),

npfp
k = ne−ak ≤ ne−a

ln( na
d

)
a =

d

a
= O(dγ),

k = O(γ log(n)).

Substituting these values in the Theorem 1 gives needed complexity guar-
anties. ��
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There are two variants of Theorems 1, 2 and 3. In the first variant, we show
complexity bounds for very general class of hashing functions introduced in
Lemma 1. In the second one, we show slightly better guaranties for hashing
functions which are generated using discrete probability distribution on {0, 1}
introduced in Lemma 2. For simplicity the following discussion is restricted only
to the second variant which gives better complexity guaranties. The definitions
of constants pfp2 and τ2 used in this discussion are taken from Lemma 2. For a
general case, i.e., pfp1 and τ1 taken from Lemma 1, we get only slightly worse
results.

The complexity bounds introduced in the Theorem 2 can be simplified using
the fact that ln(x) < x − 1. Namely, we have:

γ =
ln 3

− ln pfp2
=

ln 3

− ln(1 − (1− τ2
c )2

2 )
<

2 ln 3
(1 − τ2

c )2
.

However, the preprocessing time is polynomial in n for any constant c, it
strongly depends on the bound for probability pfp2 and c. Particularly when c is
getting close to τ2, the exponent of the preprocessing time might be arbitrarily
large.

To the best of our knowledge, this is the first algorithm that will ensure that
no false negatives will be returned by the nearest neighbor approximated search
and does not depend exponentially on the number of dimensions. Note that for

given c, the parameter γ is fixed. By Lemma 2, we have: pfp2 = 1 − (1− τ2
2

c2
)2

2 , so:

lim
c→∞ γ = lim

c→∞
ln 3

− ln pfp2
= log2 3 ≈ 1.58.

If we omit terms polynomial in d, the preprocessing time of the algorithm
from Theorem 2 converges to O(n2.58) (O(n3.71) for general case - see Appen-
dix E).

4.1 Light Preprocessing

Although the preprocessing time O(n2.58) may be reasonable when there are
multiple, distinct queries and the data set does not change (e.g., static databases,
pre-trained classification, geographical map). Still, unless the number of points
is small, this algorithm does not apply. Here, we will present an algorithm with
a light preprocessing time O(dn log n) and O(n log n) memory usage where the
expected query time is o(n).

The algorithm with light preprocessing is very similar to the algorithm
described in Theorem 1, but instead of storing references to the point in all 3k

buckets during preprocessing, this time searching for every point x that matches
‖x − q‖∞ ≤ 1 is done during the query time.

The expected query time with respect to k is O(d(|P | + k + npfp
k) + 3k).

During the preprocessing phase we only need to compute k hash values for each
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of n points and store them in memory. Hence, preprocessing requires O(kdn)
time and uses O(nk) memory.

Theorem 3. For any c > τ and for large enough n, there exists a c-approximate
nearest neighbor algorithm without false negatives for lp, where p ∈ [1,∞]:

– Preprocessing time: O(nd log n),
– Memory usage: O(n log n),
– Expected query time: O(d(|P | + n

b
a+b ( b

a )
a

b+a )).

Where |P | is the size of the result, a = − ln pfp, b = ln 3, pfp and τ are chosen
as in Theorem 1.

Proof. We set the number of iterations k =
⌈
ln na

b

a+b

⌉
. Assume n needs to be large

enough so that k ≥ 1. Since a is upper bounded for both choices of pfp:

3k ≤ 3 · 3
ln( na

b
)

a+b = 3(
na

b
)

b
a+b = O(n

b
a+b ).

Analogously:

npfp
k = n(e−a)k ≤ ne−a

ln( na
b

)
a+b = n ·

( b

a

) a
a+b ·

( 1
n

) a
a+b

= n
b

a+b

( b

a

) a
a+b

.

Hence, for this choice of k we obtain the expected query time is equal to:

O(d(|P | + k + npfp
k)) + 3k = O(d(|P | + log n + n

b
a+b

( b

a

) a
a+b

) + n
b

a+b )

= O(d(|P | + n
b

a+b

( b

a

) a
a+b

).

Substituting k, we obtain formulas for preprocessing time and memory usage.��
Eventually, exactly as previously for a general distribution from Lemma 1,

when c → ∞ we have: a → ln 3
2 (see Theorem 3 for the definition of con-

stant a). Hence, for a general distribution we have a bound for complexity equal
to O(nlog4.5 3) ≈ O(n0.73). For the discrete distribution from Lemma 2, the con-
stant a converges to ln 2. Hence, the expected query time converges to O(n0.61).

5 Conclusion and Future Work

We have presented the c-approximate nearest neighbor algorithm without false
negatives in lp for all p ∈ [1,∞] and c > max{√d, d1−1/p}. Due to this inequality
our algorithm can be used cognately to the original LSH [7] but with additional
guarantees about very close points (one can set R′ =

√
dR and be certain that

all points within distance R will be returned). In contrast to the original LSH,
our algorithm does not require any additional parameter tunning.

The future work concerns relaxing restriction on the approximation factor c
and reducing time complexity of the algorithm or proving that these restrictions
are essential. We wish to match the time complexities given by [7] or show that
achieved bounds are optimal. We show the tightness of our construction, hence
to break the bound of

√
d, one would need to introduce a new technique.
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A Proof of Observation 1

Proof. We will use, the fact that for any x, y ∈ R we have | �x� − �y� | ≤ 1 ⇒
|x − y| < 2. Then the following implications hold:

|hp(x) − hp(y)| ≤ 1 ⇐⇒
∣
∣
∣
∣

⌊
〈x,v〉
ρpr

⌋
−

⌊
〈y,v〉
ρpr

⌋ ∣
∣
∣
∣ ≤ 1 =⇒

∣
∣
∣
〈x, y〉
ρpr

− 〈y, v〉
ρpr

∣
∣
∣ < 2 ⇐⇒

⇐⇒ | 〈x − y, v〉 | < 2ρpr.

So, based on the increasing property of the probability:

if A ⊂ B then P [A] ≤ P [B] ,

the inequality of the probabilities holds. ��

B Proof of Observation 2

Proof. We will use the fact that for x, y ∈ R : |x − y| < 1 ⇒ | �x� − �y� | ≤ 1).
∣
∣
∣ 〈x − y, v〉

∣
∣
∣ < ρpr ⇐⇒

∣
∣
∣
〈x,v〉
ρpr − 〈x,v〉

ρpr

∣
∣
∣ < 1 =⇒

∣
∣
∣
∣

⌊ 〈x, v〉
ρpr

⌋

−
⌊ 〈x, v〉

ρpr

⌋ ∣
∣
∣
∣ ≤ 1⇐⇒

⇐⇒ |hp(x) − hp(y)| ≤ 1

��

C Proof of Observation 4

Proof. For every 0 < b ≤ a vectors in R
d satisfy the inequality:

‖z‖a ≤ ‖z‖b ≤ d(
1
b − 1

a )‖z‖a. (1)

For p > 2 we have max{d
1
2 , d1− 1

p } = d1− 1
p . Then, using ineqaulity (1) for

a = p and b = 2 we have:

‖z‖2 ≥ ‖z‖p =
ρp

d1− 1
p

‖z‖p =
ρp

max{d
1
2 , d1− 1

p }
‖z‖p

For 1 ≤ p ≤ 2 we have max{d
1
2 , d1− 1

p } = d
1
2 . Analogously by using inequal-

ity (1) for a = 2 and b = p:

‖z‖p ≤ d
1
p − 1

2 ‖z‖2 = ‖z‖2 d
1
2

ρp

Hence, by dividing both sides we have:

‖z‖p
ρp

max{d
1
2 , d1− 1

p }
≤ ‖z‖2

��
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D Hoeffding Bound

Here we are going to show all technical details used in the proof in the Sect. 3.1.
Let us start with the Hoeffding inequality. Let X1, . . . , Xd be bounded indepen-
dent random variables: ai ≤ Xi ≤ bi and X be the mean of these variables
X =

∑d
i=1 Xi/d. Theorem 2 of Hoeffding [6] states:

P
[|X − E

[
X

] | ≥ t
] ≤ 2 · exp

(

− 2d2t2
∑d

i=1(bi − ai)2

)

.

In our case, D1, . . . , Dd are bounded by ai = −1 ≤ Di ≤ 1 = bi with EDi = 0.
Hoeffding inequality implies:

P

[∣
∣
∣
∣
∣

∑d
i=1 Di

d

∣
∣
∣
∣
∣
≥ t

]

≤ 2 · exp

(

− 2d2t2
∑d

i=1(bi − ai)2

)

= 2 · exp
(

−dt2

2

)

.

Taking t = d−1/2+ε we get the claim:

P

[∣
∣
∣
∣

∑d
i=1 Di

d

∣
∣
∣
∣ ≥ d−1/2+ε

]

≤ 2 · exp
(

−d2ε

2

)

.

E Preprocessing Complexity Bounds for the Distributions
Introduced in Lemma 1

By Lemma 1, we have: pfp1 = 1 − (1− τ2
1

c2
)2

3 , so:

lim
c→∞ γ = lim

c→∞
ln 3

− ln pfp1
=

ln 3
ln 1.5

≈ 2.71.

If we omit terms polynomial in d, the preprocessing time of the algorithm
from Theorem 2 converges to O(n3.71).
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Abstract. Recent work by Elmasry et al. (STACS 2015) and Asano
et al. (ISAAC 2014), reconsidered classical fundamental graph algorithms
focusing on improving the space complexity. Elmasry et al. gave, among
others, implementations of breadth first search (BFS) and depth first
search (DFS) in a graph on n vertices and m edges, taking O(m + n)
time using O(n) and O(n lg lg n) bits of space respectively improving
the naive O(n lg n)(We use lg to denote logarithm to the base 2.) bits
implementation. We continue this line of work focusing on space.

Our first result is a simple data structure that can maintain any subset
S of a universe of n elements using n+o(n) bits and support in constant
time, apart from the standard insert, delete and membership queries,
the operation findany that finds and returns any element of the set (or
outputs that the set is empty). Using this we give a BFS implementation
that takes O(m+n) time using at most 2n+o(n) bits. Later, we further
improve the space requirement of BFS to at most 1.585n+o(n) bits albeit
with a slight increase in running time to O(m lg nf(n)) time where f(n)
is any extremely slow growing function of n. These improve the space by
a constant factor from earlier representations.

We demonstrate the use of our data structure by developing another
data structure using it that can represent a sequence of n non-negative
integers x1, x2, . . . xn using at most

∑n
i=1 xi+2n+o(

∑n
i=1 xi+n) bits and,

in constant time, determine whether the i-th element is 0 or decrement
it otherwise. We use this data structure to output the vertices of a
• directed acyclic graph in topological sorted order in O(m + n) time

and O(m + n) bits, and
• graph with degeneracy d in degeneracy order in O(nd) time using

O(nd) bits.
We also discuss an algorithm for finding a minimum weight spanning
tree of a weighted undirected graph using at most n + o(n) bits.

For DFS we give an O(m+n) bits implementation for finding a chain
decomposition of a connected undirected graph, and to find cut vertices,
bridges and maximal two connected subgraphs of a connected graph. We
also provide a O(n) bits implementations for finding strongly connected
components of a directed graph, to output the vertices of a directed
acyclic graph in a topologically sorted manner, and to find a sparse
biconnected subgraph of a biconnected graph. These improve the space
required for earlier implementations from Ω(n lg n) bits.

c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 119–130, 2016.
DOI: 10.1007/978-3-319-42634-1 10
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1 Introduction

Motivated by the rapid growth of huge data set (“big data”), algorithms that
utilize space efficiently are becoming increasingly important than ever before.
Another reason for the importance of space efficient algorithms is the prolifera-
tion of specialized handheld devices and embedded systems that have a limited
supply of memory. Hence, there is a growing body of work that considers algo-
rithms that do not modify the input and use only a limited amount of work space,
and this paper continues this line of research for fundamental graph algorithms.

1.1 Our Results and Organization of the Paper

Asano et al. [2], in a recent paper, show that DFS of a directed or undirected
graph on n vertices and m edges can be performed using n + o(n) bits and (an
unspecified) polynomial time. Using 2n + o(n) bits, they can bring down the
running time to O(mn) time, and using a larger O(n) bits, their running time
is O(m lg n). In a similar vein,

• we show in Sect. 3 that the vertices of a directed or undirected graph can be
listed in BFS order using 1.585n + o(n) bits and O(mf(n) lg n) time where
f(n) is any (extremely slow-growing) function of n i.e. lg∗ n (the o term in the
space is a function of f(n)), while the runtime can be brought down to the
optimal O(m + n) time using 2n + o(n) bits.
En route to this algorithm, we develop in Sect. 2,

• a data structure that maintains a set of elements from a universe of size n,
say [1..n] using n + o(n) bits to support, apart from insert, search and delete
operations, the operation findany of finding an arbitrary element of the set,
and returning its value all in constant time. It can also output all elements
of the set in no particular order in O(k + 1) time where k is the number of
elements currently belonging to the set.
Our structure gives an explicit implementation, albeit for a weaker set of
operations than that of Elmasry et al. [15] whose space requirement was cn +
o(n) bits for an unspecified constant c > 2; furthermore, our structure is simple
and is sufficient to implement BFS space efficiently, improving by a constant
factor of their BFS implementation keeping the running time same1.

We could support the findany operation by keeping track of one of the elements,
but once that element is deleted, we need to find another element to answer a
subsequent findany query. This is easy to support in constant time if we have
the elements stored in a linked list which takes O(n lg n) bits, or if we have a
dynamic rank-select structure [20] where each operation takes O( lgn

lg lg n ) time.
In the same section we improve the space for BFS further at the cost of

slightly increased runtime. We also provide a similar tradeoff for the mini-
mum spanning tree problem. Our algorithm takes n + O(n/f(n)) bits and
1 Since our initial submission to COCOON, Hagerup and Kammer [19] have reported

a structure with n + o(n) bits for the data structure and hence obtaining a similar
bound as ours for BFS.
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O(m lg nf(n)) time, for any function f(n) such that 1 ≤ f(n) ≤ n. While this
algorithm is similar in spirit to that of Elmasry et al. which works in O(m lg n)
time using O(n) bits or O(m + n lg n) time using O(n lg(2 + m

n )) bits, we work
out the constants in the higher order term for space, and improve them slightly
though with a slight degration in time.

• Using our data structure, in Sect. 4 we develop another data structure to
represent a sequence x1, x2, . . . xn of n integers using m + 2n + o(m + n) bits
where m =

∑n
i=1 xi. In this, we can determine whether the i-th element is 0

and if not, decrement it, all in constant time. In contrast, the data structure
claimed (without proof) in [15] can even change (not just decrement) or access
the elements, but in constant amortized time. However, their structure requires
an O(lg n) limit on the xi values while we pose no such restriction. Using this
data structure in Sect. 4,

• we determine whether a given directed graph is acyclic and give an imple-
mentation of topological sort of the graph if it is in O(m + n) time and
O(m+n) bits of space. This improves an earlier bound of O(m+n) time
and O(n lg lg n) space [15], and is more space efficient for sparse directed
graphs (that includes those directed graphs whose underlying undirected
graph is planar or has bounded treewidth or degeneracy).

• A graph has a degeneracy d if every induced subgraph of the graph has a
vertex with degree at most d (for example, planar graphs have degeneracy
5, and trees have degeneracy 1). An ordering v1, v2, . . . vn of the vertices in
such a graph is a degenerate order if for any i, the i-th vertex has degree
at most d among vertices vi+1, vi+2, . . . vn. There are algorithms [8,16]
that can find the degeneracy order in O(m + n) time using O(n) words.
We show that, given a d, we can output the vertices of a d-degenerate
graph in O(m + n) time using O(m + n) bits of space in the degeneracy
order. We can even detect if the graph is d-degenerate in the process. As
m is O(nd), we have an O(nd) bits algorithm which is more space efficient
if d is o(lg n) (this is the case, for example, in planar graphs or trees).

• For DFS, we have two kinds of results improving on the result of Asano et al. [2]
who showed that DFS in a directed or undirected graph can be performed in
O(m lg n) time and O(n) bits of space, and of Elmasry et al. [15] who improved
the time to O(m lg lg n) time still using O(n) bits of space.

• In Sect. 5, we first show that for sparse graphs (graphs where m = O(n)),
we can perform DFS in linear time using O(m + n) (i.e. O(n) in sparse
graphs) bits. Building on top of this encoding and other observations, we
show how to efficiently compute the chain decomposition of a connected
undirected graph. This lets us perform a variety of applications of DFS
(including testing 2-vertex and 2-edge connectivity, finding cut vertices
and edges, maximal 2-connected components and (open) ear decompo-
sitions) in the same time and space. Our algorithms for these applica-
tions improve the space requirement of all the previous algorithms from
Θ(n lg n) bits to O(m + n) bits, preserving the same linear runtime.

• Section 6 talks about applications of DFS using O(n) bits. Using O(n)
bits of space, we show that
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∗ we can compute the strongly connected components of a directed
graph in O(m lg n lg lg n) time,

∗ we can output the vertices of a directed acyclic graph in a topologically
sorted fashion in O(m lg lg n) time, and

∗ we can find a sparse spanning biconnected subgraph of a biconnected
undirected graph in O(m lg lg n) time.

1.2 Model of Computation

We assume that the input graph is given in a read-only memory (and so cannot
be modified). If an algorithm must do some outputting, this is done on a separate
write-only memory. When something is written to this memory, the information
can not be read or rewritten again. So the input is “read only” and the out-
put is “write only”. In addition to the input and the output media, a limited
random-access workspace is available. The data on this workspace is manipu-
lated wordwise as on the standard word RAM, where the machine consists of
words of size w in Ω(lg n) bits and any logical, arithmetic, and bitwise operations
involving a constant number of words take a constant amount of time. We count
space in terms of the number of bits used by the algorithms in workspace. This
model is called the register input model and it was introduced by Frederickson
[17] while studying some problems related to sorting and selection.

We assume that the input graphs are represented using the standard adja-
cency list throughout the paper. For the algorithms in Sect. 5 we require that
the input graph must be represented using the standard adjacency list along
with cross pointers, i.e. for undirected graphs given a vertex u and the position
in its list of a neighbor v of u, there is a pointer to the position of u in the
list of v. When we work with directed graphs, we assume that the graphs are
represented as in and out adjacency lists i.e. given a vertex u, we have a list of
out-neighbors and in-neighbors of u. We then augment these two lists for every
vertex with cross pointers, i.e. for each (u, v) ∈ E, given u and the position of
v in out-neighbors of u, there is a pointer to the position of u in in-neighbors
of v. This representation was used by Elmasry et al. [15]. When discussing graph
algorithms below, we always use n and m to denote the number of vertices and
the number of edges respectively, in the input graph.

1.3 Related Work

In computational complexity theory, the constant work-space model is repre-
sented by the complexity class LOGSPACE [1]. There are several algorithmic
results for this class, most celebrated being Reingold’s method for checking reach-
ability between two vertices in an undirected graph [24]. Barnes et al. gave a
sub-linear space algorithm for directed graph reachability [7]. Recent work has
focused on space requirement in special classes of graphs like planar and H-minor
free graphs [3,11]. In the algorithms literature, where the focus is also on improv-
ing time, a large amount of research has been devoted to memory constrained
algorithms, even as early as in the 1980s [22]. Early work on this focused on
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the selection problem [17,22,23], but more recently on computational geometry
problems [4,6,14] and graph algorithms [2,5,15]. Regarding the data structure
we develop to support findany operation, Elmasry et al. [Lemma 2.1, [15]] state a
data structure (without proof) that supports all the operations i.e. insert, search,
delete and findany (they call it some id) among others, in constant time. But
their data structure takes O(n) bits of space where the constant in the O term is
not explicitly stated. Our data structure, on the other hand, is probably simpler
and takes just n + o(n) bits of space.2

1.4 Preliminaries

We will use the following well-known lemma:

Lemma 1. A sequence of n integers in the range {1, · · · , c} where c is a con-
stant, can be represented using n lg c + o(n) bits where the i-th integer can be
accessed or modified in constant time.

We also need the following theorem.

Theorem 1 [12,18,21]. We can store a bitstring O of length n with additional
o(n) bits such that rank and select operations (defined below) can be supported
in O(1) time. Such a structure can also be constructed from the given bitstring
in O(n) time.

Here the rank and select operations are defined as following:

• ranka(O, i) = number of occurrences of a ∈ {0, 1} in O[1, i], for 1 ≤ i ≤ n;
• selecta(O, i) = position in O of the ith occurrence of a ∈ {0, 1}.

2 Maintaining Dictionaries Under Findany Operation

We consider the data structure problem of maintaining a set S of elements from
{1, 2, . . . n} to support the following operations in constant time.
insert (i): Insert element i into the set.
search (i): Determine whether the element i is in the set.
delete (i): Delete the element i from the set if it exists in the set.
findany: Find any element from the set and return its value. If the set is empty,
return a NIL value.

It is trivial to support the first three operations in constant time using n
bits. Our main result in this section is that the findany operation can also be
supported in constant time using o(n) additional bits.

Theorem 2. A set of elements from a universe of size n can be maintained
using n + o(n) bits to support insert, delete, search and findany operations in
constant time. We can also output all elements of the set (in no particular order)
in O(k + 1) time where k is the number of elements in the set.
2 Hagerup and Kammer [19] have recently reported a structure with n + o(n) bits for

the data structure supporting the same set of operations.
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Proof. Let S be the characteristic bit vector of the set having n bits. We follow a
two level blocking structure of S, as in the case of succinct structures supporting
rank and select [12,21]. However, as S is ‘dynamic’ (in that bit values can change
due to insert and delete), we need more auxiliary information. In the discussion
below, sometimes we omit floors and ceilings to keep the discussion simple, but
they should be clear from the context.

We divide the bit vector S into n/ lg2 n blocks of consecutive lg2 n bits each,
and divide each such block into up to 2 lg n small blocks of size �(lg n)/2� bits
each. We refer to the small blocks explicitly as small blocks, and by blocks we
refer to the (big) blocks of size lg2 n bits. We call a block (big or small) non-
empty if it contains at least a 1. We maintain the non-empty (big) blocks, and
the non-empty small blocks within each (big) block in linked lists (not necessarily
in order). Within a small block, we find the first 1 or the next 1 by a table look
up. We provide the specific details below.

First, we maintain an array number indicating the number of 1s in each
block, i.e. number[i] gives the number of 1s in the i-th block of S. It takes
O(n lg lg n/ lg2 n) bits as each block can have at most lg2 n elements of the given
set. Then we maintain a queue (say implemented in a space efficient resizable
array [10]) block-queue having the block numbers that have a 1 bit, and new
block numbers are added to the list as and when new blocks get 1. It can have
at most n/ lg2 n elements and so has O(n/ lg2 n) indices taking totally O(n/ lg n)
bits. In addition, every element in block-queue has a pointer to another queue of
small block numbers of that block that have an element of S. Each such queue
has at most 2 lg n elements each of size at most 2 lg lg n bits each (for the small
block index). Thus the queue block-queue along with the queues of small block
indices takes O(n lg lg n/ lg n) bits. We also maintain an array, block-array, of size
n/ lg2 n where block-array[i] points to the position of block i in block-queue if it
exists, and is a NIL pointer otherwise and array, small-block-array, of size 2n/ lg n
where small-block-array[i] points to the position of the subblock i in its block’s
queue if its block was present in block-queue, and is a NIL pointer otherwise. So,
block-array takes n/ lg n bits and small-block-array takes 2n lg lg n/ lg n bits.

We also maintain a global table T precomputed that stores for every bitstring
of size �(lg n)/2�, and a position i, the position of the first 1 bit after the i-th
position. If there is no ‘next 1’, then the answer stored is −1 indicating a NIL
value. The table takes O(

√
n(lg lg n)2) bits. This concludes the description of the

data structure that takes n + O(n lg lg n/ lg n) bits.
Now we explain how to support each of the required operations. Membership

is the easiest, as it is a static operation, just look at the i-th bit of S and answer
accordingly. In what follows, when we say the ‘corresponding bit or pointer’,
we mean the bit or the pointer corresponding to the block or the small block
corresponding to an element (inserted or deleted) which can be determined in
constant time from the index of the element. To insert an element i, first deter-
mine from the table T , whether there is a 1 in the corresponding small block
(before the element is inserted), set the i-th bit of S to 1, and increment the
corresponding value in number. If the corresponding pointer of block-array was
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NIL, then insert the block index to block-queue at the end of the queue, and add
the small block corresponding to the i-th bit into the queue corresponding to
the index of the block in block-queue, and update the corresponding pointers of
block-array and small-block-array. If the corresponding bit of block-array was not
NIL (the big block already had an element), and if the small block did not have
an element before (as determined using T ), then find the position of the block
index in block-queue from block-array, and insert the small block index into the
queue of that block at the end of the queue. Update the corresponding pointer
of small-block-array.

To support the delete operation, set the i-th bit of S to 0 (if it was already 0,
then there is nothing more to do) and decrement the corresponding number in
number. Determine from the table T if the small block of i has a 1 (after the
i-th bit has been set to 0). If not, then find the index of the small block from the
arrays block-array and small-block-array and delete that index from the block’s
queue from block-queue. If the corresponding number in number remains more
than 0, then there is nothing more to do. If the number becomes 0, then find the
corresponding block index in block-queue from the array block-array, and delete
that block (along with its queue that will have only one small block) from block-
queue. Update the pointers in block-array and small-block-array respectively.
As we don’t maintain any order in the queues in block-queue, if we delete an
intermediate element from the queue, we can always replace that element by the
last element in the queue updating the pointers appropriately.

To support the findany operation, we go to the tail of the queue block-queue,
if it is NIL, we report that there is no element in the set, and return the NIL
value. Otherwise, go to the block at the tail of block-queue, and get the first
(non-empty) small block number from the queue, and find the first element in
the small block from the table T , and return the index of the element.

To output the elements of the set, we traverse the list block-queue and the
queues of each element of block-queue, and for each small block in the queues,
we find the next 1 in constant time using the table T and output the index. �	
We can generalize to maintain a collection of more than one disjoint subsets of the
given universe to support the insert, delete, membership and findany operations.
In this case, insert, delete and findany operations should come with a set index
(to be searched, inserted or deleted). Specifically, we show the following.

Theorem 3 (♠)3. A collection of c disjoint sets that partition the universe of
size n can be maintained using n lg c + o(n) bits to support insert, delete, search
and findany operations in constant time, where c is a fixed constant. We can also
output all elements of any given set (in no particular order) in O(k + 1) time
where k is the number of elements in the set.

3 Breadth First Search

Following the observations of [15], the space efficient implementation follows
using the data structure of Theorem 3. We explain the details for completeness.
3 Proofs of results marked with (♠) will appear in full version.
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Our goal is to output the vertices of the graph in the BFS order. We start as
in the textbook BFS by coloring all vertices white. The algorithm grows the
search starting at a vertex s, making it grey and adding it to a queue. Then
the algorithm repeatedly removes the first element of the queue, and adds all
its white neighbors at the end of the queue (coloring them grey), coloring the
element black after removing it from the queue. As the queue can store up to
O(n) elements, the space for the queue can be O(n lg n) bits. To reduce the
space to O(n) bits, the two crucial observations on the properties of BFS are that:
(i) elements in the queue are only from two consecutive levels of the BFS tree, and
that the (ii) elements belonging to the same level can be processed in any order,
but elements of the lower level must be processed before processing elements of
the higher level.

The algorithm maintains four colors: white, grey0, grey1 and black, and rep-
resents the vertices with each of these colors as sets W,S0, S1 and B respectively
using the data structure of Theorem 3. It starts with initializing S0 (grey 0) to s,
S1 and B as empty sets and W to contain all other vertices. Then it processes
the elements in each set S0 and S1 switching between the two until both sets
are empty. As we process an element from Si, we add its white neighbors to
Si+1 mod 2 and delete it from Si and add it to B. When S0 and S1 become
empty, we scan the W array to find the next white vertex and start a fresh BFS
again from that vertex. As insert, delete, membership and findany operations
take constant time, and we are maintaining four sets, we have from Theorem 3,

Theorem 4. Given a directed or undirected graph, its vertices can be output in
a BFS order starting at a vertex using 2n + o(n) bits in O(m + n) time.

Note that it is sufficient to build findany structures only on sets S0 and S1

to efficiently find grey vertices.

3.1 Improving the Space to n lg 3 + o(n) Bits

There are several ways to implement BFS using just two of the three colors
used in the standard BFS [13], but the space restriction, hence our inability to
maintain the standard queue, provides challenges.

We give a 3 color implementation overloading grey and black vertices, i.e. we
use one color to represent grey and black vertices. Grey vertices remain grey even
after processing. This poses the challenge of separating the grey vertices from
the black ones correctly before exploring. We will have three colors, one (color 2)
for the unexplored vertices and two colors (0 and 1) for those explored including
those currently being explored. The two colors indicate the parity of the level
(the distance from the starting vertex) of the explored vertices. Thus the starting
vertex s is colored 0 to mark that its distance from s is of even length and every
other vertex is colored 2 to mark them as unexplored (or white). We will have
these values stored in the representation of Lemma 1 using 1.585n + o(n) bits
and we call this as the color array. The algorithm repeatedly scans this array
and in the i-th scan, it changes all the 2 neighbors of i mod 2 to i + 1 mod 2.
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The exploration (of the connected component) stops when in two consecutive
scans of the list, no 2 neighbor is found. Each scan list takes O(m) time and at
most n+2 scans of the list are performed resulting in an O(mn) time algorithm.

The O(m) time for each scan of the previous algorithm is because while
looking for vertices labelled 0 that are supposed to be ‘grey’, we might cross
over spurious vertices labelled 0 that are ‘black’ (in the normal BFS coloring).
To improve the runtime further, we maintain two queues Q0 and Q1 each storing
up to n/ lg2 n values of the grey 0 and grey 1 vertices We also store two boolean
variables, overflow-Q0, overflow-Q1, initialized to 0 and to be set to 1 when
more elements are to be added to these queues (but they don’t have room). Now
the algorithm proceeds in a similar fashion as the previous algorithm except
that, along with marking corresponding vertices 0 or 1 in the color array, it also
inserts them into the appropriate queues. i.e. when it expands vertices from Q0

(Q1), it inserts their (white) neighbors colored 2 to Q1 (Q0 respectively) apart
from setting their color entries to 1 (0 respectively). When it runs out of space in
any of these queues to insert the new elements (as we have limited only n/ lg2 n
values in each of the queues), it continues to make the changes (i.e. 2 to 1 or
2 to 0) in the color array directly without adding those vertices to the queue,
but set the corresponding overflow bit. Now instead of scanning the color array
for vertices labelled 0 or 1, we traverse the appropriate queues spending time
proportional to the sum of the degree of the vertices in the level. If the overflow
bit in the corresponding queue is 0, then we simply move on to the next queue
and continue. Otherwise, we switch to our previous algorithm and scan the array
appropriately changing the colors of their white neighbors and adding them to
the appropriate queue if possible. It is easy to see that this method correctly
explores all the vertices of the graph using 1.585n + o(n) bits.

To analyse the runtime, notice that as long as the overflow bit of a queue is
0, we spend time proportional the number of neighbors of the vertices in that
level, and we spend O(m) time otherwise. When an overflow bit is 1, then the
number of nodes in the level is at least n/ lg2 n and this can not happen for more
than lg2 n levels where we spend O(m) time each. Hence, the total runtime is
O(m lg2 n) proving the following.

Theorem 5. Given a directed or undirected graph, its vertices can be output in
a BFS order starting at a vertex using 1.585n+o(n) bits and in O(m lg2 n) time.

By making the sizes of the two queues to O(n/(f(n) lg n)) for any (slow
growing) function f(n), we obtain4

Theorem 6. Given a directed or undirected graph, its vertices can be output
in a BFS order starting at a vertex using 1.585n + O(n/f(n)) bits and in
O(mf(n) lg n) time where f(n) is any slow-growing function of n.

We do not know whether we can reduce the space to n+o(n) bits while still main-
taining the runtime to O(m lgc n) for some constant c. However, we provide such
an algorithm for the Minimum Spanning Tree problem to prove the following.
4 Hagerup and Kammer [19] in their recent paper obtain a better time bound using

the same space.
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Theorem 7 (♠). A minimum spanning forest of a given undirected weighted
graph, where the weights of any edge can be represented in O(lg n) bits, can be
found using n+O(n/f(n)) bits and in O(m lg nf(n)) time, for any function f(n)
such that 1 ≤ f(n) ≤ n.

4 Applications of Findany Dictionary

In what follows we use our findany data structure of Sect. 2 to develop a data
structure as below.

Theorem 8 (♠). Let x1, x2, . . . xn be a sequence of non-negative integers, and
let m =

∑n
i=1 xi. Then the sequence can be represented using at most m + 2n +

o(m+n) bits such that we can determine whether the i-th element of the sequence
is 0 and decrement it otherwise, in constant time.

Proof (sketch:). Encode each integer xi in unary delimited by a separate bit.
Treat the unary representation of xi as a representation of the full subset of the
universe of size xi and apply our data structure of Theorem 3 for the decrement
operation. �	
Using the data structure we just developed, we show the following theorems,

Theorem 9 (♠). Given a directed acyclic graph G, its vertices can be output
in topologically sorted order using O(m + n) time using m + 3n + o(n + m) bits
of space. The algorithm can also detect if G is not acyclic.

Theorem 10 (♠). Given a d-degenerate graph G, its vertices can be output
in d-degenerate order using m + 3n + o(m + n) bits and O(m + n) time. The
algorithm can also detect if the given graph is not d-degenerate.

5 DFS and Its Applications Using O(m + n) Bits

In this section, we prove the following.

Theorem 11 (♠). A DFS traversal of a directed or undirected graph G can be
performed in O(m + n) time using O(m + n) bits. Using this, given a connected
undirected graph G, in O(m + n) time and O(m + n) bits of space we can deter-
mine whether G is 2-vertex (and/or edge) connected. If G is 2-edge (or vertex)
connected, in the same time and space we can compute ear (open) decomposition.
If not, in the same amount of time and space, we can compute all the bridges
and cut vertices of the graph. Also, within same time and space bound, we can
output 2-vertex (and edge) connected components.

Proof (sketch:). We use the unary degree sequence encoding of the input graph
G to store the DFS tree, and use succinct rank/select structure to navigate G in
depth first manner especially to backtrack. By rerunning DFS and some book-
keeping, we compute the chain decomposition of G, and obtain space efficient
implementation of the algorithm of Schmidt [25] for the applications of DFS
mentioned in the theorem. �	
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6 DFS and Its Applications Using O(n) Bits

Building on Elmasry et al. [15] who gave space efficient implementation of DFS
taking O(n) bits and O(m lg lg n) time, we provide the following space efficient
implementations of some of the classical applications of DFS.

Theorem 12 (♠). Using O(n) bits, we can

• perform a topological sort of the vertices of a directed acyclic graph G in the
same O(m lg lg n) time,

• determine the strongly connected components of a directed graph in
O(m lg n lg lg n) time, and

• find a sparse (O(n) edges) spanning biconnected subgraph of an undirected
biconnected graph in O(m lg lg n) time.

7 Conclusions and Open Problems

We end with the following interesting open problems.

• Can we perform BFS using n + o(n) bits and O(m lgc n) time for some con-
stant c?

• Can we test 2-vertex (and/or edge) connectivity using O(n) bits?
• Brandes [9] obtained an s-t-numbering from the ear decompostion of a graph,

in linear time using O(m+n) words. Can we improve the space bound to O(n)
bits or even O(m + n) bits?

Acknowledgement. The authors thank Saket Saurabh for suggesting the exploration
of algorithms using O(m+n) bits for DFS and Anish Mukherjee for helpful discussions.
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9. Brandes, U.: Eager st-ordering. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 247–256. Springer, Heidelberg (2002)

10. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.: Resiz-
able arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R.,
Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48. Springer, Heidelberg
(1999)

11. Chakraborty, D., Pavan, A., Tewari, R., Vinodchandran, N.V., Yang, L.: New
time-space upperbounds for directed reachability in high-genus and H-minor-free
graphs. In: FSTTCS, pp. 585–595 (2014)

12. Clark, D.: Compact pat trees. Ph.D. thesis, University of Waterloo, Canada (1996)
13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn. MIT Press, Cambridge (2009)
14. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull prob-

lem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284–295.
Springer, Heidelberg (2014)

15. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In:
32nd STACS, pp. 288–301 (2015)

16. Eppstein, D., Loffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics 18, 1–3 (2013)

17. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19–26 (1987)

18. Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: A framework for dynamizing suc-
cinct data structures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
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Abstract. Consider the problem of finding a point in a metric space
({1, 2, . . . , n}, d) with the minimum average distance to other points. We
show that this problem has no deterministic o(n1+1/(h−1))-query (2h−ε)-
approximation algorithms for any constants h ∈ Z

+ \ {1} and ε > 0.

1 Introduction

The metric 1-median problem asks for a point in an n-point metric space with
the minimum average distance to other points. It has a Monte-Carlo O(n/ε2)-time
(1 + ε)-approximation algorithm for all ε > 0 [8,9]. In R

D, Kumar et al. [11]
give a Monte-Carlo O(2poly(1/ε)D)-time (1 + ε)-approximation algorithm for 1-
median selection and another algorithm for k-median selection, where D ≥ 1 and
ε > 0. Any Monte-Carlo O(1)-approximation algorithm for metric k-median selec-
tion takes Ω(nk) time [7,12]. Algorithms for k-median and k-means clustering
abound [1,6,7,9,10,12].

Chang [4], Wu [13] and Chang [2] show that metric 1-median has a deter-
ministic nonadaptive O(n1+1/h)-time (2h)-approximation algorithm for all con-
stants h ∈ Z

+ \ {1}. Furthermore, Chang [5] shows the nonexistence of deter-
ministic o(n2)-query (4−Ω(1))-approximation algorithms for metric 1-median.
This paper generalizes his result to show that metric 1-median has no deter-
ministic o(n1+1/(h−1))-query (2h−ε)-approximation algorithms for any constants
h ∈ Z

+ \ {1} and ε > 0.
As in the previous lower bounds for deterministic algorithms [3,5], we use an

adversarial method. Our proof proceeds as follows:

(i) Design an adversary Adv for answering the distance queries of any deter-
ministic algorithm A with query complexity q(n) = o(n1+1/(h−1)).

(ii) Show that A’s output, denoted z, has a large average distance to other
points, according to Adv’s answers to A.

(iii) Construct a distance function with respect to which a certain point α̂ has
a small average distance to other points.
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(iv) Construct the final distance function d(·, ·) similar to and bounded by that
in item (iii).

(v) Show that d(·, ·) is a metric.
(vi) Show the consistency of d(·, ·) with Adv’s answers.
(vii) Compare α̂ in item (iii) with z in item (ii) to establish our lower bound on

A’s approximation ratio.

Chang [3] does item (ii) by answering the distance between two distinct points
as 2 if they both involve in only a few queries and as 3 otherwise. For a stronger
lower bound, he expands the range of answers from {2, 3} to {2, 3, 4} [5]. In
contrast, our high-level idea for item (ii) is to answer the queries according to
the distances on a graph with small degrees only (note that every vertex in such
a graph has a large average distance to other points).

All our constructions and analyses are built on two novel graph sequences,
{H(i)}q(n)

i=0 and {G(i)}q(n)
i=0 , in Sec. 3. But at a high level, we share the following

paradigm for item (iii) with Chang [5]:

– Keep a small set S of points whose distances to other points are answered by
Adv as large values during A’s execution.

– Then set a point α̂ ∈ S involved in only a few queries to have a small average
distance to other points.

Below is the rationale of this paradigm: If Adv answers the α̂-v distance as a
small value for some point v with a large average distance to other points, then
the average distance from α̂ to other points will have to be large by the triangle
inequality, a bad news for item (iii). So we want Adv to answer as large values
the distances from α̂ to other points during A’s execution.

The exact constructions in items (iii)–(iv) combine G(q(n)) and H(q(n)) with
the planting of small α̂-v distances for many points v in a rather technical way.
Their careful design eases the remaining items.

Sects. 3.1, 3.2 and 3.3 correspond to items (ii), (iii) and (iv)–(vii), respectively.
The full version of this paper is at http://arxiv.org/abs/1509.05662.

2 Definitions and Preliminaries

For n ∈ N, [n] ≡ {1, 2, . . . , n}. An algorithm A is c-approximate for metric
1-median if Ad(1n) outputs a c-approximate 1-median of ([n], d) for each finite
metric space ([n], d), where c ≥ 1. For simplicity, abbreviate Ad(1n) as Ad.

Fact 1 [2,4,13]. For each constant h ∈ Z
+ \ {1}, metric 1-median has a

deterministic nonadaptive O(n1+1/h)-time (2h)-approximation algorithm.

For a predicate P , let χ[P ] = 1 if P is true and χ[P ] = 0 otherwise.
A weighted undirected graph G = (V,E,w) has a finite vertex set V , an edge set
E and a weight function w : E → (0,∞). When the domain of w is a superset of
E, interpret (V,E,w) simply as (V,E,w|E), where w|E denotes the restriction
of w on E. For all S ⊆ V , NG(S) ≡ ⋃

v∈S NG(v). For all s, t ∈ V , the shortest
s-t distance in G, denoted dG(s, t), is the infimum of the weights (w.r.t. w) of
all s-t paths in G. So dG(s, t) = ∞ if there are no s-t paths.

http://arxiv.org/abs/1509.05662
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3 Query Complexity vs Approximation Ratio

Throughout this section, (1) n ∈ Z
+, (2) δ ∈ (0, 1) and h ∈ Z

+\{1} are constants
(i.e., they are independent of n), (3) A is a deterministic o(n1+1/(h−1))-query
algorithm for metric 1-median, and (4) S = [�δn	] ⊆ [n].

All pairs in [n]2 are assumed to be unordered in this section. By padding
queries, assume W.L.O.G. that A will have queried for the distances between
its output and all other points when halting. Denote A’s (worst-case) query
complexity by

q(n) = o
(
n1+1/(h−1)

)
.

By padding queries, assume the number of queries of A to be exactly q(n).
W.L.O.G., forbid to make the same query twice or to query for the distance
from a point to itself, where the queries for d(x, y) and d(y, x) are considered to
be the same for x, y ∈ [n]. Furthermore, let n be sufficiently large to satisfy

δn1/(h−1) > 3, (1)
2q(n)
|S| − 1

≤ δn1/(h−1). (2)

By (2),

q(n) ≤ δn1+1/(h−1). (3)

Define two unweighted undirected graphs G(0) and H(0) by

E
(0)
G ≡ {(u, v) | (u, v ∈ [n] \ S) ∧ (u �= v)} , (4)

G(0) ≡
(
[n], E(0)

G

)
, (5)

E
(0)
H ≡ ∅, (6)

H(0) ≡
(
[n], E(0)

H

)
. (7)

Algorithm Adv in Fig. 1 answers A’s queries. In particular, for all i ∈ [q(n)],
the ith iteration of the loop of Adv answers the ith query of A, denoted (ai, bi) ∈
[n]2. It constructs three unweighted undirected graphs, G(i) = ([n], E(i)

G ), H(i) =
([n], E(i)

H ) and Q(i). As G(i−1) is unweighted for all i ∈ [q(n)], Pi in line 5 of Adv
is an ai-bi path in G(i−1) with the minimum number of edges. By line 16 of Adv,
the edges of Q(i) are precisely the first i queries of A.

An Intuitive Exposition. Line 17 of Adv in Fig. 1 answers the ith query of A
according to H(i). So, to make the output of A have a large average distance to
other points, we want H(·) to have small degrees only. For this purpose, line 8
forms G(i) by removing the edges having a large-degree endpoint in H(i). Once an
edge is absent in G(i), it cannot be inserted into H(i+1) by lines 5–6 of the next
iteration, thus keeping the degrees small in H(·). Lines 5–6 and 17 suggest that the
answer to the ith query of A is just the length of Pi. So Adv should “remember”
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1: Let E
(0)
G , G(0), E

(0)
H and H(0) be as in (4)–(7);

2: for i = 1, 2, . . ., q(n) do
3: Receive the ith query of A, denoted (ai, bi);
4: if dG(i−1)(ai, bi) ≤ h then
5: Find a shortest ai-bi path Pi in G(i−1);
6: E

(i)
H ← E

(i−1)
H ∪ {e | e is an edge on Pi};

7: H(i) ← ([n], E
(i)
H );

8: E
(i)
G ← E

(i−1)
G \ {(u, v) ∈ E

(i−1)
G \ E

(i)
H | (degH(i)(u) ≥ δn1/(h−1) − 2) ∨

(degH(i)(v) ≥ δn1/(h−1) − 2)};
9: G(i) ← ([n], E

(i)
G );

10: else
11: E

(i)
H ← E

(i−1)
H ;

12: H(i) ← ([n], E
(i)
H );

13: E
(i)
G ← E

(i−1)
G ;

14: G(i) ← ([n], E
(i)
G );

15: end if
16: Q(i) ← ([n], {(aj , bj) | j ∈ [i]});
17: Output min{dH(i)(ai, bi), h − (1/2) · χ[∃v ∈ {ai, bi}, (v ∈ S) ∧ (degQ(i)(v) ≤

δn1/(h−1))]} as the answer to the ith query of A;
18: end for

Fig. 1. Algorithm Adv for answering A’s queries

Pi to be able to answer the future queries consistently with its answer to the ith
query. This is why line 8 preserves all the edges in E

(i)
H (including those of Pi by

line 6) when forming G(i).
Roughly, Adv works as follows: Answer each query by the length of a shortest

path. Mark the edges of that path by adding them to H(·). Once a vertex is incident
to too many marked edges, remove its incident unmarked edges to keep its degree
small in H(·). Preserve all marked edges for consistency among answers.

Lemma 1.

E
(0)
H ⊆ E

(1)
H ⊆ · · · ⊆ E

(q(n))
H ⊆ E

(q(n))
G ⊆ E

(q(n)−1)
G ⊆ · · · ⊆ E

(0)
G .

Proof. By lines 6 and 11 of Adv in Fig. 1, E
(i−1)
H ⊆ E

(i)
H for all i ∈ [q(n)]. By

lines 8 and 13, E
(i)
G ⊆ E

(i−1)
G for all i ∈ [q(n)].

To show that E
(q(n))
H ⊆ E

(q(n))
G , we shall prove the stronger statement that

E
(i)
H ⊆ E

(i)
G for all i ∈ {0, 1, . . . , q(n)} by mathematical induction. By (6), E

(0)
H ⊆

E
(0)
G . Assume as the induction hypothesis that E

(i−1)
H ⊆ E

(i−1)
G . The following

shows that E
(i)
H ⊆ E

(i−1)
G by examining each e ∈ E

(i)
H :

Case 1: e ∈ E
(i−1)
H . By the induction hypothesis, e ∈ E

(i−1)
G .

Case 2: e /∈ E
(i−1)
H . As e ∈ E

(i)
H \E

(i−1)
H , lines 6 and 11 show that e is on Pi (and

that the ith iteration of the loop of Adv runs line 6 rather than line 11).
By line 5, each edge on Pi is in E

(i−1)
G . In particular, e ∈ E

(i−1)
G .
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Having shown that E
(i)
H ⊆ E

(i−1)
G , lines 8 and 13 will both result in E

(i)
H ⊆ E

(i)
G ,

completing the induction step. ��
Lemma 2. For all i ∈ [q(n)] with dG(i−1)(ai, bi) ≤ h,

dH(i) (ai, bi) = dH(q(n)) (ai, bi) = dG(q(n)) (ai, bi) = dG(i−1) (ai, bi) .

Proof. By line 4 of Adv, the ith iteration of the loop runs lines 5–9. Lines 5–7
put (the edges of) a shortest ai-bi path in G(i−1) into H(i); hence

dH(i) (ai, bi) ≤ dG(i−1) (ai, bi) .

This and Lemma 1 complete the proof. ��

3.1 The Average Distance from A’s Output to Other Points

This subsection shows that the output of AAdv has a large average distance to
other points, according to the answers of Adv.

Lemma 3. For all i ∈ [q(n)] and v ∈ [n], we have degH(i)(v) ≤ degH(i−1)(v) + 2.

Proof. If the ith iteration of the loop of Adv runs lines 11–14 but not 5–9, then
H(i) = H(i−1), proving the lemma. So assume otherwise. Being shortest, Pi in
line 5 does not repeat vertices. Therefore, v is incident to at most two edges on
Pi, which together with lines 6–7 complete the proof. ��
Lemma 4. For all v ∈ [n], degH(q(n))(v) < δn1/(h−1).

Proof. Assume otherwise. Then prove the existence of i ∈ [q(n)] satisfying

degH(i−1)(v) < δn1/(h−1) − 2, (8)
degH(i)(v) ≥ δn1/(h−1) − 2. (9)

As H(i−1) �= H(i) by (8)–(9), the ith iteration of the loop of Adv runs lines 5–9
but not 11–14. By (9) and line 8 of Adv,

{
u ∈ [n] | (u, v) ∈ E

(i)
G

}
=

{
u ∈ [n] | (u, v) ∈ E

(i−1)
G \

(
E

(i−1)
G \ E

(i)
H

)}
. (10)

By Lemma 1, E
(i)
H ⊆ E

(i−1)
G . So by (10), NG(i)(v) = NH(i)(v), implying

degG(i)(v) = degH(i)(v). By (8) and Lemma 3, degH(i)(v) < δn1/(h−1). Finally,
degH(q(n))(v) ≤ degG(i)(v) by Lemma 1. Summarize the above. ��
Lemma 5. For all v ∈ [n],

|{u ∈ [n] | dH(q(n)) (v, u) < h}| ≤ 2δh−1n.

Proof. Use Lemma 4. ��
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Denote the output of AAdv by z. Furthermore,

I ≡ {j ∈ [q(n)] | z ∈ {aj , bj}} . (11)

The following lemma analyzes the sum of the distances, as answered by line 17
of Adv, from z to other points.

Lemma 6.
∑

i∈I

min

{
dH(i) (ai, bi) , h − 1

2
· χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
degQ(i) (v) ≤ δn1/(h−1)

)]}

≥ n ·
(
h − 2hδh−1 − o(1) − δ

)
.

Proof. By Lemma 1, dH(i)(ai, bi) ≥ dH(q(n))(ai, bi) for all i ∈ [q(n)]. Now use
Lemma 5 to bound

∑
i∈I dH(q(n))(ai, bi) from below. The rest is not hard. ��

3.2 Planting a Point with a Small Average Distance to Other Points

This subsection constructs a distance function with respect to which a certain
point has an average distance of approximately 1/2 to other points.

Lemma 7. |E(q(n))
H | ≤ h · q(n).

Proof. By lines 4–5 of Adv, Pi in line 5 has at most h edges. So by lines 6 and 11,
|E(i)

H | ≤ |E(i−1)
H | + h. Finally, there are q(n) queries. ��

Lemma 8.
∣
∣
∣
{

u ∈ [n] | degH(q(n))(u) ≥ δn1/(h−1) − 2
}∣

∣
∣ =

h

δ
· o(n).

Proof. By Lemma 7, the average degree in H(q(n)) is at most 2h · q(n)/n =
h · o(n1/(h−1)). Use the averaging argument. ��

By (1), S \ {z} �= ∅. Define

α̂ ≡ argmin
α∈S\{z}

degQ(q(n))(α), (12)

breaking ties arbitrarily.

Lemma 9. For all i ∈ [q(n)], degQ(i)(α̂) ≤ δn1/(h−1).

Proof. Use (12) and the averaging argument. ��
Inductively, let

V0 ≡ {α̂} , (13)
V1 ≡ NQ(q(n)) (α̂) \ V0, (14)

Vj+1 ≡ NH(q(n)) (Vj) \
(

j⋃

i=0

Vi

)

(15)
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for all j ∈ [h − 2]. Furthermore,

Vh ≡ [n] \
(

h−1⋃

i=0

Vi

)

. (16)

The following lemma is not hard to see from (13)–(16).

Lemma 10. (V0, V1, . . . , Vh) is a partition of [n], i.e.,
⋃h

k=0 Vk = [n] and Vi ∩
Vj = ∅ for all distinct i, j ∈ {0, 1, . . . , h}.
An Intuitive Exposition. By Lemma 9, |V1| is small. Because we have seen
that H(q(n)) has small degrees only, |Vj | grows slowly as j increases from 1 to
h − 1. Consequently,

∑h−1
j=1 |Vj | should be small. In fact, |Vh| ≈ n. So if we

connect α̂ to each point in Vh by an edge of weight 1/2, then α̂ will have an
average distance of approximately 1/2 to other points. Technicalities complicate
the exact constructions, though.

Define

B ≡
{

u ∈ [n] | degH(q(n))(u) ≥ δn1/(h−1) − 2
}

, (17)

E ≡
⎡

⎣E
(q(n))
G \

⎛

⎝
⋃

i,j∈{0,1,...,h}, |i−j|≥2

Vi × Vj

⎞

⎠

⎤

⎦ ∪ ({α̂} × (Vh \ (B ∪ S))) . (18)

By (12), α̂ ∈ S, implying α̂ /∈ Vh \ (B ∪ S). So E does not contain a self-loop.
For all distinct u, v ∈ [n],

w (u, v) ≡
{

1/2, if one of u and v is α̂ and the other is in Vh \ (B ∪ S),
1, otherwise. (19)

Furthermore, define

G ≡ ([n], E , w) (20)

to be a weighted undirected graph.

Lemma 11.
h−1∑

j=1

|Vj | ≤ 2δh−1n.

Proof. By Lemma 9 and (14), we have |V1| ≤ δn1/(h−1). By Lemma 4 and (15),
|Vj+1| ≤ |Vj | · δn1/(h−1) for j ∈ [h − 2]. Now bound

∑h−1
j=1 |Vj | by a geometric

series. ��
Lemma 12.

|Vh \ (B ∪ S)| ≥ n

(

1 − 2δh−1 − h

δ
· o(1) − δ

)

.
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Proof. By Lemma 8 and (17), |B| = (h/δ) · o(n). Furthermore,

|Vh| Lemmas 10–11≥ n − 2δh−1n − |V0| (13)
= n − 2δh−1n − 1.

��
The following lemma says that α̂ has an average distance of approximately

1/2 to other points w.r.t. the distance function min{dG(·, ·), h}.

Lemma 13.
∑

v∈[n]

min {dG (α̂, v) , h} ≤ n ·
(

1
2

+ 2hδh−1 +
h2

δ
· o(1) + hδ

)

.

Proof. By (18)–(20), dG(α̂, v) ≤ 1/2 for all v ∈ Vh \ (B ∪S). This and Lemma 12
complete the proof (note that min{dG(·, ·), h} ≤ h). ��

3.3 A Metric Consistent with Adv’s answers

This subsection constructs a metric d : [n]2 → [0,∞) consistent with Adv’s
answers in line 17. So Lemma 6 will require z, which is the output of AAdv,
to have an average distance (w.r.t. d) of at least approximately h to other
points. Although d(·, ·) will not be exactly min{dG(·, ·), h}, Lemma 13 will for-
bid

∑
v∈[n] d(α̂, v)/n to exceed 1/2 by too much. Comparing z with α̂ yields our

lower bound.

An Intuitive Exposition. Suppose that A ever queries for the α̂-v1, v1-v2 and
v2-v3 distances, where v1 ∈ [n], v2, v3 ∈ Vh\(B∪S) and v2 �= v3. By (14), v1 ∈ V1.
All of Adv’s answers are clearly based on {H(i)}q(n)

i=0 and {G(i)}q(n)
i=0 , which, unlike

G, do not have edges of weight 1/2. So for variants of min{dG(·, ·), h} to be used as
the final metric, we need to prevent the edges of G with weight 1/2 from creating
“shortcuts” that, together with the triangle inequality, violate Adv’s answers.

By (19), min{dG(α̂, v2), h} = 1/2. So for min{dG(·, ·), h} to be consistent with
Adv’s answers, the α̂-v1 and v1-v2 distances returned by Adv must differ by at
most 1/2 in absolute value by the triangle inequality. From the picking of α̂, it will
be easy to show that Adv answers the α̂-v1 distance with h − 1/2. Consequently,
the v1-v2 distance returned by Adv should be at least (h − 1/2) − 1/2 = h − 1. As
v1 ∈ V1 and v2 ∈ Vh, we turn to prove that every point in V1 has a distance of
at least h − 1 to every point in Vh.

Again by (19), min{dG(α̂, vj), h} = 1/2 for all j ∈ {2, 3}. So for
min{dG(·, ·), h} to be consistent with Adv’s answers, the v2-v3 distance returned
by Adv must not exceed 1/2+1/2 = 1 by the triangle inequality. For this purpose,
we just need to prove the existence of a v2-v3 edge or, more generally, an edge
between any two distinct points in [n] \ (B ∪ S).

The above descriptions are somewhat inaccurate. E.g., the final metric is not
exactly min{dG(·, ·), h}.

Recall that H(i) and G(i) are unweighted for all i ∈ {0, 1, . . . , q(n)}. They
can be treated as having the weight function w while preserving dH(i)(·, ·) and
dG(i)(·, ·), as shown by the lemma below.
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Lemma 14. For all i ∈ {0, 1, . . . , q(n)}, each path P in H(i) or G(i) has exactly
w(P ) edges.

Proof. As α̂ ∈ S by (12), (19) implies w(u, v) = 1 for all distinct u, v ∈ [n] \ S.
This and (4) imply that all edges in E

(0)
G have weight 1 w.r.t. w. So by Lemma 1,

the edges in E
(i)
H ∪ E

(i)
G have weight 1 w.r.t. w. ��

Lemma 15.

E
(q(n))
H ∩

⎛

⎝
⋃

i,j∈{0,1,...,h}, |i−j|≥2

Vi × Vj

⎞

⎠ = ∅.

Proof. Use (15). ��

Lemma 16. E
(q(n))
H ⊆ E.

Proof. By Lemma 15 and (18), E
(q(n))
G ∩ E

(q(n))
H ⊆ E . Now invoke Lemma 1. ��

Lemma 17. Let P be a path in G that visits no edges in {α̂}×(Vh\(B∪S)). If the
first and the last vertices of P are in Vh and V1, respectively, then w(P ) ≥ h−1.

Proof. Because P visits no edges in {α̂} × (Vh \ (B ∪ S)), no edges on P are in
Vi × Vj for any i, j ∈ {0, 1, . . . , h} with |i − j| ≥ 2 by (18) and (20). This forces
P to visit at least one edge in Vi+1 × Vi for each i ∈ [h − 1]. As α̂ /∈ ⋃h

i=1 Vi by
(13)–(16), (19) gives w(u, v) = 1 for all (u, v) ∈ ⋃h−1

i=1 (Vi+1 × Vi). ��
Lemma 18. Let P be a shortest ai-bi path in G, where i ∈ [q(n)]. If P visits
exactly one edge in {α̂} × (Vh \ (B ∪ S)) and α̂ ∈ {ai, bi}, then w(P ) ≥ h − 1/2.

Proof. Assume α̂ = ai by symmetry. Decompose P into an edge (α̂, v), where
v ∈ Vh \ (B ∪ S), and a v-bi path P̃ in G that visits no edges in {α̂} × (Vh \ (B ∪
S)). Clearly, bi ∈ V1. In summary, P̃ is a Vh-V1 path in G visiting no edges in
{α̂} × (Vh \ (B ∪ S)). By Lemma 17, w(P̃ ) ≥ h − 1, implying w(P ) ≥ h − 1/2. ��
Lemma 19. For all i ∈ [q(n)] with α̂ ∈ {ai, bi},

χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
degQ(i)(v) ≤ δn1/(h−1)

)]
= 1.

Proof. By (12), α̂ ∈ S. This and Lemma 9 complete the proof. ��

Lemma 20. For all distinct u, v ∈ [n] \ (B ∪ S), we have (u, v) ∈ E
(q(n))
G .

Proof. As u, v ∈ [n] \ B, (17) implies

degH(i)(u) < δn1/(h−1) − 2, (21)
degH(i)(v) < δn1/(h−1) − 2 (22)

when i = q(n). So by Lemma 1, (21)–(22) hold for all i ∈ [q(n)].
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As u, v ∈ [n] \ S and u �= v, we have (u, v) ∈ E
(0)
G by (4). By lines 8 and 13

of Adv,

E
(i−1)
G

\
{
(x, y) ∈ [n]

2 |
(
deg

H(i) (x) ≥ δn
1/(h−1) − 2

)
∨
(
deg

H(i) (y) ≥ δn
1/(h−1) − 2

)}
⊆ E

(i)
G

(23)

for all i ∈ [q(n)]. By (21)–(23), (u, v) ∈ E
(i)
G if (u, v) ∈ E

(i−1)
G , for all i ∈ [q(n)].

The proof is complete by mathematical induction on i. ��
Lemma 21. Let P be a shortest ai-bi path in G, where i ∈ [q(n)]. If P visits
exactly two edges in {α̂} × (Vh \ (B ∪ S)), then G(q(n)) has an ai-bi path with
exactly w(P ) edges.

Proof. Clearly, the two edges of P in {α̂} × (Vh \ (B ∪ S)), denoted (u, α̂) and
(α̂, v), are consecutive on P . Replace the subpath (u, α̂, v) of P by the edge (u, v)
to yield an ai-bi path P̃ . Except for the two edges of P in {α̂}×(Vh \(B∪S)), all
edges of P are in E

(q(n))
G by (18). As u, v ∈ Vh\(B∪S) and u �= v, (u, v) ∈ E

(q(n))
G

by Lemma 20. In summary, all the edges of P̃ are in E
(q(n))
G . Consequently, P̃ is

an ai-bi path in G(q(n)) = ([n], E(q(n))
G ). So we are left only to prove that P̃ has

exactly w(P ) edges, which, by Lemma 14, is equivalent to proving w(P̃ ) = w(P ).
Note that α̂ /∈ Vh \ (B ∪ S) by (12). By the construction of P̃ and recalling

that u, v ∈ Vh \ (B ∪ S) and u �= v,

w
(
P̃

)
= w(P ) − w (u, α̂) − w (α̂, v) + w (u, v)

(19)
= w(P ) − 1

2
− 1

2
+ 1 = w(P ).

��
Lemma 22. Every simple path in G visiting exactly one edge in {α̂} × (Vh \
(B ∪ S)) either starts or ends at α̂.

Proof. By (12), α̂ ∈ S. So by (4) and Lemma 1, α̂ is incident to no edges in
E

(q(n))
G . Consequently, the set of all edges of G incident to α̂ is {α̂}×(Vh\(B∪S))

by (18). The lemma is now easy to see. ��
Lemma 23. For all i ∈ [q(n)],

min

{
dH(i) (ai, bi) , h − 1

2
· χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
degQ(i) (v) ≤ δn1/(h−1)

)]}

≤ min

{
dG (ai, bi) , h − 1

2
· χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
degQ(i) (v) ≤ δn1/(h−1)

)]}
. (24)

Proof. Clearly, we may assume dG(ai, bi) < ∞. Pick an ai-bi path P in G with

w(P ) = dG (ai, bi) . (25)

We deal only with the hardest case that P visits exactly two edges in {α̂}×(Vh \
(B ∪ S)). In this case, Lemma 21 implies

dG(q(n))(ai, bi) ≤ w(P ). (26)



Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 141

If dG(i−1)(ai, bi) ≤ h, then dH(i)(ai, bi) = dG(q(n))(ai, bi) by Lemma 2, which
together with (25)–(26) completes the proof. Otherwise, dG(q(n))(ai, bi) > h by
Lemma 1, which together with (25)–(26) shows dG(ai, bi) > h and thus completes
the proof. ��

Define d : [n]2 → [0,∞) by

d (ai, bi) = d (bi, ai)

≡ min

{
dG (ai, bi) , h − 1

2
· χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
deg

Q(i) (v) ≤ δn
1/(h−1)

)]}
, (27)

d (u, v)

≡ min {dG (u, v) , h} (28)

for all i ∈ [q(n)] and (u, v) ∈ [n]2 \ {(aj , bj) | j ∈ [q(n)]}.

Lemma 24. ([n], d) is a metric space.

Proof. We only prove the triangle inequality for d(·, ·). Clearly, dG(·, ·) is a metric
and dG(·, ·) /∈ (0, 1/2). By (27)–(28), d(·, ·) truncates dG(·, ·) to within either
h − 1/2 or h, preserving the triangle inequality. ��
Lemma 25. For all i ∈ [q(n)], dH(i)(ai, bi) ≥ dG(ai, bi).

Proof. Take a shortest ai-bi path P in the unweighted graph H(i) = ([n], E(i)
H ).

So by Lemma 14, dH(i)(ai, bi) = w(P ). By Lemma 1, P ’s edges are in E
(q(n))
H .

So by Lemma 16, P is a path in G = ([n], E , w), implying dG(ai, bi) ≤ w(P ). ��
The following lemma says that line 17 of Adv answers queries consistently

with d(·, ·).
Lemma 26. For all i ∈ [q(n)],

min

{
d
H(i) (ai, bi) , h − 1

2
· χ
[
∃v ∈ {ai, bi} , (v ∈ S) ∧

(
deg

Q(i) (v) ≤ δn
1/(h−1)

)]}
= d (ai, bi) .

Proof. Use Lemmas 23 and 25 and (27). ��
Theorem 1. Metric 1-median has no deterministic o(n1+1/(h−1))-query
(2h − ε)-approximation algorithms for any constants h ∈ Z

+ \ {1} and ε > 0.

Proof. By Lemma 26 and line 17 of Adv, Adv answers A’s queries consistently
with d(·, ·). By Lemma 24, ([n], d) is a metric space. Now use Lemma 13 to
bound

∑
v∈[n] d(α̂, v) from the above. Then use Lemmas 6 and 26 to bound

∑
v∈[n] d(z, v) from below. Finally, pick δ to be sufficiently small. ��
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Abstract. The Apriori algorithm is a classical algorithm for the fre-
quent itemset mining problem. A significant bottleneck in Apriori is
the number of I/O operation involved, and the number of candidates it
generates. We investigate the role of LSH techniques to overcome these
problems, without adding much computational overhead. We propose
randomized variations of Apriori that are based on asymmetric LSH
defined over Hamming distance and Jaccard similarity.

1 Introduction

Mining frequent itemsets in a transactions database appeared first in the context
of analyzing supermarket transaction data for discovering association rules [1,2],
however this problem has, since then, found applications in diverse domains like
finding correlations [13], finding episodes [9], clustering [14]. Mathematically,
each transaction can be regarded as a subset of the items (“itemset”) those
that present in the transaction. Given a database D of such transactions and a
support threshold θ ∈ (0, 1), the primary objective of frequent itemset mining
is to identify θ-frequent itemsets (denoted by FI, these are subsets of items that
appear in at least θ-fraction of transactions).

Computing FI is a challenging problem of data mining. The question of decid-
ing if there exists any FI with k items is known to be NP-complete [7] (by relating
it to the existence of bi-cliques of size k in a given bipartite graph) but on a more
practical note, simply checking support of any itemset requires reading the trans-
action database – something that is computationally expensive since they are
usually of an extremely large size. The state-of-the-art approaches try to reduce
the number of candidates, or not generate candidates at all. The best known
approach in the former line of work is the celebrated Apriori algorithm [2].

Apriori is based on the anti-monotonicity property of partially-ordered sets
which says that no superset of an infrequent itemset can be frequent. This
algorithm works in a bottom-up fashion by generating itemsets of size l in level l,
starting at the first level. After finding frequent itemsets at level l they are joined
pairwise to generate l + 1-sized candidate itemsets; FI are identified among the
candidates by computing their support explicitly from the data. The algorithm

c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 143–155, 2016.
DOI: 10.1007/978-3-319-42634-1 12
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terminates when no more candidates are generated. Broadly, there are two down-
sides to this simple but effective algorithm. The first one is that the algorithm
has to compute support1 of every itemset in the candidate, even the ones that are
highly infrequent. Secondly, if an itemset is infrequent, but all its subsets are fre-
quent, Apriori doesn’t have any easy way of detecting this without reading every
transaction of the candidates.

A natural place to look for fast algorithms over large data are randomized
techniques; so we investigated if LSH could be of any help. An earlier work by
Cohen et al. [5] was also motivated by the same idea but worked on a different
problem (see Sect. 1.2). LSH is explained in Sect. 2, but roughly, it is a random-
ized hashing technique which allows efficient retrieval of approximately “similar”
elements (here, itemsets).

1.1 Our Contribution

In this work, we propose LSH-Apriori – a basket of three explicit variations of
Apriori that uses LSH for computing FI. LSH-Apriori handles both the above
mentioned drawbacks of the Apriori algorithm. First, LSH-Apriori significantly
cuts down on the number of infrequent candidates that are generated, and further
due to its dimensionality reduction property saves on reading every transaction;
secondly, LSH-Apriori could efficiently filter our those infrequent itemset without
looking every candidate. The first two variations essentially reduce computing FI
to the approximate nearest neighbor (cNN) problem for Hamming distance and
Jaccard similarity. Both these approaches can drastically reduce the number of
false candidates without much overhead, but has a non-zero probability of error
in the sense that some frequent itemset could be missed by the algorithm. Then
we present a third variation which also maps FI to elements in the Hamming
space but avoids the problem of these false negatives incurring a little cost of
time and space complexity. Our techniques are based on asymmetric LSH [12]
and LSH with one-sided error [10] which are proposed very recently.

1.2 Related Work

There are a few hash based heuristic to compute FI which outperform the Apriori
algorithm and PCY [11] is one of the most notable among them. PCY focuses
on using hashing to efficiently utilize the main memory over each pass of the
database. However, our objective and approach both are fundamentally different
from that of PCY.

The work that comes closest to our work is by Cohen et al. [5]. They devel-
oped a family of algorithms for finding interesting associations in a transaction
database, also using LSH techniques. However, they specifically wanted to avoid
any kind of filtering of itemsets based on itemset support. On the other hand, our
problem is the vanilla frequent itemset mining which requires filtering itemsets
satisfying a given minimum support threshold.
1 Note that computing support is an I/O intensive operation and involves reading every

transaction.
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1.3 Organization of the Paper

In Sect. 2, we introduce the relevant concepts and give an overview of the
problem. In Sect. 3, we build up the concept of LSH-Apriori which is required
to develop our algorithms. In Sect. 4, we present three specific variations of
LSH-Apriori for computing FI. Algorithms of Subsects. 4.1 and 4.2 are based on
Hamming LSH and Minhashing, respectively. In Subsect. 4.3, we present another
approach based on CoveringLSH which overcomes the problem of producing false
negatives. In Sect. 5, we summarize the whole discussion. Proofs are omitted due
to space constraint and can be found in the full-version [3].

2 Background

The input to the classical frequent itemset mining problem is a database D of n
transactions {T1, . . . , Tn} over m items {i1, . . . , im} and a support threshold θ ∈
(0, 1). Each transaction, in turn, is a subset of those items. Support of itemset
I ⊆ {i1, . . . , im} is the number of transactions that contain I. The objective of
the problem is to determine every itemset with support at least θn. We will often
identify an itemset I with its transaction vector 〈I[1], I[2], . . . , I[n]〉 where I[j]
is 1 if I is contained in Tj and 0 otherwise. An equivalent way to formulate the
objective is to find itemsets with at least θn 1’s in their transaction vectors. It
will be useful to view D as a set of m transaction vectors, one for every item.

Notations

D Database of transactions: {t1, . . . , tn} n Number of transactions

Dl FI of level-l: {I1, . . . Iml} θ Support threshold, θ ∈ (0, 1)

αl Maximum support of any item in Dl m Number of items

ε Error tolerance in LSH, ε ∈ (0, 1) ml Number of FI of size l

δ Probability of error in LSH, δ ∈ (0, 1) |v| Number of 1′s in v

2.1 Locality Sensitive Hashing

We first briefly explain the concept of locality sensitive hashing (LSH).

Definition 1 (Locality Sensitive Hashing [8]). Let S be a set of m vectors
in R

n, and U be the hashing universe. Then, a family H of functions from S to
U is called as (S0, (1 − ε)S0, p1, p2)-sensitive (with ε ∈ (0, 1] and p1 > p2) for
the similarity measure Sim(., .) if for any x, y ∈ S:

– if Sim(x, y) ≥ S0, then Pr
h ∈ H

[h(x) = h(y)] ≥ p1,

– if Sim(x, y) ≤ (1 − ε)S0, then Pr
h ∈ H

[h(x) = h(y)] ≤ p2.

Not all similarity measures have a corresponding LSH. However, the following
well-known result gives a sufficient condition for existence of LSH for any Sim.



146 D. Bera and R. Pratap

Lemma 1. If Φ is a strict monotonic function and a family of hash function H
satisfies Prh ∈ H[h(x) = h(y)) = Φ(Sim(x, y)] for some Sim : Rn ×R

n → {0, 1},
then the conditions of Definition 1 are true for Sim for any ε ∈ (0, 1).

The similarity measures that are of our interest are Hamming and
Jaccard over binary vectors. Let |x| denote the Hamming weight of a binary
vector x. Then, for vectors x and y of length n, Hamming distance is defined as
Ham(x, y) = |x ⊕ y|, where x ⊕ y denotes a vector that is element-wise Boolean
XOR of x and y. Jaccard similarity is defined as 〈x, y〉/|x ∨ y|, where 〈x, y〉 indi-
cates inner product, and x ∨ y indicates element-wise Boolean OR of x and y.
LSH for these similarity measures are simple and well-known [4,6,8]. We recall
them below; here I is some subset of {1, . . . , n} (or, n-length transaction vector).

Definition 2 (Hash Function for Hamming Distance). For any particular
bit position i, we define the function hi(I) := I[i]. We will use hash functions of
the form gJ(I) = 〈hj1(I), hj2(I), . . . , hjk

(I)〉, where J = {j1, . . . , jk} is a subset
of {1, . . . , n} and the hash values are binary vectors of length k.

Definition 3 (Minwise Hash Function for Jaccard Similarity). Let π be
some permutations over {1, . . . , n}. Treating I as a subset of indices, we will use
hash functions of the form hπ(I) = arg mini π(i) for i ∈ I.

The probabilities that two itemsets hash to the same value for these hash func-
tions are related to their Hamming distance and Jaccard similarity, respectively.

2.2 Apriori Algorithm for Frequent Itemset Mining

As explained earlier, Apriori works level-wise and in its l-th level, it generates all
θ-frequent itemsets with l-items each; for example, in the first level, the algorithm
simply computes support of individual items and retains the ones with support

Input: Transaction database D, support threshold θ;
Result: θ-frequent itemsets;

1 l = 1 /* level */;
2 F =

{{x} | {x} is θ-frequent in D} /* frequent itemsets in level-1 */ ;
3 Output F ;
4 while F is not empty do
5 l = l + 1;
6 C = {Ia ∪ Ib | Ia ∈ F, Ib ∈ F, Ia and Ib are compatible};
7 F = ∅;
8 for itemset I in C do
9 Add I to F if support of I in D is at least θn /* reads database*/ ;

10 end
11 Output F ;

12 end

Algorithm 1. Apriori algorithm for frequent itemset mining
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at least θn. Apriori processes each level, say level-(l + 1), by joining all pairs of
θ-frequent compatible itemsets generated in level-l, and further filtering out the
ones which have support less than θn. Here, two candidate itemsets (of size l
each) are said to be compatible if their union has size exactly l + 1. A high-level
pseudocode of Apriori is given in Algorithm1. All our algorithms rely on a good
implementation of set whose runtime cost is not included in our analysis.

3 LSH-Apriori

The focus of this paper is to reduce the computation of processing all pairs
of itemsets at each level in line 6 (which includes computing support by going
through D). Suppose that level l outputs ml frequent itemsets. We will treat
the output of level l as a collection of ml transaction vectors Dl = {I1, . . . Iml

},
each of length n and one for each frequent itemset of the l-th level. Our approach
involves defining appropriate notions of similarity between itemsets (represented
by vectors) in Dl similar to the approach followed by Cohen et al. [5]. Let Ii, Ij

be two vectors each of length n. Then, we use |Ii, Ij | to denote the number of
bit positions where both the vectors have a 1.

Definition 4. Given a parameter 0 < ε < 1, we say that {Ii, Ij} is θ-frequent
(or similar) if |Ii, Ij | ≥ θn and {Ii, Ij} is (1−ε)θ-infrequent if |Ii, Ij | < (1−ε)θn.
Furthermore, we say that Ij is similar to Ii if {Ii, Ij} is θ-frequent.

Let Iq be a frequent itemset at level l − 1. Let FI(Iq, θ) be the set of itemsets
Ia such that {Iq, Ia} is θ-frequent at level l. Our main contributions are a few
randomized algorithms for identifying itemsets in FI(Iq, θ) with high-probability.

Definition 5 (FI(Iq, θ, ε, δ)). Given a θ-frequent itemset Iq of size l − 1, toler-
ance ε ∈ (0, 1) and error probability δ, FI(Iq, θ, ε, δ) is a set F ′ of itemsets of
size l, such that with probability at least 1 − δ, F ′ contains every Ia for which
{Iq, Ia} is θ-frequent.

It is clear that FI(Iq, θ) ⊆ FI(Iq, θ, ε, δ) with high probability. This motivated
us to propose LSH-Apriori, a randomized version of Apriori, that takes δ and ε
as additional inputs and essentially replaces line 6 by LSH operations to com-
bine every itemset Iq with only similar itemsets, unlike Apriori which combines
all pairs of itemsets. This potentially creates a significantly smaller C without
missing out too many frequent itemsets. The modifications to Apriori are pre-
sented in Algorithm 2 and the following lemma, immediate from Definition 5,
establishes correctness of LSH-Apriori.

Input: Dl = {I1, . . . , Iml
}, θ, (Additional) error probability δ, tolerance ε;

6a (Pre-processing) Initialize hash tables and add all items Ia ∈ Dl;
6b (Query) Compute FI(Iq, θ, ε, δ) ∀Iq ∈ Dl by hashing Iq and checking

collisions;
6c C ← {Iq ∪ Ib | Iq ∈ Dl, Ib ∈ FI(Iq, θ, ε, δ)};

Algorithm 2. LSH-Apriori level l+1 (only modifications to Apriori line: 6)
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Lemma 2. Let Iq and Ia be two θ-frequent compatible itemsets of size (l − 1)
such that the itemset J = Iq ∪ Ia is also θ-frequent. Then, with probability at
least 1 − δ, FI(Iq, θ, ε, δ) contains Ia (hence C contains J).

In the next section we describe three LSH-based randomized algorithms to
compute FI(Iq, θ, ε, δ) for all θ-frequent itemset Iq from the earlier level. The
input to these subroutines will be Dl, the frequent itemsets from earlier level,
and parameters θ, ε, δ. In the pre-processing stage at level l, the respective LSH
is initialized and itemsets of Dl are hashed; we specifically record the itemsets
hashing to every bucket. LSH guarantees (w.h.p.) that pairs of similar items hash
into the same bucket, and those that are not hash into different buckets. In the
query stage we find all the itemsets that any Iq ought to be combined with by
looking in the bucket in which Iq hashed, and then combining the compatible
ones among them with Iq to form C. Rest of the processing happens à la Apriori.

The internal LSH subroutinesmayoutput false-positives – itemsets that are not
θ-frequent, but such itemsets are eventualy filtered out in line 9 of Algorithm1.
Therefore, the output of LSH-Apriori does not contain any false positives. How-
ever, some frequent itemsets may be missing from its output (false negatives) with
some probability depending on the parameter δ as stated below in Theorem 3
(proof follows from the union bound).

Theorem 3 (Correctness). LSH-Apriori does not output any itemset which
is not θ-infrequent. If X is a θ-frequent itemset of size l, then the probability that
LSH-Apriori does not output X is at most δ2l.

The tolerance parameter ε canbe used to balance the overhead fromusing hash-
ing inLSH-Aprioriwith respect to its savingsbecause of reading fewer transactions.
Most LSH, including those that we will be using, behave somewhat like dimension-
ality reduction. As a result, the hashing operations do not operate on all bits of
the vectors. Furthermore, the pre-condition of similarity for joining ensure that
(w.h.p.) most infrequent itemsets can be detected before verifying them from D.
To formalize this, consider any level l with ml θ-frequent itemsets Dl. We will com-
pare the computation done byLSH-Apriori at level l+1 towhatApriori would have
done at level l + 1 given the same frequent itemsets Dl. Let cl+1 denote the num-
ber of candidates Apriori would have generated and ml+1 the number of frequent
itemsets at this level (LSH-Apriori may generate fewer).

Overhead: Let τ(LSH) be the time required for hashing an itemset for a par-
ticular LSH and let σ(LSH) be the space needed for storing respective hash
values. The extra overhead in terms of space will be simply mlσ(LSH) in level
l + 1. With respect to overhead in running time, LSH-Apriori requires hashing
each of the ml itemsets twice, during pre-processing and during querying. Thus
total time overhead in this level is ϑ(LSH, l + 1) = 2mlτ(LSH).

Savings: Consider the itemsets in Dl that are compatible with any Iq ∈ Dl.
Among them are those whose combination with Iq do not generate a θ-frequent
itemset for level l + 1; call them as negative itemsets and denote their num-
ber by r(Iq). Apriori will have to read all n transactions of

∑
Iq

r(Iq) itemsets
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in order to reject them. Some of these negative itemsets will be added to FI by
LSH-Apriori – we will call them false positives and denote their count by FP (Iq);
the rest those which correctly not added with Iq – lets call them as true nega-
tives and denote their count by TN(Iq). Clearly, r(Iq) = TN(Iq) + FP (Iq) and∑

Iq
r(Iq) = 2(cl+1−ml+1). Suppose φ(LSH) denotes the number of transactions

a particular LSH-Apriori reads for hashing any itemset; due to the dimensionality
reduction property of LSH, φ(LSH) is always o(n). Then, LSH-Apriori is able to
reject all itemsets in TN by reading only φ transactions for each of them; thus for
itemset Iq in level l + 1, a particular LSH-Apriori reads (n − φ(LSH)) × TN(Iq)
fewer transactions compared to a similar situation for Apriori. Therefore, total
savings at level l + 1 is ς(LSH, l + 1) = (n − φ(LSH)) × ∑

Iq
TN(Iq).

In Sect. 4, we discuss this in more detail along with the respective LSH-Apriori
algorithms.

4 FI via LSH

Our similarity measure |Ia, Ib| can also be seen as the inner product of the
binary vectors Ia and Ib. However, it is not possible to get any LSH for such
similarity measure because for example there can be three items Ia, Ib and Ic

such that |Ia, Ib| ≥ |Ic, Ic| which implies that Pr(h(Ia) = h(Ib)) ≥ Pr(h(Ic) =
h(Ic)) = 1, which is not possible. Noting the exact same problem, Shrivastava
et al. introduced the concept of asymmetric LSH [12] in the context of binary
inner product similarity. The essential idea is to use two different hash functions
(for pre-processing and for querying) and they specifically proposed extending
MinHashing by padding input vectors before hashing. We use the same pair of
padding functions proposed by them for n-length binary vectors in a level l:
P(n,αl) for preprocessing and Q(n,αl) for querying are defined as follows.

– In P (I) we append (αln − |I|) many 1′s followed by (αln + |I|) many 0′s.
– In Q(I) we append αln many 0′s, then (αln − |I|) many 1′s, then |I| 0′s.

Here, αln (at LSH-Apriori level l) will denote the maximum number of ones in
any itemset in Dl. Therefore, we always have (αln − |I|) ≥ 0 in the padding
functions. Furthermore, since the main loop of Apriori is not continued if no
frequent itemset is generated at any level, (αl − θ) > 0 is also ensured at any
level that Apriori is executing.

We use the above padding functions to reduce our problem of finding similar
itemsets to finding nearby vectors under Hamming distance (using Hamming-
based LSH in Subsect. 4.1 and Covering LSH in Subsect. 4.3) and under Jaccard
similarity (using MinHashing in Subsect. 4.2).

4.1 Hamming Based LSH

In the following lemma, we relate Hamming distance of two itemsets Ix and Iy

with their |Ix, Iy|.
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Lemma 4. For two itemsets Ix and Iy, Ham(P (Ix), Q(Iy)) = 2(αln − |Ix, Iy|).
Therefore, it is possible to use an LSH for Hamming distance to find sim-

ilar itemsets. We use this technique in the following algorithm to compute
FI(Iq, θ, ε, δ) for all itemset Iq. The algorithm contains an optimization over the
generic LSH-Apriori pseudocode (Algorithm 2). There is no need to separately
execute lines:7–10 of Apriori; one can immediately set F ← C since LSH-Apriori
computes support before populating FI.

Input: Dl = {I1, . . . , Iml
}, query item Iq, threshold θ, tolerance ε, error δ.

Result: FIq = FI(Iq, θ, ε, δ) for every Iq ∈ Dl.
6a Preprocessing step: Setup hash tables and add vectors in Dl;
i Set ρ = αl−θ

αl−(1−ε)θ , k = log( 1+2αl
(1+2(1−ε)θ)

)ml and L = mρ
l log

(
1
δ

)
;

ii Select functions g1, . . . , gL u.a.r.;
iii For every Ia ∈ Dl, pad Ia using P () and then hash P (Ia) into buckets

g1(P (Ia)), ..., gL(P (Ia));
6b Query step: For every Iq ∈ Dl, we do the following ;

i S ← all Iq-compatible itemsets in all buckets gi(Q(Iq)), for i = 1 . . . L;
ii for Ia ∈ S do

If |Ia, Iq| ≥ θn, then add Ia to FIq /* reads database*/;
(*) If no itemset similar to Iq found within L

δ tries, then break
loop;

end

Algorithm 3. LSH-Apriori (only lines 6a,6b) using Hamming LSH

Correctness of this algorithm is straightforward. Also, ρ < 1 and the space
required and overhead of reading transactions is θ(kLml) = o(m2

l ). It can be
further shown that E[FP (Iq)] ≤ L for Iq ∈ Dl which can be used to prove that
E[ς] ≥ (n − φ)(2(cl+1 − ml+1) − mlL) where φ = O(kL) = Õ(mρ

l ) = o(ml).
Details of these calculations including proof of the next lemma are omitted.

Lemma 5. Algorithm 3 correctly outputs FI(Iq, θ, ε, δ) for all Iq ∈ Dl. Additional
space required is o(m2

l ), which is also the total time overhead. The expected savings
can be bounded by E[ς(l + 1)] ≥ (

n − o(ml)
)(

(cl+1 − 2ml+1) + (cl+1 − o(m2
l ))

)
.

Expected savings outweigh time overhead if n � ml, cl+1 = θ(m2
l ) and

cl+1 > 2ml+1, i.e., in levels where the number of frequent itemsets generated
are fewer compared to the number of transactions as well as to the number of
candidates generated. The additional optimisation (*) essentially increases the
savings when all l + 1-extensions of Iq are (1 − ε)θ-infrequent — this behaviour
will be predominant in the last few levels. It is easy to show that in this case,
FP (Iq) ≤ L

δ with probability at least 1 − δ; this in turn implies that |S| ≤ L
δ .

So, if we did not find any similar Ia within first L
δ tries, then we can be sure,

with reasonable probability, that there are no itemsets similar to Iq.
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4.2 Min-Hashing Based LSH

Cohen et al. had given an LSH-based randomized algorithm for finding interest-
ing itemsets without any requirement for high support [5]. We observed that their
Minhashing-based technique [4] cannot be directly applied to the high-support
version that we are interested in. The reason is roughly that Jaccard similarity
and itemset similarity (w.r.t. θ-frequent itemsets) are not monotonic to each
other. Therefore, we used padding to monotonically relate Jaccard similarity of
two itemsets Ix and Iy with their |Ix, Iy|.
Lemma 6. For two padded itemsets Ix and Iy, JS(P (Ix), Q(Iy)) = |Ix,Iy|

2αln−|Ix,Iy| .

Once padded, we follow similar steps (as [5]) to create a similarity preserving
summary D̂l of Dl such that the Jaccard similarity for any column pair in Dl is
approximately preserved in D̂l, and then explicitly compute FI(Iq, θ, ε, δ) from D̂l.
D̂l is created by using λ independent minwise hashing functions (see Definition 3).
λ should be carefully chosen since a higher value increases the accuracy of estima-
tion, but at the cost of large summary vectors in D̂l. Let us define ĴS(Ii, Ij) as the
fraction of rows in the summary matrix in which min-wise entries of columns Ii

and Ij are identical. Then by Theorem 1 of Cohen et al. [5], we can get a bound
on the number of required hash functions:

Theorem 7 (Theorem 1 of [5]). Let 0 < ε, δ < 1 and λ ≥ 2
ωε2 log 1

δ . Then for
all pairs of columns Ii and Ij following are true with probability at least 1 − δ:

– If JS(Ii, Ij) ≥ s∗ ≥ ω, then ĴS(Ii, Ij) ≥ (1 − ε)s∗,
– If JS(Ii, Ij) ≤ ω, then ĴS(Ii, Ij) ≤ (1 + ε)ω.

Input: Dl, query item Iq, threshold θ, tolerance ε, error δ
Result: FIq = FI(Iq, θ, ε, δ) for every Iq ∈ Dl.

6a Preprocessing step: Prepare D̂l via MinHashing;
i Set ω = (1−ε)θ

2αl−(1−ε)θ , ε = αlε
αl+(αl−θ)(1−ε) and λ = 2

ωε2 log 1
δ ;

ii Choose λ many independent permutations (see Theorem 7);
iii For every Ia ∈ Dl, pad Ia using P () and then hash P (Ia) using λ

independent permutations;
6b Query step: For every Iq ∈ Dl, we do the following ;

i Hash Q(Iq) using λ independent permutations;
ii for compatible Ia ∈ Dl do

If ĴS(P (Ia), Q(Iq)) ≥ (1−ε)θ
2αl−θ for some Ia, then add Ia to FIq;

end

Algorithm 4. LSH-Apriori (only lines 6a,6b) using Minhash LSH (This
algorithm can be easily boosted to o(λml) time by applying banding tech-
nique (see Section 4 of [5]) on the minhash table.)

Lemma 8. Algorithm 4 correctly computes FI(Iq, θ, ε, δ) for all Iq ∈ Dl. Addi-
tional space required is O(λml), and the total time overhead is O((n + λ)ml).
The expected savings is given by E[ς(l + 1)] ≥ 2(1 − δ)(n − λ)(cl+1 − ml+1).
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The proof is omitted due to space constraints. Note that λ depends on αl

but is independent of n. This method should be applied only when λ � n. And
in that case, for levels with number of candidates much larger than the number
of frequent itemsets discovered (i.e., cl+1 � {ml,ml+1}), time overhead would
not appear significant compared to expected savings.

4.3 Covering LSH

Due to their probabilistic nature, the LSH-algorithms presented earlier have the
limitation of producing false positives and more importantly, false negatives. Since
the latter cannot be detected unlike the former, these algorithms may miss some
frequent itemsets (see Theorem 3). In fact, once we miss some FI at a particular
level, then all the FI which are “supersets” of that FI (in the subsequent levels) will
be missed. Here we present another algorithm for the same purpose which over-
comes this drawback. The main tool is a recent algorithm due to Pagh [10] which
returns approximate nearest neighbors in the Hamming space. It is an improve-
ment over the seminal LSH algorithm by Indyk and Motwani [8], also for Hamming
distance. Pagh’s algorithm has a small overhead over the latter; to be precise, the
query time bound of [10] differs by at most ln(4) in the exponent in comparison
with the time bound of [8]. However, its big advantage is that it generates no false
negatives. Therefore, this LSH-Apriori version also does not miss any frequent
itemset.

The LSH by Pagh is with respect to Hamming distance, so we first reduce
our FI problem into the Hamming space by using the same padding given in
Lemma 4. Then we use this LSH in the same manner as in Subsect. 4.1. Pagh
coined his hashing scheme as coveringLSH which broadly mean that given a
threshold r and a tolerance c > 1, the hashing scheme guaranteed a collision for
every pair of vectors that are within radius r. We will now briefly summarize
coveringLSH for our requirement; refer to the paper [10] for full details.

Similar to HammingLSH, we use a family of Hamming projections as our hash
functions: HA := {x �→ x ∧ a| a ∈ A}, where A ⊆ {0, 1}(1+2αl)n. Now, given a
query item Iq, the idea is to iterate through all hash functions h ∈ HA, and check
if there is a collision h(P (Ix)) = h(Q(Iq)) for Ix ∈ Dl. We say that this scheme
doesn’t produce false negative for the threshold 2(αl−θ)n, if at least one collision
happens when there is an Ix ∈ Dl when Ham(P (Ix), Q(Iq)) ≤ 2(αl − θ)n,
and the scheme is efficient if the number of collision is not too many when
Ham(P (Ix), Q(Iq)) > 2(αl − (1 − ε)θ)n (proved in Theorems 3.1, 4.1 of [10]). To
make sure that all pairs of vector within distance 2(αl−θ)n collide for some h, we
need to make sure that some h map their “mismatching” bit positions (between
P (Ix) and Q(Iq)) to 0. We describe construction of hash functions next.

n′ θ′ t c ε ν

(1+2αl)n 2(αl−θ)n � ln ml
2(αl−(1−ε)θ)n

� αl−(1−ε)θ
αl−θ

ε ∈ (0, 1) s.t.
ln ml

2(αl−(1−ε)θ)n
+ ε ∈ N

t+ε
ct
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CoveringLSH: The parameters relevant to LSH-Apriori are given above. Notice
that after padding, dimension of each item is n′, threshold is θ′ (i.e., min-
support is θ′/n′), and tolerance is c. We start by choosing a random function
ϕ : {1, . . . , n′} → {0, 1}tθ′+1, which maps bit positions of the padded itemsets
to bit vectors of length tθ′ +1. We define a family of bit vectors a(v) ∈ {0, 1}n′

,
where a(v)i = 〈ϕ(i), v〉, for i ∈ {1, . . . , n′}, v ∈ {0, 1}tθ′+1 and 〈m(i), v〉 denotes
the inner product over F2. We define our hash function family HA using all such
vectors a(v) except a(0): A =

{
a(v)|v ∈ {0, 1}tθ′+1/{0}

}
.

Pagh described how to construct A′ ⊆ A [10, Corollary 4.1] such that HA′

has a very useful property of no false negatives and also ensuring very few false
positives. We use HA′ for hashing using the same manner of Hamming projec-
tions as used in Subsect. 4.1. Let ψ be the expected number of collisions between
any itemset Iq and items in Dl that are (1 − ε)θ-infrequent with Iq. The fol-
lowing Theorem captures the essential property of coveringLSH that is relevant
for LSH-Apriori, described in Algorithm5. It also bounds the number of hash
functions which controls the space and time overhead of LSH-Apriori. Proof of
this theorem follows from Theorem 4.1 and Corollary 4.1 of [10].

Theorem 9. For a randomly chosen ϕ, a hash family HA′ described above and
distinct Ix, Iq ∈ {0, 1}n:

– If Ham
(
P (Ix), Q(Iq)

) ≤ θ′, then there exists h ∈ HA′ s.t.
h
(
P (Ix)

)
= h

(
Q(Iq)

)
,

– Expected number of false positives is bounded by E[ψ] < 2θ′ε+1m
1
c

l ,

– |HA′ | < 2θ′ε+1m
1
c

l .

Input: Dl, query item Iq, threshold θ, tolerance ε, error δ.
Result: FIq = FI(Iq, θ, ε, δ) for every Iq ∈ Dl.

6a Preprocessing step: Setup hash tables according to HA′ and add items;
i For every Ia ∈ Dl, hash P (Ia) using all h ∈ HA′ ;

6b Query step: For every Iq ∈ Dl, we do the following ;
i S ← all itemsets that collide with Q(Iq);
ii for Ia ∈ S do

If |Ia, Iq| ≥ θn, then add Ia to FIq /* reads database*/;
(*) If no itemset similar to Iq found within ψ

δ tries, break loop;
end

Algorithm 5. LSH-Apriori (only lines 6a,6b) using Covering LSH

Lemma 10. Algorithm 5 outputs all θ-frequent itemsets and only θ-
frequent itemsets. Additional space required is O

(
m1+ν

l

)
, which is also

the total time overhead. The expected savings is given by E[ς(l + 1)] ≥
2
(
n − log ml

c − 1
) (

(cl+1 − ml+1) − m1+ν
l

)
.

The (*) line is an additional optimisation similar to what we did for
HammingLSH Sect. 4.1; it efficiently recognizes those frequent itemsets of the
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earlier level none of whose extensions are frequent. The guarantee of not miss-
ing any valid itemset comes with a heavy price. Unlike the previous algorithms,
the conditions under which expected savings beats overhead are quite strin-
gent, namely, cl+1 ∈ {ω(m2

l ), ω(m2
l+1)}, 2n

5 > ml > 2n/2 and ε < 0.25 (since
1 < c < 2, these bounds ensure that ν < 1 for later levels when αl ≈ θ).

5 Conclusion

In this work, we designed randomized algorithms using locality-sensitive hashing
(LSH) techniques which efficiently outputs almost all the frequent itemsets with
high probability at the cost of a little space which is required for creating hash
tables. We showed that time overhead is usually small compared to the savings
we get by using LSH.

Our work opens the possibilities for addressing a wide range of problems that
employ on various versions of frequent itemset and sequential pattern mining
problems, which potentially can efficiently be randomized using LSH techniques.
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Abstract. Seidel’s switching is a graph operation which makes a given
vertex adjacent to precisely those vertices to which it was non-adjacent
before, while keeping the rest of the graph unchanged. Two graphs are
called switching-equivalent if one can be made isomorphic to the other
one by a sequence of switches.

Jeĺınková et al. [DMTCS 13, no. 2, 2011] presented a proof that it
is NP-complete to decide if the input graph can be switched to contain
at most a given number of edges. There turns out to be a flaw in their
proof. We present a correct proof.

Furthermore, we prove that the problem remains NP-complete even
when restricted to graphs whose density is bounded from above by an
arbitrary fixed constant. This partially answers a question of Matoušek
and Wagner [Discrete Comput. Geom. 52, no. 1, 2014].

Keywords: Seidel’s switching · Computational complexity · Graph
density · Switching-minimal graphs · NP-completeness

1 Introduction

Seidel’s switching is a graph operation which makes a given vertex adjacent to
precisely those vertices to which it was non-adjacent before, while keeping the
rest of the graph unchanged. Two graphs are called switching-equivalent if one
can be made isomorphic to the other one by a sequence of switches. The class
of graphs that are pairwise switching-equivalent is called a switching class.

Hage in his PhD thesis [4, p. 115, Problem 8.5] posed the problem to charac-
terize the graphs that have the maximum (or minimum) number of edges in their
switching class. We call such graphs switching-maximal and switching-minimal,
respectively.
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Some properties of switching-maximal graphs were studied by Kozerenko [7].
He proved that any graph with sufficiently large minimum degree is switching-
maximal, and that the join of certain graphs is switching-maximal. Further, he
gave a characterization of triangle-free switching-maximal graphs and of non-
hamiltonian switching-maximal graphs.

It is easy to observe that a graph is switching-maximal if and only if its
complement is switching-minimal. We call the problem to decide if a graph is
switching-minimal Switch-Minimal.

Jeĺınková et al. [6] studied the more general problem Switch-Few-Edges –
the problem of deciding if a graph can be switched to contain at most a certain
number of edges. They presented a proof that the problem is NP-complete.
Unfortunately, their proof is not correct.

In this paper, we provide a different proof of the NP-hardness of Switch-
Few-Edges, based on a reduction from a restricted version of Max-Cut. Fur-
thermore, we strengthen this result by proving that for any c > 0, Switch-Few-
Edges is NP-complete even if we require that the input graph has density at
most c. We also prove that if the problem Switch-Minimal is co-NP-complete,
then for any c > 0, the problem is co-NP-complete even on graphs with density
at most c.

We thus partially answer a question of Matoušek and Wagner [10] posed
in connection with properties of simplicial complexes – they asked if deciding
switching-minimality was easy for graphs of bounded density. Our results also
indicate that it might be unlikely to get an easy characterization of switching-
minimal (or switching-maximal) graphs, which contributes to understanding
Hage’s question [4].

1.1 Formal Definitions and Previous Results

Let G be a graph. Then the Seidel’s switch of a vertex subset A ⊆ V (G) is
denoted by S(G,A) and is defined by

S(G,A) = (V (G), E(G) � {xy : x ∈ A, y ∈ V (G) \ A}),

where � denotes the symmetric difference of the sets. S(G,A) is also the graph
obtained from G by consecutive switching of the vertices of A (in any order).

We say that two graphs G and H are switching-equivalent (denoted by G ∼
H) if there is a set A ⊆ V (G) such that S(G,A) is isomorphic to H. The set
[G] = {S(G,A) : A ⊆ V (G)} is called the switching class of G.

We say that a graph G is (≤ k)-switchable if there is a set A ⊆ V (G) such that
S(G,A) contains at most k edges. Analogously, a graph G is (≥ k)-switchable if
there is a set A ⊆ V (G) such that S(G,A) contains at least k edges.

It is easy to observe that a graph G is (≤ k)-switchable if and only if the
complement G is

(≥ ((
n
2

) − k
))

-switchable. We may, therefore, focus on (≤ k)-
switchability only.

We examine the following problems.
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Switch-Few-Edges
Input: A graph G = (V,E), an integer k
Question: Is G (≤ k)-switchable?

Switch-Minimal
Input: A graph G = (V,E)
Question: Is G switching-minimal?

We say that a graph is switching-reducible if G is not switching-minimal,
in other words, if there is a set A ⊆ V (G) such that S(G,A) contains fewer
edges than G. For further convenience, we also define the problem Switch-
Reducible.

Switch-Reducible
Input: A graph G = (V,E)
Question: Is G switching-reducible?

Let G = (V,E) be a graph. We say that a partition V1, V2 of V is a cut
of G. For a cut V1, V2, the set of edges that have exactly one end-vertex in V1 is
denoted by cutset(V1), and the edges of cutset(V1) are called cut-edges. We let
δ(V1) denote the size of cutset(V1). When there is no danger of confusion, we
also say that a single subset V1 ⊆ V is a cut (meaning the partition V1, V \ V1).

1.2 Easy Cases

In this subsection we present several results about easy special cases of the
problems that we focus on. This complements our hardness results.

The following theorem was proved by Ehrenfeucht et al. [2] and also inde-
pendently (in a slightly weaker form) by Kratochv́ıl [8].

Theorem 1. Let P be a graph property that can be decided in time O(na) for
an integer a. Let every graph with P contain a vertex of degree at most d(n).
Then the problem if an input graph is switching-equivalent to a graph with P can
be decided in time O(nd(n)+1+max(a,2)).

The proof of Theorem 1 also gives an algorithm that works in the given time.
Hence, it also provides an algorithm for Switch-Few-Edges: in a graph with
at most k edges all vertex degrees are bounded by k. Hence, we can use d(n) = k
and a = 2 and get an O(nk+3)-time algorithm. It was further proved by Jeĺınková
et al. [6] that Switch-Few-Edges is fixed-parameter tractable; it has a kernel
with 2k vertices, and there is an algorithm running in time O(2.148k · n + m),
where m is the number of edges of the input graph. In Sect. 2, we provide a
corrected NP-completeness proof.

The following proposition states a basic relation of switching-minimality and
graph degrees.

Proposition 1 (Folklore). Every switching-minimal graph G = (V,E) on n
vertices has maximum degree at most �(n − 1)/2	.
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Proof. Clearly, if G contains a vertex v of degree greater than �(n − 1)/2	, then
S(G, {v}) has fewer edges than G, showing that G is not switching-minimal. 
�

We remark that for a given graph G we can efficiently construct a switch
whose maximum degree is at most �(n − 1)/2	; one by one, we switch vertices
whose degree exceeds this bound (in this way, the number of edges is decreased in
each step). However, the graph constructed by this procedure is not necessarily
switching-minimal.

The next proposition is an equivalent formulation of Lemma 2.5 of
Kozerenko [7], strengthening Proposition 1.

Proposition 2. A graph G on n vertices is switching-minimal if and only if for
every A ⊆ V (G), we have 2δ(A) ≤ |A|(n − |A|).

We derive the following consequence.

Proposition 3. Let G be a graph with n vertices. If the maximum vertex degree
in G is at most n

4 , then G is switching-minimal.

Proof. Let A be any subset of V (G). We observe that δ(A) = δ(V (G)\A); hence
we can assume without loss of generality that |A| ≤ n/2, and thus n−|A| ≥ n/2.

Further, as δ(A) ≤ ∑
v∈A deg(v), we have that δ(A) ≤ |A|n4 . Hence, 2δ(A) ≤

|A|(n − |A|), and the condition of Proposition 2 is fulfilled. 
�
Proposition 3 implies that Switch-Few-Edges and Switch-Minimal are

trivially solvable in polynomial time for graphs on n vertices with maximum
degree at most n

4 .
We note that in Proposition 3, the bound n

4 in general cannot be improved.
To see this, consider an arbitrary bipartite k-regular graph G on n vertices, with
partition classes X and Y = V (G)\X, and with k > n

4 . Since G can be switched
to a (n2 − k)-regular bipartite graph S(G,X), G is not switching-minimal.

2 NP-Completeness of Switch-Few-Edges

Jeĺınková et al. [6] presented a proof that the problem Switch-Few-Edges
is NP-complete. Unfortunately, there is an error in their proof (see Remark 1
on page 8). We present another proof here. The core of the original proof is a
reduction from the Max-Cut problem. Our reduction works in a similar way.
However, we need the following more special version of Max-Cut (we prove the
NP-completeness of Large-Deg-Max-Cut in Sect. 3).

Large-Deg-Max-Cut
Input: A graph G with 2n vertices such that the minimum vertex degree of G
is 2n − 4 and the complement of G does not contain triangles; an integer j
Question: Does there exist a cut V1 of V (G) with at least j cut-edges?
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Proposition 4. Let G be a graph with 2n vertices such that the minimum vertex
degree of G is 2n − 4 and the complement of G does not contain triangles. In
polynomial time, we can find a graph G′ such that |V (G′)| = 4|V (G)| and the
following statements are equivalent for every integer j:

(a) There is a cut in G with at least j cut-edges,
(b) There exists a set A ⊆ V (G′) such that S(G′, A) contains at most |E(G′)| −

16j edges.

Proof. We first describe the construction of the graph G′. For each vertex u of G
we create a corresponding four-tuple {u′, u′′, u′′′, u′′′′} of pairwise non-adjacent
vertices in G′. An edge of G is then represented by a complete bipartite graph
interconnecting the two four-tuples, and a non-edge in G is represented by 8
edges that form a cycle that alternates between the two four-tuples (see Fig. 1).

u′ u′′ u′′′ u′′′′

v′ v′′ v′′′ v′′′′

u′ u′′ u′′′ u′′′′

v′ v′′ v′′′ v′′′′

Fig. 1. The representation of non-edges and edges of G

A vertex four-tuple in G′ corresponding to a vertex of G is called an o-vertex.
A pair of o-vertices corresponding to an edge of G is called an o-edge and a pair
of o-vertices corresponding to an non-edge of G is called an o-non-edge. Where
there is no danger of confusion, we identify o-vertices with vertices of G, o-edges
with edges of G and o-non-edges with non-edges of G.

We now prove that the statements (a) and (b) are equivalent. First assume
that there is a cut V1 of V (G) with j′ cut-edges. Let V ′

1 be the set of vertices
u′, u′′, u′′′, u′′′′ for all u ∈ V1. We prove that S(G′, V ′

1) contains at most |E(G′)|−
16j′ edges.

We say that a non-edge crosses the cut V1 if the non-edge has exactly one
vertex in V1. It is clear that G′ contains 16 edges per every o-edge and 8 edges
per every o-non-edge. In S(G′, V ′

1), every o-edge corresponding to an edge that is
not a cut-edge is unchanged by the switch, because its end-o-vertices are either
both contained in V ′

1 or both in V (G) \ V ′
1 ; hence, the o-edge yields 16 edges.

Similarly, every o-non-edge corresponding to a non-edge that does not cross the
cut yields 8 edges.

Figure 2 illustrates the switches of o-non-edges and o-edges that have exactly
one end-o-vertex in V1. We can see that every o-non-edge corresponding to a
non-edge that crosses the cut yields 8 edges in S(G′, V ′

1), and that every o-edge
corresponding to a cut-edge yields 0 edges. Altogether, S(G′, V ′

1) has |E(G′)| −
16j′ edges, which we wanted to prove.
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8 edges 0 edges8 edges 16 edges

Fig. 2. Switches of an o-non-edge and of an o-edge

Now assume that there exists a set A ⊆ V (G′) such that S(G′, A) contains at
most |E(G′)| − 16j edges. We want to find a cut in G with at least j cut-edges.

We say that an o-vertex u of G′ is broken in A if A contains exactly one,
two or three vertices out of u′, u′′, u′′′, u′′′′; otherwise, we say that u is legal in
A. We say that an o-edge or o-non-edge {u, v} is broken in A if at least one of
the o-vertices u, v is broken. Otherwise, we say that {u, v} is legal in A.

If all vertices of G are legal in A, we say that A is legal. Legality is a desired
property, because for a legal set A we can define a subset VA of V (G) such that

VA = {u ∈ V (G) : {u′, u′′, u′′′, u′′′′} ⊆ A} .

The set VA then defines a cut in G. If a set is not legal, we proceed more carefully
to get a cut from it. For any vertex subset A, we say that a set A′ is a legalization
of A if A′ is legal and if A′ and A differ only on o-vertices that are broken in A.

We want to show that for every illegal set A, there exists its legalization A′

such that the number of edges in S(G′, A′) is not much higher than in S(G′, A).
To this end, we give the algorithm Legalize which for a set A finds such a legal-
ization A′. During the run of the algorithm, we keep a set A′′. In the beginning
we set A′′ := A and in each step we change A′′ so that more o-vertices are legal.

We define some notions needed in the algorithm. Let v be an o-vertex and
consider the o-vertices that are adjacent to v (through an o-edge); we call them
o-neighbors of v. The o-neighbors of v are four-tuples of vertices and some of
those vertices are in A′′, some of them are not. We define dif(v) as the number
of such vertices that are in A′′ minus the number of such vertices that are not
in A′′. (Note that dif(v) is always an even number, because the total number of
vertices in o-neighbors is even. If all o-neighbors were legal, then dif(v) would
be divisible by four.)

The algorithm is given in Fig. 3. As in the last step the algorithm legalizes all
remaining broken o-vertices, it is clear that the set A′′ output by the algorithm
is a legalization of A. We prove that |E(S(G′, A′′))| − |E(S(G′, A))| ≤ 7.

We need to introduce more terminology. A pair of vertices of G′ which belong
to the same o-vertex is called a v-pair. A pair of vertices of G′ which belong to
different o-vertices that are adjacent (in G) is called an e-pair. A pair of vertices
of G′ which belong to different o-vertices that are non-adjacent (in G) is called
an n-pair. It is easy to see that any edge of G′ or S(G′, A′′) is either a v-pair, an
e-pair or an n-pair. We call such edges v-edges, e-edges and n-edges, respectively.

We say that a broken o-vertex v is asymmetric if it contains an odd number
of vertices of A′′; we say that a broken o-vertex is symmetric if it contains two
vertices out of A′′.
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A
A′′ := A

v |dif(v)| ≥ 4 dif(v) ≥ 4
A′′ := A′′ \ {v′, v′′, v′′′, v′′′′} A′′ := A′′ ∪ {v′, v′′, v′′′, v′′′′}

v
v A′′ dif(v) = 2 A′′ :=

A′′ \ {v′, v′′, v′′′, v′′′′}
v

v A′′ dif(v) = −2 A′′ :=
A′′ ∪ {v′, v′′, v′′′, v′′′′}

u v

A1 := (A′′ ∪ {u′, u′′, u′′′, u′′′′}) \ {v′, v′′, v′′′, v′′′′},
A2 := (A′′ ∪ {v′, v′′, v′′′, v′′′′}) \ {u′, u′′, u′′′, u′′′′}.

|E(S(G′, A1))| < |E(S(G′, A2))| A′′ := A1 A′′ := A2

A′′

Fig. 3. The algorithm legalize

To measure how the number of edges of S(G′, A′′) changes during the run of
the algorithm, we define a variable c(A′′) which we call the charge of the graph
S(G′, A′′). Before the first step we set c(A′′) := |E(S(G′, A))|. After a step of
the algorithm, we update c(A′′) in the following way.

– For every v-pair or e-pair that was an edge of S(G′, A′′) before the step and
is no longer an edge of S(G′, A′′) after the step, we decrease c(A′′) by one.

– For every v-pair or e-pair that was not an edge of S(G′, A′′) before the step
and that has become an edge of S(G′, A′′) after the step, we increase c(A′′)
by one.

– For every o-vertex v that was legalized in the step and is incident to an o-non-
edge, we change c(A′′) in the following way:

• If v was symmetric, we increase c(A′′) by 2.5 for every o-non-edge incident
to v;

• If v was asymmetric, we increase c(A′′) by 1.5 for every o-non-edge inci-
dent to v.

To explain the last two points, we observe how the number of n-edges
increases after legalizing an o-vertex. By analyzing all cases of o-non-edges with
one or two broken end-o-vertices, we get that there are four cases where the
o-non-edges have less than 8 n-edges before legalization: either 6 or 4 n-edges. In
these cases, both end-o-vertices are broken. If there are only 4 n-edges, at least
one of the end-o-vertices is symmetric. After one end-o-vertex is legalized, the
number of n-edges increases by 2 or 4. When the second end-o-vertex is legalized,
the number of n-edges does not increase for this particular o-non-edge.
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After both end-o-vertices are legalized, the charge has been changed in the
following way: if both end-o-vertices were symmetric, we have increased the
charge by 5. If one of them was symmetric and the other one was asymmetric,
we have increased the charge by 4. Finally, if both were asymmetric, we have
increased the charge by 3. In all these cases, the increase is an upper bound on
the number of contributed n-edges.

Further, every v-edge or e-edge that has appeared or disappeared during the
run of the algorithm is counted immediately after the corresponding step. Hence,
we have proved the following claim.

Claim 1. At the end of the algorithm we have that c(A′′) ≥ |E(S(G′, A′′))|.
Claim 2. After every step of the algorithm except for the last one, the charge
c(A′′) is decreased. After the last step, the charge is increased by at most 7.
Hence, c(A′′) ≤ |E(S(G′, A))| + 7.

To prove Claim 2, we count how the charge changes after each step. Due
to space limitations, the proof of Claim 2 is omitted; to give an insight into
the proof, we remark that thanks to the assumptions on the input graph G,
each o-vertex is incident to at most three o-non-edges, which limits the charge
increase – without the assumption, the charge could increase largely due to a
single step of the algorithm. Further, thanks to the assumption that the comple-
ment of G does not contain triangles, the number of o-vertices legalized in Step
5 (and hence the charge increase) is bounded easily.

By Claims 1 and 2 we have that |E(S(G′, A′′))| ≤ |E(S(G′, A))| + 7, and
hence A′′ is the sought legalization of A.

We continue the proof of Proposition 4. We have already argued that a
legal set A′′ defines a subset VA′′ of V (G), and hence a cut in G. Assume that
cutset(VA′′) has j′ edges. From the proof of the first implication of Proposition 4
we know that the number of edges in S(G′, A′′) can be expressed as |E(G′)|−16j′.

On the other hand, we have proved that the number of edges in S(G′, A′′) is
at most |E(G′)| − 16j + 7. We get that |E(G′)| − 16j′ ≤ |E(G′)| − 16j + 7, and
hence j′ ≥ j − 7/16. As both j and j′ are integers, we have that j′ ≥ j. Hence,
cutset(VA′′) has at least j edges, and Proposition 4 is proved. 
�
Remark 1. As we noted before, our proof is a corrected version of an erroneous
proof presented in [6]. The argument of the original (attempted) proof was based
on a similar construction as our proof of Proposition 4, except that each o-vertex
was formed by two vertices rather than four, an o-edge was represented by a copy
of K2,2 rather than K4,4, and an o-non-edge was represented by two disjoint
edges. It was then incorrectly claimed in [6, Lemma 4.3] that for any graph G,
there is a switching-minimal legal switch of the corresponding graph G′. The
claim is false, as can be seen e.g. by taking the graph G consisting of two disjoint
triangles, where G′ has 42 edges, the optimal legal switch has 26 edges, but there
are illegal switches with just 18 edges.

Theorem 2. Switch-Few-Edges is NP-complete.
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Proof. Theorem 3 in the next section gives the NP-completeness of Large-
Deg-Max-Cut. Further, by Proposition 4, an instance (G, j) of Large-Deg-
Max-Cut can be transformed into an instance (G′, j′) of Switch-Few-Edges
such that there is a cut in G with at least j cut-edges if and only if G′ is (≤ j′)-
switchable. The transformation works in polynomial time.

Finally, it is clear that the problem Switch-Few-Edges is in NP. 
�

3 The NP-Completeness of Large-Deg-Max-Cut

Let G be a graph with 2n vertices. A bisection of G is a partition S1, S2 of V (G)
such that |S1| = |S2| = n (hence, a bisection is a special case of a cut). The size
of cutset(S1) is called the size of the bisection S1, S2. A minimum bisection of
G is a bisection of G with minimum size.

Garey et al. [3] proved that, given a graph G and an integer b, the problem
to decide if G has a bisection of size at most b is NP-complete (by a reduction of
Max-Cut). Their formulation is slightly different from ours – two distinguished
vertices must be each in one part of the partition, and the input graph does
not have to be connected. However, their reduction from Max-Cut (see [3, pp.
242–243]) produces only connected graphs as instances of the bisection problem,
and it is immediate that the two distinguished vertices are not important in the
proof. Hence, their proof gives also the NP-completeness of the following version
of the problem.

Connected-Min-Bisection
Input: A connected graph G with 2n vertices, an integer b
Question: Is there a bisection S1, S2 of V (G) such that cutset(S1) contains
at most b edges?

From the NP-completeness of Min-Bisection, Bui et al. [1] proved the NP-
completeness of Min-Bisection restricted to 3-regular graphs (as a part of a
more general result, see [1, proof of Theorem 2]). We use their result to prove
the NP-completeness of Large-Deg-Max-Cut.

Large-Deg-Max-Cut
Input: A graph G with 2n vertices such that the minimum vertex degree of G
is 2n−4 and the complement of G is connected and does not contain triangles;
an integer j
Question: Does there exist a cut V1 of G with at least j cut-edges?

Lemma 1. Let G be a connected 3-regular graph on 2n vertices. Let b be the
size of the minimum bisection in G and let c be the size of the maximum cut
in G. Then b = n2 − c.

Due to space constraints, the proof of Lemma 1 is omitted.

Theorem 3. Large-Deg-Max-Cut is NP-complete.
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Proof. Let (G, b) be an instance of Connected-Min-Bisection. We use the
construction of Bui et al. [1, proof of Theorem 2]. Their first step is to construct
from an instance (G, b) of Min-Bisection a 3-regular graph G∗ such that G
has a minimum bisection of size b if and only if G∗ has a minimum bisection
of size b. Further, it is immediate from their construction that G∗ contains no
triangles, and if G is connected, then G∗ is connected as well. Moreover, G∗ has
an even number of vertices.

We see that G∗ fulfills the conditions of an instance of Large-Deg-Max-
Cut. By Lemma 1 we know that G∗ has a minimum bisection of size b if and
only if G∗ has a maximum cut of size m2 − b.

Altogether, G has a minimum bisection of size b if and only if G∗ has a
maximum cut of size m2 − b. Hence, (G∗,m2 − b) is an equivalent instance
of Large-Deg-Max-Cut. To finish the proof that Large-Deg-Max-Cut is
NP-complete, we observe that Large-Deg-Max-Cut is in NP. 
�

4 Switching of Graphs with Bounded Density

The density of a graph G is defined as D(G) = |E(G)|/(|V (G)|
2

)
.

In connection with properties of simplicial complexes, Matoušek and
Wagner [10] asked if deciding switching-minimality was easy for graphs of
bounded density. We give a partial negative answer by proving that the problem
Switch-Few-Edges stays NP-complete even for graphs of density bounded by
an arbitrarily small constant. This is in contrast with Proposition 3, which shows
that any graph G with maximum degree at most |V (G)|/4 is switching-minimal.
The core of our argument is the following proposition.

Proposition 5. Let G be a graph, let k be an integer, and let c be a fixed con-
stant in (0, 1). In polynomial time, we can find a graph G′ and an integer k′ such
that

1. D(G′) ≤ c,
2. G′ is (≤ k′)-switchable if and only if G is (≤ k)-switchable,
3. G′ is switching-minimal if and only if G is switching-minimal, and
4. |V (G′)| = O(|V (G)|).
Proof. Let n = |V (G)| and let N = max

{
n,

⌈
3n
4c

⌉}
. We construct the graph G′

in the following way. Let V = V (G). Then V (G′) = V ∪ Y ∪ Z, where Y is a
set of N vertices and Z is a set of N more vertices, and E(G′) = {{v1, v2} : v1 ∈
Y, v2 ∈ V } ∪ E(G).

We prove that G′ fulfills the conditions of Proposition 5. It is easy to see that
Condition 4 holds and that G′ can be obtained in polynomial time. We prove
that Conditions 2 and 3 hold, too.

Assume that G is switching-reducible, i.e., there exists a set A ⊆ V such
that S(G,A) contains fewer edges than G. Let us count the number of edges in
S(G′, A).
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It is easy to see that if we switch a subset of V in G′, the number of edges
whose one endpoint is outside V is unchanged, and the number of edges with
both endpoints outside V remains zero. We also observe that S(G′, A)[V ] (the
induced subgraph of S(G′, A) on the vertex subset V ) is equal to S(G,A). Hence,
S(G′, A) has fewer edges than G′, showing that G′ is switching-reducible.

Moreover, if S(G,A) has l edges for an integer l, then S(G′, A) has l + nN
edges. Thus, if G is (≤ k)-switchable, we have that G′ is (≤ k +nN)-switchable.

Now assume that G′ is switching-reducible, i.e., there exists a set A ⊆ V (G′)
such that S(G′, A) has fewer edges than G′. If A ⊆ V , we have that S(G,A) has
fewer edges than G, and Condition 3 is satisfied. On the other hand, if A 
⊆ V ,
we use the following claim.

Claim 3. Let A be a subset of V (G′) and let A′ = A ∩ V . Then the number of
edges in S(G′, A′) is less than or equal to the number of edges in S(G′, A).

Due to space constraints, the proof of Claim 3 is omitted. As a consequence
of Claim 3, if G′ is switching-reducible, then it can be reduced by switching a
set A′ ⊆ V . The same set A′ then reduces G, and Condition 3 of the proposition
holds. Analogically, if G′ can be switched to contain L edges for an integer
L, then G can be switched to contain L − nN edges. Hence, we have proved
Condition 2 with k′ = k + nN .

It remains to check Condition 1. By definition, the density of G′ is

D(G′) =
2|E(G′)|

(2N + n)(2N + n − 1)
≤ 2

((
n
2

)
+ nN

)

(2N + n)(2N + n − 1)

≤ n2 + 2nN

4N2
≤ 3nN

4N2
=

3n

4N
≤ c.

This completes the proof. 
�
Proposition 5 allows us to state a stronger version of Theorem 2 for the

special case of graphs with bounded density.

Theorem 4. For every c > 0, the problem Switch-Few-Edges is NP-
complete for graphs of density at most c.

Proof. This follows from Theorem 2 and Proposition 5. 
�

5 Concluding Remarks

5.1. We have not yet proved that the problem Switch-Reducible is NP-
complete (and hence, Switch-Minimal is co-NP-complete). Note however, that
if Switch-Reducible is NP-complete, then by Proposition 5 it remains NP-
complete on graphs of bounded density.

5.2. Lindzey [9] noticed that it is possible to speed-up several graph algo-
rithms using switching to a lower number of edges – he obtained up to super-
polylogarithmic speed-ups of algorithms for diameter, transitive closure, bipar-
tite maximum matching and general maximum matching. However, he focuses
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on switching digraphs (with a definition somewhat different to Seidel’s switching
in undirected graphs), where the situation is in sharp contrast with our results –
a digraph with the minimum number of edges in its switching-class can be found
in O(n + m) time.

5.3. It has been observed (cf. e.g. [2]) that for a graph property P, the complexity
of deciding P is independent of the complexity of deciding if an input graph can
be switched to a graph possessing the property P. Switching to few edges thus
adds another example of a polynomially decidable property (counting the edges
is easy) whose switching version is hard. Previously known cases are the NP-
hardness of deciding switching-equivalence to a regular graph [8] and deciding
switching-equivalence to an H-free graph for certain specific graphs H [5].

5.4. Let d > 0 be a constant. What can we say about the complexity of
Switch-Reducible and Switch-Few-Edges on graphs of maximum degree
at most dn? If d ≤ 1

4 , the two problems are trivial by Proposition 3. On the
other hand, for d ≥ 1

2 the restriction on maximum degree becomes irrelevant, in
view of Proposition 1. For any d ∈ ( 14 , 1

2 ), the complexity of the two problems
on instances of maximum degree at most dn is open.
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Abstract. Recent developments on the complexity of the non-commuta-
tive determinant and permanent [Chien et al. STOC 2011, Bläser ICALP
2013, Gentry CCC 2014] have settled the complexity of non-commuta-
tive determinant with respect to the structure of the underlying algebra.
Continuing the research further, we look to obtain more insights on hard
instances of non-commutative permanent and determinant.

We show that any Algebraic Branching Program (ABP) computing
the Cayley permanent of a collection of disjoint directed two-cycles with
distinct variables as edge labels requires exponential size. For graphs
where every connected component contains at most six vertices, we show
that evaluating the Cayley permanent over any algebra containing 2× 2
matrices is #P complete.

Further, we obtain efficient algorithms for computing the Cayley per-
manent/determinant on graphs with bounded component size, when ver-
tices within each component are not far apart from each other in the Cay-
ley ordering. This gives a tight upper and lower bound for size of ABPs
computing the permanent of disjoint two-cycles. Finally, we exhibit more
families of non-commutative polynomial evaluation problems that are
complete for #P.

Our results demonstrate that apart from the structure of underlying
algebras, relative ordering of the variables plays a crucial role in deter-
mining the complexity of non-commutative polynomials.

1 Introduction

Background. The study of algebraic complexity theory was initiated by Valiant
in his seminal paper [18] where he showed that computing the permanent of
an integer matrix is #P complete. Since then, separating the complexities of
permanent and determinant has been the focal point of this research area which
led to the development of several interesting results and techniques. (See [7,17]
for good surveys on these topics.)

The underlying ring plays an important role in algebraic complexity theory.
While the research focused mainly on the permanent vs determinant problem
over fields and commutative rings there has also been an increasing amount of
interest over non-commutative algebras. Nisan [16] was the first to consider the
complexity of these two polynomials over non-commutative algebras. He showed
c© Springer International Publishing Switzerland 2016
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that any non-commutative arithmetic formula over the free K algebra computing
the permanent or determinant of an n × n matrix requires size 2Ω(n) where K

is any field. Later on, this was generalized to other classes of algebras in [8].
More recently, Limaye, Malod and Srinivasan [14] generalized Nisan’s technique
to prove lower bounds against more general classes of non-commutative circuits.
Nisan’s work left the problem of determining the arithmetic circuit complexity
of non-commutative determinant as an open question.

In a significant breakthrough, Arvind and Srinivasan [3] showed that com-
puting the Cayley determinant is #P hard over certain matrix algebras. Finally
this question was settled by Bläser [6] who classified such algebras. Further,
Gentry [13] simplified these reductions.

Motivation. Though the studies in [3,6] highlight the role of the underlying alge-
bra in determining the complexity of the non-commutative determinant they do
not shed much light on the combinatorial structure of non-commutative polyno-
mials that are #P hard. One could ask: Does the hardness stem from the underly-
ing algebra or are there inherent properties of polynomials that make them#P hard
in the non-commutative setting? Our results in this paper indicate that relative
ordering among the variable in the monomials constituting a polynomial f plays
an important role in the hardness of certain non-commutative polynomials.

As a first step, we look for polynomials that are easier to compute than the
determinant in the commutative setting and whose non-commutative versions are
#P hard. Natural candidate polynomials are the elementary symmetric polynomi-
als and special cases of determinant/permanent. One way to obtain special cases of
determinant/permanentwould be to restrict the structure of the underlying graph.
For example, let G be a directed graph consisting of n cycles (0, 1), (2, 3), . . . ,
(2n − 2, 2n − 1) of length two with self loops where each edge is labeled by a dis-
tinct variable. The permanent of G, perm(G), is given by

∏n−1
i=0 (x2i,2ix2i+1,2i+1 +

x2i,2i+1x2i+1,2i) where xi,j is the variable labeling of the edge (i, j). This is one of
the easiest to compute but non trivial special case of permanent.

Our Results. We study the complexity of the Cayley permanent (C-perm)
on special classes of graphs. The Cayley permanent (Cayley determinant) are
given by

∑
σ∈Sn

x1,σ(1) · · · xn,σ(n) (
∑

σ∈Sn
sgn(σ)x1,σ(1) · · · xn,σ(n)) respectively.

We exhibit a family of graphs Gn (consisting of a collection of disjoint two-cycles)
for which any algebraic branching program (ABP) computing the C-perm must
have size at least 2Ω(n) (Corollary 2). Further, we exhibit a parameter cut(G) (see
Sect. 4 for the definition) for a collection G of disjoint two-cycles on n vertices such
that any ABP computing C-perm(G) has size 2Θ(cut(G)) (Theorem 3). This makes
the lower bound in Corollary 2 tight up to a constant factor in the exponent. It
should be noted that our results also hold for the case of the Cayley determinant
(C-det) on such graphs. We also observe that for graphs of component size greater
or equal to six, evaluating C-perm is #P complete (Theorem 5).

On the positive side, for graphs where each strongly connected component
has at most c vertices we obtain an ABP of size nO(c)cnear(G) computing the
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C-perm (Theorem 1) where near(G) is a parameter (see Definition 1) depending
on the labeling of vertices on the graph.

We demonstrate a non-commutative variant of the elementary symmetric
polynomial that is #P hard over certain algebras (Theorem 7).1 Finally, we
show that computing C-perm on rank one matrices is #P hard.

Related Results. The study of commutative permanent on special classes of
matrices was initiated by Barvinok [5] who gave a polynomial time algorithm for
computing the permanent of rank one matrices over a field. More recently, Flarup
et al. [11] showed that computing the permanent of bounded tree-width graphs
can be done by polynomial size formulas. This was further extended by Flarup
and Lyaudet [12] to other width measures on graphs. Datta et al. [9] showed
that computing the permanent on planar graphs is as hard as the general case.

Comparison to Other Results. Results reported in [3,6,13] highlight the
importance of the underlying algebra and characterizes algebras for which
C-det is #P hard. In contrast, our results shed light on the role played by
the order in which vertices are labeled in a graph. For example, the commu-
tative permanent of disjoint two-cycles has a depth three formula given by∏n−1

i=0 (x2i,2ix2i+1,2i+1 +x2i,2i+1x2i+1,2i) whereas C-perm on almost all orderings
of vertices requires exponential size ABPs.

All proofs that have been omitted due to space restrictions can be found in
the full version of the paper [10].

2 Preliminaries

For definitions of complexity classes the reader is referred to any of the standard
text books on Computational Complexity Theory, e.g., [1]. Let K be a field
and S = K[x1, . . . , xn] be the ring of polynomials over K in n variables. Let R
denote a non-commutative ring with identity and associativity property. Unless
otherwise stated, we assume that R is an algebra over K and contains the algebra
of n × n matrices with entries from K as a subalgebra.

An arithmetic circuit is a directed acyclic graph where every vertex has an in-
degree either zero or two. Vertices of zero in-degree are called input gates and are
labeled by elements in R∪{x1 . . . , xn}. Vertices of in-degree two are called internal
gates and have their labels from {×,+}. An arithmetic circuit has at least one ver-
tex of out degree zero called an output gate. We assume that an arithmetic circuit
has exactly one output gate. A polynomial pg in R[x1, . . . , xn] can be associated
with every gate g of an arithmetic circuit defined in an inductive fashion. Input
gates compute their label. Let g be an internal gate with left child f and right
child h, then pg = pf op ph where op is the label of g. The polynomial computed
by the circuit is the polynomial at one of the output gates and denoted by pC . The
size of an arithmetic circuit is the number of gates in it and is denoted by size(C).
1 One of the anonymous reviewers suggested that this result follows from a folk-

lore fact. However since there is no explicit reference for this folklore fact, we have
included the proof for completeness.
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We restrict ourselves to circuits where coefficients of the polynomials computed
at every gate can be represented in at most poly(size(C)) bits.

An algebraic branching program (ABP) is a directed acyclic graph with two
special nodes s, t and edges labeled by variables or constants in R. The weight
of a path is the product of the weights of its edges. The polynomial computed
by an ABP P is the sum of the weights of all s � t paths in P , and is denoted
by pP . We denote by the size of an ABP the number of vertices.

Over a non-commutative ring, there are many possibilities for defining the
determinant/permanent of a matrix depending on the ordering of the variables
(see for example [4]). We will use the well known definitions of the Cayley deter-
minant and Cayley permanent. Let X = (xi,j)1≤i,j≤n be an n × n matrix with
distinct variables xi,j . Then

C-det(X) =
∑

σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n); and C-perm(X) =
∑

σ∈Sn

x1,σ(1) · · ·xn,σ(n).

In the above, Sn denotes the set of all permutations on n symbols. Note that
C-det and C-perm can also be seen as functions taking n×n matrices with entries
from R as input. Given a weighted directed graph G on n vertices with weight
xi,j for the edge (i, j) ∈ E(G), the Cayley permanent of G denoted by C-perm(G)
is the permanent of the weighted adjacency matrix of G. It is known that [7]
C-perm(G) is the sum of the Cayley weights of all cycle covers of G.

The tensor product of two matrices A,B ∈ K
n×n with entries ai,j , bi,j is

denoted by A ⊗ B and is given by

A ⊗ B =

⎛

⎜
⎝

a1,1B · · · a1,nB
...

. . .
...

an,1B · · · an,nB

⎞

⎟
⎠ .

Let P be an ABP over disjoint sets of variables X ∪ Y , with |X| = n and
|Y | = m. Let pP (X,Y ) be the polynomial computed by P . P is said to be read
once certified [15] in Y if there are numbers 0 = i0 < i1 < · · · < im where im is
at most the length of P and there is a permutation π ∈ Sm such that between
layers from ij to ij+1 no variable other than yπ(j+1) from the set Y appears as a
label. We use the following result from [15]. The proof given in [15] works only
in the commutative setting, see [10] for a proof of the non-commutative case.

Proposition 1 [15]. Let P be an ABP on X ∪ Y read-once certified in Y .
Then the polynomial

∑
(e1,e2,...,em)∈{0,1}m pP (X, e1, . . . , em) can be computed by

an ABP of size 2size(P )).

Let A be a non-deterministic s-space bounded algorithm that uses non-de-
terministic bits in a read-once fashion and outputs a monomial on each of
the accepting paths. We assume that a non-commutative monomial is output
as a string in a write-only tape and non-deterministic paths are represented
by binary strings e ∈ {0, 1}m, m ≤ 2O(s). The polynomial pA computed by
A is the sum of the monomial output on each of the accepting paths of A,
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i.e., p(x1, . . . , xn) =
∑

e A(x1, . . . , xn, e), where the sum is taken over all accept-
ing paths e of A, and A(x1, . . . , xn, e) denotes the monomial output along path
represented by e.

Proposition 2 (Folklore). Let A(X) be an s-space bounded non-deterministic
algorithm as above. There is a non-commutative ABP P of size 2O(s) that com-
putes the polynomial pA(X), the polynomial computed by A(X).

3 An Algorithm for Cayley Permanent

In this section, we give an algorithm for C-perm that is parameterized by the
maximum difference between labelings of vertices in individual components.

In what follows, we identify the vertices of a graph with the set [n]. A directed
graph G on n vertices is said to have component size bounded by c if every strongly
connected component of G contains at most c vertices where c > 0. We assume
that edges of G are labeled by distinct variables. Firstly, we define a parameter
that measures the closeness of labelings in each component.

Definition 1. Let G be a directed graph. The nearness parameter near(C) of a
strongly connected component C of G is defined as near(C) = maxi,j∈C |i − j|.
The nearness parameter of G is defined as near(G) = maxC near(C), where the
maximum is taken over the set of all strongly connected components in G.

Theorem 1. Let G be a directed graph with component size bounded by c and
edges labeled by distinct variables. Then there exists an ABP of size nO(c)cnear(G)

computing the Cayley permanent of the adjacency matrix of G.

Proof. For an edge (i, j) ∈ E(G), let xi,j denote the variable label on (i, j). Let
AG be the weighted adjacency matrix of G. Note that, the Cayley permanent of
AG equals the sum of weights of cycle covers in G where the weight of a cycle
cover γ is the product of labels of edges in γ multiplied in the Cayley order.

We describe a non-deterministic small-space bounded procedure P that
guesses a cycle cover γ in G and outputs the product of weights of γ with respect
to the Cayley ordering as a string of variables. Additionally, we ensure that the
algorithm P uses the non-deterministic bits in a read-once fashion, and by the
closure property of ABP under read-once exponential sums (c.f. Proposition 1),
we obtain the required ABP. Suppose C1, . . . , Cr are the strongly connected
components of G, sorted in the ascending order of the smallest vertex in each
component. Then any cycle cover γ of G can be decomposed into cycle cover γi

of the component Ci. The only difficulty in computing the weight of γ is the Cay-
ley ordering of the variables. However, with a careful implementation, we show
that this can be done in space O(log c · near(G) + log n). We represent a cycle
cover in G as a permutation γ where γ(i) is the successor of vertex i in the cycle
cover represented by γ. We begin with the description of the non-deterministic
procedure P . Let T represent the set of vertices v in the partial cover that is
being built by the procedure where the weight of the edge going out of v is not
yet output, and pos the current position going from 1 to n. Let Acc(G) be the
sum of the terms output by the following algorithm on all accepting paths.
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1. Initialize pos := 1, T := ∅, γ := the cycle cover of the empty graph, f = 1.
2. For 1 ≤ i ≤ r repeat steps 3 & 4.
3. Non-deterministically guess a cycle cover γ′ in Ci, and set γ = γ � γ′, T =

T ∪ V (Ci) where V (Ci) is the set vertices in Ci.
4. While there is a vertex k ∈ T with k = pos do the following:

Set f = f · xk,γ(k); pos := pos + 1; and T := T \ {k}.
5. If pos = n, then output f and accept.

Claim. Acc(G) = C-perm(G). Moreover, the algorithm P uses O(log c ·near(G)+
log n) space, and is read-once on the non-deterministic bits.

Proof (of the Claim). Recall that a permutation γ ∈ Sn is a cycle cover of G if
and only if it can be decomposed into vertex disjoint cycle covers γ1, . . . , γr of
the strongly connected components C1, . . . , Cr in G. Thus Step 3 enumerates all
possible cycle covers in G. Also, the weights output at every accepting path are
in the Cayley order.

We have T = {k | pos < k and k occurs in the components already explored }.
Firstly, we argue that at any point in time in the algorithm, |T | ≤ near(G) + c.
Suppose the algorithm has processed components up to Ci and is yet to process
Ci+1. Let μ = maxv∈T v. Since the components are in ascending order with
respect to the smallest vertex in them, the component Cj with μ ∈ Cj must have
near(Cj) ≥ μ − pos. Thus μ − pos ≤ near(G). Also, just before step 3 in any itera-
tion, for any v ∈ T , we have pos < v ≤ μ and hence |T | ≤ μ−pos+c ≤ near(G)+c.

Note that it is enough to store the labels of the vertices in T and the
choice γ(v) made during the non-deterministic guess for each v ∈ T and hence
O(|T | log n) additional bits of information needs to be stored. However, we will
show that it is possible to implement the algorithm without explicitly remem-
bering the vertices in T and using only O(|T | log c) additional bits in memory.
Suppose that the vertices in T are ordered as they appear in C1, C2, . . . , Cr where
vertices within a component are considered in the ascending order of their labels.
Let B be a vector of length near(G) + c where each entry Bj is log c bits long
which indicates the neighbour of the jth vertex in T . Now, we show how to
implement step 4 in the procedure using B as a data structure for T . To check if
there is a k ∈ T with k = pos, we can scan the components from C1, . . . , Ci and
check if the vertex assigned to pos occurs in one of the components. Remember
that γ(k) is the successor of k in the cycle cover γ. To obtain γ(k) from B, we
need to know the number j of vertices v that appear in components C1, . . . , Ci

such that v ≥ pos and that occur before k. Then γ(k) = Bj . Once Bj is used, we
remove Bj from B and shift the array Bj+1, . . . Bnear(G)+c by one index towards
the left. Further, we can implement step 3 by simply appending the information
for V (Ci) given by γ′ to the right of the array B. We require at most O(c log n)
bits of space guessing a cycle cover γi for component Ci which can be re-used
after the non-deterministic guessing of γi is complete. Thus the overall space
requirement of the algorithm is bounded by O(log c · (near(G) + c) + c log n).

By Proposition 2, we get an ABP P computing a polynomial pG(X,Y ) such that
C-perm(G) =

∑
e1,...,em∈{0,1} pG(X, e), m = O(c log n). Combining the above
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algorithm with the closure property of algebraic branching programs over read-
once variables given by Proposition 1, we get a non-commutative arithmetic
branching program computing C-perm(G). It can be seen that size of the resulting
branching program is at most 2O((c log c+log c·near(G))+c log n) = nO(c) · cnear(G) for
large enough n.

Corollary 1. Let G be as in Theorem 1. There is an ABP of size nO(c)cnear(G)

computing the Cayley determinant of G.

4 Unconditional Lower Bound

We now show that any branching program computing the non-commutative
permanent of directed graphs with component size 2 must be of exponential
size. This shows that the upper bound in Theorem 1 is tight up to a constant
factor in the exponent, however, with a different but related parameter. All our
lower bound results hold for free algebras over any field K.

Our proof crucially depends on Nisan’s [16] partial derivative technique. We
begin with some notations following his proof. Let f be a non-commutative
degree d polynomial in n variables. Let B(f) denote the smallest size of a
non-commutative ABP computing f . For k ∈ {0, . . . , d} let Mk(f) be the
matrix with rows indexed by all possible sequences containing k variables and
columns indexed by all possible sequences containing d−k variables (repetitions
allowed). Hence the matrix has dimension nk × nd−k. The entry of Mk(f) at
(xi1 . . . xik

, xj1 . . . xjd−k
) is the coefficient of the monomial xi1 · · · xik

·xj1 · · · xjd−k

in f . Nisan established the following result:

Theorem 2 [16]. For any homogeneous polynomial f of degree d, we have
B(f) =

∑d
k=0 rank(Mk(f)).

We prove lower bounds for the Cayley permanent of graphs with every
strongly connected component of size exactly 2, i.e., each strongly connected
component being a two-cycle with self loops on the vertices. Note that any col-
lection of n/2 vertex disjoint two-cycles can be viewed as a permutation π ∈ Sn

consisting of disjoint transpositions and that π is an involution. Conversely, any
involution π on n elements represents a graph Gπ with connected component
size 2.

For a permutation π ∈ Sn let the cut at i denoted by Ci(π) be the set of
pairs (j, π(j)) that cross i, i.e., Ci(π) = {(j, π(j)) | i ∈ [j, π(j)] ∪ [π(j), j] }. The
cut parameter cut(π) of π is defined as cut(π) = max1≤k≤n |Ck(π)|. Let G be a
collection of vertex disjoint 2-cycles denoted by (a1, b1), . . . , (an/2, bn/2) where n
is even. The corresponding involution is πG = (a1, b1) · · · (an/2, bn/2). By abusing
the notation a bit, we let cut(G) = cut(πG). Without loss of generality, assume
that ai < bi, and a1 < a2 < · · · < an/2. Firstly, we note that cut(π) is bounded
by near(G).

Lemma 1. For any collection of disjoint 2-cycles G on n vertices, cut(π) ≤
near(G) where π is the involution represented by G.
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Further, we note that the upper bound given in Theorem 1 holds true even
if we consider cut(G) instead of near(G).

Lemma 2. Let G be a collection of disjoint 2-cycles and self loops where every
edge is labeled by a distinct variable or a constant from R. Then there is an ABP
of size 2O(cut(G))n2 computing the Cayley permanent of G.

Lemma 3. Let G be a collection of � disjoint two-cycles described by the involu-
tion π and self loops at every vertex with edge labeled by distinct variables. Then
M�(C-perm(G)) contains I⊗t

2 as a sub-matrix where t = maxk |Ck(π)|, A⊗t is
the tensor product of A with itself t times and I2 is the 2 × 2 identity matrix.

Proof. Let k ∈ [�], and r = |Ck(π)| ≤ �. Let Ck(π) = {(ai1 , bi1), . . . , (air
, bir

)}
be such that aij

≤ k ≤ bij
for all j. Let Gk be the graph restricted to involutions

in Ck(π). By induction on m, we argue that Mr(C-perm(Gk)) contains I⊗r
2 as

a sub-matrix. The lemma would then follow since Mr(C-perm(Gk)) is itself a
sub-matrix of M�(C-perm(G)).

We begin with r = 1 as the base case. Consider the transposition (aij
, bij

),
with aij

≤ k ≤ bij
. The corresponding two cycle has four edges. Let fij

be
the Cayley permanent of this graph then M1(fij

) has the 2 × 2 identity matrix
as a sub-matrix. Let us dwell on this simple part. For ease of notation let the
variables corresponding to the self loops be given by xa, xb for (aij

, aij
) and

(bij
, bij

) respectively and the edge (aij
, bij

) by x(a,b) and the edge (bij
, aij

) by
xb,a. Now our matrix has monomials xa, xa,b as rows and xb, xb,a as columns. We
can ignore the other orderings as these will always be zero. As the valid cycle
covers are given by xaxb and xa,bxb,a the proof is clear.

For the induction step, suppose r > 1. Suppose a1 < a2 < · · · < ar. Let G′
k be

the graph induced by Ck(π)\(a1, b1). Let M ′ = Mr−1(C-perm(G′
k)). The rows of

M ′ are labeled by monomials consisting of variables with first index ≤ k and the
columns of M ′ are labeled by monomials consisting only of variables with first
index > k. Let M = Mr(C-perm(Gk)). M can be obtained from M ′ as follows:
Make two copies of the row labels of M ′, the first one with monomials pre-
multiplied by xa1,a1 , and the second pre-multiplied by xa1,b1 . Similarly, make two
copies of the columns of M ′, the first by inserting xb1,b1 to the column labels of
M ′ at appropriate position, and then inserting xb1,a1 similarly. Now, the matrix
M can be viewed as two copies of M ′ that are placed along the diagonal. Thus
M = M ′ ⊗ I2, combining this with Induction Hypothesis completes the proof.

Remark 1. It should be noted that the ordering of the variables is crucial in the
above argument. If a1, b1 < k in the above, then rank(M) = rank(M ′).

Theorem 3. Let G be a collection of disjoint two cycles described by the invo-
lution π and self loops at every vertex, with edges labeled by distinct variables.
Then any non-commutative ABP computing the Cayley permanent on G has size
at least 2Ω(cut(G)).

Let π = (a1, b1) · · · (an/2, bn/2), a1 < a2 < · · · < an/2 be an involution. Then
Gπ is the set of 2-cycles (a1, b1), . . . , (an/2, bn/2) and self loops at every vertex.
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Corollary 2. Let G be a collection of disjoint two cycles described by the involu-
tion π and self loops at every vertex, with edges labeled by distinct variables. Then
B(C-perm(G)) ∈ 2Θ(cut(G)). Further, there exists a graph G with cut(G) = Θ(n).

Finally, we have,

Theorem 4. For all but a 1/
√

n fraction of graphs G with connected component
size 2, any ABP computing the C-perm on G requires size 2Ω(n).

5 #P Completeness

In this section, we show multiple hardness results for simple polynomials over
certain classes of non-commutative algebras. We give a #P completeness result
for specific graphs of component size at most six. The completeness result is
obtained by a careful analysis of the parameters and a small modification of
the reduction from #SAT to non-commutative determinant given recently by
Gentry [13].

Theorem 5. Let R be a division algebra over a field K of characteristic zero
containing the algebra of 2×2 matrices over K. Computing the Cayley Permanent
on graphs with component size 6 with edges labeled from R is #P complete.

It is known that computing the commutative permanent of the weighted adja-
cency matrix of a planar graph is as hard as the general case [9]. We observe
that the reduction in [9] extends to the non-commutative case.

Theorem 6. C-perm ≤p
m planar−C-perm; and C-det ≤p

m planar−C-det. More-
over, the above reductions work over any non-commutative algebra.

We demonstrate some more families of polynomials whose commutative vari-
ants are easy but certain non-commutative variants are as hard as the permanent
polynomial. We begin with a non-commutative variant of the elementary sym-
metric polynomial. The elementary symmetric polynomial of degree d, Symn,d

is given by Symn,d(x1, . . . , xn) =
∑

S⊆[n], |S|=d

∏
i∈S xi. There are several non-

commutative variants of the above polynomial. The first one is analogous to the
Cayley permanent, i.e., Cayley−Symn,d =

∑
S={i1<i2<···<id}

∏d
j=1 xij

. It is not
hard to see that the above mentioned non-commutative version of Cayley−Symn,d

can be computed by depth 3 non-commutative circuits for every value of d ∈ [n].
However, the above definition is not satisfactory, since it is not invariant under
permutation of variables, which is the inherent property of elementary symmet-
ric polynomials. We define a variant of non-commutative elementary symmetric
polynomial which is invariant under the permutation of variables.

nc−Symn,d(x1, . . . , xn)
�
=

∑

{i1,...,id}⊆[n]

∑

σ∈Sd

d∏

j=1

xiσ(j) .

We show that with coefficients from the algebra of n × n matrices allowed,
nc−Symn,d cannot be computed by polynomial size circuits unless VP = VNP.
We need the following definition introduced in [2,3].



180 C. Engels and B.V.R. Rao

Definition 2. The Hadamard product between two polynomials f =
∑

m αmm
and g =

∑
m βmm, written as f 
 g, is defined as f 
 g =

∑
m αmβmm.

Theorem 7. Over any K algebra R containing the n × n matrices as a sub-
algebra, nc−Symn,n does not have polynomial size arithmetic circuits unless
permn ∈ VP.

Proof. Suppose that nc−Symn,n has a circuit C of size polynomial in n. We
need to show that perm ∈ VP. Let X = (xi,j)1≤i,j≤n be matrix of variables, and
y1, . . . , yn be distinct variables different from xi,j . In the commutative setting,
it was observed in [19] that perm(X) equals the coefficient of y1 · · · yn in the
polynomial

P (X,Y )
�
=

n∏

i=1

⎛

⎝
n∑

j=1

xi,jyj

⎞

⎠ (1)

over the polynomial ring K[x1,1, . . . , xn,n]. However, the same cannot be said
in the case of non-commuting variables. If xi,jyk = ykxi,j for i, j, k ∈ [n], then
in the non-commutative development of (1), the sum of coefficients of all per-
mutations of the monomial y1 · · · yn equals perm(X) i.e., the commutative per-
manent. Hence the value perm(X) can be extracted using a Hadamard product
with nc-Symn,n(y1, . . . , yn) and then substituting y1 = 1, . . . , yn = 1. However,
we cannot assume xi,jyk = ykxi,j , since the Hadamard product may not be com-
putable under this assumption. Let � =

∑
i,j xi,j . Now we argue that perm(X) =

(nc-Symn,n(�y1, . . . , �yn)
P )(y1 = 1, . . . , yn = 1). Given a permutation σ ∈ Sn,
there is a unique monomial mσ = x1,σ(1)yσ(1) · · · xn,σ(n)yσ(n) in P containing
the variables yσ(1), . . . , yσ(n) in that order. Thus taking Hadamard product with
P filters out all monomials but mσ from the term

∏n
i=1 �yσ(i). The monomials

where a yj occurs more than once are eliminated by nc-Symn,n(�y1, . . . , �yn).
Thus the only monomials that survive in the Hadamard product are of the
form mσ, σ ∈ Sn. Now substituting yi = 1 for i ∈ [n] we get perm(X) =
(nc-Symn,n(�y1, . . . , �yn) 
 P )(y1 = 1, . . . , yn = 1).

Note that the polynomial P (X,Y ) can be computed by an ABP of size
O(n2). Then, by [2,3], we obtain an arithmetic circuit D of size O(n2size(C))
that computes the polynomial nc−Symn,n 
 P . Substituting y1 = 1, . . . , yn = 1
in D gives the required arithmetic circuit for perm(X).

Barvinok [5] showed that computing the permanent of an integer matrix of
constant rank can be done in strong polynomial time. In a similar spirit, we
explore the complexity of computing the Cayley permanent of bounded rank
matrices with entries from K ∪ {x1, . . . , xn}. We consider the following notion
of rank for matrices with variable entries. Let A ∈ (K ∪ {x1, . . . , xn})n×n. Then
row-rank(A) = maxa1,...,an∈K rank(A|x1=a1,...,xn=an

). The column rank of A is
defined analogously. As opposed to the case of the commutative permanent, for
any algebra R containing the algebra of n × n matrices over K, we have:

Corollary 3. C-perm and C-det of rank one matrices with entries from K ∪
{x1, . . . , xn} over any K algebra does not have polynomial size arithmetic circuits
unless perm ∈ VP.
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Abstract. The congested clique model is a message-passing model of
distributed computation where k players communicate with each other
over a complete network. Here we consider synchronous protocols in
which communication happens in rounds (we allow them to be random-
ized with public coins). In the unicast communication mode, each player
i has her own n-bit input xi and may send k − 1 different b-bit mes-
sages through each of her k − 1 communication links in each round. On
the other end is the broadcast communication mode, where each player
can only broadcast a single message over all her links in each round.
The goal of this paper is to complete our Brief Announcement at PODC
2015, where we initiated the study of the space that lies between the two
extremes. For that purpose, we parametrize the congested clique model
by two values: the range r, which is the maximum number of different
messages a player is allowed to send in each round, and the bandwidth b,
which is the maximum size of these messages. We show that the space
between the unicast and broadcast congested clique models is very rich
and interesting. For instance, we show that the round complexity of the
pairwise set-disjointness function pwdisj is completely sensitive to the
range r. This translates into a Ω(k) gap between the unicast (r = k − 1)
and the broadcast (r = 1) modes. Moreover, provided that r ≥ 2 and
rb/ log r = O(k), the round complexity of pwdisj is Θ(n/k log r). On the
other hand, we also prove that the behavior of pwdisj is exceptional:
almost every boolean function f has maximal round complexity Θ(n/b).

Finally, we prove that min
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⌉
,
⌈

r′
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⌉ ⌈
b′
b

⌉)
is an upper bound

for the gap between the round complexities with parameters (b, r) and
parameters (b′, r′) of any boolean function.

Supported in part by the ANR project QuasiCool (ANR-12-JS02-011-01),
MINECO grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, co-funded by FSE & FEDER), NSF of China
grant 61520106005, EC H2020 grants ReCred and NOTRE, CONICYT via Basal
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1 Introduction

In this paper we study a synchronous, message-passing model of distributed
computation where the underlying communication network is a complete graph.
Therefore, the only obstacle to perform any task is due to congestion. In fact,
the main theoretical purpose of this model, known as congested clique, is to
serve as a basic model for understanding the role played by congestion in dis-
tributed computation [14,15,21,25,27,28]. (Besides this, there are interesting
connections between the congested clique model and popular systems such as
MapReduce [20].)

The model is defined as follows. There are k players. Each player has her own
n-bit input xi and they all collaborate in order to compute a joint boolean func-
tion f(x1, . . . , xk). They communicate with each other in synchronous rounds.
More precisely, each of the k players may send up to k − 1 different b-bit mes-
sages through each of her k − 1 communication links. A protocol that computes
f stops when every player knows the output. We use the number of rounds as
the goodness metric to be minimized. The absolute minimum of this parameter
is what we call round complexity . In this paper all protocols are allowed to be
randomized with public coins. More precisely, the k players have access to a
common infinite string of independent random bits. Protocols may return the
wrong answer with probability at most ε, for some fixed, small ε > 0.

Most work on this (unicast) congested clique model considers the joint input
as a graph G by giving to each player i the boolean vector xi ∈ {0, 1}n, which
is the indicator function of her neighborhood in G. Note that in this case n = k
and, therefore, the total number of bits exchanged in each round is bn2. Unfor-
tunately, due to the huge number of bits transmitted globally per round (even
for b = 1), no lower bound is known for this model. Drucker et al. gave in [15]
an explanation for this difficulty. They proved that in this model it is possible to
simulate powerful classes of bounded-depth circuits (and therefore lower bounds
in the congested clique would yield lower bounds in circuit complexity). The
intrinsic power of the (synchronous) congested clique model has allowed some
authors [10,14,19,21] to provide extremely fast protocols for some natural graph
problems (assuming always that b = log n, following the spirit of the CONGEST
model [29]).

In the broadcast version of the congested clique model, each player can only
broadcast a single b-bit message over all her links in each round [15]. This set-
ting is equivalent to the multi-party, number-in-hand computation model, where
communication takes place in a shared blackboard [1,2,5–7,15]. In fact, writing
a message M on the blackboard is equivalent to broadcasting M. In this setting,
the number of transmitted bits per round decreases from bn2 to bn. Therefore,
obtaining lower bounds using communication complexity reductions becomes
possible. For instance, detecting deterministically a triangle in the input graph
G requires Ω(n/(eO(

√
log n)b) rounds [15]. On the other hand, fast protocols are

also known in the broadcast congested clique model [1,2,18,23].
There is a particular boolean function that we are going to use throughout

this paper. This function, that we call pairwise set-disjointness, is defined below.
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Definition 1. Let k = 2k′. Let x = (x1 . . . xk) ∈ ({0, 1}n)k. Each xi is the
indicator vector of a subset Xi ⊆ {1, . . . , n}. Function pairwise set-disjointness
pwdisj is defined by: pwdisj(x) = 1 if ∀1 ≤ i ≤ k′,Xi ∩ Xi+k′ = ∅; and
pwdisj(x) = 0 otherwise.

Our goal is to complete the work of [4], where we initiated the study of the round
complexity of boolean functions according to two parameters of the model:

– The range r: the maximum number of different messages a player can send
over her links in one round.

– The bandwidth b: the maximum size, in bits, of each of these messages.

By analogy with the notation introduced in [15], we denote this model by
clique-rcastr×b. Note that the two extreme cases r = 1 and r = k − 1, which
correspond to the broadcast and the unicast communication modes, are the cases
already considered in the literature. More precisely,

clique-rcast(k−1)×b = clique-Ucastb,
clique-rcast1×b = clique-Bcastb.

Note also that, if the available bandwidth b is too small, then having a big
range r becomes useless, since the number of possible different messages with a
bandwidth b is 2b. More precisely,

∀r ≥ 2b,clique-rcastr×b = clique-rcast2b×b = clique-Ucastb.

Thus, in the sequel, we will assume that r ≤ 2b. We denote by roundr×b(f)
the round complexity of function f . That is, roundr×b(f) denotes the mini-
mal number of rounds needed by any k-player protocol in clique-rcastr×b for
computing f . We also denote,

Uroundb(f) = round(k−1)×b(f),
Broundb(f) = round1×b(f).

A protocol in clique-rcastr×b is said to be a broadcasting protocol if it consists
of every player broadcasting its complete input. Obviously, for any function f ,
there exists a broadcasting protocol which computes f , and we get the universal
bound roundr×b(f) ≤ Broundb(f) ≤ 	n/b
. In order to understand the role
played by the range r and the bandwidth b in the round complexity of the
congested clique model we define the following ratio.

Γ r×b
r′×b′(f) =

roundr×b(f)
roundr′×b′(f)

.

The values above obviously depend on k, n and ε. But we omit them in
order to avoid heavy notation. Finally, by taking the uniform probability over
{0, 1}{0,1}kn

, we also consider what happens with random boolean functions. For
instance, we compute probabilities such us Pr{Γ r×b

r′×b′(f) = α}, for fixed α.
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1.1 Our Results

In Sect. 2 we compare the broadcast model and the unicast model. For that
purpose we consider the pairwise set-disjointness function pwdisj. We prove that
Uroundb(pwdisj) = O(n/kb) while Broundb(pwdisj) = Ω(n/b). In other
words, Γ 1×b

(k−1)×b(pwdisj) = Ω(k). This gives a large gap between the unicast
and broadcast congested clique models, that grows at least linearly with k.

In Sect. 3 we prove that the round complexity of pwdisj is completely sensi-
tive to the range r even in the intermediate values between unicast and broad-
cast. More precisely, we prove that for k sufficiently large and for r ≥ 2 such
that rb/ log r = O(k) the following holds: roundr×b(pwdisj) = Θ(n/k log r).
Then, we give some interpretations to this result. In particular, we conclude that
Γ r×log k

r′×log k(pwdisj) = Θ(log r′/log r) for every r′ ≥ r ≥ 2. Note that the logarith-
mic bandwidth is the most studied case in the congested clique model, and this
result yields a hierarchy of models of different computational power according
to the range r for this case.

In Sect. 4 we prove that almost every boolean function f satisfies that
Uroundb(f) = Broundb(f) = 	n/b
, provided that k is sufficiently large and
that 0 ≤ ε ≤ 0.2. In other words, Γ 1×b

(k−1)×b(f) = 1 for almost every f . This means
that the gap we found in Sect. 2 for function pwdisj is exceptional and that the
power given by having r > 1 is almost always useless. Nevertheless, as pointed
out by Drucker et al. [15], finding for k = n an explicit boolean function f with
the behavior Uroundb(f) = ω(1) is (equivalent to solving) a long-standing open
problem in circuit complexity theory.

The goal of Sect. 5 is to compare models with different combinations of range
and bandwidth for arbitrary boolean functions f . For doing this we analyze the
ratio Γ r×b

r′×b′(f). We make the following observation: for almost every function f

we have Γ r×b
r′×b′(f) = Θ(b′/b). Moreover, if r ≥ r′ or r = 2b then Γ r×b

r′×b′(f) ≤
	b′/b
 for every boolean function f . The general upper bound we obtain is the
following Γ r×b

r′×b′(f) ≤ min
(⌈

b′
�log r�

⌉
,
⌈

r′
r−1

⌉ ⌈
b′
b

⌉)
, for r ≥ 2.

1.2 Related Work: The Asynchronous Case

The congested clique model with bandwidth b = 1 –that is, the multiplayer,
number-in-hand, message passing model– was introduced by Dolev and Feder
[13]. The main difference with our setting is that the original model was asyn-
chronous. Hence, protocols, instead of being designed to minimize the number
of rounds, were designed to minimize the number of exchanged bits. The first
communication complexity lower bounds were obtained by Ďurǐs and Rolim [16].

Recently, new techniques and new results have been developed, and tight
bounds for the communication complexity of different functions have been
obtained. In [30] the authors introduced the symmetrization technique and were
able to prove tight Ω(nk) lower bounds for several direct-sum-like functions such
as coordinate-wise AND or coordinate-wise OR. These lower bounds also apply
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in the blackboard communication mode, where players write messages on a black-
board, visible to everybody. (Note that, in the asynchronous setting, the commu-
nication complexity in the blackboard mode gives stronger lower bounds than
the communication complexity in the message-passing, point-to-point mode.)
This symmetrization technique has been used and developed by other authors
as well [26,31].

It is important to point out that there exists a strict separation between
the blackboard communication mode and the message-passing communication
mode. For instance, the communication complexity for computing the multi-
party set-disjointness function is Θ(n log k+k) in the blackboard communication
mode [9] and it is Θ(nk) in the message-passing communication mode [8]. These
results on set-disjointness were obtained by using information complexity, a the-
ory introduced in [11]. Information complexity turned out to be an extremely
useful theory for proving communication complexity lower bounds [3,12,17].

2 A Gap in the Round Complexity of Broadcast
Versus Unicast

The first question we would like to answer is the following: How much do we
gain if, instead of broadcasting, we have the possibility of sending at least two
different messages in each round? This seems to be a simple question. But it is
a fundamental one if we want to understand the role played by the range in the
congested clique model. For answering this we use the pairwise set-disjointness
function pwdisj defined in Sect. 1.

Theorem 1. Uroundb(pwdisj) = O(n/kb).

Proof. We prove that Uroundb(pwdisj) ≤
⌈

�n/k�
b

⌉
+ 1. The protocol is as

follows. Let T =
⌈

�n/k�
b

⌉
. For every 1 ≤ t ≤ T , let

wi,j,t = (xi)(j−1)�n/k�+(t−1)b+1, . . . , (xi)(j−1)�n/k�+tb.

Round 1 ≤ t ≤ T . Each player i sends to each player j (including itself)
the b bits of wi,j,t.

Round T + 1. Each player j broadcasts 1 if at all rounds t, all its incoming
messages from player 1 ≤ i ≤ k′ were disjoints with all its incoming messages
from player i + k′.

Clearly, after T rounds, player j receives (xi)(j−1)�n/k�+1, . . . , (xi)j�n/k� from
every i. Hence, pwdisj(x) = 0 if and only if a 0 is broadcasted by some player
in the last round. Therefore, every player will know the answer after the last
round. ��
Theorem 2. Broundb(pwdisj) = Ω(n/b).
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Proof. It is well-known that, in the two party case k = 2, the round complexity
of set-disjointness with error probability ε is Ω(n/b) [22]. If k > 2 we get the
same bound for (pwdisj by considering the instance where x1 = x ∈ {0, 1}n is
given to player 1, x1+k′ = y ∈ {0, 1}n is given to player 2, and the empty set φ,
represented by (0, . . . , 0)T , is given to all the other k − 2 players. ��
Corollary 1. Let k = n. Then, Uround1(pwdisj) = 2 and
Broundb(pwdisj) = Ω(n/b).

Corollary 2. Γ 1×b
(k−1)×b(pwdisj) = Ω(k).

3 A Hierarchy of Models According to the Range

In previous section we proved that the broadcast (r = 1) and the unicast
(r = k − 1) models are fundamentally different in their power to solve one
particular problem. These two models are the two ends of the spectrum of val-
ues of the range r. In this section we prove that the sensitivity to the range is
more general. In particular, we show that the round complexity of pwdisj is
completely sensitive to the range.

Lemma 1. roundr×b(pwdisj) = Ω
(

n
min(kb,rb+�log r�k)

)
.

Proof. We use a reduction from the two-party communication problem disjk′n,
where instances are pairs (x, y) of boolean vectors, each of length k′n. The
communication complexity (bits to be exchanged) of disjk′n is Θ(k′n) [22].
We transform an instance of disjk′n into an instance of pwdisj in the direct
way. From (x, y) we define the input (x1, . . . , xk) of function pwdisj as fol-
lows: x = x1 · · · xk′ and y = xk′+1 · · · xk. Obviously, disjk′n(x, y) = 1 ⇐⇒
pwdisj(x1, . . . , xk) = 1.

Let us consider any protocol P that solves pwdisj in TP rounds. If we group
players 1 to k′ into a global player A and players k′ + 1 to k into a global player
B, protocol P would yield a protocol for solving disjk′n. So the question is the
following: How many bits are exchanged between A and B? Let us derive an
upper bound for this.

Consider a player i in A. Player i sends one message of length b to each
player in B, thus he sends k′b bits. However, since r ≤ 2b, the messages sent by
player i to players in B can be compressed as follows. Since player i can send
up to r different messages, one can consider that she sends to each player j ∈ B
a message numbered from the set {0, 1, . . . , r − 1} that identifies the message
m(i, j) sent to player j. These numbers, of 	log r
 bits each, can be used to
obtain the actual message from a table that contains the r messages, of b bits
each, sent by i. Hence, the total number of bits sent by i to B is upper bounded
by the length of the k′ numbers, 	log r
k′ bits, and the size of the message table,
br bits; a total of rb + 	log r
k′ bits.

Let us define β = min(bk′, rb + 	log r
k′). In each round, the number of bits
exchanged between A and B is upper bounded by kβ. Therefore, considering
that the communication complexity of disjk′n is Θ(k′n), it follows that TPkβ =
Ω(k′n). Therefore, roundr×b(pwdisj) = Ω( n

2β ), as claimed. ��
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Lemma 2. roundr×b(pwdisj) ≤
⌈

n
k�log r�

⌉
+ 1.

Proof. Consider the same protocol used in the proof of Theorem1 but with
messages of �log r� ≤ b bits. ��

Putting these together, we get the following theorem.

Theorem 3. For k sufficiently large and for r ≥ 2 such that rb
log r = O(k),

roundr×b(pwdisj) = Θ

(
n

k log r

)

.

Proof. The upper bound follows from the previous lemma. For the lower bound,
it follows from Lemma 1 that

roundr×b(pwdisj) ≥ n

k min(b, 	log r
(1 + 2rb
�log r�k ))

≥ n

k	log r
(1 + 2rb
�log r�k )

,

where the last inequality follows from 	log r
 ≤ b and 2rb
�log r�k > 0. Since rb

log r =
O(k), we deduce that, for k sufficiently large, there is a constant Δ > 0 such
that 2rb

�log r�k ≤ Δ, and hence

roundr×b(pwdisj) ≥ n

k	log r
(1 + Δ)
= Ω

(
n

k	log r

)

.

��
The natural way to interpret Theorem3 is to parametrize everything by k.

Following the spirit of the CONGEST model [29], we are going to restrict both
the bandwidth and the range by taking b = log k and varying r from 2 to k − 1.
Observe that, when b = log k and r ≤ k − 1, it always holds that rb

log r = O(k).
Hence, the next corollaries are direct consequences of Theorem 3.

Corollary 3. For every n and every constant integer c ≥ 2, we have

roundlog k×log k(pwdisj) = Θ

(
n

k log log k

)

and roundc×log k(pwdisj) = Θ
(n

k

)

In other words, Γ c×log k
log k×log k(pwdisj) = Θ (log log k).

In general, we can state the following corollary.

Corollary 4. For every n and every r′ ≥ r ≥ 2, we have

roundr′×log k(pwdisj) = Θ

(
n

k log r′

)

and roundr×log k(pwdisj) = Θ

(
n

k log r

)

In other words, Γ r×log k
r′×log k(pwdisj) = Θ

(
log r′

log r

)

.
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4 Most Functions Have Maximal Round Complexity

From the results presented in the previous sections one may be tempted to
conclude that, in general, increasing the range r increases the power of the
protocols. In particular, one may conclude that the unicast congested clique
model has much more power than the broadcast congested clique model (even
if in the first we restrict the bandwidth to b = 1 while in the latter we allow it
to be b = o(n)). We show here that this fact, which holds for function pwdisj,
holds for very few other functions. More precisely, we are going to prove that
for almost every boolean function f , the broadcasting protocol is optimal. We
start by considering deterministic decision protocols that compute functions f
correctly (i.e., they make no mistake). (Some proofs are omitted.)

Lemma 3. The number of T -round deterministic decision protocols in the uni-
cast congested clique model clique-Ucastb is at most 2N(T ), where

N(T ) = 2T (k−1)b+n(1 +
(k + 1)(k − 1)b

2(k−1)b
).

Now, we still consider deterministic protocols, but now we allow them to
make mistakes. We say that a deterministic protocol P computes f with error
ε ≥ 0 if it outputs f(x) for at least (1 − ε)2nk of the inputs x of f .

Lemma 4. Let P be a deterministic decision protocol and let P (x) denote the
output of P with input x ∈ {0, 1}nk. Let Mε(P ) be the number of functions f
which are computed by P with an error ε > 0. We have,

Mε(P ) ≤
(

2e

ε

)ε2nk

= 2log(
2e
ε )ε2nk

.

We show now that a deterministic protocol P that computes a function f
chosen uniformly at random with error ε requires the maximal number of rounds
	n/b
 with high probability. Let us extend our notation, so that Uroundε

b(f) is
the round complexity of function f when protocols are deterministic and error
ε is allowed.

Theorem 4. For k sufficiently large and for every n, and ε > 0 such that
1 − log(2e

ε )ε > 0, we have

Pr{Uroundε
b(f) = 	n/b
} ≥ 1 − 2−2kn(

1−log( 2e
ε

)ε

2 ).

For ε = 0 (i.e. the case without error), we have

Pr{Uround0
b(f) = 	n/b
} ≥ 1 − 2−2kn 0.5.

Proof. Since there are 22
kn

different functions f : {0, 1}kn → {0, 1}, we have

Pr{Uroundε
b(f) ≤ T} ≤ 2N(T ) maxP Mε(P )

22kn .
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From Lemmas 3 and 4, for ε > 0, we have

Pr{Uroundε
b(f) ≤ T} ≤ 22

T (k−1)b+n(1+
(k+1)(k−1)b

2(k−1)b
)2log(

2e
ε )ε2nk

2−2kn

≤ 2−2kn(1−log( 2e
ε )ε−2T (k−1)b+n−kn(1+

(k+1)(k−1)b

2(k−1)b
))

.

For k sufficiently large, the quantity 1 + (k+1)(k−1)b
2(k−1)b can be upper bounded (by

2 for example). Now let us take T = 	n/b
− 1. Then, we have Tb−n ≤ −b and,
thus

2T (k−1)b+n−kn = 2(k−1)(Tb−n) ≤ 2−b(k−1) ≤ 2−k

Thus, for k sufficiently large, the term, 2T (k−1)b+n−kn(1 + (k+1)(k−1)b
2(k−1)b ) can be

upper bounded by any positive value, in particular by 1−log( 2e
ε )ε

2 . Thus, we get
that

Pr{Uroundε
b(f) ≤ 	n/b
 − 1} ≤ 2−2kn(

1−log( 2e
ε

)ε

2 ).

which is the result since, for any f , one trivially has Uroundε
b(f) ≤

Uround0
b(f) ≤ 	n/b
.

For ε = 0 we proceed on the same way, after noticing that maxP M0(P ) = 1.
��

Theorem 5. For k sufficiently large, for every n, and 0 ≤ ε ≤ 0.2, there exists
a positive constant c(ε) > 0 such that Pr{Uroundε

b(f) = 	n/b
} ≥ 1−2−2knc(ε).

Recall that Uroundb(f) is the round complexity of computing function f
with randomized protocols, which may use public coins, with success probability
1 − ε. From the previous results we can prove that most functions have round
complexity 	n/b
.
Corollary 5. For k sufficiently large and for every n, and 0 ≤ ε ≤ 0.2, there
exists a positive constant c(ε) > 0 such that,

Pr{Uroundb(f) = 	n/b
} ≥ 1 − 2−2knc(ε).

Proof. The result follows from Theorem 5, and Theorem 3.20 at [24] using the
uniform distribution as the distribution μ of the inputs. ��

The following bound is obvious for any function f .

Γ 1×b
(k−1)×b(f) =

Broundb(f)
Uroundb(f)

≥ min
f

Γ 1×b
(k−1)×b(f) ≥ 1.

Next corollary, which is a direct consequence of Corollary 5, says that previous
inequality is in fact an equality for almost every boolean function.

Corollary 6. For k sufficiently large and for every n, and 0 ≤ ε ≤ 0.2, there
exists a positive constant c(ε) > 0 such that,

Pr{Γ 1×b
(k−1)×b(f) = 1} ≥ 1 − 2−2knc(ε).
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5 Comparing Models with Different Combinations
of Range and Bandwidth for Arbitrary Boolean
Functions

In this section we explore the relative round complexities of different modes of
the congested clique model with various combinations of range and bandwidth
Γ r×b

r′×b′(f) for arbitrary boolean functions f . The first result shows that for most
boolean functions f , Γ r×b

r′×b′(f) = Θ(b′/b).

Theorem 6. For k sufficiently large and for every n, there is a positive constant
c(ε) > 0 such that

Pr
{
Γ r×b

r′×b′(f) = 	n/b
 / 	n/b′
} ≥ 1 − 2−2knc(ε)+1.

Proof. From Corollary 5, a function f simultaneously satisfies roundr×b(f) =
	n/b
 and roundr′×b′(f) = 	n/b′
 with probability at least 1 − 2−2knc(ε)+1. ��
Now, we show that in fact the typical case shown in the previous theorem is not
far from the worst case, studied in the following sequence of results.

Theorem 7. Let r be such that r ≥ r′ or r = 2b. Then, for every function f ,
Γ r×b

r′×b′(f) ≤ 	b′/b
 .

Proof. Let P’ be a T -round protocol in clique-rcastr′×b′ . From P’ we con-
struct the protocol P in clique-rcastr×b as follows. Consider the message
mt(i, j) sent by player i to player j in round t of P’. For each 1 ≤ � ≤ 	b′/b
, let
block�

t(i, j) be the �th block of length b of mt(i, j). The last block is padded with
0s. For each � and i, we have: |{block�

t(i, j), 1 ≤ j ≤ k ∈ N}| ≤ min{r′, 2b} ≤ r.
Then, during round number (t − 1) 	b′/b
 + � of P, player i sends to player j

the b bits of blocki
t(u, v). The inequalities above ensure that P is a well-defined

protocol in clique-rcastr×b. Since P knows the bandwidth b′ it can discard the
padding bits. The total number of rounds executed by P is T 	b′/b
. ��
Theorem 8. Let b ≤ b′ ≤ n, and k sufficiently large. Then, there exists a
function f such that: Γ r×b

r′×b′(f) = 	b′/b
 .

Proof. Let b′ = n. In this case, every function f : ({0, 1}n)k → {0, 1}
can be solved in one round in the model clique-rcastr′×b′ . On the other
hand, from Corollary 5, almost every function f : ({0, 1}n)k → {0, 1} satis-
fies roundr×b(f) = 	n/b
 = 	b′/b
. When n > b′, let us define n′ = b′.
From Corollary 5, almost every function f ′ : ({0, 1}n′

)k → {0, 1} satisfies
roundr×b(f ′) =

⌈
n′
b

⌉
. Let us take one such function f ′, and define a new func-

tion f : ({0, 1}n)k → {0, 1} as follows: f(x1, x2....xk) = f ′(y1, y2, ..., yk), where
each yi is the vector formed with the n′ first bits of xi. Hence, roundr×b(f) =
roundr×b(f ′) = 	n′/b
 = 	b′/b
 while roundr′×b′(f) = 1. ��



192 F. Becker et al.

Remark 1. When b|b′ is a multiple of b and b′|n, we have 	n/b
 / 	n/b′
 =
(n/b)/(n/b′) = b′/b = 	b′/b
. When n = b′, we also have 	n/b
 / 	n/b′
 = 	b′/b
.
Thus, in the previous cases, for r ≥ r′ of r = 2b, the maximal value 	b′/b
 for
the value of Γ r×b

r′×b′(f) is reached with high probability. On the other hand, in
some cases, there exists a small but intriguing gap between the maximal value
	b′/b
 and the value 	n/b
 / 	n/b′
 reached with high probability. For example,
take b = 2, b′ = 3. For n = 4, we have 	b′/b
 = 2 and 	n/b
 / 	n/b′
 = 1.

Note that Theorem 7 holds when r′ ≤ r or r = 2b. Without this hypothesis
we only get the following weaker, general bound.

Theorem 9. Let r ≥ 2 and r′ ≥ 1. Then, for every function f ,

Γ r×b
r′×b′(f) ≤ min

(⌈
b′

�log r�
⌉

,

⌈
r′

r − 1

⌉⌈
b′

b

⌉)

.

Observe that the two values of the minimum are complementary, since none
implies the other.
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Abstract. The minimum cost homomorphism problem is a natural opti-
mization problem for homomorphisms to a fixed graphH. Given an input
graph G, with a cost associated with mapping any vertex of G to any ver-
tex of H, one seeks to minimize the sum of costs of the assignments over
all homomorphisms of G to H. The complexity of this problem is well
understood, as a function of the target graph H. For bipartite graphs H,
the problem is polynomial time solvable if H is a proper interval bigraph,
and is NP-complete otherwise. In many applications, the costs may be
assumed to be the same for all vertices of the input graph. We study the
complexity of this restricted version of the minimum cost homomorphism
problem. Of course, the polynomial cases are still polynomial under this
restriction. We expect the same will be true for the NP-complete cases,
i.e., that the complexity classification will remain the same under the
restriction. We verify this for the class of trees. For general graphs H, we
prove a partial result: the problem is polynomial if H is a proper interval
bigraph and is NP-complete when H is not chordal bipartite.

Keywords: Homomorphisms · NP-completeness · Dichotomy

1 Introduction

Suppose G and H are graphs (without loops or multiple edges). A homomor-
phism f : G → H is a mapping V (G) → V (H) such that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). For a fixed graph H, a number of computational prob-
lems have been considered. In the homomorphism problem, one asks whether
or not an input graph G admits a homomorphism to H. It is known that this
problem is polynomial time solvable if H is bipartite, and is NP-complete other-
wise [1]. In the list homomorphism problem, the input graph G is equipped with
lists (sets) L(x) ⊆ V (H), for all x ∈ V (G), and one asks whether or not there
exists a homomorphism f : G → H with f(x) ∈ L(x) for all x ∈ V (G). This
problem is known to be polynomial time solvable if H is an interval bigraph,
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and is NP-complete otherwise [2]. (An interval bigraph is a bipartite graph H
with parts X and Y such that there exist intervals Ix, x ∈ X, and Jy, y ∈ Y ,
for which xy ∈ E(H) if and only if Ix ∩ Jy �= ∅.) In this paper we address the
minimum cost homomorphism problem, in which the input graph is equipped
with a cost function c : V (G) × V (H) → N and one tries to minimize the total
cost

∑
u∈V (G) c(u, f(u)). Minimum cost homomorphism problems were intro-

duced in [3]. They were motivated by an application in repair and maintenance
scheduling; however, the problem arises in numerous other contexts, e.g. in the
minimum colour sum problem and the optimum cost chromatic partition prob-
lem [4,5]. To state it as a decision problem, the input includes an integer k, and
one asks whether or not there exists a homomorphism of total cost at most k.
This problem is known to be polynomial time solvable if H is a proper inter-
val bigraph, and is NP-complete otherwise [6]. (An interval bigraph is a proper
interval bigraph if the above two families of intervals Ix, x ∈ X, and Jy, y ∈ Y
can be chosen to be inclusion-free, i.e., no Ix properly contains another Ix′ and
similarly for the Jy’s.)

These results are dichotomies in the sense that for each H the problem is
polynomial time solvable or NP-complete. They have subsequently been studied
in more general contexts, for graphs with possible loops, for digraphs, and for
general relational structures (in the context of constraint satisfaction problems).
In particular, there is a dichotomy for the homomorphism problem for graphs
with possible loops [1], but dichotomy is only conjectured for digraphs (and
more general structures) [7,8]. A dichotomy for list homomorphism problems for
graphs with possible loops was established in [2,9], then a general dichotomy was
proved for all relational systems in [10]. (A more structural dichotomy classifica-
tion for digraphs was given in [12].) For minimum cost homomorphism problems,
a dichotomy for graphs with possible loops is given in [6]. A structural dichotomy
classification for digraphs was conjectured in [3], and proved in [11] (cf. [13,14]).
Then a general dichotomy for all relational systems was proved in [15]. Even
more general dichotomy results are known, for so-called finite valued constraint
satisfaction problems [16].

It is easy to see that minimum cost homomorphism problems generalize list
homomorphism problems, which in turn generalize homomorphism problems.
Minimum cost homomorphism problems also generalize two graph optimization
problems, the minimum colour sum problem, and the optimum cost chromatic
partition problem [4,5]. In the former, the cost function has only two values,
0 and 1 (and k = 0). In the latter, the cost function is assumed to be constant
across V (G), i.e., c(x, u) = c(u) for all x ∈ V (G). This restriction, that costs only
depend on vertices of H, appears quite natural even for the general minimum
cost homomorphism problems, and appears not have been studied. In this paper
we take the first steps in investigating its complexity.

Let H be a fixed graph. The minimum constrained cost homomorphism prob-
lem for H has as input a graph G, together with a cost function c : V (H) → N,
and an integer k, and asks whether there is a homomorphism f : G → H of total
cost cost(f) =

∑
u∈V (G) c(f(u)) ≤ k.
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It appears that the added constraint on the cost function may leave the
dichotomy classification from [6] unchanged; in fact, we can show it does not
change it for trees H (and in some additional cases, cf. Lemma 8 below).

Theorem 1. Let H be a fixed tree. Then the minimum constrained cost homo-
morphism problem to H is polynomial time solvable if H is a proper interval
bigraph, and is NP-complete otherwise.

We believe the same may be true for general graphs H. We have obtained
the following partial classification.

Theorem 2. Let H be a fixed graph. Then the minimum constrained cost homo-
morphism problem to H is polynomial time solvable if H is a proper interval
bigraph, and is NP-complete if H is not a chordal bipartite graph.

Of course, the first statement of the theorem follows from [6]. Only the second
claim, the NP-completeness, needs to be proved. A bipartite graph H is chordal
bipartite if it does not contain an induced cycle of length greater than four.
Both chordal bipartite graphs and proper interval bigraphs can be recognized in
polynomial time [17,18]. Proper interval bigraphs are a subclass of chordal bipar-
tite graphs, and Lemma 8 below gives a forbidden subgraph characterization of
proper interval bigraphs within the class of chordal bipartite graphs.

Our NP-completeness reductions in the proofs of Theorems 1 and 2 use a
shorthand, where vertices v of the input graph G have weights w(v). Adding
polynomially bounded vertex weights does not affect the time complexity of
our problems. Let G,H be graphs, and, for every v ∈ V (G) and every i ∈
V (H), let ci(v) denote the cost of mapping v to i. Let w : V (G) → N be a
weight function. The weighted cost of a homomorphism f : G → H is cost(f) =∑

v∈V (G) w(v).cf(v)(v). In the weighted minimum cost homomorphism problem
for a fixed graph H, the input is a graph G, together with cost functions ci :
V (G) → N (for all i ∈ V (H)), vertex weights w : V (G) → N, and an integer k;
and the question is if there is a homomorphism of G to H of weighted cost at
most k.

The variant with constrained costs is defined similarly: the weighted minimum
constrained cost homomorphism problem for H has as input a graph G, cost
function c : V (H) → N, vertex weights w : V (G) → N, and an integer k, and it
asks if there is a homomorphism f : G → H with cost

∑
v∈V (G) w(v).c(f(v)) ≤ k.

Clearly, when w is a polynomial function, the weighted minimum cost homo-
morphism problem and the minimum cost homomorphism problem are polyno-
mially equivalent. It turns out that this is also the case for the problems with
constrained costs.

Theorem 3. Let H be a fixed graph. The minimum constrained cost homomor-
phism problem to H and the weighted minimum constrained cost homomorphism
problem to H with polynomial weights are polynomially equivalent.
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2 Chordal Bipartite Graphs

In this section, we investigate the minimum constrained cost homomorphism
problem for graphs H with induced even cycles of length at least six. First we
treat the case of hexagon, then we handle longer cycles.

Lemma 4. Let H be a graph which contains hexagon as an induced subgraph.
Then, the weighted minimum constrained cost homomorphism problem to H is
NP-complete.

For a fixed graph H, the pre-colouring extension problem to H takes as input
a graph G in which some vertices v have been pre-assigned to images f(v) ∈
V (H) (we say v is pre-coloured by f(v)), and asks whether or not there exists
a homomorphism f : G → H that extends this pre-assignment. This can be
viewed a special case of the list homomorphism problem to H (all lists are either
singletons or the entire set V (H)), and has been studied under the name of One-
Or-All list homomorphism problem, denoted OAL-HOM(H) [2]. Here we adopt
the abbreviation OAL-HOM(H) for the pre-colouring extension problem.

The problem OAL-HOM(H) was first studied in [2,19].

Lemma 5 [2]. Let C be a cycle of length 2k with k ≥ 3. Then the pre-colouring
extension problem to C is NP-complete.

We can now present the proof of Lemma4.
Proof. The membership in NP is clear. Let C = 1, 2, · · · , 6 denote the hexagon
and h1h2 · · ·h6 be an induced subgraph of H which is isomorphic to C. We
reduce from the pre-colouring extension homomorphism problem to C.

Let (G,L) be an instance of OAL-HOM(C), i.e., G is a bipartite graph with
n ≥ 2 vertices and m ≥ 1 edges, and some vertices v of G have been pre-
assigned to f(v) ∈ V (C). We construct an instance (G′, c, w, T ) of the weighted
minimum constrained cost homomorphism problem to H as follows. The graph
G′ is a bipartite graph obtained from a copy of G, by adding, for every ver-
tex v ∈ V (G) pre-coloured k, a gadget that is the cartesian product of v and
the hexagon, using six new vertices (v, 1), (v, 2), · · · , (v, 6), and six new edges
(v, 1)(v, 2), (v, 2)(v, 3), · · · , (v, 6)(v, 1). We also connect v to exactly two neigh-
bours of (v, k) in its corresponding gadget. A vertex v and its corresponding
gadget is illustrated in Fig. 1.

We define the vertex weight function w as follows.

– for every vertex v in the copy of G, let w(v) = 1
– for every pre-coloured vertex v ∈ V (G):

• w((v, 1)) = w((v, 4)) = 5 × 36n3 + 1,
• w((v, 2)) = w((v, 5)) = 1,
• w((v, 3)) = 36n2,
• w((v, 6)) = 6n.
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Fig. 1. A gadget in G′ for a vertex v ∈ V (G) pre-coloured by 3

We define the homomorphism cost function c as follows.

– c(h1) = c(h4) = 0,
– c(h2) = c(h5) = 36n2,
– c(h3) = 1,
– c(h6) = 6n,
– c(hi) = 5 × 36n3 + 1 for all other vertices hi ∈ V (H).

Finally, we set T = 5 × 36n3 = 180n3.
We now claim that there is an extension of the pre-colouring f to a homo-

morphism of G to C if and only if there is a homomorphism of G′ to H with
weighted cost at most T .

First, assume that the pre-colouring can be extended to a homomorphism
f : G → C. We define a homomorphism g : G′ → H as follows.

– g(u) = hi iff f(u) = i for every vertex u ∈ V (G) and every 1 ≤ i ≤ 6,
– g((u, i)) = hi for every vertex u ∈ V (G) pre-coloured k and every 1 ≤ i ≤ 6.

Claim. The function g is a homomorphism of G′ to H. Moreover, it only
maps vertices of G′ to the copy of C in G, i.e., g only uses vertices h1, h2, · · · , h6.

To prove the above claim, we distinguish three types of edges in G′.

1. Edges uv corresponding to the edges in G (u, v ∈ V (G)): These are clearly
mapped to edges in H by g as g(u) = f(u) for all vertices u ∈ V (G) and f is
a homomorphism of G to C.

2. Edges (u, i)(u, i + 1) that connect two vertices of the gadgets: These edges
map to the corresponding edge hihi+1 by definition of g (indices modulo 6).

3. Edges that connect a vertex u ∈ V (G) to two vertices in its corresponding
gadget: Notice that there is a gadget for u in G′ only when u is pre-coloured
i. So, we have f(u) = i. This further implies that g(u) = hi. Also, notice that
g((u, i − 1)) = hi−1 and g((u, i + 1)) = hi+1 by the definition of g (again, all
indices modulo 6). Hence, edges u(u, i− 1) and u(u, i + 1) also map to edges
hi−1hi and hihi+1, respectively.

This completes the proof of the above Claim. We now show that the cost of
g is at most T = 180n3.
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– For every vertex u ∈ V (G), w(u) = 1 and c(g(u)) ≤ 36n2. Also, there are
exactly n such vertices in G′. This contributes at most 36n3 to the cost of the
homomorphism.

– For every pre-coloured vertex u ∈ V (G), its corresponding gadget contributes
exactly 4 × 36n2:

• vertices (u, 1) and (u, 4) do not contribute, as c(h1) = c(h4) = 0,
• vertices (u, 2) and (u, 5) each contribute 36n2,
• vertices (u, 3) and (u, 6) each contributes 36n2 = 6n × 6n = 36n2 × 1.

There are at most n gadgets in G′ (one for every vertex u ∈ V (G)), and so, the
total contribution of all vertices of the gadgets is at most 4 × 36n3. Therefore,
the cost of g is at most 5 × 36n3 = 180n3 = T .

Conversely, let g be a homomorphism of G′ to H which costs at most T . We
prove that there is a homomorphism f : G → C extending the pre-colouring.
First, we show that g has the following two properties.

– It only maps vertices of G′ to the vertices of the hexagon h1, h2, · · · , h6,
– all gadgets are mapped identically to the hexagon in H, that is, for all pre-

coloured vertices u ∈ V (G) and for every 1 ≤ i ≤ 6, g((u, i)) = hi.

The first property holds because c(a) > T for every vertex a ∈ V (H) other
than the vertices of the hexagon (and the fact that, by definition, all vertex
weights are positive integers). In fact, we must have w(u) × c(g(u)) ≤ T , or
equivalently, c(g(u)) < (T+1)

w(u) , for every vertex u ∈ V (G′). This restricts possible
images of vertices with large vertex weights. Consider vertices in the gadget of
a vertex u ∈ V (G′). For instance, every (u, 4) must map to either h1 or h4.
Similarly, none of the (u, 3) vertices can map to any vertex other than h1, h3,
or h4. Given that (u, 3) and (u, 4) are adjacent in G′, their images must also be
adjacent in H. This enforces f((u, 3)) = h3 and f((u, 4)) = h4 (for every u that
has a gadget in G′). Similar to (u, 4), g must also map every (u, 1) to either h1

or h4, but g((u, 1)) = h4 is not feasible as it does not leave any options for the
image of (u, 2). Hence, g((u, 1)) = h1. This further implies that g((u, 6)) = h6

(as it is adjacent to (u, 1)), and finally, g((u, 2)) = h2 and g((u, 5)) = h5.
It is now easy to verify that for every vertex u ∈ V (G) pre-coloured j, we

always have g(u) = hj . This is because u is adjacent to (u, j − 1) and (u, j + 1)
in G′ and the only vertex in H that is adjacent to the g((u, j − 1)) = hj−1 and
g((u, j + 1)) = hj+1 and the cost of mapping to it is less than or equal to T
is hj . This completes the proof as we can define a homomorphism f : G → C
extending the pre-colouring by setting f(v) = i ⇐⇒ g(v) = hi. �

A shorthand of the construction used in the above proof is shown in Fig. 2.
We now extend Lemma 4 to larger even cycles.

Lemma 6. Let H be a bipartite graph which contains a cycle of length at least
eight as an induced subgraph. Then the weighted minimum constrained cost
homomorphism problem to H is NP-complete.
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Fig. 2. A hexagon in H together with associated homomorphism costs (left), and a
gadget in G′ together with vertex weights (right).

Proof Sketch. The proof is similar to the proof of Lemma4. We only discuss
the reduction here. Let C = 1, 2, · · · , 2k be an even cycle, and h1h2 · · ·h2k be
an induced subgraph of H which is isomorphic to C (k ≥ 4). Again, we reduce
from OAL-HOM(C). We take an instance of the OAL-HOM(C), i.e., a graph G
with n ≥ 2 vertices and m ≥ 1 edges, with some vertices of G pre-coloured by
vertices of C. We construct a corresponding instance (G′, c, w, T ) of the weighted
minimum constrained cost homomorphism problem to H.

The graph G′ is constructed exactly as before: we start with a copy of G and
for every vertex v pre-coloured by t, we add the cartesian product of v and C
using 2k new vertices and 2k new edges. Finally, make v adjacent to two vertices
in its corresponding gadget, (v, t − 1) and (v, t + 1) (all indices modulo 2k).

We define the vertex weight function w as follows.

– for every vertex v in the copy of G, let w(v) = 1
– for every pre-coloured vertex v ∈ V (G):

• w((v, 1)) = w((v, 4)) = 50kn2,
• w((v, 2)) = w((v, 3)) = w((v, 5)) = 1,
• w((v, i)) = 9n for all 6 ≤ i ≤ 2k

We define the homomorphism cost function c as follows.

– c(h1) = c(h4) = 0,
– c(h2) = c(h3) = c(h5) = 8kn,
– c(hi) = 1 for all 6 ≤ i ≤ 2k,
– c(hi) = 50kn2 otherwise.

Finally, we set T = 50kn2 − 1. As in the proof of Lemma 4, we argue that
there is a homomorphism of G to C extending the pre-colouring if and only if
there is a homomorphism of G′ to H with cost at most T .

This completes the proof of Theorem 2, as chordal bipartite graphs have no
induced cycles of length greater than four.
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We note that Theorem 2 gives only a partial dichotomy for the minimum
constrained cost homomorphism problem, as there is a gap between the class of
chordal bipartite graphs and the class of proper interval bigraphs. Specifically,
the following result clarifies the gap.

Lemma 7 [20]. A chordal bipartite graph H is a proper interval bigraph if and
only if it does not contain a bipartite claw, a bipartite net, or a bipartite tent
(Fig. 3).

Fig. 3. The bipartite claw, net and tent

3 The Dichotomy for Trees

In this section, we prove an extension of Theorem2 to graphs H that contain a
bipartite claw. As in the case of large cycles, we focus on the weighted version of
the problem and show that it is NP-complete when the target graph H contains
a bipartite claw. As a corollary we will obtain our dichotomy classification for
trees, Theorem 1.

Lemma 8. Let H be a fixed graph containing the bipartite claw as an induced
subgraph. Then the weighted minimum constrained cost homomorphism problem
to H is NP-complete.

It is well known that the problem of finding a maximum independent set in
a graph is NP-complete. Alekseev and Lozin citelozin proved that the problem
is still NP-complete even when the input is restricted to be a 3-partite graph,
cf. Gutin et al. [6].

Theorem 9 [6,21]. The problem of finding a maximum independent set in a
3-partite graph G, even given the three partite sets, in NP-complete.

The main idea of the proof of Lemma8 is similar to the proofs of Lemmas 4
and 6. We show that finding an independent set of size at least k in an arbitrary
3-partite graph G is equivalent to finding a homomorphism of cost at most k′ in
an auxiliary graph G′ together with constrained costs c and vertex weights w. To
construct G′, we start by adding a fixed number of placeholder vertices; vertices
that, with the appropriate weights and costs, always map to the same specific
vertices of the target graph H in any homomorphism of G′ to H of minimum
cost. We then use these placeholder vertices in our construction to ensure that
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the vertices corresponding to each part of the input graph G are only mapped
to certain vertices of H.
Proof. The membership in NP is clear. To show that the problem is NP-hard, we
reduce from the problem of finding a maximum independent set in a 3-partite
graph, stated in Theorem 9. Let G be a 3-partite graph in which we seek an
independent set of size k, with parts V1, V2, and V3, and denote by and n and m
the number of vertices and edges in G, respectively. We assume that G is non-
empty. Without loss of generality, we can assume that |V1| ≥ 1. We construct
an instance (G′, c, w, TG,k) of the weighted minimum cost graph homomorphism
and show that G has an independent set of size k if and only if there is a
homomorphism of G′ to H with cost less than or equal to TG,k.

We construct the bipartite graph G′ as follows. Subdivide every edge e in G
using a new vertex de (which is adjacent to both ends of e). Add three vertices
b1, b2 and b3 and make each bi adjacent to all vertices in Vi for i = 1, 2, 3.
Finally, add three more vertices c0, c1 and c2. Make c0 adjacent to b1, b2 and
b3, c1 adjacent to b1 and c2 adjacent to b2. A 3-partite graph G together with
its corresponding G′ is depicted in Fig. 4. For future reference, we denote the set
{b1, b2, b3, c0, c1, c2} by V4.

Fig. 4. A 3-partite graph G with parts V1 = {x1, x2}, V2 = {y1, y2}, V3 = {z1} (left)
and its corresponding bipartite graph G′ (right)

Let H ′ = (X,Y ) be an induced subgraph of H which is isomorphic to a
bipartite claw with parts X = {v0, v1, v2, v3} and Y = {u1, u2, u3}, and edge set

E′ = {u1v1, u2v2, u3v3, u1v0, u2v0, u3v0}.
Define the homomorphism cost function c as follows (see Fig. 5).

– c(v0) = 4
– c(v1) = c(u1) = 1
– c(u2) = c(v3) = 3
– c(v2) = c(u3) = 0
– c(u) = 160n(m + n) for every other vertex u /∈ X ∪ Y
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Fig. 5. A bipartite claw, with homomorphism costs

Define the vertex weights of G′ as follows.

– w(b1) = w(c1) = 50n(m + n)
– w(b3) = w(c2) = 160n(m + n)
– w(b2) = w(c0) = 1
– w(u) = 4(m + n) for every vertex u ∈ V1

– w(u) = 3(m + n) for every vertex u ∈ V2

– w(u) = 12(m + n) for every vertex u ∈ V3

Finally, let TG,k be the sum of the following values.

– T 1
G,k = 16(m + n)|V1|,

– T 2
G,k = 12(m + n)|V2|,

– T 3
G,k = 48(m + n)|V3|,

– T 4
G,k = 2 × 50n(m + n) + 4 + 3,

– T e
G,k = 3m, and,

– T I
G,k = −12(m + n)k.

Equivalently, TG,k = 100n(m+n)+7+3m+(4|V1|+36|V3|)(m+n)+12(m+
n)(n− k), We prove that G has an independent set of size k if and only if there
is a homomorphism of G′ to H of cost less than or equal to TG,k.

First, assume that I is an independent set of size k in G with parts I1 ⊂ V1,
I2 ⊂ V2, and I3 ⊂ V3. Let ki denote |Ii| (i = 1, 2, 3). Define the homomorphism
fI as follows.

– fI(u) = vi for all vertices u ∈ Ii (i = 1, 2, 3),
– fI(u) = v0 for all vertices u ∈ V (G) − I,
– fI(de) = uj for every edge e with one end in Ij (j = 1, 2, 3),
– fI(de) = u3 for every edge e with both ends in V − I,
– fI(bj) = uj for j = 1, 2, 3, and finally,
– fI(ck) = vk for k = 0, 1, 2.
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Notice that at most one end of each edge is in I, hence, the above assignment
is indeed a function. In fact, it is easy to verify that fI is a homomorphism.

– edges subdivided from edges e with both ends in V − I map to v0u3,
– edges subdivided from edges e with one end in Ii and the other end in V − I

map to uivi and uiv0 (i = 1, 2, 3),
– edges connecting bi to Vi map to uivi (i = 1, 2, 3),
– c0bi map to v0ui (i = 1, 2, 3), and,
– bici map to viui (i = 1, 2).

We now compute the cost of fI and show that it does not exceed TG,k.

– The vertices in V1 contribute exactly (|V1| − k1) × 16(m+n) + k1 × 4(m+n),
or, T 1

G,k − 12k1(m + n),
– the vertices in V2 contribute exactly (|V2| − k2) × 12(m + n) + k1 × 0, or,

T 2
G,k − 12k2(m + n),

– the vertices in V3 contribute exactly (|V3| − k3)× 48(m+n)+ k3 × 36(m+n),
or, T 3

G,k − 12k3(m + n),
– the vertices in V4 contribute a total of 100n(m + n) + 7 = T 4

G,k (see Table 1),
– the vertices de contribute at most 3m = T e

G,k.

Notice that k = k1 + k2 + k3, hence, the cost of fI is at most TG,k.

Table 1. Contribution of vertices in V4 to the cost of homomorphism fI

Vertex v w(v) fI(v) c(fI(v)) Contributed cost of v

b1 50n(m+ n) u1 1 50n(m+ n)

b2 1 u2 3 3

b3 160n(m+ n) u3 0 0

c0 1 v0 4 4

c1 50n(m+ n) v1 1 50n(m+ n)

c2 160n(m+ n) v2 0 0

Conversely, assume that f is a homomorphism of G′ to H which costs less
than or equal to TG,k. Note that TG,k < 150n(m+ n). This prevents any vertex
v to map to a vertex a when c(v, a) × w(v) ≥ TG,k. In particular, b1 and c1
can only map to vertices a with c(a) < 3, i.e., v1, u1, v2, u3. But b1 and c1 are
adjacent and the only edge in H among these four vertices is u1v1. Similarly,
b3 and c2 can only map to u3 or v2. Observe that f(b3) = v2 is not feasible,
as it implies f(c0) = u2 and hence f(b1) ∈ {v0, v2}. Thus, we have f(b3) = u3,
f(b1) = u1, f(c1) = v1, f(c0) = v0, f(c2) = v2, and finally f(b2) = u2.

This restricts possible images of vertices in V . Specifically, all vertices in V1

are adjacent to b1, thus, f can only map them to v1 or v0, the neighbourhood
of u1 = f(b1). Similarly, each vertex in V2 will only map to v2 or v0, and each
vertex in V3 will only map to v3 or v0.
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Let I denote the set of vertices of G that f maps to v1, v2 or v3. Notice that
I is an independent set in G. This is because any two adjacent vertices in G are
of distance two in G′ but the shortest path between v1 and v2, or between v2
and v3, or between v3 and v1 in H ′ has length 4.

We complete the proof by showing that |I| ≥ k. Let |I| = k′ and assume
for a contradiction that k′ < k. Let fI denote the homomorphism of G′ to H
constructed from I as described in the first part of the proof with cost(fI) ≤
TG,k′ . Observe that f and fI are identical for every vertex v ∈ Vi (i = 1, 2, 3, 4).
Hence, |cost(f) − cost(fI)| ≤ 3m. This implies that cost(fI) ≤ cost(f) + 3m.
Also, note that cost(fI) ≥ TG,k′ − 3m, hence, we have TG,k′ − 3m ≤ TG,k + 3m,
or equivalently, TG,k′ − TG,k ≤ 6m. But this is a contradiction because:

TG,k′ − TG,k = T I
G,k′ − T I

G,k = 12(m + n)(k − k′) ≥ 12(m + n).

�
We can now apply Theorem 3 and derive the same conclusion for the problem

without vertex weights.

Theorem 10. Let H be a fixed graph containing the bipartite claw as an induced
subgraph. Then the minimum constrained cost homomorphism problem to H is
NP-complete.

Note that Lemma 7 implies that for trees, a chordal bipartite H is a proper
interval bigraph if and only if it does not contain an induced bipartite claw. Thus
we obtain Theorem 1 as a corollary.

4 Conclusion

We left open the complexity of the minimum constrained cost graph homomor-
phism problems in general. In particular, it remains to check whether the problem
is NP-complete also for graphs H that contain a bipartite net or a bipartite tent.
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16. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. J. ACM
60, 10:1–10:38 (2013)

17. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial.
Discrete Appl. Math. 78, 189–205 (1997)

18. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18, 279–292 (1987)

19. Feder, T., Hell, P.: List homomorphism to reflexive graphs. J. Comb. Theory B
72, 236–250 (1998)

20. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313–327 (2004)

21. Alekseev, V.E., Lozin, V.V.: Independent sets of maximum weight in (p, q)-
colorable graphs. Discrete Math. 265, 351–356 (2003)

http://arxiv.org/abs/0907.3016
http://arXiv.org/abs/0907.3016


Approximation Algorithms



An Improved Constant-Factor Approximation
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Abstract. Given a set S of n disjoint line segments in R
2, the visi-

bility counting problem (VCP) is to preprocess S such that the num-
ber of segments in S visible from any query point p can be computed
quickly. This problem can trivially be solved in logarithmic query time
using O(n4) preprocessing time and space. Gudmundsson and Morin
proposed a 2-approximation algorithm for this problem with a trade-
off between the space and the query time. They answer any query in
Oε(n

1−α) with Oε(n
2+2α) of preprocessing time and space, where α is a

constant 0 ≤ α ≤ 1, ε > 0 is another constant that can be made arbi-
trarily small, and Oε(f(n)) = O(f(n)nε).

In this paper, we propose a randomized approximation algorithm for
VCP with a tradeoff between the space and the query time. We will
show that for an arbitrary constants 0 ≤ β ≤ 2

3
and 0 < δ < 1,

the expected preprocessing time, the expected space, and the query
time of our algorithm are O(n4−3β log n), O(n4−3β), and O( 1

δ3
nβ log n),

respectively. The algorithm computes the number of visible segments
from p, or mp, exactly if mp ≤ 1

δ3
nβ log n. Otherwise, it computes a

(1+δ)-approximation m′
p with the probability of at least 1− 1

log n
, where

mp ≤ m′
p ≤ (1 + δ)mp.

Keywords: Computational geometry · Visibility · Randomized
algorithm · Approximation algorithm · Graph theory

1 Introduction

Problem Statement: Let S = {s1, s2, . . . , sn} be a set of n disjoint closed line
segments in the plane contained in a bounding box, B. Two points p and q in the
bounding box are visible to each other with respect to S, if the open line segment
pq does not intersect any segments of S. A segment si ∈ S is also said to be
visible from a point p, if there exists a point q ∈ si such that q is visible from p.
The visibility counting problem (VCP) is to find mp, the number of segments of
S visible from a query point p. We know that the visibility polygon of a given
point p ∈ B is defined as V PS(p) = {q ∈ B : p and q are visible}, and the
visibility polygon of a given segment si is defined as V PS(si) =

⋃
q∈si

V PS(q).
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 209–221, 2016.
DOI: 10.1007/978-3-319-42634-1 17
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Consider the 2n end-points of the segments of S as vertices of a geometric
graph. Add a straight-line-edge between each pair of visible vertices. The result
is the visibility graph of S or V G(S). We can extend each edge of V G(S) in both
directions to the points that the edge hits some segments in S or the bounding
box. This creates at most two new vertices and two new edges. Adding all these
vertices and edges to V G(S) results in a new geometric graph called the extended
visibility graph of S or EV G(S). EV G(S) reflects all the visibility information
from which the visibility polygon of any segment si ∈ S can be computed [9].

Related Work: V PS(p) can be computed in O(n log n) time using O(n)
space [3,13]. Vegter proposed an output sensitive algorithm that reports V PS(p)
in O(|V PS(p)| log( n

|V PS(p)| )) time, by preprocessing the segments in O(m log n)
time using O(m) space, where m = O(n2) is the number of edges of V G(S) and
|V PS(p)| is the number of vertices of V PS(p) [14].

EV G(S) can be used to solve VCP. EV G(S) can optimally be computed in
O(n log n + m) time [7]. If a vertex is assigned to any intersection point of the
edges of EV G(S), we have a planar graph, which is called the planar arrangement
of the edges of EV G(S). All points in any face of this arrangement have the same
number of visible segments and this number can be computed for each face in
the preprocessing step [9]. Since there are O(n4) faces in the planar arrangement
of EV G(S), a point location structure of size O(n4) can answer each query in
O(log n) time. But, O(n4) preprocessing time and space is high. Also, for any
query point p, by computing V PS(p),mp can be computed in O(n log n) with
no preprocessing. This has led to several results with a tradeoff between the
preprocessing cost and the query time [2,4,8,12,15].

There are two approximation algorithms for VCP by Fischer et al. [5,6]. One
of these algorithms uses a data structure of size O((m/r)2) to build a (r/m)-
cutting for EV G(S) by which the queries are answered in O(log n) time with
an absolute error of r compared to the exact answer (1 ≤ r ≤ n). The second
algorithm uses the random sampling method to build a data structure of size
O((m2 logO(1) n)/l) to answer any query in O(l logO(1) n) time, where 1 ≤ l ≤ n.
In the latter method, the answer of VCP is approximated up to an absolute
value of δn for any constant δ > 0 (δ affects the constant factor of both data
structure size and the query time).

In [13], Suri and O’Rourke represent the visibility polygon of a segment by
a union of set of triangles. Gudmundsson and Morin [9] improved the cover-
ing scheme of [13]. Their method builds a data structure of size Oε(m1+α) =
Oε(n2(1+α)) in Oε(m1+α) = Oε(n2(1+α)) preprocessing time, from which each
query is answered in Oε(m(1−α)/2) = Oε(n1−α) time, where 0 < α ≤ 1. This algo-
rithm returns m′

p such that mp ≤ m′
p ≤ 2mp. The same result can be achieved

from [1,11]. In [1], it is proven that the number of visible end-points of the seg-
ments in S, denoted by vep, is a 2-approximation of mp, that is mp ≤ vep ≤ 2mp.

Our Results: In this paper, we present a randomized (1 + δ)-approximation
algorithm, where 0 < δ ≤ 1. The expected preprocessing time and space of our
algorithm are O(m2−3β/2 log m) and O(m2−3β/2) respectively, and our query
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time is O( 1
δ3 mβ/2 log m), where 0 ≤ β ≤ 2

3 is chosen arbitrarily in the pre-
processing time. In this algorithm, a graph G(p) is associated to each query
point p; the construction of G(p) is explained in Sect. 2. It will be shown that
G(p) has a planar embedding and this formula holds: mp = n − F (G(p)) + 1 or
n − F (G(p)) + 2, where F (G(p)) is the number of faces of G(p). Using Euler’s
formula for planar graphs, we will show that if p is inside a bounded face of
G(p), then mp = vep − C(G(p)) + 1, otherwise mp = vep − C(G(p)), where
C(G(p)) is the number of connected components of G(p). In Sects. 3 and 4, we
will present algorithms to approximate vep and C(G(p)). This leads to an overall
approximation for mp. Some detail of our algorithm is as follows: First, we try
to calculate V PS(p) by running the algorithm presented in [14] for 1

δ3 mβ/2 log m
steps. If this algorithm terminates, the exact value of mp is calculated, which is
obviously less than 1

δ3 mβ/2 log m. Otherwise, our algorithm instead returns m′
p,

such that mp ≤ m′
p ≤ (1+δ)mp with the probability of at least 1− 1

log n . Table 1
compares the performance of our algorithm with the best known result for this
problem. Note that if we choose a constant number 0 < δ < 1, then our query
time is better than [9], however our algorithm returns a (1 + δ)-approximation
of the answer with a high probability.

Table 1. Comparison of our method and the best known result for VCP. Note that
β (0 ≤ β ≤ 2

3
) is chosen in the preprocessing time and 1 + δ (0 < δ ≤ 1) is the

approximation factor of the algorithm which affects the query time and Oε(f(n)) =
O(f(n)nε), where ε is a constant number that can be arbitrary small.

Reference Preprocessing time Space Query Approx-Factor

[9] Oε(m
2−3β/2) Oε(m

2−3β/2) Oε(m
3β/4) 2

Our result O(m2−3β/2 log m) O(m2−3β/2) O( 1
δ3

mβ/2 log m) 1 + δ

2 Definitions and the Main Theorem

For each point a′ ∈ si, let
−→
pa′ be the ray emanating from the query point p

toward a′ and let a = pr(a′) be the first intersection point of
−→
pa′ and a segment

in S or the bounding box right after touching a′. We say that a = pr(a′) is
covered by a′ or the projection of a′ is a. Also, suppose that x′y′ is a subsegment
of si and xy is a subsegment of sj , such that pr(x′) = x and pr(y′) = y and for
any point z′ ∈ x′y′, pr(z′) ∈ xy, then we say that xy is covered by x′y′.

For each query point p, we construct a graph denoted by G(p) as follows: a
vertex vi is associated to each segment si ∈ S, and an edge (vi, vj) is put if sj

covers one end-point of si (or vice-versa; that is, if si covers one end-point of
sj). Obviously, there are two edges between vi and vj , if sj (or si) covers both
end-points of si (or sj). As an example, refer to Fig. 1(a) and (d). Note that the
bounding box is not considered here.
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s1l(s1) r(s1)

s2l(s2)
r(s2)
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l(s3)
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p
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Fig. 1. The steps to draw a planar embedding of G(p). (a) The segments are s1, . . . , s5
with their left and right end-points and a given query point is p. (b) For each end-point
a ∈ si not visible to p, if a′ ∈ sj such that pr(a′) = a, we draw aa′. (c) Put a vertex vi

for each segment si in a distance sufficiently close to the middle of si. For each a and
a′ (described in (b)), connect a to vi and a′ to vj . This creates an edge between vi and
vj shown in red (d) Remove the segments and the remaining is the planar embedding
of G(p). Note that the final embedding has 5 vertices and 5 edges and each edge is
drown as 3 consequence straight lines. (Color figure online)

For any segment s ∈ S, let l(s) and r(s) be the first and second end-points
of s, respectively swept by a ray around p in clockwise order (Fig. 1(a)).

Lemma 1. G(p) has a planar embedding.

Proof. Here is the construction. For each end-point a ∈ si not visible from p,
let a′ ∈ sj such that pr(a′) = a. Draw the straight-line aa′. Doing this, we have
a collection of non-intersecting straight-lines. For each si, we put a vertex vi

located very close to the mid-point of si. Also, for each segment aa′, we connect
a to vi and a′ to vj . This creates an edge consisting of three consecutive straight-
lines via, aa′, and a′vj that connects vi to vj . Obviously, none of these edges
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intersect. Finally, all the original segments are removed. The remaining is the
vertices and edges of a planar embedding of G(p) (See Fig. 1).

From now on, we use G(p) as the planar embedding of the graph G(p). As we
know the Euler’s formula for any non-connected planar graph G with multi-
ple edges is: V (G) − E(G) + F (G) = 1 + C(G), where E(G), V (G), F (G), and
C(G) are the number of edges, vertices, faces, and connected components of G,
respectively. We have the following theorem to calculate mp, using G(p).

Theorem 1. The number of segments not visible from p is equal to F (G(p))−2
if p is inside a bounded face of G(p), or is equal to F (G(p)) − 1, otherwise.

Proof. We construct a bijection φ between the segments not visible from p to
the faces of G(p) except the unbounded face and the face that contains p. This
will complete the proof of our theorem.

Suppose that si is a segment not visible from p. Then, we can partition
si into k subsegments, q0q1, q1q2, . . . , qk−1qk such that q0 = l(si), qk = r(si),
and for each qiqi+1, there is a subsegment q′

iq
′
i+1 ∈ sj that covers qiqi+1. Let

s′
1, s

′
2, . . . , s

′
k be the set of segments such that xy ∈ s′

i+1 covers qiqi+1 (note
that some segments may appear more than once in the above sequence) (Fig. 2).
We claim that the vertices vi, v

′
1, v

′
2, . . . , v

′
k form a bounded face of G(p) that

does not contain p. In φ, we associate this face to si. Since v′
1 is the vertex

associated to the first segment that covers q0q1, s′
1 will cover l(si) and hence

vi is adjacent to v′
1. Similarly, since s′

k covers r(si), hence vi is adjacent to
v′

k. The next subsegment that covers a subsegment of si comes from s′
2. This

means that r(s′
1) is covered by s′

2 or l(s′
2) is covered by s′

1. This implies that
v′
1 is adjacent to v′

2. Similarly, we can show that v′
i is adjacent to v′

i+1 for all
1 ≤ i < k. To complete the construction, we show that the closed path formed

si
l(s1) = q0 r(s1) = q5

s′
1

s′
2

q1 q2 q3 q4

s′
3

s′
4

s′
5

s′
6

p

Fig. 2. si is not visible from p. It can be partitioned into 5 subsegments
q0q1, q1q2, q2q3, q3q4, and q4q5, each is covered respectively by subsegment of
s′
1, s

′
2, s

′
3, s

′
4, and s′

3 shown above.
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by vi → v′
1 → v′

2, . . . → v′
k → vi is a bounded face not containing p. Consider

a ray around p in clockwise order. The area that this ray touches under si and
above s′

1, . . . , s
′
k is bounded by vi, v

′
1, v

′
2, . . . , v

′
k. So, p is not inside this region.

Now, we show that our map φ is one-to-one and onto. If φ(si) = φ(sj), then
according to the construction of φ, a subsegment of si covers a subsegment of sj

and a subsegment of sj covers a subsegment of si. This is a contradiction since
these segments do not intersect. To prove the onto-ness, we need to show for any
bounded face f that does not contain p, there is a vertex vi corresponding to a
segment si that is not visible to p such that φ(si) = f .

To find si, we use the sweeping ray around p. Since f is assumed to be
bounded and not containing p, the face f is between two rays from p; one from
the left and the other from the right. If we start sweeping from left to right, there
is a segment corresponding to the vertices of f whose end-point is the first to be
covered by the other segments corresponding to the vertices of f . We claim that
si is the desired segment i.e. si is not visible to p and φ(si) = f . For example in
Fig. 2, the closed path vi → v′

1 → v′
2 → v′

3 → v′
4,→ v′

3,→ vi forms a face and si

is the first segment among {si, s
′
1, s

′
2, s

′
3, s

′
4} such that l(si) is covered by one of

the segments in {si, s
′
1, s

′
2, s

′
3, s

′
4}.

Obviously, l(si) is not visible from p. v′
1 is adjacent to vi which means that

a subsegment of s′
1 covers a subsegment of si. Since v′

1 and v′
2 are adjacent,

this means that a subsegment of s′
2 consecutively covers the next subsegment

of si right after s′
1. Continuing this procedure, we conclude that a subsegment

of each s′
i covers some subsegment of si continuously right after s′

i−1. v′
k and vi

are also adjacent, so r(si) is not visible from p. We conclude that subsegments
of s′

1, s
′
2 . . . , sk completely cover si and hence si is not visible from p.

So, if p is in the unbounded face of G(p), the number of segments which are
not visible from p is F (G(p)) − 1, otherwise it is F (G(p)) − 2.

The Euler’s formula is used to compute F (G(p)). Obviously, V (G(p)) is n. For
each end-point not visible from p, an edge is added to G(p); therefore, E(G(p))
is 2n − vep (vep was defined above as the number of visible end-points from p).
The Euler’s formula and Theorem1 indicate the following lemma.

Lemma 2. If p is inside a bounded face of G(p), then mp = vep −C(G(p))+ 1,
otherwise, mp = vep − C(G(p)).

In the rest of this paper, two algorithms are presented; one to approximate vep

and the other to approximate C(G(p)). By these two algorithms and applying
Lemma 2, an approximation value of mp is calculated. The main result of this
paper is thus derived from the following theorem. The detailed proof is presented
in http://arxiv.org/abs/1605.03542.

Theorem 2 (Main theorem). For any 0 < δ ≤ 1 and 0 ≤ β ≤ 2
3 , VCP can be

approximated in O( 1
δ3 mβ/2 log m) query time using O(m2−3β/2 log m) expected

preprocessing time and O(m2−3β/2) expected space. This algorithm returns a
value m′

p such that with the probability at least 1 − 1
log m , mp ≤ m′

p ≤ (1 + δ)mp

when mp ≥ 1
δ3 mβ/2 log m and returns the exact value when mp < 1

δ3 mβ/2 log m.

http://arxiv.org/abs/1605.03542
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3 An Approximation Algorithm to Compute vep

In this section, we present an algorithm to approximate vep, the number of visible
end-points. In the preprocessing phase, we build the data structure of the algo-
rithm presented in [14] which calculates V PS(p) in O(|V PS(p)| log(n/|V PS(p)|))
time, where |V PS(p)| is the number of vertices of V PS(p). In [14], the algorithm
for computing V PS(p), consists of a rotational sweep of a line around p. During
the sweep, the subsegments visible from p along the sweep-line are collected. In
the preprocessing phase, we choose a fixed parameter β, where 0 ≤ β ≤ 2

3 . In
the query time we also choose a fixed parameter 0 < δ ≤ 1 which is the value of
approximation factor of the algorithm.

We use the algorithm presented in [14] to find the visible end-points, but for
any query point, we stop the algorithm if more than 2

δ3 mβ/2 log m of the visible
end-points are found.

If the sweep line completely sweeps around p before counting 1
δ3 mβ/2 log m

of the visible end-points, then we have completely computed V PS(p) and we
have |V PS(p)| ≤ 2

δ3 mβ/2 log m. In this case, the number of visible segments can
be calculated exactly in O( 1

δ3 mβ/2 log m) time. Otherwise, vep > 2
δ3 mβ/2 log m

and the answer is calculated in the next step of algorithm, that we now explain.
The visibility polygon of an end-point a is a star shaped polygon consisting

of ma = O(n) non-overlapping triangles [3,13], which are called the visibility
triangles of a denoted by V TS(a). Notice that ma is the number of edges of
EV G(S) incident to a. The query point p is visible to an end-point a, if and
only if it lies inside one of the visibility triangles of a. Let V TS be the set of
visibility triangles of all the end-points of the segments in S. Then, the number
of visible end-points from p is the number of triangles in V TS containing p.
We can construct V TS in O(m log m) = O(n2 log n) time using EV G(S) and
|V TS | = O(m) = O(n2) [9].

We can preprocess a given set of triangles using the following lemma to count
the number of triangles containing any query point.

Lemma 3. Let Δ be a set of n triangles. There exists a data structure of size
O(n2), such that in the preprocessing time of O(n2 log n), the number of triangles
containing a query point p can be calculated in O(log n) time.

Proof. Consider the planar arrangement of the edges of the triangles in Δ as a
planar graph. Let f be a face of this graph. Then, for any pair of points p and
q in f , the number of triangles containing p and q are equal. Therefore, we can
compute these numbers for each face in a preprocessing phase and then, for any
query point locate the face containing that point. There are O(n2) faces in the
planar arrangement of Δ, so a point location structure of size O(n2) can answer
each query in O(log n) time [10]. Note that the number of triangles containing
a query point differs in 1 for any pair of adjacent faces.
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3.1 The Algorithm

Here, we present an algorithm to approximate vep. We use this algorithm
when mp > 1

δ3 mβ/2 log m. In the preprocessing phase we take a random sub-
set RV T1 ⊂ V TS such that each member of V TS is chosen with the probability
of 1

mβ .

Lemma 4. E(|RV T1|) = O(m1−β).

Proof. Let V TS = {Δ1,Δ2, . . . ,Δm′}, where m′ = O(m) = O(n2) and Xi = 1
if Δi ∈ RTV1, and Xi = 0 otherwise. We have,

E(|RV T1|) = E(
∑m′

i=1
Xi) =

∑m′

i=1
E(Xi) =

∑m′

i=1

1
mβ

=
m′

mβ
= O(m1−β).

Suppose that in the preprocessing time, we choose mβ/2 independent random
subsets RV T1, . . . , RV Tmβ/2 of V TS . By Lemma 3, for any query point p, the
number of triangles of each RV Ti containing p denoted by (vep)i, is calculated
in O(log m) time by O(m2−2β log m) expected preprocessing time and O(m2−2β)

expected space. Then, ve′
p = mβ

∑mβ/2
i=1 (vep)i

mβ/2 is returned as the approximation
value of vep.

3.2 Analysis of Approximation Factor

Lemma 5. Let Xi = mβ(vep)i, we have E(Xi) = vep.

Proof. Suppose that V T (p) = {Δ′
1,Δ

′
2, . . . ,Δ

′
vep

} ⊂ V TS be the set of all tri-
angles containing p. Let Yj = 1 if Δ′

j ∈ RV Ti, and Yj = 0 otherwise. So,
(vep)i =

∑vep

j=1 Yj and E((vep)i) = E(
∑vep

j=1 Yj) = vep

mβ . E(Xi) = E(mβ(vep)i) =
mβE((vep)i) = mβ vep

mβ = vep.

In addition, we can conclude the following lemma:

Lemma 6. E(
∑mβ/2

i=1 Xi

mβ/2 ) = vep.

So, X1,X2, . . . , Xmβ/2 are random variables with E(Xi) = vep. According to
Chebyshev’s Lemma the following lemma holds

Lemma 7 (Chebyshev’s Lemma). Given X1,X2, . . . , Xn sequence of i.i.d.’s ran-
dom variables with finite expected value E(X1) = E(X2) = . . . = μ, we have,

P ((|X1 + · · · + Xn

n
− μ|) > ε1) ≤ V ar(X)

nε12
.

Lemma 8. With a probability at least 1 − 1
log m we have, (1 − δ)vep ≤ ve′

p ≤
(1 + δ)vep.
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Proof. Using Lemma 7, we choose ε1 = δvep. Here, δ indicates the approximation
factor of the algorithm. Obviously, V ar(Xi) = m2β(vep)(1 − 1

mβ ) 1
mβ . So,

P = P (|ve′
p − vep| > δvep) ≤ mβvep

mβ/2δ2(vep)2
.

We know that vep ≥ 1
δ2 mβ/2 log m, so P = P (|ve′

p − vep| > δvep) ≤ 1
log m . With

the probability of at least 1 − P, we have, (1 − δ)vep ≤ ve′
p ≤ (1 + δ)vep. Also,

for a large m, we have P ∼ 0.

3.3 Analysis of Time and Space Complexity

In the first step of the query time, we run the algorithm of [14]. The preprocess-
ing time and space for constructing the data structure of [14] are O(m log m)
and O(m), respectively, which computes V PS(p) in O(|V PS(p)| log(n/|V PS(p)|))
time. As we run this algorithm for at most 1

δ3 mβ/2 log m steps, the query time
of the first step is O( 1

δ3 mβ/2 log m).
According to Lemma 4, E(|RV Ti|) = O(m1−β). Using Lemma 3, the expected

preprocessing time and space for each RV Ti are O(m2−2β log m) and O(m2−2β)
respectively, such that in O(log m) we can calculate (vep)i. So, the expected
preprocessing time and space are mβ/2O(m2−2β log m) = O(m2− 3

2β log m) and
mβ/2O(m2−2β) = O(m2− 3

2β) respectively. In the second step, for each RV Ti

the value of (vep)i is calculated in O(log m). Therefore, the query time is
O( 1

δ3 mβ/2 log m) + O(mβ/2 log m). So, we have the following lemma.

Lemma 9. There exists an algorithm that for any query point p, approxi-
mates vep in O( 1

δ3 mβ/2 log m) query time using O(m2−3β/2 log m) expected pre-
processing time and O(m2−3β/2) expected space (0 ≤ β ≤ 2

3 ). This algorithm
returns the exact value of vep when vep < 1

δ2 mβ/2 log m. Otherwise, a value
of ve′

p is returned such that with the probability of at least 1 − 1
log m , we have

(1 − δ)vep ≤ ve′
p ≤ (1 + δ)vep.

4 An Approximation Algorithm for Computing
the Number of Components of G(p)

Now, we explain an algorithm to compute the number of connected components
of G(p), each is simply called a component of G(p). Let c be a component such
that p is not inside any of its faces. Without loss of generality we can assume
that p lies below c. Obviously, there exist rays emanating from p that do not
intersect any segments corresponding to the vertices of c. We start sweeping one
of these rays in a clockwise direction. Let l(c) (left end-point of c) be the first
end-point of a segment of c and r(c) (right end-point of c) be the last end-point
of a segment of c that are crossed by this ray (Fig. 3). This way every component
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c has l(c) and r(c) except the component containing p. Also, note that r(c) and
l(c) do not depend on the choice of the starting ray. As said, the bounding box
is not a part of G(p), but G(p) is contained in the bounding box.

Lemma 10. For each component c, except the one containing p, the projections
of l(c) and r(c) both belong either to the same segment or the bounding box.

Proof. Assume that pr(l(c)) belongs to a segment s ∈ S. Since l(s) is on the left
of l(c), s can not be among the segments of c. We claim that r(s) is on the right
of r(c). Obviously, if this claim is true then, if pr(r(c)) ∈ s′, then l(s′) is on the
left of l(c). Clearly, if s �= s′, then these two should intersect, which is impossible.
Also, this implies that if pr(l(c)) is on the bounding box, then pr(r(c)) should to
be on the bounding box as well. The claim is proven by contradiction. Assume
that r(s) is on the left of r(c). Since, r(s) is not visible from p, then there should
exist a segment s′ that covers r(s). Since, s is not in c and s′ is connected to s, s′

can not be in c, so l(s′) is to the right of l(c) and hence is not visible. Therefore,
there should exist a different segment s′′ that covers l(c) and with the same
argument s′′ can not be in c and l(s′′) should be covered by another segment.
This process can not be continued indefinitely since the number of segments is
finite and therefore we will reach a contradiction.

Let s′
1, s

′
2, s

′
3, and s′

4 be the segments of the bounding box. According to
Lemma 10, we can associate a pair of adjacent visible subsegments or a connected
visible part of the bounding box for each component of G(p). For example, in
Fig. 3, s1 has two visible subsegments which are associated to the component
composed of s3 and s4. If we can count the number of visible subsegments of
each segment and the number of visible parts of the bounding box, then we can
compute the exact value of C(G(p)). Because each pair of consecutive visible

s1

s6
l(s6)

s2
l(s2)

s3
l(s3)

s4
r(s4)s5

l(s5) r(s5)

p

a′a

b′b c

c′

Fig. 3. aa′ and bb′ are the visible subsegments of s1. The bounding box has one visible
part from c to c′. G(p) has three components; {s1, s2, s6}, {s3, s4}, and {s5}. l(s2), l(s3),
and l(s5) are the left end-points of these components, respectively. r(s6), r(s4), and
r(s5) are the right end-points of these components, respectively.
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subsegments of a segment and each visible part of the bounding box are asso-
ciated to a component. Let c′ be the number of visible parts of the bounding
box. If c′ > 0, then p is in the unbounded face. So, if each segment si has ci

visible subsegments, then C(G(p)) = c′ +
∑n

i=1 max {(ci − 1), 0}. For example
in Fig. 3, c1 = 2, c2 = 1, c3 = 1, c4 = 2, c5 = 1 and c6 = 1, also c′ = 1. This
implied that C(G(p)) = 3. If c′ = 0, then p is in a bounded face and this face
is contained in a component with no left and right end-point, so in this case
C(G(p)) = 1 +

∑n
i=1 max {(ci − 1), 0}.

In the following we propose an algorithm to approximate the number of
visible subsegments of each segment si ∈ S ∪ {s′

1, s
′
2, s

′
3, s

′
4}.

4.1 Algorithm

According to [9], it is possible to cover the visibility region of each segment si ∈
S ∪ {s′

1, s
′
2, s

′
3, s

′
4} with O(msi

) triangles denoted by V T (si). Here, |V T (si)| =
O(msi

), where msi
is the number of edges of EV G(S) incident on si. Note that

the visibility triangles of si may overlap. If we consider the visibility triangles of
all segments, then there is a set V TS = {Δ1,Δ2, . . . } of |V TS | = O(m) triangles.
We say Δi is related to sj if and only if Δi ∈ V T (sj). For a given query point p,
m′′

p , the number of triangles in V TS containing p, is between mp and 2mp. So, m′′
p

gives a 2-approximation factor solution for VCP [9]. Since the visibility triangles
of each segment may overlap, some of the segments are counted repeatedly. In
[9], it is shown that each segment si is counted ci times, where ci is the number
of visible subsegments of si. In other words, there are ci triangles related to si

in V TS which contain p.
A similar approach can be used to approximate C(G(p)). A random subset

RV T1 ⊂ V TS is chosen such that each member of V TS is chosen with probability
1

mβ . For a given query point p, let c′
i,1 ≥ 1 be the number of triangles related

to si in RV T1 containing p. We report C1 =
∑n

i=1(m
βc′

i,1 − 1) as the approx-
imated value of C(G(p)) received by RV T1. We choose mβ/2 random subsets
RV T1, . . . , RV Tmβ/2 of V TS . Let p be the given query point, for each RV Tj ,

Cj =
∑n

i=1(m
βc′

i,j − 1) is calculated. At last, C ′
p =

∑mβ/2
j=1 Cj

mβ/2 is reported as the
approximation value of C(G(p)).

4.2 Analysis of Approximation Factor

We show that with the probability at least 1
log m , if C(G(p)) > 1

δ2 mβ/2 log m,
then C ′

p is a (1 + δ)-approximation of C(G(p)).

Lemma 11. E(Cj) = C(G(p)).

Proof. E(Cj) = E(
∑n

i=1 mβc′
i,j − 1) =

∑n
i=1 E(mβc′

i,j − 1) =
∑n

i=1 ci − 1 =
C(G(p)).
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Using Lemma 7, we have, P = P (|C1+···+C
mβ/2

mβ/2 − C(G(p))| > δC(G(p))) ≤
V ar(Ci)

mβ/2δ2C(G(p))2
. V ar(Ci) = m2βC(G(p))( 1

mβ )(1− 1
mβ ). Since we have, C(G(p)) >

1
δ2 mβ/2 log m, then P = P (|C1+···+C

mβ/2

mβ/2 − C(G(p))| > δC(G(p))) ≤ 1
log m .

So, with the probability at least 1−P, (1−δ)C(G(p)) ≤ C ′
p ≤ (1+δ)C(G(p)).

And for a large m, we have, P ∼ 0.

4.3 Analysis of Time and Space Complexity

By Lemma 3, for each RV Ti, a data structure of expected preprocessing time and
size of O(m2−2β log m) and O(m2−2β) is needed. RV Ti returns Ci in O(log m)
for each query point p. So, the expected space for all mβ/2 data structures is
O(m2−2β+β/2 log m) and the query time for calculating C ′

p is O(mβ/2 log m).

Lemma 12. There exists an algorithm that approximates C(G(p)) in
O( 1

δ2 mβ/2 log m) query time by using O(m2−3β/2) expected preprocessing time
and O(m2−3β/2) expected space (0 ≤ β ≤ 2

3 ). For each query p, this algorithm
returns a value C ′

p such that with probability at least 1− 1
log m , (1− δ)C(G(p)) ≤

C ′
p ≤ (1 + δ)C(G(p)) when C(G(p)) > 1

δ2 mβ/2 log m.
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Abstract. Given a metric graph G = (V, E, w) and a center c ∈ V , and
an integer k, the Star k -Hub Center Problem is to find a depth-2
spanning tree T of G rooted by c such that c has exactly k children
and the diameter of T is minimized. Those children of c in T are called
hubs. The Star k -Hub Center Problem is NP-hard. (Liang, Opera-
tions Research Letters, 2013) proved that for any ε > 0, it is NP-hard
to approximate the Star k -Hub Center Problem to within a ratio
1.25 − ε. In the same paper, a 3.5-approximation algorithm was given
for the Star k -Hub Center Problem. In this paper, we show that
for any ε > 0, to approximate the Star k -Hub Center Problem
to a ratio 1.5 − ε is NP-hard. Moreover, we give 2-approximation and
5
3
-approximation algorithms for the same problem.

1 Introduction

Hub location problems have been well studied in the literatures since they have
various applications in transportation and telecommunication systems (see the
two survey papers [1,3]). Suppose that we have a set of demand nodes that want
to communicate with each other through some hubs in a network. If a demand
node can be served by several hubs, then this kind of hub location problem
is called multi-allocation. A hub location problem is called single allocation if
each demand node can be served by exactly one hub. The goal of classical hub
location problems is to minimized the total cost of routing in the network. In this
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paper, we consider the Star k -Hub Center Problem introduced by Yaman
and Elloumi [11]. It is classified as single allocation. Unlike those classical hub
location problems, Star k -Hub Center Problem is used to design a two level
telecommunications network with the optimization criterion that the poorest
service quality is minimized. Suppose that we have a set of demand nodes located
in a metric space, each of them would like to communicate with all the others
in a two-level tree structure network. In the two-level network, there is a given
central hub c and we want to pick k nodes among the set of demand nodes as
hubs and to connect them with the central hub c. Then each of the remaining
demand nodes is connected to exactly one of the k chosen hubs such that the
longest path in the tree structure network is minimized.

Let u, v be two vertices in a tree T . Use dT (u, v) to denote the distance
between u, v in T . Define D(T ) = maxu,v∈T dT (u, v) called the diameter of T .
For a vertex v in a tree T , we use NT (v) to denote the set of vertices adjacent
to v in T . In this paper, we consider a graph G = (V,E,w) with a distance
function w(·, ·) being a metric on V such that w(v, v) = 0, w(u, v) = w(v, u),
and w(u, v) + w(v, r) ≥ w(u, r) for all u, v, r ∈ V . We give the formal definition
of the Star k -Hub Center Problem as follows.

Star k -Hub Center Problem (SkHCP)
Input: A metric graph G = (V,E,w), a center vertex c ∈ V , and a positive

integer k.
Output: A depth-2 spanning tree T ∗ rooted by c called the central hub such

that c has exactly k children (called hubs) and the diameter of T ∗,
D(T ∗), is minimized.

Yaman and Elloumi [11] showed the NP-hardness of Star k -Hub Center
Problem and proposed two integer programming formulations of the same prob-
lem. Liang [8] showed that the Star k -Hub Center Problem does not admit
a (1.25 − ε)-approximation algorithm for any ε > 0 unless P = NP and gave a
3.5-approximation algorithm.

A similar problem of the Star k -Hub Center Problem called the Single
Allocation p-Hub Center Problem was introduced in [2,10] and further
studied in [6,7,9]. The difference between the two problems is that the Single
Allocation p-Hub Center Problem assumes that hubs are fully intercon-
nected. Thus, for Single Allocation p-Hub Center Problem, the commu-
nication between hubs is not necessary to go through a specified central hub c.

In this paper, we answer the open problem proposed by Liang [8] that for the
Star k -Hub Center Problem whether we can bridge the gap between the
lower bound (1.25 − ε) and the upper bound 3.5 of the approximation ratio. We
show that for any ε > 0, to approximate the Star k -Hub Center Problem
to a ratio (1.5 − ε) is NP-hard. Moreover, we give a 2-approximation algorithm
running in time O(n) and a 5

3 -approximation algorithms for the same problem
running in time O(kn4).
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2 Inapproximability

In this section, we show that for any ε > 0, if there exists a (1.5 − ε)-
approximation algorithm for Star k -Hub Center Problem running in poly-
nomial time, then Set Cover can be approximated to within a ratio 3 in poly-
nomial time.

Set Cover
Input: A universe U of elements, |U| = n and a collection S of subsets of U .
Output: S ′ ⊆ S of minimum cardinality such that

⋃
si∈S′ si = U .

The Set Cover problem is a well-known NP-hard problem. Dinur and
Steurer [5] showed that for any ε > 0, to approximate Set Cover to within a
factor (1 − ε) ln n is NP-hard.

Lemma 1. For any ε > 0, if Star k-Hub Center Problem can be approx-
imated to a ratio (1.5 − ε) in polynomial time, then Set Cover admits a
3-approximation algorithm running in polynomial time.

Proof. Let (U ,S) be an input instance of Set Cover. We construct a metric
graph G = (V1 ∪ V2 ∪ S1 ∪ S2 ∪ {c, x1, x2, y}, E,w) of the Star k -Hub Center
Problem according to (U ,S) where c is the specified center. Let V1 = U and
V2 = U . For each set si ∈ S create a vertex in S1 and a vertex in S2. In the
following, we define the cost of edges in G.

– w(c, v) = 2 if v ∈ V1 ∪ V2 ∪ {y} and w(c, z) = 1 if z ∈ S1 ∪ S2 ∪ {x1, x2}.
– For v1 ∈ V1,

• w(v1, v′
1) = 2 if v′

1 ∈ V1;
• w(v1, v′

2) = 4 if v′
2 ∈ V2;

• w(v1, q) = 1 if v1 is an element of q ∈ S where q ∈ S1 represents the set
q ∈ S; otherwise w(v1, q) = 2;

• w(v1, q′) = 3 if q′ ∈ S2;
• w(v1, x1) = 2; w(v1, x2) = 3; w(v1, y) = 4.

– For v2 ∈ V2,
• w(v2, v′

2) = 2 if v′
2 ∈ V2;

• w(v2, q) = 3 if q ∈ S1;
• w(v2, q′) = 1 if v2 is an element of q′ ∈ S where q′ ∈ S2 represents the

set q′ ∈ S; otherwise w(v2, q′) = 2;
• w(v2, x1) = 3; w(v2, x2) = 2; w(v2, y) = 4.

– For p ∈ S1,
• w(p, q) = 2 if q ∈ S1;
• w(p, q′) = 2 if q′ ∈ S2;
• w(p, x1) = 1; w(p, x2) = 2; w(p, y) = 3.

– For p′ ∈ S2,
• w(p′, q′) = 2 if q′ ∈ S2;
• w(p′, x1) = 2; w(p′, x2) = 1; w(p′, y) = 3.

– w(x1, x2) = 2 and w(x1, y) = 3.
– w(x2, y) = 3.
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Table 1. The cost of edges in G where v1, v
′
1 ∈ V1, v2, v

′
2 ∈ V2, p, q ∈ S1, p′, q′ ∈ S2,

and w(v1, q), w(v2, q
′), w(v′

1, p), w(v′
2, p

′) are either 1 or 2.

w(u, v) c v′
1 v′

2 q q′ x1 x2 y

c 0 2 2 1 1 1 1 2

v1 2 2 4 w(v1, q) 3 2 3 4

v2 2 4 2 3 w(v2, q
′) 3 2 4

p 1 w(v′
1, p) 3 2 2 1 2 3

p′ 1 3 w(v′
2, p

′) 2 2 2 1 3

x1 1 2 3 1 2 0 2 3

x2 1 3 2 2 1 2 0 3

y 2 4 4 3 3 3 3 0

c

S1S2

x1 x2 y

V2 V1 S1 \ S1 S2 \ S2

1 1 1 1 2

1 1 1 1

T

Fig. 1. A solution of Star (2t + 3)-Hub Center Problem in G

In Table 1, we list the edge cost of all edges (u, v) in G specifically. It is not
hard to see that any three vertices u, v, r in G satisfy w(u, v)+w(v, r) ≥ w(u, r).
Thus G is a metric graph.

Let T ∗ be an optimal solution of Star k -Hub Center Problem in G.
Suppose that S ′ ⊆ S is an optimal solution of Set Cover, |S ′| = t and k =
2t + 3. W.l.o.g., assume that 2t < |U| < |S|. We now construct a solution T
(see Fig. 1) of Star (2t + 3)-Hub Center Problem in G. Let S ′

1 = S ′
2 = S ′.

Let NT (c) = S ′
1 ∪ S ′

2 ∪ {x1, x2, y}. Notice that S ′ is an optimal solution of Set
Cover. For v1 ∈ V1, there exists s ∈ S ′

1 such that v1 is an element in the set
s ∈ S ′. Let v1 be a child of s. For v2 ∈ V2, there exists s′ ∈ S ′

2 such that v2 is
an element in the set s′ ∈ S ′. Let v2 be a child of s′. Let all vertices in S1 \ S ′

1

be children of x1 in T . Let all vertices in S2 \ S ′
2 be children of x2 in T . We see

that D(T ) = 4 and D(T ∗) ≤ 4.
Now we show that D(T ∗) > 3. Suppose that D(T ∗) = 3. We see that y must

be a child of c; otherwise dT ∗(y, c) ≥ 3 and D(T ∗) > 3. If y has a child v, then
dT ∗(v, c) > 3. Thus y has no children. Since 2t < |U|, there exists v ∈ V1∪V2 that
is not a child of c. We see that dT ∗(v, y) > 3, a contradiction to the assumption
that D(T ∗) = 3. This shows that D(T ∗) > 3. Hence D(T ∗) = 4.



226 L.-H. Chen et al.

Suppose that there exists an approximation algorithm that finds a solution
T of Star (2t + 3)-Hub Center Problem in G and D(T ) < 6. Let NT (c) =
V ′
1 ∪ V ′

2 ∪ S ′
1 ∪ S ′

2 ∪ X where V ′
1 ⊂ V1, V ′

2 ⊂ V2, S ′
1 ⊂ S1, S ′

2 ⊂ S2, and
X ⊆ {x1, x2, y}.

Claim 1. y must be a child of c in T .

Proof of Claim. Suppose that y is not a child of c. If y is a child of v ∈ V ′
1 ∪V ′

2 ,
dT (y, c) = 6, a contradiction. If y is a child of v ∈ S ′

1 ∪S ′
2 ∪X, then dT (y, c) = 4.

Suppose that v ∈ S ′
1 ∪ {x1} is the parent of y in T . Since 2t < |U|, there exists

v′ ∈ V2 \ V ′
2 such that dT (v′, c) ≥ 2. If v′ is a child of v,

dT (v′, y) = w(v′, v) + w(v, y) = 3 + 3 = 6,

a contradiction to the fact that D(T ) < 6.
If v′ is not a child of v, dT (v′, y) = dT (v′, c) + dT (y, c) ≥ 6, a contradiction

to the fact that D(T ) < 6. Thus y is not a child of any v ∈ S ′
1 ∪ {x1}.

Suppose that v ∈ S ′
2 ∪ {x2} is the parent of y in T . Since 2t < |U|, there

exists v′ ∈ V1 \ V ′
1 such that dT (v′, c) ≥ 2. If v′ is a child of v,

dT (v′, y) = w(v′, v) + w(v, y) = 3 + 3 = 6,

a contradiction to the fact that D(T ) < 6.
If v′ is not a child of v, dT (v′, y) = dT (v′, c)+dT (y, c) ≥ 6, a contradiction to

the fact that D(T ) < 6. Thus, y is not a child of any v ∈ S ′
2 ∪ {x2}. This shows

that y is a child of c in T . �
Claim 2. y has no children in T .

Proof of Claim. If y has a child v, then dT (c, v) ≥ 5. For u ∈ V ′
1 ∪V ′

2 ∪S ′
1∪S ′

2,
dT (u, v) = dT (u, c) + dT (v, c) ≥ 6, a contradiction. Thus y has no children. �

According to Claims 1 and 2, in T , y is a child of c and y has no children.
Since D(T ) < 6, dT (y, c) = w(y, c) = 2, and y has no children in T , for v ∈
V1 ∪ V2 ∪ S1 ∪ S2 ∪ {x1, x2}, dT (v, c) < 4.

Claim 3. If for all v ∈ V1 \ V ′
1 , dT (v, c) = 2, then S ′

1 ∪ S ′′
1 is a set cover of U ,

|S ′
1 ∪ S ′′

1 | ≤ 2t + 2 where S ′′
1 ⊂ S satisfying that for each u ∈ V ′

1 there is exactly
one set in S ′′

1 containing u.

Proof of Claim. Since for all v ∈ V1 \V ′
1 , dT (v, c) = 2, the element v must be

a child of s ∈ S1 satisfying that v ∈ s. We see that S ′
1 is a set cover of V1 \ V ′

1 .
For each u ∈ V ′

1 , we pick exactly one set in S that contains u, call the collection
of sets S ′′

1 . It is easy to see that |S ′′
1 | = |V ′

1 | and S ′′
1 is a set cover of V ′

1 . Thus,
S ′
1 ∪ S ′′

1 is a set cover of V1 = U satisfying |S ′
1 ∪ S ′′

1 | ≤ 2t + 2 that can be found
in polynomial time. �
Claim 4. If there exists a solution T of the Star (2t+3)-Hub Center Problem
in G such that D(T ) < 6, then S ′

2 ∪ S ′′
2 is a set cover of U , |S ′

2 ∪ S ′′
2 | ≤ 2t + 2

where S ′′
2 ⊂ S satisfying that for each u ∈ V ′

2 there is exactly one set in S ′′
2

containing u.
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Proof of Claim. Suppose that the condition of Claim 3 is not true, there
exists v ∈ V1 \ V ′

1 at distance dT (v, c) = 3 from c in T . If the parent of v is
in V ′

1 ∪ V ′
2 ∪ S ′

2 ∪ {x2}, we see that dT (v, c) > 3, a contradiction to the fact
that dT (v, c) = 3. Thus v must be a child of u ∈ S ′

1 ∪ {x1} and dT (v, c) =
w(v, u) + w(u, c) = 3 where w(v, u) = 2 and w(u, c) = 1.

For each v′ ∈ V2 \ V ′
2 , if v′ is a child of u′ ∈ V ′

1 ∪ V ′
2 ∪ S ′

1 ∪ {x1}, then
dT (v′, y) ≥ 6, a contradiction to the fact D(T ) < 6. Thus u′ ∈ S2 ∪ {x2}. If
u′ = x2, we see that dT (v′, v) = dT (v′, c) + dT (v, c) = 3 + 3 = 6, a contradiction
to the fact that D(T ) < 6. If u′ ∈ S2 that dT (v′, u′) = w(v′, u′) = 2, then
dT (v′, v) = dT (v′, c) + dT (v, c) = 3 + 3 = 6, a contradiction to the fact that
D(T ) < 6. This implies that for v′ ∈ V2 \ V ′

2 , dT (v′, c) = 2. Since for all v′ ∈
V2 \ V ′

2 , dT (v′, c) = 2, the element v′ must be a child of s ∈ S2 satisfying that
v′ ∈ s. We see that S ′

2 is a set cover of V2 \ V ′
2 . For each z ∈ V ′

2 , we pick exactly
one set in S that contains z, call the collection of sets S ′′

2 . It is easy to see that
|S ′′

2 | = |V ′
2 | and S ′′

2 is a set cover of V ′
2 . Thus, S ′

2 ∪ S ′′
2 is a set cover of V2 = U

satisfying |S ′
2 ∪ S ′′

2 | ≤ 2t + 2 that can be found in polynomial time. �
By Claims 3 and 4, if D(T ) < 6, then Set Cover has a 3-approximation algo-

rithm running in polynomial time. Notice that D(T ∗) = 4. Thus, for any ε > 0, if
there exists an approximation algorithm that finds a (1.5 − ε) approximate solu-
tion of Star (2t + 3)-Hub Center Problem in G in polynomial time, then Set
Cover has a 3-approximation algorithm running in polynomial time. �	
Theorem 1. For any ε > 0, to approximate Star k-Hub Center Problem
to a ratio (1.5 − ε) is NP-hard.

Proof. By Lemma 1, if Star k -Hub Center Problem can be approximated to
a ratio (1.5−ε) in polynomial time, then there exists a 3-approximate solution of
Set Cover that can be found in polynomial time. This contradicts to that for
any ε > 0 to approximate Set Cover to within factor (1−ε) ln n is NP-hard [5].
Thus, for any ε > 0, to approximate Star k -Hub Center Problem to within
a factor (1.5 − ε) is NP-hard. This completes the proof. �	

3 New Approximation Algorithms

Let T be the collection depth-2 trees rooted by c satisfying that c has exact
k children. We see that T ∗ = arg minT∈T {D(T )} is an optimal tree of the Star
k -Hub Center Problem. For v ∈ T ∗, let f∗(v) denote the parent of v in T ∗. We
use C∗ = NT ∗(c) to denote the set of children of c in T ∗ and NT ∗ [c] = C∗ ∪ {c}.
We call C∗ the set of vertices in the first layer of T ∗ and V \ NT ∗ [c] the set of
vertices in the second layer of T ∗.

3.1 A 2-Approximation Algorithm

We give a 2-approximation algorithm for the Star k -Hub Center Problem.
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Algorithm BasicAPXSkHCP

Step 1: Pick k vertices {v1, v2, . . . , vk} closest to c. Let NT (c) = {v1, v2, . . . , vk},
w.l.o.g., assume that w(v1, c) ≤ w(v2, c) ≤ · · · ≤ w(vk, c).

Step 2: Connect to all vertices in V \ {c, v1, v2, . . . , vk} to v1 in T .
Step 3: Return the depth-2 tree T .

Theorem 2. There is a 2-approximation algorithm for the Star k-Hub Cen-
ter Problem running in time O(n) where n is the number of vertices in the
input graph.

Proof. Note that picking the kth vertex closest to c can be done by a linear
time selection algorithm [4]. It is not hard to see that in time O(n) Algo-
rithm BasicAPXSkHCP returns a depth-2 spanning tree T rooted by c satisfying
that c has exact k children. Let T ∗ be an optimal tree of the Star k -Hub Cen-
ter Problem. Now we show that the approximation ratio is 2 by showing that
D(T ) ≤ 2 · D(T ∗).

Since w(v1, c) ≤ w(v2, c) ≤ · · · ≤ w(vk, c), for u ∈ NT (c), w(u, c) ≤ w(vk, c).
Since D(T ∗) ≥ w(v1, c) + w(vk, c), it is easy to see that for u ∈ NT (c),

dT (u, v1) = w(u, c) + w(c, v1) ≤ D(T ∗).

For any vertex v ∈ V \ {c, v1, v2, . . . , vk},

dT (v, v1) = w(v, v1) ≤ D(T ∗).

For any u, v in V \ {c}, we have the following three cases.

– Both u, v are adjacent to v1. Then

dT (u, v) = dT (u, v1) + dT (v1, v) ≤ 2 · D(T ∗).

– The vertex u is adjacent to v1 and v is adjacent to c. Then

dT (u, v) = dT (u, v1) + dT (v, v1) ≤ 2 · D(T ∗).

– Both u, v are adjacent to c. Then

dT (u, v) = dT (u, c) + dT (v, c) ≤ 2 · D(T ∗).

Since for any u, v ∈ T \{c}, dT (u, v) ≤ 2·D(T ∗), we see that D(T ) ≤ 2·D(T ∗).
This completes the proof. �	

3.2 A 5
3
-Approximation Algorithm

In this section, we give a 5/3-approximation algorithm for the Star k -Hub
Center Problem.

Let T ∗ be an optimal tree. Let x = arg maxv∈V \NT∗ [c] dT ∗(v, c) be a far-
thest vertex from c in the second layer of T ∗ and m1 = f∗(x). We use
� = maxv∈V \NT∗ [c]{w(v, f∗(v))} to denote the cost of a longest edge with one
end vertex in the second layer of T ∗ and the other end vertex in C∗ = NT ∗(c).
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Algorithm APXSkHCP

Step 1: Run Algorithm APX1.
Step 2: Run Algorithm APX2.
Step 3: Return the best solution found by Algorithms APX1 and APX2.

Algorithm APX1

Let U := V \ {c}. For each v ∈ U , let m1 = v and for p, q ∈ U , let � = w(p, q),
do the following steps to find a depth-2 spanning tree T of G rooted by c. Let
M be the set of children of c in T , initialize M = ∅. Keep a tree T found by the
following steps having the minimum diameter.

Step 1: Add edge (m1, c) in the tree T , let M := M∪{m1}, and let U := U \{m1}.
Step 2: For each v ∈ U , if v ∈ U and w(m1, v) ≤ �, we add edges (v,m1) in T and

let U := U \ {v}.
Step 3: While i = |M | + 1 ≤ k and U �= ∅,

– choose v ∈ U , let mi = v, add edge (mi, c) in T , let U := U \ {v},
and let M := M ∪ {mi};

– for u ∈ U , if w(u,mi) ≤ 2�, then add edge (u,mi) in T and
U := U \ {u}.

Step 4: If |M | < k and U = ∅, we change the shape of T by selecting k − |M |
vertices closest to c from the second layer to be the children of c, call the
new tree T ′; otherwise let T ′ := T .

Algorithm APX2

Let U = V \ {c}. For y ∈ U and for z ∈ U \ {y}, do the following steps to find a
depth-2 spanning tree T ′′ of G rooted by c.

Step 1: Let � = w(y, z) and let y be the child of c in T ∗.
Step 2: Pick (k − 1) vertices {v1, v2, . . . , vk−1} closest to c from U \ {y, z}.

Let NT ′′(c) = {y, v1, v2, . . . , vk−1}, w.l.o.g., assume that w(v1, c) ≤
w(v2, c) ≤ · · · ≤ w(vk−1, c).

Step 3: Let all vertices in U \ {v1, v2, . . . , vk−1, y} be the children of y.

Lemma 2. Algorithm APX1 returns a (1+4δ)-approximation solution of Star
k-Hub Center Problem in time O(kn4) where δ = �

D(T ∗) and n is the number
of vertices in G.

Proof. Suppose that T ∗ is an optimal tree. Let C∗ = NT ∗(c) = {s1, s2, . . . , sk}
be the set of children of c in T ∗. Let S1, S2, . . . , Sk be components of T ∗ \ {c}.
Note that each component Si is a star in T ∗ \ {c} with the center si. Let x =
arg maxv∈V \NT∗ [c] dT ∗(v, c) be a farthest vertex from c in the second layer of T ∗

and m1 = f∗(x). Let � = maxv∈V \NT∗ [c]{w(v, f∗(v))} be the cost of a longest
edge with one end vertex in the second layer of T ∗ and the other end vertex in
C∗. Suppose that the algorithm guesses the correct m1 and �. We may assume
that m1 ∈ S1. W.l.o.g., we assume that s1 = m1. Since the algorithm adds edges
(v,m1) if w(v,m1) ≤ �, we see that S1 ⊂ NT [m1]. Notice that for each vertex
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v ∈ Sj , j = 1, . . . , k, we see that w(v, f∗(v)) ≤ � by the definition of �. For u, v ∈
Sj \{sj}, j = 1, . . . , k, f∗(u) = f∗(v) = sj and w(u, v) ≤ w(u, sj)+w(v, sj) ≤ 2�.
Thus, for each Sj , j > 1, if there is a vertex x ∈ Sj specified as mi ∈ M , i > 1,
then all the other vertices in Sj are children of one of m1,m2, . . . ,mi in T .
Moreover, we see that for each mi, 1 < i ≤ |M |, there exists Sj , 1 < j ≤ k, such
that mi ∈ Sj and Sj ∩ M = {mi}. If there exists Sj , 1 < j ≤ k, Sj ∩ M = ∅,
then all vertices of Sj are children of one vertex of M in T and |M | < k.

It is easy to see that if |M | = k, then T is a depth-2 spanning tree of G
satisfying that c has exactly k children. Suppose that |M | < k and we change
the shape of T by taking k − |M | vertices closest to c from the leaves to be new
children of c, call the new tree T ′ and let M ′ be the set of new children of c.
Notice that in T ′, vertices in M ′ have no children. We see that T ′ is a depth-2
spanning tree of G satisfying that c has exactly k children.

Claim 1. For u, v ∈ M , dT ′(u, v) ≤ D(T ∗).

Proof of Claim. Since u, v are in different components of T ∗ \ {c}, we have

dT ′(u, v) = w(u, c) + w(v, c) ≤ dT ∗(u, c) + dT ∗(v, c) ≤ D(T ∗).

�
Claim 2. For u ∈ M and v ∈ M ′, dT ′(u, v) ≤ D(T ∗) + �.

Proof of Claim. For v ∈ M ′, let f(v) denote the parent of v in T . Notice that
for v ∈ M ′, f(v) ∈ M and w(v, f(v)) ≤ 2�. Suppose that v is a child of c in T ∗.
If f∗(u) �= v, we have

dT ′(u, v) = w(u, c) + w(v, c) ≤ w(u, f∗(u)) + w(f∗(u), c) + w(v, c) ≤ D(T ∗).

If f∗(u) = v, then

dT ′(u, v) = w(u, c) + w(v, c) ≤ w(u, v) + w(v, c) + w(v, c)
≤ � + w(m1, c) + w(v, c) ≤ � + dT ∗(m1, v)
≤ D(T ∗) + �.

Suppose that v is not a child of c in T ∗. Since vertices in M ′ are selected
from the vertices in the second layer of T that are closest to c, there exists v′ in
the second layer of T ′ that is a child of c in T ∗ satisfying that w(v′, c) ≥ w(v, c).
Thus,

dT ′(u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(v′, c)
= w(u, f∗(u)) + w(f∗(u), c) + w(v′, c)
≤ � + w(m1, c) + w(v′, c) = � + dT ∗(m1, v

′)
≤ D(T ∗) + �.

�
Claim 3. For u, v ∈ M ′, dT ′(u, v) ≤ D(T ∗) + 3�.
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Proof of Claim. Since u ∈ M ′, in T the parent of u, called f(u), must be
in M . We see that w(u, f(u)) ≤ 2�. By Claim 2, dT ′(f(u), v) ≤ D(T ∗)+�. Hence

dT ′(u, v) = w(u, c) + w(v, c)
≤ w(u, f(u)) + w(f(u), c) + w(v, c)
≤ 2� + dT ′(f(u), v)
≤ 3� + D(T ∗).

Thus, for u, v ∈ M ′, dT ′(u, v) ≤ D(T ∗) + 3�. �
Claim 4. For u, v ∈ V \ (M ∪ M ′ ∪ {c}), dT ′(u, v) ≤ D(T ∗) + 4�.

Proof of Claim. Note that for vertices in V \ (M ∪ M ′ ∪ {c}), their parents
in T ′ are the same as their parents in T . Let f(u) and f(v) be parents of u and
v in both T and T ′, respectively. Since u, v ∈ V \ (M ∪ M ′ ∪ {c}), we see that
f(u), f(v) ∈ M , w(u, f(u)) ≤ 2�, and w(v, f(v)) ≤ 2�.

Suppose that f(u) �= f(v). By Claim 1, dT ′(f(u), f(v)) ≤ D(T ∗).

dT ′(u, v) = w(u, f(u)) + w(f(u), c) + w(v, f(v)) + w(f(v), c)
≤ 4� + dT ′(f(u), f(v))
≤ 4� + D(T ∗).

Suppose that f(u) = f(v). It is easy to see that dT ′(u, v) ≤ 4�. This shows
that for u, v ∈ V \ (M ∪ M ′ ∪ {c}), dT ′(u, v) ≤ D(T ∗) + 4�. �
Claim 5. For u ∈ V \ (M ∪ M ′ ∪ {c}) and v ∈ M ′, dT ′(u, v) ≤ D(T ∗) + 3�.

Proof of Claim. Let f ′(u) be the parent of u in T ′. We see that f(u) = f ′(u)
and f(u) ∈ M where f(u) is the parent of u in T . Since f(u) ∈ M and v ∈ M ′,
by Claim 2, dT ′(f(u), v) ≤ D(T ∗) + �. Thus,

dT ′(u, v) = w(u, f(u)) + w(f(u), c) + w(v, c)
≤ 2� + dT ′(f(u), v) ≤ 2� + � + D(T ∗)
= 3� + D(T ∗).

This completes the proof of the claim. �
Thus, by Claims 1–5, D(T ′) ≤ D(T ∗) + 4�. We obtain that

D(T ′)
D(T ∗)

≤ D(T ∗) + 4�
D(T ∗)

= (1 + 4δ)

where δ = �
D(T ∗) .

The algorithm guesses m1 and �, there are O(n) possibilities of m1 and O(n2)
possibilities of �. In Algorithm APX1, there are O(n3) depth-2 spanning trees con-
structed. It is not hard to see that it takes O(kn) time to construct a tree T ′. The
running time of Algorithm APX1 is O(kn4). This completes the proof. �	
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Lemma 3. Algorithm APX2 either returns an optimal solution or a (2 − 2δ)-
approximation solution of Star k-Hub Center Problem in time O(kn2)
where δ = �

D(T ∗) < 1/2 and n is the number of vertices in G.

Proof. Suppose that T ∗ is an optimal tree. Let (y, z) be the longest edge in the
second layer of T ∗ such that f∗(y) = c and w(y, z) = �. For u ∈ V , we use f ′′(u)
to denote the parent of u in T ′′.

For v ∈ V \ {z}, we show that dT ′′(v, y) ≤ D(T ∗) − �.
There are two cases.

Case 1: If f ′′(v) = y, we see that

dT ′′(v, y) = w(v, y) ≤ dT ∗(v, y) = dT ∗(v, z) − � ≤ D(T ∗) − �.

Case 2: Suppose that f ′′(v) = c. We have two subcases.
Case 2.1: If f∗(v) = c, we see that

dT ′′(v, y) = w(v, c) + w(c, y) = dT ∗(v, y)
= dT ∗(v, z) − � ≤ D(T ∗) − �.

Case 2.2: If f∗(v) �= c, then there exists v′ ∈ NT ′′(y) \ {c, y, z} such that
f∗(v′) = c and w(v′, c) ≥ w(v, c). We see that

dT ′′(v, y) = w(v, c) + w(c, y) ≤ w(v′, c) + w(c, y)
= dT ∗(v′, y) = dT ∗(v′, z) − �

≤ D(T ∗) − �.

Now we show that for v ∈ V \ {z}, dT ′′(z, v) ≤ D(T ∗).

dT ′′(z, v) ≤ dT ′′(z, y) + dT ′′(y, v) ≤ � + D(T ∗) − � = D(T ∗).

For u, v ∈ V \ {z}, we see that

dT ′′(u, v) ≤ dT ′′(u, y) + dT ′′(v, y) ≤ 2D(T ∗) − 2�.

Note that D(T ′′) ≥ D(T ∗). If D(T ∗) ≤ 2�, then

D(T ′′) ≤ 2D(T ∗) − 2� ≤ 2D(T ∗) − D(T ∗) = D(T ∗).

Thus, if D(T ∗) ≤ 2�, Algorithm APX2 returns an optimal solution.
Suppose that D(T ∗) > 2�. We see that

D(T ′′)
D(T ∗)

≤ 2D(T ∗) − 2�

D(T ∗)
= 2 − 2δ

where δ = �
D(T ∗) < 1/2.

Algorithm APX2 guesses y and z, there are O(n) possibilities of y and O(n)
possibilities of z. In Algorithm APX2, there are O(n2) depth-2 spanning trees
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constructed. Suppose that in advance the algorithm takes O(kn) time to compute
u1, u2, . . . , uk+1 ∈ V \ {c} that are closest to c such that w(u1, c) ≤ w(u2, c) ≤
· · · ≤ w(uk, c) ≤ w(uk+1, c). In Algorithm APX2, it takes O(k) time to pick
v1, v2, . . . , vk−1 ∈ V \ {c, y, z} that are closest to c to be the children of c. The
running time of Algorithm APX2 is O(kn2 + kn) = O(kn2). This completes the
proof. �	

By Lemmas 2 and 3, we have the following theorem.

Theorem 3. There is a 5
3 -approximation algorithm for the Star k-Hub Cen-

ter Problem running in time O(kn4) where n is the number of vertices in the
input graph.

Proof. By Lemma 2, Algorithm APX1 runs in time O(kn4) and finds a (1+4δ)-
approximate solution where δ = �

D(T ∗) . By Lemma 3, Algorithm APX2 runs in
time O(kn2) and either finds an optimal solution or a (2 − 2δ)-approximation
solution, δ < 1/2. In Step 3 of Algorithm APXSkHCP , it takes O(1) time to
return the best solution found by Algorithm APX1 and Algorithm APX2. We
see that the worst approximate ratio happens when 1 + 4δ = 2 − 2δ and δ = 1

6 .
This shows that the approximation ratio is D(T )

D(T ∗) ≤ 5
3 and the running time of

Algorithm APXSkHCP is O(kn4). �	

4 Concluding Remarks

In this paper, we reduce the gap between the upper and lower bounds of approx-
imability for the Star k -Hub Center Problem. For the future work, it is inter-
esting to see whether there exists an α-approximation algorithm and α < 5/3
or to prove that for any ε > 0, it is NP-hard to approximate the Star k -Hub
Center Problem to a ratio 5

3 − ε.

References

1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art.
Netw. Hub Location Probl.: State Art 190, 1–21 (2008)

2. Campbell, J.F.: Integer programming formulations of discrete hub location prob-
lems. Eur. J. Oper. Res. 72, 387–405 (1994)

3. Campbell, J.F., Ernst, A.T.: Hub location problems. In: Drezner, Z.,
Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373–407.
Springer, Berlin (2002)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2009)

5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of STOC 2014, pp. 624–633 (2014)

6. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Unca-
pacitated single and multiple allocation p-hub center problem. Comput. Oper. Res.
36, 2230–2241 (2009)



234 L.-H. Chen et al.
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Abstract. We introduce group-to-group anycast (g2g-anycast), a net-
work design problem of substantial practical importance and consider-
able generality. Given a collection of groups and requirements for directed
connectivity from source groups to destination groups, the solution net-
work must contain, for each requirement, an omni-directional down-link
broadcast, centered at any node of the source group, called the ball; the
ball must contain some node from the destination group in the require-
ment and all such destination nodes in the ball must aggregate into a
tree directed towards the source, called the funnel-tree. The solution
network is a collection of balls along with the funnel-trees they contain.
g2g-anycast models DBS (Digital Broadcast Satellite), Cable TV systems
and drone swarms. It generalizes several well known network design prob-
lems including minimum energy unicast, multicast, broadcast, Steiner-
tree, Steiner-forest and Group-Steiner tree. Our main achievement is an
O(log4 n) approximation, counterbalanced by an log(2−ε) n hardness of
approximation, for general weights. Given the applicability to wireless
communication, we present a scalable and easily implemented O(log n)
approximation algorithm, Cover-and-Grow for fixed-dimensional Euclid-
ean space with path-loss exponent at least 2.

Keywords: Network design · Wireless · Approximation

1 Introduction

1.1 Motivation

Consider a DBS (Digital Broadcast Satellite) system such as Dish or DIRECTV
in the USA (see Fig. 1). The down-link is an omni-directional broadcast from
constellations of satellites to groups of apartments or neighborhoods serviced by
one or more dish installations. The up-link is sometimes a wired network but
in remote areas it is usually structured as a tree consisting of point-to-point
wireless links directed towards the network provider’s head-end (root). The high
availability requirement of such services are typically satisfied by having multiple
head-ends and anycasting to them. The same architecture is found in CATV
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 235–246, 2016.
DOI: 10.1007/978-3-319-42634-1 19
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(originally Community Antenna TV), or cable TV distribution systems as well
as sensor networks where an omni-directional broadcast from a beacon is used
to activate and control the sensors; the sensors then funnel their information
back using relays. Moreover, this architecture is also beginning to emerge in
drone networks, for broadcasting the Internet, by companies such as Google
[10] and Facebook’s Connectivity Labs [8]. The Internet is to be broadcast from
drones flying fixed patterns in the sky to a collection of homes on the ground.
The Internet up-link from the homes is then aggregated using wireless links
organized as a tree to be sent back to the drones. Anycasting is an integral part
of high-availability services such as Content Delivery Networks (CDNs) where
reliable connectivity is achieved by reaching some node in the group. What
is the common architecture underlying all these applications and what is the
constraining resource that is driving their form?

DEMAND GRAPH

Funnel TreeBroadcast Ball

Ground Stations

Satellites

Fig. 1. Pictogram of Digital Broadcast
Satellite System with 2 satellite groups
and 4 ground station groups on left with
associated demand graph on the right.
The broadcast balls are denoted by dotted
black lines, and the funnel trees by solid
yellow lines. (Color figure online)

The various distribution systems
can be abstractly seen to consist of a
down-link ball and an up-link funnel-
tree (see Fig. 1). The ball is an omni-
directional broadcast from the pub-
lisher or content-producer to a large
collection of subscribers or content-
consumers. At the same time, the con-
sumers have information that they
need to dynamically send back to the
publisher in order to convey their pref-
erences and requirements. The funnel-
tree achieves this up-link efficiently in
terms of both time and energy. Aggre-
gation of information and use of relays
uses less energy as compared to omni-
directional broadcasts by each node
back to the publisher and also avoids
the scheduling needed to avoid interference. In this work, we focus primarily on
total energy consumption. The application scenarios mentioned in the opening
paragraph are all energy sensitive. Sensor networks [11] and drone fleets [12] are
particularly vulnerable to energy depletion. For the purpose of energy conserva-
tion, generally each wireless node can dynamically adjust its transmitting power
based on the distance of the receiving nodes and background noise. In the most
common power-attenuation model [14], the signal power falls as 1

rκ where r is
the distance from the transmitter to the receiver and κ is the path-loss expo-
nent - a constant between 2 and 4 dependent on the wireless environment. A key
implication of non-linear power attenuation is that relaying through an interme-
diate node can sometimes be more energy efficient than transmitting directly -
a counter-intuitive violation of the triangle inequality - e.g., in a triangle ABC
with obtuse angle ABC, where d2AB + d2BC < d2AC .
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1.2 Problem Formulation and Terminology

In this paper, we consider a general formulation that encompasses a wide variety
of scenarios: given a collection of groups (of nodes) along with a directed demand
graph over these groups the goal is to design a collection of balls and associated
funnel-trees of lowest cost so that every demand requirement is met - meaning
that if there is an arc from a source group to a destination group then the
solution must have a ball centered at a node of the source group that includes a
funnel-tree containing a node of the destination group.

Formally, we define the group-to-group anycast problem, or g2g-anycast, as
follows: as input we are given n nodes along with a collection of source groups
S1, S2, . . . , Sp and a collection of destination groups T1, T2, . . . , Tq which are
subsets of these nodes; a demand graph on these groups consisting of directed
arcs from source groups Si to destination groups Tj . A nonnegative cost cuv is
specified between every pair of nodes; when a node u incurs a cost C in doing
an omni-directional broadcast it reaches all nodes v such that cuv ≤ C. A metric
duv is also specified between every pair of nodes and when a node u connects
to node v in the funnel-tree using a point-to-point link it incurs a cost duv. A
solution consists of a broadcast ball around every source node s (we give a radius
which the source can broadcast to), and a funnel tree rooted at s. A demand
Si, Tj is satisfied if there is a broadcast ball from some s ∈ Si which contains
some t ∈ Tj and the funnel tree of s also includes t. The cost of the solution is
the sum of the ball-radii around the source nodes (under the broadcast costs c)
and the sum of the costs of the funnel trees (under the funnel metric d) that
connect all terminal-nodes used to cover the demands to the source nodes within
whose balls they lie. We do not allow funnel trees to share edges (even if they
are going to the same source group), and will pay for each copy of an edge used.

– First, the bipartite demand graph is no less general than an arbitrary demand
graph since a given group can be both a source group and destination group.

– Second, since funnel trees sharing the same edge pay separately, solutions to
the problem decompose across the sources and it is sufficient to solve the case
where we have exactly one source group S = {s1, s2, . . . , sk} and destination
groups T1, T2, . . . , Tq (i.e. the demand graph is a star consisting of all arcs
(S, Tj), 1 ≤ j ≤ q). This observation also enables parallelized implementations.

– Lastly, there is no loss of generality in assuming a metric duv for funnel-tree
costs; even if the costs were arbitrary their metric completion is sufficient for
determining the optimal funnel-tree.

We refer collectively to the (ball) costs cuv and (funnel-tree) metric distances
duv as weights. In this paper we consider two cases - one, the general case where
the weights can be arbitrary and two, the special case where the nodes are
embedded in a Euclidean space and all weights are induced from the embedding.

1.3 Our Contributions

Our main results on the minimum energy g2g-anycast problem are as follows
(Fig. 2):
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g2g, any metric g2s, any metric g2g, �22 norm

Upper O(log4 n) 2 ln n O(log n)

Lower Ω(log2−ε n) Ω(log n) (1 − o(1)) ln n

Fig. 2. A summary of upper and lower bounds achieved in the different problems. The
lower bound holds for every fixed ε > 0

1. We present a polynomial-time O(log4 n) approximation algorithm for the g2g-
anycast problem on n nodes with general weights. We complement this with
an Ω(log2−ε n) hardness of approximation, for any ε > 0 (Sect. 2).

2. One scenario with practical application is where every destination group is a
singleton set while source groups continue to have more than one node; we
refer to this special case of g2g-anycast as g2s anycast. We present a tight
logarithmic approximation result for g2s-anycast (Sect. 3).

3. For the realistic scenario where the nodes are embedded in a 2-D Euclid-
ean plane with path-loss exponent κ ≥ 2, we design an efficient O(log n)-
approximation algorithm Cover-and-Grow, and also establish a matching log-
arithmic hardness of approximation result (Sect. 4).

4. Lastly, we compare Cover-and-Grow with 4 alternative heuristics on random
2-D Euclidean instances; we discover that Cover-and-Grow does well in a wide
variety of practical situations in terms of both running time and quality,
besides possessing provable guarantees. This makes Cover-and-Grow a go-
to solution for designing near-optimal data dissemination networks in the
wireless infrastructure space (Sect. 5).

1.4 Related Work

A variety of power attenuation models for wireless networks have been studied
in the literature [14]. Though admittedly coarse, the model based on the path
loss exponent (varying from 2, in free space to 4, in lossy environments) is the
standard way of characterizing attenuation [13]. The problems of energy efficient
multicast and broadcast in this model have been extensively studied [9,16–18].
Two points worth mentioning in this context are: one, we consider the funnel-
tree as consisting of point-to-point directional transmissions rather than an omni-
directional broadcast since the nonlinear cost of energy makes it more economical
to relay through an intermediate node, and two, we consider only energy spent
in transmission but not in reception.

Network design problems are notoriously NP-hard. Over time sophisticated
approximation techniques have been developed, ranging from linear program-
ming and randomized rounding to metric embeddings [19]. The g2g-anycast
problem with general weights is a substantial generalization including problems
such as minimum spanning trees, multicast trees, broadcast trees, Steiner trees
and Steiner forests. Even the set cover problem can be seen as a special case
where the destination groups are singletons. The g2g-anycast also generalizes
the much harder group Steiner tree problem [4,5].
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2 Approximating g2g-anycast

In this section, we present an O(log4 n)-approximation for the g2g-anycast prob-
lem with general weights by a reduction to the generalized set-connectivity prob-
lem. We then give a reduction from the group Steiner tree problem that demon-
strates that there is no polynomial-time log2−ε n-approximation algorithm for
g2g-anycast unless P = NP .

2.1 Approximation Algorithm for g2g-anycast with General
Weights

The generalized set-connectivity problem [2] takes as input an edge-weighted
undirected graph G = (V,E), and collection of demands {(S1, T1), . . . , (Sk, Tk)},
each pair are disjoint vertex sets. The goal is to find a minimum-weight subgraph
that contains a path from any node in Si to any node in Ti for every i ∈
{1, . . . , k}. Without loss of generality, the edge weights can be assumed to form
a metric. Chekuri et al. [2] present an O(log2 n log2 k)-approximation for this
problem using minimum density junction trees.

We show a reduction from the g2g-anycast problem with general weights to
the generalized set-connectivity problem. Recall that without loss of generality,
we may assume that in the g2g problem, we are given a single source group S,
a collection of destination groups T1, . . . , Tq, nonegative (broadcast) costs cuv,
and (funnel-tree) metric costs duv.

2.2 The Reduction

si(1) si(r)

si(0)

ti(1) t i(r)

Nodes within broadcast cost ci1
Nodes within broadcast cost c ir

di1

dir

ci1 cir

G(i,1)

ThegraphG(i)

G(i,r)

Fig. 3. A connected component G(i) in the
reduction of the g2g-anycast problem with
general weights to the generalized set con-
nectivity problem.

The main idea of the reduction is to
overload the broadcast cost of the ball
radius around each node in the source
group S into a larger single metric
in which we use the generalized set-
connectivity algorithm. In particular,
for every source node si ∈ S, we sort
the nodes in T1 ∪ . . . ∪ Tq in increasing
order of broadcast cost from si to get
the sorted order, say ti1, . . . , t

i
r where

tij is at distance cij from si, and we
have ci1 ≤ ci2 . . . ≤ cir, where |T1 ∪
. . . ∪ Tq| = r. We now build r different graphs G(i, 1), . . . , G(i, r) where G(i, j)
is a copy of the metric completion of G under the funnel tree costs d induced on
the node set {si, t

i
1, . . . , t

i
j}, with the copies denoted as {si(j), ti1(j), . . . , t

i
j(j)}.

(Note that the terminal node tia appears in copies a through r.) Finally, we take
the r copies of the node si denoted si(1), si(2), . . . , si(r) and connect them to
a new node si(0) where the cost of the edge from si(j) to si(0) is cij . Thus
these r different copies G(i, 1), . . . , G(i, r) all connected to the new node si(0)
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together form one connected component G(i). We now repeat this process for
every source node si for i ∈ {1, . . . , k} to get k different graphs G(1), . . . , G(k)
(Fig. 3).

We are now ready to define the generalized set connectivity demands. We
define a new super source set SS = {s1(0), s2(0), . . . , sk(0)}. For each of the
destination groups Tx, we define the terminal set TTx to be the union of the
copies of all corresponding terminal nodes in any of the copies G(i). More pre-
cisely TTx = {∪it

i
a(j)|a ≤ j ≤ r, tia ∈ Tx}. The final demand pairs for the set

connectivity problem are {(SS, TT1), . . . , (SS, TTq)}.

Lemma 1. Given an optimal solution to the g2g-anycast problem, there is a
solution to the resulting set connectivity problem described above of the same
cost.

Proof. Suppose the solution of the g2g problem involved picking broadcast ball
radii c1, . . . , ck from source nodes s1, . . . , sk respectively. We also have funnel trees
H1, . . . , Hk that connect terminals T (H1), . . . , T (Hk) to s1, . . . , sk respectively.
Note that all terminals in T (Hx) are within the thresholds that receive the broad-
cast from sx, i.e. for every such terminal t ∈ Hx, the broadcast cost of the edge
between sx and t is at most the radius threshold cx at which sx is broadcasting.

Consider the tree Hx with terminals T (Hx) connected to the root sx, so that
cx is the largest weight of any of the edges from sx to any terminal in T (Hx).
(If all of them were even closer, we can reduce the broadcast cost cx of broad-
casting from sx and reduce the cost of the g2g solution.) Let the terminal in the
funnel tree with this broadcast cost be t(x) and in the sorted order of weights
from sx let the rank of t(x) be p. We now consider the graph copy G(x, p) and
take a copy of the funnel tree Hx in this copy. To this we add an edge from the
root sx(p) to the node sx(0) of cost cxp. The total cost of this tree thus contains
the funnel tree cost of Hx (denoted by d(Hx)) as well as the broadcast cost of
cxp from sx. Taking the union of such funnel trees over all the copies gives the
lemma.

Lemma 2. Given an optimal solution to the set connectivity problem described
above, there is a solution to the g2g-anycast problem from which it was derived
of the same total weight.

Proof. In the other direction, consider each copy G(x) in turn and consider the
set of edges in the tree containing the source node sx(0) in the solution to the
generalized set-connectivity instance. First notice that it contains at most one
of the edges to a copy sx(q) for some q. Indeed if we have edges to two different
copies sx(p) and sx(q) from sx(0) for p < q, then since G(x, p) ⊂ G(x, q), we
can consider the tree edges in G(x, p) and buy them in G(x, q) where they also
occur to cover the same set of terminals at smaller cost. In this way, we can save
the broadcast cost of the copy of the edge from sx(0) to sx(p) contradicting the
optimality of the solution. Now that we have only one of the edges, say to sx(q)
from sx(0), we can consider all the edges of the tree in the copy G(x, q) and
include these edges in a funnel tree H ′

x. The distance of the edge from sx(0) to
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sx(q) pays for the broadcasting cost from sx in the original instance and the cost
of the rest of the tree is the same as the funnel tree cost of H ′

q (Note that our
observation above implies that edges in the metric completion in the tree can be
converted to paths in the graph and hence connect all the nodes in the tree).

Since every terminal superset TTj is connected to some source node of SS,
all the demands of the g2g problem must be satisfied in the collection of funnel
trees H ′

x constructed in this way giving a solution to the g2g problem of the
same cost.

The above two lemmas with the result of [2] gives us the following result.

Theorem 1. The general weights version of the g2g-anycast problem with k
destination groups admits a polynomial-time approximation algorithm with per-
formance ratio O(log2(k) log2 n) in an n-node graph.

2.3 Hardness of Approximating g2g-anycast

We observe that the g2g-anycast problem with general weights can capture the
group Steiner tree problem which is known to be log2−ε n-hard to approximate
unless NP is contained in quasi-polynomial time [6].

In the group Steiner tree problem, we are given an undirected graph with
metric edge costs, a root s and a set of subsets of nodes called groups, say
T1, . . . , Tg, and the goal is to find a minimum cost tree that connects the root
with at least one node from each group. We can easily define this as a g2g-anycast
problem with a singleton source group S = {s} with the single root node. The
terminal sets for the g2g-anycast problem are the groups T1, . . . , Tg, with the
demand graph (S, T1), . . . , (S, Tg). We can set the broadcast costs of any node in
the graph from s to be zero; we use the given metric costs in the group Steiner
problem as the funnel tree costs to capture the cost of the group Steiner tree.
Any solution to the resulting g2g-anycast problem is a single tree connecting s to
at least one node in each of the groups as required and its total weight is just its
funnel tree cost that reflects precisely the cost of this feasible group Steiner tree
solution. The hardness follows from this approximation-preserving reduction.

3 Approximating g2s-anycast

In this section, we consider g2s-anycast, a special case of the g2g-anycast, in
which each destination group is a singleton set (i.e., has exactly one terminal).
Let S denote the source-set and t1, . . . , tq denote the terminals.

The desired solution is a collection of broadcast balls and funnel trees Tv,
each rooted at a source node v, so that for every demand (S, tj), there exists at
least one node v in S such that tj ∈ Tv.

We now present a Θ(log n)-approximation algorithm for g2s-anycast problem.
Our algorithm iteratively computes an approximation to a minimum density
assignment, which assigns a subset of as yet unassigned terminals to a source
node, and then combines these assignments to form the final solution.
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Minimum Density Assignment. We seek a source s and a tree Ts rooted at s
that connects s to a subset of terminals, such that the ratio (c(Ts) + d(Ts))/|Ts|
is minimized among all choices of s and Ts (here c(Ts) denotes the minimum
broadcast cost for s to reach the terminals in Ts, while d(Ts denotes the funnel-
tree cost, i.e. the sum of the metric distances duv over all edges uv ∈ Ts).
We present a constant-approximation to the problem, using a constant factor
approximation algorithm for the rooted k-MST problem, which is defined as
follows: given a graph G with weights on edges and a root node, determine a tree
of minimum weight that spans at least k vertices. The best known approximation
factor for the k-MST problem [15] is 2 [3]. We now present our algorithm for
minimum density assignment.

– For each source s ∈ S, integer k ∈ [1, n], and integer r drawn from the set
{cstj |1≤j≤q}:

• Let G′ denote the graph with vertex set {s} ∪ {tj |cstj
≤ r}, and edge

weights given by d.
• Compute a 2-approximation T ′(s, r, k) to the k-MST problem over the

graph G′ with s being the root.
– Among all trees computed in the above iterations, return a tree that minimizes

mins,r,k(d(T ′(s, r, k)) + r)/k.

Lemma 3. The above algorithm is a polynomial-time 2-approximation algo-
rithm for the minimum density assignment problem.

Proof. We first show that the algorithm is polynomial time. The number of
different choices for the source equals the size of the source set, the number
of choices for k is n, and the number of different values for r is the number
of different broadcast costs, which is at most n. Thus the number of iterations
in the for loop is at most n3. Consider an optimal solution T to the minimum
density assignment problem, rooted at source s. It is a valid solution to the
k-MST problem in the iteration given by s, r = c(T ), k = |T |. For this particular
iteration, the tree T ′(s, r, k) satisfies (d(T ′(s, r, k) + r)/k ≤ (2d(T ) + r)/k ≤
2 · (d(T ) + r)/k). Since our algorithm returns the tree that has the best density,
we have a 2-approximation for the minimum density assignment.

Approximation Algorithm for g2s-Anycast. Our algorithm is a greedy
iterative algorithm, in which we repeatedly compute an approximation to the
minimum density assignment problem, and return an appropriate union of all of
the trees computed.

– For each source s, set Ts to {s}.
– While all terminals are not assigned:

• Compute a 2-approximation T to the minimum density assignment prob-
lem using any source s and the unassigned terminals.

• If T is rooted at source s, then set Ts to be the minimum spanning tree
of the union of the trees T and Ts.

– Return the collection {Ts}.
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Theorem 2. The greedy algorithm yields an approximation algorithm with per-
formance ratio 2 ln n to the g2s-anycast problem.

Proof. Let OPT denote the cost of the optimal solution to the problem. Any
solution is composed of at most m trees, one for each of the sources, with each
singleton group being included as a node in one of these trees. Let T ∗

s denote
the tree rooted at source s in an optimal solution.

Consider any iteration i of our algorithm. Let ni denote the number of unas-
signed terminals at the start of the iteration i. By an averaging argument, we
know there exists a source s such that

d(T ∗
s ) + c(T ∗

s )
|T ∗

s | ≤ OPT

ni
,

By Lemma 3, it follows that in the ith iteration of the greedy algorithm, if Ti is
the tree computed in the step, then

d(Ti) + c(Ti)
|Ti| ≤ 2 · OPT

ni
,

Adding over all steps, we obtain that the total cost is
∑

i

(d(Ti) + c(Ti)) ≤ 2 · OPT ·
∑

i

|Ti|
ni

≤ 2 · OPT · Hn ≤ 2OPT ln n.

Hardness of Approximation. We complement the positive result with a
matching inapproximability result which shows that the above problem is as
hard as set cover.

Theorem 3. Unless NP = P there is no polynomial-time α ln n approximation
to the g2s-anycast problem, for a suitable constant α > 0.

We defer the proof of this theorem to Appendix A of the full version [7].

4 Euclidean g2g-anycast

In this section, we present a Θ(log n)-approximation for the more realistic version
of the g2g-anycast problem in the 2-D Euclidean plane. We achieve our results
by a reduction to an appropriately defined set cover problem.

In detail, all the points in both the source group S and destination groups
T1, . . . , Tq lie in the 2-D Euclidean plane. The cost of an edge (u, v) is the Euclid-
ean distance between u and v raised to the path loss exponent κ. For the rest
of this section, we assume that κ = 2. (The corresponding results for κ > 2
follow with very simple modifications.) First we show that even this special case
of the g2g-anycast problem does not permit an approximation algorithm with
ratio (1 − ε) ln n on an instance with n nodes unless NP is in quasi-polynomial
time. Next, we present Cover-and-Grow, an O(log n)-approximation algorithm
that applies a greedy heuristic to an appropriately defined instance of the set
covering problem.

Hardness of 2-D g2g-anycast. Again we can prove a hardness via a reduction
from set cover.
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Theorem 4. The 2-D Euclidean version of the g2g problem on n nodes does not
permit a polynomial-time (1 − o(1)) lnn approximation algorithm unless NP =
P .

The proof of this can be found in Appendix B of the full version [7].

4.1 Cover-and-Grow

We now describe a matching O(log n)-approximation for the problem. For this
we first need the following property of minimum spanning trees of points in the
2-D Euclidean plane within a unit square, when the costs of any edge in the tree
are the squared Euclidean distances between the edge’s endpoints.

Theorem 5 [1]. The weight of a minimum spanning tree of a finite number of
points in the 2-D Euclidean plane within a unit square, where the weight of any
edge is the square of the Euclidean distance between its endpoints, is at most
3.42.

We can apply this theorem to bound the cost of the funnel trees within any
demand ball in the solution within a factor of at most 3.42 of the cost of the
ball. Indeed, by scaling the diameter of the demand ball to correspond to unit
distance, the above theorem shows that for any finite set of terminal nodes (i.e.
nodes in the destination group) within the ball, a funnel tree which is an MST
that connects these terminal nodes to the center of the ball has total cost at
most 3.42. The cost of the demand ball is the square of the Euclidean distance
of the ball radius which, in the scaled version, has cost (12 )2 = 1

4 . This shows
that the funnel tree has cost at most 13.68 times the cost of the funnel ball. This
motivates an algorithm that uses balls of varying radii around each source node
as a “set” that has cost equal to the square of the ball radius (the ball cost)
and covers all the terminal nodes within this ball (which can be connected in a
funnel tree of cost at most 13.68 times that of the demand ball).

Algorithm Cover-and-Grow

1. Initialize the solution to be empty.
2. While there is still an unsatisfied demand edge

– For every source node si, for every possible radius at which there is a ter-
minal node belonging to some destination group T for which the demand
(S, T ) is yet unsatisfied, compute the ratio of the square of the Euclidean
radius of the ball to the number of as yet unsatisfied destination groups
whose terminal nodes lie in the ball.

– Pick the source node and ball radius whose ratio is minimum among all the
available balls, and add it to the solution (both the demand ball around
this node and a funnel tree from one node of each destination group whose
demand is unsatisfied at this point). Update the set of unsatisfied demands
accordingly.

Theorem 6. Algorithm Cover-and-grow runs in polynomial time and gives an
O(log n)-approximate solution for the 2-D g2g-anycast problem in an n-node
graph.
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Proof. We will use a reduction from the given 2-D g2g-anycast problem to an
appropriate set cover problem as described in the algorithm. The elements of
the set cover problem are the terminal sets Tj such that the demand graph has
the edge (S, Tj). For every source node si ∈ S, and for every possible radius
r at which there is a terminal node belonging to some destination group T for
which there is a demand (S, T ), we consider a set X(si, r) that contains all the
destination groups Tj such that some node of Tj lies within this ball. The cost
of this set is r2.

First, we argue that an optimal solution for the 2-D g2g-anycast problem
of cost C∗ gives a solution of cost at most C∗ to this set cover problem. Next,
we show how any feasible solution to the set cover problem of cost C gives a
feasible solution to the 2-D g2g-anycast problem of cost at most 14.68C. These
two observations give us the result since the algorithm we describe is the standard
greedy approximation algorithm for set cover.

To see the first observation, given an optimal solution for the 2-D g2g-anycast
problem of cost C∗, we pick the sets corresponding to the demand balls in the
solution for the set cover problem. Since these demand balls are a feasible solution
to the anycast problem, they together contain at least one terminal from each
of the destination groups Tj for which there is a demand edge (S, Tj). These
balls form a solution to the set cover problem and the demand ball costs of the
anycast solution alone pay for the corresponding costs of the set cover problem.
Hence this feasible set cover solution has cost at most C∗.

For the other direction, given any feasible solution to the set cover problem
of cost C, note that this pays for the demand balls around the source nodes
in this set cover solution. Now we can use the implication in the paragraph
following Theorem 5 to construct a funnel tree for each of these demand balls
that connects all the terminals within these balls to the source node at the center
of the ball with cost at most 13.68 times the cost of the demand ball around the
source node. Summing over all such balls in the solution gives the result.

5 Empirical Results

We conducted simulations comparing Cover-and-Grow with four different nat-
ural heuristics for points embedded in a unit square in the 2-D Euclidean plane.
These simulations allow us gain perspective on the real-world utility of Cover-
and-Grow vis a vis alternatives that do not possess provable guarantees but yet
have the potential to be practical. The specifics of the simulation and the details
of the results are discussed in Appendix C of the full version [7]. Cover-and-Grow
performs comparably to the heuristics in performance; and the runtime of Cover-
and-Grow was better than the heuristics except for the T-centric approach.
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Abstract. In this paper we study a recently proposed variant of the
problem the r-gathering problem. An r-gathering of customers C to facil-
ities F is an assignment A of C to open facilities F

′ ⊂ F such that r
or more customers are assigned to each open facility. (Each open facility
needs enough number of customers.) Then the cost of an r-gathering
is max{maxi∈C{co(i, A(i))},maxj∈F ′{op(j)}}, and the r-gathering prob-
lem finds an r-gathering having the minimum cost.

Assume that F is a set of locations for emergency shelters, op(f) is
the time needed to prepare a shelter f ∈ F , and co(c, f) is the time
needed for a person c ∈ C to reach assigned shelter A(c) ∈ F . Then
an r-gathering corresponds to an evacuation plan such that each opened
shelter serves r or more people, and the r-gathering problem finds an
evacuttion plan minimizing the evacuation time span.

However in a solution above some person may be assigned to a far-
ther open shelter although it has some closer open shelter. It may be
difficult for the person to accept such an assignment for an emergency
situation. Therefore Armon considered the problem with one more addi-
tional constraint, that is, each customer should be assigned to a closest
open facility, and gave a 9-approximation algorithm for the problem.

In this paper we give a simple 3-approximation algorithm for the prob-
lem.

1 Introduction

The facility location problem and many of its variants are studied [4,5].
In the basic facility location problem we are given (1) a set C of customers,

(2) a set F of facilities, (3) an opening cost op(f) for each f ∈ F , and (4)
a connecting cost co(c, f) for each pair of c ∈ C and f ∈ F , then we open
a subset F ′ ⊂ F of facilities and find an assignment A from C to F ′ so that a
designated cost is minimized. A typical max version of the cost of an assignment
A is max{maxi∈C{co(i, A(i))},maxj∈F ′{op(j)}}. We assume that co satisfies the
triangle inequality.

In this paper we study a recently proposed variant of the problem, called the
r-gathering problem [2].

An r-gathering of customers C to facilities F is an assignment A of C
to open facilities F

′ ⊂ F such that r or more customers are assigned to
each open facility. (Each open facility needs enough number of customers.)
We assume |C| ≥ r holds. Then max version of the cost of an r-gathering is
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 247–253, 2016.
DOI: 10.1007/978-3-319-42634-1 20
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max{maxi∈C{co(i, A(i))},maxj∈F ′{op(j)}}. Then the min-max version of the
r-gathering problem finds an r-gathering having the minimum cost. (For the
min-sum version see the brief survey in [2].)

Assume that F is a set of locations for emergency shelters, op(f) is the time
needed to prepare a shelter f ∈ F , and co(c, f) is the time needed for a person
c ∈ C to reach assigned shelter A(c) ∈ F . Then an r-gathering corresponds to an
evacuation plan such that each opened shelter serves r or more people, and the
r-gathering problem finds an evacuttion plan minimizing the evacuation time
span.

Armon [2] gave a simple 3-approximation algorithm for the problem and
proved that with assumption P �= NP the problem cannot be approximated
within a factor of less than 3 for any r ≥ 3.

However in a solution above some person may be assigned to a farther open
shelter although it has some closer open shelter. It may be difficult for the
person to accept such an assignment for an emergency situation. Therefore
Armon [2] also considered the problem with one more additional constraint,
that is, each customer should be assigned to a closest open facility, and gave a
9-approximation algorithm for the problem. We call the problem the proximity
r-gathering problem.

In this paper we give a simple 3-approximation algorithm for the proximity
r-gathering problem.

The remainder of this paper is organized as follows. Section 2 contains our
main algorithm for the proximity r-gathering problem. Section 3 considers a
case with outliers. Section 4 gives a slightly improved algorithm for the original
r-gathering problem. (This part will be appear in [1], but in Japanese.) Section 5
contains a conclusion and an open problem.

A preliminary version of the paper is presented at (unrefereed) meeting [6].

2 Algorithm

We need some preparation.
A lower bound lb(i, j) of the cost assigning i ∈ C to j ∈ F in any r-gathering

is derived as follows. Let N(j) be the set of r customers having up to r-th
smallest connection costs to facility j ∈ F . If i ∈ N(j) then define lb(i, j) =
max{op(j), co(k, j)}, where k is the customer having the r-th smallest connection
cost to j. Otherwise lb(i, j) = max{op(j), co(i, j)}. Then a lower bound lb(i) of
the cost for i ∈ C in any r-gathering is derived as lb(i) = minj∈F {lb(i, j)}. Since
we need to assign i ∈ C to some facility, lb(i) is also a lower bound for the
cost of the solution of the proximity r-gathering problem. Let bestf(i) for i ∈ C
be a facility j ∈ F attaining cost lb(i). Let mates(i) for i ∈ C be N(bestf(i))
if i ∈ N(bestf(i)), and N(bestf(i)) ∪ {i} − {k} otherwise. Thus if we assign
mates(i) to bestf(i) ∈ F then the cost of the part is at least lb(i).

We regard co(f, f ′) = mini∈C{co(i, f) + co(i, f ′)} for f, f ′ ∈ F . We
define by opt the cost of the solution, that is minA max{maxi∈C{co(i, A(i))},
maxj∈F ′{op(j)}}, where F ′ ⊂ F is the set of opened facilities. Clearly opt ≥ lb(i)
holds for any i ∈ C.
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Algorithm 1. Best-or-factor3
for all i ∈ C do

Compute lb(i), bestf(i) and mates(i)
end for
Sort C in the non-increasing order of lb(i)
for all i ∈ C in the non-increasing order of lb(i) do

if bestf(i) is not assigned to yet, and none of mates(i) has been assigned yet then
Open bestf(i)
for all k ∈ mates(i) do

Assign k to bestf(i) /* Best-Assignment */
end for
for all f such that co(f, bestf(i)) ≤ 2 · lb(i) do

Shut down f
end for

end if
end for
for all unassigned k ∈ C do

Assign k to a closest open facility /* Factor3-Assignment */
end for

Now we give our algorithm to solve the proximity r-gathering problem.
Clearly Algorithm Best-or-factor3 finds an r-gathering. (Since whenever

we newly open a facility we always assign r customers.)
The algorithm is similar to algorithm Best-or-rest in [2] for the original

r-gathering problem, except (1) our algorithm has the “shut down f “operation,
and (2) sorts C in the non-increasing order, while Best-or-rest [2] sorts C in
the non-decreasing order. Actually we can modify algorithm Best-or-rest for
the original r-gathering problem so that it does not need the sort. We show this
in the later section.

We have the following lemma.

Lemma 1. Algorithm Best-or-factor3 finds an r-gathering such that each cus-
tomer is assigned to a closest open facility.

Proof. Assume otherwise for a contradiction. Since Factor3-Assignment never
open any facility and always assign a customer to a closest open facility, we
only consider for Best-Assignment. Then some i′ ∈ mates(i) assigned to facility
bestf(i) has a closer open facility, say bestf(k) for some k ∈ C. We have two
cases based on the opening order of bestf(i) and bestf(k).

If bestf(k) opens earlier than bestf(i) then lb(k) ≥ lb(i) holds, then

co(bestf(i), bestf(k)) ≤ co(i′, bestf(i)) + co(i′, bestf(k))
< co(i′, bestf(i)) + co(i′, bestf(i))
≤ 2 · lb(i)
≤ 2 · lb(k)
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Fig. 1. Illustration for the proof of Lemma 1.

which contradicts to the fact that after we open facility bestf(k) we shut down
every surrounding facility with connection cost at most 2 · lb(k). We need the
sort for the last inequality (Fig. 1).

Otherwise bestf(i) opens earlier than bestf(k) and lb(i) ≥ lb(k) holds, so

co(bestf(k), bestf(i)) ≤ co(i′, bestf(k)) + co(i′, bestf(i))
≤ co(i′, bestf(i)) + co(i′, bestf(i))
≤ 2 · lb(i)

which contradicts to the fact that after we open facility bestf(i) we shut down
every surrounding facility within connection cost at most 2 · lb(i). �	

We have the following two theorems.

Theorem 1. The cost of an r-gathering found by Algorithm Best-or-factor3
is at most 3 · opt.

Proof. Consider the cost for each assignment of i ∈ C. For Best-Assignment the
cost is lb(i) ≤ opt. So we need to consider only for Factor3-Assignment.

Each i ∈ C assigned in Factor3-Assignment was not assigned to bestf(i) in
Best-Assignment but later assigned to its closest already opened facility. So we
consider only for connection costs.

Assume we assign i ∈ C in Factor3-Assignment. We show that i always has
an open facility with the connection cost at most 3opt. We have two cases based
on the reason why i was not assigned in Best-Assignment.

Case 1(a): Some i′ ∈ mate(i) is already assigned to some bestf(k) since i′ ∈
mates(k) also holds. See Fig. 2(a).

The connection cost co(i, bestf(k)) is at most

co(i, bsetf(i)) + co(i′, bestf(i)) + co(i′, bestf(k)) ≤ lb(i) + lb(i) + lb(k)
≤ 3 opt

Thus i ∈ C has an open facility with a connection cost at most 3 opt.
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Fig. 2. Illustration for the proof of Theorem 1

Case 1(b): bestf(i) is already shut down just after some bestf(k) is opened.
See Fig. 2(b).

The connection cost co(i, bestf(k)) is at most

co(i, bsetf(i)) + co(bestf(i), bestf(k)) ≤ lb(i) + 2 · lb(k)
≤ 3 opt

Thus i ∈ C has an open facility with the connection cost at most 3 opt. �	

Theorem 2. Algorithm Best-or-factor3 runs in time O(r|C| + |C||F |2 +
|C| log |C|).
Proof. For each j ∈ F by using a linear time selection algorithm [3] [p. 220] find
the r-th closest customer to j, then choosing closer customers we can compute
the set of up to (r-1)-th closest customers to j in O(|C|) time. Thus we need
O(|C||F |) time in total to compute such a customer and a set of customers for
all j ∈ F .

Then we can compute lb(i), bestf(i),mates(i) for all i ∈ C in O(|C||F |) time.
We also compute co(f, f

′
) for every f, f

′ ∈ F in O(|C||F |2) time.
We need O(|C| log |C|) time for the sort.
Then Best-Assignment part runs in O(r|C|+ |C||F |2) time, and Factor3-

Assignment part runs in O(|C||F |) time.
Thus in total the algorithm runs in O(r|C| + |C||F |2 + |C| log |C|) time. �	

3 Outlier

An (r, ε)-gathering of C to F is an r-gathering of C − C ′ to F , where C ′ is
any subset of C with size at most ε|C|. Intuitively we can ignore at most ε|C|
(outlier) customers for the assignment. The cost of an (r, ε)-gathering A is defined
naturally, that is max{maxi∈C−C′{co(i, A(i))},maxj∈F ′{op(j)}}, where F ′ ⊂ F
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is the set of opened facilities. An (r, ε)-gathering problem finds an (r, ε)-gathering
having the minimum cost.

By slightly modifying algorithm Best-or-factor3 we can solve the problem
as follows. (The modification is similar to Corollary 3.4 of [2] for the r-gathering
problem, not for the proximity r-gathering problem.)

After sorting C with respect to lb(i), let i′ be the customer having the 
ε|C|�-
th largest lb. We remove all customer i with lb(i) > lb(i′) from C. Since we
need to assign at least one customer i with lb(i) ≥ lb(i′) to some open facility,
opt ≥ lb(i′) holds.

Let C ′ be the set of the removed customers. This removal never affects
mates(i) for any remaining i ∈ C −C ′, (because assuming k ∈ C ′ is in mates(i)
for i ∈ C − C ′ means lb(k) ≤ lb(i), contradicts to the choice of C ′). So the
removal also never affects lb(i) and bestf(i) for any remaining i ∈ C − C ′.

Thus for the remaining customers algorithm Best-or-factor3 computes an
r-gathering with cost at most 3lb(i′) ≤ 3opt. Now we have the following theorem.

Theorem 3. One can find an (r, ε)-gathering with cost at most 3·opt in O(r|C|+
|C||F |2 + |C| log |C|) time.

4 r-Gathering Without Sort

The following algorithm Best-or-rest is a 3-approximate algorithm for the orig-
inal r-gathering problem which is basically derived from [2] by just removing the
sort of C.

Algorithm 2. Best-or-rest
for all i ∈ C do

Compute lb(i), bestf(i) and mates(i)
end for
for all i ∈ C do

if bestf(i) is not assigned to yet, and all mates(i) are not assigned yet then
Open bestf(i)
for all k ∈ mates(i) do

Assign k to bestf(i) /* Best-Assignment */
end for

end if
end for
for all unassigned k ∈ C do

Assign k to a closest open facility /* Rest-Assignment */
end for

We have the following theorems.

Theorem 4. The cost of an r-gathering found by Algorithm Best-or-rest is at
most 3 · opt.
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Proof. The proof is just a subset of the proof of Theorem1.
Consider the cost for each assignment of i ∈ C. For Best-Assignment the

cost is lb(i) ≤ opt. So we need to consider only for Rest-Assignment.
Each i ∈ C assigned in Rest-Assignment was not assigned to bestf(i) but

later assigned to its closest already opened facility. So we consider only for con-
nection costs.

Assume we assign i ∈ C in Rest-Assignment. The reason why i was not
assigned in Best-Assignment is some i′ ∈ mate(i) is already assigned to some
bestf(k) since i′ ∈ mates(k) also holds.

The connection cost co(i, bestf(k)) is at most

co(i, bsetf(i)) + co(i′, bestf(i)) + co(i′, bestf(k)) ≤ lb(i) + lb(i) + lb(k)
≤ 3 opt

Thus i ∈ C has an open facility with a connection cost at most 3 opt. �	
We can prove the running time of the algorithm is O(|C||F | + r|C|), by

a similar way to the proof of Theorem 2. While in [2] the running time was
O(|C||F | + r|C| + |C| log |C|) since it needs a sort of |C|.

5 Conclusion

In this paper we provided a simple approximation algorithm to solve the proxim-
ity r-gathering problem. The approximation ratio is 3, which improve the former
result [2] of 9.

The algorithm can solve a slightly more general problem in which each f ∈ F
has a distinct minimum number rf of customers needed to open. The algorithm
also runs in O(r|C| + |C||F |2 + |C| log |C|) time. We assume r > rf holds for all
f ∈ F .

Can we design an approximation algorithm for the min-sum version of the
proximity r-gathering problem?
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Abstract. Security against adaptive chosen-ciphertext attack (CCA) is
a de facto standard for encryption. While we know how to construct
CCA-secure encryption, there could be pragmatic issues such as black-
box design, software mis-implementation, and lack of security-oriented
code review which may put the security in doubt. On the other hand,
for double-layer encryption in which the two decryption keys are held
by different parties, we expect the scheme remains secure even when
one of them is compromised or became an adversary. It is thus desirable
to combine two encryption schemes, where we cannot be assured that
which one is really CCA-secure, to a new scheme that is CCA-secure. In
this paper we propose new solutions to this problem for symmetric-key
encryption and public-key encryption. One of our result can be seen as
a new application of the detectable CCA notion recently proposed by
Hohenberger et al. (Eurocrypt 2012).

Keywords: Encryption · Chosen-ciphertext security · Robust combiners

1 Introduction

Secure systems are usually complex and involve multiple components. If a com-
ponent turns out to be problematic, the whole system may become totally inse-
cure. For security-critical applications, a prudent practice is to have a robust
design, such that the system remains secure even if a component is insecure. Of
course, if one could identify which component is insecure, the designer can simply
replace it with a secure one. Yet, it is notoriously difficult to ensure that a system
component is secure in general. One example is that a component primitive is
implemented as a black-box which the combiner cannot assert its security. On
the other hand, even if the source code (of the software) or the circuit footprint
(of the hardware) were available, asserting its security depends on the rigor and
quality of the corresponding security-oriented review.
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In this paper, we look into a basic cryptographic tool which is encryption.
We consider both public-key encryption (PKE) and symmetric-key encryption
(SKE). The work of Herzberg [7] motivated the need of robust design of cryp-
tosystem, which features a combination of multiple instantiation of the same
primitives (e.g., one may consider ElGamal encryption and RSA encryption as
examples), such that as long as one of them ensures a certain level of security,
the same security guarantee is preserved by the combined design, without know-
ing beforehand which one is that. Robust combiner achieving this property can
ensure security even if there is doubt in the security of the component primi-
tives [6]. It is also termed as tolerant cryptographic schemes [7] or cryptanalysis-
tolerant schemes [5] in the literature.

Herzberg [7] proposed combiners that are secure against chosen-plaintext
attack (CPA) or chosen-ciphertext attack. However, it is hard to achieve security
against adaptive chosen-ciphertext attack (CCA in this paper1) if one of the
component schemes turns out to be malleable. In the CCA attack, the adversary
can query to a decryption oracle even after the adversary has obtained the
challenge ciphertext, and the only disallowed query is the challenge ciphertext
itself. Hence, if a part of the ciphertext is malleable, an adversary can simply
maul it and obtain the plaintext from the decryption oracle. Dodis and Katz [5]
proposed a cryptanalysis-tolerant CCA-secure encryption scheme, which remains
secure when only an unknown one of the component schemes is CCA-secure.

Another usage of such a combiner is to achieve security for cryptosystems in
which the decryption requires two private keys held by different parties. Security
remains preserved when one of the parties is compromised by the adversary. An
application is to support revocation via a security-mediator, a party whom needs
to help the non-revoked users in every decryption request. Immediate revocation
can be achieved once it is instructed to stop entertaining any further (partial)
decryption request of the revoked user. For example, Chow et al. [2] proposed a
CCA-secure security-mediated certificateless encryption scheme, combining an
identity-based encryption with a public-key encryption generically. Without a
combiner, a specific ad-hoc construction is probably needed [3].

Our Results. In this paper, we give two other cryptanalysis-tolerant CCA-secure
encryption schemes, one for PKE and one for SKE. Our PKE combiner matches
well with the notion of detectable chosen-ciphertext attack (DCCA) proposed by
Hohenberger et al. [8] recently. Intuitively, DCCA is a weaker version of CCA,
where “dangerous” ciphertexts are not allowed to be queried to the decryption
oracle. Here, whether a ciphertext is dangerous can be checked by a polynomial-
time function. Our combiner aims to achieve indistinguishability against DCCA
attack, by detecting whether a query is originated from the challenge ciphertext
of a component scheme. If so, such decryption query is disallowed. This gives a
conceptually simple combiner with an elementary security proof. Furthermore,
it illustrates yet another application of this DCCA notion.2

1 We remark that it is called CCA2 in the literature when the adaptiveness matters.
2 While the original paper has discussed the application of DCCA in ruling out some

known implementation bug of a “sloppy” encryption scheme [8], our combiner does
not assume the bug from the component scheme can be easily detected.
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Yet, our combiner is downgrading the security of the component scheme since
one of them is CCA-secure, but the resulting scheme is only DCCA-secure. For
getting CCA-security, we resort back to the result of Hohenberger et al. [8]. Their
work showed that we can construct a CCA-secure encryption scheme by a nested
encryption approach, taking a DCCA-secure scheme, a CPA-secure scheme, and
a 1-bounded CCA-secure scheme [4]. A q-bounded CCA-secure encryption sys-
tem is secure against q chosen ciphertext queries, which can be constructed via
a CPA-secure encryption primitive [4].

We then propose another combiner to directly obtain an SKE scheme with
CCA security, by taking two SKE schemes in which only one of them is CCA-
secure. This is different from our combiner for PKE. Note that an SKE scheme
with security against chosen-plaintext attack and integrity of the ciphertext
implies that this scheme is also CCA-secure [1]. For this combiner, our strategy
is to work on these two properties instead, by taking two component schemes
where an unknown one of them possesses of both properties.

Finally, we review in appendix the nested encryption technique of
Hohenberger et al. [8] for obtaining CCA security.

2 Preliminaries

2.1 CCA Security for PKE

Definition 1 (Public-Key Encryption). A public-key encryption scheme
PKE consists of the following three probabilistic polynomial-time (PPT) algo-
rithms (KeyGen,Enc,Dec).

– (EK ,DK ) ← KeyGen(1λ): the algorithm outputs a pair of keys consisting of
the public encryption key EK and the private decryption key DK, according
to the input security parameter 1λ.

– C ← Enc(EK ,m): the algorithm takes a public key EK and a plaintext m as
inputs, and outputs a ciphertext C.

– m ← Dec(DK , C): the algorithm uses the private key DK to decrypt a cipher-
text C to recover the plaintext m, or to output ⊥ denoting C is invalid.

When the context is clear, we may put the input key as a subscript instead,
or simply omit it.

We recall the definition of CCA security. Consider the following experiment
ExpccaA,PKE(1λ) for PKE :

– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives A EK , and keeps DK to itself.

– Query Phase 1: A is given full access to the decryption oracle Dec(DK , ·).
When the adversary A decides to terminate the query phase, it outputs a pair
of messages m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(EK ,mb) and sends C∗ to A.
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– Query Phase 2: A continues to have access to Dec(DK , ·), but is not allowed
to request for a decryption of C∗. Finally A outputs a bit b′.

– Output: The output of the experiment is defined to be 1 if b′ = b, otherwise 0.

A PKE scheme PKE = (KeyGen,Enc,Dec) is CCA secure if for all PPT
adversaries A, there exists a negligible function negl() such that:

Pr[ExpccaA,PKE(1λ) = 1] ≤ 1
2

+ negl(λ).

2.2 Detectable Chosen Ciphertext Security

Detectable chosen ciphertext attack (DCCA) is an attack mode against PKE
introduced by Hohenberger et al. [8], which is weaker than the standard CCA
notion. Considering a DCCA-secure PKE (or detectable encryption) suggests
a new way to build CCA-secure encryption scheme. Their results show that
one can construct a CCA-secure PKE scheme by applying nested encryption
techniques on three primitives that are DCCA-secure, 1-bounded CCA-secure,
and CPA-secure respectively.

A detectable encryption scheme is defined by Π = (KeyGen,Enc,Dec, F ),
where KeyGen, Enc, and Dec behave as those in traditional encryption schemes,
but with an additional efficient boolean function F () available, which is designed
to detect “dangerous” ciphertext. Specifically, F () will be applied before any
decryption query in Phase 2 of the original CCA game. When the queried
ciphertext C “is related to” the challenge ciphertext C∗, meaning that adversary
can infer “useful” information about C∗ from the decryption query of C, F ()
will return 1 and the query is rejected; else the decryption result of C will
be returned to the adversary. Definition 2 formally describes the syntax of a
detectable encryption scheme.

Definition 2 (Detectable Encryption). A detectable encryption scheme con-
sists of the following PPT algorithms (KeyGen,Enc,Dec, F ).

– KeyGen,Enc,Dec are defined as those in a regular PKE scheme.
– {0, 1} ← F (EK , C, C∗): The detecting function F takes as inputs a public

key EK and two ciphertexts C and C∗, and outputs 1 if C and C∗ has some
relations, else outputs 0.

The definition of F () above is at its full generality. We may omit the input
of EK from F () when the function F () does not need it.

Correctness is defined as in a regular encryption scheme. A DCCA-secure
scheme must satisfy unpredictability for F and indistinguishability under DCCA.

Unpredictability of the Detecting Function [8]. Intuitively, it is hard for the adver-
sary to find a useful ciphertext C, given the detectable function F () and a pub-
lic key EK . This is formally defined via the game ExpunpA,Π(1λ) for a detectable
scheme Π = (KeyGen,Enc,Dec, F ) played by an adversary A.
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– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives EK to A, and keeps DK to itself.

– Query: A can fully access the decryption oracle Dec(DK , ·). When A concludes
the query phase, it outputs a message m and a ciphertext C.

– Challenge: The challenger C outputs a ciphertext C∗ ← Enc(EK ,m).
– Output: The experiment outputs F (EK , C, C∗).

A detectable encryption scheme Π is said to have unpredictability for F if,
for any PPT adversary A, we have Pr[ExpunpA,Π = 1] ≤ negl(λ).

One can formulate a stronger version of the above game, in which the adver-
sary is given the decryption key instead of the oracle [8]. This implies the basic
version of undetectability since the adversary can simulate the decryption oracle
when given DK .

Indistinguishability under DCCA [8]. Now we formalize the confidentiality guar-
antee according to the following experiment ExpdccaA,Π(1λ):

– Setup: The challenger C takes a security parameter 1λ and runs KeyGen to
output keys (EK ,DK ). It gives A EK , and keeps DK to itself.

– Query Phase 1: A is given full access to the decryption oracle Dec(DK , ·).
When the adversary A decides that the query phase ends, it outputs messages
m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(EK ,mb) and sends C∗ to A.

– Query Phase 2: A continues to have access to Dec(DK , ·), but is not allowed
to issue a decryption query such that F (EK , C, C∗) = 1.

– Output: A wins the game and the experiment outputs 1 if and only if b′ = b.

A detectable encryption scheme Π is said to have indistinguishability under
DCCA, if we have Pr[ExpdccaA,Π = 1] ≤ 1

2 + negl(λ) for any PPT adversary A.

2.3 Authenticated (Symmetric-Key) Encryption

Definition 3 (Symmetric-Key Encryption). A symmetric-key encryption
scheme SKE consists of the following three probabilistic polynomial-time (PPT)
algorithms (KeyGen,Enc,Dec).

– SK ← KeyGen(1λ): the algorithm outputs a secret key SK according to the
input security parameter 1λ.

– C ← Enc(SK ,m): the algorithm takes a secret key SK and a plaintext m as
inputs, and outputs a ciphertext C.

– m ← Dec(SK , C): the algorithm decrypts a ciphertext C to the corresponding
plaintext m, or outputs ⊥, by using the secret key SK .
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Confidentiality. We recall the definition of CPA security and CCA security.
Consider the following experiment, ExpatkA,SKE(1λ) for SKE :

– Setup: The challenger C runs KeyGen(1λ) and obtains the secret key SK .
– Query Phase 1: A is given full access to the encryption oracle Enc(SK , ·)

for atk = cpa, and an additional decryption oracle Dec(SK , ·) for atk = cca.
When the adversary A decides to terminate the query phase, it outputs a pair
of messages m0,m1 of the same length.

– Challenge: The challenger C randomly picks a bit b ← {0, 1}, computes C∗ ←
Enc(SK ,mb) and sends C∗ to A.

– Query Phase 2: A continues to have access to Enc(SK , ·) for atk = cpa. For
atk = cca, the adversary also has access to the decryption oracle, but is not
allowed to request for a decryption of C∗. Finally A outputs a bit b′.

– Output: The output of the experiment is defined to be 1 if b′ = b, otherwise 0.

An SKE scheme SKE = (KeyGen,Enc,Dec) is CPA/CCA-secure if for all
PPT adversaries A, there exists a negligible function negl() such that:

Pr[ExpatkA,SKE(1λ) = 1] ≤ 1
2

+ negl(λ)

for atk = cpa or atk = cca respectively.

Integrity. Integrity of ciphertexts (INT) or integrity of plaintexts (INT-PTXT)
is formally defined via the following experiment, ExpatkA,SKE(1λ), played by an
adversary A for an SKE scheme SKE , where atk = int or atk = int-ptxt respec-
tively.

– Setup: The challenger C runs KeyGen(1λ) and obtains the secret key SK .
– Query: A is given full access to the encryption oracle Enc(SK , ·) and the

decryption oracle Dec(SK , ·).
– Challenge: When the adversary A decides to terminate the query phase, it

outputs a forgery C∗.
– Output: The challenger C decrypts C∗ to obtain M∗.

• For atk = int, if M∗ �=⊥ and C∗ has never appeared as a response by the
challenger to any encryption oracle query of A, A is considered to have
won the game, and the experiment outputs 1; otherwise, outputs 0.

• For atk = int-ptxt, if M∗ �=⊥ and M∗ has never appeared in any encryption
oracle query, A is considered to have won the game, and the experiment
outputs 1; otherwise, outputs 0.

An SKE scheme SKE = (KeyGen,Enc,Dec) is INT-secure/INT-PTXT-secure
if for all PPT adversaries A, there exists a negligible function negl() such that:

Pr[ExpatkA,SKE(1λ) = 1] ≤ negl(λ)

for atk = int or atk = int-ptxt respectively.
An INT-secure scheme is also INT-PTXT-secure [1].
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3 Combiner from CCA Security to DCCA Security

Given two public-key encryption schemes, PKE1 and PKE2 where PKE1 =
(KeyGen1,Enc1,Dec1), PKE2 = (KeyGen2,Enc2,Dec2) such that only one of
them is CCA-secure, we can build a detectable public-key encryption scheme
PKE = (KeyGen,Enc,Dec, F ) that achieves DCCA security.

– (EK ,DK ) ← KeyGen(1λ): KeyGen(1λ) executes the key generation algorithm
of PKE1 and PKE2: (EK 1,DK 1) ← PKE1.KeyGen1(1λ), (EK 2,DK 2) ←
PKE2.KeyGen2(1λ); and outputs EK = (EK 1,EK 2) and DK = (DK 1,DK 2).

– C ← Enc(m): this algorithm chooses a random string r which is as long as the
message m, and sets C = (C1, C2) = (PKE1.Enc1(r),PKE2.Enc2(r ⊕ m)).

– m ← Dec(DK , C): this algorithm returns m = DecDK1(C1) ⊕ DecDK2(C2).
– {0, 1} ← F (EK , C, C∗): Let C∗ = (C∗

1 , C∗
2 ) be the challenge ciphertext. Simi-

larly, parse C as (C1, C2). We define the detecting function F (EK , C, C∗) to
output 1 if and only if:

C1 = C∗
1 or C2 = C∗

2 ;

otherwise, i.e., C1 �= C∗
1 and C2 �= C∗

2 , it outputs 0.
In the following, we will show that this construction achieves DCCA security.

Lemma 4. The detecting function F satisfies unpredictability.

Proof. Since both PKE1,PKE2 are probabilistic schemes, without receiving the
challenge ciphertext and with no decryption key, no adversary can output a
ciphertext C such that F (EK , C, C∗) = 1 with non-negligible probability. Thus
the unpredictability of the detecting function F for the combiner scheme is satis-
fied. Next we prove indistinguishability of encryptions, which will then complete
the proof of DCCA security. ��
Lemma 5. If PKE1 is CCA-secure, then PKE is DCCA-secure.

Proof. Since PKE satisfies unpredictability of the detecting function F , it suffices
to show that PKE is indistinguishable. If there is an adversary A which can break
the indistinguishability experiment of PKE with non-negligible probability ε,
then we can construct a simulator B to break the CCA experiment of PKE1

with probability ε.
Given EK 1 of PKE1, B calls KeyGen2() of PKE2, and sends EK =

(EK 1,EK 2) to A. B can simulate the decryption oracle in Phase 1, by using
that of PKE1 and the private decryption key DK 2.

During the challenge phase, A submits m0, m1 (of the same length) to B.
B chooses a randomness r0, calculates r1 = r0 ⊕ m0 ⊕ m1, and sends r0, r1 to
the challenger C. Then the challenger C chooses b

$← {0, 1} and sends Enc1(rb)
to B. Receiving Enc1(rb), B computes Enc2(r0 ⊕ m0) and sends the challenge
ciphertext C∗ = (C∗

1 , C∗
2 ), where C∗

1 = Enc1(rb), C∗
2 = Enc2(r0 ⊕ m0) to A.
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If b = 0, this challenge ciphertext is correctly distributed for m0. If b = 1, we
view rb as r1 = r0 ⊕ m0 ⊕ m1, then r1 is randomly distributed, and r0 ⊕ m0 =
r1 ⊕ m1, so the challenge ciphertext is also correctly distributed for m1.

In Phase 2, the adversary is only allowed to submit C to the decryption
oracle if F (EK , C, C∗) = 0. Parsing C as (C1, C2) and C∗ as (C∗

1 , C∗
2 ). Under

this condition, we have C1 �= C∗
1 . B can submit C1 to the decryption oracle of its

own challenger. Thus, B can also properly simulate the decryption oracle for A
in Phase 2.

Finally, A outputs its guess b′. B simply forwards b′ as its own guess. When A
guesses it is b′ = 0, it means C∗

1 = Enc1(r0). When A guesses it is b′ = 1, it
means C∗

1 = Enc1(r1). The messages just match with those chosen by B in its
own game. Hence, the probability of B to win its game is also ε. ��

Since our encryption scheme does not look symmetric regarding the choice
of PKE1,PKE2 (versus the ordering of PKE2 then PKE1), we will now consider
the case that PKE2 is CCA-secure.

Lemma 6. If PKE2 is CCA-secure, then PKE is DCCA-secure.

Proof. In this case, the challenger C is for PKE2. Our goal is to construct a
simulator B to win the CCA experiment of PKE2 with the help of adversary A.

Given EK 2 of PKE2, B calls KeyGen1() of PKE1, and sends EK =
(EK 1,EK 2) to A. Simulation of the decryption oracle in Phase 1 is similar
to the corresponding treatment in the previous proof.

In the challenge phase, A submits m0,m1 (of the same length) to B. B choose
a randomness r, calculates r0 = r ⊕ m0, r1 = r ⊕ m1, and sends r0, r1 to
the challenger C. Then the challenger C chooses b

$← {0, 1} and sends Enc2(rb)
to B. Receiving Enc2(rb), B computes Enc1(r) and sends the challenge ciphertext
C∗ = (C∗

1 , C∗
2 ), where C∗

1 = Enc1(r), C∗
2 = Enc2(rb) to the adversary A. The

challenge ciphertext is correctly distributed since rb = r ⊕ mb for b ∈ {0, 1}.
In Phase 2, the adversary is only allowed to query the decryption for C

where F (EK , C, C∗) = 0. Parsing C as (C1, C2) and C∗ as (C∗
1 , C∗

2 ), we thus
have C2 �= C∗

2 . B can then submit C2 to the decryption oracle in its own game.
Finally, B outputs what A outputs. Similar to our analysis of the distribution

of the challenge ciphertext, the guess of A just matches with the guess of B.
Therefore B can win with probability ε. ��

Combining Lemmas 4, 5 and 6, we can see that PKE is DCCA-secure if one
of PKE1,PKE2 is CCA-secure. We can then construct a CCA-secure scheme by
using the nested encryption technique [8], which we review in Appendix.

4 Combiner for Secret Key Encryption

Similar to our analysis above, we can get a combiner for SKE if the nested encryp-
tion scheme of Hohenberger et al. [8] also applied on SKE. However, apart from
the two component schemes, it also requires a 1-bounded CCA-secure scheme
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and another CPA-secure scheme. This appears to be complicated for an SKE
scheme. We thus give a direct CCA-combiner for SKE below.

One of the advantages that SKE possesses over PKE is that the encryption
needs the secret key, so that an adversary might not easily obtain by itself a
ciphertext which decrypts to a valid message. This property is called integrity
(INT). An SKE which is both CPA-secure and INT-secure is called authenticated
encryption, and is CCA-secure [1]. Below we aim to propose a combiner for
authenticated encryption, which achieves both CPA and INT security.

We require the ciphertext produced by Enc(SK ,m; r) of the SKE schemes,
is in the form of C = (r,ESK (m, r)) where r is the randomness used in the
implicitly-defined deterministic key-ed function ESK (m, r). We also assume that
they are perfectly correct, i.e., Pr[Dec(SK ,Enc(SK ,m)) = m] = 1, ∀SK ←
KeyGen(1λ).

Given two encryption schemes SKE1,SKE2, one of which is CPA+INT-
secure, and both have the stated ciphertext form and perfect correctness, our
combiner for CPA+INT-secure SKE SKE = (KeyGen,Enc,Dec) is as follows.

– KeyGen(1λ): takes the security parameter 1λ, sets the SK = (SK 1,SK 2),
where SK i is the secret key generated by SKE i.KeyGeni(1λ) for i ∈ {1, 2}.

– Enc(SK ,m): chooses randomness R1, R2 such that R1 ⊕ R2 = m and sets

C1 = (r1,E1(R1, r1))
C2 = (r2,E2(R2, r2))
C3 = (r3,E1(C1||C2||r4, r3))
C4 = (r4,E2(C2||C1||r3, r4))

where r1, r2, r3, r4 are the randomness used in the corresponding encryption
algorithm. Outputs C = (C1, C2, C3, C4).

– Dec(SK , C): firstly parses C into (C1, C2, C3, C4), checks if both of C3 =
(r3,E1(C1||C2||r4, r3)) and C4 = (r4,E2(C2||C1||r3, r4)) hold. If no, outputs ⊥.
Otherwise, gets R′

1 = Dec(SK 1, C1) and R′
2 = Dec(SK 2, C2). If none of them

is ⊥, returns R′
1 ⊕ R′

2.

The two lemmas below assert the security of this combiner scheme SKE .

Lemma 7. SKE is CPA-secure.

Proof. Since SKE is symmetric for SKE1 and SKE2, without loss of the general-
ity, we suppose SKE1 is CPA+INT-secure and SKE2 is an arbitrary encryption
scheme.

If SKE is not CPA-secure, we can construct a simulator B to win the CPA
game of SKE1. Given the encryption oracle of SKE1, B generates the parame-
ters of SKE2 and runs Enc2() by itself. In Phase 1, when A issues an encryp-
tion query for message m, B randomly picks Ri calls the Enc1() oracle to
get C1 = (r1,E1(m ⊕ Ri, r1)), then B randomly chooses r2 and r4, computes
C2 = (r2,E2(Ri, r2)) and sends C1||C2||r4 to the encryption oracle. Receiving
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C3 = (r3,E1(C1||C2||r4, r3)), the simulator B also calculates C4 with r3 and r4.
Note that the messages encrypted in C1 and C2 follows the distribution of the
real scheme, and C3 and C4 simply follow the construction as in the real scheme.

In the challenge phase, the adversary A submits m0,m1 to B, and B ran-
domly picks R and sends m′

0 = m0 ⊕ R and m′
1 = m1 ⊕ R to the chal-

lenger C. Then the challenger C flips a coin b ∈ {0, 1}, encrypts m′
b to

obtain C ′
b = (r1,E1(m′

b, r1)), and sends it to B. B then randomly picks r2, r4,
and computes C∗

2 = (r2,E2(R, r2)) and submits C ′
b||C∗

2 ||r4 to the encryp-
tion oracle. After receiving C∗

3 = (r3,E1(C ′
b||C∗

2 ||r4)), the simulator calculates
C∗

4 = (r4,E2(C ′
b||C∗

2 ||r3)) and sends (C ′
b, C

∗
2 , C∗

3 , C∗
4 ) as the challenge ciphertext

for A. It is a well-distributed challenge ciphertext, following the same analysis
as that for the simulation of encryption oracle by B.

In Phase 2, the simulator acts exactly as in Phase 1, and outputs what the
adversary A outputs. We can see that the guess of A is correct if and only that of
B is correct. Thus if A can guess correctly with non-negligible advantage over 1

2 ,
so does B in breaking the CPA security of SKE1. ��
Lemma 8. SKE is INT-secure.

Proof. Without loss of the generality, we suppose that SKE1 is CPA+INT-
secure. If SKE is not INT-secure, we construct a simulator B that breaks the
INT-security of SKE1.

B is given the encryption oracle Enc1() of SKE1, and runs Enc2() normally by
itself. In Phase 1, when the adversary A queries for an encryption of message m,
B randomly picks an R and calls the Enc1() oracle to gets C ′

1 = (r′
1,E1(R, r′

1)),
then B randomly picks r′

2 and r′
4, computes C ′

2 = (r′
2,E2(M ⊕ R, r′

2)) and sends
C ′

1||C ′
2||r′

4 to Enc1() oracle. Receiving C ′
3 = (r′

3,E1(C ′
1||C ′

2||r′
4, r

′
3)), the simula-

tor B also calculates C ′
4 with r′

3 and r′
4. Finally B returns C ′ = (C ′

1, C
′
2, C

′
3, C

′
4)

as the response. Note that C ′
1 and C ′

3 obtained by B from its own encryption
oracle Enc1() are always directly forwarded to A as is.

In the challenge phase, the adversary A returns the forgery C∗. B parses
C∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ). If C∗

1 or C∗
3 has not been forwarded by B to A before, B

returns it to break the INT security of SKE1.
Consider to the contrary that both C∗

1 and C∗
3 directly came from the

response of the encryption oracle due to some queries of B. Note that for any
valid forgery, C∗

3 = (r∗
3 ,E1(C∗

1 ||C∗
2 ||r∗

4 , r
∗
3)), which is ensured by the validity

checking of the decryption algorithm. From the perfect correctness of SKE1,
every valid ciphertext can only be decrypted to a single message. Since C∗

3 was
created from Enc1(), the corresponding query supplied to Enc1(), and hence the
decryption result of C∗

3 , must be C∗
1 ||C∗

2 ||r∗
4 , Also note that every Enc1() ora-

cle query B has ever made is for returning a ciphertext C ′ = (C ′
1, C

′
2, C

′
3, C

′
4)

to A. When C∗
3 was returned by Enc1(), it must be triggered by an encryption

oracle query by A which leads to the creation of C ′ = (C∗
1 , C∗

2 , C∗
3 , C ′

4), where
C ′

4 = (r∗
4 ,E2(C∗

2 ||C∗
1 ||r∗

3 , r
∗
4)) = C∗

4 . So the forgery C∗ = (C∗
1 , C∗

2 , C∗
3 , C∗

4 ) is
exactly the same as C ′ given by B to A before, violating the rule of the game
played by A. Contradiction occurs and this concludes the proof. ��
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5 Conclusion

We show two provably-secure robust combiners for ensuring security against
chosen-ciphertext attack (CCA). Our robust combiner for public-key encryption
(PKE) is inspired by the detectable chose-ciphertext attack (DCCA) notion
proposed by Hohenberger et al. [8]. Instead of directly obtaining a combiner
to get a CCA-secure PKE from two possibly CCA-secure PKE schemes, our
goal is to devise a combiner for DCCA security, given that only one of the
schemes is CCA-secure. A CCA-secure scheme can thus be obtained following the
nested encryption approach proposed by Hohenberger et al. [8]. For our robust
combiner for symmetric-key encryption (SKE), instead of directly working on
CCA-security, we work on the CPA-security and the ciphertext integrity, in
which a combination of both implies CCA-security of an SKE scheme [1].

It is our future work to build a more efficient SKE combiner.

A CCA Security from DCCA Security

CCA-secure PKE can be obtained by combining DCCA PKE, 1-bounded CCA
PKE, and CPA PKE [8]. We remark that the same technique also works in
identity-based encryption (IBE), attribute-based encryption (ABE), and thresh-
old PKE/IBE. The same holds true for our combiner in Sect. 3.

We use ΠDCCA, ΠCPA, and Πqb to denote the encryption primitives which are
DCCA-secure, CPA-secure, and q-bounded-CCA-secure (where q = 1) respec-
tively. For a probabilistic algorithm Enc(·), we can transform it to a deterministic
one Enc(·.; r) where r is a well-distributed random value.

We describe the CCA-secure encryption scheme in the context of IBE. It can
easily degenerated to SKE/PKE, or extended into threshold PKE/IBE or ABE.

A.1 Syntax of IBE

In IBE, any user can request for a secret key SK ID related to her identity ID
from a trusted private key generator. The secret key SK ID can decrypt the
ciphertext encrypted for ID correctly. An IBE scheme is defined as follows.

– (MPK ,MSK ) ← Setup(1λ): This algorithm takes as the security parameter 1λ

and returns a master public key MPK and a master secret key MSK . MPK
is omitted from the input of the rest of the algorithms.

– SK ID ← Extract(MSK , ID): This algorithm takes as inputs the master secu-
rity key MSK and an user identity ID , and it returns a user secret key SK ID .

– C ← Enc(ID ,m): This algorithm takes as inputs a user identity ID , and a
message m, it then returns a ciphertext C encrypting m for ID .

– m ← Dec(ID ,SK ID , C): It takes as inputs a secret key SK ID corresponding
to the identity ID , and a ciphertext C. It returns m or an invalid symbol ⊥.
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A.2 CCA-Secure Construction

– (MPK ,MSK ) ← Setup(1λ): Run all the underlying IBE setup algorithms:
SetupDCCA(1λ) to get (MPKDCCA,MSKDCCA), then SetupCPA(1λ) to obtain
(MPKCPA,MSKCPA) and Setupqb(1λ) to get (MPK qb,SK qb). Keep MSK =
(MSKDCCA,MSKCPA,MSK qb) in secret and output the master public key as
MPK = (MPKDCCA,MPKCPA,MPK qb).

– SK ID ← Extract(ID): Run ExtractDCCA(ID) to obtain SKDCCA.ID , then
ExtractCPA(ID) to obtain SKCPA.ID , and Extractqb(ID) to obtain SK qb.ID .
Finally, output SK ID = (SKDCCA.ID ,SKCPA.ID ,SK qb.ID).

– C ← Enc(ID ,m): First pick three random values rDCCA, rCPA, rqb ∈ {0, 1}λ,
encrypt two of them with the message m in CDCCA using rDCCA as the
encryption randomness, i.e., EncDCCA(ID , (rCPA||rqb||m); rDCCA); then com-
pute two more encryption of it via Cqb = Encqb(ID , CDCCA; rqb) and CCPA =
EncCPA(ID , CDCCA; rCPA). Finally, we set C = (CCPA, Cqb).

– m ← Dec(ID ,SK ID , C): Parse C into (CCPA, Cqb). Decrypt the second
ciphertext Decqb(ID , SKID , Cqb) to obtain CDCCA. Then decrypt it to obtain
(rCPA||rqb||m). Check that both Cqb = Encqb(ID , CDCCA; rqb) and CCPA =
EncCPA(ID , CDCCA; rCPA) holds. If so, output m; otherwise output ⊥.
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Abstract. Optimizing performance of Fully Homomorphic Encryption
(FHE) is nowadays an active trend of research in cryptography. One way
of improvement is to use a hybrid construction with a classical sym-
metric encryption scheme to transfer encrypted data to the Cloud. This
allows to reduce the bandwidth since the expansion factor of symmet-
ric schemes (the ratio between the ciphertext and the plaintext length)
is close to one, whereas for FHE schemes it is in the order of 1,000 to
1,000,000. However, such a construction requires the decryption circuit
of the symmetric scheme to be easy to evaluate homomorphically. Sev-
eral works have studied the cost of homomorphically evaluating classical
block ciphers, and some recent works have suggested new homomorphic
oriented constructions of block ciphers or stream ciphers. Since the multi-
plication gate of FHE schemes usually squares the noise of the ciphertext,
we cannot afford too many multiplication stages in the decryption cir-
cuit. Consequently, FHE-friendly symmetric encryption schemes have a
decryption circuit with small multiplication depth.

We aim at minimizing the cost of the homomorphic evaluation of
the decryption of symmetric encryption schemes. To do so, we focus
on schemes based on learning problems: Learning With Errors (LWE),
Learning Parity with Noise (LPN) and Learning With Rounding (LWR).
We show that they have lower multiplicative depth than usual block
ciphers, and hence allow more FHE operations before a heavy bootstrap-
ping becomes necessary. Moreover, some of them come with a security
proof. Finally, we implement our schemes in HElib. Experimental evi-
dence shows that they achieve lower amortized and total running time
than previous performance from the literature: our schemes are from 10
to 10,000 more efficient for the time per bit and the total running time is
also reduced by a factor between 20 to 10,000. Of independent interest,
the security of our LWR-based scheme is related to LWE and we provide
an efficient security proof that allows to take smaller parameters.

1 Introduction

Fully Homomorphic Encryption (FHE) is nowadays one of the most active trend
of research in cryptography. In a nutshell, a FHE scheme is an encryption scheme
c© Springer International Publishing Switzerland 2016
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that allows evaluation of arbitrarily complex programs on encrypted data. This
idea has been introduced by Rivest et al. [26] in 1978, while the first plausible
construction has been given by Gentry [16] in 2009. Since, numerous papers
have focused on improving the efficiency of the constructions. Even if there still
remains works before FHE becomes practical, it arouses more and more interest
and the scope of application goes from genomics to finance [24].

One way of improvement has been introduced in [24]. It focuses on minimiz-
ing the communication complexity of the scheme. The idea is to use a “hybrid”
encryption scheme: some parts of the scheme are replaced by a symmetric encryp-
tion scheme. Instead of encrypting the data under the FHE scheme, the client
will only encrypt its symmetric key under the FHE scheme, and encrypt its data
under the symmetric scheme. The cloud will then homomorphically evaluate
the decryption of the symmetric scheme on the symmetrically encrypted data
and the homomorphically encrypted symmetric key, to get a ciphertext corre-
sponding to a homomorphic encryption of the data. Clearly, such a construction
has low communication complexity, since the only online data transfer is made
under the symmetric scheme. However, the cloud might pay a huge cost at the
homomorphic evaluation of the symmetric decryption. Thus, one can look for
the most “FHE-friendly” symmetric encryption scheme to use in the hybrid.

Being “FHE-friendly” consists in optimizing several criteria. First, as the
application we gave suggests, we want a scheme with a small expansion factor,
so that the communication complexity stays low. Then, other criteria depend on
the FHE construction we are building upon. All current FHE schemes are based
on variants of Gentry’s initial idea: ciphertext consists of encryption of data with
noise, and homomorphic operations increase this noise. When the upper bound of
noise is reached, one has to “bootstrap”, to reduce the noise to its initial level.
Typically, functions are represented as arithmetic circuits and multiplications
have a far higher cost than additions in terms of noise. Thus, we will want to
minimize the multiplicative depth of the decryption circuit of our symmetric
scheme. In addition, we will also take into account the total running time of our
homomorphic evaluation step. This metric highly depends on the chosen FHE
scheme, but multiplications often happen to be the main bottleneck again.

Our Contributions. In this paper, we focus on symmetric schemes having shal-
low decryption circuits. We build secure schemes with constant or small decryp-
tion circuit, namely with small multiplication depth. Contrary to the direction
followed by many recent work, that tweak block ciphers or stream ciphers [3,9],
our approach is related to provable security. Indeed, we notice that one can
construct lattice-based schemes with very small decryption circuit and then, we
evaluate the performances of our schemes using HElib to compare them with
other symmetric ciphers. Finally, we try to use HElib features (full packing and
parallelization) in order to achieve better performances. We describe two kinds
of ciphers: the first family has its security related to the difficulty of solving
the LPN problem in specific instances, while the second family has a security
proof based on the LWE problem. The first construction is similar to “symmet-
ric cryptography” since we do not have a clean security proof and consequently,
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we provide a more thorough security analysis. However, the security seems to
be easier to understand than ad-hoc constructions usually used in symmetric
cryptography, since the security problem on which the scheme is based can be
formally stated. We present a very efficient construction specifically tailored to
this problem to secure our construction from Arora-Ge type of attack on LPN.
The performance of the schemes from this family can be 10 times more effi-
cient than the most efficient previous cipher. For the second family, we have
a rigorous security proof related to LWE, while the scheme is based on LWR.
The performance of the second family can be very efficient, about 10,000 times
faster, but the caveat is that the decrypted plaintext contains random bits in the
least significant bits if we do not compute homomorphically the truncation using
the costly ExtractDigits function. Therefore, if we want to remove the erroneous
bits, the performances become equivalent to previous ciphers, while being more
efficient than AES. In some cases, we can compute with such noise.

We notice that contrary to what is claimed in many works [24], it is not
necessary to re-encrypt the symmetrically-encrypted ciphertext using the FHE
scheme when the server receives the data. We show that the evaluation of the
homomorphic decryption procedure gives ciphertexts encrypted with FHE. This
improves the performance of the scheme, since we homomorphically evaluate the
function that maps the key K to the Dec(K, c), given the ciphertext c and some
multiplications in Dec will be simplified once c is known.

Then, we describe our efficient FHE-friendly symmetric schemes based on
lattices, and more precisely on learning problems. Our results show that we can
get circuits with very small multiplication depth for the decryption algorithms
of these schemes. In addition, their security relies on hard problems or on hard
instances of lattice problems in the worst cases, as opposed to usual block ciphers.

We present a scheme whose security is based on the Learning Parity With
Noise problem (LPN) introduced in [18]. We have to specify an error correcting
code (ECC) for this scheme so that the decryption circuit is small. We choose to
use a repetition code in order to simplify the decoding and reduce its circuit in
term of multiplications. More complex ECC exist with constant decoding such
as [19] but they are only interesting from an asymptotic point of view. However,
prohibiting decryption failures makes the scheme vulnerable to the Arora-Ge [6]
attack and to avoid its most efficient variant [2] using Gröbner basis algorithms,
we use a very efficient transformation, similar to random locally function [5],
which increases the algebraic degree of the polynomials system. We provide a
detailed analysis of this attack. The function we propose is also very similar to [1]
and we can show that our construction achieves better influence parameters, but
it has higher complexity class since we need a logarithmic depth circuit.

Then, we introduce another scheme whose security is based on the Learn-
ing With Rounding problem (LWR) and a very similar version whose security
relies directly on the Learning With Errors (LWE) problem. In order to encrypt
many bits using small parameters, we provide a direct proof from LWE to the
security of the scheme. We do not rely on any reduction from LWE to LWR
since the first reduction given by Banerjee et al. [7] requires exponential para-
meters and the one by Alwen et al. [4] requires parameter linear in the number
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of samples. Here, our reduction is only logarithmic in the number of samples.
Furthermore, we extend both schemes to their ring versions. In this case, we
optimized the number of multiplications using a FFT algorithm to compute the
polynomial multiplications. Finally, we extend them to their module versions,
which generalizes standard and ring versions.

Along with a theoretical analysis, we give a homomorphic evaluation in HElib
to make practical comparisons. While the homomorphic evaluation of AES went
down to 11 ms per bit [17] and LowMC, a block cipher designed to be FHE-
friendly (and whose security has recently been analyzed [11,12]), went down to
3 ms per bit [3], which was the best so far, we go under a millisecond per bit
(with the module version of our LPN scheme). In some scenario, our performance
for the scheme based on LWR are drastically better if we allow FHE-encrypted
plaintexts to contain noise in the least significant bits. Moreover, our schemes
are a lot more flexible, in the sense that they need smaller FHE parameters,
and while these performance were amortized over a computation taking several
minutes, the evaluation of our schemes takes only from a second to a minute.

Related Work. Many papers have presented homomorphic evaluations of block
ciphers. It has started in [17], where AES has been chosen as a benchmark for
measuring the performance of HElib. Then, performance has been improved in
[23]. AES has then been used as benchmark for comparing FHE schemes in
[10,13]. Similarly, Simon has been used to compare FHE schemes [21]. Recently,
the problem has been taken the other way round, with works trying to find the
most FHE-friendly block cipher. First, a lightweight block cipher like Prince has
been suggested and evaluated [14]. Then, a new block cipher, LowMC, has been
designed specifically for this kind of application [3], as well as for multiparty
computations. Finally, using stream ciphers has also been proposed [9].

Organization of the Paper. In Sect. 2 we recall definitions about symmetric
encryption and Lattice problems in Cryptography. In Sect. 3, we explain how
we use homomorphic operation more efficiently. Then we introduce in Sect. 4
our symmetric schemes based on learning problems: LPN, LWR and LWE. The
security and performance analysis of the schemes are proved in the final version.

2 Preliminaries

Symmetric Encryption. We will say that a function of k (from positive inte-
gers to positive real numbers) is negligible if it approaches zero faster than any
inverse polynomial, and noticeable if it is larger than some inverse polynomial
(for infinitely many values of k).

Definition 1. A symmetric encryption scheme is a tuple (Gen,Enc,Dec) of
Probabilistic Polynomial-time (PPT) algorithms as follows:

– Gen(1λ): given a security parameter λ, output a secret key k;
– Enc(k,m): given a key k and a message m, output a ciphertext c;
– Dec(k, c): given a key k and a ciphertext c, output a message m′;
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and which satisfies the correctness property: if k := Gen(1λ), then for all mes-
sages m,Pr[Dec(k,Enc(k,m)) �= m] is negligible (in λ).

For the sake of clarity, we will often write the key as a subscript and the
scheme name as a superscript of our algorithms, like in EncS

k . Semantic security
is implied by the following property, which will be satisfied by our schemes.

Definition 2. A symmetric encryption scheme S has pseudo-random cipher-
texts (ciphertexts indistinguishable from random) if no PPT A can distin-
guish between ciphertexts from the scheme and the uniform distribution, i.e.
for all PPT A and for all messages m, it holds that

∣
∣ Pr[A(EncS

k (m), 1λ) =
1] − Pr[A(r, 1λ) = 1]

∣
∣ is negligible (in λ), where r is drawn randomly over the

ciphertext space.

Learning Problems. Given a finite set S and a probability distribution D on
S, s ← D denotes the drawing of an element of S according to D and s ← S the
random drawing of an element of S endowed with uniform probability.

Learning with Errors. The Gaussian distribution with standard deviation σ is
defined on R by the density function 1√

2πσ
exp(− 1

2 ( x
σ )2). The Learning With

Errors problem (LWE) has been introduced in [25]. For s ∈ Z
k
q , the LWE dis-

tribution DLWE
s,χ is defined over Z

k
q × Zq and consists in samples (a, 〈a, s〉 + e)

where a ← Z
k
q and e ← χ for some distribution χ over Zq. Typically, χ is taken

to be some integral Gaussian distribution when assuming that LWE is hard. As in
most works [25], we will consider here rounded Gaussian distributions: it basically
consists in sampling a Gaussian distribution, reducing the result modulo 1, mul-
tiplying it by q and rounding it to the nearest integer. LWE consists, for s chosen
according to some distribution over Z

k
q (typically, the uniform distribution), in

distinguishing between any desired number of samples from DLWE
s,χ and the same

number of samples drawn from the uniform distribution over Zk
q ×Zq. For rounded

Gaussian distributions, LWE is usually considered to be hard when the standard
deviation σ verifies σ >

√
k [25].

LWE can be extended into a ring version RLWE [22]. Let R = Z[X]/(P (X))
for a monic irreducible polynomial P of degree k, and let Rq = R/qR. Generally,
P is chosen to be some power-of-two cyclotomic polynomial, which are of the
form X2z +1. For an element s ∈ Rq, we define the RLWE distribution DRLWE

s,χ

over Rq ×Rq by samples (a, a.s+e) where a ← Rq and e ← χk where χk consists
in k independent samples from χ and e is interpreted as an element of Rq. The
Ring-LWE problem (RLWE) consists, for s drawn according to some distribution
over Rq, in distinguishing DRLWE

s,χ from the uniform distribution over Rq × Rq.
We will also use the Module-LWE problem (MLWE). It has been introduced

in [8] under the name of GLWE, for General LWE. However, we will call it MLWE
as in [20], because it indeed corresponds to introducing a module structure over
LWE. For an element s ∈ Rk

q , where the underlying ring polynomial has degree d,
we define the MLWE distribution DMLWE

s,χ over Rk
q ×Rq by samples (a, 〈a.s〉+e)

where a ← Rk
q and e ← χd is interpreted as an element of Rq. MLWE generalizes

LWE and RLWE: LWE is when d = 1 and RLWE when k = 1.
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By a standard hybrid argument, LWE can be extended to several secrets.
It can be shown that the problem which consists in distinguishing samples
(a, 〈a, s1〉 + e1, . . . , 〈a, sn〉 + en) ∈ Z

k
q × Z

n
q from the uniform distribution over

Z
k
q × Z

n
q , where each sj ∈ Z

k
q is chosen independently for any n = poly(k), is

at least as hard as LWE for a single secret s. An analogous statement can be
shown for RLWE and MLWE. Finally, the LWE [25], RLWE [22] and MLWE [20]
hardness assumptions have been reduced to standard lattice assumptions. The
security of MLWE seems to be intermediate between that of LWE based on
hardness results in arbitrary lattices and the security of RLWE in ideal lattices.

Learning Parity with Noise (LPN). We denote by Bη the Bernoulli distribution
of parameter η ∈ [0, 1], i.e. a bit b ← Bη is chosen such that Pr[b = 1] = η and
Pr[b = 0] = 1 − η. The LPN problem consists in LWE for q = 2. The distribution
χ chosen over Z2 corresponds to a Bernoulli distribution. We extend LPN to
RLPN and MPLN. The only difference is that the underlying polynomial will not
be cyclotomic anymore, but some irreducible polynomial modulo 2. Similarly,
these problems are also extended to a polynomial number of secrets. The main
difference between LWE and LPN is that the security of LPN remains heuristic
because no reduction has been made so far to lattice problems.

Learning with Rounding ( LWR). The LWR problem has been introduced in [7] as
a derandomization of LWE. The idea is to replace the addition of a random noise
by a rounding function. Let k be the security parameter and moduli q ≥ p ≥ 2 be
integers. We define the function 	.
p : Zq → Zp by 	x
p = 	(p/q).x̄
, where x̄ is
an integer congruent to x mod q. We extend 	.
p component-wise to vectors and
matrices over Zq. Let R denote the cyclotomic polynomial ring R = Z[z]/(zk +1)
for k a power of two. For any modulus q, we define the quotient ring Rq = R/qR
and extend 	.
p coefficient-wise to it. Note that we can use any common rounding
method, like the floor or ceiling functions. In our implementations, we use the
floor, because it is equivalent to dropping the least-significant digits in base 2
when q and p are both powers of 2.

For a vector s ∈ Z
k
q , the LWR distribution DLWR

s is defined over Z
k
q × Zp

by elements (a, 	〈a, s〉
p) with a ← Z
k
q . For a vector s ∈ Rq, the ring-LWR

(RLWR) distribution DRLWR
s is defined over Rq × Rp by elements (a, 	a.s
p)

with a ← Rq. And for a vector s ∈ Rk
q , the module-LWR (MLWR) distribution

DMLWR
s is defined over Rk

q × Rp by elements (a, 	〈a.s〉
p) with a ← Rk
q . For a

given distribution D over s ∈ Z
k
q , LWR consists in distinguishing between any

desired number of independent samples from DLWR
s and the same number of

samples drawn uniformly and independently from Z
k
q × Zp. RLWR and MLWR

are defined analogously. All these problems can be extended to several secrets,
as stated for LWE. The LWR has been reduced to LWE when q/p is exponential
in k [7], and when q/p is poly(k) and linear in the number of samples by [4].

3 Fully-Homomorphic Encryption (FHE)

While classical encryption preserves the privacy of information, homomorphic
encryption aims also at making some computation on the encrypted data.
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FHE Definitions. Formally, we have a message space M with a set of func-
tions f we would like to compute on messages, and we want an algorithm
which efficiently computes functions f ′ on the ciphertext space C such that
Dec(f ′({ci}i)) = f({Dec(ci)}i). Thus, we want the decryption function to be a
homomorphism from C to M for these functions f . This notion, originally called
a privacy homomorphism, was introduced in [26]. Here is a formal definition of
a homomorphic scheme, sometimes referred to as “somewhat homomorphism”.

Definition 3. Let F be a set of functions. A F-homomorphic encryption (HE)
scheme is a tuple of PPT algorithms (Gen,Encrypt,Decrypt,Eval) as follows:

– Gen(1λ): given a security parameter λ, output a public key pk, a secret key sk
and an evaluation key ek;

– Enc(pk,m): given the public key pk and a message m, output a ciphertext c;
– Dec(sk, c): given the secret key sk and a ciphertext c, output a message m′;
– Eval(ek, f, Ψ = (c1, . . . , cl)): given the evaluation key, a function f and a tuple

Ψ of l ciphertexts, where l is the arity of f , output a ciphertext c′;

satisfying the correctness property: for all functions f ∈ F and messages
{mi}i≤l, where l is the arity of f , if (pk, sk, ek) := Gen(1λ) and ci := Enc(pk,mi)
for all i, then Pr[Dec(sk,Eval(ek, f, (c1, . . . , cl))) �= f(m1, . . . ,ml)] is negligible
(in λ).

Homomorphic Evaluation of Symmetric Encryption Schemes. We now
give a more precise description of the scenario where a symmetric encryption
scheme is used to improve FHE performance, as described in [24], and on which
we will to rely to analyse the performance of our schemes.

Optimizing Communication with the Cloud. Consider the setting where a client
uploads its data encrypted under a FHE scheme on a cloud service and wants
the cloud to compute on this data and return encrypted outputs. Typically,
FHE schemes come with an expansion factor of the order of 1,000 to 1,000,000.
To mitigate this problem, the client will send its data encrypted under some
semantically secure symmetric encryption scheme (which, by itself, is not homo-
morphic at all) along with the homomorphic encryption of its symmetric key.
Then, the steps of symmetric decryption can all be carried out on homomorphi-
cally encrypted entries. Thus, the cloud can obtain the data encrypted under
the FHE scheme by homomorphically evaluating the decryption circuit.

Here is a formal description of the protocol. Let H = (GenH ,EncH ,DecH ,EvalH)
be a FHE scheme and let S = (GenS ,EncS ,DecS) be a symmetric encryption
scheme. Let λ be the security parameter and m be the data the client wants to
send to the cloud. Let (pk, sk, ek) := GenH(1λ) and k := GenS(1λ).

– The client sends messages c1 := EncH
pk(k) and c2 := EncS

k (m) to the cloud.
– Given a couple of ciphertexts (c1, c2) received from the client, the cloud com-

putes (either at the reception or just before further computing) x = EncH
pk(c2)

and then c = Evalek(DecS , c1, x): this is why we need an efficient homomorphic
evaluation of the decryption circuit of our symmetric scheme.
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– Now, the cloud possesses a FHE-encrypted ciphertext c, which means that
DecH

sk(c) = m. Furthermore, it can now homomorphically evaluate any func-
tion f : for all f , DecH

sk(EvalHek(f, c)) = f(c).

Indeed, if the evaluation algorithm allows constant arguments, i.e. argu-
ments which are not homomorphically encrypted, this scenario can be opti-
mized further, simply by noticing that c2 does not have to be homomorphically
encrypted. Thus, when receiving c1 and c2, the cloud will just directly compute
c = Evalek(DecS , c2, c1). It still has to homomorphically evaluate the decryption
circuit of the symmetric scheme, but it saves a homomorphic encryption, and
operations with constants might be faster. This can also be seen as evaluating
the function K �→ DecS(K,m), which depends on m.

All the symmetric encryption schemes we will use are based on lattices, and,
more precisely, on learning problems. Some of them will rely on the LPN problem,
while the others will rely on the LWR or on the LWE problem. Our initial goal is
to construct efficient FHE-friendly encryption schemes. Symmetric encryptions
are used in FHE scenario in order to transfer the cloud. Here, we first describe a
much more efficient scenario for symmetric and homomorphic encryption than
the classical scenario described in [24].

4 FHE-Friendly Symmetric Encryption Based
on Learning

An Encryption Scheme Based on MLPN. Our first encryption scheme is
a generalization of the scheme introduced in [18], under the name of LPN − C
by Gilbert et al. A [n,m, d] linear binary (error-correcting) code C is a linear
subspace of Fn

2 with dimension m such that d is the minimum �1 distance between
two elements of the code. We associate it with an encoding function E : Fm

2 →
C and a decoding function D : C → F

m
2 . LPN − C is a symmetric encryption

scheme whose security can be reduced to the hardness of LPN. Let E and D
be respectively the encoding and decoding functions of a [n,m, d] linear binary
code.

Here, we describe the more general version of our scheme. Similarly, we can
define LPN − C and RLPN − C based on LPN and RLPN problems.

Definition 4 (MLPN − C). Let d, k and n be polynomials in λ. Let consider F2d

a finite field defined by an irreducible polynomial P of degree d. The symmetric
encryption scheme MLPN − C is defined as follows: Gen(1λ): output S ← F

k×n
2d

;
EncS(x): output (a,E(x)⊕a.S ⊕ e), where a ← F

k
2d and e ← Bd×n

η is interpreted
as an element of Fn

2d ; and DecS(a, y): output D(y ⊕ a.S).

For a message of m bits, this scheme produces a ciphertext of n + k bits.
Indeed, the expansion factor can tend to the one of the linear code we are using,
which is n/m, since n is any polynomial in k. Furthermore, one can consider
that a does not have to be sent, and can be replaced, for example, by the seed
used in order to generate it.
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We choose the 3-repetition code to have a small multiplication depth circuit
of degree 2. We define the encoding scheme for a ∈ F2d as (a2d−1

, a2d−1
, a2d−1

).
In order to decode a code word (a, b, c) ∈ (F2d)3, we compute ab + bc + ac. (The
normal encoding with would be (a, a, a) and the decoding (ab+ac+ bc)2

d−1
, but

we prefer to incorporate the power 2d−1 in the encoding in order to make the
homomorphic part more efficient.)

Proposition 1 [18]. LPN − C (resp. RLPN − C, MLPN − C) is semantically secure
as soon as the corresponding LPN (resp. RLPN, MLPN) problem is hard.

As it stands, if we do not bound the number of errors sent along with a mes-
sage, this scheme will produce decryption failures. They will happen when the
Hamming weight of the noise vector e is greater than the correction capacity of
the error-correcting code. We study the probability of decryption failures and we
can choose the noise parameter η so that this probability is very low. However,
in this case, more efficient attacks than BKW algorithm O(2k/ log(k/−log(1−2η)))
can be used to recover the secret in time O(k3/(1 − η)k). To thwart attacks, we
will increase their complexity using delinearization steps described later.

An important point is the choice of the error-correcting code used in the
scheme. In our context, we would like a code with shallow decoding circuit, and
indeed, codes with shallow decoding circuits are quite rare. For example, linear
codes, which have really simple encoding circuits, have complicated decoding
circuits. We would like to use a 3-repetition code, which has decoding depth 1. We
will keep using such a code in practice as it leads to very efficient homomorphic
performance, but the particular structure given to the noise requires a careful
analysis of the security, that we will do in the following section. Consequently,
in order to also thwart this attack, the delinearization steps can be useful.

Delinearization Steps. In order to counter the Arora-Ge attack, we choose to
add some noise on our values after computing the scalar product. In practice,
the ciphertext we send consists of (a,E(x) ⊕ F (a.S) ⊕ e) where F is some func-
tion involving enough layers of multiplication so that the Arora-Ge attack does
not work. Of course, this step increases the parameters we have to choose for
homomorphically evaluating our scheme, however, a few steps (3 in order to
have a sufficient security parameter) are needed in order to prevent the attacks.
We admit that such techniques are far away from provable security and come
from symmetric cryptography since F is a kind of cheap non-linear operation.
However, contrary to the symmetric setting, here the adversary cannot control
the inputs to this function and many well-known chosen plaintext attacks are
then prohibited and only known plaintext attacks need to be studied. It is easy
to see how to adapt the decryption process. The function F we choose works as
follows: on a vector V , it consecutively applies several transformations Ti, for
i ≤ d, such that [Ti(V )]j = Vj +Vxij

∗Vyij
, where the set of indices xij and yij is

chosen so that monomials do not cancel. The degree of F in the inputs is 2d. We
estimated the number of applications of such transformations needed in order
to counteract the most efficient variant of the Arora-Ge attack and for n = 512,
three steps seem reasonable.
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Even though, our scheme has a security proof, the parameters we choose
do not allow us to use the reduction. Indeed, we pick either a structured noise
(and Arora-Ge algorithms must be taken into account) or a very small noise to
reduce the decryption failure. Therefore the delinearization steps increase the
complexity of these attacks and a thorough security analysis is needed. These
steps are similar to local random functions [1,5] and we can show similar security.

An Encryption Scheme Based on LWR. We present a symmetric encryption
scheme whose security can be reduced to the LWE problem. We describe the more
general MLWR − SYM and we can similarly define LWR − SYM and RLWR − SYM.

Definition 5 (MLWR − SYM). Let d, k and n be polynomials in λ. Let consider
R, with underlying polynomial P of degree d. The symmetric encryption scheme
MLWR − SYM is defined as follows: Gen(1λ): output S ← Rk

q ; EncS(x): output
(a, x + 	a.S
p), where a ← Rk

q and DecS(a, y): output (y − 	a.S
p).

For a message of size n over Zp, this scheme produces a ciphertext consisting
of a random vector of length k over Zq and a vector of length n of Zp. Thus,
the expansion factor is 1 + log q

log p
k
n . Now, for the same reasons as for LPN − C,

this expansion factor can basically be considered as 1. The decryption circuit
has depth one plus the depth of the rounding function. When using the floor
function and if q and p are power of two, then the rounding consists in dropping
the least significant bits of the result. The most efficient FHE-friendly encryption
scheme works in only adding the plaintext on the log p most significant bits of
	a.S
p to avoid the costly ExtractDigits homomorphic function and the returned
plaintext contains noise.

Proposition 2. LWR − SYM (resp. RLWR − SYM, MLWR − SYM) is semantically
secure as soon as the corresponding LWR (resp. RLWR, MLWR) problem is hard.

An Encryption Scheme Based on LWE. We can adapt LWR − SYM so that
its security proof relies directly on the LWE assumption. This new scheme will
basically be the same as the previous one, except that the vector a will be chosen
according to some biased distribution DS . The distribution DS we will use is
defined on Z

n
q and depends on some matrix S ∈ Z

k×n
q and a distribution χ.

We will quickly present it in the case where k = 1. It verifies the property
that Pr[Ds = a] is proportional to Pr[|	p

q .(〈a, s〉 + e)
 − p
q .(〈a, s〉 + e)| < 1

4 ],

where e ← χ and 〈a, s〉 + e means that 〈a, s〉 + e is interpreted as an element
of Z. This basically means that we want the value (p/q).(〈a, s〉 + e) to be close
to its rounding for our samples a. One can efficiently sample according to this
distribution Ds: sample a uniformly, and output it if and only if, when sampling
e according to χ, the value (p/q).(〈a, s〉 + e) is at distance less than 1/4 from its
rounding. Since the distribution of 〈a, s〉 + e is indistinguishable from uniform,
the probability that a vector a gets rejected is (around) 1/2. To extend this
distribution to a matrix S, we will take a distance of 1/2 − 1/4n instead of 1/4.

Definition 6 (LWE − SYM). Let k and n be polynomials in λ. The symmetric
encryption scheme LWE − SYM is defined as follows: Gen(1λ): output S ← Z

k×n
q ;

EncS(x): output (a, x+	a.S
p), where a ← DS and DecS(a, y): output y−	a.S
p.
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Our scheme relying on RLWR and MLWR can also be adapted to schemes
called RLWE − SYM and MLWE − SYM in a similar way, that we do not explicit here.
We now show that the security of LWE − SYM (resp. RLWE − SYM, MLWE − SYM)
directly reduces to the LWE (resp. RLWE, MLWE) hardness assumption. Our
reduction is better than previous ones in the case of one secret. We introduce
the problem LWRD (resp. RLWRD, MLWRD) as the same problem as LWR (resp.
RLWR, MLWR) except that a is drawn according to the distribution D. To choose
secure parameters for LWR, we picked k = 128 and p <

√
q according to [15].

Proposition 3. LWE − SYM (resp. RLWE − SYM, MLWE − SYM) is semantically
secure as soon as the corresponding LWE (resp. RLWE, MLWE) problem is hard.

Since σ is usually chosen to be at least
√

k in LWE, our modulus-to-error
ratio q/p verifies q/p > O(n

√
k log m), which is an improvement compared to

previous reductions which depend on m rather than log m.
The schemes LWR − SYM and LWE − SYM are similar, except that LWE − SYM

involves some checking when generating vectors a. Thus, LWE − SYM has exactly
the same efficiency as LWR − SYM for the homomorphic part. The only difference
of performance lies in the symmetric encryption, because the generation of the
vectors a is a constant factor longer. Thus, we only present the implementation
of LWR − SYM, because we are only interested in the homomorphic part.
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Abstract. In this paper we present a 4-round zero-knowledge argu-
ment of knowledge for NP with strict-polynomial-time simulation and
expected polynomial-time extraction based on differing-input obfusca-
tion for some circuit samplers and other reasonable assumptions.

1 Introduction

Zero-knowledge (ZK) proof and argument systems, introduced in [6,15], are a
fundamental notion in cryptography. Since the introduction, there are many
works constructing ZK protocols that satisfy various properties such as con-
stant rounds, proof of knowledge and strict/expected polynomial-time simu-
lation and extraction etc. As for constant-round constructions, Goldreich and
Kahan [14] presented a 5-round ZK proof, and Lindell [18] presented a 5-round
ZK proof of knowledge and Feige and Shamir [11] gave a 4-round ZK argument
of knowledge (ZKAOK). The simulators (resp. extractor if there is) of these
protocols use verifier’s code (resp. prover’s code) in a black-box way and run in
expected polynomial-time. Barak [2] presented a constant-round public-coin non-
black-box ZK argument with strict polynomial-time simulation, which admits a
6-round implementation shown in [19].

Recently, cryptography community has witnessed a new breakthrough of pro-
gram obfuscation and its applications. Some works applied differing-input obfus-
cation [1] to get new results on the exact round complexity of ZK. Informally,
a differing-input obfuscator diO for a circuit/machine sampler is one such that
for each pair of circuits/machines and an auxiliary input output by the sampler,
if it is hard to find an input on which the two circuits/machines do not agree
even given the auxiliary input, their obfuscated programs output by diO are
indistinguishable for any adversary having this auxiliary input.
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Pandey et al. [20] presented a 4-round (concurrent) ZK argument with strict
polynomial-time simulation from diO for machines. Ding [8] presented a 4-round
ZKAOK with strict polynomial-time simulation and extraction from this kind
of diO. We note that the usage of diO for machines in [8,20] cannot be replaced
by diO for circuits because the programs in [8,20] that should be obfuscated
have unbounded running-time and cannot be implemented by fixed polynomial-
size circuits. Since diO for machines is stronger than diO for circuits, Ding
[9] considered to reduce the exact round complexity of ZKAOK from diO for
circuits and accordingly put forward a 6-round ZKAOK with strict polynomial-
time simulation and extraction based on this kind of diO.

Thus for ZKAOK with strict polynomial-time simulation, the protocol
achieving best round complexity without using diO so far is the 6-round one
in [2]. While allowed to use diO for machines, the best round complexity is
achieved by the 4-round one in [8]. So a natural question arises: can we reduce
the rounds for such ZKAOK based on the weaker assumption of diO for circuits?
This paper will focus on this question.

1.1 Our Results

We present a 4-round ZKAOK with strict polynomial-time simulation and
expected polynomial-time exaction from diO for circuits and other reasonable
assumptions. Garg et al. [13] showed that the existence of general diO con-
flicts with some special obfuscation and thus one of them cannot exist. In their
construction, the auxiliary input sampled by the sampler is contrived, which
plays a key role in the proof. However, the auxiliary inputs randomly generated
by the samplers in this paper are quite natural, e.g. public coins, perfectly-
hiding commitments and a transcript of Blum’s proof for Hamilton cycles in
[5]. As suggested in [16] that the notion of diO is plausible for samplers which
auxiliary-input outputs are public coins, we further take diO in [1] as a candidate
obfuscator for the samplers in this paper. Our result is as follows.

Theorem 1 (Informal). Assuming the existence of diO for some circuit sam-
plers and other reasonable assumptions, there exists a 4-round ZKAOK for NP
with strict polynomial-time simulation and expected polynomial-time extraction.

Our Techniques. Recall that the protocol in [9] is constructed in two steps. First
it presents a 8-round statistically ZKAOK with strict-polynomial-time simulation
and extraction and then modifies the protocol by additionally at Step 6 letting the
prover obfuscate its original next-message function of Step 8 with diO for circuits
and send the obfuscated program as well as the original message of Step 6 to the
verifier. Thus the number of the total rounds is reduced to 6. We note that the key
condition for applying diO is that the simulator’s strategy of Step 8 can be imple-
mented by a fixed polynomial-size circuit so that the round-compressing method
can be performed.

Our idea for further reducing rounds is to apply this method in some earlier
step e.g. Step 4. That is, we would like to let the prover obfuscate its original
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next-message function of both Steps 6 and 8 at Step 4 and send the obfus-
cated program as well as the original message of Step 4 to the verifier, and thus
reduce the number of the total rounds to 4. Note that this idea requires the
prover’s/simulator’s strategy of the last two prover-steps can be implemented in
fixed polynomial-size.

Unfortunately, for the protocol [9], the simulator’s strategy of Steps 6, 8 can-
not be implemented by a fixed polynomial-size circuit, so the round-compressing
method cannot be applied. This essentially attributes to the usage of a 4-round
universal argument in the protocol. In simulation, the simulator needs to make
use of verifier’s code and its running-time of the universal argument is a polyno-
mial in verifier’s running-time which can be an arbitrarily polynomial. Moreover,
it can only finish its computation of the universal argument at Step 6, which
implies that the round-compressing method cannot be applied at Step 4.

We modify the execution of the universal argument by letting the verifier send
all its messages of two steps to the prover in one step: the first message is sent in
plaintext while the second message is sent in encryption using fully homomorphic
encryption. Thus the prover/simulator can generate the first prover’s message
in plaintext and second prover’s message in encryption in one step too. It can
be seen that this modification makes the simulator finish its computation of the
universal argument earlier than before.

Concretely, our protocol basically consists of two parts. The first part uses
4 rounds, which is a compressed version of Barak’s non-black-box ZK in [2],
where the verifier sends its messages of the universal argument in the above
manner. Thus the simulator, having verifier’s code, can generate all its messages
of the universal argument in the corresponding manner at Step 4.

The second part is used to ensure the soundness, or even stronger, realize
extraction. This part also consists of 4 rounds. Since the verifier sends its two
messages of the universal argument in one step, a cheating prover may violate
the soundness of the universal argument. Thus we let the verifier re-send the
second message of the universal argument in encryption followed by a proof that
the second messages in the two encryptions sent by it are indeed same (or it
knows a witness of a witness-hiding protocol), and then let the prover reply
with the answer in encryption too. In extraction we let the extractor send a
different second message in encryption, also followed by a valid proof where the
extractor proves that it knows the witness of the witness-hiding protocol. When
getting two answers, the extractor can extract either a witness for the public
input or some piece of the witness for the statement that the universal argument
is proving (which can be further used to recover the whole witness). Since the
latter cannot happen, what is exacted is the witness for the public input.

Then since the simulator’s strategy of the second part can be implemented
by a fixed polynomial-size circuit, we apply the round-compressing method at
Step 4 and thus reduce the number of the total rounds to 4.

Organizations. For lack of space we omit the preliminaries but will point out
the literature for them. In Sect. 2 we present our uncompressed protocol, which is
the main body of this paper. In Sect. 3 we apply the round-compressing method
to reduce the round number.
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2 The Uncompressed Protocol

In this section we present the uncompressed protocol which admits the key
property that its simulator’s strategy of Steps 6 and 8 can be implemented in
fixed polynomial-size. In Sect. 2.1 we present some building blocks and overview
of the protocol. In Sect. 2.2 we show it in detail.

2.1 Overview of the Protocol

The protocol still employs those primitives used in [9] as follows.

HCom: a 2-round trapdoor perfectly-hiding commitment scheme, of which the
binding property holds against nO(log log n)-size algorithms, referred to [12]. HCom
satisfies that when given the coins in generating a commitment, the committed
message can be retrieved from the commitment. For simplicity let (msg,HCom)
denote the two messages of the scheme HCom and Trapdoor denote the trapdoor.

Com: a non-interactive perfectly-binding commitment scheme [4].

Hn: a collision-resistent hash function family and each h ∈ Hn maps arbitrarily
polynomially long strings to n-bit strings. The collision resistance of Hn holds
against nO(log log n)-size algorithms.

LS: the Lapidot-Shamir 3-round public-coin WI argument of knowledge [17],
which enjoys a key property that the first two messages are independent of the
witness and the public input. When instantiated with HCom, it is perfectly WI. If
ignoring the first message msg of HCom, LS uses 3 rounds and let (LS1, LS2, LS3)
denote the 3 messages.

LS′, LS′′: two independent running instances of LS for proving different state-
ments, which are instantiated with Com. Let (LS′

1, LS
′
2, LS

′
3) denote the 3 mes-

sages of LS′, (LS′′
1 , LS′′

2 , LS′′
3) denote the 3 messages of LS′′.

UA: the 4-round public-coin universal argument of knowledge in [3] constructed
from Hn. Let (UA1,UA2,UA3,UA4) denote the 4 messages of UA.

FHE = (KeyGen,Enc,Dec,Evaluate): a fully homomorphic encryption scheme
satisfying that any two encryptions output by Enc and Evaluate corresponding
to a same decryption are statistically close. For instance, the scheme in [7] can
be adapted to satisfy the requirements (e.g. choose x0 in the public key as
an exact multiple of p and allow reducing modulo x0 during Evaluate and re-
randomize the output of Evaluate in a similar way in Enc when the parameters
are appropriately chosen in the somewhat homomorphic scheme and assume
the weak circular security for the bootstrappable scheme). We employ any FHE
satisfying these requirements in this paper.

Let L be in NP and (x,w) is an instance-witness pair of L. Our protocol for
L basically runs as follows.

1. P and V interact of Barak’s preamble, in which the verifier first samples a
random hash function h and then the prover responds with a commitment Z
using HCom and lastly the verifier sends a random r.
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Public input: x (statement to be proved is “x ∈ L”);
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send h ∈ Hn, msg.

2. P → V : Send f(r1), f(r2), α, Z ← HCom(h(0n)).

3. V → P : Send β, r ∈ {0, 1}n, UA1, pk, XUA3 ← Enc(pk,UA3), CLS2 ← Com(LS2),
LS′

1, LS
′′
1 .

4. P → V : Send γ, CUA2 ← HCom(0|UA2|), LS1, LS
′
2, LS

′′
2 .

5. V → P : Send X ′
UA3 ← Enc(pk,UA3), LS

′
3.

6. P → V : Send XHCom(0|UA4|).

7. V → P : Send UA3, CUA4 ← Dec(sk, XHCom(0|UA4|)), LS2, LS
′′
3 .

8. P → V : Send LS3.

Protocol 1. The zero-knowledge argument of knowledge (P, V ) for L.

2. P sends f(r1), f(r2) to V for uniformly random r1, r2 where f is any one-way
function and then proves to V the knowledge of one pre-image of f(r1), f(r2)
via Blum’s proof. Note that this proof is witness indistinguishable and also
witness hiding in this scenario.

3. V samples (sk, pk) of FHE and sends UA1 and the encryption of UA3 to P
(which replies with a commitment).

4. V re-computes a fresh encryption of UA3 and sends it to P . Then V proves to
P in LS′ that either it knows a pre-image of f(r1), f(r2) or the two encryptions
correspond to the same UA3.

5. P sends an encryption of some commitment to V , which replies with UA3 and
the decryption to P ’s encryption that is the commitment. Then V proves to P
in LS′′ that either it knows a pre-image of f(r1), f(r2) or UA3 is the message
encrypted in the two encryptions and the decryption is correct.

6. P proves to V in LS using w as witness that either x ∈ L or if letting UA2,UA4

denote the messages committed in the two commitments, UA1,UA2,UA3,UA4

are a valid transcript of UA for proving that there is a program Π satisfying
h(Π) is the message committed in Z and Π can output r.

2.2 Actual Construction

The actual construction of the protocol follows the above overview but with
intensive parallel implementations of different phases, shown in Protocol 1. We
present the detailed specification as follows.

1. V → P : Sample h ∈ Hn and (msg,Trapdoor) of HCom where Trapdoor is the
trapdoor of HCom corresponding to msg. Send h,msg to P .

2. P → V : Sample r1, r2 ∈ {0, 1}n and compute f(r1), f(r2) and α. Compute
Z ← HCom(h(0n)). Send f(r1), f(r2), α and Z to V .
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– (α, β, γ) is a transcript of Blum’s proof for that the prover knows a pre-
image of f(r1), f(r2). So P can compute α using either r1 or r2. The
remainder messages β, γ will be generated later.

3. V → P : Sample β, r ∈ {0, 1}n,UA1,UA3, LS2. Sample (sk, pk) ← KeyGen(n)
and compute XUA3 ← Enc(pk,UA3). Compute CLS2 ← Com(LS2) and
LS′

1, LS
′′
1 . Send β, r, UA1, pk,XUA3 , CLS2 , LS

′
1, LS

′′
1 to P .

– The UA system is to prove that there are a program Π of size less than
nlog log n and some coins such that h(Π) and the coins are an opening of
Z and Π on input the message of Step 2 outputs r in nlog log n steps.

– The LS, LS′ and LS′′ systems will be described below.
4. P → V : Compute γ and then erase all information used in generating α, γ.

Compute CUA2 ← HCom(0|UA2|) and LS1. Sample LS′
2, LS

′′
2 . Send them to P .

– The LS system is to prove that either there is w for x ∈ L or there
are openings of CUA2 , CUA4 , in which let UA2,UA4 denote the committed
messages and then (UA1,UA2,UA3,UA4) is a valid transcript of UA.
Here P uses witness w for x ∈ L in LS.

5. V → P : Compute X ′
UA3

← Enc(pk,UA3) independently. Compute LS′
3. Send

them to P .
– The LS′ system is to prove the knowledge of a pre-image of f(r1), f(r2)

or that there are Trapdoor,UA3, sk satisfying Trapdoor is the trapdoor
corresponding to msg and UA3 is the message encrypted in XUA3 ,X

′
UA3

using sk, and (sk, pk) is generated by KeyGen with some coins. Here V
uses the witness for the second statement of LS′ (similarly for LS′′).

6. P → V : Compute XHCom(0|UA4|) ← Enc(pk,HCom(0|UA4|)) and send it to V .
7. V → P : Compute CUA4 ← Dec(sk,XHCom(0|UA4|)) (where sk is the secret key

to pk). Compute LS′′
3 . Send UA3, CUA4 , LS2, LS

′′
3 to P .

– The LS′′ system is to prove the knowledge of a pre-image of f(r1), f(r2)
or that UA3 is the message encrypted in XUA3 and X ′

UA3
, and CUA4 is

generated as specified and LS2 is the message committed in CLS2 .
8. P → V : Compute LS3 using witness w for x ∈ L. Send LS3 to V . Finally V

accepts x iff (LS1, LS2, LS3) is convincing.

Claim 1. Protocol 1 is an interactive argument for L.

Proof. The completeness is obvious and the soundness follows from Claim 3. ��
Claim 2. Assuming the existence of HCom,FHE, Protocol 1 is statistical zero-
knowledge.

Proof (Sketch). We construct a simulator S for any polynomial-size verifier V ∗

and x ∈ L. S(x, V ∗) works as follows.

1. Emulate V ∗ to send out h,msg. Then generate f(r1), f(r2), α honestly and
compute Z ← HCom(h(Π)) where Π denotes the remainder strategy of V ∗.
Send f(r1), f(r2), α, Z to V ∗.
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2. Emulate V ∗ to send out β, r,UA1, pk,XUA3 , CLS2 , LS
′
1, LS

′′
1 . Compute γ using

r1 or r2 as witness and then erase all information used in generating
α, γ. Compute UA2 with witness Π (and the coins) and further CUA2 ←
HCom(UA2). Generate LS1 and sample LS′

2, LS
′′
2 . Send them to V ∗.

Let Circuit denote the circuit that having some coins hardwired, on input UA3

computes UA4 (adopting the prover strategy of UA) and HCom(UA4) using
the hardwired coins. Generate XHCom(UA4) ← Evaluate(pk,Circuit,XUA3) and
keep it. (S will not postpone the computation of XHCom(UA4) to Step 6 and
thus its running-time in Steps 6 and 8 is fixed polynomial.)

3. Emulate V ∗ to send out X ′
UA3

, LS′
3. If (LS′

1, LS
′
2, LS

′
3) is convincing, send

XHCom(UA4) to V . Otherwise, abort the simulation.
4. Emulate V ∗ to send out UA3, CUA4 (that is supposed to be HCom(UA4)),

LS2, LS′′
3 . If (LS′′

1 , LS′′
2 , LS′′

3) is convincing, retrieve UA4 from CUA4 using the
knowledge of the coins previously hardwired in Circuit. Then compute LS3
using as witness UA2,UA4 and send it to V ∗. Otherwise, abort the simulation.

Since Π is a witness for the public input of UA, S can use it to finish the
interaction and run in polynomial-time. The statistical ZK property follows from
the perfectly-hiding property of HCom and the perfectly WI property of LS,
and the statistical indistinguishability of two encryptions output by Enc and
Evaluate of FHE corresponding to a same decryption. It is noticeable that at
Step 6 the prover’s message is XHCom(0|UA4|) which decryption is HCom(0|UA4|),
while S’s message is XHCom(UA4) which decryption is HCom(UA4). Due to the
perfectly-hiding property of HCom, the decryptions of the prover’s and simula-
tor’s messages are of same distribution. For each same decryption, XHCom(0|UA4|)
(output by Enc) and XHCom(UA4) (output by Evaluate) are statistically close, due
to the property of FHE. So are they for independently generated HCom(0|UA4|)
and HCom(UA4).

At Step 5 V ∗ may send a fake X ′
UA that is not an encryption of UA3 but it

can send a valid LS′′
3 at Step 7. If this happens, S’s message of Step 8 differs from

P ’s. In the following we show this occurs with negligible probability. Thus S’s
messages and P ’s are statistically close. (Actually, the output of S is identically
distributed to a real view of V ∗ if ignoring the messages of Steps 6 and 8.)

Suppose, on the contrary, V ∗ can send a valid LS′′
3 with noticeable probabil-

ity for an invalid X ′
UA3

. Then by running the extractor of LS′′ we can generate a
witness for the public input of LS′′ that must be a pre-image of f(r1) or f(r2).
This is impossible because V ∗ cannot get this pre-image due to the witness hiding
property of (α, β, γ). Thus the statistical zero-knowledge property holds. ��
Claim 3. Assuming the existence of Hn,FHE,Com,HCom, Protocol 1 is an
argument of knowledge.

Proof (Sketch). We show there is an extractor E such that if P ′ is a polynomial-
size prover that can convince V of x ∈ L with noticeable probability ε, E(P ′, x)
outputs a witness for x with probability ε − neg(n). E works as follows.

1. Sample h,msg. Send them to P ′. Then emulate P ′ to send out f1, f2 (sup-
posed to be f(r1), f(r2)), α,Z.
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2. Sample β, r,UA1,UA3, LS2 honestly and (sk, pk) ← KeyGen(n). Compute
XUA3 ← Enc(pk,UA3), CLS2 ← Com(LS2), LS′

1, LS
′′
1 . Send them to P ′ and

emulate it to send out γ,CUA2 , LS1, LS
′
2, LS

′′
2 .

If (α, β, γ) is not convincing, abort the running. Otherwise, run the extractor
of the (α, β, γ) system in expected polynomial-time to extract a pre-image of
f1 or f2, denoted r∗.

3. Randomly choose UA′
3 and compute X ′

UA3
← Enc(pk,UA′

3). Compute LS′
3

using r∗ as witness. Send them to P and emulate it to output an encryption,
denoted X, that is supposed to be XHCom(0|UA4|).

4. Compute CUA4 ← Dec(sk,X). Sample a fresh LS2 and compute LS′′
3 using r∗

as witness. Send UA′
3, CUA4 , LS2, LS

′′
3 to P ′ and emulate it to output LS3.

5. If (LS1, LS2, LS3) is not convincing, abort the running. Otherwise, run the
exactor of LS in expected polynomial-time to gain a witness and output it.

Since P ′ can convince V with probability ε, we have that P ′’s messages
interacting with E is convincing with probability ε − neg(n). In fact, V uses
the witnesses for the second statements of LS′, LS′′ respectively, while E uses
r∗, a pre-image of f1, f2, as witness in the two systems. Due to the IND-CPA
security of FHE and the WI property of LS′, LS′′, P ′ cannot tell the difference
with noticeable probability.

So what we need to show is that this witness is for x ∈ L with probability
ε − neg(n). Suppose this is not the case. Then the witness is for the second
statement of LS. Thus it contains UA2,UA4 satisfying UA1,UA2,UA

′
3,UA4 is a

valid transcript of UA. By adopting the exaction strategy of UA shown in [2], we
can generate a program Π, a witness used in UA, in nO(log log n)-time. Then with
a similar argument in [2], we can run the extraction process twice from Step
3 in which the two r are different and obtain two programs, denoted Π1,Π2,
with noticeable probability. Since the two r are different, Π1 �= Π2, which either
breaks the collision-resistance of h or breaks the binding property of HCom. This
is impossible. So what is extracted is indeed a witness for x ∈ L. ��

So combining the three claims, we have proved the following proposition.

Proposition 1. Assuming all the underlying primitives, Protocol 1 is a 8-round
statistically ZKAOK for NP with strict-polynomial-time simulation. Further, its
simulator can simulate the messages of Steps 6, 8 in fixed polynomial-time.

3 Compressing the Last Five Rounds with Obfuscation

In this section we adopt the round-compressing method to reduce rounds. In
Sect. 3.1 we present the analysis of the obfuscation of the prover’s/simualtor’s
strategy of last two steps. In Sect. 3.2 we apply the round-compressing method
to reduce the round number of Protocol 1 to 4.
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3.1 Obfuscating P/S ’s Next-Message Functions of Last
Two Prover Steps

We adopt the notations and route in [9]. Let Px,w,u denote the honest prover
P (x,w) with randomness u hardwired and Sx,V ∗,v denote S(x, V ∗) with ran-
domness v hardwired. For each u used by the prover, parse u = (u1, u2), where
u1 is used for computing the messages of Steps 2, 4 and u2 is used for Step 6.
Note that S uses v in Steps 2, 4. Then we divide a view of V ∗ to two parts
view1 ◦ view2, where view1 denotes V ∗’s view up to Step 4 and view2 denotes its
view of Steps 6, 8.

Due to Claim 2 and its proof, for each fixed view1 P and S have the equal-
probability to generate it. Let Pview1,u2 be Px,w,u’s next-message function of last
two prover steps and Qview1 be Sx,V ∗,v’s next-message function of last two prover
steps. That is, Pview1,u2 on input the message of Step 5 outputs the message of
Step 6 and on input the messages of Steps 5 and 7 first generates the message of
Step 6 and then outputs the message of Step 8 (in the consecutive execution).
Similarly for Qview1 .

Since P has a witness w for x ∈ L, Pview1,u2 can be computed by a fixed
polynomial-size circuit. As for Qview1 , recall that S computes UA2, CUA2 and
XHCom(UA4) at Step 4, and keeps them for the remainder interaction. So S’s
strategy of Steps 6 and 8 can also be computed by a fixed polynomial-size circuit.
So this means that Pview1,u2 and Qview1 can be implemented in same polynomial-
size. In the following we first present a sampler Sampler that can output Pview1,u2

and Qview1 as well as view1 in which v relies on u such that it is hard to find a
differing-input for Pview1,u2 and Qview1 even having view1.

Algorithm 1. The circuit sampler Sampler which has (V ∗, x, w) hardwired.
Input: the system parameter n.
Output: (Pview1,u2 , Qview1 , view1).

– Sample u and invoke an interaction between Px,w,u and V ∗ to generate the
joint view. Let view1, view2, Pview1,u2 be defined as above.

– Run the extractor of LS′ to extract a witness for the public input of LS′ in
expected polynomial-time. Due to the witness hiding property of (α, β, γ), the
witness cannot be a pre-image of f(r1), f(r2). So it contains Trapdoor, sk.

– Since view1 consists of the prover’s messages of Steps 2 and 4, Sampler first
adopts S’s strategy to generate h(Π),UA2, and then computes some coins such
that these coins and h(Π),UA2 are also openings of Z,CUA2 using the knowl-
edge of Trapdoor. (Thus Sampler can find coins corresponding to u satisfying
that S also outputs the same view1.)

– Knowing the coins used in generating HCom(0|UA4|), Sampler finds UA4 and
some coins satisfying they are also an opening of HCom(0|UA4|) in the fol-
lowing way: decrypt XHCom(0|UA4|) with sk to get HCom(0|UA4|); compute
UA4 corresponding to UA3; finally generate the coins using the knowledge
of Trapdoor such that these coins and UA4 are an opening of HCom(0|UA4|).
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(Since HCom(0|UA4|) = HCom(UA4) which is the decryption of XHCom(0|UA4|)
in view2, due to the property of FHE in Sect. 2.1, there exist some coins such
that in S’s running, Evaluate when using them as internal coins also outputs
XHCom(UA4) = XHCom(0|UA4|). But Simpler does not need to compute these coins
explicitly.) Compute the right messages and coins corresponding to the new
witness UA2,UA4 of the LS system such that these coins and the messages
result in the same transcript of LS in view2.

– Let Qview1 denote the circuit that has view1, XHCom(0|UA4|) (that is XHCom(UA4)

when the implicit right coins are used by Evaluate) as well as other necessary
messages needed for computing S’s strategy of last two steps hardwired. When
receiving V ∗’s valid message of Step 5, it directly sends XHCom(UA4) to V ∗ and
when receiving V ∗’s valid message of Step 7, it runs with S’s strategy of
Step 8. (Thus both Pview1,u2 and Qview1 output the same view2 except for
negligible probability.)

– Output (Pview1,u2 , Qview1 , view1).

Assume diO [1] works for Sampler with any (V ∗, x, w). Then we have the
following claim. (Claim 4 and Proposition 2 are literally almost same as those in
[9]. But due to the difference of the protocols and the sampler strategies, their
meanings and proofs are different.)

Claim 4. Let (Pview1,u2 , Qview1 , view1) ← Sampler(1n), Pview1,u2 ← diO
(Pview1,u2), Qview1 ← diO(Qview1). Then Pview1,u2 and Qview1 are indistinguishable
for any polynomial-size distinguisher even having view1.

Thus based on Claim 4, with a similar argument in [9], we have the following
proposition that the obfuscation of the two functions are still indistinguishable
even when P and S are independently executed.

Proposition 2. For any V ∗, x ∈ L, any polynomial-size distinguisher D, inde-
pendently random u, v (resulting in independent view1), |Pr[D(view1,Pview1,u2) =
1]−Pr[D(view1,Qview1) = 1]| = neg(n), where the probabilities are taken over all
values of u, v and diO’s independent coins in generating Pview1,u2 and Qview1 .

3.2 Achieving the Final Protocol

We compress the rounds of Protocol 1 by at Step 4 letting P additionally compute
Pview1,u2 for random u2 and send this obfuscation as well as the original message
to V , which then adopts the remainder honest verifier’s strategy of Protocol 1 to
interact with Pview1,u2 locally. The final protocol is shown in Protocol 2. Employing
the argument in [9], we restate the main theorem as follows.

Theorem 2. Assuming the existence of HCom, diO,Hn,FHE,Com, Protocol 2
is a 4-round ZKAOK for NP with strict polynomial-time simulation and expected
polynomial-time exaction.
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Public input: x (statement to be proved is “x ∈ L”);
Prover’s auxiliary input: w, (a witness for x ∈ L).

1. V → P : Send h ∈ Hn, msg.

2. P → V : Send f(r1), f(r2), α, Z ← HCom(h(0n)).

3. V → P : Send β, r ∈ {0, 1}n, UA1, pk, XUA3 ← Enc(pk,UA3), CLS2 ← Com(LS2),
LS′

1, LS
′′
1 .

4. P → V : Send γ, CUA2 ← HCom(0|UA2|), LS1, LS
′
2, LS

′′
2 , Pview1,u2 .

Protocol 2. The final 4-round protocol for L.
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Abstract. We analyze the security of the Elliptic Curve Linear Congru-
ential Generator (EC-LCG). We show that this generator is insecure if
sufficiently many bits are output at each iteration. In 2007, Gutierrez and
Ibeas showed that this generator is insecure given a certain amount of
most significant bits of some consecutive values of the sequence. Using the
Coppersmith’s methods, we are able to improve their security bounds.

Keywords: Elliptic Curve Linear Congruential Generator · Lattice
reduction · Coppersmith’s methods · Elliptic curves

1 Introduction

In cryptography, a pseudo-random number generator is a deterministic algo-
rithm which takes as input a short random seed and outputs a long sequence
which is indistinguishable in polynomial time from a truly random sequence.
Pseudo-random numbers have found a number of applications in the literature.
For instance they are useful in cryptography for key generation, encryption and
signature. In 1994, Hallgren [Hal94] proposed a pseudo-random number genera-
tor based on a subgroup of points of an elliptic curve defined over a prime finite
field. This generator is known as the Linear Congruential Generator on Elliptic
Curves (EC-LCG). Let E be an elliptic curve defined over a prime finite field
Fp, that is a rational curve given by the following Weierstrass equation

E : y2 = x3 + ax + b

for some a, b ∈ Fp with 4a3 + 27b2 �= 0. It is well known that the set E(Fp) of
Fp-rational points (including the special point O at infinity) forms an Abelian
group with an appropriate composition rule (denoted ⊕) where O is the neutral
element. For a given point G ∈ E(Fp), the EC-LCG is a sequence Un of points
defined by the relation:

Un = Un−1 ⊕ G = nG ⊕ U0, n ∈ N

c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 293–304, 2016.
DOI: 10.1007/978-3-319-42634-1 24
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where U0 ∈ E(Fp) is the initial value or seed. We refer to G as the composer
of the generator. The EC-LCG provides a very attractive alternative to linear
and non-linear congruential generators and it has been extensively studied in the
literature [Shp05,HS02,GL01,GBS00,MS02,BD02]. In cryptography, we want to
use the output of the generator as a stream cipher. One can notice that if two
consecutive values Un, Un+1 of the generator are revealed, it is easy to find U0

and G. So, we output only the most significant bits of each coordinate of Un,
n ∈ N in the hope that this makes the resulting output sequence difficult to
predict. In this paper, we show that the EC-LCG is insecure if sufficiently many
bits are output at each stage. Therefore a secure use of this generator requires
to output fewer bits at each iteration and the efficiency of the schemes is thus
degraded. Our attacks used the well-known Coppersmith’s methods for finding
small roots on polynomial equations. These methods have been introduced in
1996 by Coppersmith for polynomial of one or two variables [Cop96a,Cop96b]
and have been generalized to many variables. These methods have been used
to infer many pseudorandom generators and to cryptanalyze many schemes in
cryptography (see [BCTV16,BVZ12] and the references therein). In this paper
we used such techniques to improve the previous bounds known on the security
of the EC-LCG in the literature. Our improvements are theoretical since in
practice, the performance of Coppersmith’s method in our case is bad because
of large dimension of the lattice.

Prior Work. In the cryptography setting, the initial value U0 and the constants
G, a and b may be kept secret. Gutierrez and Ibeas [GI07] consider two cases:
the case where the composer G is known and a, b are kept secret and the case
where the composer G is unknown and a, b are kept secret. In the first case, they
showed that the EC-LCG is insecure if a proportion of at most 1/6 of the least
significant bits of two consecutive values of the sequence is hidden. When the
composer is unknown, they showed heuristically that the EC-LCG is insecure
if a proportion of at most 1/46 of the least significant bits of three consecutive
values of the sequence is hidden. Their result is based on a lattice basis reduction
attack, using a certain linearization technique. In some sense, their technique can
be seen as a special case of the problem of finding small solutions of multivariate
polynomial congruences. The Coppersmith’s methods also tackle the problem of
finding small solutions of multivariate polynomial congruences. Gutierrez and
Ibeas due to the special structure of the polynomials involved claimed that “the
Coppersmith’s methods does not seem to provide any advantages”, and that
“It may be very hard to give any precise rigorous or even convincing heuristic
analysis of this approach”. Our purpose in this paper is to tackle this issue.

Our Contributions. We infer the EC-LCG sequence using Coppersmith’s
method for calculating the small roots of multivariate polynomials modulo an
integer. The method for multivariate polynomials is heuristic since it is not
proven and may fail (but in practice it works most of the time). At the end of
the Coppersmith’s methods we use the methods from [BCTV16] to analyze the
success condition. In the case where the composer is known, we showed that the
EC-LCG is insecure if a proportion of at most 1/5 of the least significant bits
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of two consecutive values U0 and U1 of the sequence is hidden. This improves
the previous bound 1/6 of Gutierrez and Ibeas. We further improve this result
by considering several consecutive values of the sequence. We showed that the
EC-LCG is insecure if a proportion of at most 3/11 of the least significant bits
of these values is hidden. In the case where the composer is unknown, we showed
that the EC-LCG is insecure if a proportion of at most 1/24 of the least signif-
icant bits of two consecutive values U0 and U1 of the sequence is hidden. This
improves the previous bound 1/46 of Gutierrez and Ibeas. We further improve
this result by considering sufficiently many consecutive values of the sequence.
We showed that the EC-LCG is insecure if a proportion of at most 1/8 of the
least significant bits of these values is hidden.

The table below gives a comparison between our results and those of Gutierrez
and Ibeas. It gives the bound of the proportion of least significant bits hidden from
each consecutive values necessary to break the EC-LCG in (heuristic) polynomial
time. The basic proportion corresponds to the case where the adversary knows bits
coming from the minimum number of intermediate values leading to a feasible
attack; while the asymptotic proportion corresponds to the case when the bits
known by the adversary knows bits coming from arbitrary number of values.

Basic proportion Asymptotic proportion

Prior result Our result Prior result Our result

Known composer 1/6 1/5 None 3/11

Unknown composer 1/46 1/24 None 1/8

2 Preliminaries

For some Δ > 0, we say that W = (xW , yW ) ∈ F
2
p is a Δ-approximation to

U = (xU , yU ) ∈ F
2
p if there exists integers e, f satisfying:

|e|, |f | � Δ, xW + e = xU , yW + e = yU .

Throughout the paper, Δ < pδ, with 0 < δ < 1, corresponds to the situation
where a proportion of at most δ of the least significant bits of the output sequence
remain hidden.

2.1 The Group Law on Elliptic Curves

In this subsection, we recall the group law ⊕ on elliptic curves defined by the
Weierstrass equation (for more details on elliptic curves, see [BSS99,Was08]),
since our pseudorandom generator is defined recursively by adding a fixed com-
poser G to the previous value. Let E/Fp : y2 = x3 + ax + b be an elliptic curve
over Fp. For two points P = (xP , yP ) and Q = (xQ, yQ), with P,Q �= O the
addition law ⊕ is defined as follows:

P ⊕ Q = R = (xR, yR),
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– If xP �= xQ, then

xR = m2 − xP − xQ, yR = m(xP − xR) − yP , where, m =
yQ − yP

xQ − xP
(1)

– If xP = xQ but (yP �= yQ or yP = yQ = 0), then R = O
– If P = Q and yP �= 0, then

xR = m2 − 2xP , yR = m(xP − xR) − yP , where, m =
3x2

Q + a

2yP

2.2 Coppersmith’s Methods

In this section, we give a short description of Coppersmith’s method for solving
a multivariate modular polynomial system of equations modulo an integer N .
We refer the reader to [JM06] for details and proofs.

Problem Definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible mul-
tivariate polynomials defined over Z, having a root (x1, . . . , xn) modulo a known
integer N , namely fi(x1, . . . , xn) ≡ 0 mod N . We want this root to be small in
the sense that each of its components is bounded by a known value Xi.

Polynomials Collection. In a first step, one generates a collection P of poly-
nomials {f̃1, . . . , f̃r} linearly independent having (x1, . . . , xn) as a root modulo
powers of N . Usually, multiples and powers of products of fi, i ∈ {1, . . . , s} are
chosen , namely f̃� = y

α1,�

1 · · · yαn,�
n f

k1,�

1 · · · fks,�
s for some integers α1,�, . . . , αn,�,

k1,�, . . . , ks,� for � ∈ {1, . . . , r}. Such polynomials satisfy the relation
f̃�(x1, . . . , xn) ≡ 0 mod N

∑s
i=1 ki,� , i.e., there exists an integer ci such that

f̃l(x1, . . . , xn) = ciN
k� , k� =

∑s
j=1 kj,�.

Monomials. We denote M the set of monomials appearing in collection of
polynomials P. Then each polynomial f̃i can be expressed as a vector with
respect to a chosen order on M. We construct a matrix M and we define
L the lattice generated by its rows. From that point, one computes an LLL-
reduction on the lattice L and computes the Gram-Schmidt’s orthogonalized
basis of the LLL output basis. Extracting the coefficients appearing in the
obtained vectors, one can construct polynomials defined over Z such that
{p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the (heuristic) assumption
that all created polynomials define an algebraic variety of dimension 0, the pre-
vious system can be solved (e.g., using elimination techniques such as Groebner
basis) and the desired root recovered in polynomial time.

The conditions on the bounds Xi that make this method work are given by
the following (simplified) inequation (see [JM06] for details):

∏

y
k1
1 ...ykn

n ∈M

Xk1
1 · · · Xkn

n < N
∑r

�=1
∑s

i=1 ki,� . (2)
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For such techniques, the most complicated part is the choice of the collection of
polynomials, what could be a really intricate task when working with multiple
polynomials.

2.3 Analytic Combinatorics

In the following, we recall the analytic combinatorics methods [FS09] to count the
exponents of the bounds X1, . . . , Xn and of the modulo N on the monomials and
polynomials appearing in the inequality (2) in Coppersmith’s methods. Those
methods can be used to compute the cardinalities of the sets P and M. We used
the same notations as in [BCTV16] and for more details of the methods the
reader is referred to that paper. We see P (respectively M) as a combinatorial
class with size function S(f̃�) = deg(f̃�) (respectively S(yk) = deg(yk), where
yk ∈ M). We recall that a combinatorial class is a finite or countable set on
which a size function is defined, satisfying the following conditions: (i) the size
of an element is a non-negative integer and (ii) the number of elements of any
given size is finite. We define another function χ, called a parameter function,
such that χ(f̃�) = k� (respectively χ(yk) = ki, where ki is the degree of the
variable yi in yk). This allows us to compute for some non negative integer t, ψ
(respectively αi) as:

ψ = χ<t(P) =
∑

a∈P:S(a)<t

χ(a) αi = χ<t(M) =
∑

a∈P:S(a)<t

χ(a).

To do so we should be able to compute given a combinatorial class A (A = P or
A = M) with size function S and the parameter function χ,

χ�p
(A) =

∑

a∈A:S(a)�p

χ(a).

We proceed as follows:

1. We give another description of A with respect to S and χ. This description
associates to the combinatorial class an ordinary generating function (OGF)
F (z, u) (using Table 1, see [BCTV16] for details). When the class contains
elements of different sizes (such as variables of degree 1 and polynomials
of degree e), the variables in the OGF are represented by the atomic ele-
ment Z and the polynomials by the element Ze, in order to take into account
the degree of these polynomials. Then we “mark” the element useful for the
parameter, with a new variable u. At this level we only know how to compute∑

a∈A:S(a)=p χ(a). An easier way to compute χ�p
(A) is to force all elements

a of size less than or equal to p to be of size exactly p by adding enough times
a dummy element y0 such that χ(y0) = 0. In our context of polynomials, the
aim of the dummy variable y0 is to homogenize the polynomial.

2. We have:

χ�(A)(z) =
+∞∑

p=0

χ�p
(A)zp =

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

,
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Table 1. Combinatorics constructions and their OGF

Construction OGF

Atomic class Z Z(z) = z

Neutral class ε E(z) = 1

Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)

Complement A = B \ C (when C ⊆ B) A(z) = B(z) − C(z)

Cartesian product A = B × C A(z) = B(z) · C(z)

Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k

Sequence A = Seq(B) = ε + B + B2 + . . . A(z) = 1
1−B(z)

3. Since Coppersmith’s method is usually used in an asymptotic way, singularity
analysis enables us to find the asymptotic value of the coefficients in an simple
way by using the following theorem (see [FS09], page 392):

Theorem 1 (Transfer Theorem). Let A be a combinatorial class with an
ordinary generating function F regular enough such that there exists a value c
verifying

F (z) =
+∞∑

n=0

Fnzn ∼
z→1

c

(1 − z)α

for a non-negative integer α. The asymptotic value of the coefficient Fn is

Fn ∼
n→∞ (cnα−1)/(α − 1)! .

3 Predicting EC-LCG Sequences for Known Composer

In the cryptographic setting, the initial value U0 = (x0, y0) and the constants G,
a and b are supposed to be the secret key. In the following, we infer the EC-LCG
sequence in the case where the composer G is known and the curve parameters
are kept secret. We show that the generator is insecure if at least a proportion
of 4/5 of the most significant bits of two consecutive values U0 and U1 of the
sequence is output.

Theorem 2 (two consecutive outputs). Given Δ-approximations W0, W1 to
two consecutive affine value U0, U1 produced by the EC-LCG, and given the value
of the composer G = (xG, yG). Under the heuristic assumption that all created
polynomials we get by applying Coppersmiths method with the polynomial set P
below define an algebraic variety of dimension 0, one can recover the seed U0 in
heuristic polynomial time in log p as soon as Δ < pδ, with δ < 1/5.

Proof We suppose without loss of generality that U0 /∈ {−G,G}. Then, clearing
denominators in (1), we can translate

U1 = U0 ⊕ G
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into the following identities in the field Fp:

L1 = L1(x0, y0, x1) = 0mod p, L2 = L2(x0, y0, x1, y1) = 0mod p

where U0 = (x0, y0), U1 = (x1, y1) and

L1 = x3
G + x1x

2
G − x0x

2
G − 2x1xGx0 − xGx2

0 + x3
0 + 2yGy0 + x1x

2
0 − y2

G − y2
0 ,

L2 = y1xG − y1x0 − yGx0 + yGx1 − y0x1 + y0xG.

We denote W0 = (α0, β0) and W1 = (α1, β1). Then using the equalities
xj = αj + ej and yj = βj + fj , for j ∈ {0, 1}, where |ej |, |fj | < Δ leads to the
following polynomial system:

{
f(e0, e1, f0) = 0 mod p

g(e0, e1, f0, f1) = 0 mod p .

where f(z1, z2, z3) = A1z1+A2z2+A3z3+A4z
2
1+A5z1z2+z31+z21z2−z23+A6 and

g(z1, z2, z3, z4) = B1z1 +B2z2 +B3z3 +B4z4 + z1z4 + z2z3 +B5 are polynomials
whose coefficients Ai’s and Bi’s are functions of xG, and the approximations
values α0, α1, β0, β1. If we set u1 = z31 + z21z2 − z23 and v1 = z1z4 + z2z3, then the
polynomial f becomes f1(z1, z2, z3, u1) = A1z1 +A2z2 +A3z3 +A4z

2
1 +A5z1z2 +

u1+A6 and g becomes g1(z1, z2, z3, z4, v1) = B1z1+B2z2+B3z3+B4z4+v1+B5.

Description of the Attack. The adversary is therefore looking for the small
solutions of the following modular multivariate polynomial system:

{
f1(z1, z2, z3, u1) = 0 mod p

g1(z1, z2, z3, z4, v1) = 0 mod p .

With |zj | < Δ, |u1| < X = Δ3 and |v1| < Y = Δ2. The attack consists
in applying Coppersmith’s methods for multivariate polynomials. From now,
we use the following collection of polynomials (parameterized by some integer
t ∈ N):

P =
{

zj1
1 . . . zj4

4 f i1
1 gi2

1 mod pi1+i2 : i1 + i2 > 0 and j1 + · · · + j4 + 2i1 + i2<2t
}

The list of monomials appearing within this collection can be described as:

M =
{
zi1
1 zi2

2 zi3
3 zi4

4 ui5
1 vi6

1 mod Δi1+i2+i3+i4Xi5Y i6 : i1 + · · · + i4+2i5+i6<2t
}
.

If we use for instance the lexicography order on monomials, (with z1 < z2 < z3 <
z4 < u1 < v1) on the set of monomials, then the leading monomial (denoted LM)
of f1 is LM(f1) = u1 and LM(g1) = v1. Then the polynomials in P are linearly
independent since we have prohibited the multiplication by u1 and v1.

Bounds for the Polynomials Modulo p. We consider the set P as a combi-
natorial class, with the size function S(zj1

1 . . . zj4
4 f i1

1 gi2
1 ) = j1 + · · ·+ j4 +2i1 + i2
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and the parameter function χ(zj1
1 . . . zj4

4 f i1
1 gi2

1 ) = i1 + i2. The degree of each
variable zi, u1, v1 is 1, whereas the degree of f1 is 2 and the degree of g1 is 1. For
the sake of simplicity, we can consider 0 � i1 + i2, since the parameter function
equals 0 for elements zj1

1 . . . zj4
4 f i1

1 gi2
1 with i1 + i2 = 0.

We can described P as:
∏4

i=1 Seq(Z) × Seq(uZ2) × Seq(uZ) × Seq(Z),
where the last term is for the dummy value z0.

This leads to the generating function:

F (z, u) =
(

1
1 − z

)5

× 1
1 − uz2

× 1
1 − uz

.

As z → 1 , 1 − zn ∼ n(1 − z) leads to:

∂F

∂u
(u, z)

∣
∣
∣
∣
u=1

∼
z→1

3(1 − z)
4(1 − z)9

∼ 3
4(1 − z)8

,

since 2t ∼ 2t − 1, this leads to: χ<2t(P) ∼ 3
4 × (2t)7

7!

Bounds for the Monomials Modulo Δ. We consider the set M as a combi-
natorial class, with the size function S(zi1

1 . . . zi4
4 ui5vi6) = i1 + · · · + i4 + 2i5 + i6

and the parameter function χ(zi1
1 . . . zi4

4 ui5vi6) = i1+· · ·+i4. As z1, z2, z3, z4, u, v
“count for” 1, 1, 1, 1, 2 and 1 respectively in the condition of the set, we can
described M as: Seq(Z2) × Seq(Z) × ∏4

i=1 Seq(uZ) × Seq(Z), where the last
term is for the dummy value z0.

Which leads to the generating function: F (z, u) = 1
(1−z2)(1−z)2 ×

(
1

1−uz

)4

.

As previously, we obtain χ<2t,Δ(M) ∼ 2(2t)7

7! .

Bounds for the Monomials Modulo X(Respectively Modulo Y ).
We consider the set M as a combinatorial class, with the size function
S(zi1

1 . . . zi4
4 ui5vi6) = i1 + · · · + i4 + 2i5 + i6 and the parameter func-

tion χ(zi1
1 . . . zi4

4 ui5vi6) = i5 (respectively χ(zi1
1 . . . zi4

4 ui5vi6) = i6). As
z1, z2, z3, z4, u, v “count for” 1, 1, 1, 1, 2 and 1 respectively in the condition of the
set, we can described M as:

∏5
i=1 Seq(Z) × Seq(uZ2) × Seq(Z) (respectively

∏4
i=1 Seq(Z) × Seq(Z2) × Seq(uZ) × Seq(Z)) where the last one is for the

dummy value z0.
Which leads to the generating function: F (z, u) = 1

(1−z)6 × 1
1−uz2 (respectively

F (z, u) = 1
(1−z)5(1−z2) × 1

1−uz ). This leads to: χ<2t,X(M) ∼ (2t)7

4×7! (respectively

χ<2t,Y (M) ∼ (2t)7

2×7! ).

Condition. We denote by ν1 = χ<2t,Δ(M), ν2 = χ<2t,X(M), ν3 = χ<2t,Y (M)
and ε = χ<2t(P). The inequality (2) is pε > Δν1Xν2Y ν3 , i.e. Δ < p

ε
ν1+3ν2+2ν3 ,

where:

ε

ν1 + 3ν2 + 2ν3
∼ χ<2t(P)

χ<2t,Δ(M) + 3χ<2t,X(M) + 2χ<2t,Y (M)
∼ 1

5
,

this leads to the claimed bound: Δ < p
1
5 . �	
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This bound improves the known bound Δ < p1/6. Next we further improve
the previous bound and we show that the generator is insecure if at least a
proportion of 8/11 of the most significant bits of an arbitrary large number of
consecutive values Ui of the sequence is output.

Theorem 3 (more consecutive outputs). Given Δ-approximations W0,
W1,. . . ,Wn (for some integer n > 1) to n + 1 consecutive affine values U0,
U1,. . . ,Un produced by the EC-LCG, and given the value of the composer
G = (xG, yG). Under the heuristic assumption that all created polynomials we
get by applying Coppersmiths method with the polynomial set P below define an
algebraic variety of dimension 0, one can recover the seed U0 in polynomial time
in log p as soon as Δ < pδ, with δ < 3n

11n+4 .

Proof (Sketch) We can generalize the previous proof by considering n couples of
consecutive values (Ui, Ui+1), i ∈ {0, . . . , n−1} and the same variable change to
get n couple of polynomials fi+1, gi+1 of the same shape as f1 and g1. We then
apply the method to the following collection of polynomials:

P =

⎧
⎨

⎩

zj0
0 . . . z

j2n+1
2n+1 f i1

1 . . . f in
n gl1

1 . . . gln
n mod pi1+l1···+in+ln

s.t. i1 + l1 + · · · + in + ln > 0
and j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln < 2t

⎫
⎬

⎭
,

and the following set of monomials:

M =
{

zj0
0 . . . z

j2n+1
2n+1 ui1

1 vl1
1 . . . uin

n vln
n mod Δj0+···+j2n+1Xi0+···+inY l0+···+ln

s.t. j0 + · · · + j2n+1 + 2(i1 + · · · + in) + l1 + · · · + ln < 2t

}

,

to get the result (see the full version of the paper for the complete proof). �	

4 Predicting EC-LCG Sequences for Unknown Composer

In this section, we infer the EC-LCG sequence in the case where the composer G is
unknown and the curve parameters are kept secret. In the following, We show that
the generator is insecure if at least a proportion of 23/24 of the most significant
bits of three consecutive values U0 and U1 and U2 of the sequence is output.

Theorem 4 (three consecutive outputs). Given Δ-approximations W0, W1,
W2 to three consecutive affine values U0, U1, U2 produced by the EC-LCG. Under
the heuristic assumption that all created polynomials we get by applying Copper-
smiths method with the polynomial set P below define an algebraic variety of
dimension 0, one can recover the seed U0 and the composer G in polynomial
time in log p as soon as Δ < pδ with δ < 1/24.

Proof We set U0 = (x0, y0), U1 = (x1, y1), U2 = (x2, y2), W0 = (α0, β0), W1 =
(α1, β1) and W2 = (α2, β2). We then have the equalities:

xi = αi + ei, yj = βj + fj , where |ei|, |fi| < Δ, i ∈ {0, 1, 2}. (3)
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We also have: ⎧
⎪⎨

⎪⎩

y2
0 = x3

0 + ax0 + b

y2
1 = x3

1 + ax1 + b

y2
2 = x3

2 + ax2 + b .

Eliminating the curve parameters a, b and assuming without loss of generality
that U2 �= ±U1 (that is, x2 �= x1), we obtain the following equation:

y2
2(x0−x1)+x3

2(x1−x0)+x3
0(x2−x1)+y3

0(x1−x2)+x3
1(x0−x2)+y2

1(x2−x0) = 0

Using the equalities (3), leads to the equation:

f(e0, e1, e2, f0, f1, f2) = 0 mod p

where f is a polynomial of degree 4 whose coefficients are functions of α0, α1, α2,
β0, β2, and β2.

Description of the Attack. The adversary is therefore looking for the solutions
smaller than Δ of the following modular multivariate polynomial equation:

f(z1, . . . , z6) = 0 mod p

The attack consists in applying Coppersmith’s methods as in the former sub-
section. If we consider monomials with respect to lexicographic order, then the
leading monomial of f is z31z2. From now on, we use the following collection of
polynomials:

P = {f̃j1,...,j6,i = zj1
1 . . . zj6

6 f i mod pi : i > 0 and j1 + · · · + j6 + 4i < 4t

and (0 � j1 < 3 ∨ j2 = 0)} ,

One can check that the polynomials f̃j1,...,j6,i are linearly independent since
LM(f) �= zj1

1 . . . zj6
6 for each f̃j1,...,j6,i from P. The list of monomials appearing

within this collection can be described as:

M =
{

zj1
1 . . . zj6

6 mod Δj1+···+j6 : j1 + · · · + j6 < 4t
}

.

Bounds for the Polynomials Modulo p. We consider the set P as a com-
binatorial class, with the size function S(f̃j1,...,j6,i) = j1 + · · · + j6 + 4i and the
parameter function χ(f̃j1,...,j6,i) = i. Since the degree of each variable zi is 1 and
the degree of f is 4, we can described P as:

∏4
i=1 Seq(Z) × Seq(uZ4) ×

⎛

⎜
⎝(ε + Z + Z2

︸ ︷︷ ︸
z1

)(ε + ZSeq(Z)
︸ ︷︷ ︸

z2

) + Z3Seq(Z)
︸ ︷︷ ︸

z1

⎞

⎟
⎠× Seq(Z),

where the last term is for the dummy value z0. This leads to the generating
function:

F (z, u) =
(

1
1 − z

)5

× 1
1 − uz4

×
(

(1 + z + z2)(1 + z/(1 − z)) +
z3

1 − z

)

.
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This leads to: χ<4t(P) ∼ 1
4 × (4t)7

7!

Bounds for the Monomials Modulo Δ. We consider the set M as a combina-
torial class, with the size function S(zj1

1 . . . zj6
6 ) = j1+ · · ·+j6 and the parameter

function χ(zj1
1 . . . zj6

6 ) = j1+ · · ·+j6. Since the degree of each zi is 1, we can then
described M as:

∏6
i=1 Seq(uZ)×Seq(Z), where the last term is for the dummy

value z0. Which leads to the generating function: F (z, u) =
(

1
1−uz

)6

× 1
1−z . We

then obtain: χ<4t(M) ∼ 6(3t)7

7!

Condition. If we denote by ν = χ<4t(P), and ε = χ<4t(M), the inequality (2)
is pν > Δε, i.e. Δ < p

ν
ε , where: ν

ε ∼ χ<4t(P)
χ<4t(M) ∼ 1

24 , this leads to the claimed

bound: Δ < p
1
24 . �	

This bound improves the known bound Δ < p1/46. Next, we further improve
the previous bound and we show that the generator is insecure if at least a
proportion of 7/8 of the most significant bits of an arbitrary large number of
consecutive values Ui of the sequence is output.

Theorem 5 (more consecutive outputs). Given Δ-approximations W0,
W1,. . . ,Wn+1 (for some integer n > 1) to n + 2 consecutive affine values U0,
U1,. . . ,Un+1 produced by the EC-LCG. Under the heuristic assumption that all
created polynomials we get by applying Coppersmiths method with the polynomial
set P below define an algebraic variety of dimension 0, one can recover the seed
U0 and the composer G in polynomial time in log p as soon as Δ < pδ with
δ < n/4(2n + 4).

Proof See the full version of the paper. �	

5 Conclusion

We analyzed the security of the Elliptic Curve Linear Congruential Generator
(EC-LCG). In the case where the composer is known, we showed that this gen-
erator is insecure if at least a proportion of 8/11 of the most significant bits of
an arbitrary large number of consecutive values Ui of the sequence is output.
We also consider the cryptographic setting where the composer is unknown and
we showed that this generator is insecure if at least a proportion of 7/8 of the
most significant bits of an arbitrary large number of consecutive values Ui of
the sequence is output. Our results are theoretical since in practice, the perfor-
mance of Coppersmith’s method in our attacks is bad because of large dimension
of the constructed lattice but they are good evidences of the weaknesses of this
generator. This generator should then be used with great care.
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Abstract. In Kleinberg’s small-world network model, strong ties are
modeled as deterministic edges in the underlying base grid and weak ties
are modeled as random edges connecting remote nodes. The probability
of connecting a node u with node v through a weak tie is proportional to
1/|uv|α, where |uv| is the grid distance between u and v and α ≥ 0 is the
parameter of the model. Complex contagion refers to the propagation
mechanism in a network where each node is activated only after k ≥ 2
neighbors of the node are activated.

In this paper, we propose the concept of routing of complex contagion
(or complex routing), where at each time step we can select one eligible
node (nodes already having two active neighbors) to activate, with the
goal of activating the pre-selected target node in the end. We consider
decentralized routing scheme where only the links connected to already
activated nodes are known to the selection strategy. We study the routing
time of complex contagion and compare the result with simple routing
and complex diffusion (the diffusion of complex contagion, where all eli-
gible nodes are activated immediately in the same step with the goal of
activating all nodes in the end).

We show that for decentralized complex routing, the routing time is
lower bounded by a polynomial in n (the number of nodes in the net-
work) for all range of α both in expectation and with high probability (in

particular, Ω(n
1

α+2 ) for α ≤ 2 and Ω(n
α

2(α+2) ) for α > 2 in expectation).
Our results indicate that complex routing is exponentially harder than
both simple routing and complex diffusion at the sweetspot of α = 2.

Keywords: Computational social science · Complex contagion · Diffu-
sion · Decentralized routing · Small-world networks · Social networks

1 Introduction

Social networks are known to be the medium for spreading disease, informa-
tion, ideas, innovations, and other types of behaviors. Social scientists have been
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studying social networks and diffusions in the networks for decades, and many
of the research results are inspirational to researches in the intersection of social
science, economics, and computation on modeling social networks and diffusions
in them.

In the seminal work [15,17], Granovetter classified relationships in a social
network as strong ties and weak ties. Strong ties represent close relationships,
such as family members and close friends, while weak ties represent acquaintance
relationship that people casually maintain. The surprising result in this study
is that people often obtain important job referrals leading to their current jobs
through weak ties instead of strong ties, which leads to the popular term the
strength of weak ties. His research demonstrated the importance of weak ties in
information diffusion in social networks. Another famous experiment related to
information diffusion is Milgram’s small-world experiment [22], in which Milgram
asked subjects to forward a letter to their friends in order for the letter to reach
a person not known to the initiator of the letter. The result showed that on
average it takes only six hops to connect two people in U.S. unknown to each
other, hence the famous term of six-degree of separation.

The above studies motivated the modeling of small-world networks [20,26].
Watts and Strogatz modeled the small-world network as a ring where nodes
close to one another in ring distance are connected representing strong ties, and
some strong ties are rewired to connect to other random nodes on the ring,
which represent weak ties [26]. They also proposed short diameter (the distance
between any pair of nodes is small) and high clustering coefficient (the proba-
bility that two friends of a node are also friends of each other) as two character-
istics of small-world networks. Kleinberg [20] improved the model of Watts and
Strogatz by building a small-world network on top of a base grid, where grid
edges representing strong ties, and each node u initiating a weak tie connecting
to another node v with probability proportional to 1/|uv|α, where |uv| is the grid
distance between u and v and α is the small-world parameter. Kleinberg showed
that when α equals the dimension of the grid, the decentralized greedy routing,
where in each routing step the current node routes the message to its neighbor
with grid distance closest to the target node, achieves efficient routing perfor-
mance [20]. This efficient decentralized routing behavior qualitatively matches
the result of Milgram’s small-world experiment. Kleinberg further showed that
when α is not equal to the grid dimension, no decentralized routing scheme could
be efficient, and in particular, the small-world model of Newman and Watts [24]
corresponds to the one-dimensional Kleinberg’s model with α = 0. Kleinberg’s
small-world network model is the one we use in this paper.

In another work [16], Granovetter proposed the threshold model to character-
ize diffusions of rumors, innovations, or riot behaviors. An individual in a social
network is activated by a certain behavior only when the number of her neigh-
bors already adopting the behavior exceeds a threshold. This threshold model
motivated the linear threshold, fixed threshold, and general threshold models
proposed by Kempe et al. [18], and is directly related to the model of complex
contagion we use in this paper.
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More recently, Centola and Macy [5] classified the threshold model into sim-
ple contagion and complex contagion. Simple contagion refers to diffusion models
with threshold being one on every node, which means that a node can be acti-
vated as long as there is one active neighbor. Simple contagion corresponds to
diffusions of virus or simple information, where one can get activated by sim-
ply receiving the virus and information. Complex contagion, on the other hand,
refers to diffusion models with threshold at least two, meaning that a node can
be activated only after multiple of its neighbors are activated. Complex conta-
gion corresponds to diffusions requiring complex decision process by individuals,
such as adopting a costly new product, adopting a disruptive innovation, etc.,
where people usually need multiple independent sources of confirmation about
the utility of the new product or new innovation before taking the action. The
important point Centola and Macy argued is that, while weak ties are effective in
transmitting information quickly across a long range in a network, they may not
be as effective in complex contagion. This is because for complex contagions to
spread quickly in a network, it requires weak ties forming not only long bridges
connecting different regions of the network but also wide bridges in the sense
that many weak ties can work together to bring the contagion from one region
of the network to another region of the network.

Motivated by the above work, Ghasemiesfeh et al. provided the first analyt-
ical study of complex contagion in small-world networks [14]. They studied the
diffusion of k-complex contagion (or k-complex diffusion), where all nodes have
threshold k and all nodes with at least k active neighbors are activated right
away. They showed that the diffusion time, which is the time for the diffusion to
activate all nodes in a network starting from k initial seed nodes connected with
strong ties, is polylogarithmic to the size of the network when α = 2. Ebrahimi
et al. [11] further generalized the results and proved that the diffusion time for
k-complex diffusion has polylogarithmic upper bound when α ∈ (2, 2(k2+k+1)

k+1 ) in
Kleinberg’s grid model. They also show that in Kleinberg’s model with α outside
this range, the diffusion time is lower bounded by a polynomial in n.

In this paper, we go beyond the diffusion of complex contagion (or complex
diffusion), to study a new propagation phenomenon closer to decentralized rout-
ing in [20], which we call the routing of complex contagion (or complex routing).
In complex routing, we model weak ties as directed edges as in [20], and study
the time for two seed nodes connected by a strong tie to activate a target node
t farthest on the grid (we call it the routing time). At each step only one new
node can be activated, and the decision of which node to activate is decentralized
which means it is only based on the current activated nodes and their outgoing
weak tie neighbors as well as the underlying grid, same as decentralized routing
in [20]. Such decentralized routing behavior corresponds to real-world phenom-
enon where a group of people want to influence a target person by influencing
intermediaries between the source group and the target person, and influenc-
ing these intermediaries requires effort and thus has to be carried out one at a
time. Active friending [27] is an application similar to the above scenario recently
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proposed in the context of online social networks such as Facebook for increasing
the chance of a target user accepting the friending request from the source.

1.1 Our Results

In this paper, we show that, unlike simple routing or complex diffusion, in com-
plex routing problem for any k ≥ 2, for the entire range of α, the routing time
is polynomial in n both in expectation and with high probability for any decen-
tralized routing algorithm. Compared with simple routing or complex diffusion,
the results at the sweetspot of α = 2 are the most interesting: simple routing has
routing time O(log2 n) in expectation [20] and complex diffusion has an upper
bound of O(logk+1.5 n) in expected diffusion time [14], while complex routing
has a lower bound of Ω(n

1
4 ) in expected routing time, for any k ≥ 2. This expo-

nentially wide gap indicates intrinsic difference between complex routing and
simple routing or complex diffusion. We further show that if we allow activating
m nodes in one step, the routing time is lower bounded by Ω(n

1
4 /m), which

means that to get a polylogarithmic upper bound on the routing time m has to
be Ω(n

1
4 / logc n) for some constant c.

Our main contribution is that we propose the study of complex routing, and
prove that the routing time has polynomial lower bound in the entire range
of α for complex routing. Our results indicate that complex routing is much
harder than complex diffusion and the routing time of complex contagion differs
exponentially compared to simple contagion at sweetspot.

1.2 Additional Related Work

Social and information networks and network diffusions have been extensively
studied, and a comprehensive coverage has been provided by recent textbooks
such as [10,25]. In this section, we provide most related work in addition to the
ones already discussed in the introduction.

Since the proposal of the small-world network models by [20,26], many exten-
sions and variants have been studied. For example, Kleinberg proposed a small-
world model based on tree structure [21], Fraigniaud and Giakkoupis extended
the model to allow power-law degree distribution [12] or arbitrary base graph
structure [13].

In terms of network diffusion, a line of research initiated in [18,19] studied the
maximization problem of finding a set of small seeds to maximize the influence
spread, usually under a stochastic diffusion model. For Chen et al. [8] provided effi-
cient influence maximization algorithms for large-scale networks, while Chen [7]
proved that minimizing the size of the seed set for a given coverage in the fixed
threshold model is hard to approximate to any polylogarithmic factor.

Threshold behavior is also studied in bootstrap percolation [1], where all
nodes have the same threshold and initial seeds are randomly selected. Bootstrap
percolation focuses on the study of the critical fraction f of the seed nodes
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selected so that the entire network is infected in the end. The network structures
investigated for bootstrap percolation include grid [6], trees [3], random regular
graphs [2], complex networks [4] etc.

The rest of the paper is organized as follows. Section 2 provides the technical
model and problem definitions. Section 3 presents the results and analyses on
complex routing. We conclude the paper in Sect. 4.

2 Model and Problem Definitions

We now provide the precise definitions of the network model, the propagation
model, and the problems we are studying in this paper.

2.1 Kleinberg’s Small-World Networks

The Kleinberg’s small-world network model defines a random graph based on a
set V of n nodes organized in a

√
n × √

n two-dimensional grid [20]. For conve-
nience, we connect the top boundary nodes of the grid with the corresponding
bottom boundary nodes, and connect the left boundary nodes with the cor-
responding right boundary nodes, creating a two-dimensional torus, in which
the positions of all nodes are symmetric. For nodes u and v on the torus, the
Manhattan distance |uv| between them is the shortest distance from u to v (or
v to u) using grid edges.

There are two types of edges in this random graph: strong ties and weak
ties. Strong ties refer to the undirected edges between any pair of nodes with
Manhattan distance no more than p, where p ≥ 1 is a universal constant. Weak
ties refer to random edges connecting any node u with other possibly remote nodes
v in the grid. Each node u has q weak tie connections created independently from
one another, and the i-th weak tie initiated by u has endpoint v with probability
proportional to 1/|uv|α, where α ≥ 0 is a parameter of the model. In order to get
the probability distribution of weak ties, we multiply 1/|uv|α by the normalizing
factor Z = 1/

∑
v∈V |uv|−α (on a torus, this value is the same for any u ∈ V ). For

a node u in the network, u’s grid-neighbors are nodes linked with u through strong
ties while weak-neighbors are nodes linked with u through weak ties.

The original network model by Kleinberg [20] considers the weak tie from u
to v as a directed edge, and we call it the directed Kleinberg’s small-world net-
work model, while some work including [14] considers the weak ties as undirected
edges. Define random graph G(n, k, α) as directed Kleinberg’s small-world net-
work with n nodes and parameter α and p = q = k. We only consider directed
network models in this paper.

2.2 Routing of Complex Contagion

We model the propagation of information, disease, or innovations in a network
as a contagion. Each node in a network has three possible states — inactive,
exposed, infected (or activated), and a node can transformed from the inactive



312 W. Chen et al.

state to the exposed state and then to the infected state, but not in the reverse
direction.

A contagion proceeds in discrete time steps 0, 1, 2, . . .. At time t ≥ 1, a node
becomes exposed if at time t−1 at least k of its neighbors (or in-neighbors in the
case of directed networks) are infected. An exposed node may become infected
immediately or at a later step, which will be specified later. A simple contagion
refers to the contagion with k = 1, that is, one infected neighbor is enough to
expose (and potentially infect) the node, while a complex contagion refers to the
case of k ≥ 2, that is, at least two infected neighbors are needed to infect a new
node. We refer the complex contagion with k ≥ 2 as k-complex contagion.

We study a different propagation phenomenon closer to the decentralized
routing behavior studied in [20] originally for the small-world network model,
which we call routing of complex contagion, or simply complex routing.

To study k-complex routing, at time 0, we set k consecutive nodes on the
grid in one dimension as infected initially, which we refer as seed nodes. For
convenience, we also set p = k. When p = k, the k-complex routing is guaranteed
to infect all nodes eventually through strong ties only. In complex routing, we
have a target node t besides the set of k initial seed nodes.

The task is to infect or activate node t as fast as possible. We can only select
one exposed node to activate at each time step. Moreover, when selecting the
node to activate at time i, one only knows the out-neighbors of already activated
nodes since decentralized routing is applied. This corresponds to the situation
where a group of people try to influence a target by gradually growing their
allies in the social network towards the target, and they only know the friends
of their allies and try to recruit one of them into the allies at the next time step.
Note that when k = 1, k-complex routing is essentially the decentralized simple
routing studied in [20].

To study how fast the routing could be successful, we define the routing time
as the number of time steps needed to activate the farthest target node t from
the seed node in terms of the Manhattan distance.

3 Results on Complex Routing

When studying complex routing, we use the directed Kleinberg’s small-world
network model, same as the model originally proposed by Kleinberg in [20] for
decentralized routing. As described in the model, we consider decentralized rout-
ing in which a node can only send activation to its out-neighbors. Hence only
when a node is pointed to by edges from k different activated nodes it becomes
exposed. For the strong tie, we still treat them as undirected or bi-directional.
In each time step, we only have the knowledge of the current activated nodes
and the out-neighbors of the current activated nodes. This allows us to apply
the Principle of Deferred Decisions [23] in the same way as applied in [20], which
means that the weak ties of a node u are defined and known only when u is acti-
vated. Initial seeds set is a set of k consecutive nodes, so the k-complex routing
will eventually activate target t when we set p = k in Kleinberg’s small-world
network model.
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We consider a 2-complex routing task from a pair of grid neighbor nodes
S0 = {s10, s

2
0} to a destination t where s10, s

2
0 have Manhattan distance of 1

on the grid. In this paper, we discuss the routing with initial grid distance
of |s10t| = Θ(

√
n). The strategy of activating nodes from exposed nodes set is

not restricted. A special scheme is choosing the node with smallest Manhattan
distance to t in each time step, which is the greedy algorithm. But our result
holds for any decentralized node selection schemes, even randomized ones. The
following theorem provides the lower bound result on the routing time.

Theorem 1. For any decentralized routing schemes (even randomized ones), the
routing time of 2-complex routing in G(n, 2, α) has the following lower bounds
based on the parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
1−ε
α+2 ) with probability at least 1−O(n−ε)

and the expected routing time is Ω(n
1

α+2 ).
2. For α = 2, the routing time is Ω(n

1
4 ) with probability at least 1 − O( 1

log n )

and the expected routing time is Ω(n
1
4 ).

3. For α ∈ (2,+∞), the routing time is Ω(n
α−2ε

2(α+2) ) with probability at least
1 − O(n−ε) and the expected routing time is Ω(n

α
2(α+2) ).

First we give some necessary definitions. For a set of nodes S, define E(S)
to be the set of exposed nodes for the current activated set S, namely E(S) =
{x /∈ S | x has at least two in-neighbors in set S}. In a routing protocol, let
Si be the set of the current activated nodes in time i. In time step i, we can
choose at most one node u ∈ E(Si−1), and activate u (which means we add
u to Si−1 in time i and obtain Si). From the definition of E(S) we know that
complex routing proceeds following the direction of edges in directed Kleinberg’s
small-world model.

3.1 Proof of Deterministic Scheme

We consider deterministic decentralized routing schemes first. Due to the page
limit, the proofs of lower bounds for randomized schemes are omitted, and they
are included in our full version [9]. First we discuss routing time for α = 2.

Suppose S0, S1, · · · , S� is the sequence of activated sets of nodes in routing
where Si is the set of current activated nodes in time step i. The initial seeds
are {s10, s

2
0} so S0 = {s10, s

2
0}, Si = {s10, s

2
0, s1, · · · , si} and in time i ≥ 1 we add a

new node si selected from E(Si−1), particularly sl = t. Let di = d(Si ∪ E(Si), t),
where d(S, u) is the minimum Manhattan distance between node v ∈ S and u.
It is easy to observe that di is a non-increasing sequence and d�−1 = d� = 0.
For convenience, we write s10 as S−1 and define that d−1 = |s10t| =

√
n. We then

prove that when the parameter α = 2,Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 ) is

high enough, where c < 1 is a positive constant we will set later. Define event
χ = {∀ 0 ≤ i < cn

1
4 , di−1 − di ≤ n

1
4 }. Event χ means from time step 0 to

cn1/4 − 1, the Manhattan distance between the current activated set and target
t decrease at most n

1
4 in each time step.
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Lemma 1. For decentralized 2-complex routing in directed Kleinberg’s small-
world network G(n, 2, α) with α = 2, given the initial seeds {s10, s

2
0} and farthest

target t with |s10t| = Θ(
√

n), then for some suitable constant c ∈ (0, 1),

Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 ) ≥ 1 − O(

1
log n

).

Proof. Let ui = arg minx{d(x, t)|x ∈ Si ∪E(Si)}, so ui is the node that is closest
to node t and can be activated by set Si or belong to Si. Since ui−1 is the
node that with the shortest Manhattan distance to t among E(Si−1) ∪ Si−1

and si ∈ E(Si−1), |sit| ≥ |ui−1t| = di−1. Thus if di−1 − di > 0, we know that
si is not the node closest to t among Si ∪ E(Si) since |sit| ≥ di−1. Besides,
we can also get that ui ∈ E(Si) \ E(Si−1) and si activate ui together with
another node in Si−1. Combining with the definition that |uit| = di, we know
|siui| ≥ |sit| − |uit| = di−1 − di. Hence we have the following conclusions:

If di−1 − di > n1/4 for i ≥ 1, then we can conclude (1) |siui| > n
1
4 ; (2) ui is

one of the out-neighbors of si, more specifically, si initiates a weak tie to ui; (3)
ui is exposed exactly in time step i, so there is exactly one weak tie from some
node in Si−1 to ui. For i = 0, because d(S0, t) = d−1, so the gap between d−1

and d0 is caused by u0 ∈ E(S0). The conclusions still hold.
We define the set of nodes that are the endpoints of the weak ties initiated

by Si−1 as Xi. Xi is indeed the set of weak-neighbors in directed Kleinberg’s
small-world network. Apparently ui ∈ Xi according to assertion (3) above. If
di−1 − di > n

1
4 happens, ui can be reached by si with a weak tie of distance at

least n
1
4 . Define u → v as node u initiates a weak tie with endpoint v. By union

bound, we have:

1 − Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 )

= Pr(∃ 0 ≤ i < cn
1
4 , di−1 − di > n

1
4 )

≤ ∑cn
1
4 −1

i=0 Pr(di−1 − di > n
1
4 )

≤ ∑cn
1
4 −1

i=0 Pr(si → ui, |siui| > n
1
4 , ui ∈ Xi)

≤ ∑cn
1
4 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 ).

(1)

Since there is i + 1 nodes in the set Si−1, Si−1 initiate q(i + 1) weak ties,
which means that |Xi| ≤ q(i + 1). Denote Hi ⊆ 2V to be the set of all sets of
nodes with size no more than q(i+1). Then we fix the randomness of Xi and si:

Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 )

≤ ∑
C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v) ∧ (∃ x ∈ C, v → x, |vx| > n

1
4 )

)

=
∑

C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)
Pr(∃ x ∈ C, v → x, |vx| > n

1
4 )

≤ ∑
C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)∑
x∈C Pr(v → x, |vx| > n

1
4 )

≤ ∑
C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

) · |C| · 2Z 1
n2·1/4

≤ q(i + 1) · 2 Z
n1/2

∑
C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)
= 2q(i + 1) · Z

n1/2 .

By the property of decentralized routing, event {(Xi = C) ∧ (si = v)} only
depends on the random set Si−1 and the outgoing weak ties from Si−1, and v
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is not in Si−1, while event {∃x ∈ C, v → x, |vx| > n
1
4 } only depends on the

outgoing weak ties of the fixed node v. Thus event {(Xi = C) ∧ (si = v)} is
independent of event {∃x ∈ C, v → x, |vx| > n

1
4 }. This gives us the first “=”

in the equation. For a node x, if |vx| ≤ n
1
4 , then Pr(v → x, |vx| > n

1
4 ) = 0;

otherwise, Pr(v → x, |vx| > n
1
4 ) ≤ 2p(v, x) ≤ 2Z 1

n2·1/4 . Hence we have the third
“≤”. Substitute it into Inequality (1):

1 − Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 )

≤ ∑cn
1
4 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 )

≤ ∑cn
1
4 −1

i=0 q(i + 1) · 2 Z
n1/2 ≤ cn

1
4 · qcn

1
4 · Θ( 1

log n ) 2
n1/2 = O( 1

log n ).

Due to the above lemma, it is easy to see that the routing time is at least
cn

1
4 with high probability for α = 2.

Proof (of Theorem 1 (deterministic routing scheme)). Lemma 1 says, for α = 2,
in the first cn

1
4 steps, the grid distance between the current activated set and

target t decreases at most n
1
4 in each step. Thus, for the first cn

1
4 steps, target

t does not belong to the activated set and the routing procedure will continue.
Hence with probability of 1 − O( 1

log n ), to activate the target t in G(n, 2, α)

with α = 2, decentralized 2-complex routing needs at least cn
1
4 time steps. The

expected routing time is cn
1
4 · (1 − O( 1

log n )) = Ω(n
1
4 ).

When α ∈ [0, 2), like the proof in Lemma 1, we can prove for small ε > 0,

1 − Pr(∀ 0 ≤ i < cn
1−ε
α+2 , di−1 − di ≤ 2n

α+2ε
2(α+2) )

≤ ∑cn
1−ε
α+2 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > 2n
α+2ε

2(α+2) )

≤ ∑cn
1−ε
α+2 −1

i=0 2(i + 1) · Z · 2(2n
α+2ε

2(α+2) )−α

≤ cn
1−ε
α+2 · 2cn

1−ε
α+2 · Θ( 1

n1−α/2 ) · O(n− α(α+2ε)
2(α+2) ) = O(n−ε).

So the routing time is Ω(n
1−ε
α+2 ) with probability at least 1 − O(n−ε). By

setting ε = 0 and adjusting the parameter c, the expected routing time can be
obtained.

When α > 2, we can prove that for small ε > 0,

Pr(∀ 0 ≤ i < cn
α−2ε

2(α+2) , di−1 − di ≤ n
1+ε
α+2 ) ≥ 1 − O(n−ε)

like the proof above. Hence with probability at least 1−O(n−ε), we need cn
α−2ε

2(α+2)

time steps to find the target. Similarly we can get the bound for the expectation.

3.2 Discussion and Extension

We describe complex routing as the task of activating a node as fast as possible.
Here we consider the task of activating a target node t that is nγ grid distance
away from the seeds. Similar hardness results can be inferred if we determine the
step size and step number of routing cautiously. Here we just sate the theorem
and do not provide the redundant proof.
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Theorem 2. For any decentralized routing schemes (even randomized ones), the
routing time for 2-complex routing to activate a node with Manhattan distance
nγ(0 < γ ≤ 1

2 ) away in G(n, 2, α) has the following lower bounds based on the
parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
2γ(1−ε)

α+2 ) with probability at least 1 −
O(n−ε′

) where ε′ = max {2γε, (1 − 2γ)(1 − α/2)} and the expected routing
time is Ω(n

2γ
α+2 ).

2. For α = 2, the routing time is Ω(n
γ
2 ) with probability at least 1 − O( 1

log n )
and the expected routing time is Ω(n

γ
2 ).

3. For α ∈ (2,+∞), the routing time is Ω(n
γ(α−2ε)

α+2 ) with probability at least
1 − O(n−ε) and the expected routing time is Ω(n

γα
α+2 ).

We can obtain the same lower bound of routing time for k-complex routing.
To ensure the success of complex routing, let p = q = k for the Kleinberg’s
small-world network model and the size of seed nodes is k. The result is the
same with 2-complex routing so we omit it.

Next, we extend our results to complex routing where at most m nodes can
be activated in each time step. When m = 1, the result is what we covered in
Theorem 1 for complex routing. When we do not restrict m, complex routing
becomes complex diffusion. Thus a general m allows us to connect complex rout-
ing with diffusion, and see how large m is needed to bring down the polynomial
lower bound in complex routing. From the theorem we know that we would
not get polylogarithmic routing time for complex routing in G(n, 2, 2) where m

nodes can be activated in each step, unless m = n
1
4 / logO(1) n.

Theorem 3. In decentralized routing, for k-complex routing in G(n, 2, α), if at
most m nodes can be activated in each time step, routing time has the following
lower bounds based on the parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
1−ε
α+2 /m) with probability at least 1 −

O(n−ε) and the expected routing time is Ω(n
1

α+2 /m).
2. For α = 2, the routing time is Ω(n

1
4 /m) with probability at least 1 − O( 1

log n )

and the expected routing time is Ω(n
1
4 /m).

3. For α ∈ (2,+∞), the routing time is Ω(n
α−2ε

2(α+2) /m) with probability at least
1 − O(n−ε) and the expected routing time is Ω(n

α
2(α+2) /m).

Proof. Assuming that S is the set of current activated nodes. In next time step,
we can activate m nodes with the knowledge of the out-neighbors of S. But
consider the original complex routing, we just activate one node in each step
and we have m time steps to activate nodes. After each small step, we have the
knowledge of the newly added node. Hence the method of activating m nodes
with m time steps is more effective than infecting m nodes in just one time
step. Therefore if we need T time steps to find the target with original complex-
routing, the routing time with activating m nodes in each time step is at least
T
m . The expected routing time is T

m · (1 − O( 1
log n )). Then the theorem follows.
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4 Conclusion

In this paper, we study the routing of complex contagion in Kleinberg’s small-
world networks. We show that for complex routing the routing time is lower
bounded by a polynomial in the number of nodes in the network for the entire
range of α, which is qualitatively different from the polylogarithmic upper bound
in both complex diffusion and simple routing for α = 2. Our results indicate that
complex routing is much harder than both complex diffusion and simple routing
at the sweetspot.

There are a number of future directions of this work. One may look into
complex routing for undirected small-world networks or other variants of the
small-world models. The qualitative difference between complex diffusion and
complex routing for the case of α = 2 may worth further investigation. For
example, one may study if there is similar difference for a larger class of graphs,
and under what network condition complex routing permits polylogarithmic
solutions.
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Abstract. Motivated by the bus escape routing problem in printed cir-
cuit boards, we revisit the following problem: given a set of n axis-parallel
rectangles inside a rectangular region R, find the maximum number of
rectangles that can be extended toward the boundary of R, without over-
lapping each other. We provide an efficient algorithm for solving this
problem in O(n2 log3 n log log n) time, improving over the current best
O(n3)-time algorithm available for the problem.

1 Introduction

In the maximum disjoint routing problem, we are given a set of n axis-parallel
rectangles inside a rectangular region R, and the goal is to find a maximum
number of rectangles that can be extended to the boundary of R, without over-
lapping any other rectangle, whether it is extended or not. An instance of the
problem is illustrated in Fig. 1.

The maximum disjoint routing problem is motivated by the escape routing
problem in printed circuit boards (PCBs). The objective in the escape routing
problem is to route the nets from their pins to the boundary of the enclosing com-
ponent. There is a vast amount of work on this problem. In particular, the problem
of routing a maximum number of nets to the boundary of component using dis-
joint paths on a grid has been solved efficiently using network flow algorithms [3,4].
Other flow-based solutions to PCB routing can be found in [5,6,14].

Most solutions available for PCB routing including the flow-based ones are
net-centric, in the sense that they route the nets individually, without consider-
ing a top-level bus structure. However, recent work on escape routing has been
shifted to the bus-level, where nets are grouped into buses, and the nets from
each bus is required to be routed together [8–11,13]. In this model, the routing
of a bus is obtained by projecting the bounding box of the bus onto one of the
four sides of the bounding component. If we require to route a maximum number
of buses in a single layer without any conflict, the problem becomes equivalent
to the maximum disjoint routing problem, as defined above.

The first polynomial-time algorithm for the maximum disjoint routing prob-
lem was given by Kong et al. [8]. They presented an exact algorithm that solves
c© Springer International Publishing Switzerland 2016
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Fig. 1. An instance of the maximum disjoint routing problem. Input rectangles are
shown in dark, and extended rectangles are shown in grey.

the problem in O(n6) time. Their algorithm indeed solves a more general problem
of finding a maximum disjoint subset of boundary rectangles, where each bound-
ary rectangle is attached to one of the four sides of the bounding box R. Assadi
et al. [2] improved this running time by providing an O(n4)-time algorithm for
the maximum disjoint routing problem. Ahmadinejad and Zarrabi-Zadeh [1] pre-
sented an O(n4)-time algorithm that solves the more general problem of finding
the maximum disjoint subset of boundary rectangles. Very recently, Keil et al. [7]
improved this running time to O(n3) by presenting an algorithm that solves the
maximum independent set problem on outerstring graphs.

Our Contribution. In this paper, we revisit the maximum disjoint routing prob-
lem, and present a new algorithm that solves the problem in O(n2 polylog(n))
time. This improves over the current best O(n3)-time algorithms available for the
problem [7]. The main ingredient of our improved result is an efficient solution
for a special case of the problem in which each rectangle is a single point. We
use a dynamic programming approach equipped with a geometric data structure
to solve the point version of the problem efficiently. Our solution involves trans-
forming the points into four dimensions, and using a geometric range searching
structure to quickly query and compute subproblems. We then show how our
solution for the point version can be extended to the general rectangle case,
within the same time bound.

2 Preliminaries

Let S be a set of n axis-parallel rectangles located inside an axis-parallel rec-
tangular region R in the plane. For each rectangle r ∈ S and each direction
d ∈ {up, down, left, right}, we denote by δ(r, d) the rectangle obtained by
extending the rectangle r in direction d toward the boundary of R. We call
direction d a free direction for rectangle r, if δ(r, d) does not collide with the
initial position of any other rectangle. By checking each pair of rectangles, we
can find the free directions for all rectangles in O(n2) time.
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For a rectangle r, we denote by left(r) and right(r) the x-coordinate of the left
and the right side of r, respectively. Similarly, we denote by top(r) and bottom(r)
the y-coordinate of the top and bottom side of r, respectively. Let N = 2n + 2.
We define V = {v1, . . . , vN} to be the set of all vertical lines obtained from
extending the left and right sides of the rectangles in S, as well as the vertical
sides of R, sorted from left to right. Similarly, we define H = {h1, . . . , hN} to be
the set of all horizontal lines obtained from extending the top and bottom sides
of the rectangles in S, as well as the horizontal sides of R, sorted from top to
bottom.

3 Subproblems

In order to solve the maximum disjoint routing problem, we first define three
subproblems, and show how they can be solved efficiently. The three subproblems
are the followings:

– OneWayd(i, j, k): where 1 � i < j � N , 1 � k � N , and d is one of the four
possible directions. If d ∈ {up, down}, then OneWayd(i, j, k) is equal to the
maximum number of rectangles lying completely in the area bounded by vi, vj ,
and hk, that can be routed disjointly toward direction d. If d ∈ {left, right},
then we want to solve the same problem for the rectangles lying in the region
bounded by hi, hj , and vk.

– Parallelk(i, j): where 1 � i < j � N , and k ∈ {horz, vert}. If k = vert, then
the objective is to find the maximum number of rectangles lying completely
in the area between vi and vj that can be routed disjointly toward up and
down. If k = horz, then we want to solve the same problems for the rectangles
between hi and hj that can be routed toward right and left.

– Cornerk(i, j): where 1 � i, j � N , and k is one of the four corners of R. If k is
the top-left corner, then the goal is to find the maximum number of rectangles
lying completely in the top-left corner of R bounded by vi and hj , that can
be routed toward up and left. The subproblem is defined analogously for the
other three corners.

Whenever the subscripts d and k are clear from the context, we simply drop
them in our notations.

Lemma 1. Each instance of Parallel can be computed in O(1) time, after O(n2)
preprocessing time.

Proof. Consider a vertical instance of Parallel (i.e., with k = vert). Suppose that
direction d ∈ {up, down} is free for a rectangle r. Then, for any other rectangle
t �= r, δ(r, d) will not collide with any of t, δ(t, up), and δ(t, down). Hence, the
answer to Parallel(i, j) is equal to the number of rectangles between vi and vj ,
for which at least one of the directions in {up, down} is free. Therefore, each
instance of Parallel(i, j) can be solved in O(n) time, leading to O(n3) overall
time. To reduce the total processing time, we precompute and store the values
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of Parallel(1, i), for all 1 � i � N in O(n2) time (note that v1 represents the left
side of R). Now, the answer to Parallel(i, j) can be computed as Parallel(1, j) −
Parallel(1, i − 1) in constant time. ��
Lemma 2. Each instance of OneWay can be computed in O(1) time, after
O(n2) preprocessing time.

Proof. Consider an instance of OneWay, toward the up direction. Similar to
the previous lemma, the answer to OneWay(i, j, k) is equal to the number of
rectangles in the specified region for which up is a free direction. Similar to
Lemma 1, we first initialize the values of OneWay(1, j, k) in O(n2) time. In
order to perform the initialization, we obtain a list L containing all rectangles
in S sorted by the y-coordinates of their bottom side in a decreasing order in
O(n log n) time. For each 1 � j � N , we then do the following: Let Qj be a
queue that contains all the rectangles lying between v1 and vj , ordered by the
decreasing order of their bottom side. Each Qj can be obtained from L in O(n)
time. We now loop through all values in H from top to bottom, and for each hk ∈
H, we pop all the rectangles in front of the queue which lie completely between
v1, vj and hk. The answer to OneWay(1, j, k) is equal to OneWay(1, j, k−1) plus
the number of popped rectangles for which the direction up is free. Therefore, we
can solve all instances with i = 1 in O(n2) time. The answer to OneWay(i, j, k)
can be computed from OneWay(1, j, k) − OneWay(1, i − 1, k) in constant time.

��
Lemma 3. After O(n2) preprocessing time, each instance of Corner can be com-
puted in O(1) time.

Proof. We reduce this subproblem to an instance of the maximum disjoint
boundary rectangles (MDBR) problem [1], for which an O(n2)-time solution
is available. Assume, without loss of generality, that our instance is a top-left
corner. We reduce it to an instance of MDBR as follows. For each rectangle r ∈ S,
we replace r by at most two rectangles δ(r, d), for each direction d ∈ {up, left}
which is free for r. It is easy to verify that the maximum number of disjoint
rectangles in this new instance is exactly equal to Corner(i, j). It is shown in [1]
that after O(n2) preprocessing time, we can find the maximum number of dis-
joint rectangles bounded by vi and hj , for each pair (i, j) in O(1) time. Therefore,
the lemma follows. ��

4 Main Problem

Using Lemmas 1, 2 and 3, we can answer each instance of the OneWay, Parallel,
and Corner subproblems in constant time, after O(n2) preprocessing time. In
this section, we show how to solve the main problem efficiently using these
subproblems. To this end, we first consider a special case of the problem in
which each rectangle in S is a single point. We then generalize our algorithm for
the point version to the normal rectangle case.
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4.1 The Point Version

Here, we assume that S is a set of n points inside R. Consider an optimal solution
to the problem. Let r be the leftmost point in the optimal solution which is
routed to right, and � be the rightmost point which is routed to left. Similarly,
we denote by t and b the bottom-most point routed upward and the topmost
point routed downward, respectively. We distinguish between the following two
cases:

– Case 1: either � is to the left of r (i.e., �x < rx), or b is below t (i.e., by < ty)
– Case 2: rx � �x and ty � by

Lemma 4. In the first case, the optimal solution can be found in O(n2) time.

Proof. Assume, w.l.o.g., that �x < rx. (The other case, by < ty, can be handled
similarly.) We divide R into five independent regions, as shown in Fig. 2. For
each region, the directions to which the points in that region can be routed are
shown by arrows.

Fig. 2. The first case

The maximum number of points that can be routed in regions A, B, C, and
D can be obtained from the Corner subproblems. For region E, the answer can
be obtained from the Parallel subproblems. Therefore, the solution for this case
can be obtained in O(1) time. Since � and r are not known in advance, we check
all possible pairs (�, r) in O(n2) time, and return the best solution. ��
Lemma 5. If the second case holds, the optimal solution can be computed in
O(n2 log3 n log log n) time.

Proof. In this case, the four points �, r, t, and b form a “wheel structure”: � is to
the right of r, and t is below b. We assume, w.l.o.g., that t is to the left of b. The
rectangle R is partitioned by this wheel structure into nine regions, as shown in
Fig. 3. By the definition of the points forming the wheel structure, the central
region is empty. In the other eight regions, labelled by A to H, the points can
be routed toward the directions shown by arrows.
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Fig. 3. The second case

Using subproblems OneWay and Corner, we can find answers to each of these
regions in O(1) time. Therefore, the optimal solution in this case can be simply
obtained by checking all possible O(n4) configurations defined by �, r, t, and b.
In the following, we employ new ideas to perform this step more efficiently.

Observe that regions A, D, and E are solely defined by t and �. Similarly,
regions C, H, and G are defined by r and b. We can see each pair of points p and
q in the plane as a single point f(p, q) = (px, py, qx, qy) in 4-d space. To solve
the problem efficiently, we use a 4-d range tree T . Our main idea is to fix points
� and t, and then find the best pair r and b for which all these four points form
a wheel structure.

Each pair of points r′ and b′ with r′
x � b′

x and b′
y � r′

y is a candidate
for r and b in our configuration. For each of these pairs, we know the best
answer for regions C, H, G. Regions B and F also depend on these points.
Since we do not know the locations of t and � in advance, we assume that B
is the complete sub-region of R to the left of r′. Also, we assume that F is
the complete sub-region to the left side and below b′. After selecting �′ and
t′, some of the points currently in B and F will be out of these regions. We
will fix this problem later. For now, we add to T the point f(r′, b′) with value
Corner(C) + Corner(G) + OneWay(H) + OneWay(B) + OneWay(F ). There are
O(n2) such points. We use an augmented dynamic range tree for T that employs
a dynamic version of fractional cascading to support range queries and point
insertions/deletions in O(log3 n log log n) time [12]. The tree itself can be built
in O(n2 log3 n log log n) time.

Now we try to fix �′ and t′ and use T to find the best pair (r′, b′) to form
a wheel structure with a maximum possible answer. Each pair of points (t′, �′)
with t′x � �′

x and �′
y � t′y is a candidate for (t, �). All the pairs of points (r′, b′)

satisfying the following two conditions are candidates for (r, b) with respect to
t′ and �′:

– (r′, b′) forms a wheel structure with (t′, �′), i.e., r′
x � �′

x and t′y � b′
y.

– (r′, b′) is a valid candidate for r and b, i.e., r′
x � b′

x and b′
y � r′

y.



The Maximum Disjoint Routing Problem 325

These conditions together define a 4-d subspace in T . We can use a query on T
to find the maximum value in this subspace in O(log3 n log log n) time. The only
problem is that for regions B and F , we are counting some points which are not
part of those regions. These points have the following properties:

(i) The points below or on the left side of t′ which are counted in region B.
(ii) The points on the left side of �′ which are counted in region F .

In order to get rid of these points, we use the following approach. First we loop
through all the points as t′. Upon fixing t′, we loop through all the points below
or to the left of t′. None of these points must be considered in region B, regardless
of where r and b are. For each such point, say p, first we check if direction up is
free for it. If this direction is not free, then point p has no impact on the value
of OneWay(B). Hence, we do not need to take any action. If the direction up
is free, then we must remove the impact of p in region B for all pairs of points
r′ and b′ that counted p in B. It means that p must be to the left of r′. All
these pairs form a 4-d subspace in T . Therefore, we can call a query on T to
subtract one from the value of all pairs in this subspace. This action can be done
in O(n log3 n log log n) time for each point t′.

Now we only have to deal with the points in case (ii). After selecting t′, all
points below and to the right of t′ are candidates for �′. Since �′ must be on
the right side of t′, no point to the left of t′ must be considered in region F ,
regardless of where r′ and b′ are. We can remove the impact of these points from
region F exactly like what we did for the points in region B. Now, we sort all
the candidates for �′ from left to right, and loop through them. We also set a
vertical sweep line on t′ and advance it to the left toward �′ when we change
�′. Whenever our sweep line hits a point like p, p is to the left of �′, and hence,
it must not be counted in region F . We can remove its impact on F like what
we did in the previous cases. Since our sweep line hits each point at most once,
we perform at most one query on T for each point, and hence, the overall time
is O(n log3 n log log n). Therefore, after fixing points t′ and �′, we can use our
range tree T to find the points r′ and b′, yielding the best possible answer for
regions B,C,D, F and G. The best answers for regions A,H and E only depend
on points t′ and �′. Thus, we can find the best answer for all the eight regions
using our subproblems and a query on T . After we found the best answer for a
particular point t′, we need the reset our range tree to its initial condition, so
that we can use the same method for the next candidate t′. In order to do this,
we can save all the −1 queries that we performed, and call +1 queries on the
same regions, to return T to its initial state. As a result, we can check all the
cases and return the best solution in O(n2 log3 n log log n) time. ��
The following is a corollary of Lemmas 4 and 5.

Theorem 1. The point version of the maximum disjoint routing problem can
be solved in O(n2 log3 n log log n) time.
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4.2 The Rectangle Version

Here, we consider the general rectangles version of the problem, and show how
the algorithm described in the previous section for the point version can be
extended to the rectangle case. Let S be a set of n rectangles inside R. Consider
an optimal solution to the problem. Let r be the rectangle with the leftmost
left side routed to the right in the optimal solution, � be the rectangle with the
rightmost right side routed to the left, b be the rectangle with the topmost top
side routed downward, and t be the rectangle with the bottom-most bottom side
routed upward. Again, we consider the problem in two cases:

– Case 1: either left(r) > right(�), or bottom(t) > top(b).
– Case 2: left(r) � right(�) and bottom(t) � top(b).

Lemma 6. In the first case, the optimal solution can be found in O(n2) time.

Proof. Assume, w.l.o.g., that left(r) > right(�). Similar to the point version, R
is partitioned by r and � into five regions, as shown in Fig. 4. The only difference
here is that there might be some rectangles that reside in more than one region
(i.e., do not completely reside in any region), and hence, they do not contribute
to the solutions obtained for the subproblems. We call such rectangles the shared
rectangles.

Fig. 4. The first case in the rectangle version.

For each shared rectangle, the restrictions for the intersecting regions also
apply to the shared rectangle. It is easy to verify that each shared rectangle in
the first case has at most one possible routing direction. We call this direction
the forced direction for the rectangle. We claim that if the forced direction for a
shared rectangle s is free, then in the optimal solution, s must be routed toward
that forced direction.

To prove the claim, assume w.l.o.g. that s resides between regions A and E,
and that the up direction is free for s. No rectangle in A can be routed right,
and no rectangle in the regions to the right of A can be routed left. Moreover, no
shared rectangle between A and E can be routed either left or right, because of
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the way � and r are chosen. Therefore, there is no horizontally-routed rectangle
that collides with δ(s, up). Since direction up is free for s, there is no rectangle
above s, and hence, extending s to the up direction imposes no new restrictions
on the other rectangles. Therefore, in the optimal solution, s must be routed
upward, otherwise there would be a solution with a larger number of routed
rectangles, contradicting the optimality of the solution. This completes the proof
of the claim.

For each rectangle s, we can check if there exists a shared rectangle with a
free direction in {up, down}, if s is selected as either r or �. Note that for each
rectangle and each direction, there is at most one shared rectangles which is
free in that direction. Therefore, we can preprocess each rectangle and store free
shared rectangles for that rectangle in O(n) time. This preprocessing step takes
O(n2) overall time. After that, for each pair of rectangles as r and �, we can
find the best solution, using the preprocessed subproblems and considering the
shared rectangles, in O(1) time. ��
Lemma 7. In the second case, computing the optimal solution can be done in
O(n2 log3 n log log n) time.

Proof. The shared rectangles that arise in the second case are shown in Fig. 5.
Each of these shared rectangles has only one forced direction, and hence, they
can be treated in a same way as in the first case.

Fig. 5. The second case in the rectangle version

Note that any rectangle that is shared between regions other than those
showed in Fig. 5 can not be routed toward any direction, and hence, they can be
simply omitted. Therefore, like the first case and the point version, we can find
the best solution using preprocessed subproblems and considering the shared
rectangles. ��
The main result of this section, which is a corollary of Lemmas 6 and 7, is
summarized as follows.

Theorem 2. The maximum disjoint routing for a set of n rectangles can be
computed in O(n2 log3 n log log n) time.
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5 Conclusions

In this paper, we presented an O(n2 polylog(n))-time algorithm for the maximum
disjoint routing problem, improving over the current best O(n3)-time algorithm
available for the problem. Our algorithm simply generalizes to the weighted
case, where each rectangle is assigned a weight, and the goal is to route a set
of rectangles with maximum total weight. The polylog factor in the runtime of
our algorithm is due to the cost of 4-d range queries. Using a more efficient data
structure for answering range queries, one would be able to shave some of the
log factors from the runtime. The decision version of the problem which asks
whether “all” rectangles can be routed disjointly is interesting on its own, and
remains open for further investigation.
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Abstract. The standard balls-into-bins model is a process which ran-
domly allocates m balls into n bins where each ball picks d bins inde-
pendently and uniformly at random and the ball is then allocated in a
least loaded bin in the set of d choices. When m = n and d = 1, it is well
known that at the end of process the maximum number of balls at any
bin, the maximum load, is (1 + o(1)) logn

log logn
with high probability (With

high probability refers to an event that holds with probability 1 − 1/nc,
where c is a constant. For simplicity, we sometimes abbreviate it as whp).
Azar et al. [3] showed that for the d-choice process, d � 2, provided ties
are broken randomly, the maximum load is log logn

log d
+ O(1).

In this paper we propose algorithms for allocating n sequential balls
into n bins that are interconnected as a d-regular n-vertex graph G,
where d � 3 can be any integer. Let l be a given positive integer. In each
round t, 1 � t � n, ball t picks a node of G uniformly at random and
performs a non-backtracking random walk of length l from the chosen
node. Then it allocates itself on one of the visited nodes with minimum
load (ties are broken uniformly at random). Suppose that G has a suffi-
ciently large girth and d = ω(log n). Then we establish an upper bound
for the maximum number of balls at any bin after allocating n balls by
the algorithm, called maximum load, in terms of l with high probability.
We also show that the upper bound is at most an O(log log n) factor
above the lower bound that is proved for the algorithm. In particular,

we show that if we set l = �(log n)
1+ε
2 �, for every constant ε ∈ (0, 1), and

G has girth at least ω(l), then the maximum load attained by the algo-
rithm is bounded by O(1/ε) with high probability. Finally, we slightly
modify the algorithm to have similar results for balanced allocation on
d-regular graph with d ∈ [3, O(log n)] and sufficiently large girth.

1 Introduction

The standard balls-into-bins model is a process which randomly allocates m
balls into n bins where each ball picks d bins independently and uniformly at
random and the ball is then allocated in a least loaded bin in the set of d
choices. When m = n and d = 1, it is well known that at the end of process the
maximum number of balls at any bin, the maximum load, is (1 + o(1)) log n

log log n

with high probability. Azar et al. [3] showed that for the d-choice process, d � 2,
c© Springer International Publishing Switzerland 2016
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provided ties are broken randomly, the maximum load is log log n
log d + O(1). For a

complete survey on the standard balls-into-bins process we refer the reader to
[11]. Many subsequent works consider the settings where the choice of bins are
not necessarily independent and uniform. For instance, Vöcking [13] proposed
an algorithm called always-go-left that uses exponentially smaller number of
choices and achieve a maximum load of log log n

dφd
+ O(1) whp, where 1 � φd �

2 is an specified constant. In this algorithm, the bins are partitioned into d
groups of size n/d and each ball picks one random bin from each group. The
ball is then allocated in a least loaded bin among the chosen bins and ties
are broken asymmetrically. In many applications selecting any random set of
choices is costly. For example, in peer-to-peer or cloud-based systems balls (jobs,
items,...) and bins (servers, processors,...) are randomly placed in a metric space
(e.g., R2) and the balls have to be allocated on bins that are close to them as
it minimizes the access latencies. With regard to such applications, Byer et al.
[6] studied a model, where n bins (servers) are uniformly at random placed on
a geometric space. Then each ball in turn picks d locations in the space and
allocates itself on a nearest neighboring bin with minimum load among other d
bins. In this scenario, the probability that a location close to a server is chosen
depends on the distribution of other servers in the space and hence there is
no a uniform distribution over the potential choices. Here, the authors showed
the maximum load is log log n

log d + O(1) whp. Later on, Kenthapadi and Panigrahy
[10] proposed a model in which bins are interconnected as a Δ-regular graph
and each ball picks a random edge of the graph. It is then placed at one of its
endpoints with smaller load. This allocation algorithm results in a maximum
load of log log n + O

(
log n

log(Δ/ log4 n)

)
+ O(1). Peres et al. [12] also considered a

similar model where number of balls m can be much larger than n (i.e., m � n)
and the graph is not necessarily regular. Then, they established upper bound
O(log n/σ) for the gap between the maximum and the minimum loaded bin after
allocating m balls, where σ is the edge expansion of the graph. Following the
study of balls-into-bins with correlated choices, Godfrey [9] generalized the model
introduced by Kenthapadi and Panigrahy such that each ball picks an random
edge of a hypergraph that has Ω(log n) bins and satisfies some mild conditions.
Then he showed that the maximum load is a constant whp. Recently, Bogdan et
al. [5] studied a model where each ball picks a random node and performs a local
search from the node to find a node with local minimum load, where it is finally
placed on. They showed that when the graph is a constant degree expander, the
local search guarantees a maximum load of Θ(log log n) whp.

Our Results. In this paper, we study balls-into-bins models, where each ball
chooses a set of related bins. We propose allocation algorithms for allocating n
sequential balls into n bins that are organized as a d-regular n-vertex graph G.
Let l be a given positive integer. A non-backtracking random walk (NBRW) W
of length l started from a node is a random walk in l steps so that in each step
the walker picks a neighbor uniformly at random and moves to that neighbor
with an additional property that the walker never traverses an edge twice in a
row. Further information about NBRWs can be found in [1,2]. Our allocation
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algorithm, denoted by A(G, l), is based on a random sampling of bins from the
neighborhood of a given node in G by a NBRW from the node. The algorithm
proceeds as follows: In each round t, 1 � t � n, ball t picks a node of G uniformly
at random and performs a NBRW W = (u0, u1 . . . , ul), called l-walk. After that
the ball allocates itself on one of the visited nodes with minimum load and ties
are broken randomly. Our result concerns bounding the maximum load attained
by A(G, l), denoted by m∗, in terms of l. Note that if the balls are allowed to take
NBRWs of length l = Ω(log n) on a graph with girth at least l, then the visited
nodes by each ball generates a random hyperedge of size l+1. Then applying the
Godfrey’s result [9] implies a constant maximum load whp. So, for the rest of
the paper we focus on NBRWs of sub-logarithmic length (i.e., l = o(logd n)). We
also assume that l = ω(1) and G is a d-regular n-vertex graph with girth at least
ω(l log log n) and d = ω(log n). However, when l = �(log n)

1+ε
2 �, for any constant

ε ∈ (0, 1), G with girth at least ω(l) suffices as well. It is worth mentioning that
there exist several explicit families of n-vertex d-regular graph with arbitrary
degree d � 3 and girth Ω(logd n) (see e.g. [8]).

In order to present the upper bound, we consider two cases:

I. If l � 4γG, where γG =
√

logd n, then we show that whp,

m∗ = O
(

log log n

log(l/γG)

)

.

Thus, for a given G satisfying the girth condition, if we set l = �(logd n)
1+ε
2 �,

for any constant ε ∈ (0, 1), then we have l/γG � (log n)ε/2 and by applying
the above upper bound we have m∗ = O(1/ε) whp.

II. If ω(1) � l � 4 · γG, then we show that whp,

m∗ = O
(

logd n · log log n

l2

)

.

In addition to the upper bound, we prove that whp,

m∗ = Ω

(
logd n

l2

)

If G is a d-regular graph with d ∈ [3,O(log n)], then we slightly modify allocation
algorithm A(G, l) and show the similar results for m∗ in l. The algorithm A′(G, l)
for sparse graphs proceeds as follows: Let us first define parameter

rG = �2 · logd−1 log n�.
For each ball t, the ball takes a NBRW of size l · rG, say (u0, u1, · · · , ulrG

),
and then a subset of visited nodes, {uj·rG

| 0 � j � l}, called potential choices,
is selected and finally the ball is allocated on a least-loaded node of potential
choices (ties are broken randomly). Provided G has sufficiently large girth, we
show the similar upper and lower bounds as the allocation algorithm A(G, l) on
d-regular graphs with d = ω(log n).
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Comparison with Related Works. The setting of our work is closely related
to [5]. In that paper in each step a ball picks a node of a graph uniformly at
random and performs a local search to find a node with local minimum load
and finally allocates itself on it. They showed that with high probability the
local search on expander graphs obtains a maximum load of Θ(log log n). In
comparison to the mentioned result, our new protocol achieves a further reduc-
tion in the maximum load, while still allocating a ball close to its origin. Our
result suggests a trade-off between allocation time and maximum load. In fact
we show a constant upper bound for sufficient long walks (i.e., l = (log n)

1+ε
2 , for

any constant ε ∈ (0, 1)). Our work can also be related to the one by Kenthapadi
and Panigrahy where each ball picks a random edge from a nΩ(1/ log log n)-regular
graph and places itself on one of the endpoints of the edge with smaller load.
This model results into a maximum load of Θ(log log n). Godfrey [9] considered
balanced allocation on hypergraphs where balls choose a random edge e of a
hypergraph satisfying some conditions, that is, first the size s s of each edge is
Ω(log n) and Pr [u ∈ e] = Θ( s

n ) for any bin u. The latter one is called balanced
condition. Berenbrink et al. [4] simplified Godfrey’s proof and slightly weak-
ened the balanced condition but since both analysis apply a Chernoff bound, it
seems unlikely that one can extend the analysis for hyperedges of size o(log n).
Our model can also be viewed as a balanced allocation on hypergraphs, because
every l-walk is a random hyperedge of size l + 1 that also satisfies the balanced
condition. By setting the right parameter for l = o(log n), we show that the
algorithm achieves a constant maximum load with sub-logarithmic number of
choices. In a different context, Alon and Lubetzky [2] showed that if a particle
starts a NBRW of length n on n-vertex regualr expander graph with high-girth
then the number of visits to nodes has a Poisson distribution. In particular they
showed that the maximum visit to a node is at most (1 + o(1)) · log n

log log n . Our
result can be also seen as an application of the mathematical concept of NBRWs
to task allocation in distributed networks.

Techniques. To derive a lower bound for the maximum load we first show that
whp there is a path of length l which is traversed by at least Ω (logd n/l) balls.
Also, each path contains l + 1 choices and hence, by pigeonhole principle there
is a node with load at least Ω

(
logd n/l2

)
, which is a lower bound for m∗. We

establish the upper bound based on witness graph techniques. In our model, the
potential choices for each ball are highly correlated, so the technique for building
the witness graph is somewhat different from the one for standard balls-into-bins.
Here we propose a new approach for constructing the witness graph. We also
show a key property of the algorithm, called (α, n1)-uniformity, that is useful
for our proof technique. We say an allocation algorithm is (α, n1)-uniform if the
probability that, for every 1 � t � n1, ball t is placed on an arbitrary node
is bounded by α/n, where n1 = Θ(n) and α = O(1). Using this property we
conclude that for a given set of nodes of size Ω(log n), after allocating n1 balls,
the average load of nodes in the set is some constant whp. Using witness graph
method we show that if there is a node with load larger than some threshold
then there is a collection of nodes of size Ω(log n) where each of them has load
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larger than some specified constant. Putting these together implies that after
allocating n1 balls the maximum load, say m∗

1, is bounded as required whp. To
derive an upper bound for the maximum load after allocation n balls, we divide
the allocation process into n/n1 phases and show that the maximum load at the
end of each phase increases by at most m∗

1 and hence m∗ � (n/n1)m∗
1 whp.

Discussion and Open Problems. In this paper, we proposed a balls-into-bins
model, where each ball picks a set of nodes that are visited by a NBRW of length
l and place itself on a visited node with minimum load. One may ask whether
it is possible to replace a NBRW of length l by several parallel random walks of
shorter length (started from the same node) and get the similar results?

In our result we constantly use the assumption that the graph locally looks
like a d-ary tree. It is also known that cycles in random regular graph are restively
far from each other (e.g., see [7]), so we believe that our approach can be extended
for balanced allocation on random regular graphs.

Many works in this area (see e.g. [5,10]) assumed that the underlying net-
works is regular, it would be interesting to investigate random walk-based algo-
rithms for irregular graphs.

Outline. In Sect. 2, we present notations and some preliminary results that are
required for the analysis of the algorithm. In Sect. 3 we show how to construct
a witness graph and then in Sect. 4 by applying the results we the upper bound
for the maximum load.

2 Notations, Definitions and Preliminaries

In this section we provide notations, definitions and some preliminary results.
A non-backtracking random walk (NBRW) W of length l started from a node is
a simple random walk in l steps so that in each step the walker picks a neighbor
uniformly at random and moves to that neighbor with an additional property
that the walker never traverses an edge twice in a row. Throughout this paper
we assume that l ∈ [ω(1), o(logd n)] is a given parameter and G is a d-regular
graph with girth 10 · l · log log n. Note that we will see that the condition on the
girth can be relaxed to ω(l), for any l higher than (logd n)

1+ε
2 , where ε ∈ (0, 1)

is a constant.
It is easy to see that the visited nodes by a non-backtracking walk of length l

on G induces a path of length l, which is called an l-walk. For simplicity, we use
W to denote both the l-walk and the set of visited nodes by the l-walk. Also, we
define f(W ) to be the number of balls in a least-loaded node of W . The height
of a ball allocated on a node is the number balls that are placed on the node
before the ball.

For every two nodes u, v ∈ V (G), let d(u, v) denote the length of shortest
path between u and v in G. Since G has girth at least ω(l), every path of length
at most l is specified by its endpoints, say u and v. So we denote the path by
interval [u, v]. Also V (H) denotes the vertex set of H. Note that due to the lack
of space, proofs of the lemmas are omitted.
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Definition 1 (Interference Graph). For every given pair (G, l), the inter-
ference graph I(G, l) is defined as follows: The vertex set of I(G, l) is the set
of all l-walks in G and two vertices W and W ′ of I(G, l) are connected if and
only if W ∩ W ′ 	= ∅. Note that if pair (G, l) is clear from the context, then the
interference graph is denoted by I.

Now, let us interpret allocation process A(G, l) as follows:
For every ball 1 � t � n, the algorithm picks a vertex of I(G, l), say Wt,

uniformly at random and then allocates ball t on a least-loaded node of Wt (ties
are broken randomly). Let 1 � n1 � n be a given integer and assume that
A(G, l) has allocated balls until the n1-th ball. We then define Hn1(G, l) to be
the induced subgraph of I(G, l) by {Wt : 1 � t � n1} ⊂ V (I).

Definition 2. Let λ and μ be given positive integers. We say rooted tree T ⊂
I(G, l) is a (λ, μ)-tree if T satisfies:

(1) |V (T )| = λ,
(2) | ∪W∈V (T ) W | � μ.

Note that the latter condition is well-defined because every vertex of T is an
(l+1)-element subset of V (G). A (λ, μ)-tree T is called c-loaded, if T is contained
in Hn1(G, l), for some 1 � n1 � n, and every node in ∪W∈V (T )W has load at
least c.

2.1 Appearance Probability of a c-Loaded (λ, μ)-Tree

In this subsection we formally define the notion of (α, n1)-uniformity for alloca-
tion algorithms, and then present our key lemma concerning the uniformity of
A(G, l). By using this lemma we establish an upper bound for the probability
that a c-loaded (λ, μ)-tree contained in Hn1 exists.

Definition 3. Suppose that B be an algorithm that allocates n sequential balls
into n bins. Then we say B is (α, n1)-uniform if, for every 1 � t � n1 and every
bin u, after allocating t balls we have that

Pr [ball t + 1 is allocated onu ] � α

n
,

where α is some constant.

Lemma 2.1 (Key Lemma). A(G, l) is an (α, n1)-uniform allocation algo-
rithm, where n1 = �n/(6eα)�.

In the next lemma, we derive an upper bound for the appearance probability
a c-loaded (λ, μ)-tree, whose proof is inspired by [10, Lemma 2.1].

Lemma 2.2. Let λ, μ and c be positive integers. Then the probability that there
exists a c-loaded (λ, μ)-tree contained in Hn1(G, l) is at most

n · exp(4λ log(l + 1) − cμ).
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3 Witness Graph

In this section, we show that if there is a node whose load is larger than a
threshold, then we can construct a c-loaded (λ, μ)-tree contained in Hn1(G, l).
Our construction is based on an iterative application of a 2-step procedure,
called Partition-Branch. Before we explain the construction, we draw the reader’s
attention to the following remark:

Remark. The intersection (union) of two arbitrary graphs is a graph whose vertex
set and edge set are the intersection (union) of the vertex and edge sets of those
graphs. Let ∩g and ∪g denote the graphical intersection and union. Note that
we use ∩ (∪) to denote the set intersection (union) operation. Moreover, since
G has girth ω(l), the graphical intersection of every two l-walks in G is either
empty or a path (of length � l). Recall that W denotes both an l-walk and the
set of nodes in the l-walk.

Partition-Branch. Let k � 1 and ρ � 1 be given integers and W be an l-walk
with f(W ) � ρ + 1. The Partition-Branch procedure on W with parameters ρ
and k, denoted by PB(ρ, k), proceeds as follows:

Partition: It partitions W into k edge-disjoint subpaths:

Pk(W ) = {[ui, ui+1] ⊂ W, 0 � i � k − 1},

where d(ui, ui+1) ∈ {�l/k�, �l/k�}.
Branch: For a given Pi = [ui, ui+1] ∈ Pk(W ), it finds (if exists) another l-walk

WPi
intersecting Pi that satisfies the following conditions:

(C1) ∅ 	= WPi
∩ W ⊆ Pi \ {ui, ui+1}.

(C2) f(WPi
) � f(W ) − ρ.

We say procedure PB(ρ, k) on a given l-walk W is valid, if for every P ∈
Pk(W ), WP exists. We usually refer to W as the father of WP . For a graphical
view of the Partition-Branch procedure see Fig. 1.

Definition 4 (Event Nδ). For any given 1 � δ � l, we say that event Nδ holds,
if after allocating at most n balls by A(G, l), every path of length δ is contained
in less than 6 logd−1 n/δ l-walks that are randomly chosen by A(G, l).

Fig. 1. The Partition step on W for k = 4 and the Branch step for P2 that gives WP2 ,
shown by dashed line.
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For the sake of construction, let us define a set of parameters, depending on
d, n, and l, which are used throughout the paper

k := max{4, �l/
√

logd n�},

δ := ��l/k�/4�,
ρ := �6 logd n/δ2�.

Lemma 3.1. Suppose that event Nδ holds and W be an l-walk with

f(W ) � ρ + 1.

Then the procedure PB(ρ, k) on W is valid.

3.1 Construction of Witness Graph

In this subsection, we show how to construct a c-loaded (λ, μ)-tree contained
in Hn1 . Let Un1,l,h denote the event that after allocating at most n1 � n balls
by A(G, l) there is a node with load at least hρ + c + 1, where c = O(1) and
h = O(log log n) are positive integers that will be fixed later. Suppose that event
Un1,l,h conditioning on Nδ happens. Then there is an l-walk R, called root, that
corresponds to the ball at height hρ+c and has f(R) � hρ+c. Applying Lemma
3.1 shows that PB(ρ, k) on R is valid. So, let us define

L1 := {WP , P ∈ Pk(R)},

which is called the first level and R is the father of all l-walks in L1. (C2) in the
Partition-Branch procedure ensures that for every W ∈ L1,

f(W ) � (h − 1)ρ + c.

Once we have the first level we recursively build the i-th level from the
(i − 1)-th level, for every 2 � i � h. We know that each W except R is created
by the Branch step on its father. Let us fix W ∈ Li−1 and its father W ′. We
then apply the Partition step on W and get Pk(W ). We say P ∈ Pk(W ) is a
free subpath if it does not share any node with W ′. By (C1), we have that
∅ 	= W ∩ W ′ = [u, v] ⊂ P ′, for some P ′ ∈ Pk(W ′) and hence d(u, v) � �l/k�.
So, [u, v] shares node(s) with at most 2 subpaths in Pk(W ) and thus Pk(W )
contains at least k − 2 free subpaths. Let P0

k(W ) ⊂ Pk(W ) denote an arbitrary
set of free subpaths of size k − 2. By (C2) and the recursive construction, we
have that f(W ) � (h − i + 1)ρ + c, for each W ∈ Li−1. Therefore, by Lemma
3.1, PB(ρ, k) on W is valid. Now we define the i-th level as follows,

Li =
⋃

W∈Li−1

{WP , P ∈ P0
k(W )}.

For a graphical view see Fig. 2. The following lemma guarantees that our
construction gives a c-loaded (λ, μ)-tree in Hn1 with desired parameters.
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Fig. 2. The first level L1 = {WP1 , WP2 , WP3 , WP4} and the Branch step for free sub-
paths of Pk(WP1).

Lemma 3.2. Suppose that G has girth at least 10hl and Un1,l,h conditioning
on Nδ happens. Then there exists a c-loaded (λ, μ)-tree T ⊂ Hn1 , where λ =
1 + k

∑h−1
j=0 (k − 2)j and μ = (l + 1) · k(k − 2)h−1.

4 Balanced Allocation on Dense Graphs

In this section we show the upper bound for the maximum load attained by
A(G, l) for d-regular graph with d = ω(log n). Let us recall the set of parameters
for given G and l as follows,

k := max{4, �l/
√

logd n�},

δ := ��l/k�/4�,
ρ := �8 logd n/δ2�,

and Un1,l,h is the event that at the end of round n1, there is a nodes with load
at least hρ + c + 1, where c is a constant and

h :=
⌈

log log n

log(k − 2)

⌉

.

Note that when l = (log n)
1+ε
2 with constant ε ∈ (0, 1), then

k = �l/
√

logd n� � l/
√

log3 n � (log n)ε/3.

Thus, h =
⌈

log log n
log(k−2)

⌉
is a constant. Therefore, in order to apply Lemma 3.2

for this case, it is sufficient that G has girth at least 10hl or ω(l). Also we have
the following useful lemma.

Lemma 4.1. With probability 1 − o(1/n), Nδ holds.

Theorem 4.2. Suppose that G is a d-regular graph with girth at least 10hl and
d = ω(log n). Then, with high probability the maximum load attained by A(G, l),
denoted by m∗, is bounded from above as follows:
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I. If ω(1) � l � 4γG, where γG =
√

logd n. Then we have

m∗ = O
(

logd n · log log n

l2

)

.

II. If l � 4γG, then we have

m∗ = O
(

log log n

log(l/γG)

)

.

Note that when l = Θ(γG), we get the maximum load O(log log n).

Proof. By Lemma 2.1 we have that A(G, l) is an (α, n1)-uniform, where n1 =
�n/(6eα)�. Let us divide the allocation process into s phases, where s is the
smallest integer satisfying sn1 � n. We now focus on the maximum load attained
by A after allocating n1 balls in the first phase, which is denoted by m∗

1. Let
us assume that Un1,l,h happens. Now, in order to apply Lemma 3.2, we only
need that G has girth at least 10hl. By Lemma 3.2, if Un1,l,h conditioning on
Nδ happens, then there is a c-loaded (λ, μ)-tree T contained in Hn1 , where
λ = 1 + k

∑h−1
j=0 (k − 2)j and μ � (l + 1) · k(k − 2)h−1. Thus, we get

Pr [Un1,l,h | Nδ]Pr [Nδ] � Pr [T exists | Nδ]Pr [Nδ]
= Pr [T exists andNδ]
� Pr [T exists].

Therefore using the law of total probability and the above inequality we have

Pr [Un1,l,h] = Pr [Un1,l,h | Nδ]Pr [Nδ] + Pr [Un1,l,h | ¬Nδ]Pr [¬Nδ]
� Pr [T exists] + Pr [¬Nδ]
= Pr [T exists] + o(1/n). (1)

where the last inequality follows from Pr [¬Nδ] = o(1/n) by Lemma 4.1. By
definition of h, we get

λ � 1 + k(1 + (k − 2)h) � 2k log n

and
μ = (l + 1)k(k − 2)h−1 � (l + 1)(k − 2)h � (l + 1) log n.

It only remains to bound Pr [T exists]. By applying Lemma 2.2 and substi-
tuting μ and λ, we conclude that

Pr [T exists] � n exp(4λ log(l + 1)) − cμ) � n exp{−z log n},

where z = c(l + 1) − 8k log(l + 1). Depending on k we consider two cases: First,
k = 4. Then it is easy to see there exists a constant c such that z � 2. Second,
k = �l/γG�. We know that l < logd n, so we have l � γ2

G and hence,

z � cl − 8l log l/γG � l(c − 16 log γG/γG) = l(c − o(1)).
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This yields that for some integer c > 0, z = l(c − o(1)) > 2 and hence in
both cases we get Pr [T exists] = o(1/n). Now, by Inequality (1) we infer that
m∗

1 � hρ + c + 1 with probability 1 − o(1/n). In what follows we show the sub-
additivity of the algorithm and concludes that in the second phase the maximum
load increases by at most m∗

1 whp. Assume that we have a copy of G, say G′,
whose nodes have load exactly m∗

1. Let us consider the allocation process of a
pair of balls (n1 + t, t), for every 0 � t � n1, by A(G, l) and A(G′, l). Let Xn1+t

u

and Y t
u , t � 0 denote the load of u ∈ V (G) = V (G′) after allocating balls n1 + t

and t by A(G, l) and A(G′, l), respectively. Now we show that for every integer
0 � t � n1 and u ∈ V (G) we have that

Xn1+t
u � Y t

u . (2)

When t = 0, clearly the inequality holds because Y 0
u = m∗

1. We couple the
both allocation processes A(G, l) and A(G′, l) for a given pair of balls (n1 + t, t),
t � 0, as follows. For every 1 � t � n1, the coupled process first picks a one-
to-one labeling function σt : V (G) → {1, 2, . . . , n} uniformly at random. (Note
that σt is also defined for G′ as V (G) = V (G′).) Then it applies A(G, l) and
selects l-walks Wn1+t and its copy, say W ′

t , in G′. After that, balls n1 + t and
t are allocated on least loaded nodes of Wn1+t and W ′

t , respectively, and ties
are broken in favor of nodes with minimum label. It is easily checked that the
defined process is a coupling. Let us assume that Inequality (2) holds for every
t0 � t, then we show it for t + 1. Let v ∈ Wn1+t+1 and v′ ∈ W ′

t+1 denote the
nodes that are the destinations of pair (n1 + t + 1, t + 1). Now we consider two
cases:

1. Xn1+t
v < Y t

v . Then allocating ball n1 + t + 1 on v implies that

Xn1+t
v + 1 = Xn1+t+1

v � Y t
v � Y t+1

v .

So, Inequality (2) holds for t + 1 and every u ∈ V (G).
2. Xn1+t

v = Y t
v . Since Wn1+t+1 = W ′

t+1, v ∈ W ′
t+1 and v′ ∈ Wn1+t+1. Also we

know that v and v′ are nodes with minimum load contained in Wn+t+1 and
Wt+1, So we have,

Xn1+t
v � Xn1+t

v′ � Y t
v′ � Y t

v .

Since Y t
v = Xn1+t

v , we have

Y t
v′ = Y t

v = Xn1+t
v .

If v 	= v′ and σt+1(v′) < σt+1(v), then it contradicts the fact that ball n1+t+1
is allocated on v. Similarly, if σt+1(v′) > σt+1(v), it contradicts that ball t is
allocated on v′. So, we have v = v′ and

Xn1+t
v + 1 = Xn+t+1

v = Y t
v + 1 = Y t+1

v .

So in both cases, Inequality (2) holds for every t � 0. If we set t = n1,
then the maximum load attained by A(G′, l) is at most 2m∗

1 whp. Therefore,
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by Inequality (2), 2m∗
1 is an upper bound for the maximum load attained by

A(G, l) in the second phase as well. Similarly, we apply the union bound and
conclude that after allocating the balls in s phases, the maximum load m∗ is at
most sm∗

1 with probability 1 − o(s/n) = 1 − o(1/n). ��
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On the Power of Simple Reductions
for the Maximum Independent Set Problem

Darren Strash(B)

Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany
strash@kit.edu

Abstract. Reductions—rules that reduce input size while maintaining
the ability to compute an optimal solution—are critical for developing effi-
cient maximum independent set algorithms in both theory and practice.
While several simple reductions have previously been shown to make small
domain-specific instances tractable in practice, it was only recently shown
that advanced reductions (in a measure-and-conquer approach) can be
used to solve real-world networks on millions of vertices [Akiba and Iwata,
TCS 2016]. In this paper we compare these state-of-the-art reductions
against a small suite of simple reductions, and come to two conclusions:
just two simple reductions—vertex folding and isolated vertex removal—
are sufficient for many real-world instances, and further, the power of the
advanced rules comes largely from their initial application (i.e., kerneliza-
tion), and not their repeated application during branch-and-bound. As
a part of our comparison, we give the first experimental evaluation of a
reduction based on maximum critical independent sets, and show it is
highly effective in practice for medium-sized networks.

Keywords: Maximum independent set · Minimum vertex cover · Ker-
nelization · Reductions · Exact algorithms

1 Introduction

Given a graph G = (V,E), the maximum independent set problem asks us to
compute a maximum cardinality set of vertices I ⊆ V such that no vertices in
I are adjacent to one another. Such a set is called a maximum independent set
(MIS). The maximum independent set problem has applications in classification
theory, information retrieval, computer vision [13], computer graphics [29], map
labeling [17,32] and routing in road networks [20], to name a few. However, the
maximum independent set problem is NP hard [16], and therefore, the currently-
best-known algorithms take exponential time.

1.1 Previous Work

Most previous work has focused on the maximum clique problem and the mini-
mum vertex cover problem, which are complementary to ours. That is, the maxi-
mum clique in the complement graph Ḡ is a maximum independent set in G, and
if C is a minimum vertex cover in G, then V \ C is a maximum independent set.
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 345–356, 2016.
DOI: 10.1007/978-3-319-42634-1 28
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For computing a maximum clique, there are many branch-and-bound algo-
rithms that are efficient in practice [26,27,31]. These algorithms achieve fast
running times by prescribing the order to select vertices during search and
by implementing fast-but-effective pruning techniques, such as those based on
approximate graph coloring [31] or MaxSAT [24]. Among the fastest of these
algorithms is the MCS algorithm by Tomita et al. [31], which is competitive in
dense graphs even against algorithms that use bit parallelism [26]. Further prim-
ing these algorithms with a large initial solution obtained using local search [4]
can be surprisingly effective at speeding up search [6].

Several techniques based on kernelization [1,15] have been very promising
in solving both the maximum independent set and minimum vertex cover prob-
lems. In particular, Butenko et al. [10] showed that isolated vertex reductions
disconnect medium-sized graphs derived from error-correcting codes into small
connected components that can be solved optimally. Butenko and Trukhanov [11]
introduced a reduction based on critical independent sets, finding exact maxi-
mum independent sets in graphs with up to 18,000 vertices generated with the
Sanchis graph generator [28]. Though these works apply reduction techniques
as a preprocessing step, further works apply reductions as a natural step of the
algorithm. In the area of exact algorithms, it has long been clear that applying
reductions in a measure-and-conquer approach can improve the theoretical run-
ning time of vertex cover and independent set algorithms [9,14]. However, few
experiments have been conducted on the real-world efficacy of these techniques.

Recently, Akiba and Iwata [3] showed that applying advanced reductions
with sophisticated branching rules in a measure-and-conquer approach is highly
effective in practice. They show that an exact minimum vertex cover, and there-
fore an exact maximum independent set, can be found in many large complex
networks with up to 3.2 million vertices in much less than a second. Further, on
nearly all of their inputs, the state-of-the-art branch-and-bound algorithm MCS
[31] fails to finish within 24 h. Thus, their method is orders of magnitude faster
on these real-world graphs.

1.2 Our Results

While the results of Akiba and Iwata [3] are impressive, it is not clear how much
their advanced techniques actually improve search compared to existing tech-
niques. A majority of the graphs they tested have kernel size zero, and therefore
no branching is required. We show that just 2 simple reduction rules—isolated
vertex removal and vertex folding—are sufficient to make many of their test
instances tractable with standard branch-and-bound solvers. We further provide
the first comparison with another class of reductions that are effective on real-
world complex networks: the critical independent set reduction of Butenko and
Trukhanov [11] and the variant due to Larson [22], which computes a maximum
critical independent set.
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2 Preliminaries

We work with an undirected graph G = (V,E) where V is a set of n vertices and
E ⊂ {{u, v} | u, v ∈ V } is a set of m edges. The open neighborhood of a vertex
v, denoted N(v), is the set of all vertices w such that (v, w) ∈ E. We further
denote the closed neighborhood by N [v] = N(v) ∪ {v}. We similarly define the
open and closed neighborhoods of a set of vertices U to be N(U) =

⋃
u∈U N(u)

and N [U ] = N(U) ∪ U , respectively. Lastly, for vertices S ⊆ V , the induced
subgraph G[S] ⊆ G is the graph on the vertices in S with edges in E between
vertices in S.

2.1 Reduction Rules

There are several well-known reduction rules that can be applied to graphs for
the minimum vertex cover problem (and hence the maximum independent set
problem) to reduce the input size to its irreducible equivalent, the kernel [1]. Each
reduction allows us to choose vertices that are in some MIS by following simple
rules. If an MIS is found in the kernel, then undoing the reductions gives an MIS
in the original graph. Reduction rules are typically applied as a preprocessing
step. The hope is that the kernel is small enough to be solved by existing solvers
in feasible time. If the kernel is empty, then a maximum independent set is
found by simply undoing the reductions. We now briefly describe three classes
of reduction rules that we consider here.

Simple Reductions. We first describe two simple reductions: isolated vertex
removal and vertex folding.

An isolated vertex, also called a simplicial vertex, is a vertex v whose neigh-
borhood forms a clique. That is, there is a clique C such that V (C) ∩ N(v) =
N(v). Since v has no neighbors outside of the clique, it must be in some maxi-
mum independent set. Therefore, we can add v to the maximum independent set
we are computing, and remove v and C from the graph. Isolated vertex removal
was shown by Butenko et al. [10] to be highly effective in finding exact maxi-
mum independent sets on graphs derived from error-correcting codes [10]. This
reduction is typically restricted to vertices of degree zero, one, and two in the
literature. However, we consider vertices of any degree.

Vertex folding was first introduced by Chen et al. [12] to reduce the the-
oretical running time of exact branch-and-bound algorithms for the maximum
independent set problem. This reduction is applied whenever there is a vertex
v with degree 2 and non-adjacent neighbors u and w. Either v or both u and w
are in some MIS. Therefore, we can contract u, v, and w to a single vertex v′

and add the appropriate vertices to the MIS after finding an MIS in the kernel.

Critical Independent Set Reductions. One further reduction method shown
to be effective in practice for sparse graphs is the critical independent set
reduction by Butenko and Trukhanov [11]. A critical set is a set U ⊆ V that
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Fig. 1. A graph G (left) and its bi-double graph B(G) (middle), illustrating that edges
of G become two edges in B(G). Right: a maximum matching (in this instance, a
perfect matching) in B(G).

maximizes |U | − |N(U)| and Ic = U \ N(U) is called a critical independent set.
Butenko and Trukhanov show that every critical independent set is contained in
some maximum independent set, and show that one can be found in polynomial
time. Their algorithm works by repeatedly computing some critical independent
set Ic and removing N [Ic] from the graph, stopping when Ic is empty.

A critical set can be found by first computing the bi-double graph B(G), then
computing a maximum independent set in B(G) [2,22,34]. B(G) is a bipar-
tite graph with vertices V ∪ V ′ where V ′ is a copy of V , and contains edge
(u, v′) ⊆ V × V ′ if and only if (u, v) ∈ E. Since B(G) is bipartite, the maxi-
mum independent set in B(G) can be solved by computing a maximum bipartite
matching in polynomial time [18].

Butenko and Trukhanov [11] use the standard augmenting path algorithm
to compute a maximum independent set in B(G), and hence find a critical set
in G, in O(nm) time. One drawback of their approach is that the quality of
the reduction depends on the maximum independent set found in the bi-double
graph. As noted by Larson [22], if there is a perfect matching in B(G) (such
as in Fig. 1, right), then G has an empty critical empty set. However, in the
experiments by Butenko and Trukhanov [11] these worst cases were not observed.

To prevent the worst-case, Larson [22] gave the first algorithm to find a
maximum critical independent set, which accumulates vertices that are in some
critical independent set and excludes their neighbors. He further gave a simple
method to test if a vertex v is in a critical independent set: vertex v is in a critical
independent set if and only if α(B(G)) = α(B(G) − {v, v′} − N({v, v′})) + 2,
where α(·) is the independence number—the size of a maximum independent
set. A naive approach would compute a new maximum matching from scratch to
compute the independence number of each such bi-double graph, taking O(n2m)
time total (or O(n3/2m) time with the Hopcroft–Karp algorithm [18]). However,
we can save the matching between executions to ensure only few augmenting
paths are computed for each subsequent matching, giving O(m2) running time,
which is better when m = o(n3/2).

Advanced Reduction Rules. We list the advanced reduction rules from Akiba
and Iwata [3]. Refer to Akiba and Iwata [3] for a more thorough discussion,
including implementation details.
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Firstly, they use vertex folding and degree-1 isolated vertex removal (also
called pendant vertex removal), as described previously. They further test a full
suite of other reductions from the literature, which we now briefly describe.

Linear Programming: A well-known [25] linear programming relaxation for the
MIS problem with a half-integral solution (i.e., using only values 0, 1/2, and 1)
can be solved using bipartite matching: maximize

∑
v∈V xv such that ∀(u, v) ∈

E, xu + xv ≤ 1 and ∀v ∈ V , xv ≥ 0. Vertices with value 1 must be in some MIS
and can thus be removed from G along with their neighbors. Akiba and Iwata
[3] compute a solution whose half-integral part is minimal [19].

Unconfined [33]: Though there are several definitions of unconfined vertex in
the literature, we use the simple one from Akiba and Iwata [3]. A vertex v is
unconfined when determined by the following simple algorithm. First, initialize
S = {v}. Then find a u ∈ N(S) such that |N(u) ∩ S| = 1 and |N(u) \ N [S]| is
minimized. If there is no such vertex, then v is confined. If N(u)\N [S] = ∅, then
v is unconfined. If N(u) \ N [S] is a single vertex w, then add w to S and repeat
the algorithm. Otherwise, v is confined. Unconfined vertices can be removed
from the graph, since there always exists an MIS I with no unconfined vertices.

Twin [33]: Let u and v be vertices of degree 3 with N(u) = N(v). If G[N(u)] has
edges, then add u and v to I and remove u, v, N(u), N(v) from G. Otherwise,
some vertices in N(u) may belong to some MIS I. We still remove u, v, N(u)
and N(v) from G, and add a new gadget vertex w to G with edges to u’s two-
neighborhood (vertices at a distance 2 from u). If w is in the computed MIS,
then none of u’s two-neighbors are I, and therefore N(u) ⊆ I. Otherwise, if w is
not in the computed MIS, then some of u’s two-neighbors are in I, and therefore
u and v are added to I.

Alternative: Two sets of vertices A and B are set to be alternatives if |A| =
|B| ≥ 1 and there exists an MIS I such that I ∩ (A ∪ B) is either A or B.
Then we remove A and B and C = N(A) ∩ N(B) from G and add edges from
each a ∈ N(A) \ C to each b ∈ N(B) \ C. Then we add either A or B to I,
depending on which neighborhood has vertices in I. Two structures are detected
as alternatives. First, if N(v) \ {u} induces a complete graph, then {u} and {v}
are alternatives (a funnel). Next, if there is a chordless 4-cycle a1b1a2b2 where
each vertex has at least degree 3. Then sets A = {a1, a2} and B = {b1, b2} are
alternatives when |N(A) \ B| ≤ 2, |N(A) \ B| ≤ 2, and N(A) ∩ N(B) = ∅.

Packing [3]: Given a non-empty set of vertices S, we may specify a packing con-
straint

∑
v∈S xv ≤ k, where xv is 0 when v is in some MIS I and 1 otherwise.

Whenever a vertex v is excluded from I (i.e., in the unconfined reduction), we
remove xv from the packing constraint and decrease the upper bound of the con-
straint by one. Initially, packing constraints are created whenever a vertex v is
excluded from or included in the MIS. The simplest case for the packing reduc-
tion is when k is zero: all vertices must be in I to satisfy the constraint. Thus,
if there is no edge in G[S], S may be added to I, and S and N(S) are removed
from G. Other cases are much more complex. Whenever packing reductions are
applied, existing packing constraints are updated and new ones are added.



350 D. Strash

3 Experimental Results

We first investigate the size of kernels computed by all kernelization techniques.
We test four techniques: (1) using only isolated vertex removal and vertex folding
(Simple), (2) using the critical independent set reduction rule due to Butenko
and Trukhanov [11] (Critical), (3) the version of (2) by Larson [22] that always
computes a maximum critical independent set (MaxCritical), and (4) the reduc-
tions tested by Akiba and Iwata [3] (Advanced). Note that we use the standard
augmenting paths algorithm for computing a maximum bipartite matching (and
not the Hopcroft–Karp algorithm [18]) to be consistent with the original exper-
iments by Butenko and Trukhanov [11].

Next, we investigate the time to compute an exact solution on large instances.
We test two algorithms: the full branch-and-reduce algorithm due to Akiba and
Iwata [3] (B&R), and Simple kernelization followed by MCS, a state-of-the-art
clique solver due to Tomita et al. [31] (Simple+MCS). We use our own implemen-
tation of MCS1, since the code for the original implementation is not available
and because we modify the MCS algorithm to solve the maximum independent
set problem. We choose MCS because it is one of the leading solvers in practice,
even competing with the bit-board implementations of San Segundo et al. [26,27].

Instances. We run our algorithms on synthetically-generated graphs, as well
as a large corpus of real-world sparse data sets. For synthetic cases, we use
graphs generated with the Sanchis graph generator [28]. For medium-sized real-
world graphs, we consider small Erdős co-authorship networks from the Pajek
data set [5] and biological networks from the Biological General Repository for
Interaction Datasets v3.3.112 (BioGRID) [30]. We further consider large com-
plex networks (including co-authorship networks, road networks, social networks,
peer-to-peer networks, and Web crawl graphs) from the Koblenz Network Collec-
tion (KONECT) [21], the Stanford Large Network Dataset Repository (SNAP)
[23], and the Laboratory for Web Algorithmics (LAW) [7,8].

3.1 Experimental Setup

All of our experiments were exclusively run on a machine with Ubuntu 14.04.3
and Linux kernel version 3.13.0-77. The machine has four Octa-Core Intel Xeon
E5-4640 processors running at 2.4 GHz, 512 GB local memory, 420 MB L3-Cache,
and 48256 KB L2-Cache. For Advanced reductions as well as B&R, we compiled
and ran the original Java implementation of Akiba and Iwata2 [3] with Java 8
update 60. We implemented all other algorithms3 in C++11, and compiled them
with gcc version 4.8.4 with optimization flag -O2. Each algorithm was run for
one hour. All running times listed in our tables are in seconds, and we mark a
data set with ‘-’ when an algorithm does not finish within the time limit. We
indicate the best solution, and the time to achieve it, by marking the value bold.
1 https://github.com/darrenstrash/open-mcs.
2 https://github.com/wata-orz/vertex cover.
3 https://github.com/darrenstrash/kernel-mis.

https://github.com/darrenstrash/open-mcs
https://github.com/wata-orz/vertex_cover
https://github.com/darrenstrash/kernel-mis
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Table 1. We give the kernel size k and running time t for each reduction technique on
synthetically-generated Sanchis data sets. We also list the data used to generate the
graphs: the number of vertices n, number of edges m, and independence number α(G).

Graph Critical MaxCritical Advanced Simple
n m α(G) k t k t k t k t

1 000 186 723 505 0 0.06 0 0.73 0 0.16 1 000 0.00
1 000 181 256 524 0 0.16 0 0.86 0 0.15 1 000 0.00
2 000 711 955 1 067 0 0.74 0 5.33 0 0.37 2 000 0.01
2 000 686 341 1 103 0 1.08 0 5.57 0 0.34 2 000 0.01
3 000 536 831 1 535 2 930 0.26 0 1.54 0 0.02 0 0.14
3 000 513 773 1 563 2 874 0.24 0 1.59 0 0.02 0 0.13
4 000 929 429 2 069 3 862 0.49 0 2.83 0 0.03 0 0.31
4 000 805 011 2 309 0 3.63 0 29.17 0 0.47 4 000 0.01
5 000 1 258 433 2 717 4 566 0.70 0 4.85 0 0.03 0 0.50
5 000 517 013 3 132 0 3.37 0 25.42 0 0.27 0 0.18
6 000 1 731 295 3 302 5 396 1.02 0 7.06 0 0.04 0 0.78
6 000 1 507 280 3 412 5 176 0.94 0 7.18 0 0.04 0 0.65
7 000 588 713 4 493 5 014 1.06 0 10.91 0 0.03 0 0.23
8 000 3 099 179 4 394 7 212 1.96 0 12.41 0 0.06 0 1.93
8 000 428 619 5 249 0 5.58 0 48.21 0 0.17 0 0.29
9 000 4 040 615 4 927 0 26.23 0 239.21 0 0.74 9 000 0.04
9 000 451 349 5 899 6 202 1.45 0 18.20 0 0.02 0 0.20

10 000 4 794 713 5 507 8 986 3.02 0 19.86 0 0.07 0 3.78
10 000 3 775 385 5 811 0 37.28 0 274.31 0 1.27 9 994 0.06
11 000 6 344 649 5 901 10 198 4.35 0 23.30 0 0.09 0 5.62
11 000 2 479 688 6 862 0 33.91 0 223.67 0 1.44 0 1.10
12 000 5 378 750 6 973 8 552 16.46 0 78.69 0 0.07 0 4.55
12 000 4 827 152 7 098 194 63.80 0 368.03 0 0.07 0 5.35
13 000 5 638 263 7 698 0 75.59 0 510.73 0 6.56 0 4.50
13 000 1 319 528 8 474 0 24.54 0 185.99 0 0.40 0 1.15
14 000 10 723 774 7 417 4 78.11 0 819.25 0 25.24 13 880 0.67
14 000 3 250 904 8 844 10 312 4.53 0 47.93 0 0.05 0 2.45
15 000 6 799 463 8 993 12 014 5.82 0 50.81 0 0.10 0 6.58
15 000 4 207 335 9 413 0 80.07 0 526.90 0 2.98 0 3.37
16 000 4 807 361 10 042 0 96.05 0 627.97 0 3.76 0 3.44
16 000 14 309 249 8 401 570 101.08 0 1 108.03 0 34.14 0 29.35
17 000 803 659 11 239 11 522 5.17 0 64.71 0 0.03 0 0.63
17 000 10 662 300 9 898 14 202 7.66 0 60.82 0 0.14 0 12.88
18 000 5 064 751 11 412 256 124.12 0 683.34 0 0.08 0 6.40
18 000 1 970 506 11 782 32 53.56 0 372.49 0 0.05 0 1.21

3.2 Kernel Sizes

First, we compare the kernel sizes computed by each reduction technique. We
first run all algorithms on synthetically generated graphs, on which Critical was
previously shown to be effective [11]. We generate instances with a known clique
number using the Sanchis graph generator4 [28], and then take the complement.
Like Butenko and Trukhanov [11], we choose the clique number (and thus, the
independence number in the complement graph) to be at least n/2.

As can be seen in Table 1, Critical succeeds in reducing the kernel to empty
in many cases. During testing, we noticed that Critical did not enter a second
iteration on most graphs. That is, in general, either the first critical independent
set matched the size of a maximum independent set or the remaining graph had
an empty critical set. It is unclear what causes this behavior, but we conjecture

4 ftp://dimacs.rutgers.edu/pub/challenge/.

ftp://dimacs.rutgers.edu/pub/challenge/
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Table 2. We give the kernel size k and running time t for each reduction technique on
Erdős and BioGRID graphs. We further give the number of vertices n and edges m for
each graph.

Graph Critical MaxCritical Advanced Simple
Name n m k t k t k t k t

Erdős Graphs

60.042110.00534131274179sodre 0 0.00 0 0.00
02.06427988845279sodre 0 13.83 0 0.01 0 0.00

80.050210.03731831584189sodre 0 0.00 0 0.00
22.04450592285289sodre 0 15.65 0 0.01 0 0.00

70.081210.08937141294199sodre 0 0.01 0 0.00
22.02493990016299sodre 0 17.11 0 0.01 0 0.00

BioGRID Graphs

Arabidopsis-thaliana 7 225 17 223 1 534 1.16 188 19.18 0 0.02 31 0.00
50.0310.0901753983suruat-soB 0 0.00 0 0.00

Caenorhabditis-elegans 3 974 7 918 758 0.30 18 5.38 0 0.01 0 0.00
Candida-albicans-SC5314 379 371 66 0.00 14 0.05 0 0.00 0 0.00

20.01100.017942832oirer-oinaD 0 0.00 0 0.00
Drosophila-melanogaster 8 229 39 086 3 479 2.78 973 28.01 0 0.02 30 0.01
Escherichia-coli 139 122 14 0.00 0 0.01 0 0.00 0 0.00
Gallus-gallus 336 343 81 0.00 3 0.04 0 0.00 0 0.00
Hepatitus-C-Virus 113 111 2 0.00 0 0.01 0 0.00 0 0.00
Homo-sapiens 19 592 169 285 5 675 18.70 1 629 210.89 0 0.05 150 0.03
Human-Herpesvirus-1 140 140 12 0.00 0 0.01 0 0.00 0 0.00
Human-Herpesvirus-4 219 217 2 0.00 0 0.02 0 0.00 0 0.00
Human-Herpesvirus-8 137 138 0 0.00 0 0.01 0 0.00 0 0.00
Human-HIV-1 1 030 1 186 0 0.00 0 0.36 0 0.00 0 0.00
Mus-musculus 8 567 19 265 1 377 1.39 51 27.56 0 0.01 0 0.00
Oryctolagus-cuniculus 183 168 28 0.00 0 0.02 0 0.00 0 0.00
Plasmodium-falciparum-3D7 1 224 2 443 336 0.04 0 0.40 0 0.00 0 0.00
Rattus-norvegicus 3 066 4 139 533 0.14 15 3.04 0 0.01 6 0.00
Saccharomyces-cerevisiae 6 660 228 752 5 732 2.48 5 180 212.87 4 086 0.96 4 575 0.05
Schizosaccharomyces-pombe 4 143 57 049 840 1.41 194 11.72 0 0.01 0 0.02
Xenopus-laevis 473 520 160 0.01 16 0.06 0 0.00 7 0.00

it could be due to how we compute the maximum matching: we use depth-first
search in the bi-double graph. It is unclear which search strategy Butenko and
Trukhanov [11] use in their experiments. MaxCritical always computes an empty
kernel on these instances; however, it is significantly slower than Critical. This
is because Critical computes only 2 maximum matchings on typical instances,
while MaxCritical computes many more.

We now turn our attention to Simple and Advanced. Advanced is the clear
winner on the Sanchis graphs. It always computes an empty kernel, and does
so quickly. However, Simple also computes empty kernels on 28 of the instances.
Even though Simple is only faster than Advanced on four instances, Simple still
computes exact solutions on these instances within a few seconds. Therefore, the
Advanced reductions are not required to make these instances tractable.

We further tested all algorithms on medium-sized real-world graphs. We ran
all four reduction algorithms on Erdős collaboration graphs from the Pajek data
set and on biological graphs from the BioGRID data set (we only show results on
those graphs with 100 or more vertices). As seen in Table 2, MaxCritical still gives
consistently smaller kernels than Critical, but unlike the Sanchis graphs, not all
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kernels are empty. However, the Simple reductions give consistently small kernels
on these real-world instances, computing an empty kernel on all but 4 instances,
and doing so as fast as Advanced. The size of three of these non-empty kernels
is well within the range of feasibility of existing MIS solvers. Neither Simple nor
Advanced can solve the Saccharomyces-cerevisiae data set exactly, and the
Simple kernel is within 12 % of the Advanced kernel size.

3.3 Exact Solutions on Large-Scale Complex Networks

We now focus on computing an exact MIS for the larger instances considered
by Akiba and Iwata [3]. We test the branch-and-reduce algorithm by Akiba
and Iwata (B&R) that uses Advanced reductions with branching rules during
recursion. We also run Simple to kernelize the graph, and then run MCS on
the remaining connected components (Simple+MCS). Results are presented in
Table 3. Since Critical and MaxCritical are slow on large instances and less effective
on medium-sized real-world instances (see Table 2), we exclude them from these
experiments.

Similar to the original experiments of Akiba and Iwata [3], B&R computes an
exact MIS on 42 of these instances. However, surprisingly, Simple+MCS also com-
putes exact solutions for 33 of these instances. In the remaining nine instances
where B&R computes a solution but Simple+MCS does not, we see that the size
kmax of the maximum connected component in the kernel is significantly smaller
for B&R. For six of these instances, kmax is less than 600, which is within the
range of traditional solvers. Therefore, we conclude that the speed of B&R is pri-
marily due to the initial kernelization on these instances. However, the remaining
three instances—web-BerkStan, web-NotreDame and libimseti—have kernels
that are too large for traditional solvers. Therefore, these instances benefit the
most from the branch-and-reduce paradigm.

4 Conclusion and Future Work

Although efficient in practice, the techniques used by Akiba and Iwata [3] are
not necessary for computing a maximum independent set exactly in many large
complex networks. Our results further suggest that the initial kernelization is
far more effective than the techniques used in branch-and-bound. Further, while
the critical independent set reduction due to Butenko and Trukhanov [11] and
the variant due to Larson [22] compute small kernels in practice, they are too
slow to compete with other reductions on real-world sparse graphs.

This leaves several open questions that are interesting for future research.
In particular, we would like to understand the structure that causes branch-
and-reduce techniques to be fast on some graphs, but slow on other (similar)
instances. Is it possible to speed up branch-and-reduce algorithms by apply-
ing only simple kernelization techniques, and reserving advanced techniques for
“difficult” portions of the graph? As we’ve seen, advanced rules are not always
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Table 3. We give the size kmax of largest connected component in the kernel from
each reduction technique and the running time t of each algorithm to compute an
exact maximum independent set. We further give the number of vertices n and edges
m for each graph.

Graph B&R Simple+MCS
Name n m kmax t kmax t

LAW Graphs

cnr-2000 325 557 2 738 969 2 404 - 17 626 -
dblp-2010 326 186 807 700 0 0.38 0 0.14
dblp-2011 986 324 3 353 618 0 1.03 6 0.62
eu-2005 862 664 16 138 468 51 864 - 313 797 -
hollywood-2009 1 139 905 56 375 711 0 22.01 9 21.38
hollywood-2011 2 180 759 114 492 816 0 47.50 17 44.66
in-2004 1 382 908 13 591 473 281 4.39 11 615 -
indochina-2004 7 414 866 150 984 819 8 246 - 509 355 -
uk-2002 18 520 486 261 787 258 9 408 - 2 043 389 -

SNAP Graphs

as-Skitter 1 696 415 11 095 298 597 2 111.02 21 174 -
ca-AstroPh 18 772 198 050 0 0.07 0 0.02
ca-CondMat 23 133 93 439 0 0.04 0 0.01
ca-GrQc 5 242 14 484 0 0.04 0 0.00
ca-HepPh 12 008 118 489 0 0.05 7 0.01
ca-HepTh 9 877 25 973 0 0.05 0 0.01
email-Enron 36 692 183 831 0 0.11 6 0.03
email-EuAll 265 214 364 481 0 0.09 0 0.09
p2p-Gnutella04 10 876 39 994 0 0.01 7 0.01
p2p-Gnutella05 8 846 31 839 0 0.01 0 0.01
p2p-Gnutella06 8 717 31 525 0 0.01 0 0.01
p2p-Gnutella08 6 301 20 777 0 0.01 0 0.01
p2p-Gnutella09 8 114 26 013 0 0.02 0 0.01
p2p-Gnutella24 26 518 65 369 0 0.02 0 0.02
p2p-Gnutella25 22 687 54 705 0 0.02 0 0.01
p2p-Gnutella30 36 682 88 328 0 0.02 0 0.02
p2p-Gnutella31 62 586 147 892 0 0.05 0 0.03
roadNet-CA 1 965 206 2 766 607 10 807 - 89 667 -
roadNet-PA 1 088 092 1 541 898 5 834 - 35 780 -
roadNet-TX 1 379 917 1 921 660 4 102 - 49 143 -
soc-Epinions1 75 879 405 740 0 0.07 7 0.06
soc-LiveJournal1 4 847 571 42 851 237 295 8.09 28 037 -
soc-pokec 1 632 803 22 301 964 651 503 - 748 755 -
soc-Slashdot0811 77 360 469 180 0 0.07 8 0.13
soc-Slashdot0902 82 168 504 230 0 0.11 15 0.15
web-BerkStan 685 230 6 649 470 1 478 143.43 62 741 -
web-Google 875 713 4 322 051 70 1.23 770 1.51
web-NotreDame 325 729 1 090 108 3 548 12.27 3 578 -
web-Stanford 281 903 1 992 636 2 619 - 10 715 -
wiki-Talk 2 394 385 4 659 565 0 0.44 0 2.32
wiki-Vote 7 115 100 762 0 0.01 0 0.02

KONECT Graphs

flickr-growth 2 302 925 22 838 276 9 1.60 139 31.59
flickr-links 1 715 255 15 555 041 9 1.10 68 17.04
libimseti 220 970 17 233 144 49 399 1 371.18 141 008 -
orkut-links 3 072 441 117 185 083 2 545 612 - 2 701 058 -
petster-carnivore 623 766 15 695 166 0 2.50 117 4.77
petster-cat 149 700 5 448 197 66 2.83 68 152 -
petster-dog 426 820 8 543 549 231 4.59 139 270 -
youtube-links 1 138 499 2 990 443 0 0.43 19 3.12
youtube-u-growth 3 223 643 9 376 594 0 1.51 33 17.59
baidu-internallink 2 141 300 17 014 946 10 1.02 71 36.99
baidu-relatedpages 415 641 2 374 044 492 1.59 11 458 -
hudong-internallink 1 984 484 14 428 382 79 1.89 1 546 45.92
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necessary. Finally, much time is devoted to computing reductions in branch-and-
reduce algorithms, perhaps more advanced (but slower) pruning techniques are
now viable for these algorithms.
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Abstract. We study Unique Sink Orientations (USOs) of grids: Carte-
sian products of two complete graphs on n vertices, where the edges are
oriented in such a way that each subgrid has a unique sink. We consider
two different oracle models, the edge query and the vertex query model.
An edge query provides the orientation of the queried edge, whereas a
vertex query provides the orientation of all edges incident to the queried
vertex. We are interested in bounding the number of queries to the oracle
needed by an algorithm to find the sink. In the randomized setting, the
best known algorithms find the sink using either Θ(n) edge queries, or
O(log2 n) vertex queries, in expectation. We prove that O(nlog4 7) edge
queries and O(n log n) vertex queries suffice to find the sink in the deter-
ministic setting. A deterministic lower bound for both models is Ω(n).
Grid USOs are instances of LP-type problems and violator spaces for
which derandomizations of known algorithms remain elusive.

Keywords: Unique sink orientation · LP-type problem · Violator spaces

1 Introduction

An (m,n)-grid, or simply a grid, is the Cartesian product Km × Kn of two
complete graphs with m and n vertices, respectively. An induced subgraph of
a grid is called a subgrid if it is itself a grid. We identify the vertex set of an
(m,n)-grid with the Cartesian product [m] × [n] where [m] = {1, . . . , m}. Two
vertices v, w in a grid are adjacent if and only if they differ in exactly one of
their two coordinates. We call the edge vw a horizontal edge if v and w differ
in the first coordinate, and we call it a vertical edge if they differ in the second
coordinate. The rows and columns of the grid are defined accordingly; see Fig. 1.

A vertex in an oriented graph is called a sink if all its incident edges are
incoming. An orientation of a grid is a Unique Sink Orientation, or USO for
short, if all its non-empty subgrids have a unique sink. We call a grid with a
unique sink orientation a grid USO. The Sink problem asks to find the sink of
a grid USO by performing oracle queries which return the orientation of either

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-42634-1 29



358 L. Barba et al.

horizontal edge

vertical
edge

Fig. 1. Left: example of a (4, 3)-grid (that means 4 columns and 3 rows) where a
(3, 2)-subgrid is shaded. Right: a unique sink orientation of a (3, 2)-grid. This is the
double-twist USO which we refer to in the text.

a single edge (edge query) or of all edges incident to a specified vertex (vertex
query). We denote by Sink(m,n) the Sink problem on an (m,n)-grid USO.
The goal of this paper is to provide bounds on the minimum number of queries
needed to solve Sink(m,n) deterministically.

Previous Work. Unique sink orientations of grids, as presented in this paper,
are a graph-theoretic model for a specific class of linear programs [6]. Namely,
assume that the feasible region of a given linear program is a simple polytope
of dimension d that has exactly d + 2 facets. Every such (d, d + 2)-polytope is a
product of two simplices and hence its graph G is isomorphic to a grid [6]. The
problem of minimizing a linear function on this polytope induces a grid USO
and its unique sink corresponds to the optimum.

It is known that the above linear programming problem is equivalent to the
One line and n points problem in the plane [8,16]: Given n points in general
position in the plane and one vertical line �, find the segment connecting a pair
of points that has the lowest intersection with the given line. Gärtner et al. [8]
proved that the grid USO arising from an instance of the one line and n points
problem is Holt-Klee. The Holt-Klee property states that there are as many
vertex-disjoint directed paths between source and sink as there are neighbors of
the source (equivalently, the sink) in every subgrid [11]. Felsner et al. [6] have
proved that, for grid USO, this is equivalent to a specific (2, 3)-grid, the “double
twist” (depicted in Fig. 1 right), not appearing as a subgraph of the grid USO.
However, not every Holt-Klee grid USO comes from an instance of the one line
and n points problem [6]. Analyzing Random Edge simplex algorithm for Holt-
Klee grid USOs yields an algorithm to solve Sink that queries Θ(log n · log m)
vertices in expectation [6,8,15]. For general grid USOs, Gärtner et al. [9] exhibit
a randomized algorithm that solves Sink(m,n) using O(log n · log m) vertex
queries in expectation. The best lower bound (randomized) for this problem is
Ω(log n + log m) (obtained from finding the sink of a single row or column). In
the edge query model, they show that Sink(m,n) can be solved using Θ(m+n)
edge queries in expectation. This yields an exponential gap between number of
queries required in the two models. However, in the deterministic setting, it is
still unclear whether such a gap exists.
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Consider the matrix USO optimization problem: Find the global minimum
of an injective real function defined on a two dimensional matrix USO, where a
matrix is USO if each 2×2 sub-matrix has a unique local minimum. The matrix
is given by an oracle that reveals the value of the queried entry. Since this matrix
yields a grid USO when edges between entries in the same row or column are
oriented from the larger to the smaller, the randomized algorithm from Gärtner
et al. [9] solves the matrix USO optimization problem on a m × n matrix by
querying Θ(m+n) entries in expectation. However, no deterministic counterpart
to this algorithm is known. Similar optimization problems on matrices have
been studied with stronger conditions and have several applications in geometric
problems [1,5,7,13].

Connection to LP-type Problems. Gärtner et al. [9] hinted that Sink can
be naturally written as an LP-type problem. An LP-type problem, originally
defined by Sharir and Welzl [14], is a pair (S,w) where S is a finite set called the
constraints and w : 2S → R ∪ {−∞} is a function subject to certain conditions:
(1) Monotonicity: for every two sets A ⊆ B ⊆ S, we have w(A) ≤ w(B) and
(2) Locality: for every two sets A ⊆ B ⊆ S and every constraint h ∈ S, if
−∞ < w(A) = w(B) < w(B ∪ {h}) then w(A) < w(A ∪ {h}). A set B ⊆ S is
called a basis if every proper subset of B has a smaller value for w than B itself.
The combinatorial dimension of an LP-type problem is the maximum cardinality
of a basis (for more information on LP-type problems refer to [12]). Solving an
LP-type problem, means finding a basis with the same value under w as the
whole set S.

To write Sink(m,n) as an LP-type problem, we let the set of constraints
S be the set of rows and columns and thus |S| = m + n. As any grid USO
is acyclic (see Sect. 2), there is a topological ordering of its vertices with the
sink having the highest rank in the ordering. Every subset of the rows and
columns defines a subgrid H and we define w(H) to be the rank of its sink in
the topological ordering or −∞ if the subgrid is empty. This definition satisfies
both monotonicity and locality, yielding an LP-type problem. Moreover, a basis
is simply a vertex defined by one row and one column. Solving Sink(m,n) then
corresponds to finding a basis of (S,w) with the highest value.

To solve an LP-type problem, there are linear-time (in |S|) randomized algo-
rithms [12] which require access to certain primitive operations. For grid USOs
these operations correspond directly to edge queries; hence, by the above con-
struction we can solve Sink(m,n) with the randomized algorithms of [12] using a
linear number of edge queries. While derandomizations of algorithms for LP-type
problems exist with the same performance [2,4], they make an extra assumption
on the problem, which does not hold for grid USOs, namely the existence of a
subsystem oracle (see Computational assumption 2 in [4]). Other problems where
these assumptions do not hold have been studied [3], and it is an open question
whether or not they can be solved deterministically with a linear number of
primitive operations.
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As a generalization of LP-type problems, Gärtner et al. [10] introduced vio-
lator spaces. Intuitively, instead of assigning a value to each set A ⊆ S of con-
straints, we map A to a set of its violators, i.e., the set of constraints whose
addition to A would change its basis. The goal is to find the basis with the same
set of violators as S which can be done in linear expected number of primitive
operations [10]. When modeling Sink as violator spaces, we assign to each vertex
the subset of constraints to which it has an outgoing edge. Therefore, the vertex
query model corresponds to an oracle that reveals the set of violators of a vertex.

Our Results. While randomized algorithms to solve Sink have been previously
studied [6,8,9,15], to the best of our knowledge no non-trivial deterministic
algorithm was known prior to this work. This is mainly due to the fact that
the aforementioned subsystem oracle does not exist. In light of this fact, we
aim to solve the problem using a different set of techniques. We present two
deterministic algorithms to solve Sink(m,n) using O((m+n) log(m+n)) vertex
queries and O((m+n)log4 7) edge queries, respectively. Additionally, if the Holt-
Klee property holds, we exhibit a deterministic algorithm to solve Sink(m,n)
using O(m + n) vertex queries. Both query models exhibit a lower bound of
Ω(m + n).

Outline. In Sect. 2 we state basic facts for grid USOs and define a way to
partition the grid into subgrids. In Sect. 3 we focus on the vertex query model
and describe our algorithms in this setting. Finally, Sect. 4 addresses the edge
query model.

2 Grid USO Properties

Recall that an induced subgraph of a grid is called a subgrid if it is itself a
grid. The subgrids of an (m,n)-grid are exactly those induced subgraphs whose
vertex set is a Cartesian product I × J , for some I ⊆ [m] and J ⊆ [n]. We
call the corresponding subgrid an I × J-grid. If the original grid is oriented, the
subgrids inherit this orientation. Our algorithms rely on two basic properties of
grid USOs. The first is acyclicity, originally proved in [9].

Lemma 1 [9]. Every (m,n)-grid USO is acyclic.

The second ingredient is a partitioning strategy which we describe subsequently.

Induced USOs. For our algorithms we want to partition the grid into subgrids.
Such a partition into subgrids induces itself a grid in a natural way, which inherits
a unique sink orientation from the original grid USO; see Fig. 2 for an illustration.
Formally, let G be an (m,n)-grid USO, and let A = {A1, . . . , Ak} and B =
{B1 . . . , Bl} be partitions of [m] and [n], respectively. Let H be a (k, l)-grid
whose vertex (i, j) we identify with the Ai ×Bj-subgrid of G for every 1 ≤ i ≤ k
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Fig. 2. Left: a (3, 3)-grid USO whose coordinates have been partitioned into 2 parts of
cardinalities two and one. Right: the induced (2, 2)-grid USO; The edges contributing
to the induced orientation are also shown in the original grid.

and for every 1 ≤ j ≤ l. We define an orientation on H so that the edge between
two adjacent vertices x and y of H is oriented towards y if the sink of x has at
least one outgoing edge to a vertex of y in the original grid G. This orientation
is well defined: If the sink of y also had an edge towards some vertex of x, there
would be a cycle in G. Furthermore, there is always at least one such outgoing
edge from one of the sinks as otherwise an appropriately chosen subgrid of G
would have two sinks. We say that this orientation is induced on H by G and H
is called the A-B-partition grid. The following lemma shows that the orientation
induced on H by G is also a unique sink orientation. A similar result was proved
by Gärtner et al. [9] in higher dimensional grid USOs.

Lemma 2. Let G be an (m,n)-grid USO, and let A and B be partitions of [m]
and [n], respectively. The orientation of the A-B-partition grid H induced by G
is a unique sink orientation. Moreover, the sink of H is the subgrid of G that
contains the sink of G.

3 The Vertex Query Model

Recall that in the vertex query model a grid USO is given by a vertex oracle
that reveals the orientations of the edges adjacent to the queried vertex. An
adversary argument can be used to show that any deterministic algorithm needs
m+n−1 vertex queries in the worst case to solve Sink(m,n). Our main result is
Theorem 1 which describes a deterministic algorithm that needs O((n +
m) log(n + m)) vertex queries.

The Sink-Finding Algorithm. Before explaining the algorithm we introduce
some notation. We define a reflexive partial order on the vertices of a grid USO
G as follows. For any two vertices v, w ∈ G we say that w � v if there is a
directed path from w to v within the grid G (or if w = v). In words, we say that
w is larger than v (or v is smaller than w). By Lemma 1, grid USOs are acyclic
and, thus, this partial order is well defined. Moreover, the sink of the grid USO
is the unique minimal vertex with respect to this ordering.
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For a set of vertices V in a grid USO G let join(V ) be the set of vertices of
the grid to which there is a path from all vertices in V . More formally join(V ) =
{w ∈ G | v � w ∀v ∈ V }. Note that if s is the sink of the 2 × 2-grid containing
two vertices v and w, then s ∈ join({v, w}). Therefore, given a set of vertices
V , we can compute w ∈ join(V ) with O(|V |) vertex queries.

In an (m,n)-grid USO G, the refined in-degree of a vertex v ∈ G is an ordered
pair [av, bv] ∈ {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1} where av and bv specify the
number of incoming horizontal and vertical edges of v, respectively. We say that
a vertex v with refined in-degree [av, bv] is a (k, t)-vertex if av ≥ k − 1 while
bv ≥ t − 1.

Consider the following algorithmic approach to solve Sink(m,n). Assume
that we are able to find in O(m + n) time an (m2 , n

2 )-vertex v. We could then
partition the whole grid into 4 (m2 , n

2 )-subgrids so that v is the sink of one of
them. The next step would be to find the sink of the subgrid antipodal to the
subgrid containing v in the (2, 2)-grid induced by this partition. By Lemma 2
we could thereafter discard one subgrid out of consideration and possibly still
have to find the sink of one more subgrid. If one finds the sinks of the subgrids
recursively, one would get the recursion:

T (m,n) = 2T
(m

2
,
n

2

)
+ O(m + n),

where T (m,n) is the number of vertex queries needed by this algorithm to solve
Sink(m,n) which results in T (m,n) = O((m + n) log(m + n)).

The main part of the algorithm description is to obtain an (m2 , n
2 )-vertex in

linear time. For ease of presentation, we prove Lemmas 3 and 4 for the square
(n, n)-grid. From those, we obtain Corollary 1, which shows how to compute
an (m8 , n

8 )-vertex using a linear number of vertex queries. Using it as a black
box, we manage to get an (m2 , n

2 )-vertex with only linearly many more queries
in Lemma 5 and Corollary 2.

Lemma 3. Let D = {v1, . . . , vn} be the set of diagonal vertices of an (n, n)-grid
USO so that vi = (i, i). After sorting the vertices with respect to their indegree
the j-th vertex has at least j − 1 incoming edges.

Proof. Firstly, we evaluate all the vertices in D. We rename the coordinates such
that for all 1 ≤ i < j ≤ n either vi � vj or vi and vj are incomparable. This
defines a linear extension of the partial order � and we claim that vj has at least
j − 1 incoming edges for every j = 1, . . . , n. To see this fix some vj and consider
the (2, 2)-subgrid Hi,j containing both vi and vj for some 1 ≤ i < j. Because
Hi,j is a USO and since vi � vj (or vi and vj are incomparable), we know that
Hi,j contains no path from vj to vi. Therefore, vj cannot be the source of Hi,j

which implies that vj has at least one incoming edge in Hi,j . Since the edges in
Hi,j are disjoint from those of Hi′,j for 1 ≤ i < i′ < j, we know that vj has an
incoming edge for each 1 ≤ i < j, i.e., vj has at least j − 1 incoming edges. ��
Lemma 4. Given an (n, n)-grid USO we can find an (n4 , n

4 )-vertex using O(n)
vertex queries.
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Proof. The algorithm we describe queries a linear number of vertices of the grid
before finding a vertex with the required refined in-degree. After explaining the
algorithm, we prove its correctness.

In the first phase, query the diagonal vertices D = {v1, . . . , vn} where vi =
(i, i). If one of the vertices in D has the required refined in-degree, we are done.
If not, sort and rename the vertices of D such that for i < j vertex vi has at
most as many incoming edges as vj (recall that in our model we only count the
number of queries to the oracle).

In the second phase, let V = {v�n
2 �, . . . , vn} ⊆ D. Label the vertices in V

as either horizontal or vertical, depending on whether the majority of incom-
ing edges for the corresponding vertex are horizontal or vertical, respectively.
Assume without loss of generality that there are more vertical vertices in V ;
otherwise change the role of the coordinates. Let V ′ ⊆ V be the set of all verti-
cal vertices in V and notice that |V ′| ≥ |V |/2. Then, find some v ∈ join(V ′) by
using at most O(|V ′|) additional queries and note that v′ � v for every v′ ∈ V ′

(Fig. 3).

v′

v∗ v

V ′

W

v

Fig. 3. An illustration for Lemma 4. The three black circles on the diagonal form V ′.
The dashed edges denote that there is a path from each vertex in V ′ to v. On the right
hand side the vertices belonging to W are marked with a square.

Let I ′ be the set of indices containing the first coordinate of each vertex in V ′.
Assume that v = (xv, yv) and let W = I ′ × {yv} be a subset of vertices in the
same row as v with |W | = |V ′| ≥ |V |/2. To conclude, the algorithm queries each
vertex in W . It is clear from the description above that the number of vertices
queried so far is O(n). We claim that the sink of W will have the required refined
in-degree. Because of the renaming, after the first phase and due to Lemma 3
we know that vi has at least i − 1 incoming edges. Therefore, by the definition
of V , we know that each vertex of V ′ ⊆ V has at least �n

2 � − 1 incoming edges.
Moreover, each vertex in V ′ has at least (�n

2 �−1)/2 incoming vertical edges and
|V ′| ≥ n−�n

2 �+1

2 ≥ n
4 .

Let v∗ be the sink of W obtained after querying each vertex in this set
(including v). Let [a, b] be the refined in-degree of v∗. We claim that a, b ≥ n

4 −1.
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Indeed, because v∗ is smaller than each other vertex in W , we know that

a ≥ |W | − 1 = |V ′| − 1 =
n − �n

2 � + 1
2

− 1 ≥ n

4
− 1.

Furthermore, there is a vertex v′ ∈ V ′ that is in the same column as v∗. Due
to the join operation there is a path from v′ to v and further to v∗. If v′ = v∗

then the we know already that v∗ has at least n
4 − 1 incoming edges vertically.

Otherwise, the edge between v′ and v∗ is oriented towards v∗ and v∗ has more
incoming vertical edges than v′, because of acyclicity. Therefore we establish
that b ≥ �n

2 �−1

2 + 1 ≥ n
4 ≥ n

4 − 1 which shows that v∗ is an (n4 , n
4 )-vertex. ��

The following corollary extends the previous lemma to non-square grids.

Corollary 1. Given an (m,n)-grid USO we can find an (m8 , n
8 )-vertex using

O(m + n) vertex queries.

Finding an (m2 ,n2 )-vertex. Given an (a, b)-vertex v = (xv, yv) in an (m,n)-
grid USO, let Iv ⊆ [m] be the set of indices such that Iv × {yv} is the set of
all vertices with an outgoing horizontal edge to v, with v included in this set.
Analogously, Jv ⊆ [n] is the set of indices such that {xv} × Jv is the set of all
vertices with an outgoing vertical edge to v (including v). Notice that |Iv| ≥ a
while |Jv| ≥ b and that v is the sink of the Iv × Jv-grid.

An (α, β)-oracle is an algorithm that can find an (αm, βn)-vertex v on a
(m,n)-grid USO, using O(m + n) queries.

Lemma 5. Let G be an (m,n)-grid USO. Given an (α, β)-oracle such that 0 <
α, β < 1, we can find both an (m2 , βn)-vertex and an (αm, n

2 )-vertex in G using
O(1) oracle calls and O(m + n) additional vertex queries.

Fig. 4. An illustration of the first part of the proof of Lemma 5. On the left we depict
the situation after the first call and on the right after the last call of the (α, β)-oracle.
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Fig. 5. The second part of the algorithm in Lemma 5. On the left we depict how to find
s and on the right we depict how to find s′. The latter is the output of the algorithm.

Proof. We show how to find an (αm, n
2 )-vertex. The procedure to find an

(m2 , βn)-vertex is analogous. Let B0 = [n] and let G0 be the [m] × B0-grid,
i.e., G = G0. Using an oracle call in Gi (initially i = 0), find an (αn, βn)-vertex
vi in Gi. Recall that vi is the sink of the Ivi

× Jvi
-grid. Notice that |Ivi

| ≥ αm
while |Jvi

| ≥ β|Bi|. Let Bi+1 = Bi \ Jvi
and let Gi+1 be the [m] × Bi+1-grid.

Repeat this procedure with Gi+1 as long as |Bi| ≥ n
2 ; see Fig. 4.

Since 0 < β < 1, after k = O(1) iterations, the above procedure stops.
Because the process stopped, we know that |Bk+1| = |Bk \ Jvk

| < n
2 . Since

Bk+1 = B0 \ ∪k
i=0Jvi

, we know that | ∪k
i=0 Jvi

| > n
2 .

Compute s ∈ join({v0, . . . , vk}) and note that s is smaller than vi for each
1 ≤ i ≤ k. As k = O(1), s can be computed using O(1) vertex queries. Assume
that s = (xs, ys) and let s′ be the sink of the {xs} × ∪k

i=0Jvi
-subgrid. Let

0 ≤ h ≤ k be an integer such that s′ belongs to the [m]×Jvh
-subgrid; see Fig. 5.

Let [a, b] be the refined in-degree of s′. Recall that s is smaller than vh,
hence s′ is also smaller than vh. Because vh is the sink of the Ivh

× Jvh
-grid,

s′ is smaller than each vertex in the Ivh
× Jvh

-grid. Therefore, at least |Ivh
|

vertices have outgoing edges to s′ in the row containing s′, i.e., a ≥ |Ivh
| ≥ αm.

Moreover, since s′ is the sink of the {xs} × ∪k
i=0Jvi

-subgrid, b ≥ | ∪k
i=0 Jvi

| > n
2 .

Consequently, s′ is an (αm, n
2 )-vertex. ��

Combining Lemma 5 with Corollary 1, we immediately get the following.

Corollary 2. Let G be an (m,n)-grid USO. We can compute an (m2 , n
2 )-vertex

using O(m + n) vertex queries.

Our main result can now be derived from Corollary 2.

Theorem 1. The sink of an (m,n)-grid USO can be found after querying
O((m + n) log(m + n)) vertices.

Holt-Klee Grid USOs in the Vertex Query Model. A grid USO is called
Holt-Klee if it does not contain a specific forbidden subgraph called the “double
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twist” (depicted in Fig. 1 right). As mentioned before, Holt-Klee grid USOs arise
naturally as a generalization of the one line and n points problem [8]. Improving
on Theorem 1, in this section we provide a simple algorithm to find the sink of
a Holt-Klee grid USO using a linear number of vertex queries.

Let G be a Holt-Klee grid USO. Given a (2, 2)-subgrid H of G, we say that
H is a bow if it contains a directed path (v1, v2, v3, v4) of length three. We refer
to the edge v2v3 as the middle edge of this bow.

Lemma 6. Let H be a bow subgrid of a Holt-Klee grid USO G. If g is the row
or column of G which contains the middle edge of H, then g does not contain
the sink of G.

Proof. Let (v1, v2, v3, v4) be the directed path in the bow H and assume that the
edge v2v3 is horizontal. Let w be any vertex in the row containing v2v3. Assume
for a contradiction that w is the sink of G. Since w has all its edges incoming,
the orientation of all the edges of the (3, 2)-subgrid containing H and w is forced
as shown in Fig. 6. The orientation of edge v4v5 is forced; otherwise the subgrid
induced by the vertices v3, v4, v5 and w would have two sinks. Similarly, the
orientation of edge v1v5 is forced by acyclicity. This yields a double twist as a
subgraph of G which is a contradiction. Thus, no vertex in the row containing
v2v3 is the sink of G. ��

Fig. 6. Left: it is impossible to have the global sink in the same row of the middle edge
of a bow. Right: illustration of case (3) in the algorithm for Theorem 2 which results
in eliminating the column containing u and v.

Theorem 2. The sink of a Holt-Klee (m,n)-grid USO G can be found with
O(m + n) vertex queries.

Proof. Let r be an arbitrary row of G and query all of its vertices. With this
information we can retrieve the total order of the vertices in this row. Let v be
the sink of this row. Recall that v is the sink of the [m] × Jv-grid. Therefore, if
v is not the sink of G, then this sink lies in the [m] × ([n] \ Jv)-grid.

Let u be an arbitrary vertex in the same column as v such that v � u. After
querying u, we have three cases: either (1) u is the sink of G, or (2) u has no
horizontal outgoing edges, in which case the sink of G cannot lie in the row
containing u, or (3) there is at least one outgoing edge from u to some vertex a.
In this case, since u is the sink of its row, the (2, 2)-subgrid containing u, v and
a is necessarily a bow and hence, Lemma 6 implies that the sink of G cannot
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lie in the column containing u; see Fig. 6. Thus, regardless of the case, we can
discard either a row or a column of G and update u or v accordingly to continue
with this process. Consequently, after querying all vertices in the initial row r,
with every additional query we can discard either a row or a column. That is,
after O(n + m) vertex queries the algorithm finds the sink of G. ��

4 The Edge Query Model

In the previous sections we have discussed the vertex query model. In the edge
query model considered here, the algorithm accesses the grid by means of an
edge oracle which can tell us the orientation of any given edge. One can show by
an adversary argument that Ω(m + n) queries are necessary in the worst case
(this lower bounds holds also for vertex queries). A trivial bound is O(mn): find
the sink of each row individually; then for each of these local sinks, query all
incident edges to decide whether it is the global sink. The following theorem
improves on this bound.

Theorem 3. There exists a deterministic algorithm which finds the sink of an
(m,n)-grid USO using O((m + n)log4(7)) edge queries, where log4(7) ≈ 1.404.

To proof of Theorem 3 uses the following result for the vertex query model.

Lemma 7. There exists a deterministic algorithm which finds the sink of a
(4, 4)-grid USO using at most 7 vertex queries.

To prove Lemma 7, we use a computer-based search to eliminate symmetrical
situations and reduce the problem to three individually handled cases. We omit
it from this paper as it does not offer any insights to the problem. Note, however,
that the upper bound of 7 queries is exactly tight to our n+m− 1 lower bound.

Proof (of Theorem 3). Without loss of generality, we assume that m is a power
of 4, and m = n. Otherwise, we can satisfy this property by adding at most
linearly many rows and columns while maintaining the position of the sink.

Given an (m,m)-grid G, let A be a partition of the index set [m] such that
|A| = 4 and |A| = m

4 for each A ∈ A. Consider the induced unique sink orienta-
tion on the A-A-partition grid H.

Let v be a vertex of H. Since v corresponds to an (m4 , m
4 )-subgrid of G, we

can find the sink sv of this subgrid using a recursive call that takes T (m/4) edge
queries. Afterwards we can find out the orientations of the six edges adjacent
to the vertex v in H by querying the 2m − 2 edges adjacent to sv in G. Thus
we have implemented a vertex query in H using at most T (m/4) + 2m − 2
edge queries in G. Using Lemma 7, we find and query the sink sH of H after
T (m) ≤ 7 ·

(
T (m/4)+2m−2

)
edge queries in G and hence T (m) ∈ O(mlog4(7)).

In particular, querying sH involves finding the sink of the subgrid sH , which by
Lemma 2 coincides with the sink of G. ��



368 L. Barba et al.

5 Conclusions

In this paper, we have discussed the existence of deterministic algorithms to solve
Sink(m,n). We show that O((m + n) log(m + n)) vertex queries and O((m +
n)1.404) edge queries suffice to solve Sink(m,n). In the case of Holt-Klee grids,
a linear number of vertex queries suffices. The obvious open problem is to close
the gap between upper and lower bound in both vertex and edge query models.
Following our approach, an equivalent statement to Lemma 4 in the edge query
model would yield an algorithm using O((m + n) log(m + n)) edge queries.
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Abstract. In this paper, starting from graph orientation problems,
we introduce some new mixed integer linear programming formulations
for the unweighted maximum cut problem. Then a new semidefinite
relaxation is proposed and shown to be tighter than the Goemans and
Williamson’s semidefinite relaxation. Preliminary computational results
are also reported.

1 Introduction

Let G = (V ,E) be a simple undirected graph, with node set V , edge set E, and
let (we)e∈E denote nonnegative edge-weights. Given a node subset S ⊆ V , the
cut defined by S, denoted by δ(S), is the subset of edges in E having exactly
one endpoint in S, i.e. δ(S) = {ij ∈ E : |S ∩ {i, j}| = 1}. The weight of the
cut defined by S, denoted by w(δ(S)) is the sum of the weights of the edges
belonging to the cut, i.e., w(δ(S)) =

∑
e∈δ(S) we. The maximum cut problem

consists in finding a cut of maximum weight, denoted by w�, in the graph G:
max{w(δ(S)) : S ⊂ V }. The cardinality of V will be denoted by n.

The maximum cut problem is a fundamental combinatorial optimiza-
tion problem that emerges in several scientific disciplines: VLSI design [4],
sparse matrix computation [2], parallel programming [9], statistical physics [4],
quadratic programming [17], etc. A less known application is given by frequency
assignment in networks where the weight of each edge represents the interfer-
ence level between two nodes. Assuming that only two frequencies (resources)
are available, assigning a frequency to each node such that the whole interfer-
ence between nodes using the same frequency is minimized is a maximum cut
problem.

The maximum cut problem is known to be NP-hard [20] in general, and not
approximable within a ratio 16

17 + ε for any ε > 0 unless P = NP [18]. However,
the problem may be polynomial for some instances. We know, for example, that
the problem becomes easy when the underlying graph is weakly bipartite and the
weights are nonnegative [16]. Other polynomial cases are reviewed, e.g., in [5].

One line of research to solve this problem has consisted in the development
of (meta) heuristics, see, e.g. [6,12,27]. Another important line of research relies
on linear programming formulations of the problem. This has namely led to deep
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 370–384, 2016.
DOI: 10.1007/978-3-319-42634-1 30
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investigations on the polyhedral structure of the cut polytope: the convex hull of
the incidence vectors of all the cuts of the graph, which has then been extensively
used, e.g., in Branch and Cut algorithms [3,5,10]. More recently, essentially since
the mid-1990’s and the breakthrough paper by Goemans and Williamson [15],
there has been a growing interest in semidefinite programming based algorithms.
Goemans and Williamson’s work presents a 0.87856-approximation algorithm for
the maximum cut problem when the edge weights are nonnegative. Their method
relies on the following semidefinite relaxation of the problem for a complete graph

(SDP0)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max 1
2

∑n
i=1

∑n
j=i+1 wij(1 − yij)

s.t.
yii = 1, ∀i ∈ �1,n�,
Y � 0,
Y ∈ S

n,

where Y represents the matrix with entry yij in the ith row and jth column,
Y � 0 is the constraint that the matrix Y is positive semidefinite, and, for any
given integer n, Sn denotes the set of symmetric matrices with order n.

To improve the quality of the bound Z�
SDP0 given by the formulation

(SDP0) [15], different approaches have been proposed in the literature: namely
by making use of polyhedral knowledge on the cut polytope and adding linear
inequalities [13,19], or by means of lift-and-project techniques [1,22]. Another
way to improve the upper bound given by the semidefinite relaxation is described
in [7,8] where some spectral techniques are used leading to polynomial-time
algorithms for some low rank weight matrices. This semidefinite approach of the
problem also led to efficient solvers such as BiqMac [25] and BiqCrunch [21].

The reader can find in [5,10] and the references therein further results about
the maximum cut problem including applications, polynomial cases, approxi-
mation algorithms, relationships with other combinatorial problems, polyhedral
studies etc.

The paper is organized as follows. We introduce some new mixed integer lin-
ear programming formulations for the maximum cut problem based on graph ori-
entations (Sect. 2). A semidefinite programming relaxation is then proposed. We
show that the bound provided by this new SDP relaxation is stronger than the
bound given by the relaxation (SDP0) introduced by Goemans and Williamson
(Sect. 3). We also prove that the new bound is tight for complete graphs. We
then introduce further Mixed Integer Programming formulations (Sect. 4). Sev-
eral numerical experiments have been conducted showing the relevance of the
SDP formulation and the performances of the new Mixed Integer Programming
formulations (Sect. 5). A conclusion follows.

2 Mixed Integer Linear Programming Formulations

In this section, we gradually introduce our new formulation for the maximum
cardinality cut problem, i.e. the maximum cut problem for the case when all the
edge-weights are equal to 1: we = 1,∀e ∈ E. For our purposes, we shall think of
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the original graph G = (V ,E) as directed (consider any arbitrary orientation)
and let B ∈ {−1, 0, 1}|V |×|E| stand for its incidence matrix, i.e., the column
corresponding to the arc uv (or, equivalently, to the edge uv directed from node
u to node v), has only nonzero entries in the rows corresponding to the nodes u
and v: Bu,uv = 1 and Bv,uv = −1, respectively.

For clarity, we start introducing an auxiliary formulation. It involves two
types of variables. The first type of variables x ∈ {−1, 1}|E| describes an orien-
tation of the graph G and may be interpreted as follows. For each edge ij ∈ E
which is originally directed from node i to node j: if xij = 1 then ij is directed
from i to j (i.e., the orientation is the same as the original one) and is directed
from j to i otherwise (i.e., the edge is “reversed” with respect to the original
orientation). The other variables are binary and denoted yv

k , with v ∈ V and
k ∈ �−dv, dv�, where dv denotes the degree of the node v in G. They have the
following interpretation: yv

k = 1 if and only if Bvx = k, where Bv denotes the
row of B corresponding to vertex v, so that the following equation trivially holds

dv∑

k=−dv

kyv
k = Bvx,∀v ∈ V . (1)

Notice that Bvx = d
(x,+)
v − d

(x,−)
v , where d

(x,+)
v (resp. d

(x,−)
v ) denotes the outde-

gree (resp. indegree) of the node v w.r.t. the orientation described by x.
Also, given the interpretation for the variables y, among those of the form yv

k ,
for some fixed node v ∈ V , exactly one of them has value 1. Thus, the following
contraints are satisfied

dv∑

k=−dv

yv
k = 1, ∀v ∈ V . (2)

Then we can show the maximum cardinality cut problem may be formulated
as the mixed-integer program

(MIP1)

⎧
⎪⎪⎨

⎪⎪⎩

Z�
MIP1 = 1

2 max
∑

v∈V

∑dv

k=−dv
|k|yv

k

s.t. (1), (2),
x ∈ [−1; 1]|E|,
yv

k ∈ {0, 1}, ∀v ∈ V , ∀k ∈ �−dv, dv�.

Proposition 1. The optimal objective value of (MIP1) equals the maximum car-
dinality of a cut in the graph G: Z�

MIP1 = w�.

Proof. First, note that it is equivalent to take x ∈ [−1; 1]|E| or x ∈ {−1; 1}|E|

since B is totally unimodular, the integrity of y implies the integrality of x.
Observe that introducing sign variables z ∈ {−1, 1}|V | with the following inter-
pretation: zv is the sign of the only k for which yv

k �= 0, (MIP1) is equivalent to
the following
⎧
⎪⎪⎨

⎪⎪⎩

max 1
2

∑
v∈V zv

∑dv

k=−dv
kyv

k

s.t. (1), (2),
yv

k ∈ {0, 1}, ∀v ∈ V , ∀k ∈ �−dv, dv�,
z ∈ {−1, 1}|V |, x ∈ [−1; 1]|E|.

⇔
⎧
⎨

⎩

max 1
2

∑
v∈V zvBvx = 1

2ztBx
s.t.
z ∈ {−1, 1}|V |, x ∈ {−1, 0, 1}|E|.
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⇔
⎧
⎨

⎩

max 1
2

∑
uv∈E xuv(zv − zu) = 1

2xtBtz
s.t.
z ∈ {−1, 1}|V |, x ∈ {−1, 1}|E|.

⇔
⎧
⎨

⎩

max 1
2

∑
uv∈E |zv − zu|

s.t.
z ∈ {−1, 1}|V |.

Noting that, for any z ∈ {−1, 1}|V |, the quantity
∑

uv∈E |zv − zu| equals twice the
number of edges in δ(S), with S = {v ∈ V : zv = 1}, the proposition follows. 
�
Remark 1. Given a cut δ(S) with maximum cardinality, we can associate to it the
following feasible solution of (MIP1): the vector x corresponds to an orientation
of all edges in the cut from S to V \ S, all other edges are not oriented (xuv =
0,∀uv ∈ E \ δ(S)), and yv

k = 1 if and only if k is equal to the outdegree minus
the indegree w.r.t. the orientation given by x (ignoring edges which are not
oriented). Then, for any edge uv ∈ E which has the original orientation from u
to v (i.e. the one given by the matrix B), the following equation holds: xuv =
∑du

k=1 yu
k −∑dv

k=1 yv
k . From the latter we deduce (developing the expression Bvx):

dv∑

k=−dv

kyv
k = Bvx =

∑

uv∈E

(
dv∑

k=1

yv
k −

du∑

k=1

yu
k

)

. (3)

Observe also that each vertex v is incident to at least �dv

2 
 edges in the
maximum cut. This implies that the variables yv

k with k ∈ {1−�dv

2 
, . . . , �dv

2 
−1}
may be removed from formulation (MIP1), while Proposition 1 remains valid.

It follows that, in place of (MIP1), we may consider a formulation involving
variables of the form yv

k only: replace Eqs. (1) by (3). For each vertex v, we only
consider yv

k variables for k ∈ �−dv,−�dv

2 
� ∪ ��dv

2 
, dv�. We therefore denote for
all v ∈ V , I−

v = �−dv,−�dv

2 
�, I+
v = ��dv

2 
, dv� and Iv = I−
v ∪ I+

v .

(MIP2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z�
MIP2 = 1

2 max
∑

v∈V

∑
k∈Iv

|k|yv
k

s.t.∑
k∈Iv

yv
k = 1, ∀v ∈ V ,∑

k∈Iv
kyv

k =
∑

uv∈E(
∑

k∈I+
v

yv
k − ∑

k∈I+
u

yu
k ), ∀v ∈ V ,

yv
k ∈ {0, 1}, ∀v ∈ V , ∀k ∈ Iv.

Formulation (MIP2) involves about O(|E|) variables and O(|V |) constraints.
It will be studied in a forthcoming paper. We will rather consider a strengthening
of the linear relaxation of (MIP2) through reformulation-linearization techniques.
The latter is obtained by multiplying constraints of (MIP2) and then linearizing.
Some other constraints follow from the afore mentioned interpretation of the
variables in (MIP2). So, let Y uv

kl , with (u, v) ∈ V 2, (k, l) ∈ Iu × Iv, denote a
binary variable representing the product yu

kyv
l . Then, given that the variables yv

k

are binary and satisfy (2) we have Y uu
kl = 0,∀u ∈ V ,∀k �= l. Considering then

the product of the left side of (2) with itself we deduce
∑

k∈Iv
Y vv

kk = 1. Using
other equations obtained by multiplying variables of the form yv

k with equations
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(2) and others obtained from (3), we can deduce from (MIP2) the following exact
formulation for the maximum cardinality cut problem.

(MIP3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z�
MIP3 =

1

2
max

∑

v∈V

∑

k∈Iv

|k|Y vv
kk

s.t.
∑

k∈Iv

Y vv
kk = 1, ∀v ∈ V ,

∑

k∈Iv

kY vv
kk =

∑

uv∈E

(
∑

k∈I+
v

Y vv
kk − ∑

k∈I+
u

Y uu
kk ), ∀v ∈ V ,

Y vv
kk =

∑

l∈Iu

Y vu
kl , ∀u, v ∈ V , ∀k ∈ Iv,

(dv − k)Y vv
kk =

∑

uv∈E

∑

l∈I+
u

Y vu
kl , ∀v ∈ V , ∀k ∈ I+v ,

− kY vv
kk =

∑

uv∈E

∑

l∈I+
u

Y vu
kl , ∀v ∈ V , ∀k ∈ I−

v ,

∑

l∈Iu

lY vu
kl =

∑

uw∈E

(
∑

l∈I+
w

Y vw
kl − ∑

l∈I+
u

Y vu
kl ), ∀v �= u ∈ V , ∀k ∈ Iv,

Y vu
kl = Y uv

lk , ∀u, v ∈ V , ∀(k, l) ∈ Iv × Iu,

Y vu
kl ∈ {0, 1}, ∀u, v ∈ V , ∀(k, l) ∈ Iv × Iu,

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)
(4h)

Proposition 2. The optimal objective value of (MIP3) equals the maximum car-
dinality of a cut in the graph G: Z�

MIP3 = w�. 
�
Observe that (MIP3) was derived from (MIP2) using lifting. Other formula-

tions could be obtained using some other well-known lifting techniques such as
the one of Lassere, the Sherali-Adams technique or the lifting of Lovász-Schrijver
[23,26,28]. Since the aim of this paper is not to compare lifting techniques, we
do not elaborate more on this topic.

3 A Semidefinite Programming Bound

Let Y denote a symmetric matrix with rows and columns indexed by all pairs
(u, k) with u ∈ V and k ∈ Iu. The entry in the row indexed by (u, k) and
column indexed by (v, l) corresponds to the variable Y uv

kl . Then, let (SDP3)
denote the relaxation obtained from (MIP3) replacing the symmetry (4g) and
binary constraints (4h) by the following ones

Y − Diag(Y )Diag(Y )t � 0 (5)

Y vu
kl ≥ 0,∀u, v ∈ V ,∀k ∈ I−

v ∪ I+
v , l ∈ I−

u ∪ I+
u , (6)

where Diag(Y ) denotes the vector corresponding to the diagonal of Y .
We are going to prove that the semidefinite relaxation (SDP3) provides a

generally better upper bound for the maximum cardinality cut problem than that
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from Goemans &Williamson’s relaxation. For, consider the following semidefinite
relaxation of a 0/1 formulation of the maximum cardinality cut problem whose
optimal objective value coincides with Z�

SDP0,

(SDP4)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z�
SDP4 = max 1

2

∑
u∈V

∑
v:uv∈E (xu + xv − 2Xuv)

s.t.
Diag(X) = x,
X − xxt � 0,
x ∈ R

|V |, X ∈ S
|V |,

where Xuv stands for the entry of the matrix X in the row corresponding to
node u, and column corresponding to node v.

Proposition 3. The following inequality holds Z�
SDP3 ≤ Z�

SDP4(= Z�
SDP0).

Proof. Let Y denote a feasible solution for the formulation (SDP3) and let
(X,x) ∈ R

|V |×|V | × R
|V | be defined as follows: Xuv :=

∑−1
k=−du

∑−1
l=−dv

Y uv
kl ,

∀u, v ∈ V with u �= v and Xvv = xv :=
∑−1

k=−dv
Y vv

kk ,∀v ∈ V .
We now show X − xxt � 0. For, let z ∈ R

|V | and define z of convenient
dimension as follows: zv

k = zv if k < 0 and 0 otherwise. Then, we have

ztY z =
∑

u∈V

∑−1
k=−du

∑
v∈V

∑−1
l=−dv

zu
kzv

l Y uv
kl

=
∑

u∈V

∑
v∈V zuzv(

∑−1
k=−du

∑−1
l=−dv

Y uv
kl )

=
∑

u∈V

∑
v∈V zuzvXuv = ztXz.

Also,
ztDiag(Y ) =

∑
v∈V

∑−1
k=−dv

zv
kY vv

kk

=
∑

v∈V (zv

∑−1
k=−dv

Y vv
kk )

=
∑

v∈V zvxv = ztx.

It follows that zt(X − xxt)z = zt(Y − Diag(Y )Diag(Y )t)z ≥ 0, where the last
inequality follows from the feasibility of Y w.r.t. (SDP3), and thus X −xxt � 0.
So, we have shown (X,x) is a feasible solution for (SDP4).

Since Y is symmetric, the same holds for X. We now show the objective
value of (X,x) w.r.t. (SDP4), denoted ZX equals that of Y w.r.t. (SDP3).

ZX = 1
2 (

∑
u∈V

∑
v : uv∈E (xu + xv − 2Xuv))

=
∑

v∈V dvxv − ∑
u∈V

∑
uv∈E Xuv

=
∑

v∈V dv

∑−1
k=−dv

Y vv
kk − ∑

u∈V

∑
uv∈E

∑−1
k=−du

∑−1
l=−dv

Y uv
kl

=
∑

v∈V dv

∑−1
k=−dv

Y vv
kk − ∑

u∈V

∑−1
k=−du

(k + du)Y uu
kk

= −∑
u∈V

∑−1
k=−du

kY uu
kk

=
∑

u∈V

∑du

k=1 kY uu
kk .


�
By Proposition 3, it follows that a randomized algorithm similar to the one by
Goemans and Williamson [15] but applied to an optimal solution Y of (SDP3)
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has the same approximation ratio. To be more precise, let Z ∈ R
|V |×|V | denote

the matrix with entries Zuv = 4(Xuv −xuxv)+(2xu −1)(2xv −1), where Xuv :=
∑−1

k=−du

∑−1
l=−dv

Y uv
kl ,∀u, v ∈ V with u �= v and Xvv = xv :=

∑−1
k=−dv

Y vv
kk ,∀v ∈

V . It can be checked that Z is a feasible solution for the formulation (SDP0)
with the same objective value as Y . Then, let H ∈ R

m×|V | (for some m ≤ |V |)
denote a matrix such that Z = HtH and let r denote a vector which is randomly
generated according to a uniform distribution on the unit sphere in R

m. The cut
returned by the algorithm is then δ(S) with S := {v ∈ V : rthv ≥ 0}, where hv

stands for the column of H corresponding to node v ∈ V .
The new bound is exact (i.e., equal to the maximum cardinality of a cut) for

some graph classes. For space limitation reasons, we will only consider the case
of complete graphs. We already know that the bound provided by relaxation
(SDP0) is exact for even complete graphs (Kn with n even). This does not hold
for odd complete graphs. We prove that the bound given by (SDP3) is exact for
all complete graphs.

Proposition 4. For a complete graph, the optimal objective value of (SDP3) is
exact: Z�

SDP3 = w�.

Proof. See Appendix A.

In fact the proof of Proposition 4 implies that the linear relaxation of (MIP3) is
exact. Details about this linear relaxation will follow in an extended version of
the paper.

4 Further Mixed Integer Linear Programming
Formulations

In this section, we present three new exact formulations for the unweighted
maximum cardinality cut problem with interesting computational performances.
The first one stems from (MIP2) using the fact that for all v ∈ V ,

∑
k∈I−

v
yv

k =
1 − ∑

k∈I+
v

yv
k deleting all the variables yv

k where k is negative. We obtain the
following exact formulation.

(MIP5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z�
MIP5 = max

∑
v∈V

∑
k∈I+

v
kyv

k

s.t.∑
k∈I+

v
yv

k ≤ 1, ∀v ∈ V ,
∑

uv∈E(
∑

k∈I+
v

yv
k −∑

k∈I+
u

yu
k ) ≤∑

k∈I+
v

kyv
k − � dv

2
�(1 −∑

k∈I+
v

yv
k), ∀v ∈ V ,

∑
uv∈E(

∑
k∈I+

v
yv

k −∑
k∈I+

u
yu

k ) ≥∑
k∈I+

v
kyv

k − dv(1 −∑
k∈I+

v
yv

k), ∀v ∈ V ,

yv
k ∈ {0, 1}, ∀v ∈ V ,∀k ∈ I+v .

It involves about half as many variables as (MIP2) and has generally better
performance, detailed results can be found in Sect. 5. In order to further reduce
the number of variables for an exact formulation, we can aggregate the variables
yv

k with k ∈ I+
v for a vertex v to form a variable xv equal to

∑
k∈I+

v
yv

k . For doing
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so, we need another variable zv equal to
∑

k∈I+
v

kyv
k in order to keep the infor-

mation about the difference between the outdegree and indegree of v important
for the objective function. We thus obtain the following exact formulation.

(MIP6)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z�
MIP6 = max

∑
v∈V zv

s.t.
�dv

2 
 + �dv

2 �xv − zv ≤ ∑
uv∈E xu ≤ dv − zv, ∀v ∈ V ,

�dv

2 
xv ≤ zv ≤ dvxv, ∀v ∈ V ,
x ∈ {0, 1}V , z ∈ R

V .

(MIP6) involves 2|V | variables, half of which are integer variables and its
performance is better than that of (MIP5) for many instances (see Sect. 5). This
formulation can also be obtained using the linearization technique of Glover [14]
applied to the standard quadratic program modeling the maximum cut problem.
One can also propose a third formulation somewhat in between (MIP5), i.e. no
aggregation of variables, and (MIP6), i.e. total aggregation of the variables for
each vertex. To do so, we partition the interval I+

v for each vertex v ∈ V . Let
α > 1, we parametrize such a partition with α defining the following sequences
for each v ∈ V ⎧

⎨

⎩

av
1 = �dv

2 
,
av

i = 1 + bv
i−1, for i > 1,

bv
i = min(�α ∗ av

i �, dv),

and compute kv, the smallest integer such that bv
kv

= dv. Then similarly to the
formulations (MIP1), (MIP2) and (MIP3), we take a variable yv

k for each vertex
v ∈ V and each k ∈ �1, kv� whose interpretation is the following: yv

k = 1 if and
only if zv ∈ �av

k, bv
k�. We therefore obtain the following exact formulation for all

α > 1.

(MIP7[α])

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z�
MIP7 = max

∑
v∈V zv

s.t.
�dv

2 
 + �dv

2 �xv − zv ≤ ∑
uv∈E xu ≤ dv − zv, ∀v ∈ V ,

∑kv

k=1 yv
k = xv, ∀v ∈ V ,

∑kv

k=1 av
kyv

k ≤ zv ≤ ∑kv

k=1 bv
kyv

k , ∀v ∈ V ,
x ∈ [0, 1]V , yv ∈ {0, 1}kv , ∀v ∈ V , z ∈ R

V .

For the purpose of comparing performances, we now give a basic exact formu-
lation for the unweighted maximum cut problem based on the triangle inequal-
ities. It involves one variable xi,j for each unordered pair of vertices {i, j} ⊂ V
(i �= j). Hence O(n2) variables and O(n3) constraints.

(MIP8)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
∑

ij∈E xi,j

s.t.
xi,j + xj,k + xi,k ≤ 2, ∀{i, j, k} ⊂ V , |{i, j, k}| = 3,
xi,j + xj,k − xi,k ≥ 0, ∀(i, j, k) ∈ V 3, |{i, j, k}| = 3,
xi,j ∈ {0, 1}, ∀{i, j} ⊂ V , i �= j.
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5 Preliminary Computational Experiments

Some numerical experiments have been conducted to evaluate the quality of the
new SDP bound. For each problem instance, we report w� (the maximum cardi-
nality of a cut), Z�

SDP0 (the optimal objective value of (SDP0)) and Z�
SDP3 (the

optimal objective value of (SDP3)). We also mention some results related to the
Mixed integer Programming formulations of the previous Section reporting the
running time of (MIP2), (MIP5), (MIP6), (MIP7[1.5]), (MIP7[1.3]), (MIP7[1.1])
and (MIP8) for each instance.

The algorithms used for these computations were written in C/C++ calling
COIN-OR’s CSDP library to solve the semidefinite programs and IBM’s ILOG
CPLEX optimizer c© for the linear and mixed integer programs; all have been
performed with a processor 1.9 GHz × 4, 15.6 GB RAM. In order to further the
relevance of our comparison, we also give for each instance the running time
(BC) of the semi-definite based solver BiqCrunch [21] compiled in Python and
run on the same machine as the mixed integer programs.

The graph instances used for the computations are denoted as follows:

• Kn: the complete graph with n vertices,
• Wn: the wheel graph with n vertices (i.e. n − 1 spokes),
• Pe, Co, Oc, Do and Ic: the Petersen graph, the Coxeter graph, the octahedron,

the dodecahedron and the icosahedron respectively. (Information about the
platonic graphs can be found in [24]),

• Cn: the cycle graph with n vertices,
• Gt2

n1,n2
: the 2-dimensional toroidal grid graph, i.e. the cartesian product of two

cycles Cn1 • Cn2 ,
• Gtk

n : the n-dimensional toroidal grid graph of length k, i.e. the cartesian prod-
uct •n

i=1Ck,
• Rn,d: a randomly generated graph with n vertices and density d: d = 200|E|

n(n−1) ,
• Pn,D: a randomly generated planar graph with n vertices and proportion of

edges with respect to a maximum planar graph D: D = 100|E|
3(n−2) .

The random graphs were generated using rudy, a machine-independent graph
generator by Giovanni Rinaldi.

Let us start with the results related to the new SDP bound. The first set of
instances considered consists of two basic graph classes : odd complete graphs
and wheel graphs. One can see that Z�

SDP3 = w� for complete graphs as shown in
Proposition 4. The bound seems to be exact for wheels (according to numerical
experiments). We report in Table 2 results obtained on some well-known graphs:
the Petersen graph, the Coxeter graph, the octahedron, the dodecahedron and
the icosahedron, along with some toroidal grid graphs. The results reported in
Table 3 were computed from randomly generated graphs.
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The preliminary computational results from Tables 1, 2, and 3 not only con-
firm the inequality proved in Proposition 3, but clearly point out that the quality
of the new bound presented in the previous Sections is sometimes significatively
better than that of Goemans and Williamsons relaxation.

Table 1. Computational results of (SDP3) for complete graphs and wheel graphs

Instance K5 K7 K11 W5 W8 W10 W12 W15 W17 W20 W22 W25

w� 6 12 30 6 10 13 16 21 24 28 31 36

Z�
SDP3 6 12 30 6 10 13 16 21 24 28 31 36

Z�
SDP0 6.25 12.25 30.25 6.25 10.614 13.809 16.979 21.875 25 29.566 32.703 37.5

Table 2. Computational results of (SDP3) for special graph classes

Instance Pe Co Oc Do Ic C3 C5 C7 C9 C11 C13 C15
w� 12 36 8 24 20 2 4 6 8 10 12 14
Z�

SDP3 12 36.167 9 25 21 2 4 6.125 8.25 10.383 12.463 14.523
Z�

SDP0 12.5 37.9 9 26.18 21.708 2.25 4.523 6.653 8.729 10.777 12.811 14.836

Instance C17 C19 C21 C23 C25 G
t2
3,3 G

t2
3,4 G

t2
3,5 G

t2
4,5 G

t2
5,5 G

t3
3

w� 16 18 20 22 24 12 20 22 36 40 54
Z�

SDP3 16.58 18.621 20.653 22.685 24.709 13.5 20 23.639 36 44.168 60
Z�

SDP0 16.855 18.87 20.883 22.893 24.901 13.5 21 24.818 38.09 45.225 60.75

Table 3. Computational results of (SDP3) for randomly generated graphs

Instance R5,8 R10,9 R10,14 R10,18 R10,23 R10,27 R10,34 R10,36 R15,21 R15,32 R15,42
w� 6 8 12 14 17 19 22 23 17 24 30
Z�

SDP3 6 8 12 14 17 19 22 23 17 24.236 30.381
Z�

SDP0 6.25 8.25 12.585 14.399 17.603 19.962 22.676 23.346 18.006 25.357 31.569

Instance R15,53 R20,19 R20,38 R20,57 R30,44 P5,7 P5,9 P10,10 P10,12 P10,18 P10,24
w� 36 16 29 43 37 5 6 8 10 13 16
Z�

SDP3 36.567 16 29.202 43 37.31 5 6 8 10 13 16
Z�

SDP0 37.39 16.679 30.682 44.757 39.005 5.432 6.25 8.409 10.715 13.932 16.992

Instance P20,11 P20,16 P20,27 P20,41 P20,54 P25,35 P25,52 P25,69 P30,8 P30,17 P30,42
w� 9 15 21 30 36 28 39 46 7 15 33
Z�

SDP3 9 15 21 30 36.207 28.091 39 46.446 7 15 33.037
Z�

SDP0 9.25 15.25 22.495 31.289 38.131 29.705 40.614 48.468 7.25 15.25 34.412

Let us now look at the running times of the Formulations (MIP8), (MIP2),
(MIP5), (MIP6), (MIP7[1.5]), (MIP7[1.3]) and (MIP7[1.1]) and of the solver (BC)
on several bigger instances found in Table 4. For the entries marked “>900”, the
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Table 4. Running time for the MIP formulations (in seconds)

Instance w� MIP8 MIP2 MIP5 MIP6 MIP7
[1.5]

MIP7
[1.3]

MIP7
[1.1]

BC |V | |E|

R20,90 99 3 1 1 3 1 1 1 0 20 171

R25,50 97 7 63 9 1 2 5 5 1 25 150

R25,90 152 71 12 3 11 20 16 4 0 25 270

R30,50 141 30 341 71 13 21 26 39 1 30 217

R30,90 219 >900 44 21 144 111 99 23 0 30 391

R40,25 136 29 >900 748 33 49 47 114 1 40 195

P50,50 373 2 1 0 0 0 0 0 3 46 72

P50,90 598 3 17 10 2 2 1 1 4 50 129

P75,40 75 89 0 0 1 0 1 0 5 66 87

P75,50 90 77 2 1 1 1 1 0 6 70 109

P75,70 120 22 7 5 1 1 1 2 2 75 153

P75,100 146 >900 >900 >900 172 >900 62 38 47 75 219

P100,40 100 73 0 1 0 0 1 0 8 87 117

P100,90 190 168 >900 >900 47 102 35 34 40 100 264

P200,50 246 >900 >900 272 75 47 31 26 304 188 297

P300,50 376 - >900 >900 340 203 64 53 >900 282 447

K50 625 >900 2 1 0 0 0 0 0 50 1225

K100 2500 >900 17 7 4 1 1 1 64 100 4950

K150 5625 >900 179 42 29 4 3 3 166 150 11175

K175 7656 >900 322 77 >900 >900 >900 3 5 175 15225

K200 10000 >900 704 145 4 7 4 6 368 200 19900

K225 12656 >900 >900 223 >900 >900 >900 8 11 225 25200

K300 22500 - >900 875 >900 >900 106 208 177 300 44850

G
t4
4 1024 >900 0 1 0 0 0 1 19 256 1024

G
t2
10,10 200 121 0 0 0 0 0 0 2 100 200

G
t2
8,15 232 >900 2 1 1 0 1 0 6 120 240

G
t2
11,12 252 >900 40 8 2 2 1 2 5 132 264

G
t2
15,20 580 >900 >900 >900 86 75 32 32 150 300 600

G
t2
20,20 800 >900 0 0 0 0 1 0 109 400 800

G
t2
100,100 20000 - 7 29 43 45 17 17 >900 10000 20000

W75 111 26 2 3 1 1 0 1 4 75 148

W100 148 58 2 7 5 3 0 1 11 100 198

W175 261 >900 9 333 22 14 1 1 44 175 348

W250 373 >900 61 >900 26 26 2 2 301 250 498

W400 598 >900 62 >900 >900 >900 4 3 >900 400 798

W550 823 - >900 >900 >900 >900 5 5 >900 550 1098

W775 1161 - >900 >900 >900 >900 11 10 - 775 1548

W925 1386 - >900 >900 >900 626 15 15 - 925 1848

W1250 1873 - >900 >900 >900 >900 34 39 - 1250 2548

C100 100 105 0 0 0 0 0 0 5 100 100

C175 174 889 0 0 0 0 0 0 31 175 175

C250 250 >900 0 0 0 0 0 0 71 250 250

C550 550 - 1 0 0 0 0 0 >900 550 550

C1250 1250 - 0 0 0 0 1 0 - 1250 1250

C1750 1750 - 1 0 1 1 1 0 - 1750 1750

C3000 3000 - 1 1 2 1 1 2 - 3000 3000

C5725 5725 - 13 12 37 13 11 13 - 5725 5725

C9000 9000 - 2 7 10 8 7 7 - 9000 9000
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running time exceeded 900 s and the process was therefore interrupted and for
the entries marked “-”, the memory of the machine was full and the process was
therefore interrupted. First, one can see that the new formulations introduced
in Sect. 4 perform much better than the classical triangular formulation (MIP8)
for all the studied graph families except the general random graphs, and on all
of these instances, there is one of our formulation that performs better than
BiqCrunch does. More specifically, we can see that (MIP5) has generally better
performance than (MIP2) and that for some instances, (MIP5) is drastically
better than (MIP6), and for others, it is the other way around. Interestingly,
we observe that being (MIP7) somewhat in between (MIP5) and (MIP6), there
exists for almost each graph instance a value of α for which (MIP7[α]) has the
shortest computing time. Practically, (MIP7[1.1]) seems to be the most robust
of them.

6 Conclusion

Starting from graph orientation, we have seen that the maximum cut problem
can be modeled in several new ways. By lifting, one can get some bounds that
are stronger than the standard semidefinite bound of [15]. The bounds are even
exact for some graph classes. Several new mixed integer programming formula-
tions have been obtained using discretization and aggregation techniques. The
performance of these formulations compares to and is often better than the
performance of the BiqCrunch solver on many graph families, it can even be
improved if we strengthen the formulations either by adding valid inequalities
or using other lifting techniques. Also the new formulations we introduced here
for the unweighted maximum cut problem may lead to similar formulations for
the weighted case. This will be part of a forthcoming paper.

Appendix A Proof of Proposition 4

Since Z�
SDP0 is exact for even complete graphs, Z�

SDP3 is also exact by Proposi-
tion 3.
Let us now consider odd complete graphs. Let Y be an optimal solution of
(SDP3). Let π be any permutation of the set of vertices. By symmetry of the com-
plete graph, the solution defined by Y

π(u)π(v)
kl = Y uv

kl is obviously still an optimal
solution of (SDP3). By considering the set of all permutations Πn (the symmetric
group), and combining all solutions, we still get an optimal solution (by linear-
ity) Z where Zuv

kl = 1
|Πn|

∑
π∈Πn

Y
π(u)π(v)
kl . Since we consider all permutations,

Zuv
kl does not depend on u and v. In other words, there are numbers f(k, l) and

g(k) such that Zuv
kl = f(k, l) if u �= v and Zuu

kk = g(k), k, l = n−1
2 , · · · ,n − 1.

Let us build another solution Z ′ of (SDP3) as follows: Z ′uv
kl = Zuv

(−k)(−l). By
symmetry of complete graphs, Z ′ is also an optimal solution of (SDP3). Then,
Z ′′ = 1

2 (Z + Z ′) is also optimal. Observe that Z”uv
kl = Z”uv

(−k)(−l). This implies
that we can assume that g(k) = g(−k) and f(k, l) = f(−k,−l).



382 W. Ben-Ameur et al.

Moreover, constraints (4a) lead to
∑

k∈� n−1
2 ,n−1�∪�1−n, 1−n

2 �

g(k) = 1 = 2
∑

k∈� n−1
2 ,n−1�

g(k). (7)

From (4c), we deduce that

∑

l∈� n−1
2 ,n−1�∪�1−n, 1−n

2 �

f(k, l) = g(k), ∀k ∈ �
n − 1

2
,n−1�∪�1 − n,

1 − n

2
�. (8)

Using equalities (4d), we can also write that

kg(k) = (n − 1)
∑

l∈�1−n, 1−n
2 �

f(k, l), ∀k ∈ �
n − 1

2
,n − 1�. (9)

Considering (4f) for a positive k, we obtain
∑

l∈� n−1
2 ,n−1�∪�1−n, 1−n

2 � lf(k, l) =
−∑

l∈�1−n, 1−n
2 � f(k, l), which is equivalent to

∑

l∈�1−n, 1−n
2 �

−(l + 1)f(k, l) =
∑

l∈� n−1
2 ,n−1�

lf(k, l), ∀k ∈ �
n − 1

2
,n − 1�. (10)

Combining (8) and (9), we deduce that

(n − 1 − k)
∑

l∈�1−n, 1−n
2 �

f(k, l) = k
∑

l∈� n−1
2 ,n−1�

f(k, l), ∀k ∈ �
n − 1

2
,n − 1�. (11)

Observe that (11) implies that when k = n − 1 then f(n − 1, l) = 0 for l ∈
�n−1

2 ,n − 1�. By (10), we get that f(n − 1, l) = 0 for l ∈ �1 − n, 1−n
2 �. We can

then assume in the rest of the proof that k < n − 1.
Observe that the left side of (10) satisfies

∑
l∈�1−n, 1−n

2 � −(l + 1)f(k, l) ≥ n−3
2

∑
l∈�1−n, 1−n

2 � f(k, l)
= n−3

2
k

n−1−k

∑
l∈� n−1

2 ,n−1� f(k, l)

where the last equality is induced by (11). Let kmax be the largest k such that
f(k, l) �= 0 for some l. We already know that kmax ≤ n − 2. The right side
of (10) necessarily satisfies

∑
l∈� n−1

2 ,n−1� lf(k, l) ≤ kmax
∑

l∈� n−1
2 ,n−1� f(k, l).

Combining the two previous inequalities together with (10), we obtain

(kmax − n − 3
2

k

n − 1 − k
)

∑

l∈� n−1
2 ,n−1�

f(k, l) ≥ 0, ∀k ∈ �
n − 1

2
, kmax�. (12)

By considering the case k = kmax in (12), the sum
∑

l∈� n−1
2 ,n−1� f(kmax, l)

is strictly positive, leading to kmax − n−3
2

kmax

n−1−kmax ≥ 0. In other words, we
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necessarily have kmax ≤ n+1
2 . This implies that g(k) = 0 and f(k, l) = 0 if either

k > n+1
2 or k < −n+1

2 (we use here the fact that g(k) = g(−k) and (8)).
Writing (10) and (11) for k = n−1

2 and k = n+1
2 , we get the next 4 equations.

(n − 3)[f(
n + 1

2
,
−1 − n

2
) + f(

n + 1

2
,
1 − n

2
)] = (n + 1)[f(

n + 1

2
,

n + 1

2
) + f(

n + 1

2
,

n − 1

2
)] (13)

(n − 1)f(
n + 1

2
,
−1 − n

2
) + (n − 3)f(

n + 1

2
,
1 − n

2
) = (n + 1)f(

n + 1

2
,

n + 1

2
) + (n − 1)f(

n + 1

2
,

n − 1

2
) (14)

f(
n − 1

2
,
−1 − n

2
) + f(

n − 1

2
,
1 − n

2
) = f(

n − 1

2
,

n + 1

2
) + f(

n − 1

2
,

n − 1

2
) (15)

(n − 1)f(
n − 1

2
,
−1 − n

2
) + (n − 3)f(

n − 1

2
,
1 − n

2
) = (n + 1)f(

n − 1

2
,

n + 1

2
) + (n − 1)f(

n − 1

2
,

n − 1

2
) (16)

Substracting (13) from (14) leads to f(n+1
2 , n−1

2 ) = −f(n+1
2 , −1−n

2 ). By
non-negativity of the f values, we deduce that f(n+1

2 , n−1
2 ) = f(n+1

2 , −1−n
2 ) =

0 and f(n+1
2 , 1−n

2 ) = n+1
n−3f(n+1

2 , n+1
2 ). Substracting (n − 1)× (15) from (16)

leads in a similar way to f(n−1
2 , 1−n

2 ) = f(n−1
2 , n+1

2 ) = 0 and f(n−1
2 , −1−n

2 ) =
f(n−1

2 , n−1
2 ).

Using (9) and the previous observations we get that:

g(
n + 1

2
) = 2

n − 1
n + 1

f(
n + 1

2
,
1 − n

2
) and g(

n − 1
2

) = 2f(
n − 1

2
,
−n − 1

2
).

Using the fact that f(n+1
2 , 1−n

2 ) = f(n−1
2 , −n−1

2 ) and g(n+1
2 ) + g(n−1

2 ) = 1
2 ,

one can deduce that f(n−1
2 , −n−1

2 ) = n+1
8n . Consequently, g(n+1

2 ) = n−1
4n and

g(n−1
2 ) = n+1

4n .
Remember that Z�

SDP3 = 1
2

∑
v∈V

∑
k|k|Y vv

kk =
∑

v∈V

∑
k>0kY vv

kk , leading to
Z�
SDP3 = n

(
n+1

2 g(n+1
2 ) + n−1

2 g(n−1
2 )

)
= n2−1

4 , and ending the proof. 
�
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Abstract. The Maximum Weight Independent Set (MWIS) prob-
lem on graphs with vertex weights asks for a set of pairwise nonad-
jacent vertices of maximum total weight. The MWIS problem is well
known to be NP -complete in general, even under substantial restric-
tions. The computational complexity of the MWIS problem for S1,1,3-
free graphs is unknown. In this note, we give a proof for the solvabil-
ity of the MWIS problem for (S1,1,3, bull)-free graphs in polynomial
time. Here, an S1,1,3 is the graph with vertices v1, v2, v3, v4, v5, v6 and
edges v1v2, v2v3, v3v4, v4v5, v4v6, and the bull is the graph with vertices
v1, v2, v3, v4, v5 and edges v1v2, v2v3, v3v4, v2v5, v3v5.

Keywords: Graph algorithms · Weighted independent set · Modular
decomposition · Claw-free graph · Fork-free graph · Bull-free graph

1 Introduction

In a graph G, an independent set (also called stable set) is a subset of pairwise
nonadjacent vertices. In the Maximum Independent Set Problem (MIS for
short), given a graph G, the task is to find an independent set of maximum
cardinality. In the Maximum Weight Independent Set Problem (MWIS
for short), the input is a vertex-weighted graph G, where every vertex has a non-
negative integer weight, and the task is to find an independent set of maximum
total weight. The M(W)IS problem is a fundamental and extremely well-studied
algorithmic graph problem. The MIS problem is known to be NP-complete in
general [21], even under various restrictions [14,32], is hard to approximate
within a factor of O(nε) for ε < 1 [3], and is not fixed parameter tractable
unless FPT = W[1], see [16].

Here we will focus on studying M(W)IS problem on restricted classes of
graphs. If F is a family of graphs, a graph G is said to be F-free if it contains

F. Maffray—Partially supported by ANR project STINT under reference ANR-13-
BS02-0007.
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S1,1,3 Bull

Fig. 1. Some special graphs.

no induced subgraph isomorphic to any graph in F . Alekseev [1] showed that
the M(W)IS problem remains NP -complete on H-free graphs, whenever H is
connected, but neither a path nor a subdivision of the claw (K1,3). On the other
hand, the M(W)IS problem is known to be solvable in polynomial time on many
graph classes, such as: P4-free graphs [15], chordal graphs [20], perfect graphs
[19], 2K2-free graphs [17], some classes of apple-free graphs [9,27], some sub-
classes of subcubic graphs [11,24,28], some classes of hole-free graphs [4,5,7,10],
and for some classes of planar graphs [2,30].

For integers i, j, k ≥ 1, let Si,j,k denote a tree with exactly three vertices of
degree one, being at distance i, j and k from the unique vertex of degree three.
The graph S1,1,1 is called a claw and S1,1,2 is called a chair or fork. Also, note
that Si,j,k is a subdivision of a claw.

Minty [31] showed that the MWIS problem can be solved in polynomial time
for claw-free graphs. Using modular decomposition techniques, Lozin and Milanič
[26] showed that the MWIS problem can be solved in polynomial time for fork-
free graphs. The complexity of the MWIS problem is unknown for the class of
S1,1,3-free graphs. However, the M(W)IS problem can be solved in polynomial
time for some subclasses of Si,j,k-free graphs; see [18, Table 1] and [23]. Note that
the class of S1,1,3-free graphs extend the class of fork-free graphs and the class
of P5-free graphs. It is also known that the MWIS problem in P5-free graphs can
be solved in polynomial time [25].

The bull is the graph with vertex-set {v1, v2, v3, v4, v5} and edge-set {v1v2,
v2v3, v3v4, v2v5, v3v5}; see Fig. 1. Our main result is the following.

Theorem 1. The MWIS problem can be solved in time O(n9) in the class of
(S1,1,3, bull)-free graphs.

Before presenting the proofs, we recall some related results. Brandstädt and
Mosca [10] showed that MWIS can be solved in polynomial time in the class of
(odd-hole, bull)-free graphs. This class does not contain the class of (S1,1,3,bull)-
free graphs, since the latter can contain arbitrarily long holes. Thomassé et al.
[34] use the decomposition theorem for bull-free trigraphs, due to Chudnovsky
[12,13], to prove that MWIS is FPT in the class of bull-free graphs. The bot-
tleneck against polynomiality is a subclass called T1. It might be that one can
prove that MWIS is polynomial in the class of S1,1,3-free graphs in T1. However
our algorithm is, we believe, conceptually much simpler.
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2 Preliminaries

For missing notation and terminology, we refer to [8]. Let G be a finite, undirected
and simple graph with vertex-set V (G) and edge-set E(G). We let |V (G)| = n
and |E(G)| = m. Let Pn and Cn denote respectively the path, and the cycle on
n vertices. In a graph G, the neighborhood of a vertex x is denoted by N(x),
and we also use the notation N [x] for N(x) ∪ {x}. For two disjoint subsets
A,B ⊂ V (G), we say that A is complete to B if every vertex in A is adjacent
to every vertex in B. In case A contains only one vertex a, we may write that a
(rather than {a}) is complete to B. A vertex z ∈ V (G) distinguishes two other
vertices x, y ∈ V (G) if z is adjacent to one of them and nonadjacent to the
other. A vertex set M ⊆ V (G) is a module in G if no vertex from V (G) \ M
distinguishes two vertices from M . The trivial modules in G are V (G), ∅, and
all one-elementary vertex sets. A graph G is prime if it contains only trivial
modules. Note that prime graphs with at least three vertices are connected.

A class of graphs G is hereditary if every induced subgraph of a member of
G is also in G. We will use the following theorem by Lozin and Milanič [26].

Theorem 2 ([26]). Let G be a hereditary class of graphs. If the MWIS problem
can be solved in O(np)-time for prime graphs in G, where p ≥ 1 is a constant,
then the MWIS problem can be solved for graphs in G in time O(np + m). �	

A clique in G is a subset of pairwise adjacent vertices in G. A clique separa-
tor/clique cutset in a connected graph G is a subset Q of vertices in G such that
Q is a clique and such that the graph induced by V (G) \ Q is disconnected. A
graph is an atom if it does not contain a clique separator.

Let C be a class of graphs. A graph G is nearly C if for every vertex v in
V (G) the graph induced by V (G) \ N [v] is in C. Let αw(G) denote the weighted
independence number of G. Obviously, we have:

αw(G) = max{w(v) + αw(G \ N [v]) | v ∈ V (G)}. (1)

The following observation follows obviously from (1); see also [6].

Observation 1 ([6]). If the MWIS problem is solvable in time T on a class C,
then it is solvable on nearly C graphs in time n · T . �	

We will also use the following theorem given in [4]; see also [22]. Though
the theorem (Theorem 1 of [4]) is stated only for hereditary class of graphs, the
proof also work for any class of graphs, and is given below:

Theorem 3 ([4]). Let C be a class of graphs such that MWIS can be solved
in time O(f(n)) for every graph in C with n vertices. Then in any class of
graphs whose atoms are all nearly C the MWIS problem can be solved in time
O(n · f(n) + nm). �	
Theorem 4 ([29]). The MWIS problem can solved in time O(n7) for (P6, bull)-
free graphs. �	
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3 MWIS on (S1,1,3, bull)-free Graphs

This section contains the proof of Theorem 1: we show that the MWIS prob-
lem can be solved in time O(n9) for (S1,1,3, bull)-free graphs, by analyzing the
structure of this class of graphs.

A 6-fan is a graph with vertices v1, v2, . . . , v6 and a such that v1-v2-v3-v4-v5-
v6 is a P6 and a is adjacent to vi for all i ∈ {1, . . . , 6}.

Lemma 1. Let G be a prime bull-free graph. Then G does not contain a 6-fan.

Proof. Suppose that G contains a 6-fan with vertices v1, . . . , v6 and u such that
v1-v2-v3-v4-v5-v6 is a P6 and u is adjacent to vi for all i ∈ {1, . . . , 6}. Let P =
{v1, . . . , v6} and A = {a ∈ V (G) \ P | a is complete to P}. So A 
= ∅. Let H be
the component of G \ A that contains P . We claim that:

A is complete to V (H). (2)

Proof of (2): Suppose on the contrary that there exist a ∈ A and x ∈ V (H)
such that a is not adjacent to x. By the definition of A we have x ∈ V (H) \ P .
By the definition of H, there is a shortest path x0-x1-· · · -xq such that x0 ∈ P ,
x1, . . . , xq ∈ V (H) \ P , and xq = x, and q ≥ 1.

First suppose that q = 1. Since x has a neighbor (x0) in P and x /∈ A,
there are two integers i, j ∈ {1, . . . , 6} such that |i − j| = 1 and x is adja-
cent to vi and not to vj , and we may assume up to symmetry that {i, j} ∈
{{1, 2}, {2, 3}, {3, 4}}. Suppose that {i, j} = {1, 2}. Then x is adjacent to vk for
each k ∈ {4, 5, 6}, for otherwise {x, vi, vj , a, vk} induces a bull. If x is not adja-
cent to v3, then {v3, v4, v5, x, v1} induces a bull if i = 1, while {v1, a, v3, v4, x}
induces a bull if i = 2. So x is adjacent to v3. If i = 1, then {v2, v3, v4, x, v6}
induces a bull; if i = 2, then {v1, v2, v3, x, v6} induces a bull, a contradiction.
Next, suppose that {i, j} = {2, 3}. Then x is adjacent to vk for each k ∈ {5, 6},
for otherwise {x, vi, vj , a, vk} induces a bull. If x is not adjacent to v4, then
either {v4, v5, v6, x, v1} induces a bull or {x, v5, v4, a, v1} induces a bull. So x is
adjacent to v4. Likewise, if x is not adjacent to v3, then either {v3, v4, v5, x, v1}
induces a bull or {x, v4, v3, a, v1} induces a bull. So x is adjacent to v3. So
i = 3; but then {v2, v3, v4, x, v6} induces a bull, a contradiction. Finally sup-
pose that {i, j} = {3, 4}. Since we may assume that we are not in the preceding
cases, x is complete to {v1, v2, v3} and has no neighbor in {v4, v5, v6}. But then
{x, v3, v4, a, v6} induces a bull.

Now suppose that q ≥ 2. By the preceding point, a is adjacent to x1. Since x1

has a neighbor and a non-neighbor in P , there are non-adjacent vertices v, v′ ∈ P
such that x1 is adjacent to v and not to v′. Then, by induction on j = 2, . . . , q,
we see that a is adjacent to xj , for otherwise {v′, a, xj−2, xj−1, xj} induces a
bull. So a is adjacent to x. Thus (2) holds.

By (2) and the definition of H, and the fact that A 
= ∅, we see that V (H)
is a homogeneous set in G, which contradicts the hypothesis that G is prime. �	

A hole is a chordless cycle Ck, where k ≥ 5, and a long hole is a hole Ck,
where k ≥ 7.
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Theorem 5. Let G be a prime (S1,1,3, bull, long hole)-free graph. Then every
atom of G is nearly P6-free.

Proof. Let G′ be an atom of G. Suppose on the contrary that G′ has a
vertex x whose non-neighborhood contains a P6, say, v1-v2-v3-v4-v5-v6. Let
P = {v1, . . . , v6} and A = N(P ). Let X be the component of G′ \ A that
contains x. Let A+ = {a ∈ A | a has a neighbor in X}. So A+ is a separator
that separates X from P . We claim that:

Every vertex a ∈ A+ satisfies NP (a) = {v1} or NP (a) = {v6}. (3)

Proof of (3). Consider any a ∈ A+. By the definition of this set, a has a neighbor
z ∈ X. So z has no neighbor in P . Suppose that there is an integer i such that
a is adjacent to vi and vi+1 (i ∈ {1, . . . , 5}). If a is complete to P , then P ∪ {a}
induces a 6-fan, which contradicts Lemma 1. So a has a non-neighbor in P .
Then, possibly up to reversing the labelling, there is an integer j such that a is
adjacent to vj and vj+1 and not to vj+2; but then {z, a, vj , vj+1, vj+2} induces
a bull. So there is no such integer i, in other words NP (a) is a stable set.

Suppose that |NP (a)| ≥ 3. Then, up to symmetry, NP (a) is equal to either
{v1, v3, v5} or {v1, v3, v6}. If NP (a) = {v1, v3, v5}, then {v4, v5, v6, a, v1, v2}
induces an S1,1,3. If NP (a) = {v1, v3, v6}, then {z, v1, a, v6, v5, v4} induces an
S1,1,3. Hence |NP (a)| ≤ 2.

Suppose that |NP (a)| = 2. Then, up to symmetry, NP (a) is equal to either
{v1, v3}, {v1, v4}, {v1, v5}, {v1, v6}, {v2, v4}, or {v2, v5}.
If NP (a) = {v1, v3}, then {a, v2, v3, v4, v5, v6} induces an S1,1,3.
If NP (a) = {v1, v4}, then {z, v1, a, v4, v5, v6} induces an S1,1,3.
If NP (a) = {v1, v5}, then {v6, v5, v4, a, v1, v2} induces an S1,1,3.
If NP (a) = {v1, v6}, then P ∪ {a} induces a C7.
If NP (a) = {v2, v4}, then {z, v2, a, v4, v5, v6} induces an S1,1,3.
If NP (a) = {v2, v5}, then {v1, v2, v3, a, v5, v6} induces an S1,1,3, a contradiction.

Hence |NP (a)| = 1. Now if NP (a) = {v2}, then {a, v1, v2, v3, v4, v5} induces
an S1,1,3, and if NP (a) = {v3}, then {a, v2, v3, v4, v5, v6} induces an S1,1,3; and
the cases NP (a) = {v4} or {v5} are symmetric. Thus (3) holds.

For each i ∈ {1, 6}, let Bi = {a ∈ A+ | NP (a) = {vi}}. By (3) we have
A+ = B1 ∪ B6. We observe that:

Each of B1 and B6 is a clique. (4)

Proof of (4). If B1 contains two non-adjacent vertices a, b, then {a, b, v1, v2,
v3, v4} induces an S1,1,3. The same holds for B6. Thus (4) holds.

Since G′ is an atom, the set A+ is not a clique separator of G′, so, since it
is a separator, it is not a clique. Hence, by (4), there are non-adjacent vertices
a ∈ B1 and b ∈ B6. By the definition of A+, there is a shortest path Q from a
to b with all its interior vertices in X. Then the union of P and Q is a Ck, for
some k ≥ 9, a contradiction. �	
Theorem 6. The MWIS problem can be solved in time O(n8) for (S1,1,3, bull,
long hole)-free graphs.
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Proof. Let G be an (S1,1,3, bull, long hole)-free graph. First suppose that G is
prime. By Theorem 5, every atom of G is nearly P6-free. Since the MWIS problem
for (P6, bull)-free graphs can be solved in time O(n7) (by Theorem 4), MWIS
can be solved in time O(n8) for G, by Theorem 3. Then the time complexity is
the same when G is not prime, by Theorem 2. �	

A k-wheel is a graph that consists of a k-cycle plus a vertex (called the center)
adjacent to all the vertices of the cycle.

Lemma 2 ([33]). Let G be a prime bull-free graph. Then G does not contain a
k-wheel, for any k ≥ 6.

Theorem 7. Prime (S1,1,3, bull)-free graphs are nearly long hole-free.

Proof. Let G be a prime (S1,1,3, bull)-free graph. Assume to the contrary that
there is a vertex p in G such that G \ N [p] contains an induced Ck, where
k ≥ 7, say H with vertex set V (H) = {v1, v2, . . . , vk} and with edge set E(H) =
{v1v2, v2v3, . . . , vk−1vk, vkv1}. Let A = N(H). Let X be the component of G\A
that contains p. Let A+ = {a ∈ A | a has a neighbor in X}. So A+ is a separator
that separates X from H.

Since G is prime, it is connected, so A+ 
= ∅. Pick any x ∈ A+. So there
exists a vertex y ∈ X such that xy ∈ E(G).

Suppose that x is adjacent to two consecutive vertices, say, vj , vj+1 of H.
Then x must be adjacent to vj+2, for otherwise {y, x, vj , vj+1, vj+2} induces a
bull. The same argument repeated along H implies that x is complete to H. But
then V (H) ∪ {x} induces a k-wheel, with k ≥ 7, a contradiction to Lemma 2.

Therefore, assume that the vertex x is not adjacent to two consecutive ver-
tices of H. Since x ∈ N(H), there exists a vertex vi ∈ V (H) (1 ≤ i ≤ k)
such that xvi ∈ E(G). By our assumption, xvi−1, xvi+1 /∈ E(G). Suppose that
xvi+2 /∈ E(G). Then since {vi+3, vi+2, vi+1, vi, vi−1, x} does not induce an S1,1,3,
we have xvi+3 ∈ E(G). Then since {vi−2, vi−1, vi, x, vi+3, y} does not induce an
S1,1,3, we have xvi−2 ∈ E(G). But, now {vi+2, vi+1, vi, x, y, vi−2} induces an
S1,1,3 in G, which is a contradiction. So, suppose that xvi+2, xvi−2 ∈ E(G). By
assumption xvi−3, xvi+3 /∈ E(G). If k = 7, then {vi−3, vi+3, vi+2, x, y, vi} induces
an S1,1,3 in G, and if k ≥ 8, then {vi−3, vi−2, x, vi+2, vi+3, vi+1} induces an S1,1,3

in G, a contradiction. �	
Now we can give the proof of Theorem 1. Let G be an (S1,1,3, bull)-free

graph. First suppose that G is prime. By Theorem 7, G is nearly long-hole-free.
Since the MWIS problem for (S1,1,3, bull, long hole)-free graphs can be solved
in time O(n8) (by Theorem 6), MWIS can be solved in time O(n9) for G, by
Observation 1. Finally, when G is not prime the time complexity is the same, by
Theorem 2. �	
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34. Thomassé, S., Trotignon, N., Vušković, K.: A polynomial Turing-kernel for
weighted independent set in bull-free graphs. Algorithmica (2015, in press)

http://dx.doi.org/10.1016/j.dam.2015.02.012
http://dx.doi.org/10.1016/j.dam.2015.02.012
http://arxiv.org/abs/1602.06817v1


Decomposing Cubic Graphs into Connected
Subgraphs of Size Three

Laurent Bulteau1, Guillaume Fertin2, Anthony Labarre1(B), Romeo Rizzi3,
and Irena Rusu2
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Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France

3 Department of Computer Science, University of Verona, Verona, Italy

Abstract. Let S = {K1,3,K3, P4} be the set of connected graphs of size
3. We study the problem of partitioning the edge set of a graph G into
graphs taken from any non-empty S′ ⊆ S. The problem is known to be
NP-complete for any possible choice of S′ in general graphs. In this paper,
we assume that the input graph is cubic, and study the computational
complexity of the problem of partitioning its edge set for any choice
of S′. We identify all polynomial and NP-complete problems in that
setting, and give graph-theoretic characterisations of S′-decomposable
cubic graphs in some cases.

1 Introduction

General context. Given a connected graph G and a set S of graphs, the S-
decomposition problem asks whether G can be represented as an edge-disjoint
union of subgraphs, each of which is isomorphic to a graph in S. The problem has
a long history that can be traced back to Kirkman [7] and has been intensively
studied ever since, both from pure mathematical and algorithmic points of view.
One of the most notable results in the area is the proof by Dor and Tarsi [3] of the
long-standing “Holyer conjecture” [6], which stated that the S-decomposition
problem is NP-complete when S contains a single graph with at least three edges.

Many variants of the S-decomposition problem have been studied while
attempting to prove Holyer’s conjecture or to obtain polynomial-time algorithms
in restricted cases [11], and applications arise in such diverse fields as traffic groom-
ing [10] and graph drawing [5]. In particular, Dyer and Frieze [4] studied a variant
where S is the set of connected graphs with k edges for some natural k, and proved
theNP-completeness of the S-decomposition problem for any k ≥ 3, even under
the assumption that the input graph is planar and bipartite (see Theorem 3.1 in
[4]). They further claimed that the problem remains NP-complete under the addi-
tional constraint that all vertices of the input graph have degree 2 or 3. Interest-
ingly, if one looks at the special case where k = 3 and G is a bipartite cubic graph
(i.e., each vertex has degree 3), then G can clearly be decomposed in polynomial
time, using K1,3’s only, by selecting either part of the bipartition and making each
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 393–404, 2016.
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vertex in that set the center of a K1,3. This shows that focusing on the case k = 3
and on cubic graphs can lead to tractable results — as opposed to general graphs,
for which when k = 3, and for any non empty S′ ⊆ S, the S′-decomposition
problems all turn out to be NP-complete [4,6].

In this paper, we study the S-decomposition problem on cubic graphs in
the case k = 3 — i.e., S = {K1,3,K3, P4}. For any non-empty S′ ⊆ S, we set-
tle the computational complexity of the S-decomposition problem by showing
that the problem is NP-complete when S′ = {K1,3, P4} and S′ = S, while all
the other cases are in P. Table 1 summarises the state of knowledge regarding
the complexity of decomposing cubic and arbitrary graphs using connected sub-
graphs of size three, and puts our results into perspective.

Table 1. Known complexity results on decomposing graphs using subsets of
{K1,3,K3, P4}.

Allowed subgraphs Complexity according to graph class

K1,3 K3 P4 Cubic Arbitrary

� in P (Proposition 3) NP-complete [4, Theorem 3.5]

� O(1) (impossible) NP-complete [6]

� in P [8] NP-complete [4, Theorem 3.4]

� � in P (Proposition 6) NP-complete [4, Theorem 3.5]

� � NP-complete (Theorem 2) NP-complete [4, Theorem 3.1]

� � in P (Proposition 2) NP-complete [4, Theorem 3.4]

� � � NP-complete (Theorem 3) NP-complete [4, Theorem 3.1]

Terminology. We follow Brandstädt et al. [2] for notation and terminology. All
graphs we consider are simple, connected and nontrivial (i.e. |V (G)| ≥ 2 and
|E(G)| ≥ 1). Given a set S of graphs, a graph G admits an S-decomposition, or
is S-decomposable, if E(G) can be partitioned into subgraphs, each of which is
isomorphic to a graph in S. Throughout the paper, S denotes the set of connected
graphs of size 3, i.e. S = {K3,K1,3, P4}. We study the following problem:

S′-decomposition

Input: a cubic graph G = (V,E), a non-empty set S′ ⊆ S.
Question: does G admit a S′-decomposition?

We let G[U ] denote the subgraph of G induced by U ⊆ V (G). Given a graph
G = (V,E), removing a subgraph H = (V ′ ⊆ V,E′ ⊆ E) of G consists in
removing edges in E′ from G as well as the possibly resulting isolated vertices.
Finally, let G and G′ be two graphs. Then:

– subdividing an edge {u, v} ∈ E(G) consists in inserting a new vertex w into
that edge, so that V (G) becomes V (G) ∪ {w} and E(G) is replaced with
E(G) \ {u, v} ∪ {u,w} ∪ {w, v};
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– attaching G′ to a vertex u ∈ V (G) means building a new graph H by identi-
fying u and some v ∈ V (G′);

– attaching G′ to an edge e ∈ E(G) consists in subdividing e using a new vertex
w, then attaching G′ to w.

Figure 1 illustrates the process of attaching an edge to an edge of the cube
graph, and shows other small graphs that we will occasionally use in this paper.

u v u v

(a) (b) (c) (d)

Fig. 1. (a) Attaching a new edge to {u, v}; (b) the diamond graph; (c) the co-fish
graph; (d) the net graph.

2 Decompositions Without a K1,3

In this section, we study decompositions of cubic graphs that use only P4’s or
K3’s. Note that no cubic graph is {K3}-decomposable, since all its vertices have
odd degree. According to Bouchet and Fouquet [1], Kotzig [8] proved that a cubic
graph admits a {P4}-decomposition iff it has a perfect matching. However, the
proof of the forward direction as presented in [1] is incomplete, as it requires the
use of Proposition 1(b) below, which is missing from their paper. Therefore, we
provide the following proposition for completeness, together with another result
which will also be useful for the case where S′ = {K3, P4}.

Proposition 1. Let G be a cubic graph that admits a {K3, P4}-decomposition D.
Then, in D, (a) no K3 is used, and (b) no three P4’s are incident to the same vertex.

Proof. Partition V (G) into three sets V1, V2 and V3, where V1 (resp. V2, V3) is
the set of vertices that are incident to exactly one P4 (resp. two, three P4’s) in
D. Note that V1 is exactly the set of vertices involved in K3’s in D. Let ni = |Vi|,
1 ≤ i ≤ 3. Our goal is to show that n1 = n3 = 0, i.e. V1 = V3 = ∅. For this, note
that (1) each vertex in V3 is the extremity of three different P4’s, (2) each vertex
in V2 is simultaneously the extremity of one P4 and an inner vertex of another
P4, while (3) each vertex in V1 is the extremity of one P4. Since each P4 has two
extremities and two inner vertices, if p is the number of P4’s in D, we have:

• p = 3n3+n2+n1
2 (by (1), (2) and (3) above, counting extremities);

• p = n2
2 (by (2) above, counting inner vertices).

Putting together the above two equalities yields n1 = n3 = 0, which completes
the proof. �	
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Since K3’s cannot be used in cubic graphs for {K3, P4}-decompositions by
Proposition 1 above, we directly obtain the following result, which implies that
{K3, P4}-decomposition is in P.

Proposition 2. A cubic graph admits a {K3, P4}-decomposition iff it has a
perfect matching.

3 Decompositions Without a P4

In this section, we study decompositions of cubic graphs that use only K1,3’s or
K3’s.

Proposition 3. A cubic graph G admits a {K1,3}-decomposition iff it is bipar-
tite.

Proof. For the reverse direction, select either set of the bipartition, and make
each vertex in that set the center of a K1,3. For the forward direction, let D be
a {K1,3}-decomposition of G, and let C and L be the sets of vertices containing,
respectively, all the centers and all the leaves of K1,3’s in D. We show that this
is a bipartition of V (G). First, C ∪L = V since D covers all edges and therefore
all vertices. Second, C ∩L = ∅ since a vertex in C ∩L would have degree at least
4. Finally, each edge in D connects the center of a K1,3 and a leaf of another
K1,3 in D, which belong respectively to C and L. Therefore, G is bipartite. �	

We now prove that {K1,3,K3}-decompositions can be computed in poly-
nomial time. Recall that a graph is H-free if it does not contain an induced
subgraph isomorphic to a given graph H. Since bipartite graphs admit a {K1,3}-
decomposition (by Proposition 3), we can restrict our attention to non-bipartite
graphs that contain K3’s (indeed, if they were K3-free, then only K1,3’s would be
allowed and Proposition 3 would imply that they admit no decomposition). Our
strategy consists in iteratively removing subgraphs from G and adding them to
an initially empty {K1,3, K3}-decomposition until G is empty, in which case we
have an actual decomposition, or no further removal operations are possible, in
which case no decomposition exists. Our analysis relies on the following notion:
a K3 induced by vertices {u, v, w} in a graph G is isolated if V (G) contains no
vertex x such that {u, v, x}, {u, x, w} or {x, v, w} induces a K3.

Lemma 1. If a cubic graph G admits a {K1,3,K3}-decomposition D, then every
isolated K3 in G belongs to D.

Proof (Contradiction). If an isolated K3 were not part of the decomposition,
then exactly one vertex of that K3 would be the center of a K1,3, leaving the
remaining edge uncovered and uncoverable. �	

C6 is a minimal example of a cubic non-bipartite graph with K3’s that admits
no {K1,3,K3}-decomposition: both K3’s in that graph must belong to the decom-
position (by Lemma 1), but their removal yields a perfect matching.



Decomposing Cubic Graphs into Connected Subgraphs of Size Three 397

Observation 1. Let G be a connected cubic graph. Then no sequence of at least
one edge or vertex removal from G yields a cubic graph.

Proof (Contradiction). If after applying at least one removal operation on G
we obtain a cubic graph G′, then the graph that precedes G′ in this removal
sequence must have had a vertex of degree at least four, since G is connected.

�	
Proposition 4. For any non-bipartite cubic graph G whose K3’s are all iso-
lated, one can decide in polynomial time whether G is {K1,3,K3}-decomposable.

Proof. We build a {K1,3,K3}-decomposition by iteratively removing K1,3’s and
K3’s from G, which we add as we go to an initially empty set D. By Lemma 1,
all isolated K3’s must belong to D, so we start by adding them all to D and
removing them from G; therefore, G admits a {K1,3, K3}-decomposition iff the
resulting subcubic graph G′ admits a {K1,3}-decomposition. Observe that G′

contains vertices of degree 1 and 2; we note that:

1. each vertex of degree 1 must be the leaf of some K1,3 in D;
2. each vertex of degree 2 must be the meeting point of two K1,3’s in D.

The only ambiguity arises for vertices of degree 3, which may either be the center
of a K1,3 in D or the meeting point of three K1,3’s in D; however, there will
always exist at least one other vertex of degree 1 or 2 until the graph is empty
(by Observation 1). Therefore, we can safely remove K1,3’s from our graph and
add them to D by following the above rules in the stated order; if we succeed in
deleting the whole graph in this way, then D is a {K1,3, K3}-decomposition of
G, otherwise no such decomposition exists. �	

We conclude with the case where the graph may contain non-isolated K3’s.

Proposition 5. If a cubic graph G contains a diamond, then one can decide in
polynomial time whether G is {K1,3,K3}-decomposable.

Proof. The only cubic graph on 4 vertices is K4, which is diamond-free and
{K1,3,K3}-decomposable, so we assume |V (G)| ≥ 6. Let D be a diamond in
G induced by vertices {u, v, w, x} and such that {u, x} �∈ E(G), as shown in
Fig. 2(a). D is connected to two other vertices u′ and x′ of G, which are respec-
tively adjacent to u and x, and there are only two ways to use the edges of D in
a {K1,3, K3}-decomposition, as shown in Fig. 2(b) and (c). If u′ = x′, regardless
of the decomposition we choose for D, u′ and its neighbourhood induce a P3 in
the graph obtained from G by removing the parts added to D. But then that
P3 cannot be covered, so no {K1,3, K3}-decomposition exists for G. Therefore,
we assume that u′ �= x′.

As Fig. 2(b) and (c) show, either {u, v, w} or {v, w, x} must form a K3 in D,
thereby forcing either {v, w, x, x′} or {u′, u, v, w} to form a K1,3 in D. In both
cases, removing the K3 and the K1,3 yields a graph G′ which contains vertices
of degree 1, 2 or 3. As in the proof of Proposition 4, Observation 1 allows us to
obtain the following helpful properties:
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1. every leaf in G′ must be the leaf of some K1,3 in D;
2. every vertex y of degree two in G′ must either belong to a K3 or be a leaf of

two distinct K1,3’s in D, which can be decided as follows:
(a) if y belongs to a K3 in G′, then it must also belong to a K3 in D; otherwise,

it would be the leaf of a K1,3 and the graph obtained by removing that
K1,3 would contain a P3, which we cannot cover;

(b) otherwise, y must be a leaf of two K1,3’s in D.

We therefore iteratively remove subgraphs from our graph and add them to
D according to the above rules, which we follow in the stated order; if we succeed
in deleting the whole graph in this way using either decomposition in Fig. 2(b)
or (c) as a starting point, then D is a {K1,3,K3}-decomposition of G, otherwise
no such decomposition exists. �	

v
u

w

x
u′ x′

v
u

w

x
u′ x′

v
u

w

x
u′ x′

(a () b) (c)

Fig. 2. (a) A diamond in a cubic graph, and (b), (c) the only two ways to decompose
it in a {K1,3, K3}-decomposition. (Color figure online)

All the arguments developed in this section lead to the following result.

Proposition 6. The {K1,3, K3}-decomposition problem on cubic graphs is
in P.

4 Decompositions that Use both K1,3’s and P4’s

In this section, we show that problems {K1,3, P4}-decomposition and {K1,3,
K3, P4}-decomposition are NP-complete. Our hardness proof relies on two
intermediate problems that we define below and is structured as follows:

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges (Theorem 1 page 10)
≤P {K1,3, K3, P4}-decomposition with marked edges (Lemma 4 page 9)
≤P {K1,3, P4}-decomposition (Lemma 3 page 7)

We start by introducing the following intermediate problem:

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?
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The drawings that illustrate our proofs in this section show marked edges as
dotted edges. The proof of Lemma 3 uses the following result.

Lemma 2. Let e be a bridge in a cubic graph G which admits a {K1,3,K3, P4}-
decomposition D. Then e must be the middle edge of a P4 in D.

Proof (Contradiction). First note that e cannot belong to a K3 in D. Now
suppose e is part of a K1,3 in D. The situation is as shown below (without loss
of generality):

e

bank A bank B

If we remove from G the K1,3 in D that contains e, then summing the terms of
the degree sequence of G[V (B)] yields 2+3(|V (B)|−1) = 2|E(B)|, which means
that 2|E(B)| ≡ 2 (mod 3), so |E(B)| �≡ 0 (mod 3) and therefore B admits no
decomposition into components of size three. The very same argument shows
that if e belongs to a P4 in D, then it must be its middle edge, which completes
the proof. �	
Lemma 3. Let (G,M) be an instance of {K1,3,K3, P4}-decomposition with
marked edges, and G′ be the graph obtained by attaching a co-fish to every
edge in M . Then G can be decomposed iff G′ admits a {K1,3, P4}-decomposition.

Proof. We prove each direction separately.

⇒: we show how to transform a decomposition D of (G,M) into a decomposition
D′ of G′. The subgraphs in D that have no edge in M are not modified. For
the other subgraphs, we distinguish between four cases:
(a) if an edge of M belongs to a K1,3 in D, then attaching a co-fish does not

prevent us from adapting the decomposition of G in G′:

(b) if an edge of M belongs to a P4 in D, then it is an extremity of that P4

and attaching a co-fish does not prevent us from adapting that part of
the decomposition:

(c) if a K3 in D has one edge in M , we can adapt the partition as follows:
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(d) if a K3 in D has two edges in M , we can adapt the partition as follows:

⇐: we now show how to transform any {K1,3, P4}-decomposition D′ of G′ into a
decomposition of (G,M). Again, the only parts of D′ that will need adapting
are those connected to the co-fishes that we inserted when transforming G
into G′. Since the leaf u of the co-fish we inserted has a neighbour x such that
{u, x} is a bridge in G′, {u, x} is the middle edge of a P4 in D′ (Lemma 2) and
we may therefore assume without loss of generality that our starting point in
G′ is as follows:

x v

u w
G′ :

v

w

G :

with {v, w} �∈ E(G′) since G is simple; therefore {u,w} cannot belong to a
K3 in G′, and we have two cases to consider:
(a) if {u,w} belongs to a K1,3 in D′, that K1,3 can be mapped onto a K1,3

in D by replacing {u,w} with {v, w};
(b) otherwise, {u,w} is an extremal edge of a P4 in D′; since {u,w} �∈ E(G),

either that edge will remain in a P4 when removing the co-fish and replac-
ing {u,w} with {v, w}, or it will end up in a K3 with either one or two
marked edges. Either way, the part can be added as such to D. �	

We now show that we can restrict our attention to the following variant
of {K1,3, K3, P4}-decomposition with marked edges. We say a graph is
degree-2,3 if its vertices have degree only 2 or 3.

degree-2,3 {K1,3, K3, P4}-decomposition with marked edges

Input: a degree-2,3 graph G = (V,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

The following observation will help.

Observation 2. Let G be a degree-2,3 graph with |V2| degree-2 vertices. If G is
{K1,3,K3, P4}-decomposable, then |V2| ≡ 0 (mod 3).

Proof. If G = (V,E) admits a {K1,3, K3, P4}-decomposition, then |E| ≡ 0
(mod 3). Let V2 and V3 be the subsets of vertices of degree 2 and 3 in G. Then
2|V2| + 3|V3| = 2|E|, so 2|V2| ≡ 0 (mod 3). �	
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t1

t2 t3

v1

v2 v3

t1

t2 t3

v1

v2 v3

(a () b)

Fig. 3. Adding a net (a) to a graph with degree-2 vertices t1, t2, t3 (dotted edges belong
to M ′), and (b) its only possible decomposition (up to symmetry). (Color figure online)

We prove that allowing degree-2 vertices does not make the problem substantially
more difficult, by adding the following gadgets until all vertices have degree 3.
Let (G,M) be an instance of degree-2,3 {K1,3, K3, P4}-decomposition with
marked edges, where G has at least three degree-2 vertices t1, t2, t3; by adding
a net over {t1, t2, t3}, we mean attaching a net by its leaves to v1, v2 and v3 and
adding the edges incident to the net’s leaves to M (see Fig. 3(a)).

Proposition 7. Let (G,M) be an instance of degree-2,3 {K1,3, K3, P4}-
decomposition with marked edges, where G has at least three degree-2
vertices t1, t2, t3, and let (G′,M ′) be the instance obtained by adding a net to
(G,M). Then (G′,M ′) has three degree-2 vertices less than (G,M), and (G,M)
can be decomposed iff (G′,M ′) can be decomposed.

Proof. By construction, G′ has fewer degree-2 vertices, since t1, t2, t3 now have
degree 3 instead of 2, other vertices of G are unchanged, and new vertices
{v1, v2, v3} have degree 3. We now prove the equivalence.

⇒: given a decomposition D for (G,M), we only need to add the K1,3 induced by
{v1, t1, v2, v3} and the P4 induced by {t2, v2, v3, t3} to cover the edges of the
added net in order to obtain a decomposition D′ for (G′,M ′) (see Fig. 3(b)).

⇐: we show that the only valid decompositions must include the choice we made
in the proof of the forward direction. Indeed, the marked edges cannot be
middle edges in a P4, and the K3 induced by v1, v2 and v3 cannot appear as
a K3 in a decomposition. Moreover, no marked edge can be the extremity of a
P4 with two edges lying in the K3, since this would force another marked edge
to be the middle edge of a P4. Therefore the only possible decomposition of
the net is the one defined above (up to symmetry), and we can safely remove
the P4 and the K1,3 from D′ while preserving the rest of the decomposition.

�	
Lemma 4. degree-2,3 {K1,3, K3, P4}-decomposition with marked
edges ≤P {K1,3, K3, P4}-decomposition with marked edges.

Proof. Given an instance (G,M) of degree-2,3 {K1,3, K3, P4}-decomposition
with marked edges, create an instance (G′,M ′) by successively adding a net
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to any triple of degree-2 vertices, until no such triple remains. By Proposition 7,
(G,M) is decomposable iff (G′,M ′) is decomposable. Moreover, either G′ is
cubic (and then (G′,M ′) is an instance of {K1,3, K3, P4}-decomposition with
marked edges), or G is trivially a no-instance by Observation 2 �	

Finally, we show that degree-2,3 {K1,3,K3, P4} decomposition with
marked edges is NP-complete. Our reduction relies on the cubic planar
monotone 1-in-3 satisfiability problem [9]:

cubic planar monotone 1-in-3 satisfiability

Input: a Boolean formula φ = C1 ∧ C2 ∧ · · · ∧ Cn without negations over
a set Σ = {x1, x2, . . . , xm}, with exactly three distinct variables
per clause and where each literal appears in exactly three clauses;
moreover, the graph with clauses and variables as vertices and
edges joining clauses and the variables they contain is planar.

Question: does there exist an assignment of truth values f : Σ → {true,
false} such that exactly one literal is true in every clause of φ?

Theorem 1. degree-2,3 {K1,3, K3, P4}-decomposition with marked ed-
ges is NP-complete.

Proof. We first show how to transform an instance φ = C1∧C2∧· · ·∧Cn of cubic
planar monotone 1-in-3 satisfiability into an instance (G,M) of degree-
2,3 {K1,3, K3, P4}-decomposition with marked edges. The transformation
proceeds by:

1. mapping each variable xi onto a K1,3 denoted by K(xi) and whose edges all
belong to M ;

2. mapping each clause C = {xi, xj , xk} onto a cycle with five vertices in such
a way that K(xi), K(xj) and K(xk) each have a leaf that coincides with a
vertex of the cycle and exactly two such leaves are adjacent in the cycle.

Figure 4 illustrates the construction, which yields a degree-2,3 graph. We now
show that φ is satisfiable iff (G,M) admits a decomposition.

⇒: we apply the following rules for transforming a satisfying assignment for φ
into a decomposition D for (G,M):
– if variable xi is set to false, then the corresponding K(xi) is added as

such to D;
– otherwise, the three edges of K(xi) will be the meeting points of three

different K1,3’s in the decomposition, one of which will have two edges in
the current clause gadget.

Two cases can be distinguished based on whether or not a leaf of K(xi) is
adjacent to a leaf of K(xj) or K(xk), but in both cases the rest of the clause
gadget yields a P4 that we add as such to the decomposition (see Fig. 4(b)
and (c)).
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⇐: we now show how to convert a decomposition D for (G,M) into a satisfying
truth assignment for φ. First, we observe that D must satisfy the following
crucial structural property:

For each clauseC = (xi ∨ xj ∨ xk) , exactly two subgraphs out of

K (xi) ,K (xj) andK (xi) appear asK1,3’s inD.

Indeed, G is K3-free by construction, and:

(a) if all of them appear as K1,3’s in D, then the remaining five edges of the
clause gadget cannot be decomposed;

(b) if only K(xi) appears as a K1,3 in D, then xj — without loss of generality —
must be a leaf either of a K1,3 in D with a center in the clause gadget or
of a P4 in D with two edges in the clause gadget (the P4 cannot connect
xj and xk, otherwise the rest of the gadget cannot be decomposed); in both
cases, the remaining three edges of the clause gadget must form a P4, thereby
causing K(xk) to appear as a K1,3 in D, a contradiction (a similar argument
allows us to handle K(xj) and K(xk));

(c) finally, if none of them appear as K1,3’s in D, then xi must be the leaf
either of a K1,3 in D with a center in the clause gadget, or of a P4 with two
edges in the clause gadget; in both cases, the remaining three edges of the
clause gadget must form a P4 in D, which in turn makes it impossible to
decompose the rest of the graph.

Therefore, D yields a satisfying assignment for φ in the following simple way:
if K(xi) appears as a K1,3 in D, set it to false, otherwise set it to true. �	
Theorem 2. {K1,3, P4}-decomposition is NP-complete.

Proof. Immediate from Lemmas 3 and 4 and Theorem 1. �	

xi

xj xk

xi

xj xk

xi

xj xk

(a () b) (c)

Fig. 4. (a) Connecting clause and variable gadgets in the proof of Theorem 1; dotted
edges belong to M . (b), (c) Converting truth assignments into decompositions in the
proof of Theorem 1; the only variable set to true is mapped onto a K1,3 in the decom-
position; (b) shows the case where the only variable set to true — namely, xi — is
such that K(xi) has no leaf adjacent to a leaf of K(xj) nor K(xk); (c) shows the other
case, where xj is set to true and K(xi) and K(xk) have leaves made adjacent by the
clause gadget. (Color figure online)
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A like-minded reduction allows us to prove the hardness of {K1,3, K3, P4}-
decomposition.

Theorem 3. {K1,3, K3, P4}-decomposition is NP-complete, even on K3-free
graphs.

5 Conclusions and Future Work

We provided in this paper a complete complexity landscape of {K1,3, K3, P4}-
decomposition for cubic graphs. A natural generalisation, already studied by
other authors, is to study decompositions of k-regular graphs into connected com-
ponents with k edges for k > 3. We would like to determine whether our positive
results generalise in any way in that setting. It would also be interesting to iden-
tify tractable classes of graphs in the cases where those decomposition problems
are hard, and to refine our characterisation of hard instances; for instance, does
there exist a planarity-preserving reduction for Theorem3? Finally, we note that
some applications relax the size constraint by allowing the use of graphs with at
most k edges in the decomposition [10]; we would like to know how that impacts
the complexity of the problems we study in this paper.
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Abstract. Consider a hypergraph Hd
n where the vertices are points of

the d-dimensional combinatorial cube nd and the edges are all sets of n
points such that they are in one line. We study the structure of the group
of automorphisms of Hd

n, i.e., permutations of points of nd preserving the
edges. In this paper we provide a complete characterization. Moreover, we
consider the Colored Cube Isomorphism problem of deciding whether
for two colorings of the vertices of Hd

n there exists an automorphism of
Hd

n preserving the colors. We show that this problem is GI-complete.

1 Introduction

Combinatorial cube nd (or simply a cube nd) is a set of points [n]d, where
[n] = {0, . . . , n − 1}. A line � of a cube nd is a set of n points of nd which lie in
a geometric line in the d-dimensional space where the cube nd is embedded. We
denote the set of all lines of the cube nd by L(nd). Thus, the hypergraph Hd

n is
defined as

(
nd,L(nd)

)
.

We denote the group of all permutations on n elements by Sn. A permutation
P ∈ Snd is an automorphism of the cube nd if � = {v1, . . . , vn} ∈ L(nd) implies
P (�) = {P (v1), . . . , P (vn)} ∈ L(nd). Informally, an automorphism of the cube
nd is a permutation of the cube points which preserves the lines. We denote the
set of all automorphisms of nd by T d

n . Note that all automorphisms of nd with
a composition ◦ form a group T

d
n = (T d

n , ◦, Id).
Our main result is the characterization of the generators of the group T

d
n and

computing the order of Td
n. Surprisingly, the structure of Td

n is richer than only
the obvious rotations and symmetries. We use three groups of automorphisms
for characterization of the group T

d
n as follows. The first one is a group Rd of

rotations of the d-dimensional hypercube. Generators of Rd are the rotations

Rij

(
[x1, . . . , xi, . . . , xj , . . . , xd]

)
= [x1, . . . , n − xj − 1, . . . , xi, . . . , xd]
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for every i, j ∈ {1, . . . , d}. The second group is a group of permutation automor-
phisms Fn contains mappings Fπ

(
[x1, . . . , xd]

)
= [π(x1), . . . , π(xd)] where π ∈ Sn

such that it has a symmetry property : if π(p) = q then π(n − p − 1) = n − q − 1.
The last one is a group of axial symmetry X which contains the automorphisms
Id and X

(
[x1, . . . , xd−1, xd]

)
= [x1, . . . , xd, xd−1]. Our main result is summa-

rized in the following theorem. For the proof we use and generalize some ideas
of Silver [11] who proved a same result for the cube 43.

Theorem 1. The group T
d
n is generated by the elements of Rd ∪ Fn ∪ X. The

order of the group T
d
n is 2d−1+kd!k! where k = �n

2 �.
An isomorphism of two hypergraphs H1 = (V1, E1),H2 = (V2, E2) is a bijec-

tion f : V1 → V2 such that for each {s1, . . . , sr} ⊆ V1, {s1, . . . , sr} ∈ E1 ⇔
{f(s1), . . . , f(sr)} ∈ E2. A coloring of a hypergraph H = (V,E) by k colors is a
function s : V → [k]. The following problem is well studied.

PROBLEM: Colored Hypergraph Isomorphism (CHI)
Instance: Hypergraphs H1 = (V1, E1),H2 = (V2, E2), colorings s1 : V1 →

[k], s2 : V2 → [k]
Question: Is there an isomorphism f : V1 → V2 of H1 and H2 such that

it preserves the colors? I.e., it holds s1(v) = s2(f(v)) for every
vertex v in V1.

There are several FPT algorithms1 for CHI—see Arvind et al. [2,3]. The
problem Colored Cube Isomorphism is defined as the problem CHI where
both H1,H2 = Hd

n. Since we know the structure of the group T
d
n, it is natural

to ask if Colored Cube Isomorphism is an easier problem than CHI. We
prove that the answer is negative. The class of decisions problems GI contains all
problems with a polynomial reduction to the problem Graph Isomorphism.

PROBLEM: Graph Isomorphism
Instance: Graphs G1, G2

Question: Are the graphs G1 and G2 isomorphic?

It is well known that CHI is GI-complete, see Booth and Colbourn [6]. We
prove the same result for Colored Cube Isomorphism.

Theorem 2. The problem Colored Cube Isomorphism is GI-complete even
if both input colorings has a form nd → [2].

The paper is organized as follows. First we count the order of the group T
d
2,

whose structure is different from other automorphism groups. Next, for clarity
reasons we characterize the generators for T3

n, and then we generalize the results
for the general group T

d
n. In Sect. 5 we count the order of the group T

d
n. In

the last section we study the complexity of Colored Cube Isomorphism and
show some idea of a prove of Theorem 2.

1 The parameter is the maximum number of vertices colored by the same color.
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1.1 Motivation

A natural motivation for this problem comes from the game of Tic-Tac-Toe. It
is usually played on a 2-dimensional square grid and each player puts his tokens
(usually crosses for the first player and rings for the second) at the points on the
grid. A player wins if he occupies a line with his token vertically, horizontally or
diagonally (with the same length as the grid size) faster than his opponent. Tic-
Tac-Toe is a member of a large class of games called strong positional games. For
an extraordinary reference see Beck [5]. The size of a basic Tic-Tac-Toe board
is 3 × 3 and it is easy to show by case analysis that the game ends as a draw if
both players play optimally. However, the game can be generalized to larger grid
and more dimensions. The d-dimensional Tic-Tac-Toe is played on the points
of a d-dimensional combinatorial cube and it is often called the game nd. With
larger boards the case analysis becomes unbearable even using computer search
and clever algorithms have to be devised.

The only (as far as we know) non-trivial solved 3-dimensional Tic-Tac-Toe is
the game 43, which is called Qubic. Qubic is a win for the first player, which was
shown by Patashnik [10] in 1980. It was one of the first examples of computer-
assisted proofs based on a brute-force algorithm, which utilized several clever
techniques for pruning the game tree. Another remarkable approach for solving
Qubic was made by Allis [1] in 1994, who introduced several new methods. How-
ever, one technique is common for both authors: the detection of isomorphisms
of game configurations. As the game of Qubic is highly symmetric, this detection
substantially reduces the size of the game tree.

For the game nd, theoretical result are usually achieved for large n or large
d. For example, by the famous Hales and Jewett theorem [8], for any n there is
(an enormously large) d such that the hypergraph Hd

n is not 2-colorable, that
means, the game nd cannot end in a draw. Using the standard Strategy Stealing
argument, nd is thus a first player’s win. In two dimensions, each game n2, n > 2,
is a draw (see Beck [5]). Also, several other small nd are solved.

All automorphisms for Qubic were characterized by Silver [11] in 1967. As
in the field of positional games the game nd is intensively studied and many
open problems regarding nd are posed, the characterization of the automorphism
group of nd is a natural task.

The need to characterize the automorphism group came from our real effort to
devise an algorithm and computer program that would be able to solve the game
53, which is the smallest unsolved Tic-Tac-Toe game. While our effort of solving
53 is currently not yet successful, we were able to come up with the complete char-
acterization of the automorphism group nd, giving an algorithm for detection of
isomorphic positions not only in the game 53, but also in nd in general.

A game configuration can be viewed as a coloring s of nd by crosses, rings and
empty points, i.e., s : nd → [3]. Since we know the structure of the group T

d
n, this

characterization yields an algorithm for detecting isomorphic game positions by
simply trying all combinations of the generators (the number of the combinations
is given by the order of the group T

d
n). A natural question arises: can one obtain

a faster algorithm? Note that the hypergraph Hd
n has polynomially many edges
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in the number of vertices. Therefore, from a polynomial point of view it does
not matter if there are hypergraphs Hn

d with colorings or only colorings on the
input. Due to Theorem 2 we conclude that deciding if two game configurations
are isomorphic is as hard as deciding if two graphs are isomorphic.

Although our primary motivation came from the game of Tic-Tac-Toe, we
believe our result has much broader interest as it presents an analogy of auto-
morphism characterization results of hypercubes (see e.g. [7,9]).

2 Preliminaries

Beck [5] gives a different point of view on the lines of nd. Let s = (s1, . . . , sn)
be a sequence of n distinctive points of a cube nd. Let si = [si

1, . . . , s
i
d] for

every 1 ≤ i ≤ n. We say that s is linear if for every 1 ≤ j ≤ d a sequence
s̃j = (s1j , . . . , s

n
j ) is strictly increasing, strictly decreasing or constant and at least

one sequence s̃j has to be nonconstant. A set of points {p1, p2, . . . , pn} ⊆ nd is
a line if it can be ordered into a linear sequence (q1, q2, . . . , qn). Beck [5] worked
with ordered lines (the linear sequences in our case). However, for us it is more
convenient to have unordered lines because some automorphisms will change the
order of points in the line.

Let � be a line and q = (q1, . . . , qn) be an ordering of � into a linear sequence.
Note that every line in L(nd) has two such ordering. Another ordering of � into
a linear sequence is (qn, . . . , q1). We define a type of a sequence q̃j = (q1j , . . . , qn

j )
as + if q̃j is strictly increasing, − if q̃j is strictly decreasing, c if q̃j is constant
and qi

j = c for every 1 ≤ i ≤ n. A type of q is type(q) = (type(q̃1), . . . , type(q̃n)).
Type of a line � is a type of an ordering of � into a linear sequence.

Since every line has two such ordering, every line has also two types. How-
ever, the second type of � can be obtained by switching + and − in the
first type. For example, let � =

{
[0, 0, 3], [0, 1, 2], [0, 2, 1], [0, 3, 0]

} ∈ L(43) then
type(�) =

{
(0,+,−), (0,−,+)

}
. However, for better readability we write only

type(�) = (0,+,−). We denote the i-th entry in type(�) by type(�)i.
Let us now define several terms we use in the rest of the paper. A dimension

dim(�) of a line � ∈ L(nd) is dim(�) =
∣
∣
{
i ∈ {1, . . . , d}|type(�)i ∈ {+,−}}∣

∣. A
degree deg(p) of a point p ∈ nd is a number of incident lines, formally deg(p) =∣
∣{� ∈ L(nd)|p ∈ �}∣∣. Two points p1, p2 ∈ nd are collinear, if there exists a line
� ∈ L(nd), such that p1 ∈ � and p2 ∈ �. A point p ∈ nd is called a corner if p
has coordinates only 0 and n− 1. A point p = [x1, . . . , xd] ∈ nd is an outer point
if there exists at least one i ∈ {1, . . . , d} such that xi ∈ {0, n − 1}. If a point
p ∈ nd is not an outer point then p is called an inner point.

A line � ∈ L(nd) is called an edge if dim(�) = 1 and � contains two corners.
Two corners are neighbors if they are connected by an edge. A line � ∈ L(nd)
with dim(�) = d is called main diagonal. We denote the set of all main diagonals
by Lm(nd). For better understanding the notions see Fig. 1 with some examples
in the cube 43.

A k-dimensional face F of the cube nd is a maximal set of points of nd, such
that there exist two index sets I, J ⊆ {1, . . . , d}, I ∩ J = ∅, |I| + |J | = d − k and
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e e e e

m

m

m

m

d d d d

z = 0 z = 1 z = 2 z = 3
y = 3

y = 2

y = 1

y = 0

x : 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 1. A cube 43 with some examples of lines. An edge e has a type (+, 0, 0), a line d
has a dimension 2 and a type (+, 3,−) and a main diagonal m has a type (+,−,+).

for each point [x1, . . . , xd] in F holds that xi = 0 for each i ∈ I and, xj = n − 1
for each j ∈ J . For example, {[x, y, 0, n − 1]|x, y ∈ [n]} is a 2-dimensional face of
the cube n4.

A point p ∈ nd is fixed by an automorphism T if T (p) = p. A set of points
{p1, . . . , pk} is fixed by an automorphism T if {p1, . . . , pk} = {T (p1), . . . , T (pk)}.
Note that if a set S is fixed it does not necessarily mean every point of S is fixed.

2.1 Order of Td
2

The cube 2d is different from other cubes because every two points are collinear.
Thus, we have the following proposition.

Proposition 1. Order of the group T
d
2 is (2d)!.

Proof. Every permutation of the points of the cube 2d is an automorphism, as
the graph Hd

2 is the complete graph on 2d vertices. 
�
We further assume that n > 2.

3 Automorphisms of n3

For better understanding of our technique, we first show the result for the 3-
dimensional case of the group T

3
n. Here we state several general lemmas how

an arbitrary automorphism maps main diagonals, edges and corners. The proofs
are technical and are omitted from this conference paper.

Lemma 1. Let F =
{
[x, y, 0, . . . , 0]|x, y ∈ [n]

}
be a face of nd, and let an auto-

morphism T ∈ T
d
n fixes all 4 corners of F , i.e., points [0, . . . , 0], [n− 1, 0, . . . , 0],

[0, n−1, 0, . . . , 0] and [n−1, n−1, 0, . . . , 0]. Then, if T fixes a point [i, 0, . . . , 0], i ∈
[n] it also fixes a point [n − i − 1, 0, . . . , 0].

Lemma 2. Every automorphism T ∈ T
d
n maps a main diagonal m ∈ Lm(nd)

onto a main diagonal m′ ∈ Lm(nd).

Lemma 3. Let T ∈ T
d
n, e be an edge and p be a corner, such that p ∈ e. If the

corner p is fixed by T , then T (e) = e′ is an edge such that p ∈ e′.
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Lemma 4. If an automorphism T ∈ T
d
n fixes the corner [0, . . . , 0] and all its

neighbors, then T fixes all corners of the cube nd.

We also use the following easy observations.

Observation 3. If an automorphism T ∈ T
d
n fixes two collinear points p, q ∈ nd,

then T also fixes a line � ∈ L(nd) such that p, q ∈ �.

Proof. For any two distinct points p1, p2 ∈ nd there is at most one line � ∈ L(nd)
such that p1, p2 ∈ �. Therefore, if the points p and q are fixed then the line � has
to be fixed as well. 
�
Observation 4. If two lines �1, �2 ∈ L(nd) are fixed by T ∈ T

d
n then their

intersection, a point p = �1 ∩ �2, is fixed by T .

Proof. For any two lines �, �′ there is at most one point in � ∩ �′. Therefore, if
the lines �1 and �2 are fixed then the point p has to be fixed as well. 
�

3.1 Generators of T3
n

In this section we characterize generators of the group T
3
n. We use two basic

groups of automorphisms. The group of permutation automorphisms Fn. The
group second group is the group of rotations R of a 3-dimensional cube. The
generators of R are rotations

Rx

(
[x, y, z]

)
= [x, n − z − 1, y],

Ry

(
[x, y, z]

)
= [n − z − 1, y, x],

Rz

(
[x, y, z]

)
= [n − y − 1, x, z].

Definition 1. Let A3
n be a group generated by elements of R ∪ Fn.

We prove that A3
n = T

3
n. The idea of the proof, that resembles a similar proof of

Silver [11], is composed of two steps:

1. For any automorphism T ∈ T
3
n we find an automorphism A ∈ A

3
n such that

T ◦ A fixes every point in a certain set S.
2. If an automorphism T ′ ∈ T

3
n fixes every point in S then T ′ is the identity.

Hence, for every T ∈ T
3
n we find an inverse element T ′ such that T ′ is composed

only by elements of R ∪ Fn, therefore T ∈ A
3
n. The proof of the second part is

very similar to the proof for a general cube nd. Thus, it is proved only for the
general cube in the next section.

Theorem 5. For every T ∈ T
3
n there exists A ∈ A

3
n, such that T ◦ A fixes all

corners and every point of the line � =
{
[i, 0, 0]|i ∈ [n]

}
.
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Proof. First we find an automorphism A′ ∈ A
3
n such that T ◦A′ fixes all corners.

We start with the point p0 = [0, 0, 0]. A point T (p0) has to be on a main diagonal
(by Lemma 2). Without loss of generality T (p0) = [i, i, n−i−1]. We take fπ ∈ Fn

such that π(i) = 0, π(0) = i, π(n − i − 1) = n − 1, π(n − 1) = n − i − 1, and
π(k) = k otherwise. Therefore, T ◦Fπ(p0) is a corner. Then we take R1 ∈ R such
that the automorphism T1 = T ◦ Fπ ◦ R1 fixes p0.

By Lemma 3 the line T1(�) must be mapped onto an edge e such that p0 ∈ e.
If the corner p1 = [n−1, 0, 0] is fixed by T1, we take T2 = T1. Otherwise it can be
mapped onto [0, n−1, 0] (or [0, 0, n−1]). We take a rotation R2

(
[x, y, z]

)
= [y, z, x]

(or [z, x, y]). Thus, the automorphism T2 = T1 ◦R2 fixes corners p1 and p0. Note
that R2

(
[0, 0, 0]

)
= [0, 0, 0].

If a corner p2 = [0, n − 1, 0] is fixed by T2 we take T3 = T2. Otherwise it
can be mapped only onto [0, 0, n− 1]. We take a rotation R3

(
[x, y, z]

)
= [n−x−

1, n−z−1, n−y−1] and permutation automorphism Fσ, where σ(i) = n− i−1.
Hence, T3 = T2 ◦ R3 ◦ Fσ fixes the points p0, p1, p2 as follows. For p0,

T2 ◦ R3 ◦ Fσ

(
[0, 0, 0]

)
= R3 ◦ Fσ

(
[0, 0, 0]

)
= Fσ

(
[n − 1, n − 1, n − 1]

)
= [0, 0, 0].

For p1,

T2◦R3◦Fσ

(
[n−1, 0, 0]

)
= R3◦Fσ

(
[n−1, 0, 0]

)
= Fσ

(
[0, n−1, n−1]

)
= [n−1, 0, 0].

For p2,

T2 ◦R3 ◦Fσ

(
[0, n−1, 0]

)
= R3 ◦fσ

(
[0, 0, n−1]

)
= fσ

(
[n−1, 0, n−1]

)
= [0, n−1, 0].

A corner p3 = [0, 0, n− 1] is fixed by T3 automatically, because it is neighbor
of p0 and all others neighbors are already fixed. All other corners are fixed due
to Lemma 4. The automorphism T3 = T ◦ A′ for some A′ ∈ A

3
n fixes all corners

of the cube n3.
Now we find an automorphism A such that T◦A fixes all corners and all points

on the line �. The line � is fixed by T3 due to Observation 3. Let k = �n
2 � − 1.

We construct the automorphism A by induction over i ∈ {0, . . . , k}. We show
that in a step i an automorphism Yi fixes all corners and every point in a set

Qi =
{
[j, 0, 0], [n − j − 1, 0, 0]|0 ≤ j ≤ i

}
.

First, let i = 0 and Y0 = T3. The automorphism Y0 fixes all corners and
Q0 contains only [0, 0, 0] and [n − 1, 0, 0], which are also corners. Suppose that
i > 0. By induction hypothesis, we have an automorphism Yi−1 which fixes all
corners and every point in the set Qi−1. If Yi−1([i, 0, 0]) = [i, 0, 0] then Yi = Yi−1.
Otherwise Yi−1([i, 0, 0]) = [j, 0, 0]. Note that i < j < n − i − 1 because points
from Qi−1 are already fixed. Let us consider F i

π ∈ Fn where π(j) = i, π(i) = j,
π(n − j − 1) = n − i − 1, π(n − i − 1) = n − j − 1, and π(k) = k otherwise. The
automorphism Yi = Yi−1 ◦ F i

π fixes the following points:

1. All corners, as the automorphism Yi−1 fixes all corners by the induction
hypothesis and π(0) = 0 and π(n − 1) = n − 1.
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2. Set Qi−1, as the automorphism Yi−1 fixes the set Qi−1 by the induction
hypothesis and π(k) = k for all k < i and k > n − i − 1.

3. Point [i, 0, 0]: Yi−1 ◦ F i
π

(
[i, 0, 0]

)
= F i

π

(
[j, 0, 0]

)
= [i, 0, 0].

4. Point [n − i − 1, 0, 0] by Lemma 1.

Note that if n is odd a point [n−1
2 , 0, . . . , 0] is fixed as well by an automorphism

Yk. Thus, the automorphism Yk = T ◦ A for some A ∈ A
d
n fixes all points of the

line � and all corners of the cube. 
�

4 Generators of the Group T
d
n

In this section we characterize the generators of the general group T
d
n. As we

stated in Sect. 1, we use the groups Rd, Fn and X.

Definition 2. Let Ad
n be a group generated by elements of Rd ∪ Fn ∪ X.

We prove that A
d
n = T

d
n in the same two steps as we proved A

3
n = T

3
n.

1. For any automorphism T ∈ T
d
n we find an automorphism A ∈ A

d
n, such that

T ◦ A fixes all corners of the cube nd and one edge.
2. If an automorphism T ′ ∈ T

d
n fixes all corners and one edge then T ′ is identity.

Theorem 6. For all T ∈ T
d
n there exists A ∈ A

d
n such that T ◦ A fixes every

corner of the cube nd and every point of a line � =
{
[i, 0, . . . , 0]|i ∈ [n]

}
.

Proof (Sketch). First we construct an automorphism A′ ∈ A
n
d such that T ◦ A′

fixes all corners. We start with the point p0 = [0, . . . , 0]. By Lemma 2, the point
T (p0) has to be on a main diagonal. We choose F ∈ Fn such that T ◦ F (p0) is a
corner. Then, we choose R ∈ Rd such that T ◦ F ◦ R(p0) = p0.

By induction over i we can construct automorphisms Zi to fix the points p0
and

pi = [0, . . . n − 1
i

, . . . 0]

for all i ∈ {0, . . . , d−2}. We start with the automorphism Z0 = T ◦F ◦R and in
a step i we compose the automorphism Zi−1 with a suitable rotation in R

d. If
Zd−2 fixes pd−1, then Zd−1 = Zd−2. Otherwise pd−1 is mapped onto pd and then
Zd−1 = Zd−2◦X, where X ∈ X and X �= Id . Thus, the automorphism Zd−1 fixes
all points of Pd−1 and the corner pd is fixed automatically because there is no
other possibility where the corner pd can be mapped. The automorphism Zd−1

fixes the corner p0 = [0, . . . , 0] and all its neighbors. Therefore by Lemma 4, the
automorphism Zd−1 = T ◦ A′ for some A′ ∈ A

n
d fixes all corners of the cube.

The automorphism fixing points on the line � is constructed in the same way
as in the proof of Theorem 5. We find an automorphism Y fixing all corners and
points on the line � by induction. We start with the automorphism Zd−1. In step
i of the induction we compose the automorphism from the step i − 1 and an
automorphism Fi ∈ Fn which fixes points [i, 0, . . . , 0] and [n − i − 1, 0, . . . , 0]. 
�
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It remains to prove that if an automorphism T ∈ T
d
n fixes all corners and all

points in the line � =
{
[i, 0, . . . , 0]|i ∈ [n]

}
then T is the identity. We prove it in

two parts. First, we prove that if d = 2 then the automorphism T is the identity.
Then, we prove it for a general dimension by an induction argument.

Theorem 7. Let an automorphism T ∈ T
2
n fixes all corners of the cube and all

points in the line � =
{
[i, 0]|i ∈ [n]

}
. Then, the automorphism T is the identity.

Proof. Let d1, d2 ∈ L(n2). Thus, type(d1) = (+,+) and type(d2) = (+,−).
Since all corners are fixed, the diagonals d1 and d2 are fixed as well due to
Observation 3. Let p ∈ d1 ∪ d2 such that p is not a corner. The point p is
collinear with the only one point q ∈ � such that q is not a corner. Therefore,
every point on the diagonals d1 and d2 is fixed.

Now we prove that every line in L(n2) is fixed. Let �1 ∈ L(n2) be a line of
a dimension 1. Suppose n is even. The line �1 intersects the diagonals d1 and
d2 in distinct points, which are fixed. Therefore, the line �1 is fixed as well by
Observation 3.

Now suppose n is odd. If �1 does not contain the face center c1 = [n−1
2 , n−1

2 ,
0, . . . , 0] then � is fixed by the same argument as in the previous case. Thus,
suppose c1 ∈ �1. There are two lines �2, �3 in L(n2) of dimension 1 which contains
c1. Their types are type(�2) = (n−1

2 ,+) and type(�3) = (+, n−1
2 ). The line �2 also

intersects the line �. Therefore, the lines contains two fixed points c1 and [n−1
2 , 0]

and thus the line �2 is fixed. The line �3 is fixed as well because every other line
is fixed. For better understanding of all lines and points used in the proof see
Fig. 2 with example of the cube 52.

Every point in 52 is fixed due to Observation 4 because every point is in an
intersection of at least two fixed lines. 
�

c1

d1d2

�3

�

�1 �2

p

q

Fig. 2. Points and lines used in the proof of Theorem 7.

Theorem 8. Let an automorphism T ∈ T
d
n fix all corners of the cube nd and

all points of an arbitrary edge e. Then, the automorphism T is the identity.

Proof. We prove the theorem by induction over dimension d of the cube nd. The
basic case for d = 2 is Theorem 7.

Therefore, we can suppose d > 2 and the theorem holds for all dimensions
smaller then d. Without loss of generality, e =

{
[i, 0, . . . , 0]|i ∈ [n]

}
. We consider
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the face F =
{
[x1, . . . , xd−1, 0]|x1, . . . , xd−1 ∈ [n]

}
. The face F has a dimension

d−1 and e ⊂ F . Therefore, all points of F are fixed by the induction hypothesis.
Then we take all faces G of dimension d− 1 such that F ∩G �= ∅. Corners c ∈ G
are fixed. There is at least one edge f such that f ⊆ F ∩G. Therefore the points
of f are also fixed and the points p ∈ G are fixed by the induction hypothesis.
By this argument we show that every outer point is fixed. Every line � ∈ L(nd) is
fixed due to Observation 3 because every line contains at least two outer points.
Therefore by Observation 4, every point q ∈ nd is fixed because every point is
an intersection of at least two lines. 
�

5 Order of the Group T
d
n

In the previous section we characterized the generators of the group T
d
n. Now we

compute the order of Td
n. First, we state several technical lemmas whose proofs

are omitted in this conference paper.

Lemma 5. Orders of the basic groups are as follows.

1. |Rd| = 2d|Rd−1| = 2d−1d!, |R2| = 4
2. |Fn| =

∏�n
2 �−1

i=0 (2�n
2 � − 2i)

3. |X| = 2

Lemma 6. The groups Rd and Fn commute, and the groups X and Fn commute.

Lemma 7. Let X ∈ X such that X �= Id. Then, for all R1 ∈ Rd there exists
R2 ∈ Rd such that R1 ◦ X = X ◦ R2.

By Lemmas 6 and 7 we can conclude that any automorphism A ∈ T
d
n can be

written as A = R ◦ F ◦ X where R ∈ Rd, F ∈ Fn and X ∈ X. Thus, the product

RdFnX = {R ◦ F ◦ X|R ∈ Rd, F ∈ Fn,X ∈ X}
is exactly the group T

d
n. We state the well-known product formula for a group

product.

Lemma 8 (Product formula [4]). Let S and T be subgroups of a finite group
G. Then, for an order of a product ST holds that

|ST | =
|S| · |T |
|S ∩ T | .

Thus, for computing the order of Td
n we need to compute the orders of intersec-

tions of the basic groups Rd, Fn and X.

Lemma 9. If d is odd, then Rd∩Fn = {Id}. If d is even, then Rd∩Fn = {Id , Fσ}
where σ(i) = n − i − 1.

Lemma 10. The group X can be generated by elements of the groups Rd and
Fn if and only if d is odd.
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Theorem 9. The order of the group T
d
n is |Rd| · |Fn|.

Proof. If d is odd |Rd ∩ Fn| = 1 due to Lemma 9. Moreover, the group X is a
subset of RdFn due to Lemma 10. Therefore, the group T

d
n is exactly a product

RdFn and the theorem holds by Lemma 8.
Now suppose d is even. By Lemma 9, |Rd ∩ Fn| = 2. Thus by Lemma 8,

|RdFn| = |Rd|·|Fn|/2. The order of the intersection |X∩RdFn| is 1 by Lemma 10.
Hence, |Td

n| = 2|RdFn| = |Rd| · |Fn|. 
�
As a corollary of Theorem 9 we get the second part of Theorem 1.

Corollary 1. Let k = �n
2 �. Then, |Tn

d | = 2d−1+kd!k!.

Proof. By Theorem 9, the order |Tn
d | is 2d−1d!

∏k−1
i=0 (2k − 2i) for k = �n

2 �. There
are k even numbers from 2 to 2k in the product

∏k−1
i=0 (2k − 2i). Therefore, it

can be rewritten as 2kk!. 
�
Corollary 2. The groups T

d
2k and T

d
2k+1 are isomorphic for k ≥ 2.

Proof. The rotation group for generating T
d
2k and T

d
2k+1 is the same. For every

permutation π ∈ S2k+1 with the symmetry property holds that π(k) = k. There-
fore, the group F2k is isomorphic to the group F2k+1. Whether X is generated
by Fn and Rd depends only on the dimension. 
�

6 The Complexity of Colored Cube Isomorphism

In this section we prove Theorem 2. As we stated before, CHI is in GI. Therefore,
Colored Cube Isomorphism as a subproblem of CHI is in GI as well. It
remains to prove the problem is GI-hard.

First, we describe how we reduce the input of Graph Isomorphism to the
input of Colored Cube Isomorphism. Let G = (V,E) be a graph. Without
loss of generality V = {0, . . . , n − 1}. We construct the coloring sG : [k]2 →
[2], k = 2n + 4 as follows. The value of sG([i, j]) is 1 if [i, j] = [n, n] or [i, j] =
[n, n + 1] or i, j ≤ n − 1 and {i, j} ∈ E. The value of sG(p) for all other point p
is 0. We can view the coloring sG as a matrix MG such that MG

i,j = sG([i, j]).
The submatrix of MG consisting of the first n rows and n columns is exactly the
adjacency matrix of the graph G.

The idea of the reduction is as follows. If two colorings sG1 , sG2 are isomorphic
via a cube automorphism A ∈ T

d
n then A can be composed only of permutation

automorphisms in Fk. Moreover, if A = Fπ for some permutation π then the
permutation π maps the numbers in [n] to the numbers in [n] and describes the
isomorphism between the graphs G1 and G2.

Lemma 11. Let G1, G2 be graphs without vertices of degree 0. If colorings sG1 ,
sG2 are isomorphic via a cube automorphism A then A = Fπ ∈ Fk. Moreover,
π(i) ≤ n − 1 if and only if i ≤ n − 1.
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Proof (Sketch). Let A = R ◦ X ◦ F where R ∈ R2,X ∈ X, F ∈ Fk and m1,m2

be main diagonals of [k]2 of type (+,+) and (+,−), respectively. Due to the
colors of [n, n] and [n, n + 1] we can show that A has to fix m1 and m2 and that
A ∈ Fk. Moreover, if A = Fπ then π(n) = n and π(n + 1) = n + 1.

For every i ≤ n − 1 there is at least one point with color 1 on a line of type
(+, i) in both colorings sG1 , sG2 because graphs G1 and G2 do not contain any
vertex of degree 0. On the other hand, for every i ≥ n + 2 there are only points
with color 0 on a line of type (+, i) in both colorings. Therefore, if i ≤ n − 1
then i has to be mapped on j ≤ n − 1 by π. 
�
The proof of the following theorem follows from Lemma 11.

Theorem 10. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs without ver-
tices of degree 0. Then, the graphs G1 and G2 are isomorphic if and only if the
colorings sG1 and sG2 are isomorphic.

We may suppose that inputs graphs G1 and G2 have minimum degree at
least 1 for the purpose of the polynomial reduction of Graph Isomorphism to
Colored Cube Isomorphism. Thus, Theorem 2 follows from Theorem 10.
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Abstract. Hadwiger’s conjecture states that for every graph G, χ(G) ≤
η(G), where χ(G) is the chromatic number and η(G) is the size of the
largest clique minor in G. In this work, we show that to prove Hadwiger’s
conjecture in general, it is sufficient to prove Hadwiger’s conjecture for
the class of graphs F defined as follows: F is the set of all graphs that
can be expressed as the square graph of a split graph. Since split graphs
are a subclass of chordal graphs, it is interesting to study Hadwiger’s
Conjecture in the square graphs of subclasses of chordal graphs. Here,
we study a simple subclass of chordal graphs, namely 2-trees and prove
Hadwiger’s Conjecture for the squares of the same. In fact, we show the
following stronger result: If G is the square of a 2-tree, then G has a
clique minor of size χ(G), where each branch set is a path.

Keywords: Hadwiger’s conjecture · 2-trees · Square graphs · Minors

1 Introduction

The Four Color Theorem is perhaps the most famous theorem in graph theory. It
states that the chromatic number of a planar graph is at most 4. The history of
the development of graph theory itself is intimately linked with the attempts to
solve the Four Color Conjecture. Wagner [Wag37] showed in 1937 that the four
color conjecture is equivalent to the following statement: If a graph is K5-minor
free, then it is 4-colorable. In 1943, Hadwiger [Had43] proposed the following
conjecture.

Conjecture 1 (Hadwiger’s Conjecture). For t ≥ 1, every graph G without a Kt+1

minor is t-colorable.
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This conjecture if proved, would give a far reaching generalization of the 4-
color theorem. Hadwiger [Had43] proved the conjecture for t ≤ 3. The Four
color theorem was proved by Appel et al. [AH+77,AHK+77] in 1977. In view of
Wagner’s theorem [Wag37], this implies that Hadwiger’s conjecture is true for
t = 4. In 1993, Robertson et al. [RST93] proved Hadwiger’s conjecture for t = 5.
It remains unsolved for t > 5. Kawarabayashi and Toft [KT05] showed that any
graph that is K7-minor free and K4,4-minor free is 6-colorable.

For perfect graphs Hadwiger’s conjecture is trivially true. Reed and Seymour
[RS04] proved Hadwiger’s conjecture for line graphs. Belkale and Sunil Chandran
[BC09] proved the conjecture for proper circular arc graphs. In 2008, Chudnovsky
and Fradkin [CF08] published a work which generalizes both the above results:
They proved Hadwiger’s conjecture for a class of graphs called quasi-line graphs,
which properly contains both proper circular arc graphs and line graphs.

As far as we know, not many results are known regarding Hadwiger’s con-
jecture with respect to square graphs, even for the squares of well known special
classes of graphs. This is surprising considering the fact that the chromatic num-
ber is well studied with respect to the squares of several special classes of graphs.
For e.g., see the extensive work on Wegner’s conjecture [Weg77]. We believe that
this may be due to the difficulty level involved in dealing with this problem, as
we show in Theorem 1 that proving Hadwiger’s conjecture for squares of chordal
graphs will also prove the conjecture for general graphs.

Hadwiger’s conjecture for powers of cycles and their complements was proved
by Li and Liu [LL07]; Sunil Chandran et al. [CKR08] studied the Hadwiger
number with respect to the Cartesian product of the graphs.

1.1 Our Contributions

Hadwiger’s conjecture is well-known to be a tough problem. Bollobás et al.
[BCE80] describe it as “one of the deepest unsolved problems in graph theory.” It
could be useful if we can show that it is sufficient to concentrate on certain class
of graphs. Chordal graphs are those graphs that have no induced cycle of length
4 or more. Split graphs are those graphs whose vertices can be partitioned into
two sets such that one induces an independent set and the other induces a clique.
Split graphs form a subclass of chordal graphs. In Sect. 2, we show that, in order to
prove the Hadwiger’s conjecture in general, it is sufficient to prove it for the class
of graphs that are squares of split graphs. (See Theorem 1.)

We understand that our reduction may not really help in making Hadwiger’s
conjecture easier. But it does show that the squares of split graphs captures the
complexity of the general problem. For an optimistic researcher, it opens up the
question of studying the Hadwiger’s conjecture on the squares of various special
classes of graphs in the hope of getting some new insights about the problem.

In light of Theorem1, it is interesting to study Hadwiger’s conjecture for
squares of subclasses of chordal graphs. It can be shown that chordal graphs are
exactly the class of graphs that can be constructed by starting with a clique and
doing the following operation, a finite number of times: Pick a clique C in the cur-
rent graph, introduce a new vertex v, and make v adjacent to all the vertices in C.
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k-trees are a special case of chordal graphs, where we start with a k-clique and at
each step we pick a k-clique. Hence it is interesting to prove Hadwiger’s conjecture
for squares of k-trees. As a first step, we prove Hadwiger’s conjecture for squares
of 2-trees in Sect. 3 of this paper. (See Theorem2.) A slightly more general class
than 2-trees allows one to join a fresh vertex to a clique of size at most 2 instead of
exactly 2. We remark that it is easy to extend Theorem 2 to this class of graphs.

Structure of Branch Sets1: Although proving the Hadwiger’s conjecture
requires only to show a clique minor of size at least χ(G), it is also interesting
to study the structure of branch sets forming such a clique minor. For example, in
the case of graphs with independence number at most 2, Seymour proposed the
following stronger conjecture [Bla05]: If G has no stable set of size 3, then G has a
clique minor of size at least |V (G)|/2 using only edges or single vertices as branch
sets. For squares of 2-trees we show that there exists a clique minor of size χ(G)
where the branch sets forming the clique minor are paths.(See Theorem 2).

Towards Generalizing the Result of Chudnovsky and Fradkin: Chud-
novsky and Fradkin [CF08] proved that Hadwiger’s conjecture is true for quasi-
line graphs. A graph G is a quasi-line graph if for every vertex v ∈ V (G), the set
of neighbors of v in G can be expressed as the union of two cliques. A natural
way to generalize concept of quasi-line graph is the following:

Definition 1 (Generalized Quasi-Line Graphs2). A graph G is a general-
ized quasi-line graph if for any subset S ⊆ V (G), there exists a vertex u ∈ S
such that the neighbors of u induce union of two cliques in G[S] (the induced
subgraph on S).

It is natural to consider the problem of generalizing the result of Chudnovsky
and Fradkin to generalized quasi-line graphs.

Open Problem 1. Prove Hadwiger’s conjecture for generalized quasi-line
graphs.

Taking into account the difficulty level of [CF08], the above question might turn
out to be difficult. Therefore it is natural to try to prove the conjecture for
non-trivial subclasses of generalized quasi-line graphs.

Observation 1. The squares of 2-trees form a subclass of generalized quasi-line
graphs.

Remark 1. It is interesting to note that squares of 2-degenerate graphs do not
form a subclass of generalized quasi-line graphs.

1 See Subsect. 1.3 for the definition.
2 This generalization is in the same spirit as the generalization of graphs of maximum

degree k to k-degenerate graphs. A graph G is a maximum degree k graph, if every
vertex has at most k neighbors. A graph G is a k-degenerate graph is for any subset
S ⊆ V (G), there exists a vertex u ∈ S, such that u has at most k neighbors in G[S].
Graph classes which can be considered to be generalizations of quasi-line graphs can
also be found in [KT14], for e.g. k-perfectly groupable graphs, k-simplicial graphs,
k-perfectly orientable graphs etc.
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Note that squares of 2-trees do not form a subclass of quasi-line graphs. Hence,
by Theorem 2, we prove Hadwiger’s conjecture for a special class of generalized
quasi-line graphs that is not contained in quasi-line graphs.

1.2 Future Directions

An obvious next step will be to prove Hadwiger’s Conjecture for squares of k-
trees for fixed k ≥ 3. It is also interesting to try to prove Hadwiger’s conjecture
for squares of other special classes of graphs such as planar graphs. Another
direction may be to work towards solving the Open Problem1. It will be inter-
esting to look at other non-trivial subclasses of generalized quasi-line graphs
with respect to Hadwiger’s conjecture.

1.3 Preliminaries

For any graph G, we denote the vertices of G by V (G) and the edges of G by
E(G). When we are talking about a singleton set {x}, we may abuse the notation
and use x for the sake of conciseness. We say disjoint vertex sets V1, V2 ⊆ V (G)
are adjacent in G, if there exist v1 ∈ V1 and v2 ∈ V2 such that {v1, v2} ∈ E(G).

Definition 2 (Square of a Graph). For any graph G, the square of G, denoted
by G2, is the graph on the same vertex set as G, such that there is an edge between
a pair of vertices u and v if and only if they are adjacent in G or are adjacent
to a common vertex in G.

Definition 3 (Clique). Any C ⊆ V (G) is called a clique of G if there is an
edge in G between every pair of vertices in C. We use ω(G) to denote the size
of the largest clique in G.

Definition 4 (Coloring, Proper Coloring, Optimal Coloring, Chro-
matic Number). A coloring of graph G is defined as a mapping from V (G)
to a set of colors. A coloring of graph G is called a proper coloring if no two
adjacent vertices have the same color in it. An optimal coloring of graph G is
any proper coloring of G that minimizes the number of colors used. The Chro-
matic number of G (denoted by χ(G)) is defined as the number of colors used
by an optimal coloring of G.

For any coloring μ of G and any S ⊆ V (G), we use μ(S) to denote {μ(v) : v ∈ S}.

Definition 5 (2-Tree). A 2-tree is a graph that can be constructed by starting
with an edge and doing the following operation a finite number of times: Pick
an edge e = {u, v} in the current graph, introduce a new vertex w and add edges
{u,w} and {v, w}.
Definition 6 (Edge Contraction). The operation of contraction of an edge
e = {u, v} is defined as follows: the vertices u and v are deleted and a new vertex
ve is added to the graph. Edges are added between ve and all the vertices that
were adjacent to at least one of u and v.
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Definition 7 (Minor). A graph H is called a minor of a graph G if H can be
obtained from G using any sequence of the following operations:
1. Deleting a vertex;
2. Deleting an edge;
3. Contracting an edge.

An equivalent definition of minors is as follows.

Definition 8 (Minor, Branch Sets). A graph H with V (H) =
{h1, h2 . . . , hn} is said to be a minor of G if there exists S1, S2, . . . , Sn ⊆ V (G)
such that

1. for all 1 ≤ i ≤ n, G[Si] is connected,
2. for all i �= j, Si ∩ Sj = ∅ and
3. Si is adjacent to Sj in G if {hi, hj} ∈ E(H).

The sets S1, S2 . . . Sn are called the branch sets of the minor H of G.

Definition 9 (Clique Minor, Hadwiger Number). A clique minor of G
is defined as a minor of G that is a clique. A clique minor of size k of G is
defined as a minor of G that is a k-clique. The Hadwiger Number of G is
the largest k such that G has a clique minor of size k. We denote the Hadwiger
number of G by η(G).

Note that the necessary and sufficient conditions for S1, S2, . . . Sn ⊆ V (G)
to be the branch sets of a clique minor of G are that G[Si] is connected for all
i, Si ∩ Sj = ∅ for all i �= j, and Si is adjacent to Sj for all i �= j.

2 Reduction to Square Graphs of Split Graphs

Theorem 1. If Hadwiger’s conjecture is shown to be true for the class of graphs
that can be represented as the square of some split graph, then Hadwiger’s con-
jecture is true for the general case.

Proof. Let G be an arbitrary graph. We assume that G has no isolated vertices
since they do not affect chromatic number or Hadwiger’s number. We will con-
struct a split graph H from G, such that if Hadwiger’s conjecture is true for the
square of H, then it is also true for G. By definition, the vertex set of the split
graph H can be split into two classes, say C and S, where C induces a clique
and S induces an independent set. We will make C correspond to E(G), in the
sense that for each edge e ∈ E(G) we have a vertex in C: say for e ∈ E(G),
ve ∈ C. We make S = V (G) and each vertex x ∈ S is made adjacent to all
the vertices of C that correspond to the edges incident on x; i.e., for v ∈ S,
NH(v) = {ve ∈ C : e is an edge in G incident on v}. Here, NH(v) denotes the
neighborhood of v in H.

In the square of H, the induced subgraph on S is exactly the graph G. The
reason is this: Let x, y be two vertices in S (i.e. V (G)). They are adjacent in
the square of H if and only if there exists a common neighbor for x and y in H.
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Clearly, this common neighbor has to be from C, and therefore has to correspond
to a common incident edge on x and y. This is possible only if there is an edge
between x and y in G. This means that in the square of H, x and y are adjacent
if and only if x and y are adjacent in G.

Also, the vertex x ∈ S is connected to all the vertices of C in the square of
H, since C is a clique in H.

The chromatic number of the square of H equals χ(G) + |C|. To see that
χ(H2) ≤ χ(G) + |C|, use the following coloring for H2: color the vertices of C
with |C| different colors and then color S using an optimal coloring of G. This is
possible since the subgraph induced in H2 on S is the same as G. Now, suppose
χ(H2) < χ(G)+ |C|. Then, since C requires |C| different colors and they should
all be different from any color in S, we get that S was colored with fewer colors
than χ(G). But then we could color G using this coloring of S to get a proper
coloring of G with less than χ(G) colors, which is a contradiction.

Finally, the biggest clique minor in the square of H has exactly |C| + η(G)
vertices. It is easy to see that a clique minor of that size exists: Consider the
branch sets of G corresponding to the biggest clique minor of G in the induced
subgraph on S; then consider each vertex of C as a separate branch set. Clearly
these branch sets produce a clique minor of size η(G) + |C| in the square of H.
Now if a larger clique minor exists, then let B1, B2, . . . , Bk be the corresponding
branch sets. Define B′

i = Bi, if Bi ∩ C = ∅, else let B′
i = Bi ∩ C. It is easy to

see that B′
1, B

′
2, . . . , B

′
k also can produce a clique minor of size k in the square

of H. Thus, if k > |C| + η(G), then there should be more than η(G) branch sets
that does not intersect with C; which means that G has a clique minor of size
greater than η(G), contradicting the definition of η(G).

Therefore, if Hadwiger’s conjecture is true for the square of H, we have
η(G) + |C| ≥ χ(G) + |C|, which implies that η(G) ≥ χ(G). In other words,
Hadwiger’s conjecture will be true for G also. 	


3 Hadwiger’s Conjecture for Square Graphs of 2-Trees

By definition, any 2-tree can be constructed by starting with an edge and doing
the following operation a finite number of times: Pick an edge e = {u, v}, intro-
duce a new vertex w and add edges {u,w} and {v, w}. We call each of these
operations, a step in the construction. If e = {u, v} is the edge picked and w is
the newly introduced vertex in a step, then we say that e is getting processed in
that step and that w is a vertex-child of e. We also say that each of {u,w} and
{v, w} is an edge-child of e and that e is the parent of each of w, {u,w} and
{v, w}. And also, {u,w} and {v, w} are called siblings of each other. Note that
an edge e can be processed in more than one step. But, without loss of general-
ity, we can assume that all the steps in which e is processed occur contiguously.
Now, for each edge and vertex we define a level inductively. We define the level
of the first edge and its end points to be 0. Any vertex-child or edge-child of
an edge of level k is said to have level k + 1. Observe that two edges that are
siblings of each other have the same level. Without loss of generality, we also
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assume that the order of processing of edges follows a breadth-first ordering,
i.e., an edge of level i will be processed before an edge of level j, if i < j.

Theorem 2. For any 2-tree T , χ(T 2) ≤ η(T 2). Moreover, T 2 has a clique minor
of size χ(T 2) where all the branch sets are paths.

In the rest of this section, we prove Theorem2.3 We will prove by induction
on χ(T 2). We know that χ(T 2) ≥ 2. So, we take the base case as when χ(T 2) = 2.
Since T 2 has an edge, we get that η(T 2) ≥ 2 = χ(T 2). And, since all the branch
sets are singletons, they are paths. So the base case is done.

Now, consider a 2-tree T with χ(T 2) > 2. In the construction of T as
described above, let Ti be the 2-tree resulting after ith step. Consider the step j
such that χ(T 2) = χ(T 2

j ) = χ(T 2
j−1) + 1. In the rest of the proof, we will prove

that χ
(
G2

) ≤ η
(
G2

)
where G = Tj , and also that G2 has a clique minor of size

χ
(
G2

)
where each branch set is a path.

Let lmax be the level of the edge with the largest level in G. Note that the
largest level of any vertex in G is also lmax. Also, observe that the level of the
last edge processed is lmax − 1. None of the edges that have level lmax have
been processed due to the breadth-first ordering of the processing of edges. If
lmax ≤ 1, then G2 is a clique and hence χ

(
G2

)
= ω

(
G2

)
. Moreover, we have a

clique minor of size χ(G2) where each branch set is a singleton set. Hence, we
can assume that lmax > 1 for the rest of the proof.

For any vertex a, we let N(a) denote the neighbors of a in G. N(a) does
not include a. N [a] denotes N(a) ∪ a. For a vertex set X, we define N [X] as⋃

x∈X N [x]. We also define N2[a] = N [N [a]] for vertex a and N2[X] = N [N [X]]
for vertex set X. N2(a) is defined as N2[a] \ a for a vertex a and for set X,
N2(X) = N2[X] \ X.

Lemma 1. There exists an optimal coloring μ of G2 and a vertex p such that
level(p) = lmax and p is the only vertex with color μ(p).

Proof. Let v be the vertex introduced in step j. There exists a coloring μ′ of
T 2
j−1 using χ(G2) − 1 colors from the definition of G and Tj−1. μ′ together with

a new color for v gives the required coloring of G2. 	

We fix a coloring μ and a vertex p as given in Lemma 1 such that the level of

the vertex with smallest level in N(p) is as large as possible. We call p as the
pivot vertex and μ as the pivotal coloring. From now on, when we say the
color of a vertex, we mean the color of the vertex under the coloring μ, unless
stated otherwise.

Lemma 2. All colors of μ are present in N2 [p] where p is the pivot vertex.

Let {u,w} be the parent of pivot p. Since lmax > 1, we can assume without
loss of generality that there is a vertex t such that w is a child of {u, t}. This

3 We omit proofs of some lemmas here due to space constraint. They can be found in
the full version of the paper at http://arxiv.org/abs/1603.03205.

http://arxiv.org/abs/1603.03205
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implies that {u,w} and {w, t} are siblings and have level equal to lmax−1. Also,
level ({u, t}) = lmax − 2. Let B be the set of all children of {w, t} and C be that
of {u,w}.

Fig. 1. The figure shows different vertex sets of 2-tree G that we use in the proof.

Lemma 3. For any vertex b ∈ B, N(b) = {w, t}. And for any vertex c ∈ C, we
have N(c) = {u,w}.

Let F be (N(u) ∩ N(t)) \ w. Let C1 be defined as {v ∈ N (t) |μ(v) ∈ μ(C)}
and A be defined as N(t) \ (B ∪ F ∪ C1 ∪ {u,w}).

Lemma 4. μ(A) ⊆ μ(N(u) \ (C ∪ F ∪ {w, t})).

By Lemma 4, for each color c ∈ μ(A), there is a c-colored vertex in N(u). Note
that there cannot be more than one c-colored vertex in N(u). Let A′ ⊆ N(u)
be such that μ(A′) = μ(A). For each a′ ∈ A′, let couple (a′) be defined
as the vertex a ∈ A with μ(a) = μ(a′). Similarly, for each a ∈ A, let
couple (a) be defined as the vertex a′ ∈ A′ with μ(a′) = μ(a). Note that
since A and A′ are disjoint, a vertex and its couple are always distinct.
Let D be defined as {x ∈ B | μ(x) /∈ μ(N(u))} and let Q = B \ D. We also
define Q′ = N(u)\ (A′ ∪ C ∪ F ∪ {w, t}). Note that A′, A, F,Q′, Q,D,C,C1 and
{u,w, t} are all disjoint with each other.

Lemma 5. If D = ∅, then χ
(
G2

) ≤ η
(
G2

)
. Moreover, χ

(
G2

)
= ω(G2) and

hence G2 has a clique minor of size χ
(
G2

)
where each branch set is a singleton

set.
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Due to Lemma 5, for the rest of the proof we can assume that D �= ∅.

Lemma 6. For any d ∈ D, there is no other vertex in N2 [p] with color μ(d).

Lemma 7. μ(Q′) = μ(Q).

Lemma 8. If A = ∅, then χ(G2) ≤ η(G2). Moreover, χ
(
G2

)
= ω

(
G2

)
and

hence G2 has a clique minor of size χ
(
G2

)
where each branch set is a singleton

set.

Due to Lemma 8 we assume that A is not empty for the rest of the proof.
Note that this also implies that A′ is not empty.

Lemma 9. lmax > 2. (Note that we assume here that A′ and D are not empty.)

Lemma 10. level(u) = lmax − 2.

Observation 2. Due to Lemmas 10 and 9, we can assume that there is a vertex
s ∈ F such that {u, t} is the child of {s, t}. Then, level of {s, t} is lmax − 3.
Also, {s, u} is the sibling of {u, t} and hence has level lmax − 2. (see Fig. 1.)

Definition 10. For any coloring φ of G2 and any two colors r and g, we define
a (φ, r, g)-bicolored path as any path in G2 such that all the vertices in the
path are colored either r or g under φ.

Lemma 11. Consider vertices a′ ∈ A′ and d ∈ D. There exists a
(μ, μ(a′), μ(d))-bicolored path from a′ to couple(a) in G2.

Proof. Let μ(a′) = r and μ(d) = g. Let a = couple(a′). Now, consider the
induced (bicolored) subgraph H of G2 on all the vertices with colors r and g
in μ. In particular, consider the connected component H ′ of H containing a′.
Suppose H ′ does not contain a for the sake of contradiction. We show that then
we can construct a proper coloring μ′ of G2, with fewer colors than μ which will
be a contradiction. For all v ∈ V (G) \ (V (H ′) ∪ p), we set μ′(v) = μ(v). For all
v ∈ V (H ′), we set μ′(v) = g if μ(v) = r and μ′(v) = g otherwise. In other words,
for the vertices in H ′, we exchange the colors. In particular, μ′(a′) = g. Finally,
we set μ′(p) = r. Clearly, μ′ has fewer colors than μ. It remains to prove that
μ′ is a proper coloring of G2. It is easy to see that exchanging colors within H ′

does not violate the properness of the coloring. So, we only have to prove that
there is no v ∈ N2(p) with μ′(v) = μ′(p) = r. Suppose there was such a v for the
sake of contradiction. We consider two separate cases, namely, when v ∈ V (H ′)
and when v /∈ V (H ′). When v ∈ V (H ′), μ(v) = g. But then v = d because by
Lemma 6, d is the only vertex in N2[p] with color g under μ. But, d /∈ V (H ′)
because a is the only vertex in N2[d] with color r under μ and a /∈ V (H ′). Hence,
we get v /∈ V (H ′) which is a contradiction in this case. Now, let us consider the
case when v /∈ V (H ′). In this case μ(v) = r. Observe that in the coloring μ, a′ is
the only vertex in N2[p] with color r because N2[p] ⊆ N2[a′]∪N2(a). But then,
v = a′ ∈ V (H ′) which is a contradiction in this case. 	
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An edge e2 is said to be the edge-descendant of edge e1 if e2 = e1 or if
the parent of e2 is an edge-descendant of e1. A vertex v is said to be a vertex-
descendant of edge e if v is the vertex-child of an edge-descendant of e.

Lemma 12. For an edge e = {v1, v2} such that level(e) = lmax − 2, if x is a
vertex-descendant of e, then N2(x) ⊆ N [{v1, v2}].

Lemma 13. N2 (A′ ∪ Q′) ⊆ N [{u, t, s}].

Lemma 14. If v ∈ N2(A′ ∪ Q′) and μ(v) ∈ μ(B), then v ∈ N({u, s}).

Lemma 15. If v ∈ N2(A′ ∪ Q′) and μ(v) ∈ μ(D), then v ∈ N(s).

Proof. Consider such a v. By Lemma 14, we have that v ∈ N [{u, s}]. But v /∈
N [u] by definition of D. 	


Let D′ be defined as {x ∈ N(s) | μ(x) ∈ μ(D)}.

Lemma 16. 1. μ(D′) = μ (D) and
2. For each d′ ∈ D′ and for each a′ ∈ A′, there exists a (μ, μ(a′), μ(d′))-bicolored

path from a′ to couple(a′) in G2 such that d′ is adjacent to a′ in this path.

We now extend the definition of couple for the set D′. For d′ ∈ D′, we define
couple(d′) as the vertex in D with color the same as d′ in μ.

Corollary 1. Each d′ ∈ D′ is adjacent in G2 to each a′ ∈ A′.

Corollary 2. For all d′ ∈ D′ and a′ ∈ A′, there exists a (μ, μ(d′), μ(a′))-
bicolored path from d′ to couple(d′) in G2.

Definition 11. Bridging-set. For any k ≥ 0, {q1, q2, . . . , qk} ⊆ N(s) \ D′

is called a bridging-set if for each 1 ≤ i ≤ k, there exists a vertex q′
i ∈ Q′

such that μ(q′
i) = μ(qi) and q′

i is non-adjacent in G2 to at least one vertex in
D′∪{q1, q2 . . . , qi−1}. The vertex q′

i is called the bridging-partner of qi denoted
by bp(qi). Also, we designate one vertex in D′ ∪ {q1, q2 . . . , qi−1} to which q′

i is
non-adjacent in G2 as the bridging-non-neighbor of q′

i denoted by bn(q′
i). If

there is more than candidate, we fix one of them arbitrarily as the bridging-non-
neighbor.

Note that an empty set is a bridging-set. Also, note that for any q in the
bridging-set, bp(q) �= q because otherwise bp(q) is adjacent in G2 to all vertices
in N(s) and hence there is no possible candidate for the bridging-non-neighbor
of bp(q). This contradicts Definition 11.
Let Q1 be a bridging-set with maximum cardinality.

Definition 12. Bridging-sequence. For each v ∈ Q1 ∪ D′, the bridging-
sequence of v is defined as a sequence of distinct vertices s1, s2 . . . , sj where
s1 = v, sj ∈ D′ and for all 2 ≤ i ≤ j, si is the bridging-non-neighbor of bridging-
partner of si−1. (From Definition 11, it is easy to see that such a sequence should
exist for all v ∈ Q1 ∪ D′. Note that for a vertex d ∈ D′, the bridging-sequence
consist of only one vertex, that is d.)
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Lemma 17. Let q ∈ Q1, x = bp(q) and y = bn(x). If there exists v ∈ N2(x)
such that μ(v) = μ(y), then y ∈ Q1 and v = bp(y).

Definition 13. Bridging-re-coloring. Given any z ∈ Q1 ∪ D′, we define the
bridging-re-coloring of μ with respect to z (denoted by ψz) by the following con-
struction:

1. For all x ∈ V (G), initialize ψz(x) = μ(x).
2. Suppose s1, s2, . . . , sj is the bridging-sequence of z. For all 1 ≤ i < j, set

ψz(bp(si)) = μ(si+1). (Observe that ∀i �= j, μ(si) �= μ(sj) since si, sj ∈ N(s)
and hence each color is used for recoloring at most once in this step.)

Lemma 18. For all z ∈ Q1 ∪ D′, ψz is an optimal coloring of G2.

Lemma 19. Let a′ ∈ A′, q ∈ Q1 ∪ D′, r = μ(a′), g = μ(q), V1 =
{x|ψq(x) ∈ {r, g}} and V2 = {x|μ(x) ∈ {r, g}}. Then, V1 ⊆ V2. (In fact, V2\V1 =
bp(q)).

Lemma 20. For all q ∈ Q1 and a′ ∈ A′, there exists a (μ, μ(a′), μ(q))-bicolored
path from a′ to couple(a′) in G2 such that q is adjacent to a′ in the path.

Corollary 3. Each q ∈ Q1 is adjacent in G2 to each a′ ∈ A′.

We now extend the definition of couple to set Q1. For q ∈ Q1, let couple(q) be
defined as the vertex in Q with the same color as q in the coloring μ. Then, we
have the following corollary to Lemma20.

Corollary 4. For each q ∈ Q1 and a′ ∈ A′, there is a (μ, μ(a′), μ(q))-bicolored
path from q to couple(q).

Proof. This follows because couple(a′) is adjacent in G2 to couple(q). 	

Let Q2 = {bp(q) | q ∈ Q1}. Note that Q2 ⊆ Q′ and μ(Q2) = μ(Q1). Let Q3 =
Q′ \ Q2. Note that μ(Q3 ∪ Q1) = μ(Q′) = μ(Q).

Lemma 21. For all q′ ∈ Q3, Q1 ∪ D′ ⊆ N2[q′].

Let a′
1, a

′
2 . . . a′

na
be the vertices in A′ and z1, z2, . . . , znz

be the vertices in D′∪Q1.
If na ≤ nz, then we define vertex disjoint paths P1, P2, . . . , Pna

such that each Pi

is a (μ, μ(a′
i), μ(zi))-bicolored path from ai to couple(ai). Such a path exists for

each i due to Lemmas 16 and 20. If nz < na, then we define vertex disjoint paths
P1, P2, . . . , Pnz

such that each Pi is a (μ, μ(ai), μ(zi))-bicolored path from zi to
couple(zi). These paths exist due to Corollaries 2 and 4. Note that in both cases,
the paths are vertex disjoint with each other because the color of the vertices in
Pi and Pj are disjoint for i �= j.

In the case when na ≤ nz, we define B as the set of following branch sets:
each vertex in N [w] as a singleton branch set, each vertex in F as a singleton
branch set, and path branch sets V (Pi) for 1 ≤ i ≤ na. In the case when nz < na,
we define B as the set of following branch sets: each vertex in N [u] \ Q2 as a
singleton branch set and the path branch sets V (Pi) for 1 ≤ i ≤ nz. In both



428 L. Sunil Chandran et al.

cases, it is easy to see that all the branch sets are connected to each other in
G2 and hence forms a clique minor of G2. We prove this in Lemma 22. It is also
easy to see that the number of branch sets is at least χ(G2) in each of the two
cases. We prove this in Lemma 23. Since, the paths Pi are vertex disjoint with
each other, all branch sets in B are disjoint with each other. This completes the
proof of Theorem 2.

Lemma 22. Each pair of branch sets in B are adjacent to each other in G2.

Lemma 23. |B| ≥ χ(G2)
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Minimum Width Color Spanning Annulus
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Abstract. Given a set P of n points in IR2, each assigned with one of
the k distinct colors, we study the problem of finding the minimum width
color spanning annulus of different shapes. Specifically, we consider the
circular annulus (CSCA) and axis-parallel square annulus (CSSA). The
time and space complexities of the proposed algorithms for both the
problems are O(n4 log n) and O(n), respectively.

Keywords: Circular annulus · Color-spanning · Minimum width ·
Arrangement

1 Introduction

Given a set P = {p1, p2, . . . , pn} of points in IR2, each colored with one of the
colors {1, 2, . . . , k}, k ≤ n, a region is said to be color-spanning if it contains at
least one point of each color in that region. An annulus is a region bounded by
two closed concentric geometric curves of same type, named as inner boundary
and outer boundary respectively [3]. A color-spanning annulus is an annulus that
contains at least one point of each color. In this paper we study the problem
of identifying the minimum width color spanning circular annulus (CSCA) and
axis-parallel square annulus (CSSA).

The motivation for studying color-spanning objects comes from the facility
location problem. Here the input consists of different types of facilities, each
having multiple copies, spread over a region. The output is a region of desired
shape with at least one copy of each facility. The first natural variation of the
problem is the minimum radius color-spanning circle. The best known result is
by Abellanas et al. [1], which points out that the smallest color spanning cir-
cle can be solved in O(kn log n) time by using the technique of computing the
upper envelope of Voronoi surfaces [7,8]. Abellanas et al. [2] also showed that
the narrowest color-spanning strip and smallest axis-parallel color-spanning rec-
tangle can be found in O(n2α(k) log k) and O(n(n− k) log2 n) time respectively.
Later Das et al. [5] improved the time complexity of narrowest color spanning
corridor problem to O(n2 log n), and smallest color-spanning axis-parallel rec-
tangle problem to O(n(n − k) log k). They provided a solution for the arbitrary
oriented color-spanning rectangle problem in O(n3 log k) time using O(n) space.
The problem of computing the minimum width annulus is also studied in the
literature. Given a set of n monochromatic points (k = 1), the minimum width
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 431–442, 2016.
DOI: 10.1007/978-3-319-42634-1 35
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circular annulus containing all the points can be computed in O(n2) time and
O(n) space [3].

In this paper, we first show that if the annulus-center is given, then the CSCA
problem can be solved in Θ(n log n) time. Next, we solve the CSCA problem,
with the annulus-center constrained to lie on a given line, in O(n2 log n) time.
Finally we show that the unconstrained version of the CSCA problem can be
solved in O(n4 log n) time. Next, we show that similar logic works for formulating
an algorithm for the CSSA problem in O(n4 log n) time. Both of the algorithms
use O(n) space. Similar methods work for (i) computing the minimum width
color-spanning circular annulus in L1 norm [6], and (ii) computing the minimum
width circular and square annulii containing at least k monochromatic points.

Note that the CSCA problem and CSSA problem are both circular annulii
problem in L2 and L∞ norm. If we change the norm of measuring the distance
then the geometric characterizations for the annulus changes drastically. We
could solve the problem in L1, L2 and L∞ norm. It remains an interesting open
question to solve this problem in other norms.

2 Preliminaries

The inner boundary and outer boundary of a minimum width color spanning
annulus A are defined by Cin and Cout respectively. The common center of Cin

and Cout is referred to as the annulus-center. The width of an annulus is the
difference of radii between two circles Cin and Cout in the corresponding norm.
Interior of an annulus A, defined by INT (A), is the region inside A excluding
Cin and Cout. The points lying on Cin and Cout of an annulus A are said to
define the annulus A.

Observation 1. (a) The points defining a mimimal width annulus A are of
distinct colors, and (b) INT (A) does not contain any point of color that define
the annulus A.

Throughout the paper, we use d(pi, pj) to denote the Euclidean distance
between the pair of points pi, pj ∈ P in our specified norm. The closest distance
of a line segment � from a point pi will be denoted by d(�, pi).

2.1 Tight Bounds for a Constrained Version

Theorem 1. The time complexity of computing the minimum width color span-
ning circular annulus around a given annulus-center π, in any norm of computing
the distances, is Θ(n log n).

Proof. We first propose an O(n log n) time algorithm; next we show that the
lower bound of the problem is Ω(n log n). Let o be the origin of the coordinate
system, and consider a half-line � from o along the positive part of the x-axis.
For each point p ∈ P , we put a point p′ on � such that d(π, p) = d(o, p′). Each
element is attached with its corresponding color. Next, we compute the smallest
color-spanning interval1 on the x-axis in O(n log n) time [4]. Let I = [p′

i, p
′
j ] be

1 A color-spanning interval on a line is an interval containing points of each color.
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the smallest color-spanning interval. The minimum width CSCA with π as the
annulus-center has pi ∈ Cin and pj ∈ Cout.

We prove the lower bound of this problem using a reduction from the well-
known set-disjointness problem, where two sets X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yn} are given, and the objective is to test whether X ∩ Y = ∅. The
lower bound of the time complexity for the set-disjointness problem is Ω(n log n)
[9]. We can reduce this problem to the color spanning interval problem with two
colors in O(n) time. The members of X and Y are put on a real line IR, and
assigned colors red to all the elements in X and color blue to all the elements
in Y . Now, if the minimum color spanning interval is found to be of length zero,
then X∩Y �= ∅. Thus, the time complexity of the color-spanning interval problem
is Ω(n log n). To show that the smallest color-spanning annulus problem in IR2

is in Ω(n log n), we put the annulus-center c ∈ IR which is a real number strictly
smaller than the minimum among the values of all the elements in X ∪Y . Thus,
a smallest color-spanning annulus with annulus-centered at c corresponds to the
minimum length color-spanning interval on IR with the points X ∪ Y . �	

3 Circular Annulus

For the given set P = {p1, p2 . . . pn} of points, each one is assigned with a color
in the set {1, 2, . . . , k}, our objective is to determine the minimum width color-
spanning circular annulus (CSCA).

3.1 CSCA with Annulus-Center on a Line

We now consider the problem of computing of minimum width CSCA with
annulus-center on a query line L. Let A∗ be a minimum width CSCA with
annulus-center constrained on a given line L. Without loss of generality, we may
assume that the line L is the x-axis. Consider a point pi = (α, β) ∈ P . The
squared distance from point pi to each point (x, 0) ∈ L is a parabola y = fi =
(x − α)2 + β2 with its vertex at the point (α, β2) and x-axis as the directrix.

Lemma 1. For any pair of points pi and pj, the curves fi and fj intersect
exactly at one point, say (a, b), where (a, 0) is the point of intersection of the
perpendicular bisector of the line segment [pi, pj ] with the x-axis, and b is the
distance of both pi and pj from the point (a, 0).

Definition 1. The mirror-image of a point p with respect to a line L is a point
p′ on the other side of p with respect to the line L such that d(p′, L) = d(p, L).
The point p′ will be referred to as imageL(p).

Observation 2. Consider an annulus U with its annulus-center lying on a line
L. For any point p, either both p and imageL(p) lie inside (including the bound-
ary) of U or both of them lie outside U .
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Fig. 1. Transformation of distance information of the points from the line L

Fig. 2. Demonstration of Lemma 3

We consider the line L as the x-axis, and transform the points in P as follows.
Consider imageL(p) for all the points with negative y-coordinate; the points of P
with positive y-coordinates are considered as it is. Let the transformed point set
be P ′ = {p′

1, p
′
2, . . . , p

′
n}, where all the points in P ′ have positive y-coordinates.

Consider the arrangement Z of curves {fi|p′
i ∈ P ′} (see Fig. 1). Any vertical

line segment I = [(a, φ), (a, ψ] in the arrangement Z corresponds to a circular
annulus with annulus-center (a, 0) ∈ L and width (ψ − φ) > 02. If I represents
a CSCA then I must intersect at least one curve of each color3. Such a vertical
line segment I will be referred to as a color-spanning stick.

Lemma 2. The width of an annulus-centered on a line L with its Cin and Cout

passing through pin = (αin, βin) and pout = (αout, βout) respectively is a convex
function of x on L.

2 We are considering color spanning annulus of non-zero width, so we only need to
consider the non-zero length sticks.

3 The reason is that, for a CSCA there exists at least one point of each color j at
distance dj from (a, 0) satisfying φ ≤ dj ≤ ψ for all j ∈ [1, 2, . . . , k].
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Proof. For the sake of simplicity, let L be the x-axis. The width of the annulus
with annulus-center x ∈ L is W (x) = |((x − αout)2 + β2

out) − ((x − αin)2 + β2
in)|

= |2x(αin − αout) + (β2
out − β2

in + α2
out − α2

in)|. Since any function of the form
|cx + d| is convex for constants c and d, W (x) is a convex function. �	

The width W (x) centered at a point x ∈ L is a convex function. Thus it
attains minima exactly at one point on L which is the point of intersection of the
perpendicular bisector of [pin, pout] with the line L. For a demonstration, let us
consider Fig. 2(a), where the change in the annulus for different annulus-centers,
namely o, o′ and q, on the line L are shown using solid, dashed and dotted circles.
The Fig. 2(b) shows the plots of the distances of pout and pin from different points
on the line L. These are parabolas, namely Πout and Πin respectively. The width
of the annulus centered at a point is the length of the line segment between Πout

and Πin on the line perpendicular to L at the corresponding point. These are
shown using solid, dashed and dotted vertical line segments in Fig. 2(b).

Lemma 3. (a) The necessary and sufficient condition for computing the A∗ is
to find minimum among all the minimal width CSCA’s constrained on line L
defined by three distinct colors, and (b) INT (A∗) does not contain any point of
those three distinct colors that define A∗.

Proof. (a) Note that, both Cin and Cout of A∗ must be defined by at least one
point; otherwise, its width can be reduced keeping the annulus-center same.

For a contradiction, let A∗ be defined by exactly two points pout ∈ Cout and
pin ∈ Cin (see Fig. 2). Let o ∈ L be the annulus-center, and there exists a small
positive real number ε such that if the annulus-center is moved in either direction
from o on L by an amount ε, the circles C ′

out and C ′
in of the new annulus R′

still pass through only pout and pin respectively and the points that were inside
previous annulus R still remain in R′. Let the perpendicular bisector of pin and
pout intersects L at a point q. As stated in Lemma 2, the width of the annulus
A∗ decreases as the annulus-center o moves toward the point q along L.

To prove that three points are enough to define a CSCA, let us consider that
A∗ is defined by at least four points. So, one of the circles must be defined by at
least two points, say pi and pj . The perpendicular bisector of these two points
defines the unique annulus-center on the line L. Again, since the annulus-center
and one of the boundaries, say Cin, is fixed, only one point is enough to define
the other boundary Cout satisfying the color spanning property of A∗. Thus,
we have a contradiction. It needs to mention that, more than three points may
appear on the boundary of A∗. Here, all possible three points will define the
same CSCA, i.e., A∗.

(b) The distinctness of colors on the boundary follows from Observation 1(a).
The fact that INT (A∗) does not contain any point from those three distinct
colors follows from Observation 1(b). �	

Lemma 3 leads to the following facts:

• Each pair of curves in Z intersect only once. Thus, the number of vertices
in Z is O(n2). Each intersection point (a, b) (of fi and fj) in Z represents a
circle with center at (a, 0) and passing through the points pi and pj .
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• One of the end-points of the color-spanning stick (vertical line segment) defin-
ing the minimum width CSCA will coincide with a vertex of Z and its other
end-point lies on an edge4 (or a vertex in the degenerate case) of Z.

Thus, at every vertex v of Z, we need to consider two color-spanning sticks
of minimum length above and below v with their one end anchored at the vertex
v. We execute a line sweep to process the vertices of Z for computing a color-
spanning stick of minimum length as in [5]. Thus, we have the following result.

Lemma 4. The minimum width CSCA with annulus-center on a given line can
be computed in O(n2 log n) time.

3.2 Unconstrained Circular Annulus

Fig. 3. Circles with three points
cannot define the optimum annulus

We now consider the unconstrained version
of CSCA, where annulus-center can be any-
where on the plane. Let A+ be a uncon-
strained minimum width CSCA.

Lemma 5. (a) The necessary and sufficient
condition to find A+ is to find minimum
among all minimal width CSCA’s defined by
four distinct colors, and (b) INT (A+) does
not contain any point of those four colors that
defines A+.

Proof. (a) We first prove that A+ can not be defined by three points of distinct
colors. Similar argument holds to show that A+ can not be defined with less
than three points.

The width of A+ with three points on Cout (resp. Cin) and no point on Cin

(resp. Cout) can be reduced by increasing the radius of Cin (resp. decreasing the
radius of Cout) maintaining the annulus-center unchanged.

For a contradiction, let us assume that A+ be defined by two points pi and
pj on Cout, and one point pk on Cin (see Fig. 3). The annulus-center o of A+

lies on the perpendicular bisector L of [pi, pj ]. Let q be the point of intersection
of the perpendicular bisector of [pi, pk] with L. As in Lemma 3(a), the width of
the annulus reduces as we move from the point o towards q along L. Using the
similar arguments of Lemma 3 we conclude that A+ is defined by four points.

The sufficiency of four points for defining an unconstrained CSCA can be
proved exactly as in Lemma 3.

Here we need to admit that more than four points may appear on the bound-
ary of A+. Any four of these points will define the same A+. The distinctness
of the colors on the boundary of A+ can be proved as in Observation 1(a). Part
(b) also can be proved as in Observation 1(b). �	

4 here, the edges of Z are curve segments.
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When Cin and Cout have four points, then we have the following configura-
tions.

Type A: Both Cin and Cout have two points.
Type B: Cin has three points and Cout has one point.
Type C: Cout has three points and Cin has one point.

For computing A+ of Type A, we consider all possible pairs of bi-colored
points pi, pj ∈ P . Let Lij be the perpendicular bisector of (pi, pj). We execute
the algorithm of Sect. 3.1 to compute A∗ with one of its Cin or Cout passing
through (pi, pj).

Observe that imageLij
(pi) = pj or vice versa. Thus, the parabolas corre-

sponding to pi and pj with line Lij as the x-axis are the same. Let us name this
curve as hij . The one end of all the vertical color-spanning sticks representing
the annulii with one circle passing through (pi, pj) must touch hij . In order to be
a CSCA, the other circle of such an annulus must pass through two points (by
Observation 5). Thus, the vertical line segment corresponding to such a CSCA
must also incident to the point of intersection of two parabolas. Thus, in order to
get these CSCAs’, we scan all the vertices of Z. At each vertex, we draw a ver-
tical line segment up to hij . If this vertical line segment intersects the parabola
of all the colors, then it corresponds to a CSCA, and we note down its length.
Finally, the one with minimum length corresponds to the A+ of Type A.

During this process, we also recognize the A+ of Type B and Type C. These
correspond to the color-spanning sticks at all the vertices on the curve hij . From
each of these vertices, we generate two CSCAs (above and below) as mentioned
in Sect. 3.1 and return the optimum one. Thus, we have the following result.

Theorem 2. Given a set of n points, each point is assigned with one of the k
possible colors, the minimum width CSCA can be computed in O(n4 log n) time
using O(n) space.

4 Axis Parallel Square Annulus

For the given set P = {p1, p2 . . . pn} of n points, each one is assigned with a
color in the set {1, 2, . . . , k}, our objective is to determine the smallest width
color-spanning axis-parallel square annulus (CSSA). For the sake of simplicity,
we assume that the point set P are in general position, that is no two points
have same x- or y-coordinate. A corner point is a common point of two adjacent
sides of Cin (resp. Cout). Similarly, a non-corner point is any point p ∈ Cin

(resp. p ∈ Cout) other than a corner point. The points of P that appear on
Cin and Cout are said to define the corresponding CSSA. Before computing the
unconstrained version of the CSSA, here also we shall consider the cases when
the annulus-center is (i) on a given horizontal or vertical line and (ii) on a given
line making 45o or 135o angle with the x-axis.



438 A. Acharyya et al.

4.1 CSSA Centered on a Horizontal or a Vertical Line

We now explain the algorithm when the annulus-center is on a given a horizontal
line L and the objective is to compute the minimum width CSSA with annulus-
center lying on L. A similar method works when L is vertical. We use S∗ to
denote a minimum width CSSA, with its annulus-center constrained on the
horizontal or vertical line L. As in Sect. 3.1, here also we consider imageL(p) for
each point p ∈ P that lie below the line L. Thus, the transformed points P ′ are
all above the line L. For each point p′

i ∈ P ′, we plot the distance function fi
for every point on the line L in the L∞ norm (see Fig. 4(a)). It consists of three
parts, namely left, mid and right, where left (resp. right) is a half-line making
angle 135o (resp. 45o) with L and mid is a horizontal line segment connecting
the end-points of left and right. Both the end-points of the horizontal edge of
a curve is referred as corner of the curve. Again, arguing as in Lemma 1, we can
show that fi and fj intersect at a single point o5. The x-coordinate of the point
o is same as the point where the Voronoi partitioning line of pi and pj in L∞
norm intersects the line L (see Fig. 4(b)).

The arrangement Z+ of fi’s (see Fig. 6) consists of O(n2) vertices. A CSSA
with annulus-center at a point α on the line L corresponds to a stick I which is
perpendicular on L at the point α, and intersects at least one curve of each color
in {fi, i = 1, 2, . . . , n}. The length of the stick defines the width of the annulus.
As in Lemma 2, here also the width of a CSSA centered on L and defined by a
set of points is a convex function of the position of its center x on L.

Lemma 6. (a) The necessary and sufficient condition to find S∗ is to find min-
imum among all the minimal width CSSA’s defined by three distinct colored
points, and (b) INT (S∗) does not contain any point of those three colors that
define S∗.

Proof: In S∗, both Cin and Cout must be defined by at least one point; oth-
erwise, its width can be reduced keeping the annulus-center unchanged. For a
contradiction, let S∗ be defined by exactly two points; pout ∈ Cout and pin ∈ Cin

(see Fig. 5). Let o ∈ L be the annulus-center. Note that, there exists a small pos-
itive real number ε such that if the annulus-center is moved ε distance in either
direction along L, the new annulus R′ is still color spanning, Cout and Cin pass
through only pout and pin respectively. Let the voronoi partitioning line of pin
and pout intersects L at a point q. Now, if we move the annulus-center o towards
q the width of the annulus remains same up to the corner point c ∈ fin (see
Fig. 5 (b)). If we further continue to move o towards q the width of the annulus
decreases and finally becomes zero at point q. Thus we have a contradiction.
This supports the fact that, S∗ must be defined by at least three points.

To prove the sufficiency of three points, let us assume four points on the
boundary of S∗. Two cases may arise. (i) Both the boundaries of Cin and Cout

have two points each. and (ii) One of the boundaries of Cinand Couthas three

5 The curves fi and fj may intersect in an interval if the corresponding points p′
i and

p′
j are in same horizontal line and d(p′

i, p
′
j) is less than their distance from L.
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Fig. 4. (a) The function fi, and (b) point of intersection of two curves fi and fj

Fig. 5. Demonstration of Lemma 6

points and the other boundary has one point. In Case(i) considering two points of
Cin that defines the diagonal or vertical line that contains the center intersects
the line L at a point which is the annulus-center. As the center is defined, Cout

can be defined by one point only. In Case (ii) let Cin has three points. As argued
in earlier case, two points are enough to define Cin uniquely and the third point
of Cin is redundant to define S∗.

The distinctness of colors on the boundary of S∗ and of INT (S∗) follows
from Observation 1(a) and (b) respectively. �	

Degenerate case arises when a point p appears at a corner of Cin or Cout.
We draw a diagonal line through p which intersects L at a point defining the
annulus-center. One more point is enough to define the other square. Hence in
this case two points are enough to define S∗. To stand by Lemma 6, we consider
a corner point as a point on its two adjacent sides. If pi and pj defines such
a CSSA with pi at a corner point, then in the arrangement of Z+ one of the
end-points of the vertical stick I defining that CSSA lies on a corner point of a
curve fi.

As in Sect. 3.1, we compute the minimum width CSSA centered on a hor-
izontal line by sweeping a vertical line to process all the event points in the
arrangement of Z+, where the event points are the vertices (intersection points
of the curves) of the arrangement and the corner points of the curves. Thus, we
have the following result:

Lemma 7. The minimum width CSSA centered on a given horizontal or ver-
tical line can be computed in O(n2 log n) time.
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Fig. 6. Arrangement Z+ Fig. 7. Arrangement Z++

4.2 CSSA Centered on a Diagonal Line

Let us consider a point o. The objective is to find the minimum width axis-
parallel square annulus such that the top-left corner of Cout coincides with the
point o. In other words, the annulus-center lies on a line L passing through o and
making an angle 135o with the x-axis. The other cases of defining the diagonals
which contain the annulus-center can be handled symmetrically. We use S∗∗

to denote a minimum width CSSA, with its annulus-center constrained on a
diagonal line L.

Draw a horizontal line H and a vertical line V through the point o. The
points in the bottom-right quadrant R formed by the lines V and H play the
role for describing this annulus. Let R̂ be the region above the line L in R. We
consider imageL(p) of all points p ∈ R − R̂. The points originally lying in the
region R̂ remains as it is. At each point pi ∈ R̂, define a curve fi by drawing
a vertical half-line upwards and a horizontal half-line towards right (see Fig. 7).
Let Z++ be the arrangement of these curves. Each curve remains active in the
quadrant R̂. Also each pair of curve intersects at most once. Thus the number
of vertices in the arrangement Z++ is O(n2) in the worst case.

A S∗∗ with top-left corner at o corresponds to a line-segment (stick) orthogonal
to L and starting from H towards bottom-left that intersects at least one curve
of each color in the arrangement Z++ (see the thick line segment in Fig. 7). We
sweep a half-line L′ orthogonal to L with its one end anchored on the line L.

The sweep in Z++ starts from the point o. The event points of this sweep are
(i) points of intersection of the members of Z++ with H, (ii) the corner points
in each curve, and (iii) points of intersection of each pair of curves. Initially, the
stick is of length zero and is not color-spanning. As the sweep progresses, new
curves appear on the sweep line by processing event points of type (i). At some
point of time, the stick becomes color-spanning. During the further sweep, the
event points are handled as in [5]. The sweep line status is maintained as a heap
of size k whose entries correspond to the k colors, Each entry of the heap is
attached with a linked list storing the presence of all curves of that color which
are intersected by the stick. Processing of each type (i) event for inserting it in
the sweep line status needs O(log n) time. As earlier, the processing of each type
(ii) and type (iii) events also need O(log n) time for updating the event queue
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and sweep line status. While processing an event-point if the color of the curve
appeared at the end of the stick is same as that of the point defining the lines
H or V or the corner point o, then that curve is deleted from the stick. Thus,
at each instance the length of the stick is also determined. Since the number of
event points is O(n2) in the worst case, the Lemma 8 follows.

Lemma 8. The minimum width CSSA centered on a given diagonal line can
be computed in O(n2 log n) time.

4.3 Unconstrained Axis Parallel Square Annulus

Now, we are going to consider the unconstrained version of the CSSA problem
where the annulus-center can be anywhere in the given plane. We use S+ to
denote a unconstrained minimum width CSSA. To find the unconstrained S+,
we divide our analysis in the following two cases depending on the positions of
the points in P that define S+:

Non-Corner CSSA: The points of P that define the S+ appear on the edge of
the boundary of Cin and Cout.

Corner CSSA: At least one of the point of P that define the S+ is at a corner
point of the boundary of S+.

We now show that computation of unconstrained S+ can be formulated using
the two subproblems described in Sects. 4.1 and 4.2.

Lemma 9. Either Cin or Cout of the minimum width non-corner S+ has two
different color points on two different boundaries.

Proof. As in Lemma 6, here also we can show that Cin or Cout has more than one
point. We have assumed that no two points in P have same x- or y- coordinate.
Thus, the points will appear on different boundaries of Cin or Cout. �	

As a consequence of Lemma 9, we consider each pair of points as non-corner
points of some CSSA. For each pair we define the four types of lines which may
contain the optimum annulus-center, these are the horizontal line, the vertical
line, the diagonal lines making 45o and 135o angle with the x-axis. For each these
lines the optimum annulus can be computed in O(n2 log n) time (see Sect. 4.1 or
4.2). Considering O(n2) pairs of points, the non-corner CSSA can be found in
O(n4 log n) time.

Corner S+ has a corner point on its boundary. We consider each point in P
as a corner point and define two diagonal lines making 45o and 135o respectively
with the x-axis. For every possible diagonal lines, we can find the S+ centered
on that line in O(n2 log n) time (see Sect. 4.2). Thus, a corner S+ can be solved
in O(n3 log n) time.

Combining the solutions for the non-corner and corner cases we have the
following result:

Theorem 3. Given a set of n points, each point is assigned with one of the k
possible colors, the minimum width CSSA can be computed in O(n4 log n) time
using O(n) space.
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Computing a Minimum-Width Square
or Rectangular Annulus with Outliers
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Abstract. A square or rectangular annulus is the closed region between
a square or rectangle and its offset. In this paper, we address the prob-
lem of computing a minimum-width square or rectangular annulus that
contains at least n − k points out of n given points in the plane. The
k excluded points are considered as outliers of the n input points. We
present several first algorithms to the problem.

1 Introduction

Covering a given point set by a certain geometric shape, such as a circle, a square
and a rectangle, is a fundamental problem in computational geometry. Problems
of this kind often appear in the form of an optimization problem with various
criteria and constraints. Among these covering problems, finding a minimum
shape covering all but a few input points is of another great interest in view
of outlier removal. In such a problem, more precisely, given n input points and
an integer k, we are asked to find a smallest shape enclosing at least n − k
out of the n input points. From the viewpoint of optimization, excluding the
k points reduces the objective value the most; in other words, including them
would cause a relatively high increase in cost. In this sense, such excluded points
are considered to be outliers of the given point set.

There has been quite a lot of attention to the problem of covering n given
points, but excluding k outliers, in particular, with an axis-parallel square or a
rectangle. Aggarwal et al. [2] achieved a running time of O((n−k)2n log n) both
for the square and rectangle cases. For the rectangle case, Segal and Kedem [15]
presented an O(n + k2(n − k))-time algorithm and Atanassov et al. [4] and Ahn
et al. [3] came up with an improvement to O(n + k3) time. For the square case,
a randomized algorithm that runs in O(n log n) time was presented by Chan [7],
and later Ahn et al. [3] improved it to O(n + k log k) time. In particular, Ahn
et al. [3] extended their idea to the problem of covering n − k points by p dis-
joint squares or rectangles, resulting in efficient algorithms for small p ≤ 3.
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Atanassov et al. [4] also considered other variants of the problem for the pur-
pose of outlier removal, including the problem of finding a minimum convex set
containing n − k points. More general frameworks to handle outliers as viola-
tions of constraints for LP-type optimization problems have also been introduced
by Matoušek [13]. Note that computing a minimum enclosing circle, square, or
rectangle falls into the class of LP-type problems.

Besides squares and rectangles, square annuli or rectangular annuli are also
of much interest in this stem of research, in particular, when the input points are
assumed to be sampled from the boundary of a square or rectangle with noise
or error. A square/rectangular annulus is defined to be a closed region between
a square/rectangle and its offset, and the width of such an annulus means the
distance between the two squares/rectangles defining it.

It was relatively recent that the problem of computing a minimum-width
square/rectangular annulus containing input points has been introduced and
studied in a theoretical point of view. Abellanas et al. [1] presented an O(n)-time
algorithm for the rectangular annulus problem and considered several variations
of the problem. Gluchshenko et al. [11] gave an O(n log n)-time algorithm for
the square annulus, and proved that this is optimal. Also, it is known that a
minimum-width annulus over all orientations can be found in O(n3 log n) time
for the square annulus [5] and in O(n2 log n) time for the rectangular annulus [14].

In this paper, we study the minimum-width square/rectangular annulus prob-
lems with k outliers. More precisely, given n points in the plane and an integer
k ≥ 0, our problems, the k-SquareAnnulus problem and the k-RectAnnulus
problem, asks to cover at least n − k points by a minimum-width square
and rectangular annulus, respectively. We present several algorithms for the k-
SquareAnnulus and k-RectAnnulus problems. Among them, we show that
the k-SquareAnnulus problem can be solved in O(k2n log n + k3n) time, and
the k-RectAnnulus problem can be solved in O(nk2 log k+k4 log3 k) time. It is
worth mentioning that our algorithms are optimal when k is a constant, matching
time bounds for the case of no outlier allowance. To our best knowledge, no non-
trivial algorithm for the problems for k ≥ 1, except that the general framework for
LP-type problems by Matoušek [13]. Note that the minimum-width rectangular
annulus problem is an LP-type problem with combinatorial dimension five, while
the square annulus problem is not. The framework of Matoušek [13] thus auto-
matically results in an O(nk5)-time algorithm for the problem with k outliers.

Due to page limit, all proofs are removed but will be found in a full version.

2 Preliminaries

In this paper, we only handle axis-parallel squares and rectangles. Henceforth,
any square or rectangle we discuss is assumed to be axis-parallel, unless stated
otherwise. Consider a rectangle, or possibly a square, R in the plane R

2. We call
the intersection point of its two diagonals the center of R. The height and the
width of R are the lengths of its vertical side and horizontal side, respectively.
An (inward) offset of R by δ > 0 is a rectangle obtained by sliding the four



Minimum-Width Square or Rectangular Annulus with Outliers 445

R

δ

R′

(a) (b)

Fig. 1. (a) A rectangle R and its offset by δ, defining a rectangular annulus (shaded
area). The base of R is depicted as a solid line segment in the middle. (b) A minimum-
width rectangular containing given points with 2 inside outliers and 5 outside outliers.

sides of R inwards by δ. If R is of height h and width w, then the offset of R by
δ = 1

2 min{h,w} is degenerated to a line segment or a point, called the base of
R. Note that the base of R is either vertical if h > w or horizontal if h < w, and
the center of R is the midpoint of the base of R.

For any positive δ ≤ 1
2 min{h,w}, consider an inward offset R′ of R by δ.

Then, the closed region A between R and R′, including its boundary, is called
a rectangular annulus with the outer rectangle R and the inner rectangle R′.
See Fig. 1(a). When R is a square and so is R′, the annulus A is called a square
annulus. The distance δ between the sides of R and R′ is called the width of
the annulus. The complement R

2 \ A of the annulus A is separated into two
connected components. We shall call the outside of R the outside of A and the
inside of R′ the inside of A.

Given a set P of n point in R
2 and a nonnegative integer k, our problems,

the k-SquareAnnulus and the k-RectAnnulus problems, ask a minimum-
width square or rectangular annulus that contains at least n−k points of P . See
Fig. 1(b). The at most k points that are not covered by the resulting annulus are
called outliers. Since the complement of any annulus are separated into its inside
and outside, such an outlier may lie either in the inside or in the outside. We call
an outlier an outside outlier if it lies in the outside of the resulting annulus, or an
inside outlier, otherwise. In some applications, no inside outlier would be allowed
while outside outliers are allowed, or vice versa, or even the numbers of inside and
outside outliers are prescribed. This motivates to a variation of the problems,
called the (kin, kout)-SquareAnnulus and the (kin, kout)-RectAnnulus prob-
lems for nonnegative integers kin and kout, in which at most kin inside outliers
and at most kout outside outliers are allowed.

When no outlier is allowed, i.e., k = 0, the 0-SquareAnnulus and 0-
RectAnnulus problems are solved in O(n log n) and O(n) time, respectively,
by Abellanas et al. [1] and Gluchshenko et al. [11]. Both algorithms are based on
the following observation, which will be useful also for our further discussions.

Lemma 1 (Abellanas et al. [1] and Gluchshenko et al. [11]). There exists
a minimum-width square/rectangular annulus A containing P such that the outer
square/rectangle of A is a smallest square/rectangle enclosing P .
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3 Square Annuli with Outliers

In this section, we present efficient algorithms for k-SquareAnnulus problem
and its variation (kin, kout)-SquareAnnulus problem. We start with an ana-
logue to Lemma 1 for the (kin, kout)-SquareAnnulus problem.

Lemma 2. There exists a minimum-width square annulus that is an optimal
solution to the (kin, kout)-SquareAnnulus problem for a point set P such that
there are two points in P lying in the opposite sides of its outer square.

Note that this also implies the existence of an optimal square annulus to the
k-SquareAnnulus problem with the same property, as is an optimal solution
to an instance of the (kin, kout)-SquareAnnulus problem with k = kin + kout.

We first consider special cases of the (kin, kout)-SquareAnnulus problem
where kin = 0 or kout = 0, and then proceed to the general case.

3.1 Case of No Outside Outlier

Here, we consider the (kin, kout)-SquareAnnulus problem with kin ≥ 1 and
kout = 0, so at most kin outliers must lie in the inside of the resulting annulus.
In this case, there exists an optimal annulus whose outer square is a smallest
square enclosing all the input points P by Lemma 2.

Let R be the smallest enclosing rectangle of P , and h and w be the height
and width of R. We assume without loss of generality that h ≥ w. Then, the
trace of the centers of all smallest squares enclosing P forms a horizontal line
segment C. Note that the length of C is exactly equal to h−w and its midpoint
coincides with the center of R. Lemma 2 implies that the center of an optimal
square annulus to the (kin, 0)-SquareAnnulus problem lies in C. Let S(c) be
the smallest square enclosing P with center c. For a fixed center c ∈ C, the width
of the corresponding optimal annulus is determined by the (kin + 1)-th nearest
point in P from c with respect to the L∞ metric since the inner square with
center c now can contain at most kin outliers in its interior.

We thus consider the L∞ distance between p ∈ P and c ∈ C, denoted by fp(c)
as a function of c over C. These functions fp indeed play a central role in previous
results on minimum-width square annuli [5,11], based on the following properties.

Lemma 3 (Gluchshenko [11] and Bae [5]). The functions fp are continuous
and piecewise linear such that its graph consists of at most three linear pieces
whose slopes are −1, 0, and 1 in this order. In addition, any two of them properly
cross at most once. Therefore, the graphs of the functions fp form a family of n
pseudo-lines.

Now, we define

Lkin+1(c) := the (kin + 1)-th smallest value among fp(c) for p ∈ P,

for every c ∈ C. Since the side length of the outer square is fixed as h, the
width of the annulus at center c ∈ C is determined as 1

2h − Lkin+1(c). Thus, our
problem is equivalent to maximizing Lkin+1(c) over c ∈ C.
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The function Lkin+1 is known as the (kin + 1)-level of the functions fp for

p ∈ P . By Lemma 3, it is known that the graph of Lkin+1 consists of O(nk
1
3
in)

line segments [9] and can be computed in O(n log n + nk
1
3
in) time [8]. Hence, we

conclude the following.

Lemma 4. Given n points and an integer kin ≥ 0, the (kin, 0)-

SquareAnnulus problem can be solved in O(n log n + nk
1
3
in) time.

3.2 Case of No Inside Outlier

Now, we consider the case where kin = 0 and kout ≥ 1.
By Lemma 2, we can restrict ourselves to those annuli whose outer squares

are determined by two points in P lying on its opposite sides. Without loss of
generality, we assume that the outer square of an optimal annulus has one point
on its top side and another on its bottom side. The other case can be handled
in a symmetric way. In the following, we fix two points t, b ∈ P and find a best
possible annulus whose outer square is determined by these two points on its
top and bottom sides. Our overall algorithm will try all possible combinations
of t and b, and finally compute an optimal square annulus.

For i and j with 0 ≤ i, j ≤ kout, let t ∈ P be the (i + 1)-th highest point in
P and b ∈ P be the (j + 1)-th lowest point in P . We only consider the points
in P below t and above b, including t and b, denoted by Pij , and square annuli
containing at least n−kout points whose outer square is defined by t and b. Note
that |Pij | ≥ n − (i + j). Let h be the vertical distance between t and b and � be
the horizontal line such that the vertical distance from t and b to � is h/2. For
each c ∈ �, define S(c) be the square of side length h and center c. Also, define
nij(c) := |Pij ∩ S(c)| be the number of points in P lying in the square S(c).

For a fixed center c ∈ �, now we have a fixed outer square S(c) and the inner
square is uniquely determined by the nearest point in Pij from c with respect
to the L∞ distance. As done above, we define the function fp for each p ∈ Pij

over the line � such that fp(c) is the L∞ distance from c to p for each c ∈ �. Let
L(c) := minp∈Pij

fp(c) be the lower envelope of the functions fp. The width of
the unique square annulus A(c) with center c ∈ � is determined as 1

2h − L(c).
The last thing to check is whether or not A(c) contains at least n − kout points
in Pij . Thus, our problem is equivalent to the following:

maximize L(c) = min
p∈Pij

fp(c) over c ∈ � subject to nij(c) ≥ n − kout.

Note that nij(c), as a function of c over �, is piecewise constant whose break
points correspond to those c ∈ � at which a point in Pij lies on the left or right
side of S(c). Thus, the function nij induces at most n intervals on �. Among the
intervals, interesting to us are those with nij(c) ≥ n−kout. We call them feasible
intervals.

Hence, we compute the lower envelope of fp over �, and find the highest point
on the lower envelope in the feasible intervals. This can be done in O(n log n)
time [12] by Lemma 3. We obtain the overall optimal solution by running the
indices i and j from 0 to kout.
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Lemma 5. Given n points and kout ≥ 1, the (0, kout)-SquareAnnulus prob-
lem can be solved in O(k2

outn log n) time.

3.3 The General Case

In order to handle the general (kin, kout)-SquareAnnulus problem for
kin, kout > 0, we combine the ideas of the above two special cases of kin = 0
or kout = 0. Again by Lemma 2, we only consider annuli whose outer squares
are determined by two opposite extremes. Without loss of generality, we assume
that the outer square of an optimal annulus has one point on its top side and
another on its bottom side.

For i and j with 0 ≤ i, j ≤ kout, let t ∈ P be the (i + 1)-th highest point
in P and b ∈ P be the (j + 1)-th lowest point in P . Define Pij , �, h, S(c) and
nij(c) for c ∈ �, as declared above. Also, for each p ∈ Pij , define fp(c) for c ∈ �
to be the L∞ distance from c to p. In this case, we can exclude at most kin
inside outliers. So, we are interested in the (kin +1)-level Lkin+1 of the functions
fp over �. Recall that for each c ∈ �, Lkin+1(c) is defined to be the (kin + 1)-th
smallest number out of fp(c) for p ∈ Pij . Then, our (kin, kout)-SquareAnnulus
problem in this case is equivalent to

maximize Lkin+1(c) over c ∈ � subject to nij(c) ≥ n − kout.

This can be solved by computing the (kin + 1)-level Lkin+1 of the functions
fp, specifying the feasible intervals on �, and finding the highest point of Lkin+1

over the feasible intervals. By Lemma 3 and the aforementioned discussions, this
can be done in O(n log n + k

1
3
inn) time. By repeating this for all 0 ≤ i, j,≤ kout,

we obtain the following result.

Theorem 1. Given n points and two positive integers kin and kout, the
(kin, kout)-SquareAnnulus problem can be solved in O(k2

outn log n + k2
outk

1
3
inn)

time.

Now, we turn to the k-SquareAnnulus problem for k ≥ 0. Note that we can
solve it by handling k + 1 instances of the (kin, kout)-SquareAnnulus problem
with kout = k − kin. This gives us an algorithm of running time O(k3n log n +
k

10
3 n). Fortunately, we can reduce the time complexity by almost a factor of k

by computing the 1-level, the 2-level, . . . , the (k +1)-level of the functions fp at
the same time using the algorithm by Everett et al. [10].

Theorem 2. Given n points and an integer k ≥ 1, the k-SquareAnnulus
problem can be solved in O(k2n log n + k3n) time.

4 Rectangular Annuli with Outliers

In this section, we consider the k-RectAnnulus problem and the (kin, kout)-
RectAnnulus problem. We start with an analog to Lemma 2.
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Lemma 6. There exists a minimum-width rectangular annulus that is an opti-
mal solution to the (kin, kout)-RectAnnulus problem for a point set P such
that each side of its outer rectangle contains at least one point in P .

4.1 The Offset Rectangle Problem

First, we consider the offset rectangle problem in which we are given a set P of n
points, a rectangle R, and an integer kin ≥ 0, and want to find a largest offset of
R that contains at most kin points of P in its interior. This problem can be easily
solved in O(n) time, regardless of kin, as follows. First, compute the L∞ distance
dp from each p ∈ P to the base of R, and then find the (kin +1)-th nearest point
in P from the base of R by running any linear-time selection algorithm.

We can devise algorithms for the (kin, kout)-RectAnnulus problem by call-
ing the above algorithm for the offset rectangle problem as a subroutine. Observe
that the resulting offset of R, together with R, forms a minimum-width rectangu-
lar annulus with at most kin inside outliers. In the case where no outside outlier
is allowed, i.e., kout = 0, there exists an optimal rectangular annulus whose outer
rectangle is equal to the smallest rectangle enclosing P by Lemma 6. Thus, this
special case can be handled by solving the offset rectangle problem with the
smallest rectangle enclosing P in O(n) time.

Now, consider the general case of kout > 0. Again, by Lemma 6, it suffices to
try all rectangles defined by four points t, b, l, r ∈ P as outer rectangles R such
that t is the (i + 1)-th highest point in P , b is the (j + 1)-th lowest point in P ,
l is the (i′ + 1)-th leftmost point in P , and r is the (j′ + 1)-th rightmost point
in P , for 0 ≤ i, j, i′, j′ ≤ kout. This implies that the (kin, kout)-RectAnnulus
problem is reduced to O(k4

out) instances of the case of no outside outlier, yielding
an O(k4

outn)-time algorithm. One can even drop a factor of kout by a simple
observation.

Lemma 7. Given n points and integers kin, kout > 0, the (kin, kout)-
RectAnnulus problem can be solved in O(k3

outn) time, regardless of kin. There-
fore, the k-RectAnnulus problem can be solved in O(k4n) time for any k > 0.

4.2 Offset Rectangle Queries

As discussed above, the offset rectangle problem is a central subproblem for our
purpose, which needs to be solved a heavy number of times. Though an instance
of the offset rectangle problem can be solved in optimal linear time, if we can
do it more efficiently by paying some preprocessing cost, then we will be able to
obtain more efficient algorithms for our main problems.

Here, we present a data structure that answers the offset rectangle query in
poly-logarithmic time for any query (R, kin) of rectangle R and integer kin. As
done above, let dp be the L∞ distance from the base of R to p, for each p ∈ P .
In order to answer the offset rectangle query in a desired time, we need to select
the (kin + 1)-th smallest value among dp for all p ∈ P in poly-logarithmic time.
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R

C∨(R)

C<(R)
C∧(R)

C>(R)

Fig. 2. The four sections induced by a rectangle R (dotted).

For the purpose, we consider the four sections induced by the given rectangle
R. Specifically, shoot two rays from each endpoint of the base of R to its two
nearest corners of R. These four rays, together with the base of R, result in a
partition of the plane R2 into the four sections, each of which contains a side of R.
Let C∨(R), C∧(R), C>(R), and C<(R) denote the sections corresponding to the
top, bottom, left and right sides of R, respectively. If the width of R is longer than
the width, then each of C>(R) and C<(R) forms a right-angled cone heading
for the x or −x directions, respectively, while each of C∨(R) and C∧(R) forms a
right-angled cone cut by the base of R. See Fig. 2 for an illustration. Then, the
L∞ distance dp(R) from each point p ∈ P to the base of R is just the vertical
distance if p ∈ C∨(R) ∪ C∧(R) or the horizontal distance if p ∈ C>(R) ∪ C<(R).

Thus, we consider range queries on P with ranges representing one of these
sections. Our ranges are thus bounded by at most three lines in directions
{π/4, 3π/4, π} or {π/4, 3π/4, 0}. Range queries of this kind can be answered
by using a three-dimensional range tree. More precisely, we build four standard
range trees T∨, T∧, T>, and T< with fractional cascading for the following point
sets, respectively, in three dimensional space:

P∨ := {(x + y,−x + y, y) ∈ R
3 | (x, y) ∈ P},

P∧ := {(−x − y, x − y,−y) ∈ R
3 | (x, y) ∈ P},

P> := {(−x + y,−x − y,−x) ∈ R
3 | (x, y) ∈ P}, and

P< := {(x − y, x + y, x) ∈ R
3 | (x, y) ∈ P}.

Observe that each of the sections C∨(R), C∧(R), C>(R), and C<(R) for P
exactly corresponds to a three-dimensional orthogonal range for P∨, P∧, P>,
and P<, respectively. See the textbook [6] for more details about range trees.

Our data structure D consists of these four range trees T∨, T∧, T>, and T<,
and is shown to efficiently answer the offset rectangle query.

Lemma 8. There exists a data structure D of size O(n log n) that can be built
in O(n log2 n) time for n input points such that the offset rectangle query for
any given rectangle R and integer kin can be processed in O(log2 n log kin) time.

In order to solve the (kin, kout)-RectAnnulus problem and k-RectAnnulus
problem, we build the structure D and exploit it to solve each necessary instance
of the offset rectangle problem. This results in the following theorem.
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Theorem 3. Given n points and two integers kin, kout > 0, the (kin, kout)-
RectAnnulus problem can be solved in O(n log2 n + k3

out log kin log2 n) time.
Therefore, the k-RectAnnulus problem can be solved in O(n log2 n +
k4 log k log2 n) time for any integer k > 0.

4.3 Kernelization

The time bounds in Theorem 3 have a term of n log2 n, which does not match
the case of no outlier allowance. A further improvement can be made by a ker-
nelization that extracts a small number of points K from P .

Lemma 6 implies that the outer rectangle of an optimal annulus is determined
by at most four points of P and then the inner rectangle is determined by one
point as observed above. The idea of our kernelization is thus filtering out those
in P that have no chance to appear either on the outer or inner boundary of any
optimal annulus.

For the outer rectangle, let Kout ⊆ P be the set of points p such that p is
either the (i+1)-th highest, the (j+1)-th lowest, (i′+1)-th leftmost, or (j′+1)-th
rightmost point in P for 0 ≤ i, j, i′, j′ ≤ kout. Then, it is obvious that the outer
rectangle of any optimal annulus for P is always determined by four points in
Kout by Lemma 6; otherwise, we would have more than kout outside outliers. We
specify Kout in O(n) time by selecting the (kout + 1)-th point in each direction.

It is more involved to compute such a kernel Kin for the inner rectangle.
Our approach is to extract a sufficient number of points in P from each section
of every possible outer rectangle R that are nearest from the base of R. The
following observation is now quite clear from our discussions so far.

Lemma 9. Let R be a rectangle and kin be a nonnegative integer. The largest
offset of R containing at most kin points of P in its interior is determined by
a point included in the set consisting of the following points: the kin + 1 lowest
points from P ∩ C∨(R), the kin + 1 highest points from P ∩ C∧(R), the kin + 1
rightmost points from P ∩C>(R), and the kin+1 leftmost points from P ∩C<(R).

On the other hand, by Lemma 6, our outer rectangle should be R =
R(i, j; i′, j′) determined by the four indices (i, j, i′, j′): for each 0 ≤ i, j, i′, j′ ≤
kout, let �t(i) be the horizontal line through the (i + 1)-th highest point in P ,
�b(j) be the horizontal line through the (j + 1)-th lowest point in P , �l(i′) be
the vertical line through the (i′ + 1)-th leftmost point in P , and �r(j′) be the
vertical line through the (j′ + 1)-th rightmost point in P . Then, R(i, j; i′, j′) is
the rectangle bounded by these four lines. As above, we consider the four sec-
tions of R(i, j; i′, j′), denoted by C∨(i, j; i′, j′), C∧(i, j; i′, j′), C>(i, j; i′, j′), and
C<(i, j; i′, j′).

Our goal is thus to find a subset Kin ⊂ P that includes at least the kin +
1 lowest points from P ∩ C∨(i, j; i′, j′), the kin + 1 highest points from P ∩
C∧(i, j; i′, j′), the kin + 1 rightmost points from P ∩ C>(i, j; i′, j′), the kin + 1
leftmost points from P ∩C<(i, j; i′, j′), for every 0 ≤ i, j, i′, j′ ≤ kout. Since some
R(i, j; i′, j′) is the outer rectangle of an optimal annulus by Lemma 6, its inner
counterpart must be determined by one point in such a subset Kin by Lemma 9.
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(a) (b)
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σ−
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Fig. 3. (a) Decomposition for the first phase. (b) Decomposition for the second phase.

In the following, we show how to build Kin. Our algorithm consists of two
phases, collecting points from P that are candidates to define the inner rectangle
of an optimal annulus.

Phase 1. We fix two opposite indices i and j, giving us a horizontal slab between
�t(i) and �b(j). Let h be the vertical distance between �t(i) and �b(j), and � be
the middle horizontal line such that the distance between �t(i) and � is h/2.
Then, every R(i, j; i′, j′) is determined between �t(i) and �b(i) with height h and
center on �. Recall that the left section C>(i, j; i′, j′) forms a cone if the width
of R(i, j; i′, j′) is at least its height, or a cone cut by the base of R(i, j; i′, j′),
otherwise. In the former case, observe that C>(i, j; i′, j′) is independent of choice
of j′. In the first phase of our algorithm, we collect candidate points from P that
may define the offset rectangle of R(i, j; i′, j′) as the (kin + 1)-th nearest point
in a cone, not being cut by the base of R.

For each 0 ≤ i′ ≤ kout, consider the point z ∈ � that is h/2 distant from
�l(i′) ∩ � to the right. Let w+

i′ be the segment between z and the intersection
point �t(i) ∩ �l(i′), and w−

i′ be the segment between z and �b(j) ∩ �l(i′). Note
that w+

i′ is of slope −1 and w−
i′ of slope 1. Now, we consider the decomposition

of the slab between �t(i) and �b(j) by the line � and the segments w+
i′ and w−

i′

for all 0 ≤ i′ ≤ kout. This decomposition of the slab consists of 2(kout + 2) cells:
σ+
0 , σ+

1 , . . . , σ+
kout+1 from left to right above � and σ−

0 , σ−
1 , . . . , σ−

kout+1 from left
to right below �. See Fig. 3(a). For each 0 ≤ i′ ≤ kout + 1, we collect the kin + 1
lowest points and the kin+1 rightmost points from P ∩σ+

i′ , and the kin+1 highest
points and the kin+1 rightmost points from P ∩σ−

i′ . If P ∩σ+
i′ or P ∩σ−

i′ consists
of less than kin+1 points, then we collect all of them. Let K>(i, j; i′) ⊂ P denote
the set of these collected points for each 0 ≤ i′ ≤ kout + 1.

We perform the same procedure for �r(j′) for each 0 ≤ j′ ≤ kout in the sym-
metrical way to obtain the subsets K<(i, j′; j′). Also, repeat the above procedure
for every choice of i and j, with 0 ≤ i, j ≤ kout. We then observe the following.

Lemma 10. For 0 ≤ i, j, i′, j′ ≤ kout, suppose that R(i, j; i′, j′) has the longer
width than the height. Then, the kin + 1 rightmost points in P ∩ C>(i, j; i′, j′)
are contained in

⋃
0≤i′′≤i′ K>(i, j; i′′) and the kin + 1 leftmost points in P ∩

C<(i, j; i′, j′) are contained in
⋃

0≤j′′≤j′ K<(i, j; j′′).
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We do the same procedure for vertical lines �l(i′) and �r(j′) for every choice
of (i′, j′), resulting in the analogous subsets K∨(i′, j′; i) and K∧(i′, j′; j). Let
K1 ⊂ P be the union of all these subsets of points collected in the first phase.

We then proceed to the second phase.

Phase 2. Again, fix i and j and consider the slab between �t(i) and �b(j). We
call a pair (i′, j′) of indices separated if the width of R(i, j; i′, j′) is at least
its height. Also, a separated pair (i′, j′) is called minimally separated if either
i′ = kout or j′ = kout, or both (i′ + 1, j′) and (i′, j′ + 1) are not separated.
We find all minimally separated pairs in order (i′1, j

′
1), . . . , (i

′
m, j′

m) such that
i′1 < i′2 < · · · < i′m. Then, by definition we also have j′

1 > j′
2 > · · · > j′

m, so
m ≤ kout + 1. Now consider the upward sections C∨(i, j; i′a, j

′
a) for 1 ≤ a ≤ m.

Let C ′
∨(i, j; a) := C∨(i, j; i′a, j

′
a) \ (C∨(i, j; i′a−1, j

′
a−1) ∪ C∨(i, j; i′a+1, j

′
a+1)). See

Fig. 3(b). Then for each 1 ≤ a ≤ m, we define K ′
∨(i, j; a) ⊂ P to be the set of

the kin + 1 lowest points in P ∩ C ′
∨(i, j; a). Apply the same to the downwards

sections C∧(i, j; i′a, j
′
a) to obtain the sets K ′

∧(i, j; a).
We repeat the above for every (i, j) with 0 ≤ i, j ≤ kout. Then, we observe:

Lemma 11. For 0 ≤ i, j, i′, j′ ≤ kout, suppose that R(i, j; i′, j′) has the longer
width than the height, and let (i′a, j

′
a) be the minimally separated pair such that

i′a ≥ i′ and j′
a ≥ j′. Then, the kin + 1 lowest points in P ∩ C∨(i, j; i′, j′) are

contained in K ′
∨(i, j; a) ∪ K1, and the kin + 1 highest points in P ∩ C∧(i, j; i′, j′)

are contained in K ′
∧(i, j; a) ∪ K1.

We apply the same procedure for vertical lines �l(i′) and �r(j′) for every
choice of (i′, j′), resulting in the analogous subsets K ′

>(i′, j′; a) and K ′
<(i′, j′; a).

Let K2 be the union of all these subsets obtained in the second phase. Then, we
let Kin := K1 ∪ K2. Our resulting kernel K of P is just Kout ∪ Kin.

Finally, we conclude the following.

Lemma 12. Let P be a set of n points and kin, kout be two positive integers.
There is a subset K ⊂ P with |K| = O(k3

outkin) such that for any 0 ≤ k′
in ≤ kin

and 0 ≤ k′
out ≤ kout, the (k′

in, k
′
out)-RectAnnulus problem for P is equivalent

to that for K. Such a set K can be computed in O(nk2
out log kout +k3

outkin) time.

4.4 Putting It All Together

In order to solve the k-RectAnnulus problem, we first compute the kernel K
of P by Lemma 12 for kin = kout = k. Second, build the data structure D of
Lemma 8. As observed in Theorem 3 and its proof, the problem can be solved
by O(k4) offset rectangle queries. Therefore, we conclude the following.

Theorem 4. Given n points and an integer k ≥ 1, the k-RectAnnulus prob-
lem can be solved in O(nk2 log k + k4 log3 k) time.

For the (kin, kout)-RectAnnulus problem, if we apply the same app-
roach as above, then the kernel K has size O(k3

outkin) and thus it takes
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O(k3
outkin log2(kout + kin)) time for building the data structure for offset rectan-

gle queries. However, this would be too much since the total query time takes
only O(k3

out log3(kout + kin)) time as it suffices to perform O(k3
out) queries. In

this case, indeed, while computing the kernel K of Lemma 12, we obtain enough
information to directly solve the problem without the structure of Lemma 8,
concluding the following.

Theorem 5. Given n points and two integers kin, kout ≥ 0, the (kin, kout)-
RectAnnulus problem can be solved in O(nk2

out log kout + k3
outkin) time.
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13. Matoušek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14, 365–384 (1995)

14. Mukherjee, J., Mahapatra, P., Karmakar, A., Das, S.: Minimum-width rectangular
annulus. Theor. Comput. Sci. 508, 74–80 (2013)

15. Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle.
Inform. Process. Lett. 65, 95–99 (1998)



Approximating the Maximum Rectilinear
Crossing Number

Samuel Bald1(B), Matthew P. Johnson1,2, and Ou Liu1

1 The Graduate Center of the City University of New York, New York, USA
sbald@gradcenter.cuny.edu

2 Lehman College, City University of New York, New York, USA

Abstract. Drawing a graph in a way that minimizes the number
of edge-crossings is a well-studied problem. Recently there has been
work characterizing both the minimum and maximum number of edge-
crossings possible in various graph classes, assuming rectilinear (straight-
line) edges. In this paper, we investigate the algorithmic problem of maxi-
mizing the number of edge-crossings over all rectilinear drawings a graph.
We show that this problem is NP-hard and lies in ∃R. We give a non-
trivial derandomization of the natural randomized 1/3-approximation
algorithm, which generalizes to a weighted setting as well as to an order-
ing constraint satisfaction problem. We evaluate these algorithms and
other heuristics in simulation.

1 Introduction

The problem of drawing a graph in the plane with a minimum number of edge-
crossings—called the graph’s crossing number—is a well-studied, NP-hard [11]
problem dating from the first half of the twentieth century [7,22]. The problem is
quite difficult: the best approximation result known is an O(n9/10 ·poly(d log n))-
approximation (d is the maximum degree) [6], and the rectilinear version—where
edges must be drawn straight-line—is ∃R-complete [20], and hence NP-hard.

Recently there has been interest in characterizing both the minimum and
maximum number of edge-crossings possible in different graph classes for various
edge-crossing variants [15,16,23], including the maximum rectilinear crossing
number (MRCN) of a graph G, denoted by CR(G) [2]. (We denote the minimum
rectilinear crossing number (mRCN) of a graph G by cr(G)).

In this paper we investigate the algorithmic problem corresponding to
MRCN, where, given a graph G, we seek a rectilinear drawing maximizing the
number of edge-crossings. We prove that this problem is NP-hard and lies in ∃R,
but quite different in character from mRCN. We present an efficient derandom-
ization of the natural randomized 1/3-approximation algorithm [23], which we
extend to an edge-weighted generalization, as well as to an ordering constraint
satisfaction problem (OCSP) [12], which subsumes, e.g., problem settings where
we have two graphs G1, G2, and we only care about “inter-graph” crossings, i.e.,
crossings of edge pairs (e1, e2) ∈ E(G1) × E(G2). We also show that the same

c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 455–467, 2016.
DOI: 10.1007/978-3-319-42634-1 37
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approximation guarantee holds for a “continuous” variant of the randomized
algorithm. Our experimental results suggest that these algorithms, as well as
other heuristics, perform well in practice.

The maximum crossing number taken only over convex rectilinear drawings,
i.e., rectilinear drawings where the vertices form a convex set, is denoted by
CR

◦
(G), and we refer to the corresponding optimization problem as cMRCN.

Since all convex drawings preserve relative vertex-ordering, and hence, crossings,
we can restrict our attention here to simple convex drawings called circle draw-
ings, where the vertices of G are placed along the circumference of a unit circle.
Many specific graphs and graph families are known to satisfy CR(G) = CR

◦
(G),

and it has been conjectured that CR(G) = CR
◦
(G) holds for all simple graphs

[2]. Under this convex conjecture (CC), MRCN is transformed from a geomet-
ric problem into a purely combinatorial one, specifically, into an OCSP, albeit
one with added structure. Our algorithms produce drawings that are convex; we
emphasize, however, that their approximation guarantees hold regardless of the
status of CC, i.e., the approximation is with respect to the unrestricted opti-
mum. Our hardness results also hold regardless of CC, but in fact also extend
to cMRCN.

2 Related Work

Minimizing the number of crossings is perhaps the best known in a large class
of problems varying both in methods of counting edge-crossings and in types of
drawings permitted [17,18,21]. The problem is NP-hard even when restricted to
cubic graphs [14] and near-planar graphs [4]; the best known approximation is a
randomized O(n9/10·poly(d log n))-approximation (d is the maximum degree) [6].
mRCN is ∃R-complete [20], and hence NP-hard. Better approximation results
are known for MRCN when G is k-colorable, for k = 3, 4, and when G is a
triangulation [15]. The value of CR(G) is known for many specific graphs G,
including the Peterson graph (49 [9]), the complete graph Kn (

(
n
4

)
, achieved by

a circle drawing [19]), the cycle graph Cn (CR(Cn) = (n(n − 4))/2 + 1 when
n = 2k, and CR(Cn) =

(
n
2

)−n when n = 2k +1, achieved by drawing the graph
as a star polygon {2k+1, k} [10,13,24]), and the path graph Pn (

(
n−1
2

)− (n−2),
achieved by a drawing similar to a star polygon).

The 1/3-approximation guarantee (in expectation) for the natural random-
ized algorithm for MCRN was given in [23], where a second optimization objec-
tive for graph drawings was also considered, motivated by the “Planarity Game”:
given a drawing of a planar graph with many edge-crossings, the player tries to
rearrange the vertices in order to eliminate all edge-crossings. It was shown that
the problem of finding a drawing that is maximally difficult for the game player—
in the sense of requiring the largest number of single-vertex moves to remove all
edge-crossings, called the “shift complexity”—is NP-hard.
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3 Preliminaries

3.1 Problem Statements and Bounds

Let G = (V,E) be an unweighted simple graph with n = |V |. Let D(G) denote
the set of all possible rectilinear drawings of G. Let D ∈ D(G). Then V (D)
and E(D) denote the sets of vertices and edges of G respectively, taken in their
relative positions in D. We let cross(D) denote the number of crossings in D.
The goal in the MRCN problem is to find CR(G) := maxD∈D(G) cross(D) as
well as the corresponding D which maximizes this quantity.

We also define the weighted version of MRCN, which we denote wMRCN.
Let w : E → R be an assignment of weights to each edge in G. For a drawing
D ∈ D(G) and e, f ∈ E(D), let e � f denote that e and f cross. We define the
crossing-cost function c : E(D) × E(D) → R as

c(e, f) :=
{

w(e) · w(f) if e � f
0 otherwise

For D ∈ D(G), define cost(D) :=
∑

e,f∈E(D) c(e, f). Then we want to find
CRw(G) := maxD∈D(G) cost(D) as well as the maximizing D. Note that wMRCN
reduces to MRCN by setting all edge-weights uniformly to 1.

We now define some important upper bounds on CR(G) and CRw(G). Let
B(G) = {{e, f} ⊆ E | e ∩ f = ∅} be the set of disjoint edge pairs of G, so that
|B(G)| upper-bounds CR(G). Let B′(G) =

∑
u,v,w,x∈V P ({u, v, w, x}) where

P ({u, v, w, x}) =
{

1 some partition of {u, v, w, x} is in B(G)
0 otherwise

so that B′(G) counts at most one disjoint edge pair for every distinct set of 4
vertices. We also define Bw(G) =

∑
e,f∈B(G) w(e) ·w(f) for weight-assignment w

to E, so that Bw(G) ≥ CRw(G). We write B,B′, Bw when there is no ambiguity.

3.2 Convex Position

We will examine the relationship of MRCN to its convex counterpart, cMRCN.
Here we wish to compute CR

◦
(G) := maxD∈D◦(G) cross(D), where D◦(G)

denotes the set of all possible convex rectilinear drawings of G.
The validity of CC would imply a Θ(n!) algorithm for MRCN, namely, the

brute-force procedure that computes the number of crossings for the drawings
induced by all 1

2 (n − 1)! nonisomorphic circular permutations (i.e., those that
are inequivalent under flipping the circle). Under the assumption that CC holds
(or alternatively, in the cMRCN problem variant), MRCN is transformed from
a geometric problem to a purely combinatorial one, specifically, to a problem
within the class of ordering constraint satisfaction problems (OCSPs) [12].
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A k-arity Π-OCSP P is specified by a subset Π ⊆ Sk, where Sk is the set
of all permutations on {1, ..., k}. Such a problem P is specified by a pair (V,C),
where V is a set of variables and C is a set of constraints in the form of ordered
k-tuples of V . The objective is to find a permutation σ of V maximizing the
number of satisfied constraints, where constraint c ∈ C is satisfied with respect
to σ if the ordering σ|c of c induced by σ is in Π. (Prominent examples of OCSPs
include the Maximum Acyclic Subgraph problem (k = 2), and the Betweenness
problem (k = 3).) To construct the 4-arity OCSP for a cMRCN instance G,
let V = V (G), and C = {(u, v, w, x) | {(u, v), (w, x)} ∈ B}. Then we may
define Π = {1324, 2314, 1423, 2413, 3142, 4132, 3241, 4231}, i.e., Π is the set of
all crossing-potential permutations on the constraints in a convex drawing of G.
We note that the constructed ordering problem is a special case of an OCSP
since there is additional structure on the set of 4-tuples to which the constraints
apply, due to the underlying graph (i.e., we only take disjoint edge pairs). We
refer to the general 4-arity Π-OCSP (i.e., no structure on C) as CROCS.

4 Complexity

The decision problem for MRCN asks whether there exists a rectilinear drawing
D ∈ D(G) with cross(D) ≥ k for some nonnegative integer k. It is clear that in
the setting restricted to convex drawings, i.e., for CR

◦
(G), the problem lies in

NP, since here we can restrict our attention to circle drawings.
In the general setting where non-convex drawings are permitted, it is not

known whether the problem is in NP (expressing the vertex-coordinates of an
optimal drawing may require arbitrary precision)—also true of mRCN. This
issue would be dissolved if CC were proven. In any event, MRCN is similar to
mRCN in the sense that:

Corollary 1 [20]. MRCN ∈ ∃R.
The proof (omitted) is a straightforward modification of the proof for mRCN

[20]. There are two interesting consequences of Corollary 1: First, since ∃R is
solvable in exponential time and ∃R ⊆ PSPACE [5], we have that:

Corollary 2. MRCN is solvable in exponential-time with polynomial space.

Second, since MRCN is expressible in ∃R using only strict inequalities (so
too for mRCN), an optimal drawing can be constructed where vertices lie at
rational—and hence, integral—coordinates. Of course, exponential precision may
still be required. We note that mRCN is in fact ∃R-hard [3], but we do not know
how to adapt the proof for MRCN.

We now show that MRCN is NP-hard (implying the NP-hardness of
wMRCN). All drawings constructed are convex, implying that cMRCN is also
NP-hard.
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Fig. 1. A convex drawing of graph G′ achieving tk +
(
t
2

)
crossings. The t disjoint

separators (blue) all cross a cut of size k in the underlying graph G (black).

Theorem 1. MRCN is NP-hard, and cMRCN is NP-complete.

Proof. We reduce from the MAX-CUT problem. We are given a MAX-CUT
instance, consisting of a graph G together with a positive integer k. We’d like to
determine if G admits a cut of size at least k. We construct an MRCN instance
as follows: we consider the graph G′ = G ∪ t · P2 where t · P2 denotes t disjoint
copies of P2 (i.e., t disjoint edges) for some t >

(
n
4

) ≥ CR(G) (but t = poly(n)).
We reduce the problem of determining if G admits a cut of size at least k to
determining whether CR(G′) ≥ tk +

(
t
2

)
.

Suppose that G admits a cut (C, V − C) of size at least k. We describe
how to draw G′ to achieve at least tk +

(
t
2

)
crossings. Fix any unit square in

the plane. Arbitrarily arrange the vertices in C along the left edge of the unit
square at unique positions, and the vertices of V −C along the right edge in the
same manner. Now arrange the t auxiliary edges (or separators) so that for each
separator, one vertex lies on the top edge of the unit square, and the other on
the bottom edge, and all of the separators cross one another (see Fig. 1). Note
that the constructed drawing is convex. Since the cut is of size at least k, every
one of the t separators will cross at least k edges of G. Moreover, the t separators
generate

(
t
2

)
crossings amongst themselves, so we have at least tk+

(
t
2

)
crossings.

Now suppose we have a drawing D ∈ D(G′) such that cross(D) ≥ tk +
(

t
2

)
.

One of the t separators must have at least k crossings with the edges of G.
For suppose not. Then there would be at most tk − t crossings between the t
separators and the edges of G. Since the t separators can generate at most

(
t
2

)

crossings amongst themselves, this would imply that there must be at least t
crossings involving only edges of G. But this is impossible since CR(G) < t.
Thus there exists at least one separator e that crosses at least k edges of G.
We move the other t − 1 separators so that they lie nearly-vertical with e (as in
Fig. 1) if this is not the case already; note that we still have at least as many
crossings as we had before, since each separator will now have at least k crossings
with the edges of G. Note we also have a convex drawing of G′. Consider the cut
(C, V − C) induced by extending any separator s infinitely in both directions,
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with C the set of vertices of G in one of the resulting halfplanes. Such a cut is
of size at least k since s has at least k crossings with the edges in the cut.

Finally, cMRCN is in NP, since, for drawing D ∈ D◦(G), we can test whether
cross(D) ≥ k by examining the corresponding circular permutation. ��

Using a standard argument (omitted), we get the following strengthening:

Theorem 2. wMRCN is hard to approximate with factor better than ≈0.878
assuming the Unique Games Conjecture, and better than 16/17 unless P = NP .

Guruswami et al. [12] showed that assuming the Unique Games Conjecture
(UGC), every constant-arity OCSP P is approximation-resistant, i.e., if ρ is the
expected fraction of satisfied constraints in a random ordering, then it is UG-
hard to approximate P with a factor ρ′ > ρ. This result extends to CROCS. In
contrast, cMRCN corresponds to a special case of an OCSP, so that the result
of [12] does not imply approximation resistance in this case. We do not know
how to adapt the proof from [12] for cMRCN.

5 Randomized and Derandomized Algorithms

Due to the NP-hardness of MRCN, we turn to approximation. The natural ran-
domized algorithm of choosing a random circular permutation (which we refer
to simply as RAND) appeared in [23], where it was shown to provide a 1/3-
approximation in expectation. The proof comes from observing that for any pair
of disjoint edges, the edges will cross under 8 of 24 possible permutations of
the four vertices, and from linearity of expectation. Implicit in this argument
is the same 1/3-approximation in expectation for edge crossings weighted based
on edge weights, or indeed, edge crossings with arbitrary weights.

Corollary 3 [23]. RAND is a 1/3-approximation for wMRCN in expectation.

We remark that the guarantee of 1/3 is tight, as there exists an infinite family
of graphs on which the approximation factor 1/3 is achieved. (Consider, e.g.,
graphs consisting of n vertices, for any n ≥ 4, and only two disjoint edges.) We
also note that even though the solution constructed is convex, the approximation
guarantee is with respect to the global (not necessarily convex) optimum.

In [23] it was stated without details that RAND can be derandomized via
the method of conditional expectations (see, e.g., [1]). Explicitly constructing the
derandomized algorithm, however, is nontrivial. We now show how to accomplish
the derandomization in the unweighted setting (which can be straightforwardly
adapted to the weighted setting).

Theorem 3. There exists a deterministic 1/3-approximation for MRCN.

Proof. Let G = (V,E) be the graph under consideration, with n = |V |. We
derandomize by the method of conditional expectations. We sequentially place
the vertices into specified “slots” on the unit circle centered at the origin, in
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each round choosing a location maximizing the conditional expectation of the
solution value. Let θi = 2π(i−1)

n for i ∈ {1, ..., n}, where the angles are formed
with respect to the standard x-axis. The i-th vertex vi to be placed will have its
chosen location on the unit circle specified by an angle θj not occupied by any
other vertices. For convenience, we say that vi is placed in slot Ti = j, where we
refer to vi’s chosen angle by its index. The coordinates of vi’s slot are recovered
as (cos(θTi

), sin(θTi
)). For a vertex u, let s(u) denote the index of u’s slot when

applicable, so that if u is in slot θj , then s(u) = j.
Now, suppose we have placed i−1 vertices in slots T1, ..., Ti−1. Let Ri be the

set of unoccupied slots in round i. Then we want to choose a slot Ti ∈ Ri for the
vertex vi that maximizes the expected value of the complete solution value, where
the expectation is taken over the future locations Ti+1, . . . , Tn of the vertices yet
to be placed. Formally, let W be a random variable for the number of crossings
generated by RAND, and let W (r1, . . . , ri) = E[W | T1 = r1, . . . , Ti = ri].
Notice that we have W (∅) = E[W ] ≥ 1

3CR(G). In round i, we wish to choose
a slot r∗ ∈ Ri with r∗ = arg maxr∈Ri

W (r1, . . . , ri−1, r). Let V − be the set of
already-placed vertices, and V + as those yet to be placed. Partition E into five
classes Eab: E−−, E−i, E+i, E++, and E−+, where the subscripts a, b ∈ {−,+, i}
refer to three types of vertices in a corresponding edge: already-placed vertices
(−), vertices not yet considered (+), and vertex vi currently being placed (i).

Let W−i
−− be the number (or more generally the weight1) of crossings between

edges in E−− and E−i, and similarly for all other edge pairing classes, so that

W =
∑

ab,cd∈{−−,−i,+i,++,−+}
W cd

ab

Now, the placement of vi will only potentially affect the crossings of a disjoint
edge pair {e, f} ∈ B if two conditions are met: (1) one of the two edges e, f is in
E−− or E−i, and (2) one of the two edges e, f is in one of E−i, E+i, E−+ or E++.
This is so because if no edges are present, then placing vi places no restrictions
on whether e, f will cross or not. On the other hand if both edges are present,
then whether they cross or not is already determined. This leaves eight classes
W cd

ab to consider. However, notice that clearly W−i
−i = W+i

−i = 0, since any of the
corresponding edges are both incident on vertex vi. Thus we are left to consider
the crossings of six classes when placing vi: W−i

−−, W+i
−−, W−i

++, W−i
−+, W++

−− , and
W−+

−− . We analyze each of these in turn, fixing a slot r ∈ Ri and computing the
expected number of crossings for each such class if vi is placed at slot r. That is,
we show how to compute wcd

ab(r) = E[W cd
ab | T1 = r1, . . . , Ti = r], ranging over

the relevant values of (ab, cd). A deterministic selection is effected by placing
vi in a slot r∗ maximizing the total expected number of crossings over all six
classes. Note computing each quantity W cd

ab for a given slot can be done in time

1 For ease of exposition, we refer simply to the number of crossings for the remainder of
the proof, although exactly the same analysis applies in the weighted setting, whether
the weights of crossings are based on underlying edge weights or are permitted to
be completely arbitrary, as in an OCSP.
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θs(a)
θs(b)

θr

e

p+i
−−(e, r) = 0

θs(a)
θr

θs(b)

e

p+i
−−(e, r) = 1

θs(a)θr

θs(b)

e

p+i
−−(e, r) = E)((s(a),s(b))

n−i

θs(a)

θs(b) θr

e

p+i
−−(e, r) = E()(s(a),s(b))

n−i

Fig. 2. The four possible scenarios in the case of W+i
−−, and the corresponding values

of p+i
−−(e, r)

O(|Eab|·|Ecd|), by checking every pair of edges in Eab×Ecd. Hence the algorithm
(see Algorithm 1) is polynomial-time.

W−i
−−: For a fixed slot r ∈ Ri, the value w−i

−−(r) is deterministic since all relevant
edges are present when vi is placed; thus, we simply compute the number of
crossings present for this class for each unoccupied slot r ∈ Ri.

W+i
−−: For each unoccupied slot r ∈ Ri we compute the expected number of

crossings for this class. First, for each edge e = (a, b) ∈ E−− (with s(a) < s(b)),
we compute the probability p+i

−−(e, r) that an edge in E+i crosses e if Ti = r. The
degenerate case where a and b are in adjacent slots clearly satisfies p+i

−−(e, r) = 0.
Another triviality occurs when a and b are separated by one slot, and r is the
intermediate slot, in which case p+i

−−(e, r) = 1. In general we have

p+i
−−(e, r) =

⎧
⎨

⎩

E)((s(a),s(b))
n−i s(a) < r < s(b)

E()(s(a),s(b))
n−i otherwise

where, counting the tentative placement of vi at slot r, E)((s(a), s(b)) denotes
the number of empty slots with indices less than s(a) or greater than s(b), and
E()(s(a), s(b)) denotes the number of empty slots between s(a) and s(b). In total
we have n − i empty slots, hence the denominators. (See Fig. 2 for illustrations
of the possible cases for p+i

−−(e, r).) Thus for a given slot r, we can compute
the expected number of crossings in this class involving a given edge in E−− as
|E+i| · p+i

−−(e, r), and we compute the expected number of all crossings in this
class for the given slot r as

w+i
−−(r) = |E+i| ·

∑

e∈E−−

p+i
−−(e, r) (1)

W−i
++: Fix r ∈ Ri. For each edge e = (i, j) ∈ E−i (where, without loss of

generality, assume r < s(j)), the expected number of edges of E++ it crosses
is |E++| · p−i

++(e, r) where p−i
++(e, r) is the probability that an edge in E++

crosses e if Ti = r. As in the case of W+i
−−, we have the degenerate case where
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p−i
++(e, r) = 0; however, the trivial case p−i

++(e, r) = 1 does not occur since no
vertices from the edges in E++ are fixed. In general we have, by symmetry,

p−i
++(e, r) = 2

(
E()(r, s(j))

n − i
· E)((r, s(j))

n − i

)

Taking the expectation over all edges in E−i, we get

w−i
++(r) = |E++| ·

∑

e∈E−i

p−i
++(e, r) (2)

as the expected number of crossings over this class for slot r.
W−i

−+: Fix r ∈ Ri. For each edge e = (i, j) ∈ E−i (and again assume r < s(j)),
the expected number of edges of E−+ that e crosses is

∑
f∈E−+

p−i
−+(e, f, r) where

p−i
−+(e, f, r) is the probability that f ∈ E−+ crosses e if Ti = r. Note that the

summation cannot be reduced, since in general, p−i
−+(e, f, r) may differ for each

f ∈ E−+. Now, let f = (a, b) ∈ E−+ where a ∈ V −. We have in general that

p−i
−+(e, f, r) =

⎧
⎨

⎩

E)((r,s(j))
n−i r < s(a) < s(j)

E()(r,s(j))
n−i otherwise

and again we have the degenerate cases where p−i
−+(e, f, r) = 0, 1. Now taking

the expectation over all edges in E−i we get

w−i
−+(r) =

∑

e∈E−i

∑

f∈E−+

p−i
−+(e, f, r) (3)

as the expected number of crossings over this class for slot r. The cases of
W++

−− and W−+
−− (omitted) are similar to those of W−i

++ and W−i
−+, respectively.

Finally, for each empty slot r ∈ Ri, we sum the expected number of crossings
over all classes, greedily placing vi in the best slot. We call the corresponding
deterministic algorithm DERAND (shown in Algorithm1). ��

Algorithm 1. DERAND
1: R ← {1, ..., n}
2: for i = 1 to n
3: for-each r in R
4: compute w−i

−−(r) by counting the number of relevant crossings present
5: compute w+i

−−(r) according to Eq. 1
6: compute w−i

++(r) according to Eq. 2
7: compute w−i

−+(r) (Equation omitted)
8: compute w++

−−(r) according to Eq. 3
9: compute w−+

−−(r) (Equation omitted)
10: r∗ ← argmaxr∈R w−i

−−(r) + w+i
−−(r) + w−i

++(r) + w−i
−+(r) + w++

−−(r) + w−+
−−(r)

11: Ti ← r∗

12: R ← R − {r∗}
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A different approach to a randomized algorithm would be to randomly select
angles about the unit circle when placing vertices, as opposed to selecting discrete
slots. The behavior of this continuous randomized algorithm is not identical to
RAND, but it nonetheless provides the same approximation guarantee.

For, consider two non-adjacent edges (a, b) and (c, d), where without loss
of generality the algorithm places c and d prior to a and b, with θc < θd. Let
θ = θd − θc. An edge-crossing occurs precisely when θc < θa < θd and θb > θd or
θb < θc, or vice versa. Thus for fixed θ, the probability that (a, b) crosses (c, d)
is, by symmetry, 2

(
θ
2π · 2π−θ

2π

)
. Let p be the probability that (a, b) crosses (c, d).

Integrating over all angles θ and normalizing the probability to 1, we get

p =
1
2π

∫ 2π

0

2
(

θ

2π
· 2π − θ

2π

)

dθ =
1
3

The 1/3-approximation guarantee again follows by linearity of expectation.
This algorithm can also be derandomized by the method of conditional expec-
tations, but the analysis is much more cumbersome, and requires calculus.

6 Experimental Results

We now present the results of experiments measuring the performance of sev-
eral natural heuristics for MRCN. In order to measure average performance, we
generated Erdős-Rényi random graphs G(n, p) [8]. We performed two types of
experiments: in the first type, we fixed p (at, e.g., p = 1/2) and varied n in the
range 4 ≤ n ≤ 45 (n-type); in the second type, we fixed n = 30 and varied
p from 0 to 1 in increments of 0.05 (p-type). In addition to testing RAND and
DERAND, the other two heuristics tested were:

– greedy : vertices are placed sequentially along the unit circle; in each round,
a location maximizing the number of crossings in the subgraph constructed
thus far is selected

– local search: first, the vertices are placed about the unit circle in arbitrary
locations; then, we repeatedly relocate a vertex whose relocation increases the
number of crossings; the process stops when no move offers a gain

We examined performance in three ways: average solution value, average ratio
of solution value to |B|, and average ratio of solution value to B′. For brevity,
we present only the results using the latter two performance measures. We did
not compare to CR(G) and CR

◦
(G) for tractability reasons.

As an illustration of how values were plotted, we describe one of the n-type
experiments: For each input size n, 100 graphs were generated from the G(n, p)
distribution. For each graph Gi, ri = hi/|B| was computed, where hi is the
result of running heuristic H on Gi. Then, the average of the ratios 1

100

∑
ri was

plotted as the performance of heuristic H for input size n.
Note that all experiments indicate local search to be the best heuristic,

although, the plots indicate similar asymptotic performance for greedy and
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Fig. 3. p-type experiments on G(30, p) graphs. Average ratio of solution value to |B|
(left); to B′ (right).

DERAND. In contrast, RAND exhibited consistently worse performance due
to it being a 1/3-approximation in expectation.

In the p-type experiments (Fig. 3), we find that unique trends are displayed
when taking ratios relative to |B| and B′. In the case of |B| (Fig. 3, left), we
see that the average ratios of all heuristics excluding RAND vary smoothly
from 1 to 1/3. Intuitively, the heuristics are very likely to be close to OPT
for sparse graphs, and OPT will be near |B|; in contrast, any circle draw-
ing of the complete graph Kn is optimal, and we have CR(Kn)/B(Kn) =
(
n
4

)
/
(((n2)

2

) − (n − 2)
(
n
2

))
= 1/3. In the case of B′ (Fig. 3, right), we see that

the average ratios of all heuristics excluding RAND form smooth “u-shaped”
curves, reaching 1 at both extrema. Intuitively, OPT is near B′ for very sparse
and very dense graphs (e.g., CR(Kn) = B′(Kn)), and the heuristics will be close
to OPT in these cases. Whereas for intermediate p-values, there is little corre-
lation between B′ and OPT . RAND exhibits a more dramatic “u-curve” in the
B′-plot; the average ratios initially drop, and then approach 1 as OPT and B′

grow closer (as p → 1), albeit always underperforming the other heuristics.
In the n-type experiments (figures omitted), we found similar trends for

|B|, B′, where for B′, the average ratios were slightly higher since B′ ≤ |B|.
The experimental results showed a decrease in heuristic performance as n → ∞,
starting (n = 4) at an average ratio ≈1, and apparently leveling off at ≈0.5
(n = 45). It is unclear if these trends would also hold true with respect to OPT .

7 Open Problems

As mentioned in Sect. 4, assuming UGC, every constant-arity OCSP P is
approximation-resistant [12]. Since cMRCN corresponds to a special case of
an OCSP, approximation-resistance is not immediate. Therefore an interest-
ing question is to determine whether the OCSP corresponding to cMRCN is
approximation-resistant assuming UGC. An answer in the affirmative would
imply the optimality of the 1/3-approximation for cMRCN.
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A resolution to CC would have interesting consequences. Its validity would
allow us to circumvent the geometry of MRCN and attack the problem from the
standpoint of OCSPs. On the other hand, if CC holds as well as approximation-
resistance, then no approximation factor better than 1/3 is attainable for MRCN.
That said, assuming CC’s validity, the experimental results above seem to sug-
gest that the algorithms may offer approximation factors better than 1/3. Rel-
ative to CR

◦
(G), no instance has been found for which derandomized provides

worse than a 3/8-approximation, and for which greedy provides worse than a 1/2-
approximation. Proving that either of these approximation factors hold would
show that cMRCN is not approximation-resistant (and by extension, MRCN,
assuming CC). Thus two particularly interesting open problems are closing the
gap between 1/3 and 3/8 for derandomized, and proving an approximation
guarantee—conceivably 1/2—for greedy.
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Abstract. The problem of computing the rSPR distance of two given
trees has many applications but is unfortunately NP-hard. The previ-
ously best approximation algorithm for rSPR distance achieves a ratio
of 2.5 and it was open whether a better approximation algorithm for
rSPR distance exists. In this paper, we answer this question in the affir-
mative by presenting an approximation algorithm for rSPR distance that
achieves a ratio of 7

3
. Our algorithm is based on the new notion of key

and several new structural lemmas.

1 Introduction

When studying the evolutionary history of a set X of existing species, one can
obtain a phylogenetic tree T1 with leaf set X with high confidence by looking at
a segment of sequences or a set of genes [10]. When looking at another segment
of sequences, a different phylogenetic tree T2 with leaf set X can be obtained
with high confidence, too. In this case, we want to measure the dissimilarity of T1

and T2. The rooted subtree prune and regraft (rSPR) distance between T1 and
T2 has been used for this purpose [9]. It can be defined as the minimum number
of edges that should be deleted from each of T1 and T2 in order to transform
them into essentially identical rooted forests F1 and F2. Roughly speaking, F1

and F2 are essentially identical if they become identical forests (called agreement
forests of T1 and T2) after repeatedly contracting an edge (p, c) in each of them
such that c is the unique child of p (until no such edge exists).

The rSPR distance is an important metric that often helps us discover retic-
ulation events. In particular, it provides a lower bound on the number of retic-
ulation events [1,2], and has been regularly used to model reticulate evolution
[11,12]. Unfortunately, it is NP-hard to compute the rSPR distance of two given
phylogenetic trees [5,9]. This has motivated researchers to design approximation
algorithms for the problem [3,4,9,13]. Hein et al. [9] were the first to come up
with an approximation algorithm. They also introduced the important notion
of maximum agreement forest (MAF) of two phylogenetic trees. Their algo-
rithm was correctly analyzed by Bonet et al. [3]. Rodrigues et al. [13] modified
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 468–479, 2016.
DOI: 10.1007/978-3-319-42634-1 38
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Hein et al.’s algorithm so that it achieves an approximation ratio of 3 and runs
in quadratic time. Whidden and Zeh [16] came up with a very simple approxi-
mation algorithm that runs in linear time and achieves an approximation ratio
of 3. Although the ratio 3 is achieved by a very simple algorithm in [16], no
polynomial-time approximation algorithm had been designed to achieve a bet-
ter ratio than 3 before Shi et al. [8] presented a polynomial-time approximation
algorithm that achieves a ratio of 2.5.

In certain real applications, the rSPR distance between two given phyloge-
netic trees is small enough to be computed exactly within reasonable amount of
time. This has motivated researchers to take the rSPR distance as a parameter
and design fixed-parameter algorithms for computing the rSPR distance of two
given phylogenetic trees [5,7,14–16]. These algorithms are basically based on the
branch-and-bound approach and use the output of an approximation algorithm
(for rSPR distance) to decide if a branch of the search tree should be cut. Thus,
better approximation algorithms for rSPR distance also lead to faster exact algo-
rithms for rSPR distance. It is worth noting that approximation algorithms for
rSPR distance can also be used to speed up the computation of hybridization
number and the construction of minimum hybridization networks [6].

Let T1 and T2 be two phylogenetic trees on the same set X of leaves. In a
nutshell, the simple ratio-3 approximation algorithm in [16] proceeds in stages
until T1 and T2 become identical forests. Roughly speaking, in each stage, the
algorithm chooses two arbitrary sibling leaves in T1 and uses them to find and
remove at most three edges from T2 such that the removal decreases the rSPR
distance of T1 and T2 by at least 1. Since at most three edges are removed from
T2 in each stage and at least one of the removed edges is also removed from
T2 by an optimal solution, the algorithm achieves an approximation ratio of 3.
Shi et al. [8] improve Whidden et al.’s algorithm by refining each stage. In each
stage, Shi et al.’s algorithm carefully chooses a dangling subtree S of T1 with
at most 4 leaves and uses S to carefully choose and remove a set B of edges
from T2. On the positive side, B has a crucial property that the removal of the
edges of B decreases the rSPR distance of T1 and T2 by at least 2

5 |B|. Because
of this property, their algorithm achieves a ratio of 2.5. On the negative side, S
and B have a drawback that after removing the edges of B from T2, each leaf
of S becomes isolated in T2. Moreover, their search for B is by complicated case
analysis and the complicatedness makes it hard to refine their algorithm so that
it achieves a better ratio. Indeed, Shi et al. [8] ask whether a ratio better than
2.5 can be achieved by a polynomial-time approximation algorithm, and point
out that new ideas are necessary.

In this paper, we answer Shi et al.’s question in the affirmative by presenting
a quadratic-time approximation algorithm for rSPR distance that achieves a
ratio of 7

3 . Our algorithm also proceeds in stages until the input trees T1 and
T2 become identical forests. Roughly speaking, in each stage, our algorithm
carefully chooses a dangling subforest (rather than a dangling subtree) S of T1

with at most 6 leaves and uses S to carefully choose and remove a set B of edges
from T2. Similar to but better than Shi et al.’s algorithm [8], B has a crucial
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property that the removal of the edges of B decreases the rSPR distance of T1

and T2 by at least 3
7 |B|. Because of this property, our algorithm achieves a ratio

of 7
3 . The search of S and B in our algorithm is based on the new notion of

key. Using a key (as a tool), it is possible for our algorithm to find S and B
such that even after removing the edges of B from T2, some leaves of S remain
connected in T2. In other words, keys enable us to overcome the drawback in
Shi et al.’s algorithm [8]. At first glance, since the subforest S in our algorithm
can often be larger than the subtree S in Shi et al.’s algorithm, the search for
B in our algorithm can become even more complicated. Fortunately, we can
prove four structural lemmas which enable us to construct B recursively and
hence significantly simplify the case analysis. We believe that the lemmas can
be used to obtain better approximation algorithms for rSPR distance. Indeed,
we conjecture that rSPR distance can be approximated within a ratio of 2 + ε
for any ε > 0.

The remainder of this paper is organized as follows. In Sect. 2, we give the
basic definitions that will be used throughout the paper. In Sects. 3 and 4, we
define the structures for which we will search the input phylogenetic trees (or
forests). In Sect. 5, we describe the approximation algorithm and analyze its per-
formance. Section 6 concludes the paper. Due to space limit, the four structural
lemmas and their proofs are omitted and so are the proofs of Lemmas 1 and 2
and Theorem 1. We also omit the case analysis for searching a desired set B.
The full version of the paper is available upon request to the first author.

2 Preliminaries

Throughout this paper, a rooted forest always means a directed acyclic graph in
which every node has in-degree at most 1 and out-degree at most 2.

Let F be a rooted forest. F is binary if the out-degree of every node in F
is either 0 or 2. The roots (respectively, leaves) of F are those nodes whose in-
degrees (respectively, out-degrees) are 0. We use L(F ) to denote the set of leaves
in F . A v ∈ L(F ) is a root leaf if it is also a root of F . For a non-root v of
F , eF (v) denotes the edge entering v in F . Each edge e leaving a node p and
entering another node c in F is denoted by (p, c); moreover, p is the tail of e
and the parent of c in F , while c is the head of e and a child of p in F . A node
v of F is bifurcate (respectively, unifurcate) if it has two children (respectively,
only one child) in F . If a root v of F is unifurcate, then contracting v in F is
the operation that modifies F by deleting v. If a non-root v of F is unifurcate,
then contracting v in F is the operation that modifies F by first adding an edge
from the parent of v to the child of v and then deleting v. Binarizing F is the
operation that modifies F by repeatedly contracting a unifurcate node until no
node is unifurcate. Note that binarizing F yields a rooted binary forest. For
example, binarizing the tree in Fig. 1(4) yields the tree in Fig. 1(5).

For convenience, we view each node u of F as an ancestor and descendant
of itself. A proper ancestor (respectively, descendant) of u in F is an ancestor
(respectively, descendant) of u different from u. For a node v of F , the subtree
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Fig. 1. (1) A tree T , (2) another tree F , (3) F |+{x1,...,x4}, (4) F ↑{x1,...,x4}, and

(5) F�{x1,...,x4}.

Fv of F rooted at v is the tree obtained from F by deleting all nodes that are not
descendants of v in F . For each node v of F , Fv is called a dangling subtree of
F . In particular, if v is a root of F , then Fv is a component of F . We use |F | to
denote the number of components in F . A node u is lower (respectively, higher)
than another node v in F if u is a proper descendant (respectively, ancestor) of
v in F . For a set or sequence S of leaves in the same component of F , �F (S)
denotes the lowest common ancestor (LCA) of the leaves in S.

Let u and v be two nodes in the same component of F . If u and v have the
same parent in F , then they are siblings in F . We use u ∼F v to denote the
(undirected) path between u and v in F . The length of u ∼F v is the number
of edges in u ∼F v. Each node of u ∼F v other than u and v is an internal
node of u ∼F v. If u is a root and v is a leaf in F , then u ∼F v is a root-leaf
path. The height of F is the maximum length of a root-leaf path in F . If neither
�F (u, v) = u nor �F (u, v) = v, then u and v are incomparable in F ; otherwise,
they are comparable. A dangling edge between u and v in F is an edge e in F
such that the tail of e is an internal node of u ∼F v but the head of e is not
a node of u ∼F v. DF (u, v) denotes the set of dangling edges between u and v
in F . For example, in Fig. 1, DF (x1, x9) = {eF (x7), eF (u), eF (v), eF (x3)}, while
DF (x1, w) = {eF (x7), eF (u), eF (v)}. A dangling subtree between u and v in F is
the subtree rooted at the head of an edge in DF (u, v). A hovering subforest of F
is a subforest F ′ of F such that the in- and out-degrees of each non-leaf v in F ′

are the same as those of v in F , respectively. Note that F ′ can be obtained from
F by deleting zero or more components and deleting the proper descendants of
zero or more incomparable nodes. Of course, if F is a tree, then each nonempty
hovering subforest of F is indeed a tree and is hence called a hovering subtree of
F . For example, in Fig. 1(2), the bold (dashed or solid) edges show a hovering
subtree of F .

Let X be a subset of L(F ). F↑X denotes the rooted forest obtained from F
by first removing all nodes with no leaf descendant in X and then repeatedly
contracting a unifurcate root until no root is unifurcate. F�X denotes the rooted
forest obtained by binarizing F↑X . F↑+X denotes the rooted forest obtained from
F by deleting those nodes u such that no node of F ↑X is the parent or a child
of u in F . F |+X denotes the rooted forest obtained from F by first removing all
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components without leaves in X and then removing all non-roots v such that
the tail of eF (v) has no leaf descendant in X. In particular, when some leaves
of F are labeled, we always delete the label of every leaf y �∈ X in F |+X such
that y is a labeled leaf of F . Note that F↑+X is both a superforest of F↑X and a
subforest of F |+X . See Fig. 1 for an example of the definitions, where F↑+{x1,...,x4}
is the bold subtree in Fig. 1(3).

Let C be a set of edges in F . F − C denotes the rooted forest obtained from
F by deleting the edges in C. A leaf in F − C is old if it is also a leaf in F ;
otherwise, it is new. F �C denotes the rooted binary forest obtained from F −C
by first deleting all nodes with no old leaf descendants and then binarizing it.
C+

F denotes C ∪ D1 ∪ D2, where D1 is the set of edges (p, c) in F − C such that
every leaf descendant of c in F − C is new, while D2 is the set of edges (p, c) in
F − (C ∪ D1) such that each ancestor of p in F − (C ∪ D1) is unifurcate. C is a
cut of F if every component of F − C has an old leaf. C is a canonical cut of F
if all leaves of F − C are old. For example, if C is the set of 7 dashed edges in
Fig. 1(2), then C is a cut of F but is not canonical (because of the new leaf u),
F �C is the tree in Fig. 1(5) together with the 7 root leaves x5, . . . , x10, dummy,
while C+

F = C ∪ {eF (u), eF (w), eF (dummy)}. It is known that if C is a set of
edges in F , then F has a canonical cut C ′ such that F � C = F � C ′ [4]. For
this reason, canonical cuts C have been frequently used in the literature when
we are concerned about only F � C.

For a node v with parent p and sibling u in F , detaching the dangling subtree
with root v is the operation that modifies F by first deleting the edge (p, v) and
then contracting p. A detaching operation on F is the operation of detaching a
dangling subtree of F .

Suppose that F and F̂ are two rooted forests such that some leaves of F̂ may
be unlabeled but the labeled leaves of F̂ one-to-one correspond to the leaves of
F (i.e., each pair of corresponding leaves have the same label). We can extend
the correspondence between the labeled leaves of F and F̂ to their non-leaf
vertices recursively as follows. If a non-root vertex v of F corresponds to a non-
root vertex v̂ of F̂ and the parents of v and v̂ are both unifurcate, then their
parents correspond to each other. Similarly, if v and v′ are siblings in F and
they respectively correspond to v̂ and v̂′ in F̂ such that v̂ and v̂′ are siblings,
then their parents correspond to each other. For convenience, whenever a vertex
v of F corresponds to a vertex v̂ of F̂ , we always view Fv and F̂v̂ as the same
tree (although they are in different forests).

3 Configurations and Search Trees

In general, in order to find a difference between a rooted tree T and a rooted
forest F with the same set of labeled leaves, it suffices to look at only a portion
of T and a portion of F (rather than the whole T and F ). This motivates us
to define a configuration to be a pair (T, F ), where T is a rooted binary tree
whose leaves have distinct labels and F is a rooted binary forest satisfying the
following conditions:
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– Some leaves of F may be unlabeled but the labeled leaves one-to-one corre-
spond to the leaves of T (i.e., each pair of corresponding leaves have the same
label).

– No component of F consists of a single node and no two unlabeled leaves are
siblings in F .

– If two labeled leaves are siblings in F , then they are not siblings in T .

x1 x2

x3

x4
x3

x2x1
(1) (2) 

T F

x5

x5

x3 x4

T’ F’

x5 x5x3 x4
x4

u v

w

Fig. 2. (1) A configuration (T, F ) and (2) an induced subconfiguration (T ′, F ′) of
(T, F ).

Figure 2(1) shows an example of configuration. For convenience, we view
(⊥,⊥) as a configuration, where ⊥ stands for the empty tree (i.e., a tree without
nodes). The size of (T, F ) is the number of leaves in T , while the height of (T, F )
is that of T . (T, F ) is a final configuration if all leaves of F are labeled. Note
that if (T, F ) is final and v is a node in T , then (Tv, F |+L(Tv)

) is a configuration.
If (T, F ) is not final, then an extension of (T, F ) is a final configuration (E1, E2)
such that T is a dangling subtree of E1 and F is a hovering subforest of E2.

The subconfiguration of (T, F ) induced by a nonempty cut C of F is the
configuration (T ′, F ′) obtained as follows.

1. Initially, T ′ = T , and F ′ is obtained from F �C by deleting those components
with no labeled leaves.

2. While F ′ has a component K that is also a dangling subtree of T ′, delete K
from F ′ and modify T ′ as follows: if K = T ′, delete K; otherwise, detach K
and further delete it.

3. While T ′ and F ′ have a common pair (x, y) of sibling leaves, merge x, y, and
their parent into a single labeled leaf whose label is xy (i.e., the concatenation
of the labels of x and y).

4. For each non-leaf v of F ′ such that v has no labeled leaf descendant in F ′ but
the parent of v has one, merge the dangling subtree with root v into a single
unlabeled leaf.

For example, if C consists of the 4 dashed edges in Fig. 2(1), then the sub-
configuration induced by C is as in Fig. 2(2). Note that if (T, F ) is final, so
is (T ′, F ′). This holds no matter whether C is canonical or not, because the
leaves of F � C are labeled when so are the leaves of F . If (T, F ) is final and
(T ′, F ′) = (⊥,⊥), then C is called an agreement cut of (T, F ) and F �C is called
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an agreement forest of (T, F ). If in addition, C is a canonical cut of F , then C
is a canonical agreement cut of (T, F ). The smallest size of an agreement cut of
a final (T, F ) is called the rSPR distance between T and F , and is denoted by
d(T, F ). It is widely known that d(T, F ) is also the smallest number of detaching
operations we can perform on each of T and F so that they become the same
rooted binary forest.

It is worth pointing out that to compute the rSPR distance for a final (T, F ),
it is required in the literature that we preprocess each of T and F by first adding
a new root and a dummy leaf and further making the old root and the dummy
be the children of the new root. However, the common dummy in the modified
T and F can be viewed as an ordinary (labeled) leaf and hence we do not have
to explicitly mention the dummy when describing an algorithm.

Obviously, a cut of (T, F ) is also a cut of every extension of (T, F ). Moreover,
if (E1, E2) is an extension of (T, F ) and C is a smallest agreement cut of (E1, E2),
then E2�C is an agreement forest of (E1, E2) with |E2|+d(E1, E2) components.
So, if C is a cut of (T, F ), then for every extension (E1, E2) of (T, F ), C together
with a smallest agreement cut S of the subconfiguration (E′

1, E
′
2) of (E1, E2)

induced by C yields an agreement cut C ∪ S of (E1, E2) such that E2 � (C ∪ S)
is an agreement forest of (E1, E2) with (|E2|+ |C|)+d(E′

1, E
′
2) components. The

local ratio achieved by a cut C of (T, F ) is

r(C) = max
(E1,E2)

(|C| + d(E′
1, E

′
2)) − d(E1, E2)

d(E1, E2) − d(E′
1, E

′
2)

,

where (E1, E2) ranges over all extensions of (T, F ) and (E′
1, E

′
2) is the subcon-

figuration of (E1, E2) induced by C.
If for some small constant δ ≥ 0, we can always find a cut C of a given

configuration (T, F ) with r(C) ≤ δ, then we can design a recursive approximation
algorithm for rSPR distance that achieves a ratio of 1 + δ. This can be easily
shown but we omit the details here because finding such a C seems to be very
difficult in general. In some special cases such as the following G1 and G2, we
do know how to find a cut C such that d(E1, E2) − d(E′

1, E
′
2) = 1 and r(C) = 0:

G1. T has a pair (x, y) of sibling leaves with |DF (x, y)| = 1.
G2. F has a pair (x, y) of sibling leaves such that x and y are labeled leaves,
|DT (x, y)| = 1, and the head of the unique edge in DT (x, y) is a leaf z of T .

G1 was observed in [16]. G2 follows from G1 and was first used in [7]. Since in
the two cases we can achieve the best r(C), we will always assume that neither
G1 nor G2 occurs in a configuration (except when we describe an algorithm).

Since calculating d(E1, E2) − d(E′
1, E

′
2) is difficult, an alternative way is to

calculate an upper bound on (d(E′
1, E

′
2) + |C|) − d(E1, E2) and a lower bound

on d(E1, E2) − d(E′
1, E

′
2). This motivates us to consider search trees below.

If (T, F ) is final, a simple way to compute d(T, F ) is to build a search tree Γ
as follows. The root of Γ is (∅, ∅). In general, each node of Γ is a pair (CT , CF )
satisfying the following conditions:
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– CT and CF are canonical cuts of T and F , respectively.
– All but one of the roots of T − CT are agreed, where a node u of T − CT is

agreed if F − CF has a node v such that binarizing the dangling subtree of
T − CT with root u and binarizing the dangling subtree of F − CF with root
v yield the same tree.

– If (CT , CF ) is left as a leaf in Γ , then all roots of T − CT must be agreed.

Now, suppose that a node (CT , CF ) of Γ has been constructed but should not
be left as a leaf in Γ . To construct the children of (CT , CF ) in Γ , we first select a
bifurcate node u in T −CT such that u is still not agreed but its children u1 and
u2 in T −CT are already agreed. We can find such a u because modifying T −CT

by deleting the proper descendants of all agreed nodes yields a binary forest in
which all but one components are root leaves. For each i ∈ {1, 2}, let vi be the
highest node in F − CF agreed with ui. For convenience, let F ′ = F − CF . The
children of (CT , CF ) are constructed by distinguishing three cases as follows:

Case 1: v1 or v2 is a root of F ′. If v1 is a root of F ′, then (CT ∪{(u, u1)}, CF )
is the only child of (CT , CF ) in Γ ; otherwise, (CT ∪ {(u, u2)}, CF ) is the only
child of (CT , CF ) in Γ .
Case 2: v1 and v2 fall into different components of F ′ but Case 1 does not
occur. In this case, (CT , CF ) has two children in Γ , where for each i ∈ {1, 2},
the i-th child of (CT , CF ) in Γ is (CT ∪ {(u, ui)}, CF ∪ {eF ′(vi)}).
Case 3: v1 and v2 fall into the same component of F ′. In this case, (T ′, F ′)
has three children in Γ . The first two are constructed as in Case 2. The third
child is (CT , CF ∪ DF ′(v1, v2)).

Note that the children of (CT , CF ) in Γ are ordered. This finishes the con-
struction of Γ .

Let P be a root-leaf path in Γ . We use C(P ) to denote the canonical cut of
F contained in the leaf of P . Obviously, C(P ) is a canonical agreement cut of
(T, F ). For a positive integer k ≤ 3, P picks a cherry (Y1, Y2) in the k-th way if
P has a non-leaf (CT , CF ) satisfying the following conditions:

– The k-th child of (CT , CF ) exists in Γ and also appears in P .
– For the bifurcate node u in T − CT selected to construct the children of

(CT , CF ) in Γ , Y1 (respectively, Y2) is the set of leaf descendants of u1 (respec-
tively, u2) in T − CT , where u1 and u2 are the children of u in T − CT .

P picks a cherry (Y1, Y2) if it does so in the k-th way for some positive k ≤ 3.
For a set Y of leaves in T , P isolates Y if it picks a cherry (Y,Z) in the first
way or a cherry (Z, Y ) in the second way, while P creates Y if it picks a cherry
(Y1, Y2) with Y = Y1 ∪ Y2 in the third way.

(T, F ) may have multiple search trees (depending on the order of cherries
picked by root-leaf paths in a search tree). Nonetheless, it is widely known that
if (T, F ) is final, then for each search tree Γ of (T, F ), d(T, F ) = minP |C(P )|,
where P ranges over all root-leaf paths in Γ [15].
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Even if (T, F ) is not final, we can still construct a search tree Γ of (T, F ) as
above. For each root-leaf path P in Γ , C(P ) is still a canonical cut of F but is
not an agreement cut of (T, F ) because unlabeled leaves exist in F . Moreover, if
(E1, E2) is an extension of (T, F ), then each search tree of (T, F ) is a hovering
subtree of some search tree of (E1, E2) because T is a dangling subtree of E1

and F is a hovering subforest of E2.
Let X be a set of leaves in T such that each component of T↑X is a dangling

subtree of T . An X-search tree ΓX of (T, F ) is constructed almost in the same
way as a search tree of (T, F ); the only differences are as follows:

– For each leaf (CT , CF ) in ΓX , it is impossible to find a bifurcate node u in
T − CT such that all leaf descendants of u in T − CT belong to X and u is
still not agreed but its children in T − CT are.

– To construct the children of a non-leaf (CT , CF ) in ΓX , we always select a
bifurcate node u in T − CT such that all leaf descendants of u in T − CT

belong to X and u is still not agreed but its children in T − CT are.

Obviously, an X-search tree ΓX of (T, F ) is a hovering subtree of some search
tree of (T, F ). Moreover, for each X-search tree ΓX of (T, F ) and for each exten-
sion (E1, E2) of (T, F ), the following hold (because ΓX is a hovering subtree of
some search tree of (E1, E2)):

– For each root-leaf path P in ΓX , C(P ) is a canonical cut of F and can be
extended to a canonical agreement cut of (E1, E2).

– ΓX has at least one path P such that C(P ) can be extended to a smallest
canonical agreement cut of (E1, E2).

4 Keys and Local Ratios

Throughout this section, let (T, F ) be a configuration. Instead of cuts, we con-
sider a more useful notion of key. A key of (T, F ) is a triple κ = (X,B,R)
satisfying the following conditions:

1. X is a set of leaves in T such that each component of T ↑X is a dangling
subtree of T .

2. B is a set of edges in F ↑+X such that each component of F − B contains at
least one (labeled or unlabeled) leaf of F .

3. R is a set of edges in F↑X such that R ∩ B+
F = ∅.

4. If R = ∅, then eF (x) ∈ B+
F for every x ∈ X. Otherwise, for the set Y = {x ∈

X | eF (x) �∈ B+
F }, we have that T�Y = F�Y , R is the edge set of F↑Y , and B

contains every edge (p, c) of F such that (p, c) is not an edge of F↑Y but p is
a node of F↑Y .

For example, if (T, F ) is as in Fig. 2(1), then κe = (X,B,R) is a key of (T, F ),
where X = {x1, . . . , x4}, B consists of the 4 dashed edges in F , and R is the
edge set of x3 ∼F x4.
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The intuition behind the definition of key is as follows. Consider an X-search
tree ΓX of (T, F ) and an extension (E1, E2) of (T, F ). Recall that for each leaf
(CT , CF ) of ΓX , CT and CF are respectively canonical cuts of T and F , and each
vertex u of T↑X −CT is agreed with a vertex v of F −CF . So, if we let B = CF

and R be the edge set of F↑Y with Y = {x ∈ X | eF (x) �∈ B+
F }, then (X,B,R)

is a key of (T, F ). Moreover, at least one leaf (CT , CF ) of ΓX satisfies that CF

can be extended to a smallest canonical agreement cut of (E1, E2). However,
by only looking at ΓX , we don’t know which leaf of ΓX has this property. So,
instead of finding such a CF , we compromise by finding a key of (T, F ).

In most cases, X = L(T ) holds and we simply write κ = (B,R) instead of
κ = (X,B,R). If R = ∅, then κ is normal and we simply write κ = (X,B) instead
of κ = (X,B,R); otherwise, it is abnormal. In case X = L(T ) and R = ∅, we
further simply write κ = B instead of κ = (X,B,R) and κ = (X,B). In essence,
only normal keys were considered in [8].

In the remainder of this section, let κ = (X,B,R) be a key of (T, F ). The
size of κ is s(κ) = |B|. The subconfiguration of (T, F ) induced by κ is the sub-
configuration (T ′, F ′) of (T, F ) induced by B. Let P be a root-leaf path in an
X-search tree of (T, F ), and S = C(P ) \ R. An edge e ∈ B is free with respect
to (w.r.t.) P if e ∈ S or the leaf descendants of the head of e in F − (S ∪ B)
are all new. Let fe(κ, P ) denote the set of edges in B that are free w.r.t. P . A
component K in F − (S ∪ (B \ fe(κ, P ))) is free if the leaves of K are new and
there is at least one edge e ∈ B \ fe(κ, P ) whose tail is a leaf of K. Let fc(κ, P )
denote the set of free components in F − (S ∪ (B \ fe(κ, P ))). For example (cf.,
Fig. 2, if κe is the above example key and P isolates x2 and further creates
{x1, x3} and isolates it, then C(P ) ∩ R = {eF (v)}, fe(κe, P ) = {eF (x2), eF (u)}
but fc(κe, P ) = ∅. On the other hand, if we modify the example κe by setting
R = ∅ and B = {eF (x1), eF (x2), eF (x3)}, then for the same P , C(P ) ∩ R = ∅,
fe(κe, P ) = {eF (x2)}, and fc(κe, P ) contains a unique component (which is just
a path from w to the parent of x1 in F ). The lower bound achieved by κ w.r.t.
P is b(κ, P ) = |fe(κ, P )| + |fc(κ, P )| + |C(P ) ∩ R|.
Lemma 1. Let P be a root-leaf path in an X-search tree of (T, F ). Then, for
every extension (E1, E2) of (T, F ), if C(P ) is a subset of some smallest canonical
agreement cut of (E1, E2), then d(E1, E2) − d(E′

1, E
′
2) ≥ b(κ, P ), where (E′

1, E
′
2)

is the subconfiguration of (E1, E2) induced by κ.

The lower bound achieved by κ is b(κ) = maxΓX
minP b(κ, P ), where ΓX

ranges over all X-search trees of (T, F ) and P ranges over all root-leaf paths in
ΓX . The local ratio achieved by κ is r(κ) = s(κ)−b(κ)

b(κ) . If r(κ) ≤ 4
3 , then we say

that κ is good. The next lemma may help the reader understand the definitions
(especially for abnormal keys).

Lemma 2. If T has a sibling-leaf pair (x1, x2) such that �F (x1, x2) exists and
|DF (x1, x2)| = 2, then κ = ({x1, x2},DF (x1, x2), R) is an abnormal key of (T, F )
with s(κ) = 2 and b(κ) ≥ 1, where R is the edge set of x1 ∼F x2.

Sometimes, finding a good key of (T, F ) may be difficult. In such cases, we
look for a combined key of (T, F ) which is an (ordered) pair Ψ = (κ1, κ2) such
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that κ1 is a key of (T, F ) and κ2 is a key of the subconfiguration (T ′, F ′) of
(T, F ) induced by κ1. Ψ is normal if both κ1 and κ2 are normal; otherwise, Ψ is
abnormal. The subconfiguration of (T, F ) induced by Ψ is the subconfiguration
of (T ′, F ′) induced by κ2. The size of Ψ is s(Ψ) = s(κ1) + s(κ2). The lower
bound achieved by Ψ is b(Ψ) = b(κ1) + b(κ2). The local ratio achieved by Ψ is
r(Ψ) = s(Ψ)−b(Ψ)

b(Ψ) . If r(Ψ) ≤ 4
3 , then we say that Ψ is good.

5 The Algorithm and Its Performance

To approximate d(T, F ) for a final configuration (T, F ), we proceed as follows.

1. If T has at most six leaves, then compute d(T, F ) exactly (say, by brute force)
and return it.

2. If T has a sibling-leaf pair (x1, x2) with |DF (x1, x2)| = 1, then perform the
following steps:
(a) Compute the subconfiguration (T ′, F ′) of (T, F ) induced by DF (x1, x2).
(b) Recursively compute an approximation d1 of d(T ′, F ′).
(c) Return d1 + 1 (as the approximation of d(T, F )).

3. If F has a sibling-leaf pair (x1, x2) such that both x1 and x2 are labeled,
|DT (x1, x2)| = 1, and the head of the unique edge in DT (x1, x2) is a leaf x3,
then perform the following steps:
(a) Compute the subconfiguration (T ′, F ′) of (T, F ) induced by {eF (x3)}.
(b) Recursively compute an approximation d2 of d(T ′, F ′).
(c) Return d2 + 1 (as the approximation of d(T, F )).

4. Find a sibling-leaf pair (x1, x2) in T such that the distance from the root to
the parent v of x1 and x2 in T is maximized over all sibling-leaf pairs in T .

5. Try to find a good key κ or a good combined key Ψ = (κ1, κ2) of (Tv, F |+L(Tv)
).

(The search for κ and Ψ is done via case analysis. In particular, we can show
that κ or Ψ exists if Tv has at least four leaves. Note that each unlabeled leaf
in F |+L(Tv)

is the root of a dangling subtree of F .)
6. If neither κ nor Ψ is found in Step 5, then replace v by its parent in T , and

go back to Step 5.
7. If κ is found in Step 5, then perform the following steps:

(a) Compute the subconfiguration (T ′, F ′) of (T, F ) induced by κ.
(b) Recursively compute an approximation d3 of d(T ′, F ′).
(c) Return d3 + s(κ) (as the approximation of d(T, F )).

8. If Ψ is found in Step 5, then perform the following steps:
(a) Compute the subconfiguration (T ′, F ′) of (T, F ) induced by κ1, and then

compute the subconfiguration (T ′′, F ′′) of (T ′, F ′) induced by κ2.
(b) Recursively compute an approximation d4 of d(T ′′, F ′′).
(c) Return d4 + s(Ψ) (as the approximation of d(T, F )).

Theorem 1. The algorithm achieves an approximation ratio of 7
3 and runs in

quadratic time.
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6 Concluding Remarks

We conjecture that rSPR distance can be approximated within a ratio of 2 + ε
for any constant ε > 0. Basically, we have shown that for each configuration
(T, F ) such that T has at most 6 leaves, we can find a key κ whose local ratio
is at most 4

3 . To design an approximation algorithm with a better ratio than 7
3 ,

it seems promising to let the algorithm search for larger configurations (T, F ).
The main difficulty is how to avoid complicated case analysis.
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Abstract. We consider in this work a classical online scheduling prob-
lem with release times on a single machine. The quality of service of a
job is measured by its stretch, which is defined as the ratio of its response
time over its processing time. Our objective is to schedule the jobs non-
preemptively in order to optimize the maximum stretch. We present both
positive and negative theoretical results. First, we provide an online algo-

rithm based on a waiting strategy which is (1 +
√

5−1
2

Δ)-competitive
where Δ is the upper bound on the ratio of processing times of any two
jobs. Then, we show that no online algorithm has a competitive ratio

better than
√
5−1
2

Δ. The proposed algorithm is asymptotically the best
algorithm for optimizing the maximum stretch on a single machine.

1 Introduction

Scheduling independent jobs that arrive over time is a fundamental problem that
arises in many applications. Often, the aim of a scheduler is to optimize some
function(s) that measure the performance or quality of service delivered to the
jobs. The most popular and relevant metrics include throughput maximization,
minimization of maximum or average completion times and optimizing the flow
time [1]. These metrics have received a lot of attention over the last years in
various scenarios: on single or multiple machines, in online or offline settings,
in weighted or unweighted settings, etc. One of the most relevant performance
measures in job scheduling is the fair amount of time that the jobs spend in the
system. This includes the waiting time due to processing some other jobs as well
as the actual processing time of the job itself. Such scheduling problems arise
for instance while scheduling jobs in parallel computing platforms. The stretch
is the factor by which a job is slowed down with respect to the time it takes on
an unloaded system [2].

Here, we are interested in scheduling a stream of jobs to minimize the max-
imum stretch (max-stretch) on a single machine. This problem is denoted as
1|ri, online|Smax in the classical 3-fields notation of scheduling problems [3].
While this problem admits no constant approximation algorithm in the offline
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 483–495, 2016.
DOI: 10.1007/978-3-319-42634-1 39
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case [2], interesting results can be derived by introducing an instance-dependent
parameter Δ: the ratio between the largest and the smallest processing time in
the instance.

We show using an adversary technique, that no online algorithm can achieve
a competitive ratio better than αΔ where α =

√
5−1
2 (the golden ratio). This

improves upon the previously best known lower bound of 1+Δ
2 by Saule et al. [4].

Based on the observation that no greedy algorithm can reach this lower
bound, we designed Wait-Deadline Algorithm (WDA) which enforces some
amount of waiting time for large jobs, before they can be scheduled. We prove
that WDA has a competitive ratio of 1 + αΔ, which improves upon the best
known competitive ratio of Δ achieved by First-Come First-Served and pre-
sented by Legrand et al. [5].

The competitive ratio of WDA (1+αΔ) and the lower bound on best achiev-
able competitive ratio (αΔ) are asymptotically equal when Δ goes to infinity. In
other words, this paper essentially closes the problem of minimizing max-stretch
on a single machine.

This paper is organized as follows. Section 2 defines the problem formally
and summarizes the main positive and negative results that relate to optimizing
the maximum stretch objective. Section 3 provides lower bounds on the compet-
itive ratio of deterministic algorithms for both objectives and it indicates that
algorithms with good competitive ratios have to wait before executing large jobs.
Section 4 presents the wait-deadline algorithm (WDA). Then we provide the cor-
responding detailed analysis for the competitive ratio of max-stretch in Sect. 5.
Finally, we provide concluding remarks in Sect. 6 and discuss future issues for
the continuation of this work.

2 Problem Definition and Related Works

We study the problem of scheduling on a single machine n independent jobs
that arrive over time. A scheduling instance is specified by the set of jobs J . The
objective is to execute the continuously arriving stream of jobs. We consider the
clairvoyant version of the problem where the processing time pi of each job i is
only known at its release time ri. Without loss of generality, we assume that the
smallest and largest processing times are equal to 1 and Δ, respectively. We also
assume that the scheduler knows the value of Δ which is a common assumption
in online schedulers.

In a given schedule σi, Ci and Si denote the start time, completion time and
stretch of job i, respectively where Si = Ci−ri

pi
. We are interested in minimizing

Smax = max
j∈J

Sj .

An online algorithm is said to be ρ-competitive if the worst case ratio (over
all possible instances) of the objective value of the schedule generated by the
algorithm is no more that ρ times the performance of the optimal (offline clair-
voyant) algorithm [6].
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Bender et al. introduced the stretch performance objective to study the fair-
ness for HTTP requests arriving at web servers [2]. They showed that the prob-
lem of optimizing max-stretch in a non-preemptive offline setting cannot be
approximated within a factor of Ω(n1−ε), unless P = NP . They also showed
that any online algorithm has a competitive ratio in Ω(Δ

1
3 ). Finally, they pro-

vided an online preemptive algorithm using the classical EDF strategy (earliest
deadline first) and showed that it is O(

√
Δ) competitive.

Later, Legrand et al. showed that the First-Come First-Served algorithm
(FCFS) is Δ-competitive for the max-stretch problem on a single machine [5].
Since preemption is not used in FCFS, the above bound is also valid in the non-
preemptive case. They also showed that the problem of optimizing max-stretch
on a single machine with preemption cannot be approximated within a factor
of 1

2Δ
√
2−1. Saule et al. showed that all approximation algorithms for the single

machine problem and m parallel machine of optimizing max-stretch cannot have
a competitive ratio better than 1+Δ

2 and (1 + Δ
m+1 )/2, respectively [4]. Bansal

and Pruhs [7], Golovin et al. [8], Im and Moseley [9] and Anand et al. [10] studied
similar problems with resource augmentation.

3 Lower Bounds on Competitive Ratios for Max-Stretch

Observation 1. Any greedy algorithm for scheduling jobs on a single machine
has a competitive ratio of at least Δ for max-stretch.

For non-preemptive schedules, it is easy to prove that any greedy algorithm is
at least Δ-competitive using the following adversary technique. At time 0 a large
job of processing time Δ arrives. Any greedy algorithm schedules it immediately.
At time ε, a small job of processing time 1 is released. Since preemption is not
allowed, the greedy algorithm can only schedule the small job at time t = Δ and
thus Smax ≈ Δ. The optimal algorithm finishes the small job first and hence has
a stretch close to 1; more precisely of S∗ = Δ+ε

Δ .
Hence, for an improved bound, the algorithm should incorporate some wait-

ing time strategies. We show below a lower bound on the competitive ratio of
such algorithms using a similar adversary technique.

Theorem 2. There is no ρ-competitive non-preemptive algorithm for optimizing
max-stretch for any fixed ρ <

√
5−1
2 Δ.

Proof. Let ALG be any scheduling algorithm. Consider the following behaviour
of the adversary. At time 0 a job of size Δ is released. On the first hand, if
ALG schedules this job of size Δ at time t such that 0 ≤ t ≤

√
5−1
2 Δ, then the

adversary sends a job of size 1 at time t + ε where 0 < ε � 1. In which case,
ALG achieves a max stretch of Smax = Δ + 1 while the optimal schedule has
a max stretch of S∗

max = t+1
Δ + 1. Therefore, the competitive ratio of ALG is

greater than (or equal to)
√
5−1
2 Δ, for sufficiently large values of Δ. On the other

hand if Δ > t >
√
5−1
2 Δ, then the adversary sends a job of size 1 at time Δ.
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ALG reaches a max-stretch of Smax = t + 1 while the optimal solution has a
max-stretch of S∗

max = 1. Hence, ALG has a competitive ratio greater than (or
equal to)

√
5−1
2 Δ. Lastly, if ALG schedules the job at time t such that t ≥ Δ,

then the adversary releases a job of size 1 at time t + ε, where 0 < ε � 1. The
competitive ratio of ALG is greater than

√
5−1
2 Δ times the optimal schedule,

since ALG achieves a max-stretch of Smax = Δ + 1 while the optimal schedule
has a max-stretch of S∗

max = 1. ��

4 The Wait-Deadline Algorithm (WDA) for Streams
of Jobs

We design an online non-preemptive algorithm for optimizing max-stretch on a
single machine. To develop the intuition, we briefly consider the case where all
the jobs have been released. The feasibility of scheduling the set of jobs within
a given maximum stretch S can be easily determined since the stretch formula
sets a deadline for each job. Knowing these deadlines, the best order of execution
for the jobs is determined by the Earliest Deadline First (EDF) algorithm which
schedules the jobs as soon as possible in the order of non-decreasing deadlines.
EDF is known to schedule all released jobs before their deadlines on a single
machine if such a schedule exists [1].

In the online setting, these deadlines cannot be computed in advance. Our
algorithm emulates these deadlines in two ways: firstly by holding the large jobs
for a fixed amount of time to avoid small worst cases as explained below, secondly
by computing a feasible deadline for the currently available jobs and using it to
select the next one to start.

Observation 1 indicates that any algorithm with a competitive ratio better
than Δ for max-stretch must wait for some time before it starts scheduling
large jobs due to the non-clairvoyant nature of arrival times of the jobs. Waiting
strategies have been studied for the problem of minimizing weighted completion
time [11,12]. To best our knowledge, this is the first work which studies waiting
time strategies in the context of flow time. As stated before, our algorithm
also needs to maintain an estimate of the max-stretch and adjust this estimate
whenever EDF can not produce a feasible schedule.

We now describe the Wait-Deadline algorithm (WDA). We classify the jobs
into two sets, namely large set and small set (denoted by Jlarge and Jsmall,
respectively), based on their processing time. More specifically, Jsmall = {i ∈
J : 1 ≤ pi ≤ 1 + αΔ} and Jlarge = {i ∈ J : 1 + αΔ < pi ≤ Δ}

We maintain two separate queues: the Ready queue (denoted by QR) and
the Wait queue (denoted by QW ). Whenever a job i ∈ Jsmall is released, it is
placed directly into the Ready queue. On the other hand, when a job i ∈ Jlarge

is released, it is initially placed in the Wait queue for αpi units of time and then
moved to the Ready queue.

Our algorithm is based on three kinds of events: (i) a job is released, (ii) a
waiting period ends and (iii) a job ends. Whenever an event occurs the queues



Online Non-preemptive Scheduling to Optimize Max Stretch 487

Data: Ready queue QR at time t
Result: Job to be scheduled at time t
Perform binary search on max-stretch to find the appropriate deadline to
schedule all the jobs of QR;
Store the max-stretch estimate as a lower bound for the next binary search;
Return the job of QR with the earliest deadline where ties are broken according
to the processing time of the job (the shortest job is returned);

Algorithm 1. Job selection in WDA

Data: QR and QW are initially empty sets
Result: An online schedule
Wait for events to occur.
Let t be the time at which events occurred.
while At least one event occurring at time t has not been processed do

switch Event do
case Job i has been released

if the new job is in Jsmall then
Update QR.

else
Create a new event at time t + αpi and update QW .

case Job i finished its waiting period
Remove i from QW and add it to QR.

case Job i finished its execution
Nothing special to do in this case for QR and QW .

if QR �= ∅ and the machine is idle then
Select a new job to execute using Algorithm 1 and remove it from QR.

Return to the first line to wait for the next time instant when events occur.

Algorithm 2. Wait-Deadline algorithm

are updated, then if the Ready queue is not empty and the machine is idle, a job
is selected as depicted in the job selection pseudo-code in Algorithm 1.

Intuitively, we modify the release time of every job i ∈ Jlarge to a new value
ri+αpi. Let t be the time at which the machine becomes idle. Then the algorithm
sets the deadline di(t) for each job i ∈ QR where di(t) = ri + S(t)pi and S(t) is
the estimated max-stretch such that all the jobs in QR can be completed. Note
that the deadline di(t) uses the original release time ri rather than the modified
release date. For already released jobs, S(t) can be computed in polynomial time
using a binary search similarly to the technique used in [2]. The upper bound for
the binary search can be derived from the FCFS schedule, while 1 is a natural
lower bound at time t = 0. At any later time t > 0, whenever a job has to
be selected for execution, WDA uses the previous stretch estimate as a lower
bound for the new binary search. As indicated in Algorithm 1, the job with
the earliest deadline is scheduled. Note that S(t) is increasing with respect to
time t. We also assume that Δ is already known to WDA, which is a common
hypothesis for online scheduling algorithms. The entire procedure is summarized
in Algorithm 2.
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Before we start with the competitive analysis, remember that α =
√
5−1
2 .

Indeed Theorem 2 suggests that for an instance of two jobs with size 1 and Δ, it
is optimal to wait for αΔ time units before the job of size Δ is scheduled. When
the size of the jobs can take any values between 1 and Δ, the partitioning of jobs
in Jsmall and Jlarge ensures that small jobs can be scheduled as soon as they
arrive while large jobs wait a fraction α of their processing time before they can
be scheduled.

5 WDA Is (1 + αΔ)-Competitive for Max-Stretch

5.1 General Framework

We denote WDA the schedule produced by our algorithm and OPT some fixed
optimal schedule. For the rest of this analysis, a superscript of ∗ indicates that
the quantities in question refer OPT . We use r′

i to denote the modified released
time of job i, that is r′

i = ri if job i ∈ Jsmall, otherwise r′
i = ri + αpi. Moreover

di(t) denotes the estimated deadline of job i at time t i.e., di(t) = ri + S(t)pi.
Let z be the job in WDA that attains the max-stretch among the jobs in J .

We remove all jobs from the instance J that are released after the start of job z
without changing the Sz and without increasing the optimal stretch. Similarly,
we also remove the set of jobs that are scheduled after the job z in WDA,
without changing Sz and without increasing the optimal stretch. Therefore, we
assume, without loss of generality, that z is the latest job in J that is processed
in WDA.

Definition 3. We define the set of jobs Before z, denoted by JB, as the set of
jobs that are scheduled during the interval [r′

z, σz), that is: JB = {i ∈ J : r′
z ≤

σi < σz}.
Property 4. For all jobs in set Before z, at their start times, the deadlines of
jobs are at most the deadline of job z. More formally, di(σi) ≤ dz(σi) : ∀i ∈ JB.

This simply stems from the fact that the job i starting at time t = σi is
selected because its deadline is the earliest.

Property 5. The schedule WDA ensures that ∀i ∈ J the machine is busy for
during time interval [r′

i, Ci).

As soon as a job is completed, an event will be generated and a new job is
selected to run if QR is not empty. Job i is in QR from its modified release date
r′
i until its starting time σi.

Our general approach is to relate the stretch of job z with the stretch of
another job in the optimal schedule. The completion time of job z in WDA can
be written as Cz = rz + Szpz.

In the optimal schedule OPT , there is a job which completes at or after time
Cz −αΔ. This is due to the fact that αΔ is the maximum difference between the
makespan of schedules WDA and OPT . In the rest of this analysis, we denote
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Fig. 1. Representation of jobs z and y in WDA and OPT schedule, respectively

such a job by y (refer to Fig. 1). Hence, the completion time of job y can be
written as C∗

y = ry + S∗
ypy ≥ rz + Szpz − αΔ. Isolating Sz in the previous

equation, we get:

Sz ≤ S∗
y

(
py

pz

)

+
ry − rz

pz
+

αΔ

pz
(1)

Theorem 6. WDA is (1+αΔ)-competitive for the problem of minimizing max-
stretch non-preemptively.

The proof is constructed mainly in three separate parts: Lemmas 7, 11 and
17. Each part mostly relies on refining Eq. 1 in different cases. They are devised
based on ratio of processing time of job z and job y, as defined earlier. We further
divided them into few sub cases depending upon the execution time of job y in
WDA. In most of the sub cases, the lower bound on max-stretch are different
and are derived using tricky mathematical arguments. To elaborate the proof
more specifically, Lemma 7 considers the case when py ≤ pz; Lemma 11 consider
the case when pz < py ≤ (1+αΔ)pz; Lastly, Lemma 17 considers the case when
(1 + αΔ)pz < py.

Frequently, we refer to the intermediate stretch at time t. As aforementioned,
we use the notation S(t) to refer to the intermediate maximum stretch at time
t such that all jobs in the Ready queue can be scheduled within their respective
deadlines. Note that S(σi) ≥ Si for all job i ∈ J .

5.2 Proving the Bound When py ≤ pz

Lemma 7. If py ≤ pz, then Sz ≤ S∗
y + αΔ.

Proof. We consider two cases:

1. Suppose y ∈ JB. Then Property 4 implies that ry + S(σy)py ≤ rz + S(σy)pz.
Since the stretch of job z is greater than the intermediate stretch at any time,
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we have S(σy) ≤ Sz, which leads to ry − rz ≤ Sz(pz − py). Substituting this
inequality in Eq. 1 we get,

Sz ≤ S∗
y

(
py

pz

)

+
(

1 − py

pz

)

Sz +
αΔ

pz

Sz ≤ S∗
y +

αΔ

py
≤ S∗

y + αΔ

2. Suppose y �∈ JB . Let δ be a binary variable such that it is 0 when job z
belongs to class Jsmall, otherwise it is 1. Then the modified release time of
job z can we re-written as r′

z = rz + δαpz. The start time of job y is earlier
than the modified released time of job z, that is ry ≤ σy < r′

z. This implies
that ry < rz + δαpz. Substituting this inequality in Eq. 1 we get,

Sz ≤ S∗
y

(
py

pz

)

+
αΔ

pz
+ δα ≤ S∗

y +
αΔ

1 + δαΔ
+ δα ≤ S∗

y + αΔ

When δ = 1, the last inequality follows from that fact that αΔ
1+αΔ + α < αΔ

when Δ ≥ 2. ��

5.3 Proving the Bound When pz < py ≤ (1 + αΔ)pz

Observation 8. In WDA, there does not exist a job i such that job z is released
no later than job i and the processing time of job i is more than that of job z.
More formally, �i ∈ J : ri ≥ rz and pi > pz.

The proof of Observation 8 is omitted to accommodate space constraints.
For the remaining cases, it follows that job z is processed before job y in OPT ,
pz < py and ry < rz. Before moving on to analysis of such cases, we define the
notion of limiting jobs which play a crucial role in the analysis to follow.

Definition 9. We say that job i limits job j if the following statements are true.

– processing time of job i is more than that of job j, pi > pj

– job i is scheduled at or after the modified released time of job j, both in WDA
and OPT

– job i is processed earlier than job j in WDA, σi < σj

– job j is processed earlier than job i in OPT , σ∗
j < σ∗

i

Property 10. If i limits j then the stretch of job i in WDA is at least 1+ pi

pj
− pj

pi
.

The proof of this property is omitted to accommodate space constraints.
Now we have all the tools to show the bound for max-stretch in the case

where py ≤ (1 + αΔ)pz.
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Lemma 11. If pz < py and py ≤ (1 + αΔ)pz then Sz ≤ S∗(1 + αΔ).

Proof. Suppose that the completion time of job z in schedule WDA is no later
than the completion time of job y in OPT , that is C∗

y ≥ Cz. Similar to Eq. 1,
the relationship between the stretch of job z in WDA and the stretch of job y
in OPT can be written as Sz ≤ S∗

y
py

pz
+ ry−rz

pz
. From Observation 8, it follows

that job y is released earlier than job z, i.e. ry − rz ≤ 0. Thus combining both
inequalities, we have Sz ≤ S∗

y
py

pz
≤ S∗

y(1 + αΔ) ≤ S∗(1 + αΔ). Therefore, we
assume C∗

y < Cz for the rest of this proof. We further split the analysis in three
separate cases.

Case A: Job y ∈ JB. Observe that the start time of job y is at or after the
modified release time of job z i.e. σy ≥ r′

z. Applying Property 4, we have ry +
S(σy)py ≤ rz + S(σy)pz. Since py > pz and the stretch of any job is at least 1,
we can re-write the above inequality as ry − rz ≤ pz − py. Using this inequality
in Eq. 1 along with the fact that py ≤ (1 + αΔ)pz proves that the bound holds
in this case.

Case B: Job y �∈ JB and Cy ≤ r′
z. The assumption Cy ≤ r′

z implies that
ry + Sypy ≤ rz + δαpz where δ = 0 if z ∈ Jsmall or 1 otherwise. Since the
stretch of job y is greater than 1 or 1 + α, depending upon class of job y, job y
is released at least py time units earlier than job z, that is rz − ry ≥ py. Using
this inequality with Eq. 1 proves that the bound holds in this case.

Case C: Job y �∈ JB and Cy > r′
z. Since C∗

y < Cz, there exists a job k such that
[σk, Ck) ⊆ [σy, Cz) and [σ∗

k, C∗
k) �⊆ [σy, Cz).

Case C.1: Consider rk ≥ σy. Since job k is released after the start time of job y,
the completion time of job k in OPT is strictly larger than the completion time
of job z in WDA, i.e. C∗

k > Cz. Suppose that pk ≤ pz, then Lemma 7 implies
that bound is true. On the contrary if pk > pz, then Observation 8 implies that
job k is released earlier than job z. Moreover, the difference in the release time
of job z and job k is at most py. Hence rz − rk ≤ (1 + αΔ)pz. Using Property 4,
we have rk + S(σk)pk ≤ rz + S(σk)pz and S(σk) ≥ pk+pz

pz
. Consequently, we get

that the difference in release time of job z and job k is at least p2
k−p2

z

pz
. Equating

this lower bound with upper bound on rk − rz, we get pk ≤ pz(
√

2 + αΔ). As
C∗

k > Cz and pk ≤ pz(
√

2 + αΔ), we get Sz ≤ S∗
k(

√
2 + αΔ) ≤ S∗(1 + αΔ).

Case C.2: Consider rk < σy. If pk ≤ pz then by Property 10, we have Sy >
1 + py

pk
− pk

py
> 1 + py

pk
− pz

py
. Since r′

z ≤ Cy and y �∈ JB , we have ry + Sypy − py <

rz. Using both inequalities in Eq. 1 proves that our bound holds in this case.
Conversely suppose that pk > pz. Since k ∈ JB , using Property 4 we have
rk+S(σk)pk ≤ rz+S(σk)pz. As intermediate stretch estimate is a non-decreasing
function of time, pk > pz and σy ≤ σk, we have rk + S(σy)pk < rz + S(σy)pz.
Hence ry + S(σy)py < rk + S(σy)pk < rz + S(σy)pz. The above facts imply that
ry −rz < S(σy)(pz −py) < pz −py since pz −py < 0. Substituting this inequality
in Eq. 1 gives Sz ≤ S∗

y
py

pz
+ 1 − py

pz
+ αΔ

pz
≤ (S∗

y − 1)py

pz
+ 1 + αΔ ≤ S∗

y(1 + αΔ). ��
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5.4 Proving the Bound When (1 + αΔ)pz < py

Now we build up the tools for the last major Lemma 17 which shows that
Sz ≤ S∗(1 + αΔ) when pz(1 + αΔ) ≤ py. Observe that for this particular case
job z and job y belongs to class Jsmall and Jlarge, respectively. To simplify the
notations, from here on we will refer to r′

z as rz.

Definition 12. At any time t, we define JU (t) as set of jobs that are unfinished
at time t, i.e. JU (t) = {i ∈ J : ri ≤ t < Ci}

Then the following lemma relates the stretch estimates S(t) shortly after rz

with the jobs in JU (rz).

Lemma 13. Denote by j the first job started in WDA after rz. For t ≥ σj,

S(t) is at least

∑
i∈JU (rz)

pi+σj−rz

pz
.

The proof is omitted here to accommodate space constraints.
Before we proceed onto last case analysis in Lemma 17, we define two sets of

jobs that are useful for the further analysis. Our aim is to relate the set of jobs
in WDA and OPT that are executed after rz. Informally, we first define a set
consisting of jobs that were processed during the interval [rz, C

∗
y ), in OPT , such

that for each job, their processing time is at most the processing time of job z.

Definition 14. We define JS as the set of all jobs in OPT for which the fol-
lowing conditions are met:

– job i starts no earlier than rz, i.e. σ∗
i ≥ rz.

– pi ≤ pz or the deadline of job i is at most the deadline of job z, according to
the optimal stretch S∗, i.e. ri + S∗pi ≤ rz + S∗pz.

– Job i completes before job y, i.e. C∗
i < C∗

y .

Observe that job z belongs to JS . Hence JS is a non-empty set. Now we
define the set of big jobs that were processed consecutively1 just before job y
(see Fig. 2).

Fig. 2. Representing set of jobs in JS and JL

1 Here we assume that the optimal schedule is non-lazy, that is all jobs are scheduled
at the earliest time and there is no unnecessary idle time.
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Definition 15. We define JL as the set of jobs in schedule OPT that are exe-
cuted between the completion time of latest job in set JS and completion time
of job y (refer to Fig. 2). Formally, JL = {i ∈ J : σ∗

i ∈ [C∗
k , C∗

y )} where k ∈ JS

and σ∗
k ≥ σ∗

i ,∀i ∈ JS. Moreover, λ and |JL| denote the length of time interval
[C∗

k , C∗
y ) and the number of jobs in JL, respectively.

Note that job y belongs to JL(hence λ ≥ py) and ∀i ∈ JL, we have pi > pz

and rz + S∗pz < ri + S∗pi.

Property 16. If pz(1 + αΔ) < py ≤ Δ, then the total processing time of the
jobs in JU (rz) is at least λ − py + αΔ.

Now we have all the tools necessary to prove the Lemma 17.

Lemma 17. If pz(1 + αΔ) < py ≤ Δ, then Sz < S∗(1 + αΔ), where S∗ is the
maximum stretch of some job in OPT .

Proof. Let k be the latest job in set JS (see Fig. 2). More formally, k ∈ JS and
∀i ∈ JS : σ∗

i ≤ σ∗
k. From Definition 15, we have C∗

k = C∗
y − λ. We can re-write

this equality in terms of the stretch of job y and k as pyS∗
y = pkS∗

k +λ+ rk − ry.
Substituting this expression in Eq. 1, we get:

Sz ≤ S∗
k

pk

pz
+

rk − rz

pz
+

αΔ + λ

pz
(2)

Remember that in this subsection we denote by j the first job that starts its
execution after time rz, that is σj ≤ σi : ∀i ∈ JB. Now we organize this proof
into two parts.

Case A :Suppose σy ≥ rz. From Property 4 we have ry + S(σy)py < rz +
S(σy)pz < rz + Szpz. Using this inequality in Eq. 1, we get S∗ ≥ S(σy) − 1.
Since σy ≥ rz, it follows that job y ∈ JB and S(σj) ≤ S(σy). Also note that job
y limits job z. Therefore using Property 16 and Lemma 13, we have S(σz) ≥
S(σj) ≥ 1 + λ−py+αΔ

pz
. Therefore, we have S∗ >

λ−py+αΔ
pz

.

Case A.1 : Assume rk ≤ rz. Plugging rk − rz ≤ 0 and the above lower bound
on S∗ in Eq. 2 we have the desired results.

Case A.2 : Assume rk > rz. From Observation 8, we have pk < pz. Observe that
job k belongs to JB. From Property 4, we have the rk − rz ≤ S(σk)(pz − pk) ≤
Sz(pz − pk). Combining this with above lower bound on S∗ and using in Eq. 2,
we obtain bounded competitive ratio.

Case B: Suppose that σy < rz. Again by Properties 16 and 13, it follows that
S(σj) ≥ 1 + λ−py+αΔ

pz
.

Case B.1 : Suppose that there exists some job l such that l ∈ JL and l ∈ JB .2

Then replace job y with job l in Case A and the proof follows.

2 Note that job l starts processing after time rz in both schedule OPT and WDA.
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Case B.2 : Now assume that there does not exist any job l such that l ∈ JL

and l ∈ JB. Recall that |JL| ≥ 2 as stated in case hypothesis B.1. Let v be the
smallest job in JL. Observe that v starts before time rz in schedule WDA since
v /∈ JB . Therefore there must be a job w ∈ JB such that σ∗

w < rz. Now we split
the proof into two sections based on processing times of such jobs.

Assume that there exists at least one such job w with pv ≤ pw. Job v is
scheduled before job w in the WDA, this implies that rv + S(σv)pv ≤ rw +
S(σv)pw. Since σv < rz ≤ σj and pv ≤ pw, we have rv +S(σj)pv ≤ rw +S(σj)pw.
Also z is the last job to be scheduled, which states that rw + S(σj)pw ≤ rz +
S(σj)pz. Hence, we have rv + S(σj)pv ≤ rw + S(σj)pw ≤ rz + S(σj)pz. Since
job v ∈ JL, we also have rz + S∗pz ≤ rv + S∗pv. This implies that S(σj) ≤ S∗.
Using this lower bound in Eq. 2, our competitive ratio holds.

On the contrary,we assume that there exists no jobw such that pv ≤ pw. Then it
implies that there are at least |JL| are jobs in JB such that they are started before
time rz in OPT (call such jobs JM ). Moreover ∀i ∈ JM , pi ≤ pv. Since all jobs
belonging to set JL starts execution before rz in OPT , there exist a job (denoted
by x) in JM that is delayed at least by λ time units before its start time in WDA.
Hence S∗ > S(σv) ≥ λ+px

px
. Now we look at two cases together. First, as we assume

that px < 2pz. This implies that S∗ ≥ λ+2pz

2pz
. Second, if S∗ ≥ λ+px

px
≥ (2|JL| + 1).

Using last terms as lower bounds on S∗ in Eq. 2, our bound holds.
It remains to prove the case where λ+px

px
< (2|JL| + 1) and px ≥ 2pz. Then

we have px > λ
2|JL| ≥ pv

2 . Since job x belongs to set JB, we have rx + S(σj)px ≤
rz + S(σj)pz. Note that at time σv, we have rv + S(σv)pv < rx + S(σv)px. Since
px < pv, we have rv < rx. Moreover as v ∈ JL, we also have rz+S∗pz ≤ rv+S∗pv.
This implies that rz + S∗pz ≤ rv + S∗pv ≤ rx + 2S∗px. Combining this with
rx+S(σj)px ≤ rz +S(σj)pz, we get S∗ ≥ S(σj)(px−pz)

(2px−pz)
. Using this as lower bound

in Eq. 2, we have our desired results. ��

6 Concluding Remarks

We investigated the online non-preemptive problem scheduling of a set of jobs
on a single machine that are released over time so as to optimize the maximum
stretch of the jobs. We showed that no algorithm can achieve a competitive
ratio better than

√
5−1
2 Δ for the maximum stretch objective. We proposed a new

algorithm which delays the execution of large jobs and achieves a competitive
ratio 1 +

√
5−1
2 Δ. This paper essentially closes the problem of optimizing the

maximum stretch on a single machine. Indeed, when Δ goes to infinity, these
upper and lower bounds are both equal to

√
5−1
2 Δ.

The following questions will receive our attention next. Is WDA competitive
for the average stretch? Can the waiting strategy of WDA be extended to the
more general weighted flow time objectives? Can we design an algorithm better
than Δ competitive for max-stretch when multiple machines are available?
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Abstract. We consider the problem of scheduling complex-valued
demands over a discretized time horizon. Given a set of users, each user is
associated with a set of demands representing different user’s preferences.
A demand is represented by a complex number, a time interval, and a
utility value obtained if the demand is satisfied. At each time slot, the
magnitude of the total selected demands should not exceed a given capac-
ity. This naturally captures the supply constraints in alternating current
(AC) electric systems. In this paper, we consider maximizing the aggre-
gate user utility subject to power supply limits over a time horizon. We
present approximation algorithms characterized by the maximum angle
φ between any two complex-valued demands. More precisely, a PTAS is
presented for the case φ ∈ [0, π

2
], a bi-criteria FPTAS for φ ∈ [0, π-δ] for

any polynomially small δ, assuming the number of time slots in the dis-
cretized time horizon is a constant. Furthermore, if the number of time
slots is polynomial, we present a reduction to the real-valued unsplit-
table flow on a path problem with only a constant approximation ratio.
Finally, we present a practical greedy algorithm for the single time slot
case with an approximation ratio of 1

2
cos φ

2
, while the running time is

O(n log n), which can be implemented efficiently in practice.

Keywords: Algorithms · Scheduling · Smart grid · Unsplittable flow ·
Knapsack

1 Introduction

One of the most important worldwide developments is to revolutionize the legacy
electricity grid infrastructure by upgrading to computationally smarter grid,
which will be capable of managing a diversity of distributed generations and
renewable energy sources. A key aspect of the emerging smart grid is to optimize
power supply to match consumers’ demands. Microgrids are typically medium-
to-low voltage networks with integrated distributed generation. A microgrid could
c© Springer International Publishing Switzerland 2016
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run short of power supply due to emergency conditions, high purchase price in the
bulk market, or renewable fluctuation over time. Thus, consumers with deferrable
loads such as electric vehicles or dishwashers can be scheduled efficiently to
match the available supply. This, in fact, models the day-ahead electric market
at the distribution network whereby customers provide their deferrable demand
preferences along with the amount they are willing to pay, and the grid operator
decides the best allocation.

Although resource allocation and scheduling mechanisms have been well-
studied in many systems from transportation to communication networks, the
rise of the smart grid presents a new range of algorithmic problems, which are a
departure from these systems. One of the main differences is the presence of peri-
odic time-varying entities (e.g., current, power, voltage) in AC electric systems,
which are often expressed in terms of non-positive real, or even complex numbers.
In power terminology [13], the real component of the complex number is called
the active power, the imaginary is known as reactive power, and the magnitude
as apparent power. For example, purely resistive appliances have positive active
power and zero reactive power. Appliances and instruments with capacitive or
inductive components have non-zero reactive power, depending on the phase lag
with the input power. Machinery, such as in factories, has large inductors, and
hence has positive power demand. On the contrary, shunt-capacitor equipped
electric vehicle charging stations can generate reactive power.

We consider a variable power generation capacity over a discrete time hori-
zon. Every user of the smart grid is associated with a set of demand preferences,
wherein a demand is represented by a complex-valued number, a time inter-
val at which the demand should be supplied, and a utility value obtained if
the demand is satisfied. Some demands are inelastic (i.e., unsplittable) that are
either fully satisfied, or completely dropped. At each time slot, the magnitude
of the total satisfied demands among all different preferences should not exceed
the generation capacity of the power grid represented by the magnitude of the
aggregate complex-valued demand. This, in fact, captures the variation in supply
constraints over time in alternating current (AC) electric systems. This problem
captures the demand-response management in power systems.

Conventionally, demands in AC systems are represented by complex numbers
in the first and fourth quadrants of the complex plane. We note that our problem
is invariant when the arguments of all demands are shifted by the same angle. For
convenience, we assume the demands are rotated such that one of the demands
is aligned along the positive real axis. In realistic setting of power systems, the
active power demand is positive, but the power factor (i.e., the cosine of the
demand’s argument) is bounded from below by a certain threshold, which is
equivalent to restricting the argument of complex-valued demands.

We present approximation algorithms characterized by the maximum angle
φ between any two complex-valued demands. More precisely, we present a PTAS
for the case φ ∈ [0, π

2 ], a bi-criteria FPTAS for φ ∈ [0, π-δ] for any polynomially
small δ, assuming the number of time slots in the discretized time horizon is
constant. Furthermore, if the number of time slots is polynomial, we present a
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reduction to the unsplittable flow on a path problem [5] that adds only a constant
factor to the approximation ratio. We remark that the unsplittable flow problem
considers only real-valued demands which is indeed simpler than our setting.
Finally, we present a practical greedy algorithm for the single time slot case
with an approximation ratio of 1

2 cos φ
2 , and the running time is an order of

O(n log n), which can be implemented in real world power systems.
The paper is structured as followed. In Sect. 2, we briefly present the related

works. In Sect. 3, we provide the problem definitions and notations needed. Then
we present algorithms for the case of a constant number of time slots in Sect. 4,
namely, a PTAS for φ ∈ [0, π

2 ] and an FPTAS for φ ∈ [0, π-δ]. In Sect. 5 we
present the reduction to the unsplittable flow problem for the case of a polyno-
mial number of time slots. Our greedy algorithm is provided in Sect. 6, followed
by the conclusion in Sect. 7. Due to the lack of space, all proofs are omitted and
provided in the technical report [17].

2 Related Work

Several recent studies consider resource allocation with inelastic demands. For
a single time slot case, our problem resembles the complex-demand knapsack
problem (CKP) [23]. Let φ be the maximum angle between any complex val-
ued demands. Yu and Chau [23] obtained a 1

2 -approximation for the case where
0 ≤ φ ≤ π

2 . Woeginger [22] (also [23]) proved that no fully polynomial-time
approximation scheme (FPTAS) exists for CKP. Recently, Chau et al. [6]1

provided a polynomial-time approximation scheme (PTAS), and a bi-criteria
FPTAS (allowing constraint violation) for π

2 < φ < π − δ, which closes the
approximation gap. It is shown that when φ ∈ (π

2 , π], there is no α-approximation
to CKP for any α with polynomial number of bits [19]. Additionally, when δ is
arbitrarily close to zero (i.e., φ → π) there is no (α, β)-approximation in gen-
eral for any α, β with polynomial number of bits. Therefore, the PTAS and the
bi-criteria FPTAS [6] are the best approximation possible for CKP.

Elbassioni and Nguyen [11] extended CKP to handle a constant number of
quadratic (and linear) constraints. A fast greedy algorithm is provided in [15] for
solving CKP (with a single quadratic constraint) that runs in O(n log n), and
achieves a constant approximation ratio. A recent work [18] extends the greedy
algorithm to solve the optimal power flow problem (OPF), a generalization of
CKP to a networked setting including voltage constraints.

When the demands are real-valued, our problem considering multiple time
slots is related to the unsplittable flow problem on a path (UFP). In UFP, each
demand is associated with a unique path from a source to a sink. UFP is strongly
NP-hard [9]. A Quasi-PTAS is obtained by Bansal et al. [2]. Anagnostopoulos
et al. [1] obtained a 1/(2 + ε)-approximation (where ε > 0 is a constant). This
matched the previously known approximation with the no bottleneck assumption
(NBA) [8], i.e., the largest demand is at most the smallest capacity. The UFP
with bag constraints (bag-UFP) is the generalization of UFP where each users
1 The complete work is provided in a technical report [7].
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has a set of demands among which at most one is selected [4]. This problem
is APX-hard even in the case of unit demands and capacities [21]. Under the
NBA assumption, Elbassioni et al. [10] obtained a 1

65 -approximation which was
later improved by Chakrabarthi et al. [4] to 1

17 . Recently, Grandoni et al. [14]
obtained an O(log n/ log log n)−1-approximation without NBA. A constant fac-
tor approximation to bag-UFP remains an interesting open question.

When the number of time slots is constant, our problem generalizes CKP (see
[6]) to multiple time slots, and also extends that of [11] by considering multiple
demands per user, adding n extra constraints. We also include elastic demands,
i.e., demands that can be partially satisfied, along with inelastic demands in
the problem formulation. Furthermore, for the case of a polynomial number of
time slots, our problem is a generalization of the unsplittable flow problem on
paths to accommodate complex-valued demands. Finally, we extend the greedy
algorithm in [15] (for the single time slot case) to handle multiple demands per
user keeping the same approximation ratio and running time.

3 Problem Definitions and Notations

In this section we formally define the complex-demand scheduling problem.
Throughout this paper, we denote νR as the real part and νI as the imagi-
nary part of a given complex number ν. The magnitude of ν is denoted by |ν|.
Unless we state otherwise, we denote μt (and sometimes μ(t) whenever we use
subscripts for other purposes) as the t-th component of the sequence μ.

3.1 Complex-Demand Scheduling Problem

We consider a discrete time horizon denoted by T � {1, ...,m}. At each time slot
t ∈ T , the generation capacity of the power grid is denoted by Ct ∈ R+ (where
0 ∈ R+). Denote N � {1, ..., n} by the set of all users. Each user k ∈ N declares
a set of demand preferences indexed by the set Dk, among which at most one
inelastic demand is selected (see Cons. 3 below). Each demand j ∈ Dk is defined
over a time interval Tj ⊆ T , that is, Tj = {t1, t1 + 1, ..., t2} where t1, t2 ∈ T and
t1 ≤ t2. Demand j is also associated with a set of complex numbers {sk,j(t)}t∈Tj

where sk,j(t) � sRk,j(t) + isIk,j(t) ∈ C is a complex power demand at time t. A
positive utility uk,j is associated with each user demand (k, j) if satisfied.

Some user demands are inelastic, denoted by I ⊆ N × ⋃
k Dk, which are

required to be either fully satisfied or fully dropped. The rest of demands,
denoted by F ⊆ N × ⋃

k Dk such that F ∩ I = ∅, are elastic demands, which
can be partially satisfied. The goal is to decide a solution of control variables(
(xk,j)(k,j)∈I , (xk,j)(k,j)∈F

) ∈ {0, 1}|I| × [0, 1]|F| that maximizes the total utility
of satisfiable users subject to the generation capacity over time. We define the
complex-demand scheduling problem over m discrete time slots (m-CSP) by the
following mixed integer programming problem.

(m-CSP) max
∑

k∈N

∑

j∈Dk

uk,jxk,j (1)
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subject to
∣
∣
∣
∑

k∈N

∑

j∈Dk:Tj�t

sk,j(t) · xk,j

∣
∣
∣ ≤ Ct, ∀t ∈ T (2)

∑

j∈Dk

xk,j ≤ 1, ∀k ∈ N (3)

xk,j ∈ {0, 1} ∀(k, j) ∈ I and xk,j ∈ [0, 1] ∀(k, j) ∈ F . (4)

Cons. 2 captures the capacity constraint, and Cons. 3 forces at most one inelas-
tic demand for every user to be selected (since each inelastic demand (k, j) is
associated with a discrete variable xk,j ∈ {0, 1}).

1-CSP (i.e., |T | = 1) is called the complex-demand knapsack, denoted by
CKP. (We drop subscripts t and j when |T | = 1 and |Dk| = 1 for all k ∈ N .) Evi-
dently, m-CSP is NP-complete, because the knapsack problem is a special case
when we set all sIk,j(1) = 0, T = {1}, and |Dk| = 1. We will write m-CSP[φ1, φ2]
for the restriction of problem m-CSP subject to φ1 ≤ maxk∈N arg(sk) ≤ φ2,
where arg(sk) ≥ 0 for all k ∈ N .

3.2 Approximation Algorithms

Given a solution x � (xk,j)k∈N ,j∈Dk
, we denote the total utility by u(x) �∑

k∈N
∑

j∈Dk
uk,jxk,j . We denote an optimal solution to m-CSP by x∗ and

Opt � u(x∗).

Definition 1. For α ∈ (0, 1] and β ≥ 1, we define a bi-criteria (α, β)-
approximation to m-CSP as a solution x̂ =

(
(x̂k,j)(k,j)∈I , (x̂k,j)(k,j)∈F

) ∈
{0, 1}|I| × [0, 1]|F| satisfying Cons. 3-4, and

∣
∣
∣
∑

k∈N

∑

j∈Dk:Tj�t

sk,j(t)x̂k,j

∣
∣
∣ ≤ β · Ct for all t ∈ T (5)

such that u(x̂) ≥ αOpt.

In the above definition, α characterizes the approximation ratio between an
approximate solution and the optimal solution, whereas β characterizes the
violation bound of constraints. In particular, a polynomial-time approximation
scheme (PTAS) is a (1 − ε, 1)- approximation algorithm for any ε > 0. The
running time of a PTAS is polynomial in the input size for every fixed ε, but
the exponent of the polynomial might depend on 1/ε. An even stronger notion
is a fully polynomial-time approximation scheme (FPTAS), which requires the
running time to be polynomial in both input size and 1/ε. In this paper, we are
interested in bi-criteria FPTAS, which is a (1, 1 + ε)-approximation algorithm
for any ε > 0, with the running time to be polynomial in the input size and 1/ε.
When β = 1, we call an (α, β)-approximation an α-approximation.
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4 m-CSP with a Constant Number of Time Slots

In this section we assume the number of time slots |T | is a constant. This assump-
tion is practical in the realistic setting, where users declare their demands on
hourly basis one day ahead (i.e., |T | = 24) [12]. We remark that the results in
this section do not require Tj to be a continuous interval in T .

4.1 PTAS for m-CSP[0, π
2
]

Define a convex relaxation of m-CSP (denoted by rlxCSP), such that Cons. 4
is relaxed by xk,j ∈ [0, 1] for all (k, j) ∈ I ∪ F . Given two subsets of inelastic
demands S1, S0 ⊆ I, we define another convex relaxation that will be used in
the PTAS denoted by rlxCSP[S1, S0]. This is equivalent to rlxCSP subject
to partial substitution such that xk,j = 1, for all (k, j) ∈ S1 and xk,j = 0, for all
(k, j) ∈ S0, where S1 ∩ S0 = ∅:

(rlxCSP[S1, S0]) max
xk,j

∑

k∈N

∑

k∈Dk

uk,jxk,j , such that (6)

( ∑

k∈N

∑

j∈Dk:t∈Tj

sRk,j(t) xk,j

)2
+
( ∑

k∈N

∑

j∈Dk:t∈Tj

sIk,j(t) xk,j

)2
≤ C2

t , ∀t ∈ T (7)

∑

j∈Dk

xk,j ≤ 1, ∀k ∈ N (8)

xk,j = 1 ∀(k, j) ∈ S1 (9)
xk,j = 0, ∀(k, j) ∈ S0 (10)
xk,j ∈ [0, 1] ∀(k, j) ∈ (F ∪ I). (11)

The above relaxation can be solved approximately in polynomial time using
standard convex optimization algorithms (see, e.g., [20]). In fact, such algo-
rithms can find a feasible solution xcx to the convex relaxation such that
u(xcx) ≥ Opt∗ − γ, where γ is a constant and Opt∗ is the optimal objec-
tive value of rlxCSP[S1, S0], in time polynomial in the input size (including
the bit complexity) and log 1

γ . Notice that we can obtain (1 − ε
2 )-approximation

(i.e., u(xcx) ≥ (1 − ε
2 ) · Opt∗) using such algorithms, by setting γ to ε

2 .
We provide a (1− ε)-approximation for m-CSP[0, π

2 ] in Algorithm 1, denoted
by m-CSP-PTAS. The idea of m-CSP-PTAS is based on that proposed in [11]
with two extensions. First, we consider multiple demands per user. This in fact
adds n extra constraints to that in [11], and thus the rounding procedure requires
further analysis. The second extension is the addition of elastic demands F . We
remark that [6] considers multiple inelastic demands per user for the single time
slot case (denoted by CKP); however, their algorithm is based on a completely
different geometric approach that is more complicated than that in [11].

Given a feasible solution x∗ to rlxCSP[S1, S0], a restricted set of demands
R ⊆ I∪F , and vectors CR, CI ∈ Rm

+ , we define the following relaxation, denoted



502 M. Khonji et al.

by LP[CR, CI, x∗, R]:

(LP [CR, CI, x∗, R]) max
xk,j∈[0,1]

∑

k∈N

∑

j∈Dk

uk,jxk,j (12)

subject to
∑

k∈N

∑

j∈Dk:t∈Tj

sRk,j(t) · xk,j ≤ CR
t , ∀t ∈ T (13)

∑

k∈N

∑

j∈Dk:t∈Tj

sIk,j(t) · xk,j ≤ CI
t , ∀t ∈ T (14)

∑

j∈Dk

xk,j ≤ 1, ∀k ∈ N (15)

xk,j = x∗
k,j ∀(k, j) ∈ R. (16)

Algorithm 1 proceeds as follows. We guess S1 ⊆ I to be the 8m
ε largest

inelastic utility demands in the optimal solution; this defines an excluded set of
demands S0 ⊆ I \S1 whose utilities exceed one of the utilities in S1 (Line 4). For
each such S1 and S0, we solve the convex program rlxCSP[S1, S0] and obtain
a (1 − ε

2 )-approximation xcx (note that the feasibility of the convex program
is guaranteed by the conditions in Line 3). We remark that rlxCSP[S1, S0] is
convex only when sRk,j(t), s

I
k,j(t) ≥ 0, i.e., all demands lie in the first quadrant

of the complex plane. The real and imaginary projections over all time slots
of solution xcx, denoted by CR ∈ Rm

+ and CI ∈ Rm
+ , are used to define the

linear program LP[CR, CI, xcx,F ∪ S1 ∪ S0] over the restricted set of demands
F ∪ S1 ∪ S0. We solve the linear program in Line 8, and then round down the
solution corresponding to demands (k, j) ∈ I in Line 9. Finally, we return a
solution x̂ that attains maximum utility among all obtained solutions.

Algorithm 1. m-CSP-PTAS[{uk,j , {sk,j(t)}t∈Tj
}k∈N ,j∈Dk

, (Ct)t∈T , ε]
Require: Users’ utilities and demands {uk,j , {sk,j(t)}t∈Tj

}k∈N ,j∈Dk
; capacity over time Ct;

accuracy parameter ε
Ensure: (1 − ε)-solution x̂ to m-CSP[0, π

2
]

1: x̂ ← 0
2: for each set S1 ⊆ I such that |S1| ≤ 8m

ε
do

3: if
∣∣∣

∑

(k,j)∈S1:t∈Tj

sk,j(t)
∣∣∣ ≤ Ct and

∑

j∈Dk

xk,j ≤ 1, ∀t ∈ T , ∀k ∈ N then

4: S0 ← {(k, j) ∈ I \ S1 | uk,j > min(k′,j′)∈S1 uk′,j′}
5: xcx ← Solution of rlxCSP[S1, S0] � Obtain a (1 − ε

2
)-approximation

6: for all t ∈ T do

7: CR
t ←

∑

k∈N

∑

j∈Dk:t∈Tj

sRk,j(t) · xcx
k,j ; CI

t ←
∑

k∈N

∑

j∈Dk:t∈Tj

sIk,j(t) · xcx
k,j

8: xlp ← Solution of LP[CR, CI, xcx, F ∪ S1 ∪ S0]
� Round the LP solution

9: x̄ ← {(x̄k,j)k∈N ,j∈Dk
| x̄k,j = �xlp

k,j	 for (k, j) ∈ I, and x̄k,j = xlp
k,j for (k, j) ∈ F}

10: if u(x̄) > u(x̂) then x̂ ← x̄

11: return x̂



Complex-Demand Scheduling Problem 503

Theorem 1. For any fixed ε, Algorithm1 obtains a (1 − ε, 1)-approximation in
polynomial time.

We remark that the PTAS is the best approximation one can hope for, since
it is shown in [22,23] that it is NP-Hard to obtain an FPTAS for the single time
slot version (1-CSP[0, π

2 ]).

4.2 Bi-Criteria FPTAS for m-CSP[0, π-δ]

In the previous section, we have restricted our attention to the setting where all
demands lie in the positive quadrant of the complex plane (i.e., m-CSP[0, π

2 ]).
In this section, we extend our study to the second quadrant (m-CSP[0, π-δ]) for
any arbitrary small constant δ > 0, that is, we assume arg(sk,j(t)) ≤ π−δ for all
k ∈ N , j ∈ Dk, t ∈ Tj . It is shown in [19] for the case |T | = 1 that m-CSP[0, π] is
inapproximable and there is no α-approximation for m-CSP[0, π-δ]. Therefore, a
bi-criteria (1, 1+ε) is the best approximation one can hope for. Additionally, it is
shown that if δ is arbitrarily close to zero, then there is no (α, β)-approximation
in general for any α, β with polynomial number of bits. Furthermore the running
time should depend on the maximum angle φ � maxk∈N ,j∈Dk,t∈Tj

arg(sk,j(t)).
This algorithm is an extension of that presented by [6] to multiple time slots and
also incorporates elastic demands. We consider the following technical assump-
tions: for any user k,

(i) if (k, j) ∈ F , then user k has a unique demand (i.e., |Dk| = 1)2; and
(ii) all demands sk,j(t), j ∈ Dk reside in one quadrant of the complex plane.

For convenience, we let θ = max{φ − π
2 , 0} (see Fig. 1 for an illustration). We

present a (1, 1 + ε)-approximation for m-CSP[0, π-δ] in Algorithm2, denoted
by m-CSP-biFPTAS, that is polynomial in both 1

ε and n (i.e., FPTAS). We
assume that tan θ is bounded by a polynomial in n; without this assumption, a
bi-criteria FPTAS is unlikely to exist (see [19]).

Fig. 1. We measure θ = φ − π
2

from the imaginary axis.

2 This assumption is mainly needed for the dynamic program that is invoked by Algo-
rithm 2.
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Let N+ � {k ∈ N | sRk,j(t) ≥ 0,∀j ∈ Dk, t ∈ Tj} and N− � {k ∈ N |
sRk,j(t) < 0,∀j ∈ Dk, t ∈ Tj} be the subsets of users with demands in the first
and second quadrants, respectively. Note that N+ and N− partition the set of
users N by assumption (ii) above.

Consider any solution x̂ to m-CSP[0, π-δ]. The basic idea of Algorithm
m-CSP-biFPTAS is to enumerate the guessed total projections on real
and imaginary axes of all time slots for

∑
k∈N+

∑
j∈Dk:t∈Tj

x̂k,jsk,j(t) and
∑

k∈N−

∑
j∈Dk:t∈Tj

x̂k,jsk,j(t) respectively. We can use tan θ to upper bound
the total projections for any feasible solution x̂ as follows, for all t ∈ T :

∑

k∈N

∑

j∈Dk:t∈Tj

sIk,j(t) · x̂k,j ≤ Ct,
∑

k∈N−

∑

j∈Dk:t∈Tj

−sRk,j(t) · x̂k,j ≤ Ct tan θ,

∑

k∈N+

∑

j∈Dk:t∈Tj

sRk,j(t) · x̂k,j ≤ Ct(1 + tan θ), (17)

which is illustrated in Fig. 1. We then solve two separate multi-dimensional
knapsack problems of dimension 2m (denoted by 2mDKP), to find subsets of
demands that satisfy the individual guessed total projections. But since 2mDKP
is generally NP-hard, we need to round-up the demands to get a problem that can
be solved efficiently by dynamic programming. We show that the violation of the
optimal solution to the rounded problem w.r.t. the original problem is small in ε.

Next, we describe the rounding in detail. First, we define Lt �
εCt

n(tan θ+1) , for all t ∈ T such that the new rounded-up demands ŝk,j(t) are
defined by:

ŝk,j(t) = ŝRk,j(t) + iŝIk,j(t) �

⎧
⎪⎨

⎪⎩

⌈
sR
k,j(t)

Lt

⌉
· Lt + i

⌈
sI
k,j(t)

Lt

⌉
· Lt, if sRk,j(t) ≥ 0,

⌊
sR
k,j(t)

Lt

⌋
· Lt + i

⌈
sI
k,j(t)

Lt

⌉
· Lt, otherwise.

(18)
We also define R � ε

3n(tan θ+1)2 , such that the values of any elastic xk,j , (k, j) ∈
F are selected from the discrete set R of integer multiples of R defined by

R �
{
0, 1R, 2R, ..., (
 1

R� − 1)R, 1
}

.

Let ξ+ ∈ Rm
+ (and ξ− ∈ Rm

+ ), ζ+ ∈ Rm
+ (and ζ− ∈ Rm

+ ) be respectively the
guessed real and imaginary absolute total projections of the rounded optimal
solution.

Then the possible values of ξ+, ξ−, ζ+ and ζ− in each component t are integer
mutiples of (R · Lt):

ξ+(t) ∈ A+(t) �
{

0, (RLt), 2(RLt), . . . ,
⌈

Ct(1 + tan θ)
RLt

⌉

· (RLt)
}

,

ξ−(t) ∈ A−(t) �
{

0, (RLt), 2(RLt), . . . ,
⌈

Ct · tan θ

RLt

⌉

· (RLt)
}

,

ζ+(t), ζ−(t) ∈ B(t) �
{

0, (RLt), 2(RLt), . . . ,
⌈

Ct

RLt

⌉

· (RLt)
}

. (19)
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The next step is to solve the rounded instance exactly. Assume an arbitrary
order on N = {1, ..., n}. We use recursion to define a table, with each entry
U(k,CR, CI), CR, CI ∈ Rm

+ , as the maximum utility obtained from a subset of
users {1, 2, . . . ,K} ⊆ N with demands {ŝk,j(t)}k∈{1,...,K},j∈Dk,t∈Tj

that can fit
exactly within capacities {CR

t }t∈T on the real axis and {CI
t}t∈T on the imaginary

axis. We denote by 2mDKP-Exact[·] the algorithm for solving exactly the
rounded 2mDKP by dynamic programming. We provide the detailed description
of 2mDKP-Exact[·] in the appendix.

Algorithm 2. m-CSP-biFPTAS[{uk,j , {sk,j(t)}t∈Tj
}k∈N ,j∈Dk

, (Ct)t∈T , ε]
Require: Users’ utilities and demands {uk,j , {sk,j(t)}t∈Tj

}k∈N ,j∈Dk
; capacity over time Ct; accu-

racy parameter ε

Ensure: (1, 1 + 4ε)-solution x̂ to m-CSP[0, π-δ]

1: x̂ ← 0

2: for all sk,j(t), k ∈ N , j ∈ Dk, and t ∈ Tj do

3: Set ŝk,j(t) ← ŝR
k,j(t) + iŝI

k,j(t) as defined by 18 � Round up

4: for all ξ+ ∈ ∏t∈T A+(t), ξ− ∈ ∏t∈T A−(t), ζ+, ζ− ∈ ∏t∈T B(t) do

5: if
(
ξ+(t) − ξ−(t)

)2 +
(
ζ+(t) + ζ−(t)

)2 ≤ (1 + 2ε)2C2
t for all t ∈ T then

� Solve 2mDKP

6: y+ ←2mDKP − Exact
(

{uk,j , (ŝk,j(t)/Lt)t}k∈N+,j∈Dk
,
(
ξ+(t)/Lt

)
t
,
(
ζ+(t)/Lt

)
t

)

7: y− ←2mDKP − Exact
(

{uk,j , (−ŝk,j(t)/Lt)t}k∈N−,j∈Dk
,
(
ξ−(t)/Lt

)
t
,
(
ζ−(t)/Lt

)
t

)

8: if u(y+ + y−) > u(x̂) then

9: x̂ ← y+ + y−
10: return x̂

Theorem 2. Algorithm m-CSP-biFPTAS is a (1, 1 + 4ε)-approximation for
m-CSP[0, π-δ] and its running time is polynomial in both n and 1

ε .

5 m-CSP[0, π
2
] with Polynomial number of Time Slots

In this section, we extend our results to polynomial number of time slots |T |. We
assume in this section that all demands lie in the first quadrant of the complex
plane (i.e., φ � maxk arg(sk) ≤ π

2 ). We provide a reduction to the unsplit-
table flow problem on a path with bag constraints (bag-UFP) for which recent
approximation algorithms are developed in the literature [3,10,14]. We remake
that bag-UFP considers only real-valued demand, wherein m-CSP demands are
complex-valued. We will show that such a reduction will increase the approx-
imation ratio of bag-UFP by a constant factor of cos φ

2 , where φ ≤ π
2 is the

maximum argument of any demand. To this extent, we will restrict our setting
by the following assumptions to accommodate the setting of bag-UFP:
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(i) We assume constant demands over time: sk,j(t) = sk,j(t′) for any t, t′ ∈ Tj .
To simplify notations, we will write sk,j to denote the unique demand over
all time steps Tj .

(ii) All demands are inelastic, i.e., F = ∅.

For convenience, we will call our problem m-CSP′ when restricted to the
above assumptions. When all demands in m-CSP′ are real-valued, the problem
is equal to bag-UFP. We denote m-CSP∗ (resp., bag-UFP∗) as the linear
relaxation of m-CSP′ (resp., bag-UFP), that is, xk,j ∈ [0, 1] for all k ∈ N ,
j ∈ Dk. Let Opt and Opt be the optimal objective value of m-CSP′ and bag-
UFP, respectively. Also denote Opt∗ and Opt

∗
by the optimal objective value

of m-CSP∗ and bag-UFP∗ respectively.
We will show in Lemma 1 and Theorem 3 below that one can use the algo-

rithms developed for bag-UFP with bounded integrality gap to obtain approx-
imate solutions to m-CSP′[0, π

2 ].

Lemma 1. Given a solution x̄ ∈ {0, 1}n to bag-UFP such that u(x̄) ≥ ψ·Opt
∗
,

ψ ∈ [0, 1] then x̄ is feasible for m-CSP′[0, π
2 ] and u(x̄) ≥ ψ cos φ

2 · Opt.

We can apply Lemma 1 using the recent LP-based algorithm by Grandoni et
al. [14] to obtain the following result.

Theorem 3. Assume φ ≤ π
2 , there exists an Ω(log n/ log log n)-approximation

for m-CSP′[0, π
2 ]. Additionally, if all demands have the same utility, we obtain

Ω(1)-approximation.

Prior work has addressed an important restriction of UFP (also bag-UFP)
called the no bottleneck assumption (NBA), namely, maxk∈N , j∈Dk

|sk,j | ≤
Cmin � mint Ct states that the largest demand is at most the smallest capac-
ity over all time slots. Define the bottleneck time of demand (k, j) by bk,j �
arg mint∈Tj

Ct. Given a constant δ ∈ [0, 1], we call a demand (k, j) δ-small if
|sk,j | ≤ δCbk,j

, otherwise we call it δ-large. We remark that NBA naturally
holds in smart grids since individual demands are typically much smaller than
the generation capacity over all time slots. In the following, we show that there
exists an Ω(1)-approximation for m-CSP′[0, π

2 ]. This is achieved by splitting
demands to δ-small and δ-large and solving each instance separately then tak-
ing the maximum utility solution. The next lemma is an extension to an earlier
work by Chakrabarti et al. [5] (to accommodate complex-valued demands) used
to derive a dynamic program that approximates δ-large demands.

Lemma 2. The number of δ-large demands that cross an edge in any feasible
solution is at most 2� 1

δ2 · sec φ
2 
.

Theorem 4. Under the NBA assumption, there exists an Ω(1)-approximation
for m-CSP′[0, π

2 ]. The running time is O(n̄2), where n̄ �
∑

k∈N |Dk|.
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6 Practical Greedy Approximation for 1-CSP[0, π
2
]

In this section we give a practical greedy constant-factor approximation algo-
rithm, presented in Algorithm3, and denoted by 1-CSP-Greedy, for the sin-
gle time slot case (1-CSP[0, π

2 ]) where |T | = 1. Our algorithm is an extension
of MCKP-Greedy algorithm introduced in [16] (in chapter 11). Despite the
theoretical value of the PTAS and FPTAS presented in Sect. 4 (particularly,
|T | = 1), the running time is quite large and hence impractical for real world
applications. On the other hand, Algorithm achieves

(
1
2 cos φ

2

)
-approximation

only in O(n̄ log n̄) time for 1-CSP, where n̄ �
∑

k∈N |Dk|.
Algorithm 3 starts by sorting demands in each set Dk in a non-decreasing

order of their utilities and successively testing for LP-dominance. The concepts
of dominance and LP-dominance are covered in detail in chapter 11 of [16]. Once
LP-dominated items are determined and eliminated, Algorithm 3 computes the
incremental utilities of the reduced user set and orders users in a non-decreasing
order of their incremental efficiencies (i.e., utility to demand ratio). Algorithm 3
then selects users sequentially in that order whenever feasible. Lastly, 1-CSP-
Greedy returns the best out of two candidate solutions: the greedily obtained
solution or the highest utility user. We remark that such a simple greedy algo-
rithm can be also used as a fast heuristic for multiple time slots. For instance, in
the setting where users arrive online, 1-CSP-Greedy could be applied to each
time slot, after reducing the capacity by the magnitude of demands consumed
in previous time slots.

Algorithm 3. 1-CSP-Greedy[{uk,j , sk,j}k∈N ,j∈Dk
, C]

Require: Users’ utilities and demands {uk,j , sk,j}k∈N ,j∈Dk ; capacity C
Ensure: ( 1

2
cos φ

2
)-solution x̄ to 1-CSP

Initialization:
• Add a dummy demand with zero utility and zero demand to each set Dk, k ∈ N
• Sort demands in each set Dk, k ∈ N by their magnitude in a non-decreasing
order
• For each k ∈ N , define a new set Rk ⊆ Dk of LP-dominating demands (see [16]).
• E ← ∅, x̃ ← 0; x̃k,1 ← 1 for all k ∈ N ; τ ← 0; x̂ ← 0

1: for k ∈ N , j = 2, ..., |Rk| do
2: ũk,j ← uk,j − uk,j−1; s̃k,j ← sk,j − sk,j−1; E ← E ∪ {(k, j)}
3: Sort items in E by their efficiency (

ũk,j

|s̃k,j | ) in a non-increasing order

4: for (k, j) ∈ E do
5: if

∣
∣τ + s̃k,j

∣
∣ ≤ C then

6: x̃k,j ← 1; x̃k,j−1 ← 0; τ ← τ + s̃k,j

7: else if (k, j) ∈ F then

8: x̃k,j ← arg max{0, C−|τ |
|s̃k,j | }; break

9: Set x̂k′,j′ ← 1 for (k′, j′) � arg maxj∈Rk,k∈N {uk,j}
10: Set x̄ ← arg maxx∈{x̂,x̃} u(x)
11: return x̄
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Theorem 5. Algorithm 1-CSP-Greedy is
(
1
2 cos φ

2

)
-approximation for

1-CSP[0, π
2 ]. The running time is O(n̄ log n̄), where n̄ �

∑
k∈N |Dk|.

7 Conclusion

This paper extends the previous results known for the single time slot case
(CKP) to a more general scheduling setting. When the number of time slots m
is constant, both the previously known PTAS and FPTAS are extended to han-
dle multiple-time slots, multiple user preferences, and handle mixed elastic and
inelastic demands. For polynomial m, a reduction is presented from CSP[0, π

2 ] to
the real-valued bag-UFP, which can be used to obtain algorithms for CSP[0, π

2 ]
based on bag-UFP algorithms that have bounded integrability gap for their
LP-relaxation. We further presented a practical greedy algorithm with efficient
running time that can be implement in real systems. As a future work, we shall
improve the second case (polynomial m) to a constant-factor approximation.
Additionally, we may consider different objective functions such as minimizing
the maximum peak consumption at any time slot.
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Abstract. We study the classical problem of scheduling a set of inde-
pendent jobs with release dates on a single machine. There exists a
huge literature on the preemptive version of the problem, where the
jobs can be interrupted at any moment. However, we focus here on the
non-preemptive case, which is harder, but more relevant in practice. For
instance, the jobs submitted to actual high performance platforms can-
not be interrupted or migrated once they start their execution (due to
prohibitive management overhead). We target on the minimization of
the total stretch objective, defined as the ratio of the total time a job
stays in the system (waiting time plus execution time), normalized by
its processing time. Stretch captures the quality of service of a job and
the minimum total stretch reflects the fairness between the jobs. So far,
there have been only few studies about this problem, especially for the
non-preemptive case. Our approach is based to the usage of the classical
and efficient for the preemptive case shortest remaining processing time
(SRPT) policy as a lower bound. We investigate the (offline) transfor-
mation of the SRPT schedule to a non-preemptive schedule subject to a
recently introduced resource augmentation model, namely the rejection
model according to which we are allowed to reject a small fraction of
jobs. Specifically, we propose a 2

ε
-approximation algorithm for the total

stretch minimization problem if we allow to reject an ε-fraction of the
jobs, for any ε > 0. This result shows that the rejection model is more
powerful than the other resource augmentations models studied in the
literature, like speed augmentation or machine augmentation, for which
non-polynomial or non-scalable results are known. As a byproduct, we
present a 1

ε
-approximation algorithm for the total flow-time minimiza-

tion problem which also rejects at most an ε-fraction of jobs.

1 Introduction

In this work we are interested in the analysis of an efficient algorithm for schedul-
ing jobs non-preemptively under the objective of minimizing the total (or average)
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stretch of the jobs. Stretch is the most relevant metric used in the context of
resource management in large scale parallel computing platforms. Informally, the
stretch of a job is the total time it spends in the system normalized by its process-
ing time. Thus, the average stretch over all the jobs represents a quality of service
measure in terms of fairness among the jobs. The jobs whose execution requires
more time are more appropriate to wait longer than short ones. Non-preemptive
scheduling policies are usually considered in computing platforms since practi-
cally, interrupting jobs during their execution is not allowed. This is due to signif-
icant communication overhead and extra memory costs that are induced by such
interruptions. However, from the combinatorial side, scheduling non-preemptively
is harder and as a consequence, a much less studied problem.

More formally, we consider the offline problem of scheduling a set J of n
independent jobs on a single machine. Each job j ∈ J is characterized by a
processing time pj and a release date rj . Given a schedule S, we denote by σS

j

and CS
j the starting time and completion time, respectively, of the job j. Then,

its flow time is defined as FS
j = CS

j − rj , that is the total time that j remains to

the system. The stretch of j in a schedule S is defined as sS
j = FS

j

pj
, that is the

flow time of j is normalized with respect to its processing time. When there is
no ambiguity, we will simplify the above notation by dropping S. Our objective
is to create a non-preemptive schedule that minimizes the total stretch of all
jobs in J , i.e.,

∑
j∈J sj . This problem is known as the total (or average) stretch

minimization problem.
The total stretch minimization problem is a special case of the total weighted

flow-time minimization problem where each job j ∈ J is additionally charac-
terized by a weight wj and the objective is to minimize

∑
j∈J wjFj . The above

problem reduces to the total stretch minimization problem if we consider that
wj = 1

pj
for each j ∈ J . Another closely related problem which is also a special

case of the total weighted flow-time minimization problem is the total flow-time
minimization problem in which the weights of all jobs are equal. Although total
flow-time and total stretch objectives do not have an immediate relation, the
latter is generally considered to be a more difficult problem since wj depends on
the job’s processing time, while in the former all the jobs have the same weight.

Based on the inapproximability results for different variants of the above
problems (see for example [2,16] and the related work below), Kalyanasundaram
and Pruhs [14] and Phillips et al. [18] proposed to study the effect of resource
augmentation, in which the algorithm is applied to a more powerful environ-
ment than the optimal one. For instance, in the machine augmentation model
the algorithm can use more machines than the optimal solution, while in the
speed augmentation model the algorithm can execute the jobs on faster machines
comparing to the machines of the optimal schedule. More specifically, given some
optimization objective (e.g., total weighted flow-time), an algorithm is said to be
�-machine ρ-approximation if it uses �m machines and it is a ρ-approximation
with respect to an optimal scheduling algorithm using m machines, for some
� > 1; similarly, we can define a v-speed ρ-approximation algorithm. Recently,
Choudhury et al. [10] proposed the rejection model, in which the algorithm can
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reject a bounded fraction of the jobs (or a set of jobs whose total weight is
a bounded fraction of the total weight of all jobs), while the optimal solution
should execute all the jobs of the instance. In this paper, we study the total
stretch minimization problem with respect to the rejection model.

Related Work. When preemptions are allowed, the well-known online Shortest
Remaining Processing Time (SRPT) strategy returns the optimal solution for
the total flow-time minimization problem [1] and a 2-competitive solution for
the total stretch minimization problem [17]. A polynomial time approximation
scheme has been also presented in [7] for the total stretch objective. On the other
hand, for the total weighted flow-time minimization problem, the best known
guarantee is given by a randomized algorithm which achieves an approximation
ratio of O(log log Δ) [5], where Δ is the ratio of the largest processing time over
the smallest processing time in the input instance. Furthermore, algorithms of
competitive ratios O(log W ) [4] and O(log2 Δ) [9] are known, while any algorithm

should have a competitive ratio Ω(min{
√

log W
log log W ,

√
log log Δ

log log log Δ}) [2], where W

is the ratio of the largest weight over the smallest weight in the input instance.
In the non-preemptive context, even for the objectives of total flow-time and

total stretch, the problem becomes much harder to approximate. Specifically,
there is no approximation algorithm for the total flow-time minimization problem
with ratio O(n

1
2−ε), for any ε > 0, unless P = NP [15]. On the other hand,

an algorithm that matches this ratio has been presented in the same paper.
In the online setting, in [9] it is mentioned that any algorithm should have a
competitive ratio Ω(n) even for the total flow-time objective. In [8], the greedy
online Shortest Processing Time (SPT) strategy is proven to be Δ+1

2 -competitive
for the total flow-time minimization problem and this ratio is the best possible for
this problem. Similarly, the weighted generalization of SPT is (Δ+1)-competitive
for the total weighted flow-time objective and this ratio is optimal [20].

In the resource augmentation framework, an (1 + ε)-speed O(1ε )-competitive
algorithm is known for the total weighted flow-time minimization problem when
preemptions are allowed [6]. In [11], an O( 1

ε12 )-competitive algorithm has been
presented for the total weighted flow-time objective which rejects an ε-fraction
of jobs; this result holds also for parallel machines.

If preemptions are not allowed, a 12-speed (2+ε)-approximation algorithm for
the total flow-time objective and a 12-speed 4-approximation algorithm for the
total weighted flow-time objective have been presented in [3]. In [13], a dynamic
programming framework has been presented that runs in quasi-polynomial time.
This framework works also for the parallel machine setting and leads to a (1+ε)-
speed and (1 + ε)-approximate solution for the total weighted flow-time mini-
mization problem and to a (1+ε)-speed and 1-approximate solution for the total
flow-time minimization problem. In [18], an O(log Δ)-machine 1-competitive
algorithm has been proposed for the total weighted flow-time objective even for
parallel processors. For the unweighted version, an O(log n)-machine (1 + o(1))-
competitive algorithm and an O(log n)-machine (1 + o(1))-speed 1-competitive
algorithm have been proposed in the same paper. Note that the algorithms in [18]
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work in the online setting but they need to know the minimum and the maxi-
mum processing times in advance. Moreover, an �-machine (1+Δ1/�)-competitive
algorithm designed in [12] for the total flow-time minimization problem, if Δ is
known a priori to the algorithm. They also provided a lower bound which shows
that their algorithm is optimal up to a constant factor for any constant �.

No results for the total stretch minimization problem without preemptions
in the resource augmentation context are known, except from the results that
derive from the more general problem of minimizing the weighted flow-time.

Contribution and Organization of the Paper. In this paper, we explore the
relation between preemptive and non-preemptive schedules with respect to the
total stretch objective subject to the rejection model. More specifically, we con-
sider the SRPT policy for creating a preemptive schedule. In Sect. 2 we describe
several structural properties of this schedule. Next, we show how to transform the
preemptive schedule created by the SRPT policy to a non-preemptive schedule
with given worst-case guarantees.

In Sect. 3, we use the rejection model and we give an 2
ε -approximation algo-

rithm if we are permitted to delete a subset of jobs such that their total weight
is an ε-fraction of the total weight of all jobs. Note that, the relation among
the rejection model and other resource augmentation models is not clear. For
example, in Fig. 1 we give an instance for which the best possible solution using
rejections is worse than the best possible solution using speed-augmentation,
when the same constant ε is selected for both models. However, our result shows
the strength of the rejection model, particularly in the non-preemptive context,
since the known results subject to other resource augmentation models either
need quasi-polynomial time [13] or they cannot arrive arbitrarily close to the

time

1 . . . k k+2 . . . 2k+1 2k+3 . . . 3k+2

0 (k + 1)(n − 1) (2k + 2)(n − 1)

Scheduling using rejections (reject the jobs k + 1 and 2k + 2)

time

1 2 . . . n

0 n − 1 (n − 1)(n − 1)

Scheduling using speed augmentation (use processing times equal to n − 1)

Fig. 1. An instance of n = 3k + 2 jobs with equal processing times pj = n, equal
weights wj = 1, and release dates rj = (j − 1)(n − 1), where 1 ≤ j ≤ n. By setting
ε = 1

n−1
, in the rejection model we are allowed to reject at most εn ≤ 2 jobs, while in

the speed augmentation model the processing time of each job becomes
pj

1+ε
= n − 1.

The total flow time using rejections is 3
∑k

j=1(n + j − 1) = 21
2

k2 + 9
2
k, while the total

flow time using speed augmentation is n(n−1) = 9k2 +9k +2 which is better for large
enough k.
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classical model without resource augmentation [3,18] even for the total flow-
time objective. Contrarily, our result is the best possible we can expect in the
rejection model.

Finally, using the same rejection strategy and analysis, we obtain an 1
ε -

approximation algorithm if we are allowed to delete an ε-fraction of jobs. We
conclude in Sect. 4. Before continuing, we give some additional notation which
we use throughout the paper.

Notations. In what follows, for each job j ∈ J and schedule S, we define the
interval [σS

j , CS
j ] to be the active interval of j in S. In the case where preemptions

are allowed, the active interval of j may have a length bigger than pj . A job j is
available at a time t if it is released but it is not yet completed, i.e., rj ≤ t < Cj .
We call a schedule compact if it does not leave any idle time whenever there is
a job available for execution.

2 Structure and Properties of SRPT and an Intermediate
Schedule

In this section we deal with the structure of a preemptive schedule created by
the Shortest Remaining Processing Time (SRPT) policy and we give some useful
properties that we will use in the following sections. According to the SRPT
policy, at any time, we select to execute the available job with the shortest
remaining processing time. Since the remaining processing time of the executed
job j ∈ J decreases over time, its execution may be interrupted only in the case
where a new job k ∈ J is released and the processing time of k is smaller than
the remaining processing time of j at rk. Hence, the SRPT policy can be seen
as an event-driven algorithm in which at each time t where a job is released or
completed we should take a decision about the job that we will execute at t and
we always select the one with the shortest remaining processing time. In case
of ties, we assume that SRPT resumes the partially executed job, if any, with
the latest starting time; if all candidate jobs are not processed before, then we
choose among them the job with the earliest release time.

Kellerer et al. [15] observed that in the schedule produced by the SRPT
policy, for any two jobs j and k, their active intervals are either completely
disjoint or the one contains the other. Moreover, there is no idle time during
the active interval of any job. Based on the above, the execution of the jobs in
the SRPT schedule has a tree-like structure. More specifically, we can create a
graph which consists of a collection T of out-trees and corresponds to the SRPT
schedule as follows (see Fig. 2): for each job j ∈ J , we create a vertex uj . For
each pair of jobs j, k ∈ J , we add an arc (uj , uk) if and only if [σk, Ck] ⊂ [σj , Cj ]
and there is no other job i ∈ J so that [σk, Ck] ⊂ [σi, Ci] ⊂ [σj , Cj ].

In what follows, we denote by root(T ) the root of each out-tree T ∈ T .
Intuitively, each vertex root(T ) corresponds to a job for which at any time t
during its execution there is no other job which has been partially executed at
t. We denote also by a(j) the parent of the vertex that corresponds to the job



From Preemptive to Non-preemptive Scheduling Using Rejections 515

jobs 1 2 3 4 5 6

rj 0 3 6 7 14 16
pj 7 3 3 1 5 1

1 2 3 4 3 1 5 6 5

0 3 6 7 8 10 14 16 17 20

Shortest Remaining Processing Time (SRPT) schedule

1

2 3

4

5

6

Collection of out-trees

Fig. 2. A schedule created by the SRPT policy and its corresponding collection of
out-trees.

SRPT 1 2 3 4 3 1 5 6 5

0 3 6 7 8 10 14 16 17 20

QPO 1 2 4 3 5 6

0 7 10 11 14 19 20

Fig. 3. Transformation from SRPT to QPO schedule

j ∈ J in T. Moreover, let T (uj) be the subtree of T ∈ T rooted at a vertex uj

in T . Note that, we may refer to a job j by its corresponding vertex uj and vice
versa.

In this paper, we use the schedule created by the SRPT policy for the preemp-
tive variant of our problem as a lower bound to the non-preemptive variant. The
SRPT policy is known to be optimal [16,19] for the problem of minimizing the
sum

∑
j∈J Fj when preemptions of jobs are allowed. However, for the preemptive

variant of the total stretch minimization problem, SRPT is a 2-approximation
algorithm [17].

Consider now the collection of out-trees T obtained by an SRPT schedule
and let T (uj) be the subtree rooted at any vertex uj . We construct a non-
preemptive schedule for the jobs in T (uj) as follows: during the interval [σj , Cj ],
we run the jobs in T (uj) starting with j and then running the remaining jobs
in order of increasing SRPT completion time as shown in Fig. 3. This policy
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has been proposed in [8] for the problem of minimizing the sum
∑

j∈J Fj and
corresponds to a post order transversal of the subtree T (uj) excluding its root
which is scheduled in the first position. We call the above policy as Quasi Post
Order (QPO) and we will use it for the problem of minimizing the sum

∑
j∈J sj .

The following lemma presents several observations for the QPO policy.

Lemma 1. [8] Consider any subtree T (uk) which corresponds to a part of the
schedule SRPT and let QPO be the non-preemptive schedule for the jobs on
T (uk) created by applying the Quasi Post Order policy. Then,

(i) all jobs in QPO are executed during the interval [σSRPT
k , CSRPT

k ] without
any idle period,

(ii) σQPO
j ≥ rj for each uk in T (uk),

(iii) CQPO
j ≤ CSRPT

j + pk for each uj in T (uk) with j �= k, and
(iv) CQPO

k = CSRPT
k − ∑

uj∈T (uk):j �=k pj.

Note that, the schedule created by the SRPT policy is a compact schedule,
since it always execute a job if there is an available one. Therefore, by Lemma 1.i,
the following directly holds.

Corollary 1. The schedule created by the QPO policy is compact.

3 The Rejection Model

In this section we consider the rejection model. More specifically, given an ε ∈
(0, 1), we are allowed to reject any subset of jobs R ⊂ J whose total weight
does not exceed an ε-fraction of the total weight of all jobs, i.e.,

∑
j∈R wj ≤

ε
∑

j∈J wj . We will present our rejection policy for the more general problem of
minimizing

∑
j∈J wjFj .

Our algorithm is based on the tree-like structure of the SRPT schedule. Let
us focus first on a single out-tree T ∈ T . The main idea is to reject the jobs that
appear in the higher levels of T (starting with its root) and run the remaining
jobs using the QPO policy. The rejected jobs are, in general, long jobs which
are preempted several times in the SRPT schedule and their flow time can be
used as an upper bound for the flow time of the smaller jobs that are released
and completed during the life interval of the longest jobs. In order to formalize
this, for each job j ∈ J we introduce a charging variable xj . In this variable
we accumulate the weight of jobs whose flow time will be upper bounded by
the flow time of job j in the SRPT schedule. At the end of the algorithm, this
variable will be exactly equal to 1

ε wj for each rejected job j ∈ R, while xj < 1
ε wj

for each non-rejected job j ∈ J \ R. In fact, for most of the non-rejected jobs
this variable will be equal to zero at the end of the algorithm. Our algorithm
considers the jobs in a bottom-up way and charges the weight of the current job
to its ancestors in T which are closer to the root and their charging variable is
not yet full; that is the vertices to be charged are selected in a top-down way.
Note that, we may charge parts of the weight of a job to more than one of its
ancestors.
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Algorithm 1 describes formally the above procedure. For notational conve-
nience, we consider a fictive vertex u0 which corresponds to a fictive job with
w0 = 0. We connect u0 with the vertex root(T ) of each out-tree T ∈ T in such a
way that u0 becomes the parent of all of them. Let T ∗ be the created tree with
root u0.

Algorithm 1.
1: Create a preemptive schedule SRPT and the corresponding out-tree T ∗

2: Initialization: R ← ∅, xj ← wj for each j ∈ J , x0 ← 0
3: for each vertex uj of T ∗ with xj = wj in post-order traversal do
4: while xj �= 0 and xa(j) < 1

ε
wa(j) do

5: Let uk be a vertex in the path between u0 and uj such that
xa(k) = 1

ε
wa(k) and xk < 1

ε
wk

6: Let y ← min{xj ,
1
ε
wk − xk}

7: xj ← xj − y and xk ← xk + y
8: for each job j ∈ J do
9: if xj = 1

ε
wj then

10: Reject j, i.e., R ← R ∪ {j}
11: return S: the non-preemptive schedule for the jobs in J \ R using QPO

Note that, the for-loop in Lines 3–7 of Algorithm 1 is not executed for all jobs.
In fact, it is not applied to the jobs that will be rejected as well as to some children
of them for which at the end of the algorithm it holds that wj < xj < 1

ε wj .
The weight of these jobs is charged to themselves. Moreover, the while-loop in
Lines 4–7 of Algorithm 1 terminates either if the whole weight of j is charged to
its ancestors or if the parent of uj is already fully charged, i.e., xa(j) = 1

ε wa(j).

Theorem 1. For the schedule S created by Algorithm 1 it holds that

(i)
∑

j∈J \R
wjF

S
j ≤ 1

ε

∑

j∈J
wjF

SRPT
j , and

(ii)
∑

j∈R
wj ≤ ε

∑

j∈J
wj.

Proof. Consider first any vertex uk such that k ∈ J \ R and a(k) ∈ R. By the
execution of the algorithm, all the jobs corresponding to vertices in the path from
u0 to a(k) do not appear in S. Hence, k starts in S at the same time as in SRPT ,
i.e., σS

k = σSRPT
k . Thus, by Lemma 1, the jobs that correspond to the vertices

of the subtree T ∗(uk) are scheduled in S during the interval [σSRPT
k , CSRPT

k ].
In other words, for any job j in T ∗(uk) it holds that CS

j ≤ CSRPT
k , while by the

construction of T ∗ we have that σSRPT
k < rj . Assume now that the weight of j

is charged by Algorithm 1 to the jobs j1, j2, . . . , jqj , where qj is the number of
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these jobs. Let wi
j be the weight of j charged to ji ∈ {j1, j2, . . . , jqj}; note that

wj =
∑qj

i=1 wi
j . By the definition of the algorithm, each ji ∈ {j1, j2, . . . , jqj} is

an ancestor of both k and j in T ∗ (one of them may coincides with k). Therefore,
by the definition of T ∗, it holds that σSRPT

ji
< rj < CS

j ≤ CSRPT
ji

, for each
ji ∈ {j1, j2, . . . , jqj}. Then, we have

∑

j∈J \R
wjF

S
j ≤

∑

j∈J \R

qj∑

i=1

wi
jF

SRPT
ji ≤

∑

j∈J
xjF

SRPT
j ≤

∑

j∈J

1
ε
wjF

SRPT
j

where the second inequality holds by regrouping the flow time of all appearances
of the same job, and the last one by the fact that Algorithm 1 charges at each
job j at most (1 + 1

ε )wj . Finally, since the weight of each job is charged exactly
once (probably to more than one other jobs) we have

∑
j∈J wj ≥ 1

ε

∑
j∈R wj

and the theorem holds. ��
Since SRPT creates an optimal preemptive schedule for the problem of min-

imizing
∑

j∈J Fj on a single machine and an optimal preemptive schedule is a
lower bound for a non-preemptive one the following theorem holds.

Theorem 2. Algorithm 1 is a 1
ε -approximation algorithm for the single-machine

total flow-time minimization problem without preemptions if we are allowed to
reject an ε-fraction of the jobs.

By combining Theorem 1 and the fact that SRPT is a 2-approximation algo-
rithm for the preemptive variant of the total stretch minimization problem [17],
the following theorem holds.

Theorem 3. Algorithm 1 is a 2
ε -approximation algorithm for the single-machine

total stretch minimization problem without preemptions if we are allowed to reject
a set of jobs whose total weight is no more than an ε-fraction of the total weight
of all jobs.

4 Concluding Remarks

We studied the effects of applying resource augmentation in the transformation
of a preemptive schedule to a non-preemptive one for the problem of minimizing
total stretch on a single machine. Specifically, we show the power of the rejec-
tion model for scheduling without preemptions comparing with other resource
augmentation models, by presenting an algorithm which has a performance arbi-
trarily close to optimal. Note that, SRPT is a 14-competitive algorithm for min-
imizing total stretch on parallel machines when preemptions and migrations are
allowed [17]. So, an interesting question is to explore the general idea of this
paper about transforming preemptive to non-preemptive schedules subject to
the rejection model on parallel machines based on the above result.
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Abstract. We study the following flow shop scheduling problem on two
processors. We are given n jobs with a common deadline D, where each job
j has workload pi,j on processor i and a set of processors which can vary
their speed dynamically. Job j can be executed on the second processor if
the execution of job j is completed on the first processor. Our objective
is to find a feasible schedule such that all jobs are completed by the com-
mon deadline D with minimized energy consumption. For this model, we
present a linear program for the discrete speed case, where the processor
can only run at specific speeds in S = {s1, s2, · · · , sq} and the job execu-
tion order is fixed. We also provide a mα−1-approximation algorithm for
the arbitrary order case and for continuous speed model where m is the
number of processors and α is a parameter of the processor.

We then introduce a new variant of flow shop scheduling problem
called sense-and-aggregate model motivated by data aggregation in wire-
less sensor networks where the base station needs to receive data from
sensors and then compute a single aggregate result. In this model, the
first processor will receive unit size data from sensors and the second
processor is responsible for calculating the aggregate result. The second
processor can decide when to aggregate and the workload that needs to
be done to aggregate x data will be f(x) and another unit size data will
be generated as the result of the partial aggregation which will then be
used in the next round aggregation. Our objective is to find a schedule
such that all data are received and aggregated by the deadline with min-
imum energy consumption. We present an O(n5) dynamic programming
algorithm when f(x) = x and a greedy algorithm when f(x) = x − 1.

1 Introduction

Energy efficiency has become a major concern nowadays, especially when more
and more data centers are used. One of the technologies used to save energy is
speed-scaling where the processors are capable of varying its speed dynamically.
The faster the processors run, the more energy they consume. The idea is to
complete all the given jobs before their deadlines with the slowest possible speed
to minimize the energy usage.
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 520–531, 2016.
DOI: 10.1007/978-3-319-42634-1 42
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The energy minimization problem of scheduling n jobs with release times
and deadlines on a single processor that can vary its speed dynamically where
preemption is allowed has been first studied in the seminal paper by Yao et
al. [12]. The time complexity has been improved in [5,8,9]. More works along
this line can be found in the surveys by Albers [1,2].

On the other hand, researchers have also studied various shop scheduling
problems on multiple processors. For example, in the classical flow shop schedul-
ing on m processors, there exists dependencies on execution order between
processors for the same job, such that for each job j, it has to be completed
on processor i before being executed on processor i + 1 where 1 ≤ i ≤ m − 1.
This problem is known to turn NP-hard by adding constraints [3]. One of the
polynomial case is when there are two processors and one aims to minimize the
makespan, i.e. the completion time of the last job, which can be solved by a
greedy algorithm and is proposed by Johnson [6].

Recently, Mu and Li [10] combined the classical flow shop scheduling problem
with the speed-scaling model. They proposed a polynomial time algorithm for
the flow shop speed scaling problem for two processors when the order of jobs is
fixed. They also showed that the order returned by Johnson’s algorithm is not
optimal for the speed-scaling environment. Fang et al. [4] studied the flow shop
scheduling problem and aim to find an optimal order of jobs with a restriction on
peak power consumption, i.e. the energy consumption is bounded by a constant
for a fixed size interval at any time in the schedule.

Our contributions. In this paper, we first extend the study of combining the
classical flow shop scheduling problem and the speed-scaling model proposed
by Mu and Li [10] to the discrete speed setting where the processor can only
run at specific speeds in S = {s1, s2, · · · , sq} with predefined job execution
order. We present a linear program for this case and also give a simple mα−1-
approximation algorithm for the general case of flow shop scheduling problem
where job execution order is not given.

We then introduce a new variant of flow shop scheduling problem called sense-
and-aggregate model motivated by data aggregation in wireless sensor networks
where the base station needs to receive data from sensors and then compute a
single aggregate result like minimum, maximum or average value of all the input.
When dealing with these kinds of aggregation functions, we can either wait for
all the input data to be ready, or instead of waiting for all the input data, we can
collect part of the data, and compute the sub results. Eventually, we can compute
the final aggregation result based on the sub results that we computed previously.
The second approach will play a significant role in energy efficient computation.

In the sense-and-aggregate model, we simulate the aggregation calculation
in the setting of two processors, where the first processor performs the data
collection task, and the second processor is responsible for the calculations. Note
that both processors can change speeds when executing workloads. We are given
a set of n unit jobs in the first processor and the workload-consideration-function
f(x) to indicate the amount of workload that the second processor will process
to aggregate x units of data and a deadline D. After each aggregation, one unit
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of data will be produced which will be used in the next partial aggregation.
There is a trade off between waiting and calculating. The more we wait, the
more we have to schedule faster (thus consuming more energy), but the less we
have to schedule for some function f . Based on this trade off, our objective is
to find a schedule with minimum energy consumption to aggregate all the data
by the deadline D. For this model, we present an O(n5) dynamic programming
algorithm when f(x) = x and a greedy algorithm when f(x) = x − 1.

The remainder of this paper is organized as follows. In Sect. 2, we present
the formulation of the standard flow shop speed scaling problem. In Sect. 3,
we propose the solution for the flow shop problem with discrete speed scaling
model where the job order is predefined. In Sect. 4, we present a lower bound
and approximation algorithm for the general setting of the flow shop speed scal-
ing problem. In Sect. 5, we define the sense-and-aggregate model and present a
greedy algorithm to solve the aggregation model when f(x) = x − 1, together
with a dynamic programming approach when f(x) = x.

2 Formulation of Standard Flow Shop with Speed Scaling

We are given m processors and n jobs with a common deadline D, where each
job j has workload pi,j on processor i. Each job has to be completed on processor
i before it can be performed on the next processor i + 1. The energy consump-
tion depends on the processor speed. If s(t) is the speed of the processor at
time t, then the energy consumption of the processor in the interval [u, u′) is
∫ u′

u
P (s(t))dt where P (s(t)) = s(t)α is the power function of the processor and

α is a parameter of the processor, e.g. 1.11 for Intel PXA 270, 1.62 for Pentium
M770 and 1.66 for a TCP offload engine [11]. We only assume that α > 1 in
order to keep the convexity of the power function P . The objective is to find
a schedule (when to execute what job at which speed) to finish all the jobs by
the deadline D conforming to the flow shop requirement to minimize the total
energy consumption of all the processors.

Given a schedule, we define critical jobs to be the jobs that are executed
on the second processor as soon as they are completed on the first processor.
Given a list of critical jobs {c1, c2, . . . , ck} the total cost can be computed as

follows [10]:

(
p1,1+

∑k−1
i=1

α

√(∑ci+1
j=1+ci

p1,j

)α
+
(∑−1+ci+1

j=ci
p2,j

)α
+p2,n

)α

D .
Note that jobs between two critical jobs {ci +1, ci +2, . . . , ci+1} are executed

at the same speed on the same machine.

3 Discrete Speed Setting with Given Job Order

In this section, we have a fixed order of jobs that have to be executed on m
processors.

Moreover, processors can only run at specific speeds in S = {s1, s2, . . . , sq}.
The goal is to find a schedule with minimum energy to finish all jobs by the dead-
line D. The discrete setting of the classical speed scaling problem was studied
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Fig. 1. Example of instance where the discrete optimal schedule cannot be obtained
by first computing the continuous optimal schedule.

in [7]. They solved the problem by first computing an optimal schedule in the
continuous setting, and then perform the transformation to the solution in the
discrete setting by adjusting the speeds. However, in the flow shop speed scaling
problem, such a transformation technique cannot be used to obtain an optimal
schedule. The example below with two processors demonstrates that computing
the optimal schedule in the continuous setting by using the algorithm proposed by
Mu and Li [10] cannot obtain the optimal schedule in the discrete speed setting.

The instance contains two jobs with pi,j = 5 ∀i, j. Moreover, we set α = 2 and
D = 10. In the discrete setting, we have the set of speeds S = {1, 2}. According
to Fig. 1(a), we use the algorithm proposed by Mu and Li [10] to compute the
result schedule with continuous speed, and convert the schedule to discrete speed
setting with energy consumption of 31.7157. However, the optimal schedule only
consumes 30 as illustrated in Fig. 1(b). This shows that adjusting the speeds
obtained from the algorithm proposed by [10] to the adjacent available discrete
speeds cannot obtain an optimal solution in the discrete speed setting.

Therefore, it is necessary to design a new method to calculate the optimal
solution for the discrete speed setting. We propose the following linear program
in Fig. 2. Without loss of generality, we assume that jobs are scheduled in the
following order 1, . . . , n.

Let xi,j,v be the workload done for job j on processor i at speed v. Let si,j

(resp. ci,j) be the starting time (resp. completion time) of job j on processor
i. The constraints (2) are to ensure that all jobs are fully executed while the
constraints (3), (4), (5), (6) ensure that deadlines are not violated. Especially,
since the execution order is fixed, for each processor, jobs need to be sched-
uled in the order 1, . . . , n. Constraints (5) ensure this order. Job j needs to be
completed before that job j + 1 starts. Similarly, constraints (6) ensure that a
job j must to be finished on processor i before starting on the next processor
i + 1. Constraints (3) ensure that the completion time of job j on processor i
is exactly after its processing time

∑
v∈S

xi,j,v

v from its starting time si,j . This
linear program is correct as we can obtain a feasible schedule in the given order
of jobs with deadlines satisfied and jobs scheduled entirely. Given the solution
of the linear program, we know exactly the processing time of each job on each
processor, i.e. the processing time of job j on processor i is

∑
v∈S xi,j,v. Then
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Fig. 2. Linear program for discrete speed setting flow shop

we simply schedule jobs on the first processor with the corresponding processing
time. Each job j on the second processor is scheduled either immediately after
the previous job j − 1, or exactly at the time it is completed on the first proces-
sor. The constraint (4) guarantees that the returned scheduled has a makespan
at most D.

4 Continuous Speed Setting with Arbitrary Order

In this section, we investigate the flow shop scheduling problem where the exe-
cution order of jobs is not predefined.

Theorem 1 [10]. The problem of flow shop with arbitrary speeds given the order
of execution of jobs on two processors is polynomial.

We propose a linear time approximation algorithm for the flowshop schedul-
ing problem for an arbitrary number of processors.

Let Vi =
∑n

j=1 pi,j be the processing volume on the i-th processor.

Proposition 1.
∑

i(Vi)αD1−α is a valid lower bound.

Proof. By omitting the precedence constraints, we can schedule jobs with uni-
form speed. Since the workload is fixed on each processor, the minimum energy
for processor i is V α

i D1−α. ��
Proposition 2.

∑
i(Vi)αD1−α ≥ m(

∑
i Vi/m)αD1−α.

Proof. Since the power function is convex, the minimum energy is given by
executing the same workload on all processors. ��

The main idea of the algorithm is to schedule jobs at speed
∑

i Vi

D in any order.
In fact, it is sufficient to schedule jobs on the first processor, then schedule jobs
on the second processor once the last job ends on the previous processor, and
so on. In other words, we schedule jobs in arbitrary order on each processor i
in [

∑i−1
j=0 Vj , Vi +

∑i−1
j=0 Vj ]. In this way, all precedence constraints are satisfied

and no job misses its deadline. Therefore it is a feasible schedule. The energy
consumption of this schedule is exactly (

∑
i Vi)αD1−α.
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Theorem 2. There exists a linear time algorithm which is an mα−1-
approximation.

Proof. We analyze the approximation ratio by dividing the energy cost of the
returned schedule by the lower bound.

(
∑

i Vi)αD1−α

m(
∑

i Vi/m)αD1−α
=

(
∑

i Vi)α

m(
∑

i Vi/m)α
=

(
∑

i Vi)α

(
∑

i Vi)αm(1/m)α
= mα−1

With the discussion above, we can get a feasible schedule in linear time. ��
Proposition 3. The bound of the algorithm is tight for m processors.

Proof. We create an instance with m jobs and m processors. The first job has
workload (1, . . . , 1,K), the second job has workload (1, . . . , 1,K, 1) and so on.
The last job has workload (K, 1, . . . , 1), with K > 0.

Let S be a schedule such that jobs are scheduled in the following order
1, 2, . . . , n. We formulate the cost of this schedule such that each job is a critical
job. Note that this cost may be larger than the optimal cost. Since we have
mα−1 ≥ ALG

OPT ≥ ALG
S . We only need to show that ALG

S is at least mα−1.

ALGS
0 D 0 D

Fig. 3. Tight example: first job has workload (1, . . . , 1, K), and the last job has work-
load (K, 1, . . . , 1). The gray block represents a workload of K of each job.

The energy consumption of the schedule S (shown in Fig. 3) is

S = ( α
√

1 + α
√

2 + . . . + α
√

m − 1 + α
√

mKα + α
√

m − 1 + . . . + α
√

1)αD−1

=

(

2
m−1∑

i=1

α
√

i + α
√

mKα

)α

D−1

while the energy usage in our algorithm is ALG = (m(m − 1 + K))αD−1.

ALG

S
=

(m(m − 1 + K))αD−1

(
2
∑m−1

i=1
α
√

i + α
√

mKα
)α

D−1
=

(
m(m − 1 + K)

2
∑m−1

i=1
α
√

i + α
√

mKα

)α
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Then

lim
K→+∞

(
m(m − 1 + K)

2
∑m−1

i=1
α
√

i + α
√

mKα

)α

= lim
K→+∞

⎛

⎝
m(m−1

K + 1)
2
∑m−1

i=1
α√i

K + α
√

m

⎞

⎠

α

= mα−1

Finally, we have mα−1 ≥ ALG
OPT ≥ ALG

S ≥ mα−1−ε for small ε > 0 since the limit
is asymptotic. Thus, ALG is a mα−1-approximation algorithm and the analysis
is tight. ��

5 Sense-and-Aggregate Model

In this section, we present a new variant of the flow shop speed scaling problem
denoted as sense-and-aggregation model which is motivated by data aggregation
and computation tasks in the wireless sensor network.

In the wireless sensor network, the station needs to receive data from the
sensors and compute the single aggregation result like minimum, maximum, or
average of all inputs. For these kinds of aggregation functions, we have two ways
to deal with it. We can either wait for all inputs to be ready or we can collect
part of the input data and compute the sub results. Eventually, we can compute
the final result based on the sub results we computed previously. We introduce
the sense-and-aggregation model to model the second approach.

In the sense-and-aggregation model, we are given a set of n unit jobs and two
processors where the first processor handles the data collection and aggregation
tasks, and the second processor is responsible for the calculations. All jobs need to
be processed in the first processor before they can aggregate to the second proces-
sor for computations. Moreover, the speeds of the jobs may vary independently
and all jobs need to be completed before their common deadline D.

Once the jobs are completed in the first processor, they can be aggregated
to the second processor for calculation. For this aggregation process, we need
to make use of the workload-consideration-function f(x) to indicate the amount
of workload that the second processor will process to aggregate x units of data.
Then based on the workload-consideration function, we can compute how fast
we need to schedule the jobs in order to complete all jobs before the deadline D.
The main idea of performing partial aggregation is to compute the sub results
in order to speed up the computation process. After each partial aggregation,
one unit of data will be produced for the sub result which will be used in the
next partial aggregation.

Observe that there is a trade off between waiting and calculating. The more
we wait, the more we have to schedule faster (thus consuming more energy),
but the less we have to schedule for some function f . Our objective is to find a
feasible schedule such that all jobs are completed before their common deadline
D in both processors with the minimum usage of energy.

Without loss of generality, we assume that each aggregation on the second
processor has at least two units of workload.
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0 D = 8

time

Fig. 4. Optimal schedule of 4 jobs for sense-and-aggregate model with f(x) = x.

In the example showed in Fig. 4, we are going to find out the optimal schedule
of 4 jobs with f(x) = x. We decide to collect 3 unit jobs on the first processor
before scheduling them on the second processor (in gray). Then we schedule the
last job on the first processor and the second processor aggregates it with the
output data from the previous aggregation, a total workload of 2 for the second
aggregation. The output of the first aggregation is shown hatched.

We first analyze when f(x) = x−1 and propose a greedy algorithm to sched-
ule the jobs with minimum energy consumption. Then we present a dynamic
programming approach to solve the problem when f(x) = x.

5.1 f(x) = x − 1

For aggregation functions such as sum, min and max, there holds that f(x) =
x − 1. We first show that the total workload on the second processor is not
affected by the decision of the second processor.

Proposition 4. The workload on the second processor is n − 1.

Proof. Suppose we have k aggregations with sizes B1, B2, . . . , Bk. Then∑k
i=1 Bi = n + k − 1, since the first k − 1 aggregations will generate one unit of

data each to be the input of subsequent aggregations. Therefore,
∑k

i=1 f(Bi) =
∑k

i=1(Bi − 1) = n − 1. ��
The idea is to schedule jobs as soon as possible on the second processor since

the total workload on the second processor remains unchanged. We obtain the
minimum energy consumption by scheduling jobs in the following way.

We first schedule two unit jobs on the first processor. Then we aggregate
these jobs on the second processor and generate one unit workload (f(2) = 1).
At the same time, we continue to schedule jobs on the first processor for the
next aggregation (see Fig. 5). It is easy to see that the precedence constraints are
guaranteed and it is a feasible schedule. Note that it is not possible to get another
schedule with lower energy consumption. Indeed, it is not possible to schedule on
the second processor when the first two jobs are scheduled. Similarly, we cannot
schedule any job on the first processor when we schedule the last aggregation.

Finally, the minimum energy consumption is

(
2+ α

√
(n−2)α+(n−2)α+1

)α

D according
to [10].
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0 D

speed

1 1 1 1

1 1 1 1 1

1 1

time

Fig. 5. Optimal schedule when the workload-consideration-function is f(x) = x − 1.

5.2 f(x) = x

The idea of the algorithm for this case is based on [10]. Indeed, the calculation
of the energy consumption depends on critical jobs. A job is critical when the
completion time of a job on the first processor is equal to the starting time
of the same job on the second processor. Moreover, we only need to focus on
schedules in which jobs are executed without preemption (each job is scheduled
in one piece) and the execution order is the same on both processors. Recall
that given a list of critical jobs {c1, c2, . . . , ck}, the total cost can be computed

as follows [10]:

(
p1,1+

∑k−1
i=1

α

√(∑ci+1
j=ci+1 p1,j

)α
+
(∑ci+1−1

j=ci
p2,j

)α
+p2,n

)α

D .
We adapt the algorithm proposed in [10] for our case. We have to guess the

total workload on the second processor since the number of the aggregations is
not known in advance. In the following, we suppose that the total workload on
the second processor is W . Finally, we show that W is polynomial.

Definition 1. Let F (s, w, g) be the minimum cost of the jobs s + 1, . . . , n with
a workload of w on the second processor and a pending workload of g on the first
processor (before job s + 1).

Note that the objective function is min 1≤j≤n
1≤w≤W

(F (j+1,w,j))α

D .

Algorithm 1. Flowshop with accumulation
1: Procedure F (s, w, g)
2: Min ← +∞
3: for i = s + 1, . . . , n do
4: for B = 1, . . . , w do
5: //test whether s to i can be a segment in the optimal schedule with the

minimum pending workload on the first processor
6: k ← A(i − s, g, B, B)
7: Min = min{Min, α

√
(i − s)α + Bα + F (i + 1, w − B, (i − s) − k)}

8: end for
9: return Min

10: end for
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B

i − s
g

is+1

w − B

w

g + 1

Fig. 6. Illustration of Algorithm 1 and Definition 1.

Definition 2. A(i, g, B, e) is the maximum workload on the first processor that
can be aggregated such that:

– there is at most a workload of i on the first processor
– there is at most a workload of B on the second processor
– There is a pending workload of g (already scheduled on the first processor on

a previous critical interval)
– the second processor has already scheduled a workload of e.

With the definitions above, we can construct the dynamic program for com-
puting function A.

Proposition 5 (Fig. 7).

A(i, g, B, e) = max

{
A(i, g, B, e − 1)
max 0≤e′<e

(A(i,g,B,e′)+(e−e′−1))/i≤e′/B

A(i, g, B, e′) + (e − e′ − 1)

A(i, g, B, 0) = −g

Proof. The conditions under the minimization are to ensure that we get a feasible
schedule. The initialization means that we have g pending units of workload.

g

0
B/B

e/Be′/B

A(i, g, B, 0)/i

e − e′

e − e′ − 1

A(i,g,B,e)
i = A(i,g,B,e′)+(e−e′−1)

i

i/i

A(i,g,B,e′)
i

Fig. 7. Illustration of Proposition 5.
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Without loss of generality, we assume that the current schedule starts at time
0. Note that when the value of the table is negative, it means that there is still
pending workload that is not transferred to the second processor.

By choosing the value of e′, we schedule a workload of e − e′ on the second
processor in the interval [e′/B, e/B) and we need a workload of e − e′ − 1 on
the first processor. The only condition is to make sure that the workload that
we gather on the first processor has to be finished before e′/B.

The first case is when there is no job on the second processor in [ e−1
B , e

B ).
Then the cost is exactly A(i, g, B, e − 1). Let A′ be the cost of the second case.

We first prove that A(i, g, B, e) ≤ A′. Let S be a schedule (on both proces-
sors) that realizes A(i, g, B, e′). Let e be a value such that (A(i, g, B, e′) + (e −
e′ − 1))/i ≤ e′/B ≤ 1. We build a schedule from time 0 to A(i,g,B,e′)+(e−e′−1)

i on
the first processor (note that the last value may be negative and is still feasible)
from the schedule S on the same time interval. On the second processor, we
construct from 0 to e′/B with the schedule S within the same time interval and
we schedule the gathered jobs (in gray in Fig. 7) from time e′/B to time e/B.
This is a feasible schedule and its cost is exactly A(i, g, B, e′)+(e−e′ −1). Thus
we have A(i, g, B, e) ≤ A′.

We then prove that A(i, g, B, e) ≥ A′. Let O (resp. S) be a schedule that
realizes A(i, g, B, e) (resp. A(i, g, B, e′)) in which the starting time of the last
job is maximum on the second processor, i.e. the time e′/B is maximum. Then
the restriction S of O in [e′/B, e/B) is a schedule that meets all constraints
related to A(i, g, B, e′). Hence its cost is greater than A(i, g, B, e′). Thus we
have A(i, g, B, e) ≥ A′. ��
Proposition 6. The flow shop problem with aggregation can be solved in
O(n3W 2) time.

Proof. We first show that the time complexity of the dynamic program in Propo-
sition 5 is O(n3W 2). The size of the dynamic program table is O(n2W 2). The
maximization is over the values of e′. Actually, e′ can be expressed as e − f(y)
for y = 1, . . . , n + 1. Otherwise, there is at least 1/B unit time which is idle and
we can consider A(i, j, B, e′′) instead of A(i, j, B, e′) with e′′ > e. Therefore the
running time of the maximization is O(n). Thus, the total running time of the
dynamic program is O(n3W 2).

We can precompute the values of A(i, g, B, e) which requires a running time
of O(n3W 2). In Algorithm 1, the size of the dynamic program table F (s, w, g)
is O(n2W ). The minimization is over the values i and B and the number of
possibilities for these two variables is O(nW ). Since the values of A(i, g, B, e)
are precomputed, we do not need to compute the values A(i, g, B, e) at each
time. To sum up, the total running time is O(n3W 2). ��
Corollary 1. When the aggregation function is f(x) = x, the time complexity
is O(n5).

Proof. When the workload-consideration-function is f(x) = x, we have W ≤
2n − 1. It is easy to see that there is at least a workload of n to schedule on the
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second processor. The maximum workload that we can create after groupings
is n − 1. Indeed, each aggregation should contain at least one unit of workload
from the first processor and at most one unit of workload from the previous
aggregation. Finally, we have a maximum workload of 2n − 1 on the second
processor. ��

With the previous proof, we can deduce that W is strongly related to the
workload-consideration-function f(x). If there are k aggregations and xi is the
workload of the i-th aggretation, the total workload on the second processor is
maxk

∑k
i=1 f(xi + 1) such that

∑
i xi = n. We can roughtly bound this with

n(1 + max f(x)).
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Abstract. We consider the k-median clustering problem over distrib-
uted streams. In the distributed streaming setting there are multiple
computational nodes where each node receives a data stream and the
goal is to maintain an approximation of a function of interest at all time
over the union of the local data at all the nodes. The approximation
is maintained at a coordinator node which has bidirectional communi-
cation channels to all the nodes. This model is also known as the dis-
tributed functional monitoring model. A natural variant of this model
is the distributed sliding window model where we are interested only in
maintaining approximation over a recent period of time.

This paper gives new algorithms for the k-median clustering problem
in the distributed streaming model and its sliding-window counter part.

1 Introduction

In the distributed streaming model, a set of computational nodes gets a stream of
data items. They have a two-way communication channel to a coordinator node
which keeps track of an approximate value of a function of interest computed
over the union of all the local streams. Such distributed scenario arise in many
natural data management situations including monitoring over LAN devices and
over sensor networks. A natural variant of this distributed streaming model is
the ‘sliding window’ version where the interest is only on a window of most recent
data items. The main algorithm design goal is to minimize the resources: space,
time, and total communication, required to compute/approximate the function,
to the extent possible. There has been significant body of research in computing
many natural functions. In particular efficient algorithms for maintaining statis-
tics such as a random sample, sum, join sizes, k-center clustering, heavy hitters,
and quantiles has been already proposed in these models [3,6–9,13,15]. We refer
the reader to a survey by Cormode [5] for recent work and references in this
area.

In this paper, we consider the k-median clustering problem in distributed
streaming models. We design algorithms in both the infinite window and the
sliding window models. For both, we achieve constant factor approximations for
the k-median clustering cost with efficient communication. To the best of our
knowledge, this important clustering problem has not been studied in the dis-
tributed streaming scenario and this paper presents first results in this direction.
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 535–546, 2016.
DOI: 10.1007/978-3-319-42634-1 43
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1.1 Related Work and Contribution of This Paper

We briefly outline prior work related to k-median clustering in streaming models
and the new results in this paper. Clustering is an important computational task
and has applications in all area of data analytics. The k-median variant of this
general problem has received much attention in traditional streaming model.
Refer to Sect. 2 for definitions.

The following table summarizes the known results for k-median clustering
problem in the streaming models. Here n is the number of points, W is the
window size, and OPT is the optimum value. It is standard to measure space in
terms of weighted points (Table 1).

Table 1. k-median previous work

Paper Model Input space Space complexity Approx

in weighted points

[2] Insertion-only stream Metric O(k log n) O(1)

[11] Insertion-only stream Euclidean O(kε−d log2d+2 n) 1 + ε

[10] Insertion-deletion stream Geometric poly(k, 1
εd

, log n) 1 + ε

[1] Insertion-only sliding window Metric O(k3 log4 W log2 OPT) O(1)

[1] Insertion-only sliding window Euclidean poly(k, 1
εd

, log W, log OPT) 1 + ε

To the best of our knowledge k-median clustering has not been considered
in distributed streaming models. Cormode et al. [8] have studied the related
k-center problem. Also, Zhang et al. [16] investigated Euclidean k-median clus-
tering on a related but different distributed model. We summarize our results for
k-median clustering in the following table. In the table we only give the commu-
nication cost. Please refer to the main section for space complexity bounds. Here
n is the number of points, m is the number of distributed nodes, OPT is the opti-
mum value, and W is the window size. All the results are in the insertion-only
model (Table 2).

Table 2. Our results

Model Input space Communication Approx

Distributed
streaming

Metric O(m log n log2 OPT)bits +
O(km log2 n log OPT) weighted points

O(1)

Distributed
sliding window

Euclidean O(m log W log2 OPT+s2m3 log OPT) bits+
O(km log2 W log OPT) weighted points

O(1)

2 Distributed Streaming Models and High Level Ideas of
This Paper

2.1 The Distributed Streaming Models

First we briefly describe the well known data streaming model. In this model a
set of data items (say of size n) arrives at a computational node one after another.
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The goal is to compute a function of interest over the set. The computational
node may not have enough memory to store the entire set of data and hence an
exact computation may not be possible. Instead it stores a sketch of the data of
size much smaller than n, typically, poly(log n) or O(nε) for some ε < 1. After the
entire data is observed, it can compute on the sketch to output an approximation
of the function of interest over the data. This basic model in known as insertion-
only streaming model. There are other variations of this basic model. One might
be interested to produce output at all times on the set of data items seen so
far. This is known as the online streaming model. If the data items are coming
from some finite domain, the source might delete some of the data elements that
arrived previously. This variant is known as insertion-deletion stream. Instead of
the entire stream, one might be interested to compute over the most recent W
items that arrived at all times. Then, it must use space much smaller than W .
This variation is known as the sliding window model. The data streaming and
above-mentioned variants have received considerable attention because it nicely
models many real-life computations over large data sets.

N1 N2 Nm

C
coordinator

nodes

tim
e

Fig. 1. distributed streaming

N1 N2 Nm

C
coordinator

nodes

w

Fig. 2. distributed sliding window

In the distributed streaming model we have m computational nodes. At any
point in time, an element from a global data stream may be sent to one of the
nodes (thus the data stream is distributed over m nodes). The goal is to compute
a function of interest over the entire data stream. The function computation is
done at a special node called the coordinator node which has a bi-directional
communication channel to each of the m computational nodes. Thus in addition
to time and space used by the nodes, total communication is also an important
resource and a main design objective is to use as little communication as possible
to maintain an approximate value of the function. Similar to the single stream
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case, we also have the online and the sliding window variation for distributed
streams. In the sliding-window model, it is assumed that all the data elements
also comes with a time-stamp. A schematic diagram of both the distributional
streaming and sliding window models is given above.

Before we describe high level ideas used in this paper we give two important
definitions of k-median clustering and the notion of ε-coreset.

Definition 1 (k-median Clustering). Given a set of points P from a metric
space X, identify a subset C∗ ⊆ P of k centers such that

C∗ = arg min
C⊆P,|C|=k

Cost(P,C)

where Cost(P,C) =
∑

p∈P minc∈C d(p, c) is the clustering cost and d is the
distance function of X.

Definition 2 (ε-Coreset for k-median Clustering). For k-median cluster-
ing over a set of points P , a weighted set S ⊆ P is called an ε-coreset if
|Cost(P,C) − Cost(P, S)| ≤ εCost(P,C) for any choice of k centers C. We
will refer to the difference |Cost(P,C) − Cost(P, S)| as clustering error.

2.2 High Level Idea of Our Algorithms

A trivial approach to adapt single stream algorithms to the distributed setting
is for each node to inform the coordinator node about arrival of an element.
But this leads to a large communication cost as we end up communicating all
elements of the stream. We use the following known idea to improve this:

For the online algorithm, we start with the streaming algorithm of Charikar et
al. [4], which is build on Mayerson’s online algorithm for facility location problem.
In order to run this algorithm in distributed manner, we require the set of
currently opened centers available at all nodes and the current cost of clustering
available at the coordinator, at all times. To satisfy the first requirement, the
nodes can inform to all other nodes (through the coordinator) as soon as a
facility is opened. The communication cost for this can be bounded by the total
number of opened centers over the course of the algorithm, which is small. To
satisfy the later requirement, we can maintain partial clustering cost at each
node restricted to their part of the stream. As soon as this cost doubles to say
c, they communicate to the coordinator �log2 c�. This way the coordinator will
always have at most 2-approximation of the current clustering cost. The number
of such communications will be logarithmic in the clustering cost. This algorithm
requires the knowledge of n, the number of points, beforehand. We get around
this by making binary search for n.

For the sliding window algorithm, we use the forward-backward technique
from [9]. For this we first assume that the the stream starts at t = 0. We
can divide the entire time into disjoint but consecutive windows of the form
[aW, (a + 1)W ) where W is the size of the window. Then, at any moment, the
current stream window intersect at most two of the consecutive time windows say
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[aW, (a+1)W ) and [(a+1)W, (a+2)W ). Let us call the forward part the part of
the stream in [(a+1)W, (a+2)W ) and the backward part that in [aW, (a+1)W ).
Computation over the forward part can be done by running an online algorithm
starting from times (a + 1)W . Computation over the backward part is more
difficult as elements expire one by one with time. We notice that an algorithm
from Braverman et al. [1] can be used here. This algorithm maintains instances
of an online algorithm starting from a set of indices from the current window.
This online algorithm builds a succinct representation of the input points called a
coreset. In the distributed setting, each node can maintain such indices and notify
the coordinator about the new coreset whenever any such index is crossed by the
current window. To notice this crossing, the nodes need to know the gap between
two indices in the global stream. Therefore as in [9], we will make an assumption
that the data elements are augmented with a unique global time-stamp. In fact,
it can be seen such a time-stamp modulo W suffices for our purpose. This is
achievable in practice with a little more total cost of transmission. One down
side is that for many nodes, the error of the coresets may multiply so that we
need to rescale the error for each online algorithm. This is where we use the
fact that arbitrary approximation schemes are known for Euclidean k- median
clustering. Hence while infinite window algorithm works for any metric space,
our finite sliding window algorithm only works for the k-median problem over
Euclidean space.

3 Algorithms for k-median Clustering

3.1 Online Algorithm for Distributed Streams

Our starting point is the algorithm of Charikar et al. [4] for k-median clustering
on insertion-only streams rooted on Meyerson’s algorithm [14] for computing
online facility location problem. The later problem is closely related to k-median
clustering. Given a set of points P , the online facility problem asks to find a
set F ⊆ P of facilities to open such that (f.|F | + Cost(P, F )) is as small as
possible. Here, Cost is the clustering cost function from Definition 1; f is the
cost of opening a single facility. The first part of the sum is known as the facility
cost and the second part of the sum is known as the service cost.

Let us first go over Meyerson’s algorithm briefly. It keeps in memory the set of
already opened facilities F . As the new point p arrives, it computes the distance
d from p to the closest facility from F . We open facility at p with probability
d
f , where f is the cost of opening a single facility. It can be shown if we set f

to be L
k(1+log n) , the expected service cost becomes at most (L + 4OPT), where

OPT is the optimal k-median clustering cost. The expected number of opened
facilities becomes k(1+ log n)(1+ 4OPT

L ). Moreover, it was shown by Braverman
et al. [2] that these values are close to their expectations with high probability1.
For metric space, we restate this result in the following lemma.

1 Throughout this paper with high probability means with probability at least (1− 1
n
).
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Lemma 1 (Theorem 3.1 of [2]). If we run the online facility location algo-
rithm of [14] with f = L

k(1+log n) for some L ≤ OPT, the service cost is at most
(3 + 2e

e−1 )OPT and the number of opened facilities is at most 7k(1 + log n)OPT
L

with probability at least 1 − 1
n . Here OPT is the optimum k-clustering cost.

Given these facts, one can do binary search to guess L = Θ(OPT) so that we
get a set of O(k log n) weighted points which represents the original points with
additional clustering cost of O(OPT). This idea was used in both the algorithms
of [2,4]. We start with a small value of L and check that the clustering cost is at
most αL and the number of opened facilities is at most βk(1 + log n) for some
constants α, β from [2]. As soon as this condition is violated we increase the
current value of L by a factor of γ for some γ > 1. With this new value of L,
we start a new round and continue seeing all the elements of the stream again.
But now the already seen elements will be replaced by the current set of at most
βk(1 + log n) weighted centers produced. In this way after all elements of the
stream are seen, we can run an offline k-median algorithm on these weighted
centers to get the final k-clusters. This result is summarized in the theorem
below.

Theorem 1 (Theorem 3.2 of [2] Restated). With high probability, there is
an algorithm for k-median clustering that achieves a constant approximation.
This uses exactly k facilities and stores O(k log n) weighted points in memory.

To translate the above algorithm in the distributed setting we address the
following questions. Firstly, we need to maintain the set of facilities in distributed
manner. This is not difficult. Since there are O(k log n) many weighted centers
for each round, we can announce to all other sites as soon as a center is created.
Moreover, since after each round, the value of L is doubled, there are at most
O(log OPT) many rounds. Secondly, we need to keep track of the current service
cost efficiently. For this, each of the nodes keep track of partial cost for their
part of the stream. As soon as this partial cost gets within 2l to 2l+1, they
communicate to the coordinator (l + 1). So, the coordinator always has at most
2-factor approximation of the true service cost. Then the coordinator can do the
aforementioned two checks and announce the change of round. At the change of
round, coordinator can collect all the weighted centers from previous rounds so
that it can replay the seen part of the stream. Opened centers from this replay
are broadcast to all the nodes.

The total communication cost can be broken up into 4 pieces. For announcing
an opened facility O(k log n log OPT) many points need to be communicated over
all rounds. A factor m more points with weights need to be communicated during
change of rounds. For keeping track of the number of arrived points, communica-
tion requires O(log n log log n) bits and that for the cost requires O(m log2 OPT)
bits. Finally, we need the knowledge of n beforehand to set up the initial facility
cost and to check one of the conditions for changing rounds. This is addressed
by the coordinator making O(log n) guesses for n starting from 1 to some upper
bound with factor of 2. The streaming algorithms are run for all these guesses in
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parallel. The nodes inform about the arrival of (1 + δ)l elements for some fixed
δ > 0 to the coordinator so that the later always has an (1 + δ)-factor approx-
imate value for n. This is used to recognize the correct guess and to produce
the correct output. Due to the guessing, all costs increase by O(log n)-factor.
Since we will be using constant factor approximation for n and the total service
cost, the constants α and β need to be rescaled. Finally, we have the following
theorem.

Theorem 2. There is an online algorithm A for k-median clustering of a set
of n points from metric space, appearing in a stream distributed across m nodes
upto O(1) approximation ratio with high probability. The total communication
cost of A is O(m log n log2 OPT+km log2 n log OPT.S) bits where S is the space
required to store a single point from the metric space along with an integral weight
of at most n and OPT is the optimum clustering cost for the current set of points.

3.2 Sliding Window Algorithm for Distributed Streams

We next move on to clustering problems on sliding windows. As we said previ-
ously, we will use the forward-backward technique from [9]. The entire stream
can be broken up into disjoint windows of length W starting at times (aW + 1)
and ending at times (a + 1)W for some integer a. Then, at any time (aW + t),
current window will intersect at most 2 of such windows. The time interval for
the former part will be (aW − (W − t − 1)) to aW and that for the later part
will be (aW +1) to (aW + t). In the later part elements arrive one after another
while in the former part they expire. So, assuming we have a communication-
efficient distributed online algorithm A, the later part can be computed by run-
ning an instance of A starting from the times aW . This is known as the forward
algorithm.

In the k-median clustering scenario, online algorithms with at most (1 + ε)-
approximation ratio are known for Euclidean space based on merge and reduce
technique of coresets. From Definition 2, coresets are a small subset of the input
points with weights which approximately preserves the clustering cost. Adapting
the online algorithm over distributed stream in straightforward manner requires
communication of all the points. Also, the online algorithm works hierarchically
in bottom-up manner by including each input point into the coreset in the begin-
ning. This way, after opening a coreset point at some time, it may be closed and
merged with some other coreset point at a later time. So, it is not straightfor-
ward to compose the coresets for the local streams in online manner. We feel it
is a difficult barrier to overcome. So, for the forward algorithm we will use the
algorithm of Theorem 2. This will work because Euclidean space is a specific
case of metric space.

For the backward algorithm, one idea is to combine sketches corresponding
to the local streams. But then, for the global stream, for m such nodes, the
clustering error increases by a factor m. So, the online algorithm of Theorem 2
cannot be used since it achieves O(1) approximation ratio. In general, it is hard
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to achieve approximation ratio better than (1 + 2
e ) for metric k-median cluster-

ing [12]. However, for Euclidean space, approximation ratio of (1 + ε) is possible
for any ε > 0. This is precisely the reason that our algorithm is limited to the
Euclidean case for sliding windows.

The online algorithm is based on the merge and reduce technique. It keeps
a pair of buckets of size at most s at different levels. Here s is the size of a
single offline coreset as in [11]. The first level of the buckets are filled with input
points as they arrive. Once both the buckets are full, we merge these buckets
and reduce them to a single bucket of size at most s using the offline coreset
construction algorithm. These s points are placed in a third bucket at the next
level. If this next level also becomes full, we keep on merging and reducing until
at some level we end up having exactly 1 bucket. It can be shown that O(log n)
many levels suffice for n points. Since each level adds a clustering error by at
most ε fraction, ε must be rescaled to ε

O(log n) for the offline algorithm.
The offline algorithm runs by defining a set R of regions from the Euclidean

space and by keeping a weighted sample of the input points from region. We
restate a lemma of [1] that shows the online coreset construction approximates
density of each of the regions well.

Lemma 2 (Lemma 4.3 of [1] Restated). Let Bi be a bucket at level i of the
merge and reduce algorithm. Pi be the set of input points which Bi represents
then for all region R of the Euclidean space, the error ||Pi ∩ R| − |Bi ∩ R|| is
small and can be ignored for k-median clustering.

It was also shown that if we add or remove ε-fraction of points from each
region of the coreset points, the resulting coreset is also a 2ε-coreset of the
original points.

Lemma 3 (Lemma 4.1 of [1]). Let K be an ε-coreset for Euclidean clustering
of a set of points P and ΛK the corresponding partition. Suppose for each region
R ∈ ΛK we add or remove ε fraction of points from the coreset. The resulting
coreset K ′ is an ε-coreset of K.

Braverman et al. [1] provided the first sliding window algorithm for Euclidean
k-median clustering. We briefly go over it below. Keep the online algorithm
running for a number of indices such that just after traversing each index the
number of points in some region of the coreset reduces by ε factor. Then since
by Lemma 2 density of the coresets approximates the true density of each region
and since by Lemma 3 it is permissible to drop at most ε fraction of points
from each region, any subset of points exactly in between two indices can be
approximated by the coreset for the former index. Moreover, since, just after
traversing each index the number of points in some region of the coreset reduces
by ε factor, there can be at most O( s

ε2 log OPT) many such indices. This sliding
window algorithm is summarized in the following theorem.
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Theorem 3 (Theorem 4.1 of [1] Restated). There is a sliding window algo-
rithm for Euclidean k-median clustering upto approximation ratio (1+ε) for any
ε > 0 in (s2ε−2 log OPT ) space where OPT is the maximum cost of clustering
over all windows and s is the size of a single online coreset based on merge and
reduce.

This algorithm can be adapted in the distributed setting in the following
manner. Each node maintains the sliding window algorithm for their part of the
stream for time interval (2kW, 2(k + 1)W ]. Online algorithms are maintained at
the indices just after which the cardinality of some region reduces by ε fraction.
At time 2(k + 1)W , the coordinator collects all these indices and sorts them in
increasing order of time. Within each consecutive pair of indices, the number of
points in each region of the coreset for each node reduces by at most ε fraction.
So, the union of the individual coresets is also a coreset for the entire bucket
but with error at most ε(OPT1 + OPT2 + · · · + OPTm) where OPTi is the
optimum clustering cost for the part of the window corresponding to the ith

node. We can upper bound each OPTi by OPT for the entire bucket and choose
ε = ε′

m to make the error at most ε′OPT. The space complexity at each node
becomes O( s2m2

ε′2 log OPT) and at the coordinator it will be a factor m more.
The communication cost will be O( s2m3

ε′2 log OPT) for time interval W . All the
resources may be further improved by letting the nodes communicate only when
the current window crosses one of their indices locally.

Using time-stamps, the coordinator can recognize appropriate buckets to
combine and output. The nodes also need to maintain a forward algorithm.
As we said before, this is exactly the algorithm of Lemma 2. It will require
additional communication of O(mk log n log2 OPT) bits and additional space
usage of O(k log n log OPT). The error increases upto (α + ε)-factor where α is
that for the metric counterpart. Therefore, we have the following theorem.

Theorem 4. There is an algorithm B for k-median clustering over a sliding
window of W points from a Euclidean space, appearing in a stream distributed
across m nodes upto O(1)-approximation factor with high probability. B requires
communication of O(s2m3 log OPT+m log W log2 OPT+km log2 W log OPT.S)
bits. Here S is the space required to store a single point from the metric space
along with an integral weight of at most W , s is the size of a single online coreset
based on merge and reduce for Euclidean space and OPT is the maximum of the
optimum clustering costs over any window of size W .

The algorithm is formally presented below in Algorithms 1 and 2.
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Algorithm 1. Sliding window algorithm at the ith node
Data: A set of points {p1, p2, · · · , pn, · · · , pN} from metric space presented in a

stream distributed across m nodes
Result: Approximate k-median for {pn−W+1, p2, · · · , pn}∀n ≤ N where pn is

the most recently arrived element

Upon arrival of new point p:
1 Update the sliding window algorithm;
2 if p has timestamp aW for some a then
3 Send change of round to the coordinator;
4 else
5 Update the online algorithm;
6 end

Upon change of round:
7 Send the current set of coresets Ci = {Ci,1, Ci,2, · · · , Ci,l} from the sliding

window algorithm to the coordinator;
8 Reset the online algorithm of Theorem 2 for subsequent points;
9 Reset the sliding window algorithm of Theorem 3 for subsequent points;

Algorithm 2. Sliding window algorithm at the coordinator
Data: A set of points {p1, p2, · · · , pn, · · · , pN} from metric space presented in a

stream distributed across m nodes
Result: Approximate k-median for {pn−W+1, p2, · · · , pn}∀n ≤ N where pn is

the most recently arrived element

Upon receipt of change of round:
1 Broadcast change of round;
2 Collect sets of coresets Ci from all nodes i = 1 to m;
3 Reset the online algorithm of Theorem 2 ;

At all other times:
4 Update the online algorithm;

Output at current time t:
5 for i=1 to m do
6 Find consecutive coresets Ci,ji and Ci,ji+1 such that (t − W + 1) lies

between them;

7 end
8 Let C be the set of weighted centers from the online algorithm;
9 Output ∪iCi,ji ∪ C;
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4 Open Problems

In this paper we designed communication-efficient algorithms for metric k-
median problem in distributed streaming model and for Euclidean k-median
problem in the distributed sliding window model. We get constant approximation
guarantee. For the metric case, it still remains open to design communication-
efficient algorithm for distributed sliding windows. There is an online algorithm
for the Euclidean case that achieves (1 + ε) approximation for any ε. It is open
whether we can adapt this algorithm in the distributed setting. If successful, such
an algorithm could be directly plugged into our forward algorithm to achieve
arbitrary approximation for the distributed sliding windows setting as well.
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Abstract. Let P be a polygon with r > 0 reflex vertices and possibly
with holes. A subsuming polygon of P is a polygon P ′ such that P ⊆ P ′,
each connected component R′ of P ′ subsumes a distinct component R
of P , i.e., R ⊆ R′, and the reflex corners of R coincide with the reflex
corners of R′. A subsuming chain of P ′ is a minimal path on the boundary
of P ′ whose two end edges coincide with two edges of P . Aichholzer et al.
proved that every polygon P has a subsuming polygon with O(r) vertices.
Let Ae(P ) (resp., Av(P )) be the arrangement of lines determined by
the edges (resp., pairs of vertices) of P . Aichholzer et al. observed that
a challenge of computing an optimal subsuming polygon P ′

min, i.e., a
subsuming polygon with minimum number of convex vertices, is that it
may not always lie on Ae(P ). We prove that in some settings, one can find
an optimal subsuming polygon for a given simple polygon in polynomial
time, i.e., when Ae(P

′
min) = Ae(P ) and the subsuming chains are of

constant length. In contrast, we prove the problem to be NP-hard for
polygons with holes, even if there exists some P ′

min with Ae(P
′
min) =

Ae(P ) and subsuming chains are of length three. Both results extend to
the scenario when Av(P

′
min) = Av(P ).

1 Introduction

Polygon simplification is well studied in computational geometry, with numerous
applications in cartographic visualization, computer graphics and data compres-
sion [8,9]. Techniques for simplifying polygons and polylines have appeared in
the literature in various forms. Common goals of these simplification algorithms
include to preserve the shape of the polygon, to reduce the number of vertices,
to reduce the space requirements, and to remove noise (extraneous bends) from
the polygon boundary (e.g., [2,4,5]). In this paper we consider a specific ver-
sion of polygon simplification introduced by Aichholzer et al. [1], which keeps
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Fig. 1. (a) A polygon P , where the polygon is filled and the holes are empty regions. (b)
A subsuming polygon P ′, where P ′ is the union of the filled regions. A subsuming chain
is shown in bold. (c) A min-convex subsuming polygon P ′

min, where Ae(P
′
min) = Ae(P ).

(d) A polygon P such that for any min-convex subsuming polygon P ′
min, Ae(P ) �=

Ae(P
′
min).

reflex corners intact, but minimizes the number of convex corners. Aichholzer et
al. showed that such a simplification can help achieve faster solutions for many
geometric problems such as answering shortest path queries, computing Voronoi
diagrams, and so on.

Let P be a polygon with r reflex vertices and possibly with holes. A reflex
corner of P consists of three consecutive vertices u, v, w on the boundary of P
such that the angle ∠uvw inside P is more than 180◦. We refer the vertex v
as a reflex vertex of P . The vertices of P that are not reflex are called convex
vertices. By a component of P , we refer to a connected region of P . A polygon P ′

subsumes P if P ⊆ P ′, each component R′ of P ′ subsumes a distinct component
R of P , i.e., R ⊆ R′, and the reflex corners of R coincide with the reflex corners
of R′. A k-convex subsuming polygon P ′ contains at most k convex vertices.
A min-convex subsuming polygon is a subsuming polygon that minimizes the
number of convex vertices. Figure 1(a) illustrates a polygon P , and Figs. 1(b)
and (c) illustrate a subsuming polygon and a min-convex subsuming polygon of
P , respectively. A subsuming chain of P ′ is a minimal path on the boundary of
P ′ whose end edges coincide with a pair of edges of P , as shown in Fig. 1(b).

Aichholzer et al. [1] showed that for every polygon P with n vertices, r > 0
of which are reflex, one can compute in linear time a subsuming polygon P ′

with at most O(r) vertices. Note that although a subsuming polygon with O(r)
vertices always exists, no polynomial-time algorithm is known for computing a
min-convex subsuming polygon. Finding an optimal subsuming polygon seems
challenging since it does not always lie on the arrangement of lines Ae(P ) (resp.,
Av(P )) determined by the edges (resp., pairs of vertices) of the input polygon.
Figure 1(c) illustrates an optimal polygon P ′

min for the polygon P of Fig. 1(a),
where Ae(P ′

min) = Ae(P ). On the other hand, Fig. 1(d) shows that a min-convex
subsuming polygon may not always lie on Ae(P ) or Av(P ). Note that the input
polygon of Fig. 1(d) is a simple polygon, i.e., it does not contain any hole. Hence
determining min-convex subsuming polygons seems challenging even for simple
polygons. In fact, Aichholzer et al. [1] posed an open question that asks to
determine the complexity of computing min-convex subsuming polygons, where
the input is restricted to simple polygons.
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Let P be a simple polygon. In this paper we show that if there exists a
min-convex subsuming polygon P ′

min such that Ae(P ′
min) = Ae(P ) and the

subsuming chains of P ′
min are of constant length, then one can compute such an

optimal subsuming polygon in polynomial time. In contrast, if P contains holes,
then we prove the problem to be NP-hard. The hardness result holds even when
the min-convex subsuming polygon P ′

min lies on the arrangement Ae(P ), and
the length of every subsuming chain of P ′

min is three. Both results extend to the
scenario when Av(P ′

min) = Av(P ).
The rest of the paper is organised as follows. In Sect. 2 we describe the

techniques for computing subsuming polygons. Section 3 includes the NP-
hardness result. Finally, Sect. 4 concludes the paper discussing directions to
future research.

2 Computing Subsuming Polygons

In this section we show that for any simple polygon P , if there exists a min-
convex subsuming polygon Pmin such that Ae(P ) = Ae(P ′

min) and the subsum-
ing chains are of length at most t, then one can compute an optimal polygon
in O(tO(1)nf(t)) time. Therefore, if t = O(1), then the time complexity of our
algorithm is polynomial in n. We first present definitions and preliminary results
on outerstring graphs, which will be an important tool for computing subsuming
polygons.

2.1 Independent Set in Outerstring Graphs

A graph G is a string graph if it is an intersection graph of a set of simple curves
in the plane, i.e., each vertex of G is a mapped to a curve (string), and two
vertices are adjacent in G if and only if the corresponding curves intersect. G
is an outerstring graph if the underlying curves lie interior to a simple cycle C,
where each curve intersects C at one of its endpoints. Figure 2(a) illustrates an
outerstring graph and the corresponding arrangement of curves. Later in our
algorithm, the polygon will correspond to the cycle of an outerstring graph, and
some polygonal chains attached to the boundary of the polygon will correspond
to the strings of that outerstring graph.

A set of strings is called independent if no two strings in the set intersect,
the corresponding vertices in G are called an independent set of vertices. Let G
be a weighted outerstring graph with a set T of weighted strings. A maximum
weight independent set MWIS(T ) (resp., MWIS(G)) is a set of independent strings
T ⊆ T (resp., vertices) that maximizes the sum of the weights of the strings in
T . Observe that MWIS(T ) is also a maximum weight independent set MWIS(G) of
G. By |MWIS(G)| we denote the weight of MWIS(G).

Let Γ (G) be the arrangement of curves that corresponds to G, e.g., see
Fig. 2(a). Let R be a geometric representation of Γ (G), where C is represented
as a simple polygon P , and each curve is represented as a simple polygonal
chain inside P such that one of its endpoints coincides with a distinct vertex of
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Fig. 2. (a) Illustration for G and Γ (G). (b) A geometric representation R of G. (c)
A triangulated polygon obtained from an independent set of G. (d)–(e) Dynamic pro-
gramming to find maximum weight independent set.

P . Keil et al. [6] showed that given a geometric representation R of G, one can
compute a maximum weight independent set of G in O(s3) time, where s is the
number of line segments in R.

Theorem 1 (Keil et al. [6]). Given the geometric representation R of a
weighted outerstring graph G, there exists a dynamic programming algorithm
that computes a maximum weight independent set of G in O(s3) time, where s
is the number of straight line segments in R.

Figure 2(b) illustrates a geometric representation R of some G, where each
string is represented with at most 4 segments. Keil et al. [6] observed that any
maximum weight independent set of strings can be triangulated to create a trian-
gulation Pt of P , as shown in Fig. 2(c). Let T be the strings in R. Then the prob-
lem of finding MWIS(T ) can be solved by dividing the problem into subproblems,
each described using only two points of R. We illustrate how the subproblems
are computed very briefly using Fig. 2(d). Let P (v1, v2) be the problem of finding
MWIS(Tv1,v2), where Tv1,v2 consists of the strings that lie to the left of v1v2. Let
wv1v2 be a triangle in Pt, where w is a point on some string d inside P (v1, v2); see
Fig. 2(d). Since Pt is a triangulation of the maximum weight string set, d must
be a string in the optimal solution. Hence P (v1, v2) can be computed from the
solution to the subproblems P (v1, w) and P (w, v2), as shown in Fig. 2(e). Keil
et al. [6] showed that there are only a few different cases depending on whether
the points describing the subproblems belong to the polygon or the strings. We
will use this idea of computing MWIS(T ) to compute subsuming polygons.
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2.2 Subsuming Polygons via Outerstring Graphs

Let P = (v0, v1, . . . , vn−1) be a simple polygon with n vertices, r > 0 of which
are reflex vertices. A convex chain of P is a path Cij = (vi, vi+1, . . . , vj−1, vj) of
strictly convex vertices, where the indices are considered modulo n.

Let P ′ = (w0, w1, . . . , wm−1) be a subsuming polygon of P , where Ae(P ′) =
Ae(P ), and the subsuming chains are of length at most t. Let C ′

qr = (wq, . . . , wr)
be a subsuming chain of P ′. Then by definition, there is a corresponding convex
chain Cij in P such that the edges (vi, vi+1) and (vj−1, vj) coincide with the
edges (wq, wq+1) and (wr−1, wr). We call the vertex vi the left support of C ′

qr.
Since Ae(P ′) = Ae(P ), the chain C ′

qr must lie on Ae(P ). Moreover, since P ′ is a
min-convex subsuming polygon, the number of vertices in C ′

qr would be at most
the number of vertices in Cij .

We claim that the number of paths in Ae(P ) from vi to vj is O(nt). Since t
is an upper bound on the length of the subsuming chains, any subsuming chain
can have at most (t − 1) line segments. Since there are only O(n) straight lines
in the arrangement Ae(P ), there can be at most nj paths of j edges, where
1 ≤ j ≤ t − 1. Consequently, the number of candidate chains that can subsume
Cij is O(nt).

Lemma 1. Given a simple polygon P with n vertices, every convex chain C of
P has at most O(nt) candidate subsuming chains in Ae(P ), each of length at
most t.

In the following we construct an outerstring graph using these candidate
subsuming chains. We first compute a simple polygon Q interior to P such that
for each edge e in P , there exists a corresponding edge e′ in Q which is parallel
to e and the perpendicular distance between e and e′ is ε, as shown in dashed
line in Fig. 3(a). We choose ε sufficiently small1 such that for each component w
of P , Q contains exactly one component inside w. We now construct the strings.
Let vj be a convex corner of P . Let Sj be the set of candidate subsuming chains
such that for each chain in Sj , the left support of the chain appears before vj
while traversing the unbounded face of P in clockwise order. For example, the
subsuming chains that correspond to vj are (vj−2, z1, vj+1), (vj−3, z13, z2, vj+1),
(vj−3, z14, z3, vj+1), (vj−3, z11, z4, vj+1), (vj−3, z15, z5, vj+1), (vj−3, z8, z5, vj+1),
(vj−3, z7, vj+1), as shown in Fig. 3(b). For each of these chains, we create a
unique endpoint on the edge e′ of Q, where e′ corresponds to the edge vjvj+1 in
P , as shown in Fig. 3(c). We then attach these chains to Q by adding a segment
from vj to its unique endpoint on Q.

We attach the chains for all the convex vertices of P to Q. Later we will use
these chains as the strings of an outerstring graph. We then assign each chain a
weight, which is the number of convex vertices of P it can reduce. For example
in Fig. 3(b), the weight of the chain (vj−3, z8, z5, vj+1) is one.

Although the strings are outside of the simple cycle, it is straightforward
to construct a representation with all the strings inside a simple cycle Q: Con-
sider placing a dummy vertex at the intersection points of the arrangement, and
1 Choose ε = δ/3, where δ is the distance between the closest visible pair of boundary
points.
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Fig. 3. (a) Illustration for the polygon P (in bold), Ae(P ) (in gray), and Q (in dashed
lines). (b) Chains of vj . (c) Attaching the strings to Q. (d) Dynamic programming
inside the gray region.

then find a straight-line embedding of the resulting planar graph such that the
boundary of Q corresponds to the outerface of the embedding. Consequently,
Q and its associated strings correspond to an outerstring graph representation
R. Let G be the underlying outerstring graph. We now claim that any MWIS(G)
corresponds to a min-convex subsuming polygon of P .

Lemma 2. Let P be a simple polygon, where there exists a min-convex subsum-
ing polygon that lies on Ae(P ), and let G be the corresponding outerstring graph.
Any maximum weight independent set of G yields a min-convex subsuming poly-
gon of P .

Proof. Let T be a set of strings that correspond to a maximum weight inde-
pendent set of G. Since T is an independent set, the corresponding subsuming
chains do not create edge crossings. Moreover, since each subsuming chain is
weighted by the number of convex corners it can remove, the subsuming chains
corresponding to T can remove |MWIS(G)| convex corners in total.

Assume now that there exists a min-convex subsuming polygon that can
remove at least k convex corners. The corresponding subsuming chains would
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correspond to an independent set T ′ of strings in G. Since each string is weighted
by the number of convex corners the corresponding subsuming chain can remove,
the weight of T ′ would be at least k. ��

2.3 Time Complexity

To construct G, we first placed a dummy vertex at the intersection points of
the chains, and then computed a straight-line embedding of the resulting planar
graph such that all the vertices of Q are on the outerface. Therefore, the geo-
metric representation used at most nt edges to represent each string. Since each
convex vertex of P is associated with at most O(nt) strings, there are at most
n × O(nt) strings in G. Consequently, the total number of segments used in the
geometric representation is O(tn2+t). A subtle point here is that the strings in
our representation may partially overlap, and more than three strings may inter-
sect at one point. Removing such degeneracy does not increase the asymptotic
size of the representation. Finally, by Theorem1, one can compute the optimal
subsuming polygon in O(t3n6+3t) time.

The complexity can be improved further to as follows. Let abcd be a rec-
tangle that contains all the intersection points of Ae(P ). Then every optimal
solution can be extended to a triangulation of the closed region between abcd
and Q. Figure 3(d) illustrates this region in gray. We now can apply a dynamic
programming similar to Sect. 2.1 to compute the maximum weight independent
string set, where each subproblem finds a maximum weight set inside some sub-
polygon. Each such subpolygon can be described using two points v1, v2, each
lying either on Q or on some string, and a subset of {a, b, c, d} that helps enclos-
ing the subpolygon.

Since there are n×O(nt) strings, each containing at most t points, the number
of vertices in the geometric representation is O(tn1+t). Therefore, the size of the
dynamic programming table is O(tn1+t) × O(tn1+t) × O(1). Since there can be
at most O(tn1+t) candidate triangles v1v2w, we take O(tn1+t) time to fill an
entry of the table. Hence the dynamic program takes at most O(t3n3+3t) time
in total.

Theorem 2. Given a simple polygon P with n vertices such that there exists a
min-convex subsuming polygon that lie on Ae(P ) and the subsuming chains are
of length at most t, one can compute such a min-convex subsuming polygon in
O(t3n3+3t) time.

2.4 Generalizations

We can generalize the results for any given line arrangements. However, such a
generalization may increase the time complexity. For example, consider the case
when the given line arrangement is Av(P ), which is determined by the pairs of
vertices of P . Since we now have O(n2) lines in the arrangement Av(P ), the time
complexity increases to O(t3(n2)3+3t), i.e., O(t3n6+6t).
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3 NP-Hardness of Min-Convex Subsuming Polygon

In this section we prove that it is NP-hard to find a subsuming polygon with
minimum number of convex vertices. We denote the problem by Min-Convex-
Subsuming-Polygon. We reduce the NP-complete problem monotone planar
3-SAT [3], which is a variation of the 3-SAT problem as follows: Every clause
in a monotone planar 3-SAT consists of either three negated variables (nega-
tive clause) or three non-negated variables (positive clause). Furthermore, the
bipartite graph constructed from the variable-clause incidences, admits a pla-
nar drawing such that all the vertices corresponding to the variables lie along
a horizontal straight line l, and all the vertices corresponding to the positive
(respectively, negative) clauses lie above (respectively, below) l. The problem
remains NP-hard even when each variable appears in at most four clauses [7].

The idea of the reduction is as follows. Given an instance of a monotone
planar 3-SAT I with variable set X and clause set C, we create a corresponding
instance PI of Min-Convex-Subsuming-Polygon. Let λ be the number of
convex vertices in PI . The reduction ensures that if there exists a satisfying
truth assignment of I, then PI can be subsumed by a polygon with at most
λ−|X||C|2−3|C| convex vertices, and vice versa.

Given an instance I of monotone planar 3-SAT, we first construct an orthog-
onal polygon Po with holes. We denote each clause and variable using a dis-
tinct axis-aligned rectangle, which we refer to as the c-rectangle and v-rectangle,
respectively. Each edge connecting a clause and a variable is represented as a
thin vertical strip, which we call an edge tunnel. Figures 4(a) and (b) illustrate
an instance of monotone planar 3-SAT and the corresponding orthogonal poly-
gon, respectively. While adding the edge tunnels, we ensure for each v-rectangle
that the tunnels coming from top lie to the left of all the tunnels coming from
the bottom. Figure 4(b) marks the top and bottom edge tunnels by upward and
downward rays, respectively. The v-rectangles, c-rectangles and the edge tun-
nels may form one or more holes, whereas the polygon is shown in diagonal line
pattern. We now transform Po to an instance PI of Min-Convex-Subsuming-
Polygon.

We first introduce a few notations. Let abcd be a convex quadrangle and let
lab be an infinite line that passes through a and b. Assume also that lbc and lad
intersect at some point e, and c, d, e all lie on the same side of lab, as shown in
Figs. 4(c) and (d). Then we call the quadrangle abcd a tip on l, and the triangle
cde a cap of abcd.

3.1 Variable Gadget

We construct variable gadgets from the v-rectangles. We add some top-right
(and the same number of top-left) tips at the bottom side of the v-rectangle, as
show in Fig. 4(e). There are three top-right and top-left tips in the figure. For
convenience we show only one top-left and one top-right tip in the schematic
representation, as shown in Fig. 4(f). However, we assign weight to these tips to
denote how many tips there should be in the exact construction. We will ensure
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Fig. 4. (a) An instance I of monotone planar 3-SAT. (b) The orthogonal polygon Po

corresponding to I. (c)–(f) Illustration for the variable gadget.

a few more properties: (I) The caps do not intersect the boundary of the v-
rectangle, (II) no two top-left caps (or, top-right caps) intersect, and (III) every
top-left (resp., top-right) cap intersects all the top-right (resp., top-left) caps.

Observe that each top-left tip contributes to two convex vertices such that
covering them with a cap reduces the number of convex vertices by 1. The peak of
the cap reaches very close to the top-left corner of the v-rectangle, which will later
interfere with the clause gadget. Specifically, this cap will intersect any downward
cap of the clause gadget coming through the top edge tunnels. Similarly, each top-
right tip contributes to two convex vertices, and the corresponding cap intersects
any upward cap coming through the bottom edge tunnels.

Note that the optimal subsuming polygon P cannot contain the caps from
both the top-left and top-right tips. We assign the tips with a weight of |C|2. In
the hardness proof this will ensure that either the caps of top-right tips or the
caps of top-left tips must exist in P , which will correspond to the true and false
configurations, respectively.

3.2 Clause Gadget

Without loss of generality assume that each clause is incident to three edge
tunnels, otherwise, we can create necessary multi-edges to satisfy this constraint.
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Fig. 5. Illustration for the clause gadget.

Figure 5(a) illustrates the transformation for a c-rectangle. Here we describe
the gadget for the positive clauses, and the construction for negative clauses
is symmetric. We add three downward tips incident to the top side of the c-
rectangle, along its three edge tunnels. Each of these downward tip contributes
to two convex vertices such that covering the tip with a cap reduces the number
of convex vertices by 1. Besides, the corresponding caps reach almost to the
bottom side of the v-rectangles, i.e., they would intersect the top-left caps of the
v-rectangles. Let these tips be t1, t2, t3 from left to right, and let γ1, γ2, γ3 be the
corresponding caps.

We then add a down-left and a down-right tip at the top side of the c-
rectangle between ti and ti+1, where 1 ≤ i ≤ 2, as shown in Fig. 5(a). Let the
tips be t′1, . . . , t

′
4 from left to right, and let the corresponding caps be γ′

1, . . . , γ
′
4.

Note that the caps corresponding to t′j and t′j+1, where 1 ≤ j ≤ 4, intersect each
other. Therefore, at most two of these four caps can exist at the same time in
the solution polygon. Observe also that the caps corresponding to t1, t2, t3 inter-
sect the caps corresponding to {t′2}, {t′1, t

′
4}, {t′3}, respectively. Consequently, any

optimal solution polygon containing none of {γ1, γ2, γ3} have at least 12 convex
vertices along the top boundary of the c-rectangle, as shown in Fig. 5(b).

We now show that any optimal solution polygon P containing at least α >
0 caps from Γ = {γ1, γ2, γ3} have exactly 11 convex vertices along the top
boundary of the c-rectangle. We consider the following three cases:

Case 1 (α = 1): If γ1 (resp., γ3) is in P , then P must contain {γ′
1, γ

′
3} (resp.,

{γ′
2, γ

′
4}). Figure 5(c) illustrates the case when P contains γ1. If γ2 is in P , then

P must contain {γ′
2, γ

′
3}. In all the above scenario the number of convex vertices

along the top boundary of the c-rectangle is 11.
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Case 2 (α = 2): If P contains {γ1, γ3}, then either γ′
1 or γ′

4 must be in P .
Otherwise, P contains either {γ1, γ2} or {γ2, γ3}. If that P contains {γ1, γ2},
as in Fig. 5(d), then γ′

3 must lie in P . In the remaining case, γ′
2 must lie in P .

Therefore, also in this case the number of convex vertices along the top boundary
of the c-rectangle is 11.

Case 3 (α = 3): In this scenario P cannot contain any of γ′
1, . . . , γ

′
4. Therefore,

as shown in Fig. 5(e), the number of convex vertices along the top boundary of
the c-rectangle is 11.

As a consequence we obtain the following lemma.

Lemma 3. If a clause is satisfied, then any optimal subsuming polygon reduces
exactly three convex vertex from the corresponding c-rectangle.

3.3 Reduction

Although we have already described the variable and clause gadgets, the optimal
subsuming polygon still may come up with some unexpected optimization that
interferes with the convex corner count in our hardness proof. Figure 6(left)
illustrates one such example. Therefore, we replace each convex corner that does
not correspond to the tips by a small polyline with alternating convex and reflex
corners, as shown Fig. 6(right).

We now prove the NP-hardness of computing optimal subsuming polygon.

Theorem 3. Finding an optimal subsuming polygon is NP-hard.

Proof. Let I = (X,C) be an instance of the monotone planar 3-SAT and let PI

be the corresponding instance of Min-Convex-Subsuming-Polygon. Let λ
be the number of convex vertices in PI . We now show that I admits a satisfying
truth assignment if and only if PI can be subsumed using a polygon having at
most λ − |X||C|2 − 3|C| convex vertices.

First assume that I admits a satisfying truth assignment. For each variable
x, we choose either the top-right caps or the top-left caps depending on whether
x is assigned true or false. Consequently, we save at least |X||C|2 convex vertices.
Consider any clause c ∈ C. Since c is satisfied, one or more of its variables are
assigned true. Therefore, for each positive (resp., negative) clause, we can have
one or more downward (resp., upward) caps that enter into the v-rectangles.

Fig. 6. Refinement of PI .
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By Lemma 3, we can save at least three convex vertices from each c-rectangle.
Therefore, we can find a subsuming polygon with at most λ − |X||C|2 − 3|C|
convex vertices.

Assume now that some polygon P with at most λ − |X||C|2 − 3|C| convex
vertices can subsume PI . We now find a satisfying truth assignment for I. Note
that the maximum number of convex vertices that can be reduced from the
c-rectangles is at most 3|C|. Therefore, P must reduce at least |C|2 convex
vertices from each v-rectangle. Recall that in each v-rectangle, either the top-
right or the top-left caps can be chosen in the solution, but not both. Therefore,
the v-rectangles cannot help reducing more than |X||C|2 convex vertices. If P
contains the top-right caps of the v-rectangle, then we set the corresponding
variable to true, otherwise, we set it to false. Since P has at most λ − |X||C|2 −
3|C| convex vertices, and each c-rectangle can help to reduce at most 3 convex
vertices (Lemma 3), P must have at least one cap from γ1, γ2, γ3 at each c-
rectangle. Therefore, each clause must be satisfied. Recall that the downward
(resp., upward) caps coming from edge tunnels are designed carefully to have
conflict with the top-left (resp., top-right) caps of v-variables. Since top-left and
top-right caps of v-variables are conflicting, the truth assignment of each variable
is consistent in all the clauses that contains it. ��

4 Conclusion

In this paper we have developed a polynomial-time algorithm that can compute
optimal subsuming polygons for a given simple polygon in restricted settings.
On the other hand, if the polygon contains holes, then we show the problem of
computing an optimal subsuming polygon is NP-hard. Therefore, the question
of whether the problem is polynomial-time solvable for simple polygons, remains
open.

Our algorithm can find an optimal solution if the optimal subsuming polygon
lies on some prescribed arrangement of lines, e.g., Ae(P ) or Av(P ). The running
time of our algorithm depends on the length of the subsuming chains, i.e., the

Fig. 7. Illustration for the case when the optimal subsuming polygon contains a sub-
suming chain of length Ω(n). The subsuming chain is shown in bold.
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running time is polynomial if the subsuming chains are of constant length. How-
ever, there exist polygons whose optimal subsuming polygons contain subsuming
chains of length Ω(n). Figure 7 illustrates such an example optimal solution that
is lying on Ae(P ). Therefore, it would be interesting to find algorithms whose
running time is polynomial in the size of Ae(P ) or Av(P ).

Another interesting research direction would be to examine whether there
exists a good approximation algorithm for the problem.
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Abstract. Construction of phylogenetic trees and networks for extant
species from their characters represents one of the key problems in
phylogenomics. While solution to this problem is not always uniquely
defined and there exist multiple methods for tree/network construction,
it becomes important to measure how well the constructed networks cap-
ture the given character relationship across the species.

In the current study, we propose a novel method for measuring the
specificity of a given phylogenetic network in terms of the total number
of distributions of character states at the leaves that the network may
impose. While for binary phylogenetic trees, this number has an exact
formula and depends only on the number of leaves and character states
but not on the tree topology, the situation is much more complicated for
non-binary trees or networks. Nevertheless, we develop an algorithm for
combinatorial enumeration of such distributions, which is applicable for
arbitrary trees and networks under some reasonable assumptions.

1 Introduction

The evolutionary history of a set of species is often described with a rooted
phylogenetic tree with the species at the leaves and their common ancestor at
the root. Each internal vertex and its outgoing edges in such a tree represent
a speciation event followed by independent descents with modifications, which
outlines the traditional view of evolution. Phylogenetic trees do not however
account for reticulate events (i.e., partial merging of ancestor lineages), which
may also play a noticeable role in evolution through hybridization, horizontal
gene transfer, or recombination [1,2]. Phylogenetic networks represent a natural
generalization of phylogenetic trees to include reticulate events. In particular,
phylogenetic networks can often more accurately describe the evolution of char-
acters (e.g., phenotypic traits) observed in the extant species. Since there exists
a number of methods for construction of such phylogenetic networks [3,4], it
becomes important to measure how well the constructed networks capture the
given character relationship across the species.

In the current study, we propose a novel method for measuring the specificity
of a given phylogenetic network in terms of the total number of distributions of
character states at the leaves that the network may impose. While for binary
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phylogenetic trees, this number has an exact formula and depends only on the
number of leaves and character states but not on the tree topology [5,6], the sit-
uation is much more complicated for non-binary trees or network. Nevertheless,
we propose an algorithm for combinatorial enumeration of such distributions,
which is applicable for arbitrary trees and networks under the assumption that
reticulate events do not much interfere with each other as explained below.

We view a phylogenetic network N as a rooted directed acyclic graph (DAG).
Let N � be an undirected version of N , where the edge directions are ignored. We
remark that if there are no reticulate events in the evolution, then N represents
a tree and thus N � contains no cycles. On the other hand, reticulate events in
the evolution result in appearance of parallel directed paths in N and cycles
in N �. In our study, we restrict our attention to cactus networks N , for which
N � represents a cactus graph, i.e., every edge in N � belongs to at most one
simple cycle. In other words, we require that the simple cycles in N � (result-
ing from reticulate events) are all pairwise edge-disjoint. This restriction can be
interpreted as a requirement for reticulate events to appear in “distant” parts of
the network. Trivially, trees represent a particular case of cactus networks. We
remark that some problems, which are NP-hard for general graphs, are polyno-
mial for cactus graphs [7], and some phylogenetic algorithms are also efficient
for cactus networks [8]. We also remark that cactus networks generalize galled
trees (where cycles are vertex-disjoint) and represent a particular case of galled
networks (where cycles may share edges) [9].

We assume that the leaves (i.e., vertices of outdegree 0) of a given phyloge-
netic network N represent extant species. A k-state character is a partition of
the species (i.e., leaves of N ) into k nonempty sets. In this paper, we consider
only homoplasy-free multi-state characters (see [10]), and enumerate the possible
number of such k-state characters for any particular N .

2 Methods

Let N be a cactus network. For vertices u, v in N , we say that u is an ancestor
of v and v is a descendant of u, denoted u � v, if there exists a path from u to
v (possibly of length 0 when u = v). Similarly, we say that v is lower than u,
denoted u � v, if u � v and u �= v. For a set of vertices V of N , we define a
lowest common ancestor as a vertex u in N such that u � v for all v ∈ V and
there is no vertex u′ in N such that u � u′ � v for all v ∈ V . While for trees
a lowest common ancestor is unique for any set of vertices, this may be not the
case for networks in general. However, in Sect. 2.2, we will show that a lowest
common ancestor in a cactus network is also unique for any set of vertices.

A k-state character on N can be viewed as a k-coloring on the leaves of
N , i.e., a partition of the leaves into k nonempty subsets, each colored with a
unique color numbered from 1 to k (in an arbitrary order). A k-state character
is homoplasy-free if the corresponding k-coloring C of the leaves of N is convex,
i.e., the coloring C can be expanded to some internal vertices of N such that the
subgraphs induced by the vertices of each color are rooted and connected.
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Our goal is to compute the number of homoplasy-free multi-state characters
on the leaves of N , which is the same as the total number of convex colorings
p(N ) =

∑∞
k=1 pk(N ), where pk(N ) is the number of convex k-colorings on the

leaves of N .

2.1 Trees

In this section, we describe an algorithm for computing p(T ), where T is a rooted
phylogenetic tree.

We uniquely expand each convex k-coloring of the leaves of T to a partial
k-coloring of its internal vertices as follows. For the set Li of the leaves of color
i, we color to the same color i their lowest common ancestor ri and all vertices
on the paths from ri to the leaves in Li (since the k-coloring of leaves is convex,
this coloring procedure is well-defined). We call such partial k-coloring of (the
vertices of) T minimal. Alternatively, a partial k-coloring on T is minimal if and
only if for each i = 1, 2, . . . , k, the induced subgraph Ti of color i is rooted and
connected (i.e., forms a subtree of T ), and removal of any vertex of Ti that is
not a leaf of T breaks the connectivity of Ti.

By construction, pk(T ) equals the number of minimal k-colorings of T .
The number pk(T ) in the case of binary trees is known [5,6] and depends

only on the number of leaves in a binary tree T , but not on its topology.

Theorem 1 [5, Proposition 1]. Let T be a rooted binary tree with n leaves.
Then the number of convex k-colorings of T is

(
2n−k−1

k−1

)
. Correspondingly, p(T )

equals the Fibonacci number F2n−1.

The case of arbitrary (non-binary) trees is more sophisticated.
Let T be a rooted tree. For a vertex v in T , we define Tv as the full subtree

of T rooted at v and containing all descendants of v.
Let T ′ be any rooted tree larger than T such that T is a full subtree of

T ′. We call a k-coloring of T semiminimal if this coloring is induced by some
minimal coloring on T ′ (which may use more than k colors). Clearly, all minimal
colorings are semiminimal, but not all semiminimal colorings are minimal. We
remark that a semiminimal k-coloring of T , in fact, does not depend on the
topology of T ′ outside T and thus is well-defined for T .

Lemma 1. A semiminimal k-coloring of T is well-defined.

Proof. Let C′ be a minimal coloring of T ′ and C be its induced coloring on T .
If C′ is such that T and T ′ \ T have no common colors, then C is minimal,

and this property does not depend on the topology of T ′ \ T .
If C′ is such that T and T ′ \ T have some common color i, then the root r of

T and its parent in T ′ are colored into i (hence, the shared color i is unique).
Then the coloring on T ∪ {(r, l)}, where T inherits its coloring from T ′ and l
is a new leaf colored into i, is minimal. This property does not depend on the
topology of T ′ \ T either. ��
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For a semiminimal k-coloring C on Tv, there exist three possibilities:

– Vertex v is colored and shares its color with at least two of its children. In this
case, coloring C is minimal.

– Vertex v is colored and shares its color with exactly one of its children, and
coloring C is not minimal.

– Vertex v is not colored. In this case, coloring C represents a minimal coloring
of Tv.

Correspondingly, for each vertex v, we define

– fk(v) is the number of minimal k-colorings of Tv such that at least two children
of v have the same color (the vertex v must also have this color);

– gk(v) is the number of semiminimal k-colorings of Tv such that the vertex
v shares its color with exactly one of its children (i.e., semiminimal but not
minimal k-colorings);

– hk(v) is the number of minimal k-colorings of Tv such that the vertex v is not
colored.

We remark that the number of minimal k-colorings of T equals fk(r) + hk(r),
where r is the root of the tree T .

We define the following generating functions:

Fv(x) =
∞∑

k=1

fk(v) · xk; Gv(x) =
∞∑

k=1

gk(v) · xk; Hv(x) =
∞∑

k=1

hk(v) · xk.

(1)
For a leaf v of T , we assume fk(v) = δk,1 (Kronecker’s delta) and gk(v) =

hk(v) = 0 for any k ≥ 1. Correspondingly, we have Fv(x) = x and Gv(x) =
Hv(x) = 0.

If a vertex v has d children u1, u2, . . . , ud, then one can compute Fv(x), Gv(x),
and Hv(x) using the generating functions at the children of v as follows.

Theorem 2. For any internal vertex v of T , we have

Hv(x) =

d∏

i=1

(Fui(x) + Hui(x)); (2)

Gv(x) =
d∑

i=1

(Fui(x) + Gui(x))
d∏

j=1
j �=i

(Fuj (x) + Huj (x)) = Hv(x) ·
d∑

i=1

Fui(x) + Gui(x)

Fui(x) + Hui(x)
;

(3)

Fv(x) = x
d∏

i=1

(

Fui(x) + Hui(x) +
Fui(x) + Gui(x)

x

)

− x ·Hv(x) −Gv(x); (4)

where u1, u2, . . . , ud are the children of v.

Proof. Suppose that vertex v is not colored in a minimal k-coloring of T . Then
each its child is either not colored or has a color different from those of the
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other children. Furthermore, if a child of v is colored, its color must appear at
least twice among its own children. Thus, the number of semiminimal colorings
of Tui

in this case is fki
(ui) + hki

(ui), where ki is the number of colors in Tui

(i = 1, 2, . . . , d). Also, the subtrees Tui
cannot share any colors with each other.

Hence, the number of minimal k-colorings of Tv with non-colored v equals

∑

k1+···+kd=k

d∏

i=1

(fki
(ui) + hki

(ui)),

implying formula (2).
Now suppose that vertex v is colored in a minimal k-coloring of T . Then v

must share its color with at least one of its children. Consider two cases.

Case 1. Vertex v shares its color with exactly one child, say ui. Then there are
fki

(ui)+gki
(ui) semiminimal ki-colorings for Tui

. For any other child uj (j �= i),
similarly to the above, we have that the number of semiminimal kj-colorings
equals fkj

(uj)+hkj
(uj). Hence, the number of semiminimal k-colorings of Tv in

this case equals

∑

k1+···+kd=k

(fki
(ui) + gki

(ui))
d∏

j=1
j �=i

(fkj
(uj) + hkj

(uj)),

implying formula (3).

Case 2. Vertex v shares its color with children ui, i ∈ I, |I| ≥ 2, but not with
uj for j /∈ I. Since the color of v is the only color shared by Tui

, we have
k1 + · · · + kd = k + |I| − 1. Similarly to Case 1, we get that the number of
minimal k-colorings of Tv is a coefficient at xk+|I|−1 in

∏

i∈I

(Fui
(x) + Gui

(x))
∏

j /∈I

(
Fuj

(x) + Huj
(x)

)
,

which is the same as the coefficient of xk in

x
∏

i∈I

(Fui
(x) + Gui

(x))
x

∏

j /∈I

(
Fuj

(x) + Huj
(x)

)
.

Summation of this expression over all subsets I ⊂ {1, 2, . . . , d} gives us the first
term of (4), from where we subtract the sum over I with |I| = 0 (the term
x · Hv(x)) and with |I| = 1 (the term Gv(x)) to prove (4). ��

2.2 Cactus Networks

In this section, we show how to compute p(N ), where N is a cactus network.
The following lemma states an important property of cactus networks.

Lemma 2. Let N be a cactus network. Then for any set of vertices of N , their
lowest common ancestor is unique.
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Proof. For any set of vertices, there exists at least one common ancestor, which
is the root of N .

It is enough to prove the statement for 2-element sets of vertices. Indeed, if
for any pair of vertices their lowest common ancestor is unique, then in any set
of vertices we can replace any pair of vertices with their lowest common ancestor
without affecting the lowest common ancestors of the whole set. After a number
of such replacements, the set reduces to a single vertex, which represents the
unique lowest common ancestor of the original set.

Suppose that for vertices u1 and u2 in N , there exist two lowest common
ancestors r1 and r2. Let r′ be a lowest common ancestor of r1 and r2 (clearly,
r′ �= r1 and r′ �= r2), and P1 and P2 be paths from r′ to r1 and r2, respectively.
Then P1 and P2 are edge-disjoint. Let Qi,j be paths from ri to uj(i, j = 1, 2).
It easy to see that for each i = 1, 2, the paths Qi,1 and Qi,2 are edge-disjoint.
Then the paths P1, Q1,1, P2, Q2,1 form a simple cycle in N ∗; similarly, the paths
P1, Q1,2, P2, Q2,2 form a simple cycle in N ∗. These simple cycles share the path
P1 (and P2), a contradiction to N being a cactus network. ��

In contrast to trees, cactus networks may contain branching paths, which
end at vertices of indegree 2 called sinks (also known as reticulate vertices [2,9]).
Clearly, there are no vertices of indegree greater than 2 in a cactus network (if
there are three incoming edges to some vertex then each of them belongs to two
simple cycles in N �). We will need the following lemma.

Lemma 3. Let pl and pr be the parents of some sink in a cactus network N ,
and s be their lowest common ancestor. Let Pl and Pr be paths from s to pl and
pr, respectively. Then Pl and Pr (i) are edge-disjoint; (ii) do not contain sinks,
except possibly vertex s; and (iii) are unique.

Proof. Since s is the lowest common ancestor of pl and pr, the paths Pl and Pr

are edge-disjoint.
Suppose that there is an edge (u, t′) on a path from s to pl such that t′ is a

sink. Then this edge belongs to two different simple cycles in N ∗, a contradiction
to N being a cactus network.

It is easy to see that if there exists a path P ′
l from s to pl different from Pl,

then the paths Pl and P ′
l would share a sink (different from s), which does not

exist on Pl. Hence, the path Pl is unique and so is Pr. ��
Let t be a sink in N and pl and pr be its parents. Let s be the lowest common

ancestor of pl and pr (which exists by Lemma 2). Lemma 3 implies that the paths
P1 and P2 from s to t that visit vertices pl and pr, respectively, are unique and
edge-disjoint. We call such a vertex s source and refer to the unordered pair of
paths {P1, P2} as a simple branching path (denoted s ⇒ t) and to each of these
paths as a branch of s ⇒ t. Notice that one source may correspond to two or
more sinks in N .

For any two vertices u and v connected with a unique path in N , we denote this
path by u → v (which is a null path if v = u). A branching path between vertices
p and q in N is an alternating sequence of unique and simple branching paths

p → s1 ⇒ t1 → · · · → sm ⇒ tm → q,
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where some of the unique paths may be null.

Lemma 4. For any vertices u � v in a cactus network N , the union of all paths
between them forms a branching path.

Proof. Suppose N is a cactus network and u � v in N . Let N ′ be a subnetwork
of N formed by all paths from u to v. Clearly, N ′ is a rooted (at u) cactus.
We will prove that N ′ is a branching path by induction on the number of sinks
in N ′. If there are no sinks in N ′, then a path from u to v is unique, then the
statement holds. Otherwise, there exists a sink t in N ′ such that u � t � v and
a path from t to v is unique, while there exist multiple paths from u to t. Let
s be the source in N ′ corresponding to t. Then the branching path from s to
v has the form s ⇒ t → v. Since every path from u to v visits t, it also must
visit s (by Lemma 3 a path cannot enter into a simple branching path s ⇒ t
other than through vertex s). Let N ′′ be the subnetwork of N ′ consisting of all
paths from u to s. Since the number of sinks in N ′′ is one less than in N ′, by
induction it is a branching path. Then N ′ is a branching path obtained from
N ′′ by concatenating it with the path s ⇒ t → v. ��

For vertices u � v in N , the union of all paths from u to v is called the
maximal branching path.

We generalize the notion of the minimal k-coloring to the case of cactus
networks by expanding any convex k-coloring of the leaves of N to a partial
coloring of the internal vertices of N as follows.

Network Coloring Procedure. For a given convex k-coloring of the leaves of N ,
let Li be the set of the leaves of color i. We consider maximal branching paths
from the lowest common ancestor r(i) of Li to all l ∈ Li, which by Lemma 4
have the form:

r(i) → s
(i)
1 ⇒ t

(i)
1 → · · · → s(i)mi

⇒ t(i)mi
→ l.

At the first step, we color all vertices in the unique subpaths of such maximal
branching paths into color i (Fig. 1a, b). Lemma 5 below shows that this coloring
procedure (performed for all i = 1, 2, . . . , k) is well-defined. At the second step,
we color some branches of simple branching subpaths of the maximal branching
paths from r(i) to the leaves in Li. Namely, for each branch between s

(i)
j and

t
(i)
j we check if its vertices are colored (at the first step) in any color other than

i; if no other color besides i is present in the branch, we color all its vertices
into i (Fig. 1b, c). Lemma 5 below shows that at least one branch of each simple
branching subpath is colored this way, implying that the induced subgraphs
of each color in the resulting partial coloring are connected. We refer to the
resulting partial coloring as a minimal k-coloring of N .

Lemma 5. For any convex k-coloring on the leaves of a cactus network N , the
corresponding minimal k-coloring of N is well-defined. Moreover, the induced
subgraph of N of each color is connected.
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Fig. 1. (a) A convex coloring of the leaves of a cactus network N , where the colors are
denoted by labels. (b) The partial coloring of N constructed at the first step of the
coloring procedure. (c) The minimal coloring of N .

Proof. By the definition of convexity, a given convex k-coloring of the leaves of N
can be expanded to a partial k-coloring C of N such that the induced subgraphs
of each color are connected. The partial coloring of N that we obtain at the first
step is a subcoloring of C. Indeed, since the induced subgraphs of each color in C
are connected, the unique subpaths of the maximal branching paths are colored
(at the first step) into the same color as in C. Hence, no conflicting colors can
be imposed at the first step.

On the second step, we color a branch in some color i only if corresponding
source and sink are colored in color i, so there are no conflicts on the second step.
By Lemma 3, each non-source vertex belongs to at most one simple branching
path, and thus the second step and the whole coloring procedure are well-defined.

For any simple branching subpath s
(i)
j ⇒ t

(i)
j , at least one branch, say b, is

colored into i in C. In the subcoloring of C obtained at the first step, the branch b
cannot contain any colors besides i. Hence, we will color all vertices of b into i at
the second step. That is, at least one branch of every simple branching subpath
will be colored, implying that the induced subgraph of each color is connected.

��
Similarly to the case of trees, we compute p(N ) as the number of minimal

colorings of a cactus network N .
Let N ′ be any rooted network larger than N such that N is a rooted sub-

network of N ′ and all edges from N ′ \ N to N end at the root of N . We call a
k-coloring of N semiminimal if this coloring is induced by some minimal color-
ing on N ′. Similarly, to the case of trees (Lemma 1), a semiminimal k-coloring
of N does not depend on the topology of N ′ \ N and thus is well-defined.

For each vertex v in N , we define a subnetwork Nv of N rooted at v and
containing all descendants of v. An internal vertex in N is regular if the sub-
networks rooted at its children are pairwise vertex-disjoint. It is easy to see that
sources in N are not regular.
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Fig. 2. Subnetworks Ns,Ns\t,Nt,L,R, and B.

For each vertex v in N , we define the following quantities:

– fk(v) is the number of minimal k-colorings of Nv such that v is colored (f-type
coloring);

– gk(v) is the number of semiminimal but not minimal k-colorings of Nv (g-type
coloring);

– hk(v) is the number of minimal k-colorings of Nv such that the vertex v is not
colored (h-type coloring).

Our goal is to compute pk(N ) = fk(r)+hk(r) for each positive integer k, where
r is the root of N . As before, for a leaf v of N , we have fk(v) = δk,1 and
gk(v) = hk(v) = 0 for any k ≥ 1. We define the generating function Fv(x), Gv(x),
and Hv(x) as in (1). Whenever we compute these functions in a subnetwork M
of N , we refer to them as FM

v (x), GM
v (x), and HM

v (x).
It is easy to see that Theorem 2 holds for all regular vertices v of N and

therefore gives us a way to compute Fv(x), Gv(x), and Hv(x), provided that
these functions are already computed at the children of v. So it remains to
describe how to compute these functions at the sources in N .

Let s be a source in N and t be any sink corresponding to s. We define pl and
pr be the parents of t. To obtain formulas for Fs(x), Gs(x), and Hs(x), we consider
the auxiliary subnetworks Ns,Nt,Ns\t = Ns \ Nt,L,R, and B (Fig. 2), where

– L is the subnetwork obtained from Ns by removing the edge (pl, t);
– R is the subnetwork obtained from Ns by removing the edge (pr, t);
– B is the subnetwork obtained from Ns by removing all the edges in the simple

branching path s ⇒ t.

It is easy to see that the vertex sets of the subnetworks Ns,L,R,Nt ∪ Ns\t,
and B coincide, and therefore a partial coloring of one subnetwork translates to
the others.

Lemma 6. Let t be a sink in a cactus network N and s be the corresponding
source. If C is a partial coloring of Ns of f-type, g-type, or h-type, then C contains
a partial subcoloring of L or R of the same type.

Proof. We say that a partial coloring of N uses an edge (u, v) if vertices u and
v are colored into the same color. Let pl and pr be the parents of t. Note that
if C does not use the edge (pl, t) then it is a partial coloring of the same type
on L. Similarly, if C does not use the edge (pr, t) then it is a partial coloring of
the same type on R. So, it remains to consider the case when C uses both edges
(pl, t) and (pr, t).
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Suppose that C uses both edges (pl, t) and (pr, t). Notice that such C cannot
be of h-type (since pr and pl share the same color, their lowest common ancestor
s has to be colored as well). So, C has f -type or g-type. Let i be the color of t.
From the second step of the coloring procedure, it follows that each vertex v such
that s � v � t is also colored into i. Hence, removal of one of the edges (pl, t)
and (pr, t) does not break the connectivity of the induced subgraph of color i.
Thus, if C has f -type, then it contains a partial subcoloring of both L and R of
f -type. Now suppose that C has g-type and C′ is a subcoloring of C constructed
at the first step of the network coloring procedure. Then at least one branch in
s ⇒ t does not contain vertices of color i in C′ (otherwise C would have f -type).
If this branch contains pl then C contains a partial subcoloring of L of g-type;
otherwise C contains a partial subcoloring of R of g-type. ��
Theorem 3. Let s be a source in N and t be any sink corresponding to s. Then

Hs(x) = HL
s (x) + HR

s (x) −H
Ns\t
s (x) · (Ft(x) + Ht(x)); (5)

Gs(x) = GL
s (x) + GR

s (x)

−G
Ns\t
s (x) · (Ft(x) + Ht(x)) − (Ft(x) + Gt(x)) ·

∏

v: s�v�t

HB
v (x); (6)

Fs(x) = FL
s (x) + FR

s (x) − F
Ns\t
s (x) · (Ft(x) + Ht(x))

− (Ft(x) + Gt(x)) ·
⎛

⎝
∏

v: s�v�t

(
FB

v (x) + GB
v (x)

x
+ HB

v (x)

)

−
∏

v: s�v�t

HB
v (x)

⎞

⎠

(7)

under the following convention: if a non-leaf vertex v in N turns into a leaf in
a network N ′ ∈ {Ns\t,L,R,B}, then we re-define FN ′

v (x) = GN ′
v (x) = 0 and

HN ′
v (x) = 1.

Proof. We say that a partial coloring of N uses an edge (u, v) if vertices u and
v are colored into the same color. Let pl and pr be the parents of t.

Let us enumerate h-type colorings of Ns first. We remark that such coloring
cannot use both edges (pl, t) and (pr, t) (if it uses both these edges, the source
s would be colored by the definition of minimal coloring). That is, any h-type
coloring of Ns represents an h-type coloring of L or R, or both these networks.
The number of h-type k-colorings of L and R is the coefficient of xk in HL

s (x) and
HR

s (x), respectively. By the inclusion-exclusion principle, the number of h-type
k-colorings of Ns equals the sum of those of L or R minus the number of h-type
k-colorings of both L and R. A coloring of the last kind does not use either of the
edges (pl, t) and (pr, t), and thus is formed by an h-type coloring of Ns\t and a
minimal coloring of Nt (the colors of the two colorings are disjoint). The number
of such coloring pairs equals the coefficient of xk in H

Ns\t
s (x)(Ft(x) + Ht(x)),

which completes the proof of (5).
We use similar reasoning to prove (6) and (7). The first two terms in these

formulas are similar to those in (5) that correspond to same-type colorings on
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L or R (at least one of which always exists by Lemma 6). The case of colorings
of g-type or f -type on both L and R is more complicated and is split into two
subcases depending on whether none or both of the edges (pl, t) and (pr, t) are
used (if exactly one of the edges is used, it cannot be removed without making
the induced subgraph of this color disconnected). The subcase of using none of
the edges is similar to h-type colorings and gives us the third term in formulas
(6) and (7). So it remains to enumerate colorings on both L and R that use both
edges (pl, t) and (pr, t).

Let C be a g-type k-coloring of Ns that is a coloring on both L and R and
uses both edges (pl, t) and (pr, t). Let C′ be a subcoloring of C constructed at
the first step of the network coloring procedure. Vertices s and t have the same
color in both C and C′, but any vertex v with s � v � t is colored in C but not in
C′. So C corresponds to a semiminimal coloring on Nt with a colored root t (i.e.,
of f -type or g-type) and a coloring on B \Nt such that vertices v with s � v � t
(in Ns) are not colored. Since B is the union of vertex-disjoint subnetworks Nv

with s � v � t, the number of such coloring pairs equals the coefficient of xk in

(Ft(x) + Gt(x)) ·
∏

v: s�v�t

HB
v (x).

Now, let C be an f -type k-coloring of Ns that is a coloring on both L and R
and uses both edges (pl, t) and (pr, t). Let C′ be a subcoloring of C constructed at
the first step of the network coloring procedure. Vertices s and t have the same
color in both C and C′, and any vertex v with s � v � t is either colored into
the same color or not colored in C′. So C corresponds to a semiminimal coloring
on Nt with the colored root t (i.e., of f -type or g-type) and a coloring on B \ Nt

such that at least one vertex v with s � v � t (in Ns) is colored into the same
color. The number of such colorings is the coefficient of xk in

(Ft(x) + Gt(x)) ·
⎛

⎝
∏

v: s�v�t

(
FB

v (x) + GB
v (x)

x
+ HB

v (x)
)

−
∏

v: s�v�t

HB
v (x)

⎞

⎠ .

The first product in the parentheses represents the generating function for the
number of colorings of B\Nt, where each vertex v with s � v � t (in Ns) is either
colored in a reserved color (accounted by the term F B

v (x)+GB
v (x)

x ) or not colored
(accounted by the term HB

v (x)). Subtraction of the second product eliminates
the case where no vertex v with s � v � t (in Ns) is colored. ��

3 Algorithm for Computing p(N )

Theorem 2 (for regular vertices) and Theorem 3 (for sources) allow us to compute
the generating functions F,G,H at the root r of a cactus network N recursively.
Namely, to compute Fv(x), Gv(x), and Hv(x) for a vertex v (starting at v = r),
we proceed as follows:1

1 An implementation of the present algorithm in the SageMath mathematical software
is available at http://cblab.org/projects/.

http://cblab.org/projects/
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– if v is a leaf, then Fv(x) = x,Gv(x) = Hv(x) = 0 (except for the special case
of a newly formed leaf described in Theorem 3, when Fv(x) = Gv(x) = 0 and
Hv(x) = 1);

– if v is regular, we recursively proceed with computing Fu(x), Gu(x), and Hu(x)
for every child u of v, and then combine the results with formulae (2), (3), (4);

– if v is a source, we select any sink t corresponding to s, and apply Theorem 3
to compute Fv(x), Gv(x), and Hv(x) from the generating functions computed
in smaller subnetworks. We remark that while s may be a source for more than
one sink and thus may still remain a source in the subnetworks, the number
of sinks in each of the subnetworks decreases as compared to N , implying
that our recursion sooner or later will turn s into a regular vertex and then
recursively proceed down to its children.

From the generating functions at the root r of N , we can easily obtain the
number pk(N ) of convex k-colorings of N as the coefficient of xk in Fr(x)+Hr(x).
This further implies that p(N ) can be computed as

p(N ) =
∞∑

k=0

pk(N ) = Fr(1) + Hr(1).

4 Applications

Network Specificity. We propose to measure the specificity of a cactus network
N with n leaves as a decreasing function of p(N ). Notice that the value of p(N )
can be as small as 2n − n (for a tree with n leaves all being children of the root)
and as large as the Bell number Bn (enumerating set partitions of the leaves).
We therefore find it convenient to define the specificity score of N as

τ(N ) =
n

log2(p(N ) + n)
.

In particular, we always have 0 < τ(N ) ≤ 1, where the upper bound is achiev-
able. The asymptotic of Bn further implies that τ(N ) can be asymptotically as
low as log 2

log n , which vanishes as n grows.
From Theorem 1, it can be easily seen that for a binary tree T with n leaves,

we have τ(T ) ≈ n
log2 φ2n−1 ≈ 0.72 when n is large, where φ = 1+

√
5

2 is the golden
ratio.

Network Comparison. Existing methods for construction of phylogenetic net-
works (e.g., hybridization networks from a given set of gene trees [3,4]) often rely
on the parsimony assumption and attempt to minimize the number of reticu-
late events. Such methods may generate multiple equally parsimonious networks,
which will then need to be evaluated and compared from a different perspective.
It is equally important to compare phylogenetic networks constructed by differ-
ent methods. If the number of reticulate events in a constructed network is small,
it is quite likely that this network represents a cactus network. Furthermore,
there exist methods that explicitly construct phylogenetic cactus networks [8].
This makes our method well applicable for evaluation and comparison of such
networks in terms of their specificity as defined above.
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r r

N ′ N1 N2

Fig. 3. Networks N1 and N2 represent different orientations of the same undirected
network N ′, i.e., N �

1 = N �
2 = N ′.

Orientation of Undirected Networks. Some researchers consider undirected phy-
logenetic networks (called “abstract” in the survey [2]) that describe evolutionary
relationship of multiple species but do not correlate their evolution with time.
For a given undirected cactus network N ′, our method allows one to find a root
and an orientation of N ′, i.e., a directed rooted network N with N � = N ′, that
maximizes the specificity score τ(N ). Indeed, different orientations of the same
undirected network may result in different scores even if they are rooted at the
same vertex. For example, in Fig. 3 the network N1 has p(N1) = 35 convex col-
orings and the score τ(N1) ≈ 0.94, while the network N2 has p(N2) = 37 convex
colorings and the score τ(N2) ≈ 0.927.
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Abstract. Identifying highly connected subgraphs in biological net-
works has become a powerful tool in computational biology. By defini-
tion a highly connected graph with n vertices can only be disconnected
by removing more than n

2
of its edges. This definition, however, is not

suitable for bipartite graphs, which have various applications in biology,
since such graphs cannot contain highly connected subgraphs. Here, we
introduce a natural modification of highly connected graphs for bipartite
graphs, and prove that the problem of finding such subgraphs with the
maximum number of vertices in bipartite graphs is NP-hard. To address
this problem, we provide an integer linear programming solution, as well
as a local search heuristic. Finally, we demonstrate the applicability of
our heuristic to predict protein function by identifying highly connected
subgraphs in bipartite networks that connect proteins with their exper-
imentally established functionality.

Keywords: Highly bi-connected · Highly connected · Bipartite graph ·
Computational protein function annotation

1 Introduction

Protein function comprises the biochemical, cellular, and phenotypic aspects of
the molecular events that are executed by proteins. Ultimately, functions of a
protein are made known by various types of biological experiments [15]. How-
ever, the experimental function annotation of proteins is expensive and can rarely
be applied to large amounts of sequence data. Therefore, computational meth-
ods have emerged as a powerful tool to predict and elucidate the function of
proteins [7]. One way to predict function is by analyzing protein interaction net-
works, and inferring the function from various types of associations between
proteins [16,17]. However, network-based functional annotation is frequently
challenged by biological networks that are incomplete and error-prone [4]. To
confront these challenges, highly connected subgraphs have been identified in
such networks, which are then analyzed for functional protein annotation [9].

c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 573–584, 2016.
DOI: 10.1007/978-3-319-42634-1 46
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An undirected graph with n vertices is highly connected if it can only be discon-
nected by removing more than n

2 of its edges. While this approach has produced
several credible results [17], it cannot be applied to the large class of biological
networks that is represented by using bipartite graphs. This is due to the fact
that highly connected subgraphs do not exist in bipartite graphs.

Here we overcome this stringent limitation by proposing a natural adaptation
of the definition for highly connected subgraphs to bipartite graphs. A bipar-
tite graph G = (U, V,E) is highly bi-connected if more than 1

2 min(|U |, |V |) of its
edges are required to disconnect it. To identify useful highly connected subgraphs
in bipartite biological networks, we analyze the highly bi-connected (HBC) prob-
lem that given a bipartite graph and a natural number k, decides whether this
graph contains a highly bi-connected subgraph with k vertices. We show that this
problem, like its related problem for identifying highly connected subgraphs [12],
is NP-Hard. Consequently, to address the HBC problem, we describe an integer
linear programming (ILP) formulation and a heuristic algorithm that can handle
large-scale instances. Finally, we demonstrate the performance of our heuristic
through a comparative study using exact ILP solutions and an applicability
study for to protein function annotation.

Related Work. Many computational methods are used to predict protein func-
tion (for comprehensive reviews, see [7,16]). Most commonly, methods based on
the amino acid sequence similarity propose that if two sequences have a high
degree of similarity, then they have evolved from a common ancestor and may have
similar functions. Phylogenomics based methods state that the evolutionary his-
tory of putative homologs must be considered when annotating protein functions
so that the protein function annotation should be taken from the closest ortholog,
rather than from the most similar sequence. In genomic context based methods,
protein function is inferred by matching the inter-genomic profiles of the unknown
protein to those that are known. Among the non sequence-based methods, using
protein protein interaction (PPI) networks is quite promising for predicting the
protein function in the context of the biological process in which it participates.

A key idea of graph clustering is to identify densely connected subgraphs
as clusters that have many interactions within themselves and few interactions
outside of themselves in the graph [11]. A study by Przulj et al. [14] determines
clusters, which could indicate protein functions, by using the HCS algorithm
in PPI networks. A highly connected subgraph is defined as a subgraph with
n vertices such that more than n

2 of its edges must be removed in order to
disconnect the subgraph. The concept of a highly connected graph is very similar
to that of a quasi-clique (i.e., a graph where every vertex has a degree at least
n−1
2 [11]). Hartuv and Shamir [10] proved that the HCS algorithm, which is based

on the n
2 connectivity requirement, produces clusters with good homogeneity and

separation properties [14]. However, the concept of highly connected subgraphs
is not applicable to bipartite graphs, since they do not contain such subgraphs.

Bipartite graphs are frequently used to represent biological networks.
Bicliques in bipartite PPI networks play an important role in identifying func-
tional protein groups [18]. A study by Andreopoulos et al. [1] identifies locally
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significant proteins, that mediate the function of proteins, by exploring bicliques
in PPI networks. However, a biclique is too stringent for identifying the func-
tional groups [8]. A quasi-biclique allows a specified number of missing edges in
a biclique [18]. Bu et al. [3] show that quasi-bicliques consist of relevant protein
functions and also propose a method to predict protein functions based on the
classification of known proteins within the quasi-bicliques. Although a quasi-
biclique is less stringent, it allows for the inclusion of proteins that interact with
few other proteins in the quasi-biclique [4].

Our Contribution. We propose the HBC problem to identify highly bi-
connected subgraphs in bipartite networks. Essential for this work is Theorem 3
that describes a highly bi-connected graph G = (U, V,E) equivalently as a graph
where the minimum degree is larger than 1

2 of the minimum cardinality of the
vertex sets U and V . Using this theorem we show the NP-hardness of the HBC
problem by a polynomial time reduction from the exact 3-sets cover problem.
Further, Theorem 3 is also used to describe an initial IQP formulation for the
HBC problem that contains quadratic constraints. This initial IP is then trans-
formed into an ILP by replacing the quadratic constraints with linear ones using
simplified variables by adapting implication rules. Our heuristic follows a seed
based approach, where seeds are expanded to highly bi-connected subgraphs
with the maximum number of vertices, and resulting subgraphs with the largest
number of vertices are returned. Finally, we demonstrate the performance of our
heuristic algorithm by comparing its results with exact ILP solutions for small-
scale instances of the HBC problem, and through an experimental study that
annotates protein function by analyzing a bipartite protein-function network
built from data provided by the UniProt-GOA human database [5].

2 Preliminaries and Basic Definitions

A graph is a pair G = (V,E) of sets satisfying E ⊆ V 2. The elements of V
are the vertices of the graph G, the elements of E are its edges. The vertex
set of a graph G is referred to as V (G), and its edge set as E(G). A vertex v
is incident with an edge e if v ∈ e; then e is an edge at v. The two vertices
incident with an edge are its endvertices or ends, and an edge joins its ends.
The set of all edges in E at a vertex v ∈ V is denoted by E(v). Two vertices
u, v of G are adjacent, or neighbors, if (u, v) is an edge of G. If G′ ⊆ G and
G′ contains all the edges (u, v) ∈ E with u, v ∈ V ′, then G′ is an induced
subgraph of G and denoted G′ := G[V ′]. The set of neighbors of a vertex v in G
is denoted by NG(v), or briefly N(v). More generally for U ⊆ V , the neighbors
in V \ U of vertices in U are called neighbors of U ; their set is denoted by
N(U). The degree dG(v) = d(v) of a vertex v is the number |E(v)|. The degree
of v in V’ is the number of vertices in V ′ that are adjacent to v, denoted by
d(v, V ′) = |{u|u ∈ V ′ and (v, u) ∈ E}|. The number δ(G) := min{d(v)|v ∈ V } is
the minimum degree of G. A path is a non-empty graph P = (V,E) of the form
V = {x0, x1, ..., xk}, E = {x0x1, x1x2, ..., xk−1xk} where the xi are all distinct.
The number of edges of a path is its length. The distance dstG(x, y) in G of two
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vertices x, y is the length of a shortest x − y path in G; if no such path exists,
we set dst(x, y) := ∞. If |V | > 1 and G′ = (V,E \ F ) is connected for every
set F ⊆ E of fewer than l edges, then G is called l-edge-connected. The greatest
integer l such that G is the l-edge-connected is edge-connectivity λ(G) of G. For
every non-trivial graph G, we have δ(G) ≥ λ(G). A graph G = (X ∪ Y,E) is
called bipartite if V = X ∪ Y admits a partition into two disjoint subsets X and
Y such that every edge connects a vertex in X to one in Y .

Definition 1 (Highly Connected Subgraph). A graph G is called highly
connected if λ(G) > |V |

2 . An induced subgraph G[V ′] (where V ′ ⊆ V ) that is
highly connected is called a highly connected subgraph(HCS).

Theorem 1. There is no highly connected bipartite graph.
Proof. Let G = (X ∪ Y,E) be a bipartite graph and highly connected. Then
|X|+|Y |

2 ≥ min(|X|, |Y |) ≥ δ(G) ≥ λ(G) > |X|+|Y |
2 , which is a contradiction.

3 Highly Bi-Connected Subgraph Problem

Definition 2 (Highly Bi-Connected Subgraph). Let G = (X ∪ Y,E) be
a bipartite graph. A bipartite graph G is called highly bi-connected if λ(G) >
1
2 min(|X|, |Y |). An induced bipartite subgraph G[X ′ ∪ Y ′], (X ′ ⊆ Y, Y ′ ⊆ Y ) is
a highly bi-connected subgraph(HBCS) if G[X ′ ∪ Y ′] is highly bi-connected.

Theorem 2. Let G = (X ∪Y,E) be a bipartite graph. If λ(G) > 1
2 min(|X|, |Y |)

and |X| ≥ |Y |, then dst(u, v) = 2 for all distinct u, v ∈ X.

Proof. d(u), d(v) ≥ δ(G) ≥ λ(G) > 1
2 min(|X|, |Y |) = |Y |

2 . There exists at least
one vertex z ∈ Y such that P = uzv is a path because |NG(u) ∩ NG(v)| ≥ 1.

Corollary 1. (Dankelmann and Volkmann [6, page 273]) Let G = (X ∪ Y,E)
be a bipartite graph. If dst(u, v) = 2 for all distinct u, v ∈ X, then λ(G) = δ(G).

Theorem 3. Let G = (X∪Y,E) be a bipartite graph. If δ(G) > 1
2 min(|X|, |Y |),

then δ(G) = λ(G).

Proof. Supposed that |X| ≥ |Y |, and u, v ∈ X. d(u), d(v) ≥ δ(G) > |Y |
2 . There

exists at least one vertex z ∈ Y such that P = uzv is a path because |NG(u) ∩
NG(v)| ≥ 1. Hence, d(u, v) = 2 and δ(G) = λ(G) by Theorem 1.

Corollary 2. A bipartite graph G is highly bi-connected if δ(G) >
1
2 min(|X|, |Y |), δ(G) ≥ � 1

2 min(|X|, |Y |)	, or 2δ(G) ≥ min(|X|, |Y |) + 1.

Problem 1 (HBCS Problem).
Instance: A undirected bipartite graph G = (X ∪ Y,E) and positive integer k.
Question: Is there a vertex set X ′ ∪ Y ′ such that |X ′| + |Y ′| = k and G′ =
G[X ′ ∪ Y ′] is highly bi-connected?
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Theorem 4. HBCS problem is NP-hard.

Proof. The exact cover by 3-sets (X3C) problem is known to be NP-hard [13].
The reduction algorithm takes an instance 〈S, T 〉 of the X3C problem where S is
a finite set of 3k elements and T is a collection of l triples (three-element subsets
of S). Without loss of generality, we assume that k < l < 2k.

Step 1. A bipartite graph GA = (XA ∪ YA, EA) is created by linking an element
si ∈ S with xi ∈ XA and tj ∈ T with yj ∈ YA. An edge (xi, yj) ∈ EA is
established iff si /∈ tj. Note that |XA| = 3k, |YA| = l, and d(yj ,XA) = 3k − 3.

Step 2. A bipartite graph GB = (XB ∪YB , EB) is constructed as XB = Xa∪Xb ∪
Xc where |Xa| = |Xb| = 3k, |Xc| = 6 and YB = Ya∪Yb∪Yc where |Ya| = |Yb| = l,
|Yc| = 3. We set edges to make that G[Xa ∪ Ya] and G[Xb ∪ Yb] are equivalent
with GA. Each vertex in Xc is adjacent to all vertices in Ya ∪ Yb, and similarly,
each vertex in Yc is adjacent to all vertices in Xa ∪ Xb. Note that |XB | = 6k + 6
and |YB | = 2l + 3.

Step 3. A bipartite graph G = (X ∪Y,E) is built as X = X1 ∪X2 ∪· · ·∪X3k and
Y = YB where |X1| = |X2| = · · · = |X3k| = 6k + 6. We connect edges to achieve
that G[Xi ∪ Y ] (1 ≤ i ≤ 3k) is identical to GB. Note that |X| = 3k(6k + 6) and
|Y | = 2l + 3.

These steps can be done in polynomial time. The output of the reduction
algorithm is an instance 〈G, 18k2 +20k +3〉 of the HBCS problem. Suppose that
〈S, T 〉 has a perfect cover T ′ ⊆ T where |T ′| = k. We claim that G has a HBCS
G′ = G[X ′ ∪ Y ′] such that X ′ = X, Y ′ = Y ′

a ∪ Y ′
b ∪ Yc where Y ′

a and Y ′
b contain

k vertices associated with k triples in T ′. In the induced bipartite G′, d(x, Y ′) ≥
(k − 1) + 3 = k + 2 > 1

2 min(|X ′|, |Y ′|) = 1
2 |Y ′| = 1

2 (2k + 3) = k + 3
2 (x ∈ X ′)

and d(y,X ′) ≥ 3k(3k+3) > k+ 3
2 (y ∈ Y ′). Thus, δ(G′) > 1

2 min(|X ′|, |Y ′|) and
|X ′| + |Y ′| = 3k(6k + 6) + (2k + 3) = 18k2 + 20k + 3.

Conversely, Suppose that G has a HBCS G′ = G[X ′ ∪Y ′] where |X ′|+ |Y ′| =
18k2 + 20k + 3. We claim that 〈S, T 〉 has a perfect cover T ′ ⊆ T such that
X ′ = X, Y ′ = Y ′

a ∪ Y ′
b ∪ Yc where Y ′

a and Y ′
b contain k vertices associated with

k triples in T ′.
First, we prove that |Y ′

a|+|Y ′
b | = 2k. If |Y ′

a|+|Y ′
b | < 2k, then |X| > 3k(6k+6).

This is a contradiction. If |Y ′
a|+ |Y ′

b | > 2k, then there is a positive integer p such
that 2k + (2p − 1) ≤ |Y ′

a| + |Y ′
b | ≤ 2k + 2p. We assume that |Y ′

a| ≤ |Y ′
b |, hence

|Y ′
a| ≤ k +p. Now, we consider X ′

i,a = Xi,a ∩X ′ and prove X ′
i,a � Xi,a. Suppose

that X ′
i,a = Xi,a. For a vertex x ∈ X ′

i,a, d(x, Y ′) > 1
2 |Y ′| ≥ 1

2 (2k +2p− 1+3) =
k + p + 1. By the construction, d(x, Y ′

a) > k + p − 2 because d(x, Y ′
b ) = 0 and

d(x, Y ′
c ) = 3. The inequality can be written d(x, Y ′

a) ≥ k + p − 1 since a degree is
an integer. The number of edges between all X ′

i,a and Y ′
a is at least 3k(k+p−1) =

3k2 + 3pk − 3k. For a vertex y ∈ Ya, d(y,X ′
i,a) = 3k − 3. The number of edges

between all X ′
i,a and Y ′

a is at most (k+p)(3k−3) = 3k2+3pk−3k−3p. There is no
integer e such that 3k2+3pk−3k ≤ e ≤ 3k2+3pk−3k−3p for a positive integer
p. Thus, X ′

i,a ⊂ Xi,a and there are at least 3k vertices in X not in X ′ since there
is at least one vertex in Xi,a not in X ′

i,a. |X ′| ≤ 3k(6k + 6) − 3k = 18k2 + 15k,



578 J. Moon et al.

|Y ′| < 4k+3 (∵ l < 2k), and |X ′|+|Y ′| < 18k2+19k+3. This is a contradiction,
hence |Y ′

a| + |Y ′
b | = 2k.

Second, we prove that |Y ′
a| = |Y ′

b | = k. We assume that |Y ′
a| < k and X ′

i,a =
Xi,a. For a vertex x ∈ X ′

i,a, d(x, Y ′) > 1
2 |Y ′| = 1

2 (2k + 3) = k + 3
2 . Hence,

d(x, Y ′
a) ≥ k−1 (∵ d(x, Y ′

a) > k+ 3
2 −3) and the number of edges between all X ′

i,a

and Y ′
a is at least 3k(k −1) = 3k2 −3k. For a vertex y ∈ Ya, d(y,X ′

i,a) = 3k −3.
The number of edges between all X ′

i,a and Y ′
a is less than k(3k − 3) = 3k2 − 3k.

This is a contradiction. Therefore, X ′
i,a ⊂ Xi,a and there are at least 3k vertices

in X not in X ′. |X ′| ≤ 3k(6k + 6) − 3k = 18k2 + 15k, |Y ′| = 2k + 3, and
|X ′| + |Y ′| ≤ 18k2 + 17k + 3 < 18k2 + 20k + 3. Consequently, |Y ′

a| = |Y ′
b | = k.

Finally, we prove the original claim. For each vertex x ∈ X ′
i,a, d(x, Y ′

a) ≥ k−1
because d(x, Y ′) > k+ 3

2 , d(x, Y ′
b ) = 0, and d(x, Y ′

c ) = 3. Suppose that there exists
a vertex x such that d(x, Y ′

a) > k−1. The number of edges between all X ′
i,a and Y ′

a

is greater than 3k(k−1). For each vertex y ∈ Y ′
a, d(y,X ′

i,a) = 3k−3. The number
of edges between all X ′

i,a and Y ′
a is k(3k−3) = 3k(k−1). This is a contradiction,

and hence d(x, Y ′
a) = k−1 and d(y,X ′

i,a) = 3k−3 (∀x, y ∈ X ′
i,a, Y ′

a). This means
that the corresponding subset T ′is an exact cover of S.

4 Integer Linear Programming

The first IQP formulation requires quadratic constraints, which are then replaced
by linear constraints such that it can be solved by various optimization software
packages [4]. Furthermore, the second ILP formulation is improved by using the
implication rule to simplify variables involved.

4.1 Quadratic Programming for Maximum HBCS

Let G = (X ∪ Y,E) be a bipartite graph. For each x ∈ X (y ∈ Y ), a binary
variable vx (vy) is introduced. The variable vx (vy) is 1 if and only if the vertex
vx (vy) is in X ′ (Y ′). The integer programing is formulated as follows.

maximize
∑

x∈X

vx +
∑

y∈Y

vy

subject to 2
∑

y∈Y

exyvyvx ≥ vx(W + 1) ∀x ∈ X (1)

2
∑

x∈X

exyvxvy ≥ vy(W + 1) ∀y ∈ Y (2)

∑

x∈X

vx ≥
∑

y∈Y

vy or
∑

x∈X

vx ≤
∑

y∈Y

vy (3)

W =
∑

y∈Y

vy or W =
∑

x∈X

vx (4)

vx ∈ {0, 1} ∀x ∈ X ∪ Y
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where exy =

{
0 xy /∈ E

1 xy ∈ E

The quadratic terms in constraints are necessary because the constraints apply
only to vertices in X ′ ∪ Y ′.

4.2 Linear Programming for Maximum HBCS

vx (vy) has two possible values such as 0 or 1. The constraint (1) is turned into∑
y∈Y euvvy ≥ W + 1 in case of vx = 1 and it becomes trivial when vx = 0.

Thus, the constraints (1) and (2) are reestablished as follow.

2
∑

y∈Y

exyvy − W − 1 ≥ (|X| + |Y |)(vx − 1) ∀x ∈ X

2
∑

x∈X

exyvx − W − 1 ≥ (|X| + |Y |)(vy − 1) ∀y ∈ Y

In order to obtain an optimal solution, we solve the ILP problem twice by set-
ting the constraints (3) and (4) separately each time (i.e., W =

∑
x∈X vx if∑

x∈X vx ≤ ∑
y∈Y vy or W =

∑
y∈Y vy if

∑
x∈X vx ≥ ∑

y∈Y vy). In summary,
this formulation uses variables and constraints linear to the size of input vertices.
i.e., O(|X| + |Y |).

5 Heuristic Algorithm

For a given bipartite graph and a subset of a vertex partition of this graph,
Algorithm 1 identifies a subgraph that satisfies the following four conditions: (i)
the subgraph is highly bi-connected; (ii) one vertex partition of the subgraph is
identical with the given subset; (iii) the number of vertices in the other vertex
partition is greater than or equal to the number of vertices in the given subset;
and iv) the number of vertices in the subgraph is maximized. Let n be the number
of vertices in the given bipartite graph. The time complexity of Algorithm1 is

Algorithm 1. MaxVertex-HBCS(G,Y ′)
Input: A bipartite graph G = (X ∪ Y, E) and a vertex set Y ′ ⊆ Y .
Output: A maximum vertex HBCS G′ = (X ′ ∪ Y ′, E′) such that |X ′| ≥ |Y ′|.
1: for all v ∈ N(Y ′) do
2: if |N(v) ∩ Y ′| > 1

2
|Y ′| then

3: X ′ = X ′ ∪ {v}
4: end if
5: end for
6: if |X ′| ≥ |Y ′| AND G[X ′ ∪ Y ′] is HBCS then
7: return G[X ′ ∪ Y ′]
8: end if
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O(n2). This follows directly from O(n) executions of the for-loop (Steps 1–5),
where the time complexity of executing the body of this loop is asymptotically
bound by Step 2 requiring O(n) time.

Algorithm 2 enumerates maximum vertex HBCSs for a given bipartite graph
that uses a greedy approach to identify seed vertex sets. The while loop (Steps 3–
11) identifies maximum vertex HBCS until no more maximum vertex HBCS can
be found from the seed vertices. Algorithm 2 maintains the list of seed vertex sets
to avoid repeating the process on the seed vertex sets that are already examined.
Let n be the number of vertices in the given bipartite. The time complexity of
Step 5 is O(n2), and this step is repeated O(n2) times through nested for and
while loop. Hence, the overall time complexity is O(n4).

Algorithm 2. GreedyEnum-MaxVertexHBCS(G)
Input: A bipartite graph G = (X ∪ Y, E).
Output: A set of maximum vertex HBCS G′ = (X ′ ∪ Y ′, E′) such that |X ′| ≥ |Y ′|.
1: for u ∈ Y do
2: Y ′ = {u}
3: while Y ′ �= Y AND Q does not contain Y ′ do
4: Q = Q ∪ {Y ′}
5: G′ =MaxVertex-HBCS(G, Y ′)
6: if G′ �= NULL then
7: OUTPUT G′

8: Find a vertex v ∈ NG(X ′) \ Y ′ that maximize dG(v, X ′).
9: Y ′ = Y ′ ∪ {v}

10: end if
11: end while
12: end for

6 Performance Evaluation of the Heurisitc Algorithm

We analyze the performance of the heuristic algorithm by comparing its results
with exact ILP solutions for small-scale instances of the HBC problem, and
through an experimental study.

6.1 Comparative Study

We compare heuristic estimates with the exact ILP results for 1, 000 random
graphs as input. The random graphs were selected with equal probability from
graphs with the following: an overall number of vertices ranging between 10
and 26 vertices and edge densities ranging between 0.6 and 0.8. The resulting
differences between exact solutions and heuristic estimates are depicted in Fig. 1.

6.2 Experimental Study

In this experimental study, we present the results of the protein function predic-
tion by using our heuristic algorithm. The Gene Ontology (GO) [2] is currently
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Fig. 1. The performance of the maximum vertex heuristic algorithm is evaluated by
comparing its results with exact ILP solutions for small-scale instances.

the dominant approach for machine-legible protein function annotations [7]. GO
is a controlled vocabulary that describes three aspects of protein functions: mole-
cular function, biological process, and cellular location. Each aspect is described
by a directed acyclic graph of terms and relationships that captures functional
information in a standardized fashion that is both computationally amenable and
interpretable by humans. We use the Biological Process classification scheme in
this study. The main task of the experimental study is to predict sets of GO
terms for the target proteins with confidence scores.

Target Proteins. We obtained annotated proteins from the January versions of
the 2012, 2013, 2014, 2015, and 2016 UniProt-GOA human database [5]. Proteins
are considered to be experimentally annotated if they are associated with GO
terms having EXP, IDA, IPI, IMP, IGI, IEP, TAS, or IC evidence codes. The
set of target proteins is selected by using the following scheme with two distinct
time frames t0 and t (t0 < t)

Targets(t) = Set of proteins at least one experimental annotation exist at(t)
∩ Set of proteins only non-experimental annotation exist at(t0)

The predictive model is trained with non-experimental annotations of target
proteins and experimental annotations of non-target proteins at t0 = 2012. The
performance of the model is evaluated by comparing the predicted annotations
made by us for 2012 to existing experimental annotations in 2013–2016.

Experimental Design. Our predictive model uses the maximum vertex HBCS.
For a given set of annotations between proteins and GO terms, we create a
bipartite graph that has one vertex partition representing the set of proteins, the
other vertex partition representing the set of GO terms, and edges representing
the set of annotations. After that, Algorithm2 finds a list of maximum vertex
HBCS from the created bipartite graph. Every pair of a protein and a GO term
in each HBCS of the found list is considered as a predictive annotation. The
confidence score of the predictive annotation, which indicates the strength of
the prediction, is the maximum sequence identity between the target protein and
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any neighboring non-target proteins of the GO term in the found HBCS. Other
sequence identity measures, such as 3D sequence structure, genomic context, or
interaction based, will be evaluated in future research work.

Evaluation Metric. For a given target protein i and some decision threshold
t ∈ [0, 1], the precision and recall are calculated as

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)

∑
f I(f ∈ Pi(t))

, rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)

∑
f I(f ∈ Ti)

where f is a protein function in the biological process GO terms, Ti is a set of
experimentally determined GO terms for protein i, and Pi(t) is a set of predicted
protein functions of i with score greater than or equal to t. f ranges over all
protein functions and I(·) stands for the indicator function. For a fixed decision
threshold t, a point in the precision-recall space is created by averaging precision
and recall across targets. Precision and recall at threshold t is calculated as

pr(t) =
1

m(t)
·

m(t)∑

i=1

pri(t), rc(t) =
1
n

·
n∑

i=1

rci(t)

where m(t) is the number of proteins on which at least one prediction is made
on threshold t and n is the number of proteins in a target set. It should be noted
that unlike [15], we did not consider the GO DAG topology, but simply ran our
assessment on GO terms as a “flat” vocabulary.

Results and Discussion. The quality of protein function prediction can be
measured in different ways that reflect differing motivations for understanding
protein functions. For this study, we show the precision-recall curves with all
proteins having non-experimental annotations 2012 as the basis for predictions.
We used the proteins that gained experimental annotations in 2013–2015 to test
our method. The results are shown in Fig. 2.

Fig. 2. Precision-recall curves for our method. The model is trained with non-
experimental annotations of target proteins and experimental annotations of non-target
proteins at t0 = 2012. The performance of the model is evaluated by comparing the
predicted annotations made by us for 2012 to existing experimental annotations in
2013–2016.
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While our method has an overall low recall rate, it does have a high precision
rate at low recall values. For some niche biological applications, such a method
may be useful, as biomedical researchers may prefer generating protein function
predictions with a high precision rate while trading off recall to minimize false
positives for the results they do use. To estimate performance at different recall
values, we used the Fmax(β) for the different years defined as

Fmax(β) = max
t

{
(1 + β2)

pr(t) · rc(t)
β2 · pr(t) + rc(t)

}

where values for β are 0.1, 0.2, 0.5 and 1.0. Fβ is a weighted harmonic mean of
the precision and recall. We find the maximal value for each year using different
values of β as weight. The lower β, the more weight is given to precision over
recall. The results are shown in Table 1.

Table 1. Results of Fmax(β) analysis. See text for details on how Fmax(beta) is calcu-
lated. The lower the value of β, the more precision is weighted over recall. Our method
performs best overall with β = 0.1.

Fmax(β)

Year 0.1 0.2 0.5 1.0

2013 0.54 0.36 0.14 0.16

2014 0.71 0.47 0.17 0.14

2015 0.58 0.34 0.12 0.11

2016 0.54 0.31 0.12 0.12

7 Conclusion

Our proposed HBC approach sets a way for the functional annotation of proteins
based on identifying highly bi-connected subgraphs in bipartite protein-function
networks. While we show that the HBC problem is NP-hard, and we describe
an ILP formulation and an effective heuristic. The comparative study displays
accuracy of our heuristic by comparing its results with exact ILP solutions. Fur-
thermore, the experimental study demonstrates the applicability of the heuris-
tic for functionally annotating proteins. Future research will investigate other
maximization objectives for identifying highly bi-connected subgraphs and par-
titioning problems of bipartite graphs based on highly bi-connected subgraphs.

Acknowledgments. IF and OE acknowledge support from the National Science
Foundation award # DBI 1458359 and #GS 133814.
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Abstract. In the last two decades visibly pushdown languages (VPLs)
have found many applications in diverse areas such as formal verification
and processing of XML documents. Recently, there has been a significant
interest in studying quantitative versions of finite-state systems as well
as visibly pushdown systems. In this work, we take forward this study
for visibly pushdown systems by considering a functional version of visi-
bly pushdown automata. Our version is formally a generalization of cost
register automata (CRA) defined by [Alur et al., 2013]. We observe that
our model continues to have all the good properties of the CRAs in spite
of being a generalization.

Apart from studying the functional properties of the model, we also
study the complexity theoretic aspects. Recently such a study was con-
ducted by [Allender and Mertz, 2014] with respect to CRAs. Here we
show that CRAs when appended with a visible stack (i.e. in the model
defined here), continue to have the same complexity theoretic upper
bounds as are known for CRAs. Moreover, we observe that one of the
upper bounds shown by Allender et al. which was not tight for CRAs
becomes tight for our model. Hence, it answers one of the questions raised
in their work.

1 Introduction

Language theory and complexity theory are two major branches of study in
theoretical computer science. The study of the interplay between the two has
a rich history of more than three decades. The study has not only increased
our understanding of many complexity classes, but also has led to very beau-
tiful theory. For example, a well-studied complexity class NC1 and the finer
structure inside the class was revealed through the study of subclasses of reg-
ular languages [7,8,19]. Similarly, the class LogCFL and its equivalence with
the complexity class SAC1 is another celebrated example of such a connection
[10,15,18,21]. The study of language classes has been relevant in understand-
ing Boolean complexity classes; and similarly, it is helpful to relate arithmetic
complexity classes such as #NC1, #SAC1, #P to formal power series (see for
example [2]) for improving our understanding of these arithmetic classes.

In the literature of language theory, the study of formal power series has
played a central role. One of the most well-studied models, namely weighted
c© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 587–598, 2016.
DOI: 10.1007/978-3-319-42634-1 47
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automata, are an example of automata which compute an interesting class of
formal power series.

More recently, Alur et al. [4,5] defined a generalization of weighted automata,
namely Cost Regsiter Automata, CRA. In a subsequent work of Allender and
Mertz [3] the complexity theoretic study of the formal power series defined by
CRAs was performed.

Inspired by the works of [3–5], we extend the complexity theoretical study of
formal power series in this work. CRAs defined and studied by [4,5] are models
which compute functions from Σ∗ to D, where Σ is an input alphabet and D is a
domain such as Q,Z or N. A CRA is a finite state automaton which is equipped
with a set of registers and an algebra A. The automaton reads the input from left
to right; as in the case of a usual finite state automaton, but additionally various
registers can get updated by using rules prescribed by the underlying algebra A.
It turns out, augmenting a finite state automaton with registers working over an
algebra provides a way for performing a quantitative study of regular languages.

Here, we perform a similar quantitative analysis of visibly pushdown lan-
guages (VPLs) by augmenting the visibly pushdown automata (VPA) with reg-
isters working over an algebra. In this sense, we define a new model of compu-
tation, which is a natural extension of two well-known models of computation,
namely VPAs and CRAs. We call our model Cost Register Visibly Pushdown
Automata (CVPA) to signify this combination.

VPLs in their current incarnation were first conceptualized by Alur and Mad-
husudan [6]. However they have been introduced by Mehlhorn under the name
input-driven pushdown languages [20] earlier. Due to their power to generalize
regular languages while staying extremely structured, they have found many
applications in diverse areas such as formal verification and processing of XML
documents. Just like the study of regular systems through weighted automata
and CRAs has helped in understanding their quantitative properties, we believe
that our work is a step towards understanding quantitative properties of visibly
pushdown systems.

Recently, Allender and Mertz [3] developed the complexity theoretic under-
standing of the arithmetic functions computed by CRAs. They proved many
complexity theoretic upper bounds for functions computed by CRAs over many
different algebras. In this work, we extend their results to CVPAs. We prove that
CVPAs have computational complexity bounds similar to CRAs. This presents
a gratifying picture, because CVPAs formally generalize CRAs, however, still
stay computationally efficient.

Contributions. We start by proving basic language theoretic results about our
model. In particular, we first show basic closure properties of CVPAs. Here we
get that CVPAs are closed with respect to many natural properties (as shown
by [4,5] for CRAs.) We then show that CVPAs formally generalize VPAs and
CRAs. It is known that there is a version of CRAs, namely copyless CRAs over
(N,+) which can be simulated by CRAs over (N,+c)1. However, we observe
1 Notations explained later.
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that this is not true for CVPAs. That is, we give an explicit function which is
computable by copyless CVPAs over (N,+) but cannot be computed by (N,+c).

The arguments we present here are combinatorial and may be useful in prov-
ing similar things for different algebras in the case of CRAs. We also show that
CRAs over (N,+) compute the same class of functions as #NFA. Moreover, we
prove that CVPAs generalize the weighted and the counting variant of VPLs as
defined in [13,17].

We then perform a complexity theoretical study of CVPAs along the lines
of Allender and Mertz [3]. Here our main theorem states that CVPA over the
algebra (Z,+) are GapNC1-complete. Our GapNC1 hardness result also holds
for a restricted version of CVPAs, namely copyless CVPAs (CCVPAs). No such
result is known for the copyless variant of CRAs.

Our GapNC1 upper bound for CVPA over (Z,+) builds on several differ-
ent results. It combines ideas from Buss [11] and Dymond [16] who showed
that Boolean formula evaluation (and membership in regular languages) and
membership in VPLs are in NC1 (resp.) with some crucial concepts from [12]
which showed that arithmetic formula evaluation is in #NC1. This also proves
the hardness. Recently, [17] showed an #NC1 upper bound (and hardness)
for #VPA. In our paper we take this even further and show GapNC1 upper
bound for CVPA over (Z,+) by appropriately combining all these ideas. We
also prove that the class CVPA(Z,+c) is contained in NC1, i.e. for any function
in CVPA(Z,+c), the ith bit of the function is computable by an NC1 circuit.

2 Preliminaries

In this section we establish notation and recall some known definitions and
results from circuit complexity and language theory.

2.1 Notation

By Σ and Γ we denote finite alphabets and (finite) words are finite sequences
of letters of the alphabet. The set of all words over Σ is the free monoid Σ∗

with concatenation ◦ as operation. A language is a subset of Σ∗. For w ∈ Σ∗,
we address the ith letter of w by wi and by |w| we denote the length of w. We
use |w|a to denote the number of letters a appearing in w. The empty word is
denoted by ε.

An algebra A = (D,⊕1, . . . ,⊕k) is a domain D which can be infinite, together
with a number of operators ⊕i : Dαi → D where αi is the arity of ⊕i. We usually
have binary operators and sometimes unary ones. For binary operator ⊕ and
c ∈ D, we use ⊕c to indicate that one of the operands of ⊕ is a domain con-
stant c. For k = 1 and depending on the properties of ⊕1, we get semigroups,
monoids, and groups. For k = 2, depending on the properties of ⊕1 and ⊕2 we
get different kinds of rings. Examples of algebras we use in this paper include
B = ({0, 1},∧,∨,¬), (N,+), (Z,+), (Z,+,×), (Z,+,min), and (Z,+c) where +c
means addition with a constant.
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By E(A) we denote the set of expressions (or formulas) over A: All d ∈ D are
(atomic) expressions and if a and b are expressions, then (a⊕i b) is an expression
for all 1 ≤ i ≤ k. Let X = {x1, . . . , xl} be a set of variable names (which we later
use as register names). We consider these variables as atomic expressions, from
which we get a set we denote by E(A,X). An expression E(A) evaluates to an
element in D and an expression in E(A,X) evaluates to a function D

|X| → D.
With this we are now ready to define the model we wish to study in this paper.

2.2 Circuit Complexity

For the basic circuit complexity we refer e.g. to [22].
A circuit Cn = (V,E,Σ,A, l, vout) is a directed acyclic graph (V,E) in which

the vertices are called gates, the in-degree is called fan-in. There are n gates
of fan-in 0, which are called input gates, which are marked with inputs to the
circuit. For a circuit computing functions over an algebra A = (D,⊕1, . . . ,⊕k),
the map l : V → {⊕1, . . . ,⊕k} assigns each gate one of the functions.

If a gate g has fan-in t with gates g1, g2, . . . , gt feeding into it, then it computes
the function l(g) (g1, g2, . . . , gt). Fan-in greater than two of a gate g requires
associativity of (D, l(g)). The gates naturally compute functions of their fan-ins.
The gate vout ∈ V is the output gate, which computes a function D

n → D.
Formulas are circuits, in which the underlying DAG is a tree. To treat inputs of
arbitrary length, we consider families of circuits C = (Cn)n∈N, where there is
one circuit for each input length.

For A = ({0, 1},∧,∨,¬) we get Boolean circuits, similarly, for A = (Z,+,×)
we get arithmetic circuits.

If we want to emphasize a different algebra, we write e.g. C(A), where C is a
circuit class. The special case of C(N,+,×) restricted to {0, 1}-inputs is known as
#C and C(Z,+,×) restricted to {−1, 0, 1}-inputs is known as GapC. For basics
in circuit classes and arithmetic circuit complexity see e.g. [1,22].

2.3 Visibly Pushdown Automata

In our paper we define a new model which computes functions from Σ∗ to some
domain D. We view our model as a combination of two well-studied models of
computations, namely Visibly pushdown automata (VPA) [6] and Cost register
automata (CRA) [4,5]. In order to define our model, we first start by recalling
the definition of VPA. In the context of VPA we always have to specify a visible
alphabet Σ̂ = (Σcall, Σret, Σint) such that Σ is the disjoint union of Σcall, Σret

and Σint, where Σcall are call or push letters, Σret return or pop letters and Σint

internal letters. For the rest of the paper we assume a fixed visible alphabet
unless stated otherwise.

Definition 1 (Visibly Pushdown Automaton (VPA) [6]). A deterministic
visibly pushdown automaton is a tuple M = (Σ̂,Q, q0, δ, Γ,⊥, F ) where Σ̂ is the
visible alphabet, Q is the finite set of states, q0 ∈ Q is the initial state, δ is
the transition function with δ : Q × Σint → Q, δ : Q × Σcall → Q × Γ , and
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δ : Q × Σret × Γ → Q. Also, Γ is the finite stack alphabet with bottom-of-stack
symbol ⊥ ∈ Γ , and F ⊆ Q is the set of final states.

A configuration of M is an element (q, γ), where q is a state and γ is a word
over Γ . A run (q0, γ0) . . . (qn, γn) of M on a word w ∈ Σn is defined as follows:

– If wi ∈ Σint, then γi = γi−1 and qi = δ(qi−1, wi).
– If wi ∈ Σcall, then γi = γi−1γ and (qi, γ) = δ(qi−1, wi).
– If wi ∈ Σret, then γiγ = γi−1 and qi = δ(qi−1, wi, γ). If γ = ⊥, the word is

rejected.

A run is said to be accepting if qn ∈ F . The language accepted by M ,
denoted by L(M), is defined to be the set of words w ∈ Σ∗ such that
M has an accepting run on w starting from (q0,⊥).

As defined above, a VPA M can be thought of as computing a function
fM : Σ∗ → {0, 1}, where for all w ∈ Σ∗, fM (w) = 1 if and only if w ∈ L(M).
We will append this model with registers and interpret its computation over an
algebra A so as to design more general functions Σ∗ → D, where D is a general
domain such as Z,N etc.

In what follows we will assume that all the input words are well-matched, i.e.
all our input words have the following two properties.

– any prefix wi = w1 . . . wi of w the number of call letters in wi is greater than
or equal to the number of return letters in wi.

– the number of call letters in w equals the number of return letters in w.

This assumption is for the ease of exposition and all our results hold even in the
general case, unless stated otherwise. Given some word, we call two positions
i, j matching if wi . . . wj is well-matched, there is no prefix of wi . . . wj which is
well-matched and wi ∈ Σcall and wj ∈ Σret.

2.4 Cost Register Automata (CRA)

Here we recall the definition of Cost Register automata, CRA. from [4,5] with a
small modification resulting in an equivalent model. In [4,5], the register updates
are performed using a tree grammar, but here we consider a version wherein the
rules of update are governed by the underlying algebra. It is this version which
will help us to define the cost register VPA, the model which we will introduce
in the next section.

Definition 2 (Cost Register Automaton (CRA) [4,5]). A CRA is a tuple
M = (Σ,Q, q0, δ,X,A, v0, ρ, μ) where Q is the finite set of states, q0 is the initial
state, δ : Q×Σ → Q is the transition function, X = {x1, x2 . . . , xk} is the finite
set of registers, A = (D,⊕1, . . . ,⊕m) is an algebra, v0 : X → D are the initial
register values, ρ : Q×Σ ×X → E(A,X) is the partial register update function,
and μ : Q → E(A,X) is the partial final cost function.
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A configuration of M is an element (q, v), where q is a state and v : X →
E(A,X) assigns each register an expression over the algebra A. A run
(q0, v0) . . . (qn, vn) of M on some input w ∈ Σ∗ starts in (q0, v0), qi = δ(qi−1, wi)
for each 1 ≤ i ≤ n and for each x ∈ X, vi(x) is the expression obtained by
substituting vi−1(y) for every occurrence of y in ρ(qi, wi, x) ∈ E(A,X).

The semantics of a CRA M is the function FM : Σ∗ → Dwhich is defined as the
evaluation of the expression μ(qn) by substituting the expression vn(y) for every
occurrence of y ∈ X in the expression μ(qn). It is undefined if μ(qn) is undefined.

Claim ([4,5]). Given a DFA M , which accepts language L(M), there is a CRA
M ′ such that FM ′(w) = 1 if w ∈ L(M) and FM ′(w) = 0 if w /∈ L(M), i.e. M ′

computes the characteristic function Σ∗ → {0, 1} of the language L(M).

Note that cost registers are always driven by the states while on the other
hand the registers have no impact on the states.

3 Cost Register VPA

Here we define a version of a visibly pushdown automaton by augmenting it with
cost registers. A cost register visibly pushdown automaton, which we denote as
CVPA, is a VPA which along with its visible stack has a finite set of registers,
say X and an underlying algebra, say A, which influences the computations
performed by the registers. The automaton reads the input from left to right and
depending on whether the letter read is a push/pop/internal letter, it updates
its stack. This part of the working is exactly as in a VPA.

Additionally, there is a finite number of registers X = {x1, . . . , xk}. While
reading an internal letter the registers are updated as in the case of CRAs.
While reading a call letter, the current instance of the register values is allowed
to be saved on the stack as a vector (x1, . . . , xk), and the next set of registers
are obtained from these. Here, we assume that registers are stored as formal
expressions and their evaluations are performed as in the case of CRAs. Finally,
while reading the return letter, the registers are updated using the registers
available from the previous instance as well as by using the vector of registers
on the top of the stack.

Definition 3 (Cost Register VPA (CVPA)). A cost register visibly push-
down automaton is a tuple M = (Σ̂,Q, q0, δ, Γ,⊥, δ,X,A, v0, ρ, μ), where, Σ̂ is
the visible alphabet, Q is the finite set of states, q0 ∈ Q is the initial state, Γ is
the finite stack alphabet with bottom-of-stack symbol ⊥ ∈ Γ, X = {x1, . . . , xk} is
the finite set of registers, A = (D,⊕1, . . . ,⊕m) is an algebra over the domain D,
and v0 : X → D are the initial register values. Further, δ is the (deterministic)
transition function similar to the transition function of a VPA, δ : Q×Σint → Q,
δ : Q×Σcall → Q×Γ, δ : Q×Σret ×Γ → Q. The partial register update function
ρ is as follows:

– ρ : Q × Σint × X → E(A,Xprev)



Cost Register Automata for Nested Words 593

– ρ : Q × Σcall × X → E(A,Xprev)
– ρ : Q × Σret × Γ × X → E(A,Xprev,Xmatch)

Here the place holders Xprev and Xmatch are both copies of X. E(A,Xprev) is the
set of expressions over A using the registers Xprev and E(A,Xprev,Xmatch) is the
set of expressions using registers in Xprev and Xmatch. Finally, μ : Q → E(A,X)
is the partial final cost function.

A configuration of M is an element (q, γ, v), where q is a state, γ ∈ Γ ∗ is the
stack and v : X → E(A,X) assigns each register as expression over A. A run
(q0, γ0, v0) . . . (qn, γn, vn) of M on some input w ∈ Σ starts in (q0,⊥, v0). The
part of a configuration without the register (qi, γi) is defined as in a VPA. The
register values vi are updated in the following way:

– If wi ∈ Σint or if wi ∈ Σcall then for every x ∈ X, vi(x) is an expression
obtained by substituting vi−1(y) in every occurrence of y ∈ X in ρ(qi, wi, x).

– If wi ∈ Σret then for every x ∈ X, vi(x) is the expression obtained by
substituting vi−1(y) (resp. vj(y)) for every occurrence of y ∈ Xprev (resp.
y ∈ Xmatch) in ρ(qi, wi, g, x), where j < i is the matching position of the
current index i and g ∈ Γ is the top symbol of the stack content γi.

The semantics of a CVPA M is a function FM : Σ∗ → D which is defined
on words from Σ̂∗ as the evaluation of the expression μ(qn) by substituting the
expression vn(y) for every occurrence of y ∈ X in the expression μ(qn). It is
undefined if μ(qn) is undefined. The set of all functions FM computable by some
CVPA M over an algebra A is denoted by CVPA(A). This completes the formal
definition of CVPAs.

Remark 4. When specifying register updates we follow the following convention.
If e.g. q is a state, a a letter and x a register, then ρ(q, a, x) = x + xmatch could
be a register update rule. If on the right side a plain variable name appears it is
meant to be part of Xprev. Variable names of the form xmatch are part of Xmatch.

In the case of CRA interesting and natural subclasses have been defined by
imposing a copyless restriction (CCRA). For CVPA we can also define a notion
of copyless. The simple idea is that each register value may only be used once
to calculate a new register value.

Definition 5 (Copyless CVPA (CCVPA)). A CVPA is called copyless if
the following conditions hold:

– In each register update expression each variable may only occur at most once.
– For any a ∈ Σcall ∪ Σint, variable x ∈ X and state q ∈ Q, there exists at most

one y ∈ X such that ρ(q, a, y) is an expression containing x.
– For any b ∈ Σret, variable x ∈ X, state q ∈ Q and γ ∈ Γ , there exists at most

one y ∈ X such that ρ(q, b, γ, y) is an expression containing x.
– For any word uavb ∈ Σ∗ where avb is well-matched and a ∈ Σcall and b ∈ Σret

let qu (resp. qua, resp. quav) be the state after reading u (resp. ua, resp. uav),
then if a variable x does not occur in ρ(qu, a, y) for all y there may exist one
variable z such that ρ(quav, b, γ, z) contains xmatch, where δ(qu, a) = (qua, γ).
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3.1 Examples

Example 6. Let Σ̂ = {a, b}, where Σcall = {a}, Σret = {b}, Σint = ∅. Consider
the function f : {a, b}∗ → N which assigns each prefix of a well-matched word
its maximal stack height of VPAs reading the word, e.g. f(aabababaa) = 3.
This function can be implemented by a CVPA over (Z,+c,max), where +c
is an operation only allowing adding a constant to a register. The underlying
automaton is just a one-state automaton accepting everything. Besides that we
need two registers, so X = {r, s}; further v0(r) = v0(s) = 0. The register update
function is ρ(q, a, r) = r + 1, ρ(q, b, r) = r − 1 and ρ(q, a, s) = ρ(q, b, s) =
max(s, r). The final output is μ(q) = s.

Example 7. Arithmetic formulas over (Z,+,×) can be evaluated by a
CCVPA(Z,+,×) machine. An arithmetic formula is e.g. (−1 × ((1 + 1) × (1 +
1+1))) and it evaluates to −6. For the rest of the example we assume for conve-
nience that the formulas are maximally parenthesized, i.e. we have (1 + (1 + 1))
instead of (1 + 1 + 1). We can understand strings that are formulas as visibly
words over the alphabet {−1, 1, (, ),+,×}, where ( is a push letter, ) a pop letter
and −1, 1,+, and × are internal letters. However for the rest we write [ and ]
instead of ( and ) for better readability.

We now give a formal description of the CVPA M = (Σ̂,Q, q0, Γ, δ,X,
A, v0, ρ, μ) evaluating formulas. There are states Q = {q0, q+, q×} and as stack
alphabet we introduce the symbols P, T and I (used to indicate that the push
happened on the q+, q×, q0, resp.). The transition function is as follows:

– transitions from q0: δ(q0, [) = (q0, I), δ(q0, 1) = δ(q0,−1) = δ(q0, ], I) =
δ(q0, ], P ) = δ(q0, ], T ) = q0, δ(q0,+) = q+, δ(q0,×) = q×,

– transitions from q+ on call and internal letters: δ(q+, [) = (q0, P ), δ(q+, 1) =
δ(q+,−1) = q0,

– transitions from q× on call and internal letters: δ(q×, [) = (q0, T ), δ(q×, 1) =
δ(q×,−1) = q0.

The initial value for x is 0, so v0(x) = 0. The register update function can
be described as follows: ρ(q0, [, x) = 0, ρ(q0, 1, x) = 1, ρ(q0,−1, x) = −1,
ρ(q0,+, x) = ρ(q0,×, x) = x and ρ(q0, ], I, x) = x, ρ(q0, ], P, x) = x + xmatch

and ρ(q0, ], T, x) = x × xmatch. The other states: ρ(q+, [, x) = ρ(q×, [, x) = 0,
ρ(q+, 1, x) = x + 1, ρ(q+,−1, x) = x + (−1), ρ(q×, 1, x) = x × 1, ρ(q×,−1, x) =
x × (−1). Finally we let μ(q0) = x.

Remark 8. Note that the automaton is copyless. In particular, while pushing we
do not use x on the right side for the immediate update; it is only used when
the matching return letter is read. Note also that this construction can be easily
generalized from A = (Z,+,×) to arbitrary A.

3.2 Language Theoretic Properties of CVPAs

In this section we study some language theoretic properties of CVPAs. The first
simple observation is that by definition CVPAs (copyless CVPAs) generalize
CRAs (copyless CRAs, resp.), just by not using the stack. We note this as an
observation explicitly.
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Observation 9. Let f : Σ∗ → D be a function computed by a CRA over an
algebra A, then it can also be computed by a CVPA over the same algebra.

To see that CVPAs generalize VPAs, we first prove a closure property of
CVPAs. Given f and g in CVPA(A) and a visibly pushdown language L, then
we define the function if L then f else g as mapping w to f(w) if w ∈ L and
to g(w) otherwise.

Lemma 10. If f, g ∈ CVPA(A) then if L then f else g is in CVPA(A).

A similar result was proved for CRAs by [4]. Our result can be thought of
a as a generalization to CVPAs. We can use the previous closure property to
attain the characteristic function: if L then 1 else 0.

This gives that the characteristic function of L can be computed by a CVPA
over the algebra B. This therefore gives us the following corollary.

Corollary 11. CVPA generalize VPA, i.e. for a given visibly pushdown lan-
guage L, its characteristic function is in CVPA(B).

Lemma 12. Let f1, f2 be two functions over the same visible alphabet com-
putable in CVPA(A) and ⊕ be a binary operator from A, then f1 ⊕ f2 ∈
CVPA(A).

3.3 Relationship Between CVPA(Z,+c) and CCVPA(Z,+)

In [4] the relationship between the copyless restriction and restrictions on the
multiplication was investigated. In the case of CRA it holds that CRA(Z,+c) =
CCRA(Z,+). Unfortunately this is not true for CVPA which can be seen by the
following separating example. Let Σ consist of the letters (, ), ], a, where ( is a
call letter, ), ] are return letters and a is an internal letter. Consider all well-
matched expressions over Σ. Let f be the function counting the number of a’s
which are immediately enclosed by ( and ). E.g. on ((aa(a)a)aa] the function f
evaluates to 4 and on (a(aa(aaa))] it evaluates to 5.

Lemma 13. The function f defined above is in CCVPA(Z,+) but is not in
CVPA(Z + c).

It is easy to see that f has a CCVPA(Z,+). To prove that it does not have a
CVPA(Z,+c), we make use of the fact that if the values can only be incremented
or decremented by a constant, then the different configurations that all the
registers can reach is limited, thereby proving the lower bound.

4 Comparing the Power of #VPA and CVPA

There are counting variants of nondeterministic VPA and NFA, called #VPA
and #NFA. For a fixed VPA (resp. an NFA), the semantics then is a function
Σ∗ → N which assigns each input the number of accepting runs. In [17] it
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was shown that #VPA is #NC1-complete, whereas #NFA is only complete for
counting paths in bounded-width branching programs, which may be a weaker
class [14]. This is interesting since their Boolean counterparts are known to have
equal power. We first prove that the class of functions CRA(N,+) and #NFA are
equal. One direction of this is similar to [4]. We also prove the other direction.
To the best of our knowledge this result has not been formally proved in any
other work.

Lemma 14. The set of functions #NFA equals CRA(N,+).

In the case of #VPA we need a CVPA with multiplication. Formally,

Lemma 15. The functions in #VPA can be expressed as CVPA over (N,+,×)
which only use multiplication between a just computed register value and a reg-
ister value from the stack, i.e. between Xprev and Xmatch variables.

It remains open whether #VPA equals CVPA(N,+).
A major motivation for considering cost register models are weighted

automata. Weighted automata are NFA where each transition is assigned a
weight. Weights are part of an algebra (D,⊗,�) and in a run all weights are
multiplied via ⊗. Then the result of the computation is the �-product of all
runs. We consider now the example (Z,+,min), which serves a good intuition
for the usage of weighted automata as devices quantitatively searching for a
“cheapest” run.

Consider a natural weighted variant of VPA over (Z,+,min), in which each
transition of δ is labeled with a weight and at the end of a computation the
weight of the path with the smallest weight is the output.

Lemma 16. Each weighted VPA function can be expressed as a CVPA over
(Z,+c,min). The resulting automaton does not store register values on the stack.

5 Complexity Theoretic Results

In this section we present complexity theoretic results about CVPAs and
CCVPAs over different algebras. It is known that the membership problem of
regular and the visibly pushdown languages is NC1-complete [9,16]. It is also
known that computing a certain bit of the image of a function in CCRA(Z,+)
or CCRA(Γ ∗, ◦) is NC1-complete [3]. CRA(Z,+) is GapNC1-complete [3].
CCRA(Z,+,×) is contained in GapNC1 [3]. #NFA is #BWBP-complete [14]
and #VPA is #NC1-complete [17]. We add to this landscape a few more com-
plexity results by studying CVPAs using the circuit complexity lense.

Theorem 17. The set CVPA(Z,+) is GapNC1-complete.

We are given a CVPA M over (Z,+) and will show that FM is in GapNC1.
The completeness then follows because of the fact that CRA over (Z,+) are
already GapNC1-complete.
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Theorem 18. The set CCVPA(Z,+,×) is hard for GapNC1.

Proof. To prove the above statement, we need to show that any maximally
bracketed arithmetic formula over (Z,+,×) with inputs from the set {−1, 0, 1}
can be evaluated by CCVPA(Z,+,×), as this is a GapNC1 hard problem. Recall
that the automaton described in Example 7 exactly performed this. �

Note that a similar GapNC1 hardness is not known for CCRA(Z,+,×).

Theorem 19. Let f be a function computed by a CVPA(Z,+c) then the ith bit
of the output of f can be computed in NC1.

Proof (Sketch). Let M = (Σ̂,Q, q0, Γ, δ,X,A, v0, ρ, μ) be a CVPA over (Z,+c).
First thing to note is that computing the height of the stack at any step can
be done in TC0. (See for instance [17].) Let us denote the circuit that computes
the height of the stack (more precisely, it decides whether the jth bit of the
height reached after reading i bits of the input is 1 or not) as Heightn. Also,
as membership testing for VPLs is in NC1 checking whether after having read
w1 . . . wi the state reached is q or not can be done in NC1. Let us call the circuit
which does this for length n inputs the circuit Staten. Therefore, an entire run
of the underlying VPA of M can be computed in NC1 (by creating |w| many
copies of State|w|, one for each 1 ≤ i ≤ |w|).

On w = w1 . . . wn suppose the run of the machine has the following states
q0, q1, . . . , qn and say μ(qn) = x then we say that x is the relevant register at
the nth step. In general, for i < n if x was relevant at i + 1th step and at step
i ρ(qi−1, wi, x) = y + c was the register update function, then we say that y is
the relevant register at step i − 1 and c is the relevant constant at step i − 1.
Our proof proceeds in the following two steps: We first observe that for a given
input the relevant registers and relevant constants can be computed in NC1. We
then show that once we have this information, computing the final value of the
register can be done in NC1. �
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Abstract. Modeling, Simulation and Verification Language (MSVL) is
a useful formalism for specification and verification of concurrent sys-
tems. To make it more practical and easy to use, we extend MSVL with
the technique of semaphore. To do so, the mechanism of MSVL function
calls is deeply analyzed. Further, the semaphore type is defined. More-
over, operations over semaphore are formalized. Finally, an example is
given to illustrate how to use semaphore to solve the mutual exclusion
problem.

Keywords: Temporal logic programming · Projection · Semaphore ·
Mutual exclusion · Concurrency

1 Introduction

Modeling, Simulation and Verification Language (MSVL) [1], an executable sub-
set of Projection Temporal Logic (PTL) [2,3] with framing technique, is a useful
formalism for specification and verification of concurrent and distributed sys-
tems [4–6]. It provides a rich set of data types (e.g., char, integer, pointer,
string), data structures (e.g., array, list), as well as boolean and arithmetic
expressions. Besides, MSVL supports not only the commonly used statements
such as assignment, sequential, branch and loop, but also parallel and concur-
rent statements such as conjunct (S1 and S2), parallel (S1||S2) and projection
((S1, . . . , Sm) prj S). Further, Propositional Projection Temporal Logic (PPTL),
the propositional subset of PTL, has the expressiveness power of the full regular
expressions [7], which enables us to model, simulate and verify the concurrent
and reactive systems within a same logical system [8].

In verification of concurrent and distributed systems, an essential problem
that must be dealt with is the synchronization and communication between
concurrent processes. To solve the problem, some formalisms involve synchronous
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message passing (e.g., CCS [9] and CSP [10]), and some involve asynchronous
channels (e.g., PROMELA [11]). As for MSVL, the communication between
parallel components is based on shared variables. Furthermore, MSVL provides
a synchronization construct, await(c), to synchronize communication between
parallel processes. The meaning of await(c) is simple: it changes no variables, but
keeps on waiting until the condition c becomes true, at which point it terminates.
With this statement, the synchronization between two parallel processes can be
easily achieved since another process can cause c to become true.

However, the mutual exclusively accessing critical resource for many concur-
rent processes has not solved in MSVL so far. Therefore, we are motivated to
introduce the technique of semaphore [12] to MSVL. To this end, the mechanism
of the function of MSVL is deeply analyzed, based on which the semaphore type
is defined and the functions to initialize a semaphore variable, allocate as well
as release a critical resource are also formalized. Besides, an example is given to
illustrate how to use the semaphore of MSVL to solve the synchronization and
mutual exclusion problem between currently processes.

The rest of paper is organized as follows. In the next section, PTL and MSVL
are briefly introduced. In Sect. 3, the mechanism of MSVL functions calls is ana-
lyzed. In Sect. 4, the semaphore is introduced to MSVL. In Sect. 4.1, an example
is given to illustrate how to program with semaphore. Finally, conclusions are
drawn in Sect. 5.

2 Preliminaries

2.1 Projection Temporal Logic

In this subsection, the syntax and semantics of Projection Temporal Logic (PTL)
are briefly introduced. More details can be found in paper [2].

Syntax. Let Prop be a countable set of atomic propositions and V a countable
set of typed variables. B = {true, false} represents the boolean domain. D
denotes the data domain of the underlying logic. The terms e and formulas P of
PTL are inductively defined as follows:

e ::= d | a | x | ©e | f(e1, . . . , em)
P ::= p | e1 = e2 | ρ(e1, ..., em) | ¬P | P1 ∧ P2 | ∃ vP | ©P | (P1, . . . , Pm) prj P

where d ∈ D is a constant, a ∈ V is a static variable, x ∈ V is a dynamic
variable, v ∈ V is either a static variable or a dynamic one; p ∈ Prop is an
atomic proposition; f is a function and ρ is a predicate both defined over D.

Abbreviation. The conventional constructs true, false, ∧ , → as well as ↔
are defined as usual. Furthermore, we use the following abbreviations:

ε
def= ¬©true ε

def= ¬ ε
⊙

P
def= ¬©¬P P ;Q def= (P,Q) prj ε

�P
def= true ;P len(n) def= ©n ε

�P
def= ¬�¬P keep(P ) def= �( ε → P )

skip def= © ε halt(P ) def= �( ε ↔ P )
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∀ vP
def= ¬∃ v¬P fin(P ) def= �( ε → P )

P ||Q def= ((P ;true) ∧ Q) ∨ (P ∧ (Q ;true)) ∨ (P ∧ Q)

Semantics. A state s is a pair of assignments (Ip, Iv), which Ip assigns each
atomic proposition p ∈ Prop a truth value in B, whereas Iv assigns each variable
v ∈ V a value in D. An interval (i.e., model) σ is a non-empty sequence of states.
The length of σ, denoted by |σ|, is ω if σ is infinite, or the number of states minus
one if σ is finite. We use notation σ(i..j) to mean that a subinterval <si, . . . , sj> of
σ with 0 ≤ i � j ≤ |σ|. The concatenation of a finite interval σ =<s0, . . . , s|σ|>
with another interval σ′ =<s′

0, . . . , s
′
|σ′|> (may be infinite) is denoted by σ • σ′

and σ • σ′ =<s0, . . . , s|σ|, s′
0, . . . , s

′
|σ′|>. Let σ =<s0, s1, . . . , s|σ|> be an interval

and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|.
The projection of σ onto r1, . . . , rh is the interval (called projected interval)
σ ↓ (r1, . . . , rh) =<st1 , . . . , stl>, (t1 < t2 < . . . < tl), where t1, . . . , tl is obtained
from r1, . . . , rh by deleting all duplicates. For example, <s0, s1, s2, s3, s4, s5>↓
(0, 2, 2, 2, 4, 4, 5) =<s0, s2, s4, s5>.

An interpretation, as for PTL, is a triple I = (σ, i, j), where σ is an interval,
i ∈ N0 and j ∈ Nω, and 0 ≤ i � j ≤ |σ|. We use notation (σ, i, j) to mean that
a term or a formula is interpreted over a subinterval <si, . . . , sj> of σ with the
current state being si. Then, for every term e, the evaluation of e relative to I,
denoted by I[e], is defined by induction on the structure of the term as follows:

I[d] = d, if d ∈ D is a constant value
I[a] = Ii

v[a] = I0v [a], if a is typed static variable
I[x] = Ii

v[x], if x is typed dynamic variable

I[©e] =
{

(σ, i + 1, j)[e], if i < j
nil, otherwise

I[f(e1, . . . , em)] =
{

nil, if I[eh] = nil for some h(1 ≤ h ≤ m)
f(I[e1], . . . , I[em]), otherwise

The satisfaction relation (|=) for PTL formulas is inductively defined as
follows:

I|=p iff Ii
p[p] = true, for any given atomic proposition p

I|=ρ(e1, ..., em) iff ρ is a primitive predicate other than = and, for
all h(1 ≤ h ≤ m), I[eh] �= nil and ρ(I[e1], . . . , I[em]) = true

I|=e1 = e2 iff I[e1] = I[e2]
I|=¬P iff I � P
I|=P ∧ Q iff I|=P and I|=Q

I|=∃ vP iff (σ′, i, j)|=P for some interval σ′, σ(i..j)
v=σ′

(i..j)

I|=©P iff i < j and (σ, i + 1, j)|=P
I|=(P1, ..., Pm) prj Q iff there exist integers i = r0 ≤ . . . ≤ rm−1 ≤ rm � j

such that (σ, rl−1, rl)|=Pl for all 1 ≤ l ≤ m, and (σ′, 0, |σ′|)|=Q for
one of the following σ′:
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) • σ(rm+1..j)

(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m
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2.2 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of PTL. In the following, we briefly introduce the kernel of MSVL. For more
deals, please refer to literature [1].

Expression. The arithmetic expressions e and boolean expressions b of MSVL
are inductively defined as follows:

e ::= d | x | ©e | -©e | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 | e1 %e2
b ::= true | false | ¬b | b1 ∧ b2 | e1 = e2 | e1 ≤ e2

where d is is an integer or a floating point number; x ∈ V is a static or dynamic
variable; ©e ( -©e) refers to the value of expression e at the next (previous) state.

Statement. The elementary statements in MSVL are defined as follows:

(1) Immediate Assign x ⇐e
def= x = e ∧ px

(2) Unit Assignment x :=e
def= ©x = e ∧ ©px ∧ skip

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∧ S2

(5) Next next S
def= ©S

(6) Always always S
def= �S

(7) Termination empty
def= ¬©true

(8) Skip skip
def= © ε

(9) Sequential S1 ;S2
def= (S1, S2) prj ε

(10) Local exist x : S
def= ∃ x : S

(11) State Frame lbf(x) def= ¬af(x) → ∃ b:( -©x = b ∧ x = b)
(12) Interval Frame frame(x) def= �( ε → ©(lbf(x)))
(13) Projection (S1, . . . , Sm) prj S

(14) Condition if b then S1 else S2
def= (b → S1) ∧ (¬b → S2)

(15) While while b do S
def= (b ∧ S)� ∧ �( ε → ¬b)

(16) Await await(b) def=
∧

x∈Vb
frame(x) ∧ �( ε ↔ b)

(17) Parallel S1||S2
def= ((S1 ;true) ∧ S2) ∨ (S1 ∧ (S2 ;true))

∨ (S1 ∧ S2)

where the immediate assignment x ⇐ e, unit assignment x ⇐ e, empty, lbf(x)
and frame(x) are basic statements, and the left are composite ones.

3 Mechanism of MSVL Function

For convenience of modeling for complex software and hardware systems, MSVL
takes the divide-and-conquer strategy and employees functions as the basic com-
ponents like C programming language does. The general grammar of MSVL
function is as follows:
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function funcName(in type1 x1, . . . , in typem xm,
out type1 y1,. . . , out typen ym, return type RValue)

{ S } //Function body

where function is the keyword to declare a function; funcName is the identifier
by which the function can be called; in typei xi (out typei yi) (as many as
needed) specifies the i-th input (output) parameter consisting of a type followed
by a variable identifier; return type specifies the return type of the function; S,
usually a compound MSVL statement, defines the operations inside the function.
A function with no input (output) parameters or return value is allowed.

Parameter passing in MSVL is similar to that in C, i.e. all function arguments
are passed by values (call-by-value). With call-by-value, the actual argument
expression is evaluated, and the resulting value is bound to the corresponding
formal parameter in the function. Even if the function may assign a new value
to its formal parameter, only its local copy is assigned and anything passed
into a function call is unchanged in the callers scope when the function returns.
Furthermore, the pointer type is also supported by MSVL, which allows both
caller and callee to access and modify a same variable.

To make MSVL more practical and useful, MSVL provides two kinds of
function calls, namely internal call and external call [13]. The grammar of the
internal call is the default one, i.e. funcName(v1, . . . , vn), and the grammar of
external call is the general function call statement with the prefixed constraint
ext, i.e. ext funcName(v1, . . . , vn).

For instance, Example 1 is an MSVL program to compute (1+2+3)∗2. The
program consists of two functions main and GetSum1, which function main
is the entry of the program and function GetSum1 is to compute the sum of
1 + .. + n. Within function main, the function call statement marked with (1)
is an internal call, whereas the one marked with (2) is an external call.

Example 1. Program to compute (1 + 2 + 3) ∗ 2
function GetSum(int n, int *rst) {

frame(i) and (
int i and i<== 1 and empty;
*rst<== 0 and empty;
while(i<= 3){ *x:= *x+i and i:=i+1 }

)
};
function main(){

frame(sum) and (
int sum and sum<== 0 and skip;
GetSum(3, &sum); //(1) Internal function call
ext GetSum(3, &sum); //(2) External function call
sum:=sum*2

)
};
main()
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In the following, we make a deep analysis on the difference between the two
function calls with Example 1.

Internal Function Call. Internal call means the execution of the called func-
tion is transparent to the calling function. The whole model of the calling func-
tion is the concatenation of the sub-model of the statements before the function
call, the sub-model of the called function and the sub-model of statements after
the function call.

For instance, if we remove the statement (2) from the program in Example 1,
the execution model of the left program is given in Fig. 1, where the states of
the model is marked as the labels on the edges between the nodes. It is the
concatenation of the sub-models of statement “int sum and sum<== 0 and
skip”, function GetSum1, and statement “sum:=sum*2”.

E_3: sum=3 GetSum: i=3 and n=3 and rst=&sum

0

6

1

5

2

3

E_1

4

E_2: sum=1 GetSum: i=2 and n=3 and rst=&sum

E_4

E_5

E_0

E_5: sum=12

E_4: sum=6

E_1: sum=0 GetSum: i=1 and n=3 and rst=&sum

E_0: sum=0

E_2

E_3

main()

GetSum(..)

Fig. 1. The execution model of internal function call

Internal function call has a better support for modeling concurrent systems.
The basic idea is to describe each concurrent component by an MSVL function
and execute them in parallel. The interaction among concurrent components can
be realized by shared variables among functions. However, internal call also has
its negative side. The parallel execution of functions may lead to the functions
affecting each other and getting wrong result. So, we must be very careful to
estimate and avoid the error interactions among parallel functions in system
modeling.

External Function Call. External call means the execution of the called func-
tion is unseen to the calling function. From the view point of the function caller,
it focuses on obtaining the computing result and ignores the model over which
the called function is executed. The execution of an external called function is
completely isolated from the function caller.
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For instance, if we remove the statement (1) from the program in Example
1, the execution model of the left program is given in Fig. 2. Although function
GetSum() takes 4 states to compute (1 + 2 + 3), the model of GetSum() is
abandoned in case of the computing result is obtained. Thus, the execution of
external call nearly has no affection on the model of the function caller except
for assigning the result 6 to the variable sum.

0

3

1

2

1'

2'

3'

F_0

F_2: i=3 and n=3 and *rst=3

F_1: i=2 and n=3 and *rst=1E_1: sum=6

F_3: i=4 and n=3 and *rst=6

F_0: i=1 and n=3 and *rst=0

E_0: sum=0

F_3

E_2: sum=12

F_1

F_2

main(..)

GetSum(..)

Fig. 2. The execution model of external function call

The external function call completely encapsulates the inner variables (data)
and the program logic of the called function, which provides a new system mod-
eling way at a higher level of abstraction. Compared with the internal function
call, the external call is used to model the sub-system which has no interaction
with function caller during its execution. In most software/hardware system,
such sub-systems is the major part. The external function call greatly decreases
the complexity of system modeling and helps to ensure the correctness of the
system model.

4 Introduction of Semaphore to MSVL

The semaphore [12] is a key technique widely used in concurrent system devel-
opment, e.g. Operating System and Web Application, to provide mutual exclu-
sion accessing critical resource for many concurrent processes. Intuitively, a
semaphore is the entity representing a kind of critical resources. Further, two
atomic operations (i.e., a sequence of instructions providing a specific func-
tion and its running cannot be interrupted.) wait and signal are defined over
semaphore to allocate and release a unit of resource respectively. In compute
system, the realization of atomic operation must be supported by hardware. As
for MSVL, we have no such support and hence can only search for an alternative
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approach to realize semaphore. In the following, we firstly give the definition of
semaphore, and then formalize the operations over it.

Semaphore. Let n ∈ N0 be the number of processes using the semaphore. The
semaphore is a struct type defined in MSVL as follows:

semaphore(n) def= struct {
int locked and
int value and
int procNum and
int curApp[n] and
int runAuth[n] and
list(int) procQue

}
where locked is the status of the lock for accessing the critical section of the
semaphore (0 denotes free, 1 denotes locked); value denotes the number of
resources; procNum saves the max number of processes applying for the resource;
arrays curApp and runAuth record the processes currently applying for and
authorized to use the resource respectively; queue procQue keeps the blocked
processes in arriving sequence.

To solve the problem that many concurrent processes may apply for the
resource at the same time, we assign each process a unique id (0 ≤ id < n) and
employ array members curApp[id] and runAuth[id] to handle the application
and authorisation of process id respectively.

Semaphore is a parameterized type. To define a semaphore variable, the num-
ber of processes to use the resource must be estimated previously. For example,
if the process number is 10, then the grammar to define a variable sem is:
semaphore (10) sem.

Before using a semaphore variable, we need call function sem init to initialize
it. Function sem init has three parameters, among which sem is the semaphore
to be initialized; value is the initial resource count; procNum is the total number
of processes using the resource. The function is defined as follows.

function sem init( semaphore(n) *sem, int value, int procNum){
frame(i) and (

int i and i<==0 and empty;
sem→value<==value and empty //Init resource number

sem→locked<== 0 and //Init lock status
sem→procNum<==procNum ; //Init process number

while(i < n) { //Init applying array and authorized array
sem→curApp[i]:=0 and sem→runAuth[i]:=0;
i:=i+1

}
)

};

Function sem acquire corresponds to wait operation and allocate one unit
of resource to the applier. The function has two parameters: sem is the resource
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related semaphore; id is the identifier of the process applying for the resource. It
firstly sets the applying flag and running authorisation flag of process id to 1 and
0 respectively, and then calls the function sem lock to lock the semaphore and
mutual exclusively enters the critical section. Subsequently, the function minuses
sem → value by 1 and checks the result. If sem→value< 0, which means there
is no resource left, then it adds the current process id to the tail of the blocked
process queue procQue, frees the semaphore lock(i.e. sem → locked = 0) and
waits for other process to wake up process id(i.e. await(sem → runAuth[id] =
1). Otherwise, it frees the semaphore lock and uses the resource directly. The
definition of function sem acquire is as follows.

function sem acquire( semaphore(n) *sem, int id) {
sem→curApp[id]:= 1 and //Set applying flag

sem→runAuth[id]:= 0; //Set running authorisation flag
sem lock(sem, id); //Lock the semaphore

sem→value:=sem→value-1;
if(sem→value< 0) then{

sem→procQue.addtail(id); //Add to waiting queue
sem→locked=0; //Free the semaphore lock
await(sem→runAuth[id]= 1)

}else {
sem→locked=0 //Free the semaphore lock

}
};

Function sem release corresponds to signal operation and releases a
resource. The function firstly sets the applying flag of process id to 1, and then
calls the function sem lock to mutual exclusively enters the critical section.
Subsequently, the function increases sem→value by 1 and checks the result. If
sem→ value<= 0, which means there exists some processes blocked in the queue
procQue, then it removes the first one from the head of the queue (i.e. sem →
procQue.removehead(&idWake) and wakes up it (i.e. sem → runAuth[idWake]
:= 1). Finally, it frees the semaphore lock. The definition of function sem release
is as follows.

function sem release( semaphore(n) *sem, int id){
frame(idWake) and ( //ID of the process to be wake up

int idWake and idWake<== 0 and empty;
sem→curApp[id]:= 1; //Set the applying flag
sem lock(sem, id);

sem→value:=sem→value+1;
if(sem→value<= 0) then{

sem→procQue.removehead(&idWake);
sem→runAuth[idWake]:= 1;

};
sem→lock=0 //Free the semaphore lock

)
};
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Function sem lock is used to identify which process can enter the criti-
cal section of the semaphore. The function takes the FCFS (First Come, First
Service) strategy to select a process. To this end, it calls function sem select
with the external call to select a process. If current process id is selected, it
locks the semaphore (i.e. sem→locked <== 1) and removes the applying flag
of process id (i.e. sem→curApp[id] := 0). Otherwise, the function increases the
sem → curApp[id] by 1 to promote its priority to enter the critical section. The
definition of function sem lock is as follows.

function sem lock(semaphore(n) *sem, int id){
frame(idSel) and (

int idSel and idsel<== −1 and empty;
while(idSel ! = id) {

ext sem select(sem, &idSel);
if(idSel=id) then{

sem→locked<== 1 and empty; //Lock the semaphore
sem→curApp[id]:= 0 //Remove applying flag

}else{
sem→curApp[id]:= sem→curApp[id]+1

}
}

)
};

Function sem select is used to select the process with the maximum value
in the semaphore’s applying array curApp. If the semaphore is locked, then no
process is selected (i.e. ∗idSel := −1). Otherwise, the function traverses array
curApp and finds the maximum one. The definition of sem wait is as follows.

function sem select( semaphore(n) *sem, int *idSel){
frame(i, max) and (

int i and i<== 0 and empty;
int max and max<== 0 and skip;
if(sem→locked=1) then {

*idSel := −1
} else {

while(i<sem→procNum ) {
if( sem→curApp[i]> sem→curApp[max]) then{

max := i
};
i := i+1

};
*idSel := max

}
)

};
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4.1 Application of Semaphore

In following, we give an example to illustrate how to employ the technique of
semaphore to solve the complex Producer-consumer problem [14]. Without loss
of generality, we assume the size of the buffer is 10, and the number of produc-
ers and consumers both be 2. In such a problem, there exist 3 kinds of critical
resources, i.e., the buffer space, the product and the buffer itself. For each criti-
cal resource, we define a semaphore variable, namely semSpace, semProd and
semBuf , and their initial resource numbers are 10, 0, 1 respectively. The full
MSVL program is given in Example 2.

Example 2. Solve Producer-consumer problem using semaphore
function Producer( semaphore(4) *sSpace, semaphore(4) *sProd,

semaphore(4) *sBuf, list(int) *buf, int id ){
while(true) {

sem acquire(sSpace, id); //Acquire a buffer space
sem acquire(sBuf, id); //Acquire buffer
buf→addtail(100); //Imitate putting product into the buffer
sem release(sBuf, id); //Release buffer
sem release(sProd, id); //Release a product

}
};
function Consumer( semaphore(4) *sSpace, semaphore(4) *sProd,

semaphore(4) *sBuf, list(int) *buf, int id ) {
while(true) {

sem acquire(sProd, id); //Acquire a product
sem acquire(sBuf, id); //Acquire buffer
buf→removehead(); //Imitate getting product from the buffer
sem release(sBuf, id); //Release buffer
sem release(sSpace, id); //Release a buffer space

}
};
function main(){

frame(semSpace, semProd, semBuf, buffer) and (
semaphore(4) semSpace and sem init(&semSpace, 10, 4);
semaphore(4) semProd and sem init(&semProd, 0, 4);
semaphore(4) semBuf and sem init(&semBuf, 1, 4);
list(int) buffer;
Producer(&semSpace, &semProd, &semBuf, &buffer, 0 )

|| Producer(&semSpace, &semProd, &semBuf, &buffer, 1 )
|| Consumer(&semSpace, &semProd, &semBuf, &buffer, 2 )
|| Consumer(&semSpace, &semProd, &semBuf, &buffer, 3 )

)
};
main()
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5 Conclusion

In this paper, we extend MSVL by introducing the technique of semaphore.
The new semaphore type is defined in MSVL, and three operators sem init,
sem acquire and sem release are formalized to initialize a semaphore vari-
able, acquire a resource and release a resource respectively. With the support
of semaphore, MSVL can easily solve the synchronization, communication, and
mutual exclusion problems between currently processes. In the future, we will
apply MSVL to model, simulate and verify more complex concurrent and dis-
tributed systems, e.g. Operating System and Service Oriented System.
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Abstract. In this paper, we study linear time μ-calculus interpreted
over finite traces, namely νTLf . We define Present Future form (PF
form) for νTLf formulas and prove that every closed νTLf formula can
be converted into this form. PF form decomposes a formula into two
parts: what to be satisfied at the current state and what to be satisfied at
the next one. Based on PF form, we provide an algorithm for constructing
Present Future form Graph (PFG) that can be employed to depict models
of a formula. In addition, a decision procedure for checking satisfiability
of νTLf formulas based on PFG is proposed.
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1 Introduction

Linear Temporal Logic (LTL) is a well-known formalism that can be employed
to specify and verify various properties of concurrent systems [21]. Besides, it
has been widely used for representing temporally extended goals in planning
[1,6,9,20,24] due to its simplicity. Compared with standard LTL interpreted
over infinite traces, we are typically interested in finite traces when planning for
temporally extended goals. For example, regarding temporally extended goals as
finite desirable traces of states, a plan is called correct if its execution succeeds
in generating one of these desirable traces. LTL over finite traces, namely LTLf ,
is presented in [10] for describing temporal goals. While the expressive power of
LTL is (ω-)star-free regular, the expressive power of LTLf is star-free regular.
Due to the restriction of expressive power, many properties are not expressible
in LTLf , e.g. an atomic proposition p holds on every even position. To this end,
we investigate linear time μ-calculus (νTL) [3] interpreted over finite traces,
namely νTLf .
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νTL extends LTL with least and greatest fixpoint operators. Its expressive
power is ω-regular [15] with the syntax remaining simple. We focus here on the
satisfiability problem of νTLf formulas. By satisfiability we mean the problem to
find a decision procedure for checking if a formula is satisfiable. The satisfiability
problem is a fundamental issue in temporal logic and decision procedures for
checking satisfiability always play a crucial role in yielding model checking [7]
algorithms.

In this paper, we define Present Future form (PF form) for νTLf formulas
and show that every closed νTLf formula can be converted into this form. Also,
we give an algorithm for transforming νTLf formulas into PF form. PF form
decomposes a formula into the present and future parts. The present part is the
conjunction of atomic propositions or their negations, stating what should be
satisfied at the current state. The future part is the conjunction of elements in the
closure of a given formula, stating what should be satisfied at the next state. In
addition, based on PF form, we present the notion of Present Future form Graph
(PFG), which can be employed to depict models of a formula, and an algorithm
for constructing PFGs. Further, we reduce the satisfiability problem of a νTLf

formula to a path searching problem from its PFG. The complexity analysis
result shows that the PFG-based decision procedure for checking satisfiability of
νTLf formulas can be accomplished in 2O(|φ|).

In our previous work [19], we have presented Goal Progression Form (GPF)
for a fragment Gμ of νTL formulas which breaks a Gμ formula into the present and
future parts. Compared with [19], we consider the full νTL interpreted over finite
traces in this paper. The idea of this paper is originally inspired by the normal
form of Propositional Projection Temporal Logic (PPTL) [11,12]. Normal form
and normal form graph have played a vital role in obtaining a decision procedure
for checking satisfiability of PPTL formulas [13,14].

The rest of this paper is organized as follows. Related work is discussed in
Sect. 2. The syntax and semantics of νTLf and some basic notions are intro-
duced in Sect. 3. The PF form of νTLf formulas is presented in Sect. 4. Section 5
describes an algorithm for constructing PFGs and the decision procedure for
checking satisfiability of νTLf formulas based on PFG is given in Sect. 6. Con-
clusions are drawn in Sect. 7.

2 Related Work

A lot of work has been done for the decision problems of νTL and the most rep-
resentative one is given in [25] by Vardi that first applies the automata-theoretic
decision procedure for modal μ-calculus [23] to νTL with past operators. Two-
way automata are used to deal with the past operators in his work and an
algorithm running in 2O(|φ|4) is obtained eventually. Afterwards, Banieqbal and
Barringer [2] prove that if a formula is satisfiable, it is able to generate a good
Hintikka structure, which is further reducible to a path searching problem from
a graph. Their method has the same time complexity as Vardi’s but requires
exponential space. In [22], Stirling and Walker first present a tableau method
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for the decision problems of νTL without discussing the complexity issues. Later,
by simplifying the success conditions for a tableau, an improved tableau system
[4] is obtained which reuses some notions in [17] and runs in 2O(|φ|2 log |φ|). In [8],
Dax, Hofmann, and Lange propose a simple proof system for checking validity
of νTL formulas which runs in 2O(|φ|2 log |φ|) and has been implemented in the
Objective Categorical Abstract Machine Language (OCAML).

However, all the above-mentioned decision methods consider νTL interpreted
over infinite traces. To the best of our knowledge, our work is the first attempt to
deal with νTL interpreted over finite traces. The PFG-based decision procedure
for νTLf formulas we propose in this paper is easier to understand and more
efficient compared with those for νTL formulas since it avoids the detection of
the infinite unfolding problem for least fixpoints. Our decision procedure has two
main advantages: (1) it does not involve any process of determinization used in
the automata-theoretic methods by considering PFGs and is easy to automate;
(2) it gives good insight into why and how a given formula is satisfiable through
its PFG.

3 Preliminaries

Let P be a set of atomic propositions, and V a set of variables. νTLf formulas
are built based on the following syntax:

φ ::= p | ¬p | ε | X | φ ∨ φ | φ ∧ φ | © φ | ·©φ | μX.φ | νX.φ

where p ranges over P and X over V. In particular, ·© is the weak next operator.
We employ σ to indicate μ or ν, and ṗ to indicate p or ¬p. An occurrence of a

variable X in a formula is bound if it is in the scope of σX and free otherwise. A
formula is closed if there exists no free variable in it. φ[ϕ/Y ] represents the result
of simultaneously replacing all the free occurrences of Y in φ by ϕ. Further, we
assume that each variable in a formula is bound at most once. As a result, all
the formulas built by the syntax above are in positive normal form [18].

νTLf formulas are interpreted over finite linear structures. A finite linear
structure over P is a finite sequence of states, ρ = s0, s1, . . . , sn, with each si

being a member of 2P . We use si �→ to denote si is the last state of ρ and N
the set of states of ρ. The semantics of νTLf formulas, relative to ρ and an
environment e : V → 2N , is defined as follows:

‖p‖ρ
e := {si | p ∈ si}

‖¬p‖ρ
e := {si | p /∈ si}

‖ε‖ρ
e := {si | si �→}

‖X‖ρ
e := e(X)

‖ϕ ∨ ψ‖ρ
e := ‖ϕ‖ρ

e ∪ ‖ψ‖ρ
e

‖ϕ ∧ ψ‖ρ
e := ‖ϕ‖ρ

e ∩ ‖ψ‖ρ
e

‖ © ϕ‖ρ
e := {si | si+1 ∈ ‖ϕ‖ρ

e}
‖ ·©ϕ‖ρ

e := {si | si+1 ∈ ‖ϕ‖ρ
e} ∪ {si | si �→}

‖μX.ϕ‖ρ
e :=

⋂{W ⊆ N | ‖ϕ‖ρ
e[X �→W ] ⊆ W}

‖νX.ϕ‖ρ
e :=

⋃{W ⊆ N | W ⊆ ‖ϕ‖ρ
e[X �→W ]}
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where e[X �→ W ] is the environment e′ that agrees with e except for e′(X) = W .
e is employed to evaluate free variables and can be discarded for a closed formula.

Given a formula ψ, we say ψ is true at the state si of a finite linear structure
ρ, denoted by si |= ψ, iff si ∈ ‖ψ‖ρ

e . We say ψ is valid, denoted by |= ψ, iff si |= ψ
for all the finite linear structures ρ and all the states si of ρ; ψ is satisfiable iff
there exists a finite linear structure ρ and a state sj of ρ such that sj |= ψ.

A formula is called guarded if every occurrence of a bound variable in it is
in the scope of a next (©) or weak next ( ·©) operator. Every formula can be
converted into an equivalent one in guarded form with an exponential increase
in the size of the formula in the worst case [5]. Further, for any formula with
weak next ( ·©) operators, we can transform it into an equivalent one containing
merely next (©) operators and ε using the equivalence ·©ψ ≡ ©ψ ∨ ε.

The closure CL(φ) of a νTLf formula φ, based on [16], is the least set of
formulas such that

– φ, true, ε ∈ CL(φ);
– if ϕ ∨ ψ or ϕ ∧ ψ ∈ CL(φ), then ϕ,ψ ∈ CL(φ);
– if ©ϕ or ·©ϕ ∈ CL(φ), then ϕ ∈ CL(φ);
– if σX.ϕ ∈ CL(φ), then ϕ[σX.ϕ/X] ∈ CL(φ).

It has been shown that the size of CL(φ) is linear in the size of φ (denoted
by |φ|) [16].

4 PF Form of νTLf Formulas

In this section, we first define PF form of νTLf formulas and then demonstrate
that every closed νTLf formula can be converted into this form. For technical
reasons, from now on we confine ourselves to guarded formulas where all weak
next ( ·©) operators are replaced by next (©) operators and ε, and no ∨ appears
as the main operator under each next (©) operator. This can be readily achieved
using the equivalences ·©φ ≡ ©φ ∨ ε and ©(φ1 ∨ φ2) ≡ ©φ1 ∨ ©φ2.

4.1 PF Form

Definition 1 (PF Form). Let φ be a closed νTLf formula, Pφ the set of atomic
propositions occurring in φ. PF form of φ is defined by:

φ ≡ ∨m
j=1(φtj ∧ ε) ∨ ∨n

i=1(φpi
∧ ©φfi

)

where φtj ≡ ∧m1
k=1 q̇jk, φpi

≡ ∧n1
h=1 q̇ih, qjk, qih ∈ Pφ for each k and h; φfi

≡∧n2
l=1 φil, φil ∈ CL(φ) for each l.

Regarding PF form, we have the following theorem.

Theorem 1. Every closed νTLf formula ϕ can be transformed into PF form.

Proof. We prove this theorem by induction on the structure of ϕ. Note that we
use Conj(ψ) to denote the set of all the conjuncts in ψ.
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• Base Case:
– ϕ is p (or ¬p): it can be written as: p ≡ p ∧ ε ∨ p ∧ ©true (or ¬p ≡ ¬p ∧ ε ∨

¬p ∧ ©true). Hence, ϕ can be converted into PF form in these two cases.
– ϕ is ε: it can be written as: ε ≡ true∧ ε. Therefore, ϕ can be transformed into

PF form in this case.
• Induction:
– ϕ is ©φ: it can be written as ©φ ≡ ∨

i(true ∧ ©φi). We can obtain, for
each φc ∈ Conj(φi), that φc ∈ CL(ϕ) since φ ∈ CL(ϕ). Therefore, ϕ can be
transformed into PF form in this case.

– ϕ is φ1 ∨ φ2: by induction hypothesis, both φ1 and φ2 can be converted into
PF form:

φ1 ≡ ∨m
j=1(φ1tj ∧ ε) ∨ ∨n

i=1(φ1pi
∧ ©φ1fi

),

φ2 ≡ ∨m′

j′=1(φ2tj′ ∧ ε) ∨ ∨n′

i′=1(φ2pi′ ∧ ©φ2fi′ ),

where for each φ1c ∈ Conj(φ1fi
), φ1c ∈ CL(φ1); for each φ2c ∈ Conj(φ2fi′ ),

φ2c ∈ CL(φ2). Further, we can obtain that

ϕ ≡ φ1 ∨ φ2 ≡ ∨m
j=1(φ1tj ∧ ε) ∨ ∨m′

j′=1(φ2tj′ ∧ ε)

∨∨n
i=1(φ1pi

∧ ©φ1fi
) ∨ ∨n′

i′=1(φ2pi′ ∧ ©φ2fi′ ).

We have φ1, φ2 ∈ CL(ϕ) since φ1∨φ2 ∈ CL(ϕ). Next, for each φ1c ∈ CL(φ1)
and φ2c ∈ CL(φ2), we have φ1c, φ2c ∈ CL(ϕ). Hence, ϕ can be converted
into PF form in this case.

– ϕ is φ1 ∧ φ2: by induction hypothesis, both φ1 and φ2 can be converted into
PF form:

φ1 ≡ ∨m
j=1(φ1tj ∧ ε) ∨ ∨n

i=1(φ1pi
∧ ©φ1fi

),

φ2 ≡ ∨m′

j′=1(φ2tj′ ∧ ε) ∨ ∨n′

i′=1(φ2pi′ ∧ ©φ2fi′ ),

where for each φ1c ∈ Conj(φ1fi
), φ1c ∈ CL(φ1); for each φ2c ∈ Conj(φ2fi′ ),

φ2c ∈ CL(φ2). Further, we can obtain that

ϕ ≡ φ1 ∧ φ2 ≡ ∨m
j=1

∨m′

j′=1(φ1tj ∧ φ2tj′ ∧ ε)

∨∨n
i=1

∨n′

i′=1(φ1pi
∧ φ2pi′ ∧ ©(φ1fi

∧ φ2fi′ )).

We have φ1, φ2 ∈ CL(ϕ) since φ1 ∧ φ2 ∈ CL(ϕ). Next, since each φ1c ∈
CL(φ1) and each φ2c ∈ CL(φ2), we have φ1c, φ2c ∈ CL(ϕ). Thus, all the
conjuncts appearing behind the next (©) operators in ϕ are contained in
CL(ϕ) and ϕ can be converted into PF form in this case.

– ϕ is μX.φ: in this case, we have to unfold μX.φ first using the equivalence
μX.φ ≡ φ[μX.φ/X] in order to convert it into PF form. In other words, we
can regard the free variable X appearing in φ as an atomic proposition when
converting φ into PF form since μX.φ will be substituted for X eventually.
Consequently, by induction hypothesis, φ can be converted into PF form:

φ ≡ ∨m
j=1(φtj ∧ ε) ∨ ∨n

i=1(φpi
∧ ©φfi

).
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For each φc ∈ Conj(φfi
), we can obtain, by induction hypothesis, that φc ∈

CL(φ). Next, by replacing all the free occurrences of X in φ by μX.φ, we
can obtain that

ϕ ≡ φ[μX.φ/X] ≡ ∨m
j=1(φtj ∧ ε) ∨ ∨n

i=1(φpi
∧ ©φfi

[μX.φ/X]).

For each φc, we have φc[μX.φ/X] ∈ CL(φ[μX.φ/X]) after the replacement
since φc ∈ CL(φ). Further, we can obtain that φc[μX.φ/X] ∈ CL(ϕ) since
φ[μX.φ/X] ∈ CL(ϕ). Hence, ϕ can be converted into PF form in this case.

– ϕ is νX.φ: this case can be proved similarly to the case when ϕ is μX.φ.

It follows that every closed νTLf formula can be transformed into PF form. ��

4.2 Algorithm for PF Form Transformation

In this section, we present algorithm PFTran for transforming a closed νTLf

formula into PF form. The basic idea of the algorithm follows directly from the
proof of Theorem 1. Therefore, its correctness can be guaranteed.

Algorithm 1. PFTran(φ)
1: case
2: φ is true: return true ∧ ε ∨ true ∧ ©true
3: φ is false: return false
4: φ is ε: return true ∧ ε
5: φ is φprop where φprop ≡ ∧n

k=1 q̇k: return φprop ∧ ε ∨ φprop ∧ ©true
6: φ is φprop ∧ ε: return φ
7: φ is φprop ∧ ©ϕ: return

∨
i(φprop ∧ ©ϕi)

8: φ is ©ϕ: return
∨

i(true ∧ ©ϕi)
9: φ is ψ ∨ ϕ: return PFTran(ψ) ∨ PFTran(ϕ)

10: φ is ψ ∧ ϕ: return AND(PFTran(ψ), PFTran(ϕ))
11: φ is σX.ϕ: return PFTran(ϕ[σX.ϕ/X])
12: end case

Note that algorithm PFTran utilizes the function AND to handle the boolean
connective ∧. It is obvious that the inputs, ψ and ϕ, for AND are both in PF
form. Suppose ψ is of the form

∨
i(ψi ∧ ε) ∨ ∨

j(ψj ∧ ©ψ′
j) while ϕ of the form∨

k(ϕk ∧ ε) ∨ ∨
l(ϕl ∧ ©ϕ′

l). AND returns
∨

i

∨
k(ψi ∧ ϕk ∧ ε) ∨ ∨

j

∨
l(ψj ∧ ϕl ∧

©(ψ′
j ∧ ϕ′

l)) eventually.

Theorem 2. Converting a closed νTLf formula φ into PF form by algorithm
PFTran can be done in 2O(|φ|).

Proof. Intuitively, the running time of PFTran depends mainly on the number
of recursive calls for itself as well as the running time of the function AND.

We prove this theorem by induction on the structure of φ.
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• Base Case:
– φ is true, false, ε, φprop, φprop ∧ ε, φprop ∧ ©ϕ (where φprop is of the form∧n

k=1 q̇k), or ©ϕ: the theorem holds apparently in these cases.
• Induction:
– φ is ψ ∨ ϕ: we can obtain, by induction hypothesis, that PFTran(ψ) and

PFTran(ϕ) can be finished in 2O(|ψ|) and 2O(|ϕ|), respectively. Therefore, it
can be seen that PFTran(φ) can be done in 2O(|ψ|) + 2O(|ϕ|), namely 2O(|φ|).

– φ is ψ ∧ϕ: we have, by induction hypothesis, that PFTran(ψ) and PFTran(ϕ)
can be finished in 2O(|ψ|) and 2O(|ϕ|), respectively. Next, we can easily obtain
that the number of disjuncts in ψ (resp. ϕ) is bounded by 2O(|ψ|) (resp.
2O(|ϕ|)) after the PF form transformation. Therefore, the function AND can
be completed in 2O(|ψ|+|ϕ|). It follows that PFTran(φ) can be finished in
2O(|ψ|) + 2O(|ϕ|) + 2O(|ψ|+|ϕ|), namely 2O(|φ|).

– φ is σX.ϕ: we can convert ϕ into PF form using algorithm PFTran by treating
X as an atomic proposition and it is easy to see, by induction hypothesis,
that this process can be done in 2O(|ϕ|). Further, by replacing all the free
occurrences of X in ϕ by σX.ϕ, we can obtain that ϕ[σX.ϕ/X] can be con-
verted into PF form by algorithm PFTran in 2O(|ϕ|). Hence, PFTran(σX.ϕ)
can be completed in 2O(|φ|). ��

5 Present Future Form Graph

5.1 PFG Definition

For a closed νTLf formula φ, its PFG, denoted by Gφ, is a triple (Nφ, Eφ, n0)
where Nφ is a set of nodes, Eφ is a set of directed edges, and n0 is the root
node. Each node in Nφ is specified by a conjunction of elements in CL(φ) while
each edge in Eφ is identified by a triple (φi, φei, φj) where φi, φj ∈ Nφ and φei

denotes the label of the edge from φi to φj .

Definition 2 (PFG). For a closed νTLf formula φ, Nφ and Eφ are inductively
defined by: (1) n0 = φ ∈ Nφ; (2) for all ϕ ∈ Nφ \ {ε, false}, if ϕ ≡ ∨h

j=1(ϕtj ∧
ε) ∨ ∨k

i=1(ϕpi
∧ ©ϕfi

), then ε ∈ Nφ, (ϕ,ϕtj , ε) ∈ Eφ for each j; ϕfi
∈ Nφ,

(ϕ,ϕpi
, ϕfi

) ∈ Eφ for each i.

In a PFG, we use a double circle, a black dot, and a single circle to denote
the root node, the ε node, and each of other nodes, respectively. Each edge is
represented as a directed arc connecting two nodes. Note that, to simplify nota-
tions, we use variables to indicate the corresponding fixpoint formulas appearing
in each node. An example of PFG for the formula μX.(p ∨ ©X) ∨ νY.(q ∧ ©Y )
is given in Fig. 1. There are five nodes (including the ε node) in the PFG where
n0 is the root node. (n0, p, ε) is an edge with the label being p while (n3, q, n3)
is an edge with the label being q.

A path Π in a PFG is a finitely alternate sequence of nodes and edges starting
from the root node, while an ε-path is a path that ends with the ε node. Let
Atom(

∧m
i=1 q̇i) represent the set of atomic propositions or their negations in
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n0: μX.(p ∨ ©X) ∨ νY.(q ∧ ©Y )
n2: X n3: Yn1: true

n0

n2

true

p

p n3

true
q

q

n1true

ε
p

true
p

Fig. 1. An example of PFG

∧m
i=1 q̇i. As a result, for a given path Π = φ0, φe0, φ1, φe1, . . . , φem, φm+1, we

can obtain its corresponding finite linear structure Atom(φe0), Atom(φe1), . . . ,
Atom(φem). For instance, the path n0, true, n2, p, n1, true, ε in Fig. 1 corresponds
to the finite linear structure {true}{p}{true}.

5.2 Algorithm for Constructing PFGs

For a given closed νTLf formula φ, we use algorithm PFGCon to construct its
PFG Gφ.

Algorithm 2. PFGCon(φ)
1: n0 = φ, Nφ = {n0}, Eφ = ∅, H[n0] = 0, AddE = AddN = 0
2: while there exists ϕ ∈ Nφ \ {ε, false} with H[ϕ] = 0 do
3: H[ϕ] = 1
4: ϕ = PFTran(ϕ)
5: case
6: ϕ is

∨h
j=1(ϕtj ∧ ε): AddE = 1

7: ϕ is
∨k

i=1(ϕpi ∧ ©ϕfi): AddN = 1

8: ϕ is
∨h

j=1(ϕtj ∧ ε) ∨∨k
i=1(ϕpi ∧ ©ϕfi): AddE = AddN = 1

9: end case
10: if AddE = 1 then
11: add the corresponding nodes and edges
12: AddE = 0
13: end if
14: if AddN = 1 then
15: add the corresponding nodes and edges
16: AddN = 0
17: end if
18: end while
19: for all ϕ ∈ Nφ \ {ε} with no outgoing edge do
20: Nφ = Nφ \ {ϕ}
21: Eφ = Eφ \⋃i{(ϕi, ϕe, ϕ)}
22: end for
23: return Gφ

Algorithm PFGCon takes φ as input and finally returns Gφ. It uses H[ϕ] = 1
(or 0) to indicate that a formula ϕ has (or has not) been handled. Moreover, it
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employs AddE (resp. AddN ) = 1 (or 0) to indicate that the ε (resp. ©) part
occurs (or does not occur) in the PF form of the formula currently being handled.
At the beginning of PFGCon, n0 is assigned to φ; Nφ and Eφ are initialized to
{n0} and empty respectively; H[n0], AddE, and AddN are all assigned to 0.
Further, the algorithm repeatedly transforms an unhandled formula ϕ ∈ Nφ

into PF form by algorithm PFTran and then adds the corresponding nodes and
edges to Nφ and Eφ according to the values of AddE and AddN, respectively,
until all nodes in Nφ have been handled. In addition, it is noteworthy that,
throughout the construction of Gφ, a false node (e.g. p ∧ ¬p) may be produced
which corresponds to an inconsistent subset of CL(φ). We use the for loop in
Line 19 to eliminate these nodes as well as the relative edges.

For a closed νTLf formula φ, since each node in Nφ is the conjunction of
elements in CL(φ), we can obtain the following corollary.

Corollary 3. For any closed νTLf formula φ, both the number of nodes and
the number of edges in Gφ are bounded by 2O(|φ|).

Theorem 4. Constructing the PFG of a closed νTLf formula φ by algorithm
PFGCon can be completed in 2O(|φ|).

Proof. First, we have that the number of iterations of the while loop is bounded
by 2O(|φ|) according to Corollary 3. Next, algorithm PFTran is called first in each
iteration, which can be accomplished in 2O(|φ|) according to Theorem 2. Further,
adding nodes and edges for the ε part and the © part can be finished in 2O(np)

and 2O(|φ|), respectively, where np denotes the number of atomic propositions
in φ. Hence, the while loop can be done in 2O(|φ|). Finally, we can easily obtain
that removing inconsistent nodes as well as the relative edges can be completed
in 2O(|φ|). It follows that PFGCon can be finished in 2O(|φ|). ��

6 A Decision Procedure Based on PFG

In this section, we demonstrate how to find a model for a given closed νTLf

formula φ from Gφ. First, we give the following theorem.

Theorem 5. A closed νTLf formula φ is satisfiable iff an ε-path can be found
in Gφ.

Proof. Suppose the PF form of φ is:

φ ≡ ∨m
j=1(φtj ∧ ε) ∨ ∨n

i=1(φpi
∧ ©φfi

).

Given a path Π = φ, φe0, φ1, φe1, φ2, . . . , φek, φk+1 in Gφ, we write Πi for the
prefix, φ, φe0, φ1, φe1, φ2, . . . , φei, φi+1, of Π. Given a finite linear structure ρ =
s0, s1, . . . , sk, we write ρi for the prefix, s0, s1, . . . , si, of ρ. For each state si of
ρ, we use si[ṙ] = true to indicate r ∈ si if ṙ ≡ r, or r /∈ si if ṙ ≡ ¬r.

(⇒) Let ρ1 = s0, s1, . . . , sk be a model of φ (namely s0 |= φ), Π1 =
φ, φe0, φ1, φe1, φ2, . . . , φek, ε the ε-path w.r.t. ρ1. That is, each φei is the con-
junction of each ṗ where si[ṗ] = true. We prove that Π1 can be found in Gφ.
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(1) When k = 0, we have ρ1 = s0 and Π1 = φ, φe0, ε. By the construction of
φe0, we have s0 |= φe0 ∧ ε. According to the PF form of φ, there exists an edge
from φ to ε labeled by φe0 ≡ φtj in Gφ (1 ≤ j ≤ m). Therefore, Π1 can be found
in Gφ.

(2) When k > 0, the proof proceeds by induction on the length of the prefix
Πi

1 of Π1.
Base Case: Π0

1 = φ, φe0, φ1. By the construction of Gφ, there exists an edge
from φ to φ1 ≡ φfi

labeled by φe0 ≡ φpi
≡ ∧n1

h=1 ṗh (1 ≤ i ≤ n) such that
s0 |= φpi

∧ ©φfi
. Here s0[ṗh] = true for each ṗh. Therefore, the prefix Π0

1 of Π1

is found in Gφ.
Induction: suppose we have found a prefix Πk−1

1 = φ, φe0, φ1, φe1, φ2, . . . ,
φe(k−1), φk of Π1 in Gφ w.r.t. ρk−1

1 . At this point, we can transform φk into PF
form:

φk ≡ ∨m′

j′=1(φtj′ ∧ ε) ∨ ∨n′

i′=1(φpi′ ∧ ©φfi′ ),

such that there exists an edge from φk to ε labeled by φek ≡ φtj′ ≡ ∧n2
l=1 ṗl in

Gφ (1 ≤ j′ ≤ m′) and sk |= φtj′ ∧ ε. That is, sk[ṗl] = true for each ṗl. It follows
that Π1 can be found in Gφ.

(⇐) Let Π2 = φ, φe0, φ1, φe1, . . . , φek, ε be an ε-path in Gφ, ρ2 = s0, s1, . . . ,
sk the corresponding finite linear structure of Π2. Therefore, for each φei ≡∧n1

h=1 ṗh, we have si[ṗh] = true for each ṗh. We prove that ρ2 is a model of φ.
(1) When k = 0, we have Π2 = φ, φe0, ε and ρ2 = s0. Since ρ2 is the corre-

sponding finite linear structure of Π2, we have s0 |= φe0. We can further obtain
that s0 |= φe0 ∧ ε. Therefore, ρ2 is a model of φ.

(2) When k > 0, the proof proceeds by induction on the length of the prefix
ρi
2 of ρ2.
Base Case: ρ02 = s0. Since ρ2 is the corresponding finite linear structure of

Π2, we have ρ02 |= φe0. That is, ρ02 is a prefix of a model.
Induction: suppose for all k1 < k, ρk1

2 is a prefix of a model. We prove that
ρk
2 is a prefix of a model of φ. By inductive hypothesis, ρk−1

2 = s0, s1, . . . , sk−1 is a
prefix of the model. According to algorithm PFGCon, there must be φk ≡ φek ∧ε
such that a new node ε and a new edge (φk, φek, ε) are added to Gφ. Since ρ2 is
the corresponding finite linear structure of Π2, we have sk |= φek ∧ ε. Since ρk−1

2

is a prefix of the model, ρk
2 = ρ2 is a model of φ. ��

As a result, we reduce the satisfiability problem of a νTLf formula φ to an
ε-path searching problem from Gφ. In fact, to decide the satisfiability of φ, we
only need to check whether the ε node exists in Gφ. The existence of the ε node
indicates that at least one ε-path can be found in Gφ.

Consequently, the PFG-based decision procedure for checking satisfiability
of νTLf formulas becomes straightforward, as presented in Algorithm3.

According to Theorem 4, we obtain the following theorem.

Theorem 6. For a given closed νTLf formula φ, the decision procedure
PFGSAT can be done in 2O(|φ|).
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Algorithm 3. PFGSAT(φ)
1: Gφ = PFGCon(φ)
2: if ε ∈ Nφ then
3: return satisfiable
4: else
5: return unsatisfiable
6: end if

7 Conclusion

In this paper, we studied νTL interpreted over finite traces, namely νTLf . We
presented PF form and PFG of νTLf formulas as well as the algorithms for
PF form transformation and PFG construction, respectively. Further, based on
PFG, a decision procedure for checking satisfiability of νTLf formulas has been
proposed. In the near future, we plan to implement the proposed decision proce-
dure. Also, we are going to investigate the PFG-based model checking approach
for νTLf based on the proposed decision procedure and develop a practical
model checker for νTLf .
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Abstract. Insertion propagation problem is a class of view update prob-
lem in relational databases [1]. Given a source database D, a monotone
relational algebraic query Q, and the view V generated by the query
Q(D), insertion propagation problem is to find a set ΔD of tuples whose
insertion into D will add the given tuples ΔV into the view V via Q
without producing side-effect on view. In this paper, we consider the fd-
restricted version insertion propagation problem ‘fd-vsef-ip’, in which we
aim to find the ΔD not only view side-effect free but also without intro-
ducing inconsistency with respect to the predefined functional dependen-
cies. We study both data and combined complexity of fd-vsef-ip under
both single and group insertion. Interestingly, the problem ranges from
PTime to ΣP

2 -complete, for queries in different classes in either complexity
aspect.We show that the fd-restricted version will be harder to get the
optimal solution, contrary to its counterpart under deletion. Our study
of this fd-restricted version insertion propagation problem generalize the
computational issues involved in data lineage – the process by which
databases updated through view insertion under fd.

Keywords: Insertion propagation · View update · Database ·
Complexity

1 Introduction

1.1 fd-restricted Insertion Propagation

In the study of view update in database [2–6], propagation analysis [1] of view
update has been studied for more than a decade. Propagation analysis mainly
focus on minimizing side-effect over source database or view which caused by
the asymmetry between update on view and the source database. View side
effect problem fundamental to propagation analysis, is identified in [1] stated as
follows: given a source database D, an monotone relational query Q, the view
V = Q(D), and update on view (a set of tuples) ΔV , the view side-effect problem
is to find a smallest ΔD such that Q(f(D,ΔD)) = f(V,Δ),
c© Springer International Publishing Switzerland 2016
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f(a, b) =
{

a \ b, for deletion update, (1)
a ∪ b, for insertion update (2)

i.e., side effect free whenever such ΔD exists.

Example 1. Let’s visit an example of the insertion update. Consider an archive
management database of a company including two relations, Group(group, user)
records groups each user belongs to, and Access(group, file) records files that each
group has the authority to access. There is also a view defined as a conjunc-
tive query (Selection-Projection-Join) “show the files and users has authority to
access it” as follow,

now given an view insertion ΔV = (usr1, f2), the task is to find a side-effect free
insertion, here are some possible ways to update the source database,

(a) insert (g2,usr1) into Group,
(b) insert (g1, f2) into Access,
(c) insert (x,usr1), (x, f2) into Group,Access respectively, where x is a value taken

from the domain of attribute group different from g1 and g2,

we see that method(a) must produce the a side effect ‘(usr1, f3)’on the view
besides ΔV . Fortunately, the other two methods is side effect free solution that
we want. However, in practice, the domain of ‘group’ is often finite, therefore, if
no new value can be taken from the domain, then method(c) is never valid.

There have been some complexity results on the view side effect problem for
insertion [7,8] and deletion propagation [1,7–12], moreover, for deletion prop-
agation, Kimfield et al. [9] showed the dichotomy ‘head domination’ for every
conjunctive query without self joins, deletion propagation is either APX-hard or
solvable (in polynomial time) by the unidimensional algorithm, they also showed
the dichotomy ‘functional head domination’ [10] for fd -restricted version, For
multiple deletion [11], they especially showed the trichotomy for group deletion
a more general case. However, there are no results on insertion propagation at
the present of functional dependency (fd), note that database with fd is a very
general case. It gets radically different from the case without fd.

Example 2. Generally, there are often some functional dependencies defined in
a database to guarantee the semantic correctness. Continue the example above,
possibly a functional dependency user → group is defined on Group(group, user)
in order to guarantee that each user can take part in only one group. In such
case, different from the example above, method(c) is not a valid solution any
more due to the functional dependency.

In this paper, we investigate such fd -restricted insertion propagation, mainly
on the complexity aspect of this problem.
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1.2 Formal Statement

A schema is a finite sequence R = 〈R1, . . . , Rm〉 of distinct relation symbols,
where each Ri has an arity ri > 0 and includes several attributes, denoted by
Ri = {A1, . . . , Ari

}. Each attribute Aj has a corresponding set dom(Aj) which
is the domain of values appearing in Aj . An database instance D (over R) is a
sequence 〈RD

1 , ..., RD
m〉, such that each RD

i is a finite set of tuples {t1, . . . , tN},
each tuple tk belongs to the set dom(A1) × · · · × dom(Ari

). We use R.Ai to
indicate the attribute Ai of relation R, and also we denote RD as R without loss
of clarity.

An fd (functional dependency [13]) ϕ over a relation R can be represented
by ϕ : (X → A), where both X and A are a set of attributes from R. Such
dependency means the values of any two tuples’ attributes A should be same if
they have same value in attributes X. Given a database instance I and an fd ϕ,
if there is no tuple pair violate the fd rule, we denote that D |= ϕ. Usually, we
use Σ to denote the set of fds. Given a database D and an fd set Σ, if for every
fd ϕ ∈ Σ, D |= ϕ, we say D |= Σ.

Definition 1 (fd-restricted view side-effect-free insertion propagation, fd-vsef-ip).
Given a database D, fd set Σ, a query Q, its view V and a set of tuples inserted
ΔV , it is to decide whether there is a tuple set ΔD such that

(1) D ∪ ΔD |= Σ,
(2) Q (D ∪ ΔD) = V ∪ ΔV .

In this paper, we study the complexity of fd -vsef-ip in two cases single inser-
tion when |ΔV | = 1, and group insertion when |ΔV | > 1. The query Q is writ-
ten by operations in relational algebra including S (selection), P (projection),
J (join), U (union).

We examine the impact of different combinations of these factors on both data
and combined complexity of these problems. Data complexity is the complexity
expressed in terms of the size of the database only, while combined complexity
is the complexity expressed in terms of both the size of the database and the
query expression [14]. The complexity measure follows the work [1] where the
complexity results of propagation problem were first established and the studies
[3,4,15] where the complexity of view update problems was studied. We provide a
complete picture of the complexity on these problems for views defined in various
fragments of SPJU queries, identifying all those cases that are intractable. For
the sake of clarity, we list notations again as follows.

D, ΔD Source database, and its update

V, ΔV View, update on view

Σ, Q Set of functional dependency, relational algebraic query

S,P,J,U Selection, Projection, Join, Union

SPJ Selection-Projection-Join

SPU Selection-Projection-Union
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2 Complexity Results

In this section, the complete picture we map out as the follow table,

Query Data Comp. Combined Comp.

Single Group Single Group

SP PTime PTime PTime PTime 1

U PTime NP-complete 2 PTime NP-complete

SJ PTime PTime coNP-complete coNP-complete 3

SPJ PTime 4 (no
self-join)

NP-complete 4 (finite
dom., even without fd)

coNP-hard ΣP
2 -complete 5
(finite dom.)

SJU PTime NP-complete coNP-complete ΣP
2 -complete 6

In the following, we show specifically the results in domination positions includ-
ing both data and combined complexity of group and single insertion case.

Theorem 1. fd-vsef-ip is PTime for SP query under group insertion on com-
bined complexity.

One can refer proof to the fd set consistency checking [13], here omitted.

Theorem 2. fd-vsef-ip for U query is NP-complete under group insertion on
data complexity.

Proof. We construct a PTime reduction from 3-colorability problem. The main
idea is to use ΔV to encode graph, and then to decide whether ΔV can be
divided into Red, Green, Blue tables under fd -restriction. Specifically,
Base Instance D. Let D include three relations Red, Green and Blue with the
same schema {A1, B1, · · · , Ad, Bd}, where d is the maximum degree of the input
graph G. Initially, they are all empty.
fd Set Σ. For Red, Green and Blue, set d fds Ai → Bi for each one.
Query Q. Let query Q := Red ∪ Green ∪ Blue.
View V . Initially, V is empty.
Insertion ΔV . Let it have n tuples, and each tuple ti simulates a vertex vi

in the input graph G such that ‘(B, · · · , B)’ initially. Then, for the each edge
e (vi, vj) of G, find an k, such that ti [Ak, Bk] and tj [Ak, Bk] are both ‘(B,B)’.
Note that, we can always find such k(< d) since d is the maximum degree. Let
(1) ti [Ak] = tj [Ak] = aij ; (2) ti [Bk] = bi; (3) tj [Bk] = bj .

One can easily verify that there is an fd -restricted side-effect-free insertion
Δ if and only if G can be colored by 3 colors.

Fact. To continue the analysis, we will use the term fact. Given a database
instance D and a SPJ query Q in a form of πA (σcon(R1 × · · · × Rn)). A fact μ
of D is a tuple sequence (t1, t2, . . . , tn) ∈ R1 × · · · × Rn, where ti ∈ Ri for each
1 ≤ i ≤ n. If (t1, t2, . . . , tn) satisfies the selection condition con, then we denote
it as Q (μ) ∈ Q (D).
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Theorem 3. fd-vsef-ip for an SJ query is coNP-complete under group insertion
on combined complexity.

Proof. For the upper bound, we should first briefly introduce some definition.
Given any SJ query Q with an equivalent standard form σc(R1 × · · · × Rm).
Here, each Ri (1 ≤ i ≤ m) is a table included in D, and any two tables in
R1, · · · , Rm may be the same table in the database, if Q includes self-join. For
view insertion ΔV , we define its inverse on D with respect to Q. For each i, let
ΔV −

Ri
be the projection on Ri of ΔV . In any query, if a self-joined table Ri has

h occurrences, say Ri1 , · · · , Rih , let ΔV −�
Ri

be the union ΔV −
Ri1

∪ · · · ∪ ΔV −
Rih

.
Given any SJ query and database D, for view insertion ΔV , we define its inverse
that ΔV −1 = {ΔV −�

R1
, ...,ΔV −�

Rm
}.

Now, we show an NP algorithm to decide if there is no fd -restricted side-
effect-free insertion as follows, (a) first compute the ΔV −1; (b) check whether
D ∪ ΔV −1 |= Σ, if no, then return yes; (c) guess a fact μ of Q(D ∪ ΔV −1), if
Q(μ) /∈ V ∪ ΔV , then return yes.

Correctness. We claim that ΔV −1 is the minimum necessary insertion into
D in order to produce the result ΔV .

For the lower bound, as the insertion propagation problem for J query is
coNP-hard [7].

Theorem 4. fd-vsef-ip for an SPJ query is NP-complete under group inser-
tion with finite domain on data complexity, even without functional dependency.
PTime for SPJ query without self-join under single insertion on data complexity.

Proof (Proof Sketch). The former part is actually a dual case of the singleton
deletion propagation. To prove the former part, the main idea is to modify
the reduction from monotone-3-sat of Theorem 2.1 in [1], we build the source
database D as the same, but initially only tuples with form like (ai, xj) of R1

and (xi, cj) of R2, therefore the view only includes tuples like (ai, cj). Then build
the insertion ΔV including tuples like (ai, c) and (a, cj). Refer to [1], one can
verify the correctness.

For the later part, we show an algorithm for this problem without functional
dependency, w.l.o.g, let query is defined as a join on k relations having no more
than n tuples,

Definition 2 ((semi-)free attribute). A semi-free attribute is an attribute
restricted by at least a selection condition but projected out by the query. A free
attribute is a semi-free attribute but not restricted in any selection condition.

Proposition. If the query is monotone without self-join, there are at most one
tuple need to be inserted into each table in the source database D by the side-
effect free insertion, where the value of projected attribute is the same as the
insertion. This proposition guarantees that there are at most 2k possible insertion
choices need to check for a single insertion, whether it has view side-effect free
solution.
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A. For a possible insertion choice, we check all the value invention as follow,
(a) fix the projected attribute of the intended inserted tuples;
(b) find the scope values taken from for each semi-free attributes;
(c) try all the possible values of each semi-free attribute and check whether

it produces side-effect, here we take all the absent values of a semi-free
attribute as a variable x different all the active value of this attribute,
therefore, this step can be finished in O((n + 1)c) (‘c’ is the number of
selection condition);

(d) take the side-effect free candidate choice of the step above, check whether
it has a consistent fill for the rest free attributes and all the variables,
then check whether this step produces Δ after fixing the variable, if yes,
we can claim that fd -vsef-ip has a solution.

B. If all the choices are not valid or consistent, we can decide that fd -vsef-ip
has no view side-effect free insertion.

We claim that in step (d), there is no side-effect will be produced by fixing
the variable, except the new tuple producing by all the newly inserted tuples,
since there will no value of other corresponding semi-free attribute equals to it.
Then one can check the correctness of this algorithm, we omit the proof details
due to the lack of space.

Compare with the result above, we next show SPJ query is even harder on
combined complexity under finite domain unless P=NP.

Theorem 5. fd-vsef-ip for an SPJ query is ΣP
2 -complete under group insertion

with finite domain on combined complexity.

Proof. i. We first show a ΣP
2 algorithm for SPJ query as follows.

(a) guess a ΔD base on ΔV by filling all the attributes projected out.
(b) if D ∪ ΔD |= Σ, then decide whether Q(D ∪ ΔD) = V ∪ ΔV , i.e., there

is no side-effect on view. As SPJ query is monotone, therefore we only need to
decide whether Q(D ∪ ΔD) ⊆ V ∪ ΔV and this decision problem is in coNP,
because we can decide whether there is side-effect on view by guessing a fact μ
of D and checking whether Q(μ) /∈ V ∪ ΔV .

ii. We prove the lower bound of fd -vsef-ip for SPJ query is ΣP
2 -hard by a reduc-

tion from 3-CNF-SAT2 problem. An instance of 3-CNF-SAT2 problem includes
two variable sets X1 = {x1, ..., xn} and X2 = {xn+1, ..., xn′}, and a 3-CNF
boolean expression φ with m clauses {C1, . . . , Cm}, the task is to determine
whether there is an assignment τ for X1 such that φ is satisfied by all assign-
ments for X2. We show the reduction as follows. (An example of the reduction for
a 3-CNF-SAT2 instance φ = ∃x1x2∀x3x4(x1+x2+x3)(x1+x2+x3)(x1+x3+x4)
is shown in Fig. 1.)

Base Instance D. Let D has n+m+1 relations S1, · · · , Sn, R1, · · · , Rm and T ,
where Si simulates existential variable xi, Rj simulates clause Cj and universal
variables in it, and T is an auxiliary relational table. Concretely,
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Si
A1 A2

B
R1

A1A2A3A4A5

0 0 1 + 1
0 1 0 + 2
0 1 1 + 3
1 0 0 + 4
1 0 1 + 5
1 1 0 + 6
1 1 1 + 7
0 0 0 − 8

R2

A1A2A3A4A5

0 0 0 + 1
0 0 1 + 2
0 1 1 + 3
1 0 0 + 4
1 0 1 + 5
1 1 0 + 6
1 1 1 + 7
0 1 0 − 8

R3

A1A2A3A4A5

0 0 0 + 1
0 0 1 + 2
0 1 0 + 3
0 1 1 + 4
1 0 0 + 5
1 0 1 + 6
1 1 1 + 7
1 1 0 − 8

Fig. 1. Example for the reduction of Theorem 5

(1) For each existential variable xi (1 ≤ i ≤ n), construct relation Si =
{A1, A2}, where A1’s domain of dom(A1) is {B} and dom(A2) is {0, 1}. Initially,
all Si is empty.

(2) Let the auxiliary one is a unary relation T (A), where dom(A) is also
{0, 1}. Initially, T is also empty.

(3) For each clause Ci (1 ≤ i < m), build a quintuple relation
Ri (A1, A2, A3, A4, A5). We add 8 tuples into table Ri, whose values of A1, A2, A3

refer to the 8 value assignments of the 3 variables, values of A4 are the result of
the corresponding assignments, i.e., seven ‘+’s or one ‘−’, and the values of A5

are the ids of these tuples from ‘1’ to ‘8’.
fd Set Σ. Set fd: A2 → A1 for each relation Si, and set fd: A1A2A3 → A5 for
each relation Ri.
Query Q. We first prepare all the join conditions used in query as follows.
Existential variable, for each existential variable xi (i ∈ [1, n]), build a join
condition

con∃ := S1.A1 = · · · = Sn.A1. (3)

For the occurrences in clauses, we build a join condition with conjunctive form
such that

coni := q1 ∧ q2 ∧ · · · ∧ qk, (4)

where each q is an equation Si.A2 = Rj .Ap, if xi occurs in the p-th position of
clauses Cj .

Universal variable, for each universal variable xi(i ∈ [n + 1, n′]), we build a
join condition coni also as a conjunctive form such that each q is also an equation
Rl.Ap = Rl′ .Ap′ = T.A, if xi occurs in the p-th and p′-th positions of clauses Cl

and Cl′ .
Let the query Q = Q1 × Q2 × Q3 such that,

Q1 := πR1.A4,...,Rm.A4(σcon1∧···∧conn+n′ S × R × T ), (5)

Q2 := πS1.A1,...,Sn.A1(σcon∃(S)) (6)

Q3 := πA(T ), (7)

where R is R1 × · · · × Rm, and S is S1 × · · · × Sn.
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View V . Initially, V = ∅ since T is empty.

Insertion ΔV . Let ΔV = t × {0, 1}, where t1 = (+, . . . ,+
︸ ︷︷ ︸

m

, B, . . . , B
︸ ︷︷ ︸

n

).

One can verify the correctness of this reduction.

Surprisingly, we show that on combined complexity, for SJU query, fd -vsef-
ip is in ΣP

2 -complete, not coNP-complete as expectation,

Theorem 6. fd-vsef-ip for a SJU query is ΣP
2 -complete under group insertion

with finite domain on combined complexity.

Proof. i. We first show a ΣP
2 algorithm for SJU query as follows. Given a normal

form of SJU query Q := Q1 ∪ · · · ∪ Qk,
(a) guess a grouping of ΔV into k groups ΔV1, · · · ,ΔVk (empty permitted);
(b) Compute D ∪ ΔV −1

1 ∪ · · · ∪ ΔV −1
k denoted as D�;

(c) If D� satisfies the fd set, then use the NP-oracle decide that ‘each SJ query
Qi(D�) has no side-effect on view V ∪ ΔV ’ and ‘each tuple of ΔV included in
Q(D�)’. If so, return yes.

Its correctness is guaranteed by the upper bound proof in Theorem 5.
ii. We prove the lower bound of fd -vsef-ip for SJU query is ΣP

2 -hard by a
reduction from 3-DNF-SAT2 problem. Similar to 3-CNF-SAT2, its instance also
includes a set of existential variables X1 = {x1, ..., xn} and a set of universal
variables X2 = {xn+1, ..., xn′}, and a 3-DNF boolean expression φ with m clauses
{C1, . . . , Cm}, the task is to decide whether there is an assignment τ for X1 such
that φ is satisfied by all assignments for X2. We show the reduction as follows.
(An example of the reduction for a 3-DNF-SAT2 instance φ = ∃x1x2∀x3x4(x1 ∧
x2 ∧ x3)(x1 ∧ x2 ∧ x3)(x1 ∧ x3 ∧ x4) is shown in Fig. 2.)
Base Instance D. Let D has m + 4 relations S+, S−, R1, · · · , Rm and G, T ,
where S+ and S− simulates existential variable xi, Rj simulates clause Cj and
universal variables in it, G and T both auxiliary tables. Concretely,

(1) For the existential variables in X1, let unary relation S+ = {A} and
S− = {A}. Initially, both are empty.

S+ : ∅ → A
A

S− : ∅ → A
A

G3
A1 A2 . . . A4m

B B . . . B
T

A

R1

A1A2A3A4

x1 x2 0 −
x1 x2 1 −
x1 x2 0 −
x1 x2 1 −
x1 x2 0 −
x1 x2 1 −
x1 x2 0 −

R2

A1A2A3A4

x1 x2 0 −
x1 x2 1 −
x1 x2 0 −
x1 x2 1 −
x1 x2 0 −
x1 x2 0 −
x1 x2 1 −

R3

A1A2A3A4

x1 0 0 −
x1 1 0 −
x1 1 1 −
x1 0 0 −
x1 0 1 −
x1 1 0 −
x1 1 1 −

Fig. 2. Example for the reduction of Theorem 6
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(2) Let the auxiliary T is a unary relation T{A}. Initially, T is also empty. Let
G is a 4m-ary relation G{A1, · · · , A4m}. Initially, has only one tuple (B, · · · , B).

(3) For each clause Ci, let quaternary relation Ri{A1, A2, A3, A4}. Initially,
it is filled with 7 tuples into table Ri, whose values of A1, A2, A3 refer to the 7
value assignments of the 3 variables making the clause Ci false, and the values
of A4 are all ‘−’. At last, if there exists existential variable, say xi, in the p-th
position clause Ci, then we substitute the value ‘1’ of Ap with xi and the value
‘0’ with xi

fd Set Σ. Set fd: ∅ → A for S+ and S−.
Query Q. We first prepare all the join conditions used in query as follows.
Existential variable, for the occurrences in clauses, we build a join condition with
conjunctive form such that

con∃ := q1 ∧ q2 ∧ · · · ∧ qk, (8)

where each q is an equation S+.A = Rj .Ap, if xi occurs in the p-th position of
clauses Cj .

Universal variable, the same as the proof for SPJ query, for each universal
variable xi(i ∈ [n + 1, n′]), we build a join condition coni also as a conjunctive
form such that each q is also an equation Rl.Ap = Rl′ .Ap′ = T.A, if xi occurs in
the p-th and p′-th positions of clauses Cl and Cl′ .

Let the query Q = Q1 ∪ Q2 such that,

Q1 := σcon∃∧conn+1∧···∧conn+n′ (S+ × R1 × · · · × Rm × T ), (9)

Q2 := (S+ ∪ S−) × G × T (10)

View V . Initially, V = ∅ since T is empty.
Insertion ΔV . Let ΔV = t×{x1, x1, · · · , xn, xn}×{0, 1}, where t = (B, . . . , B

︸ ︷︷ ︸
4m

).

Note that, |ΔV | = 4n, i.e., it’s poly(n).

One can verify the correctness of this reduction.

3 Conclusion

We study the complexity of fd -vsef-ip problem a general case of insertion prop-
agation, map out the complete picture of it. We can summary our result on it
as the table of the complete picture of complexity classes. while due to the lack
of space limitation, some proofs of data complexity results are omitted.

We are currently finding the tractable condition and approximation algo-
rithms for intractable cases, also the study another objective of this problem –
side effect on source database. We plan to study the cases at the present of other
types of dependency constraints on database, such as independent dependencies
in the future work.
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