
Joint Analysis of Longitudinal Data
and Informative Observation Times
with Time-Dependent Random Effects

Yang Li, Xin He, Haiying Wang, and Jianguo Sun

Abstract Longitudinal data occur in many fields such as the medical follow-up
studies that involve repeated measurements. For their analysis, most existing
approaches assume that the observation or follow-up times are independent of
the response process either completely or given some covariates. In practice, it
is apparent that this may not be true. We present a joint analysis approach that
allows the possible mutual correlations that can be characterized by time-dependent
random effects. Estimating equations are developed for the parameter estimation
and the resulting estimators are shown to be consistent and asymptotically normal.

1 Introduction

Longitudinal data occur in many fields such as the medical follow-up studies that
involve repeated measurements. In these situations, study subjects are generally
observed only at discrete times. Therefore, for the analysis of longitudinal data, two
processes need to be considered: one is the response process, which is usually of the
primary interest but not continuously observable; the other one is the observation
process, which is nuisance but gives rise to the discrete times when the responses
are observed.
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An extensive literature exists for the analysis of longitudinal data. Sun and
Kalbfleisch (1995) and Wellner and Zhang (2000) investigated nonparametric
estimation of the mean function when the response process is a counting process.
Cheng and Wei (2000), Sun and Wei (2000), Zhang (2002) and Wellner and Zhang
(2007) developed some semiparametric approaches for regression analysis under
the proportional means models. However, with respect to the observation process,
most existing approaches assume that the observation times are independent of the
underlying response process either completely or given some covariates. For the
analysis with a correlated observation process, there is limited work and most of
them assume independent censoring or require some restrictive conditions such as
the Poisson assumption or specified correlation structure for dependence (He et al.
2009; Huang et al. 2006; Kim et al. 2012; Li et al. 2013; Sun et al. 2007; Zhao and
Tong 2011; Zhao et al. 2013; Zhou et al. 2013).

In many situations, however, the response process, the observation and censoring
times may be mutually correlated. In addition, such correlations may be time-
dependent. For instance, both the observation times and longitudinal responses may
depend on the stage of disease progression. Their correlation may change over time
and so are their correlations with the follow-up times. He et al. (2009) considered
such correlations in shared frailty models. However, their method requires the
assumptions that the underlying random effect is normally distributed and the
observation process is a nonhomogeneous Poisson process. Also all correlations
between the three processes are assumed to be fixed over time. Zhao et al. (2013)
proposed a robust estimation procedure and relaxed the Poisson assumption required
in He et al. (2009). However, the follow-up times are assumed to be independent
from covariates, responses and observation times; and the possible correlations
between responses and observation times are time-independent. More recently, Sun
et al. (2012) presented a joint model with time-dependent correlations between the
response process, the observation times and a terminal event, where the random
effect associated with the terminal event is fixed over time and follow a specified
distribution. In practice, however, such conditions may not hold or be difficult to
check when informative censoring involves.

We consider regression analysis of longitudinal data when the underlying
response process, the observation and censoring times are mutually correlated and
none of the correlations is restricted by specified forms or distributions. A general
estimation approach is proposed. The remainder of this chapter is organized as
follows: In Sect. 2, we introduce the notation and present the model. Section 3
presents the estimation procedure and establishes the asymptotic properties of the
resulting estimators. In Sect. 4, a simulation study is performed to evaluate the finite
sample properties of the proposed estimators. Some concluding remarks are given
in Sect. 5.
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2 Notation and Models

Consider a longitudinal study in which the response process of interest is observed
only at some discrete sampling time points. For each subject i, i D 1; � � � ; n, let Ni.t/
be the observation process, which gives the cumulative number of observation times
up to time t. In practice, one observes eNi.t/ D Ni.t^Ci/ where a^b D min.a; b/ and
Ci denotes the censoring or follow-up time. Let Yi.t/ denote the response process,
which gives the response of interest at time t but is observed only at mi discrete
observation times fTi;1; � � � ; Ti;mi g when eNi.t/ has jumps. Suppose that there exists
a p-dimensional vector of covariates denoted by Zi, which will be assumed to be
time-independent.

In the following, we model the correlation between Yi.t/, Ni.t/ and Ci through
an unobserved random vector bi.t/ D .b1i.t/; b2i.t/; b3i.t//0, which could be time-
dependent. Define Bit D fbi.s/; s � tg. It will be assumed that the bi.t/’s are
independent and identically distributed, Bit is independent of Zi, and given Zi and
Bit, Ci, Ni.t/ and Yi.t/ are mutually independent. To be specific, the mean function
of Yi.t/ is assumed to follow the proportional means model

EfYi.t/jZi; bi.t/g D ƒ0.t/ expfˇ0Zi C b1i.t/g; (1)

where ƒ0.t/ is an unknown baseline mean function and ˇ denotes a vector of
p-dimensional regression coefficients. When b1i.t/ D 0 meaning that Yi.t/ is
independent of both Ni.t/ of Ci, model (1) has been considered extensively by
Cheng and Wei (2000), Sun and Wei (2000), Zhang (2002) and Hu et al. (2003)
among others. When b1i.t/ is time-independent, model (1) is equivalent to model
(3) considered in Zhao et al. (2013). In general, b1i.t/ is unknown and may follow
an arbitrary distribution.

The observation process Ni.t/ follows the proportional rates model

EfdNi.t/jZi; bi.t/g D expf� 0Zi C b2i.t/gd�0.t/ ; (2)

where � is a vector of unknown parameters and d�0.t/ is an unknown baseline
rate function. For the C0

i s, motivated by the additive hazards models that have been
commonly used in survival analysis (Kalbfleisch and Prentice 2002; Lin and Ying
2001; Zhang et al. 2005), we consider the additive hazards model. That is, the hazard
�i.tjZi; bi.t// of Ci, defined as the rate of observing Ci at time t provided that Ci is
no larger than t, is given by

�i.tjZi; bi.t// D �0.t/ C � 0Zi C b3i.t/ : (3)

Here �0.t/ is an unknown baseline hazard function and � denotes the effect of
covariates on the hazard function of C0

is. Note that instead of model (3), one may
consider the proportional hazards model. As pointed out by Lin et al. (1998) and
others, the additive model (3) can be more plausible than the proportional hazards
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model in many applications. Related applications and model-checking techniques
of model (3) can be found in Yuen and Burke (1997), Kim and Lee (1998), Ghosh
(2003) and Gandy and Jensen (2005) among others.

In the above, models (1)–(3) can be viewed as natural generalizations of some
existing and commonly used models. In fact, when any of the bki.t/’s (k D
1; 2; 3) is zero or independent from other bji.t/’s (j D 1; 2; 3 and j ¤ k), the
corresponding process is independent from the others. Therefore, the proposed joint
model also applies to special cases when either the observation or censoring times
are noninformative. In general, since the form or distribution of bi.t/ is arbitrary and
completely unspecified, the joint model described above is quite flexible compared
to many existing procedures.

Note that in models (1)–(3), for simplicity, we have assumed that the set of
covariates that may affect Yi.t/, Ni.t/ and Ci is the same. In practice, it is apparent
that this may not be the case and actually the estimation procedure proposed below
still applies as long as one replaces Zi by appropriate covariates. As an alternative,
one can define a single and big covariate vector by combining all different covariates
together. In the following, we will focus on estimation of regression parameters ˇ

along with � and �. For this, it is easy to see that the use of the existing procedures
that assume independence could give biased or even misleading results.

3 Estimation Procedure

In this section, we will present an inference procedure for estimation of ˇ which is
usually of the primary interest. For this, first note that the counting process eNi.t/ D
Ni.t ^ Ci/ jumps by one at time t if and only if Ci � t and dNi.t/ D 1. Also we have

EfdeNi.t/jZig D EfI.t � Ci/dNi.t/jZig

D E

�

EfI.t � Ci/dNi.t/jZi;Bitg
ˇ

ˇ

ˇ

ˇ

Zi

�

D E

�

EfI.t � Ci/jZi;BitgEfdNi.t/jZi;Bitg
ˇ

ˇ

ˇ

ˇ

Zi

�

D E

�

expf�ƒ�
0 .t/ � Bi.t/ � � 0Z�

i .t/g expf� 0Zi C b2i.t/gd�0.t/

ˇ

ˇ

ˇ

ˇ

Zi

�

D expf� 0Zi � � 0Z�
i .t/gdƒ�

1 .t/; (4)

where

ƒ�
0 .t/ D

Z t

0

�0.s/ds; Bi.t/ D
Z t

0

b3i.s/ds; Z�
i .t/ D

Z t

0

Zids

and

dƒ�
1 .t/ D expf�ƒ�

0 .t/gEŒexpfb2i.t/ � Bi.t/g�d�0.t/:



Longitudinal Data with Informative Observation Times 41

Define

dM�
i .tI �/ D deNi.t/ � e�0Xi.t/dƒ�

1 .t/

and dM�
i .t/ D dM�

i .tI �0/, where � D .�; �/0, Xi.t/ D .Zi; �Z�
i .t//0 and �0

denotes the true value of �. It can be shown that M�
i .t/ is a mean-zero stochastic

process. It follows that the estimators of � and dƒ�
1 .t/ can be obtained by solving

the following two estimating equations

U�.�/ D
n

X

iD1

Z �

0

�

Xi.t/ � NX.tI �/

�

deNi.t/ D 0 (5)

and

n
X

iD1

�

deNi.t/ � e�0Xi.t/dƒ�
1 .t/

�

D 0: (6)

In the above, � is the longest follow-up time, NX.tI �/ D S.1/.tI �/=S.0/.tI �/

and S.k/.tI �/ D n�1
Pn

iD1 e�0Xi.t/Xi.t/˝k with a˝0 D 1, a˝1 D a, Nx.t/ D
limn!1 NX.tI �0/ and s.k/.t/ D limn!1S.k/.tI �0/; k D 0; 1:

To estimate ˇ, consider

EfYi.t/deNi.t/jZi;Bitg
D EfI.t � Ci/Yi.t/dNi.t/jZi;Bitg
D EfI.t � Ci/jZi;BitgEfYi.t/jZi;BitgEfdNi.t/jZi;Bitg
D expf�ƒ�

0 .t/ � Bi.t/ � � 0Z�
i .t/g

ƒ0.t/ expfˇ0Zi C b1i.t/g expf� 0Zi C b2i.t/gd�0.t/

D expf.ˇ C �/0Zi � � 0Z�
i .t/g

expf�ƒ�
0 .t/ C b1i.t/ C b2i.t/ � Bi.t/gƒ0.t/d�0.t/;

and therefore

EfYi.t/deNi.t/jZig D expfˇ0Zi C �0Xi.t/gdƒ�
2 .t/; (7)

where

dƒ�
2 .t/ D expf�ƒ�

0 .t/gƒ0.t/EŒexpfb1i.t/ C b2i.t/ � Bi.t/g�d�0.t/:

Define

dMi.tI ˇ; �/ D Yi.t/deNi.t/ � expfˇ0Zi C �0Xi.t/gdƒ�
2 .t/
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and dMi.t/ D dMi.tI ˇ0; �0/, where ˇ0 denotes the true value of ˇ. Then Mi.t/ is
a mean-zero stochastic process. This naturally suggests the following estimating
equations to estimate ˇ and dƒ�

2 .t/:

Uˇ.ˇI O�/ D
n

X

iD1

Z �

0

W.t/Zi

�

Yi.t/deNi.t/ � eˇ0ZiCO�0Xi.t/dƒ�
2 .t/

�

D 0; (8)

and

n
X

iD1

�

Yi.t/deNi.t/ � eˇ0ZiCO�0Xi.t/dƒ�
2 .t/

�

D 0; 0 � t � �; (9)

where O� D . O�; O�/0 and dbƒ�
1 .t/ are the estimators of � and dƒ�

1 .t/, respectively,
solved from (5) and (6), and W.t/ is a possibly data-dependent weight function. We
denote the estimates of ˇ and dƒ�

2 .t/ by Ǒ and dbƒ�
2 .t/, respectively, solved from (8)

and (9).
To establish the asymptotic properties of Ǒ and O�, define

bM�
i .t/ D eNi.t/ �

Z t

0

e O�0Xi.s/dbƒ�
1 .sI O�/;

bMi.t/ D
Z t

0

Yi.s/deNi.s/ �
Z t

0

e
Ǒ0ZiCO�0Xi.s/dbƒ�

2 .sI Ǒ; O�/;

bEZ.tI ˇ; �/ D
Pn

iD1 Zieˇ0ZiC�0Xi.t/

Pn
iD1 eˇ0ZiC�0Xi.t/

and ez.t/ D limn!1bEZ.tI ˇ0; �0/:

The following theorem gives the consistency and asymptotic normality of Ǒ and O�.

Theorem 1. Assume that the conditions (C1)–(C5) given in the Appendix hold.
Then O� and Ǒ are consistent estimators of �0 and ˇ0, respectively. The distributions
of n1=2. O� � �0/ and n1=2. Ǒ � ˇ0/ can be asymptotically approximated by the
normal distributions with mean zero and covariance matrices b˙� D b˝�1

�
b	 b˝�1

�

and b˙ˇ D bA�1
ˇ

b˙bA�1
ˇ , respectively, where a˝2 D aa0, b	 D n�1

Pn
iD1 Ou˝2

i ,
b˙ D n�1

Pn
iD1. Ov1i � Ov2i/

˝2,

Oui D
Z �

0

�

Xi.t/ � NX.tI O�/
�

dbM�
i .t/ ;

Ov1i D
Z �

0

W.t/
�

Zi � bEZ.tI Ǒ; O�/
�

dbMi.t/ ;

Ov2i D
Z �

0

bA�
b˝�1

�

�

Xi.t/ � NX.tI O�/
�

dbM�
i .t/ ;
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bAˇ D n�1

n
X

iD1

Z �

0

W.t/e
Ǒ0ZiCO�0Xi.t/

�

Zi � bEZ.tI Ǒ; O�/
�˝2

db
�
2 .tI Ǒ; O�/;

bA� D n�1

n
X

iD1

Z �

0

W.t/e
Ǒ0ZiCO�0Xi.t/

�

Zi � bEZ.tI Ǒ; O�/
�

X0
i.t/db
�

2 .tI Ǒ; O�/

and

b˝� D n�1

n
X

iD1

Z �

0

fXi.t/ � NX.tI O�/g˝2e O�0Xi.t/db
�
1 .tI O�/:

4 A Simulation Study

In this section, we report some results obtained from a simulation study conducted
to assess the finite sample behavior of the estimation procedure proposed in the
previous sections. For each subject i, the covariate Zi was assumed to be a Bernoulli
random variable with the probability of success being 0:5. Given Zi and some
unobserved random effects bi.t/ D .b1i.t/; b2i.t/; b3i.t//0, the hazard function of
the censoring time Ci was assumed to have the form

�i.tjZi;Bit/ D �0 C �Zi C b3i.t/; (10)

with the largest follow-up time � D 1. The number of observations eNi.t/ was
assumed to follow a Poisson process on .0; Ci/ with the mean function

EfNi.t/jZi;Bitg D
Z t

0

expf�Zi C b2i.s/gd�0.s/ : (11)

In practice, the exact time of Ci may not be observable and deNi.t/ is observed
instead of dNi.t/, thus we considered EfeNi.t/jBitg for the observation process.
From (10) and (11),

EfdeNi.t/jZi;Bitg D expf�Zi � �Zitgdƒ�
1 .t/;

where dƒ�
1 .t/ D expf��0t C b2i.t/ � Bi.t/gd�0.t/ and Bi.t/ D R t

0
b3i.s/ds. Given

Zi and Bit, eNi.t/ was assumed to follow a nonhomogeneous Poisson process and
the total number of observation times mi was generated with mean Efmig D
EfeNi.�/jZi;Bi� g. Then the observation times fTi;1; : : : ; Ti;mi g were taken as mi order
statistics from the density function

f
eN.t/ D expf�Zi � �Zitgdƒ�

1 .t/
R �

0 expf�Zi � �Zitgdƒ�
1 .t/

:
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The longitudinal response Yi.t/ was generated from a mixed Poisson process with
the mean function

EfYi.t/jZi;Bitg D Qiƒ0.t/ expf�ˇZi C b1i.t/g; (12)

where Qi was generated independently from a gamma distribution with mean 1 and
variance 0.5. The results given below are based on the sample size of 100 or 200

with 1000 replications and W.t/ D Wi D 1.
Table 1 shows the estimation results on ˇ for the situation when b1i, b2i and b3i

are time-independent. Note that here �0 D 0 or �0 D 0 represents the cases when
either censoring or the observation times is independent of covariates, respectively.
For the random effects, we took b1i D b2i D b3i D bi, where the b0

is were generated
from the uniform distribution over .�0:5; 0:5/. It can be seen that the proposed
estimates seem unbiased and the estimated standard errors (SEE) are close to the
sample standard errors (SSE). Also the empirical 95 % coverage probabilities (CP)
are quite accurate.The same conclusions are also obtained for the situation when b1i,
b2i and b3i are time-dependent, for which the results are presented in Table 2. Here
we took b1i.t/ D bi t1=3, b2i.t/ D bi t1=2 and b3i D bi with the same bi generated as
for Table 1. We also considered other set-ups such as using different baselines and
with Zi being a continuous variable and obtained similar results.

Table 1 Estimation results
with �0 D 2, �0.t/ D 20t,
ƒ0.t/ D 5t, b1i D b2i D b3i

n D 100 n D 200

ˇ0 0 0.2 0.5 0 0.2 0.5

.�0; �0/ D .0; 0/

Bias 0.007 0.012 0.000 �0.009 �0.005 �0.003

SEE 0.177 0.177 0.179 0.127 0.128 0.129

SSE 0.194 0.188 0.199 0.134 0.129 0.132

CP 0.924 0.934 0.905 0.934 0.946 0.934

.�0; �0/ D .0; 0:2/

Bias 0.036 0.035 0.042 0.036 0.036 0.042

SEE 0.178 0.180 0.182 0.127 0.128 0.130

SSE 0.192 0.186 0.197 0.133 0.134 0.138

CP 0.922 0.937 0.921 0.922 0.932 0.923

.�0; �0/ D .0:5; 0/

Bias 0.006 �0.005 0.004 0.004 �0.003 0.002

SEE 0.173 0.174 0.174 0.123 0.125 0.125

SSE 0.177 0.179 0.183 0.126 0.130 0.130

CP 0.938 0.939 0.937 0.934 0.943 0.927

.�0; �0/ D .0:5; 0:2/

Bias 0.047 0.043 0.035 0.042 0.037 0.041

SEE 0.174 0.173 0.176 0.125 0.125 0.126

SSE 0.181 0.184 0.182 0.128 0.131 0.134

CP 0.918 0.922 0.936 0.929 0.931 0.923
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Table 2 Estimation results with �0 D 2, �0.t/ D 20t, ƒ0.t/ D 5t,
b1i.t/ D bit1=3, b2i.t/ D bi

p
t and b3i.t/ D bi

n D 100 n D 200

ˇ0 0 0:2 0:5 0 0:2 0:5

.�0; �0/ D .0; 0/

Bias 0.003 �0.005 �0.006 �0.003 �0.001 �0.004

SEE 0.172 0.171 0.173 0.123 0.123 0.125

SSE 0.182 0.181 0.181 0.127 0.128 0.130

CP 0.940 0.928 0.933 0.940 0.944 0.942

.�0; �0/ D .0; 0:2/

Bias 0.045 0.038 0.040 0.036 0.044 0.042

SEE 0.173 0.173 0.175 0.123 0.125 0.127

SSE 0.183 0.186 0.185 0.129 0.132 0.133

CP 0.921 0.923 0.927 0.927 0.918 0.926

.�0; �0/ D .0:5; 0/

Bias 0.006 �0.004 �0.002 �0.006 0.006 0.002

SEE 0.168 0.168 0.169 0.120 0.120 0.121

SSE 0.178 0.181 0.173 0.129 0.127 0.122

CP 0.939 0.933 0.944 0.939 0.928 0.944

.�0; �0/ D .0:5; 0:2/

Bias 0.051 0.043 0.035 0.037 0.044 0.036

SEE 0.166 0.169 0.171 0.120 0.120 0.122

SSE 0.182 0.179 0.169 0.126 0.123 0.128

CP 0.911 0.921 0.939 0.922 0.914 0.925

To further investigate the performance of the proposed estimators of ˇ in
comparison with those proposed by He et al. (2009) and Sun et al. (2012), we carried
out a simulation study and estimated ˇ using all four methods. Note that unlike
the proposed estimation procedures, the latter two methods require observing the
exact time of a censoring or terminal event Ci. For this, we used the subjects’ last
observation times as commonly done in practice. With respect to the method given
by Sun et al. (2012), we applied it by using Ci as its original terminal event time Di

and � as its Ci. Note that as mentioned earlier, both He et al. (2009) and Sun et al.
(2012) considered the distribution-based random effects for possible correlations.
For the comparison, we focus on the performances of their procedures when the
random effects follow various distributions besides those assumed. However, since
both of them involve covariate effects in forms different from those considered by
our proposed models, we fix ˇ0 D 0 and �0 D 0 in order to avoid unfair comparisons
caused by the misspecification of covariate effects. The estimation results are given
in Table 3 with three set-ups. In the first set-up, referred to as M1, we considered
the situation as used for Table 1 except �0.t/ D 10t and b1i D �b2i D b3i. In the
second and third set-ups called M2 and M3, we generated b1i.t/, b2i.t/ and b3i.t/ from
various distributions such that the assumptions required by either Sun et al. (2012)
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Table 3 Estimation results
on ˇ based on the proposed
procedure and the procedures
given in Sun et al. (2012) and
He et al. (2009) with
ˇ0 D �0 D �0 D 0

Proposed Sun et al. (2012) He et al. (2009)

M1; n D 100

Bias �0.003 �0.004 0.009

SSE 0.162 0.261 0.206

M1; n D 200

Bias �0.003 �0.003 0.007

SSE 0.116 0.184 0.154

M2; n D 100

Bias 0.004 0.004 0.003

SSE 0.123 0.306 0.184

M2; n D 200

Bias �0.001 �0.003 0.011

SSE 0.089 0.227 0.145

M3; n D 100

Bias 0.001 �0.010 0.000

SSE 0.074 0.221 0.071

M3; n D 200

Bias 0.002 0.000 �0.003

SSE 0.055 0.150 0.051

Set-up M1: �0.t/ D 10t, �0 D 2, ƒ0.t/ D 5t, b1i D �b2i D
b3i D bi, where bi followed a uniform distribution on (�0.5,
0.5)
Set-up M2: �0.t/ D 10t, �0 D 0, ƒ0.t/ D 5t, b1i D �b2i D
bi, where bi followed a uniform distribution on (�0.5, 0.5) and
b3i followed an extreme value distribution with distribution
function F.t/ D 1 � expf� exp.t/g Set-up M3: �0.t/ D 4t,
�0 D 0, ƒ0.t/ D 5t, b1i D 0:2b2i C 0:2b2i, b2i D log.b�

2i/ and
b3i D exp.vi/, where vi and b�

2i were generated, respectively,
from a normal distribution with mean 0 and standard deviation
0:5 and gamma distribution with mean 4 and variance 8

or He et al. (2009) are satisfied. For example, we took �0.t/ D 0 and generated
b3i.t/ from an extreme-value distribution as assumed by Sun et al. (2012). We also
generated b1i.t/, b2i.t/ and b3i.t/ from the assumed distributions required by He
et al. (2009).

Note that in all set-ups considered above, our proposed models are correctly
specified because there are no assumed distributions on b1i.t/, b2i.t/ or b3i.t/. In
contrast, the models from either of He et al. (2009) or Sun et al. (2012) are only
correctly specified in one of the set-ups. On the other hand, since there are no
covariate effects in all set-ups, we do not expect that the point estimates of ˇ

given by He et al. (2009) or Sun et al. (2012) are much biased even if the imposed
distributions are misspecified in the estimation. For their variance estimates, we
expect that SEE and SSE agree for both, because the former applied bootstrap
resampling and the latter did not involve any assumed distribution of random effects
in their variance estimation. Therefore, we only compare bias and SSE. It can
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be seen that all estimation procedures gave comparably small bias as expected.
However, it appears that the proposed estimators are more efficient for all cases in
general. In comparison, the method given by He et al. (2009) is comparably efficient
to the proposed estimators only under M3 when all its distribution assumptions are
satisfied. For the method given by Sun et al. (2012), it is worth noting that when Di

is substituted by the last observation time Ci from subject i, it gives relatively large
SSE, especially when Ci’s vary much, regardless of whether the assumption about
b3i.t/ is satisfied (for M2) or not (for M3).

5 Concluding Remarks

We proposed a joint model for analyzing longitudinal data with informative censor-
ing and observation times. The mutual correlations are characterized via a shared
vector of time-dependent random effects. As mentioned earlier, several procedures
have been developed in the literature for longitudinal data when either censoring
or observation process is informative. However when both of them are informative,
there is limited work that can apply except those given in He et al. (2009) and Sun
et al. (2012). In addition, all the existing procedures assumed time-independent or
specifically distributed correlation structures. The proposed joint model is flexible
in that the shared vector of random effects can be time-dependent and neither of its
structure nor distribution are specified. For the parameter estimation, the proposed
procedure is simple and easy to implement.

There exist several directions for future research. One is that as mentioned above,
one may want to consider other models rather than models (1)–(3) and develop
similar estimation procedures. Of course, a related problem is model selection and
one may want to develop some model selection techniques to choose the optimal
model among several candidate models (Tong et al. 2009; Wang et al. 2014). Note
that in the proposed method, we have employed a weight function W.t/ and it
would be desirable to develop some procedures for the selection of an optimal W.t/.
As in most similar situations, this is clearly a difficult problem as it requires the
specification of the covariance function of Yi.t/ and eNi.t/ (Sun et al. 2012). Finally
in the above, we have focused on regression analysis of Yi.t/ with time-independent
covariates. Sometimes one may face time-dependent covariates and thus it would be
helpful to generalize the proposed method to this latter situation. Also sometimes
nonparametric estimation of Yi.t/ or the baseline functions may be of interest. For
those purposes, some constraints should be imposed on bi.t/ for identifiability,
for example, Efbi.t/g D 0. When panel count data arise (Sun and Zhao, 2013),
the generalization of existing nonparametric estimation procedures to cases with
informative observation or censoring times is a challenging direction for future
work too.
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Appendix

Proof of Theorem 1

To derive the asymptotic properties of the proposed estimators Ǒ and O�, we need the
following regularity conditions:

(C1) feNi.�/; Yi.�/; Ci; Zign
iD1 are independent and identically distributed.

(C2) There exists a � > 0 such that P.Ci � �/ > 0.
(C3) Both eNi.t/ and Yi.t/ (0 � t � � , i D 1; : : : ; n) are bounded.
(C4) W.t/ and Zi, i D 1; : : : ; n, have bounded variations and W.t/ converges almost

surely to a deterministic function w.t/ uniformly in t 2 Œ0; ��.

(C5) Aˇ D EfR �

0
w.t/eˇ0

0ZiC�0

0Xi.t/ŒZi � ez.t/�˝2dƒ�
2 .t/g and ˝� D E

h

R �

0

˚

Xi.t/ �
Nx.t/

�˝2
e�0

0Xi.t/dƒ�
1 .t/

i

are both positive definite.

Under condition (C2), we define

U1.ˇI O�/ D
n

X

iD1

Z �

0

W.t/Zi

�

Yi.t/deNi.t/ � eˇ0ZiCO�0Xi.t/dbƒ�
2 .t/

�

;

which is integrable under conditions (C3) and (C4). Also note that dbƒ�
2 .t/ satisfies

n
X

iD1

�

Yi.t/deNi.t/ � eˇ0ZiCO�0Xi.t/dbƒ�
2 .t/

�

D 0; 0 � t � �: (13)

Let

bAˇ.ˇ/ D �n�1@U1.ˇ; O�/=@̌ 0;bA�.�/ D �n�1@U1.ˇ0; �/=@�0;

and under (C1), let

Aˇ D lim
n!1

bAˇ.ˇ0/; A� D lim
n!1

bA�.�0/:

The consistency of Ǒ and O� follows from the facts that U1.ˇ0I O�/ and U�.�0/ both
tend to 0 in probability as n ! 1, and that under condition (C5), bAˇ.ˇ/ and
�n�1@U�.�/=@�0 both converge uniformly to the positive definite matrices Aˇ and
˝� over ˇ and �, respectively, in neighborhoods around the true values ˇ0 and �0.
Then the Taylor series expansions of U1. ǑI O�/ at .ˇ0I O�/ and .ˇ0; �0/ yield n1=2. Ǒ �
ˇ0/ D A�1

ˇ n�1=2U1.ˇ0I O�/Cop.1/ D A�1
ˇ

n

n�1=2U1.ˇ0I �0/�A�n1=2. O���0/
o

Cop.1/:
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The proof of Theorem 1 is sketched as follows:

(1) First, using some derivation operation to U1.ˇI O�/ and (13), we can get

bAˇ.ˇ/ D n�1

n
X

iD1

Z �

0

W.t/
˚

Zi � bEZ.tI ˇ; O�/
�˝2

eˇ0ZiCO�0Xi.t/dbƒ�
2 .tI ˇ; O�/:

(2) Solving dbƒ�
2 .tI ˇ0; �0/ from (13) and applying to U1.ˇ0I �0/ yields

U1.ˇ0I �0/ D
n

X

iD1

Z �

0

w.t/
�

Zi � ez.t/
�

dMi.t/ C op.n1=2/;

where ez.t/ D limn!1bEZ.tI ˇ0; �0/ as defined earlier in Sect. 3 and w.t/ is a
deterministic function defined under (C5).

(3) Differentiation of U1.ˇ0; �/ and (13) with respect to � yields

bA�.�/ D n�1

n
X

iD1

Z �

0

W.t/
	

Zi � bEZ.tI ˇ0; �/



eˇ0

0ZiC�0Xi.t/X0
i.t/dbƒ�

2 .tI ˇ0; �/ :

(4) According to Eq. (5) and by using the asymptotic results in Lin et al. (2000)
(A.5), one can show that

n1=2f O� � �0g D ˝�1
� n�1=2

n
X

iD1

� Z �

0

�

Xi.t/ � s.1/.t/

s.0/.t/

�

dM�
i .t/

�

C op.1/;

where ˝� D E
h

R �

0

˚

Xi.t/ � Nx.t/
�˝2

e�0

0Xi.t/dƒ�
1 .t/

i

, which is invertible under

(C5).

Combining the results in steps (1)–(4), we have

U1.ˇ0I O�/ D
n

X

iD1

� Z �

0

w.t/
˚

Zi � ez.t/
�

dMi.t/

�

�A�˝�1
�

n
X

iD1

� Z �

0

˚

Xi.t/ � Nx.t/
�

dM�
i .t/

�

C op.n
1=2/:

Since Aˇ is also invertible under (C5), it then follows from the multivariate central
limit theorem that the conclusions hold.
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