Thang N. Dinh - My T. Thai (Eds.)

Computing
and Combinatorics

22nd International Conference, COCOON 2016
Ho Chi Minh City, Vietnam, August 2-4, 2016
Proceedings

LNCS 9797

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9797

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Thang N. Dinh - My T. Thai (Eds.)

Computing
and Combinatorics

22nd International Conference, COCOON 2016
Ho Chi Minh City, Vietnam, August 2—4, 2016
Proceedings

@ Springer

Editors

Thang N. Dinh My T. Thai

Virginia Commonwealth University University of Florida
Richmond, VA Gainesville, FL.

USA USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-42633-4 ISBN 978-3-319-42634-1 (eBook)

DOI 10.1007/978-3-319-42634-1

Library of Congress Control Number: 2016944821
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 22nd International Computing and Combinatorics Conference (COCOON 2016)
was held during August 2—4, 2016, in Ho Chi Minh City, Vietnam. COCOON 2016
provided a forum for researchers working in the area of theoretical computer science
and combinatorics.

The technical program of the conference included 50 regular papers selected by the
Program Committee from 113 full submissions received in response to the call for
papers. All the papers were peer reviewed by at least three Program Committee
members or external reviewers. The papers cover various topics, including algorithms
and data structures, algorithmic game theory, approximation algorithms and online
algorithms, automata, languages, logic, and computability, complexity theory, com-
putational learning theory, cryptography, reliability and security, database theory,
computational biology and bioinformatics, computational algebra, geometry, number
theory, graph drawing and information visualization, graph theory, communication
networks, optimization, and parallel and distributed computing. Some of the papers
will be selected for publication in special issues of Theoretical Computer Science
(TCS) and Journal of Combinatorial Optimization (JOCO). It is expected that the
journal version of the papers will be in a more complete form.

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review conference papers. We would like to extend special
thanks to the publication, publicity, and local organization chairs for their hard work in
making COCOON 2016 a successful event. Last but not least, we would like to thank
all the authors for presenting their works at the conference.

August 2016 Thang N. Dinh
My T. Thai

Program Chairs

Thang N. Dinh
My T. Thai

Publicity Chairs

Chunyu Ai
Subhankar Mishra

Organization

Virginia Commonwealth University, USA
University of Florida, USA

University of South Carolina Upstate, USA
University of Florida, USA

Local Organization Chair

Hien T. Nguyen

Program Committee

Eric Allender
Yossi Azar
Yixin Cao

Xi Chen
Francis Chin

Bhaskar DasGupta
David Eppstein
Uriel Feige

Zachary Friggstad
Raffaele Giancarlo
Mohammadtaghi Hajiaghayi
Lenwood Heath
Pinar Heggernes
Xiaodong Hu

Hiro Ito

Valentine Kabanets
Ming-Yang Kao
Donghyun Kim
Stavros Kolliopoulos

Nam Nguyen
Huy Nguyen

Ton Duc Thang University, Vietnam

Rutgers University, USA

Tel Aviv University, Israel

Hong Kong Polytechnic University, Hong Kong,
SAR China

Columbia University, USA

Hang Seng Management College, Hong Kong,
SAR China

University of Illinois at Chicago, USA

University of California, Irvine, USA

Weizmann Institute of Science, Israel

University of Alberta, Canada

University of Palermo, Italy

University of Maryland, USA

Virginia Tech, USA

University of Bergen, Norway

Chinese Academy of Sciences, China

The University of Electro-Communications, Japan

Simon Fraser University, Canada

Northwestern University, USA

North Carolina Central University, USA

National and Kapodistrian University of Athens,
Greece

Towson University, USA

Toyota Technological Institute at Chicago, USA

VI Organization

Kunsoo Park

Desh Ranjan

Marc Uetz
Dorothea Wagner
Gerhard Woeginger
Shengyu Zhang

Hong-Sheng Zhou

Additional Reviewers

Antonios Antoniadis
Daniel Apon

Yuichi Asahiro
Moritz Baum

Liu Bei

Rémy Belmonte
Manuel Bodirsky
Niv Buchbinder
Valentin Buchhold
Kevin Buchin
Dimitris Chatzidimitriou
Rajesh Chitnis
Janka Chlebikova
Sherman S.M. Chow
Ilan Cohen

Radu Curticapean
Konrad Dabrowski
Bireswar Das

Sina Dehghani
Tuyet Duong

Soheil Ehsani
Michael Elberfeld
Hossein Esfandiari
Ophir Friedler
Takuro Fukunaga
Loukas Georgiadis
Konstantinos Georgiou
Daniel Goncalves
Kasper Green Larsen
Alexander Grigoriev
Michael Hamann
Johann Hurink

Falk Hiiffner
Sungjin Im

Seoul National University, South Korea

Old Dominion, USA

University of Twente, The Netherlands
Karlsruhe Institute of Technology (KIT), Germany

Eindhoven University of Technology, The Netherlands

The Chinese University of Hong Kong, Hong Kong,

SAR China

Virginia Commonwealth University, USA

Ragesh Jaiswal
Shaofeng Jiang

Jun Kawahara
Walter Kern
Thomas Kesselheim
Konstantinos Kollias
Dieter Kratsch
Fleszar Krzysztof
Nirman Kumar
Bundit Laekhanukit
Elmar Langetepe
Mun-Kyu Lee
Zengpeng Li

Vahid Liaghat
Wei-Kai Lin

Tian Liu

Yao Lu

Spyridon Maniatis
Arnaud Mary
Tamara Mchedlidze
Nicole Megow
Matthias Mnich
Jérdme Monnot
Benjamin Moseley
Wolfgang Mulzer
Atsuki Nagao
Benjamin Niedermann
Kenta Ozeki

Ulrich Pferschy
Roman Prutkin
Zhenzhong Qi
Marcel Radermacher
Felix Reidl

Mohsen Rezapour

Simona E. Rombo

Anamitra Roy Choudhury

Alan Roytman
Ignaz Rutter
Toshiki Saitoh
Kanthi Sarpatwar
Saeed Seddighin
Shinnosuke Seki
Igor Shparlinski
Junggab Son
Manuel Sorge
Ben Strasser
Takeyuki Tamura
Qiang Tang
Junichi Teruyama
RN Uma

Filippo Utro

Adi Vardi
Thomas Veale
Wei Wang
Franziska Wegner
Daniel Wichs
Marcin Wrochna
Hadi Yami

Jie You

Victor Zamaraev
Chihao Zhang
Stanislav Zivny
Uri Zwick

Tobias Ziindorf
Erik Jan van Leeuwen
Suzanne van der Ster

Contents

Game Theory and Algorithms

Clairvoyant Mechanisms for Online Auctions. 3
Philipp Brandes, Zengfeng Huang, Hsin-Hao Su,
and Roger Wattenhofer

Truthfulness for the Sum of Weighted Completion Times 15
Eric Angel, Evripidis Bampis, Fanny Pascual, and Nicolas Thibault

Network Topologies for Weakly Pareto Optimal Nonatomic
Selfish Routing. 27
Xujin Chen and Zhuo Diao

New Results for Network Pollution Games. 39
Eleftherios Anastasiadis, Xiaotie Deng, Piotr Krysta, Minming Li,
Han Qiao, and Jinshan Zhang

Parameterized Complexity and Algorithms

Polynomial-Time Algorithm for Isomorphism of Graphs with Clique-Width
at Most Three. 55
Bireswar Das, Murali Krishna Enduri, and 1. Vinod Reddy

Fixed Parameter Complexity of Distance Constrained Labeling

and Uniform Channel Assignment Problems (Extended Abstract) 67
Jiri Fiala, Tomas Gavenciak, Dusan Knop, Martin Koutecky,
and Jan Kratochvil

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 79
Mingyu Xiao

The Monotone Circuit Value Problem with Bounded Genus Isin NC 92
Faisal N. Abu-Khzam, Shouwei Li, Christine Markarian,
Friedhelm Meyer auf der Heide, and Pavel Podlipyan

Database and Data Structures

Locality-Sensitive Hashing Without False Negatives for [, 105
Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, and Piotr Wygocki

Improved Space Efficient Algorithms for BES, DFS and Applications 119
Niranka Banerjee, Sankardeep Chakraborty, and Venkatesh Raman

http://dx.doi.org/10.1007/978-3-319-42634-1_1
http://dx.doi.org/10.1007/978-3-319-42634-1_2
http://dx.doi.org/10.1007/978-3-319-42634-1_3
http://dx.doi.org/10.1007/978-3-319-42634-1_3
http://dx.doi.org/10.1007/978-3-319-42634-1_4
http://dx.doi.org/10.1007/978-3-319-42634-1_5
http://dx.doi.org/10.1007/978-3-319-42634-1_5
http://dx.doi.org/10.1007/978-3-319-42634-1_6
http://dx.doi.org/10.1007/978-3-319-42634-1_6
http://dx.doi.org/10.1007/978-3-319-42634-1_7
http://dx.doi.org/10.1007/978-3-319-42634-1_8
http://dx.doi.org/10.1007/978-3-319-42634-1_9
http://dx.doi.org/10.1007/978-3-319-42634-1_10

X Contents

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 131
Ching-Lueh Chang

Frequent-Itemset Mining Using Locality-Sensitive Hashing 143
Debajyoti Bera and Rameshwar Pratap

Computational Complexity

On the Hardness of Switching to a Small Number of Edges. 159
Vit Jelinek, Eva Jelinkovd, and Jan Kratochvil

On Hard Instances of Non-Commutative Permanent 171
Christian Engels and B.V. Raghavendra Rao

The Effect of Range and Bandwidth on the Round Complexity in the

Congested Clique Model i 182
Florent Becker, Antonio Fernandez Anta, Ivan Rapaport,
and Eric Rémila

Minimum Cost Homomorphisms with Constrained Costs. 194
Pavol Hell and Mayssam Mohammadi Nevisi

Approximation Algorithms

An Improved Constant-Factor Approximation Algorithm for Planar
Visibility Counting Problem. 209
Sharareh Alipour, Mohammad Ghodsi, and Amir Jafari

Approximation Algorithms for the Star k&-Hub Center Problem

in Metric Graphs. 222
Li-Hsuan Chen, Dun-Wei Cheng, Sun-Yuan Hsieh, Ling-Ju Hung,
Chia-Wei Lee, and Bang Ye Wu

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 235
Jennifer Iglesias, Rajmohan Rajaraman, R. Ravi, and Ravi Sundaram

Assigning Proximity Facilities for Gatherings. 247
Shin-ichi Nakano

Cryptography

Combiners for Chosen-Ciphertext Security 257
Cong Zhang, David Cash, Xiuhua Wang, Xiaoqi Yu,
and Sherman S.M. Chow

Homomorphic Evaluation of Lattice-Based Symmetric Encryption Schemes ... 269
Pierre-Alain Fouque, Benjamin Hadjibeyli, and Paul Kirchner

http://dx.doi.org/10.1007/978-3-319-42634-1_11
http://dx.doi.org/10.1007/978-3-319-42634-1_12
http://dx.doi.org/10.1007/978-3-319-42634-1_13
http://dx.doi.org/10.1007/978-3-319-42634-1_14
http://dx.doi.org/10.1007/978-3-319-42634-1_15
http://dx.doi.org/10.1007/978-3-319-42634-1_15
http://dx.doi.org/10.1007/978-3-319-42634-1_16
http://dx.doi.org/10.1007/978-3-319-42634-1_17
http://dx.doi.org/10.1007/978-3-319-42634-1_17
http://dx.doi.org/10.1007/978-3-319-42634-1_18
http://dx.doi.org/10.1007/978-3-319-42634-1_18
http://dx.doi.org/10.1007/978-3-319-42634-1_19
http://dx.doi.org/10.1007/978-3-319-42634-1_20
http://dx.doi.org/10.1007/978-3-319-42634-1_21
http://dx.doi.org/10.1007/978-3-319-42634-1_22

Contents

Four-Round Zero-Knowledge Arguments of Knowledge with Strict
Polynomial-Time Simulation from Differing-Input Obfuscation for Circuits. . . .
Ning Ding, Yanli Ren, and Dawu Gu

Inferring Sequences Produced by a Linear Congruential Generator on
Elliptic Curves Using Coppersmith’s Methods
Thierry Mefenza

Network and Algorithms

The Routing of Complex Contagion in Kleinberg’s Small-World Networks. . . .
Wei Chen, Qiang Li, Xiaoming Sun, and Jialin Zhang

The Maximum Disjoint Routing Problem.
Farhad Shahmohammadi, Amir Sharif-Zadeh,
and Hamid Zarrabi-Zadeh

Balanced Allocation on Graphs: A Random Walk Approach
Ali Pourmiri

Graph Theory and Algorithms

On the Power of Simple Reductions for the Maximum
Independent Set Problem
Darren Strash

Deterministic Algorithms for Unique Sink Orientations of Grids.
Luis Barba, Malte Milatz, Jerri Nummenpalo, and Antonis Thomas

From Graph Orientation to the Unweighted Maximum Cut.
Walid Ben-Ameur, Antoine Glorieux, and José Neto

Maximum Weight Independent Sets in (S 3, bull)-free Graphs
T. Karthick and Frédéric Maffray

Decomposing Cubic Graphs into Connected Subgraphs of Size Three
Laurent Bulteau, Guillaume Fertin, Anthony Labarre, Romeo Rizzi,
and Irena Rusu

Automorphisms of the Cube n?.
Pavel Dvorak and Tomas Valla

Hadwiger’s Conjecture and Squares of Chordal Graphs
L. Sunil Chandran, Davis Issac, and Sanming Zhou

XI

281

293

307

http://dx.doi.org/10.1007/978-3-319-42634-1_23
http://dx.doi.org/10.1007/978-3-319-42634-1_23
http://dx.doi.org/10.1007/978-3-319-42634-1_24
http://dx.doi.org/10.1007/978-3-319-42634-1_24
http://dx.doi.org/10.1007/978-3-319-42634-1_25
http://dx.doi.org/10.1007/978-3-319-42634-1_26
http://dx.doi.org/10.1007/978-3-319-42634-1_27
http://dx.doi.org/10.1007/978-3-319-42634-1_28
http://dx.doi.org/10.1007/978-3-319-42634-1_28
http://dx.doi.org/10.1007/978-3-319-42634-1_29
http://dx.doi.org/10.1007/978-3-319-42634-1_30
http://dx.doi.org/10.1007/978-3-319-42634-1_31
http://dx.doi.org/10.1007/978-3-319-42634-1_31
http://dx.doi.org/10.1007/978-3-319-42634-1_32
http://dx.doi.org/10.1007/978-3-319-42634-1_33
http://dx.doi.org/10.1007/978-3-319-42634-1_34

XII Contents

Computational Geometry

Minimum Width Color Spanning Annulus 431
Ankush Acharyya, Subhas C. Nandy, and Sasanka Roy

Computing a Minimum-Width Square or Rectangular Annulus with
Outliers [Extended Abstract]. 443
Sang Won Bae

Approximating the Maximum Rectilinear Crossing Number 455
Samuel Bald, Matthew P. Johnson, and Ou Liu

An Improved Approximation Algorithm for rSPR Distance 468
Zhi-Zhong Chen, Eita Machida, and Lusheng Wang

Scheduling Algorithms and Circuit Complexity

Online Non-preemptive Scheduling to Optimize Max Stretch on a Single

Machine. 483
Pierre-Francois Dutot, Erik Saule, Abhinav Srivastav,
and Denis Trystram

Complex-Demand Scheduling Problem with Application in Smart Grid 496
Majid Khonji, Areg Karapetyan, Khaled Elbassioni, and Chi-Kin Chau

From Preemptive to Non-preemptive Scheduling Using Rejections 510
Giorgio Lucarelli, Abhinav Srivastav, and Denis Trystram

Flow Shop for Dual CPUs in Dynamic Voltage Scaling. 520
Vincent Chau, Ken C.K. Fong, Minming Li, and Kai Wang

Computational Geometry and Computational Biology

Algorithms for k-median Clustering over Distributed Streams. 535
Sutanu Gayen and N.V. Vinodchandran

Polygon Simplification by Minimizing Convex Corners. 547
Yeganeh Bahoo, Stephane Durocher, J. Mark Keil, Saeed Mehrabi,
Sahar Mehrpour, and Debajyoti Mondal

Combinatorial Scoring of Phylogenetic Networks 560
Nikita Alexeev and Max A. Alekseyev

Highly Bi-Connected Subgraphs for Computational Protein
Function Annotation 573
Jucheol Moon, Iddo Friedberg, and Oliver Eulenstein

http://dx.doi.org/10.1007/978-3-319-42634-1_35
http://dx.doi.org/10.1007/978-3-319-42634-1_36
http://dx.doi.org/10.1007/978-3-319-42634-1_36
http://dx.doi.org/10.1007/978-3-319-42634-1_37
http://dx.doi.org/10.1007/978-3-319-42634-1_38
http://dx.doi.org/10.1007/978-3-319-42634-1_39
http://dx.doi.org/10.1007/978-3-319-42634-1_39
http://dx.doi.org/10.1007/978-3-319-42634-1_40
http://dx.doi.org/10.1007/978-3-319-42634-1_41
http://dx.doi.org/10.1007/978-3-319-42634-1_42
http://dx.doi.org/10.1007/978-3-319-42634-1_43
http://dx.doi.org/10.1007/978-3-319-42634-1_44
http://dx.doi.org/10.1007/978-3-319-42634-1_45
http://dx.doi.org/10.1007/978-3-319-42634-1_46
http://dx.doi.org/10.1007/978-3-319-42634-1_46

Contents XIII

Logic, Algebra and Automata

Cost Register Automata for Nested Words 587
Andreas Krebs, Nutan Limaye, and Michael Ludwig

Extending MSVL with Semaphore 599
Xinfeng Shu and Zhenhua Duan

Satisfiability of Linear Time Mu-Calculus on Finite Traces 611
Yao Liu, Zhenhua Duan, Cong Tian, and Bin Cui

On the Complexity of Insertion Propagation with Functional
Dependency Constraints.ottt 623
Dongjing Miao, Zhipeng Cai, Xianmin Liu, and Jianzhong Li

Author Index e 633

http://dx.doi.org/10.1007/978-3-319-42634-1_47
http://dx.doi.org/10.1007/978-3-319-42634-1_48
http://dx.doi.org/10.1007/978-3-319-42634-1_49
http://dx.doi.org/10.1007/978-3-319-42634-1_50
http://dx.doi.org/10.1007/978-3-319-42634-1_50

Game Theory and Algorithms

Clairvoyant Mechanisms for Online Auctions

Philipp Brandes' ™), Zengfeng Huang?, Hsin-Hao Su®, and Roger Wattenhofer!

L ETH Zurich, Ziirich, Switzerland
{pbrandes,wattenhofer}@ethz.ch
2 UNSW, Kensington, Australia
zengfeng.huangQunsw.edu.au
3 MIT, Cambridge, USA
hsinhao@csail.mit.edu

Abstract. In this paper we consider online auctions with buyback;
a form of auctions where bidders arrive sequentially and the bidders
have to be accepted or rejected immediately. Each bidder has a valua-
tion for being allocated the good and a preemption price. Sold goods
can be bought back from the bidders for a preemption price. We allow
unbounded valuations and preemption prices independent from each
other. We study the clairvoyant model, a model sitting between the tra-
ditional offline and online models. In the clairvoyant model, a sequence
of all potential customers (their bids and compensations) is known in
advance to the seller, but the seller does not know when the sequence
stops. In the case of a single good, we present an algorithm for computing
the difficulty A, the optimal ratio between the clairvoyant mechanism
and the pure offline mechanism (which knows when the sequence stops,
and can simply sell the good to the customer with the highest bid, with-
out having to pay any compensations). We also present an optimal clair-
voyant mechanism if there are multiple goods to be sold. If the number
of goods is unbounded, however, we show that the problem in the clair-
voyant model becomes NP-hard. Based on our results in the clairvoyant
model, we study the A-online problem (where the sequence is unknown
to the mechanism, but the difficulty A of the input sequence is known).
We show that there is a tight gap of ©(A®) between the offline and the
online model.

1 Introduction

Traditional auctions have a rich theory but only make sense in the presence of at
least two bidders. In reality, however, many auctions have a rather low demand,
and bidders do not compete concurrently. Instead, bidders appear online, one
after the other.

A familiar example is booking a seat in an airplane. Prices for a flight fluctu-
ate over time, a known pattern is that seats become more expensive as a flight
fills up, because the airline starts to learn that there is demand for the flight.
Selling seats in an airplane is not a traditional auction since customers are not
bidding against each other. Rather, potential customers check the price well in
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 3-14, 2016.
DOI: 10.1007/978-3-319-42634-1_1

4 P. Brandes et al.

advance of a flight. If the price is right, they book a seat, sealing the deal with
the airline. Airlines generally try to marginally overbook flights, i.e., they sell
more tickets than available, assuming that not all customers will actually show
up at the gate. Sometimes there are more customers than seats, and the air-
line must get some customers off the plane. This is usually achieved by having
them fly later and giving them some cash as compensation. We believe that such
compensations are easily covered by the high premium of late customers.!

In this paper we analyze these online auctions. Our bidders come in an online
fashion and name their price for a good. The seller can choose to sell the good
for that price, or not sell the good (and hope for a better bid to come in later).
Bidder and seller also establish a compensation, in case the good is sold to the
customer but the deal is later canceled (in the case of a better bidder showing
up, worth paying the compensation). These online auctions need two ingredients:
First, a good with a price that may fluctuate over time. Second, customers which
want to receive the good (or a reservation for the good) quickly. In particular,
the time between the arrivals of two customers should generally be larger than
the time a customer is willing to wait for the outcome of her bid. In this case
online auctions seem to be a better suitable model than traditional auctions. We
believe that such online auctions happen often in practice. Booking flights is the
running example in this paper, but there are plenty of other examples. Selling
ad slots on web pages is a popular one. Since the number of page views is not
known beforehand, some sold slots might not be served and thus those slots need
to be bought back. More examples are real estate sales, selling network services
with quality of service guarantees, or concert tickets.

A simple example will show that online auctions become academically inter-
esting for a worst case analysis only if reasonable compensations are present.
Let us assume that a first customer offers a low price but a prohibitively high
compensation. If the seller accepts the deal, a next customer offering a much
higher price will show up. On the other hand, if the seller does not accept the
deal, no other customer will show up. No matter how the seller decides regarding
the first customer, the mistake could be devastating.

The starting point for our analysis is what we call the clairvoyant model,
a hybrid online/offline model. In the clairvoyant model, a sequence of all potential
customers (their bids and compensations) is known in advance to the seller, but
the seller does not know when the sequence stops, i.e., who the last customer of
the sequence is. No matter who the last customer is, the seller wants to do a good
job, i.e., the seller wants to sell the good to a customer with a high bid and keep
compensations that accumulated so far low. It turns out that the clairvoyant
model is a stepping stone for a deeper understanding of online auctions, sitting
nicely between the pure online and offline models. It introduces a novel technique
for analyzing online auctions from a theoretical point of view.

! In reality, airlines do not implement online auctions in the clean form described
in this paper. Airlines do not seem to maximize their profits with this mechanism,
probably for psychological reasons. As such, on web pages, flights still can be sold
out, instead of just asking for a higher and higher premium for an unexpectedly
popular flight.

Clairvoyant Mechanisms for Online Auctions 5

Our contributions are as follows: After introducing the clairvoyant model, we
present an optimal mechanism for it in the case of a single good. The result of
that mechanism is a factor A worse than a pure offline mechanism (that knows
when the sequence stops, and can simply sell the good to the customer with
the highest bid, without having to pay any compensations). In other words, the
parameter A tells us how nasty the compensations are. It directly tells us the
difficulty of an input sequence. If compensations are minimal (just return the
money to canceled customers), then we have by definition A = 1. We also show
an optimal clairvoyant mechanism if there are multiple goods to be sold. If the
number of goods is unbounded, however, we prove that the clairvoyant model
becomes NP-hard. Based on the results in the clairvoyant model, we study the
pure online problem (where the sequence is unknown to the mechanism) in a
deterministic setting. If A is known, we show that there is a tight gap of ©(A%)
between the online and the offline model.

2 Related Work

There has been a lot of research of traditional (“offline”) auctions, inspired by
the seminal papers of Vickrey, Clarke, and Groves (“VCG”) [5,11,26]. They
introduce the notion of truthfulness, which means that no bidder has an advan-
tage if she is not telling the truth about her valuation. There is a large amount
of work on traditional auctions, for an overview see, e.g., Nisan et al. [22].
Online mechanisms have been introduced in [8,18]. In those online mech-
anisms, the bidders have an arrival and departure time and a valuation for
the good. It is assumed that the good expires after a certain period of time,
and that a replacement becomes available. In this setting, it was shown that
something similar to VCG style second price auctions is still a viable allocation
strategy. The initial motivation behind these kind of online auctions is the WiFi
at Starbucks [8]. Customers arrive and then depart some time later with each
customer having a valuation for the WiFi. Many papers on online mechanisms
mainly focus on truthfulness or other incentive compatible solution concepts,
e.g., [12,19,23,24]. An overview of online auctions can be found in [22].
Somewhat related to our online auctions are not even auctions, but the sec-
retary problem [20]. In the classic setting one employer interviews n secretaries,
with the goal to hire the best secretary. The employer has to decide right after
an interview whether to hire or discard a secretary. Unlike our model, previous
decisions cannot be recalled. If secretaries are interviewed in random order, it
has been shown that the optimal strategy is to first interview n/e secretaries,
and then simply hire the first secretary that is better than all previously inter-
viewed secretaries [20]. It has also been shown that, if the input is adversarial (as
in our work), the situation is hopeless; the best strategy is to just hire a random
secretary, without any interview process [10]. This setting has been adapted to
the online auctions in [13]. Instead of secretaries, there are buyers and instead
of a job there is a single indivisible good. They present a mechanism that is,
if the buyers appear in random order — as in the original problem — e + o(1)

6 P. Brandes et al.

competitive for efficiency and e? + o(1) competitive for revenue. Since we have
the possibility to cancel previous decisions with financial compensations, our
model allows more freedom.

The work closest to ours considers online auctions with buyback, introduced
independently by Babaioff et al. and Constantin et al. [3,6]. Both limit the pre-
emption price (paid to reacquire the good) to a constant fraction of the valuation
v of a bidder and this fraction is independent of the individual bidder. Lower
and upper bounds for deterministic and randomized algorithms depending on
the fraction of the preemption price are presented in their work. Our work allows
arbitrary values for the preemption price (that can depend on the specific cus-
tomer) and we analyze how to deal with this very heterogeneous set of customers.
This kind of auction is not truthful since a buyer can overstate her preemption
price and thus gain if her good is bought back [6]. In [2] the goods cannot be
allocated to any subset of bidders, but bidders form a matroid, This is extended
to an intersection of matroids in [1], while still limiting the buyback factor. The
concept of buyback has also been applied to the knapsack problem [3,14,17]
where the goods appear in an online fashion and can be removed later on from
the knapsack. Buyback is also used in scheduling with eviction [9].

Online algorithms often face two different types of problems: First, they do
not know the future, and second, they have to deal with past mistakes. Hartline
and Sharp [15,16] formalized the two types of problems. When problems are
analyzed in this framework, they are called incremental problems. This approach
has been applied to various problems, e.g., to maximum flow, online median,
facility location, and clustering [4,7,21,25]. Our setting is different as we can
potentially fix past mistakes with compensations. Nevertheless, our clairvoyant
analysis is a relative of incremental problems.

3 Model

We consider an online auction. There are r indivisible and identical goods. Each
bidder b; is willing to buy exactly one good, and has a wvaluation v; for being
allocated a good. The bidders arrive one after another; whether to allocate a
good to a bidder must be decided immediately. Bidders that are not allocated a
good cannot be recalled, but bidders that are allocated a good can be recalled.
A recalled bidder b; is willing to return her good if she receives adequate com-
pensation. We call the value preemption price, which is paid if the good is bought
back. The preemption price of bidder b; is denoted by ;. In summary, bidder b;
is fully specified by b; = (v;, m;). Neither v; nor m; are bounded, any value in R
is allowed. We assume that the input sequence of bidders bq,...,b, is created
in advance by an adversary who knows the mechanism that is used to allocate
the goods. As described above, if the good of a bidder b; is bought back, the
mechanism has to pay the preemption price. For now, we assume that the mech-
anism retains the initial valuation v; of the bidder. We denote this the retaining
model. In this model we assume that v; < 7; for every bidder b;. We will show
later that this is not necessary and in fact use the model when the value is not
retained, which is called the non-retaining model.

Clairvoyant Mechanisms for Online Auctions 7

Let us concentrate on the case of a single good (r = 1). Let offline(¢) denote
the highest valuation of the first ¢ bidders, i.e., offline(f) = maxi<;<¢v;. Since
the pure offline mechanism knows the whole input sequence and when it stops, it
can sell the good just to one single bidder, the bidder with the highest valuation.

As discussed in the introduction, the online mechanism cannot be competitive
with the offline model. Essentially, an online mechanism has to deal with two
different issues: First, it does not know the future, and second, it needs to offer
a solution at all times. We will now introduce the clairvoyant model, a model
between pure online and offline. The clairvoyant model knows the whole sequence
b1,...,b, of future potential bidders, but does not know when the sequence
stops, i.e., who the last bidder of the sequence is. Because of this, a clairvoyant
mechanism must offer a solution at all times.

Both pure online and clairvoyant mechanisms may need to accept more than
one bidder (and hence buy the good back). Let S be the set of all bidders that
have been accepted during the course of a mechanism and let [¢] denote the set
of the first £ bidders, i.e., {b1,...,be}. We define gain(S, £) = 3, cgr(q(vi—mi) +
maxy, e snpg ;- 1t is the sum of valuations of bidders in S up to bidder b;, minus
the preemption prices for the bidders whose good were bought back. Since we
retain the value of a bidder, we have v; < m; for every bidder b; and thus the
bidder with the highest preemption price is also the last accepted bidder.

Since the mechanism does not know when the input sequence stops and it thus

can stop anytime, we evaluate any mechanism in its worst round. Specifically,
offline(¢)
gain(S,0) *
minimize this over the best mechanism (the set S of accepted bidders), we get

the optimal gain competitiveness

given S, the gain competitiveness is defined to be maxi</<n If we now

. offline(¢)

A =min max ————=.

5" 1<e<n gain(S, ¢)

This can be interpreted as the difficulty of the input sequence. In other words,
our mechanisms are evaluated in their worst round, i.e., the round in which it
has the highest competitive ratio compared to the pure offline mechanism. This
forces our mechanisms into accepting bidders early, and possibly repeatedly,
thus paying preemption prices repeatedly. The task is to design mechanisms
that choose a set S and thereby allocate the goods to the bidders minimizing
gain competitiveness.

We will clarify the terms defined above by presenting a simple example.
Let the input sequence be (1,2), (4, 100), (50,60). A pure offline mechanism will
accept b = (50, 60) since this is the bidder with the highest valuation. A clair-
voyant mechanism must always accept the first bidder since it could also be the
last one. Assume that it also accepts the third bidder. We now calculate the gain
competitiveness for this set as

N offline(1) 1 offline(2) 4 offline(3) 50
max = — = — — —
V1].7 V1].7’l)1+’l)3—7T1 14+50—-2

Note that this is also optimal since accepting bidder b, prevents the mecha-
nism from choosing b3, hence A = 4. This gives us a theoretical insight on the

8 P. Brandes et al.

input sequence. No online mechanism could have done better. As explained, the
clairvoyant model sits between pure offline and online models. It turns out that
it is comparable to both pure models, even though the pure models are not
comparable to each other.

4 Auctioning Off a Single Good

We start our analysis by considering the special case of just a single good being
sold, i.e., r = 1.

4.1 Clairvoyant Mechanism

We now present a mechanism that optimally solves the clairvoyant model, giving
us insights into what is possible for an online mechanism.

Theorem 1. There exists a clairvoyant mechanism that calculates the set of
bidders that should be accepted to solve the online auction for one good opti-
mally, i.e., it calculates A. If the inputs are integers, its runtime is polynomial;
otherwise it is a FPTAS.

We now formalize and extend the impossibility result from the introduction.
Due to space limitations, the proofs have been moved to the full version.

Lemma 1.

(1) The value of A depends on the input sequence and is unbounded.

(2) The gain competitiveness of the pure online mechanism is unbounded and
independent of A.

(3) No randomized online mechanism can achieve bounded gain competitiveness
if the number r of items is in o(n), i.e., r € 0(n).

4.2 Bounded Preemption Prices

The impossibility results from the introduction and the previous section
exploited that the preemption price could be arbitrarily large. Thus, in the fol-
lowing we restrict the previously arbitrarily large preemption prices to be at
most p times as large as the valuation, i.e., p > % for all 1 <14 < n. Intuitively,
this can either be seen as a simple, reasonable constraint for the customers. If
someone values a seat on an airplane with some value v, then losing this seat
should not be arbitrarily larger than v. One could also model this scenario in
such a way that every customer also has to buy an insurance whose compen-
sation depends on the premium. If she loses her seat, then the insurance will
pay her the preemption price. Now the price of the insurance is closely related
to the preemption price. This interpretation also guarantees us that at most a
factor of p between v; and 7; for every bidder b;. The following results resemble
closely those in [3,6]. The factor p allows us to design a mechanism that is 4p
gain competitive. It accepts a bidder if her valuation is at least by a factor 2
larger than the preemption price of the bidder that is currently allocated the

good.

Clairvoyant Mechanisms for Online Auctions 9

Theorem 2. There exists a mechanism that has 4p factor gain competitiveness.

Corollary 1. If p > 7;—1 for every bidder b;, then A < 4p.

4.3 Online Mechanism with A

This raises the question whether restricting the preemption price is the only way
to go. We already know that A contains valuable information about the input
sequence. But does it contain all the necessary information for an online mecha-
nism to be competitive? We now provide the mechanisms with this information
and denote them A-online mechanisms. These more powerful online mechanisms
can achieve a O(A®) factor approximation of the clairvoyant mechanisms. Note
that this information is not as strong as knowing that the preemption price of
every bidder is at most a factor of p larger. The clairvoyant mechanism might
accept someone whose preemption price is much larger than its valuation. We
briefly describe the mechanism. Simply put, this mechanism accepts bidders
with a sufficiently small preemption price (and a high enough valuation to pay
back the last bidder). Furthermore, it also accepts bidders that have such a high
valuation that the clairvoyant mechanism also had to accept it.

We denote the current bidder with b = (v, 7). We call the last accepted
bidder b* = (v*,n*). The online mechanism accepts the first bidder for sure, so
initially b* = (v1, 7). After the first bidder, the current bidder b is accepted for
two different reasons: We call bidders good if m < 2A2v; if a bidder is not good,
it is bad. The mechanism will accept a good bidder if its valuation v > 27*. We
call bidders crucial if v > 2Av** | where v** > v* is the largest valuation seen so
far. The mechanism will accept a crucial bidder if its valuation v > 7* /(1 — 45).
The pseudocode is shown in Algorithm 1.

In this section a A-online mechanism is presented that is O(A®) competitive.
But first, we need some additional notation.

Theorem 3. Given the value of A, there exists a mechanism that has gain
competitiveness O(A3) compared to the offline solution.

Algorithm 1. A A-online mechanism

accept the first bidder and set (v*,7*) = (vi,71) and v** = v; ;
while there is a new bidder b; do

if m < 2A%0; and v; > 27* then

buy good back and give it to bidder b;;

7 «— m; and v* «— v; ;

end

else if v; > 2Av** and v; > 7" /(1 — 43) then
buy good back and give it to bidder b;;

7 «— m; and v — v;;

end
v** = max{v**, v; };

end

10 P. Brandes et al.

Proof. Notice that the clairvoyant mechanism will accept every crucial bidder.
Let by = (91,71),ba = (U2, 72),... be the subsequence of bidders who are cru-
cial, and let by = by be the very first bidder, who will also be accepted by the
clairvoyant mechanism. We will prove the theorem by induction over the crucial
bidders. Our induction hypothesis is that before b; came, the gain competitive-
ness of the mechanism is at most 8A®, we then prove that before b; | came, the
gain competitiveness remains 8A®. Before we can continue our proof, we need
two helper lemmas.

As before, let b* = (v*,7*) be the last bidder our mechanism has accepted.

Lemma 2. If the clairvoyant mechanism accepts a bad bidder b= (0,7), then
the next bidder it will accept must be the first crucial bidder that comes afterward.

Proof. Let b = (v,7) be the next bidder clairvoyant mechanism accepts after
b= (0,%), and v** be the maximum valuation of all bidders before b. Then
we must have © > 7 > 2A%%. Note that v** < A9, since otherwise the gain
competitiveness of the clairvoyant mechanism will be larger than A, and thus
we have © > 2Av**, and therefore b must be crucial. As clairvoyant mechanism
needs to accept all crucial bidders, b must be the first crucial bidder after (9, 7).

Lemma 3. Ifb* is bad, then the next bidder our mechanism accepts must be the
first crucial bidder b = (0,7) that comes afterward. Furthermore, the gain after
accepting b is at least ﬁ@,

Proof. Let b be the next crucial bidder after b*. If b* is bad, then b* must be
crucial since our mechanism only accepts bad bidders that are crucial. So the
clairvoyant mechanism will also accept b* since it accepts every crucial bidder. By
Lemma 2, the next bidder after b* the clairvoyant mechanism will accept is b. So
v—m* > %T;, since otherwise the gain of clairvoyant mechanism will be less than
4. This implies that o > 7* + %o > ™ + 4> and therefore v > * /(1 — 45).
Thus, our mechanism will also accept b. Let v** be the maximum valuation
before b, then v** < Av*. So between b* and b, our mechanism will not accept
any bidder.

By our assumption, b* is last bidder our mechanism accepts before b;, so if b* is
bad, b; must be the first crucial bidder after b*, and our mechanism will accept
b;. The gain after accepting b; is at least ﬁ@i, and the gain competitiveness is
at most AZ.

If our mechanism does not accept b;, then v; < 7 + ﬁ@i. Moreover, by
Lemma 3, if our mechanism does not accept b;, then b* is good, and thus v; <
T + ﬁ@i < 2AZp* + ﬁ@i. Thus, we have v; — ﬁ@i < 2A%p* or equivalently
v; < 2A4%0% /(1 — 33) < 3A%v* (wlog assuming A > 2, otherwise we can achieve
constant factor competitiveness by treating A as two in the mechanism). This
implies that the current gain competitiveness is at most 6A? using that b* is a
good bidder.

Based on the above analysis and a simple induction we conclude that if our

mechanism accepts a bad bidder b* = (v*,7*), the gain is at least ﬁv* at

Clairvoyant Mechanisms for Online Auctions 11

this moment. It is also easy to see, if b* is good, then the gain is at least v*/2
(analogue to the proof of Theorem 2).

We now combine the previous observations. Let ¢ = {b;, c1,co,--- ¢} be the
sequence of bidders that arrive between b; and Ei+1 (excluding Bi+1)~ Let v =
(v', ") be the last bidder the clairvoyant mechanism accepts. If the clairvoyant
mechanism only accepts good bidders in ¢, then the gain competitiveness between
our online mechanism and the clairvoyant mechanism is at most 4A*, because
v’ < 27* < 4A%v* holds at all time (otherwise, our online mechanism will accept
(v',7")) and the gain of our online mechanism is at least v* /A2, which implies
the gain competitiveness is at most 4A%.

Thus, we only need to consider the case when clairvoyant mechanism accepts
at least one bad bidder in ¢ (possibly b;). By the above analysis, we know that if
the clairvoyant mechanism accepts some bad bidder ¢ = (0, 7), then the next bid-
der it accepts is b;y;. Furthermore, v** < A®, where v** is maximum valuation
before b 1.

Before accepting ¢ = (9,7) the clairvoyant mechanism only accepts good
bidders. Now suppose we are at the time right before ¢ comes. Suppose, at this
time, our online mechanism accepts b* = (v*,7*) and clairvoyant mechanism
accepts (v',7’). We first consider the case when b* is good. Then we have v’ <
27* < 4A2%v*. Let m be the maximum valuation before é. We have m < Av’, and
b < 2Am (otherwise b; 41 = ¢). Remember that v** is the maximum valuation
before b; 1. Hence, v** < Ad < 2A%2m < 2A30" < 8A%w*.

We now conclude this proof with a simple case distinction. If b* = (v*, 7*)
is good, then the gain competitiveness of our mechanism will never be worse
than 8A® after it accepts b* = (v*,7*), as the gain is at least v*/2. Moreover,
before b (with ©) came, both our mechanism and clairvoyant mechanism only
accept good bidders, so the gain competitiveness of our mechanism is at most
8A® before this time. So the gain competitiveness of our mechanism is at most
8A® before b; 4, comes.

On the other hand, if b* = (v*,7*) is bad, which implies that ¢ = b* = b;,
and that the clairvoyant mechanism does not accept any bidder before b; ;. This
implies that v** < Av*, and the gain competitiveness of our mechanism in this
period is at most A3, since the gain is at least ﬁv*.

The bound from Theorem 3 is tight. We proceed by showing the matching
lower bound for any deterministic mechanism.

Theorem 4. Any deterministic A-online mechanism has gain competitiveness
of 2(A3) compared to the offline solution.

Proof. For any d > 0, we will present a sequence of bidders, for which the gain
competitiveness between the offline mechanism and the clairvoyant mechanism
is at most 2d, but for any online mechanism, the gain competitiveness is at least
4d®. Given A, we can set d = A/2. Thus, any online mechanism is at least £2(A®)
worse than the offline mechanism. The input sequence is depicted in Fig. 1.
The input sequence starts with bidder b; with (vy,71) = (1,1), then the
adversary inserts a sequence of bidders b,11 = (viy1,mi41), for ¢ = 1,2...,

12 P. Brandes et al.

\ bj1 = (v,/(2d), v;/4)
@ b; = (UJ=UJd2/2)
‘ b1 = (vjd?/2,v;d?)

(a) The bidders bj—1 and b;41 are
accepted by the clairvoyant mecha-
nism. The bidders b; and b;i, are
accepted by the online mechanism
resulting in negative gain.

‘ bi1 = (v;/(2d),v;d/4)
o
‘ bjro = (2v;d°,v;d"0%)
bjts = (2v0;d*, 0;d"¥7)
@ bya = (v;d"336, 0;d2000)

(C) The bidders b]'_l, bj+1, and
bj4+2 are accepted by the clairvoy-
ant mechanism. The bidders b; and
bj+s are accepted by the online
mechanism. Thus, a bidder b;14 =
(v;d*335 v;d?°°°) would inevitably
lead to a gain competitiveness of
w(A®).

i1 = (v;/(2d), v,/4)
bj = (vj,v;d%/2)

bjr1 = (v;d?/2,v;d?)

HEOOE

bjya = (2v;d°, v;d10)

(999 1337
b3 = (v;d”?,v;d"5T)

(b) The bidders bj—1 and b;j4+1 are
accepted by the clairvoyant mech-
anism. The bidders b; and bji2
are accepted by the online mech-
anism. Thus, a bidder bj;3 =
(v;d*°,v;d***") would inevitably
lead to a gain competitiveness of

w(A®

~—

b1 = (v/(2d),v;d/4)
b = (vj,v;d%/2)

Vb = (v;d?/2,0d%)
bje = (20;d°, v;d")

L bjps = (205dt,v;d"7)

bjra = (dvjd®, v;d?00)

bjs = (4v;d"9, v;d*0)

(d) The bidders b]'_1, bj+1, and
b;j1+3 are accepted by the clairvoy-
ant mechanism. The bidders b; and
bj+4 are accepted by the online
mechanism. Thus, a bidder bj15 =
(v;d"? v;d?°°°) would inevitably
lead to a gain competitiveness of

w(AP).

OHOOOOE

Fig. 1. The bidders accepted by the clairvoyant mechanism are marked with (thinly)
dashed lines. The online mechanism accepts by definition b;. If the online mechanism
accepts the bottom left bidder, the bidder on the bottom right appears; resulting in a
w(A®) gain competitiveness.

Clairvoyant Mechanisms for Online Auctions 13

where (vii1,mi41) = (2d',d""2). Let b; be the first bidder in this sequence
that the online mechanism accepts. Notice that the online mechanism has
to accept one, since otherwise the gain competitiveness is infinity. The clair-
voyant mechanism accepts bidder b;_;, but not b;. The adversary then sets
(vj41,mj41) = ((d%/2)v, d?v;), so that the online mechanism cannot accept this
bidder because the new gain would be at most v;d?/2 — v;d*/2 — m; < 0. The
clairvoyant mechanism accepts bidder b;4; to maintain gain competitiveness
o(A).

The next bidder b; o that comes has (vjia,mj12) = (d®v;,d'*v;), so the
online mechanism cannot accept this bidder either, since otherwise the adversary
can make the next bidder have a valuation of d°?v;, which makes the gain com-
petitiveness much larger than 4d®. The clairvoyant mechanism does not accept
bidder b;4o and still maintains gain competitiveness O(A).

Bidder b, 3 is then (vji3,mj13) = (2d*v;, d"337v;). For the same reason, the
online mechanism cannot accept this one. The clairvoyant mechanism accepts
bidder b;;3 to maintain gain competitiveness O(A). If the online mechanism
accepts this bidder, then the clairvoyant mechanism accepts bidder b; 2, but
not bidder b;43 (see Fig. 1).

Bidder bji4 is (vjia4,Tj44) = (4dPv;,d***%v;), and again the online mecha-
nism cannot accept this one. The clairvoyant mechanism does not accepts bidder
bj+4 and still maintains gain competitiveness O(A).

At this point, the online mechanism accepted (v;, 7;), and the gain compet-

S0
itiveness is at most 462—_1“ = 4d°. Thus, the claim follows.
J

5 Auctions with Several Goods

In this section we consider auctions with r» goods. The pure offline mechanism
chooses the best r bidders and never has to pay a preemption price. If r is
constant, then we show the following constructive result.

Theorem 5. Checking whether there is a solution with gain competitiveness of
§ in an online auction is v goods can be computed in O(n"t1).

Similar to the problem of checking whether there is a k-clique in a graph, the
general version of this problem is A'P-hard.

Theorem 6. Checking whether there is a solution with gain competitiveness of
§ in an online auction is N'P-hard.

References

1. Varadaraja, A.B.: Buyback problem - approximate matroid intersection with can-
cellation costs. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I.
LNCS, vol. 6755, pp. 379-390. Springer, Heidelberg (2011)

14

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

P. Brandes et al.

. Varadaraja, A.B., Kleinberg, R.: Randomized online algorithms for the buyback
problem. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 529-536. Springer,
Heidelberg (2009)

Babaioff, M., Hartline, J.D., Kleinberg, R.: Selling ad campaigns: online algorithms
with cancellations. In: EC, pp. 61-70 (2009)

Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Incremental medians via online
bidding. Algorithmica 50, 455-478 (2008)

Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17-33 (1971)
Constantin, F., Feldman, J., Muthukrishnan, S., P4l, M.: An online mechanism for
ad slot reservations with cancellations. In: SODA, pp. 1265-1274 (2009)
Dasgupta, S., Long, P.M.: Performance guarantees for hierarchical clustering.
J. Comput. Syst. Sci. 70(4), 555-569 (2005)

Friedman, E.J., Parkes, D.C.: Pricing WiFi at Starbucks: issues in online mecha-
nism design. In: EC, pp. 240-241 (2003)

Fung, S.P.Y.: Online scheduling of unit length jobs with commitment and penalties.
In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 54-65.
Springer, Heidelberg (2014)

Gilbert, J., Mosteller, F.: Recognizing the maximum of a sequence. J. Am. Stat.
Assoc. 61(313), 35-73 (1966)

Groves, T.: Incentives in teams. Econom.: J. Econom. Soc. 41, 617-631 (1973)
Hajiaghayi, M.T.: Online auctions with re-usable goods. In: EC (2005)
Hajiaghayi, M.T., Kleinberg, R.D., Parkes, D.C.: Adaptive limited-supply online
auctions. In: EC, pp. 71-80 (2004)

Han, X., Kawase, Y., Makino, K.: Online knapsack problem with removal cost. In:
Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434,
pp. 61-73. Springer, Heidelberg (2012)

Hartline, J., Sharp, A.: An incremental model for combinatorial maximization
problems. In: Alvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 36-48.
Springer, Heidelberg (2006)

Hartline, J., Sharp, A.: Incremental flow. Networks 50(1), 77-85 (2007)

Kawase, Y., Han, X., Makino, K.: Unit cost buyback problem. In: Cai, L.,
Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283,
pp. 435-445. Springer, Heidelberg (2013)

Lavi, R., Nisan, N.: Competitive analysis of incentive compatible on-line auctions.
In: EC, pp. 233-241 (2000)

Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring items. In:
SODA, pp. 1146-1155 (2005)

Lindley, D.V.: Dynamic programming and decision theory. j-APPL-STAT 10(1),
39-51 (1961)

Mettu, R.R., Plaxton, C.G.: The online median problem. In: FOCS (2000)
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, New York (2007)

Parkes, D.C., Singh, S.P.: An MDP-based approach to online mechanism design.
In: NIPS (2003)

Parkes, D.C., Singh, S.P., Yanovsky, D.: Approximately efficient online mechanism
design. In: NIPS (2004)

Plaxton, C.G.: Approximation algorithms for hierarchical location problems. In:
STOC, pp. 40-49 (2003)

Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders.
J. Financ. 16(1), 8-37 (1961)

Truthfulness for the Sum of Weighted
Completion Times

Eric Angel', Evripidis Bampis?(®), Fanny Pascual?, and Nicolas Thibault?

! IBISC, Université d’Evry Val d’Essonne, Evry, France
2 Sorbonne Universités, UPMC Univ Paris 06, CNRS,
LIP6 UMR 7606, Paris, France
evripidis.bampis@lip6.fr
3 CRED, Université Panthéon-Assas, Paris 2, Paris, France

Abstract. We consider the problem of designing truthful mechanisms
for scheduling selfish tasks on a single machine or on a set of m paral-
lel machines. The objective of every selfish task is the minimization of
its completion time while the aim of the mechanism is the minimiza-
tion of the sum of weighted completion times. For the model without
payments, we prove that there is no (2 — €)-approximate deterministic
truthful algorithm and no (2 —¢)-approximate randomized truthful algo-
rithm when the tasks’ lengths are private data. When both the lengths
and the weights are private data, we show that it is not possible to get an
a-approximate deterministic truthful algorithm for any o > 1. In order
to overcome these negative results we introduce a new concept that we
call preventive preemption. Using this concept, we are able to propose
a simple optimal truthful algorithm with no payments for the single-
machine problem when the lengths of the tasks are private. For multiple
machines, we present an optimal truthful algorithm for the unweighted
case. For the weighted-multiple-machines case, we propose a truthful
randomized algorithm which is %—approximate in expectation based on
preventive preemption. For the model with payments, we prove that there
is no optimal truthful algorithm even when only the lengths of the tasks
are private data. Then, we propose an optimal truthful mechanism using
preventive preemption and appropriately chosen payments.

1 Introduction

A lot of attention has been devoted to scheduling problems in the literature
of algorithmic game theory starting from the seminal paper of Koutsoupias
and Papadimitriou [18]. Most of these papers consider that the social welfare
is expressed as the makespan of the obtained schedule [2-7,9,18,19]. However,
in environments where jobs are owned by independent and competing agents
for the same resource(s), it is more natural to measure the social welfare using
another classical measure of performance, the average (weighted) completion
time of the tasks [21]. A few papers consider this objective [1,11,12,15], but not
in the context of truthfulness (they focus on coordination mechanisms and the
price of anarchy). Given the interest of the algorithmic-game-theory community

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 15-26, 2016.
DOI: 10.1007/978-3-319-42634-1_2

16 E. Angel et al.

to mechanism design aspects of scheduling problems, it is a natural question to
know what is the difficulty of conceiving a truthful mechanism when the social
welfare is the weighted completion time of the tasks. In some applications, for
ethical or practical reasons, pricing is undesirable and so it is important to con-
ceive mechanisms without payments [8,16]. In other applications however this
is not the case. Hence we consider both cases in the sequel. We focus on the
following problem: we are given a set of tasks where each task is owned by a
selfish agent who is the only one to know the length and/or the weight of his
task. The tasks have to be executed on a single-machine or on a set of identical
machines. The valuation of each agent/task is the opposite of his completion
time. The weight of a task models the importance of the task for the system
(and not the agent) and in that case it is more natural to consider that the
valuation of the agent is just the completion time of his task'. We study this
problem both with payments and without payments. When we use payments,
the objective of each agent is the maximization of his utility which is defined
as the difference between his valuation and his payment. When payments are
not allowed, the objective of each agent is the minimization of his (weighted)
completion time. Agents may lie concerning their length and/or weight if by
doing so, they are able to increase their utility. Our aim is to find a truthful
mechanism that minimizes the weighted sum of completion times.

Our contribution. In the first part of the paper, we study the model without
payments. When the lengths of the tasks are private data, we prove that there
is no (2 — €)-approximate deterministic truthful algorithm even in the case of a
single machine where the weights of all the tasks are unitary. We also show that
there is no (% —e€)-approximate randomized truthful algorithm for the same envi-
ronment. When both the lengths and the weights are private data, then we show
that it is not possible to get an a-approximate deterministic truthful algorithm
for any a > 1. In order to overcome these negative results we introduce a new
concept that we call preventive preemption. The intuitive idea behind preventive
preemption is simple: whenever a task bids a length smaller than its real length,
the scheduler will preempt it at the end of the declared processing time and he
will resume it later. Think for instance a planning of a meeting room. Once the
schedule of meetings is done, then every meeting has to finish or be interrupted
at the planned time. An interrupted meeting could continue only after all other
meetings are finished. Notice that as our mechanism is proved to be truthful no
task will be interrupted during the constructed schedule. This is in the same vein
as the approach used recently by Fotakis et al. [13] where selective verification
is used as a threat in order to construct a truthful mechanism. Using preven-
tive preemption as a threat, we are able to propose a simple optimal truthful
algorithm with no payments for the single-machine problem where the lengths
of the tasks are private and the weights are public. For multiple machines, we
are able to prove that this approach gives an optimal truthful algorithm for

! Notice however that our results can be generalized to the case where the valuation
of the tasks is their weighted completion time.

Truthfulness for the Sum of Weighted Completion Times 17

the unweighted case. For the case of multiple machines with weights, given that
the problem is NP-hard even if all data are public, we turn our attention to
the development of approximate truthful mechanisms. We propose a truthful
randomized algorithm which is %—approximate in expectation based on preven-
tive preemption. We also show that the natural WSPT algorithm of Smith [21]
is not truthful. In the second part of the paper, we consider the model with
payments. For the single-machine case, given that the optimal solution can be
computed in polynomial time and the social welfare is utilitarian, one may think
that it is sufficient to apply the well known Vickrey-Clarke-Groves (VCG) mech-
anism [10,14,22]. However, in what follows we prove that this is not true even
when only the lengths of the tasks are private data. Then, we propose an optimal
truthful mechanism for the single-machine case using preventive preemption and
appropriately chosen payments. Our results are summarized in Table 1.

Table 1. Summary of the results presented in this paper. TA means “truthful algo-
rithm”, det means “deterministic” and rand means “randomized”. The number before
TA is the approximation ratio. For example, the sentence “P det (2 —) TA (thm 1)”
in the first cell means that Theorem 1 shows that there does not exist any determinis-
tic truthful algorithm which has an approximation ratio of 2 — & (when payment and
preemption are not allowed, and when the lengths of the tasks are private). Unless
otherwise specified, the results hold for any number of machines.

Without preemption ‘With preventive preemption

Without payment | Private lengths: Private lengths:

o B det (2 —¢) TA (thm 1) e m = 1: 3 optimal det TA (thm 4)

e Brand (1.5 —¢) TA (thm 2) |e m > 2, identical w: 3 optimal det TA (thm 5)
e m > 2: Frand 1.5 TA (thm 6)

Private lengths and weights: |Private lengths and weights:
e B det a TA, for all « (thm 3)/e # det (2 —) TA (thm 8)
With payment Private lengths: Private lengths and weights:
e 7 optimal TA (thm 7) e m = 1: 3 optimal det TA (thm 9)

e m > 2: Jrand 1.5 TA (cor 2)

1.1 Formal Definition of the Problem

We consider n agents, N = {1,2,--- ,n}, and a single machine or a set of m
parallel identical machines. Each agent i is the owner of a single task and he is
the only one to know the private data of his task. The private data of a task
can be either its length ¢; > 0 or both its length ¢; > 0 and its weight w; > 0.
When both the length and the weight of a task are private, we call these data
(ti,w;), the agent’s true data or the agent’s type (if only the length of the task
is private, then the agent’s type is just ¢;). Everything else is public knowledge.
From now on in this section, we assume for simplicity that both the length and
the weight of the tasks are private data. Each agent will report a pair (b;, w?) to
the mechanism that we call the agent’s bid. By B, we denote the set of all bids,
i.e. B = {(b1,uw?),..., (by,w?)}. We adopt an extension of the strong model of

18 E. Angel et al.

execution [4] where, once task i starts to be executed, it is executed during ¢;
units of time, independently of the value of his bid b; (i.e. even if b; # ¢;). In the
model of [4], the bid value b; should always be larger than or equal to ¢; while
here, b; may get any positive value (b; < t; or b; > t;). By C;, we denote the
completion time of task 3.

For the model with payments, a mechanism is a pair M = (A, P), where
A is an algorithm that finds an output o(B) and P is a payment function:
P(o(B),B) = (p1,p2,---,Pn)- The output o(B) computed by A is a function of
the bids, B, of the agents, while the payment is a function of the output o(B)
and of the agents’ bids B. This means that, contrary to the framework with
verification introduced by Nisan and Ronen for scheduling problems [19], the
payments have to be computed without knowing the true types of the tasks.
Let us now define the output of A. Since the true types of the tasks are not
known by the mechanism, A is not able to produce a feasible schedule in which
the completion time of every task is known in advance. In the case where the
preemption of the tasks is not allowed, o(B) is defined as the order in which the
tasks will be executed on each machine along with the lengths of the idle-periods
that precede the tasks, if such idle periods exist. More formally, in the single-
machine case when the preemption of the tasks (the possibility of interrupting
and resuming the execution of the task later) is not allowed, we define the output
o(B) of algorithm A as a sequence of n pairs (I;,i) where 7 is a task and I; is
the length of the idle-period just before task 7. Notice that when no idle-periods
exist between the tasks, all I;’s will be equal to 0 and we will simply denote the
output by a sequence of n tasks. In the case where the preemption of the tasks
is allowed, the output o(B) will be defined in a similar way, the only difference
being that more than one time-intervals may represent a task, one time-interval
for each piece of the preempted task. For multiple machines, the above definitions
generalize in the natural way. The objective of the mechanism is to determine
a schedule of the tasks minimizing the sum of weighted completion times, or
equivalently maximizing the social welfare which is defined as — >, ., w;C;.
For every task i, we define S; as the set of tasks scheduled before ¢ on the same
machine in the output o(B), and T; as the set of real lengths of the tasks of S; (i.e.
T, = {t; : j € S;}). The completion time of task i is C; = ZjeSi (I; +t;)+ 1+t
and the utlhty of task i is Uz’(ti, O(B)7 B, Tz) = _Ci(tiy O(B), B, Tz) —p7,(O(B)7 B),
where p;(o(B), B) is the payment, or in other words the amount that ¢ must pay.
It is important here to notice that the payments are computed before the real
execution of the tasks.

For the model without payments, a mechanism for this problem is an algo-
rithm A that determines an output o(B).

In both models, every task/agent ¢ is considered as selfish: the strategy of
agent i is to declare a bid (b;, wi?) in order to maximize his utility w;. Our aim
is to propose a truthful mechanism, i.e. a mechanism that gives incentive to the
agents/tasks to declare their true types. We say that a mechanism is truthful if
and only if for every ¢, 1 <i <mn, and for every bid (b;, w;?)7 j # 1, the utility u;
of task i reaches its maximum when i bids its true data, i.e. (b;,w?) = (t;,w;).

Truthfulness for the Sum of Weighted Completion Times 19

In other words, a mechanism is truthful if truth-telling is the best strategy for
a player ¢ regardless of the strategies adopted by the other players.

2 No Payments

In this section, we consider the problem of designing a truthful mechanism with-
out payments. We start by proving some negative results for truthful deter-
ministic or randomized algorithms. Then, we introduce the notion of preventive
preemption, and we show that by using it we are able to design optimal or
approximate truthful mechanisms.

2.1 Negative Results: Private Lengths
We first consider deterministic algorithms.

Theorem 1. Let € > 0. There is no truthful deterministic (2 — €)-approzimate
algorithm, even if all the tasks have the same weights.

Proof. Let A be a deterministic algorithm which is a-approximate, with a0 < 2.
Let us show that A is not a truthful algorithm.

Let us consider a first instance I;: a single machine and two tasks 77 and
T, of lengths M and M? respectively (with M > 1). Both tasks have the same
weight (in the sequel we will thus consider the criteria > C;, which is equivalent
to > w;C; in this case). In an optimal schedule, T} is executed at time 0 and
T5 starts when 77 has been executed, at time M. The cost of such a schedule is
Dieqiy Ci =M+ (M + M?) = M?+ 2M. In such a schedule task Ty starts at
time M.

Let S be a schedule of I; in which task Tb starts before time M. In such
a schedule task 77 cannot be completed before the start of 1. The cost of
S is thus larger than or equal to M? + (M? + M) = 2M? + M (in the
best case there is no idle time: task 75 is scheduled at time O and task T3
starts as soon as Th is completed, i.e. at time M?). The ratio between the
cost of S and the optimal cost is larger than or equal to ?\%2;5% = 2]%;"21,
which tends towards 2 when M tends towards the infinity. Since A is an
a-approximate algorithm, with « < 2, A cannot return schedule S. Therefore,
in the schedule returned by A on instance I, T, starts at the soonest at time
M.

Consider now a second instance, I5: a single machine and two tasks 77 and T3
of lengths M and 1 respectively. Both tasks have the same weight. In an optimal
schedule T3 is executed at time 0 and T} starts when T3 has been executed, at
time 1. The cost of such a schedule is 1 + (1+ M) = M + 2.

Let S be a schedule of I in which task T3 does not start before time M. The
cost of S'is thus larger than or equal to M+ (M +1) = 2M +1 (in the best case task
Ty is scheduled at time 0 and task T3 starts as soon as T} is completed, i.e. at time
M). The ratio between the cost of S and the optimal cost is larger than or equal

20 E. Angel et al.

to 2]%51 , which tends towards 2 when M tends towards the infinity. Since A is an

a-approximate algorithm, with @ < 2, A cannot return schedule S. Therefore, in
the schedule returned by A on instance I, T3 starts before time M.

Let us now consider the following situation: task 77 bids a length M and task
T, has a true length of M?2. Given the values bid by T3, if T» bid its true value,
then the instance corresponds to instance I;. As seen above, in the schedule
returned by A on instance Iy, Ty starts at the soonest at time M.

Assume that task T» lies and bids a length of 1 instead of M2. The input of
the algorithm is now two tasks of length M and 1: it is instance I5 (the algorithm
cannot know that T4 lies). As seen above, since A is an a-approximate algorithm,
with o < 2, in the schedule returned by A on instance I, T5 starts before time
M. Task T decreases its starting time (and thus its completion time) by bidding
a false value. Therefore A is not a truthful algorithm.

If we consider the case of randomized algorithms, we are able to prove the
following result (the proof is omitted).

Theorem 2. Let A be a (randomized) truthful algorithm which does not intro-
duce idle times between the tasks. Then A is not a-approzimate, with o < %

2.2 Negative Results: Private Lengths and Weights

If both the lengths and the weights of the tasks are private data then it is not
possible to obtain a truthful deterministic approximation algorithm.

Theorem 3. Let o > 1. There is no truthful deterministic a-approximate algo-
rithm if both the lengths and the weights of the tasks are private values.

Proof. Let A be a deterministic algorithm which is a-approximate. Let us show
that A is not a truthful algorithm. Let M = 3a.

Let us consider a first instance I7: a single machine and two tasks 77 and
Ty. Task T has a length of M? and a weight of 1. Task 75 has a length of M
and a weight of M. In an optimal schedule, T, is executed at time 0 and T}
starts when Ty has been executed, at time M. The cost of such a schedule is
M? + (M + M?) =2M? + M.

Let S be a schedule of I in which task T; starts before time M. In such a
schedule, task T5 cannot be completed before the start of T;: since no preemption
is allowed, 77 is executed before T5. The cost of S is thus larger than or equal
to M? + (M? + M)M = M3+ 2M? (in the best case there is no idle time: task
Ty is scheduled at time 0 and task T, starts as soon as T3 is completed, i.e. at
time M?). The ratio between the cost of S and the optimal cost is thus larger
than or equal to]\241;[@1]\]\4; =]‘giﬁi‘/[> % = «. Since A is an a-approximate
algorithm, A cannot return schedule S. Therefore, in the schedule returned by
A on instance I, T} starts at the soonest at time M.

Let us now consider a second instance, Is: a single machine and two tasks
T, and T». Task T} has a length of 1 and a weight of M?. Task T, has a length

of M and a weight of M. In an optimal schedule T} is executed at time 0 and

Truthfulness for the Sum of Weighted Completion Times 21

T5 starts when 77 has been executed, at time 1. The cost of such a schedule is
M?+ (1+M)M =2M? + M.

Let S be a schedule of I5 in which task T7 does not start before time M. The
cost of S is thus larger than or equal to M? + (M + 1)M? = M3 + 2M? (in
the best case task 15 is scheduled at time 0 and task 7; starts as soon as 15
is completed, i.e. at time M). The ratio beween the cost of S and the optimal
cost is larger than or equal to]\2/11\?51]\1/»[12 =]Vz[jv;ﬂ/[> % = . Since A is an a-
approximate algorithm, A cannot return schedule S. Therefore, in the schedule
returned by A on instance I, T starts before time M.

Let us now consider the following situation: task 7; has a length M? and
weight 1 and task 75 bids a length M and a weight M. Given the values bid
by Ts, if T1 bids its true values, then the instance corresponds to instance I.
As seen above, in the schedule returned by A on instance Iy, T) starts at the
soonest at time M.

Let us now consider that task 77 lies and bids a length of 1 and a weight of
M?. The input of the algorithm is now identical to instance I (the algorithm
cannot know that T} lies). As seen above, since A is an a-approximate algorithm,
in the schedule returned by A on instance I, T starts before time M. Task T
decreases its starting time (and thus its completion time) by bidding false values.
Therefore A is not a truthful algorithm.

2.3 Positive Results: Single Machine with Preventive Preemption

In the remaining of this section, we show that if preventive preemption is used,
then it becomes possible to design a truthful mechanism without payments which
is optimal with respect to the social welfare. A preemptive schedule on a sin-
gle machine can be defined as a vector 0 = (p1, ..., pn) where for every task 4,
1 <4 < n, p; corresponds to the set of time-intervals during which task i is exe-
cuted, i.e. p; = [IL,rH)U---U[IF rF) with I} <r} <12 <r?2<... <IF <rFand
Zle (Tf — lg = t;, where t; is the true length of task <. In addition, for every
pair of tasks i, j, we have p; N p; = (). Hence, in schedule o, task i starts at time
I}, it is preempted at time r}, then its execution continues at time [?, it is again
preempted at time r? and so on until its completion. Clearly, for the considered
objective function, i.e. the sum of weighted completion times, any schedule where
at least one task is preempted is strictly worse than the optimal non-preemptive
schedule. Hence, given that we are interested in obtaining a truthful algorithm
which outputs an optimal outcome, we need to design an algorithm which pre-
empts the execution of a task only when the task bids a false value of its length.
However, there is no possibility for the mechanism to know a priori if a task lies,
and the mechanism has to define a (perhaps preliminary) schedule based only on
the values that the tasks bid, i.e. before their real execution. Our algorithm is the
following one: it schedules the tasks following the increasing order of the ratio of
the declared length to weight, i.e. following Smith’s rule, and it executes each task
i during b; units of time in the time interval [}, I} +b;). Whenever the real length of

a task is greater than its declared one, then the task will be preempted at I} + b;

22 E. Angel et al.

and restarted after the completion of all the b;’s, 1 < i < n, following a round
robin policy if more than one tasks are preempted. We now introduce what we
will call preventive preemption.

Definition 1. An algorithm uses preventive preemption if it constructs a sched-
ule in which a task i is preempted (and resumed later), if and only if, b; < t;.

Our algorithm, that we call Weighted Shortest Processing Time with Preventive
Preemption (WSPT-PP), uses the concept of preventive preemption. Our algo-
rithm is based on the classical Smith’s rule WSPT (Weighted Shortest Process-
ing Time) which is optimal for the sum of the weighted processing times for the
single-machine case. As we prove below an important property of WSPT-PP is
that it is truthful and consequently no task is finally preempted, since for every
task i, we have b; = ¢;. Let us now define more formally this algorithm?.

Algorithm WSPT-PP
1 Sort all tasks in the WSPT order (i.e. such that bl < b2 <o < by,

2 Schedule the first interval [I},7]) of every task 4 buch that I = Ziil b;
and r} =1} +b;.

3. After time t = Zg b;, schedule the tasks which are not already com-
-pleted using the round robin policy: For each = > 2, if Task ¢ is not

completed at time (Z] 1 bj) + n(z —2) + ¢ — 1, schedule this task in
the time interval [I¥,r7), with I = (i1 by) +n(z—-2)+i-1
and rf = (n bj) +n(z—2)+1.

=1

Theorem 4. WSPT-PP is a polynomial-time, optimal and truthful algorithm
for the single machine case where the private data of every task is its length and
the social welfare is the weighted sum of completion times.

Proof. Assume that task i bids b; > t;. By the definition of WSPT-PP, task 4
will not start earlier than if it bids b; = ¢; (and thus it will not decrease its
completion time by lying). On the other hand, if task ¢ bids b; < t;, again by the
definition of WSPT-PP, it will be preempted b; units of time after its starting
time and it will be continued after date Z;L b;. Thus, its completion time will
be at least t; — b; + Y7 bj = t; + Z, 1 by If it bids b; = t;, it will not be

preempted and its completlon time will be at most E 1 b =1t + ZJ 1 bj. In

both cases task i has no incentive to lie, and so WSPT- PP is truthful. Thus the
obtained schedule is without preemption, i.e. identical to the one obtained by
the classical WSPT algorithm. Given the optimality of WSPT, we obtain that
WSPT-PP is also optimal. O

Remark. Notice that the previous results hold also if the valuation of each task
is defined as its weighted completion time.

2 Recall that in this section w? = w;.

Truthfulness for the Sum of Weighted Completion Times 23

2.4 Positive Results: Parallel Machines with Preventive Preemption

It is well known that the Shortest Processing Time (SPT) algorithm computes an
optimal solution for the problem of minimizing the sum of completion times on
identical parallel machines [21]. Based on that, we can apply SPT with preventive
preemption (SPT-PP) on identical parallel machines and obtain a polynomial-
time optimal and truthful algorithm for the parallel machines case where the
social welfare is the minimization of the sum of completion times.

The proof of the truthfulness of SPT-PP is similar than the one of WSPT-
PP for the single-machine case and it is omitted here. Given the truthfulness of
SPT-PP, it is easy to see that no task will be preempted by SPT-PP and the
produced schedule will be the same as the one of SPT.

Theorem 5. SPT-PP is an optimal and truthful algorithm for the parallel
machine case where the private data of every task is its length and the social welfare
1s the sum of completion times.

For the multiple machines case with weights, given that the problem is NP-
hard even if all data are public, we turn our attention to the development of
approximate truthful mechanisms. We propose the following simple algorithm
that we call RAND-WSPT-PP: Assign tasks independently and uniformly at ran-
dom to the machines, and on each machine schedule the tasks using the WSPT
rule by applying preventive preemption if necessary. It is easy to see that a task
7 has no influence on the choice of the machine on which it will be scheduled by
lying on its length. In addition, according to the proof of Theorem 4 whatever
the machine it is scheduled on, its best strategy is to declare b; = ¢;. This means
that all the tasks will declare their true lengths and the algorithm will produce
a non-preemptive schedule. It has been proved in [20] that this algorithm is 3/2-
approximate in expectation. Consequently, we get the following result.

Theorem 6. RAND-WSPT-PP is a truthful randomized 3/2-approzimate in
expectation algorithm for the parallel machine case where the private data of every
task is its length and the social welfare is the weighted sum of completion times.

Remark. The derandomization of this algorithm is WSPT-PP: the tasks are
sorted according to the non decreasing ratio of b;/w;’s, and they are scheduled
following this order as soon as a machine becomes available [21]. If we impose
large penalties on liars, e.g. by starting the exceeding part of a task at a time
equal to the sum of all the declared processing times of the tasks, then it is
easy to see that preventive preemption guarantees that no agent will lie when
we apply WSPT-PP. This gives a (1 ++/2)/2-approximation [17]. If however, we
impose that the exceeding part is started after the completion of the last task
on the same machine or on any machine, then the tasks have incentive to lie. To
see this consider the following example.

Ezxample. Consider the following instance: two machines and three tasks: w; =
t1 =1, wy =ty =1, wg =2 and t3 = 2 + ¢ (where € is a small positive value,
e.g. € = 0.1). The schedule returned by WSPT-PP is the following one: each

24 E. Angel et al.

task of length 1 is scheduled at time 0 on a machine. Task 3 is scheduled at
time 1, after a task of length 0. Its completion time is thus 3 + . Task 3 has
incentive to bid 2 — €. In this case, WSPT-PP schedules task 3 at time 0, and
tasks 1 and 2 are scheduled on the other machine. Since task 3 is alone on its
machine, it will be completed at time 2 4 € even with preventive preemption.
Even if we consider a stronger version of preventive preemption, that we may
call preventive preemption with migration, where we execute the remaining part
of the preempted task on the machine of maximum load, then task 3 will finish
at time 2 + 2¢ instead of 3 — ¢ : task 3 has still incentive to bid a false value.

3 Introducing Payments

3.1 Private Lengths

Let us first prove that the VCG method cannot be applied for the single-machine
case without preventive preemption.

Theorem 7. There is no optimal truthful mechanism with payment for the sin-
gle machine case even in the unweighted case.

Proof. By contradiction, assume that there is an optimal truthful mechanism min-
imizing the sum of completion times of the tasks on a single machine. It is well
known that the Shortest Processing Time first (SPT) algorithm, which schedules
the tasks in non-decreasing order of their lengths, is the only algorithm that max-
imizes the social welfare — >, ., C;. Given that SPT does not insert any idle
time, a schedule can be defined as an ordering of the tasks. Let 1 and 2 be the two
tasks to schedule (i.e. N = {1,2}) and consider the following scenario: when task
2 tells the truth, we have to = by > b;. In this case, SPT constructs a schedule
o where task 1 is scheduled before task 2 (¢ = (1,2)). Then the utility of task 2
is ug = —Cy — po = —t1 — t3 — p2. On the other hand, when task 2 lies and bids
b, < b1, SPT constructs o’ where task 2 is scheduled before task 1 (¢/ = (2,1))
and the utility of task 2 becomes u, = —C% —ph, = —to — pj. Given that the mech-
anism is assumed to be truthful, we must have us > w} (i.e. task 2 should not have
incentive to lie) and thus —t; — to — po > —to — ph = ph) — pa > t;. However,
since t1 is not known to the mechanism when the payments are computed, it is
clear that there is no any payment function satisfying this property. a

Corollary 1. The VCG method cannot be applied for the single-machine case.

3.2 Private Lengths and Weights

In this section, we show that preventive preemption associated with payments
helps even when both the length and the weight of the tasks are private data.
Since now each agent can lie on his weight, algorithm WSPT-PP is not truthful
anymore. Indeed any task ¢ has incentive to bid b; = t; and wf > w; in order to
get a smaller ratio %, and then to decrease its completion time C;. Moreover, as

Truthfulness for the Sum of Weighted Completion Times 25

shown by Theorem 8 below, when both weights and lengths are private values,
there is no optimal algorithm even if preemptive preemption is allowed (the proof
is omitted due to lack of space). We then propose an optimal truthful algorithm
which uses payment and preventive preemption.

Theorem 8. Let € > 0. There is no truthful deterministic (2 — €)-approzimate
algorithm which does not use payment when the weights of the tasks is a private
value, even when preventive preemption is allowed.

Theorem 9. For every task i, let s; be the starting time of task i in the schedule
obtained by WSPT-PP. The mechanism using algorithm WSPT-PP and the
following payment function p; = —s; + Ej# b;j is polynomial-time computable,
optimal and truthful for the single machine case.

Proof. By the definition of algorithm WSPT-PP, —s; + Ej# b; is a posi-
tive value and it can be computed by the scheduler using only the values
(b1, w?), ..., (bn,wl). Thus, p; = —s; + Zj# b; is a valid payment function.
Moreover, for every task i, if i tells the truth, we have uv; = —C; — p; =
—(si+ti) = (=8 + 22,4 0j) = —ti — >0;4; b; whereas if i lies, by the defin-
ition of algorithm WSPT-PP, it cannot be completed before time s; 4+ t; and
thus we have u; < —t; — ;i 0j- Hence, task ¢ takes no advantage of not telling
the truth and so the mechanism is truthful. Moreover, given the truthfulness
of the mechanism, WSPT-PP constructs the same schedule as WSPT without
preemption. Thus, as WSPT constructs an optimal solution minimizing the sum
of the weighted completion times, so does WSPT-PP. a

For applications where the valuation of a task is its weighted completion time,
it is also possible to obtain payments that ensure that WSPT-PP is truthful (the
details will be given in the full version of the paper).

Multiple machines. Notice that for multiple machines we can use the algorithm
RAND-WSPT-PP (see Sect.2.4) with appropriate payments in order to obtain
a randomized truthful approximation algorithm.

Corollary 2. There exists a truthful %—appromimate in expectation algorithm for
the parallel machine case with payments when the private data of every task are
its length and its weight.

Acknowledgments. The work of Evripidis Bampis and Fanny Pascual was partly
supported by the French ANR grant ANR-14-CE24-0007-01 “CoCoRICo-CoDec”.

References

1. Abed, F., Correa, J.R., Huang, C.-C.: Optimal coordination mechanisms for multi-
job scheduling games. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 13-24. Springer, Heidelberg (2014)

26

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Angel et al.

. Ambrosio, P., Auletta, V.: Deterministic monotone algorithms for scheduling on
related machines. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol.
3351, pp. 267-280. Springer, Heidelberg (2005)

. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005.
LNCS, vol. 3404, pp. 69-82. Springer, Heidelberg (2005)

. Angel, E., Bampis, E., Pascual, F.: Truthful algorithms for scheduling selfish tasks
on parallel machines. Theoret. Comput. Sci. 369, 157-168 (2006)

. Angel, E., Bampis, E., Pascual, F., Tchetgnia, A.: On truthfulness and approxi-
mation for scheduling selfish tasks. J. Sched. 12, 437-445 (2009)

. Angel, E., Bampis, E., Thibault, N.: Randomized truthful algorithms for scheduling
selfish tasks on parallel machines. Theor. Comput. Sci. 414(1), 1-8 (2012)

. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: FOCS,
pp. 482-491 (2001)

. Braverman, M., Chen, J., Kannan, S.: Optimal provision-after-wait in healthcare.
In: ITCS 2014, Princeton, NJ, pp. 541-542 (2014)

. Christodoulou, G., Gourves, L., Pascual, F.: Scheduling selfish tasks: about the

performance of truthful algorithms. In: Lin, G. (ed.) COCOON 2007. LNCS, vol.

4598, pp. 187-197. Springer, Heidelberg (2007)

Clarke, E.: Multipart pricing of public goods. Public Choice 11(1), 17-33 (1971)

Cohen, J., Pascual, F.: Scheduling tasks from selfish multi-tasks agents. In:

Traff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS, vol. 9233, pp.

183-195. Springer, Heidelberg (2015)

Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V.S., Olver, N.: Inner product

spaces for minsum coordination mechanisms. In: ACM STOC 2011, pp. 539-548

(2011)

Fotakis, D., Tzamos, C., Zampetakis, E.: Who to trust for truthfully maximizing

welfare? CoRR abs/1507.02301 (2015)

Groves, T.: Incentive in teams. Econometrica 41(4), 617-631 (1973)

Hoeksma, R., Uetz, M.: The price of anarchy for minsum related machine schedul-

ing. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.

261-273. Springer, Heidelberg (2012)

Hurst, J., Siciliani, L.: Tackling excessive waiting times for elective surgery: a com-

parison of policies in 12 OECD countries. Health Policy 72(2), 201-215 (2005)

Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean

weighted flow-time problem. SIAM J. Comput. 15(4), 1119-1129 (1986)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S.

(eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)

Nisan, N., Ronen, A.: Algorithmic mechanism design. In: STOC, pp. 129-140

(1999)

Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.

SIAM J. Discret. Math. 15(4), 450-469 (2002)

Smith, W.E.: Various optimizers for single stage production. Naval Res. Logist. Q.

3, 59-66 (1956)

Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. J.

Financ. 16, 8-37 (1961)

Network Topologies for Weakly Pareto Optimal
Nonatomic Selfish Routing

Xujin Chen and Zhuo Diao®™

Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences,
Beijing 100190, China
{xchen,diaozhuo}@amss.ac.cn

Abstract. In this paper we study the model of nonatomic selfish rout-
ing and characterize the topologies of undirected/directed networks in
which every Nash equilibrium is weakly Pareto optimal, meaning that
no deviation of all players could make everybody better off. In particular,
we first obtain the characterizations for single-commodity case by apply-
ing relatively standard graphical arguments, and then the counterpart
for two-commodity undirected case by introducing some new algorithmic
ideas and reduction techniques.

Keywords: Nonatomic selfish routing - Weakly Pareto optimal - Single-
commodity networks - Multi-commodity networks - Extension-parallel
networks

1 Introduction

A basic task of network management is routing traffic to achieve the highest
possible network efficiency. However, it is usually difficult or even impossible to
implement centralized optimal routing in many large systems, as modeled by
selfish routing games [9]. In these games, a number of players (network users)
selfishly choose routes in the network for traveling from their origins to their
destinations, aiming to minimize their own latencies. The selfish behaviors often
lead to Braess’s paradox [2], which exposes the seemingly counterintuitive phe-
nomenon that less route options lead to shorter travel time at the Nash Equi-
librium (NE). The paradox in particular reflects the fact that there is a feasible
routing which is better for all players than the NE. This stands on the contrary
to the spirit of weak Pareto optimality — no alternative solution could make
every indiwvidual strictly gain. The absence of weak Pareto optimality exhibits
not only the inefficiency, but also a kind of unstable state where players might
have incentive to form a grand coalition to deviate. A natural question on net-
work design arises as to in which network topologies the NE of any routing

Research supported in part by NNSF of China under Grant No. 11531014 and
11222109, and by CAS Program for Cross & Cooperative Team of Science & Tech-
nology Innovation.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 27-38, 2016.
DOT: 10.1007/978-3-319-42634-1_3

28 X. Chen and Z. Diao

instance is always Weakly Pareto Optimal (WPO). Once such a WPO network
is established, regardless of the latency functions and the locations of origins
and destinations, the strategic interactions among players would lead to equilib-
rium outcomes that enjoy sort of efficiency and stability, and the occurrence of
Braess’s paradox is particularly prevented. The purpose of this paper is to iden-
tify the network structures that inherently guarantee weak Pareto optimality for
not only any single origin-destination pair (i.e., the single-commodity case) and
but also any multiple origin-destination pairs (i.e., the multi-commodity case).

Related Work. Milchtaich [8] studied under the model of nonatomic selfish
routing the weak Pareto optimality of NE in undirected networks w.r.t. a fixed
origin-destination pair (s,¢). In the nonatomic model, there are an infinite num-
ber of players each controlling a negligible portion of the total traffic from s
to t. It was shown that all NE are WPO for any nonnegative, continuous and
nondecreasing latency functions if and only if the network has linearly indepen-
dent routes, meaning that every s-t path has at least an edge which does not
belong to any other s-t path. Milchtaich’s result [8] parallels an earlier necessary
and sufficient condition of Holzam and yone (Lev-tov) [5] for atomic selfish rout-
ing games played by a finite number of players each controlling a nonsplittable
unit traffic from origin s to destination ¢ in a directed network. The condition
ensures that all (pure strategy) NE are WPO by excluding from the network the
so-called bad configuration. Holzam and yone (Lev-tov) [6] then related the for-
bidden structure with a recursive extension-parallel construction for irredundant
networks, i.e., networks that are unions of their s-t paths. The authors proved
that an irredundant directed network does not contain any bad configuration if
and only if it is extension-parallel. Later, Milchtaich [8] established the equiv-
alence between the extension-parallel structure of an irredundant network and
the linearly independent route property of its underlying undirected network.

Strengthening the stability of weak Pareto optimality, which in some sense
only excludes the coalition of all players, a Strong Equilibrium (SE) prevents
any subset of players from deviating. In particular, every SE (if exists) is an NE
that is WPO. For atomic routing restricted to irredundant single-commodity
directed networks, Holzman and yone (Lev-tov) [6] proved that extension-parallel
networks are exactly the ones that guarantee the existence of SE. Regarding the
multi-commodity counterpart, the network characterization was given in terms
of forbidden bad configurations [5]. Recently, Holzman and Monderer [7] studied
the atomic routing game on a special directed network consisting of paths from
a specific source to a specific sink, and proved for the multi-commodity case that
the sets of NE and SE are identical if and only if the network is extension-parallel.

The network structures that guarantee NE of selfish routing to possess other
kinds of properties stronger or weaker (in some sense) than weak Pareto opti-
mality were also discussed in literatures, such as Pareto optimality [5,8], social
optimality [4] and Braess’s paradox freeness [3,8].

Our Contributions. We focus on nonatomic selfish routing model. First, we
extend the Milchtaich’s linearly independent route characterization [8] for the
single-commodity undirected networks to directed ones; we prove that

Network Topologies for Weakly Pareto Optimal Nonatomic Selfish Routing 29

— Extension-parallel networks are essentially the networks that guarantee the
NE of every single-commodity routing instance is always WPO (Theorem 1).

The proof relies on applications and extension of previous results from [6-8]. In
particular, for the undirected case, we further transfer the relatively local pic-
ture, expressed in terms of forbidden minors (Theorems 2(iii) and 4(ii)) or every
two-terminal subnetwork (Theorem 1), to a global one that gives the explicit
structure of the whole graph (Theorem 3). Then, by utilizing algorithmic ideas
on flow, graph theory tools, and double-counting method, we show that

— A connected undirected network with the NE of every 2-commodity routing
instance being WPO is either a tree, or contains only one non-edge block
(a maximal subgraph without cut-vertices); in the latter case, the non-edge
block is a cycle or consists of a number of parallel edges or is obtained from a
triangle by duplicating an edge for a number of times (Theorem 5).

The theoretical result and technical methods constitute our main contribution.
The restrictive topologies indicate more or less the scarcity of WPO NE in multi-
commodity routing practice. The ideas and approaches might be useful for future
research on selfish routing. Furthermore, for k-commodity case with & > 3, we
show that undirected WPO networks are extremely limited (Theorem 6).

2 Routing Model

We consider both undirected and directed networks, and model them by graphs
or digraphs G = (V, E) with vertex set V and link set E, respectively. Loops are
not allowed, while more than one link can join the same pair of vertices. Each
link e € F is associated with a nonnegative, continuous, nondecreasing latency
function /. (-) which specifies the time needed to traverse e as a function of the
link congestion on e. Undirected links are called edges while directed ones are
called arcs. Let u,v € V, a path in G from u to v is called a u-v path. We use
the standard definition of a path that does not allow any vertex repetition. We
will often abbreviate “undirected graphs” as “graphs”, and collectively refer to
graphs and digraphs as (di)graphs.

Let k be a positive integer. Given k origin-destination pairs of vertices (s;, t;),
i€ k] ={1,...,k},in G, wecall (G, (s;,t;)%_,) a k-commodity network embedded
in G if for each i € [k], s; # t; and G contains at least an s;-t; path.

We focus on nonatomic selfish routing for traffic flow. Given a positive demand
r = (r;)®_,, thetrafficin (G, (s, t;)%_,) comprises k flows, each for one commodity.
The flow of commodity ¢ € [k] with a total amount of r; is formed by an infinite
number of players traveling from s; and ¢;. Each player (who is associated to a
unique origin-destination pair) selects a single path from his origin to his desti-
nation that has a minimum latency, given the congestion imposed by the rest of
players. The nonatomic routing model assumes that the choice of each individual
player has a negligible impact on the experiences of others.

Formally, let (G, (s;,t;)¥_,,r,f) denote a k-commodity selfish routing
instance, where latency functions ¢.(-), e € E, are collectively represented by £.

30 X. Chen and Z. Diao

For each i € [k], let P; be the set of s;-t; paths in G; a flow of commodity i is a
nonnegative vector f; = (fi(P))pep, With >_pcp fi(P) = r;. The combination
of f1,...,fx gives rise to a (k-commodity) flow f = (£,)5_, for (G, (si,t;)k_;, 7).
Under f, each link e that is contained by some path in U¥_; P; experiences a con-
gestion f(e) = Zle Y pep,cep Ji(P), and thus a link latency Le(f(e)). Accord-
ingly, each path P contained by UQeulepiQ and any player traveling through
P suffer from a path latency €p(f) =3 cpLe(f(e€)).

In nonatomic routing games, Nash equilibria are characterized by Wardrop’s
principle in a way that all players travel only on the minimum latency paths
from their own origins to their own destinations. A flow 7 of (G, (si, ;)% r,f)
is called an NE (flow) of the instance if it satisfies the following NE property:

Vie k] and V P € P; with m;(P) > 0, there holds {p(7) = mingep, {o(m).

By the classical result of Beckmann et al. [1], the NE of (G, (s;,t;)¥_,r, () exist,
and are essentially unique in the sense that the link latencies are invariant under
any NE of (G, (s;,t;)¥_,,r,¢). Thus, for each i € [k], the common latency expe-
rienced by all players traveling from s; to t; in any NE of (G, (s;,t;)F_,,r,0) is
also an invariant, which we denote by £;(G, (s;,t;)%_,,r).

Given a k-commodity routing instance (G, (s;,t;)%_,,r,¢), its “unique” NE
flow is weakly Pareto optimal (WPO) if for every feasible flow f, there exist
h € [k] and P € P; such that f;(P) > 0 and £p(f) > (4(G, (si,t:)5 1), ie.,
some players travelling from sy to t, experience a lentency under f not smaller
than that they experience under a NE flow. We say that a k-commodity network
(G, (si,t;)¥_;) embedded in G is WPO if for any positive traffic demand r € R,
and any nonnegative, continuous, nondecreasing latency functions £ on E, the NE
of (G, (s4,t:)%_1,r,£) is WPO. A (di)graph G is called WPO w.r.t. k commodities
if every k-commodity network embedded in G is WPO.

The concept of minors in graph theory is useful in characterizing WPO
(di)graphs. Given (di)graphs G and H, we call H a minor of G if it could be
obtained from a sub(di)graph of G by contracting links (possibly none); we call
H a topological minor of G if G contains a subdivision of H as a sub(di)graph.
If H is not a (topological) minor of G, then we say that G does not have a
(topological) minor isomorphic to H, or simply G has no H-(topological) minor.

Lemma 1. Let G be a (di)graph and G’ a topological minor of G. If G is WPO
w.r.t. k commodities, then so is G'. O

Due to the limitation on pages, we omit some proofs in this extended abstract,
and postpone them the full version of the paper.

3 Single-Commodity Networks

We start this section by introducing some definitions for both undirected and
directed networks, which are followed by a unified characteristic description for

Network Topologies for Weakly Pareto Optimal Nonatomic Selfish Routing 31

WPO (di)graphs w.r.t. single commodity. Then we discuss the undirected and
directed cases in Sects. 3.1 and 3.2, respectively.

Considering a network G with origin-destination pair (s, t), we say that G has
linearly independent routes, or linearly independent s-t routes to be more specific,
if in G every s-t path has at least a link that does not belong to any other s-t
path. We call G a two-terminal network (with terminals s, t), or an (s, t)-terminal
network, if each link and each vertex of G are contained in at least an s-t path.
Note that if a two-terminal network is directed, then its terminals must be its
unique source and unique sink.

Definition 1 [6,8]. The terminal extension of an (s,t)-terminal network G is
the operation that adds a new vertex together with a new link from it to s (or
from t to it), where the new vertex becomes the origin (or destination) of the
resulting network.

Definition 2 [6]. A single-commodity network G with origin-destination pair
(s,t) is (s,t)-extension parallel or extension-parallel for short if

— G has a single link with ends s and t; or

- G is a terminal extension of a smaller extension-parallel network; or

— G is obtained by connecting two smaller extension-parallel networks in paral-
lel — identifying their origins (resp. destinations) to form s (resp. t).

It has been known that an (s,t)-terminal undirected network is (s,t)-
extension-parallel if and only if it has linearly independent s-t routes (see Propo-
sition 5 of [8]). In view of the 1-1 correspondence between the sets of s-t
paths of an (s,t)-extension-parallel directed network and its underlying undi-
rected network, we have the following equivalent definition for extension-parallel
(un)directed networks, where a graph is considered as the underlying graph of
itself.

Definition 3 [6,8]. A two-terminal network is extension-parallel if its underly-
ing undirected network has linearly independent routes.

The following unified characterization combines Theorems 2(ii) and 4(iii) to
be discussed in the next two subsections.

Theorem 1. A (di)graph G is WPO w.r.t. single commodity if and only if every
mazximal two-terminal network embedded in G is extension-parallel. O

3.1 Undirected Networks

In this subsection, we formally state Milchtaich’s result [8] on single-commodity
networks where the origin and destination are fixed. The result implies a forbid-
den minor characterization for WPO graphs straightforwardly. Our efforts are
devoted to transferring the forbidden minor description to a constructive one
(Theorem 3) which gives the explicit global graphical structures.

32 X. Chen and Z. Diao

F F Fy

Fig. 1. The forbidden terminal-reduced topological minors for WPO single-commodity
networks with origin-destination pair (s, t).

Let G be an undirected network with origin-destination pair (s,t). A sub-
network of G is a network with the same origin and destination obtained from
G by removing vertices and edges (possibly none). A single-commodity network
G' is an terminal-reduced topological minor of G if some subnetwork of G can be
obtained from G’ by applying edge subdivisions and terminal extensions (cf. Def-
inition 1) for any number of times (possibly none) in any order.! An (s,t)-minor
of G is a network obtained from some sub(di)graph of G that contains s,t by
contracting links (possibly none), where when contracting any link incident with
s (or t), the resulting vertex is named as s (or t). Milchtaich [8] characterized
WPO graphs G w.r.t. a fixed single origin-destination pair via two (equivalent)
necessary and sufficient conditions: (i) none of F;, i = 1,2,3, depicted in Fig. 1
is a terminal-reduced topological minor of G, and (ii) the maximal two-terminal
network embedded in G has linearly independent routes.

We observe that in any graph with origin-destination pair (s, t), the presence
of any F;, i € [3] as a terminal-reduced topological minor implies the presence
of Fy as an (s,t)-minor, and vice versa. It follows that a graph is WPO w.r.t.
single commodity if and only if it does not contain F; as a minor.

Theorem 2 [8]. Let G be a graph and (G, (s,t)) be a single commodity network
embedded in G. Then:

(i) (G, (s,t)) is WPO if and only if G has linearly independent s-t routes.
(ii) (G, (s,t)) is WPO if and only if the mazimal (s,t)-subnetwork of G is (s,t)-
extension parallel.
(ii) G is WPO w.r.t. single commodity if and only if G does not contain any
minor isomorphic to Fi.

To interpret the above forbidden minor characterization (iii) in a constructive
way, we next study the structures of graphs without Fj-minor. Given a graph
G, a maximal connected subgraph of G without cut-vertices is called a block of
G. A block is trivial if it consists of an edge or a vertex. Let S denote the set of
graphs each of which is obtained from a cycle by adding duplications of one of
its edges (possibly none). See Fig.2(a) for an illustration.

Lemma 2. A connected graph G does not contain a minor isomorphic to Fy if
and only if G has at most one nontrivial block and this nontrivial block (if exists)
belongs to S. O

! In terminologies of [8], G’ is said to be embedded in G.

Network Topologies for Weakly Pareto Optimal Nonatomic Selfish Routing 33

(a) Graph class S (b) G has only one nontrivial block B*€ §

Fig. 2. Graphs without F;-minor.

The combination of Theorem 2(iii) and Lemma 2 provides the following con-
structive characterization for WPO graphs w.r.t single commodity.

Theorem 3. A graph G is WPO w.r.t. single commodity if and only if every
component of G has at most one nontrivial block, and all nontrivial blocks of G
(if any) belong to S. O

3.2 Directed Networks

In this subsection, we characterize WPO digraphs w.r.t. single commodity by
excluding the orientations F, of F;, i =1,2,3 (see Fig. 3) as topological minors.
The result, on one hand, parallels to the exclusion of terminal-reduced topo-
logical minors Fi, F5, F3 to assure a WPO undirected network w.r.t. a fixed
origin-destination pair [8]. On the other hand, it stands in contrast to the single
forbidden minor (i.e., F}) characterization for WPO graphs (see Theorem 2(iii)).

Our proof involves series-parallel networks, for which the following recursive
definition (see e.g., [10]) turns out to be helpful.

Definition 4. A single-commodity directed network G with origin-destination
pair (s,t) is two-terminal series-parallel or (s, t)-series-parallel if

(i) G has a single arc from s to ¢; or
(ii) G is obtained by connecting two smaller (0;, d;)-series-parallel directed net-
works H;, i = 1,2, in series — identifying d; and o2, and naming o; as s,
and dy as t; or
(iii) G is obtained by connecting two smaller (o;, d;)-series-parallel directed net-
works H;, i = 1,2, in parallel — identifying o; and oy to form s and identi-
fying d; and dy to form t.

€1 €9 €1 €9 el €
:, = : : _ : e [e
€3 e e3 Jok €y 3 ™

Fig. 3. The forbidden topological minors for WPO digraphs w.r.t. single commodity.

34 X. Chen and Z. Diao

Holzman and Monderer (Proposition 2 of [7]) obtained the follow-
ing forbidden-minor characterization of two-terminal series-parallel directed
networks.

Lemma 3 [7]. A two-terminal directed network is two-terminal series-parallel
if and only if it does not have any topological minor isomorphic to Fj. a

Theorem 4. Let G be a digraph. The following are equivalent:

(i) G is WPO w.r.t. single commodity;
(ii) G does not have any topological minor isomorphic to ﬁl, Fs or Fs;
(it3) Every mazimal two-terminal network embedded in G is extension-parallel.

Proof. (i) = (ii): By Lemma 1, it suffices to show that F, = (Vi, E;), 1 € {1,2,3},
is not WPO. Let s and ¢ denote the unique source and sink of F;, respectively.
Let the four links e1,ez,€3,e4 € E; be as depicted in Fig.3, and let P denote
the set of s-t paths in F;. Let Py, P, P; € P be the unique s-t paths in F,
that contain {ej,es}, {es,eq} and {ej,es}, respectively. Consider the single-
commodity routing instance (F;, (s.t),r,£), where r = (2), £, (z) = z = L., (),
ley(x) = 2 = Ley(x), and L.(z) = 0 for any e € E; \ {e1,€2,e3,e4}. It is easy
to see that the unique NE flow 7 of this instance is given by 7(P;) = 2 and
7(P) =0 for each P € P\ {Ps}, and incurs a latency £(F;, (s, t),r) = 4. On the
other hand, (F;, (s.t),r,) admits a feasible flow f given by f(P,) = 1 = f(P,)
and f(P) = 0 for each P € P\ {Py, Po}. Now maxpep, ¢pyso {(P) = L(P1) =
U(Py) = 3 < U(F5, (s,t),r) implies that 7 is not WPO.

(#4) = (441): By contradiction, take G = (V, E) to be a counterexample with
a minimum number m of arcs. Clearly m > 2. The minimality of G says that G is
a two-terminal network, which is therefore not extension-parallel. By Lemma 3,
condition (ii) implies that G is two-terminal series-parallel. Since m > 2, by
Definition 4, there exist two smaller two-terminal series-parallel digraphs H;
and Hs whose connection in series or in parallel gives G. It follows from the
minimality of G that both H; and Hs are extension-parallel. Because G is not
extension-parallel, it must be the case that H; and H, are connected in series
and both H; and Hy have more than one arc, which shows that G contains a
subdivision of ﬁl or ﬁg, a contradiction to (ii).

(#91) = (4): Consider an arbitrary maximal two-terminal network (G’, (s,t))
embedded in G. Since G’ is extension-parallel, its underlying graph, written as
G, has linearly independent s-t routes. Thus (G, (s, t)) is WPO by Theorem 2(i).
As G and G’ have the same set of s-t paths, (G, (s,t)) is also WPO. From the
arbitrary choice of (G, (s,t)), we see that G is WPO w.r.t single commodity. O

4 Two-Commodity Networks

In this section, we characterize WPO undirected graph w.r.t. two commodities,
and leave the characterization of the directed counterpart as an open question.

Network Topologies for Weakly Pareto Optimal Nonatomic Selfish Routing 35

Let R be the set of graphs each of which is formed by a number (at least
two) of parallel edges between two vertices. Let 7 be the set of graphs each of
which is obtained from a graph in R by dividing exactly one edge with a new
vertex. Let C be the set of undirected cycles of lengths at least four. Note that
R UT UC is a proper subset of the graph class S defined in Sect. 3.1.

The goal of this section is to establish the following theorem. Since RU7T UC &
S, the result can be viewed as a natural evolvement of Theorem 3. Let F be
the graph as depicted in Fig. 4.

Theorem 5. Let G be an undirected graph. The following are equivalent:

(i) G is WPO w.r.t. two commodities;
(ii) Every component of G has at most one nontrivial block, and all nontrivial
blocks of G (if any) belong to RUT UC.

(i1i) G does not contain any minor isomorphic to Fy or Fy.

The equivalence between (ii) and (iii) is straightforward. We concentrate on
the proof of (i) being equivalent to (ii).

The proof for implication from (i) to (ii) is relatively easy: any WPO graph
must be Fj-minor free; the freeness enforces that each component of the graph
can contain at most one nontrivial block and this block can only belong to S
(Lemma 2 in Sect. 3.1); in turn the weak Pareto optimality w.r.t. two commodi-
ties guarantees the membership of R U7 UC for this block, as otherwise routing
instances with non-WPO NE flows could be constructed (see Lemma 4).

The proof of the reverse implication reduces to proving that every graph in
RUT UC is WPO. By Milchtaich’s linearly independent route characterization
(Theorem 2(i)), we only need to consider two cases: (1) the graph belongs to C
and (2) the graph belongs to 7 (see Lemmas 6 and 7).

Non-WPO Graphs. We focus on 2-connected graphs without Fj-minor which
do not belong to RU7 UC, i.e., graphs in S\ (RUT UC).

Lemma 4. IfG € S\ (RUT UC), then G is not WPO w.r.t. two commodities.

Proof. 1t is easy to see that G contains Fy as a topological minor. By Lemma 1,
it suffices to show that Fy is not WPO w.r.t. two commodities. Indeed, a 2-
commodity routing instance (Fy, (s;,t;)?_,,r,) whose NE is not WPO can be
constructed as follows: Let the vertices and edges of Fy be labeled as in Fig. 4.
Let the demand r be defined by r1 = ro = 10. The nonnegative, continuous
nondecreasing latency functions ¢ satisfy £, (5) =0 < 2 = £, (6), £.,(3) =2 =
Loy (5), Loy (12) = 0 < 2 = £.,(13), £.,(10) =0 < 2 =4, (11) and £, (7) =2 =
Lo (8).

Observe that the set of s;-t1 paths in Fy is {e; Ues, ea Ues, e3 Ues} and the
set of Sg—tg paths in F4 is {61 U €3,€2 U €3, €5 U 64}. Clearly (F4, (Si,ti)?:17r7£)
admits 2-commodity flows 7 and f defined respectively by m1(e; Ues) = 3,
7T1(€3U64) =17, 7T1(€2U65) =0, 7T2(61 U63) =3= 7T2(€2U63) =3, 7T2(65U€4) =4
and f1(€1U€5) =4, f1(63U€4) =6, f1 (€2U65) =0, f2(€1U€3) =1, fg(egueg) =9,
fa(es Uey) = 4. A routine check gives the congestions and latencies in Table 1.

36 X. Chen and Z. Diao

€1 Table 1. Edge congestions and laten-
S1 So cies in Fy.
€2
j 112 3] 4|5
e e (e;) 61313 11 |7
t €4 t Le;(m(ej)) |22 2| 2|2
f(ej) 5/5]12 |10 |8
Fig. 4. Graph F}. Ce;(fe;)) 012 0 02

Since each s;-t; path (i = 1,2) has exactly two edges, each of which suffers
from a link latency 2 under 7, we deduce that m is a NE for (Fy, (s;,t;)2_,,1,),
with £1(Fy, (si,ti)7_q,r) = la(Fy, (s4,t;)?_1,r) = 4. On the other hand, from
fi(ea Ues) = 0 we see that for any ¢ € [2] and any path P € P; with f;(P) > 0,
there holds ¢p(f) < 2. So Fj is not WPO, proving the lemma. O

Building Blocks of WPO Graphs. Our goal is to prove weak Pareto optimal-
ity for building blocks of WPO graphs w.r.t. two commodities. As each graph in
R has linearly independent routes, in view of Theorem 2(i), we focus on building
blocks in C U 7. The following lemma is crucial to our proofs; it exhibits a basic
property of flow allocations on cycles.

Lemma 5. If f and g are flows for 2-commodity routing instance
(G, (si,t;)?_1,r) on undirected cycle G, then there exist i € {1,2} and P € P;
with f;(P) > 0 such that f(e) > g(e) for all edges e € P. O

Lemma 6. All undirected cycles are WPO w.r.t. two commodities.

Proof. Given any 2-commodity routing instance (G, (s;,t;)?_;,r,£) on cycle G,
for any flow f and the NE flow 7 of the instance, by Lemma 5, there exist
i€ {1,2} and P € P; with f;(P) > 0 such that f(e) > w(e) for all links e € P.
It follows from the nondecreasing property of £ and the NE property of 7 that
lp(f) > lp(m) > (G, (si,ti)7, 1), implying that 7 is WPO. O

When studying any flow f and the NE flow 7 of a 2-commodity routing
instance on G € 7, an important step is to “sum up” flows on the parallel edges
of G to obtain an imaginary flow on a triangle (which is a cycle), and then apply
Lemma 5 to the imaginary flows on the triangle. This provides four inequalities
comparing the flow allocations of f and 7 such that one of them must be true.
From the valid inequality, we elaborate on the detailed flow allocations on the
parallel edges and reach contradictions assuming f shows that 7 is not WPO.

Lemma 7. All graphs in T are WPO w.r.t. two commodities. O
The proof of Theorem 5. We are now ready to give a wrap-up proof of our
main result on 2-commodity networks.

Proof (of Theorem 5). Assume without of generality that G is connected.

Network Topologies for Weakly Pareto Optimal Nonatomic Selfish Routing 37

(1) = (4i): It suffices to consider the case where G contains a nontrivial block
B. Since G is WPO w.r.t. two commodities, it is WPO w.r.t. single commodity
(considering two origins and two destinations as one, respectively). By Theorem
2(ii), F1 is not a minor of G. It follows from Lemma 2 that B is the only one
nontrivial block of G and B € §. If B ¢ RU7 UC, then B is not WPO w.r.t. two
commodities by Lemma 4. On the other hand, as B is a subgraph, and hence
a topological minor of G, it follows from Lemma 1 that B is WPO w.r.t. two
commodities, a contradiction. So we have B € R U7 UC as desired.

(#4) = (¢): If G has no nontrivial block, then G is a tree. Any routing instance
on G has a unique flow because, given any pair of vertices of G, there is only one
path between them in G. It is instant that G is WPO w.r.t. two commodities.

So we consider the case where G contains a unique nontrivial block B and
B e RUCUT. Lemmas 6 and 7 say that B is WPO w.r.t. two commodities in
case of B € CUT. When B € R, it reduces to a single-commodity network, and
Theorem 2(i) implies B is WPO w.r.t. two commodities.

Suppose for a contradiction that the NE flow 7 of some 2-commodity instance
(G, (8i,ti)?_,r,£) is not WPO. So the instance admits a flow f such that

for eachi € [2],£p(f) < 51.1517131 Lo (m) holds for all P € P; with f;(P) > 0. (4.1)

Observe that for any trivial block (which must be a single edge) of G and
any i € [2], either all s;-t; paths pass through this edge or none of them passes
through it. Thus f(e) = 7(e) and £.(f(e)) = Le(n(e)) for any trivial block e of
G. Therefore (4.1) implies that for each ¢ € [2], B contains at least one edge
from some s;-t; path, and therefore at least one edge from all s;-t; paths. Since
B is a block, it follows that for each i € [2], there exist two vertices s} and ¢
in B such that P, = {PN B : P € P;} is the set of s,-t; paths in B. We now
construct a 2-commodity routing instance (B, (s}, t:)?_;,r,¢'), where ¢ is the
restriction of £ to B. For each g € {f, =}, define g} : P/ — Ry (i = 1,2) by
gi(PNB) = g(P), P € P;. It is easy to see that f' and &’ are, respectively, a
flow and a NE flow of (B, (s}, t,)?_;,r,¢"). Notice from (4.1) that for each i € [2],
Cp(f') < mingreps £/ (') holds for all P" € P; with f/(P’) > 0, which shows
that B is not WPO w.r.t. two commodities, a contradiction.

(#4) < (741): The implication (i) = (4¢7) is trivial. Conversely, given graph G
without Fj-minor or Fy-minor, no nontrivial block of G belongs to S\ (RU7T UC)
as noted in the proof of Lemma 4. Then (i¢) is instant from Lemma 2. O

WPO Digraphs. The task of characterizing WPO digraphs w.r.t. two com-
modities would be very challenging if not intractable. A good starting point
might be investigating the relations between WPO digraphs w.r.t. two com-
modities and those w.r.t. single commodity. Clearly, the former digraph class Dy
is a subset of the latter digraph class D;. On the other hand, all digraphs we have
found in D; belong to Ds. It would be interesting to discover a digraph to show
the nonemptyness of D; — D,, or prove the surprising relation that D; = Ds.

38 X. Chen and Z. Diao

5 Concluding Remarks

In the paper, we have obtained network characterizations for weak Pareto opti-
mality of nonatomic selfish routing in the cases of single commodity and undi-
rected two commodities.

As far as directed networks are concerned, Theorem 4 is a natural extension
of Milchtaich’s characterization [8] for single-commodity undirected networks to
the directed case. On the other hand, the study for two or more commodities
might be inherently difficult, due to directional structures which usually do not
admit concise descriptions, and are not so algorithmically friendly.

Regarding the undirected case, we have an almost complete solution for char-
acterizing weak Pareto optimality. Complementary to Theorems 2 and 5, the
investigation of 3-commodity case provides the following negative result.

Theorem 6. If G is a graph that contains a cycle of length at least 6, then G
is not WPO w.r.t. k commodities for any k > 3. O

Theorem 6 implies that the class of WPO graphs G w.r.t more than two
commodities would be extremely limited. Assuming G is connected, we deduce
from Theorems 5 and 6 that GG is a tree, or G has a unique nontrivial block and
it belongs to R, or G has a unique nontrivial block and it belongs to 7 or is a
cycle of length at most 5. In the first two cases, G is WPO w.r.t. any number of
commodities. It remains to investigate the weak Pareto optimality w.r.t. k& (> 3)
commodities for graphs in 7 and cycles of length at most 5. To fulfill the task,
we need develop new tools that help us to avoid tedious case analysis.

References

1. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of
Transportation. Yale University Press, New Haven (1956)

2. Braess, D.: Uber ein paradoxon aus der verkehrsplanung. Unternehmensforschung
12(1), 258268 (1968)

3. Chen, X., Chen, Z., Hu, X.: Excluding braess’s paradox in nonatomic selfish rout-
ing. In: Hoefer, M., et al. (eds.) SAGT 2015. LNCS, vol. 9347, pp. 219-230.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48433-3_17

4. Epstein, A., Feldman, M., Mansour, Y.: Efficient graph topologies in network rout-
ing games. Games Econ. Behav. 66(1), 115-125 (2009)

5. Holzman, R., yone (Lev-tov), N.L.: Strong equilibrium in congestion games. Games
Econ. Behav 21(1-2), 85-101 (1997)

6. Holzman, R., yone (Lev-tov), N.L.: Network structure and strong equilibrium in
route selection games. Math. Soc. Sci. 46(2), 193-205 (2003)

7. Holzman, R., Monderer, D.: Strong equilibrium in network congestion games:
increasing versus decreasing costs. Int. J. Game Theory 44, 647-666 (2014)

8. Milchtaich, I.: Network topology and the efficiency of equilibrium. Games and
Econ. Behav. 57(2), 321-346 (2006)

9. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236-259
(2002)

10. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
SIAM J. Comput. 11(2), 298 (1982)

http://dx.doi.org/10.1007/978-3-662-48433-3_17

New Results for Network Pollution Games

Eleftherios Anastasiadis', Xiaotie Deng?, Piotr Krysta'®?,

Minming Li®, Han Qiao*, and Jinshan Zhang'

! Department of Computer Science, University of Liverpool, Liverpool, UK
{e.anastasiadis,p.krysta, jinshan.zhang}@liverpool.ac.uk
% Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

deng-xt@cs.sjtu.edu.cn

* Department of Computer Science, City University of Hong Kong, Hong Kong, China
minming.li@cityu.edu.hk

* School of Management, University of Chinese Academy of Sciences, Beijing, China

giaohan@ucas.ac.cn

Abstract. We study a newly introduced network model of the pollution control
and design approximation algorithms and truthful mechanisms with objective to
maximize the social welfare. On a high level, we are given a graph whose nodes
represent the agents (sources of pollution), and edges between agents represent
the effect of pollution spread. The government is responsible to maximize the
social welfare while setting bounds on the levels of emitted pollution both locally
and globally. We obtain a truthful in expectation FPTAS when the network is
a tree (modelling water pollution) and a deterministic truthful 3-approximation
mechanism. On planar networks (modelling air pollution) the previous result was
a huge constant approximation algorithm. We design a PTAS with a small viola-
tion of local pollution constraints. We also design approximation algorithms for
general networks with bounded degree. Our approximations are near best possi-
ble under appropriate complexity assumptions.

Keywords: Algorithmic mechanism design - Approximation algorithms - Planar
and tree networks

1 Introduction

Environmental degradation accompanies the advance in technology, resulting in global
water and air pollution. As an example, in 2012, China discharged 68.5 billion tons
of industrial wastewater, and the SOy emissions reached 21.2 million tons (National
Bureau of Statistics of China, 2013). The recent annual State of the Air report of the
American Lung Association finds 47 % of Americans live in counties with frequently
unhealthy levels of either ozone or particulate pollution [2]. The latest assessment of

X. Deng was supported by the National Science Foundation of China (Grant No. 61173011)
and a Project 985 grant of Shanghai Jiaotong University. P. Krysta and J. Zhang were supported
by the Engineering and Physical Sciences Research Council under grant EP/K01000X/1. M. Li
was partly supported by a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CityU 117913). H. Qiao was supported by the
National Science Foundation of China (Grant No. 71373262).

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 39-51, 2016.
DOI: 10.1007/978-3-319-42634-1_4

40 E. Anastasiadis et al.

air quality, by the European Environment Agency, finds that around 90 % of city inhab-
itants in the European Union are exposed to one of the most damaging air pollutants
at harmful levels [1]. Environmental research suggests that water pollution is on of the
very significant factor affecting water security worldwide [19]. It is the role of regula-
tory authorities to make efficient environmental pollution control policies in balancing
economic growth and environment protection.

We give new algorithmic results on the pollution control model called a Pollution
Game (PG), introduced in [3], and inspired by [6, 15]. We briefly describe applications
of PG to air pollution control presented in [3]; for precise definition of PG see Sect. 2.
In the first application, the graph’s vertices represent pollution sources (agents) and
edges are routes of pollution transition from one source to another. The government as
the regulator can decide to either shut down or keep open a pollution source (by selling
licences to agents) taking into account the diffusion nature of pollution (emission at one
source affects the neighbors at diminishing level). It sets bounds on global and local
levels of pollution (called global and local constraint(s), resp.), aiming to optimize the
social welfare. The emissions exceeding licences, if any, must be cleaned-up (hence,
agent’s clean-up cost). In the second application [3], vertices represent mayors of cities
and edges the roads between cities. The percentage of cars moving from one city to
another is represented by the weight of the corresponding edge. The model allows the
regulator to auction pollution licences for cars to mayors. The pollution level of an agent
(mayor), i.e., the number of allocated licences and their prices, is set by the regulator.

Here we also consider an application of PG to water pollution in rivers, modelled
by tree networks. In water pollution the government decides which pollution sources
should be shut down so that the effluent level in water is as low as possible. Water
pollution cost sharing was introduced in [17] and the network is a path (single river).
This model was extended to tree networks (a system of rivers) in [10]. We also model a
system of rivers as a tree, but study a different pollution control model, i.e., [3].

Our Results. We present best possible algorithmic results for trees and planar graphs
when we allow a small violation of the constraints on local pollution of every agent
(called a local constraint). Suppose first that the objective function is linear. Then, for
PG on trees we obtain an FPTAS and this is the best we can achieve as PG is weakly
NP-hard [3] on stars. For planar graphs the best known result was a big constant approx-
imation algorithm [3]. We design a PTAS with (1 + d)-violation of the local pollution
constraints for any 0 > 0, and this is tight as we prove that the problem is strongly NP-
hard on planar graphs even with (1 + d)-violations. By using a Lavi-Swamy technique
[16] we prove that our FPTAS for trees leads to a randomized truthful in expectation
mechanism. In addition, we also design a deterministic truthful mechanism on trees
with an approximation ratio 3 + €. Suppose now that the objective function is 2-piece-
wise linear or general and monotone. Then for graphs with degree at most A we obtain
O(A)-approximation algorithms and a Unique Games-hardness within A/ log® A.

Technical Contributions/Approaches. Suppose that the objective functions are linear.
When the network is a directed tree, a somehow non-standard two level dynamic pro-
gramming approach is designed to obtain an FPTAS for PG with binary variables. This
approach is crucial to deal with the global constraint. For that we design an FPTAS for a

New Results for Network Pollution Games 41

Table 1. Our results. TiE/DT: truthful in expectation/deterministic truthful mechanism. PG(poly)
is PG with poly-size integer variables, PG(general) without this assumption.

General objective function|Linear objective function

Bounded degree A Trees Planar
Lower bound Q(bg%) NP-hard Strongly NP-hard (§ violation)
PG(poly) |O(A)® FPTAS TiE | O(1) DT|PTAS (¢ violation)
PG(general) |O(A) TiE® FPTAS TiE® O(1) TIE [3]

“Monotone increasing obj. function. °Piece-wise linear obj. function with one shift and an
additional mild assumption. “Running time is polynomial in q.

special multiple choice, multi-dimensional knapsack problem where coefficients of all
constraints except one are bounded by a polynomial of the input size; this generalizes
the results in [7]. A similar idea is applied to design deterministic truthful mechanisms
on trees and a PTAS for PG on planar graphs with (1 + §)-violations.

To obtain our PTAS for planar PG with (1 + 6)-violations, we first use known
rounding techniques (e.g., [8, 14]) to make all the coefficients polynomially bounded.
Then, we design a dynamic programming approach to solve PG on graphs with bounded
tree-width tree decomposition. Finally, we combine a special (called nice) tree decom-
position of k-outerplanar graphs, Baker’s shifting technique and our two-level dynamic
programming approach for dealing with the global constraint, obtaining our PTAS.

Even when polluters’ cost functions are linear with a single parameter, simple
monotonicity is not sufficient to turn our algorithms into truthful mechanisms. This
is because polluters’ utility functions have externalities — they are affected by their
neighbours. Thus, we need to use general techniques to obtain truthful mechanisms:
maximal in range mechanisms (for deterministic truthfulness) and maximal in distrib-
utional range mechanisms (for truthfulness in expectation). The deterministic truthful
mechanism for trees uses a maximum in range technique (Chaps. 11 and 12 in [18]).

For piece-wise linear objective functions on bounded degree graphs we prove that
PG is A column sparse so a randomized algorithm of [5] is applicable. For general
monotone objective functions on bounded degree graphs we prove that the objective
function is submodular and use randomized rounding with alterations.

Organization. Our results are summarized in (Table 1). Section 2 contains definitions
and preliminaries, and our results on trees are in Sect. 3. Section 4 presents our results
on planar graphs, and, finally, Sect. 5 discusses general objective functions. All missing
details and proofs will appear in the full version.

2 Preliminaries

Model and Applications. We describe the model and mention two applications follow-
ing [3] to gain an intuition. Consider an area of pollution sources (e.g. factories) each
owned by an agent. The government’s goal as a regulator is to optimize the social wel-
fare, restricting levels of emitted pollution. Thus, given a weighted digraph G = (V, E),
where V is the set of n pollution sources (players, agents) and edge (u,v) € E means
u and v are geographic neighbours, i.e., (u,v) € F if the pollution emitted by u affects

42 E. Anastasiadis et al.

v. For each (u,v) € FE weight W(y,v) = Wyy 18 @ discount factor of the pollution dis-
charged by player u affecting its neighbour v. W.l.o.g., wy, € (0,1],V(u,v) € E.
The government sets the total pollution quota discharged to the environment (by the
number of pollution sources that remain open)tobe p > >~ 2., where z,, € {0,1}
denotes if pollution source v € V will be shut down or not. Each agent v has a non-
decreasing benefit function b, : R>o — R>(, where b, (z,) is a concave increasing
function with b, (0) = 0, representing v’s benefit. Each v has a non-decreasing damage
function d,, : R>¢9 — R, and b, is concave increasing, b, (0) = 0 and d,, is convex
increasing'. Player v’s total welfare r, is v’s benefit minus damage cost: b, (z,) —
dy (IU +> . €55 () wuvxu), where, 65(v) = {u € V : (u,v) € E}, 55(v) =
{v € V : (v,u) € E}. Thus, v is affected via the damage function by his own
pollution if x, # 0 and by the total discounted pollution neighbours. This models that
pollution spreads along the edges of GG. The government decides on the allowable local
level of pollution p,, for every v € V, which imposes the following constraints for
everyv € Viz, < qy, T, + Zu €65 (v) WuvTu < py. The first application assumes
z, € {0,1}and g, = 1, Vv € V and the second z,, € {0,1,...,¢,} and g, € N.
The problem of soc- max R(z) = Y (bu(z) — do(ze + Y wuuay))(1)

ial welfare maximiza- oeV we sz (v)

tion is the following

convex integer program s.t. Z Ty <P 2)
(1)-(4), called a pol- veV

lution game (PG) on Ty + Z WepTu < Pv, Y0 €V 3)
G, where (2) is called wess ()

lobal constraint, (3)

§re local constraints, 2o € {01, a0}, Yo €V @)

and x, + Zu €55 (v) WurTu is the local level of pollution of v. Value g, is decided
by the government and for this application g, = 1. We call (1)-(4), PG with integer
variables (if , € Z) or with binary variables (if =, € {0,1}). For an instance I of
PG, |1| is the number of bits to encode I, and if ¢ € poly(|1|), ¢ = max, cv{q} +1,
we call (1)—(4), PG with polynomial size integer variables.

Basic Definitions. Let / = (G, b,d,p,q) be an instance of PG, b = (b,)ycv,
d = (dy)vev, P = (Pv)vev and @ = (¢u)vev (by is private information of
v and other parameters are public). Let Z be the set of all instances, and X the set
of feasible allocations. Given a digraph G = (V. E), G*" = (V,E""), where
E* = {(u,v) : (u,v) € FEor(v,u) € E}. A mechanism ¢ = (X, P) con-
sists of an allocation X : 7 — X and payment function P : 7 — RLV;)' (X (I) sat-
isfies (2)-(4)). For any vector =, x_,, denotes vector = without its u-th component.
Note, 7, (X (1)) = by(X, (1)) — dop(X (1) + ZuEég(U) Wy Xy (D)) is the welfare of
player v under X (I). A mechanism ¢ = (X, P) is truthful, if for any b_,, b, and
b, (X (by,b—y)) — Py(by,b_y) > 1,(X(b,b_y)) — P, (b,,b_,). A randomized
mechanism is truthful in expectation if for any b_,, b, and b}, E(r,(X (b,,b_,)) —

! [15] uses cost function rather than benefit function, viewed as M, — by, (), with M, a large
constant for any v € V. The cost function is convex decreasing and it is equivalent to b, (z.)
being a concave increasing function. We use benefit function rather than cost function.

New Results for Network Pollution Games 43

Py(by,b_y)) > E(ry (X (b)),b_y)) — Py(b,,b_,)), where E(+) is over the algorithm’s
random bits. OPTC’:T(PG) (OPTE(PG), resp.) denotes the value of the optimal
fractional (integral, resp.) solution of PG on GG. A mechanism is individually rational
if each agent v has non-negative utility when he declares b,,, regardless of the other
agents’ declarations. The approximation ratio of an algorithm A w.r.t. OPTZ(PG)
(tesp. OPTL(PG)) is " (A) = % /T (A) = %), where R(A)
is the objective value of the A’s solution. If unspecified, the approximation ratio refers to
n'". An FPTAS (PTAS, resp.) for a problem P is an algorithm A that for any ¢ > 0 and
any instance I of P, outputs a solution with the objective value at least (1—e)OPT:"(P)
and terminates in time poly(L, |I]) ((1|1])¢ (), resp.), where g is a function indepen-

dent from [. Let 7 = min 222+2,8k;+1 = (e+o0(1))k = O(k), and
" t (17%(1+(%)§))k} ((1)) (k)

[n] = {1,...,n}. We use ‘vertex’ to denote the vertex in a graph and ‘node’ to denote
a vertex of the tree obtained from a tree decomposition of a graph. An undirected graph
is an outerplanar if it can be drawn in the plane without crossings in such a way that all
of the vertices belong to the unbounded face of the drawing. An undirected graph G is
k-outerplanar if for £ = 1, G is outerplanar and for £ > 1, G has a planar embedding
such that if all vertices on the exterior face are deleted, the connected components of
the remaining graph are all (k — 1)-outerplanar. An planar graph is k outerplanar where
k can be equal to +o0. A digraph is called a planar graph if its undirected version is
planar. We consider some standard embedding of a planar graph and define level k ver-
tices in a planar embedding F of a planar graph G. A vertex is at level 1 if it is on
the exterior face. Call a cycle of level ¢ vertices a level ¢ face if it is an interior face
in the subgraph induced by the level ¢ vertices. For each level i face f, let Gy be the
subgraph induced by all vertices placed inside f in this embedding. Then the vertices
on the exterior face of Gi; are at level 7 + 1.

In Sects.3 and 4 we assume that b, and d, are both linear with slopes s and s!
respectively, i.e., b,(z) = sz and d,(y) = sly, for any v € V. The social wel-

P _ _ 0 1 1
fare function is R(x) = > . wyTy, Where w, = s — s, — Zue%(v) S Wy

(R(.’ﬂ) = ZUGV b”(‘rv) - dv(xﬂ + Zueéé(v) wuvxu) = ZUGV sng - S},(CL’U +
Zu€55(v) ’U.)uvl’u) = Zq;evwvxv)~

3 Directed Trees

Truthful in Expectation Mechanisms. A digraph G is called a directed tree if the
undirected graph G*" is a tree. We consider trees where arcs are directed towards the
leaves. We obtain our truthful in expectation FPTAS for PG with binary variables on
any directed trees by a two-level dynamic programming (DP) approach (used also in
Sect. 4). The first bottom-up level is based on a careful application of the standard single-
dimensional knapsack FPTAS. The second level is by an interesting generalization of an
FPTAS of [7] for a special multi-dimensional knapsack problem, see (I P,) below, with
a constant number of constraints most of which have poly(|I]) size of coefficients. This
FPTAS generalizes the results in [7], where the authors consider the one dimensional
knapsack problem with cardinality constraint; it will appear in our paper’s full version.

44 E. Anastasiadis et al.

We will also need the following tool from mechanism design for packing problems.
An integer linear packing problem with binary variables is a problem of maximising
a linear objective function over a set of linear packing constraints, i.e., constraints of
forma -« < bwhere z € {0,1}" is a vector of binary variables, and a,b € RZ.

Proposition 1 [/1]. Given an FPTAS for an integer linear packing problem with binary
variables, there is a truthful in expectation mechanism that is an FPTAS.

We first present an FPTAS without constraint (2) which captures our main technique.
Warmup (Without Global max }_, o, (M2, + Mg (1 — 2y,)) + wo

Constraint). The algorithm st. 14+ w,, + 27:2 € o] WuivTu; < Po, (IP)
uses a DP and FPTAS for xu, € {0,1}, Vi € [ny,]
knapsack as a subroutine. Note, on a star, any instance of knapsack can be reduced
to PG without global constraint. Thus FPTAS is the best possible for such PG unless
P=NP.

We keep four values for each v € V. Suppose v’s father is v’, let M{ji/ni“ denote
the optimal value of PG on subtree rooted at v when both v’ and v are selected in the

. . . 5 ’ ’ .
solution. Similarly, we have M7 %, M7 " and M} " Let u;, ¢ = 1,2,...,n, denote

children of v. Suppose M1 =MD MU and MU have been calculated, for any

u;in? u;out> u;in u;out
i = 1,...,n,. Some of them are undefined due to infeasibility. Now, calculate M? ™.
Observe, MY, is equal to the optimal value of the knapsack (IP;), where M, 571?11 and
M5, have finite values (otherwise remove them). If this knapsack problem has a fea-
sible solution, we get value Mgi/ni“, otherwise set M;’i/;“ undefined. Similarly, calculate
Mﬁ;l‘]‘:, M 5{;’“ and ij;ﬁ{“ Thus, at each step if we calculate an optimal solution, it will

be obtained by above DP approach. For knapsack with n,, variables, there is an FPTAS.
Hence, at each step we get approximate value MY > (1 —) M ™ in poly-time in n,
and % by knapsack’s FPTAS; similarly for other three values. Thus, in the final solution,
Moot > (1 — €)% M,.00¢, where k is the number of levels of the tree and M,.,; is PG’s
optimal value without global constraint, terminating in poly(|I|, 1) time; |I| is the input
size. Set 1 —¢ = (1—¢€)*, then e = O(%). The run time is poly(|1], £) = poly(|1], 1)
due to k < |I|, giving FPTAS for PG without global constraint.

W.Lo.g., suppose p <, other- max Y-, ¢ 1, 1D, ¢ 1y (MU (8)xis + M (5)yis)

wise let p = n. For each vertex s.t. Zie (0] > s €] s(xis +yis) <l —1,

v, we keep 4p values. Let v’s S o(@is +yis) =1, Vi € [ny] (IP,)
father be v/, and let MY " (s) L+ werp + 3¢ m][wu.v(foo Zis)] < po,
be the optimal value of PG on Tis,Yis € {0,1}, % c [nv],(s_e [p]

the subtree rooted at v when
both v" and v are selected in the solution, and the total pollution level allocated to
the subtree rooted at v is < s, s = 0,1, ..., p. Similarly, we have M2 %(s), MY °"(s)

vout vin
and MU.%"(s). Let u;, i € [n,] denote the children of v. Suppose MY (s), MEm(s),
Mo (s) and Mo (s) have been calculated, for any i € [n,] and s = 0,1,...,p.
Some of them are undefined due to infeasibility. Note, M™% (0), M2%(0) are unde-
fined and M % (0) = My™ (0) = 0. Now, calculate MYin(¢). Observe, MYi"(¢)

is equal to the optimal value of the knapsack problem (I P) (called KNAPSACK,, (£))
plus w,,. If MY (s) and MY (s) are undefined, they are removed from KNAPSACK,,

u;in u;out

New Results for Network Pollution Games 45

(¢). Note, z;0 = 0, for any i € [d]. If KNAPSACK, (£) has a feasible solution, we
get the value M2 "(¢), otherwise set MY, " (¢) undefined. Similarly, calculate M2 (¢),

vin vin vout

M &n"“‘(é) MYou(0), 0 =0,1,...,p. From the analysis of DP without global constraint,
if there is an FPTAS for KNAPSACK,, (¢), then there is one for KNAPSACK o0t (p), and
so an FPTAS for PG with binary variables on directed trees. Note, the second constraint

in (I P,) can be replaced by > 7_ (2is + vis) < 1,Vi € [n,]. Then, by Proposition 1:

Theorem 1. There is a truthful in expectation mechanism for PG with binary variables
on directed trees, which is an FPTAS.

For x, € Z, we can replace each z,, by g, duplicated variables z,;, j = 1,--- , gy,
e, {zn € {0,1,...,q}} = {30 c (g J0ui | 20 c (g @vi < Liww; € {0,1}}
This transforms a poly-size integer constraint into a multiple choice, one dimensional
knapsack constraint. Hence, for directed trees, by a DP, we can construct a pseudo poly-
time algorithm to compute the exact optimal value of PG with integer variables, in time
poly(|V|,q, OPT™(PQ)). And, we can remove O PT"(PG) from the running time
losing an € by scaling techniques, implying a (1 — ¢)-approximation algorithm for PG
with integer variables with time poly(|V|, g, 1/€). By Proposition 1:

Theorem 2. There is a truthful in expectation mechanism for PG with polynomial size
integer variables on directed trees, which is an FPTAS.

Deterministic Truthful Mechanisms. We use a maximal in range (MIR) mechanism
for PG with polynomial size integer variables on directed trees. By transformation from
integer constraint into multiple choice and one dimensional knapsack constraint, we
know we only need to show such approximation algorithm for binary variables. Based
on recent deterministic truthful PTAS for 2 dimensional knapsack? [8,9, 14] we obtain:

Theorem 3. There is a deterministic (7™ = 3 + €)-approximation truthful mechanism

for PG with polynomial size integer variables on directed trees, which for binary vari-
. . 1 .

ables terminates in O(|V |2 A5T <) time.

4 Planar Graphs

A PTAS with d-violation: Our approach to obtain a PTAS has three main steps:

1. Round PG to an equivalent problem PG5 with polynomial size integer variables.

2. Using the nice tree decomposition, we present a dynamic programming approach to
solve PG optimally on an k-outerplanar graph.

3. By a shifting technique similar to [4], we obtain a PTAS with 1 + § violation.

Step 1: Rounding Procedure. Recall that PG is equivalent to maximizing Z cv Woly
subject to constraints (1)~(3) where w, = max{0,s) — s} — Zue 55 () S 1w,y } and

Wy, = 1Yv € V, and b, and d, are both linear with slopes s0 and s!. For each

% This PTAS also works for multiple choice and constant dimensional knapsack problem, which
will be used for PG with polynomial size integer variables.

46 E. Anastasiadis et al.

v € V,suppose g, € [2°°71—1,2° —1). Leto, = |logy(qy)] +1if g, # 2°v~1—1
and o, = |logy(qy)] +2 otherwise; ¢}, = 21,4 € [0, —1]and ¢J* = g, —2° "+ 1.
Notice, {z, |2y € Z,0 <z, < g} = {0, iyl |ye € {0,1},i € [o,]}, for any
v € V. Thus, PG is equivalent to the following integer program (denoted as PG’):

max Zvevzz 1 Wo vyv (PG") | max Zvevzl 1 Wo va (PfGl)

s.t. ZUEVZOU vyv—pv | StZUeVZOU vyv—p
Yo € Vi 300 wypctyi+ ' | Yo e Vi S0 wiyi+ '
+Eu€5c U) Zz:l_wu’vcuy'z S Do, | +ZUE5G(’U) 21:1_“%@3/:; S pv
Yo € Vi € [o,]: vl € {0,1}, | Yo € Vi € [o,]: v}, € {0,1}

Let 0 = max, ¢ v 0, and p = o*|V|. Recall that ¢ = max, ¢ v{g,} + 1. For any
§ > 0, let w, = L%J and p, = [?T”ép] = [22], for any u,v € V. Then we
have the following modified PG’ (denoted as PG — see above).

Lemma 1. Any feasible solution of PQ' is feasible in PG, and any feasible solution
of PG is feasible for PG except violating each local constraint by a factor of 1 + 4.

Proof. We only prove local constraints for each direction since the proof of the global
constraint is similar. Let {vitvevie [0, be a feasible solution of PG'. We know that

Zz 1wUUcvyv + Zueé (v) Zz lwuvcuyv < Pos Vv € V. Then Zz lwvvyv +

Due 55 (v) oty Wy, < ;Up(; (O, wouchyl, + Eueac (v) S wawchyl) <
p2vp§ pv < Do as desired. On the other hand, suppose {y%}, e v, ; e [o,] is a feasible solu-
tion of PG1. We know Y°7%, wl yl + 3 o 55(v) S Wyl < Py, Yo € V. Then
2521 Wy Chyh+ Zueé v) Z =1 Wyt < % [Z?U (w0}, + Dyi+ Zueéa(v)
S (W + VYL S B0 + L g) i Tty + B2 < P54+ B30 <

Bl(2 1)+ 20 <pv(1—|—5) Yo e V. O
max Y wev Woly (PGs) Note, for each ¢ € [q],
s.t. Swev v <P there is a solution {y}};c o, S.t.
Vo € V ity (20) + 2oy € 62 (o) Duv(Tu) < Po Sov eyl = £. We use the fol-
Yo eViz, €A, lowing solution: If £ < 20v—1 _ 1,
set v = 0 and there is a unique solution Y ;*, ciy! = £; If 2°0~1 — 1 <l < qu,
set yo* = ¢, — 2°°~! + 1 and there is also a unique solution s.t. Y 7%, ciyl = /.

Hence, there is one-to-one correspondence from z,, to {y’}; [0,]- Notice that for a
given z,, the above defined solution {yi}ieo,) is the one such that pyad we,yl +
Zueéc) oot wh,yl is minimized. Now let Wy, () = > oo, W, ys, for any
v,u € V, where {y};c l0,] 18 according to the above solution corresponding to .
Let A, = [g,]U{0}. Thus, PG, (also PG) is equivalent to the integer program (denoted
as PG4, see above).

Step 2: Preliminaries of Tree Decompositions on k-Outerplanar Graphs.

New Results for Network Pollution Games 47

Definition 1. A tree decomposition of an undirected graph G = (V,E) is a pair
{Xili € I}, T = (I, F)), with {X;|i € I} afamily of subsets of V, one for each
node of T, and T a tree such that: (1) J; c ; Xi = V, (2) for all edges (v,w) € E,
there exists an i € I withv € X, and w € X;, (3)foralli, j, k € I:ifjis
on the path from i to k in T, then X; N X C Xj. The width of a tree decomposi-
tion ({X;li € I}, T = (I, F)) is max; ¢ 1 | X;| — 1. The minimum width of all tree
decompositions of G is called treewidth.

Definition 2. A tree decomposition ({X;|i € 1}, T = (I, F)) of G = (V, E) is called
a nice tree decomposition if T is a rooted binary tree and (1) if a node i € I has two
children j and k, then X; = X; = X}, (joint node), (2) if a node i € I has one child
J, then either X; C X, and | X;| = |X;| — 1 (forget node), or X; C X; and | X;| =
| X;| — 1 (introduce node), (3) if node i € 1 is aleaf of T, then | X;| = 1 (leaf node).

Lemma 2 [12]. For any k-outerplanar graph G = (V, E), there is an algorithm to
compute a tree decomposition ({X;|i € I}, T = (I, F)) of G with treewidth at most
3k —1=0(k), and I = O(|V]) in O(k|V|) time.

Given a tree decomposition ({X;|i € I}, T = (I, F)) for G = (V, E) with treewidth k
and I = O(|V|), we can obtain a nice tree decomposition with the same treewidth & and
the number of nodes O(k|V|) in O(k?|V|) time [13]. Thus, for any k-outerplanar graph
G = (V, E), we can compute a nice tree decomposition ({X;|i € I}, T = (I, F)) of
G with treewidth at most 3k — 1 = O(k), and I = O(k|V|) in O(k?|V|) time. In the
following, we suppose there is a nice tree decomposition for any k-outerplanar graph.

Dynamic Programming (DP). A DP to solve PG5 on a k-outerplanar digraph is pre-
sented by using a nice tree decomposition of its undirected version. Note, a nice tree
decomposition of an undirected version of digraph is also a nice tree decomposition of
itself. Given nice tree decomposition ({X;|i € I}, T = (I, F)) of a k-outerplanar
digraph G = (V, E), using a bottom-up approach, DP for PG5 works as follows.

For any node i € I, suppose X; = {v, v}, .-+ vi}, where t < 3k. We also say
vertex vi belongs to node X;, similarly we can say a vertex belongs to a subtree of T,
meaning this vertex belongs to some node of this subtree. Given any emission amount

{7y }vev, recall Wy, (T,) +3 7, ¢ 55 () Wy (24,) 18 the local level of pollution of vertex

v. We use a® = (a},a},--- ,al) to denote the emission amount allocated to vertices in
X, i.e., al denotes the emission amount allocated to the vertex v%, s € [t]. Similarly
£¢ denotes the local levels of pollution of vertices in X;. Let G; denote the subgraph
generated by all the vertices belonging to the subtree (node X;) rooted at X;. We use Q°
to denote the total emission quota allocated to G;. Let £2;(at, £¢, Q%) denote the optimal
objective value of PGy restricted on the subgraph G;, when the emission amount and
local level of pollution of v’ are exactly a’ and (%, s € [t], and the total emission
amount allocated to G is exactly Q. If there is no feasible solution for £2;(a®, £¢, Q?),
we will see that our DP approach will automatically set £2;(a®, £¢, Q") to be —ococ. Let
Wy () = 0if (u,v) is not an edge in G. Note that the range of a’. we need to compute
isin A,, and ¢ is from 0 to Dyis§ € [t], Q% is from O to p. We present the DP approach

48 E. Anastasiadis et al.

— X; is a leaf node or a start node, where t = 1. 2;(a},£],Q") = w,;aj if the triple
(a', €', Q") is feasible, which can be verified easily e.g. Q" = af and £ = @, i (a}).
Let 2;(a%, 01, Q%) = —oo if the triple (a?, £*, Q") is not feasible.

— X; is a forget node, and suppose its child is X; = X; U {fufﬂ}.

2;(a*, £*,Q") = max,; 2i(a* al ,, 0,0, ,,Q")

— X; is an introduce node, and suppose its child is X; = X;\{v;}. Let aZ = a! and
U =l — Wy (af), Vs € [t —1]. 2i(a®, £4,Q") = 2;(a?, 07, Q' — a}) +w,;ay if
s e Duivi (al) = ¢i, and £2;(a®, £¢, Q") = —oo otherwise.

— X is ajoint node, and suppose its two children are X; = Xj, = X;. £2;(a®, €4, Q) =
maxa{£2;(a?, £7,Q7) + 2 (ak, €8, Q*)}, where the condition
A={(a?,05,Q7),(a* €% Q)| a? + aF = at, 07 + €F = ¢, Q7 + QF = Q'}.

- X; is the root of T, OPT(Q") = max,: ,:{§2;(a*,£*,Q")} is the optimal value
(social welfare) of PG5 when total scaled emission amount is exactly Q°, i.e., the
global constraint satisfies >, o by, = Q"

Analysis of Running Time of DP. It is not difficult to see that the above DP approach
gives the correct solution of PG’y on k-outerplanar graphs. For each node X;, we need
to keep O(pg®*[2273%) = O(|V|¢***1[2273%) number of £2; values. Each £2; can be
computed in O(|V|g**+1[22]3%) time (this is the worst case running time when Xj; is
a joint node). There are O(k|V|) nodes in T'. Therefore, the total running time of the
DP approach (by multiplying above three numbers) is O (k|V'|3¢®++2 [27”] 6F).

Based on the above DP approach, we can solve PGo on any k-outerplanar graph
optimally for any fixed & (which includes any directed tree whose treewidth is 2). There-
fore, for any & > 0 and fixed &, we can use VCG (see, e.g., Chap.9 in [18]) to get an
optimal deterministic truthful mechanism for PG on any directed k-outerplanar graph
that violates each local constraint by a factor of § and runs in O(k|V|3¢5*+2 (%16’“)
time (note that Theorem 4 also works for bounded treewidth graphs).

Theorem 4. For any 6 > 0 and fixed k, there is an optimal deterministic truthful mech-
anism for PG on any directed k-outerplanar graph G = (V, E) that violates each
local constraint by a factor of 1 + § and runs in O(k|V|?q%++2 (%16’“) time, where

p = VI([logy(q)] +2).

Step 3: PTAS for Planar Graphs. Observe that when there are some boundary con-
ditions on k-outerplanar, the above DP approach still works. For example, if the emis-
sion amount of any vertex in any first and last face (level 1 and level k face) of the
k-outerplanar graph is zero, we just modify the dynamic programming approach in a
bottom-up manner to set {2; = —oo if any vertex v in any first and last face is a para-
meter of §2; and its emission amount a’, > 0. Then the modified DP approach is the
desired algorithm for PG5 on the k-outerplanar graph under this boundary condition.

Proposition 2. PG is strongly NP-hard on planar graphs with degree at most 3 when
we allow a (1 + §)-violation of local constraints.

Theorem 5. For any fixed k and § > 0, there is an O(k*|V [2¢S**+2[227%) algorithm
for PG with integer variables on directed planar graph G = (V, E) that achieves

New Results for Network Pollution Games 49
0" = £)-approximation and violates each local constraint by a factor of 1 + 6,
k-2
where p = |V|([logz(q)] + 2).

Proof. We use OPT(PG5) to denote O PT2*(PG+) and omit the superscript and sub-
script. By Lemma 1, we know OPT = OPT(PG) < OPT(PG5). Let PG5 (i) denote
the PGy restricted on G by setting -, = 0 for each v who belongs to any face f = i
or i + 1 (modk). Let {z}},cv be an optimal solution for PG5. Then we know
S ie k] ove ffmioriti(modk) Ty = 20PT(PGy). As a consequence, there exists

i € [k] suchthat - ¢ ¢ ¢ —iorit1(modr) To < %(PGZ). Observe that {xy }, c v
is a feasible solution for PGy(i), where z,, = 0 if v belongs to any face f = i or
i+1 (modk) and z,, = x} otherwise. Thus, OPT(PG>(i)) > (1 — £)OPT(PG2) >
(1—2)OPT. Solving each PG5(i), i € [k], then choosing max; ¢ (1) {OPT(PG5(i))}
(which is at least (1 — %)OPT) gives the desired result. Now let us see how to solve
PG5 (i). Note that for PG5(i), ©, = 0 for any v who belongs to any face f = i or
i+ 1 (mod k). PGs(i) consists of independent k' —outerplanar graphs, each of which
has some boundary condition i.e. the emission amount of any vertex in any first and
last face is zero and k' < k. Suppose the number of these independent k’-outerplanar
graphs is L. W.1.o.g. suppose these k’-outerplanar graphs are ordered from exterior to
interior as G5 = (Vi, Es), s € [LY] (e.g. Gy is the subgraph of G constructed by all
the vertices of levels from (s — 2)k +i+ 1to (s — 1)k +1i, s = 2,---, L* — 1, with
boundary =, = 0 if vis of level (s —2)k + i+ 1 or (s — 1)k + 9).

Let £2,(Q*) denote the optimal value if there is a solution such that the total
allocated scaled emission amount to G is exactly (° with boundary condition and
2,(Q*°) = 0 otherwise, which can be solved by the above DP approach on k’'-
outerplanar graphs with boundary conditions. Then, it is not difficult to see the opti-
mal solution for PG'»(4) is the optimal solution of the following integer linear program
(denoted SU B):

max Y0 ¢ i 2 o= 25(Q°)Ysqs Let ¢;(Q) denote the optimal integer

St Dgeini om0 @Ys@s <P value of SUB when only G, s € [t] is

p ne =1 considered and the total emission amount
ZQS:O YsQ

yso- € {0,1}s € [LY], Q* € [p] allocated to these graphs is exactly Q.

Then we have the following recursion function: ¢+(Q) = maxgt =o.1,...,0{gt—1(Q —
Q") + 2:(Q")}. The optimal value of SUB is maxg—o.1,... p{gr:(Q)}, which
gives the optimal solution of PGy (i) by tracking the optimal value of this
dynamic programming approach. The running time of this approach is O(|L?|p?).
Hence, the total running time for obtaining and solving PGy (i) is O(|L|p?) +
Y i) Ok|VS[PqFT2[22765) = O(K|V [3¢SFF2[227%%). We need to solve PGy (i),
for each i € [k] and then get max; ¢ 1){ OPT(PG2(7))}. Therefore, the overall run-
ning time is O(k?[V [>¢%*+2[2276%) and Theorem 5 is proved. O
Let 2 = ¢ in Theorem 5. Also note that p = [V|(|log,(q)] + 2). We have:

o(t)
Theorem 6. There is O (A |V [12/e+8 g2 21082 al+2)a 12/e+1):<7\vlq<10§2 a+2)

time algorithm for PG for fixed §,¢ > 0 on directed planar graph G = (V, E) that

50 E. Anastasiadis et al.

achieves social welfare (1 — €)OPT(PG) and violates each local constraint by a
factor of 1 + 6. This is a PTAS for PG with polynomial size integer variables.

5 General Objective Function for Bounded Degree Graphs

Full details of our results for general objective functions will appear in the full version
of the paper. Our most general algorithmic result is given in Theorem 7.

Theorem 7. Let x, € {0,1} for any v € V. Assume that R(x) is monotone
increasing as set function on sets S C V s.t. v € S iff v, = 1. Then there is an
(n/m = GZA% + 1)-approximation algorithm for PG with integer variables on graphs
with degree < A.

Our hardness results for general objective functions are Theorems 8 and 9. By a reduc-
tion from independent set we get the following:

Theorem 8. PG is Unique Games-hard to approximate within n'~¢ and within log%
Sor G with degree A when p, is any constant number > 1, b,(x,,) is linear and d,(y)

is piecewise linear (with 2 pieces) Vv € V and w.,, is positive constant ¥(v,u) € E.

Theorem 9. It is strongly NP-hard to find an optimal solution to Pollution Game (PG)
when p,, is any constant number > 1, b, (x,) is linear and d,(y) is piecewise linear
(with two pieces) Vv € V and w,,, is positive constant for any (v,u) € E.

References

1. Air quality in Europe - 2014 Report. European Environment Agency Report No. 5/2014.
http://www.eea.europa.eu/publications/air-quality-in-europe-2014

2. State of the Air 2014 Report. American Lung Association, 30 April 2014. http://www.
stateoftheair.org/2014/key-findings/

3. Anastasiadis, E., Deng, X., Krysta, P., Li, M., Qiao, H., Zhang, J.: Network pollution games.
In: AAMAS (2016)

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM
41(1), 153-180 (1994)

5. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: Solving packing integer programs via
randomized rounding with alterations. Theor. Comput. 8(1), 533-565 (2012)

6. Belitskaya, A.V.: Network game of pollution cost reduction. Contrib. Game Theor. Manag.
6, 24-34 (2013)

7. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack
problems with cardinality constraints. Eur. J. Oper. Res. 123(2), 333-345 (2000)

8. Chau, C., Elbassioni, K., Khonji, M.: Truthful mechanisms for combinatorial AC electric
power allocation. In: Proceedings of the 13th AAMAS, pp. 1005-1012 (2014)

9. Dobzinski, S., Nisan, N.: Mechanisms for multi-unit auctions. In: Proceedings of the 8th
ACM Conference on Electronic Commerce, pp. 346-351. ACM (2007)

10. Dong, B., Ni, D., Wang, Y.: Sharing a polluted river network. Environ. Resour. Econ. 53(3),
367-387 (2012)
11. Dughmi, S., Roughgarden, T.: Black-box randomized reductions in algorithmic mechanism

design. SIAM J. Comput. 43(1), 312-336 (2014)

http://www.eea.europa.eu/publications/air-quality-in-europe-2014
http://www.stateoftheair.org/2014/key-findings/
http://www.stateoftheair.org/2014/key-findings/

13.

14.

15.

16.

17.
18.

19.

New Results for Network Pollution Games 51

. Katsikarelis, I.: Computing bounded-width tree, branch decompositions of k-outerplanar

graphs (2013). arXiv preprint arXiv: 1301.5896

Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Sci-
ence, vol. 842. Springer, Heidelberg (1994)

Krysta, P., Telelis, O., Ventre, C.: Mechanisms for multi-unit combinatorial auctions with a
few distinct goods. In: Proceedings of 12th AAMAS, pp. 691-698 (2013)

Kwerel, E.: To tell the truth: imperfect information and optimal pollution control. Rev. Econ.
Stud. 44, 595-601 (1977)

Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming.
J. ACM (JACM) 58(6), 25 (2011)

Ni, D., Wang, Y.: Sharing a polluted river. Games Econ. Behav. 60(1), 176-186 (2007)
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory, vol. 1.
Cambridge University Press, Cambridge (2007)

Vorosmarty, C.J., Mclntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P.,
Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C., Davies, P.M.: Global threats to
human water security, river biodiversity. Nature 467, 555-561 (2010)

http://arxiv.org/abs/1301.5896

Parameterized Complexity
and Algorithms

Polynomial-Time Algorithm for Isomorphism
of Graphs with Clique-Width at Most Three

Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy®"

IIT Gandhinagar, Gujarat, India
{bireswar,endurimuralikrishna,reddy vinod}@iitgn.ac.in

Abstract. The clique-width is a measure of complexity of decomposing
graphs into certain tree-like structures. The class of graphs with bounded
clique-width contains bounded tree-width graphs. We give a polynomial
time graph isomorphism algorithm for graphs with clique-width at most
three. Our work is independent of the work by Grohe and Schweitzer [17]
showing that the isomorphism problem for graphs of bounded clique-
width is polynomial time.

1 Introduction

Two graphs G1 = (V4, E1) and Gy = (Va, Es) are isomorphic if there is a bijec-
tion f : V3 — Vi such that {u,v} € FE; if and only if {f(u), f(v)} € Es.
Given a pair of graphs as input the problem of deciding if the two graphs are
isomorphic is known as graph isomorphism problem (Gl). Despite nearly five
decades of research the complexity status of this problem still remains unknown.
The graph isomorphism problem is not known to be in P. It is in NP but very
unlikely to be NP-complete [5]. The problem is not even known to be hard for P.
Recently Babai [2] designed a quasi-polynomial time algorithm to solve the GI
problem improving the previously best known 2°(v71gn) time algorithm [1,27].
Although the complexity of the general graph isomorphism problem remains elu-
sive, many polynomial time algorithms are known for restricted classes of graphs
e.g., bounded degree [21], bounded genus [23], bounded tree-width [3], etc.

The graph parameter clique-width, introduced by Courcelle et al. in [7], has
been studied extensively. The class of bounded clique-width graphs is fairly large
in the sense that it contains distance hereditary graphs, bounded tree-width
graphs, bounded rank-width graphs [19], etc. Fellows et al. [15] shows that the
computing the clique-width of a graph is NP-hard. Oum and Seymour [24] gave
an elegant algorithm that computes a (2312 — 1)-expression for a graph G of
clique-width at most k or decides that the clique-width is more than k.

The parameters tree-width and clique-width share some similarities, for
example many NP-complete problems admit polynomial time algorithms when
the tree-width or the clique-width of the input graph is bounded. A polynomial

B. Das—Part of the research was done while the author was a DIMACS postdoctoral

fellow.

M.K. Enduri—Supported by Tata Consultancy Services (TCS) research fellowship.
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 55-66, 2016.
DOT: 10.1007/978-3-319-42634-1_5

56 B. Das et al.

time isomorphism algorithm for bounded tree-width graphs has been known for a
long time [3]. Recently Lokhstanov et al. [20] gave an fpt algorithm for Gl parame-
terized by tree-width. The scenario is different for bounded clique-width graphs.
The complexity of Gl for bounded clique-width graphs is not known. Polynomial
time algorithm for Gl for graphs with clique-width at most two, which coincides
with the class of co-graphs, is known probably as a folklore. The complexity of
recognizing graphs with clique-width at most three was unknown until Corneil
et al. [6] came up with the first polynomial time algorithm. Their algorithm
(henceforth called the CHLRR algorithm) works via an extensive study of the
structure of such graphs using split and modular decompositions. Apart from
recognition, the CHLRR algorithm also produces a 3-expression for graphs with
clique-width at most three. For fixed £ > 3, though algorithms to recognize
graphs with clique-width at most k are known [25], computing a k-expression
is still open. Recently in an independent work by Grohe and Schweitzer [17]
designed an isomorphism algorithm for graphs of bounded clique-width sub-
suming our result. Their algorithm uses group theory techniques and has worse
runtime. However our algorithm has better runtime and uses different simpler
intuitive techniques.

In this paper we give isomorphism algorithm for graphs with clique-width
at most three with runtime O(n®m). Our algorithm works via first defining
a notion of equivalent k-expression and designing O(n®) algorithm to test if
two input k-expressions are equivalent under this notion. Next we modify the
CHLRR algorithm slightly to output a linear sized set parseG of 4-expressions
for an input graph G of clique-width at most three which runs in O(n®m) time.
Note that modified CHLRR algorithm will not output a canonical expression.
However we show that for two isomorphic graphs G and H of clique-width at
most three, parseG contains an equivalent k-expression for each k-expression in
parseH and vice versa. Moreover, if G and H are not isomorphic then no pair
in parseG x parseH is equivalent.

2 Preliminaries

In this paper, the graphs we consider are without multiple edges and self loops.
The complement of a graph G is denoted as G. The coconnected components of
G are the connected components of G. We say that a vertex v is universal to a
vertex set X if v is adjacent to all vertices in X \ {v}. A biclique is a bipartite
graph (G, X,Y), such that every vertex in X is connected to every vertex of Y. A
labeled graph is a graph with labels assigned to vertices such that each vertex has
exactly one label. In a labeled graph G, lab(v) is the label of a vertex v and lab(Q)
is the set of all labels. We say that a graph is bilabeled (trilabeled) if it is labeled
using exactly two (three) labels. The set of all edges between vertices of label a
and label b is denoted F,,. We say Eg;, is complete if it corresponds to a biclique.

The subgraph of G induced by X C V(G) is denoted by G[X], the set
of vertices adjacent to v is denoted Ng(v). The closed neighborhood Ng[v] of
v is Ng(v) U {v}. We write G =, H if f is an isomorphism between graphs

Polynomial-Time Algorithm for Isomorphism of Graphs 57

G and H. For labeled graphs G and H, we write G =} H it G =y H and
7 : lab(G) — lab(H) is a bijection such that for all x € V(G) if lab(z) = i then
lab(f(x)) = m(i). The set of all isomorphisms from G to H is denoted ISO(G, H).

Definition 1. The clique-width of a graph G is defined as the minimum num-
ber of labels needed to construct G using the following four operations:

i. v(i): Creates a new vertex v with label i

1. G1 ® Go--- ® Gy: Disjoint union of labeled graphs G1,Ga,- - , G}
iii. m; ;: Joins each vertex with label i to each vertex with label j (i # j)
w. pi—j;: Renames all vertices of label i with label j

Every graph can be constructed using the above four operations, which is repre-
sented by an algebraic expression known as k-expression, where k is the number
of labels used in expression. The clique-width of a graph G, denoted by cwd(G),
is the minimum £ for which there exists a k-expression that defines the graph G.
From the k-expression of a graph we can construct a tree known as parse tree of
G. The leaves of the parse tree are vertices of G with their initial labels, and the
internal nodes correspond to the operations (n; ;, pi—; and @) used to construct
G. For example, C5 (cycle of length 5) can be constructed by

M.3((p3-2(n2,3((1,2(a(1) ©b(2))) & (n1,3(c(3) & d(1)))))) & €(3)).

The k-expression for a graph need not be unique. The clique-width of any induced
subgraph is at most the clique-width of its graph [9].

Now we describe the notions of modular and split decompositions. A set
M C V(G) is called a module of G if all vertices of M have the same set of
neighbors in V(G) \ M. The trivial modules are V(G), and {v} for all v. In
a labeled graph, a module is said to be a [-module if all the vertices in the
module have the same label. A prime (I-prime) graph is a graph (labeled graph)
in which all modules (I-modules) are trivial. The modular decomposition of a
graph is one of the decomposition techniques which was introduced by Gallai
[16]. The modular decomposition of a graph G is a rooted tree TS} that has the
following properties:

1. The leaves of TS} are the vertices of G.

2. For an internal node h of T, let M(h) be the set of vertices of G that are
leaves of the subtree of T§} rooted at h. (M(h) forms a module in G).

3. For each internal node h of Tﬁ there is a graph G}, (representative graph)
with V(Gp) = {h1,h2, -+, hy}, where hy, ha,--- , h, are the children of h in
Tﬁ and for 1 <i < j <r, h; and h; are adjacent in G, iff there are vertices
u € M(h;) and v € M(h;) that are adjacent in G.

4. Gy, is either a clique, an independent set, or a prime graph and h is labeled
Series if Gy, is clique, Parallel if Gj is an independent set, and Prime
otherwise.

James et al. [18] gave first polynomial time algorithm for finding a modular
decomposition which runs in O(n?) time. Linear time algorithms to find modular
decompositions are proposed in [10,26].

58 B. Das et al.

A vertex partition (A, B) of a graph G is a split if A = AN N(B) and B =
BNN(A) forms a biclique. A split is trivial if | A| or | B| is one. Split decomposition
was introduced by Cunningham [11]. Loosely it is the result of a recursive process
of decomposing a graph into components based on the splits. Cunningham [11]
showed that a graph can be decomposed uniquely into components that are stars,
cliques, or prime (i.e., without proper splits). This decomposition is known as
the skeleton. For details see [12]. A polynomial time algorithm for computing
the skeleton of a graph is given in [22].

Theorem 1 [12] (See [6]). Let G be a connected graph. Then the skeleton of G is
unique, and the proper splits of G correspond to the special edges of its skeleton
and to the proper splits of its complete and star components.

Organization of the Paper: In Sect.3 we discuss Gl-completeness of prime
graph isomorphism. In Sect.4 we define a notion of equivalence of parse trees
called structural isomorphism, and give an algorithm to test if two parse trees
are structurally isomorphic. We give an overview of the CHLRR algorithm [6]
in Sect. 5. In Sect. 6, we present the isomorphism algorithm for prime graphs of
clique-width at most three. We modify the CHLRR algorithm suitably to output
structurally isomorphic parse trees for isomorphic graphs, the proof of this can
be found in full version of the paper [14].

3 Completeness of Prime Graph Isomorphism

It is known that isomorphism problem for prime graphs is Gl-complete [4]. There
is an easy polynomial time many-one reduction from Gl to prime graph isomor-
phism! (see [14]). Unfortunately, this reduction does not preserve the clique-
width. We also give a clique-width preserving Turing reduction from Gl to prime
graph isomorphism which we use in our main algorithm. The reduction hinges
on the following lemma.

Lemma 1 [8]. G is a graph of clique-width at most k iff each prime graph asso-
ciated with the modular decomposition of G is of clique-width at most k.

We next show that if we have an oracle for Gl for colored prime graphs of
clique-width at most & then there is a Gl algorithm for graphs with clique-width
at most k.

Theorem 2. Let A’ be an algorithm that given two colored prime graphs G' and
H' of clique-width at most k, decides if G' = H' via a color preserving isomor-
phism. Then there exists an algorithm A that on input any colored graphs G and
H of clique-width at most k decides if G =2 H wvia a color preserving isomorphism.

Proof. Let G and H be two colored graphs of clique-width at most k. The
algorithm is similar to [13], which proceeds in a bottom up approach in stages
starting from the leaves to the root of the modular decomposition trees T¢x and

! In fact, it is an AC® reduction.

Polynomial-Time Algorithm for Isomorphism of Graphs 59

Ty of G and H respectively. Each stage corresponds to a level in the modular
decomposition. In every level, the algorithm .4 maintains a table that stores
whether for each pair of nodes x and y in T and Ty the subgraphs Glz| and
H{y] induced by leaves of subtrees of T and Ty rooted at x and y are isomorphic.
For the leaves it is trivial to store such information. Let u and v be two internal
nodes in the modular decomposition trees of Tz and Ty in the same level. To
decide if G[u] and H[v] are isomorphic A does the following.

If u and v are both series nodes then it just checks if the children of v and
v can be isomorphically matched. The case for parallel node is similar. If v and
v are prime nodes then the vertices of representative graphs G, and H, are
colored by their isomorphism type i.e., two internal vertices u; and us of the
representative graphs will get the same color iff subgraphs induced by leaves of
subtrees of T¢ (or Ty) rooted at uy and ug are isomorphic. To test Glu] = H[v],
A calls A’(Gu,H), where G, and H, are the colored copies of G, and H,
respectively. At any level if we can not find a pairwise isomorphism matching
between the internal nodes in that level of Ty and Ty then G = H. In this
manner we make O(n?) calls to algorithm A’ at each level. The total runtime of
the algorithm is O(n3)T(n), where T'(n) is run time of A’. Note that by Lemma 1
clique-width of GG, and H, are at most k. a

4 Testing Isomorphism Between Parse Trees

In this section we define a notion of equivalence of parse trees called struc-
tural isomorphism, and we give an algorithm to test if two given parse trees are
equivalent under this notion. As we will see, the graphs generated by equivalent
parse trees are always isomorphic. Thus, if we have two equivalent parse trees
for the two input graphs, the isomorphism problem indeed admits a polynomial
time algorithm. In Sect. 6, we prove that the CHLRR algorithm can be tweaked
slightly to produce structurally isomorphic parse trees for isomorphic graphs
with clique-width at most three and thus giving a polynomial-time algorithm
for such graphs.

Let G and H be two colored graphs. A bijective map 7 : V(G) — V(H)
is color consistent if for all vertices u and v of G, color(u) = color(v) iff
color(m(u)) = color(mw(v)). Let w : V(G) — V(H) be a color consistent map-
ping, define m/color : color(G) — color(H) as follows: for all ¢ in color(G),
m/color(c) = color(m(v)) where color(v) = c. It is not hard to see that the map
w/color is well defined. Recall that the internal nodes of a parse tree are 7; j,
pi—; and @ operations. The levels of a parse tree correspond to @ nodes. Let
T, be a parse tree of G rooted at ® node g. Let g1 be descendant of g which is
neither n nor p. We say that g; is an immediate significant descendant of g if
there is no other @ node in the path from g to g;. For an immediate significant
descendant g, of g, we construct a colored quotient graph @g, that corresponds
to graph operations appearing in the path from g to g; performed on graph Gy,
where G, is graph generated by parse tree T, . The vertices of @4, are labels of
Gy, . The colors and the edges of @4, are determined by the operations on the

60 B. Das et al.

path from g to g. We start with coloring a vertex a by color a and no edges. If
the operation performed is 1,5 on G4, then add edges between vertices of color
a and color b. If the operation is p,—, on G4, then recolor the vertices of color a
with color b. After taking care of an operation we move to the next operation on
the path from g; to g until we reach @ node g. Notice that if the total number
of labels used in a parse tree is k then the size of any colored quotient graph is
at most k.

Definition 2. Let T, and T), be two parse trees of G and H rooted at & nodes
g and h respectively. We say that Ty and T}, are structurally isomorphic via a
label map 7 (denoted Ty =™ T},)

1. If Ty and T), are single nodes® or inductively,
2. If Ty and T}, are rooted at g and h having immediate significant descendants

91,9y and hy, -+, h., and there is a bijection 7 : [r] — [r] and for each
i there is a m; € ISO(Qy,, Qn,,,) such that Ty, =™ T),_ . and m;/color =
7r|col07‘(Qg.); where Ty, ,--- Ty, and Ty, ,--- Ty, are the subtrees rooted at

g1, - ,gr and hy,--- , h, respectively’

We say that T, and T) are structurally isomorphic if there is a 7 such that
Ty, =" T,

The structural isomorphism is an equivalence relation: reflexive and sym-
metric properties are immediate from the above definition. The following lemma
shows that it is also transitive.

Lemma 2. LetT,,, Ty, andT,, be the parse trees of G1, G2 and G3 respectively
such that Ty, =™ Ty, and Ty, =™ Ty, then T, =™ T, .

Proof. The proof is by induction on the height of the parse trees. The base
case trivially satisfies the transitive property. Assume that gi, go and g3 are
nodes of height d 4+ 1. Let g1; be an immediate significant descendant of g¢;.
Since Ty, =™ T,,, there is an immediate significant descendant go; of g¢o
and m1; € 1SO(Qyg,,, Qo) such that m;/color = 7|cotor(q,,,) and Ty, =™
Ty,,- Similarly, go; will be matched to some immediate significant descendant
g3k of g3 via my; € 1SO(Qy,,, Qy,,) such that my;/color = 7r|colmn(ngj) and
Ty,; =™ Tg,,. The nodes g1, g2; and gsx has height at most d. Therefore,
by induction hypothesis T,,, =™ T, . By transitivity of isomorphism we
can say m;m1; € 1ISO(Qg,,, Qg)- To complete the proof we just need to show
To; 13/ color = momy Icolor(Qg“)- This can be inferred from the following two facts:

(1) mojm1;/color = maj/color my;/color
(2) 7T2’n—1‘colo7"(Q‘,,1i) = 7T2|colo7"(Q92j) 7T1|color(QgM)~ g

2 In this case they are trivially structurally isomorphic via 7.

3 Notice that this definition implies that Gy, and th(i) are isomorphic via the label
map m; where G4, and H, hysy T€ graphs generated by the parse trees Ty, and T})
respectively.

Polynomial-Time Algorithm for Isomorphism of Graphs 61

Algorithm to Test Structural Isomorphism: Next we describe an algorithm
that given two parse trees Te and Ty tests if they are structurally isomorphic.
From the definition if T¢ =™ Ty then we can conclude that G and H are
isomorphic. We design a dynamic programming algorithm that basically checks
the local conditions 1 and 2 in Definition 2.

The algorithm starts from the leaves of parse trees and proceeds in levels
where each level corresponds to & operations of parse trees. Let g and h denotes
the @ nodes at level | of T and Ty respectively. At each level [, for each pair of
@ nodes (g, h) € (Te,Th), the algorithm computes the set ng’h of all bijections
7 : lab(Gy) — lab(Hy) such that Gy =F Hj, for some f, and stores in a table
indexed by (I, g, h), where G4 and H}, are graphs generated by sub parse trees T
and T}, rooted at g and h respectively. To compute R} 7h, the algorithm uses the

gi,hj

already computed information R’

descendants of g and h.
The base case correspond to finding R‘lq’h for all pairs (g, h) such that g and
h are leaves. Since in this case G, and H}, are just single vertices, it is easy to

where g; and h; are immediate significant

find Rf’h. For the inductive step let g1,--- , g and hq,--- , h,v be the immediate
significant descendants of g and h respectively. If 7 # r/ then R} " — (). Otherwise
we compute R} " for each pair (g, h) at level [with help of the already computed
information up to level [4+ 1 as follows.

For each 7 : lab(G,) — lab(Hp) and pick gi and try to find a h;, such

that Ty, =™ Ty, for some m € 1SO(Qy,, Qn,,) N R?i’lhil such that m /color =
7T|wlor(le). We do this process to pair g2 with some unmatched h;,. Continue in
this way until all immediate significant descendants are matched. By Lemma 3,
we know that this greedy matching satisfies the conditions of Definition 2. If all
the immediate significant descendants are matched we add « to R} Tt s easy
to see that if ng’h #) then the subgraphs G =% Hy, for 7 € ng’h. From the

definition of structurally isomorphic parse trees it is clear that if Rg’h # () then
G = H. The algorithm is polynomial time as the number of choices for = and
71 is at most k! which is a constant, where |lab(G)| = k.

Note that for colored graphs, by ensuring that we only match vertices of
same color in the base case, the whole algorithm can be made to work for colored
graphs. In Lemma 2 we prove that structural isomorphism satisfies transitivity.
In fact, structural isomorphism satisfies a stronger notion of transitivity as stated
in the following lemma.

Lemma 3. Let T, and T}, be two parse trees of graphs G and H. Let g1 and go
be two tmmediate significant descendants of g, and hy and hs be two immediate
significant descendants of h. Suppose for i = 1,2, T, =™ T}, for some m; €
1SO(Qg,, Qn,) with m;/color = 7T|COlOT(Qgi). Also assume that Ty, =™ T, where
w3 € ISO(Qg,, Qn,) and ws/color = 7T|color(Qg1)' Then, Tg, ymimy Ty, where

7717T§1772 € 15S0(Qq,,Qnr,) and 7T17r§17rg/col0r = 7T|COZOT(Q92).

Proof. By Lemma?2, Ty, iy w2 Th,. The rest of the proof is similar to the
proof of the inductive case of Lemma 2. O

62 B. Das et al.

5 Overview of the CHLRR Algorithm

Corneil et al. [6] gave the first polynomial time algorithm (the CHLRR algo-
rithm), to recognize graphs of clique-width at most three. We give a brief descrip-
tion of their algorithm in this section. We mention that our description of this
fairly involved algorithm is far from being complete. The reader is encouraged
to see [6] for details. By Lemma 1 we assume that the input graph G is prime.

To test whether clique-width of prime graph G is at most three the algorithm
starts by constructing a set of bilabelings and trilabelings of G. In general the
number of bilabelings and trilabelings are exponential, but it was shown (Lem-
mas 8 and 9 in [6]) that it is enough to consider the following linear size subset
denoted by LabG.

1. For each vertex v in V(G)
[B1] Generate the bilabeling{v} and add it to LabG.
[Bz] Generate the bilabeling {x € N(v) | N[z] C N[v]} and add it to LabG.
2. Compute the skeleton of G search this skeleton for the special edges, clique
and star components.

[T1] For each special edge s (corresponds to a proper split), generate the
trilabeling X,Y, V(G) \ (X UY) where (X,Y) is the split defined by s
and add it to LabG.

[B3] For all clique components C, generate the bilabeling C' and add it to
LabG.

[B4] For all star components S, generate the bilabeling {c}, where ¢ is the
special center of S, and add it to LabG.

Lemma 4 [6]. Let G be a prime graph. Clique-width of G is at most three if and
only if at least one of the bilabelings or trilabelings in LabG has clique-width at
most three.

By Lemma 4 the problem of testing whether G is of clique-width at most three
is reduced to checking one of labeled graph in LabG is of clique-width at most
three. To test if a labeled graph A taken from LabG is of clique-width at most
three, the algorithm follows a top down approach by iterating over all possible
last operations that arise in the parse tree representation of GG. For example, for
each vertex = in G the algorithm checks whether the last operation must have
joined x with its neighborhood. In this case the problem of testing whether G
can be constructed using at most three labels is reduced to test whether G\ {z}
can be constructed using at most three lables. Once the last operations are fixed
the original graph decomposes into smaller components, which can be further
decomposed recursively.

For each A in LabG, depending on whether it is bilabeled or trilabeled the
algorithm makes different tests on A to determine whether A is of clique-width at
most three. Based on the test results the algorithm either concludes clique-width
of A is more than three or returns top operations of the parse tree for A along with
some connected components of A which are further decomposed recursively.

4 Bilabeling of a set X C V indicates that all the vertices in X are labeled with one
label and V' \ X is labeled with another label.

Polynomial-Time Algorithm for Isomorphism of Graphs 63

If Ain LabG is connected, trilabeled (with labels l1,12,13) and I-prime then
by the construction of LabG, A corresponds to a split (possibly trivial). If A has a
proper split then there exists a # b in {l1, l2, I3} such that A will be disconnected
with the removal of edges F,;. This gives a decomposition with top operations
Na,b followed by a @ node whose children are connected components of A\ Egp.
If A has a universal vertex v (trivial split) labeled a in A then by removing edges
Eq, and Eq. we get a decomposition with top operations 7, and n, . followed
by a ¢ operation with children connected components of A\ (Eqp U Eye).

To describe the bilabeled case we use V; to denote the set of vertices of A
with label i. If A in LabG is connected, bilabeled (with labels l1,l2) and I-prime,
then the last operation is neither 7, ;, (otherwise A will have a I-module) nor &
(A is connected). So the last operation of the decomposition must be a relabeling
followed by a join operation i.e., we have to introduce a third label set V;, such
that all the edges are present between the two of three labeled sets.

After introducing third label if there is only one join to undo, then we have a
unique way to decompose the graph into smaller components. If there are more
than one possible join to be removed, then it is enough to consider one of them
and proceed (see Sect.5.2 in [6]). There are four ways to introduce the third
label to decompose the graph, but they might correspond to overlapping cases.
To overcome this the algorithm first checks whether A belongs to any of three
simpler cases described below.

PC1: A has a universal vertex = of label I € {l;,l2}. In this case relabel vertex =
with I3 and remove the edges Ej,;,, and Ej,;, to decompose A. This gives a decom-
position with py, i, Mis 15, Mis,1, followed by @ operation with children z and A\ {z}.

PC2: A has a vertex x of label [€ {l;,ls} that is universal to all vertices of
label I € {l1,l2}, but is not adjacent to all vertices with the other label, say
I’. In this case relabel vertex x with I3 and remove the edges E,r. This gives a
decomposition with p;,_,;, m1,,» above a & operation with children z and A\ {z}.

PC3: A has two vertices and y of label [, where y is universal to everything
other than x, and x is universal to all vertices of label | other than y, and non-
adjacent to all vertices with the other label [. In this case the algorithm relabels
vertices « and y with /3, and by removing edges Ej,; disconnects the graph A,
with two connected components x and A \ {z}. Now in graph A \ {z} again
remove the edges E ; to decompose the graph into two parts y and A\ {z,y}.

If A does not belongs to any of above three simpler cases then there are
four different ways to introduce the third label set to decompose the graph as
described below.

Let £ be the set of all connected, bilabeled, I-prime graphs with clique-width
at most three and not belonging to above three simpler cases. For [€ {1,2} we
define the following four subsets of £.

1. Up: V* # 0 and removing the edges between the V,* and V; disconnects the
graph.

2. Dy: V; is not connected and removing the edges between the coconnected
components of V; disconnects the graph.

64 B. Das et al.

In these four cases the algorithm introduces a new label I3 and removes the edges
Ey,, 1 € {li,12} to disconnect A. This gives a decomposition with py,—,; and 7,
followed by @ operation with children that are the connected components of
A\ Ey,. For more details about decomposition process when A is in U or Dy,
I € {1,2} the reader is encouraged to see Sect. 5.2 in [6].

The following Lemma shows that there is no other possible way of decompos-
ing a clique-width at most three graphs apart from the cases described above.

Lemma 5 [6]. £ =U; Ul UDy UDs, and this union is disjoint.

In summary, for any labeled graph A in LabG the CHLRR algorithm tests
whether A belongs to any of the above described cases, if it is then it outputs
suitable top operations and connected components. The algorithm continues
the above process repeatedly on each connected component of A until it either
returns a parse tree or concludes clique-width of A is more than three.

6 Isomorphism Algorithm for Prime Graphs
of Clique-Width at Most Three

In Sect.4 we described algorithm to test structural isomporphism between two
parse trees. In this Section we show that given two isomorphic prime graphs G
and H of clique-width at most three, the CHLRR algorithm can be slightly mod-
ified to get structurally isomorphic parse trees. We have used four labels in order
to preserve structural isomorphism in the modified algorithm [14]. Recall that
the first step of the CHLRR algorithm is to construct a set LabG of bilabelings
and trilabelings of G as described in Sect. 5.

Definition 3. We say that LabG is equivalent to LabH denoted as LabG =
LabH if there is a bijection g : LabG — LabH such that for all A € LabG, there
is an isomorphism f : V(A) — V(g(A)) and a bijection 7 : lab(A) — lab(g(A))
such that A =7 g(A).

Lemma 6 [14]. LabG = LabH iff G = H.

Lemma 7. Let A € LabG and B € LabH. If A =% B for some f and
7 then parse trees generated from Decompose function (Algorithm 2 [14]) for
input graphs A and B are structurally isomorphic. i.e., Decompose(A) =%
Decompose(B).

Proof. Follows from Lemma 11 and Lemma 12 described in [14]. The major modi-
fications are done in PC2 case, where we have used four labels in order to preserve
structural isomorphism between parse trees. O

Isomorphism Algorithm

For two input prime graphs G and H the algorithm works as follows. Using
modified CHLRR algorithm, first a parse tree T of clique-width at most three
is computed for G. The parse tree T of G is not canonical but from Lemmas 6
and 7, we know that if G = H then there exists parse tree Ty of H, structurally

Polynomial-Time Algorithm for Isomorphism of Graphs 65

isomorphic to Tg. Therefore we compute parse tree of clique-width at most three
for each labeled graph in LabH . For each such parse tree T, the algorithm uses
the structural isomorphic algorithm described in Sect.4 to test the structural
isomorphism between parse trees Tg and Ty. If Tg & Ty for some Ty, then
we conclude that G =2 H. If there is no parse tree of H which is structurally
isomorphic to T then G and H can not be isomorphic.

Computing a parse tree T of G takes O(n?m) time. As there are O(n) many
labeled graphs in LabH, computing all possible parse trees for labeled graphs
in LabH takes O(n®m) time. Testing structural isomorphism between two parse
trees need O(n?) time. Therefore the running time to check isomorphism between
two prime graphs G' and H of clique-width at most three is O(n3m). a

The correctness of the algorithm follows from Lemma8 and Theorem 3.
Lemma8 shows that if G = H then we can always find two structurally iso-
morphic parse trees Ty and Ty using the modified CHLRR algorithm.

Lemma 8. Let G and H be prime graphs with clique-width at most three. If
G =5 H then for every Tg in parseG there is a Ty in parseH such that Tq
18 structurally isomorphic to Ty where parseG and parseH are the set of parse
trees generated by Algorithm 1 [14] on input LabG and LabH respectively.

Proof. If G 2; H then from Lemma 6 we have LabG = LabH i.e., for every A
in LabG there is a B = g(A) in LabH such that A =} B for some f and 7. On
input such A and B to Lemma7 we get two parse trees T4 and T which are
structurally isomorphic. a

Theorem 3. Let G and H be graphs with clique-width at most three. Then there
exists a polynomial time algorithm to check whether G = H.

Proof. The proof follows from the prime graph isomorphism of graphs with
clique-width at most three described in Lemma8 and Theorem 2. a

References

1. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F.
(ed.) Fundamentals of Computation Theory. LNCS, vol. 117, pp. 34-50. Springer,
Heidelberg (1981)

2. Babai, L.: Graph isomorphism in quasipolynomial time (2015). arXiv preprint
arXiv:1512.03547

3. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. J. Algorithms 11(4), 631-643 (1990)

4. Bonamy, M.: A small report on graph and tree isomorphism (2010). http://bit.ly/
1ySeNBn

5. Boppana, R.B., Hastad, J., Zachos, S.: Does co-NP have short interactive proofs?
Inf. Process. Lett. 25(2), 127-132 (1987)

6. Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial-time
recognition of clique-width 3 graphs. Discrete Appl. Math. 160(6), 834-865 (2012)

7. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218-270 (1993)

http://arxiv.org/abs/1512.03547
http://bit.ly/1ySeNBn
http://bit.ly/1ySeNBn

66

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

B. Das et al.

Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125-150
(2000)

Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1), 77-114 (2000)

Cournier, A., Habib, M.: A new linear algorithm for modular decomposition.
CAAP’94. LNCS, vol. 787, pp. 68-84. Springer, Heidelberg (1994)

Cunningham, W.H.: A combinatorial decomposition theory. Can. J. Math. 32(3),
734-765 (1980)

Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete
Methods 3(2), 214-228 (1982)

Das, B., Enduri, M.K., Reddy, I.V.: Logspace and FPT algorithms for graph iso-
morphism for subclasses of bounded tree-width graphs. In: Rahman, M.S., Tomita,
E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 329-334. Springer, Heidelberg
(2015)

Das, B., Enduri, M.K., Reddy, 1.V.: Polynomial-time algorithm for isomorphism
of graphs with clique-width at most 3. arXiv preprint (2015). arXiv:1506.01695
Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-
complete. STAM J. Discrete Math. 23(2), 909-939 (2009)

Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Hungarica 18(1),
25-66 (1967)

Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width.
In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 1010-1029. IEEE (2015)

James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected
graphs. In: Proceedings of 3rd Southeastern Conference on Combinatorics, Graph
Theory, and Computing, pp. 281-290 (1972)

Kaminski, M., Lozin, V.V., Milani¢, M.: Recent developments on graphs of
bounded clique-width. Discrete Appl. Math. 157(12), 2747-2761 (2009)
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In:
IEEE 55th Annual Symposium on (FOCS), pp. 186-195 (2014)

Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42-65 (1982)

Ma, T.H., Spinrad, J.: An O(n?) algorithm for undirected split decomposition. J.
Algorithms 16(1), 145-160 (1994)

Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proceedings of
12th Annual ACM Symposium on Theory of Computing, pp. 225-235. ACM (1980)
Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theor. Ser. B 96(4), 514-528 (2006)

Oum, S., Seymour, P.: Testing branch-width. J. Comb. Theor. Ser. B 97(3), 385—
393 (2007)

Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular
decomposition via recursive factorizing permutations. In: Aceto, L., Damgard, I.,
Goldberg, L.A., Halldérsson, M.M., Ingélfsdéttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 634-645. Springer, Heidelberg (2008)
Zemlyachenko, V., Konieko, N.; Tyshkevich, R.: Graph isomorphism problem
(Russian). In: The Theory of Computation I. Notes Sci. Sem. LOMI, vol. 118
(1982)

http://arxiv.org/abs/1506.01695

Fixed Parameter Complexity of Distance
Constrained Labeling and Uniform Channel
Assignment Problems
(Extended Abstract)

Jiff Fiala®), Tomas Gavenéiak, Dusan Knop,
Martin Koutecky, and Jan Kratochvil

Department of Applied Mathematics, Charles University,
Malostranské nam. 25, Prague, Czech Republic
{fiala, gavento,knop ,koutecky,honza}@kam.mff .cuni.cz

Abstract. We study computational complexity of the class of distance-
constrained graph labeling problems from the fixed parameter tractabil-
ity point of view. The parameters studied are neighborhood diversity and
clique width.

We rephrase the distance constrained graph labeling problem as a
specific uniform variant of the CHANNEL ASSIGNMENT problem and show
that this problem is fixed parameter tractable when parameterized by the
neighborhood diversity together with the largest weight. Consequently,
every L(p1,p2,. .., Pk)-LABELING problem is FPT when parameterized by
the neighborhood diversity, the maximum p; and k.

Finally, we show that the uniform variant of the CHANNEL ASSIGN-
MENT problem becomes NP-complete when generalized to graphs of
bounded clique width.

1 Introduction

The frequency assignment problem in wireless networks yields an abundance
of various mathematical models and related problems. We study a group of
such discrete optimization problems in terms of parameterized computational
complexity, which is one of the central paradigms of contemporary theoretical
computer science. We study parameterization of the problems by clique width
and particularly by neighborhood diversity (nd), a graph parameter lying between
clique width and the size of a minimum vertex cover.

All these problems are NP-hard even for constant clique width, including the
uniform variant, as we show in this paper. On the other hand, we prove that
they are in FPT with respect to nd. Such fixed parameter tractability has so far
only been known only for the special case of L(p, 1) labeling when parameterized
by vertex cover [7].

Paper supported by project Kontakt LH12095 and by GAUK project 1784214.
Second, third and fourth authors are supported by the project SVV-2016-260332.
First, third and fifth authors are supported by project CE-ITI P202/12/G061 of
GACR.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 67-78, 2016.
DOT: 10.1007/978-3-319-42634-1_6

68 J. Fiala et al.

1.1 Distance Constrained Labelings

Given a k-tuple of positive integers p1,...,pg, called distance constraints, an
L(p1,...,pr)-labeling of a graph is an assignment [of integer labels to the
vertices of the graph satisfying the following condition: Whenever vertices u
and v are at distance ¢, the assigned labels differ by at least p;. Formally,
dist(u,v) = i = |l(u) — I(v)] > p; for all u,v : dist(u,v) < k. Often only
non-increasing sequences of distance constraints are considered.

Any L(1)-labeling is a graph coloring and vice-versa. Analogously, any color-
ing of the k-th distance power of a graph is an L(1,...,1)-labeling. The concept
of L(2,1)-labeling is attributed to Roberts by Griggs and Yeh [13]. It is not diffi-
cult to show that whenever [is an optimal L(p1, ..., pg)-labeling within a range
[0, A], then the so called span A is a linear combination of pq,...,pg [13,16]. In
particular, a graph G allows an L(py, ..., px)-labeling of span A if and only if it
has an L(cpy, .. ., cpk)-labeling of span ¢\ for any positive integer c.

For computational complexity purposes, we define the following class of deci-
sion problems:

Problem 1. L(py,...,pi)-LABELING:

Parameters: Positive integers p1, ..., pk

Input: Graph G, positive integer A

Query: Is there an L(py, . .., px) labeling of G using labels from
the interval [0, \]?

The L(2,1)-LABELING problem was shown to be NP-complete by Griggs and
Yeh [13] by a reduction from HAMILTONIAN CYCLE (with A = |Vg|). Fiala
et al. [8] showed that L(2,1)-LABELING remains NP-complete also for all fixed
A > 4, while for A < 3 it is solvable in linear time.

Despite a conjecture that L(2,1)-LABELING remains NP-complete on
trees [13], Chang and Kuo [2] showed a dynamic programming algorithm for
this problem, as well as for all L(p;,p2)-labelings where po divides py. All the
remaining cases of the L(pj,p2)-LABELING problem on trees have been shown
to be NP-complete by Fiala et al. [6]. The same authors showed that L(2,1)-
LABELING is already NP-complete on series-parallel graphs [5], which have of tree
width at most 2. Note that these results imply NP-hardness of L(3,2)-LABELING
on graphs of clique width at most 3 and of L(2,1)-LABELING for clique width at
most 6 [3].

On the other hand, when A is fixed, then the existence of an L(p,...,pk)-
labeling of G can be expressed in MSO1, hence it allows a linear time algorithm
on any graph of bounded clique width [15].

1.2 Channel Assignment

Channel assignment is a concept closely related to distance constrained graph
labeling. Here, every edge has a prescribed weight w(e) and it is required that
the labels of adjacent vertices differ at least by the weight of the corresponding
edge. The associated decision problem is defined as follows:

Fixed Parameter Complexity of Distance Constrained Labeling 69

Problem 2. CHANNEL ASSIGNMENT:

Input: Graph G, a positive integer A, edge weights w : Eg — N
Query: Is there a labeling [of the vertices of G by integers from
[0, A] such that |[(u) —I(v)| > w(u,v) for all (u,v) € Eg?

The maximal edge weight is an obvious necessary lower bound for the span
of any labeling. Observe that for any bipartite graph, in particular also for all
trees, it is also an upper bound — a labeling that assigns 0 to one class of the
bipartition and wmpax = max{w(e),e € Eg} to the other class satisfies all edge
constraints. McDiarmid and Reed [19] showed that it is NP-complete to decide
whether a graph of tree width 3 allows a channel assignment of given span \. This
NP-hardness hence applies on graphs of clique width at most 12 [3]. It is worth
noting that for graphs of tree width 2, i.e. for subgraphs of series-parallel graphs,
the complexity characterization of CHANNEL ASSIGNMENT is still open. Only a
few partial results are known [20], among others that CHANNEL ASSIGNMENT is
polynomially solvable on graphs of bounded tree width if the span A is bounded
by a constant.

Any instance G, A of the L(p1,...,pr)-LABELING problem can straightfor-
wardly be reduced to an instance G¥, X\, w of the CHANNEL ASSIGNMENT prob-
lem. Here, G* arises from G by connecting all pairs of vertices that are in G
at distance at most k, and for the edges of G* we let w(u,v) = p; whenever
distg(u,v) = i.

The resulting instances of CHANNEL ASSIGNMENT have by the construction
some special properties. We explore and generalize these to obtain a uniform
variant of the CHANNEL ASSIGNMENT problem.

1.3 Neighborhood Diversity

Lampis significantly reduced (from the tower function to double exponential) the
hidden constants of the generic polynomial algorithms for MSO5 model checking
on graphs with bounded vertex cover [17]. To extend this approach to a broader
class of graphs he introduced a new graph parameter called the neighborhood
diversity of a graph as follows:

Definition 1 (Neighborhood Diversity). A partition Vi,...,Vy is called a
neighborhood diversity decomposition if it satisfies

— each V; induces either an empty subgraph or a complete subgraph of G, and
— for each distinct V; and V; there are either no edges between V; and Vj, or
every vertex of V; is adjacent to all vertices of V.

We write uw ~ v to indicate that u and v belong to the same class of the decom-
position.

The neighborhood diversity of a graph G, denoted by nd(G), is the minimum
T such that G has a neighborhood diversity decomposition with T classes.

70 J. Fiala et al.

Observe that for the optimal neighborhood diversity decomposition it holds
that u ~ ' is equivalent with N(u) \ v = N(v) \ u. Therefore, the optimal
neighborhood diversity decomposition can be computed in O(n?) time [17].

Classes of graphs of bounded neighborhood diversity reside between classes
of bounded vertex cover and graphs of bounded clique width. Several non-MSO;
problems, e.g. HAMILTONIAN CYCLE can be solved in polynomial time on graphs
of bounded clique width [21]. On the other hand, Fomin et al. stated more pre-
cisely that the HAMILTONIAN CYCLE problem is W{[l]-hard, when parameter-
ized by clique width [9]. In sequel, Lampis showed that some of these problems,
including HAMILTONIAN CYCLE, are indeed fixed parameter tractable on graphs
of bounded neighborhood diversity [17].

Ganian and Obdrzélek [12] further deepened Lampis’ results and showed that
also problems expressible in MSO; with cardinality constraints (cardMSO;) are
fixed parameter tractable when parameterized by nd(G).

Observe that a sufficiently large n-vertex graph of bounded neighborhood
diversity can be described in significantly more effective way, namely by using
only O(lognnd(G)?) space:

Definition 2 (Type Graph). The type graph T(G) for a neighborhood diver-
sity decomposition V1, ..., Vg of a graph G is a vertex weighted graph on vertices
{t1,...,tq}, where each t; is assigned weight s(t;) = |V;|, i.e. the size of the
corresponding class of the decomposition. Distinct vertices t; and t; are adjacent
in T(G) if and only if the edges between the two corresponding classes V; and V;
form a complete bipartite graph. Moreover, T(G) contains a loop incident with
vertex t; if and only if the corresponding class V; induces a clique.

For our purposes, i.e. to decide existence of a suitable labeling of a graph G,
it suffices to consider only its type graph, as G can be uniquely reconstructed
from T'(G) (up to an isomorphism) and vice-versa.

Moreover, the reduction of L(pi,...,ps)-LABELING to CHANNEL ASSIGN-
MENT preserves the property of bounded neighborhood diversity:

Observation 3. For any graph G and any positive integer k it holds that
nd(G) > nd(G*).

Proof. The optimal neighborhood diversity decomposition of G is a neighbor-
hood diversity decomposition of G*. g

1.4 Owur Contribution

Our goal is an extension of the FPT algorithm for L(2,1)-LABELING on graphs
of bounded vertex cover to broader graph classes and for rich collections of
distance constraints. In particular, we aim at L(py, ..., px)-LABELING on graphs
of bounded neighborhood diversity.

For this purpose we utilize the aforementioned reduction to the CHANNEL
ASSIGNMENT problem, taking into account that the neighborhood diversity
remains bounded, even though the underlying graph changes.

Fixed Parameter Complexity of Distance Constrained Labeling 71

It is worth to note that we must adopt additional assumptions for the CHAN-
NEL ASSIGNMENT since otherwise it is NP-complete already on complete graphs,
i.e. on graphs with nd(G) = 1. To see this, we recall the construction of Griggs
and Yeh [13]. They show that a graph H on n vertices has a Hamiltonian path if
and only if the complement of H extended by a single universal vertex allows an
L(2,1)-labeling of span n+ 1. As the existence of a universal vertex yields diam-
eter at most two, the underlying graph for the resulting instance of CHANNEL
ASSIGNMENT is K, 11.

On the other hand, the additional assumptions on the instances of
CHANNEL ASSIGNMENT will still allow us to reduce any instance of the
L(p1,...,pr)-LABELING problem. By the reduction, all edges between classes
of the neighborhood diversity decomposition are assigned the same weight. We
formally adopt this as our additional constraint as follows:

Definition 3. The edge weights w on a graph G are nd-uniform if w(u,v) =
w(u',v") whenever u ~ v and v ~ v with respect to the optimal neighborhood
diversity decomposition. In a similar way we define uniform weights with respect
to a particular decomposition.

Our main contribution is an algorithm for the following scenario:

Theorem 4. The CHANNEL ASSIGNMENT problem on nd-uniform instances is
FPT when parameterized by nd and wmax, where wmax = max{w(e),e € Eg}.

Immediately, we get the following consequence:

Theorem 5. For py,...,px, the L(p1,...,pr)-LABELING problem is FPT when
parameterized by nd, k and maximum p; (or equivalently by nd and the k-tuple

(P1s---,pk))-

One may ask whether the uniform version of CHANNEL ASSIGNMENT allows
an FPT algorithm also for a broader class of graphs. Finally, we show that a
natural generalization of this concept on graphs of bounded clique width yields
an NP-complete problem on graphs of clique width at most 5.

2 Representing Labelings as Sequences and Walks

We now focus on the nd-uniform instances of the CHANNEL ASSIGNMENT
problem. It has been already mentioned that the optimal neighborhood diver-
sity decomposition can be computed in cubic time. The test, whether it is
nd-uniform, could be computed in quadratic additional time. On the other hand,
on nd-uniform instances it suffices to consider only the type graph, whose edges
take weights from the edges of the underlying graph (see Fig. 1), since such a
weighted type graph corresponds uniquely to the original weighted graph, up to
an isomorphism.

Hence without loss of generalization assume that our algorithms are given
the type graph whose edges are weighted by separation constraints w, however
we express the time complexity bounds in terms of the size of the original graph.

72 J. Fiala et al.

’ N G and its L(2,1, 1)-labelling

Fig. 1. An example of a graph with its neighborhood diversity decomposition. Vertex
labels indicate one of its optimal L(2,1,1)-labelings. The corresponding type graph.
The weighted type graph corresponding to the resulting instance of the CHANNEL
ASSIGNMENT problem.

Without loss of generality we may assume that the given graph G and its
type graph T(G) are connected, since connected components can be treated
independently.

If the type graph T'(G) contains a type ¢ not incident with a loop, we may
reduce the channel assignment problem to the graph G’, obtained from G by
deleting all but one vertices of the type t. Any channel assignment of G’ yields a
valid channel assignment of G by using the same label on all vertices of type ¢ in
G as was given to the single vertex of type t in G’. Observe that adding a loop to
a type, which represents only a single vertex, does not affect the resulting graph
G'. Hence we assume without loss of generality that all types are incident with
a loop. We call such type graph reflezive.

Observation 6. If the type graph T(G) is reflexive, then vertices of G of the
same type have distinct labels in every channel assignment.

Up to an isomorphism of the graph G, any channel assignment [is uniquely
characterized by a sequence of type sets as follows:

Fixed Parameter Complexity of Distance Constrained Labeling 73

Lemma 1. Any weighted graph G corresponding to a reflexive weighted type
graph T(G),w allows a channel assignment of span A, if and only if there exists
a sequence of sets T =Ty, ..., T with the following properties:

(i) T; C Vipay for each i € [0,],
(ii) for eacht € Vi = s(t) = {T; = t € Ty}l
(iii) for all (t,r) € Epy: (t €Ty Ar €Ty ANt #rVi#j])) =i —j|>w(tr)

Proof. Given a channel assignment [: Vg — [0, \], we define the desired sequence
7T, such that the i-th element is the set of types that contain a vertex labeled
by 4. Formally T; = {t : Ju € V, : l(u) = i}. Now

(i) each element of the sequence is a set of types, possibly empty,
(ii) as all vertices of V; are labeled by distinct labels by Observation 6, any type
t occurs in s(t) many elements of the sequence
(iii) if w of type t is labeled by 4, and it is adjacent to v of type r labeled by j,
then |i — j| = |l(u) — I(v)] > w(u,v) = w(t,r), i.e. adjacent types ¢t and r
may appear in sets that are in the sequence at least w(t,r) apart.

In the opposite direction assume that the sequence 7 exists. Then for each
set T; and type t; € T; we choose a distinct vertex v € V; and label it by ¢, i.e.
l(u) =1.

Now the condition (ii) guarantees that all vertices are labeled, while condition
(iii) guarantees that all distance constraints are fulfilled. O

Observe that Lemma 1 poses no constraints on pairs of sets 73,7 that are
at distance at least wpyax. Hence, we build an auxiliary directed graph D on all
possible sequences of sets of length at most z = wyax — 1.

The edges of D connect those sequences that overlap on a fragment of length
z —1, i.e. when they could be consecutive in 7. This construction is well known
from the so-called shift register graph.

Definition 4. For a general graph F and weights w : Erp — [1, 2] we define a
directed graph D such that

— the vertices of Vp are all z-tuples (T1,...,T.) of subsets of Vi such that for
dl(t,r)e Ep:(teT,AnreT;)=|i—j| >w(,r)
- ((T1, . ,Tz), (Tl/, . ,TZI)) cebkp & Tz/ = Ti+1 f07“ all i € [1,2’ — 1]

As the first condition of the above definition mimics (iii) of Lemma 1 with
F = T(G), any sequence 7 that justifies a solution for (T(G),w,), can be
transformed into a walk of length A — 2z 41 in D.

In the opposite direction, namely in order to construct a walk in D, that
corresponds to a valid channel assignment, we need to guarantee also an ana-
logue of the condition (ii) of Lemma 1. In other words, each type should occur
sufficiently many times in the resulting walk. Indeed, the construction of D is
independent on the function s, which specifies how many vertices of each type
are present in G.

74 J. Fiala et al.

In this concern we consider only special walks that allow us to count the
occurrences of sets within z-tuples. Observe that Vp also contains the z-tuple
0= = (0,...,0). In addition, any walk of length A — z 4+ 1 can be converted into
a closed walk from (* of length A\ + 2 + 1, since the corresponding sequence 7
can be padded with z additional empty sets at the front, and another z empty
sets at the end. From our reasoning, the following claim is immediate:

Lemma 2. A closed walk W = Wy, ..., Wxy.41 on D where Wy, = Wxy,41 =
(0%, yields a solution of the CHANNEL ASSIGNMENT problem on a nd-uniform
instance G,w, A with reflexive T(G), if and only if s(t) = [{W; : t € (Wi)1}|
holds for each t € V(-

We found interesting that our representation of the solution resembles the
NP-hardness reduction found by Griggs and Yeh [13] (it was briefly outlined in
Sect.1.4) and later generalized by Bodlaender et al. [1]. The key difference is
that in their reduction, a Hamilton path is represented by a sequence of vertices
of the constructed graph. In contrast, we consider walks in the type graph, which
is assumed to be of limited size.

3 The Algorithm

In this section we prove the following statement, which directly implies our main
result, Theorem 4:

Proposition 1. Let G,w be a weighted graph, whose weights are uniform with
respect to a neighborhood diversity partition with T classes.

Then the CHANNEL ASSIGNMENT problem can be decided on G,w and any
X in time 2277 logn, where n is the number of vertices of G, provided that
G,w are described by a weighted type graph T(G) on T nodes.

920 (Tomax)

A suitable labeling of G can be found in additional n time.

Proof. According to Lemma 2, it suffices to find a closed walk W (if it exists)
corresponding to the desired labeling . From the well-known FEuler’s theorem
it follows that any directed closed walk W yields a multiset of edges in D that
induces a connected subgraph and that satisfies Kirchhoff’s law. In addition, any
such suitable multiset of edges can be converted into a closed walk, though the
result need not be unique.

For this purpose we introduce an integer variable o,y for every directed
edge (W,U) € Ep. The value of the variable oy, is the number of occurrences
of (W,U) in the multiset of edges.

Kirchhoff’s law is straightforwardly expressed as:

YW e Vp: Z ow,U) — Z Uw) = 0
U:(W,U)eEp U:(UW)€EED

In order to guarantee connectivity, observe first that an edge (W,U) and
(* would be in distinct components of a subgraph of D, if the subgraph is

Fixed Parameter Complexity of Distance Constrained Labeling 75

formed by removing edges that include a cut C between (W,U) and 0*. Now,
the chosen multiset of edges is disconnected from (%, if there is such an edge
(W,U) together with a cut set C such that o,y has a positive value, while
all variables corresponding to elements of C' are zeros. As all variable values are
bounded above by A, we express that C' is not a cutset for the chosen multiset
of edges by the following condition:

a(W7U) - Z Qe S 0
ecC

To guarantee the overall connectivity, we apply the above condition for every
edge (W,U) € Ep, where W, U # ()%, and for each set of edges C that separates
W or U from (J*.

The necessary condition expressed in Lemma 2 can be stated in terms of
variables oy, as

YVt € VT(G) : Z Z Yw,u) = S(t)

W:ite(W), U:(W,U)EED

Finally, the size of the multiset is the length of the walk, i.e.

Z O[(W7U):>\+Z+1
(W,U)EED

Observe that these conditions for all (WW,U) and all suitable C' indeed imply
that the (* belongs to the subgraph induced by edges with positively evaluated
variables o (w, -

Frank and Tardos [10] (improving the former result due to Lenstra [18])
showed that the time needed to solve the system of inequalities with p integer
variables is O(p?®PT°(P)L), where L is the number of bits needed to encode
the input. As we have 2°(7%) variables and the conditions are encoded in space

220(7'2) Tz)

log n, the time needed to resolve the system of inequalities is 92 log n.

O

We are aware the the double exponential dependency on nd and wy,,x makes our
algorithm interesting mostly from the theoretical perspective. Naturally, one may
ask, whether the exponential tower height might be reduced or whether some
nontrivial lower bounds on the computational complexity could be established
(under usual assumptions on classes in the complexity hierarchy).

4 NLC-Uniform Channel Assignment

One may ask whether the concept of nd-uniform weights could be extended to
broader graph classes. We show, that already its direct extension to graphs of
bounded clique width makes the CHANNEL ASSIGNMENT problem NP-complete.
Instead of clique width we express our results in terms of NLC-width [21]

76 J. Fiala et al.

(NLC stands for node label controlled). The parameter NLC-width is linearly
dependent on clique width, but it is technically simpler.

We now briefly review the related terminology. A NLC-decomposition of a
graph G is a rooted tree whose leaves are in one-to-one correspondence with the
vertices of G. For the purpose of inserting edges, each vertex is given a label (the
labels for channel assignment are now irrelevant), which may change during the
construction of the graph G. Internal nodes of the tree are of two kinds: relabel
nodes and join nodes.

Each relabel node has a single child and as a parameter takes a mapping p
on the set of labels. The graph corresponding to a relabel node is isomorphic to
the graph corresponding to its child, only p is applied on each vertex label.

Each join node has a two children and as a parameter takes a binary relation
S on the set of labels. The graph corresponding to a join node is isomorphic to
the disjoint union of the two graphs G; and G2 corresponding to its children,
where further edges are inserted as follows: u € Vi, labeled by ¢ is made adjacent
to v € Vg, labeled by j if and only if (4,j) € S.

The minimum number of labels needed to construct at least one labeling of
G in this way is the NLC width of G, denoted by nlc(G).

Observe that nle(G) < nd(G) as the vertex types could be used as labels for
the corresponding vertices and the adjacency relation in the type graph could
be used for S in all join nodes. In particular, in this construction the order of
performing joins is irrelevant and no relabel nodes are needed.

Definition 5. The edge weights w on a graph G are nlc-uniform with respect
to a particular NLC-decomposition, if w(u,v) = w(u’,v") whenever edges (u,v)
and (u',v") are inserted during the same join operation and at the moment of
insertion u,u’ have the same label in G1 and v,v' have the same label in Gs.

Observe that our comment before the last definition justifies that weights
that are uniform with respect to a neighborhood diversity decomposition are
uniform also with respect to the corresponding NLC-decomposition.

Gurski and Wanke showed that the NLC-width remains bounded when tak-
ing powers of trees [14]. It is well known that NLC-width of a tree is at most
three. Fiala et al. proved that L(3,2)-LABELING is NP-complete on trees [6].
To combine these facts together we show that the weights on the graph arising
from a reduction of the L(3,2)-labeling on a tree to CHANNEL ASSIGNMENT are
nlc-uniform.

Theorem 7. The CHANNEL ASSIGNMENT problem is NP-complete on graphs
with edge weights that are nlc-uniform with respect to an NLC-decomposition of
width at most four.

5 Conclusion

We have shown an algorithm for the CHANNEL ASSIGNMENT prob-
lem on nd-uniform instances and several complexity consequences for the

Fixed Parameter Complexity of Distance Constrained Labeling 7

L(p1, - .. pr)-LABELING problem. In particular, Theorem 5 extends known results
for the L(p,1)-LABELING problem to labelings with arbitrarily many distance
constraints, answering an open question of [7]. Simultaneously, we broaden the
considered graph classes by restricting neighborhood diversity instead of vertex
cover.

While the main technical tools of our algorithms are bounded-dimension ILP
programs, ubiquitous in the FPT area, the paper shows an interesting insight on
the nature of the labelings over the type graph and the necessary patterns of
such labelings of very high span. Note that the span of a graph is generally not
bounded by any of the considered parameters and may be even proportional to
the order of the graph.

Solving a generalized problem on graphs of bounded neighborhood diversity
is a viable method for designing FPT algorithms for a given problem on graphs
of bounded vertex cover, as demonstrated by this and previous papers. This
promotes neighborhood diversity as a parameter that naturally generalizes the
widely studied parameter vertex cover.

We would like to point out that the parameter modular width, proposed
by Gajarsky et al. [11], offers further generalization of neighborhood diversity
towards the clique width [4].

As an interesting open problem we ask whether it is possible to strengthen
our results to graphs of bounded modular width or whether the problem might
be already NP-complete for fixed modular width, as is the case with clique width.
For example, the GRAPH COLORING problem ILP-based algorithm for bounded
neighborhood diversity translates naturally to an algorithm for bounded modular
width. On the other hand, there is no apparent way how our labeling results could
be adapted to modular width in a similar way.

Acknowledgement. We thank Andrzej Proskurowski, Tomas Masafik and anony-
mous referees for valuable comments.

References

1. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: A-Coloring of graphs. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 395-406. Springer,
Heidelberg (2000)

2. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM J. Discret.
Math. 9(2), 309-316 (1996)

3. Corneil, D.C., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825-847 (2005)

4. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1-3), 77-114 (2000)

5. Fiala, J., Golovach, P.A., Kratochvil, J.: Distance constrained labelings of graphs
of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360-372. Springer, Heidelberg
(2005)

78

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Fiala et al.

Fiala, J., Golovach, P.A., Kratochvil, J.: Computational complexity of the dis-
tance constrained labeling problem for trees (extended abstract). In: Aceto, L.,
Damgard, 1., Goldberg, L.A., Halldérsson, M.M., Ingélfsdottir, A., Walukiewicz,
L (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 294-305. Springer, Heidelberg
(2008)

Fiala, J., Golovach, P.A., Kratochvil, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513-2523
(2011)

Fiala, J., Kratochvil, J., Kloks, T.: Fixed-parameter complexity of A-labelings.
Discret. Appl. Math. 113(1), 59-72 (2001)

Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941-1956 (2010)

Frank, A., Tardos, E.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49-65 (1987)

Gajarsky, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163-176.
Springer, Heidelberg (2013)

Ganian, R., Obdrzalek, J.: Expanding the expressive power of monadic second-
order logic on restricted graph classes. In: Lecroq, T., Mouchard, L. (eds.) IWOCA
2013. LNCS, vol. 8288, pp. 164-177. Springer, Heidelberg (2013)

Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. STAM J.
Discret. Math. 5(4), 586-595 (1992)

Gurski, F., Wanke, E.: The NLC-width and clique-width for powers of graphs of
bounded tree-width. Discret. Appl. Math. 157(4), 583-595 (2009)

Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs
with fixed clique-width (extended abstract). In: 12th ACM-SIAM of the Sympo-
sium on Discrete Algorithms, SODA 2001, Washington, pp. 468-476 (2001)

Krél, D.: The channel assignment problem with variable weights. STAM J. Discret.
Math. 20(3), 690-704 (2006)

Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19-37 (2012)

Lenstra Jr., H.-W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538-548 (1983)

McDiarmid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.
Discret. Math. 273(1-3), 183-192 (2003)

Skvarek, M.: The channel assignment problem for series-parallel graphs. Bachelor’s
thesis, Charles University, Prague (2010). (in Czech)

Wanke, E.: k-NLC graphs and polynomial algorithms. Discret. Appl. Math.
54(2-3), 251-266 (1994)

A Parameterized Algorithm for Bounded-Degree
Vertex Deletion

Mingyu Xiao®
School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu, China
myxiao@gmail.com

Abstract. The d-bounded-degree vertex deletion problem, to delete at
most k vertices in a given graph to make the maximum degree of the
remaining graph at most d, finds applications in computational biology,
social network analysis and some others. It can be regarded as a spe-
cial case of the (d + 2)-hitting set problem and generates the famous
vertex cover problem. The d-bounded-degree vertex deletion problem
is NP-hard for each fixed d > 0. In terms of parameterized complex-
ity, the problem parameterized by k is W[2]-hard for unbounded d and
fixed-parameter tractable for each fixed d > 0. Previously, (randomized)
parameterized algorithms for this problem with running time bound
O*((d + 1)*) are only known for d < 2. In this paper, we give a uni-
form parameterized algorithm deterministically solving this problem in
O*((d+1)*) time for each d > 3. Note that it is an open problem whether
the d’-hitting set problem can be solved in O*((d’ — 1)) time for d’ > 3.
Our result answers this challenging open problem affirmatively for a spe-
cial case. Furthermore, our algorithm also gets a running time bound of
0O*(3.0645") for the case that d = 2, improving the previous deterministic
bound of O*(3.24%).

Keywords: Parameterized algorithms + Graph algorithms - Bounded-
degree vertex deletion - Hitting set

1 Introduction

The d-bounded-degree vertex deletion problem is a natural generation of the
famous vertex cover problem, which is one of the best studied problems in com-
binatorial optimization. An application of the d-bounded-degree vertex deletion
problem in computational biology is addressed by Fellows et al. [5]: A clique-
centric approach in the analysis of genetic networks based on micro-array data
can be modeled as the d-bounded-degree vertex deletion problem. The prob-
lem also plays an important role in the area of property testing [12]. Its “dual
problem”— the s-plex problem was introduced in 1978 by Seidman and Foster [14]
and it becomes an important problem in social network analysis now [1].

M. Xiao—Supported by NFSC of China under the Grant 61370071 and Fundamental
Research Funds for the Central Universities under the Grant ZYGX2015J057.
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 79-91, 2016.
DOT: 10.1007/978-3-319-42634-1_7

80 M. Xiao

The d-bounded-degree vertex deletion problem is also extensively studied in
theory, especially in parameterized complexity. It has been shown that the prob-
lem parameterized by the size k of the deletion set is W|[2]-hard for unbounded d
and fixed-parameter tractable for each fixed d > 0 [5]. Betzler et al. [2] also stud-
ied the parameterized complexity of the problem with respect to the treewidth
tw of the graph. The problem is FPT with parameters k and tw and W[2]-hard
with only parameter tw. Fellows et al. [5] generated the NT-theorem for the
vertex cover problem to the d-bounded-degree vertex deletion problem, which
can imply a linear vertex kernel for the problem with d = 0,1 and a polyno-
mial vertex kernel for each fixed d > 2. A linear vertex kernel for the case that
d = 2 was developed in [4]. Recently, a refined generation of the N'T-theorem
was proved [17], which can get a linear vertex kernel for each fixed d > 0.

In terms of parameterized algorithms, the case that d = 0, i.e., the vertex
cover problem, can be solved in O*(1.2738"%) time now [3]. When d = 1, the
problem is known as the P3 vertex cover problem. Tu [15] gave an O*(2¥)-
time algorithm and the running time bound was improved to O*(1.882%) by
Wu [16] and to O*(1.8172%) by Katreni¢ [11]. When d = 2, the problem is
known as the co-path/cycle problem. For this problem, there is an O*(3.24%)-
time deterministic algorithm [4] and an O*(3%)-time randomized algorithm [6].
For d > 3, a simple branch-and-reduce algorithm that tries all d + 2 possibilities
for a (d + 1)-star in the graph gets the running time bound of O*((d + 2)%).
In fact, the d-bounded-degree vertex deletion problem can be regarded as a
special case of the (d + 2)-hitting set problem and the latter problem has been
extensively studied in parameterized algorithms [7-9,13]. For a graph G, we
regard each vertex in the graph as an element and each (d + 1)-star as a set
of size d + 2 (a vertex of degree dy > d will form (d‘ffl) sets). Then the d-
bounded-degree vertex deletion problem in G becomes an instance of the (d+2)-
hitting set problem. There are several parameterized algorithms for the d’-hitting
set problem running in O*((d’ — 1 + ¢)*) time [9,13], where 0 < ¢ < 1 is a
function of d’~!. It leaves as an interesting open problem whether the d’-hitting
set problem can be solved in O*((d’ — 1)*) time. Note that it is marked in [9]
that “(d’—1)* seems an unsurpassable lower bound”. By using fastest algorithms
for the (d + 2)-hitting set problem, we can get an algorithm with running time
bound of O*((d + 1 + ¢)*) with 0 < ¢y < 1 for each fixed d.

In this paper, we design a uniform algorithm for the d-bounded-degree vertex
deletion problem, which achieves the running time bound of O*((d+1)*) for each
d > 3. Although our problem is a special case of the (d 4 2)-hitting set problem,
the above bound is not easy to reach. We need a very careful analysis and some
good graph structural properties. It is also worthy to mention that our algorithm
also works on the case that d = 2 and runs in O*(3.0645%) time, improving the
previous deterministic bound of O*(3.24%) [4] and comparable with the previous
randomized bound of O*(3%) [6].

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 81

2 Preliminaries

Let G = (V, E) be a simple undirected graph, and X C V be a subset of vertices.
The subgraph induced by X is denoted by G[X], and G[V'\ X] is written as G\ X.
We may simply use v to denote the set {v} of a single vertex v. Let N(X) denote
the set of neighbors of X, i.e., the vertices in V' \ X adjacent to a vertex z € X,
and denote N(X) U X by N[X]. The degree d(v) of a vertex v is defined to be
|N(v)]. A graph of maximum degree p is also called a degree-p graph. For an
integer ¢ > 1, a star with g + 1 vertices is called a g-star. A set S of vertices is
called a d-deletion set of a graph G, if G\ S has maximum degree at most d.
In our problem, we want to find a d-deletion set of size at most k in a graph.
Formally, our problem is defined as following.

d-BOUNDED-DEGREE VERTEX DELETION

Instance: A graph G = (V, E) and two nonnegative integers d and k.
Question: To decide whether there is a subset S C V of vertices such that
|S| < k and the induced graph G[V \ S] has maximum degree at most d.

In the above definition, S is also called a solution set.

2.1 Some Basic Properties

The following lemmas are basic structural properties used to design branching
rules in our algorithms.

Lemma 1. Let v be a vertex of degree > d+ 1 in a graph G. Any d-deletion set
contains either v or d(v) — d neighbors of v.

A vertex v dominates a vertex w if all vertices of degree > d + 1 in N[u] are
also in N[v]. Note that in this definition, we do not require N{u] C Nv].

Lemma 2. If a vertex v of degree d+ 1 dominates a neighbor u of it, then there
is a minimum d-deletion set containing at least one vertex in N[v]\ {u}.

Proof. Since v is of degree d+1, any d-deletion set S contains at least one vertex
in N[v]. Assume that S contains only u in N[v]. We can see that S" = SU{v}\{u}
is still a d-deletion set and |S’| < |S|. Thus, the lemma holds. O

Lemma 3. If a vertex u dominates a vertex v of degree d + 1, then there is a
minimum d-deletion set containing at least one neighbor of v.

Proof. Since u dominates v and v is of degree d + 1, we know that u is a
neighbor of v. Any d-deletion set S contains at least one vertex in N[v] since it
is of degree d+1. Assume that SN N[v] = {v}. We can see that " = SU{u}\{v}
is a d-deletion set containing a neighbor of v and |S’| < |S|. Thus, the lemma
holds. O

82 M. Xiao

If there is a vertex of degree > d 4+ 1 dominating a neighbor of it or being
dominated by another vertex, we say that the graph has a proper domination.
Note that if a vertex u of degree > d + 1 has at most one neighbor v of degree
> d + 1, then u is dominated by v and then there is a proper domination. In
fact, we have:

Lemma 4. If a graph has no proper domination, then each vertex of degree
> d+ 1 in it has at least two nonadjacent neighbors of degree > d + 1.

2.2 Branch-and-Search Algorithms

Our algorithm is a typical branch-and-search algorithm. In our algorithm, we
search a solution for an instance by recursively branching on the current instance
into several smaller instances until the instances become trivial instances. Each
simple branching operation creates a recurrence relation. Assume that the
branching operation branches on an instance with parameter k into ! branches
such that in the i-th branch the parameter decreases by at least a;. Let C(k)
denote the worst size of the search tree to search a solution to any instance with
parameter k. We get a recurrence relation’

Ck)<Clk—a)+Clk—az)+ -+ Ck—ay)+ 1.

The largest root of the function f(x) =1 — 22:1 x~% is called the branching
factor of the recurrence relation. Let a be the maximum branching factor among
all branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an instance with parameter k
is given by O(a*). More details about the analysis and how to solve recurrences
can be found in the monograph [10].

3 The Idea and Organization of the Algorithm

Our purpose is to design a branch-and-search algorithm for the d-bounded-degree
vertex deletion problem such that the branching factor of each recurrence relation
with respective to the parameter k is at most d + 1. Lemma 1 provides a simple
branching rule: for a vertex v of degree > d + 1, branching by either including v
or each set of d(v) —d neighbors of v to the solution set. We will show that when
d(v) > d+ 2, this simple branching operation is good enough to get a branching
factor < d + 1 for each d > 2 (See Step 1 in Sect.4). Thus, we can use this
operation to deal with vertices of degree > d + 2. Lemma 1 for a degree-(d + 1)
vertex v can be interpreted as: at least one vertex in N[v] is in a d-deletion set.
This branching operation will only get a branching factor of d + 2 for this case.
But when there is a proper domination in a degree-(d + 1) graph, we still can

! In fact, we may simply write a recurrence relation as C(k) < C(k — a1) + C(k —
a2)+---+C(k—ar). This difference will only affect a constant behind O in the finial
running time.

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 83

branch with branching factor d+ 1, since we can ignore one branch by Lemmas 2
and 3. The detailed analysis is given in Step 2 in Sect.4. When the graph is
of maximum degree d + 1 and has no proper domination, we need to use more
structural properties.

To find a d-deletion set in a degree-(d + 1) graph is equivalent to find a
vertex subset intersecting N[v] for each degree-(d 4+ 1) vertex v. If there are
some vertices in N[vi] N N[vg] for two degree-(d + 1) vertices v; and vy, some
information may be useful for us to design a good branching rule. Note that for
two adjacent degree-(d + 1) vertices v and vq, there are at least two vertices in
the intersection of N[vi] and N[vs]. Lemma 4 guarantees that each degree-(d+1)
vertex has at least two nonadjacent degree-(d + 1) neighbors if a degree-(d + 1)
graph has no proper domination. So we will focus on adjacent degree-(d + 1)
vertices.

We define three relations between two degree-(d + 1) vertices. A pair of adja-
cent degree-(d + 1) vertices is a good pair if they have at least one and at most
d — 2 common neighbors. A pair of adjacent degree-(d + 1) vertices is a close
pair if they have exactly d — 1 common neighbors. A pair of nonadjacent degree-
(d + 1) vertices is a similar pair if they have the same neighbor set. We have a
good branching rule to deal with good pairs. See Step 3 in Sect. 4. After dealing
with all good pairs, for any pair of adjacent degree-(d + 1) vertices, either it is
a close pair or the two vertices have no common neighbor. We do not have a
simple branching rule with branching factor d + 1 for these two cases. Then we
change to consider three adjacent degree-(d + 1) vertices.

Let vy, vy and v3 be three degree-(d + 1) vertices such that vy is adjacent to
v1 and vs. We find that the hardest case is that exact one pair of vertices in
{v1,v2,v3} is a close or similar pair, for which we still can not get a branching
factor < d+ 1. We call this case a bad case. If no pair of vertices in {vy, v, v3}
is a close or similar pair, we call {v1,v2,v3} a proper triple of degree-(d + 1)
vertices. Our idea is to avoid bad cases and only branch on proper triples.

Consider four degree-(d+ 1) vertices v1, va, v3 and vy such that there is an edge
between v; and v, for i = 1,2, 3. If at most one pair of vertices in {vy, va, v3,v4}
is a close or similar pair, then at least one of {v1, v2,v3} and {ve, v, v4} will be
a proper triple. Thus the only left cases are that at least two pairs of vertices in
{v1,v2,v3,v4} are close or similar pairs. Luckily, we find good branching rules to
deal with them. When both of {v1,v2} and {vq,v3} are close pairs, {v1,vs,v3} is
called a close triple. See Fig. 1(a) for an illustration of close triple. Our algorithm
deals with close triples in Step 4 in Sect.4. When both of {v1,v2} and {vs3,v4}
are close pairs, {v1,v2,v3,v4} is called a type-I close quadruple. See Fig. 1(b) for
an illustration of type-I close quadruple. Our algorithm deals with type-I close
quadruples in Step 5 in Sect.4. When both of {vq,vs} and {vg,v4} are similar
pairs, {v1, ve, v3,v4} is called a type-1I close quadruple. See Fig. 1(c) for an illustra-
tion of type-II close quadruple. Our algorithm deals with type-II close quadruples
in Step 6 in Sect. 4. When {vy, va, v3,v4} has one close pair and one similar pair,
we can see that there is always a close triple in it. Therefore, we have considered
all possible cases. The last step of our algorithm is then to deal with proper triples.

N@)NN(W,) N N(vy)
N@)NN(®W,) N@,)NN(y,)

(a): Close triple (b): Type-I close quadruple (c): Type-II close quadruple

Fig. 1. Illustrations of some structures
4 The Algorithm and Its Analysis

We are ready to describe the whole algorithm. Our algorithm works for any d > 0
but can only achieve the running time bound of O*((d + 1)*) for each d > 3.
Our algorithm is a recursive algorithm containing seven major steps, each of
which will branch on the current instance into several sub-instances and invoke
the algorithm itself on each sub-instance. Next, we describe these steps. When
we introduce one step, we assume that all previous steps can not be applied
anymore. For the purpose of presentation, we will analyze the correctness and
running time of each step after describing it.

Step 1 (Vertices of degree > d + 2)

If there is a vertex v of degree > d 4 2 in the graph, we branch on v into
14 (d((i)()"l d) branches according to Lemma 1 by either including v or each set of
d(v) — d neighbors of v to the solution set.

In the branch where v is included to the solution set, we delete v from the
graph and decrease the parameter k by 1. In the branch where a set N’ C N(V)
of d(v) — d neighbors of v are included to the solution set, we delete N’ from
the graph and decrease the parameter k by d(v) — d. For this operation, we get
a recurrence relation

Clk) < Clh—1) + (dgv) d) Ok — (d(v) — d). (1)

d(v
Let v denote the branching factor of (1).
Lemma 5. If d(v) —d > 2, the branching factor v of (1) satisfies that

14+ v2d? +6d+5
. . 2

A proof of this lemma can be found the full version of this paper. It is easy to
verify that v < d+1 for d > 2. After Step 1, the graph has maximum degree d+ 1.

7<=

Step 2 (Proper dominations)

If a vertex v of degree d + 1 is dominated by a vertex u (or dominates a
neighbor u of it), we branch on v into d(v) branches by including each vertex in
N(v) (or N[v]\ {u}) to the solution set. The correctness of this step is based on
Lemmas 2 and 3.

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 85

In each branch, a vertex is included to the solution set and k decreases by 1.
Vertex v is of degree d + 1 since the graph has maximum degree at most d + 1
after Step 1. We get a recurrence relation

Ck)<dw)-Clk—1)=(d+1)-Clk—-1),
the branching factor of which is d + 1.

Step 3 (Good pairs of degree-(d + 1) vertices)

Recall that a pair of adjacent degree-(d+1) vertices is a good pair if they have
at least one and at most d —2 common neighbors. we use the following branching
rule to deal with a good pair {vq,ve}. Let NT = (N(v1) N N(v2)) U {v1,v2},
N1 = N(v;)\ Nt and Ny = N(vg)\ NT. Assume that v; and v, have x common
neighbors. Note that for any d-degree deletion set S’, if S’ does not contain
any vertex in N, then S’ contains at least one vertex in N; and one vertex
in Ny. We branch into |[N*| + |Ny||Na| = (z + 2) + (d — x)? branches. In the
first |[NT| branches each vertex in NT is included to the solution set; and in
the last |N7||Na| branches each pair of vertices in Ny and N is included to the
solution set. In each branch, if z vertices are included to the solution set, then
the parameter k in this branch decreases by z. This branching operation gives a
recurrence relation

Ck) < (x+2)-Ck—1)+(d—x)* C(k —2),

the branching factor of which is

1
= (2+m+\/5x2 —8dw+4d2+4x+4).
It is easy to verify that when 1 < x < d — 2, the branching factor is at most d + 1.

Step 4 (Close triples of degree-(d + 1) vertices)

Recall that a pair of adjacent degree-(d+1) vertices is a close pair if they have
exactly d —1 common neighbors. The formal definition of close triple is that: the
set of three degree-(d + 1) vertices vy, v2 and vs is called a close triple if {vy, v}
and {vg,v3} are two close pairs and v; and vs are not adjacent. According
to the definition of close triples, we can see that N(vy) N N(vz) N N(vg) =
N(v2) \ {v1,v3}. For a close triple {v1,v2,v3}, we observe the following. Vertex
vy (resp., v3) is adjacent to a degree -(d+1) vertex vg & Nva] (resp., v4 & Nva])
by Lemmad4. Let Ny = Nvg] \ {v1,vs3}. For any d-degree deletion set S, if
SN Ny =, then S’ contains either v; and a vertex in {v3,v4} (since S’ must
contain a vertex in N[ve] and a vertex in N[vs]) or vs and a vertex in {vg, vy}
(since S’ must contain a vertex in N[vg] and a vertex in N[v1]). Then we can
branch by either including each vertex in N5 to the solution set or including each
of {vy,v3}, {v1,v4} and {wvg,v3} to the solution set. This branching operation
gives a recurrence relation

Ck) < (d—1)-Clk—1)+3-C(k —2),

the branching factor of which is

1(d—l+\/d2—4d+13).

2

86 M. Xiao

It is easy to verify that when d > 2, the branching factor is less than d + 1.

Step 5 (Type-I close quadruples of degree-(d + 1) vertices)

A set of four degree-(d + 1) vertices {v1,v2,v3,v4} is called a type-I close
quadruple if {vy, va, v, v, } induces a cycle or a path of 4 vertices, and {vy,v2} and
{v3,v4} are two close pairs. Let Nj; = N(v1) NN (ve) and Ny = N(v3) NN (v4).
When the graph has no proper dominations, good pairs or close triples, it holds
that Nj, N Ny, = 0.

Let S’ be an arbitrary d-degree deletion set. Our branching rule for type-I
close quadruples is different for the cases whether {v1, va, v3,v4} induces a cycle
or a path.

Case 1. {v1,v2,v3,v4} induces a cycle of 4 vertices: We consider the following
different subcases.

Case 1.1. 5" N {vy,v2,v3,v4} = 0: Then S’ N Ny, # 0 and S’ N N3, # 0. For
this case, we included each pair of vertices in N5, and N3, to the solution set to
create | Ny5||N3,| = (d — 1)? branches, each of which decreases k by 2.

Case 1.2. S’ N {v1,v2,v3,v4} = {v1} or 8" N {v1,va,v3,v4} = {va2}: Then S’ N
N, # 0, otherwise no vertex in N[vs] or N[vs4] would be in S” and then S” would
not be a d-degree deletion set. Furthermore, if S N {v1,vq,v3,v4} = {v2}, then
S\{v2 }U{wv1} is still a d-degree deletion set of the same size, since N[ve]\N[v1] =
{vs}, vs is adjacent to all vertices in Ny, and S’ N N5, # 0. So for this case,
we include {v1,x} to the solution set for each x € Ny, to create [Ngy| =d—1
branches, each of which decreases k by 2.

Case 1.3. 5" N {v1,v2,v3,v4} = {vs} or 8" N {vy,va,v3,v4} = {va}: Then S’ N
Ni; # 0. For the same reason, we include {vs,z} to the solution set for each
x € Ny, to create |Ny,| = d — 1 branches, each of which decreases k by 2.

Case 1.4. |S' N {v1,v2,v3,v4} > 2: Then S\ {v1,v2,v35,v4} U {v1,v3} is a
d-degree deletion set of size not greater than that of S’ since N[{v1, ve,v3,v4}] C
N[{v1,v3}]. For this case, we can simply include {v;,v3} to the solution set.
The branching operation gives a recurrence relation
Ck)<(d-1°-Ck=2)+d—-1)-Ck—=2)+(d—-1)-C(k—2)+C(k—2) 3)
d* - C(k —2),

A

the branching factor of which is d < d + 1.

Case 2. {v1,v9,v3,v4} induces a path of 4 vertices: Let {vg} = N(v1) \ N[vg]
and {vs} = N(vyq) \ NJuvs], where it is possible that vy = vs. We observe the
following different cases.

Case 2.1. S’ does not contain any vertex in N, U N3,: Then S’ contains at
least one vertex in {vg,v1,v2} and at least one vertex in {vs,v4,vs5}, since S’
must contain at least one vertex in N[v;] and at least one vertex in N[vg].
If |S" N {v1,va,v3,v4} > 2, then S = 8"\ {v1,va,v3,v4} U {v1,v4} is still a
d-degree deletion set with |[S”| < |S7|, since N[{vi,vs,vs,v4}] C N[{v1,v4}].

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 87

Otherwise, it holds either S’ N {vg,v1,v2} = {vo} or S" N {vs, vy, v5} = {vs}. If
S" N {vg,v1,v2} = {vo}, then vy € S’ since S’ must contain at least one vertex in
Nvg]. If 8" N{vs,v4,v5} = {vs}, then vy € S’ since S’ must contain at least one
vertex in N{vz]. So for this case, we conclude that there is a solution contains one
of {v1,v4}, {vo,v3} and {v9,vs}. In our algorithm, we generate three branches
by including each of {v1,v4}, {vo,v3} and {vs,vs} to the solution set. In each of
the three branches, the parameter k decreases by 2.

Case 2.2. 5" does not contain any vertex in Ny, but contain some vertex in Nay:
Since S"N N[v1] # 0, we know that S’ contains at least one vertex in {vg, vy, v2}.
If vy € 87, then S” = 5"\ {va} U {v1} is still a d-degree deletion set. The reason
relies on that Nve] \ Nv1] = {v3}, vs is adjacent to each vertex in N4, and S”
contains at least one vertex in N3,. So for this case, there is a solution contains
one vertex in {vg,v1}. In our algorithm, we create 2|N5;| = 2(d — 1) branches
by including to the solution each pair of vertices x and y such that « € {vg,v1}
and y € Ngy. In each of the 2(d — 1) branches, the parameter k decreases by 2.

Case 2.3. S’ does not contain any vertex in N3, but contain some vertex in
N1,: For the same reason in Case 2.2, there is a solution contains one vertex in
{v4,v5}. In our algorithm, we create 2| N5| = 2(d — 1) branches by including to
the solution each pair of vertices x and y such that x € {v4,v5} and y € Nj5. In
each of the 2(d — 1) branches, the parameter k decreases by 2.

Case 2.4. S’ contains some vertex in Ny, and some vertex in N5,: For this case,
Our algorithm simply generates |N15||N5;| = (d — 1)? branches by including to
the solution each pair of vertices and y such that x € N, and y € N3,. In
each of the (d — 1)? branches, the parameter k decreases by 2.

The above branching operation gives a recurrence relation

Ck) <3Ck—=2)+2(d=1)-C(k—2)+2(d—-1)-C(k—2)+ (d—1)*-C(k —2)
=d(d+2)-C(k—2),

the branching factor of which is \/d(d +2) < d+ 1.

Step 6 (Type-II close quadruples of degree-(d 4+ 1) vertices)

Two nonadjacent degree-(d + 1) vertices are similar if they have the same
neighbor set. A set of four degree-(d 4 1) vertices {vy, va, v3,v4} is called a type-
II close quadruple if {vi,v3} and {ve,v4} are two similar pairs and there is
an edge between v; and v;41 for ¢ = 1,2,3. Note that there must be an edge
between v; and vy since {v1,v3} is a similar pair. So as a type-II close quadruple,
{v1,v2,v3,v4} always induces a cycle of 4 vertices.

Let {v1,vq,v3,v4} be a type-1I close quadruple. We use Ny; to denote N (vy)\
{va,v4} and Ny, to denote N(v2) \ {v1,vs}. Note that it holds N3 N Ny, = 0,
if we assume that there is no good pairs or close triples. Let S’ be a d-degree
deletion set. We consider the following different subcases.

Case 1. S’ N {v1,va,v3,v4} = 0: Then S’ N Nz # 0 and S’ N Ny, # 0. For
this case, we included each pair of vertices in N3 and N,, to the solution set to
create |N13||Noy| = (d — 1)? branches, each of which decreases k by 2.

88 M. Xiao

Case 2. S'N{v1,v2,v3,v4} = {v1} or S'N{v1, v, v3,v4} = {vs}: Then S'NN; #
(), otherwise S” would not be a d-degree deletion set since no vertex in Nuvz] or
Nlvq] is in S’. Furthermore, if S’ N{vy,v2,v3,v4} = {vs}, then S'\ {vs}U{vi} is
still a d-degree deletion set of the same size. So for this case, we include {vy,z}
to the solution set for each x € N5 to create |[Ni3| = d — 1 branches, each of
which decreases k by 2.

Case 3. S'N{v1, va,v3,04} = {va} or S'N{wv1,v2,v3,v4} = {v4}: Then S'NN,, #
(). For the same reason, we include {vg,z} to the solution set for each x € Ny,
to create |Ng,| = d — 1 branches, each of which decreases k by 2.

Case 4. |S'N{vy1, v, v3,v4}| > 2: Then S\ {v1, v2,v3,v4}U{v1, 02} is a d-degree
deletion set of size not greater than S’, since N[{v1,va,v3,v4}] C N[{v1,v2}].
For this case, we can simply include {v1,v2} to the solution set.

The branching operation gives a recurrence relation

Ck) < (d—1)2Ck—2)+(d—1)-Clk—2)+(d—1)-C(k — 2) + C(k — 2)
=d2 Ok —2),

the branching factor of which is d < d + 1.

Step 7 (Proper triples of degree-(d + 1) vertices)
A set of three degree-(d + 1) vertices {v1,vq,v3} is called a proper triple if
{v1,v2,v3} induces a path and no pair of vertices in {v1, v, v3} is close or similar.

Lemma 6. Let G be a graph of mazimum degree d+ 1 for any integer d > 0. If
G has no proper dominations, good pairs, close triples, type-1 close quadruples
or type-1I close quadruples, then G has some proper triples.

A proof of this lemma can be found in the full version.

For a proper triple {v1,v2,v3} in a graph having none of dominated vertices,
good pairs, close triples, type-I close quadruples and type-II close quadruples,
we have the following properties: N(vi) N N(vy) = 0, N(vy) N N(v3) = 0 and
1< [N(v) N N(vg)| < d.

Let Nij = N(v1) 1 N (3)\ {2}, Ny = N(v1)\ N(v3), Ny~ = N(vs) \ N(w1),
Ny = N(vz) \ {v1,vs} and = |Ny3|. Since {v1,v3} is not a similar pair, we
know that 0 < oz < d — 1. Let S’ be a d-deletion set. To design our branching
rule, we consider the following different cases.

Case 1. vy € S: We simply include vy to the solution set and the parameter k
decreases by 1. For all the remaining cases, we assume that vy & S”.

Case 2. vy € S’ and vy,v3 € S’: We simply include v; and v3 to the solution
set and the parameter k decreases by 2.

Case 3. v1,v3 € S" and v3 € S’: For the case, S’ N (N (v1) \ {va} # 0. We create
|N(v1) \ {v2}| = d branches by including v3 and each vertex in N(vq) \ {v2} to
the solution set and the parameter k in each branch decreases by 2.

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 89

Case 4. vo,v3 € S’ and vy € S’: For the case, S’ N (N (v3) \ {va} # . We create
|N(v3) \ {v2}| = d branches by including v; and each vertex in N(v3) \ {v2} to
the solution set and the parameter k in each branch decreases by 2.

Case 5. vy, vg,v3 € S’: Then S’ must contains (i) a vertex in Ny and (ii) either
a vertex in Ny or two vertices from N; and Nj respectively. Our algorithm
generates [Ny ||[Niz| + [Ny |[|N7 ||[N5 | = (d — 1)z + (d — 1)(d — z)? branches.
Each of the first (d — 1)x branches includes a vertex in N; and a vertex in Ny,
to the solution set and the parameter k decreases by 2. The last (d — 1)(d — x)?
branches are generated by including each triple {w; € Ny ,wy € N| ,ws € N5 }
to the solution set, where the parameter k decreases by 3.
The above branching operation gives a recurrence relation

Ck)<Clk-1)+Ck-2)+d-Ck—2)+d-C(k—2)+
(d—1z-C(k—2)+(d—1)(d—=2)*-C(k—3) (4)
=Ck—1)+(2d+1)+(d—1)z)-C(k —2)+ (d —1)(d — z)* - C(k — 3),
where 0 < x <d—1.

Lemma 7. When d > 3, the branching factor of (4) is at most d + 1 for each
0<zx<d-1.

A proof of this lemma can be found in the full version.

4.1 The Results

Lemma 6 guarantees that when the graph has a vertex of degree > d + 1, one of
the above seven steps can be applied. When d > 3, the branching factor in each
of the seven steps is at most d + 1. Thus,

Theorem 1. The d-bounded-degree vertex deletion problem for each d > 3 can
be solved in O*((d + 1)¥) time.

Note that all the seven steps of our algorithm work for d = 2. In the first six
steps, we still can get branching factors at most d + 1 for d = 2. In Step 7, when
d=2and x =d—1=1, (4) becomes

Ck) <C(k—1)+6C(k—2)+ C(k—3),

which has a branching factor of 3.0645. This is the biggest branching factor in
the algorithm. Then

Theorem 2. The co-path/cycle problem can be solved in O*(3.0645%) time.

Note that previously the co-path/cycle problem could only be solved determin-
istically in O*(3.24F) time [4].

90 M. Xiao

5 Concluding Remarks

In this paper, by studying the structural properties of graphs, we show that the
d-bounded-degree vertex deletion problem can be solved in O*((d + 1)¥) time
for each d > 3. Our algorithm is the first nontrivial parameterized algorithm for
the d-bounded-degree vertex deletion problem with d > 3.

Our problem is a special case of the (d + 2)-hitting set problem. It is still
left as an open problem that whether the d’-hitting set problem can be solved in
O*((d’' —1)F) time. Our result is a step toward to this interesting open problem.
However, our method can not be extended to the d’-hitting set problem directly,
since some good graph structural properties do not hold in the general d’-hitting
set problem.

References

1. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: the maximum k-plex problem. Oper. Res. 59(1), 133-142 (2011)

2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discrete Appl. Math. 160(1-2), 53-60
(2012)

3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411, 3736-3756 (2010)

4. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear
kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124,
pp- 90-102. Springer, Heidelberg (2010)

5. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77, 1141-1158
(2011)

6. Feng, Q., Wang, J., Li, S., Chen, J.: Randomized parameterized algorithms for
P»-packing and co-path packing problems. J. Comb. Optim. 29(1), 125-140 (2015)

7. Fernau, H.: A top-down approach to search-trees: improved algorithmics for
3-hitting Set. Algorithmica 57, 97-118 (2010)

8. Fernau, H.: Parameterized algorithms for d-hitting set: the weighted case. Theor.
Comput. Sci. 411(16-18), 1698-1713 (2010)

9. Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math.
87(14), 3157-3174 (2010)

10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

11. Katreni¢, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett.
116(4), 273-278 (2016)

12. Newnan, I., Sohler, C.: Every proerty of hyperfinite graphs is testable. SIAM J.
Comput. 42(3), 1095-1112 (2013)

13. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for
3-hitting set. J. Discrete Algorithms 1, 89-102 (2003)

14. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
J. Math. Soc. 6, 139-154 (1978)

15. Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Inf. Process.
Lett. 115, 96-99 (2015)

16.

17.

A Parameterized Algorithm for Bounded-Degree Vertex Deletion 91

Wu, B.Y.: A measure and conquer approach for the parameterized bounded degree-
one vertex deletion. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol.
9198, pp. 469-480. Springer, Heidelberg (2015)

Xiao, M.: On a generalization of Nemhauser and Trotter’s local optimization the-
orem. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp.
442-452. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_38

http://dx.doi.org/10.1007/978-3-662-48971-0_38

The Monotone Circuit Value Problem
with Bounded Genus Is in NC

Faisal N. Abu-Khzam®*, Shouwei Li?(*) Christine Markarian®,
Friedhelm Meyer auf der Heide?, and Pavel Podlipyan?

! Department of Computer Science and Mathematics,
Lebanese American University, Beirut, Lebanon
2 Heinz Nixdorf Institute and Department of Computer Science,
Paderborn University, Fiirstenallee 11, 33102 Paderborn, Germany
sli@mail.uni-paderborn.de
3 Department of Mathematical Sciences, Haigazian University, Beirut, Lebanon
4 School of Engineering and Information Technology,
Charles Darwin University, Darwin, Australia

Abstract. We present an efficient parallel algorithm for the general
Monotone Circuit Value Problem (MCVP) with n gates and an under-
lying graph of bounded genus k. Our algorithm generalizes a recent
result by Limaye et al. who showed that MCVP with toroidal embed-
ding (genus 1) is in NC when the input contains a toroidal embedding
of the circuit. In addition to extending this result from genus 1 to any
bounded genus k, and unlike the work reported by Limaye et al., we do
not require a precomputed embedding to be given. Most importantly,
our results imply that given a P-complete problem, it is possible to find
an algorithm that makes the problem fall into NC by fixing one or more
parameters. Hence, we deduce the interesting analogy: Fized Parameter
Parallelizable (FPP) is with respect to P-complete what Fized Parame-
ter Tractable (FPT) is with respect to NP-complete. Similar work that
uses treewidth as parameter was also presented by Elberfeld et al. in [6].

1 Introduction

Parameterized complexity theory provides a refined classification of computa-
tionally intractable problems based on a multivariate complexity analysis of
(exact) algorithms. The class FPT occupies the bottom of parameterized com-
plexity hierarchy just as the class P is in the classical (polynomial) hierarchy. In
short, a problem is Fized Parameter Tractable (FPT) if it has an algorithm that
runs in O(f(k)-n®M), where n is the problem size and k is the input parameter
that is independent of n, for an arbitrary computable function f. A well-known
example is the parameterized version of the Vertex Cover Problem which can be

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
the International Graduate School “Dynamic Intelligent Systems”.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 92-102, 2016.
DOT: 10.1007/978-3-319-42634-1_8

The Monotone Circuit Value Problem with Bounded Genus Is in NC 93

solved in O(kn + 1.274%) time, where n is the number of vertices of the input
graph and k is an upper bound on the size of the sought vertex cover [4].

The study of Parameterized Complexity has been extended to parallel com-
puting and this is broadly known as Parameterized Parallel Complexity. The first
systematic work on Parameterized Parallel Complexity appeared in [3] where the
authors introduced two classes of efficiently parallelizable parameterized prob-
lems known as PNC and FPP respectively, both based on the degree of efficiency
required. The class of PNC (parameterized analog of NC') contains all parame-
terized problems that have a parallel deterministic algorithm with running time
O(f(k)-(logn)"™)) and O(g(k)-n?) processors, where n is the size of input, k is
the parameter, f, g, h are arbitrary computable functions, and (is a constant
independent of n and k. A noticeable drawback to the definition of PNC is the
exponent in the logarithm bounding the running time. Since the latter depends
on k, it grows at a rapid rate thus making the running time very close to a
linear function, even for not too large values of the parameter. On the other
hand, the class of FPP (Fized Parameter Parallelizable) contains all parame-
terized problems that have a parallel deterministic algorithm with running time
O(f(k) - (logn)®) and O(g(k) - n®) processors, where n is the size of input, k is
the parameter, f and g are arbitrary computable functions, and «, (are con-
stants independent of n and k. It was shown in [3,6] that some problems with
bounded treewidth (i.e., treewidth is the parameter) belong to FPP. In fact,
this parameter is somehow coarse since using it leads to numerous NP-complete
problems ending up in FPP as well.

Motivated by the above, we restrict our attention to P-complete problems and
consider a more natural parameter — the genus of a graph. Our result becomes
more helpful in understanding the intrinsic difficulty of P-complete problems and
whether P = NC. This is the primary motivation behind this paper. Consider,
as an example, one of the most studied P-complete problems, the Circuit Value
Problem (CVP). A Boolean Circuit is a directed acyclic graph consisting of NOT,
AND and OR gates. CVP is the problem of evaluating a Boolean Circuit on a given
input. It was shown to be P-complete with respect to logarithmic space reductions
in [9]. In addition, some restricted variants of CVP have also been studied. The
Planar Circuit Value Problem (PCVP), for example, is a variant of CVP in which
the underlying graph of the circuit has a planar embedding. Another variant is
the Monotone Circuit Value Problem (MCVP) in which the circuit has only AND
and OR gates. Both PCVP and MCVP were also shown to be P-complete in [7].
Interestingly, if the circuit is simultaneously planar and monotone, then it can be
evaluated in NC. This variant is known as PMCVP and its first NC algorithm was
given in [13]. The latter employs the straight-line code parallel evaluation tech-
nique and has a running time in O(log® n) with Q(n°) processors. Subsequently,
a more sophisticated algorithm with the same running time but requiring only a
linear number of processors was presented in [11].

Our Contribution: In this paper, we explore the class of Parameterized Par-
allel Complexity by presenting an efficient parallel algorithm for the general
MCVP with n gates and an underlying graph of bounded genus k. Our algorithm

94 F.N. Abu-Khzam et al.

improves and generalizes the result in [10], which shows that the MCVP with
toroidal embedding (genus 1) is in NC. The work in [10] was non-constructive
and assumed that the input contains a fixed toroidal embedding of the circuit.
We extend the result from genus 1 to a bounded constant genus k& and unlike
in [10], we do not require such an embedding to be given. Moreover, our results
imply that given a P-complete problem, it is possible to find an algorithm that
makes the problem fall into NC by fixing one or more parameters. Hence, we
deduce the interesting analogy: FPP is with respect to P-complete what FPT is
with respect to NP-complete. Similar work appeared in [6] where they consider
the treewidth as a parameter.

Structure of the Paper: The rest of this paper is structured as follows. In
Sect. 2, we give some preliminaries, including the PQ-tree data structure along
with some parallel operations on it. These are essential for the understanding
of our algorithm, which we present in the following sections. In Sect. 3, we give
a sketch of our algorithm. Then we decompose the algorithm and prove its
correctness in Sects.4 to 6. We conclude our paper with some remarks and
future work in Sect. 7.

2 Preliminaries

We assume familiarity with basic graph theoretic terminology but we shall give
a few general definitions and notations.

The (orientable) genus of a graph is the minimal integer g such that the
graph can be drawn without edge-crossing on a sphere with g handles. In a
connected graph, a block (or 2-connected component) is a maximal 2-connected
subgraph. The block decomposition of a graph is the set of all the blocks of the
graph. It is not hard to compute a block decomposition of a connected graph
G in NC [12]. We may assume throughout the rest of this paper that G is
a 2-connected graph. This is especially needed for the relation between genus
and block decomposition described in Lemma 1. Otherwise, we can apply the
algorithms mentioned above to obtain a block decomposition of the input graph
and process each block independently.

Lemma 1 [1]. The genus of a connected graph is the sum of the genus of its blocks.

Given a universe U = {ey, ..., en}, a PQ-tree is a tree-based data structure
that represents a class of permissible permutations over the set U in which the
leaves are elements of U and the internal nodes are distinguished as being labeled
either P-nodes or Q-nodes. Let T be a PQ-tree over the universe U. We denote
by L(T') the set of linear orders represented by T, and say that T generates L(T).
One element of L(T) is obtained by reading off the leaves from left to right in
the order in which they appear in T'. The other elements are those linear orders
obtained in the same way according to the following conditions:

— Every element of U appears precisely once as a leaf node;
— The P-node has at least two children and they might be arbitrarily permuted;

The Monotone Circuit Value Problem with Bounded Genus Is in NC 95

— The Q-node has at least three children and they are allowed only to be placed
in reverse order.

Since there is no way a PQ-tree over a non-empty ground set can represent
the empty set of orderings, we use a special null tree T, to represent the empty
set. With each linear ordering A\ we associate the cyclic ordering co(\) obtained
from A by letting the first element of A follow the last. Then the PQ-tree T
represents the set of cyclic orderings CO(T') = co(L(T)).

Let A be a subset of the universe U. We say a linear ordering A = eq,..., e,
of U satisfies the set A if all the elements of A are consecutive in A. For a PQ-tree
T, let

U(T,A) ={X: A€ L(T), A satisfies A} (1)

Given any T and A C U, there is a PQ-tree T such that

L(T) = (T, A) (2)

called the reduction of T' with respect to A. In order to parallelize the planarity

testing algorithm presented in [2], Klein and Reif in [8] introduced three new

operations on PQ-trees: multiple-disjoint-reduction, intersection and join.
Given any T and Aq,..., A C U, there is a PQ-tree T such that

L(T) = B(T, {Ay...., Ac}) (3)

called the multiple-disjoint-reduce of T with respect to {Ay,..., Ag}. They pro-
posed Algorithm MREDUCE(T, {4, ..., Ax}) which modifies T to obtain a PQ-
tree T such that L(T) = W(T,{A1,..., Ay}) if all subsets A;’s are pairwise dis-
joint. Their algorithm works in O(log m) time using a linear number of processors,
where m = |U|. Note that if no ordering generated by T satisfies {A1,..., Ay},
then the result of multiple-disjoint-reduce Tis just the null tree T,

A PQ-tree T is the intersection of two PQ-trees T and 1" over the same
ground set if L(T) = L(T) N L(T"). Klein and Reif also proposed Algorithm
INTERSECT(T,T") to reduce the given PQ-trees simultaneously with respect
to multiple sets that are not necessarily disjoint, using the multiple-disjoint-
reduce as a subroutine. The algorithm modifies 77 to be the intersection of the
two original trees. INTERSECT can be computed in O(log®m) time using m
processors, where m is the size of the ground set.

The last operation is join. Suppose Ty, ..., Ty are PQ-trees over Uy,..., Uy,
respectively, and for some U;, U; may overlap. We say that T is the join of Tj
with T1,..., Ty if CO(T) = CO(Ty) join (CO(Ty),...,CO(Ty)). To be more
specific, we can compute a new PQ-tree T such that the cyclic ordering of T
satisfies Uy, . . . , Uy. The join of Ty with T1, . .., T can be computed in O(log® m)
time using m processors, where m is the total number of ground elements, using
the multiple-disjoint-reduce and the intersection as subroutines.

3 The Algorithm

Our main result can be summarized in the following theorem.

96 F.N. Abu-Khzam et al.

Theorem 1. Given a general monotone boolean circuit with n gates and
an underlying graph of bounded genus k, the circuit can be evaluated in
O((k+1)- log® n) time using O(n®) processors, where O(n®) is the best proces-
sors boundary for parallel matrixz multiplication. Therefore, the monotone circuit
value problem with bounded genus k is in FPP.

Throughout the rest of this paper, we will respectively use the terms “graph”
and “circuit”, “node” and “gate”, “edge” and “wire” interchangeably. The basic
strategy of our algorithm is as follows, first we transform the input graph into
a layered graph by subdividing the edges. It is well known that subdivision will
not increase the genus of a input graph. Then the algorithm greedily contracts
planar subgraphs in parallel until it observes a subgraph that is not planar. Due
to the particular contraction process, which is based on working on the layered
version of the input graph, this situation allows to split the circuit into two
parts of a smaller total genus. Then the algorithm proceeds on both parts in
parallel. In fact, we cannot merely choose a single embedding for each subgraph
since the embeddings of two subgraphs might be inconsistent thus preventing
the embeddings from being combined. Instead, we use PQ-trees to represent the
set of all embeddings of each planar subgraph.

It is obvious that any circuit can be considered as a directed acyclic graph
(DAG). If the circuit has multiple sinks, then each of them can be evaluated
independently. We therefore assume throughout the rest of this paper that there
is only one single sink ¢ in the circuit.

Algorithm 1. Parallel algorithm for MCVP

1: procedure ALG(G)
2: Transform the input graph G into a layered graph G’ with procedure SPLIT(G).
3: Parallel construct PQ-tree for each node v € G’ except the sink node t. Each
PQ-tree represents a plan subgraph.

Take subgraphs that consist of nodes in consequent layers and apply the join
operation on the PQ-trees in even layer with odd layer in parallel.
5 if the join operation is not 75, then
6: Contract the subgraphs represented by PQ-trees and update layer numbers.
7 Run ALG(-) on the new graph.
8.
9

>

else
Delete all directed edges between layers ¢ and ¢ + 1 and then add one new
node t' as the sink node of the second part.
10: Run ALG(-) on both subgraphs recursively.
11: end if
12: Evaluate the planar sub-circuits in k& 4 1 steps.
13: end procedure

4 Layered Computation

The first step of our algorithm is to transform the input graph into a layered
graph with the same genus. To do so, we first flip the directions of edges in G to
obtain G*, and let d(t,v) be the length of the longest directed path from sink ¢
to node v in G*.

The Monotone Circuit Value Problem with Bounded Genus Is in NC 97

The layer number 9(v) of the node v defined as follows:
o(v) = d(t,v). (4)

In this step, we assign to each node v of the given DAG G the layer num-
ber 9(v), and then add some dummy nodes to make the input graph layered.
Algorithm 2 formally describes this procedure.

Algorithm 2. Split of DAG

1: procedure SPLIT(G)
2: Calculate the layer number d(v) for every node v € G.

3 for all directed edges (u,v) in G do

4: Let I =0(u) —o(v) — 1.

5 if [> 0 then

6: Add dummy nodes n1,...,n; and directed edges (u,n1),(ni,n2),...,
(ni,v) to the graph G.

T end if

8: end for

9: Together with added dummy nodes and edges we obtain DAG G’, such that for
any edge (u,v), l =0(u) —0(v) —1=0.
10: end procedure

Note that for any directed edge (u,v) € G’, it holds that I = 0. In other
words, all edges are situated between adjacent layers, i.e., there are no edges
crossing more than two layers and no edges in the same layer.

We still need to show that Algorithm 2 can be accomplished in NC time and
the layered graph G’ has the same genus as G. It is easy to see that the layer
number for each node can be computed in NC time, and more precisely in NC?
by using parallel topological sorting algorithms, such as that in [5]. So, we only
need to observe that:

Lemma 2. Graphs G and G’ have the same genus.

Proof. Since graph G’ is obtained only by edge subdivision of graph G and the
edge subdivision operation will not change the genus of a graph, then G and G’
have the same genus. a

5 Parallel Contraction

The second step of our algorithm can be viewed as a greedy contraction process
in parallel on the layers. First, we describe how to represent the set of embeddings
of a subgraph with a PQ-tree in the following lemma.

Lemma 3. For any gate in a planar circuit, all input wires and all output wires
of the gate are placed consecutively in the cyclic ordering of the wires around the
gate in the plane.

98 F.N. Abu-Khzam et al.

) T(1)
Q‘Q
e’e (=) (=
(5) (31) (1) (10)

Fig.1. An example of a DAG and a PQ-tree constructed for node 1 with P-nodes
represented as circles and a Q-node represented as a rectangle

Proof. Let ¢ be a gate in C’. Assume that i; and iy are the two input wires of ¢
and o7 and oo are the two output wires of ¢, such that o; and o5 interlace with
i1 and 75 in the cyclic ordering of the wires around c. Suppose s is the single
source of C’ and t is the single sink of C’, then there are four directed paths P,
P27 P3 and P4 in Cll Pl = (C,Ol,...,t), P2 = (C,OQ,...,t), P3 = (s,...,il,c),
and Py = (s,...,12,¢). These four paths cannot be embedded in a plane without
having crossing edges. This contradicts with the fact that C’ is a plane graph
and concludes the proof. a

It has been shown in [8] that any planar graph can be represented by a
PQ-tree. Suppose v € G, then we can directly construct a valid PQ-tree T'(v)
corresponding to node v, and any cyclic ordering of the edges incident to v will
be an arrangement of v, provided that the incoming edges and the outgoing
edges are consecutive, respectively. In this case, we let T'(v) be the tree whose
root is a Q-node with two P-nodes children, in and out, where the children of in
are the incoming edges of v and the children of out are the outgoing edges of v.
Figure1 illustrates an example of DAG and an initial PQ-tree T'(1) constructed
from node 1.

It is easy to see that this parallel construction of PQ-trees for each node
v € G', except for the sink node ¢, takes only constant time with a linear number
of processors, since we only need to rearrange the input and output edges of a
node.

Next we describe how to contract the subgraphs. We start with the original
layered graph and let G = G’. In the i*" stage, we choose a collection of
subgraphs of the graph G in accordance with the layer number, contract these
subgraphs and update the layer number. This results in the graph GU+1.

For each node v € G+ and each stage j < i, we denote by H(j)(v) the
subgraph of G) that was contracted over steps j + 1,...,4 forming v. We use
H(v) for HO) (v). If u € HY)(v) for v € G+ we use u'+! to denote v.

We choose our subgraphs to contract at each stage ¢ such that the following
properties are always guaranteed:

The Monotone Circuit Value Problem with Bounded Genus Is in NC 99

At most O(logn) stages are needed.

— The sink node is never contracted with any other node;

For each node v # t in G, the subgraph H(v) permits a PQ-tree represen-
tation of the set of its embeddings;

— The layer number is easy to update, following the contraction of the edges.

We first show that the algorithm terminates in O(logn) stages. Then we
show how the subgraphs are chosen and prove that our method of choosing the
subgraphs satisfies the above properties.

Lemma 4. Algorithm 1 terminates in O(logn) stages.

Proof. We already showed in Algorithm 2 how to transform the input DAG into
a layered DAG such that all directed edges go from layer ¢ + 1 to layer 4 in the
layered DAG. To ensure that only O(logn) stages are needed, we contract the
nodes as follows. Suppose that there is one node u at layer ¢+ 1 and its neighbor
set in layer i is {v1,..., v, }. Moreover, assume that the other neighbor of each
v; in the neighbor set of u in layer ¢ + 1 is {uy,...,up}. Since the input is a
monotone boolean circuit, there are only two input wires for each gate. If (u,v;)
is already an input wire for gate v;, then there must exist another input wire
coming from gate {uq,...,u,} to gate v;. We will contract the edges incident to
u, {v1,...,vm}, and {uq,...,up} together.

In each stage, either the number of layers are reduced by two (contract suc-
cess) or the nodes in adjacent layers cannot be contracted to form a larger planar
subgraph. Hence, for the latter, we cut all edges between layer ¢ + 1 and i. After
cutting the edges between layer ¢+ 1 and ¢, the graph is split into two parts. One
part is below layer ¢ (including layer ¢) which has some hanging incoming edges,
and the other part is above layer ¢ + 1 (including layer i + 1) which has some
hanging outgoing edges. It is easy to see that the first part is still a connected
directed acyclic graph with sink node t. However, the second part could be a
disconnected graph because the adjacent layers may not be a complete bipar-
tite graph. So, we add a new sink node t’ to the second part and draw all the
hanging outgoing edges to t’. Clearly, this step guarantees that the second part
is a connected directed acyclic graph (refer to Fig.2 for an illustration). Then,
we handle these two subgraphs in parallel. a

At every stage i, we compute these PQ-trees for each new node v € GU+1)
in parallel from the PQ-trees for the nodes H (v) identified to form v.

If a null tree T,y arises as T'(v) for some node v, then there are no arrange-
ments of v. So, the candidate subgraphs cannot form a larger planar subgraph.
Assume on the other hand that the contraction process continues until there is
only one node left other than the sink node in G*. Then every internal node is
adjacent only to the sink node. Let {v1,...,v,,} be these nodes. For j =i,...,m,
if T'(v;) is not Ty, then there is a planar embedding for each internal node v;.
So both the input edges and the output edges form a consecutive subsequence,
and the graph is planar.

100 F.N. Abu-Khzam et al.

e (3 @) ()

Fig. 2. Cut operation with a new sink node.

6 Split Process

In this section, we show why the cut operation reduces the genus of both parts
by at least 1 and how the circuit will be split into k& + 1 planar sub-circuits.

Lemma 5. The cut operation reduces the genus of subgraphs by at least 1.

Proof. Suppose that some nodes in layer ¢ + 1 and ¢ cannot be contracted, then
either there exists at least one node u in layer i + 1 such that its incoming edges
from layer ¢ + 2 interlace with the outgoing edges to layer i, or there exists at
least one node v in layer i such that its incoming edges from layer i + 1 interlace
with the outgoing edges to layer ¢ — 1. Irrespective of both of these scenarios, we
do the following and obtain a new graph containing only two blocks. We delete
all directed edges between layers ¢ and ¢ + 1 and then add one new node ¢’ as
the sink node of the second part and the source node of the first part. Suppose
the genus of the first block is g; and the genus of the second block is go. Then
the genus of the first block is equal to the genus of the first part of the graph
after cutting, and the genus of the second block is equal to the genus of the
second part of the graph after cutting. The cut operation will definitely reduce
the genus of the layered graph by 1. Hence, we have g1 + g2 +1 = k. This implies
that g1 + g2 < k. Since g1 > 0 and go > 0, then g1 < k and g5 < k. g

Lemma 6. Algorithm 1 splits the input circuit with bounded genus k into k + 1
planar circuits.

Proof. We prove this lemma by induction. Without loss of generality, after the
first cut, we observe that g3 < go and the genus of the layered graph reduces
by 1. Now, we have two separate graphs. We consider different combinations of
g1 and go as follows:

— if g7 is O, then it is a planar subgraph. This graph is represented by one
PQ-tree. The other part will have genus go = k£ — 1. In this case, the genus
reduces by 1 and the number of subgraphs increases by 1.

The Monotone Circuit Value Problem with Bounded Genus Is in NC 101

— if g1 is 1, then it is not a planar subgraph and it will be cut into two subgraphs
later. The other part will have genus go = k — 2.

Hence we conclude that every cut will reduce the genus, at least by 1, and
hence there are at most k 4+ 1 planar subgraphs. a

Our main result follows from the lemmas above together with the parallel
evaluation technique for PMCVP that has a running time in (9(10@;3 n) with a
linear number of processors. We note that the number of processors needed is
bounded by O(n°), which is the processors boundary for the parallel matrix
multiplication algorithm. This is only because we need a parallel topological
sorting algorithm to compute the layer number. Otherwise, our algorithm will
only need a linear number of processors.

7 Concluding Remarks and Future Work

We presented an efficient parallel algorithm for the general MCVP problem with
bounded genus. We deduce that MCVP with genus k is in FPP. This implies that
given a P-complete problem, it is possible to find an algorithm that makes the
problem fall into NC by fixing one or more parameters. Hence, with the results
in this paper, we initiate the study of a new class of problems analogous to the
class FPT. Subsequently, many questions remain unanswered. For example, can
we construct a hierarchy for P-problems analogous to the one for NP-problems?

Acknowledgments. We wish to thank the anonymous referees for their valuable
comments to improve the structure and presentation of this paper.

References

1. Battle, J., Harary, F., Kodama, Y.: Additivity of the genus of a graph. Bull. Am.
Math. Soc. 68(6), 565-568 (1962)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335-379 (1976)

3. Cesati, M., Di Ianni, M.: Parameterized parallel complexity. In: Pritchard, D.,
Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 892-896. Springer,
Heidelberg (1998)

4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40), 3736-3756 (2010)

5. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control
64(1), 2-22 (1985)

6. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of bod-
laender and courcelle. In: 2010 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 143-152. IEEE (2010)

7. Goldschlager, L.M.: The monotone and planar circuit value problems are log space
complete for P. SIGACT News 9(2), 25-29 (1977)

102 F.N. Abu-Khzam et al.

8. Klein, P.N., Reif, J.H.: An efficient parallel algorithm for planarity. J. Comput.
Syst. Sci. 37(2), 190-246 (1988)

9. Ladner, R.E.: The circuit value problem is log space complete for P. SIGACT News
7(1), 18-20 (1975)

10. Limaye, N., Mahajan, M., Sarma, J.M.: Upper bounds for monotone planar circuit
value and variants. Comput. Complex. 18(3), 377-412 (2009)

11. Ramachandran, V., Yang, H.: An efficient parallel algorithm for the general planar
monotone circuit value problem. STAM J. Comput. 25(2), 312-339 (1996)

12. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. STAM J.
Comput. 14(4), 862-874 (1985)

13. Yang, H.: An NC algorithm for the general planar monotone circuit value prob-
lem. In: Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pp. 196-203, December 1991

Database and Data Structures

Locality-Sensitive Hashing Without False
Negatives for [,

Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, and Piotr Wygocki®™)

Institute of Informatics, University of Warsaw, Warsaw, Poland
{apacuk, sank,k.wegrzycki,wygos }@mimuw.edu.pl

Abstract. Inthis paper, we show a construction of locality-sensitive hash
functions without false negatives, i.e., which ensure collision for every pair
of points within a given radius R in d dimensional space equipped with ,
norm when p € [1, 00]. Furthermore, we show how to use these hash func-
tions to solve the c-approximate nearest neighbor search problem without
false negatives. Namely, if there is a point at distance R, we will certainly
report it and points at distance greater than cR will not be reported for
c= 2(/d, dl_%). The constructed algorithms work:
— with preprocessing time O(nlog(n)) and sublinear expected query
time,
— with preprocessing time O(poly(n)) and expected query
time O(log(n)).
Our paper reports progress on answering the open problem presented
by Pagh [8], who considered the nearest neighbor search without false
negatives for the Hamming distance.

1 Introduction

The Nearest Neighbor problem is of major importance to a variety of applications
in machine learning and pattern recognition. Ordinarily, points are embedded
in R?, and distance metrics usually measure similarity between points. Our task
is the following: given a preprocessed set of points S C R? and a query point
q € R?, find the point v € S, with the minimal distance to ¢. Unfortunately,
the existence of an efficient algorithm (i.e., whose query and preprocessing time
would not depend exponentially on d), would disprove the strong exponential
time hypothesis [8,10]. Due to this fact, we consider the c-approzimate nearest
neighbor problem: given a distance R, a query point ¢ and a constant ¢ > 1, we
need to find a point within distance c¢R from point ¢ [4]. This point is called a
cR-near neighbor of q.

Definition 1. Point v is an r-near neighbor of q in metric M iff M(q,v) <r.

One of the most interesting methods for solving the c-approximate nearest
neighbor problem in high-dimensional space is locality-sensitive hashing (LSH).
The algorithm offers a sub-linear query time and a sub-quadratic space complex-
ity. The rudimentary component on which LSH method relies is locality-sensitive

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 105-118, 2016.
DOI: 10.1007/978-3-319-42634-1_9

106 A. Pacuk et al.

hashing function. Intuitively, a hash function is locality-sensitive if the proba-
bility of collision is much higher for “nearby” points than for “far apart” ones.
More formally:

Definition 2. A family H = {h : S — U} is called (r,c, p1,p2)-sensitive for
distance D and induced ball B(q,r) = {v: D(q,v) < r}, if for any v,q € S:

~ if v e B(g,r) then P[h(q) = h(v)] = p1,

- if v & B(q,cr) then P[h(q) = h(v)] < pa.

For p1 > ps and ¢ > 1.

Indyk and Motwani [7] considered randomized c-approximate R-near neigh-
bor (Definition 3).

Definition 3 (The Randomized c-Approximate R-Near Neighbor or
(R,c)-NN). Given a set of points in a P C R? and parameters R > 0,5 > 0. Con-
struct a data structure D such that for any query point q, if there exists a R-near
neighbor of q in P, D reports some cR-near neighbor of q in P with probability 1 —4.

In this paper, we study guarantees for LSH based (R,c)-NN such that for
each query point ¢, every close enough point ||z — ¢||, < R will be certainly
returned, i.e., there are no false negatives.! In other words, given a set S of size
n and a query point ¢, the result is a set P C S such that:

{z:flz—qll, <r} S PC{x: |z —ql, <er}

.p4

Fig. 1. The presented algorithms guarantee that points in the dashed area (p1) will be
reported as neighbors. Points within the dotted circle (p2) will be reported as neighbor
with high probability. Points (p3) within a distance ¢R might be reported, but not nec-
essarily. Points (p4) outside circle ¢cR cannot be reported. The schema picture presents
an example for the euclidean distance (p = 2).

Y]]l denotes the standard I, norm for fixed p.

Locality-Sensitive Hashing Without False Negatives for [, 107

Moreover, for each distant point (||z — ¢, > cR), the probability of being
returned is bounded by pg, — probability of false positives. In [8] this type of
LSH is called LSH without false negatives. The fact that the probability of
false negatives is 0 is our main improvement over Indyk and Motwani algo-
rithm [7]. Furthermore, Indyk and Motwani showed that p-stable distributions
(where p € (0,2]) are (r,c,p1,p2)-sensitive for I,. We generalized their results
on any distribution with mean 0, bounded second and fourth moment and any
p € [1,00] (see Lemma 1, for rigorous definitions). Finally, certain distributions
from this abundant class guarantee that points within given radius will always

be returned (see Fig.1). Unfortunately, our results come with a price, namely
¢ > max{\/d,d ~1/}.

2 Related Work

2.1 Nearest Neighbor in High Dimensions

Most common techniques for solving the approximate nearest neighbor search,
such as the spatial indexes or k-d trees [3] are designed to work well for the
relatively small number of dimensions. The query time for k-d trees is O(nl’%)
and when the number of dimensions increases the complexity basically con-
verges to O(n). For interval trees, query time O(log? n) depends exponentially
on the number of dimensions. The major breakthrough was the result of Indyk
and Motwani [7]. Their algorithm has expected complexity of O(dn<) for any
approximation constant ¢ > 1 and the complexity is tight for any metric [,
(where p € (0, 2]). Indyk and Motwani introduced the following LSH functions:

h(v) = {

where a is the d-dimensional vector of independent random variables from a
p-stable distribution and b is a real number chosen uniformly from the range
[0,7].

Our algorithm is based on similar functions and we prove compelling results
for more general family of distributions (we show bounds for any distribution
with a bounded variance and an expected value equal to 0). Furthermore, our
algorithm is correct for any p € [1, 00]. Indyk and Motwani‘s LSH algorithm was
showed to be optimal for I; metric. Subsequently, Andoni et al. [1] showed near
optimal results for 5. Recently, data dependant techniques have been used to
further improve LSH by Andoni and Razenshteyn [2]. However, the constant p
in a query time O(n”) remains:

p= log p1
log p2

When a formal guarantee that p; = 1 is needed their algorithm does not apply.

108 A. Pacuk et al.

2.2 LSH Without False Negatives

Recently, Pagh [8] presented a novel approach to nearest neighbor search in
Hamming space. He showed the construction of an efficient locality-sensitive
hash function family that guarantees collision for any close points. Moreover,
Pagh showed that bounds of his algorithm for ¢r = logn/k (where k € N)
essentially match bounds of Indyk and Motwani (differ by at most factor In4 in
the exponent). More precisely, he showed that the problem of false negatives can
be avoided in the Hamming space at some cost in efficiency. He proved bounds
for general values of c¢. This paper is an answer to his open problem: whether is
it possible to get similar results for other distance measures (e.g., 1 or la).
Pagh introduced the concept of an r-covering family of hash function:

Definition 4. For A C {0,1}?, the Hamming projection family H is
r-covering if for every x € {0,1}¢ with ||z|g < r, there evist h € H4 such
that h(z) = 0.

Then, he presented a fast method of generating such an r-covering family.

Finally, he showed that the expected number of false positives is bounded by
or+l-llz—yllu

3 Basic Construction

We will consider the [, metric for p € [1,00] and n fixed points in R? space.
Let v be a d-dimensional vector of independent random variables drawn from
distribution D. We define a function h,, as:

o) = | 2221

TPp

where (,) is a standard inner product and p, = d"~%. The scaling factor p), is
chosen so that: ||z]j1 < ppl|z||p- The rudimentary distinction between the hash
function h, and LSH is that we consider two hashes equal when they differ
at most by one. In Indyk and Motwani [7] version of LSH, there were merely
probabilistic guarantees, and close points (say 0.99 and 1.01) could be returned
in different buckets with small probability. Since our motivation is to find all
close points with absolute certainty, we need to check the adjacent buckets as
well.

First, observe that for given points, the probability of choosing a hash func-
tion that will classify them as equal is bounded on both sides as given by the
following observations. The proofs of these observations are in Appendices A
and B.

Observation 1 (Upper Bound on the Probability of Point Equivalence)

Pllhp(z) = hp(y)| < 1] <Pz —y,v) | < 2ppr].

Locality-Sensitive Hashing Without False Negatives for [, 109

Observation 2 (Lower Bound on the Probability of Point Equivalence)
Pllhy() = hp(y)] <1] 2 P[| (z =y, 0) [< ppr].

Interestingly, using the aforementioned observations we can configure a dis-
tribution D so the close points must end up in the same or adjacent bucket.

Observation 3 (Close Points Have Close Hashes). For distribution D
such that every v; ~ D: —1 < v; < 1 and for 2,y € R, if ||z — y||, < r then
Vi, () = hp(y)| < 1.

Proof. We know that ||z]|1 < ppll2]l, and |v;| < 1 (because v; is drawn from
bounded distribution D), so

polle =l > llo =l = 3 fos = i1 = 3 bsCos = 0)| > | st =)

=[{z—yv)|.
Now, when points are close in [:
|z —yll, <7 = ppllz —ylly < ppr = [{x—y,v)| < ppr.
Next, by Observation 2:
L=Pll(z =y, v)| < ppr] < Plhp(x) = hp(y)| < 1].
Hence, the points will inevitably hash into the same or adjacent buckets. O

Now we will introduce the inequality that will help to bound the probability
of false positives.

Observation 4 (Inequality of Norms in [,). Recall that p, = d'~ . For
every z € R? and p € [1,00]:

p Y ¢ S
ol 2 —— el
This technical observation is proven in Appendix C.

The major question arises: what is the probability of false positives? In con-
trast to the Indyk and Motwani [7], we cannot use p-stable distributions because
these distributions are not bounded. We will present the proof for a different
class of functions.

Lemma 1 (The Probability of False Positives for General Distribution).

Let D be a random variable such that E(D) = 0, E(D?) = o2, E(D*) < 3a* (for

any a € R). Define constant 7 = %max{d% , dl_%},

When ||z —yll, > cr, z,y € R and ¢ > 71 then:

Prpy = Pllhp(z) — hp(y)] <1] <1 - H,

for every metricl,,, wherep € [1, 0] (p,cp1 is the probability of false positive).

110 A. Pacuk et al.

Proof. By Observation 4:
k|
Izll2 = 1ppp

Subsequently, let 2 = x — y and define a random variable X = (z,v). Therefore:

2|2l c

E(X?) = o?||z3 > (pp)” > (27"ppg)2~
2
Because T—Cl > 1 we have 0 = (QIgfg;) < 1. Variable 8 and a random variable

X2 > 0 satisfy Paley-Zygmunt inequality (analogously to [9]):
P{lhy(x) = hp(y)| > 1] 2 P[| (2,0) | = 2rpy] 2 P [X? > (2rpy)?]

(@2rpp)?) E(X?)?
><1 E(X?)) E(X1)

Eventually, we assumed that E(X*) < 3(«a z[2)*:

(1_M)2 (_ﬁ)2
E(X?) c2

h 1] > > .
()| >1] > 2 2

P{|hy(z) -
O

Simple example of a distribution that satisfies both Observation 3 and Lemma 1
is a uniform distribution on (—1,1) with a standard deviation «a equal to \/g .

Another example of such distribution is a discrete distribution with uniform
values {—1,1}. As it turns out, Lemma 2 shows that the discrete distribution
leads to even better bounds.

Lemma 2 (Probability of False Positives for the Discrete Distribu-
tion). Let D be a random variable such that P[D = +1] = 1. Define constant

Ty = \/gmax{d%,dl_%}. Then for every p € [1,00|, 2,y € R? and ¢ > 5 such
that ||z — yllp, > cr, it holds:

Pipy = P [Ihp(x) = hp(y)] <1] < 1 - (1_%2)

Proof. Because of Observation 4 we have the inequality:

z
2]l = valzle ”ppp
T2

Let z =2 —y and X = (z,v), be a random variable. Then:
Pllhp(x) = hp(y)| > 1] 2 P|X]| > 2rp,].

Khintchine inequality [5] states E|X| > L=l ”2 , SO

E(|X|) > |ZH2 > 2pPHZHP
Z Z 7_2

C
> 2 —
2 "Pr

Locality-Sensitive Hashing Without False Negatives for [, 111

2Tpp

Note that, a random variable | X| and 6 = B0

inequality (because = > 1), though:

< 1, satisfy the Paley-Zygmunt

P [hy(z) — hy(y)| > 1] > (1 - EQ(T§;|)> Eglilg)
g, \'1_ (1= 2)°
><1_2rpp:2> 2 2

a

Altogether, in this section we have introduced a family of hash functions h,
which:

— Guarantees that, with an absolute certainty, points within the distance R will
be mapped to the same or adjacent buckets (see Observation 3),

— Maps “far away” points to the non-adjacent hashes with high probability
(Lemmas 1 and 2).

These properties will enable us to construct an efficient algorithm for solving the
c-approximate nearest neighbor search problem without false negatives.

3.1 Tightness of Bounds

We showed that for two distant points z,y : ||z — y||, > cr, the probability of
a collision is small when ¢ = max{p,, Vd}. The natural question arises: Can we
bound the probability of a collision for points ||z — yl||, > ¢/r for some ¢’ < ¢?
We will show that such ¢’ does not exist, i.e., there always exists & such
that |||, will be arbitrarily close to cr, so & and 0 will end up in the same
or adjacent bucket with high probability. More formally, for any p € [1, 0],

for hy(z) = {%J, where coordinates of d-dimensional vector v are random
variables v;, such that —1 < v; < 1 with E(v;) = 0. We will show that there
always exists & such that ||Z|, ~ rmax{p,, Vd} and |h,(Z) — h,(0)| < 1 with
high probability.

For p > 2 denote g = (1pp —¢€,0,0,...,0). We have ||zo — 0|, = rpp, — € and:

hy(z0) — hyp(0)] =] V J o\ <1
TPp

For p € [1,2), denote z7 = rd=» 27T, We have lz1]l, = rdz—¢ and by
applying Observation 2 for complementary probabilities:

B {Ihp(0) = by (@] > 1] <Pl {10} | 2 ppr] =P [|(Tv) | 2 a*]
del Vi —14 —d2€
= ==L 7> stel <« 9. .
P U d >d < 2-exp 5

112 A. Pacuk et al.

The last inequality follows from Hoeffding [6] (see Appendix D for technical
details).

So the aforementioned probability for p € [1,2) is bounded by an expression
exponential in d%¢. Even if we would concatenate k random hash functions (see

proof of Theorem 1 for more details), the chance of collision would be at least
_q2e€

(1—2e 5)¥. To bound this probability, the number k needs to be at least
@(e%). The probability bounds do not work for e arbitrary close to 0: we
proved that introduced hash functions for ¢ = d'/2~¢ do not work (may give
false positives).?

Hence, to obtain a significantly better approximation factor ¢, one must intro-
duce a completely new family of hash functions.

4 The Algorithm

In this section, we apply the LSH family introduced in Sect.3 to construct an
c-approximate algorithm without false negatives. To begin with, we will define
a general algorithm that will satisfy our conditions. Subsequently, we will show
that complexity of the query is sublinear, and it depends linearly on the number
of dimensions.

Theorem 1. For any ¢ > 7 and the number of iterations k > 0, there exists
a c-approzimate nearest neighbor algorithm without false negatives for l,, where
p € [1,00]:

— Preprocessing time: O(n(kd + 3%)),
~ Memory usage: O(n3%),
~ Eapected query time: O(d(|P| + k + npg,")).

Where |P| is the size of the result and pg, is the upper bound of probability of
false positives (note that pg, depends on a choice of T from Lemmas 1 or 2).

Proof. Let g(x) = (h)(x), h2(x), ..., h’; (z)) be a hash function defined as a con-
catenation of k random LSH functions presented in Sect. 3. We introduce the clus-
tering m : g(R?) — 2", where each cluster is assigned to the corresponding hash
value. For each hash value «, the corresponding cluster m(a) is {z : g(z) = a}.

Since we consider two hashes to be equal when they differ at most by one
(see Observation 3), for hash «, we need to store the reference for every point
that satisfies || — x|| < 1. The number of such clusters is 3%, because the result
of each hash function can vary by one of {—1,0,1} and the number of hash
functions is k. Thus, the memory usage is O(n3%) (see Fig.2).

To preprocess the data, we need to compute the value of the function g
for every point in the set and then put its reference into 3* cells. Hence, the
preprocessing time complexity equals O(n(kd + 3%)).

2 However, one may try to obtain tighter bound (e.g., ¢ = d1/2/10g(d)) or show that
for every € > 0, the approximation factor ¢ = d'’? — € does not work.

Locality-Sensitive Hashing Without False Negatives for [, 113

k

Fig. 2. Blue dots represent value of g(q) for query. Green dots are always distant by 1,
hence green and blue points are considered close. At least one red dot is distant from
blue dot by more than 1, hence red dots will not be considered close to blue. Thus,
algorithm needs to check 3* various possibilities. (Color figure online)

Eventually, to answer a query, we need to compute g(¢g) in time O(kd) and
then for every point in ||g(z) — ¢g(q)||c < 1 remove distant points ||z —¢l|, > cR.
Hence, we need to look up every false-positive to check whether they are within
distance ¢r from the query point. We do that in expected time O(d(|P| + k +
npfpk)), because npfpk is the expected number of false positives. a

The number of iterations k can be chosen arbitrarily, so we will choose the
optimal value to minimize the query time. This gives the main result of this
paper:

Theorem 2. For any c > 7 and for large enough n, there exists a c-approrimate
nearest neighbor algorithm without false negatives for l,,, where p € [1, 00]:

~ Preprocessing time: O(n(ydlogn + (4)7)) = poly(n),
— Memory usage: O(n(%)7),
— Expected query time: O(d(|P] + vlog(n) + vd)).

Where |P| is the size of the result, v = 711’;?; and pg, and T are chosen as in
fp

Theorem 1.

na
In 24

Proof. Denote a = —Inpg,, b=1n3 and set k = [
Let us assume that n is large enough so that & > 1. Then using the fact that
z'/* is bounded for z > 0 we have:

Sk §3.(31n%)1/a :3(

na n n

)T =0(()"") = 0((5)),

d
npp" = ne” ™ <ne™ T = = = O(dy),

k= O(ylog(n).

Substituting these values in the Theorem 1 gives needed complexity guar-
anties. 0

114 A. Pacuk et al.

There are two variants of Theorems 1, 2 and 3. In the first variant, we show
complexity bounds for very general class of hashing functions introduced in
Lemma 1. In the second one, we show slightly better guaranties for hashing
functions which are generated using discrete probability distribution on {0, 1}
introduced in Lemma 2. For simplicity the following discussion is restricted only
to the second variant which gives better complexity guaranties. The definitions
of constants Pfpy and 7o used in this discussion are taken from Lemma 2. For a
general case, i.e., Pfp, and 7; taken from Lemma 1, we get only slightly worse
results.

The complexity bounds introduced in the Theorem 2 can be simplified using
the fact that In(z) < — 1. Namely, we have:

In3 In3 < 2In3
¥ = = = - .
—Inpg, — In(1 — 7(1_272)2) (1-2)?

However, the preprocessing time is polynomial in n for any constant c, it
strongly depends on the bound for probability pg,, and c. Particularly when c is
getting close to 7o, the exponent of the preprocessing time might be arbitrarily
large.

To the best of our knowledge, this is the first algorithm that will ensure that
no false negatives will be returned by the nearest neighbor approximated search
and does not depend exponentially on the number of dimensions. Note tzhat for

(1-3)

given ¢, the parameter + is fixed. By Lemma 2, we have: Prp, = 1 =,

SO:

1
lim 5 = lim — 0 log, 3~ 1.58.

c— 00 c—00 — h’] pfp2

If we omit terms polynomial in d, the preprocessing time of the algorithm
from Theorem 2 converges to O(n?°%) (O(n ™) for general case - see Appen-
dix E).

4.1 Light Preprocessing

Although the preprocessing time O(n?%%) may be reasonable when there are

multiple, distinct queries and the data set does not change (e.g., static databases,
pre-trained classification, geographical map). Still, unless the number of points
is small, this algorithm does not apply. Here, we will present an algorithm with
a light preprocessing time O(dnlogn) and O(nlogn) memory usage where the
expected query time is o(n).

The algorithm with light preprocessing is very similar to the algorithm
described in Theorem 1, but instead of storing references to the point in all 3*
buckets during preprocessing, this time searching for every point x that matches
|z — qlloo <1 is done during the query time.

The expected query time with respect to k is O(d(|P| + k + npg,*) + 3%).
During the preprocessing phase we only need to compute k£ hash values for each

Locality-Sensitive Hashing Without False Negatives for [, 115

of n points and store them in memory. Hence, preprocessing requires O(kdn)
time and uses O(nk) memory.

Theorem 3. For any c > 7 and for large enough n, there exists a c-approximate
nearest neighbor algorithm without false negatives for l,, where p € [1,00]:

— Preprocessing time: O(ndlogn),
— Memory usage: O(nlogn),
b
~ Eapected query time: O(d(|P| + n=s (2)

a

7).

Where |P| is the size of the result, a = —In Pg, b =103, pg, and 7 are chosen
as in Theorem1.

In 52
a+b
enough so that k£ > 1. Since a is upper bounded for both choices of pg,:

Proof. We set the number of iterations k = { —‘ . Assume n needs to be large

In(B2)
3 <3370 = 3(5) T = o).
Analogously:
i w T =5
npfpk =n(e”)F < ne @ T — - (9) 5 (1) By (9) =
a n a

Hence, for this choice of k we obtain the expected query time is equal to:

by w5
O(d(|P| + k +npg,*)) +3° = O(d(|P| +logn +nats (g) Y 4 patr)

b\ a¥s
= O(d(|P| + 77 (2) 7).
a
Substituting k, we obtain formulas for preprocessing time and memory usage.O

Eventually, exactly as previously for a general distribution from Lemma 1,
when ¢ — oo we have: @ — In2 (see Theorem 3 for the definition of con-
stant a). Hence, for a general distribution we have a bound for complexity equal
to O(n'°8153) ~ O(n% ™). For the discrete distribution from Lemma 2, the con-
stant a converges to In 2. Hence, the expected query time converges to O(n%6%).

5 Conclusion and Future Work

We have presented the c-approximate nearest neighbor algorithm without false
negatives in I, for all p € [1, 00] and ¢ > max{\/d,d'~/?}. Due to this inequality
our algorithm can be used cognately to the original LSH [7] but with additional
guarantees about very close points (one can set R’ = VdR and be certain that
all points within distance R will be returned). In contrast to the original LSH,
our algorithm does not require any additional parameter tunning.

The future work concerns relaxing restriction on the approximation factor ¢
and reducing time complexity of the algorithm or proving that these restrictions
are essential. We wish to match the time complexities given by [7] or show that
achieved bounds are optimal. We show the tightness of our construction, hence
to break the bound of v/d, one would need to introduce a new technique.

116 A. Pacuk et al.

Acknowledgments. This work was supported by ERC PoC project PAAI-POC
680912 and FET project MULTIPLEX 317532. We would also like to thank Rafat
Latata for meaningful discussions.

A Proof of Observation 1

Proof. We will use, the fact that for any x,y € R we have | |z] — |y]| < 1=
|z — y| < 2. Then the following implications hold:

_ < @) | _ww || < ‘(x,y>_<y,v>
o)~y <1 o= | [52] - [42] | <1 — [0t oy

= |[{z—y,v)| <2ppr.
So, based on the increasing property of the probability:
if Ac BthenP[A] <P[B],

the inequality of the probabilities holds. O

B Proof of Observation 2

Proof. We will use the fact that for z,y e R: |z —y| <1=|[z] — |y] | < 1).

‘ (x —y,v) ‘ < ppr = fgo) o) o (@, v) — {2, v) < &=

Ppr Ppr ppT PpT

= |hp(z) —hp(y)| <1
O
C Proof of Observation 4
Proof. For every 0 < b < a vectors in R? satisfy the inequality:
11
Izlla < ll2lls < d@™ @) 2]la. (1)

For p > 2 we have max{d%,dl_%} =d'" 7. Then, using ineqaulity (1) for
a =p and b = 2 we have:
Pp
max{d%,dl_%}

p
12ll2 > [1z]lp = idlf; I12llp = 12l
P

For 1 < p < 2 we have max{d%,dl_%} =dz. Analogously by using inequal-
ity (1) for a =2 and b = p:

1_1 dz
I2llp < dv™2|lzll2 = ||zlla—
p
Hence, by dividing both sides we have:
p
1]l - < llzll2

max{dz, a7 }

Locality-Sensitive Hashing Without False Negatives for [, 117

D Hoeffding Bound

Here we are going to show all technical details used in the proof in the Sect. 3.1.
Let us start with the Hoeffding inequality. Let X7, ..., X4 be bounded indepen-
dent random variables: a; < X; < b; and X be the mean of these variables
X = Zle X;/d. Theorem 2 of Hoeffding [6] states:

B B 2d°t2
P[X -E[X]|>t] <2-exp <_Zf_1(bi—ai)2>-

In our case, D1, ..., Dgare bounded by a; = -1 < D; <1 =b; withED; = 0.
Hoeffding inequality implies:

d 242 2
* D,
P Q >t <2-exp fdQL _2.exp<dt)_
d i (b — ai)? 2

Taking t = d~/2%¢ we get the claim:

d . 2e

E Preprocessing Complexity Bounds for the Distributions
Introduced in Lemma 1

_Tiye
By Lemma 1, we have: pg, =1— a ?:2) , sO:
1 1
lim = lim —23 03 oo
c—00 c—oo —In pfpl 11115

If we omit terms polynomial in d, the preprocessing time of the algorithm
from Theorem 2 converges to O(n>!).

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117-122 (2008)

2. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate
near neighbors. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, 14-17 June 2015, pp. 793-801. ACM (2015)

3. Bentley, J.L.: K-d trees for semidynamic point sets. In: Proceedings of the Sixth
Annual Symposium on Computational Geometry, SCG 1990, pp. 187-197. ACM,
New York (1990)

4. Datar, M., Indyk, P.: Locality-sensitive hashing scheme based on p-stable distri-
butions. In: Proceedings of the Twentieth Annual Symposium on Computational
Geometry, SCG 2004, pp. 253-262. ACM Press (2004)

118

10.

A. Pacuk et al.

Haagerup, U.: The best constants in the Khintchine inequality. Stud. Math. 70(3),
231-283 (1981)

Hoeffding, W.: Probability inequalities for sums of bounded random variables.
J. Am. Stat. Assoc. 58(301), 13-30 (1963)

Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC 1998, pp. 604-613. ACM, New York (1998)

. Pagh, R.: Locality-sensitive hashing without false negatives. In: Krauthgamer, R.

(ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, 10-12 January 2016, pp. 1-9.
SIAM (2016)

. Veraar, M.: On Khintchine inequalities with a weight. Proc. Am. Math. Soc. 138,

4119-4121 (2010)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2), 357-365 (2005)

Improved Space Efficient Algorithms for BF'S,
DFS and Applications

Niranka Banerjee®™), Sankardeep Chakraborty, and Venkatesh Raman

The Institute of Mathematical Sciences, CIT Campus,
Taramani, Chennai 600 113, India
{nirankab,sankardeep,vraman}@imsc.res.in

Abstract. Recent work by Elmasry et al. (STACS 2015) and Asano
et al. (ISAAC 2014), reconsidered classical fundamental graph algorithms
focusing on improving the space complexity. Elmasry et al. gave, among
others, implementations of breadth first search (BFS) and depth first
search (DFS) in a graph on n vertices and m edges, taking O(m + n)
time using O(n) and O(nlglgn) bits of space respectively improving
the naive O(nlgn)(We use lg to denote logarithm to the base 2.) bits
implementation. We continue this line of work focusing on space.

Our first result is a simple data structure that can maintain any subset
S of a universe of n elements using n + o(n) bits and support in constant
time, apart from the standard insert, delete and membership queries,
the operation findany that finds and returns any element of the set (or
outputs that the set is empty). Using this we give a BFS implementation
that takes O(m+mn) time using at most 2n + o(n) bits. Later, we further
improve the space requirement of BF'S to at most 1.585n+o0(n) bits albeit
with a slight increase in running time to O(mlgnf(n)) time where f(n)
is any extremely slow growing function of n. These improve the space by
a constant factor from earlier representations.

We demonstrate the use of our data structure by developing another
data structure using it that can represent a sequence of n non-negative
integers «1, 2, ... ¥, using at most y -, z;+2n+o(>_7_, x:+n) bits and,
in constant time, determine whether the i-th element is 0 or decrement
it otherwise. We use this data structure to output the vertices of a

e directed acyclic graph in topological sorted order in O(m + n) time
and O(m + n) bits, and
e graph with degeneracy d in degeneracy order in O(nd) time using

O(nd) bits.

We also discuss an algorithm for finding a minimum weight spanning
tree of a weighted undirected graph using at most n 4 o(n) bits.

For DFS we give an O(m+n) bits implementation for finding a chain
decomposition of a connected undirected graph, and to find cut vertices,
bridges and maximal two connected subgraphs of a connected graph. We
also provide a O(n) bits implementations for finding strongly connected
components of a directed graph, to output the vertices of a directed
acyclic graph in a topologically sorted manner, and to find a sparse
biconnected subgraph of a biconnected graph. These improve the space
required for earlier implementations from {2(nlgn) bits.

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 119-130, 2016.
DOI: 10.1007/978-3-319-42634-1_10

120 N. Banerjee et al.

1 Introduction

Motivated by the rapid growth of huge data set (“big data”), algorithms that
utilize space efficiently are becoming increasingly important than ever before.
Another reason for the importance of space efficient algorithms is the prolifera-
tion of specialized handheld devices and embedded systems that have a limited
supply of memory. Hence, there is a growing body of work that considers algo-
rithms that do not modify the input and use only a limited amount of work space,
and this paper continues this line of research for fundamental graph algorithms.

1.1 Our Results and Organization of the Paper

Asano et al. [2], in a recent paper, show that DFS of a directed or undirected
graph on n vertices and m edges can be performed using n + o(n) bits and (an
unspecified) polynomial time. Using 2n + o(n) bits, they can bring down the
running time to O(mn) time, and using a larger O(n) bits, their running time
is O(mlgn). In a similar vein,

e we show in Sect. 3 that the vertices of a directed or undirected graph can be
listed in BFS order using 1.585n + o(n) bits and O(mf(n)lgn) time where
f(n) is any (extremely slow-growing) function of n i.e. Ig" n (the o term in the
space is a function of f(n)), while the runtime can be brought down to the
optimal O(m + n) time using 2n + o(n) bits.

En route to this algorithm, we develop in Sect. 2,

e a data structure that maintains a set of elements from a universe of size n,
say [1..n] using n + o(n) bits to support, apart from insert, search and delete
operations, the operation findany of finding an arbitrary element of the set,
and returning its value all in constant time. It can also output all elements
of the set in no particular order in O(k + 1) time where k is the number of
elements currently belonging to the set.

Our structure gives an explicit implementation, albeit for a weaker set of
operations than that of Elmasry et al. [15] whose space requirement was cn +
o(n) bits for an unspecified constant ¢ > 2; furthermore, our structure is simple
and is sufficient to implement BFS space efficiently, improving by a constant

factor of their BFS implementation keeping the running time same®.

We could support the findany operation by keeping track of one of the elements,
but once that element is deleted, we need to find another element to answer a
subsequent findany query. This is easy to support in constant time if we have
the elements stored in a linked list which takes O(nlgn) bits, or if we have a
dynamic rank-select structure [20] where each operation takes O(léglg”n) time.
In the same section we improve the space for BFS further at the cost of
slightly increased runtime. We also provide a similar tradeoff for the mini-

mum spanning tree problem. Our algorithm takes n 4+ O(n/f(n)) bits and

! Since our initial submission to COCOON, Hagerup and Kammer [19] have reported
a structure with n 4 o(n) bits for the data structure and hence obtaining a similar
bound as ours for BFS.

Improved Space Efficient Algorithms for BFS, DFS and Applications 121

O(mlgnf(n)) time, for any function f(n) such that 1 < f(n) < n. While this
algorithm is similar in spirit to that of Elmasry et al. which works in O(mlgn)
time using O(n) bits or O(m + nlgn) time using O(nlg(2 + ©)) bits, we work
out the constants in the higher order term for space, and improve them slightly
though with a slight degration in time.

e Using our data structure, in Sect.4 we develop another data structure to
represent a sequence I, T, ... T, of n integers using m + 2n + o(m + n) bits
where m = > | x;. In this, we can determine whether the i-th element is 0
and if not, decrement it, all in constant time. In contrast, the data structure
claimed (without proof) in [15] can even change (not just decrement) or access
the elements, but in constant amortized time. However, their structure requires
an O(lgn) limit on the x; values while we pose no such restriction. Using this

data structure in Sect. 4,
e we determine whether a given directed graph is acyclic and give an imple-

mentation of topological sort of the graph if it is in O(m + n) time and
O(m+n) bits of space. This improves an earlier bound of O(m +n) time
and O(nlglgn) space [15], and is more space efficient for sparse directed
graphs (that includes those directed graphs whose underlying undirected
graph is planar or has bounded treewidth or degeneracy).

e A graph has a degeneracy d if every induced subgraph of the graph has a
vertex with degree at most d (for example, planar graphs have degeneracy
5, and trees have degeneracy 1). An ordering vy, va, . .. v, of the vertices in
such a graph is a degenerate order if for any ¢, the i-th vertex has degree
at most d among vertices v;11,v;t2,...0,. There are algorithms [8,16]
that can find the degeneracy order in O(m + n) time using O(n) words.
We show that, given a d, we can output the vertices of a d-degenerate
graph in O(m + n) time using O(m + n) bits of space in the degeneracy
order. We can even detect if the graph is d-degenerate in the process. As
m is O(nd), we have an O(nd) bits algorithm which is more space efficient

if d is o(lgn) (this is the case, for example, in planar graphs or trees).

e For DFS, we have two kinds of results improving on the result of Asano et al. [2]
who showed that DFS in a directed or undirected graph can be performed in
O(mlgn) time and O(n) bits of space, and of Elmasry et al. [15] who improved
the time to O(mlglgn) time still using O(n) bits of space.

e In Sect. 5, we first show that for sparse graphs (graphs where m = O(n)),
we can perform DFS in linear time using O(m + n) (i.e. O(n) in sparse
graphs) bits. Building on top of this encoding and other observations, we
show how to efficiently compute the chain decomposition of a connected
undirected graph. This lets us perform a variety of applications of DFS
(including testing 2-vertex and 2-edge connectivity, finding cut vertices
and edges, maximal 2-connected components and (open) ear decompo-
sitions) in the same time and space. Our algorithms for these applica-
tions improve the space requirement of all the previous algorithms from
O(nlgn) bits to O(m + n) bits, preserving the same linear runtime.

e Section 6 talks about applications of DFS using O(n) bits. Using O(n)
bits of space, we show that

122 N. Banerjee et al.

* we can compute the strongly connected components of a directed
graph in O(mlgnlglgn) time,

* we can output the vertices of a directed acyclic graph in a topologically
sorted fashion in O(mlglgn) time, and

x we can find a sparse spanning biconnected subgraph of a biconnected
undirected graph in O(mlglgn) time.

1.2 Model of Computation

We assume that the input graph is given in a read-only memory (and so cannot
be modified). If an algorithm must do some outputting, this is done on a separate
write-only memory. When something is written to this memory, the information
can not be read or rewritten again. So the input is “read only” and the out-
put is “write only”. In addition to the input and the output media, a limited
random-access workspace is available. The data on this workspace is manipu-
lated wordwise as on the standard word RAM, where the machine consists of
words of size w in £2(lgn) bits and any logical, arithmetic, and bitwise operations
involving a constant number of words take a constant amount of time. We count
space in terms of the number of bits used by the algorithms in workspace. This
model is called the register input model and it was introduced by Frederickson
[17] while studying some problems related to sorting and selection.

We assume that the input graphs are represented using the standard adja-
cency list throughout the paper. For the algorithms in Sect.5 we require that
the input graph must be represented using the standard adjacency list along
with cross pointers, i.e. for undirected graphs given a vertex u and the position
in its list of a neighbor v of u, there is a pointer to the position of u in the
list of v. When we work with directed graphs, we assume that the graphs are
represented as in and out adjacency lists i.e. given a vertex u, we have a list of
out-neighbors and in-neighbors of u. We then augment these two lists for every
vertex with cross pointers, i.e. for each (u,v) € E, given u and the position of
v in out-neighbors of u, there is a pointer to the position of u in in-neighbors
of v. This representation was used by Elmasry et al. [15]. When discussing graph
algorithms below, we always use n and m to denote the number of vertices and
the number of edges respectively, in the input graph.

1.3 Related Work

In computational complexity theory, the constant work-space model is repre-
sented by the complexity class LOGSPACE [1]. There are several algorithmic
results for this class, most celebrated being Reingold’s method for checking reach-
ability between two vertices in an undirected graph [24]. Barnes et al. gave a
sub-linear space algorithm for directed graph reachability [7]. Recent work has
focused on space requirement in special classes of graphs like planar and H-minor
free graphs [3,11]. In the algorithms literature, where the focus is also on improv-
ing time, a large amount of research has been devoted to memory constrained
algorithms, even as early as in the 1980s [22]. Early work on this focused on

Improved Space Efficient Algorithms for BFS, DFS and Applications 123

the selection problem [17,22,23], but more recently on computational geometry
problems [4,6,14] and graph algorithms [2,5,15]. Regarding the data structure
we develop to support findany operation, Elmasry et al. [Lemma 2.1, [15]] state a
data structure (without proof) that supports all the operations i.e. insert, search,
delete and findany (they call it some_id) among others, in constant time. But
their data structure takes O(n) bits of space where the constant in the O term is
not explicitly stated. Our data structure, on the other hand, is probably simpler
and takes just n + o(n) bits of space.?

1.4 Preliminaries
We will use the following well-known lemma:

Lemma 1. A sequence of n integers in the range {1,--- ,c} where ¢ is a con-
stant, can be represented using nlgc + o(n) bits where the i-th integer can be
accessed or modified in constant time.

We also need the following theorem.

Theorem 1 [12,18,21]. We can store a bitstring O of length n with additional
o(n) bits such that rank and select operations (defined below) can be supported
in O(1) time. Such a structure can also be constructed from the given bitstring
in O(n) time.

Here the rank and select operations are defined as following:

e rank,(0,4i) = number of occurrences of a € {0,1} in O[1,4], for 1 < i < n;
o select,(O,1) = position in O of the ith occurrence of a € {0, 1}.

2 Maintaining Dictionaries Under Findany Operation

We consider the data structure problem of maintaining a set S of elements from
{1,2,...n} to support the following operations in constant time.
insert (i): Insert element ¢ into the set.
search (i): Determine whether the element ¢ is in the set.
delete (i): Delete the element ¢ from the set if it exists in the set.
findany: Find any element from the set and return its value. If the set is empty,
return a NIL value.

It is trivial to support the first three operations in constant time using n
bits. Our main result in this section is that the findany operation can also be
supported in constant time using o(n) additional bits.

Theorem 2. A set of elements from a universe of size n can be maintained
using n + o(n) bits to support insert, delete, search and findany operations in
constant time. We can also output all elements of the set (in no particular order)
in O(k + 1) time where k is the number of elements in the set.

2 Hagerup and Kammer [19] have recently reported a structure with n + o(n) bits for
the data structure supporting the same set of operations.

124 N. Banerjee et al.

Proof. Let S be the characteristic bit vector of the set having n bits. We follow a
two level blocking structure of S, as in the case of succinct structures supporting
rank and select [12,21]. However, as S is ‘dynamic’ (in that bit values can change
due to insert and delete), we need more auxiliary information. In the discussion
below, sometimes we omit floors and ceilings to keep the discussion simple, but
they should be clear from the context.

We divide the bit vector S into n/lg?n blocks of consecutive g n bits each,
and divide each such block into up to 21lgn small blocks of size [(lgn)/2] bits
each. We refer to the small blocks explicitly as small blocks, and by blocks we
refer to the (big) blocks of size lg* n bits. We call a block (big or small) non-
empty if it contains at least a 1. We maintain the non-empty (big) blocks, and
the non-empty small blocks within each (big) block in linked lists (not necessarily
in order). Within a small block, we find the first 1 or the next 1 by a table look
up. We provide the specific details below.

First, we maintain an array number indicating the number of 1s in each
block, i.e. number[i] gives the number of 1s in the i-th block of S. It takes
O(nlglgn/lg®n) bits as each block can have at most lg® n elements of the given
set. Then we maintain a queue (say implemented in a space efficient resizable
array [10]) block-queue having the block numbers that have a 1 bit, and new
block numbers are added to the list as and when new blocks get 1. It can have
at most n/1g® n elements and so has O(n/1g” n) indices taking totally O(n/lgn)
bits. In addition, every element in block-queue has a pointer to another queue of
small block numbers of that block that have an element of S. Each such queue
has at most 21gn elements each of size at most 21glgn bits each (for the small
block index). Thus the queue block-queue along with the queues of small block
indices takes O(nlglgn/lgn) bits. We also maintain an array, block-array, of size
n/1g®n where block-array[i] points to the position of block i in block-queue if it
exists, and is a NIL pointer otherwise and array, small-block-array, of size 2n/lgn
where small-block-array[i] points to the position of the subblock 7 in its block’s
queue if its block was present in block-queue, and is a NIL pointer otherwise. So,
block-array takes n/lgn bits and small-block-array takes 2nlglgn/lgn bits.

We also maintain a global table T' precomputed that stores for every bitstring
of size [(Ign)/2], and a position i, the position of the first 1 bit after the i-th
position. If there is no ‘next 1’, then the answer stored is —1 indicating a NIL
value. The table takes O(y/n(lglgn)?) bits. This concludes the description of the
data structure that takes n + O(nlglgn/lgn) bits.

Now we explain how to support each of the required operations. Membership
is the easiest, as it is a static operation, just look at the i-th bit of .S and answer
accordingly. In what follows, when we say the ‘corresponding bit or pointer’,
we mean the bit or the pointer corresponding to the block or the small block
corresponding to an element (inserted or deleted) which can be determined in
constant time from the index of the element. To insert an element 4, first deter-
mine from the table T', whether there is a 1 in the corresponding small block
(before the element is inserted), set the é-th bit of S to 1, and increment the
corresponding value in number. If the corresponding pointer of block-array was

Improved Space Efficient Algorithms for BFS, DFS and Applications 125

NIL, then insert the block index to block-queue at the end of the queue, and add
the small block corresponding to the i-th bit into the queue corresponding to
the index of the block in block-queue, and update the corresponding pointers of
block-array and small-block-array. If the corresponding bit of block-array was not
NIL (the big block already had an element), and if the small block did not have
an element before (as determined using T'), then find the position of the block
index in block-queue from block-array, and insert the small block index into the
queue of that block at the end of the queue. Update the corresponding pointer
of small-block-array.

To support the delete operation, set the i-th bit of S to 0 (if it was already 0,
then there is nothing more to do) and decrement the corresponding number in
number. Determine from the table T if the small block of ¢ has a 1 (after the
i-th bit has been set to 0). If not, then find the index of the small block from the
arrays block-array and small-block-array and delete that index from the block’s
queue from block-queue. If the corresponding number in number remains more
than 0, then there is nothing more to do. If the number becomes 0, then find the
corresponding block index in block-queue from the array block-array, and delete
that block (along with its queue that will have only one small block) from block-
queue. Update the pointers in block-array and small-block-array respectively.
As we don’t maintain any order in the queues in block-queue, if we delete an
intermediate element from the queue, we can always replace that element by the
last element in the queue updating the pointers appropriately.

To support the findany operation, we go to the tail of the queue block-queue,
if it is NIL, we report that there is no element in the set, and return the NIL
value. Otherwise, go to the block at the tail of block-queue, and get the first
(non-empty) small block number from the queue, and find the first element in
the small block from the table T', and return the index of the element.

To output the elements of the set, we traverse the list block-queue and the
queues of each element of block-queue, and for each small block in the queues,
we find the next 1 in constant time using the table 7" and output the index. 0O

We can generalize to maintain a collection of more than one disjoint subsets of the
given universe to support the insert, delete, membership and findany operations.
In this case, insert, delete and findany operations should come with a set index
(to be searched, inserted or deleted). Specifically, we show the following.

Theorem 3 (#)3. A collection of ¢ disjoint sets that partition the universe of
size n can be maintained using nlgc+ o(n) bits to support insert, delete, search
and findany operations in constant time, where c is a fized constant. We can also
output all elements of any given set (in no particular order) in O(k + 1) time
where k is the number of elements in the set.

3 Breadth First Search

Following the observations of [15], the space efficient implementation follows
using the data structure of Theorem 3. We explain the details for completeness.

3 Proofs of results marked with (&) will appear in full version.

126 N. Banerjee et al.

Our goal is to output the vertices of the graph in the BFS order. We start as
in the textbook BFS by coloring all vertices white. The algorithm grows the
search starting at a vertex s, making it grey and adding it to a queue. Then
the algorithm repeatedly removes the first element of the queue, and adds all
its white neighbors at the end of the queue (coloring them grey), coloring the
element black after removing it from the queue. As the queue can store up to
O(n) elements, the space for the queue can be O(nlgn) bits. To reduce the
space to O(n) bits, the two crucial observations on the properties of BFS are that:
(4) elements in the queue are only from two consecutive levels of the BFS tree, and
that the (i) elements belonging to the same level can be processed in any order,
but elements of the lower level must be processed before processing elements of
the higher level.

The algorithm maintains four colors: white, grey0, greyl and black, and rep-
resents the vertices with each of these colors as sets W, Sy, S1 and B respectively
using the data structure of Theorem 3. It starts with initializing Sy (grey 0) to s,
S1 and B as empty sets and W to contain all other vertices. Then it processes
the elements in each set Sy and S; switching between the two until both sets
are empty. As we process an element from S;, we add its white neighbors to
Si+1 mod 2 and delete it from S; and add it to B. When Sy and S; become
empty, we scan the W array to find the next white vertex and start a fresh BF'S
again from that vertex. As insert, delete, membership and findany operations
take constant time, and we are maintaining four sets, we have from Theorem 3,

Theorem 4. Given a directed or undirected graph, its vertices can be output in
a BFS order starting at a vertez using 2n + o(n) bits in O(m + n) time.

Note that it is sufficient to build findany structures only on sets Sy and S
to efficiently find grey vertices.

3.1 Improving the Space to nlg3 + o(n) Bits

There are several ways to implement BFS using just two of the three colors
used in the standard BFS [13], but the space restriction, hence our inability to
maintain the standard queue, provides challenges.

We give a 3 color implementation overloading grey and black vertices, i.e. we
use one color to represent grey and black vertices. Grey vertices remain grey even
after processing. This poses the challenge of separating the grey vertices from
the black ones correctly before exploring. We will have three colors, one (color 2)
for the unexplored vertices and two colors (0 and 1) for those explored including
those currently being explored. The two colors indicate the parity of the level
(the distance from the starting vertex) of the explored vertices. Thus the starting
vertex s is colored 0 to mark that its distance from s is of even length and every
other vertex is colored 2 to mark them as unexplored (or white). We will have
these values stored in the representation of Lemma 1 using 1.585n + o(n) bits
and we call this as the color array. The algorithm repeatedly scans this array
and in the i-th scan, it changes all the 2 neighbors of i mod 2 to ¢ + 1 mod 2.

Improved Space Efficient Algorithms for BFS, DFS and Applications 127

The exploration (of the connected component) stops when in two consecutive
scans of the list, no 2 neighbor is found. Each scan list takes O(m) time and at
most n+ 2 scans of the list are performed resulting in an O(mn) time algorithm.

The O(m) time for each scan of the previous algorithm is because while
looking for vertices labelled 0 that are supposed to be ‘grey’, we might cross
over spurious vertices labelled 0 that are ‘black’ (in the normal BFS coloring).
To improve the runtime further, we maintain two queues Q¢ and @; each storing
up to n/ 1g? n values of the grey 0 and grey 1 vertices We also store two boolean
variables, overflow-Q0, overflow-Q1, initialized to 0 and to be set to 1 when
more elements are to be added to these queues (but they don’t have room). Now
the algorithm proceeds in a similar fashion as the previous algorithm except
that, along with marking corresponding vertices 0 or 1 in the color array, it also
inserts them into the appropriate queues. i.e. when it expands vertices from Qg
(Q1), it inserts their (white) neighbors colored 2 to Q1 (Qo respectively) apart
from setting their color entries to 1 (0 respectively). When it runs out of space in
any of these queues to insert the new elements (as we have limited only n/ lg2 n
values in each of the queues), it continues to make the changes (i.e. 2 to 1 or
2 to 0) in the color array directly without adding those vertices to the queue,
but set the corresponding overflow bit. Now instead of scanning the color array
for vertices labelled 0 or 1, we traverse the appropriate queues spending time
proportional to the sum of the degree of the vertices in the level. If the overflow
bit in the corresponding queue is 0, then we simply move on to the next queue
and continue. Otherwise, we switch to our previous algorithm and scan the array
appropriately changing the colors of their white neighbors and adding them to
the appropriate queue if possible. It is easy to see that this method correctly
explores all the vertices of the graph using 1.585n + o(n) bits.

To analyse the runtime, notice that as long as the overflow bit of a queue is
0, we spend time proportional the number of neighbors of the vertices in that
level, and we spend O(m) time otherwise. When an overflow bit is 1, then the
number of nodes in the level is at least n/ lg? n and this can not happen for more
than 1g”n levels where we spend O(m) time each. Hence, the total runtime is
O(mlg?n) proving the following.

Theorem 5. Given a directed or undirected graph, its vertices can be output in
a BFS order starting at a vertex using 1.585n+o(n) bits and in O(mlg* n) time.

By making the sizes of the two queues to O(n/(f(n)lgn)) for any (slow
growing) function f(n), we obtain*

Theorem 6. Given a directed or undirected graph, its vertices can be output
in a BFS order starting at a verter using 1.585n + O(n/f(n)) bits and in
O(mf(n)lgn) time where f(n) is any slow-growing function of n.

We do not know whether we can reduce the space to n+o(n) bits while still main-
taining the runtime to O(mlg®n) for some constant ¢. However, we provide such
an algorithm for the Minimum Spanning Tree problem to prove the following.

4 Hagerup and Kammer [19] in their recent paper obtain a better time bound using
the same space.

128 N. Banerjee et al.

Theorem 7 (#). A minimum spanning forest of a given undirected weighted
graph, where the weights of any edge can be represented in O(lgn) bits, can be
found using n+0(n/ f(n)) bits and in O(mlgnf(n)) time, for any function f(n)
such that 1 < f(n) < n.

4 Applications of Findany Dictionary

In what follows we use our findany data structure of Sect.2 to develop a data
structure as below.

Theorem 8 (#). Let x1,x9,...xz, be a sequence of non-negative integers, and
let m = Z?Zl x;. Then the sequence can be represented using at most m + 2n +
o(m+n) bits such that we can determine whether the i-th element of the sequence
18 0 and decrement it otherwise, in constant time.

Proof (sketch:). Encode each integer z; in unary delimited by a separate bit.
Treat the unary representation of x; as a representation of the full subset of the
universe of size x; and apply our data structure of Theorem 3 for the decrement
operation. a

Using the data structure we just developed, we show the following theorems,

Theorem 9 (M). Given a directed acyclic graph G, its vertices can be output
in topologically sorted order using O(m + n) time using m + 3n + o(n +m) bits
of space. The algorithm can also detect if G is not acyclic.

Theorem 10 (#). Given a d-degenerate graph G, its vertices can be output
in d-degenerate order using m + 3n + o(m + n) bits and O(m + n) time. The
algorithm can also detect if the given graph is not d-degenerate.

5 DFS and Its Applications Using O(m + n) Bits

In this section, we prove the following.

Theorem 11 (#). A DFS traversal of a directed or undirected graph G can be
performed in O(m +n) time using O(m +n) bits. Using this, given a connected
undirected graph G, in O(m + n) time and O(m +n) bits of space we can deter-
mine whether G is 2-vertex (and/or edge) connected. If G is 2-edge (or vertex)
connected, in the same time and space we can compute ear (open) decomposition.
If not, in the same amount of time and space, we can compute all the bridges
and cut vertices of the graph. Also, within same time and space bound, we can
output 2-vertex (and edge) connected components.

Proof (sketch:). We use the unary degree sequence encoding of the input graph
G to store the DFS tree, and use succinct rank/select structure to navigate G in
depth first manner especially to backtrack. By rerunning DFS and some book-
keeping, we compute the chain decomposition of GG, and obtain space efficient
implementation of the algorithm of Schmidt [25] for the applications of DFS
mentioned in the theorem. O

Improved Space Efficient Algorithms for BFS, DFS and Applications 129

6 DFS and Its Applications Using O(n) Bits

Building on Elmasry et al. [15] who gave space efficient implementation of DFS
taking O(n) bits and O(mlglgn) time, we provide the following space efficient
implementations of some of the classical applications of DFS.

Theorem 12 (). Using O(n) bits, we can

e perform a topological sort of the vertices of a directed acyclic graph G in the
same O(mlglgn) time,

e determine the strongly connected components of a directed graph in
O(mlgnlglgn) time, and

e find a sparse (O(n) edges) spanning biconnected subgraph of an undirected
biconnected graph in O(mlglgn) time.

7 Conclusions and Open Problems

We end with the following interesting open problems.

e Can we perform BFS using n + o(n) bits and O(mlg®n) time for some con-
stant ¢?

e Can we test 2-vertex (and/or edge) connectivity using O(n) bits?

e Brandes [9] obtained an s-t-numbering from the ear decompostion of a graph,
in linear time using O(m+n) words. Can we improve the space bound to O(n)
bits or even O(m + n) bits?

Acknowledgement. The authors thank Saket Saurabh for suggesting the exploration
of algorithms using O(m+n) bits for DF'S and Anish Mukherjee for helpful discussions.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Asano, T., et al.: Depth-first search using O(n) bits. In: Ahn, H.-K., Shin, C.-S.
(eds.) ISAAC 2014. LNCS, vol. 8889, pp. 553-564. Springer, Heidelberg (2014)

3. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: 5(\/5)—space and
polynomial-time algorithm for planar directed graph reachability. In: Esik7 Z.,
Csuhaj-Varju, E., Dietzfelbinger, M. (eds.) MFCS 2014, Part II. LNCS, vol. 8635,
pp. 45-56. Springer, Heidelberg (2014)

4. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. JoCG 2(1), 46-68 (2011)

5. Banerjee, N., Chakraborty, S., Raman, V., Roy, S., Saurabh, S.: Time-space trade-
offs for dynamic programming algorithms in trees and bounded treewidth graphs.
In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 349-360.
Springer, Heidelberg (2015)

6. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time
trade-offs for stack-based algorithms. Algorithmica 72(4), 1097-1129 (2015)

130

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

N. Banerjee et al.

Barnes, G., Buss, J., Ruzzo, W., Schieber, B.: A sublinear space, polynomial time
algorithm for directed s-t connectivity. SICOMP 27(5), 1273-1282 (1998)
Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. CoRR ¢s.DS/0310049 (2003)

Brandes, U.: Eager st-ordering. In: Mohring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 247-256. Springer, Heidelberg (2002)

Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.: Resiz-
able arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R.,
Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37-48. Springer, Heidelberg
(1999)

Chakraborty, D., Pavan, A., Tewari, R., Vinodchandran, N.V., Yang, L.: New
time-space upperbounds for directed reachability in high-genus and H-minor-free
graphs. In: FSTTCS, pp. 585-595 (2014)

Clark, D.: Compact pat trees. Ph.D. thesis, University of Waterloo, Canada (1996)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull prob-
lem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284-295.
Springer, Heidelberg (2014)

Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In:
32nd STACS, pp. 288-301 (2015)

Eppstein, D., Loffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics 18, 1-3 (2013)

Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19-26 (1987)

Gupta, A., Hon, W.-K.; Shah, R., Vitter, J.S.: A framework for dynamizing suc-
cinct data structures. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 521-532. Springer, Heidelberg (2007)
Hagerup, T., Kammer, F.: Succinct choice dictionaries. CoRR abs/1604.06058
(2016)

Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39),
5176-5186 (2011)

Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol.
1180, pp. 37-42. Springer, Heidelberg (1996)

Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315-323 (1980)

Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theor. Comput. Sci. 165(2), 311-323 (1996)

Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1-17 (2008)
Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process.
Lett. 113(7), 241-244 (2013)

Metric 1-Median Selection: Query Complexity
vs. Approximation Ratio

Ching-Lueh Chang®™)

Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan
clchang@saturn.yzu.edu.tw

Abstract. Consider the problem of finding a point in a metric space
({1,2,...,n},d) with the minimum average distance to other points. We
show that this problem has no deterministic o(n'*Y/*~Y)_query (2h—e¢)-
approximation algorithms for any constants h € Z* \ {1} and € > 0.

1 Introduction

The METRIC 1-MEDIAN problem asks for a point in an n-point metric space with
the minimum average distance to other points. It has a Monte-Carlo O(n/e?)-time
(1 + €)-approximation algorithm for all € > 0 [8,9]. In R”, Kumar et al. [11]
give a Monte-Carlo O(2P°Y(1/€) D)-time (1 + ¢)-approximation algorithm for 1-
median selection and another algorithm for k-median selection, where D > 1 and
€ > 0. Any Monte-Carlo O(1)-approximation algorithm for metric k-median selec-
tion takes £2(nk) time [7,12]. Algorithms for k-median and k-means clustering
abound [1,6,7,9,10,12].

Chang [4], Wu [13] and Chang [2] show that METRIC 1-MEDIAN has a deter-
ministic nonadaptive O(n!T!/")-time (2h)-approximation algorithm for all con-
stants h € ZT \ {1}. Furthermore, Chang [5] shows the nonexistence of deter-
ministic o(n?)-query (4—2(1))-approximation algorithms for METRIC 1-MEDIAN.
This paper generalizes his result to show that METRIC 1-MEDIAN has no deter-
ministic o(n' T/ ("=1)_query (2h—e)-approximation algorithms for any constants
h e Z*\ {1} and € > 0.

As in the previous lower bounds for deterministic algorithms [3,5], we use an
adversarial method. Our proof proceeds as follows:

(i) Design an adversary Adv for answering the distance queries of any deter-
ministic algorithm A with query complexity g(n) = o(n'T1/(h=1),
(ii) Show that A’s output, denoted z, has a large average distance to other
points, according to Adv’s answers to A.
(iii) Construct a distance function with respect to which a certain point & has
a small average distance to other points.

C.-L. Chang—Supported in part by the Ministry of Science and Technology of Tai-
wan under grant 103-2221-E-155-026-MY2.
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 131-142, 2016.
DOT: 10.1007/978-3-319-42634-1_11

132 C.-L. Chang

(iv) Construct the final distance function d(-,-) similar to and bounded by that
in item (iii).
(v) Show that d(-,-) is a metric.
(vi) Show the consistency of d(-,-) with Adv’s answers.
(vii) Compare & in item (iii) with z in item (ii) to establish our lower bound on
A’s approximation ratio.

Chang [3] does item (ii) by answering the distance between two distinct points
as 2 if they both involve in only a few queries and as 3 otherwise. For a stronger
lower bound, he expands the range of answers from {2,3} to {2,3,4} [5]. In
contrast, our high-level idea for item (ii) is to answer the queries according to
the distances on a graph with small degrees only (note that every vertex in such
a graph has a large average distance to other points).

All our constructions and analyses are built on two novel graph sequences,
{H(i)}?i%) and {G<i>}§iﬁ), in Sec. 3. But at a high level, we share the following
paradigm for item (iii) with Chang [5]:

— Keep a small set S of points whose distances to other points are answered by
Adv as large values during A’s execution.

— Then set a point & € S involved in only a few queries to have a small average
distance to other points.

Below is the rationale of this paradigm: If Adv answers the &-v distance as a
small value for some point v with a large average distance to other points, then
the average distance from & to other points will have to be large by the triangle
inequality, a bad news for item (iii). So we want Adv to answer as large values
the distances from & to other points during A’s execution.

The exact constructions in items (iii)(iv) combine G(4(") and H@(™) with
the planting of small &-v distances for many points v in a rather technical way.
Their careful design eases the remaining items.

Sects. 3.1, 3.2 and 3.3 correspond to items (ii), (iii) and (iv)—(vii), respectively.
The full version of this paper is at http://arxiv.org/abs/1509.05662.

2 Definitions and Preliminaries

For n € N, [n] = {1,2,...,n}. An algorithm A is c-approximate for METRIC
1-MEDIAN if A4(1™) outputs a c-approximate 1-median of ([n],d) for each finite
metric space ([n],d), where ¢ > 1. For simplicity, abbreviate A%(1") as A%

Fact 1 [2,4,13]. For each constant h € Z* \ {1}, METRIC 1-MEDIAN has a
deterministic nonadaptive O(n'+/")-time (2h)-approzimation algorithm.

For a predicate P, let x[P] = 1 if P is true and x[P] = 0 otherwise.
A weighted undirected graph G = (V, E, w) has a finite vertex set V', an edge set
E and a weight function w: E — (0,00). When the domain of w is a superset of
E, interpret (V, E,w) simply as (V, E,w|g), where w|g denotes the restriction
of won E. For all S CV, Ng(S) = ,cg Na(v). For all 5, t € V, the shortest
s-t distance in G, denoted dg(s,t), is the infimum of the weights (w.r.t. w) of
all s-t paths in G. So dg(s,t) = oo if there are no s-t paths.

http://arxiv.org/abs/1509.05662

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 133

3 Query Complexity vs Approximation Ratio

Throughout this section, (1) n € Z*, (2) € (0,1) and h € Z*\ {1} are constants
(ie., they are independent of n), (3) A is a deterministic o(n*+/(=1)-query
algorithm for METRIC 1-MEDIAN, and (4) S = [|on]] C [n].

All pairs in [n]? are assumed to be unordered in this section. By padding
queries, assume W.L.O.G. that A will have queried for the distances between
its output and all other points when halting. Denote A’s (worst-case) query

complexity by
o) = o (170D,

By padding queries, assume the number of queries of A to be exactly ¢(n).
W.L.O.G., forbid to make the same query twice or to query for the distance
from a point to itself, where the queries for d(x,y) and d(y, z) are considered to
be the same for z, y € [n]. Furthermore, let n be sufficiently large to satisfy

ont/(h=1) > 3, (1)
2q(n) 1/(h—
< spt/(h=1), 2
s1-1=")
By (2),
g(n) < on! /D, (3)

Define two unweighted undirected graphs G(© and H(©) by

EY = {(u,0) | (u,v € 0]\ S) A (u #)},

Algorithm Adv in Fig. 1 answers A’s queries. In particular, for all ¢ € [¢(n)],
the ith iteration of the loop of Adv answers the ith query of A, denoted (a;, b;) €
[n)2. Tt constructs three unweighted undirected graphs, G = ([n], Eg))7 HO =
([n], Eg)) and Q. As G~V is unweighted for all i € [¢(n)], P; in line 5 of Adv
is an a;-b; path in G~ with the minimum number of edges. By line 16 of Adv,
the edges of Q) are precisely the first i queries of A.

An Intuitive Exposition. Line 17 of Adv in Fig. 1 answers the ith query of A
according to H® . So, to make the output of A have a large average distance to
other points, we want H) to have small degrees only. For this purpose, line 8
forms G% by removing the edges having a large-degree endpoint in H®. Once an
edge is absent in G| it cannot be inserted into HUTY by lines 5-6 of the next
iteration, thus keeping the degrees small in H). Lines 5-6 and 17 suggest that the
answer to the ith query of A is just the length of P;. So Adv should “remember”

134 C.-L. Chang

1: Let Eg))7 GO, EI(L?) and H® be as in (4)(7);
2: fori=1,2,...,q(n) do
3: Receive the ith query of A, denoted (as, b;);

4: if dei-1)(as, b)) < h then

5: Find a shortest a;-b; path P; in G¢~Y;
6: Eg) — ngl) U{e | eis an edge on P;};
. HY (), EY);

8 BG — EgV\{(uv) € BN\ ER | (degyo(w) = ont/"Y —2) v

(deg (i (v) > dn'/h=1) — 2y}

9: GY (], BG);

10: else

11: EY — EGY;

12: H® — ([n],Eg));
13: Eg> — ngn;
14: GY — ([n], ED);
15: end if

16: QW — ([n],{(aj,b;) | j € [iI});

17: Output min{dy (ai,bi),h — (1/2) - x[Fv € {ai,bi}, (v € S) A (deggi) (v) <
6n1/(h71))]} as the answer to the ith query of A;

18: end for

Fig. 1. Algorithm Adv for answering A’s queries

P; to be able to answer the future queries consistently with its answer to the ith

query. This is why line 8 preserves all the edges in Eg) (including those of P; by
line 6) when forming G,

Roughly, Adv works as follows: Answer each query by the length of a shortest
path. Mark the edges of that path by adding them to HO). Once a vertex is incident
to too many marked edges, remove its incident unmarked edges to keep its degree
small in HO). Preserve all marked edges for consistency among answers.

Lemma 1.

EQ c BV ¢ ... c B ¢ gl ¢ gD ¢ ¢ gO),

Proof. By lines 6 and 11 of Adv in Fig. 1, ngl) - Eg) for all i € [g(n)]. By
lines 8 and 13, E& € ES™Y for all i € [q(n))].

To show that Eg,l(")) - Eé?(")), we shall prove the stronger statement that
Eg) C Eg) for alli € {0,1,...,q(n)} by mathematical induction. By (6), Eg)) C
Eg)). Assume as the induction hypothesis that Egil) C Egil). The following
shows that Eg) C Eg_l) by examining each e € Eg):

Case 1: e € ngl). By the induction hypothesis, e € E(Gifl).
Case 2: e ¢ ngl). Ase e Eg) \E;}fl), lines 6 and 11 show that e is on P; (and
that the ith iteration of the loop of Adv runs line 6 rather than line 11).

By line 5, each edge on P, is in qu). In particular, e € Egil).

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 135

Having shown that Eg) C Eg_l), lines 8 and 13 will both result in Eg) - Eg),
completing the induction step. a

Lemma 2. For all i € [q(n)] with dgi-n(a;,b;) < h,
Ay (a3, b;) = dgaemy (ag, b)) = dgamy (ai, b)) = dga-v (aq, b;) .

Proof. By line 4 of Adv, the ith iteration of the loop runs lines 5-9. Lines 5-7
put (the edges of) a shortest a;-b; path in GO~ into H®; hence

dyo (@i,b;) < dge-n (@i, b;) .

This and Lemma 1 complete the proof. O

3.1 The Average Distance from A’s Output to Other Points

This subsection shows that the output of AA% has a large average distance to
other points, according to the answers of Adv.

Lemma 3. Foralli € [g(n)] and v € [n], we have deg) (v) < degga-—) (v) + 2.

Proof. If the ith iteration of the loop of Adv runs lines 11-14 but not 5-9, then
H® = HG=1 proving the lemma. So assume otherwise. Being shortest, P; in
line 5 does not repeat vertices. Therefore, v is incident to at most two edges on
P;, which together with lines 6-7 complete the proof. O

Lemma 4. For all v € [n], deggwmy (v) < ont/(h=1,
Proof. Assume otherwise. Then prove the existence of i € [g(n)] satisfying

degp v (v) < ont/ (=1 _ 2, -
deg e (v) > dnt/ (=1 — 2, (9)

As HO=D £ HO by (8)—(9), the ith iteration of the loop of Adv runs lines 5-9
but not 11-14. By (9) and line 8 of Adyv,

{u e [n] | (u,v) € Eg'>} - {u e [n] | (u,v) € BV (Eg’l) \EQ)} . (10)

By Lemma 1, Eg) C Egil). So by (10), Ngw (v) = Ny (v), implying
degq (v) = degge (v). By (8) and Lemma 3, degpye (v) < on'/(P=1. Finally,
degramy (v) < degae (v) by Lemma 1. Summarize the above. O
Lemma 5. For all v € [n],

|{u S [n] | dr(atn)) (v,u) < h}| < 26" 1n.

Proof. Use Lemma 4. O

136 C.-L. Chang

Denote the output of AAY by z. Furthermore,

I'={jelgn)]|ze{a;,b;}}. (11)

The following lemma analyzes the sum of the distances, as answered by line 17
of Adv, from z to other points.

Lemma 6.

> min {de (@i, bi), h — 1oy [311 €{ai,bi}, (weS)A (degQ(i) (v) < 5711/(}“1))]}
il 2

>n. (h—2h5h*1 —o(1) —5).
Proof. By Lemma 1, dy(ai,b;) > dgam)(a;,b;) for all i € [q(n)]. Now use
Lemma 5 to bound), ; dp) (as, b;) from below. The rest is not hard. O
3.2 Planting a Point with a Small Average Distance to Other Points

This subsection constructs a distance function with respect to which a certain
point has an average distance of approximately 1/2 to other points.

Lemma 7. |E§§("))\ < h-q(n).
Proof. By lines 4-5 of Adv, P; in line 5 has at most h edges. So by lines 6 and 11,

EW < oy) + h. Finally, there are ¢(n) queries. O
| H H Ys q q
Lemma 8.
h
[{u € 0] | degrraan () = 601100 — 2} = 5 o(m)

Proof. By Lemma 7, the average degree in H(@(™) is at most 2h - ¢(n)/n =
h - o(n*/(P=1), Use the averaging argument. 0

By (1), S\ {z} # 0. Define

& = argmin degg) (@), (12)
aeS\{z}

breaking ties arbitrarily.

Lemma 9. For alli € [q(n)], deggw (&) < én'/(h=1),

Proof. Use (12) and the averaging argument. O
Inductively, let

Vo ={a}, (13)
Vi = Ngaoy (&) \ Vo, (14)

Vit1 = Nuaen (V) \ (U Vz‘) (15)
i=0

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 137

for all j € [h — 2]. Furthermore,

h—1
Vi = o]\ (U v) (16)
=0
The following lemma is not hard to see from (13)—(16).

Lemma 10. (Vp,V4,..., V) is a partition of [n], i.e., U.Z:O Vi, = [n] and V; N
V; =0 for all distinct i, j € {0,1,...,h}.

An Intuitive Ezxposition. By Lemma 9, |V1]| is small. Because we have seen
that H9™) has small degrees only, |V;| grows slowly as j increases from 1 to
h — 1. Consequently, Z;L;ll |V;| should be small. In fact, |V,| = n. So if we
connect & to each point in Vi, by an edge of weight 1/2, then & will have an
average distance of approzimately 1/2 to other points. Technicalities complicate
the exact constructions, though.

Define
B= {u € [n] | degpiaimy (u) > dnt/ (P — 2} , (17)
£= |EYMI\ U Vix Vil |U{{a}x (Va\(BUS))). (18)

1,5€{0,1,...,h}, li—j|>2

By (12), & € S, implying & ¢ Vi, \ (BU S). So £ does not contain a self-loop.
For all distinct u, v € [n],

_ [1/2,if one of uw and v is & and the other is in V}, \ (BUS),
w(u,v) = {1, otherwise. (19)

Furthermore, define
G=(n), & w) (20)
to be a weighted undirected graph.

Lemma 11.

h—1
> Vil < 26" n,
j=1

Proof. By Lemma 9 and (14), we have |V;| < 6n'/("~D. By Lemma 4 and (15),
[Vis1| < V5] - ont/=1) for j € [h — 2]. Now bound Z?;ll |V;| by a geometric
series. O

Lemma 12.

|Vh\(BUS)|2n<1—25h1—Z~o(1)—5>.

138 C.-L. Chang

Proof. By Lemma 8 and (17), |B| = (h/0) - o(n). Furthermore,

L s 10-11
Vil s 28— vl B — 20t — 1.

O

The following lemma says that & has an average distance of approximately
1/2 to other points w.r.t. the distance function min{dg(-,-), h}.

Lemma 13.

2
Z min {dg (&,v),h} <n- <; + 2n6" 1 4 h -o(1) —|—h6> .

)
vE[n]
Proof. By (18)—(20), dg(&,v) < 1/2 for all v € V;,\ (BUS). This and Lemma 12
complete the proof (note that min{dg(-,-),h} < h). O

3.3 A Metric Consistent with Adv’s answers

This subsection constructs a metric d: [n]?> — [0,00) consistent with Adv’s
answers in line 17. So Lemma 6 will require z, which is the output of AA,
to have an average distance (w.r.t. d) of at least approximately h to other
points. Although d(-,-) will not be exactly min{dg(,-),h}, Lemma 13 will for-
bid 3, ¢, A& v)/n to exceed 1/2 by too much. Comparing z with & yields our
lower bound.

An Intuitive Exposition. Suppose that A ever queries for the &-vyi, v1-ve and
vg-v3 distances, where vy € [n], va, vz € V3 \(BUS) and vy # vs. By (14), v € V.
All of Adv’s answers are clearly based on {H(i)}ggé) and {GU)};?QQ, which, unlike
G, do not have edges of weight 1/2. So for variants of min{dg(-,-), h} to be used as
the final metric, we need to prevent the edges of G with weight 1/2 from creating
“shortcuts” that, together with the triangle inequality, violate Adv’s answers.

By (19), min{dg (&, v2), h} = 1/2. So for min{dg(-,), h} to be consistent with
Adv’s answers, the &-v; and vy-vy distances returned by Adv must differ by at
most 1/2 in absolute value by the triangle inequality. From the picking of &, it will
be easy to show that Adv answers the G-vy distance with h — 1/2. Consequently,
the v1-vy distance returned by Adv should be at least (h—1/2)—1/2=h—1. As
vy € Vi and ve € Vj,, we turn to prove that every point in Vi has a distance of
at least h — 1 to every point in Vj,.

Again by (19), min{dg(&,v;),h} = 1/2 for all 7 € {2,3}. So for
min{dg(-,-), h} to be consistent with Adv’s answers, the vo-vs distance returned
by Adv must not exceed 1/2+1/2 = 1 by the triangle inequality. For this purpose,
we just need to prove the existence of a va-vs edge or, more generally, an edge
between any two distinct points in [n] \ (BUS).

The above descriptions are somewhat inaccurate. E.g., the final metric is not
exzactly min{dg(-,-), h}.

Recall that H") and G are unweighted for all i € {0,1,...,¢(n)}. They
can be treated as having the weight function w while preserving dy (-, -) and
de (4, +), as shown by the lemma below.

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 139

Lemma 14. Foralli € {0,1,...,q(n)}, each path P in H® or G has exactly
w(P) edges.

Proof. As & € S by (12), (19) implies w(u,v) = 1 for all distinct u, v € [n] \ S.
This and (4) imply that all edges in EgJ) have weight 1 w.r.t. w. So by Lemma 1,
the edges in Eg) U Eg) have weight 1 w.r.t. w. a

Lemma 15.
EY™) n U Vix V| =0.
i,7€{0,1,...,h}, |i—j|>2
Proof. Use (15). O

Lemma 16. Eg(")) C €.

Proof. By Lemma 15 and (18), Egl(")) N Eg(")) C &. Now invoke Lemma 1. O

Lemma 17. Let P be a path in G that visits no edges in {&} x (Vp\(BUS)). If the
first and the last vertices of P are in V}, and V1, respectively, then w(P) > h—1.

Proof. Because P visits no edges in {&} x (V3 \ (BUS)), no edges on P are in
Vi x Vj for any 4, j € {0,1,...,h} with |[i — j| > 2 by (18) and (20). This forces
P to visit at least one edge in V; 1 x V; for each i € [h — 1]. As & ¢ U?:l V; by
(13)-(16), (19) gives w(u,v) = 1 for all (u,v) € ' (Vizr x V). O

Lemma 18. Let P be a shortest a;-b; path in G, where i € [q(n)]. If P visits
exactly one edge in {&} x (Vi \ (BUS)) and & € {a;,b;}, then w(P) > h—1/2.

Proof. Assume & = a; by symmetry. Decompose P into an edge (&, v), where
v eV, \ (BUS), and a v-b; path P in G that visits no edges in {a} x (V}, \ (BU
S)). Clearly, b; € Vi. In summary, P is a V},-V; path in G visiting no edges in
{a} x (Vi \ (BUS)). By Lemma 17, w(P) > h — 1, implying w(P) > h —1/2. 0

Lemma 19. For all i € [q(n)] with & € {a;,b;},

X |Fv €{a;, b}, (veS)A (dego (v) < 6n1/(h_1))} =1.
Proof. By (12), & € S. This and Lemma 9 complete the proof. O
Lemma 20. For all distinct u, v € [n]\ (BUS), we have (u,v) € Egl(")).
Proof. As u, v € [n]\ B, (17) implies

deg i (u) < ont/(h=1 — 9, (21)
degy i (v) < ont/(h=D 9 (22)

when ¢ = g(n). So by Lemma 1, (21)-(22) hold for all i € [g(n)].

140 C.-L. Chang

As u, v € [n]\ S and u # v, we have (u,v) € Eg)) by (4). By lines 8 and 13
of Adyv,

BETON{(@,9) € [n)? | (deg iy (2) 2 60/ 7D —2) v (deg (i) (v) > 502/ 7D —2)} € BE) (23)

for all i € [g(n)]. By (21)~(23), (u,v) € EX if (u,v) € ES™Y, for all i € [g(n)].
The proof is complete by mathematical induction on 3. O

Lemma 21. Let P be a shortest a;-b; path in G, where i € [q(n)]. If P visits
ezactly two edges in {a} x (Vi, \ (BUS)), then GY™) has an a;-b; path with
exactly w(P) edges.

Proof. Clearly, the two edges of P in {a} x (Vj, \ (BUJS)), denoted (u, &) and
(&, v), are consecutive on P. Replace the subpath (u, &, v) of P by the edge (u,v)
to yield an a;-b; path P. Except for the two edges of P in {@} x (V4 \ (BUS)), all
edges of P are in Eg’(n)) by (18). Asu, v € V3 \(BUS) and u # v, (u,v) € Eg](n))

(n

by Lemma 20. In summary, all the edges of P are in Egl), Consequently, P is

an a;-b; path in G = ([n], Eg](”))). So we are left only to prove that P has

exactly w(P) edges, which, by Lemma 14, is equivalent to proving w(P) = w(P).
Note that & ¢ V;, \ (B U S) by (12). By the construction of P and recalling
that u, v € V3 \ (BUS) and u # v,

w(P) = w(P) —w(u,&) —w(&,v) +w(u,v) (g)w(P)—%—%—&-l:w(P),

a

Lemma 22. Fvery simple path in G wvisiting exactly one edge in {&} x (Vi \
(BUNS)) either starts or ends at &.

Proof. By (12), & € S. So by (4) and Lemma 1, & is incident to no edges in

Eg(n)). Consequently, the set of all edges of G incident to & is {a} x (V3 \ (BUS))
by (18). The lemma is now easy to see. a

Lemma 23. For all i € [q(n)],
min {dH(,-) (aisbi) b — % x[Bv € {aibi}, (v € 8) A (deggi (v) < 1/ 1) }
< min{dg (ai,bi), h— % X [Hv € {as,bi}, (v € S) A (degQ(i) (v) < 5n1/(h—1>)] } . (24)
Proof. Clearly, we may assume dg(a;,b;) < oo. Pick an a;-b; path P in G with
w(P) =dg (a;,b;) . (25)

We deal only with the hardest case that P visits exactly two edges in {&} x (Vi \
(BUJS)). In this case, Lemma 21 implies

dgam (ai, b)) < w(P). (26)

Metric 1-Median Selection: Query Complexity vs. Approximation Ratio 141

If dga-n (ai, b;) < h, then dg) (as, bz) = dgm) (ai,b;) by Lemma 2, which
together with (25)—(26) completes the proof. Otherwise, dgmy (a;,b;) > h by
Lemma 1, which together with (25)—(26) shows dg(a;, b;) > h and thus completes
the proof. O
Define d: [n]? — [0,00) by
d(ai,bi) = d(bi,ai)
= min {dg (@i, bi),h — % % [371 € {a;,b;}, (e S)A (degQ(i) (v) < Snl/(h'_l)ﬂ } R (27)
d (u,v)
= min {dg (u,v),h} (28)

for all i € [g(n)] and (u,v) € [n]*\ {(a;,b;) | j € [g(n)]}-
Lemma 24. ([n],d) is a metric space.

Proof. We only prove the triangle inequality for d(-, -). Clearly, dg(-, -) is a metric
and dg(-,-) ¢ (0,1/2). By (27)—(28), d(-,-) truncates dg(-,-) to within either
h —1/2 or h, preserving the triangle inequality. O

Lemma 25. For alli € [q(n)], dgo (a;,b;) > dg(ai, b;).

Proof. Take a shortest a;-b; path P in the unweighted graph H®) = ([n],Eg))
So by Lemma 14, d)(ai,b;)) = w(P). By Lemma 1, P’s edges are in Eg{(")).
So by Lemma 16, P is a path in G = ([n], €, w), implying dg(a;, b;) < w(P). O

The following lemma says that line 17 of Adv answers queries consistently
with d(-,-).

Lemma 26. For all i € [q(n)],
min {dH(") (a;, bi),h — % - X [E'U € {a;,b;}, (weS)A (degQ(i) (v) < (Snl/(h—l))]} =d(ai,b;).

Proof. Use Lemmas 23 and 25 and (27). O

Theorem 1. METRIC 1-MEDIAN has no deterministic o(n*t'/(=1)_query
(2h — €)-approzimation algorithms for any constants h € Z \ {1} and € > 0.

Proof. By Lemma 26 and line 17 of Adv, Adv answers A’s queries consistently
with d(-,-). By Lemma 24, ([n],d) is a metric space. Now use Lemma 13 to
bound }, ¢, d(&,v) from the above. Then use Lemmas 6 and 26 to bound

Zve[n] d(z,v) from below. Finally, pick ¢ to be sufficiently small. O

142

C.-L. Chang

References

10.

11.

12.

13.

. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local

search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544562 (2004)

Chang, C.-L.: A deterministic sublinear-time nonadaptive algorithm for metric
1-median selection. To appear in Theoretical Computer Science

Chang, C.-L.: Some results on approximate 1-median selection in metric spaces.
Theor. Comput. Sci. 426, 1-12 (2012)

. Chang, C.-L.: Deterministic sublinear-time approximations for metric 1-median

selection. Inf. Process. Lett. 113(8), 288-292 (2013)

Chang, C.-L.: A lower bound for metric 1-median selection. Technical report.
arXiv:1401.2195 (2014)

Chen, K.: On coresets for k-median and k-means clustering in metric and Euclidean
spaces and their applications. STAM J. Comput. 39(3), 923-947 (2009)

Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515-528
(2003)

Indyk, P.: Sublinear time algorithms for metric space problems. In: Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, pp. 428-434 (1999)
Indyk, P.: High-Dimensional Computational Geometry. Ph.D. thesis, Stanford Uni-
versity (2000)

Jaiswal, R., Kumar, A., Sen, S.: A simple D*-sampling based PTAS for k-means
and other clustering problems. In: Proceedings of the 18th Annual International
Conference on Computing and Combinatorics, pp. 13-24 (2012)

Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57(2), 5 (2010)

Mettu, R.R., Plaxton, C.G.: Optimal time bounds for approximate clustering.
Mach. Learn. 56(1-3), 35-60 (2004)

Wu, B.-Y.: On approximating metric 1-median in sublinear time. Inf. Process. Lett.
114(4), 163-166 (2014)

http://arxiv.org/abs/1401.2195

Frequent-Itemset Mining
Using Locality-Sensitive Hashing

Debajyoti Bera'®™) and Rameshwar Pratap?

! Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
dbera@iiitd.ac.in
2 TCS Innovation Labs, New Delhi, India

rameshwar.pratap@gmail.com

Abstract. The Apriori algorithm is a classical algorithm for the fre-
quent itemset mining problem. A significant bottleneck in Apriori is
the number of I/O operation involved, and the number of candidates it
generates. We investigate the role of LSH techniques to overcome these
problems, without adding much computational overhead. We propose
randomized variations of Apriori that are based on asymmetric LSH
defined over Hamming distance and Jaccard similarity.

1 Introduction

Mining frequent itemsets in a transactions database appeared first in the context
of analyzing supermarket transaction data for discovering association rules [1,2],
however this problem has, since then, found applications in diverse domains like
finding correlations [13], finding episodes [9], clustering [14]. Mathematically,
each transaction can be regarded as a subset of the items (“itemset”) those
that present in the transaction. Given a database D of such transactions and a
support threshold 8 € (0,1), the primary objective of frequent itemset mining
is to identify O-frequent itemsets (denoted by FI, these are subsets of items that
appear in at least f-fraction of transactions).

Computing FI is a challenging problem of data mining. The question of decid-
ing if there exists any FI with k items is known to be NP-complete [7] (by relating
it to the existence of bi-cliques of size k in a given bipartite graph) but on a more
practical note, simply checking support of any itemset requires reading the trans-
action database — something that is computationally expensive since they are
usually of an extremely large size. The state-of-the-art approaches try to reduce
the number of candidates, or not generate candidates at all. The best known
approach in the former line of work is the celebrated Apriori algorithm [2].

Apriori is based on the anti-monotonicity property of partially-ordered sets
which says that no superset of an infrequent itemset can be frequent. This
algorithm works in a bottom-up fashion by generating itemsets of size [in level [,
starting at the first level. After finding frequent itemsets at level [they are joined
pairwise to generate [+ 1-sized candidate itemsets; F1 are identified among the
candidates by computing their support explicitly from the data. The algorithm
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 143155, 2016.
DOTI: 10.1007/978-3-319-42634-1_12

144 D. Bera and R. Pratap

terminates when no more candidates are generated. Broadly, there are two down-
sides to this simple but effective algorithm. The first one is that the algorithm
has to compute support! of every itemset in the candidate, even the ones that are
highly infrequent. Secondly, if an itemset is infrequent, but all its subsets are fre-
quent, Apriori doesn’t have any easy way of detecting this without reading every
transaction of the candidates.

A natural place to look for fast algorithms over large data are randomized
techniques; so we investigated if LSH could be of any help. An earlier work by
Cohen et al. [5] was also motivated by the same idea but worked on a different
problem (see Sect.1.2). LSH is explained in Sect. 2, but roughly, it is a random-
ized hashing technique which allows efficient retrieval of approximately “similar”
elements (here, itemsets).

1.1 Owur Contribution

In this work, we propose LSH-Apriori — a basket of three explicit variations of
Apriori that uses LSH for computing FI. LSH-Apriori handles both the above
mentioned drawbacks of the Apriori algorithm. First, LSH-Apriori significantly
cuts down on the number of infrequent candidates that are generated, and further
due to its dimensionality reduction property saves on reading every transaction;
secondly, LSH-Apriori could efficiently filter our those infrequent itemset without
looking every candidate. The first two variations essentially reduce computing FI
to the approximate nearest neighbor (cNN) problem for Hamming distance and
Jaccard similarity. Both these approaches can drastically reduce the number of
false candidates without much overhead, but has a non-zero probability of error
in the sense that some frequent itemset could be missed by the algorithm. Then
we present a third variation which also maps FI to elements in the Hamming
space but avoids the problem of these false negatives incurring a little cost of
time and space complexity. Our techniques are based on asymmetric LSH [12]
and LSH with one-sided error [10] which are proposed very recently.

1.2 Related Work

There are a few hash based heuristic to compute FI which outperform the Apriori
algorithm and PCY [11] is one of the most notable among them. PCY focuses
on using hashing to efficiently utilize the main memory over each pass of the
database. However, our objective and approach both are fundamentally different
from that of PCY.

The work that comes closest to our work is by Cohen et al. [5]. They devel-
oped a family of algorithms for finding interesting associations in a transaction
database, also using LSH techniques. However, they specifically wanted to avoid
any kind of filtering of itemsets based on itemset support. On the other hand, our
problem is the vanilla frequent itemset mining which requires filtering itemsets
satisfying a given minimum support threshold.

! Note that computing support is an I/0 intensive operation and involves reading every
transaction.

Frequent-Itemset Mining Using Locality-Sensitive Hashing 145

1.3 Organization of the Paper

In Sect.2, we introduce the relevant concepts and give an overview of the
problem. In Sect. 3, we build up the concept of LSH-Apriori which is required
to develop our algorithms. In Sect.4, we present three specific variations of
LSH-Apriori for computing FI. Algorithms of Subsects. 4.1 and 4.2 are based on
Hamming LSH and Minhashing, respectively. In Subsect. 4.3, we present another
approach based on CoveringLSH which overcomes the problem of producing false
negatives. In Sect. 5, we summarize the whole discussion. Proofs are omitted due
to space constraint and can be found in the full-version [3].

2 Background

The input to the classical frequent itemset mining problem is a database D of n
transactions {71, ...,T,} over m items {i1, ..., %} and a support threshold 6 €
(0,1). Each transaction, in turn, is a subset of those items. Support of itemset
I C{iy,...,4n} is the number of transactions that contain I. The objective of
the problem is to determine every itemset with support at least On. We will often
identify an itemset I with its transaction vector (I[1],1[2],...,I[n]) where I[j]
is 1 if I is contained in T} and 0 otherwise. An equivalent way to formulate the
objective is to find itemsets with at least On 1’s in their transaction vectors. It
will be useful to view D as a set of m transaction vectors, one for every item.

Notations
D | Database of transactions: {t1,...,tn} |n | Number of transactions
Dy | FI of level-l: {I1,...Im,} 6 | Support threshold, 6 € (0,1)

a; | Maximum support of any item in D; | m | Number of items

¢ | Error tolerance in LSH, € € (0,1) m; | Number of FI of size [
Probability of error in LSH, § € (0,1) | |v| | Number of 1's in v

2.1 Locality Sensitive Hashing
We first briefly explain the concept of locality sensitive hashing (LSH).

Definition 1 (Locality Sensitive Hashing [8]). Let S be a set of m vectors
in R™, and U be the hashing universe. Then, a family H of functions from S to
U is called as (Sp, (1 — €)So, p1, p2)-sensitive (with ¢ € (0,1] and p; > ps) for
the similarity measure Sim(.,.) if for any x,y € S:
~ifSim(r,9) > S, then P [h(x) = h(y)] > pr,
— if Sim(z,y) < (1 —¢€)Sy, then hPlfH[h(x) = h(y)] < pa.

€

Not all similarity measures have a corresponding LSH. However, the following
well-known result gives a sufficient condition for existence of LSH for any Sim.

146 D. Bera and R. Pratap

Lemma 1. If @ is a strict monotonic function and a family of hash function H
satisfies Pry e w[h(x) = h(y)) = &(Sim(z,y)] for some Sim : R™ x R™ — {0,1},
then the conditions of Definition1 are true for Sim for any e € (0,1).

The similarity measures that are of our interest are Hamming and
Jaccard over binary vectors. Let |z| denote the Hamming weight of a binary
vector x. Then, for vectors z and y of length n, Hamming distance is defined as
Ham(x,y) = |z @ y|, where x & y denotes a vector that is element-wise Boolean
XOR of z and y. Jaccard similarity is defined as (x,y)/|z V y|, where (z,y) indi-
cates inner product, and = V y indicates element-wise Boolean OR of = and y.
LSH for these similarity measures are simple and well-known [4,6,8]. We recall
them below; here [is some subset of {1,...,n} (or, n-length transaction vector).

Definition 2 (Hash Function for Hamming Distance). For any particular
bit position i, we define the function h;(I) := I[i]. We will use hash functions of
the form g;(I) = (hj,(I), hj,(I),..., hj (1)), where J = {j1,...,Jx} is a subset
of {1,...,n} and the hash values are binary vectors of length k.

Definition 3 (Minwise Hash Function for Jaccard Similarity). Let 7 be
some permutations over {1,...,n}. Treating I as a subset of indices, we will use
hash functions of the form h.(I) = argmin; 7(i) fori € I.

The probabilities that two itemsets hash to the same value for these hash func-
tions are related to their Hamming distance and Jaccard similarity, respectively.

2.2 Apriori Algorithm for Frequent Itemset Mining

As explained earlier, Apriori works level-wise and in its [-th level, it generates all
f-frequent itemsets with [-items each; for example, in the first level, the algorithm
simply computes support of individual items and retains the ones with support

Input: Transaction database D, support threshold 6;
Result: 0-frequent itemsets;
=1 /*level */;
F = {{z} | {z} is 6-frequent in D} /* frequent itemsets in level-1 */ ;
Output F;
while F' is not empty do
l=14+1;
C={I,Uly |1, € F, I, € F, I, and I, are compatible};
F=0;
for itemset I in C' do
‘ Add I to F if support of I in D is at least On /* reads database®/ ;
end
Output F;
end

© 00 N O A W N

= =
= O

=
N

Algorithm 1. Apriori algorithm for frequent itemset mining

Frequent-Itemset Mining Using Locality-Sensitive Hashing 147

at least On. Apriori processes each level, say level-(I 4+ 1), by joining all pairs of
O-frequent compatible itemsets generated in level-l, and further filtering out the
ones which have support less than n. Here, two candidate itemsets (of size [
each) are said to be compatible if their union has size exactly 4+ 1. A high-level
pseudocode of Apriori is given in Algorithm 1. All our algorithms rely on a good
implementation of set whose runtime cost is not included in our analysis.

3 LSH-Apriori

The focus of this paper is to reduce the computation of processing all pairs
of itemsets at each level in line 6 (which includes computing support by going
through D). Suppose that level I outputs m; frequent itemsets. We will treat
the output of level [as a collection of m; transaction vectors D; = {I1,... Ly, },
each of length n and one for each frequent itemset of the I-th level. Our approach
involves defining appropriate notions of similarity between itemsets (represented
by vectors) in D; similar to the approach followed by Cohen et al. [5]. Let I;, I;
be two vectors each of length n. Then, we use |I;, I;| to denote the number of
bit positions where both the vectors have a 1.

Definition 4. Given a parameter 0 < ¢ < 1, we say that {I;,I;} is 0-frequent
(or similar) if |1;,I;| > On and {1;,1;} is (1—¢)0-infrequent if |I;, I;]| < (1—¢)6n.
Furthermore, we say that I; is similar to I; if {I;,I;} is 0-frequent.

Let I, be a frequent itemset at level [— 1. Let FI(I,,8) be the set of itemsets
I, such that {I,, I} is f-frequent at level {. Our main contributions are a few
randomized algorithms for identifying itemsets in FI(I,, 6) with high-probability.

Definition 5 (FI(I,,6,¢,0)). Given a 0-frequent itemset I, of size l — 1, toler-
ance ¢ € (0,1) and error probability 6, FI(I,,0,¢,9) is a set F' of itemsets of
size 1, such that with probability at least 1 — &, F' contains every I, for which
{I,,1,} is O-frequent.

It is clear that FI(I,,6) C FI(1,,0, ¢, d) with high probability. This motivated
us to propose LSH-Apriori, a randomized version of Apriori, that takes § and ¢
as additional inputs and essentially replaces line 6 by LSH operations to com-
bine every itemset I, with only similar itemsets, unlike Apriori which combines
all pairs of itemsets. This potentially creates a significantly smaller C' without
missing out too many frequent itemsets. The modifications to Apriori are pre-
sented in Algorithm 2 and the following lemma, immediate from Definition 5,
establishes correctness of LSH-Apriori.

Input: D, ={I1,...,1y,}, 0, (Additional) error probability d, tolerance ¢;
6a (Pre-processing) Initialize hash tables and add all items I, € Dy;
6b (Query) Compute FI(1,,0,¢,0) VI, € D; by hashing I, and checking
collisions;

6c C— {I,Ul, | I; € D, I € FI(I4,0,¢,96)};
Algorithm 2. LSH-Apriori level I + 1 (only modifications to Apriori line: 6)

148 D. Bera and R. Pratap

Lemma 2. Let I, and I, be two 0-frequent compatible itemsets of size (I — 1)
such that the itemset J = I, U I, is also 0-frequent. Then, with probability at
least 1 — 6, FI(1y,0,¢,0) contains I, (hence C contains J).

In the next section we describe three LSH-based randomized algorithms to
compute FI(1,,0,¢,0) for all -frequent itemset I, from the earlier level. The
input to these subroutines will be D;, the frequent itemsets from earlier level,
and parameters 0, ¢,6. In the pre-processing stage at level [, the respective LSH
is initialized and itemsets of D; are hashed; we specifically record the itemsets
hashing to every bucket. LSH guarantees (w.h.p.) that pairs of similar items hash
into the same bucket, and those that are not hash into different buckets. In the
query stage we find all the itemsets that any I, ought to be combined with by
looking in the bucket in which I, hashed, and then combining the compatible
ones among them with I, to form C. Rest of the processing happens & la Apriori.

The internal LSH subroutines may output false-positives —itemsets that are not
f-frequent, but such itemsets are eventualy filtered out in line 9 of Algorithm 1.
Therefore, the output of LSH-Apriori does not contain any false positives. How-
ever, some frequent itemsets may be missing from its output (false negatives) with
some probability depending on the parameter ¢ as stated below in Theorem 3
(proof follows from the union bound).

Theorem 3 (Correctness). LSH-Apriori does not output any itemset which
s not O-infrequent. If X is a 0-frequent itemset of size I, then the probability that
LSH-Apriori does not output X is at most 62.

The tolerance parameter € can be used to balance the overhead from using hash-
ing in LSH-Apriori with respect to its savings because of reading fewer transactions.
Most LSH, including those that we will be using, behave somewhat like dimension-
ality reduction. As a result, the hashing operations do not operate on all bits of
the vectors. Furthermore, the pre-condition of similarity for joining ensure that
(w.h.p.) most infrequent itemsets can be detected before verifying them from D.
To formalize this, consider any level [with m; 6-frequent itemsets D;. We will com-
pare the computation done by LSH-Apriori at level [+1 to what Apriori would have
done at level [4+ 1 given the same frequent itemsets D;. Let ¢;41 denote the num-
ber of candidates Apriori would have generated and m; 1 the number of frequent
itemsets at this level (LSH-Apriori may generate fewer).

Overhead: Let 7(LSH) be the time required for hashing an itemset for a par-
ticular LSH and let o(LSH) be the space needed for storing respective hash
values. The extra overhead in terms of space will be simply m;o(LSH) in level
[4+ 1. With respect to overhead in running time, LSH-Apriori requires hashing
each of the m; itemsets twice, during pre-processing and during querying. Thus
total time overhead in this level is 9(LSH,l + 1) = 2my7(LSH).

Savings: Consider the itemsets in D; that are compatible with any I, € D;.
Among them are those whose combination with I, do not generate a #-frequent
itemset for level [+ 1; call them as megative itemsets and denote their num-
ber by r(Ig). Apriori will have to read all n transactions of 7, r(lq) itemsets

Frequent-Itemset Mining Using Locality-Sensitive Hashing 149

in order to reject them. Some of these negative itemsets will be added to FI by
LSH-Apriori — we will call them false positives and denote their count by FP(I,);
the rest those which correctly not added with I; — lets call them as true nega-
tives and denote their count by TN (I,). Clearly, r(I;) = TN(Iy) + FP(I;) and
Y1 m(Ig) = 2(¢141 —mu41). Suppose ¢(LSH) denotes the number of transactions
a pérticular LSH-Apriori reads for hashing any itemset; due to the dimensionality
reduction property of LSH, ¢(LSH) is always o(n). Then, LSH-Apriori is able to
reject all itemsets in TN by reading only ¢ transactions for each of them; thus for
itemset I in level [+ 1, a particular LSH-Apriori reads (n — ¢(LSH)) x TN (I,)
fewer transactions compared to a similar situation for Apriori. Therefore, total
savings at level [+ 1is ¢(LSH,l+1) = (n— ¢(LSH)) x >, TN(I,).

In Sect. 4, we discuss this in more detail along with the resﬁective LSH-Apriori
algorithms.

4 FI via LSH

Our similarity measure |I,,I,| can also be seen as the inner product of the
binary vectors I, and I,. However, it is not possible to get any LSH for such
similarity measure because for example there can be three items I,, I, and I,
such that |I,,I| > |I.,I.| which implies that Pr(h(l,) = h(Il})) > Pr(h(l.) =
h(I.)) = 1, which is not possible. Noting the exact same problem, Shrivastava
et al. introduced the concept of asymmetric LSH [12] in the context of binary
inner product similarity. The essential idea is to use two different hash functions
(for pre-processing and for querying) and they specifically proposed extending
MinHashing by padding input vectors before hashing. We use the same pair of
padding functions proposed by them for m-length binary vectors in a level [:
Py ;) for preprocessing and Q(,,q,) for querying are defined as follows.

— In P(I) we append (oyn — |I|) many 1’s followed by (oyn + |I|) many 0's.
— In Q(I) we append «;n many 0’s, then (qyn — |I|) many 1’s, then |I| 0's.

Here, ayn (at LSH-Apriori level) will denote the maximum number of ones in
any itemset in D;. Therefore, we always have (ayn — |I|) > 0 in the padding
functions. Furthermore, since the main loop of Apriori is not continued if no
frequent itemset is generated at any level, (a; — 6) > 0 is also ensured at any
level that Apriori is executing.

We use the above padding functions to reduce our problem of finding similar
itemsets to finding nearby vectors under Hamming distance (using Hamming-
based LSH in Subsect. 4.1 and Covering LSH in Subsect. 4.3) and under Jaccard
similarity (using MinHashing in Subsect. 4.2).

4.1 Hamming Based LSH

In the following lemma, we relate Hamming distance of two itemsets I, and I,
with their |, I,|.

150 D. Bera and R. Pratap

Lemma 4. For two itemsets I, and I,, Ham(P(I,), Q(I,)) = 2(ayn — |z, I,]).

Therefore, it is possible to use an LSH for Hamming distance to find sim-
ilar itemsets. We use this technique in the following algorithm to compute
FI(I,,0,¢,9) for all itemset I,. The algorithm contains an optimization over the
generic LSH-Apriori pseudocode (Algorithm 2). There is no need to separately
execute lines:7-10 of Apriori; one can immediately set F' <« C since LSH-Apriori
computes support before populating FI.

Input: D, = {I,..., 1, }, query item I, threshold 6, tolerance ¢, error ¢.
Result: FI, = FI(I,,6,¢,9) for every I, € D;.
6a Preprocessing step: Setup hash tables and add vectors in Dy;

. _ —0 _ P 1y.
i Set p = m7 k= 10g(<1+1;<r122>e>) my and L = m] log (5),
ii Select functions g1, ..., g5 u.a.r.;

iid For every I, € Dy, pad I, using P() and then hash P(I,) into buckets
gl(P(Ia))w")gL(P(Ia));
6b Query step: For every I, € D, we do the following ;
i S « all I,-compatible itemsets in all buckets ¢;(Q(I;)), for i =1...L;
ii for I, € S do
If |1, I,| > On, then add I, to FI, /* reads database*/;
(*) If no itemset similar to I, found within £ tries, then break
loop;
end

Algorithm 3. LSH-Apriori (only lines 6a,6b) using Hamming LSH

Correctness of this algorithm is straightforward. Also, p < 1 and the space
required and overhead of reading transactions is 6(kLm;) = o(m?). It can be
further shown that E[FP(I;)] < L for I, € D; which can be used to prove that
Es] > (n — ¢)(2(¢ci41 — mus1) — myL) where ¢ = O(kL) = O(m]) = o(my).
Details of these calculations including proof of the next lemma are omitted.

Lemma 5. Algorithm3 correctly outputsFI(1,,0,¢,6) foralll, € D;. Additional
space required is o(mlz), which is also the total time overhead. The expected savings
can be bounded by E[c(1 + 1)] > (n — o(my)) ((ci41 — 2my11) + (cip1 — o(m?))).

Expected savings outweigh time overhead if n > my, ¢;11 = 60(m?) and
Ci41 > 2myyq, i.e., in levels where the number of frequent itemsets generated
are fewer compared to the number of transactions as well as to the number of
candidates generated. The additional optimisation (*) essentially increases the
savings when all [+ 1-extensions of I, are (1 — ¢)6-infrequent — this behaviour
will be predominant in the last few levels. It is easy to show that in this case,
FP(1,) < £ with probability at least 1 — &; this in turn implies that |S] < £.
So, if we did not find any similar I, within first % tries, then we can be sure,
with reasonable probability, that there are no itemsets similar to /.

Frequent-Itemset Mining Using Locality-Sensitive Hashing 151

4.2 Min-Hashing Based LSH

Cohen et al. had given an LSH-based randomized algorithm for finding interest-
ing itemsets without any requirement for high support [5]. We observed that their
Minhashing-based technique [4] cannot be directly applied to the high-support
version that we are interested in. The reason is roughly that Jaccard similarity
and itemset similarity (w.r.t. f-frequent itemsets) are not monotonic to each
other. Therefore, we used padding to monotonically relate Jaccard similarity of
two itemsets I, and I, with their |1, I,|.

Lemma 6. For two padded itemsets I, and I,,, JIS(P(I), Q(I,)) = L1y |

2ain—|Ip Iy

Once padded, we follow similar steps (as [5]) to create a similarity preserving
summary D, of D; such that the Jaccard similarity for any column pair in Dj is
approximately preserved in Dy, and then explicitly compute FI(I,,6,¢,9) from Dy.
Dy is created by using A independent minwise hashing functions (see Definition 3).
A should be carefully chosen since a higher value increases the accuracy of estima-
tion, but at the cost of large summary vectors in D;. Let us define JAS(I,;, I;) as the
fraction of rows in the summary matrix in which min-wise entries of columns I;
and I; are identical. Then by Theorem 1 of Cohen et al. [5], we can get a bound
on the number of required hash functions:

Theorem 7 (Theorem 1 of [5]). Let 0 < €,6 < 1 and A > 23 log 5. Then for

we?
all pairs of columns I; and I following are true with probability at least 1 —§:

~ IfIS(Ii, I;) > s > w, then JS(I;, I;) > (1 — €)s%,
~ If IS(Ii, I;) < w, then JS(I;, ;) < (1 + €)w.

Input: Dy, query item I, threshold 6, tolerance ¢, error §
Result: FI, = FI(I,,6,¢,9) for every I, € D;.
6a Preprocessing step: Prepare D; via MinHashing;

. o (1—e)0 _ 2 1.
i Set w = 57 =9 € = a,+(afyg)(175) and A = 5 log 3;
ii Choose A many independent permutations (see Theorem 7);

iii For every I, € Dy, pad I, using P() and then hash P(I,) using A
independent permutations;
6b Query step: For every I, € D;, we do the following ;
i Hash Q(I,) using A independent permutations;
ii for compatible I, € D; do
| It JS(P(1.), Q(1,)) > $=2% for some I,, then add I, to Fl,;

20(1

end

Algorithm 4. LSH-Apriori (only lines 6a,6b) using Minhash LSH (This
algorithm can be easily boosted to o(Am;) time by applying banding tech-
nique (see Section 4 of [5]) on the minhash table.)

Lemma 8. Algorithm4 correctly computes F1(1,,60,¢,0) for all I, € D;. Addi-
tional space required is O(Amy), and the total time overhead is O((n + X\)my).
The expected savings is given by Elc(l + 1)] > 2(1 — §)(n —) (c141 — mi41)-

152 D. Bera and R. Pratap

The proof is omitted due to space constraints. Note that A depends on o
but is independent of n. This method should be applied only when A < n. And
in that case, for levels with number of candidates much larger than the number
of frequent itemsets discovered (i.e., ¢;41 > {m;, mi41}), time overhead would
not appear significant compared to expected savings.

4.3 Covering LSH

Due to their probabilistic nature, the LSH-algorithms presented earlier have the
limitation of producing false positives and more importantly, false negatives. Since
the latter cannot be detected unlike the former, these algorithms may miss some
frequent itemsets (see Theorem 3). In fact, once we miss some FI at a particular
level, then all the FT which are “supersets” of that FI (in the subsequent levels) will
be missed. Here we present another algorithm for the same purpose which over-
comes this drawback. The main tool is a recent algorithm due to Pagh [10] which
returns approximate nearest neighbors in the Hamming space. It is an improve-
ment over the seminal LSH algorithm by Indyk and Motwani [8], also for Hamming
distance. Pagh’s algorithm has a small overhead over the latter; to be precise, the
query time bound of [10] differs by at most In(4) in the exponent in comparison
with the time bound of [8]. However, its big advantage is that it generates no false
negatives. Therefore, this LSH-Apriori version also does not miss any frequent
itemset.

The LSH by Pagh is with respect to Hamming distance, so we first reduce
our FI problem into the Hamming space by using the same padding given in
Lemma4. Then we use this LSH in the same manner as in Subsect.4.1. Pagh
coined his hashing scheme as coveringLSH which broadly mean that given a
threshold r and a tolerance ¢ > 1, the hashing scheme guaranteed a collision for
every pair of vectors that are within radius r. We will now briefly summarize
coveringLSH for our requirement; refer to the paper [10] for full details.

Similar to HammingL.SH, we use a family of Hamming projections as our hash
functions: H := {z + x Aa| a € A}, where A C {0,1}(1*+22)" Now, given a
query item I, the idea is to iterate through all hash functions h € 'H 4, and check
if there is a collision h(P(I;)) = h(Q(Iy)) for I, € D;. We say that this scheme
doesn’t produce false negative for the threshold 2(a;—8)n, if at least one collision
happens when there is an I, € D; when Ham(P(I,),Q(I;)) < 2(a; — O)n,
and the scheme is efficient if the number of collision is not too many when
Ham(P(I;), Q(Iy)) > 2(cyw — (1 —€)8)n (proved in Theorems 3.1,4.1 of [10]). To
make sure that all pairs of vector within distance 2(a; —6)n collide for some h, we
need to make sure that some h map their “mismatching” bit positions (between
P(I,;) and Q(I,)) to 0. We describe construction of hash functions next.

n’ 0 t c € v
0,1) s.t.
_ Inm; a;—(1—¢)0 €€ () tte
(14+2a;)n | 2(a;—0)n |—2(ﬂl—(1—5)9)”-| «,—0 201;71?%)9)71 +eeN ot

Frequent-Itemset Mining Using Locality-Sensitive Hashing 153

CoveringLSH: The parameters relevant to LSH-Apriori are given above. Notice
that after padding, dimension of each item is n’, threshold is ¢ (i.e., min-
support is 8’/n’), and tolerance is ¢. We start by choosing a random function
@ {1,...,n'} — {0,1}*+1 which maps bit positions of the padded itemsets
to bit vectors of length ¢’ 4+ 1. We define a family of bit vectors a(v) € {0,1}",
where a(v); = (p(i),v), fori € {1,...,n'},v € {0,1}*+1 and (m(i), v) denotes
the inner product over Fy. We define our hash function family H 4 using all such
vectors a(v) except a(0): A = {a(v)\v e {0, 1}“’,*1/{0}}.

Pagh described how to construct A’ C A [10, Corollary 4.1] such that H 4
has a very useful property of no false negatives and also ensuring very few false
positives. We use H 4+ for hashing using the same manner of Hamming projec-
tions as used in Subsect. 4.1. Let 1 be the expected number of collisions between
any itemset I, and items in D; that are (1 — ¢)6-infrequent with I,. The fol-
lowing Theorem captures the essential property of coveringLLSH that is relevant
for LSH-Apriori, described in Algorithm 5. It also bounds the number of hash
functions which controls the space and time overhead of LSH-Apriori. Proof of
this theorem follows from Theorem 4.1 and Corollary 4.1 of [10].

Theorem 9. For a randomly chosen ¢, a hash family H 4 described above and

distinct I, I, € {0,1}™:

- If Ham(P(I,),Q(I;)) < 0, then there exists h € Ha s.t
h(P(1,)) = h(Q(L,). 1

— Expected number of false positives is bounded by E[y)] < 29/E+1mf,

- [Ha| < 2‘9,6+1ml%.

Input: Dy, query item I, threshold 8, tolerance €, error 4.
Result: FI, = FI(I,,6,¢,9) for every I, € D;.
6a Preprocessing step: Setup hash tables according to H 4 and add items;
i For every I, € Dy, hash P(I,) using all h € H 4;
6b Query step: For every I, € D;, we do the following ;
i S «— all itemsets that collide with Q(I,);
ii for I, € S do
If |14, I4] > On, then add I, to FI, /* reads database™/;
(*) If no itemset similar to I, found within % tries, break loop;
end

Algorithm 5. LSH-Apriori (only lines 6a,6b) using Covering LSH

Lemma 10. Algorithm5 outputs all O-frequent itemsets and only 6-
frequent itemsets. Additional space required is O(mlH”), which is also
the total time overhead. The expected savings is given by E[c(l + 1)] >

2 (TL — lsmi _ 1) ((erer = mugr) —my*7).

The (*) line is an additional optimisation similar to what we did for
HammingLSH Sect. 4.1; it efficiently recognizes those frequent itemsets of the

154 D. Bera and R. Pratap

earlier level none of whose extensions are frequent. The guarantee of not miss-
ing any valid itemset comes with a heavy price. Unlike the previous algorithms,
the conditions under which expected savings beats overhead are quite strin-
gent, namely, c;41 € {w(mf),w(m?)}, % > my > 2% and e < 0.25 (since
1 < ¢ < 2, these bounds ensure that v < 1 for later levels when «; ~ 6).

5 Conclusion

In this work, we designed randomized algorithms using locality-sensitive hashing
(LSH) techniques which efficiently outputs almost all the frequent itemsets with
high probability at the cost of a little space which is required for creating hash
tables. We showed that time overhead is usually small compared to the savings
we get by using LSH.

Our work opens the possibilities for addressing a wide range of problems that
employ on various versions of frequent itemset and sequential pattern mining
problems, which potentially can efficiently be randomized using LSH techniques.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C., 26-28 May 1993, pp. 207—
216 (1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of 20th International Conference on Very Large Data
Bases, 12-15 September 1994, Santiago de Chile, Chile, pp. 487-499 (1994)

3. Bera, D., Pratap, R.: Frequent-itemset mining using locality-sensitive hashing.
CoRR, abs/1603.01682 (2016)

4. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630-659 (2000)

5. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R.,
Ullman, J.D., Yang, C.: Finding interesting associations without support prun-
ing. IEEE Trans. Knowl. Data Eng. 13(1), 64-78 (2001)

6. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB 1999, Proceedings of 25th International Conference on Very Large
Data Bases, 7-10 September 1999, Edinburgh, Scotland, UK, pp. 518-529 (1999)

7. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering all most specific sentences. ACM Trans. Database Syst. 28(2), 140-174
(2003)

8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual Symposium on the
Theory of Computing, Dallas, Texas, USA, 23-26 May 1998, pp. 604-613 (1998)

9. Mannila, H., Toivonen, H., Verkamo, A.IL.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov. 1(3), 259-289 (1997)

10. Pagh, R.: Locality-sensitive hashing without false negatives. In: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, 10-12 January 2016, pp. 1-9 (2016)

11.

12.

13.

14.

Frequent-Itemset Mining Using Locality-Sensitive Hashing 155

Park, J.S., Chen, M., Yu, P.S.: An effective hash based algorithm for mining asso-
ciation rules. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, San Jose, California, 22-25 May, pp. 175-186 (1995)
Shrivastava, A., Li, P.: Asymmetric minwise hashing for indexing binary inner
products and set containment. In: Proceedings of the 24th International Conference
on World Wide Web, 2015, Florence, Italy, 18-22 May 2015, pp. 981-991 (2015)
Silverstein, C., Brin, S., Motwani, R.: Beyond market baskets: generalizing associ-
ation rules to dependence rules. Data Min. Knowl. Discov. 2(1), 39-68 (1998)
Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large
data sets. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, 3-6 June 2002, pp. 394-405 (2002)

Computational Complexity

On the Hardness of Switching to a Small
Number of Edges

Vit Jelinek!, Eva Jelinkova?®) and Jan Kratochvil?

! Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Malostranské nam. 25,
118 00 Praha, Czech Republic
jelinek@iuuk.mff.cuni.cz
2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Malostranské nam. 25, 118 00 Praha, Czech Republic
{eva,honza}@kam.mff.cuni.cz

Abstract. Seidel’s switching is a graph operation which makes a given
vertex adjacent to precisely those vertices to which it was non-adjacent
before, while keeping the rest of the graph unchanged. Two graphs are
called switching-equivalent if one can be made isomorphic to the other
one by a sequence of switches.

Jelinkovd et al. [DMTCS 13, no. 2, 2011] presented a proof that it
is NP-complete to decide if the input graph can be switched to contain
at most a given number of edges. There turns out to be a flaw in their
proof. We present a correct proof.

Furthermore, we prove that the problem remains NP-complete even
when restricted to graphs whose density is bounded from above by an
arbitrary fixed constant. This partially answers a question of Matougek
and Wagner [Discrete Comput. Geom. 52, no. 1, 2014].

Keywords: Seidel’s switching - Computational complexity - Graph
density - Switching-minimal graphs + NP-completeness

1 Introduction

Seidel’s switching is a graph operation which makes a given vertex adjacent to
precisely those vertices to which it was non-adjacent before, while keeping the
rest of the graph unchanged. Two graphs are called switching-equivalent if one
can be made isomorphic to the other one by a sequence of switches. The class
of graphs that are pairwise switching-equivalent is called a switching class.

Hage in his PhD thesis [4, p. 115, Problem 8.5] posed the problem to charac-
terize the graphs that have the maximum (or minimum) number of edges in their
switching class. We call such graphs switching-maximal and switching-minimal,
respectively.

V. Jelinek and J. Kratochvil—Supported by CE-ITI project GACR P202/12/G061.
E. Jelinkovd—Supported by the grant SVV-2016-260332.
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 159-170, 2016.
DOI: 10.1007/978-3-319-42634-1_13

160 V. Jelinek et al.

Some properties of switching-maximal graphs were studied by Kozerenko [7].
He proved that any graph with sufficiently large minimum degree is switching-
maximal, and that the join of certain graphs is switching-maximal. Further, he
gave a characterization of triangle-free switching-maximal graphs and of non-
hamiltonian switching-maximal graphs.

It is easy to observe that a graph is switching-maximal if and only if its
complement is switching-minimal. We call the problem to decide if a graph is
switching-minimal SWITCH-MINIMAL.

Jelinkovd et al. [6] studied the more general problem SWITCH-FEW-EDGES —
the problem of deciding if a graph can be switched to contain at most a certain
number of edges. They presented a proof that the problem is NP-complete.
Unfortunately, their proof is not correct.

In this paper, we provide a different proof of the NP-hardness of SwiTCH-
FEwW-EDGES, based on a reduction from a restricted version of MAX-CuT. Fur-
thermore, we strengthen this result by proving that for any ¢ > 0, SWITCH-FEW-
EDGES is NP-complete even if we require that the input graph has density at
most c. We also prove that if the problem SWITCH-MINIMAL is co-NP-complete,
then for any ¢ > 0, the problem is co-NP-complete even on graphs with density
at most c.

We thus partially answer a question of Matousek and Wagner [10] posed
in connection with properties of simplicial complexes — they asked if deciding
switching-minimality was easy for graphs of bounded density. Our results also
indicate that it might be unlikely to get an easy characterization of switching-
minimal (or switching-maximal) graphs, which contributes to understanding
Hage’s question [4].

1.1 Formal Definitions and Previous Results

Let G be a graph. Then the Seidel’s switch of a vertex subset A C V(G) is
denoted by S(G, A) and is defined by

S(G,A)=(V(G),E(G)A{zy:x € A, ye V(G)\ A}),

where A denotes the symmetric difference of the sets. S(G, A) is also the graph
obtained from G by consecutive switching of the vertices of A (in any order).

We say that two graphs G and H are switching-equivalent (denoted by G ~
H) if there is a set A C V(G) such that S(G, A) is isomorphic to H. The set
[G] = {S(G,A) : AC V(G)} is called the switching class of G.

We say that a graph G is (< k)-switchable if there is a set A C V(G) such that
S(G, A) contains at most k edges. Analogously, a graph G is (> k)-switchable if
there is a set A C V(G) such that S(G, A) contains at least k edges.

It is easy to observe that a graph G is (< k)-switchable if and only if the
complement G is (> ((5) — k))-switchable. We may, therefore, focus on (< k)-
switchability only.

We examine the following problems.

On the Hardness of Switching to a Small Number of Edges 161

SWITCH-FEW-EDGES
Input: A graph G = (V, E), an integer k
Question: Is G (< k)-switchable?

SWITCH-MINIMAL
Input: A graph G = (V, E)
Question: Is G switching-minimal?

We say that a graph is switching-reducible if G is not switching-minimal,
in other words, if there is a set A C V(G) such that S(G, A) contains fewer
edges than G. For further convenience, we also define the problem SWITCH-
REDUCIBLE.

SWITCH-REDUCIBLE
Input: A graph G = (V, E)
Question: Is G switching-reducible?

Let G = (V,E) be a graph. We say that a partition Vi, V5 of V is a cut
of G. For a cut Vp, V5, the set of edges that have exactly one end-vertex in Vj is
denoted by cutset(V7), and the edges of cutset(V;) are called cut-edges. We let
5(V1) denote the size of cutset(V7). When there is no danger of confusion, we
also say that a single subset V3 C V is a cut (meaning the partition Vi, V'\ 7).

1.2 Easy Cases

In this subsection we present several results about easy special cases of the
problems that we focus on. This complements our hardness results.

The following theorem was proved by Ehrenfeucht et al. [2] and also inde-
pendently (in a slightly weaker form) by Kratochvil [8].

Theorem 1. Let P be a graph property that can be decided in time O(n®) for
an integer a. Let every graph with P contain a vertex of degree at most d(n).
Then the problem if an input graph is switching-equivalent to a graph with P can
be decided in time O(nd(m)+1+max(a,2))

The proof of Theorem 1 also gives an algorithm that works in the given time.
Hence, it also provides an algorithm for SWITCH-FEW-EDGES: in a graph with
at most k edges all vertex degrees are bounded by k. Hence, we can use d(n) = k
and a = 2 and get an O(n**3)-time algorithm. It was further proved by Jelinkova
et al. [6] that SWITCH-FEW-EDGES is fixed-parameter tractable; it has a kernel
with 2k vertices, and there is an algorithm running in time O(2.148% - n 4+ m),
where m is the number of edges of the input graph. In Sect.2, we provide a
corrected NP-completeness proof.

The following proposition states a basic relation of switching-minimality and
graph degrees.

Proposition 1 (Folklore). Every switching-minimal graph G = (V, E) on n
vertices has mazimum degree at most [(n —1)/2].

162 V. Jelinek et al.

Proof. Clearly, if G contains a vertex v of degree greater than |[(n —1)/2], then
S(G, {v}) has fewer edges than G, showing that G is not switching-minimal. O

We remark that for a given graph G we can efficiently construct a switch
whose maximum degree is at most | (n — 1)/2]; one by one, we switch vertices
whose degree exceeds this bound (in this way, the number of edges is decreased in
each step). However, the graph constructed by this procedure is not necessarily
switching-minimal.

The next proposition is an equivalent formulation of Lemma 2.5 of
Kozerenko [7], strengthening Proposition 1.

Proposition 2. A graph G on n vertices is switching-minimal if and only if for
every A CV(G), we have 26(A) < |A|(n — |A]).

We derive the following consequence.

Proposition 3. Let G be a graph with n vertices. If the maximum vertex degree
in G is at most 7, then G is switching-minimal.

Proof. Let A be any subset of V(G). We observe that §(A) = §(V(G)\ A); hence
we can assume without loss of generality that |A| < n/2, and thus n—|A| > n/2.

Further, as §(A) <> 4 deg(v), we have that §(A4) < |A|}. Hence, 26(A) <
|A|(n — |A]), and the condition of Proposition 2 is fulfilled. O

Proposition 3 implies that SWITCH-FEW-EDGES and SWITCH-MINIMAL are
trivially solvable in polynomial time for graphs on n vertices with maximum
degree at most 7.

We note that in Proposition 3, the bound % in general cannot be improved.
To see this, consider an arbitrary bipartite k-regular graph G on n vertices, with
partition classes X and Y = V(G)\ X, and with k£ > %. Since G can be switched

to a (§ — k)-regular bipartite graph S(G, X), G is not switching-minimal.

2 NP-Completeness of SWITCH-FEW-EDGES

Jelinkovd et al. [6] presented a proof that the problem SWITCH-FEW-EDGES
is NP-complete. Unfortunately, there is an error in their proof (see Remark 1
on page 8). We present another proof here. The core of the original proof is a
reduction from the MAX-CuUT problem. Our reduction works in a similar way.
However, we need the following more special version of MAX-CUT (we prove the
NP-completeness of LARGE-DEG-MAX-CUT in Sect. 3).

LARGE-DEG-MAX-CUT

Input: A graph G with 2n vertices such that the minimum vertex degree of G
is 2n — 4 and the complement of G does not contain triangles; an integer j
Question: Does there exist a cut V7 of V(G) with at least j cut-edges?

On the Hardness of Switching to a Small Number of Edges 163

Proposition 4. Let G be a graph with 2n vertices such that the minimum vertex
degree of G is 2n — 4 and the complement of G does not contain triangles. In
polynomial time, we can find a graph G’ such that |V(G")| = 4|V(G)| and the
following statements are equivalent for every integer j:

(a) There is a cut in G with at least j cut-edges,
(b) There exists a set A C V(G') such that S(G', A) contains at most |E(G")| —
165 edges.

Proof. We first describe the construction of the graph G’. For each vertex u of G
we create a corresponding four-tuple {u,u”, v, u""} of pairwise non-adjacent
vertices in G’. An edge of G is then represented by a complete bipartite graph
interconnecting the two four-tuples, and a non-edge in G is represented by 8

edges that form a cycle that alternates between the two four-tuples (see Fig. 1).

/ " "

u/ u/ U U u/ u// u/// ul///
,U/ ’ ,U/// ,UI/// ,U/ ’))

" "

v’ v

Fig. 1. The representation of non-edges and edges of G

A vertex four-tuple in G’ corresponding to a vertex of G is called an o-vertex.
A pair of o-vertices corresponding to an edge of G is called an o-edge and a pair
of o-vertices corresponding to an non-edge of G is called an o-non-edge. Where
there is no danger of confusion, we identify o-vertices with vertices of G, o-edges
with edges of G and o-non-edges with non-edges of G.

We now prove that the statements (a) and (b) are equivalent. First assume
that there is a cut V; of V(G) with j' cut-edges. Let V{ be the set of vertices
u u” u" u" for all w € V. We prove that S(G’, V{) contains at most |E(G’)|—
167’ edges.

We say that a non-edge crosses the cut Vi if the non-edge has exactly one
vertex in V4. It is clear that G’ contains 16 edges per every o-edge and 8 edges
per every o-non-edge. In S(G’, V), every o-edge corresponding to an edge that is
not a cut-edge is unchanged by the switch, because its end-o-vertices are either
both contained in V{ or both in V(G) \ V{; hence, the o-edge yields 16 edges.
Similarly, every o-non-edge corresponding to a non-edge that does not cross the
cut yields 8 edges.

Figure 2 illustrates the switches of o-non-edges and o-edges that have exactly
one end-o-vertex in V;. We can see that every o-non-edge corresponding to a
non-edge that crosses the cut yields 8 edges in S(G’, V), and that every o-edge
corresponding to a cut-edge yields 0 edges. Altogether, S(G’, V) has |E(G’)| —
165’ edges, which we wanted to prove.

164 V. Jelinek et al.

0o00o0
eo oo
8 edges 8 edges 16 edges 0 edges

Fig. 2. Switches of an o-non-edge and of an o-edge

Now assume that there exists a set A C V(G’) such that S(G’, A) contains at
most |E(G")| — 165 edges. We want to find a cut in G with at least j cut-edges.

We say that an o-vertex u of G’ is broken in A if A contains exactly one,
two or three vertices out of v/, u”,u”’ u""; otherwise, we say that u is legal in
A. We say that an o-edge or o-non-edge {u,v} is broken in A if at least one of
the o-vertices u, v is broken. Otherwise, we say that {u,v} is legal in A.

If all vertices of G are legal in A, we say that A is legal. Legality is a desired

property, because for a legal set A we can define a subset V4 of V(G) such that
Va={ueV(GQ): {u " " "} C A}.

The set V4 then defines a cut in G. If a set is not legal, we proceed more carefully
to get a cut from it. For any vertex subset A, we say that a set A’ is a legalization
of Aif A’ islegal and if A" and A differ only on o-vertices that are broken in A.

We want to show that for every illegal set A, there exists its legalization A’
such that the number of edges in S(G’, A’) is not much higher than in S(G’, A).
To this end, we give the algorithm Legalize which for a set A finds such a legal-
ization A’. During the run of the algorithm, we keep a set A”. In the beginning
we set A” := A and in each step we change A” so that more o-vertices are legal.

We define some notions needed in the algorithm. Let v be an o-vertex and
consider the o-vertices that are adjacent to v (through an o-edge); we call them
o-neighbors of v. The o-neighbors of v are four-tuples of vertices and some of
those vertices are in A”, some of them are not. We define dif(v) as the number
of such vertices that are in A” minus the number of such vertices that are not
in A”. (Note that dif(v) is always an even number, because the total number of
vertices in o-neighbors is even. If all o-neighbors were legal, then dif(v) would
be divisible by four.)

The algorithm is given in Fig. 3. As in the last step the algorithm legalizes all
remaining broken o-vertices, it is clear that the set A” output by the algorithm
is a legalization of A. We prove that |E(S(G', A"))| — |E(S(G', A))| < 7.

We need to introduce more terminology. A pair of vertices of G’ which belong
to the same o-vertex is called a v-pair. A pair of vertices of G’ which belong to
different o-vertices that are adjacent (in G) is called an e-pair. A pair of vertices
of G’ which belong to different o-vertices that are non-adjacent (in G) is called
an n-pair. It is easy to see that any edge of G’ or S(G’, A”) is either a v-pair, an
e-pair or an n-pair. We call such edges v-edges, e-edges and n-edges, respectively.

We say that a broken o-vertex v is asymmetric if it contains an odd number
of vertices of A”; we say that a broken o-vertex is symmetric if it contains two
vertices out of A”.

On the Hardness of Switching to a Small Number of Edges 165

Algorithm Legalize(A)
Set A” := A; do the following while any of the cases applies.

Case 1. There exists a broken o-vertex v such that |dif(v)| > 4. If dif(v) > 4, set
A=A\ {0070 0"} Otherwise, set A” := A” U {o', v 0" 0"}

Case 2. Case 1 does not apply and there exists an asymmetric broken vertex v such
that v contains exactly one vertex from A” and dif(v) = 2. Set A" :=
A \ {1}/, UN, UW, ,U////}.

Case 3. Case 1 does not apply and there exists an asymmetric broken vertex v such
that v contains exactly three vertices from A” and dif(v) = —2. Set A" :=
A"U {1)/, 1)”, 1)/”, ’UH”}.

Case 4. None of Cases 1, 2, 3 applies and there exist two adjacent broken o-vertices
u and v. Set

A= (A7 O\ A,

A2 p— (AII U {/l_)/’ /U”’ 1)///7 ’L)H”}) \ {11117 u”7 u1117 ull//}.

If |[E(S(G', A1))| < |[E(S(G', A2))| then set A” := Ay, otherwise A" := A,.
Case 5. None of the above cases applies. Then legalize the remaining broken o-
vertices arbitrarily (without changing the legal ones), output A” and STOP.

Fig. 3. The algorithm legalize

To measure how the number of edges of S(G’, A”) changes during the run of
the algorithm, we define a variable c¢(A”) which we call the charge of the graph
S(G’, A”). Before the first step we set c(A"”) := |E(S(G’, A))|. After a step of
the algorithm, we update c(A”) in the following way.

— For every v-pair or e-pair that was an edge of S(G’, A”) before the step and
is no longer an edge of S(G’, A”) after the step, we decrease c(A”) by one.

— For every v-pair or e-pair that was not an edge of S(G’, A”) before the step
and that has become an edge of S(G’, A”) after the step, we increase c¢(A”)
by one.

— For every o-vertex v that was legalized in the step and is incident to an o-non-
edge, we change c¢(A”) in the following way:

e If v was symmetric, we increase ¢(A”) by 2.5 for every o-non-edge incident
to v;

e If v was asymmetric, we increase ¢(A”) by 1.5 for every o-non-edge inci-
dent to v.

To explain the last two points, we observe how the number of n-edges
increases after legalizing an o-vertex. By analyzing all cases of o-non-edges with
one or two broken end-o-vertices, we get that there are four cases where the
o-non-edges have less than 8 n-edges before legalization: either 6 or 4 n-edges. In
these cases, both end-o-vertices are broken. If there are only 4 n-edges, at least
one of the end-o-vertices is symmetric. After one end-o-vertex is legalized, the
number of n-edges increases by 2 or 4. When the second end-o-vertex is legalized,
the number of n-edges does not increase for this particular o-non-edge.

166 V. Jelinek et al.

After both end-o-vertices are legalized, the charge has been changed in the
following way: if both end-o-vertices were symmetric, we have increased the
charge by 5. If one of them was symmetric and the other one was asymmetric,
we have increased the charge by 4. Finally, if both were asymmetric, we have
increased the charge by 3. In all these cases, the increase is an upper bound on
the number of contributed n-edges.

Further, every v-edge or e-edge that has appeared or disappeared during the
run of the algorithm is counted immediately after the corresponding step. Hence,
we have proved the following claim.

Claim 1. At the end of the algorithm we have that c(A") > |E(S(G’, A™))|.

Claim 2. After every step of the algorithm except for the last one, the charge
c(A") is decreased. After the last step, the charge is increased by at most 7.
Hence, c¢(A") < |E(S(G', A))| + 7.

To prove Claim 2, we count how the charge changes after each step. Due
to space limitations, the proof of Claim 2 is omitted; to give an insight into
the proof, we remark that thanks to the assumptions on the input graph G,
each o-vertex is incident to at most three o-non-edges, which limits the charge
increase — without the assumption, the charge could increase largely due to a
single step of the algorithm. Further, thanks to the assumption that the comple-
ment of G does not contain triangles, the number of o-vertices legalized in Step
5 (and hence the charge increase) is bounded easily.

By Claims 1 and 2 we have that |E(S(G’,A"))| < |E(S(G', A))| + 7, and
hence A” is the sought legalization of A.

We continue the proof of Proposition 4. We have already argued that a
legal set A” defines a subset V4 of V(G), and hence a cut in G. Assume that
cutset(V4) has j’ edges. From the proof of the first implication of Proposition 4
we know that the number of edges in S(G’, A”) can be expressed as |E(G")|—165".

On the other hand, we have proved that the number of edges in S(G’, A”) is
at most |E(G')| — 165 + 7. We get that |E(G")| — 165’ < |E(G")| — 165 + 7, and
hence j' > j — 7/16. As both j and j' are integers, we have that ;' > j. Hence,
cutset(V4) has at least j edges, and Proposition 4 is proved. a

Remark 1. As we noted before, our proof is a corrected version of an erroneous
proof presented in [6]. The argument of the original (attempted) proof was based
on a similar construction as our proof of Proposition 4, except that each o-vertex
was formed by two vertices rather than four, an o-edge was represented by a copy
of Ky rather than Ky 4, and an o-non-edge was represented by two disjoint
edges. It was then incorrectly claimed in [6, Lemma 4.3] that for any graph G,
there is a switching-minimal legal switch of the corresponding graph G’. The
claim is false, as can be seen e.g. by taking the graph G consisting of two disjoint
triangles, where G’ has 42 edges, the optimal legal switch has 26 edges, but there
are illegal switches with just 18 edges.

Theorem 2. SWITCH-FEW-EDGES is NP-complete.

On the Hardness of Switching to a Small Number of Edges 167

Proof. Theorem 3 in the next section gives the NP-completeness of LARGE-
DEG-MAX-CuT. Further, by Proposition 4, an instance (G, j) of LARGE-DEG-
MAX-CUT can be transformed into an instance (G', j') of SWITCH-FEW-EDGES
such that there is a cut in G with at least j cut-edges if and only if G’ is (< j')-
switchable. The transformation works in polynomial time.

Finally, it is clear that the problem SWITCH-FEW-EDGES is in NP. O

3 The NP-Completeness of LARGE-DEG-Max-CuT

Let G be a graph with 2n vertices. A bisection of G is a partition S1, S of V(G)
such that |S1| = |S2| = n (hence, a bisection is a special case of a cut). The size
of cutset(S7) is called the size of the bisection Sy, Sa. A minimum bisection of
G is a bisection of G with minimum size.

Garey et al. [3] proved that, given a graph G and an integer b, the problem
to decide if G has a bisection of size at most b is NP-complete (by a reduction of
Max-CuT). Their formulation is slightly different from ours — two distinguished
vertices must be each in one part of the partition, and the input graph does
not have to be connected. However, their reduction from MAX-CUT (see [3, pp.
242-243]) produces only connected graphs as instances of the bisection problem,
and it is immediate that the two distinguished vertices are not important in the
proof. Hence, their proof gives also the NP-completeness of the following version
of the problem.

CONNECTED-MIN-BISECTION

Input: A connected graph G with 2n vertices, an integer b

Question: Is there a bisection S1, Se of V(G) such that cutset(S;) contains
at most b edges?

From the NP-completeness of MIN-BISECTION, Bui et al. [1] proved the NP-
completeness of MIN-BISECTION restricted to 3-regular graphs (as a part of a
more general result, see [1, proof of Theorem 2]). We use their result to prove
the NP-completeness of LARGE-DEG-MAX-CUT.

LARGE-DEG-MAX-CUT

Input: A graph G with 2n vertices such that the minimum vertex degree of G
is 2n — 4 and the complement of G is connected and does not contain triangles;
an integer j

Question: Does there exist a cut V; of G with at least j cut-edges?

Lemma 1. Let G be a connected 3-reqular graph on 2n wvertices. Let b be the
size of the minimum bisection in G and let ¢ be the size of the mazimum cut
in G. Then b=n? —c.

Due to space constraints, the proof of Lemma 1 is omitted.

Theorem 3. LARGE-DEG-MAX-CUT is NP-complete.

168 V. Jelinek et al.

Proof. Let (G,b) be an instance of CONNECTED-MIN-BISECTION. We use the
construction of Bui et al. [1, proof of Theorem 2]. Their first step is to construct
from an instance (G, b) of MIN-BISECTION a 3-regular graph G* such that G
has a minimum bisection of size b if and only if G* has a minimum bisection
of size b. Further, it is immediate from their construction that G* contains no
triangles, and if G is connected, then G* is connected as well. Moreover, G* has
an even number of vertices.

We see that G* fulfills the conditions of an instance of LARGE-DEG-MAX-
CuT. By Lemma 1 we know that G* has a minimum bisection of size b if and
only if G* has a maximum cut of size m? — b.

Altogether, G has a minimum bisection of size b if and only if G* has a
maximum cut of size m? — b. Hence, (G*,m? — b) is an equivalent instance
of LARGE-DEG-MAX-CuT. To finish the proof that LARGE-DEG-MAX-CUT is
NP-complete, we observe that LARGE-DEG-MAX-CUT is in NP. a

4 Switching of Graphs with Bounded Density

The density of a graph G is defined as D(G) = |E(G)|/(‘V(2G)|).

In connection with properties of simplicial complexes, Matousek and
Wagner [10] asked if deciding switching-minimality was easy for graphs of
bounded density. We give a partial negative answer by proving that the problem
SwWITCH-FEW-EDGES stays NP-complete even for graphs of density bounded by
an arbitrarily small constant. This is in contrast with Proposition 3, which shows
that any graph G with maximum degree at most |V(G)|/4 is switching-minimal.
The core of our argument is the following proposition.

Proposition 5. Let G be a graph, let k be an integer, and let ¢ be a fixed con-
stant in (0,1). In polynomial time, we can find a graph G’ and an integer k' such
that

1. D(G@) <eg,

2. G' is (< K')-switchable if and only if G is (< k)-switchable,

3. G’ is switching-minimal if and only if G is switching-minimal, and

4. V(@) = Oo(V(G)).

Proof. Let n = [V(G)| and let N = max {n, [22]}. We construct the graph G’
in the following way. Let V = V(G). Then V(G') = VUY U Z, where Y is a
set of IV vertices and Z is a set of N more vertices, and E(G’) = {{vi,v2}: v1 €
Y,vo € V}UE(G).

We prove that G’ fulfills the conditions of Proposition 5. It is easy to see that
Condition 4 holds and that G’ can be obtained in polynomial time. We prove
that Conditions 2 and 3 hold, too.

Assume that G is switching-reducible, i.e., there exists a set A C V such
that S(G, A) contains fewer edges than G. Let us count the number of edges in
S(G',A).

On the Hardness of Switching to a Small Number of Edges 169

It is easy to see that if we switch a subset of V' in G’, the number of edges
whose one endpoint is outside V' is unchanged, and the number of edges with
both endpoints outside V' remains zero. We also observe that S(G’, A)[V] (the
induced subgraph of S(G’, A) on the vertex subset V) is equal to S(G, A). Hence,
S(G’, A) has fewer edges than G’, showing that G’ is switching-reducible.

Moreover, if S(G, A) has [edges for an integer [, then S(G’, A) has [+ nN
edges. Thus, if G is (< k)-switchable, we have that G’ is (< k +nN)-switchable.

Now assume that G’ is switching-reducible, i.e., there exists a set A C V(G')
such that S(G’, A) has fewer edges than G’. If A C V', we have that S(G, A) has
fewer edges than GG, and Condition 3 is satisfied. On the other hand, if A Z V,
we use the following claim.

Claim 3. Let A be a subset of V(G') and let A" = ANV. Then the number of
edges in S(G', A’) is less than or equal to the number of edges in S(G', A).

Due to space constraints, the proof of Claim 3 is omitted. As a consequence
of Claim 3, if G’ is switching-reducible, then it can be reduced by switching a
set A’ C V. The same set A’ then reduces G, and Condition 3 of the proposition
holds. Analogically, if G’ can be switched to contain L edges for an integer
L, then G can be switched to contain L — nN edges. Hence, we have proved
Condition 2 with ¥’ = k + nN.

It remains to check Condition 1. By definition, the density of G’ is

AB@E) _ 2(())
2N +n)2N+n—-1) — 2N +n)2N +n—-1)
2
Pl —|—2nN<3nN7 3n <
— 4N2 T 4N?2 4N —
This completes the proof. a

Proposition 5 allows us to state a stronger version of Theorem 2 for the
special case of graphs with bounded density.

D(G) =

Theorem 4. For every ¢ > 0, the problem SWITCH-FEW-EDGES is NP-
complete for graphs of density at most c.

Proof. This follows from Theorem 2 and Proposition 5. a

5 Concluding Remarks

5.1. We have not yet proved that the problem SwITCH-REDUCIBLE is NP-
complete (and hence, SWITCH-MINIMAL is co-NP-complete). Note however, that
if SWITCH-REDUCIBLE is NP-complete, then by Proposition 5 it remains NP-
complete on graphs of bounded density.

5.2. Lindzey [9] noticed that it is possible to speed-up several graph algo-
rithms using switching to a lower number of edges — he obtained up to super-
polylogarithmic speed-ups of algorithms for diameter, transitive closure, bipar-
tite maximum matching and general maximum matching. However, he focuses

170 V. Jelinek et al.

on switching digraphs (with a definition somewhat different to Seidel’s switching
in undirected graphs), where the situation is in sharp contrast with our results —
a digraph with the minimum number of edges in its switching-class can be found
in O(n + m) time.

5.3. It has been observed (cf. e.g. [2]) that for a graph property P, the complexity
of deciding P is independent of the complexity of deciding if an input graph can
be switched to a graph possessing the property P. Switching to few edges thus
adds another example of a polynomially decidable property (counting the edges
is easy) whose switching version is hard. Previously known cases are the NP-
hardness of deciding switching-equivalence to a regular graph [8] and deciding
switching-equivalence to an H-free graph for certain specific graphs H [5].

5.4. Let d > 0 be a constant. What can we say about the complexity of
SWITCH-REDUCIBLE and SWITCH-FEW-EDGES on graphs of maximum degree
at most dn? If d < i the two problems are trivial by Proposition 3. On the
other hand, for d > % the restriction on maximum degree becomes irrelevant, in
view of Proposition 1. For any d € (i, %), the complexity of the two problems
on instances of maximum degree at most dn is open.

References

1. Bui, T.N., Chaudhuri, S., Leighton, F.T., Sipser, M.: Graph bisection algorithms
with good average case behavior. Combinatorica 7(2), 171-191 (1987)

2. Ehrenfeucht, A., Hage, J., Harju, T., Rozenberg, G.: Complexity issues in switching
of graphs. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT
1998. LNCS, vol. 1764, pp. 59-70. Springer, Heidelberg (2000)

3. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theor. Comput. Sci. 1(3), 237-267 (1976)

4. Hage, J.: Structural Aspects of Switching Classes. Ph.D. thesis, Leiden Institute
of Advanced Computer Science (2001)

5. Jelinkov4, E., Kratochvil, J.: On switching to H-free graphs. J. Graph Theor. 75(4),
387-405 (2014)

6. Jelinkova, E., Suchy, O., Hlinény, P., Kratochvil, J.: Parameterized problems
related to Seidel’s switching. Discrete Math. Theor. Comput. Sci. 13(2), 19-42
(2011)

7. Kozerenko, S.: On graphs with maximum size in their switching classes. Comment.
Math. Univ. Carol. 56(1), 51-61 (2015)

8. Kratochvil, J.: Complexity of hypergraph coloring and Seidel’s switching. In:
Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 297-308. Springer, Hei-
delberg (2003)

9. Lindzey, N.: Speeding up graph algorithms via switching classes. In:
Kratochvil, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp.
238-249. Springer, Heidelberg (2015)

10. Matousek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points.
Discrete Comput. Geom. 52(1), 1-33 (2014)

On Hard Instances of Non-Commutative
Permanent

Christian Engels' and B.V. Raghavendra Rao*®™)

1 Tokyo Institute of Technology, Tokyo, Japan
engels@is.titech.ac.jp
2 IIT Madras, Chennai, India

bvrr@cse.iitm.ac.in

Abstract. Recent developments on the complexity of the non-commuta-
tive determinant and permanent [Chien et al. STOC 2011, Blaser ICALP
2013, Gentry CCC 2014] have settled the complexity of non-commuta-
tive determinant with respect to the structure of the underlying algebra.
Continuing the research further, we look to obtain more insights on hard
instances of non-commutative permanent and determinant.

We show that any Algebraic Branching Program (ABP) computing
the Cayley permanent of a collection of disjoint directed two-cycles with
distinct variables as edge labels requires exponential size. For graphs
where every connected component contains at most six vertices, we show
that evaluating the Cayley permanent over any algebra containing 2 x 2
matrices is #P complete.

Further, we obtain efficient algorithms for computing the Cayley per-
manent/determinant on graphs with bounded component size, when ver-
tices within each component are not far apart from each other in the Cay-
ley ordering. This gives a tight upper and lower bound for size of ABPs
computing the permanent of disjoint two-cycles. Finally, we exhibit more
families of non-commutative polynomial evaluation problems that are
complete for #P.

Our results demonstrate that apart from the structure of underlying
algebras, relative ordering of the variables plays a crucial role in deter-
mining the complexity of non-commutative polynomials.

1 Introduction

Background. The study of algebraic complexity theory was initiated by Valiant
in his seminal paper [18] where he showed that computing the permanent of
an integer matrix is #P complete. Since then, separating the complexities of
permanent and determinant has been the focal point of this research area which
led to the development of several interesting results and techniques. (See [7,17]
for good surveys on these topics.)

The underlying ring plays an important role in algebraic complexity theory.
While the research focused mainly on the permanent vs determinant problem
over fields and commutative rings there has also been an increasing amount of
interest over non-commutative algebras. Nisan [16] was the first to consider the
complexity of these two polynomials over non-commutative algebras. He showed

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 171-181, 2016.
DOI: 10.1007/978-3-319-42634-1_14

172 C. Engels and B.V.R. Rao

that any non-commutative arithmetic formula over the free K algebra computing
the permanent or determinant of an n x n matrix requires size 22 where K
is any field. Later on, this was generalized to other classes of algebras in [§].
More recently, Limaye, Malod and Srinivasan [14] generalized Nisan’s technique
to prove lower bounds against more general classes of non-commutative circuits.
Nisan’s work left the problem of determining the arithmetic circuit complexity
of non-commutative determinant as an open question.

In a significant breakthrough, Arvind and Srinivasan [3] showed that com-
puting the Cayley determinant is #P hard over certain matrix algebras. Finally
this question was settled by Blaser [6] who classified such algebras. Further,
Gentry [13] simplified these reductions.

Motivation. Though the studies in [3,6] highlight the role of the underlying alge-
bra in determining the complexity of the non-commutative determinant they do
not shed much light on the combinatorial structure of non-commutative polyno-
mials that are #P hard. One could ask: Does the hardness stem from the underly-
ing algebra or are there inherent properties of polynomials that make them#P hard
in the non-commutative setting? Our results in this paper indicate that relative
ordering among the variable in the monomials constituting a polynomial f plays
an important role in the hardness of certain non-commutative polynomials.

As a first step, we look for polynomials that are easier to compute than the
determinant in the commutative setting and whose non-commutative versions are
#P hard. Natural candidate polynomials are the elementary symmetric polynomi-
als and special cases of determinant /permanent. One way to obtain special cases of
determinant /permanent would be to restrict the structure of the underlying graph.
For example, let G be a directed graph consisting of n cycles (0,1),(2,3),...,
(2n — 2,2n — 1) of length two with self loops where each edge is labeled by a dis-
tinct variable. The permanent of G, perm(G), is given by H?;Ol (%2:,2iT2i4+1,2i+1 T
T2;,2i+1%2i+1,2:) Where x; ; is the variable labeling of the edge (7, j). This is one of
the easiest to compute but non trivial special case of permanent.

Our Results. We study the complexity of the Cayley permanent (C-perm)
on special classes of graphs. The Cayley permanent (Cayley determinant) are
given by desn T1,0(1) """ Tn,o(n) (desn Sgn(0)$1,a(1) - 'l‘n,a(n)) respectively.
We exhibit a family of graphs G, (consisting of a collection of disjoint two-cycles)
for which any algebraic branching program (ABP) computing the C-perm must
have size at least 22(") (Corollary 2). Further, we exhibit a parameter cut(G) (see
Sect. 4 for the definition) for a collection G of disjoint two-cycles on n vertices such
that any ABP computing C-perm(G) has size 2°(¢“t(&)) (Theorem 3). This makes
the lower bound in Corollary 2 tight up to a constant factor in the exponent. It
should be noted that our results also hold for the case of the Cayley determinant
(C-det) on such graphs. We also observe that for graphs of component size greater
or equal to six, evaluating C-perm is #P complete (Theorem 5).

On the positive side, for graphs where each strongly connected component
has at most ¢ vertices we obtain an ABP of size n©(©) ¢ (&) computing the

On Hard Instances of Non-Commutative Permanent 173

C-perm (Theorem 1) where near(G) is a parameter (see Definition 1) depending
on the labeling of vertices on the graph.

We demonstrate a non-commutative variant of the elementary symmetric
polynomial that is #P hard over certain algebras (Theorem 7).! Finally, we
show that computing C-perm on rank one matrices is #P hard.

Related Results. The study of commutative permanent on special classes of
matrices was initiated by Barvinok [5] who gave a polynomial time algorithm for
computing the permanent of rank one matrices over a field. More recently, Flarup
et al. [11] showed that computing the permanent of bounded tree-width graphs
can be done by polynomial size formulas. This was further extended by Flarup
and Lyaudet [12] to other width measures on graphs. Datta et al. [9] showed
that computing the permanent on planar graphs is as hard as the general case.

Comparison to Other Results. Results reported in [3,6,13] highlight the
importance of the underlying algebra and characterizes algebras for which
C-det is #P hard. In contrast, our results shed light on the role played by
the order in which vertices are labeled in a graph. For example, the commu-
tative permanent of disjoint two-cycles has a depth three formula given by
H?z_ol (1721'_’21'1’21'_5_1722'4_1 +I’21‘72i+1£€2i+1721‘) whereas C—perm on almost all orderings
of vertices requires exponential size ABPs.

All proofs that have been omitted due to space restrictions can be found in
the full version of the paper [10].

2 Preliminaries

For definitions of complexity classes the reader is referred to any of the standard
text books on Computational Complexity Theory, e.g., [1]. Let K be a field
and S = K[zy,...,x,] be the ring of polynomials over K in n variables. Let R
denote a non-commutative ring with identity and associativity property. Unless
otherwise stated, we assume that R is an algebra over K and contains the algebra
of n X n matrices with entries from K as a subalgebra.

An arithmetic circuit is a directed acyclic graph where every vertex has an in-
degree either zero or two. Vertices of zero in-degree are called input gates and are
labeled by elements in RU{zy ..., x,}. Vertices of in-degree two are called internal
gates and have their labels from {x, +}. An arithmetic circuit has at least one ver-
tex of out degree zero called an output gate. We assume that an arithmetic circuit
has exactly one output gate. A polynomial p, in R[z1,...,z,] can be associated
with every gate g of an arithmetic circuit defined in an inductive fashion. Input
gates compute their label. Let g be an internal gate with left child f and right
child h, then p, = ps op py where op is the label of g. The polynomial computed
by the circuit is the polynomial at one of the output gates and denoted by pc. The
size of an arithmetic circuit is the number of gates in it and is denoted by size(C).

! One of the anonymous reviewers suggested that this result follows from a folk-
lore fact. However since there is no explicit reference for this folklore fact, we have
included the proof for completeness.

174 C. Engels and B.V.R. Rao

We restrict ourselves to circuits where coefficients of the polynomials computed
at every gate can be represented in at most poly(size(C)) bits.

An algebraic branching program (ABP) is a directed acyclic graph with two
special nodes s, t and edges labeled by variables or constants in R. The weight
of a path is the product of the weights of its edges. The polynomial computed
by an ABP P is the sum of the weights of all s ~ t paths in P, and is denoted
by pp. We denote by the size of an ABP the number of vertices.

Over a non-commutative ring, there are many possibilities for defining the
determinant/permanent of a matrix depending on the ordering of the variables
(see for example [4]). We will use the well known definitions of the Cayley deter-
minant and Cayley permanent. Let X = (z; j)1<i j<n be an n x n matrix with
distinct variables x; ;. Then

C—det(X) = Z SgH(U)Cﬂl,g(l) © o (n)s and C_perm(X) = Z T1,0(1) """ Tn,o(n)-

ocESy ocESy

In the above, S,, denotes the set of all permutations on n symbols. Note that
C-det and C-perm can also be seen as functions taking n X n matrices with entries
from R as input. Given a weighted directed graph G on n vertices with weight
x;,; for the edge (4, j) € E(G), the Cayley permanent of G denoted by C-perm(G)
is the permanent of the weighted adjacency matrix of G. It is known that [7]
C-perm(G) is the sum of the Cayley weights of all cycle covers of G.

The tensor product of two matrices A, B € K"*" with entries a; ;,b; ; is
denoted by A ® B and is given by

aiqnB - a1, B
A®B =

amlB R an’nB

Let P be an ABP over disjoint sets of variables X UY, with |X| = n and
|Y| = m. Let pp(X,Y) be the polynomial computed by P. P is said to be read
once certified [15] in Y if there are numbers 0 = ig < i3 < -+ < iy, where i, is
at most the length of P and there is a permutation 7m € S, such that between
layers from i; to ;41 no variable other than y, ;1) from the set Y appears as a
label. We use the following result from [15]. The proof given in [15] works only
in the commutative setting, see [10] for a proof of the non-commutative case.

Proposition 1 [15]. Let P be an ABP on X UY read-once certified in Y.
Then the polynomial Z(el e2rmem)E{0,1}m pp(X,e1,...,em) can be computed by
an ABP of size 2size(P)).

Let A be a non-deterministic s-space bounded algorithm that uses non-de-
terministic bits in a read-once fashion and outputs a monomial on each of
the accepting paths. We assume that a non-commutative monomial is output
as a string in a write-only tape and non-deterministic paths are represented
by binary strings e € {0,1}™, m < 29(5). The polynomial p4 computed by
A is the sum of the monomial output on each of the accepting paths of A,

On Hard Instances of Non-Commutative Permanent 175

ie,p(xi,...,xn) =Y, A(x1,...,2n,€), where the sum is taken over all accept-
ing paths e of A, and A(zy,...,z,,e) denotes the monomial output along path
represented by e.

Proposition 2 (Folklore). Let A(X) be an s-space bounded non-deterministic
algorithm as above. There is a non-commutative ABP P of size 2°) that com-
putes the polynomial pa(X), the polynomial computed by A(X).

3 An Algorithm for Cayley Permanent

In this section, we give an algorithm for C-perm that is parameterized by the
maximum difference between labelings of vertices in individual components.

In what follows, we identify the vertices of a graph with the set [n]. A directed
graph G on n vertices is said to have component size bounded by c if every strongly
connected component of G contains at most ¢ vertices where ¢ > 0. We assume
that edges of G are labeled by distinct variables. Firstly, we define a parameter
that measures the closeness of labelings in each component.

Definition 1. Let G be a directed graph. The nearness parameter near(C) of a
strongly connected component C of G is defined as near(C) = max; jec |i — j|.
The nearness parameter of G is defined as near(G) = maxc near(C), where the
mazximum is taken over the set of all strongly connected components in G.

Theorem 1. Let G be a directed graph with component size bounded by ¢ and
edges labeled by distinct variables. Then there exists an ABP of size n©(®)¢near(G)
computing the Cayley permanent of the adjacency matriz of G.

Proof. For an edge (i,7) € E(G), let z; ; denote the variable label on (i,). Let
Ag be the weighted adjacency matrix of G. Note that, the Cayley permanent of
Ag equals the sum of weights of cycle covers in G where the weight of a cycle
cover -y is the product of labels of edges in v multiplied in the Cayley order.
We describe a non-deterministic small-space bounded procedure P that
guesses a cycle cover v in G and outputs the product of weights of v with respect
to the Cayley ordering as a string of variables. Additionally, we ensure that the
algorithm P uses the non-deterministic bits in a read-once fashion, and by the
closure property of ABP under read-once exponential sums (c.f. Proposition 1),
we obtain the required ABP. Suppose Ci,...,C, are the strongly connected
components of G, sorted in the ascending order of the smallest vertex in each
component. Then any cycle cover v of G can be decomposed into cycle cover ~;
of the component C;. The only difficulty in computing the weight of is the Cay-
ley ordering of the variables. However, with a careful implementation, we show
that this can be done in space O(logc - near(G) 4 logn). We represent a cycle
cover in G as a permutation v where ~(4) is the successor of vertex i in the cycle
cover represented by . We begin with the description of the non-deterministic
procedure P. Let T represent the set of vertices v in the partial cover that is
being built by the procedure where the weight of the edge going out of v is not
yet output, and pos the current position going from 1 to n. Let Acc(G) be the
sum of the terms output by the following algorithm on all accepting paths.

176 C. Engels and B.V.R. Rao

1. Initialize pos := 1, T := @), v := the cycle cover of the empty graph, f = 1.
For 1 <i < r repeat steps 3 & 4.
3. Non-deterministically guess a cycle cover v in C;, and set v = yW~/, T =
T UV(C;) where V(C;) is the set vertices in C;.
4. While there is a vertex k € T with k = pos do the following:
Set f = f -2k~ pos:=pos+1; and T := T\ {k}.
5. If pos = n, then output f and accept.

N

Claim. Acc(G) = C-perm(G). Moreover, the algorithm P uses O(log c¢-near(G)+
logn) space, and is read-once on the non-deterministic bits.

Proof (of the Claim). Recall that a permutation v € S, is a cycle cover of G if
and only if it can be decomposed into vertex disjoint cycle covers ~v1,...,, of
the strongly connected components C,...,C, in G. Thus Step 3 enumerates all
possible cycle covers in G. Also, the weights output at every accepting path are
in the Cayley order.

Wehave T = {k | pos < k and k occurs in the components already explored }.
Firstly, we argue that at any point in time in the algorithm, |7 < near(G) + c.
Suppose the algorithm has processed components up to C; and is yet to process
Ciy1. Let © = max,erv. Since the components are in ascending order with
respect to the smallest vertex in them, the component C; with 1 € C; must have
near(C;) > p— pos. Thus u — pos < near(G). Also, just before step 3in any itera-
tion, for any v € T', we have pos < v < pand hence |T| < p—pos+c < near(G)+c.

Note that it is enough to store the labels of the vertices in T and the
choice y(v) made during the non-deterministic guess for each v € T and hence
O(|T|logn) additional bits of information needs to be stored. However, we will
show that it is possible to implement the algorithm without explicitly remem-
bering the vertices in T" and using only O(|T'|log ¢) additional bits in memory.
Suppose that the vertices in T" are ordered as they appear in Cq, Cy, .. ., C, where
vertices within a component are considered in the ascending order of their labels.
Let B be a vector of length near(G) + ¢ where each entry B; is logc bits long
which indicates the neighbour of the jth vertex in 7. Now, we show how to
implement step 4in the procedure using B as a data structure for T'. To check if
there is a k € T with k = pos, we can scan the components from Cy,...,C; and
check if the vertex assigned to pos occurs in one of the components. Remember
that (k) is the successor of k in the cycle cover 7. To obtain (k) from B, we
need to know the number j of vertices v that appear in components C1,...,C;
such that v > pos and that occur before k. Then (k) = B;. Once B, is used, we
remove B; from B and shift the array Bji1,... Brear(G)4c by one index towards
the left. Further, we can implement step 3 by simply appending the information
for V(C;) given by 4/ to the right of the array B. We require at most O(clogn)
bits of space guessing a cycle cover ~; for component C; which can be re-used
after the non-deterministic guessing of ~; is complete. Thus the overall space
requirement of the algorithm is bounded by O(logc - (near(G) + ¢) + clogn).

By Proposition 2, we get an ABP P computing a polynomial pe(X,Y') such that
C-perm(G) = >_., . cio1yPc(X,€), m = O(clogn). Combining the above

On Hard Instances of Non-Commutative Permanent 177

algorithm with the closure property of algebraic branching programs over read-
once variables given by Proposition 1, we get a non-commutative arithmetic
branching program computing C-perm(G). It can be seen that size of the resulting
branching program is at most 20((clogctlogenear(G))telogn) — yO(c) . pnear(G) oy
large enough n.

Corollary 1. Let G be as in Theorem1. There is an ABP of size n©(€)cnear(G)
computing the Cayley determinant of G.

4 Unconditional Lower Bound

We now show that any branching program computing the non-commutative
permanent of directed graphs with component size 2 must be of exponential
size. This shows that the upper bound in Theorem 1 is tight up to a constant
factor in the exponent, however, with a different but related parameter. All our
lower bound results hold for free algebras over any field K.

Our proof crucially depends on Nisan’s [16] partial derivative technique. We
begin with some notations following his proof. Let f be a non-commutative
degree d polynomial in n variables. Let B(f) denote the smallest size of a
non-commutative ABP computing f. For k € {0,...,d} let Mg(f) be the
matrix with rows indexed by all possible sequences containing k variables and
columns indexed by all possible sequences containing d — k variables (repetitions
allowed). Hence the matrix has dimension n* x n?=*. The entry of Mj(f) at
(iy - Tiy, xj, ...z,) is the coefficient of the monomial x;, - - -z, -xj, - - Tj,_,
in f. Nisan established the following result:

Theorem 2 [16]. For any homogeneous polynomial f of degree d, we have
B(f) = Yo rank(M(f)).

We prove lower bounds for the Cayley permanent of graphs with every
strongly connected component of size exactly 2, i.e., each strongly connected
component being a two-cycle with self loops on the vertices. Note that any col-
lection of n/2 vertex disjoint two-cycles can be viewed as a permutation 7 € S,
consisting of disjoint transpositions and that 7 is an involution. Conversely, any
involution 7 on n elements represents a graph G, with connected component
size 2.

For a permutation © € S,, let the cut at ¢ denoted by C;(7) be the set of
pairs (j, w(j)) that cross i, i.e., Ci(w) = {(j,7(4)) | i € |5, 7(§)] U [7(4),4] }. The
cut parameter cut(m) of 7 is defined as cut(m) = maxi<i<n |Cr(7)|. Let G be a
collection of vertex disjoint 2-cycles denoted by (ai,b1),. .., (an 2, by/2) Where n
is even. The corresponding involution is 7¢ = (a1,b1) - - - (@y, /2, by /2). By abusing
the notation a bit, we let cut(G) = cut(rg). Without loss of generality, assume
that a; < b;, and a; < ag < --- < ay/2. Firstly, we note that cut(r) is bounded
by near(G).

Lemma 1. For any collection of disjoint 2-cycles G on n wvertices, cut(mw) <
near(G) where 7 is the involution represented by G.

178 C. Engels and B.V.R. Rao

Further, we note that the upper bound given in Theorem 1 holds true even
if we consider cut(G) instead of near(G).

Lemma 2. Let G be a collection of disjoint 2-cycles and self loops where every
edge is labeled by a distinct variable or a constant from R. Then there is an ABP
of size 20€t(@)n2 computing the Cayley permanent of G.

Lemma 3. Let G be a collection of £ disjoint two-cycles described by the involu-
tion w and self loops at every vertex with edge labeled by distinct variables. Then
M, (C-perm(G)) contains IS as a sub-matriz where t = maxy |Cr(7)|, A®? is
the tensor product of A with itself t times and I is the 2 X 2 identity matriz.

Proof. Let k € [¢], and r = |Ci(m)| < €. Let C(m) = {(as,,b4,),...,(a;, ,b;,)}
be such that a;; <k < b;; for all j. Let Gy, be the graph restricted to involutions
in Ci (7). By induction on m, we argue that M, (C-perm(G})) contains I3 as
a sub-matrix. The lemma would then follow since M, (C-perm(Gy)) is itself a
sub-matrix of My(C-perm(G)).

We begin with r = 1 as the base case. Consider the transposition (a”,bl])
with a;; < k < b;;. The corresponding two cycle has four edges. Let f;,
the Cayley permanent of this graph then M;(f;;) has the 2 x 2 identity matrlx
as a sub-matrix. Let us dwell on this simple part. For ease of notation let the
variables corresponding to the self loops be given by w4,z for (a;;,a;;) and
(bi;, bi;) respectively and the edge (a;;,b;;) by (45 and the edge (b;;,a;;) by
Zp,o. Now our matrix has monomials x,, x4 as rows and p, T o as columns. We
can ignore the other orderings as these will always be zero. As the valid cycle
covers are given by x,z and 4,2, the proof is clear.

For the induction step, suppose > 1. Suppose a1 < az < --- < a,. Let G}, be
the graph induced by Cy(7)\ (a1,b1). Let M’ = M,_1(C-perm(G},)). The rows of
M’ are labeled by monomials consisting of variables with first index < k and the
columns of M’ are labeled by monomials consisting only of variables with first
index > k. Let M = M, (C-perm(Gy)). M can be obtained from M’ as follows:
Make two copies of the row labels of M’ the first one with monomials pre-
multiplied by x4, ,, and the second pre-multiplied by x,, 1, . Similarly, make two
copies of the columns of M’, the first by inserting x, », to the column labels of
M’ at appropriate position, and then inserting xy, o, similarly. Now, the matrix
M can be viewed as two copies of M’ that are placed along the diagonal. Thus
M = M’ ® I, combining this with Induction Hypothesis completes the proof.

Remark 1. Tt should be noted that the ordering of the variables is crucial in the
above argument. If a;,b; < k in the above, then rank(M) = rank(M’).

Theorem 3. Let G be a collection of disjoint two cycles described by the invo-
lution m and self loops at every vertex, with edges labeled by distinct variables.
Then any non-commutative ABP computing the Cayley permanent on G has size
at least 242(ut(G))

Let m = (a1,b1) -+~ (n/2,bn/2), a1 < az < --- < a2 be an involution. Then
G is the set of 2-cycles (a1,b1), ..., (an/2,b,/2) and self loops at every vertex.

On Hard Instances of Non-Commutative Permanent 179

Corollary 2. Let G be a collection of disjoint two cycles described by the involu-
tion ™ and self loops at every vertex, with edges labeled by distinct variables. Then
B(C-perm(G)) € 28 (&) | Pyrther, there exists a graph G with cut(G) = O(n).

Finally, we have,

Theorem 4. For all but a 1/\/n fraction of graphs G with connected component
size 2, any ABP computing the C-perm on G requires size 29

5 #P Completeness

In this section, we show multiple hardness results for simple polynomials over
certain classes of non-commutative algebras. We give a #P completeness result
for specific graphs of component size at most six. The completeness result is
obtained by a careful analysis of the parameters and a small modification of
the reduction from #SAT to non-commutative determinant given recently by
Gentry [13].

Theorem 5. Let R be a division algebra over a field K of characteristic zero
containing the algebra of 2x2 matrices over K. Computing the Cayley Permanent
on graphs with component size 6 with edges labeled from R is #P complete.

It is known that computing the commutative permanent of the weighted adja-
cency matrix of a planar graph is as hard as the general case [9]. We observe
that the reduction in [9] extends to the non-commutative case.

Theorem 6. C-perm <P planar—C-perm; and C-det <P planar—C-det. More-
over, the above reductions work over any non-commutative algebra.

We demonstrate some more families of polynomials whose commutative vari-
ants are easy but certain non-commutative variants are as hard as the permanent
polynomial. We begin with a non-commutative variant of the elementary sym-
metric polynomial. The elementary symmetric polynomial of degree d, Sym,, 4
is given by Sym,, 4(z1,...,%n) = D gc(n), 5)=d | lies %i- There are several non-
commutative variants of the above polynomial. The first one is analogous to the
Cayley permanent, i.e., Cayley—Sym,, , = ZS:{i1<iz<m<id} H;l:l z;;. It is not
hard to see that the above mentioned non-commutative version of Cayley—Sym,, ,
can be computed by depth 3 non-commutative circuits for every value of d € [n].
However, the above definition is not satisfactory, since it is not invariant under
permutation of variables, which is the inherent property of elementary symmet-
ric polynomials. We define a variant of non-commutative elementary symmetric
polynomial which is invariant under the permutation of variables.

d
nc—Sym,, 4(z1,...,) £ Z Z H Ti, ;-

{i1,..,ia}C[n] 0€Sq j=1

We show that with coefficients from the algebra of n x n matrices allowed,
nc—Sym,, ; cannot be computed by polynomial size circuits unless VP = VNP.
We need the following definition introduced in [2,3].

180 C. Engels and B.V.R. Rao

Definition 2. The Hadamard product between two polynomials f =3 = amm
and g =73, Bmm, written as f © g, is defined as f © g =), mfBmm.

Theorem 7. Over any K algebra R containing the n X n matrices as a sub-
algebra, nc—Sym does not have polynomial size arithmetic circuits unless
perm, € VP.

n,n

Proof. Suppose that nc—Sym,, . has a circuit C of size polynomial in n. We
need to show that perm € VP. Let X = (x; ;)1<i j<n be matrix of variables, and
Y1,-..,Yn be distinct variables different from x; ;. In the commutative setting,
it was observed in [19] that perm(X) equals the coefficient of y; - - -y, in the
polynomial

n n
A
rx,v)=]] Ti jY; (1)
i=1 \j=1
over the polynomial ring K[z11,...,2,,). However, the same cannot be said

in the case of non-commuting variables. If z; jyr = yrx; ; for ¢, j, k € [n], then
in the non-commutative development of (1), the sum of coefficients of all per-
mutations of the monomial y; - - - y,, equals perm(X) i.e., the commutative per-
manent. Hence the value perm(X) can be extracted using a Hadamard product
with nc-Sym,, ., (y1,...,yn) and then substituting y; = 1,...,y, = 1. However,
we cannot assume ; ;Y = YrTi,j, since the Hadamard product may not be com-
putable under this assumption. Let £ = Z” x; ;. Now we argue that perm(X) =
(nc-Sym,, ,(¢y1, ..., lyn) © P)(y1 = 1,...,y, = 1). Given a permutation o € Sy,
there is a unique monomial m, = T1 51)Ys(1) " * Tn,o(n)Yo(n) 0 P containing
the variables y,(1), . - -, Yo (n) in that order. Thus taking Hadamard product with
P filters out all monomials but m, from the term H:.l:l LYo (). The monomials
where a y; occurs more than once are eliminated by nc-Sym,, ,,(¢y1, ..., ly,).
Thus the only monomials that survive in the Hadamard product are of the
form my, o € S,. Now substituting y; = 1 for i € [n] we get perm(X) =
(n-Sym, (gt -) © P)(y1 = 1, ..oy = 1).

Note that the polynomial P(X,Y) can be computed by an ABP of size
O(n?). Then, by [2,3], we obtain an arithmetic circuit D of size O(n?size(C'))
that computes the polynomial nc—Sym,, ,, © P. Substituting y1 = 1,...,y, =1
in D gives the required arithmetic circuit for perm(X).

Barvinok [5] showed that computing the permanent of an integer matrix of
constant rank can be done in strong polynomial time. In a similar spirit, we
explore the complexity of computing the Cayley permanent of bounded rank
matrices with entries from K U {z1,...,z,}. We consider the following notion
of rank for matrices with variable entries. Let A € (KU {z1,...,2,})"*". Then
row-rank(A) = maxg,, . a,ck rank(Alz, =a,,... xn=a,). The column rank of A is
defined analogously. As opposed to the case of the commutative permanent, for
any algebra R containing the algebra of n x n matrices over K, we have:

Corollary 3. C-perm and C-det of rank one matrices with entries from K U
{1,...,2,} over any K algebra does not have polynomial size arithmetic circuits
unless perm € VP.

On Hard Instances of Non-Commutative Permanent 181

Acknowledgements. The authors like to thank V. Arvind and Markus Bléser for
helpful discussions and pointing out specific problems to work on. The authors also
thank anonymous referees for their comments which helped in improving the presen-
tation. This work was partially done while the first author was visiting IIT Madras
sponsored by the Indo-Max-Planck Center for Computer Science.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

Arvind, V., Joglekar, P.S., Srinivasan, S.: Arithmetic circuits and the hadamard
product of polynomials. In: FSTTCS, pp. 25-36 (2009)

Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant.
In: STOC, pp. 677686 (2010)

Aslaksen, H.: Quaternionic determinants. Math. Int. 18(3), 57-65 (1996)
Barvinok, A.I.: Two algorithmic results for the traveling salesman problem. Math.
Oper. Res. 21(1), 65-84 (1996)

Blaser, M.: Noncommutativity makes determinants hard. In: Fomin, F.V.
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol.
7965, pp. 172-183. Springer, Heidelberg (2013)

Biirgisser, P.: Completeness and Reduction in Algebraic Complexity Theory.
Springer, Heidelberg (2000)

Chien, S., Sinclair, A.: Algebras with polynomial identities and computing the
determinant. STAM J. Comput. 37(1), 252-266 (2007)

Datta, S., Kulkarni, R., Limaye, N., Mahajan, M.: Planarity, determinants, per-
manents, and (unique) matchings. ToCT 1(3), 10 (2010)

Engels, C., Raghavendra Rao, B.V.: New Algorithms and Hard Instances for Non-
Commutative Computation. ArXiv e-prints, September 2014

Flarup, U., Koiran, P., Lyaudet, L.: On the expressive power of planar perfect
matching and permanents of bounded treewidth matrices. In: Tokuyama, T. (ed.)
ISAAC 2007. LNCS, vol. 4835, pp. 124-136. Springer, Heidelberg (2007)

Flarup, U., Lyaudet, L.: On the expressive power of permanents and perfect match-
ings of matrices of bounded pathwidth/cliquewidth. ToCS 46(4), 761-791 (2010)
Gentry, C.: Noncommutative determinant is hard: a simple proof using an extension
of barrington’s theorem. In: CCC, pp. 181-187, June 2014

Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for non-commutative skew
circuits. In: Electronic Colloquium on Computational Complexity (ECCC), vol.
22, p. 22 (2015)

Mahajan, M., Rao, B.V.R.: Small space analogues of valiant’s classes and the
limitations of skew formulas. Comput. Complex. 22(1), 1-38 (2013)

Nisan, N.: Lower bounds for non-commutative computation (extended abstract).
In: STOC, pp. 410-418 (1991)

Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open
questions. FTTS 5(3-4), 207-388 (2010)

Valiant, L.G.: Completeness classes in algebra. In: STOC 1979, pp. 249-261 (1979)
von zur Gathen, J.: Feasible arithmetic computations: Valiant’s hypothesis. J.
Symb. Comput. 4(2), 137-172 (1987)

The Effect of Range and Bandwidth
on the Round Complexity in the Congested
Clique Model

Florent Becker!', Antonio Fernéndez Anta?, Ivan Rapaport3®™),
and Eric Rémila*

! LIFO (EA 4022), Université d’Orléans, Orléans, France
2 IMDEA Networks Institute, Madrid, Spain
3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
rapaport@dim.uchile.cl
4 Univ. Lyon, UJM Saint-Etienne, Saint-Etienne, France

Abstract. The congested clique model is a message-passing model of
distributed computation where k players communicate with each other
over a complete network. Here we consider synchronous protocols in
which communication happens in rounds (we allow them to be random-
ized with public coins). In the unicast communication mode, each player
i has her own n-bit input z; and may send k — 1 different b-bit mes-
sages through each of her kK — 1 communication links in each round. On
the other end is the broadcast communication mode, where each player
can only broadcast a single message over all her links in each round.
The goal of this paper is to complete our Brief Announcement at PODC
2015, where we initiated the study of the space that lies between the two
extremes. For that purpose, we parametrize the congested clique model
by two values: the range r, which is the maximum number of different
messages a player is allowed to send in each round, and the bandwidth b,
which is the maximum size of these messages. We show that the space
between the unicast and broadcast congested clique models is very rich
and interesting. For instance, we show that the round complexity of the
pairwise set-disjointness function PWDISJ is completely sensitive to the
range r. This translates into a §2(k) gap between the unicast (r =k — 1)
and the broadcast (r = 1) modes. Moreover, provided that r > 2 and
rb/logr = O(k), the round complexity of PwDISJ is @(n/klogr). On the
other hand, we also prove that the behavior of PWDISJ is exceptional:
almost every boolean function f has maximal round complexity ©(n/b).

Finally, we prove that min ([Uobigl”-‘ , "%-‘ [%ﬁ‘) is an upper bound
for the gap between the round complexities with parameters (b,r) and

parameters (b',r’) of any boolean function.

Supported in part by the ANR project QuasiCool (ANR-12-JS02-011-01),
MINECO grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, co-funded by FSE & FEDER), NSF of China
grant 61520106005, EC H2020 grants ReCred and NOTRE, CONICYT via Basal
in Applied Mathematics, Nicleo Milenio Informacién y Coordinacién en Redes
ICM/FIC RC130003, Fondecyt 1130061.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 182-193, 2016.
DOT: 10.1007/978-3-319-42634-1_15

The Effect of Range and Bandwidth on the Round Complexity 183

1 Introduction

In this paper we study a synchronous, message-passing model of distributed
computation where the underlying communication network is a complete graph.
Therefore, the only obstacle to perform any task is due to congestion. In fact,
the main theoretical purpose of this model, known as congested clique, is to
serve as a basic model for understanding the role played by congestion in dis-
tributed computation [14,15,21,25,27,28]. (Besides this, there are interesting
connections between the congested clique model and popular systems such as
MapReduce [20].)

The model is defined as follows. There are k players. Each player has her own
n-bit input z; and they all collaborate in order to compute a joint boolean func-
tion f(x1,...,2x). They communicate with each other in synchronous rounds.
More precisely, each of the k players may send up to k — 1 different b-bit mes-
sages through each of her k — 1 communication links. A protocol that computes
f stops when every player knows the output. We use the number of rounds as
the goodness metric to be minimized. The absolute minimum of this parameter
is what we call round complexity. In this paper all protocols are allowed to be
randomized with public coins. More precisely, the k players have access to a
common infinite string of independent random bits. Protocols may return the
wrong answer with probability at most €, for some fixed, small € > 0.

Most work on this (unicast) congested clique model considers the joint input
as a graph G by giving to each player ¢ the boolean vector x; € {0,1}", which
is the indicator function of her neighborhood in G. Note that in this case n = k
and, therefore, the total number of bits exchanged in each round is bn?. Unfor-
tunately, due to the huge number of bits transmitted globally per round (even
for b = 1), no lower bound is known for this model. Drucker et al. gave in [15]
an explanation for this difficulty. They proved that in this model it is possible to
simulate powerful classes of bounded-depth circuits (and therefore lower bounds
in the congested clique would yield lower bounds in circuit complexity). The
intrinsic power of the (synchronous) congested clique model has allowed some
authors [10,14,19,21] to provide extremely fast protocols for some natural graph
problems (assuming always that b = logn, following the spirit of the CONGEST
model [29]).

In the broadcast version of the congested clique model, each player can only
broadcast a single b-bit message over all her links in each round [15]. This set-
ting is equivalent to the multi-party, number-in-hand computation model, where
communication takes place in a shared blackboard [1,2,5-7,15]. In fact, writing
a message M on the blackboard is equivalent to broadcasting M. In this setting,
the number of transmitted bits per round decreases from bn? to bn. Therefore,
obtaining lower bounds using communication complexity reductions becomes
possible. For instance, detecting deterministically a triangle in the input graph
G requires 2(n/(e©V8™p) rounds [15]. On the other hand, fast protocols are
also known in the broadcast congested clique model [1,2,18,23].

There is a particular boolean function that we are going to use throughout
this paper. This function, that we call pairwise set-disjointness, is defined below.

184 F. Becker et al.

Definition 1. Let k = 2k'. Let x = (v1...2;) € ({0,1}™)*. Each z; is the
indicator vector of a subset X; C {1,...,n}. Function pairwise set-disjointness
PWDISJ is defined by: PwDISI(z) = 1 if V1 < i < ¥, X; N X;upr = 0; and
PWDISJ(z) = 0 otherwise.

Our goal is to complete the work of [4], where we initiated the study of the round
complexity of boolean functions according to two parameters of the model:

— The range r: the maximum number of different messages a player can send
over her links in one round.
— The bandwidth b: the maximum size, in bits, of each of these messages.

By analogy with the notation introduced in [15], we denote this model by
CLIQUE-RCAST,.«p. Note that the two extreme cases r = 1 and r = k — 1, which
correspond to the broadcast and the unicast communication modes, are the cases
already considered in the literature. More precisely,

CLIQUE-RCAST(},_1)xp = CLIQUE-UCASTy,
CLIQUE-RCAST{ xp = CLIQUE-BCAST},.

Note also that, if the available bandwidth b is too small, then having a big
range T becomes useless, since the number of possible different messages with a
bandwidth b is 2°. More precisely,

Vr > 2% CLIQUE-RCAST,xj = CLIQUE-RCASTgs+; = CLIQUE-UCAST},.

Thus, in the sequel, we will assume that r < 2°. We denote by ROUND,.x(f)
the round complexity of function f. That is, ROUND,x(f) denotes the mini-
mal number of rounds needed by any k-player protocol in CLIQUE-RCAST,; for
computing f. We also denote,

UROUNDy(f) = ROUND1—1)x5(f),
BROUND,(f) = ROUND1 x5 (f).

A protocol in CLIQUE-RCAST,.«p is said to be a broadcasting protocol if it consists
of every player broadcasting its complete input. Obviously, for any function f,
there exists a broadcasting protocol which computes f, and we get the universal
bound ROUND,w(f) < BROUND,(f) < [n/b]. In order to understand the role

played by the range r and the bandwidth b in the round complexity of the
congested clique model we define the following ratio.

. ROUND,-»5(f)
FT,Xb, — X .
vty (£) ROUND, x (f)

The values above obviously depend on k, n and e. But we omit them in
order to avoid heavy notation. Finally, by taking the uniform probability over
{0, 1}10:1} k", we also consider what happens with random boolean functions. For

instance, we compute probabilities such us Pr{F:,XXlz,(f) = a}, for fixed a.

The Effect of Range and Bandwidth on the Round Complexity 185

1.1 Owur Results

In Sect.2 we compare the broadcast model and the unicast model. For that
purpose we consider the pairwise set-disjointness function PWDISJ. We prove that
UROUND, (PWDISJ) = O(n/kb) while BROUND,(PWDISI) = (2(n/b). In other
words, F(lkibl)xb(PWDISJ) = (2(k). This gives a large gap between the unicast
and broadcast congested clique models, that grows at least linearly with k.

In Sect. 3 we prove that the round complexity of PWDISJ is completely sensi-
tive to the range r even in the intermediate values between unicast and broad-
cast. More precisely, we prove that for k sufficiently large and for » > 2 such
that rb/logr = O(k) the following holds: ROUND, x;(PWDIST) = O(n/klogr).
Then, we give some interpretations to this result. In particular, we conclude that
F:,Xxlﬁ)ggi (pwpisJ) = O(logr’ /logr) for every r’ > r > 2. Note that the logarith-
mic bandwidth is the most studied case in the congested clique model, and this
result yields a hierarchy of models of different computational power according
to the range r for this case.

In Sect.4 we prove that almost every boolean function f satisfies that
UROUND,(f) = BROUND,(f) = [n/b], provided that k is sufficiently large and
that 0 < e < 0.2. In other words, F(lkfbl)xb(f) = 1 for almost every f. This means
that the gap we found in Sect. 2 for function PWDISJ is exceptional and that the
power given by having r > 1 is almost always useless. Nevertheless, as pointed
out by Drucker et al. [15], finding for £ = n an explicit boolean function f with
the behavior UROUND,,(f) = w(1) is (equivalent to solving) a long-standing open
problem in circuit complexity theory.

The goal of Sect. 5 is to compare models with different combinations of range
and bandwidth for arbitrary boolean functions f. For doing this we analyze the
ratio I I,XXZ;),(f). We make the following observation: for almost every function f

we have I35, (f) = ©(b'/b). Moreover, if r > ' or r = 2 then I35, (f) <

r’ xXb’ T
[t/ /b] for every boolean function f. The general upper bound we obtain is the

following 174, () < min (| ity | [25] [4]) for r =2,

1.2 Related Work: The Asynchronous Case

The congested clique model with bandwidth b = 1 —that is, the multiplayer,
number-in-hand, message passing model— was introduced by Dolev and Feder
[13]. The main difference with our setting is that the original model was asyn-
chronous. Hence, protocols, instead of being designed to minimize the number
of rounds, were designed to minimize the number of exchanged bits. The first
communication complexity lower bounds were obtained by Duris and Rolim [16].

Recently, new techniques and new results have been developed, and tight
bounds for the communication complexity of different functions have been
obtained. In [30] the authors introduced the symmetrization technique and were
able to prove tight £2(nk) lower bounds for several direct-sum-like functions such
as coordinate-wise AND or coordinate-wise OR. These lower bounds also apply

186 F. Becker et al.

in the blackboard communication mode, where players write messages on a black-
board, visible to everybody. (Note that, in the asynchronous setting, the commu-
nication complexity in the blackboard mode gives stronger lower bounds than
the communication complexity in the message-passing, point-to-point mode.)
This symmetrization technique has been used and developed by other authors
as well [26,31].

It is important to point out that there exists a strict separation between
the blackboard communication mode and the message-passing communication
mode. For instance, the communication complexity for computing the multi-
party set-disjointness function is @(nlog k+k) in the blackboard communication
mode [9] and it is ©(nk) in the message-passing communication mode [8]. These
results on set-disjointness were obtained by using information complexity, a the-
ory introduced in [11]. Information complexity turned out to be an extremely
useful theory for proving communication complexity lower bounds [3,12,17].

2 A Gap in the Round Complexity of Broadcast
Versus Unicast

The first question we would like to answer is the following: How much do we
gain if, instead of broadcasting, we have the possibility of sending at least two
different messages in each round? This seems to be a simple question. But it is
a fundamental one if we want to understand the role played by the range in the
congested clique model. For answering this we use the pairwise set-disjointness
function PWDISJ defined in Sect. 1.

Theorem 1. UROUND,(PWDISI) = O(n/kb).

Proof. We prove that UROUND;(PWDISI) < [[nékf‘ + 1. The protocol is as

follows. Let T' = P"—ék]—‘ For every 1 <t < T, let

Wi gt = (xi)(jfl)(n/lﬂJr(tfl)bJrlv s (xi)(g‘—l)[n/k]ﬂb-

Round 1 < ¢ < T. Each player i sends to each player j (including itself)
the b bits of w; ;.

Round T + 1. Each player j broadcasts 1 if at all rounds ¢, all its incoming
messages from player 1 < i < k' were disjoints with all its incoming messages
from player 7 + k'

Clearly, after T rounds, player j receives (2;)(j—1)[n/k]+1, - - - » (Zi)j[n/k] from
every 4. Hence, PwDISJ(z) = 0 if and only if a 0 is broadcasted by some player
in the last round. Therefore, every player will know the answer after the last
round. O

Theorem 2. BROUND;(PWDISI) = §2(n/b).

The Effect of Range and Bandwidth on the Round Complexity 187

Proof. Tt is well-known that, in the two party case k = 2, the round complexity
of set-disjointness with error probability € is 2(n/b) [22]. If k > 2 we get the
same bound for (PwDISJ by considering the instance where 1 = z € {0,1}" is
given to player 1, x1 1 =y € {0,1}" is given to player 2, and the empty set ¢,
represented by (0,...,0)T, is given to all the other k — 2 players. O

Corollary 1. Let k = n. Then, UROUND;(PWDISJ) = 2 and
BROUND, (PWDISJ) = £2(n/b).

Corollary 2. F(lkx_bl)xb(PWDISJ) = (k).

3 A Hierarchy of Models According to the Range

In previous section we proved that the broadcast (r = 1) and the unicast
(r = k — 1) models are fundamentally different in their power to solve one
particular problem. These two models are the two ends of the spectrum of val-
ues of the range r. In this section we prove that the sensitivity to the range is
more general. In particular, we show that the round complexity of PWDISJ is
completely sensitive to the range.

_ n
Lemma 1. ROUND,.x;(PWDISJ) = {2 (4mm(kb7rb+nogrfk)>.

Proof. We use a reduction from the two-party communication problem DISJg.,,
where instances are pairs (z,y) of boolean vectors, each of length k'n. The
communication complexity (bits to be exchanged) of DISJg, is O(k'n) [22].
We transform an instance of DISJ./,, into an instance of PWDISJ in the direct

way. From (z,y) we define the input (x1,...,x) of function PWDISJ as fol-
lows: @ = 21+ -xp and y = g1 - 2. Obviously, DISIp,(z,y) = 1 <=
PWDISI(z1,...,2k) = 1.

Let us consider any protocol P that solves PWDISJ in Tp rounds. If we group
players 1 to k' into a global player A and players &’ + 1 to k into a global player
B, protocol P would yield a protocol for solving DISJg/,,. So the question is the
following: How many bits are exchanged between A and B? Let us derive an
upper bound for this.

Consider a player ¢ in A. Player ¢ sends one message of length b to each
player in B, thus he sends k’b bits. However, since r < 2°, the messages sent by
player ¢ to players in B can be compressed as follows. Since player i can send
up to r different messages, one can consider that she sends to each player j € B
a message numbered from the set {0,1,...,r — 1} that identifies the message
m(i,j) sent to player j. These numbers, of [logr] bits each, can be used to
obtain the actual message from a table that contains the r» messages, of b bits
each, sent by i. Hence, the total number of bits sent by 7 to B is upper bounded
by the length of the ¥’ numbers, [logr|k’ bits, and the size of the message table,
br bits; a total of rb + [logr]k’ bits.

Let us define 8 = min(bk’,rb + [logr|k’). In each round, the number of bits
exchanged between A and B is upper bounded by k3. Therefore, considering
that the communication complexity of DISJg/, is O(k'n), it follows that TpkS =

2(k'n). Therefore, ROUND,,(PWDISJ) = £2(35), as claimed. O

188 F. Becker et al.

Lemma 2. ROUND,y,(PWDISJ) < [ﬁw + 1.

Proof. Consider the same protocol used in the proof of Theorem 1 but with
messages of |logr]| < b bits. O

Putting these together, we get the following theorem.

Theorem 3. For k sufficiently large and for r > 2 such that]orgbr = O(k),

n
ROUND;»;,(PWDISJ) = O <k og T).

Proof. The upper bound follows from the previous lemma. For the lower bound,
it follows from Lemma 1 that

n n

ROUND,»,(PWDISJ) > - m > 5
kmin(b, [log] (1 + 227)) ~ Kflogr] (1 + 22pr)

2rb . rb
TogrTk > 0. Since ogr =

O(k), we deduce that, for k sufficiently large, there is a constant A > 0 such

that [1023% < A, and hence

where the last inequality follows from [logr] < b and

ROUND;,p(PWDISJ) > S L——o
b = k[logr](1+4) \k[logr])

O

The natural way to interpret Theorem 3 is to parametrize everything by k.
Following the spirit of the CONGEST model [29], we are going to restrict both
the bandwidth and the range by taking b = log k and varying r from 2 to k — 1.
Observe that, when b = logk and r < k — 1, it always holds that IJ;T = O(k).
Hence, the next corollaries are direct consequences of Theorem 3.

Corollary 3. For every n and every constant integer ¢ > 2, we have

n n
ROUNDIog k xlog k(PWDISJ) = © (m) and ROUNDcxlog k(PWDISJ) = © (E)
In other words, ﬂigfﬁ{zgk(PWDISJ) = O (loglogk).

In general, we can state the following corollary.
Corollary 4. For every n and every v’ >r > 2, we have

n

n
ROUND, x1og k (PWDIS]) = O () and ROUND;xlogk(PWDISI) = 6 <)

klogr! klogr

In other words, I')°%* (pwpisy) = © log " .
r’xlogk log r

The Effect of Range and Bandwidth on the Round Complexity 189

4 Most Functions Have Maximal Round Complexity

From the results presented in the previous sections one may be tempted to
conclude that, in general, increasing the range r increases the power of the
protocols. In particular, one may conclude that the unicast congested clique
model has much more power than the broadcast congested clique model (even
if in the first we restrict the bandwidth to b = 1 while in the latter we allow it
to be b = o(n)). We show here that this fact, which holds for function PWDISJ,
holds for very few other functions. More precisely, we are going to prove that
for almost every boolean function f, the broadcasting protocol is optimal. We
start by considering deterministic decision protocols that compute functions f
correctly (i.e., they make no mistake). (Some proofs are omitted.)

Lemma 3. The number of T-round deterministic decision protocols in the uni-
cast congested clique model CLIQUE-UCAST,, is at most 2V(T) | where

(k+1)(k—1)b

_ oT(k—1)b+n
N(T) = 2T (k=Dbtn(q 4 St)

Now, we still consider deterministic protocols, but now we allow them to
make mistakes. We say that a deterministic protocol P computes f with error
€ > 0 if it outputs f(z) for at least (1 — €)2"* of the inputs = of f.

Lemma 4. Let P be a deterministic decision protocol and let P(x) denote the
output of P with input x € {0,1}"*. Let M.(P) be the number of functions f
which are computed by P with an error € > 0. We have,

€

26 62nk 2e nk
M. (P) < () — glog(58)e2"”

We show now that a deterministic protocol P that computes a function f
chosen uniformly at random with error e requires the maximal number of rounds
[n/b] with high probability. Let us extend our notation, so that UROUND;(f) is
the round complexity of function f when protocols are deterministic and error
€ is allowed.

Theorem 4. For k sufficiently large and for every n, and ¢ > 0 such that
1 —log(2)e > 0, we have

in 1—log(22)e
Pr{UROUNDS(f) = [n/b]} > 1 — 272" (=),

For e =0 (i.e. the case without error), we have
Pr{UROUND!(f) = [n/b]} > 1 — 2727705,
Proof. Since there are 22" different functions f : {0,1}*" — {0,1}, we have

2NV(T) maxp M, (P)

Pr{UroUND{(f) < T} < o2n

190 F. Becker et al.

From Lemmas 3 and 4, for € > 0, we have

Q2T Db (1 GG 26 ok - _ohn
Pr{UROUND}(f) < T} < 2 (I a=ns) glos(%8)e2™ 92

cn r k E—1)b
272kn(1710g(2?)6 T (k—1)btn— kz(1+(+(1k>(1)b))).

For k sufficiently large, the quantity 1 + W can be upper bounded (by

2 for example). Now let us take T' = [n/b] — 1. Then, we have Tb—n < —b and,

thus
9T (k=1)bt+n—kn _ o(k—1)(Tb—n) < 9—b(k—1) <ok

Thus, for k sufficiently large, the term, 2T(k_1)b+”_k”(+ W) can be

upper bounded by any positive value, in particular by %()6

that

Thus, we get

1-log(22)e

Pr{UROUNDS(f) < [n/b] — 1} < 272" (=),
which is the result since, for any f, one trivially has UROUND;(f) <
UROUNDY (f) < [n/b].
For e = 0 we proceed on the same way, after noticing that maxp My(P) = 1.
O

Theorem 5. For k sufficiently large, for every n, and 0 < € < 0.2, there exists
a positive constant c(e) > 0 such that Pr{UROUND;(f) = [n/b]} > 1—2-2"e(e),

Recall that UROUND,(f) is the round complexity of computing function f
with randomized protocols, which may use public coins, with success probability
1 — €. From the previous results we can prove that most functions have round
complexity [n/b].

Corollary 5. For k sufficiently large and for every n, and 0 < € < 0.2, there
exists a positive constant c(€) > 0 such that,

Pr{UROUND,(f) = [n/b]} > 1 — 272",

Proof. The result follows from Theorem 5, and Theorem 3.20 at [24] using the
uniform distribution as the distribution p of the inputs. O

The following bound is obvious for any function f.
BROUND,(f) 1xb
UROUNDb(f) mF(k 1)><b(f) E

Next corollary, which is a direct consequence of Corollary 5, says that previous
inequality is in fact an equality for almost every boolean function.

b
F(lkx 1)><b(f) =

Corollary 6. For k sufficiently large and for every n, and 0 < € < 0.2, there
exists a positive constant c(e€) > 0 such that,

PY{F(lchb1 wf)=1}=21- 972"e(),

The Effect of Range and Bandwidth on the Round Complexity 191

5 Comparing Models with Different Combinations
of Range and Bandwidth for Arbitrary Boolean
Functions

In this section we explore the relative round complexities of different modes of
the congested clique model with various combinations of range and bandwidth
F:/XXZ;)/(f) for arbitrary boolean functions f. The first result shows that for most

boolean functions f, I'%%,(f) = O(b'/b).

r’xb’
Theorem 6. For k sufficiently large and for every n, there is a positive constant
c(€) > 0 such that
Pr {175, (f) = [n/b]/ [n/¥]} > 1~ 9—2""c(e)+1
Proof. From Corollary 5, a function f simultaneously satisfies ROUND,x;(f) =
[n/b] and ROUND,.xy (f) = [n/b'] with probability at least 1 — 27 2""e(+1

Now, we show that in fact the typical case shown in the previous theorem is not
far from the worst case, studied in the following sequence of results.

Theorem 7. Let r be such that r > ' or r = 2°. Then, for every function f,
L7 () < V0]

Proof. Let P’ be a T-round protocol in CLIQUE-RCAST,xp . From P’ we con-
struct the protocol P in CLIQUE-RCAST,x;, as follows. Consider the message
my(i, j) sent by player i to player j in round ¢ of P’. For each 1 < £ < [b'/b], let
block! (i, 7) be the £*" block of length b of my(i, j). The last block is padded with
0s. For each ¢ and 4, we have: |{block!(i,7),1 < j <k € N} < min{r/,2°} <r.

Then, during round number (¢t — 1) [b'/b] + £ of P, player i sends to player j
the b bits of block!(u,v). The inequalities above ensure that P is a well-defined
protocol in CLIQUE-RCAST,.». Since P knows the bandwidth b’ it can discard the
padding bits. The total number of rounds executed by P is T' [/b]. O

Theorem 8. Let b < UV < n, and k sufficiently large. Then, there exists a
function f such that: IS, (f) = [V /b] .

Proof. Let ¥ = n. In this case, every function f : ({0,1}")* — {0,1}
can be solved in one round in the model CLIQUE-RCAST, yp . On the other
hand, from Corollary 5, almost every function f : ({0,1}")* — {0,1} satis-
fies ROUND,«(f) = [n/b] = [V//b]. When n > ¥, let us define n’ = .
From Corollary 5, almost every function f' : ({0,1}")* — {0,1} satisfies

ROUND,p(f') = {%ﬁ‘ Let us take one such function f’, and define a new func-
tion f: ({0,1}™)% — {0,1} as follows: f(z1,72....71) = f'(y1,Y2, .-, Yr), Where
each y; is the vector formed with the n’ first bits of x;. Hence, ROUND,.;(f) =
ROUND,(f") = [n//b] = [b'/b] while ROUND,-x (f) = 1. O

192 F. Becker et al.

Remark 1. When b|b’ is a multiple of b and ¥'|n, we have [n/b]/[n/V] =
(n/b)/(n/b) =b/b=[b'/b]. When n = b', we also have [n/b] / [n/V] = [V /b].
Thus, in the previous cases, for » > r’ of r = 2°, the maximal value [¥'/b] for
the value of I' :,XXI;), (f) is reached with high probability. On the other hand, in
some cases, there exists a small but intriguing gap between the maximal value
[b//b] and the value [n/b] / [n/b'] reached with high probability. For example,

take b =2, b/ = 3. For n = 4, we have [b'/b] =2 and [n/b] / [n/V] = 1.

Note that Theorem 7 holds when ' < r or r = 2°. Without this hypothesis
we only get the following weaker, general bound.

Theorem 9. Let r > 2 and v’ > 1. Then, for every function f,

STES (R EAT)

Observe that the two values of the minimum are complementary, since none
implies the other.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of SODA 2012, pp. 459-467 (2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: Proceedings of PODS 2012, pp. 5-14 (2012)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: Proceedings of FOCS
2002, pp. 209-218 (2002)

4. Becker, F., Fernandez Anta, A., Rapaport, 1., Rémila, E.: Brief announcement: a
hierarchy of congested clique models, from broadcast to unicast. In: Proceedings
of PODC 2015, pp. 167169 (2015)

5. Becker, F., Kosowski, A., Nisse, N., Rapaport, I., Suchan, K.: Allowing each node
to communicate only once in a distributed system: shared whiteboard models. In:
Proceedings of SPAA 2012, pp. 11-17 (2012)

6. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding
a referee to an interconnection network: what can (not) be computed in one round.
In: Proceedings of IPDPS 2011, pp. 508-514 (2011)

7. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The simultaneous number-
in-hand communication model for networks: private coins, public coins and deter-
minism. In: Halldérsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 83-95.
Springer, Heidelberg (2014)

8. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight
bound for set disjointness in the message-passing model. In: Proceedings of FOCS
2013, pp. 668-677 (2013)

9. Braverman, M., Oshman, R.: On information complexity in the broadcast model.
In: Proceedings of PODC 2015, pp. 355-364 (2015)

10. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proceedings of PODC 2015, pp.
143-152

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

The Effect of Range and Bandwidth on the Round Complexity 193

Chakrabart, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Proceedings of FOCS
2001, pp. 270-278. IEEE (2001)

Chattopadhyay, A., Mukhopadhyay, S.: Tribes is hard in the message passing
model. In: Proceedings of STACS 2009, pp. 224-237 (2015)

Dolev, D., Feder, T.: Multiparty communication complexity. In: Proceedings of
FOCS 1989, pp. 428-433 (1989)

Dolev, D., Lenzen, C., Peled, S.: “Tri, Tri Again”: finding triangles and small
subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 195-209. Springer, Heidelberg (2012)

Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proceedings of PODC 2014, pp. 367-376 (2014)

Duris, P., Rolim, J.D.: Lower bounds on the multiparty communication complexity.
J. Comput. Syst. Sci. 56(1), 90-95 (1998)

Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party
information complexity of the AND-function and disjointness. In: Proceedings of
STACS 2009, pp. 505-516 (2009)

Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic
graph streams. In: Proceedings of PODS 2015, pp. 241-247 (2015)

Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B.,
Scquizzato, M.: Toward optimal bounds in the congested clique: graph connec-
tivity and MST. In: Proceedings of PODC 2015, pp. 91-100 (2015)

Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
MapReduce. In: Halldérsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp.
149-164. Springer, Heidelberg (2014)

Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time dis-
tributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 514-530. Springer, Heidelberg (2014)

Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. STAM J. Discrete Math. 5(4), 545-557 (1992)

Kari, J., Matamala, M., Rapaport, 1., Salo, V.: Solving the induced subgraph prob-
lem in the randomized multiparty simultaneous messages model. In: Scheideler, C.
(ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370-384. Springer, Heidelberg (2015)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (2006)

Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proceedings of PODC 2013, pp. 42-50 (2013)

Li, Y., Sun, X., Wang, C., Woodruff, D.P.: On the communication complexity of
linear algebraic problems in the message passing model. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 499-513. Springer, Heidelberg (2014)

Lotker, Z., Pavlov, E.: MST construction in O(loglogn) communication rounds.
In: Proceedings of SPAA 2003, pp. 94-100 (2003)

Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In:
Proceedings of PODC 2011, pp. 249-256 (2011)

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multi-
party communication complexity, made easy. In: Proceedings of SODA 2012, pp.
486—501

Woodruff, D.P.,; Zhang, Q.: An optimal lower bound for distinct elements in the
message passing model. In: Proceedings of SODA 2014, pp. 718-733 (2014)

Minimum Cost Homomorphisms
with Constrained Costs

Pavol Hell and Mayssam Mohammadi Nevisi®)

School of Computing Science, Simon Fraser University, Burnaby, Canada
{pavol,mayssamm}@sfu.ca

Abstract. The minimum cost homomorphism problem is a natural opti-
mization problem for homomorphisms to a fixed graph H. Given an input
graph GG, with a cost associated with mapping any vertex of G to any ver-
tex of H, one seeks to minimize the sum of costs of the assignments over
all homomorphisms of G to H. The complexity of this problem is well
understood, as a function of the target graph H. For bipartite graphs H,
the problem is polynomial time solvable if H is a proper interval bigraph,
and is NP-complete otherwise. In many applications, the costs may be
assumed to be the same for all vertices of the input graph. We study the
complexity of this restricted version of the minimum cost homomorphism
problem. Of course, the polynomial cases are still polynomial under this
restriction. We expect the same will be true for the NP-complete cases,
i.e., that the complexity classification will remain the same under the
restriction. We verify this for the class of trees. For general graphs H, we
prove a partial result: the problem is polynomial if H is a proper interval
bigraph and is NP-complete when H is not chordal bipartite.

Keywords: Homomorphisms - NP-completeness - Dichotomy

1 Introduction

Suppose G and H are graphs (without loops or multiple edges). A homomor-
phism f : G — H is a mapping V(G) — V(H) such that f(u)f(v) € E(H)
whenever uv € E(G). For a fixed graph H, a number of computational prob-
lems have been considered. In the homomorphism problem, one asks whether
or not an input graph G admits a homomorphism to H. It is known that this
problem is polynomial time solvable if H is bipartite, and is NP-complete other-
wise [1]. In the list homomorphism problem, the input graph G is equipped with
lists (sets) L(z) C V(H), for all z € V(G), and one asks whether or not there
exists a homomorphism f : G — H with f(z) € L(z) for all x € V(G). This
problem is known to be polynomial time solvable if H is an interval bigraph,

P. Hell and M.M. Nevisi—Both authors were supported by the NSERC Discovery
Grant of the second author, who was additionally supported by the grant ERCCZ
LL 1201. Also, part of this work was done while the second author was visiting the
Simons Institute for the Theory of Computing.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 194-206, 2016.
DOI: 10.1007/978-3-319-42634-1_16

Minimum Cost Homomorphisms with Constrained Costs 195

and is NP-complete otherwise [2]. (An interval bigraph is a bipartite graph H
with parts X and Y such that there exist intervals I,z € X, and J,,y € Y,
for which zy € E(H) if and only if I, N J, # 0.) In this paper we address the
minimum cost homomorphism problem, in which the input graph is equipped
with a cost function ¢ : V(G) x V(H) — N and one tries to minimize the total
cost D, ev (e ¢(u, f(uw). Minimum cost homomorphism problems were intro-
duced in [3]. They were motivated by an application in repair and maintenance
scheduling; however, the problem arises in numerous other contexts, e.g. in the
minimum colour sum problem and the optimum cost chromatic partition prob-
lem [4,5]. To state it as a decision problem, the input includes an integer k, and
one asks whether or not there exists a homomorphism of total cost at most k.
This problem is known to be polynomial time solvable if H is a proper inter-
val bigraph, and is NP-complete otherwise [6]. (An interval bigraph is a proper
interval bigraph if the above two families of intervals I, € X, and Jy,y € Y
can be chosen to be inclusion-free, i.e., no I, properly contains another I, and
similarly for the J,’s.)

These results are dichotomies in the sense that for each H the problem is
polynomial time solvable or NP-complete. They have subsequently been studied
in more general contexts, for graphs with possible loops, for digraphs, and for
general relational structures (in the context of constraint satisfaction problems).
In particular, there is a dichotomy for the homomorphism problem for graphs
with possible loops [1], but dichotomy is only conjectured for digraphs (and
more general structures) [7,8]. A dichotomy for list homomorphism problems for
graphs with possible loops was established in [2,9], then a general dichotomy was
proved for all relational systems in [10]. (A more structural dichotomy classifica-
tion for digraphs was given in [12].) For minimum cost homomorphism problems,
a dichotomy for graphs with possible loops is given in [6]. A structural dichotomy
classification for digraphs was conjectured in [3], and proved in [11] (cf. [13,14]).
Then a general dichotomy for all relational systems was proved in [15]. Even
more general dichotomy results are known, for so-called finite valued constraint
satisfaction problems [16].

It is easy to see that minimum cost homomorphism problems generalize list
homomorphism problems, which in turn generalize homomorphism problems.
Minimum cost homomorphism problems also generalize two graph optimization
problems, the minimum colour sum problem, and the optimum cost chromatic
partition problem [4,5]. In the former, the cost function has only two values,
0 and 1 (and k& = 0). In the latter, the cost function is assumed to be constant
across V(G), i.e., c(x,u) = c(u) for all x € V(G). This restriction, that costs only
depend on vertices of H, appears quite natural even for the general minimum
cost homomorphism problems, and appears not have been studied. In this paper
we take the first steps in investigating its complexity.

Let H be a fixed graph. The minimum constrained cost homomorphism prob-
lem for H has as input a graph G, together with a cost function ¢: V(H) — N,
and an integer k, and asks whether there is a homomorphism f : G — H of total

cost cost(f) = X ev(q) c(f(u) < k.

196 P. Hell and M. Mohammadi Nevisi

It appears that the added constraint on the cost function may leave the
dichotomy classification from [6] unchanged; in fact, we can show it does not
change it for trees H (and in some additional cases, cf. Lemma8 below).

Theorem 1. Let H be a fized tree. Then the minimum constrained cost homo-
morphism problem to H is polynomial time solvable if H is a proper interval
bigraph, and is NP-complete otherwise.

We believe the same may be true for general graphs H. We have obtained
the following partial classification.

Theorem 2. Let H be a fized graph. Then the minimum constrained cost homo-
morphism problem to H is polynomial time solvable if H is a proper interval
bigraph, and is NP-complete if H is not a chordal bipartite graph.

Of course, the first statement of the theorem follows from [6]. Only the second
claim, the NP-completeness, needs to be proved. A bipartite graph H is chordal
bipartite if it does not contain an induced cycle of length greater than four.
Both chordal bipartite graphs and proper interval bigraphs can be recognized in
polynomial time [17,18]. Proper interval bigraphs are a subclass of chordal bipar-
tite graphs, and Lemma 8 below gives a forbidden subgraph characterization of
proper interval bigraphs within the class of chordal bipartite graphs.

Our NP-completeness reductions in the proofs of Theorems1 and 2 use a
shorthand, where vertices v of the input graph G have weights w(v). Adding
polynomially bounded vertex weights does not affect the time complexity of
our problems. Let G, H be graphs, and, for every v € V(G) and every i €
V(H), let ¢;(v) denote the cost of mapping v to i. Let w : V(G) — N be a
weight function. The weighted cost of a homomorphism f : G — H is cost(f) =
> vev(c) W(v)-crw)(v). In the weighted minimum cost homomorphism problem
for a fixed graph H, the input is a graph G, together with cost functions ¢; :
V(G) — N (for all i € V(H)), vertex weights w : V(G) — N, and an integer k;
and the question is if there is a homomorphism of G to H of weighted cost at
most k.

The variant with constrained costs is defined similarly: the weighted minimum
constrained cost homomorphism problem for H has as input a graph G, cost
function ¢ : V(H) — N, vertex weights w : V(G) — N, and an integer k, and it
asks if there is a homomorphism f : G — H with cost 3, oy () w(v).c(f(v)) < k.

Clearly, when w is a polynomial function, the weighted minimum cost homo-
morphism problem and the minimum cost homomorphism problem are polyno-
mially equivalent. It turns out that this is also the case for the problems with
constrained costs.

Theorem 3. Let H be a fixed graph. The minimum constrained cost homomor-
phism problem to H and the weighted minimum constrained cost homomorphism
problem to H with polynomial weights are polynomially equivalent.

Minimum Cost Homomorphisms with Constrained Costs 197

2 Chordal Bipartite Graphs

In this section, we investigate the minimum constrained cost homomorphism
problem for graphs H with induced even cycles of length at least six. First we
treat the case of hexagon, then we handle longer cycles.

Lemma 4. Let H be a graph which contains hexagon as an induced subgraph.
Then, the weighted minimum constrained cost homomorphism problem to H is
NP-complete.

For a fixed graph H, the pre-colouring extension problem to H takes as input
a graph G in which some vertices v have been pre-assigned to images f(v) €
V(H) (we say v is pre-coloured by f(v)), and asks whether or not there exists
a homomorphism f : G — H that extends this pre-assignment. This can be
viewed a special case of the list homomorphism problem to H (all lists are either
singletons or the entire set V' (H)), and has been studied under the name of One-
Or-All list homomorphism problem, denoted OAL-HOM(H) [2]. Here we adopt
the abbreviation OAL-HOM(H) for the pre-colouring extension problem.

The problem OAL-HOM(H) was first studied in [2,19].

Lemma 5 [2]. Let C be a cycle of length 2k with k > 3. Then the pre-colouring
extension problem to C is NP-complete.

We can now present the proof of Lemma 4.
Proof. The membership in NP is clear. Let C'=1,2,--- 6 denote the hexagon
and hihsg---hg be an induced subgraph of H which is isomorphic to C. We
reduce from the pre-colouring extension homomorphism problem to C'.

Let (G, L) be an instance of OAL-HOM(C), i.e., G is a bipartite graph with
n > 2 vertices and m > 1 edges, and some vertices v of G have been pre-
assigned to f(v) € V(C). We construct an instance (G', c¢,w,T) of the weighted
minimum constrained cost homomorphism problem to H as follows. The graph
G’ is a bipartite graph obtained from a copy of G, by adding, for every ver-
tex v € V(G) pre-coloured k, a gadget that is the cartesian product of v and
the hexagon, using six new vertices (v,1), (v,2),--,(v,6), and six new edges
(v, 1)(v,2), (v,2)(v,3),---,(v,6)(v,1). We also connect v to exactly two neigh-
bours of (v,k) in its corresponding gadget. A vertex v and its corresponding
gadget is illustrated in Fig. 1.

We define the vertex weight function w as follows.

— for every vertex v in the copy of G, let w(v) =1
— for every pre-coloured vertex v € V(G):
o w((v,1)) =w((v,4)) =5 x 36n3 + 1,

e w((v,2)) =w((v,5)) =1,
o w((v,3)) = 36n°,
e w((v,6)) =6n

198 P. Hell and M. Mohammadi Nevisi

(v,1) (v,2)
O
(v,6) Q
O
(v,5) (v,4)

Fig. 1. A gadget in G’ for a vertex v € V(G) pre-coloured by 3

We define the homomorphism cost function ¢ as follows.

— c(hy) =c(hg) =0,

= c(h2) = c(h5) = 36n?,

- C(h3) -]-7

— ¢(hg) = 6n,

— ¢(h;) =5 x 36n3 + 1 for all other vertices h; € V(H).

Finally, we set T = 5 x 36n3 = 180n3.

We now claim that there is an extension of the pre-colouring f to a homo-
morphism of G to C if and only if there is a homomorphism of G’ to H with
weighted cost at most T'.

First, assume that the pre-colouring can be extended to a homomorphism
f: G — C. We define a homomorphism g : G’ — H as follows.

— g(u) = h; iff f(u) =1 for every vertex u € V(G) and every 1 < ¢ <6,
— 9((u,1)) = h; for every vertex u € V(G) pre-coloured k and every 1 <i < 6.

Claim. The function g is a homomorphism of G’ to H. Moreover, it only
maps vertices of G’ to the copy of C in G, i.e., g only uses vertices hy, ha, -+ , hg.

To prove the above claim, we distinguish three types of edges in G'.

1. Edges uv corresponding to the edges in G (u,v € V(G)): These are clearly
mapped to edges in H by g as g(u) = f(u) for all vertices u € V(G) and f is
a homomorphism of G to C.

2. Edges (u,i)(u, + 1) that connect two vertices of the gadgets: These edges
map to the corresponding edge h;h;11 by definition of g (indices modulo 6).

3. Edges that connect a vertex u € V(G) to two vertices in its corresponding
gadget: Notice that there is a gadget for v in G’ only when wu is pre-coloured
i. So, we have f(u) = i. This further implies that g(u) = h;. Also, notice that
g((u,i—1)) = hj—1 and g((u,? + 1)) = h;41 by the definition of ¢ (again, all
indices modulo 6). Hence, edges u(u,i — 1) and u(u,i+ 1) also map to edges
hz’—lhi and hihi+17 respectively.

This completes the proof of the above Claim. We now show that the cost of
g is at most T = 180n3.

Minimum Cost Homomorphisms with Constrained Costs 199

— For every vertex u € V(GQ), w(u) = 1 and c(g(u)) < 36n2. Also, there are
exactly n such vertices in G’. This contributes at most 36n3 to the cost of the
homomorphism.

— For every pre-coloured vertex u € V(G), its corresponding gadget contributes
exactly 4 x 36n2:

e vertices (u,1) and (u,4) do not contribute, as ¢(h1) = c¢(hy) = 0,
e vertices (u,2) and (u,5) each contribute 3612,
e vertices (u,3) and (u, 6) each contributes 36n2 = 6n x 6n = 36n2 x 1.

There are at most n gadgets in G’ (one for every vertex u € V(G)), and so, the
total contribution of all vertices of the gadgets is at most 4 x 36n3. Therefore,
the cost of ¢ is at most 5 x 36n3 = 180n3 = T.

Conversely, let g be a homomorphism of G’ to H which costs at most T. We
prove that there is a homomorphism f : G — C extending the pre-colouring.
First, we show that g has the following two properties.

— It only maps vertices of G’ to the vertices of the hexagon hy, ha,--- , hg,
— all gadgets are mapped identically to the hexagon in H, that is, for all pre-
coloured vertices u € V(G) and for every 1 <1 <6, g((u,4)) = h;.

The first property holds because c(a) > T for every vertex a € V(H) other
than the vertices of the hexagon (and the fact that, by definition, all vertex
weights are positive integers). In fact, we must have w(u) x c¢(g(u)) < T, or
equivalently, c¢(g(u)) < (Z&l)), for every vertex u € V(G’). This restricts possible
images of vertices with large vertex weights. Consider vertices in the gadget of
a vertex u € V(G'). For instance, every (u,4) must map to either hy or hy.
Similarly, none of the (u,3) vertices can map to any vertex other than hq, hg,
or hy. Given that (u,3) and (u,4) are adjacent in G’, their images must also be
adjacent in H. This enforces f((u,3)) = hs and f((u,4)) = hy (for every u that
has a gadget in G'). Similar to (u,4), g must also map every (u, 1) to either hy
or hy, but g((u,1)) = hy is not feasible as it does not leave any options for the
image of (u,2). Hence, g((u,1)) = hy. This further implies that g((u,6)) = he
(as it is adjacent to (u, 1)), and finally, g((u,2)) = he and g((u,5)) = hs.

It is now easy to verify that for every vertex u € V(G) pre-coloured j, we
always have g(u) = h;. This is because u is adjacent to (u,j — 1) and (u,j + 1)
in G’ and the only vertex in H that is adjacent to the g((u,j — 1)) = h,;j_1 and
g((u,j + 1)) = h;j41 and the cost of mapping to it is less than or equal to T
is h;. This completes the proof as we can define a homomorphism f : G — C
extending the pre-colouring by setting f(v) =i < g(v) = h;. |

A shorthand of the construction used in the above proof is shown in Fig. 2.
We now extend Lemma4 to larger even cycles.

Lemma 6. Let H be a bipartite graph which contains a cycle of length at least
eight as an induced subgraph. Then the weighted minimum constrained cost
homomorphism problem to H is NP-complete.

200 P. Hell and M. Mohammadi Nevisi

Fig.2. A hexagon in H together with associated homomorphism costs (left), and a
gadget in G’ together with vertex weights (right).

Proof Sketch. The proof is similar to the proof of Lemma4. We only discuss
the reduction here. Let C' = 1,2,--- ,2k be an even cycle, and hihs - - hoy be
an induced subgraph of H which is isomorphic to C' (k > 4). Again, we reduce
from OAL-HOM(C'). We take an instance of the OAL-HOM(C), i.e., a graph G
with n > 2 vertices and m > 1 edges, with some vertices of G pre-coloured by
vertices of C'. We construct a corresponding instance (G’, ¢, w,T') of the weighted
minimum constrained cost homomorphism problem to H.

The graph G’ is constructed exactly as before: we start with a copy of G and
for every vertex v pre-coloured by t, we add the cartesian product of v and C'
using 2k new vertices and 2k new edges. Finally, make v adjacent to two vertices
in its corresponding gadget, (v,t — 1) and (v, ¢+ 1) (all indices modulo 2k).

We define the vertex weight function w as follows.

— for every vertex v in the copy of G, let w(v) =1
— for every pre-coloured vertex v € V(G):

o w((v, 1)) = w((v, 4)) = 50kn2,

b ’LU((1)72)) = w((vv?’)) = w((vv5)) =1,

e w((v,4)) =9n for all 6 < i < 2k

We define the homomorphism cost function ¢ as follows.

= c(h1) = c(hs) =0,

= ¢(h2) = c(hg) = c(hs) = 8kn,
— ¢(h;) =1 for all 6 <i < 2k,
— ¢(h;) = 50kn? otherwise.

Finally, we set T = 50kn? — 1. As in the proof of Lemma4, we argue that
there is a homomorphism of G to C extending the pre-colouring if and only if
there is a homomorphism of G’ to H with cost at most 7.

This completes the proof of Theorem 2, as chordal bipartite graphs have no
induced cycles of length greater than four.

Minimum Cost Homomorphisms with Constrained Costs 201

We note that Theorem 2 gives only a partial dichotomy for the minimum
constrained cost homomorphism problem, as there is a gap between the class of
chordal bipartite graphs and the class of proper interval bigraphs. Specifically,
the following result clarifies the gap.

Lemma 7 [20]. A chordal bipartite graph H is a proper interval bigraph if and
only if it does not contain a bipartite claw, a bipartite net, or a bipartite tent

(Fig. 3).

Fig. 3. The bipartite claw, net and tent

3 The Dichotomy for Trees

In this section, we prove an extension of Theorem 2 to graphs H that contain a
bipartite claw. As in the case of large cycles, we focus on the weighted version of
the problem and show that it is NP-complete when the target graph H contains
a bipartite claw. As a corollary we will obtain our dichotomy classification for
trees, Theorem 1.

Lemma 8. Let H be a fixed graph containing the bipartite claw as an induced
subgraph. Then the weighted minimum constrained cost homomorphism problem
to H is NP-complete.

It is well known that the problem of finding a maximum independent set in
a graph is NP-complete. Alekseev and Lozin citelozin proved that the problem
is still NP-complete even when the input is restricted to be a 3-partite graph,
cf. Gutin et al. [6].

Theorem 9 [6,21]. The problem of finding a maximum independent set in a
3-partite graph G, even given the three partite sets, in NP-complete.

The main idea of the proof of Lemmas8 is similar to the proofs of Lemmas 4
and 6. We show that finding an independent set of size at least k in an arbitrary
3-partite graph G is equivalent to finding a homomorphism of cost at most k¥’ in
an auxiliary graph G’ together with constrained costs ¢ and vertex weights w. To
construct G’, we start by adding a fixed number of placeholder vertices; vertices
that, with the appropriate weights and costs, always map to the same specific
vertices of the target graph H in any homomorphism of G’ to H of minimum
cost. We then use these placeholder vertices in our construction to ensure that

202 P. Hell and M. Mohammadi Nevisi

the vertices corresponding to each part of the input graph G are only mapped
to certain vertices of H.

Proof. The membership in NP is clear. To show that the problem is NP-hard, we
reduce from the problem of finding a maximum independent set in a 3-partite
graph, stated in Theorem 9. Let G be a 3-partite graph in which we seek an
independent set of size k, with parts Vi, V5, and V3, and denote by and n and m
the number of vertices and edges in G, respectively. We assume that G is non-
empty. Without loss of generality, we can assume that V3| > 1. We construct
an instance (G, ¢,w, Tg) of the weighted minimum cost graph homomorphism
and show that G has an independent set of size k if and only if there is a
homomorphism of G’ to H with cost less than or equal to Tg .

We construct the bipartite graph G’ as follows. Subdivide every edge e in G
using a new vertex d. (which is adjacent to both ends of e). Add three vertices
b1, by and b3 and make each b; adjacent to all vertices in V; for ¢ = 1,2,3.
Finally, add three more vertices ¢y, ¢; and co. Make ¢y adjacent to by, b and
b3, c1 adjacent to b; and cy adjacent to bs. A 3-partite graph G together with
its corresponding G’ is depicted in Fig. 4. For future reference, we denote the set
{bh bg, b3, Co,C1, CQ} by V4.

Fig.4. A 3-partite graph G with parts Vi = {x1,22}, Vo = {y1,y2}, Va = {z1} (left)
and its corresponding bipartite graph G’ (right)

Let H = (X,Y) be an induced subgraph of H which is isomorphic to a
bipartite claw with parts X = {vg,v1,v9,v3} and Y = {uy,us,uz}, and edge set

/
E = {U1017U2U2»USU&UWO,UWO,%UO}

Define the homomorphism cost function ¢ as follows (see Fig.5).

n) for every other vertex u ¢ X UY

Minimum Cost Homomorphisms with Constrained Costs 203

Fig. 5. A bipartite claw, with homomorphism costs

Define the vertex weights of G’ as follows.

— w(by) = w(er) = 50n(m +n)

— w(bz) = w(ez) = 160n(m + n)

- w(by) =w(ey) =1

— w(u) = 4(m + n) for every vertex u € V;
— w(u) = 3(m + n) for every vertex u € V3
— w(u) = 12(m + n) for every vertex u € V3

Finally, let Tz 1, be the sum of the following values.

= TG, = 16(m +n)[VA],

- TE), = 12(m +n)|Val,

= T8, = 48(m +n)[V5],

- Ték =2x50n(m+n)+4+3,
— T¢ j, = 3m, and,

- Té’k = —12(m + n)k.

Equivalently, T), = 100n(m+n)+ 74 3m+ (4|V1|+36|V3]) (m+n) +12(m+
n)(n — k), We prove that G has an independent set of size k if and only if there
is a homomorphism of G’ to H of cost less than or equal to T k.

First, assume that [is an independent set of size k in G with parts I; C Vi,
I, C Va, and I3 C V3. Let k; denote |I;| (i = 1,2, 3). Define the homomorphism
fr as follows.

204 P. Hell and M. Mohammadi Nevisi

Notice that at most one end of each edge is in I, hence, the above assignment
is indeed a function. In fact, it is easy to verify that f; is a homomorphism.

— edges subdivided from edges e with both ends in V' — I map to vgus,

— edges subdivided from edges e with one end in I; and the other end in V — I
map to u;v; and u;vg (i = 1,2, 3),

— edges connecting b; to V; map to w;v; (i = 1,2,3),

— ¢ob; map to vou; (i =1,2,3), and,

— b;e; map to vu,; (i =1,2).

We now compute the cost of f; and show that it does not exceed T .

— The vertices in V; contribute exactly (|V1| — k1) x 16(m +n) + k1 x 4(m +n),
or, T&k — 12k1(m +n),

— the vertices in V4 contribute exactly (|Vz| — ko) x 12(m + n) + k1 x 0, or,
TE . — 12ka(m + n),

— the vertices in V3 contribute exactly (|V3| — k3) x 48(m +n) + k3 x 36(m +n),
or, Tg ;. — 12kz(m + n),

— the vertices in Vj contribute a total of 100n(m 4+ n) +7 = T4 ;. (see Table1),

— the vertices d. contribute at most 3m = T(e;, k-

Notice that k = k1 + k2 + k3, hence, the cost of f; is at most T .

Table 1. Contribution of vertices in V4 to the cost of homomorphism fr

Vertex v | w(v) fr(v) | ¢(fr(v)) | Contributed cost of v
b1 50n(m+mn) |u1 1 50n(m + n)

b2 1 U2 3 3

b3 160n(m + n) | us 0 0

Co 1 Vo 4 4

c1 50n(m+n) | v 1 50n(m +n)

c2 160n(m + n) | va 0 0

Conversely, assume that f is a homomorphism of G’ to H which costs less
than or equal to T k. Note that T < 150n(m + n). This prevents any vertex
v to map to a vertex a when c(v,a) x w(v) > Tg k. In particular, by and ¢
can only map to vertices a with c(a) < 3, i.e., v1,u1,v2,us. But b; and ¢; are
adjacent and the only edge in H among these four vertices is wjv;. Similarly,
bs and cp can only map to us or ve. Observe that f(b3) = vy is not feasible,
as it implies f(co) = uz and hence f(b1) € {vg,v2}. Thus, we have f(bs) = ug,
f(b1) = uq, fle1) =wv1, flco) =vo, f(c2) = vg, and finally f(b2) = us.

This restricts possible images of vertices in V. Specifically, all vertices in V3
are adjacent to by, thus, f can only map them to v; or vy, the neighbourhood
of uy = f(by). Similarly, each vertex in V5 will only map to vs or vy, and each
vertex in V3 will only map to v or vg.

Minimum Cost Homomorphisms with Constrained Costs 205

Let I denote the set of vertices of G that f maps to vy, ve or vs3. Notice that
I is an independent set in GG. This is because any two adjacent vertices in G are
of distance two in G’ but the shortest path between v; and vy, or between v,
and vs3, or between vz and v; in H’ has length 4.

We complete the proof by showing that |I| > k. Let |I| = k&’ and assume
for a contradiction that k' < k. Let f; denote the homomorphism of G’ to H
constructed from I as described in the first part of the proof with cost(fr) <
T 1. Observe that f and fr are identical for every vertex v € V; (i = 1,2, 3, 4).
Hence, |cost(f) — cost(fr)] < 3m. This implies that cost(f;) < cost(f) + 3m.
Also, note that cost(fr) > Tq i — 3m, hence, we have T i —3m < Tg , + 3m,
or equivalently, T » — T, < 6m. But this is a contradiction because:

Tow —Tow =T — Thp =12(m+n)(k — k') > 12(m + n).

|
We can now apply Theorem 3 and derive the same conclusion for the problem
without vertex weights.

Theorem 10. Let H be a fized graph containing the bipartite claw as an induced
subgraph. Then the minimum constrained cost homomorphism problem to H is
NP-complete.

Note that Lemma 7 implies that for trees, a chordal bipartite H is a proper
interval bigraph if and only if it does not contain an induced bipartite claw. Thus
we obtain Theorem 1 as a corollary.

4 Conclusion

We left open the complexity of the minimum constrained cost graph homomor-
phism problems in general. In particular, it remains to check whether the problem
is NP-complete also for graphs H that contain a bipartite net or a bipartite tent.

References

1. Hell, P., Negetfil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B 48,
92-110 (1990)

2. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19, 487-505 (1999)

3. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost
homomorphisms of graphs. Discrete Appl. Math. 154, 881-889 (2006)

4. Bar-Noy, A., Kortsarz, G.: Minimum color sum of bipartite graphs. J. Algorithms
28, 339-365 (1998)

5. Supowit, K.: Finding a maximum planar subset of a set of nets in a channel. IEEE
Trans. Comput.-Aided Des. 6, 93-94 (1987)

6. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost homomor-
phisms. Eur. J. Comb. 29, 900-911 (2008)

206

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Hell and M. Mohammadi Nevisi

Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comp. 28, 57-104 (1998)

Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. STAM J. Comput. 34(3), 720-742 (2005)

. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomor-

phisms. J. Graph Theory 42, 61-80 (2003)

Bulatov, A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic 12, 24:1-24:66 (2011)

Hell, P., Rafiey, A.: The dichotomy of minimum cost homomorphism problems for
digraphs. SIAM J. Discrete Math. 26(4), 1597-1608 (2012)

Hell, P., Rafiey, A.: The dichotomy of list homomorphisms for digraphs. In: Pro-
ceedings of the Symposium on Discrete Algorithms, SODA 2011, pp. 1703-1713
(2011)

Hell, P., Rafiey, A.: Duality for min-max orderings and dichotomy for min cost
homomorphisms. arXiv preprint arXiv:0907.3016 (2009)

Hell, P., Rafiey, A.: Minimum cost homomorphism problems to smooth and bal-
anced digraphs. Manuscript (2007)

Takhanov, R.: A dichotomy theorem for the general minimum cost homomorphism
problem. In: 27th International Symposium on Theoretical Aspects of Computer
Science, vol. 5, pp. 657-668 (2010)

Kolmogorov, V., Zivny, S.: The complexity of conservative valued CSPs. J. ACM
60, 10:1-10:38 (2013)

Miiller, H.: Recognizing interval digraphs and interval bigraphs in polynomial.
Discrete Appl. Math. 78, 189-205 (1997)

Spinrad, J., Brandstadt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18, 279-292 (1987)

Feder, T., Hell, P.: List homomorphism to reflexive graphs. J. Comb. Theory B
72, 236-250 (1998)

Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313-327 (2004)

Alekseev, V.E., Lozin, V.V.: Independent sets of maximum weight in (p, q)-
colorable graphs. Discrete Math. 265, 351-356 (2003)

http://arxiv.org/abs/0907.3016
http://arXiv.org/abs/0907.3016

Approximation Algorithms

An Improved Constant-Factor Approximation
Algorithm for Planar Visibility Counting
Problem

Sharareh Alipour!®™) Mohammad Ghodsi'?, and Amir Jafari!

! Sharif University of Technology, Tehran, Iran
Sharareh.alipour@gmail.com
2 Institute for Research in Fundamental Sciences (IPM), Tehran, Tran

Abstract. Given a set S of n disjoint line segments in R2, the visi-
bility counting problem (VCP) is to preprocess S such that the num-
ber of segments in S visible from any query point p can be computed
quickly. This problem can trivially be solved in logarithmic query time
using O(n*) preprocessing time and space. Gudmundsson and Morin
proposed a 2-approximation algorithm for this problem with a trade-
off between the space and the query time. They answer any query in
Oc(n'™?) with O.(n*"2%) of preprocessing time and space, where « is a
constant 0 < o < 1,e¢ > 0 is another constant that can be made arbi-
trarily small, and Oc(f(n)) = O(f(n)n®).

In this paper, we propose a randomized approximation algorithm for
VCP with a tradeoff between the space and the query time. We will
show that for an arbitrary constants 0 < [< % and 0 < § < 1,
the expected preprocessing time, the expected space, and the query
time of our algorithm are O(n*=**logn), O(n*~3%), and O(é%nﬁ logn),
respectively. The algorithm computes the number of visible segments
from p, or m,, exactly if m, < 5%”5 logn. Otherwise, it computes a

(14 6)-approximation mj;, with the probability of at least 1 — @, where
mp <my, < (1+8)mp.

Keywords: Computational geometry - Visibility - Randomized
algorithm - Approximation algorithm - Graph theory

1 Introduction

Problem Statement: Let S = {s1,s2,...,5,} be a set of n disjoint closed line
segments in the plane contained in a bounding box, B. T'wo points p and ¢q in the
bounding box are visible to each other with respect to S, if the open line segment
Pq does not intersect any segments of S. A segment s; € S is also said to be
visible from a point p, if there exists a point g € s; such that g is visible from p.
The visibility counting problem (VCP) is to find m,,, the number of segments of
S visible from a query point p. We know that the wisibility polygon of a given
point p € B is defined as VPs(p) = {¢ € B : p and ¢ are visible}, and the
visibility polygon of a given segment s; is defined as V Ps(s;) = U, c,, V Ps(q)-

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 209-221, 2016.
DOI: 10.1007/978-3-319-42634-1_17

210 S. Alipour et al.

Consider the 2n end-points of the segments of S as vertices of a geometric
graph. Add a straight-line-edge between each pair of visible vertices. The result
is the visibility graph of S or VG(S). We can extend each edge of VG(S) in both
directions to the points that the edge hits some segments in S or the bounding
box. This creates at most two new vertices and two new edges. Adding all these
vertices and edges to VG(S) results in a new geometric graph called the extended
visibility graph of S or EVG(S). EVG(S) reflects all the visibility information
from which the visibility polygon of any segment s; € S can be computed [9].

Related Work: VPs(p) can be computed in O(nlogn) time using O(n)
space [3,13]. Vegter proposed an output sensitive algorithm that reports V Pg(p)
in O(|V Ps(p)|log(yp<y7)) time, by preprocessing the segments in O(mlogn)
time using O(m) space, where m = O(n?) is the number of edges of VG(S) and
|V Ps(p)| is the number of vertices of V Ps(p) [14].

EVG(S) can be used to solve VCP. EVG(S) can optimally be computed in
O(nlogn 4+ m) time [7]. If a vertex is assigned to any intersection point of the
edges of EVG(S), we have a planar graph, which is called the planar arrangement
of the edges of EVG(S). All points in any face of this arrangement have the same
number of visible segments and this number can be computed for each face in
the preprocessing step [9]. Since there are O(n?) faces in the planar arrangement
of EVG(S), a point location structure of size O(n*) can answer each query in
O(logn) time. But, O(n*) preprocessing time and space is high. Also, for any
query point p, by computing V Ps(p), m, can be computed in O(nlogn) with
no preprocessing. This has led to several results with a tradeoff between the
preprocessing cost and the query time [2,4,8,12,15].

There are two approximation algorithms for VCP by Fischer et al. [5,6]. One
of these algorithms uses a data structure of size O((m/r)?) to build a (r/m)-
cutting for EVG(S) by which the queries are answered in O(logn) time with
an absolute error of r compared to the exact answer (1 < r < n). The second
algorithm uses the random sampling method to build a data structure of size
O((m210g°M n)/1) to answer any query in O(I1log®™® n) time, where 1 <1 < n.
In the latter method, the answer of VCP is approximated up to an absolute
value of dn for any constant & > 0 (§ affects the constant factor of both data
structure size and the query time).

In [13], Suri and O’Rourke represent the visibility polygon of a segment by
a union of set of triangles. Gudmundsson and Morin [9] improved the cover-
ing scheme of [13]. Their method builds a data structure of size O.(m!*®) =
Oc(n?0+9)Y in O (m't*) = 0. (n?(1+2)) preprocessing time, from which each
query is answered in O (m(*=®)/2) = O.(n'~) time, where 0 < o < 1. This algo-
rithm returns m;, such that m, < m;, < 2m,. The same result can be achieved
from [1,11]. In [1], it is proven that the number of visible end-points of the seg-
ments in S, denoted by ve,, is a 2-approximation of m,, that is m, < ve, < 2m,,.

Our Results: In this paper, we present a randomized (1 4 d)-approximation
algorithm, where 0 < § < 1. The expected preprocessing time and space of our
algorithm are O(m?~3%/2logm) and O(m?3P/2) respectively, and our query

An Improved Constant-Factor Approximation Algorithm for Planar VCP 211

time is O(é%mﬂ/ 2logm), where 0 < 8 < % is chosen arbitrarily in the pre-

processing time. In this algorithm, a graph G(p) is associated to each query
point p; the construction of G(p) is explained in Sect. 2. It will be shown that
G(p) has a planar embedding and this formula holds: m, =n — F(G(p)) + 1 or
n — F(G(p)) + 2, where F(G(p)) is the number of faces of G(p). Using Euler’s
formula for planar graphs, we will show that if p is inside a bounded face of
G(p), then m, = ve, — C(G(p)) + 1, otherwise m, = ve, — C(G(p)), where
C(G(p)) is the number of connected components of G(p). In Sects. 3 and 4, we
will present algorithms to approximate ve, and C(G(p)). This leads to an overall
approximation for m,. Some detail of our algorithm is as follows: First, we try
to calculate V Ps(p) by running the algorithm presented in [14] for %mﬁ/ 2logm
steps. If this algorithm terminates, the exact value of m,, is calculated, which is
obviously less than %mﬁ/ 2log m. Otherwise, our algorithm instead returns m;,
such that m, <m/, < (146)m,, with the probability of at least 1— @. Table 1
compares the performance of our algorithm with the best known result for this
problem. Note that if we choose a constant number 0 < § < 1, then our query
time is better than [9], however our algorithm returns a (1 + §)-approximation
of the answer with a high probability.

Table 1. Comparison of our method and the best known result for VCP. Note that
B0<pB< %) is chosen in the preprocessing time and 1+ 6 (0 < 6 < 1) is the
approximation factor of the algorithm which affects the query time and O.(f(n)) =

O(f(n)n°), where € is a constant number that can be arbitrary small.

Reference | Preprocessing time | Space Query Approx-Factor
[9] O (m2~3P/2) O (m2738/2) | O (m®P/%) 2
Our result | O(m?~3/2logm) | O(m>~3#/?) O(é%mﬁ/2 logm)|1+46

2 Definitions and the Main Theorem

.
For each point a’ € s;, let pa’ be the ray emanating from the query point p
—

toward a’ and let a = pr(a’) be the first intersection point of pa’ and a segment
in S or the bounding box right after touching a’. We say that a = pr(a’) is
covered by a’ or the projection of a’ is a. Also, suppose that x’y’ is a subsegment
of s; and Ty is a subsegment of s;, such that pr(z’) = « and pr(y’) = y and for
any point 2’ € z'y’, pr(z') € Ty, then we say that Ty is covered by a'y’.

For each query point p, we construct a graph denoted by G(p) as follows: a
vertex v; is associated to each segment s; € S, and an edge (v;,v;) is put if s,
covers one end-point of s; (or vice-versa; that is, if s; covers one end-point of
s;j). Obviously, there are two edges between v; and v;, if s; (or s;) covers both
end-points of s; (or s;). As an example, refer to Fig. 1(a) and (d). Note that the
bounding box is not considered here.

212 S. Alipour et al.

I(s1) S1 r(s1) a S1

r(sg) /
1(sp) 52707 1'(S4)S4r(s4) i 84
837'(53) \,T(g) s3
isg) =1e) 55 L1
p p
a) (b)

v3 vg

p- p-
(c) (d)

Fig. 1. The steps to draw a planar embedding of G(p). (a) The segments are s1, ..., S5
with their left and right end-points and a given query point is p. (b) For each end-point
a € s; not visible to p, if ' € s; such that pr(a’) = a, we draw aa’. (c) Put a vertex v;
for each segment s; in a distance sufficiently close to the middle of s;. For each a and
a’ (described in (b)), connect a to v; and a’ to v;. This creates an edge between v; and
v; shown in red (d) Remove the segments and the remaining is the planar embedding
of G(p). Note that the final embedding has 5 vertices and 5 edges and each edge is
drown as 3 consequence straight lines. (Color figure online)

For any segment s € S, let I(s) and r(s) be the first and second end-points
of s, respectively swept by a ray around p in clockwise order (Fig.1(a)).

Lemma 1. G(p) has a planar embedding.

Proof. Here is the construction. For each end-point a € s; not visible from p,
let @’ € s; such that pr(a’) = a. Draw the straight-line aa’. Doing this, we have
a collection of non-intersecting straight-lines. For each s;, we put a vertex v;
located very close to the mid-point of s;. Also, for each segment aa’, we connect
a to v; and a’ to v;. This creates an edge consisting of three consecutive straight-
lines 7;a, ad/, and a’v; that connects v; to v;. Obviously, none of these edges

An Improved Constant-Factor Approximation Algorithm for Planar VCP 213

intersect. Finally, all the original segments are removed. The remaining is the
vertices and edges of a planar embedding of G(p) (See Fig.1).

From now on, we use G(p) as the planar embedding of the graph G(p). As we
know the Euler’s formula for any non-connected planar graph G with multi-
ple edges is: V(G) — E(G) + F(G) = 1+ C(G), where E(G),V(G), F(G), and
C(G) are the number of edges, vertices, faces, and connected components of G,
respectively. We have the following theorem to calculate m,,, using G(p).

Theorem 1. The number of segments not visible from p is equal to F(G(p)) —2
if p is inside a bounded face of G(p), or is equal to F(G(p)) — 1, otherwise.

Proof. We construct a bijection ¢ between the segments not visible from p to
the faces of G(p) except the unbounded face and the face that contains p. This
will complete the proof of our theorem.

Suppose that s; is a segment not visible from p. Then, we can partition
s; into k subsegments, Goqr, q1Gz, - - -, Qk—1Gx such that go = I(s;), qr = 7(s:),
and for each @;giy1, there is a subsegment gjq;,, € s; that covers Gigi;1. Let
s1,85,...,5) be the set of segments such that Ty € sj,, covers G;gir1 (note
that some segments may appear more than once in the above sequence) (Fig. 2).
We claim that the vertices v;, v}, v5, ..., v}, form a bounded face of G(p) that
does not contain p. In ¢, we associate this face to s;. Since v} is the vertex
associated to the first segment that covers gogr, s§ will cover I(s;) and hence
v; is adjacent to vj. Similarly, since s} covers 7(s;), hence v; is adjacent to
v},. The next subsegment that covers a subsegment of s; comes from s5. This
means that r(s}) is covered by s} or I(s}) is covered by s}. This implies that
v} is adjacent to vy. Similarly, we can show that v; is adjacent to v;,, for all
1 <i < k. To complete the construction, we show that the closed path formed

a1 Si a2 a3 44
I(s1) =qqg « 7 77— 7r(s1) = g5
\ \ W | , ;o
\ 5 /
vg! ‘\2: i r,
a3 T oy
< LSy
\\ \\ 1 ’%’S//

Vo *%’_/3\‘
v ! 1 T
vy ! ,S§//
‘o %/
v T
\ ro,
VS ;e
I e VA
) 7
Wby,
N
N
N7
i
¥
p

Fig.2. s; is not visible from p. It can be partitioned into 5 subsegments
Goq1,q1G2, 23, G3qa, and qags, each is covered respectively by subsegment of
s, sh, 845,84, and s5 shown above.

214 S. Alipour et al.

by v; — v{ — vh,... — v, — v; is a bounded face not containing p. Consider
a ray around p in clockwise order. The area that this ray touches under s; and
above s,..., s}, is bounded by v;, v}, v5,...,v}. So, p is not inside this region.

Now, we show that our map ¢ is one-to-one and onto. If ¢(s;) = ¢(s;), then
according to the construction of ¢, a subsegment of s; covers a subsegment of s;
and a subsegment of s; covers a subsegment of s;. This is a contradiction since
these segments do not intersect. To prove the onto-ness, we need to show for any
bounded face f that does not contain p, there is a vertex v; corresponding to a
segment s; that is not visible to p such that ¢(s;) = f.

To find s;, we use the sweeping ray around p. Since f is assumed to be
bounded and not containing p, the face f is between two rays from p; one from
the left and the other from the right. If we start sweeping from left to right, there
is a segment corresponding to the vertices of f whose end-point is the first to be
covered by the other segments corresponding to the vertices of f. We claim that
s; is the desired segment i.e. s; is not visible to p and ¢(s;) = f. For example in
Fig. 2, the closed path v; — v| — vy — v — v}y, — v}, — v; forms a face and s;
is the first segment among {s;, s}, 5, s, s, } such that I(s;) is covered by one of
the segments in {s;, s}, s, s, $4 }.

Obviously, I(s;) is not visible from p. v} is adjacent to v; which means that
a subsegment of s} covers a subsegment of s;. Since v] and v} are adjacent,
this means that a subsegment of s, consecutively covers the next subsegment
of s; right after s}. Continuing this procedure, we conclude that a subsegment
of each s} covers some subsegment of s; continuously right after s;_;. v}, and v;
are also adjacent, so r(s;) is not visible from p. We conclude that subsegments
of sq,sh ..., s, completely cover s; and hence s; is not visible from p.

So, if p is in the unbounded face of G(p), the number of segments which are
not visible from p is F(G(p)) — 1, otherwise it is F'(G(p)) — 2.

The Euler’s formula is used to compute F(G(p)). Obviously, V(G(p)) is n. For
each end-point not visible from p, an edge is added to G(p); therefore, E(G(p))
is 2n — ve, (ve, was defined above as the number of visible end-points from p).
The Euler’s formula and Theorem 1 indicate the following lemma.

Lemma 2. If p is inside a bounded face of G(p), then m, = ve, — C(G(p)) +1,
otherwise, m, = ve, — C(G(p)).

In the rest of this paper, two algorithms are presented; one to approximate ve,
and the other to approximate C(G(p)). By these two algorithms and applying
Lemma 2, an approximation value of m,, is calculated. The main result of this
paper is thus derived from the following theorem. The detailed proof is presented
in http://arxiv.org/abs/1605.03542.

Theorem 2 (Main theorem). For any 0 < § <1 and 0 < < %, VCP can be
approximated in O((;%mﬁ/2 logm) query time using O(m>~3%/2logm) expected
preprocessing time and O(m?>~3P/2) expected space. This algorithm returns a
value my, such that with the probability at least 1 — log%n, mp < my, < (1+0)my,
when my, > ZmP/%logm and returns the ezact value when m;, < s5m?/?logm.

http://arxiv.org/abs/1605.03542

An Improved Constant-Factor Approximation Algorithm for Planar VCP 215

3 An Approximation Algorithm to Compute ve,

In this section, we present an algorithm to approximate ve,, the number of visible
end-points. In the preprocessing phase, we build the data structure of the algo-
rithm presented in [14] which calculates V Ps(p) in O(|V Ps(p)|log(n/|V Ps(p)l))
time, where |V Pg(p)| is the number of vertices of V Pg(p). In [14], the algorithm
for computing V Ps(p), consists of a rotational sweep of a line around p. During
the sweep, the subsegments visible from p along the sweep-line are collected. In
the preprocessing phase, we choose a fixed parameter 3, where 0 < g < % In
the query time we also choose a fixed parameter 0 < § < 1 which is the value of
approximation factor of the algorithm.

We use the algorithm presented in [14] to find the visible end-points, but for
any query point, we stop the algorithm if more than %mﬂ/ 2]log m of the visible
end-points are found.

If the sweep line completely sweeps around p before counting %mﬂ/ 2logm
of the visible end-points, then we have completely computed V Ps(p) and we
have |V Ps(p)| < %mﬁ/ 2logm. In this case, the number of visible segments can
be calculated exactly in O(é%mﬁ/2 logm) time. Otherwise, ve, > %mﬁﬂ logm
and the answer is calculated in the next step of algorithm, that we now explain.

The visibility polygon of an end-point a is a star shaped polygon consisting
of m, = O(n) non-overlapping triangles [3,13], which are called the wisibility
triangles of a denoted by VTgs(a). Notice that m, is the number of edges of
EVG(S) incident to a. The query point p is visible to an end-point a, if and
only if it lies inside one of the visibility triangles of a. Let VTg be the set of
visibility triangles of all the end-points of the segments in S. Then, the number
of visible end-points from p is the number of triangles in VTg containing p.
We can construct VTs in O(mlogm) = O(n?logn) time using EVG(S) and
VTs| = O(m) = O(n?) [9).

We can preprocess a given set of triangles using the following lemma to count
the number of triangles containing any query point.

Lemma 3. Let A be a set of n triangles. There exists a data structure of size
O(n?), such that in the preprocessing time of O(n?logn), the number of triangles
containing a query point p can be calculated in O(logn) time.

Proof. Consider the planar arrangement of the edges of the triangles in A as a
planar graph. Let f be a face of this graph. Then, for any pair of points p and
q in f, the number of triangles containing p and ¢ are equal. Therefore, we can
compute these numbers for each face in a preprocessing phase and then, for any
query point locate the face containing that point. There are O(n?) faces in the
planar arrangement of A, so a point location structure of size O(n?) can answer
each query in O(logn) time [10]. Note that the number of triangles containing
a query point differs in 1 for any pair of adjacent faces.

216 S. Alipour et al.

3.1 The Algorithm

Here, we present an algorithm to approximate ve,. We use this algorithm
when m, > %mﬂ/ 2logm. In the preprocessing phase we take a random sub-
set RVT1 C VTg such that each member of Vs is chosen with the probability
of

mﬂ
Lemma 4. E(|RVTi|) = O(m!=P).

Proof. Let VT = {A1, A, ..., Ay}, where m’ = O(m) = O(n?) and X; = 1
if A; € RTVy, and X; = 0 otherwise. We have,

m’ m’ m’ 1 m’
E(RVTI)=EQQY X)=) EX)=) —5 =5 =0m"").
Suppose that in the preprocessing time, we choose m?/2? independent random
subsets RVTy,...,RVT, 52 of VIs. By Lemma 3, for any query point p, the
number of triangles of each RV'T; containing p denoted by (vep);, is calculated
in O(logm) time by O(m?~2#logm) expected preprocessing time and O(m?~29)
B ey
mB/2

expected space. Then, ve; =m is returned as the approximation

value of ve,.

3.2 Analysis of Approximation Factor
Lemma 5. Let X; = mP(vey);, we have E(X;) = ve,,.

Proof. Suppose that VT'(p) = {4}, A5, ..., A}, } C VTs be the set of all tri-
angles containing p. Let Y; = 1 if A7 € RVT;, and Y; = 0 otherwise. So,

(vey)i = Y0 ¥ and B(ve)) = BS54 1)) = 25, B(X) = E(mP(ve,);) =
I B((vey)) = mP 2% = ve,

In addition, we can conclude the following lemma:

B2,
Lemma 6. E(==Lz—) = ve,.

So, X1,Xs,...,X,,6/2 are random variables with E(X;) = vep,. According to
Chebyshev’s Lemma the following lemma holds

Lemma 7 (Chebyshev’s Lemma). Given X1, Xa, ..., X, sequence of i.i.d.’s ran-

dom variables with finite expected value E(X1) = E(X3) = ... = p, we have,
X1+ +X, Var(X)
P((|T —ul) >e1) < e
1

Lemma 8. With a probability at least 1 —
(14 0)vep.

we have, (1 — d)ve, < vey, <

log m

An Improved Constant-Factor Approximation Algorithm for Planar VCP 217

Proof. Using Lemma 7, we choose €1 = dve,. Here, § indicates the approximation
factor of the algorithm. Obviously, Var(X;) = m??(ve,)(1 — -15)-15. So,

P = P(|ve!, — ve,| > &)<M
= P(|ve, — ve, vep) < P25 (ve 2

We know that ve, > s:m?/?logm, so P = P(|ve], — ve,| > dvep) < ﬁ. With
the probability of at least 1 — P, we have, (1 — d)ve, < vey, < (1 + d)ve,. Also,

for a large m, we have P ~ 0.

3.3 Analysis of Time and Space Complexity

In the first step of the query time, we run the algorithm of [14]. The preprocess-
ing time and space for constructing the data structure of [14] are O(mlogm)
and O(m), respectively, which computes V Ps(p) in O(|V Ps(p)|log(n/|V Ps(p)|))
time. As we run this algorithm for at most 5—137715/ 2log m steps, the query time
of the first step is O(é%,mﬁ/2 logm).

According to Lemma 4, E(|RVT;|) = O(m'~#). Using Lemma 3, the expected
preprocessing time and space for each RV T; are O(m?~2%logm) and O(m?~25)
respectively, such that in O(logm) we can calculate (vep);. So, the expected
preprocessing time and space are m?/20(m? 2% logm) = O(m?~ 2% logm) and
mP/20(m228) = O(m2=39) respectively. In the second step, for each RVT;
the value of (vep); is calculated in O(logm). Therefore, the query time is
O(FmP/2logm) + O(mP/?log m). So, we have the following lemma.

Lemma 9. There exists an algorithm that for any query point p, approxi-
mates ve, in O((s%mﬁ/2 logm) query time using O(m?>~3%/2logm) expected pre-
processing time and O(m?~3%/2) expected space (0 < B < 2). This algorithm
returns the exact value of ve, when ve, < smP/?logm. Otherwise, a value
of vey, is returned such that with the probability of at least 1 — L we have

logm~’
(1= d)ve, <wvep, < (14 6)vep.

4 An Approximation Algorithm for Computing
the Number of Components of G(p)

Now, we explain an algorithm to compute the number of connected components
of G(p), each is simply called a component of G(p). Let ¢ be a component such
that p is not inside any of its faces. Without loss of generality we can assume
that p lies below c. Obviously, there exist rays emanating from p that do not
intersect any segments corresponding to the vertices of c. We start sweeping one
of these rays in a clockwise direction. Let I(c) (left end-point of ¢) be the first
end-point of a segment of ¢ and r(c) (right end-point of ¢) be the last end-point
of a segment of ¢ that are crossed by this ray (Fig. 3). This way every component

218 S. Alipour et al.

¢ has [(c) and r(c) except the component containing p. Also, note that r(c) and
I(¢) do not depend on the choice of the starting ray. As said, the bounding box
is not a part of G(p), but G(p) is contained in the bounding box.

Lemma 10. For each component c, except the one containing p, the projections
of l(c) and r(c) both belong either to the same segment or the bounding box.

Proof. Assume that pr(l(c)) belongs to a segment s € S. Since I(s) is on the left
of I(c), s can not be among the segments of c. We claim that r(s) is on the right
of r(c). Obviously, if this claim is true then, if pr(r(c)) € s, then I(s’) is on the
left of I(c). Clearly, if s # ', then these two should intersect, which is impossible.
Also, this implies that if pr(I(c)) is on the bounding box, then pr(r(c)) should to
be on the bounding box as well. The claim is proven by contradiction. Assume
that 7(s) is on the left of r(c). Since, r(s) is not visible from p, then there should
exist a segment s’ that covers r(s). Since, s is not in ¢ and s’ is connected to s, s’
can not be in ¢, so I(s') is to the right of I(c) and hence is not visible. Therefore,
there should exist a different segment s” that covers I(c) and with the same
argument s” can not be in ¢ and I(s”) should be covered by another segment.
This process can not be continued indefinitely since the number of segments is
finite and therefore we will reach a contradiction.

Let s),s5,s5, and sj be the segments of the bounding box. According to
Lemma 10, we can associate a pair of adjacent visible subsegments or a connected
visible part of the bounding box for each component of G(p). For example, in
Fig. 3, s1 has two visible subsegments which are associated to the component
composed of s3 and s4. If we can count the number of visible subsegments of
each segment and the number of visible parts of the bounding box, then we can
compute the exact value of C(G(p)). Because each pair of consecutive visible

\ / S6

/

’

\ \ / /\/l(s
N Im)\/s roe4> 2

" | l(é'i)‘\-/r‘a5/) /

©
)

Fig. 3. aa’ and bb’ are the visible subsegments of s;. The bounding box has one visible
part from c to ¢’. G(p) has three components; {s1, s2, s6}, {83, s4}, and {s5}. I(s2),(s3),
and [(s5) are the left end-points of these components, respectively. r(ss),r(s4), and
r(ss) are the right end-points of these components, respectively.

An Improved Constant-Factor Approximation Algorithm for Planar VCP 219

subsegments of a segment and each visible part of the bounding box are asso-
ciated to a component. Let ¢’ be the number of visible parts of the bounding
box. If ¢/ > 0, then p is in the unbounded face. So, if each segment s; has ¢;
visible subsegments, then C(G(p)) = ¢ + Y. max{(¢; — 1),0}. For example
inFig.3,c1 =2, ca =1, c3=1,¢c4 =2, ¢c5 =1 and ¢g = 1, also ¢/ = 1. This
implied that C(G(p)) = 3. If ¢ = 0, then p is in a bounded face and this face
is contained in a component with no left and right end-point, so in this case
C(G(p) = 1+ Y7 max {(¢; — 1), 0}.

In the following we propose an algorithm to approximate the number of
visible subsegments of each segment s; € SU {s], s}, s5, s4 }.

4.1 Algorithm

According to [9], it is possible to cover the visibility region of each segment s; €
S U {s],sh,s5, sy} with O(ms,) triangles denoted by VT'(s;). Here, |VT(s;)| =
O(ms,), where mg, is the number of edges of EVG(S) incident on s;. Note that
the visibility triangles of s; may overlap. If we consider the visibility triangles of
all segments, then there is a set VTis = {A;, Ag, ...} of [VTs| = O(m) triangles.
We say A, is related to s; if and only if A; € VT'(s;). For a given query point p,
my,, the number of triangles in VT's containing p, is between m,, and 2m,,. So, mj,
gives a 2-approximation factor solution for VCP [9]. Since the visibility triangles
of each segment may overlap, some of the segments are counted repeatedly. In
[9], it is shown that each segment s; is counted ¢; times, where ¢; is the number
of visible subsegments of s;. In other words, there are ¢; triangles related to s;
in VTs which contain p.

A similar approach can be used to approximate C(G(p)). A random subset
RVT, C VTg is chosen such that each member of VT is chosen with probability
#. For a given query point p, let ¢; ; > 1 be the number of triangles related
to s; in RV} containing p. We report Cy = Y7 | (mPcj, — 1) as the approx-
imated value of C(G(p)) received by RVT;. We choose m?/? random subsets
RVTy,...,RVT, 5,2 of VIs. Let p be the given query point, for each RV},

mB/2

. eI
C; = E?:l(mﬁcgvj — 1) is calculated. At last, C}, = ==~ is reported as the
approximation value of C(G(p)).

4.2 Analysis of Approximation Factor

We show that with the probability at least —1—, if C(G(p)) > J%mB/Q log m,

logm?’

then C), is a (1 + d)-approximation of C(G(p)).
Lemma 11. E(C;) = C(G(p)).

Proof. E(Cj) = E(Z?:l mﬁcaj -1) = Z?:1 E(mﬁcé,j -1) = Z?:l ¢ —1=
C(G(p)).

220 S. Alipour et al.

Using Lemma7, we have, P = P(|% - C(G(p))| > dC(G(p))) <

#@W. Var(C;) = mQBC(G(p))(#)(l—#). Since we have, C(G(p)) >

Ci4+C 579
szmP/2logm, then P = P(| =072 — C(G(p))| > 6C(G(p))) < k-

So, with the probability at least 1—P, (1-0)C(G(p)) < C,, < (1+6)C(G(p)).
And for a large m, we have, P ~ 0.

4.3 Analysis of Time and Space Complexity

By Lemma 3, for each RV'T;, a data structure of expected preprocessing time and
size of O(m?~2%logm) and O(m?~2%) is needed. RV T; returns C; in O(logm)
for each query point p. So, the expected space for all m%/? data structures is
O(m?~28+8/21ogm) and the query time for calculating C, is O(mP/?logm).

Lemma 12. There ezists an algorithm that approzimates C(G(p)) in
O((s%mﬁ/2 logm) query time by using O(m2_35/2) expected preprocessing time
and O(m?>=38/2) expected space (0 < § < %) For each query p, this algorithm
returns a value C), such that with probability at least 1 — -=—, (1—0)C(G(p)) <

logm?’
C), < (1+0)C(G(p)) when C(G(p)) > 5zmP/?logm.

References

1. Alipour, S., Zarei, A.: Visibility testing and counting. In: Atallah, M., Li, X.-Y.,
Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 343-351. Springer, Heidel-
berg (2011)

2. Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and main-
tenance in simple polygons. Discret. Comput. Geom. 27, 461-483 (2002)

3. Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal
region with holes. IEICE Trans. 68(9), 557-589 (1985)

4. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons.
Comput. Geom. Theory Appl. 23(7), 313-335 (2002)

5. Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F., Ziegler M.: Planar
visibility counting. CoRR, abs/0810.0052 (2008)

6. Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F., Ziegler M.: Planar visi-
bility counting. In: Proceedings of the 25th European Workshop on Computational
Geometry (EuroCG 2009), pp. 203-206 (2009)

7. Ghosh, S.K., Mount, D.: An output sensitive algorithm for computing visibility
graphs. STAM J. Comput. 20, 888-910 (1991)

8. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

9. Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. In: Annual
Symposium on Computational Geometry, pp. 77-86 (2010)

10. Kirkpatrick, D.: Optimal search in planar subdivisions. STAM J. Comput. 12(1),
28-35 (1983)

11. Nouri, M., Ghodsi, M.: Space/query-time tradeoff for computing the visibility poly-
gon. Comput. Geom. 46(3), 371-381 (2013)

12. Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl.
6(3), 279-308 (1996)

13.

14.

15.

An Improved Constant-Factor Approximation Algorithm for Planar VCP 221

Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In: Proceedings of the Second Annual Symposium on Com-
putational Geometry (SCG 86), pp. 14-23 (1986)

Vegter, G.: The visibility diagram: a data structure for visibility problems and
motion planning. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 90. LNCS, vol. 447,
pp. 97-110. Springer, Heidelberg (1990)

Zarei, A., Ghodsi, M.: Efficient computation of query point visibility in polygons
with holes. In: Proceedings of the 21st Annual ACM Symposium on Computational
Geometry (SCG 2005) (2005)

Approximation Algorithms for the Star k-Hub
Center Problem in Metric Graphs

Li-Hsuan Chen'!, Dun-Wei Cheng?, Sun-Yuan Hsieh?, Ling-Ju Hung?®9,
Chia-Wei Lee?, and Bang Ye Wu'!

! Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 62102, Taiwan
{c1h100p,bangye}@cs.ccu.edu.tw
2 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan 701, Taiwan
dunwei.ncku@gmail.com, hsiehsy@mail.ncku.edu.tw,
hunglc@cs.ccu.edu.tw, cwlee@csie.ncku.edu.tw

Abstract. Given a metric graph G = (V, E, w) and a center ¢ € V, and
an integer k, the STAR k-HUB CENTER PROBLEM is to find a depth-2
spanning tree T' of G rooted by c¢ such that ¢ has exactly k children
and the diameter of T' is minimized. Those children of ¢ in T are called
hubs. The STAR k-HUB CENTER PROBLEM is NP-hard. (Liang, Opera-
tions Research Letters, 2013) proved that for any € > 0, it is NP-hard
to approximate the STAR k-HUB CENTER PROBLEM to within a ratio
1.25 — €. In the same paper, a 3.5-approximation algorithm was given
for the STAR k-HUuB CENTER PROBLEM. In this paper, we show that
for any ¢ > 0, to approximate the STAR k-HUB CENTER PROBLEM
to a ratio 1.5 — € is NP-hard. Moreover, we give 2-approximation and
5

3-approximation algorithms for the same problem.

1 Introduction

Hub location problems have been well studied in the literatures since they have
various applications in transportation and telecommunication systems (see the
two survey papers [1,3]). Suppose that we have a set of demand nodes that want
to communicate with each other through some hubs in a network. If a demand
node can be served by several hubs, then this kind of hub location problem
is called multi-allocation. A hub location problem is called single allocation if
each demand node can be served by exactly one hub. The goal of classical hub
location problems is to minimized the total cost of routing in the network. In this

This research is partially supported by the Ministry of Science and Technology of
Taiwan under grants MOST 103-2218-E-006-019-MY3, MOST 103-2221-E-006—
135-MY3, MOST 103-2221-E-006-134-MY2.
Ling-Ju Hung is supported by the Ministry of Science and Technology of Taiwan
under grant MOST 104-2811-E-006-056.
Chia-Wei Lee is supported by the Ministry of Science and Technology of Taiwan
under grant MOST 104-2811-E-006-037.

© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 222-234, 2016.
DOI: 10.1007/978-3-319-42634-1_18

Approximation Algorithms for the Star k-Hub Center Problem 223

paper, we consider the STAR k-HUB CENTER PROBLEM introduced by Yaman
and Elloumi [11]. Tt is classified as single allocation. Unlike those classical hub
location problems, STAR k-HUB CENTER PROBLEM is used to design a two level
telecommunications network with the optimization criterion that the poorest
service quality is minimized. Suppose that we have a set of demand nodes located
in a metric space, each of them would like to communicate with all the others
in a two-level tree structure network. In the two-level network, there is a given
central hub ¢ and we want to pick £ nodes among the set of demand nodes as
hubs and to connect them with the central hub c¢. Then each of the remaining
demand nodes is connected to exactly one of the k chosen hubs such that the
longest path in the tree structure network is minimized.

Let u,v be two vertices in a tree T. Use dr(u,v) to denote the distance
between u,v in T. Define D(T) = maxy yer dr(u,v) called the diameter of T
For a vertex v in a tree T', we use Nr(v) to denote the set of vertices adjacent
to v in T'. In this paper, we consider a graph G = (V, E,w) with a distance
function w(-,-) being a metric on V such that w(v,v) = 0, w(u,v) = w(v,u),
and w(u,v) + w(v,r) > w(u,r) for all u,v,r € V. We give the formal definition
of the STAR k-HUB CENTER PROBLEM as follows.

STAR k-HUB CENTER PROBLEM (SKHCP)
Input: A metric graph G = (V, E,w), a center vertex ¢ € V', and a positive

integer k.
Output: A depth-2 spanning tree T™ rooted by c called the central hub such

that ¢ has exactly k children (called hubs) and the diameter of T*,
D(T™*), is minimized.

Yaman and Elloumi [11] showed the NP-hardness of STAR k-HUB CENTER
PROBLEM and proposed two integer programming formulations of the same prob-
lem. Liang [8] showed that the STAR k-HUB CENTER PROBLEM does not admit
a (1.25 — ¢)-approximation algorithm for any € > 0 unless P = NP and gave a
3.5-approximation algorithm.

A similar problem of the STAR k-HUB CENTER PROBLEM called the SINGLE
ALLOCATION p-HUB CENTER PROBLEM was introduced in [2,10] and further
studied in [6,7,9]. The difference between the two problems is that the SINGLE
ALLOCATION p-HUB CENTER PROBLEM assumes that hubs are fully intercon-
nected. Thus, for SINGLE ALLOCATION p-HUB CENTER PROBLEM, the commu-
nication between hubs is not necessary to go through a specified central hub c.

In this paper, we answer the open problem proposed by Liang [8] that for the
STAR k-HUuB CENTER PROBLEM whether we can bridge the gap between the
lower bound (1.25 — €) and the upper bound 3.5 of the approximation ratio. We
show that for any € > 0, to approximate the STAR k-HUB CENTER PROBLEM
to a ratio (1.5 — €) is NP-hard. Moreover, we give a 2-approximation algorithm
running in time O(n) and a g—approximation algorithms for the same problem
running in time O(kn?).

224 L.-H. Chen et al.

2 Inapproximability

In this section, we show that for any e > 0, if there exists a (1.5 — €)-
approximation algorithm for STAR k-HUB CENTER PROBLEM running in poly-
nomial time, then SET COVER can be approximated to within a ratio 3 in poly-
nomial time.

SET COVER
Input: A universe U of elements, |U/| = n and a collection S of subsets of U.
Output: S’ C S of minimum cardinality such that UsiGS’ s; =U.

The SET COVER problem is a well-known NP-hard problem. Dinur and
Steurer [5] showed that for any € > 0, to approximate SET COVER to within a
factor (1 — €)Inn is NP-hard.

Lemma 1. For any € > 0, if STAR k-HUB CENTER PROBLEM can be approz-
imated to a ratio (1.5 — €) in polynomial time, then SET COVER admits a
3-approzimation algorithm running in polynomial time.

Proof. Let (U,S) be an input instance of SET COVER. We construct a metric
graph G = (Vi UV US US2 U {c, x1,x2,y}, E,w) of the STAR k-HUB CENTER
PROBLEM according to (U, S) where c¢ is the specified center. Let V; = U and
Vo = U. For each set s; € S create a vertex in S; and a vertex in Ss. In the
following, we define the cost of edges in G.

- w(c,v) =2ifve ViUVaU{y} and w(c,z) =1if z € S USy U {x1,22}.
— For vy, € V7,
o w(vy,v)) =2if v] € Vi;
o w(vy,vh) =4if v € Vo
e w(vy,q) = 1if vy is an element of ¢ € S where ¢ € S; represents the set
q € S; otherwise w(v1,q) = 2;
e w(v1,q)=31if ¢’ € Sy;
e w(vi,21) = 2; w(vi, z2) = 3; w(vr,y) = 4.
— For vy € V5,
o w(vg,vh) =2 if v} € Va;
e w(vz,q) =3 if ¢ € Sy;
o w(ve,q') = 11if vy is an element of ¢ € S where ¢’ € Sy represents the
set ¢’ € S; otherwise w(vy, q') = 2;
o w(ve,x1) = 3; w(vg, x2) = 2; w(vg,y) = 4.
For p € &4,
e w(p,q) =2if g € Sy;
e w(p,q)=2if ¢ € Sy
o w(p,z1) =1; w(p,x2) = 2; w(p,y) = 3.
— For p' € S,
e w(p',q')=2if ¢’ € Sy;
o wp,z1) =2 w(p,z2) =1 w(p,y) = 3.
- w(z1,22) =2 and w(zy,y) = 3.
w(ze,y) = 3.

Approximation Algorithms for the Star k-Hub Center Problem 225

Table 1. The cost of edges in G where vi,v] € Vi, v2,v5 € Vo, p,q € S1, 0, ¢ € S,
and w(vi,q), w(va,q'), w(vi,p), w(vy,p') are either 1 or 2.

w(u,v) | ¢ v} vh q ! 1 | x2 | Y
c 0 2 1 1 1 2
v1 2 4 w(vi,q) |3 2 3 4
Vo 2 |4 2 3 w(v2,q’) |3 2 4
D 1 |w(vi,p)|3 2 2 1 2 3
p’ 1 /3 w(vy,p’) |2 2 2 1 3
1 1 |2 3 1 2 0 2 3
T2 1 |3 2 2 1 2 0 3
y 2 4 4 3 3 3 13 |0

Fig. 1. A solution of STAR (2t + 3)-HUB CENTER PROBLEM in G

In Table 1, we list the edge cost of all edges (u,v) in G specifically. It is not
hard to see that any three vertices u, v, in G satisfy w(u, v)+w(v,r) > w(u,r).
Thus G is a metric graph.

Let T* be an optimal solution of STAR k-HUB CENTER PROBLEM in G.
Suppose that &’ C S is an optimal solution of SET COVER, |S'| =t and k =
2t + 3. W.lo.g., assume that 2t < |U| < |S|. We now construct a solution T'
(see Fig.1) of STAR (2t + 3)-HUB CENTER PROBLEM in G. Let §; = S, = &'.
Let Nr(c) = 8§ US, U {x1,x2,y}. Notice that S’ is an optimal solution of SET
COVER. For v; € Vi, there exists s € 8] such that vy is an element in the set
s € §'. Let vy be a child of s. For vy € Vs, there exists s’ € S such that vy is
an element in the set s’ € §’. Let vy be a child of s'. Let all vertices in S1 \ S]
be children of x; in T'. Let all vertices in Sy \ S} be children of x5 in T. We see
that D(T) = 4 and D(T*) < 4.

Now we show that D(T*) > 3. Suppose that D(T*) = 3. We see that y must
be a child of ¢; otherwise dr+«(y,c) > 3 and D(T*) > 3. If y has a child v, then
dr+(v,c) > 3. Thus y has no children. Since 2t < |U], there exists v € V1 UV, that
is not a child of ¢. We see that dr«(v,y) > 3, a contradiction to the assumption
that D(T*) = 3. This shows that D(T™*) > 3. Hence D(T*) = 4.

226 L.-H. Chen et al.

Suppose that there exists an approximation algorithm that finds a solution
T of STAR (2t + 3)-HuB CENTER PROBLEM in G and D(T) < 6. Let Np(c) =
ViUV, uS U8, U X where V] C Vi, Vi C Va, §§ C 81, 8 C S, and
X C{x1,22,y}

CLAIM 1. y must be a child of ¢ in T.

PROOF OF CLAIM. Suppose that y is not a child of ¢. If y is a child of v € V] UVZ,
dr(y, c) = 6, a contradiction. If y is a child of v € S{US,U X, then dr(y,c) = 4.
Suppose that v € S§ U {z1} is the parent of y in T'. Since 2t < |U|, there exists
v € Vo \ V4 such that dp(v',¢) > 2. If v/ is a child of v,

dr(v',y) = w(v',v) + w(v,y) = 3+ 3 =6,

a contradiction to the fact that D(T) < 6.

If v' is not a child of v, dr(v',y) = dr(v/,¢) + dr(y,c) > 6, a contradiction
to the fact that D(T) < 6. Thus y is not a child of any v € S] U {z1}.

Suppose that v € 8 U {z2} is the parent of y in T. Since 2t < |U|, there
exists v’ € V1 \ V{ such that dr(v',¢) > 2. If v/ is a child of v,

dr(v',y) = w',v) + w(v,y) =3+ 3 =6,

a contradiction to the fact that D(T) < 6.

If v" is not a child of v, dr(v',y) = dr(v', ¢) +dr(y,c) > 6, a contradiction to
the fact that D(T") < 6. Thus, y is not a child of any v € 8§ U {x2}. This shows
that y is a child of ¢ in T |

CLAIM 2. y has no children in T.

PROOF OF CLAIM. If y has a child v, then dr(c,v) > 5. For u € V/ UVyUS]USS,
dr(u,v) = dr(u,c) + dr(v,c) > 6, a contradiction. Thus y has no children. W

According to Claims 1 and 2, in T, y is a child of ¢ and y has no children.
Since D(T') < 6, dr(y,c) = w(y,c) = 2, and y has no children in T, for v €
VTuVauS; US U {1‘1,1‘2}, dT(’U,C) < 4.

Cram 3. If for allv € Vi \ V{, dr(v,c) = 2, then §; U Sy is a set cover of U,
|STUSY| < 2t+ 2 where S C S satisfying that for each uw € V| there is exactly
one set in Sy containing u.

PROOF OF CLAIM. Since for all v € V1 \ V{, dr (v, c) = 2, the element v must be
a child of s € S; satisfying that v € s. We see that S} is a set cover of V4 \ VY.
For each u € V, we pick exactly one set in S that contains u, call the collection

of sets S7. It is easy to see that |Sy| = |V{| and S} is a set cover of V. Thus,
S;USY is a set cover of Vi = U satistying |S; U SY| < 2t + 2 that can be found
in polynomial time. n

CLAIM 4. If there exists a solution T of the STAR (2¢t+3)-HUB CENTER PROBLEM
in G such that D(T) < 6, then S, USY is a set cover of U, |S5USY| < 2t + 2
where 8§ C S satisfying that for each u € V3 there is exzactly one set in Sy
containing u.

Approximation Algorithms for the Star k-Hub Center Problem 227

PROOF OF CLAIM. Suppose that the condition of Claim 3 is not true, there
exists v € Vi \ V{ at distance dr(v,c) = 3 from ¢ in T. If the parent of v is
in V/ UV US, U {x2}, we see that dr(v,c) > 3, a contradiction to the fact
that dr(v,¢) = 3. Thus v must be a child of v € S U {z1} and dr(v,c) =
w(v,u) +w(u,c) =3 where w(v,u) = 2 and w(u,c) = 1.

For each v/ € V5 \ V4, if v’ is a child of ' € V] U V] US] U {z1}, then
dr(v',y) > 6, a contradiction to the fact D(T) < 6. Thus v’ € Sy U {za2}. If
u' = xq, we see that dp(v',v) = dp(v/,¢) + dr(v,¢) = 3+ 3 = 6, a contradiction
to the fact that D(T) < 6. If v/ € Sy that dr(v',v') = w(',v') = 2, then
dr(v',v) = dr(v',¢) + dr(v,¢) = 34+ 3 = 6, a contradiction to the fact that
D(T) < 6. This implies that for v' € Vo \ V3, dr(v',¢) = 2. Since for all v’ €
Vo \ V3, dr(v',¢) = 2, the element v" must be a child of s € Sy satisfying that
v’ € 5. We see that S} is a set cover of V5 \ Vj. For each z € Vj, we pick exactly
one set in S that contains z, call the collection of sets 8. It is easy to see that
|SY| = V5] and S% is a set cover of V5. Thus, 8§ U SY is a set cover of Vo = U
satisfying |S5 U SY| < 2t 4+ 2 that can be found in polynomial time. [|

By Claims 3 and 4, if D(T') < 6, then SET COVER has a 3-approximation algo-
rithm running in polynomial time. Notice that D(T*) = 4. Thus, for any € > 0, if
there exists an approximation algorithm that finds a (1.5 — €) approximate solu-
tion of STAR (2t + 3)-HuB CENTER PROBLEM in G in polynomial time, then SET
COVER has a 3-approximation algorithm running in polynomial time. a

Theorem 1. For any € > 0, to approximate STAR k-HUB CENTER PROBLEM
to a ratio (1.5 — €) is NP-hard.

Proof. By Lemma 1, if STAR k-HUB CENTER PROBLEM can be approximated to
aratio (1.5—e€) in polynomial time, then there exists a 3-approximate solution of
SET COVER that can be found in polynomial time. This contradicts to that for
any € > 0 to approximate SET COVER to within factor (1 —e¢)Inn is NP-hard [5].
Thus, for any € > 0, to approximate STAR k-HUB CENTER PROBLEM to within
a factor (1.5 — €) is NP-hard. This completes the proof. O

3 New Approximation Algorithms

Let 7 be the collection depth-2 trees rooted by ¢ satisfying that ¢ has exact
k children. We see that T* = argminpe7{D(T)} is an optimal tree of the STAR
k-HuB CENTER PROBLEM. For v € T™* let f*(v) denote the parent of v in T*. We
use C* = Ny« (c) to denote the set of children of ¢ in T* and Np-[c] = C* U{c}.
We call C* the set of vertices in the first layer of T* and V' \ Np-«[c] the set of
vertices in the second layer of T.

3.1 A 2-Approximation Algorithm

We give a 2-approximation algorithm for the STAR k-HUB CENTER PROBLEM.

228 L.-H. Chen et al.

Algorithm BasicAPXsxgcop

Step 1: Pick k vertices {v1,va,...,vx} closest to c. Let Np(c) = {v1,va,..., v},
w.l.o.g., assume that w(vy,) < w(vg,c¢) < -+ < w(vg,c).

Step 2: Connect to all vertices in V' \ {¢,v1,va,..., v} to vy in T.

Step 3: Return the depth-2 tree T'.

Theorem 2. There is a 2-approximation algorithm for the STAR k-HUB CEN-
TER PROBLEM running in time O(n) where n is the number of vertices in the
input graph.

Proof. Note that picking the kth vertex closest to ¢ can be done by a linear
time selection algorithm [4]. It is not hard to see that in time O(n) Algo-
rithm BasicAPX g gop returns a depth-2 spanning tree T rooted by c¢ satisfying
that ¢ has exact k children. Let T be an optimal tree of the STAR k-HUB CEN-
TER PROBLEM. Now we show that the approximation ratio is 2 by showing that
D(T)<2-D(T*).

Since w(vy,¢) < w(vg,c) < -+ < w(vg,), for u € Np(c), w(u,c) < w(v,).
Since D(T*) > w(vy,¢) + w(vg, ¢), it is easy to see that for u € Nr(c),

dr(u,v1) = w(u, c) + w(c,v1) < D(T7).
For any vertex v € V' \ {¢,v1,va,..., 01},
dp(v,v1) = w(v,v1) < D(T™).
For any w,v in V '\ {c}, we have the following three cases.
— Both u, v are adjacent to v1. Then
dr(u,v) = dr(u,v1) + dr(v1,v) < 2-D(T™).
— The vertex u is adjacent to v; and v is adjacent to ¢. Then
dr(u,v) = dr(u,v) +dr(v,v1) <2-D(T").
— Both u, v are adjacent to ¢. Then
dr(u,v) = dr(u,c) +dr(v,c) < 2-D(T).
Since for any u, v € T\{c}, dr(u,v) < 2-D(T*), we see that D(T") < 2-D(T™).
This completes the proof. a

3.2 A g-Approximation Algorithm

In this section, we give a 5/3-approximation algorithm for the STAR k-HUB
CENTER PROBLEM.

Let T* be an optimal tree. Let » = argmax,cy\n,.[q dr+(v,¢) be a far-
thest vertex from c¢ in the second layer of T* and m; = f*(x). We use
¢ = max,ey\ Ny [{w(v, f*(v))} to denote the cost of a longest edge with one
end vertex in the second layer of 7% and the other end vertex in C* = Ny« (c).

Approximation Algorithms for the Star k-Hub Center Problem 229

Algorithm APXgrgcop

Step 1: Run Algorithm APXI.

Step 2: Run Algorithm APX2.

Step 3: Return the best solution found by Algorithms APX1 and APX2.

Algorithm APX1

Let U := V' \ {c}. For each v € U, let my; = v and for p,q € U, let £ = w(p, q),
do the following steps to find a depth-2 spanning tree T' of G rooted by c. Let
M be the set of children of ¢ in T, initialize M = (). Keep a tree T found by the
following steps having the minimum diameter.

Step 1: Add edge (mq, ¢) in the tree T', let M := MU{m,},andlet U := U\{m4}.
Step 2: For each v € U, if v € U and w(mq,v) < £, we add edges (v, m) in T and
let U :=U\ {v}.
Step 3: While s = [M|+1 < k and U # 0,
—choose v € U, let m; = v, add edge (m;,c) in T, let U := U \ {v},
and let M := M U {m,};
—foru € U, if w(u,m;) < 2¢, then add edge (u,m;) in T and
U:=U\ {u}.
Step 4:If |[M| < k and U = (), we change the shape of T by selecting k — | M|
vertices closest to ¢ from the second layer to be the children of ¢, call the
new tree T”; otherwise let 7" := T.

Algorithm APX2

Let U =V \{c}. For y € U and for z € U \ {y}, do the following steps to find a
depth-2 spanning tree T” of G rooted by c.

Step 1: Let £ = w(y, z) and let y be the child of ¢ in T*.

Step 2: Pick (k — 1) vertices {v1,va,...,v5_1} closest to ¢ from U \ {y, z}.
Let Npw(c) = {y,v1,v2,...,v5—1}, w.l.o.g., assume that w(vy,c) <
w(vg,) < -+ < w(vg_1,c).

Step 3: Let all vertices in U \ {v1,vs,...,v5_1,y} be the children of y.

Lemma 2. Algorithm APXI returns a (1440)-approzimation solution of STAR
k-HuB CENTER PROBLEM in time O(kn?) where § = %T*) and n is the number
of vertices in G.

Proof. Suppose that T* is an optimal tree. Let C* = Np«(c) = {s1,52,...,5k}
be the set of children of ¢ in T*. Let S, Ss,..., Sk be components of T\ {c}.
Note that each component S; is a star in 7T \ {c} with the center s;. Let z =
arg max,ev\ Ny [A7+ (v, ¢) be a farthest vertex from c in the second layer of 7
and my = f*(z). Let £ = max,cy\ Ny [{w(v, f*(v))} be the cost of a longest
edge with one end vertex in the second layer of T* and the other end vertex in
C*. Suppose that the algorithm guesses the correct m; and ¢. We may assume
that m; € S1. W.l.o.g., we assume that s; = m;. Since the algorithm adds edges
(v,my) if w(v,my) < £, we see that S; C Np[mq]. Notice that for each vertex

230 L.-H. Chen et al.

veds;,j=1,...,k, wesee that w(v, f*(v)) < £ by the definition of £. For u,v €
Si\{s;},i=1,...,k, f*(u) = f*(v) = s; and w(u,v) < w(y,s;)+w(v,s;) < 2L
Thus, for each Sj;, j > 1, if there is a vertex x € S; specified as m; € M, i > 1,
then all the other vertices in S; are children of one of mq,mg,...,m; in T.
Moreover, we see that for each m;, 1 < i < |M]|, there exists Sj, 1 < j < k, such
that m; € S; and S; N M = {m;}. If there exists S;, 1 < j <k, S;,NM =0,
then all vertices of S; are children of one vertex of M in T and |M]| < k.

It is easy to see that if |[M| = k, then T is a depth-2 spanning tree of G
satisfying that ¢ has exactly k children. Suppose that |M| < k and we change
the shape of T' by taking k — | M| vertices closest to ¢ from the leaves to be new
children of ¢, call the new tree 7" and let M’ be the set of new children of c.
Notice that in 7", vertices in M’ have no children. We see that T is a depth-2
spanning tree of G satisfying that ¢ has exactly k children.

CrLamM 1. Foru,v € M, dp (u,v) < D(T*).

PROOF OF CLAIM. Since u, v are in different components of T* \ {c}, we have

dr(u,v) = w(u,c) + wv,c) < dp=(u,c) + dr=(v,¢) < D(T™).

CLAM 2. Foru € M and v € M’, dp:(u,v) < D(T*) + £.

PRrROOF OF CrLAIM. For v € M, let f(v) denote the parent of v in T'. Notice that
forve M’, f(v) € M and w(v, f(v)) < 2¢. Suppose that v is a child of ¢ in T*.
If f*(u) # v, we have

drr(u,v) = wu,¢) + wv, c) < wu, f*(u)) + w(f*(u),c) + w(v,c) < D(T*).
If f*(u) = v, then

dp (u,v) = w(u, ¢) + w(v, ¢) < wu,v) +w(v,c) + w(v,c)
<l +w(ma,c)+w(v,c) <L+ dp-(mq,v)
< D(T*) + <.

Suppose that v is not a child of ¢ in T*. Since vertices in M’ are selected
from the vertices in the second layer of T that are closest to ¢, there exists v’ in
the second layer of 7" that is a child of ¢ in T™* satisfying that w(v’, ¢) > w(v, c).
Thus,

dr: (u,v) = w(u,c) +w(v,c) < w(u,c) +w,c)
= w(u, [*(u) + w(f*(u),¢) + w(v',¢)
<L +w(my,c) +w(, c) =L+ dpr-(mq,v)
<D(T*)+¢.

CrLAam 3. For u,v € M', dp/(u,v) < D(T*) + 3¢.

Approximation Algorithms for the Star k-Hub Center Problem 231

PROOF OF CLAIM. Since v € M’, in T the parent of u, called f(u), must be
in M. We see that w(u, f(u)) < 2¢. By Claim 2, dr(f(u),v) < D(T*)+¢. Hence

dr(u,v) = w(u,c) +w(v,c)
< w(u, () + w(f(u), &) + w(v,)
< 2+ dy((u).v)
< 30+ D(T™).

Thus, for u,v € M’ d/(u,v) < D(T*) + 3¢. []
CLAM 4. Foru,v € V\ (M UM U{c}), dr(u,v) < D(T*) + 4L.
PRrOOF OF CLAIM. Note that for vertices in V' \ (M U M’ U {c}), their parents
in T are the same as their parents in 7. Let f(u) and f(v) be parents of v and
v in both T and T”, respectively. Since u,v € V' \ (M U M’ U {c}), we see that
flu), f(v) e M, w(u, f(u)) < 2¢, and w(v, f(v)) < 2¢.

Suppose that f(u) # f(v). By Claim 1, d(f(u), f(v)) < D(T*).

dp (u,v) = w(u, f(u)) + w(f(u),c) + w(v, f(v)) + w(f(v),c)
<AL+ dr(f(u), f(v))
< 40+ D(T).
Suppose that f(u) = f(v). It is easy to see that dr(u,v) < 4€. This shows
that for u,v € V\ (M UM’ U{c}), dr(u,v) < D(T*) 4 4¢. [|
CLAM 5. Foru e V\ (M UM U{c}) andv € M’, dp:(u,v) < D(T*) + 3¢.

PrROOF OF CLAIM. Let f/(u) be the parent of u in T”. We see that f(u) = f/(u)
and f(u) € M where f(u) is the parent of w in T'. Since f(u) € M and v € M’,
by Claim 2, dp(f(u),v) < D(T*) + £. Thus,

d (u,v) = w(u, () +w(f(u),) + w(v,c)
< 20+ dpi (f(u),v) < 20+ € + D(T*)

=3{+ D(T™).
This completes the proof of the claim. |
Thus, by Claims 1-5, D(T") < D(T™*) + 4¢. We obtain that
D(T'") = D(T*)+4¢
< =(14+40
D) = oy Y

where § = %.

The algorithm guesses m; and ¢, there are O(n) possibilities of m; and O(n?)
possibilities of £. In Algorithm APX1, there are O(n?3) depth-2 spanning trees con-
structed. It is not hard to see that it takes O(kn) time to construct a tree 7”. The
running time of Algorithm APX1 is O(kn*). This completes the proof. O

232 L.-H. Chen et al.

Lemma 3. Algorithm APX2 either returns an optimal solution or a (2 — 26)-
approzimation solution of STAR k-HUB CENTER PROBLEM in time O(kn?)
where § = % < 1/2 and n is the number of vertices in G.

Proof. Suppose that T* is an optimal tree. Let (y, z) be the longest edge in the
second layer of T* such that f*(y) = ¢ and w(y, z) = £. For u € V, we use f"(u)
to denote the parent of w in T".

For v € V'\ {z}, we show that dp~(v,y) < D(T*) — ¢.

There are two cases.

Case 1: If f”(v) =y, we see that
A (0,) = w(v,9) < dp-(v,9) = dp-(v,2) — € < D(T") — .

Case 2: Suppose that f”(v) = ¢. We have two subcases.
Case 2.1: If f*(v) = ¢, we see that

dri(v,y) = w(v,c) +w(e,y) = dr«(v,y)
=dp«(v,2) —€L< D(T") - ¢.

Case 2.2: If f*(v) # ¢, then there exists v' € Np~(y) \ {c¢,y, 2} such that
f*(') =cand w(v',c) > w(v, c). We see that

drr (v, y) = w(v,c) + wlc,y) < w(v',¢) + w(e,y)
=dp(V',y) =dp-(v',2) — £
< D(T") —¢.

Now we show that for v € V' \ {z}, dpv(z,v) < D(T™).
dro(z,0) < dpr(2,y) + dpe(y,v) < 0+ D(T") — £ = D(T").
For u,v € V'\ {2z}, we see that
dpr (u,v) < dpr(u,y) + dpo(v,y) < 2D(T*) — 2¢.
Note that D(T") > D(T*). If D(T*) < 2¢, then
D(T") < 2D(T*) — 2¢ < 2D(T*) — D(T*) = D(T*).

Thus, if D(T™*) < 2¢, Algorithm APX2 returns an optimal solution.
Suppose that D(T*) > 2¢. We see that

where § = % <1/2.
Algorithm APX2 guesses y and z, there are O(n) possibilities of y and O(n)

possibilities of z. In Algorithm APX2, there are O(n?) depth-2 spanning trees

Approximation Algorithms for the Star k-Hub Center Problem 233

constructed. Suppose that in advance the algorithm takes O(kn) time to compute
Up, Uz, ..., up+1 € V' \ {c} that are closest to ¢ such that w(uy,c) < w(ug,c) <

- < w(ug,) < w(ugs1,c). In Algorithm APX2, it takes O(k) time to pick
v1,V2,...,0k—1 € V\ {¢,y, 2z} that are closest to ¢ to be the children of c. The
running time of Algorithm APX2 is O(kn? + kn) = O(kn?). This completes the
proof. O

By Lemmas 2 and 3, we have the following theorem.

Theorem 3. There is a %-approximation algorithm for the STAR k-HUB CEN-
TER PROBLEM running in time O(kn*) where n is the number of vertices in the
input graph.

Proof. By Lemma 2, Algorithm APX1 runs in time O(kn*) and finds a (1 + 45)-

approximate solution where § = %. By Lemma 3, Algorithm APX2 runs in

time O(kn?) and either finds an optimal solution or a (2 — 2§)-approximation
solution, 6 < 1/2. In Step 3 of Algorithm APXgrmcp, it takes O(1) time to
return the best solution found by Algorithm APX1 and Algorithm APX2. We
see that the worst approximate ratio happens when 1+ 46 =2 — 2§ and § = %
This shows that the approximation ratio is g((TT*)) < % and the running time of

Algorithm APXgrrcp is O(kn?). O

4 Concluding Remarks

In this paper, we reduce the gap between the upper and lower bounds of approx-
imability for the STAR k-HUB CENTER PROBLEM. For the future work, it is inter-
esting to see whether there exists an a-approximation algorithm and o < 5/3
or to prove that for any € > 0, it is NP-hard to approximate the STAR k-HUB
CENTER PROBLEM to a ratio 3 — €.

References

1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art.
Netw. Hub Location Probl.: State Art 190, 1-21 (2008)

2. Campbell, J.F.: Integer programming formulations of discrete hub location prob-
lems. Eur. J. Oper. Res. 72, 387-405 (1994)

3. Campbell, J.F., Ernst, A.T.. Hub location problems. In: Drezner, Z.,
Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373-407.
Springer, Berlin (2002)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2009)

5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of STOC 2014, pp. 624-633 (2014)

6. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Unca-
pacitated single and multiple allocation p-hub center problem. Comput. Oper. Res.
36, 22302241 (2009)

234

10.

11.

L.-H. Chen et al.

Kara, B.Y., Tansel, B.C.: On the single-assignment p-hub center problem. Eur. J.
Oper. Res. 125, 648-655 (2000)

Liang, H.: The hardness and approximation of the star p-hub center problem. Oper.
Res. Lett. 41, 138-141 (2013)

Meyer, T., Ernst, A., Krishnamoorthy, M.: A 2-phase algorithm for solving the
single allocation p-hub center problem. Comput. Oper. Res. 36, 3143-3151 (2009)
O’Kelly, M.E., Miller, H.J.: Solution strategies for the single facility minimax hub
location problem. Pap. Reg. Sci. 70, 376-380 (1991)

Yaman, H., Elloumi, S.: Star p-hub center problem and star p-hub median problem
with bounded path length. Comput. Oper. Res, 39, 2725-2732 (2012)

Balls and Funnels: Energy Efficient
Group-to-Group Anycasts

Jennifer Iglesias', Rajmohan Rajaraman?, R. Ravi!, and Ravi Sundaram?®9
! Carnegie Mellon University, Pittsburgh, PA, USA
{jiglesia,ravi}@andrew.cmu.edu
2 Northeastern University, Boston, MA, USA
{rraj,koods}@ccs.neu.edu

Abstract. We introduce group-to-group anycast (g2g-anycast), a net-
work design problem of substantial practical importance and consider-
able generality. Given a collection of groups and requirements for directed
connectivity from source groups to destination groups, the solution net-
work must contain, for each requirement, an omni-directional down-link
broadcast, centered at any node of the source group, called the ball; the
ball must contain some node from the destination group in the require-
ment and all such destination nodes in the ball must aggregate into a
tree directed towards the source, called the funnel-tree. The solution
network is a collection of balls along with the funnel-trees they contain.
g2g-anycast models DBS (Digital Broadcast Satellite), Cable TV systems
and drone swarms. It generalizes several well known network design prob-
lems including minimum energy unicast, multicast, broadcast, Steiner-
tree, Steiner-forest and Group-Steiner tree. Our main achievement is an
O(log* n) approximation, counterbalanced by an log®*~9 n hardness of
approximation, for general weights. Given the applicability to wireless
communication, we present a scalable and easily implemented O(logn)
approximation algorithm, Cover-and-Grow for fixed-dimensional Euclid-
ean space with path-loss exponent at least 2.

Keywords: Network design - Wireless - Approximation

1 Introduction

1.1 Motivation

Consider a DBS (Digital Broadcast Satellite) system such as Dish or DIRECTV
in the USA (see Fig.1). The down-link is an omni-directional broadcast from
constellations of satellites to groups of apartments or neighborhoods serviced by
one or more dish installations. The up-link is sometimes a wired network but
in remote areas it is usually structured as a tree consisting of point-to-point
wireless links directed towards the network provider’s head-end (root). The high
availability requirement of such services are typically satisfied by having multiple
head-ends and anycasting to them. The same architecture is found in CATV

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 235-246, 2016.
DOI: 10.1007/978-3-319-42634-1_19

236 J. Iglesias et al.

(originally Community Antenna TV), or cable TV distribution systems as well
as sensor networks where an omni-directional broadcast from a beacon is used
to activate and control the sensors; the sensors then funnel their information
back using relays. Moreover, this architecture is also beginning to emerge in
drone networks, for broadcasting the Internet, by companies such as Google
[10] and Facebook’s Connectivity Labs [8]. The Internet is to be broadcast from
drones flying fixed patterns in the sky to a collection of homes on the ground.
The Internet up-link from the homes is then aggregated using wireless links
organized as a tree to be sent back to the drones. Anycasting is an integral part
of high-availability services such as Content Delivery Networks (CDNs) where
reliable connectivity is achieved by reaching some node in the group. What
is the common architecture underlying all these applications and what is the
constraining resource that is driving their form?

The various distribution systems
can be abstractly seen to consist of a
down-link ball and an up-link funnel-
tree (see Flg 1) The ball is an omni- “90’ : * . . \ DEMAND GRAPH
directional broadcast from the pub- 7 \%’?"‘7 g .
lisher or content-producer to a large (f A AN
collection of subscribers or content- / ‘
consumers. At the same time, the con-
sumers have information that they
need to dynamically send back to the
publisher in order to convey their pref-

& Satellites
o

N ;
Broadcast Ball 1 Funnel Tree
\

" N

Ground Stations

Fig. 1. Pictogram of Digital Broadcast

erences and requirements. The funnel-
tree achieves this up-link efficiently in
terms of both time and energy. Aggre-
gation of information and use of relays
uses less energy as compared to omni-
directional broadcasts by each node

Satellite System with 2 satellite groups
and 4 ground station groups on left with
associated demand graph on the right.
The broadcast balls are denoted by dotted
black lines, and the funnel trees by solid
yellow lines. (Color figure online)

back to the publisher and also avoids

the scheduling needed to avoid interference. In this work, we focus primarily on
total energy consumption. The application scenarios mentioned in the opening
paragraph are all energy sensitive. Sensor networks [11] and drone fleets [12] are
particularly vulnerable to energy depletion. For the purpose of energy conserva-
tion, generally each wireless node can dynamically adjust its transmitting power
based on the distance of the receiving nodes and background noise. In the most
common power-attenuation model [14], the signal power falls as & where 7 is
the distance from the transmitter to the receiver and k is the path-loss expo-
nent - a constant between 2 and 4 dependent on the wireless environment. A key
implication of non-linear power attenuation is that relaying through an interme-
diate node can sometimes be more energy efficient than transmitting directly -
a counter-intuitive violation of the triangle inequality - e.g., in a triangle ABC
with obtuse angle ABC, where d? 5 + d%¢ < d? ¢

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 237

1.2 Problem Formulation and Terminology

In this paper, we consider a general formulation that encompasses a wide variety
of scenarios: given a collection of groups (of nodes) along with a directed demand
graph over these groups the goal is to design a collection of balls and associated
funnel-trees of lowest cost so that every demand requirement is met - meaning
that if there is an arc from a source group to a destination group then the
solution must have a ball centered at a node of the source group that includes a
funnel-tree containing a node of the destination group.

Formally, we define the group-to-group anycast problem, or g2g-anycast, as
follows: as input we are given n nodes along with a collection of source groups
S1,92,...,5, and a collection of destination groups 711,753, ...,T; which are
subsets of these nodes; a demand graph on these groups consisting of directed
arcs from source groups S; to destination groups 7;. A nonnegative cost cy, is
specified between every pair of nodes; when a node u incurs a cost C' in doing
an omni-directional broadcast it reaches all nodes v such that ¢,,, < C. A metric
dyy 18 also specified between every pair of nodes and when a node u connects
to node v in the funnel-tree using a point-to-point link it incurs a cost d,,. A
solution consists of a broadcast ball around every source node s (we give a radius
which the source can broadcast to), and a funnel tree rooted at s. A demand
S;, T} is satisfied if there is a broadcast ball from some s € S; which contains
some t € T} and the funnel tree of s also includes t. The cost of the solution is
the sum of the ball-radii around the source nodes (under the broadcast costs c)
and the sum of the costs of the funnel trees (under the funnel metric d) that
connect all terminal-nodes used to cover the demands to the source nodes within
whose balls they lie. We do not allow funnel trees to share edges (even if they
are going to the same source group), and will pay for each copy of an edge used.

— First, the bipartite demand graph is no less general than an arbitrary demand
graph since a given group can be both a source group and destination group.

— Second, since funnel trees sharing the same edge pay separately, solutions to
the problem decompose across the sources and it is sufficient to solve the case
where we have exactly one source group S = {s1, s2,...,;} and destination
groups T1,Ts,...,T, (i.e. the demand graph is a star consisting of all arcs
(S,T}),1 < j < gq). This observation also enables parallelized implementations.

— Lastly, there is no loss of generality in assuming a metric d,, for funnel-tree
costs; even if the costs were arbitrary their metric completion is sufficient for
determining the optimal funnel-tree.

We refer collectively to the (ball) costs ¢y, and (funnel-tree) metric distances
dyuy as weights. In this paper we consider two cases - one, the general case where
the weights can be arbitrary and two, the special case where the nodes are
embedded in a Euclidean space and all weights are induced from the embedding.

1.3 Owur Contributions

Our main results on the minimum energy g2g-anycast problem are as follows
(Fig.2):

238 J. Iglesias et al.

g2g, any metric|g2s, any metric| g2g, £3 norm
Upper| O(log™n) 2Inn O(logn)
Lower| 2(log?~“n) 2(logn) (1—-0o(1))Ilnn

Fig. 2. A summary of upper and lower bounds achieved in the different problems. The
lower bound holds for every fixed € > 0

1. We present a polynomial-time O(log® n) approximation algorithm for the g2g-
anycast problem on n nodes with general weights. We complement this with
an 2(log”> “n) hardness of approximation, for any e > 0 (Sect. 2).

2. One scenario with practical application is where every destination group is a
singleton set while source groups continue to have more than one node; we
refer to this special case of g2g-anycast as g2s anycast. We present a tight
logarithmic approximation result for g2s-anycast (Sect. 3).

3. For the realistic scenario where the nodes are embedded in a 2-D Euclid-
ean plane with path-loss exponent x > 2, we design an efficient O(logn)-
approximation algorithm Cover-and-Grow, and also establish a matching log-
arithmic hardness of approximation result (Sect.4).

4. Lastly, we compare Cover-and-Grow with 4 alternative heuristics on random
2-D Euclidean instances; we discover that Cover-and-Grow does well in a wide
variety of practical situations in terms of both running time and quality,
besides possessing provable guarantees. This makes Cover-and-Grow a go-
to solution for designing near-optimal data dissemination networks in the
wireless infrastructure space (Sect. 5).

1.4 Related Work

A variety of power attenuation models for wireless networks have been studied
in the literature [14]. Though admittedly coarse, the model based on the path
loss exponent (varying from 2, in free space to 4, in lossy environments) is the
standard way of characterizing attenuation [13]. The problems of energy efficient
multicast and broadcast in this model have been extensively studied [9,16-18].
Two points worth mentioning in this context are: one, we consider the funnel-
tree as consisting of point-to-point directional transmissions rather than an omni-
directional broadcast since the nonlinear cost of energy makes it more economical
to relay through an intermediate node, and two, we consider only energy spent
in transmission but not in reception.

Network design problems are notoriously NP-hard. Over time sophisticated
approximation techniques have been developed, ranging from linear program-
ming and randomized rounding to metric embeddings [19]. The g2g-anycast
problem with general weights is a substantial generalization including problems
such as minimum spanning trees, multicast trees, broadcast trees, Steiner trees
and Steiner forests. Even the set cover problem can be seen as a special case
where the destination groups are singletons. The g2g-anycast also generalizes
the much harder group Steiner tree problem [4,5].

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 239
2 Approximating g2g-anycast

In this section, we present an O(log4 n)-approximation for the g2g-anycast prob-
lem with general weights by a reduction to the generalized set-connectivity prob-
lem. We then give a reduction from the group Steiner tree problem that demon-
strates that there is no polynomial-time log? ¢ n-approximation algorithm for
g2g-anycast unless P = NP.

2.1 Approximation Algorithm for g2g-anycast with General
Weights

The generalized set-connectivity problem [2] takes as input an edge-weighted
undirected graph G = (V, E), and collection of demands {(S1,71), ..., (Sk, Tk)},
each pair are disjoint vertex sets. The goal is to find a minimum-weight subgraph
that contains a path from any node in S; to any node in T; for every i €
{1,...,k}. Without loss of generality, the edge weights can be assumed to form
a metric. Chekuri et al. [2] present an O(log®n log® k)-approximation for this
problem using minimum density junction trees.

We show a reduction from the g2g-anycast problem with general weights to
the generalized set-connectivity problem. Recall that without loss of generality,
we may assume that in the g2g problem, we are given a single source group S,
a collection of destination groups T1,..., Ty, nonegative (broadcast) costs ¢y,
and (funnel-tree) metric costs dy,.

2.2 The Reduction

The main idea of the reduction is to

overload the broadcast cost of the ball ’ (0} ThesrzpnG)
radius around each node in the source e

group S into a larger single metric e " ,,"L\

in which we use the generalized set- ¢ * () ‘e @‘/@ ()i
connectivity algorithm. In particular, . -~ Nodes wiin broadeast st
for every source node s; € S, we sort &(.1) 6lin)

the nodes in T1 U...UTj in increasing

order of broadcast cost from s; to get Fig. 3. A connected component G(7) in the
reduction of the g2g-anycast problem with

the sorted order, say ti,...,t! where X >
i - . general weights to the generalized set con-
t5 is at distance c;; from s;, and we e ctivitv broblem
1Vl .
have ¢;1 < ¢i2... < ¢, where [T} U v P

... UTy| = r. We now build r different graphs G(i,1),...,G(4,r) where G(i, j)
is a copy of the metric completion of G under the funnel tree costs d induced on
the node set {s;,t},...,t5}, Wiﬁh the copies denoted as {s;(j),t1(4), ..., t5(4)}-
(Note that the terminal node ¢!, appears in copies a through r.) Finally, we take
the r copies of the node s; denoted s;(1),s;(2),...,s;(r) and connect them to
a new node s;(0) where the cost of the edge from s;(j) to s;(0) is ¢;;. Thus
these r different copies G(4,1),...,G(i,r) all connected to the new node s;(0)

240 J. Iglesias et al.

together form one connected component G(7). We now repeat this process for
every source node s; for i € {1,...,k} to get k different graphs G(1),...,G(k)
(Fig. 3).

We are now ready to define the generalized set connectivity demands. We
define a new super source set SS = {s1(0),$2(0),...,s,(0)}. For each of the
destination groups T, we define the terminal set TT, to be the union of the
copies of all corresponding terminal nodes in any of the copies G(i). More pre-
cisely TT, = {U;t.(j)]la < j < r,t, € T,}. The final demand pairs for the set
connectivity problem are {(SS,TTy),...,(SS,TT,)}.

Lemma 1. Given an optimal solution to the g2g-anycast problem, there is a
solution to the resulting set connectivity problem described above of the same
cost.

Proof. Suppose the solution of the g2g problem involved picking broadcast ball
radii ¢y, ..., ¢ from source nodes s1, . . ., 5§ respectively. We also have funnel trees
Hy,..., Hy that connect terminals T'(Hy),...,T(Hy) to s1,..., s, respectively.
Note that all terminals in T'(H,,) are within the thresholds that receive the broad-
cast from s,, i.e. for every such terminal ¢ € H,, the broadcast cost of the edge
between s, and ¢ is at most the radius threshold ¢, at which s, is broadcasting.

Consider the tree H, with terminals T'(H,) connected to the root s, so that
¢ is the largest weight of any of the edges from s, to any terminal in T'(H,).
(If all of them were even closer, we can reduce the broadcast cost ¢, of broad-
casting from s, and reduce the cost of the g2g solution.) Let the terminal in the
funnel tree with this broadcast cost be #(x) and in the sorted order of weights
from s, let the rank of ¢(z) be p. We now consider the graph copy G(z,p) and
take a copy of the funnel tree H, in this copy. To this we add an edge from the
root s;(p) to the node s, (0) of cost ¢;p. The total cost of this tree thus contains
the funnel tree cost of H, (denoted by d(H,)) as well as the broadcast cost of
Czp from s;. Taking the union of such funnel trees over all the copies gives the
lemma.

Lemma 2. Given an optimal solution to the set connectivity problem described
above, there is a solution to the g2g-anycast problem from which it was derived
of the same total weight.

Proof. In the other direction, consider each copy G(z) in turn and consider the
set of edges in the tree containing the source node s;(0) in the solution to the
generalized set-connectivity instance. First notice that it contains at most one
of the edges to a copy s,(q) for some g. Indeed if we have edges to two different
copies s;(p) and s,(q) from s.(0) for p < ¢, then since G(z,p) C G(z,q), we
can consider the tree edges in G(z,p) and buy them in G(z,q) where they also
occur to cover the same set of terminals at smaller cost. In this way, we can save
the broadcast cost of the copy of the edge from s,(0) to s, (p) contradicting the
optimality of the solution. Now that we have only one of the edges, say to s,(q)
from s,(0), we can consider all the edges of the tree in the copy G(z,q) and
include these edges in a funnel tree H.. The distance of the edge from s, (0) to

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 241

sz (q) pays for the broadcasting cost from s, in the original instance and the cost
of the rest of the tree is the same as the funnel tree cost of H; (Note that our
observation above implies that edges in the metric completion in the tree can be
converted to paths in the graph and hence connect all the nodes in the tree).

Since every terminal superset 77} is connected to some source node of S,
all the demands of the g2g problem must be satisfied in the collection of funnel
trees H constructed in this way giving a solution to the g2g problem of the
same cost.

The above two lemmas with the result of [2] gives us the following result.

Theorem 1. The general weights version of the g2g-anycast problem with k
destination groups admits a polynomial-time approzimation algorithm with per-
formance ratio O(log?(k)log®n) in an n-node graph.

2.3 Hardness of Approximating g2g-anycast

We observe that the g2g-anycast problem with general weights can capture the
group Steiner tree problem which is known to be log2_6 n-hard to approximate
unless NP is contained in quasi-polynomial time [6].

In the group Steiner tree problem, we are given an undirected graph with
metric edge costs, a root s and a set of subsets of nodes called groups, say
T1,...,T,, and the goal is to find a minimum cost tree that connects the root
with at least one node from each group. We can easily define this as a g2g-anycast
problem with a singleton source group S = {s} with the single root node. The
terminal sets for the g2g-anycast problem are the groups 11,...,T,, with the
demand graph (S,T1),. .., (S,T,). We can set the broadcast costs of any node in
the graph from s to be zero; we use the given metric costs in the group Steiner
problem as the funnel tree costs to capture the cost of the group Steiner tree.
Any solution to the resulting g2g-anycast problem is a single tree connecting s to
at least one node in each of the groups as required and its total weight is just its
funnel tree cost that reflects precisely the cost of this feasible group Steiner tree
solution. The hardness follows from this approximation-preserving reduction.

3 Approximating g2s-anycast

In this section, we consider g2s-anycast, a special case of the g2g-anycast, in
which each destination group is a singleton set (i.e., has exactly one terminal).
Let S denote the source-set and t1,...,t, denote the terminals.

The desired solution is a collection of broadcast balls and funnel trees T,
each rooted at a source node v, so that for every demand (S, ¢;), there exists at
least one node v in S such that t; € T;,.

We now present a @ (log n)-approximation algorithm for g2s-anycast problem.
Our algorithm iteratively computes an approximation to a minimum density
assignment, which assigns a subset of as yet unassigned terminals to a source
node, and then combines these assignments to form the final solution.

242 J. Iglesias et al.

Minimum Density Assignment. We seek a source s and a tree T rooted at s
that connects s to a subset of terminals, such that the ratio (¢(Ts) + d(T5s))/|Ts|
is minimized among all choices of s and Ty (here ¢(Ts) denotes the minimum
broadcast cost for s to reach the terminals in Ty, while d(Ts denotes the funnel-
tree cost, i.e. the sum of the metric distances d,, over all edges uv € Ty).
We present a constant-approximation to the problem, using a constant factor
approximation algorithm for the rooted k-MST problem, which is defined as
follows: given a graph G with weights on edges and a root node, determine a tree
of minimum weight that spans at least k vertices. The best known approximation
factor for the k-MST problem [15] is 2 [3]. We now present our algorithm for
minimum density assignment.

— For each source s € S, integer k € [1,n], and integer r drawn from the set
{est;1<i<q):
e Let G’ denote the graph with vertex set {s} U {t;|cs;; < 7}, and edge
weights given by d.
e Compute a 2-approximation T"(s,r, k) to the k-MST problem over the
graph G’ with s being the root.
— Among all trees computed in the above iterations, return a tree that minimizes

ming . (d(T" (s, 7, k) + 1) /k.

Lemma 3. The above algorithm is a polynomial-time 2-approrimation algo-
rithm for the minimum density assignment problem.

Proof. We first show that the algorithm is polynomial time. The number of
different choices for the source equals the size of the source set, the number
of choices for k is n, and the number of different values for r is the number
of different broadcast costs, which is at most n. Thus the number of iterations
in the for loop is at most n3. Consider an optimal solution T to the minimum
density assignment problem, rooted at source s. It is a valid solution to the
k-MST problem in the iteration given by s, = ¢(T), k = |T|. For this particular
iteration, the tree T(s,r, k) satisfies (d(T"(s,r, k) + r)/k < (2d(T) + r)/k <
2-(d(T)+r)/k). Since our algorithm returns the tree that has the best density,
we have a 2-approximation for the minimum density assignment.

Approximation Algorithm for g2s-Anycast. Our algorithm is a greedy
iterative algorithm, in which we repeatedly compute an approximation to the
minimum density assignment problem, and return an appropriate union of all of
the trees computed.

— For each source s, set Ts to {s}.
— While all terminals are not assigned:
e Compute a 2-approximation 7' to the minimum density assignment prob-
lem using any source s and the unassigned terminals.
e If T is rooted at source s, then set Ts to be the minimum spanning tree
of the union of the trees T and T%.
— Return the collection {7}

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 243

Theorem 2. The greedy algorithm yields an approximation algorithm with per-
formance ratio 2 Inn to the g2s-anycast problem.

Proof. Let OPT denote the cost of the optimal solution to the problem. Any
solution is composed of at most m trees, one for each of the sources, with each
singleton group being included as a node in one of these trees. Let T, denote
the tree rooted at source s in an optimal solution.

Consider any iteration i of our algorithm. Let n; denote the number of unas-
signed terminals at the start of the iteration i. By an averaging argument, we
know there exists a source s such that

d(T*) + ¢(TY) < OPT
7% T

By Lemma 3, it follows that in the ith iteration of the greedy algorithm, if T; is
the tree computed in the step, then

d(T) +o(T)) _2-OPT
T3] - o

Adding over all steps, we obtain that the total cost is

T;
> (d(T) +e(T;)) <2-OPT -y T <2-OPT-H, <20PT Inn.
Hardness of Approximation. We complement the positive result with a
matching inapproximability result which shows that the above problem is as
hard as set cover.

Theorem 3. Unless NP = P there is no polynomial-time o Inn approximation
to the g2s-anycast problem, for a suitable constant o > 0.

We defer the proof of this theorem to Appendix A of the full version [7].

4 Euclidean g2g-anycast

In this section, we present a ©(log n)-approximation for the more realistic version
of the g2g-anycast problem in the 2-D Euclidean plane. We achieve our results
by a reduction to an appropriately defined set cover problem.

In detail, all the points in both the source group S and destination groups
Ti,...,Tq lie in the 2-D Euclidean plane. The cost of an edge (u,v) is the Euclid-
ean distance between u and v raised to the path loss exponent x. For the rest
of this section, we assume that k = 2. (The corresponding results for k > 2
follow with very simple modifications.) First we show that even this special case
of the g2g-anycast problem does not permit an approximation algorithm with
ratio (1 —€) lnn on an instance with n nodes unless NP is in quasi-polynomial
time. Next, we present Cover-and-Grow, an O(logn)-approximation algorithm
that applies a greedy heuristic to an appropriately defined instance of the set
covering problem.

Hardness of 2-D g2g-anycast. Again we can prove a hardness via a reduction
from set cover.

244 J. Iglesias et al.

Theorem 4. The 2-D FEuclidean version of the g2g problem on n nodes does not
permit a polynomial-time (1 — o(1)) Inn approzimation algorithm unless NP =

P.
The proof of this can be found in Appendix B of the full version [7].

4.1 Cover-and-Grow

We now describe a matching O(logn)-approximation for the problem. For this
we first need the following property of minimum spanning trees of points in the
2-D Euclidean plane within a unit square, when the costs of any edge in the tree
are the squared Euclidean distances between the edge’s endpoints.

Theorem 5 [1]. The weight of a minimum spanning tree of a finite number of
points in the 2-D Fuclidean plane within a unit square, where the weight of any
edge is the square of the FEuclidean distance between its endpoints, is at most
3.42.

We can apply this theorem to bound the cost of the funnel trees within any
demand ball in the solution within a factor of at most 3.42 of the cost of the
ball. Indeed, by scaling the diameter of the demand ball to correspond to unit
distance, the above theorem shows that for any finite set of terminal nodes (i.e.
nodes in the destination group) within the ball, a funnel tree which is an MST
that connects these terminal nodes to the center of the ball has total cost at
most 3.42. The cost of the demand ball is the square of the Euclidean distance
of the ball radius which, in the scaled version, has cost (%)2 = %. This shows
that the funnel tree has cost at most 13.68 times the cost of the funnel ball. This
motivates an algorithm that uses balls of varying radii around each source node
as a “set” that has cost equal to the square of the ball radius (the ball cost)
and covers all the terminal nodes within this ball (which can be connected in a
funnel tree of cost at most 13.68 times that of the demand ball).

Algorithm Cover-and-Grow

1. Initialize the solution to be empty.
2. While there is still an unsatisfied demand edge

— For every source node s;, for every possible radius at which there is a ter-
minal node belonging to some destination group 7" for which the demand
(S,T) is yet unsatisfied, compute the ratio of the square of the Euclidean
radius of the ball to the number of as yet unsatisfied destination groups
whose terminal nodes lie in the ball.

— Pick the source node and ball radius whose ratio is minimum among all the
available balls, and add it to the solution (both the demand ball around
this node and a funnel tree from one node of each destination group whose
demand is unsatisfied at this point). Update the set of unsatisfied demands
accordingly.

Theorem 6. Algorithm Cover-and-grow runs in polynomial time and gives an
O(log n)-approzimate solution for the 2-D g2g-anycast problem in an n-node
graph.

Balls and Funnels: Energy Efficient Group-to-Group Anycasts 245

Proof. We will use a reduction from the given 2-D g2g-anycast problem to an
appropriate set cover problem as described in the algorithm. The elements of
the set cover problem are the terminal sets 7T; such that the demand graph has
the edge (S,T;). For every source node s; € S, and for every possible radius
r at which there is a terminal node belonging to some destination group T for
which there is a demand (S, T), we consider a set X (s;,r) that contains all the
destination groups 7 such that some node of T; lies within this ball. The cost
of this set is 2.

First, we argue that an optimal solution for the 2-D g2g-anycast problem
of cost C* gives a solution of cost at most C* to this set cover problem. Next,
we show how any feasible solution to the set cover problem of cost C' gives a
feasible solution to the 2-D g2g-anycast problem of cost at most 14.68C. These
two observations give us the result since the algorithm we describe is the standard
greedy approximation algorithm for set cover.

To see the first observation, given an optimal solution for the 2-D g2g-anycast
problem of cost C*, we pick the sets corresponding to the demand balls in the
solution for the set cover problem. Since these demand balls are a feasible solution
to the anycast problem, they together contain at least one terminal from each
of the destination groups T; for which there is a demand edge (S,7}). These
balls form a solution to the set cover problem and the demand ball costs of the
anycast solution alone pay for the corresponding costs of the set cover problem.
Hence this feasible set cover solution has cost at most C*.

For the other direction, given any feasible solution to the set cover problem
of cost C, note that this pays for the demand balls around the source nodes
in this set cover solution. Now we can use the implication in the paragraph
following Theorem 5 to construct a funnel tree for each of these demand balls
that connects all the terminals within these balls to the source node at the center
of the ball with cost at most 13.68 times the cost of the demand ball around the
source node. Summing over all such balls in the solution gives the result.

5 Empirical Results

We conducted simulations comparing Cover-and-Grow with four different nat-
ural heuristics for points embedded in a unit square in the 2-D Euclidean plane.
These simulations allow us gain perspective on the real-world utility of Cover-
and-Grow vis a vis alternatives that do not possess provable guarantees but yet
have the potential to be practical. The specifics of the simulation and the details
of the results are discussed in Appendix C of the full version [7]. Cover-and-Grow
performs comparably to the heuristics in performance; and the runtime of Cover-
and-Grow was better than the heuristics except for the T-centric approach.

246 J. Iglesias et al.
References
1. Aichholzer, O., Allen, S., Aloupis, G., Barba, L., Bose, P., de Varufel, J.L.,

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

Tacono, J., Langerman, S., Souvaine, D., Taslakian, P., Yagnatinsky, M.: Sum of
squared edges for MST of a point set in a unit square. In: Japanese Conference on
Discrete and Computational Geometry (JCDCG) (2013)

Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undi-
rected graphs and the directed Steiner network problem. ACM Trans. Algorithms
7(2), 18:1-18:17 (2011)

Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: ACM Theory of Computing, pp. 396-402 (2005)

Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1), 66-84 (2000)

Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality
ratio for group Steiner trees and directed Steiner trees. STAM J. Comput. 36(5),
1494-1511 (2007)

Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: ACM The-
ory of Computing, pp. 585-594 (2003)

Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Balls and funnels: energy
efficient group-to-group anycasts. In: Dinh, T.N., Thai, M.T. (eds.) COCOON
2016. LNCS, vol. 558, pp. 235-246. Springer, Heidelberg (2016). CoRR http://
arxiv.org/abs/1605.07196

Lapowsky, I.: Facebook lays out its roadmap for creating internet-connected drones.
Wired (2014). http://www.wired.com/2014/09/facebook-drones-2/

Li, D., Liu, Q., Hu, X., Jia, X.: Energy efficient multicast routing in ad hoc wireless
networks. Comput. Commun. 30(18), 3746-3756 (2007)

McNeal, G.: Google wants Internet broadcasting drones, plans to run tests in New
Mexico. Forbes (2014). http://www.forbes.com/sites/gregorymcneal /2014,/09/19/
google-wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/
Milyeykovski, V., Segal, M., Shpungin, H.: Location, location, location: using cen-
tral nodes for efficient data collection in WSNs. In: WiOpt, pp. 333-340, May
2013

Olsson, P.M.: Positioning algorithms for surveillance using unmanned aerial vehi-
cles. Licentiate thesis, LinkOpings universitet (2011)

Path Loss Wikipedia. http://en.wikipedia.org/wiki/Path_loss

Rappaport, T.. Wireless Communications: Principles and Practice, 2nd edn.
Prentice Hall PTR, Upper Saddle River (2001)

Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Span-
ning trees short or small. In: ACM-SIAM Discrete Algorithms, SODA 1994, pp.
546-555. STAM (1994)

Wan, P.J., Calinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcasting in
static ad hoc wireless networks. Wirel. Netw. 8(6), 607-617 (2002)

Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. In: INFOCOM, pp.
585-594 (2000)

Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithms for energy-efficient
multicasting in static ad hoc wireless networks. MONET 6(3), 251-263 (2001)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms, 1st
edn. Cambridge University Press, New York (2011)

http://arxiv.org/abs/1605.07196
http://arxiv.org/abs/1605.07196
http://www.wired.com/2014/09/facebook-drones-2/
http://www.forbes.com/sites/gregorymcneal/2014/09/19/google-wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/
http://www.forbes.com/sites/gregorymcneal/2014/09/19/google-wants-internet-broadcasting-drones-plans-to-run-tests-in-new-mexico/
http://en.wikipedia.org/wiki/Path_loss

Assigning Proximity Facilities for Gatherings

Shin-ichi Nakano®9

Gunma University, Kiryu 376-8515, Japan
nakano@cs.gunma-u.ac. jp

Abstract. In this paper we study a recently proposed variant of the
problem the r-gathering problem. An r-gathering of customers C' to facil-
ities F' is an assignment A of C' to open facilities F' C F such that r
or more customers are assigned to each open facility. (Each open facility
needs enough number of customers.) Then the cost of an r-gathering
is max{max;cc{co(i, A(7))}, max;cp {op(j) } }, and the r-gathering prob-
lem finds an r-gathering having the minimum cost.

Assume that F is a set of locations for emergency shelters, op(f) is
the time needed to prepare a shelter f € F, and co(c, f) is the time
needed for a person ¢ € C to reach assigned shelter A(c) € F. Then
an r-gathering corresponds to an evacuation plan such that each opened
shelter serves r or more people, and the r-gathering problem finds an
evacuttion plan minimizing the evacuation time span.

However in a solution above some person may be assigned to a far-
ther open shelter although it has some closer open shelter. It may be
difficult for the person to accept such an assignment for an emergency
situation. Therefore Armon considered the problem with one more addi-
tional constraint, that is, each customer should be assigned to a closest
open facility, and gave a 9-approximation algorithm for the problem.

In this paper we give a simple 3-approximation algorithm for the prob-
lem.

1 Introduction

The facility location problem and many of its variants are studied [4,5].

In the basic facility location problem we are given (1) a set C' of customers,
(2) a set F of facilities, (3) an opening cost op(f) for each f € F, and (4)
a connecting cost co(c, f) for each pair of ¢ € C and f € F, then we open
a subset F' C F of facilities and find an assighment A from C to F’ so that a
designated cost is minimized. A typical max version of the cost of an assignment
A is max{max;cc{co(i, A(7))}, max;cp {op(j) } }. We assume that co satisfies the
triangle inequality.

In this paper we study a recently proposed variant of the problem, called the
r-gathering problem [2].

An r-gathering of customers C' to facilities F' is an assignment A of C
to open facilities F " C F such that r or more customers are assigned to
each open facility. (Each open facility needs enough number of customers.)
We assume |C| > r holds. Then max version of the cost of an r-gathering is

© Springer International Publishing Switzerland 2016
T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 247-253, 2016.
DOI: 10.1007/978-3-319-42634-1_20

248 S. Nakano

max{max;ec{co(i, A())}, max;ecp{op(j)}}. Then the min-max version of the
r-gathering problem finds an r-gathering having the minimum cost. (For the
min-sum version see the brief survey in [2].)

Assume that F' is a set of locations for emergency shelters, op(f) is the time
needed to prepare a shelter f € F, and co(c, f) is the time needed for a person
¢ € C to reach assigned shelter A(c) € F. Then an r-gathering corresponds to an
evacuation plan such that each opened shelter serves r or more people, and the
r-gathering problem finds an evacuttion plan minimizing the evacuation time
span.

Armon [2] gave a simple 3-approximation algorithm for the problem and
proved that with assumption P # NP the problem cannot be approximated
within a factor of less than 3 for any r > 3.

However in a solution above some person may be assigned to a farther open
shelter although it has some closer open shelter. It may be difficult for the
person to accept such an assignment for an emergency situation. Therefore
Armon [2] also considered the problem with one more additional constraint,
that is, each customer should be assigned to a closest open facility, and gave a
9-approximation algorithm for the problem. We call the problem the prozimity
r-gathering problem.

In this paper we give a simple 3-approximation algorithm for the proximity
r-gathering problem.

The remainder of this paper is organized as follows. Section 2 contains our
main algorithm for the proximity r-gathering problem. Section3 considers a
case with outliers. Section 4 gives a slightly improved algorithm for the original
r-gathering problem. (This part will be appear in [1], but in Japanese.) Section 5
contains a conclusion and an open problem.

A preliminary version of the paper is presented at (unrefereed) meeting [6].

2 Algorithm

We need some preparation.

A lower bound 1b(i, j) of the cost assigning ¢ € C to j € F in any r-gathering
is derived as follows. Let N(j) be the set of r customers having up to r-th
smallest connection costs to facility j € F. If i € N(j) then define 1b(i,j) =
mazxz{op(j), co(k, j)}, where k is the customer having the r-th smallest connection
cost to j. Otherwise [b(7, 7) = max{op(j), co(i,j)}. Then a lower bound Ib(4) of
the cost for ¢ € C in any r-gathering is derived as 1b(i) = min;ecp{{b(¢, j)}. Since
we need to assign i € C to some facility, Ib(i) is also a lower bound for the
cost of the solution of the proximity r-gathering problem. Let bestf (i) for i € C
be a facility j € F attaining cost 1b(i). Let mates(i) for i € C be N(bestf(i))
if ¢ € N(bestf(i)), and N(bestf(i)) U {i} — {k} otherwise. Thus if we assign
mates(i) to bestf(i) € F then the cost of the part is at least {b(7).

We regard co(f, f') = miniec{co(i, f) + co(i, f")} for f,f € F. We
define by opt the cost of the solution, that is miny max{max;cc{co(i, A())},
maxcr {op(j)}}, where F' C F is the set of opened facilities. Clearly opt > 1b(4)
holds for any i € C.

Assigning Proximity Facilities for Gatherings 249

Algorithm 1. Best-or-factor3

for alli € C' do
Compute [b(i), bestf(i) and mates(i)
end for
Sort C' in the non-increasing order of Ib(4)
for all ¢ € C in the non-increasing order of b() do
if best f(i) is not assigned to yet, and none of mates(i) has been assigned yet then
Open best f(4)
for all k € mates(i) do
Assign k to bestf (1) /* Best-Assignment */
end for
for all f such that co(f,bestf(i)) < 2-1b(i) do
Shut down f
end for
end if
end for
for all unassigned k£ € C do
Assign k to a closest open facility /* Factor3-Assignment */
end for

Now we give our algorithm to solve the proximity r-gathering problem.

Clearly Algorithm Best-or-factor3d finds an r-gathering. (Since whenever
we newly open a facility we always assign r customers.)

The algorithm is similar to algorithm Best-or-rest in [2] for the original
r-gathering problem, except (1) our algorithm has the “shut down f “operation,
and (2) sorts C' in the non-increasing order, while Best-or-rest [2] sorts C' in
the non-decreasing order. Actually we can modify algorithm Best-or-rest for
the original r-gathering problem so that it does not need the sort. We show this
in the later section.

We have the following lemma.

Lemma 1. Algorithm Best-or-factor3 finds an r-gathering such that each cus-
tomer is assigned to a closest open facility.

Proof. Assume otherwise for a contradiction. Since Factor3-Assignment never
open any facility and always assign a customer to a closest open facility, we
only consider for Best-Assignment. Then some i’ € mates(i) assigned to facility
bestf(i) has a closer open facility, say bestf(k) for some k € C. We have two
cases based on the opening order of best f(i) and best f (k).

If best f(k) opens earlier than best f (i) then Ib(k) > Ib(i) holds, then

co(bestf(i),bestf(k)) < co(i', best f(i)) + co(i’, best f (k))
< co(i',bestf(i)) + co(i', best f (1))

250 S. Nakano

bestf(i)

bestf(k)

mates(i)

Fig. 1. Illustration for the proof of Lemma 1.

which contradicts to the fact that after we open facility bestf(k) we shut down
every surrounding facility with connection cost at most 2 - Ib(k). We need the
sort for the last inequality (Fig.1).

Otherwise best f (i) opens earlier than best f(k) and 1b(i) > Ib(k) holds, so

co(bestf(k),bestf(i)) < co(i’,best f(k)) + co(i’, best f (1))
< co(i', bestf(i)) + co(i’, best f (i)
<2 1b(i)

which contradicts to the fact that after we open facility bestf (i) we shut down
every surrounding facility within connection cost at most 2 - 1b(i). O

We have the following two theorems.

Theorem 1. The cost of an r-gathering found by Algorithm Best-or-factor3
18 at most 3 - opt.

Proof. Consider the cost for each assignment of ¢ € C. For Best-Assignment the
cost is 1b(7) < opt. So we need to consider only for Factor3-Assignment.

Each i € C assigned in Factor3-Assignment was not assigned to best f (i) in
Best-Assignment but later assigned to its closest already opened facility. So we
consider only for connection costs.

Assume we assign i € C in Factor3-Assignment. We show that i always has
an open facility with the connection cost at most 3 opt. We have two cases based
on the reason why 7 was not assigned in Best-Assignment.

Case 1(a): Some i’ € mate(i) is already assigned to some bestf(k) since i’ €
mates(k) also holds. See Fig.2(a).
The connection cost co(i, best f(k)) is at most

co(i, bset f(i)) + co(i', best f(i)) + co(i’, best f (k)) < Ib(i) + Ib(3) + Ib(k)
< 3opt

Thus ¢ € C has an open facility with a connection cost at most 3 opt.

Assigning Proximity Facilities for Gatherings 251

@ bestf(k) bestf(k)

bestf(i) .
) <Ib(k) Rt
I:l-.f_lt’(_lz_ 0 LT <21b(k)
l,"< Ib(i) mates(i) l:"'
matesck) /2 \L.a====""7
@ @ <Ib@) pestf(i)

shut down
(a) (b)

Fig. 2. Illustration for the proof of Theorem 1

Case 1(b): bestf(i) is already shut down just after some bestf(k) is opened.
See Fig. 2(b).
The connection cost co(i, best f(k)) is at most

co(i,bset f(i)) + co(best f (i), best f(k)) < 1b(i) + 2 - Ib(k)
< 3opt

Thus 7 € C has an open facility with the connection cost at most 3 opt. a

Theorem 2. Algorithm Best-or-factor3 runs in time O(r|C| + |C||F|* +
|Cllog[CY).

Proof. For each j € F by using a linear time selection algorithm [3] [p. 220] find
the r-th closest customer to j, then choosing closer customers we can compute
the set of up to (r-1)-th closest customers to j in O(|C|) time. Thus we need
O(|C||F]) time in total to compute such a customer and a set of customers for
all j € F.

Then we can compute [b(4), best f (i), mates(i) for all i € C'in O(|C||F|) time.
We also compute co(f, f') for every f,f € F in O(|C||F|?) time.

We need O(|C|log |C|) time for the sort.

Then Best-Assignment part runs in O(r|C| + |C||F|?) time, and Factor3-
Assignment part runs in O(|C||F|) time.

Thus in total the algorithm runs in O(r|C| + |C||F|? + |C|log|C]) time. O

3 Outlier

An (r,e)-gathering of C to F is an r-gathering of C — C' to F, where C’ is
any subset of C' with size at most ¢|C|. Intuitively we can ignore at most €|C)|
(outlier) customers for the assignment. The cost of an (r, €)-gathering A is defined
naturally, that is max{max;cc_cs{co(i, A(7))}, maxjcr {op(j)}}, where F' C F

252 S. Nakano

is the set of opened facilities. An (r, €)-gathering problem finds an (r, €)-gathering
having the minimum cost.

By slightly modifying algorithm Best-or-factor3 we can solve the problem
as follows. (The modification is similar to Corollary 3.4 of [2] for the r-gathering
problem, not for the proximity r-gathering problem.)

After sorting C' with respect to 1b(4), let i’ be the customer having the [¢|C|]-
th largest [b. We remove all customer ¢ with [b(7) > Ib(:") from C. Since we
need to assign at least one customer ¢ with [b(i) > Ib(i') to some open facility,
opt > 1b(i’) holds.

Let C’ be the set of the removed customers. This removal never affects
mates(i) for any remaining i € C — C’, (because assuming k € C’ is in mates(7)
for i € C — C" means b(k) < Ib(i), contradicts to the choice of C’). So the
removal also never affects 1b(i) and best f(i) for any remaining i € C' — C".

Thus for the remaining customers algorithm Best-or-factor3 computes an
r-gathering with cost at most 31b(i") < 3opt. Now we have the following theorem.

Theorem 3. One can find an (r, €)-gathering with cost at most 3-opt in O(r|C|+
|IC||F|> + |C|log |C|) time.

4 r-Gathering Without Sort

The following algorithm Best-or-rest is a 3-approximate algorithm for the orig-
inal r-gathering problem which is basically derived from [2] by just removing the
sort of C.

Algorithm 2. Best-or-rest
for all i € C do
Compute 1b(i), bestf(i) and mates(i)
end for
for all i € C do
if bestf(i) is not assigned to yet, and all mates(i) are not assigned yet then
Open bestf ()
for all k € mates(t) do
Assign k to bestf () /* Best-Assignment */
end for
end if
end for
for all unassigned k£ € C do
Assign k to a closest open facility /* Rest-Assignment */
end for

We have the following theorems.

Theorem 4. The cost of an r-gathering found by Algorithm Best-or-rest is at
most 3 - opt.

Assigning Proximity Facilities for Gatherings 253

Proof. The proof is just a subset of the proof of Theorem 1.

Consider the cost for each assignment of i € C. For Best-Assignment the
cost is 1b(i) < opt. So we need to consider only for Rest-Assignment.

Each i € C assigned in Rest-Assignment was not assigned to bestf(i) but
later assigned to its closest already opened facility. So we consider only for con-
nection costs.

Assume we assign i € C in Rest-Assignment. The reason why ¢ was not
assigned in Best-Assignment is some i’ € mate(i) is already assigned to some
best f (k) since i' € mates(k) also holds.

The connection cost co(i, best f(k)) is at most

co(i, bset f(i)) + co(i', best f(i)) + co(i, best f(k)) < Ib(i) + Ib(3) + Ib(k)
< 3opt

Thus ¢ € C has an open facility with a connection cost at most 3 opt. O

We can prove the running time of the algorithm is O(|C||F| + r|C]), by
a similar way to the proof of Theorem 2. While in [2] the running time was
O(|C||F| + r|C| + |C|log |C|) since it needs a sort of |C.

5 Conclusion

In this paper we provided a simple approximation algorithm to solve the proxim-
ity r-gathering problem. The approximation ratio is 3, which improve the former
result [2] of 9.

The algorithm can solve a slightly more general problem in which each f € F
has a distinct minimum number 7 of customers needed to open. The algorithm
also runs in O(r|C| + |C||F|* + |C|log |C|) time. We assume r > ¢ holds for all
feFrF.

Can we design an approximation algorithm for the min-sum version of the
proximity r-gathering problem?

References

1. Akagi, T., Arai, R., Nakano, S.: Faster min-max r-gatherings. IEICE Trans. Fun-
dam., vol. E99-A, (2016, Accepted). (in Japanese)

2. Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412, 573-582 (2011)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

4. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,
New York (1995)

5. Drezner, Z., Hamacher, H-W.: Facility Location: Applications and Theory. Springer,
Heidelberg (2004)

6. Nakano, S.: Assigning proximity facilities for gatherings, IPSJ SIG Technical report,
2015-AL-151-5 (2015)

Cryptography

Combiners for Chosen-Ciphertext Security

Cong Zhang', David Cash', Xiuhua Wang?, Xiaoqi Yu?,
and Sherman S.M. Chow?®)

! Department of Computer Science, Rutgers University, New Brunswick, NJ, USA
2 Department of Information Engineering, The Chinese University of Hong Kong,
Sha Tin, N.T., Hong Kong
sherman@ie.cuhk.edu.hk
3 Department of Computer Science, The University of Hong Kong,

Pok Fu Lam, Hong Kong

Abstract. Security against adaptive chosen-ciphertext attack (CCA) is
a de facto standard for encryption. While we know how to construct
CCA-secure encryption, there could be pragmatic issues such as black-
box design, software mis-implementation, and lack of security-oriented
code review which may put the security in doubt. On the other hand,
for double-layer encryption in which the two decryption keys are held
by different parties, we expect the scheme remains secure even when
one of them is compromised or became an adversary. It is thus desirable
to combine two encryption schemes, where we cannot be assured that
which one is really CCA-secure, to a new scheme that is CCA-secure. In
this paper we propose new solutions to this problem for symmetric-key
encryption and public-key encryption. One of our result can be seen as
a new application of the detectable CCA notion recently proposed by
Hohenberger et al. (Eurocrypt 2012).

Keywords: Encryption - Chosen-ciphertext security - Robust combiners

1 Introduction

Secure systems are usually complex and involve multiple components. If a com-
ponent turns out to be problematic, the whole system may become totally inse-
cure. For security-critical applications, a prudent practice is to have a robust
design, such that the system remains secure even if a component is insecure. Of
course, if one could identify which component is insecure, the designer can simply
replace it with a secure one. Yet, it is notoriously difficult to ensure that a system
component is secure in general. One example is that a component primitive is
implemented as a black-box which the combiner cannot assert its security. On
the other hand, even if the source code (of the software) or the circuit footprint
(of the hardware) were available, asserting its security depends on the rigor and
quality of the corresponding security-oriented review.

Sherman S.M. Chow is supported in part by the Early Career Award and the grants
(CUHK 439713 & 14201914) of the Research Grants Council, Hong Kong.
© Springer International Publishing Switzerland 2016

T.N. Dinh and M.T. Thai (Eds.): COCOON 2016, LNCS 9797, pp. 257268, 2016.
DOT: 10.1007/978-3-319-42634-1_21

258 C. Zhang et al.

In this paper, we look into a basic cryptographic tool which is encryption.
We consider both public-key encryption (PKE) and symmetric-key encryption
(SKE). The work of Herzberg [7] motivated the need of robust design of cryp-
tosystem, which features a combination of multiple instantiation of the same
primitives (e.g., one may consider ElGamal encryption and RSA encryption as
examples), such that as long as one of them ensures a certain level of security,
the same security guarantee is preserved by the combined design, without know-
ing beforehand which one is that. Robust combiner achieving this property can
ensure security even if there is doubt in the security of the component primi-
tives [6]. It is also termed as tolerant cryptographic schemes [7] or cryptanalysis-
tolerant schemes [5] in the literature.

Herzberg [7] proposed combiners that are secure against chosen-plaintext
attack (CPA) or chosen-ciphertext attack. However, it is hard to achieve security
against adaptive chosen-ciphertext attack (CCA in this paper!) if one of the
component schemes turns out to be malleable. In the CCA attack, the adversary
can query to a decryption oracle even after the adversary has obtained the
challenge ciphertext, and the only disallowed query is the challenge ciphertext
itself. Hence, if a part of the ciphertext is malleable, an adversary can simply
maul it and obtain the plaintext from the decryption oracle. Dodis and Katz [5]
proposed a cryptanalysis-tolerant CCA-secure encryption scheme, which remains
secure when only an unknown one of the component schemes is CCA-secure.

Another usage of such a combiner is to achieve security for cryptosystems in
which the decryption requires two private keys held by different parties. Security
remains preserved when one of the parties is compromised by the adversary. An
application is to support revocation via a security-mediator, a party whom needs
to help the non-revoked users in every decryption request. Immediate revocation
can be achieved once it is instructed to stop entertaining any further (partial)
decryption request of the revoked user. For example, Chow et al. [2] proposed a
CCA-secure security-mediated certificateless encryption scheme, combining an
identity-based encryption with a public-key encryption generically. Without a
combiner, a specific ad-hoc construction is probably needed [3].

Our Results. In this paper, we give two other cryptanalysis-tolerant CCA-secure
encryption schemes, one for PKE and one for SKE. Our PKE combiner matches
well with the notion of detectable chosen-ciphertext attack (DCCA) proposed by
Hohenberger et al. [8] recently. Intuitively, DCCA is a weaker version of CCA,
where “dangerous” ciphertexts are not allowed to be queried to the decryption
oracle. Here, whether a ciphertext is dangerous can be checked by a polynomial-
time function. Our combiner aims to achieve indistinguishability against DCCA
attack, by detecting whether a query is originated from the challenge ciphertext
of a component scheme. If so, such decryption query is disallowed. This gives a
conceptually simple combiner with an elementary security proof. Furthermore,
it illustrates yet another application of this DCCA notion.?

! We remark that it is called CCA2 in the literature when the adaptiveness matters.

2 While the original paper has discussed the application of DCCA in ruling out some
known implementation bug of a “sloppy” encryption scheme [8], our combiner does
not assume the bug from the component scheme can be easily detected.

Combiners for Chosen-Ciphertext Security 259

Yet, our combiner is downgrading the security of the component scheme since
one of them is CCA-secure, but the resulting scheme is only DCCA-secure. For
getting CCA-security, we resort back to the result of Hohenberger et al. [8]. Their
work showed that we can construct a CCA-secure encryption scheme by a nested
encryption approach, taking a DCCA-secure scheme, a CPA-secure scheme, and
a 1-bounded CCA-secure scheme [4]. A g-bounded CCA-secure encryption sys-
tem is secure against ¢ chosen ciphertext queries, which can be constructed via
a CPA-secure encryption primitive [4].

We then propose another combiner to directly obtain an SKE scheme with
CCA security, by taking two SKE schemes in which only one of them is CCA-
secure. This is different from our combiner for PKE. Note that an SKE scheme
with security against chosen-plaintext attack and integrity of the ciphertext
implies that this scheme is also CCA-secure [1]. For this combiner, our strategy
is to work on these two properties instead, by taking two component schemes
where an unknown one of them possesses of both properties.

Finally, we review in appendix the nested encryption technique of
Hohenberger et al. [8] for obtaining CCA security.

2 Preliminaries

2.1 CCA Security for PKE

Definition 1 (Public-Key Encryption). A public-key encryption scheme
PKE consists of the following three probabilistic polynomial-time (PPT) algo-
rithms (KeyGen, Enc, Dec).

- (EK,DK) + KeyGen(1*): the algorithm outputs a pair of keys consisting of
the public encryption key EK and the private decryption key DK, according
to the input security parameter 1.

— C «— Enc(EK,m): the algorithm takes a public key EK and a plaintext m as
inputs, and outputs a ciphertext C.

—~ m « Dec(DK,C): the algorithm uses the private key DK to decrypt a cipher-
text C' to recover the plaintext m, or to output L denoting C is invalid.

When the context is clear, we may put the input key as a subscript instead,
or simply omit it.

We recall the definition of CCA security. Consider the following experiment
ExpSpie (11) for PKE:

— Setup: The challenger C takes a security parameter 1* and runs KeyGen to
output keys (EK, DK). It gives A EK, and keeps DK to itself.

— Query Phase I: A is given full access to the decryption oracle Dec(DK,-).
When the adversary A decides to terminate the query phase, it outputs a pair
of messages mg, my of the same length.

— Challenge: The challenger C randomly picks a bit b < {0,1}, computes C* «—
Enc(EK,my) and sends C* to A.

260 C. Zhang et al.

— Query Phase 2: A continues to have access to Dec(DK,-), but is not allowed
to request for a decryption of C*. Finally A outputs a bit ¥'.
— Qutput: The output of the experiment is defined to be 1 if &’ = b, otherwise 0.

A PKE scheme PKE = (KeyGen, Enc,Dec) is CCA secure if for all PPT
adversaries A, there exists a negligible function negl() such that:

1
Pr[Exprfp,Cg(lA) =1 < 5 + negl()).

2.2 Detectable Chosen Ciphertext Security

Detectable chosen ciphertext attack (DCCA) is an attack mode against PKE
introduced by Hohenberger et al. [8], which is weaker than the standard CCA
notion. Considering a DCCA-secure PKE (or detectable encryption) suggests
a new way to build CCA-secure encryption scheme. Their results show that
one can construct a CCA-secure PKE scheme by applying nested encryption
techniques on three primitives that are DCCA-secure, 1-bounded CCA-secure,
and CPA-secure respectively.

A detectable encryption scheme is defined by I = (KeyGen, Enc, Dec, F),
where KeyGen, Enc, and Dec behave as those in traditional encryption schemes,
but with an additional efficient boolean function F'() available, which is designed
to detect “dangerous” ciphertext. Specifically, F() will be applied before any
decryption query in Phase 2 of the original CCA game. When the queried
ciphertext C' “is related to” the challenge ciphertext C*, meaning that adversary
can infer “useful” information about C* from the decryption query of C, F()
will return 1 and the query is rejected; else the decryption result of C' will
be returned to the adversary. Definition 2 formally describes the syntax of a
detectable encryption scheme.

Definition 2 (Detectable Encryption). A detectable encryption scheme con-
sists of the following PPT algorithms (KeyGen, Enc, Dec, F').

- KeyGen, Enc, Dec are defined as those in a reqular PKE scheme.

- {0,1} « F(EK,C,C*): The detecting function F takes as inputs a public
key EK and two ciphertexts C and C*, and outputs 1 if C' and C* has some
relations, else outputs 0.

The definition of F() above is at its full generality. We may omit the input
of EK from F() when the function F() does not need it.

Correctness is defined as in a regular encryption scheme. A DCCA-secure
scheme must satisfy unpredictability for ' and indistinguishability under DCCA.

Unpredictability of the Detecting Function [8]. Intuitively, it is hard for the adver-
sary to find a useful ciphertext C, given the detectable function F() and a pub-
lic key EK. This is formally defined via the game Exp’y%; (1) for a detectable
scheme IT = (KeyGen, Enc, Dec, F') played by an adversary A.

Combiners for Chosen-Ciphertext Security 261

Setup: The challenger C takes a security parameter 1* and runs KeyGen to
output keys (EK, DK). It gives FK to A, and keeps DK to itself.

Query: A can fully access the decryption oracle Dec(DK,). When A concludes
the query phase, it outputs a message m and a ciphertext C.

— Challenge: The challenger C outputs a ciphertext C* «— Enc(EK,m).

Output: The experiment outputs F(EK,C,C*).

A detectable encryption scheme IT is said to have unpredictability for F' if,
for any PPT adversary A, we have Pr[Exp’y; = 1] < negl()).

One can formulate a stronger version of the above game, in which the adver-
sary is given the decryption key instead of the oracle [8]. This implies the basic
version of undetectability since the adversary can simulate the decryption oracle

when given DK.

Indistinguishability under DCCA [8]. Now we formalize the confidentiality guar-
antee according to the following experiment ExpiG (1*):

— Setup: The challenger C takes a security parameter 1* and runs KeyGen to
output keys (EK, DK). It gives A EK, and keeps DK to itself.

— Query Phase 1: A is given full access to the decryption oracle Dec(DK,-).
When the adversary A decides that the query phase ends, it outputs messages
mg, m1 of the same length.

— Challenge: The challenger C randomly picks a bit b < {0,1}, computes C* «—
Enc(EK,my) and sends C* to A.

— Query Phase 2: A continues to have access to Dec(DK, -), but is not allowed
to issue a decryption query such that F(EK,C,C*) = 1.

— Output: A wins the game and the experiment outputs 1 if and only if ¥’ = b.

A detectable encryption scheme IT is said to have indistinguishability under
DCCA, if we have Pr[Empifffj = 1] < 5 + negl()) for any PPT adversary A.

2.3 Authenticated (Symmetric-Key) Encryption

Definition 3 (Symmetric-Key Encryption). A symmetric-key encryption
scheme SKE consists of the following three probabilistic polynomial-time (PPT)
algorithms (KeyGen, Enc, Dec).

~ SK « KeyGen(1*): the algorithm outputs a secret key SK according to the
input security parameter 1.

— C «— Enc(SK,m): the algorithm takes a secret key SK and a plaintext m as
inputs, and outputs a ciphertext C.

— m « Dec(SK,C): the algorithm decrypts a ciphertext C' to the corresponding
plaintext m, or outputs L, by using the secret key SK .

262 C. Zhang et al.

Confidentiality. We recall th