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Abstract We study maximum likelihood estimation of regression parameters in
generalized linear models for a binary response with error-prone covariates when
the distribution of the error-prone covariate or the link function is misspecified. We
revisit the remeasurement method proposed by Huang et al. (Biometrika 93:53–64,
2006) for detecting latent-variable model misspecification and examine its operating
characteristics in the presence of link misspecification. Furthermore, we propose a
new diagnostic method for assessing assumptions on the link function. Combining
these two methods yields informative diagnostic procedures that can identify which
model assumption is violated and also reveal the direction in which the true latent-
variable distribution or the true link function deviates from the assumed one.

1 Introduction

Since the seminal paper of Nelder and Wedderburn (1972), the class of generalized
linear models (GLM) has received wide acceptance in a host of applications
(McCullagh and Nelder, 1989). Studies in these applications often involve covari-
ates that cannot be measured precisely or directly. For example, in the Framingham
Heart Study (Kannel et al., 1986), a logistic regression model was used to relate
the indicator for the presence of coronary heart disease with covariates such as
one’s smoking status, body mass index, age, serum cholesterol level, and long-
term systolic blood pressure (SBP). Among these covariates, measures of one’s
serum cholesterol level were imprecise, and the actual observed blood pressure of a
subject is merely a noisy surrogate of the long-term SBP, which cannot be measured
directly. Taking the structural model point of view to account for measurement error
as opposed to the functional model point of view (Carroll et al., 2006, Sect. 2.1), one
needs to assume a model for the latent true covariates in order to derive the observed
data likelihood function. Together the latent-covariate model, the model that relates
the true covariates with their noisy surrogates, and the GLM as the conditional
model of the response given the true covariates, one has the complete specification
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of a structural measurement error model for the observed data. From that point on,
one can draw parametric inference on the regression parameters straightforwardly.

Like most model-based inference, the validity of inference derived from the
structure measurement error model relies on the assumed latent-variable model
as well as the posited GLM. In the measurement error community there is a
general concern about imposing models for unobserved covariates, as one can
easily make inappropriate assumptions on unobservable covariates that often lead
to misleading inference (Huang et al., 2006). The widely entertained GLMs for a
binary response often assume one of the popular links such as logistic, probit, and
complementary log-log. The choice of these popular links is mostly encouraged
by ease of interpretation, the familiarity among practitioners, and its convenient
implementation using standard statistical software. However, for one particular
application, a link function outside of this popular suite of links may be able
to capture the underlying association between the response and covariates more
accurately. Li and Duan (1989) studied the properties of regression analysis under a
misspecified link function in general regression settings. Czado and Santner (1992)
focused on the effects of link misspecification on regression analysis based on
GLMs for a binary response. Without considering measurement error in covariates,
these authors provided theoretical and empirical evidence of the adverse effects of
a misspecified link in GLM on likelihood-based inference. They showed that the
maximum likelihood estimators (MLE) of regression coefficients obtained under an
inappropriate link can be biased and inefficient.

In this article, we address both sources of model misspecification and propose
diagnostic procedures to assess these model assumptions. There are only a handful
of diagnostic methods available for testing either one of these assumptions (e.g.,
Brown, 1982; Huang et al., 2009; Pregibon, 1980; Stukel, 1988), and most existing
tests for GLM, with or without error-prone covariates, are omnibus tests designed
for testing overall goodness-of-fit (GOF) rather than assessing specific assumptions
of a hierarchical model (e.g., Fowlkes, 1987; Hosmer and Lemeshow, 1989; Le
Cessie and van Houwelingen, 1991; Ma et al., 2011; Tsiatis, 1980). To the best
of our knowledge, there is no existing work that address the dual misspecification
considered in our study. Huang et al. (2006) proposed the so-called remeasurement
method, referred to as RM henceforth, to detect latent-variable model misspeci-
fication in structural measurement error models. This method also has successes
in testing latent-variable model assumptions in the bigger class of joint models
(Huang et al., 2009), and was later improved to adapt to more challenging data
structures (Huang, 2009). To detect link misspecification without involving error-
prone covariates, Pregibon (1980) proposed a test derived from linearizing the
discrepancy between the assumed link and the true link. His test was developed
under the assumption that the assumed link and the true link belong to the same
family, which can be a stringent assumption. Moreover, his test fails easily if
the local linear expansion of the true link about the assumed link is a poor
approximation of the true link. For logistic regression models in the absence of
measurement error, Hosmer et al. (1997) compared nine GOF tests for three types
of model misspecification, including link misspecification, and found none of these
tests have satisfactory power to detect link misspecification.
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Inspired by the rationale behind RM, we propose a new diagnostic method
initially aiming to detect link misspecification, called the reclassification method, or
RC for short. This new method is described in Sect. 2, where we first define generic
notations in a structural measurement error model, followed by a brief review of
RM. Both RM and RC are motivated by theoretical findings on the effects of
either type of misspecification on MLEs. For illustration purposes, we focus on one
particular assumed structural measurement error model for the majority of the study
and formulate a class of true flexible models. Under such formulation we present
properties of the MLEs in the presence of one or both sources of misspecification
in Sect. 3. In Sect. 4 we report finite-sample simulation studies to illustrate the
performance of the proposed diagnostic procedures. Two real-life data examples
are used to demonstrate the implementation of these methods in Sect. 5. Finally,
discussions on our findings and follow-up research directions ensue in Sect. 6.

2 Models and Two Diagnostic Methods

2.1 Models

Denote by Yi the binary response of subject i, for i D 1; : : : ; n, and the true
distribution of Yi conditioning on covariates Xi is specified by a GLM,

P.Yi D 1jXiIˇ/ D H.ˇ0 C ˇt
1Xi/; (1)

where ˇ D .ˇ0; ˇ
t
1/

t is the vector of regression coefficients, and H.s/ is the inverse
link function, assumed to be a nondecreasing and differentiable function of s. For a
succinct exposition, we assume a scalar error-prone covariate Xi in the sequel, and
the observed covariate, Wi, relates to Xi via a classical measurement error model
(Carroll et al., 2006, Sect. 1.2), for i D 1; : : : ; n,

Wi D Xi C Ui; (2)

where Ui � N.0; �2u / is the nondifferential measurement error (Carroll et al., 2006,
Sect. 2.5). Estimation of �2u is straightforward when replicate measures of each Xi

(i D 1; : : : ; n) are available (Carroll et al., 2006, Eq. (4.3)). For notational simplicity,
�2u is assumed known in the majority of this article. Lastly, suppose that fXign

iD1 is
a random sample from a distribution specified by the probability density function
(pdf) f .t/X .xI �/, indexed by parameters � . The three component models, (1), (2), and

f .t/X .xI �/, constitute the structural measurement error model, based on which one
has the correct likelihood function of the observed data for subject i, .Yi; Wi/, given
by f .t/Y;W.Yi;WiI˝.t/; �2u / D R fH.ˇ0 C ˇ1x/gYi f1 � H.ˇ0 C ˇ1x/g1�Yi ��1

u �f.Wi �
x/=�ugf .t/X .xI �/dx, where �.s/ is the pdf of the standard normal distribution, and
˝.t/ D .ˇt; � t/t is the vector of all unknown parameters under the correct model
specification.
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Suppose that one assumes the link function to be J.s/, which may differ from
H.s/ in (1), and one posits a model for Xi with pdf give by fX.xI �/, indexed by
parameters �. Then one has the assumed likelihood function of the observed data
for subject i, denoted by fY;W.Yi;WiI˝; �2u /, similarly derived as above, where˝ D
.ˇt; �t/t is the p-dimensional vector of all unknown parameters under the assumed
model.

2.2 Remeasurement Method and Reclassification Method

It was shown in Huang et al. (2006) that, when the model for the true covariate,
that is, the X-model, is misspecified, the MLE of ˇ is usually inconsistent with
bias depending on the measurement error variance. By exploiting this dependence,
they proposed further contaminating fWign

iD1 to generate W�
b;i D Wi C p

��uZb;i,
for b D 1; : : : ;B, i D 1; : : : ; n, where � is a user-specified positive constant
and Zb;i’s are independent pseudo errors from N.0; 1/. Note that the measurement
error variance associated with fW�

b;i; b D 1; : : : ;Bgn
iD1 is equal to .1 C �/�2u .

They then constructed a test statistic based on the difference between the MLE of
ˇ, Ǒ, computed using the raw data, f.Yi; Wi/gn

iD1, and the counterpart MLE, Ǒ
r,

obtained from the remeasured data, f.Yi; W�
i /gn

iD1, where W�
i D .W�

1;i; : : : ;W
�
B;i/,

for i D 1; : : : ; n. Take ˇ1 as an example, the test statistic associated with ˇ1 is
defined by Tˇ1 D . Ǒ

1 � Ǒ
1r/= O�ˇ1 , where O�ˇ1 is an estimator of the standard error of

Ǒ
1� Ǒ

1r. Each so-constructed test statistic for a parameter in˝ follows a Student’s t
distribution with n � p degrees of freedom asymptotically under the null hypothesis
that the two MLEs being compared converge to the same limit as n ! 1. If the
value of a test statistic deviates significantly from zero, one finds evidence that the
assumed latent-variable model is inappropriate. Derivations of the standard error
estimator and the proof of the null distribution, omitted here, are given in Huang
et al. (2006).

It is assumed in this existing work that all aspects of the structural measurement
error model are correctly specified except for the X-model. But one may legitimately
question the adequacy of the assumed link in the GLM. And if the link is indeed
misspecified, one may wonder if RM can also detect the link misspecification
and how its ability to reveal latent-variable model misspecification is affected by
this additional misspecification. As an important step in RM, pseudo measurement
error are added to the observed covariates fWign

iD1 to produce the remeasured data.
A natural extension of this idea is to add measurement error to the responses
fYign

iD1. For binary data, measurement error lead to misclassified binary responses.
Parallel with adding noise to W to detect latent-variable model misspecification,
we propose to detect link misspecification by adding noise to Y , producing the so-
called reclassified data. Now one may think of Ǒ

r as the MLE of ˇ obtained from
the reclassified data. If Ǒ is biased due to link misspecification, then Ǒ

r is usually
also biased. If the bias of Ǒ

r depends on some parameter in the user-specified



Dual Model Misspecification in Generalized Linear Models with Error in Variables 7

reclassification model according to which the reclassified data are created, then
Ǒ
r can differ noticeably from Ǒ. Such difference can serve as evidence of link

misspecification. And test statistics like those constructed in RM can be used
to quantify the significance of the difference. We refer to this strategy as the
reclassification method, or, RC for short.

Under regularity conditions, the MLE of ˇ follows a normal distribution asymp-
totically, despite the source of model misspecification (White, 1982) and the type
of measurement error. Because both RM and RC rely on the discrepancy between
the MLEs of ˇ before and after pseudo measurement error are added (to W or Y),
one important clue to answering the question, “Does RM/RC work?”, is the means
of these asymptotic normal distributions associated with the MLEs from data with
measurement error (in X or Y) in the presence of different model misspecification.
The next section is devoted to studying these asymptotic quantities, i.e., the limiting
MLEs of ˇ.

3 Limiting Maximum Likelihood Estimators

3.1 Estimating Equations

Denote by ˇm and ˇc the limiting MLEs of ˇ associated with the raw data and the
reclassified data, respectively, as n ! 1. By the theory of maximum likelihood
estimation in the presence of model misspecification (White, 1982), ˇm and ˇc

uniquely satisfy the following score equations respectively,

EW
�
EYjW

˚
.@=@ˇ/fY;W.Yi;WiI˝; �2u /jˇDˇm

�� D 0; (3)

EW
�
EY�jW

˚
.@=@ˇ/fY�;W.Y

�
i ;WiI˝; �2u /jˇDˇc

�� D 0; (4)

where fY�;W.Y�
i ;WiI˝; �2u / is the likelihood of the reclassified data for subject i,

.Y�
i ;Wi/, and the subscripts attached to “E” signify that the expectations are defined

with respect to the relevant true model.
In order to focus on inference for ˇ, we treat the parameters in the assumed X-

model, �, as known constants in (3) and (4). Although in practice one has to estimate
� along with ˇ, this seemingly unrealistic treatment of � does not make the follow-
up theoretical findings less practically valuable if � can be estimated consistently (in
some sense). Consistent estimation of � in the presence of model misspecification
is often possible in many scenarios. For example, when both the assumed and the
true X-models can be fully parameterized via some moments (included in �) up to a
finite order, the interpretation of � remains meaningful even if the assumed X-model
differs from the true model, and hence one can still conceptualize the “true” value
of �, which are simply the moments of the true X-distribution. Moreover, such �
usually can be consistently estimated, say, using the method of moments based on
fWign

iD1, even in the presence of dual misspecification.
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In general, the above estimating equations cannot be solved explicitly, thus
closed form expressions of their solutions, ˇm and ˇc, are usually unattainable.
Without sacrificing too much the generality of the theoretical investigation, we next
formulate the assumed model and true models that make these limiting MLEs more
transparent.

3.2 Assumed and True Models

For tractability, we fix the assumed structural measurement error model at the
probit-normal model, which is one of the favorite toy examples entertained in the
measurement error literature. In this model, one posits a probit link in the primary
model (1) and assumes X � N.�x; �

2
x /. As for the true model, we formulate a class

of the so-called mixture-probit-normal models, which contains the probit-normal
model as a special member. In this class of true models, the link function H.s/ is
the cdf of a two-component mixture normal, referred to as the mixture probit. With
a mixture probit link, the primary model is a GLM given by

P.Yi D 1jXiIˇ/ D ˛˚

�
ˇ0 C ˇ1Xi � �1

�1

�

C .1 � ˛/˚
�
ˇ0 C ˇ1Xi � �2

�2

�

; (5)

where ˛ 2 Œ0; 1	, �k and �k > 0 (k D 1, 2) are chosen such that the corresponding
mixture normal, ˛N.�1; �21 /C .1�˛/N.�2; �22 /, is of zero mean and unit variance.
The true X-model in this class is a mixture normal.

To achieve explicit likelihood for the reclassified data without being overly
restrictive in the creation of reclassified data, we consider reclassification models of
the form P.Y�

i D YijWi/ D 
i, for i D 1; : : : ; n, according to which the reclassified
responses, fY�

i gn
iD1, are generated. Combining the assumed raw-data likelihood,

fY;W.Yi;WiI˝; �2u /, and the reclassification model yields the likelihood of .Y�
i ;Wi/

under the probit-normal model, fY�;W.Y�
i ;WiI˝; �2u /.

Under the formulated assumed and true models, all needed ingredients for
deriving the score equations in (3) and (4) become available in closed form.
These ingredients include the true mean of Yi and Y�

i given Wi, the assumed-
model likelihood for the raw data, fY;W.Yi;WiI˝; �2u /, and that for the reclassi-
fied data, fY�;W.Y�

i ;WiI˝; �2u /, the true-model likelihood for both types of data,

f .t/Y;W.Yi;WiI˝.t/; �2u / and f .t/Y�;W.Y
�
i ;WiI˝.t/; �2u /. The explicit expressions of these

quantities are provided in Appendix 1. Some interesting findings regarding ˇm and
ˇc are presented next, in which we only consider cases where ˇ1 ¤ 0. The special
case with ˇ1 D 0 is discussed in Appendix 2, where the expressions of ˇm and ˇc are
derived. This is a rare case where (3) and (4) can be solved explicitly, and also a rare
case where the MLE of ˇ1 is consistent despite the type of model misspecification.
When ˇ1 ¤ 0, although (3) and (4) cannot be solved explicitly, we are able to make
use the aforementioned intermediate results in Appendix 1 to study the limiting
MLEs.
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3.3 Limiting MLEs from Data with Measurement Error
Only in X

Fixing the assumed model at the probit-normal model, we consider combinations of
five true links and five true X-distributions in the formulation of the true model. The
five true links are, (L0) probit link, and four mixture probit links with the following
parameter configurations: (L1) ˛ D 0:3, �1 D 0:3, �1 D 0:1; (L2) ˛ D 0:3, �1 D
�0:3, �1 D 0:1; (L3) ˛ D 0:7, �1 D 0:5, �1 D 0:2; (L4) ˛ D 0:7, �1 D �0:5,
�1 D 0:2. The upper panels of Fig. 1 depict these five links. For two link functions,
H1.s/ and H2.s/, we say that H1.s/ and H2.s/ are symmetric of each other if H1.s/ D
1 � H2.�s/. Among the four mixture probit links, (L1) and (L2) are symmetric of
each other, and (L3) and (L4) are symmetric of each other, with the latter two links
deviating from probit more than the former two. The five true X-distributions are,
(D0) N.0; 1/, and four mixture normals with mean zero and variance one formulated
by varying the mixing proportion �, skewness � , and excessive kurtosis 
 as follows:
(D1) � D 0:3, � D �1, 
 D 2; (D2) � D 0:3, � D 1, 
 D 2; (D3) � D 0:1,
� D �1:5, 
 D 2; (D4) � D 0:1, � D 1:5, 
 D 2. The lower panels of Fig. 1 show
the pdf’s of these five distributions. Among the four mixture normal distributions,
(D1) and (D2) are symmetric of each other, and (D3) and (D4) are symmetric of
each other, with the latter pair deviating from normal further than the former pair.
In the true GLM in (5), we set ˇ0 D 0 and ˇ1 D 1. For ease of presentation, we use
“f” to connect a true X-model with a true link to refer to a true model specification.
For example, (D1)f(L3) refers to the true model with X following a distribution
specified by (D1) and the link configured according to (L3).

Under each of the above true model specifications, we numerically solve (3) for
ˇm. Figure 2 presents ˇm under different true models as �2u increases from 0 to 1.
This range of �2u yields a reliability ratio ! that drops from 1 to 0.5, where ! D
�2x =.�

2
x C �2u /. The top panels of Fig. 2, where the true X-model coincides with the

assumed, show that ˇm only changes slightly as �2u increases in the presence of link
misspecification. This suggests that, unless information in both the raw data and the
remeasured data are rich enough to allow detection of the weak dependence of ˇm

on �2u , RM will have low power to detect link misspecification despite the amount
of bias in ˇm due to link misspecification. When the true X-model deviates from
normal (see the middle and the bottom panels of Fig. 2), although the dependence
of ˇ1m on �2u is stronger than before, ˇ1m changes noticeably mainly over a narrow
range of �2u . This phenomenon for cases with dual misspecification indicates that,
although RM has been shown to be effective in diagnosing latent-variable model
misspecification, its power in this regard can be substantially compromised by the
coexistence of link misspecification.

Besides Fig. 2, we show analytically in Appendix 3 that, under certain conditions,
ˇ1m is unchanged by a symmetric flip of either the true X-distribution or the true link,
and only ˇ0m is affected. This property is stated next, with empirical justification
relegated to Appendix 5.
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Fig. 1 Upper panels give four mixture probit links formulated in Sect. 3.3, where the upper left
panel gives link (L1) (dashed line) and link (L2) (dot-dashed line), and the upper right panel gives
link (L3) (dashed line) and link (L4) (dot-dashed line). Solid lines are the probit link. Lower panels
show four mixture normal density functions formulated in Sect. 3.3, where the lower left panel
gives distributions (D1) (dashed line) and (D2) (dot-dashed line), and the lower right panel gives
distributions (D3) (dashed line) and (D4) (dot-dashed line). Solid lines are the density function of
N.0; 1/
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Fig. 2 Plots of ˇ0m (left column) and ˇ1m (right column) versus �2u when fixing the true X-model
at N.0; 1/ (top row), (D1) (middle row), and (D3) (bottom row), respectively, then varying the true
link among the five links: probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
(dot-dashed lines), and (L4) (long dashed lines)

Proposition 3.1. Let f1.x/ and f2.x/ be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1.s/ and H2.s/ be two true links that are
symmetric of each other. Denote by ˇ.jk/m the limiting MLE of ˇ based on data with
measurement error only in X when the true model is fj.x/ f Hk.s/, for j; k D 1; 2. If

E.X/ D ˇ0 D 0, then ˇ.11/0m D �ˇ.22/0m and ˇ.11/1m D ˇ
.22/
1m .

Note that Proposition 3.1 includes two special cases: one is when H1.s/ ¤ H2.s/
and f1.x/ D f2.x/ D f .x/, where f .x/ is a pdf symmetric around zero; the other is
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when f1.x/ ¤ f2.x/ and H1.s/ D H2.s/ D H.s/, where H.s/ is the cdf associated
with a distribution symmetric around zero. This is because f1.x/ D f2.x/ D f .x/
implies f1.x/ D f2.�x/, since f .x/ D f .�x/, and thus f1.x/ and f2.x/ are symmetric
of each other. Similarly, H1.s/ D H2.s/ D H.s/ implies H1.s/ D 1 � H2.�s/,
as H.s/ D 1 � H.�s/, hence H1.s/ and H2.s/ are symmetric of each other. This
proposition implies that ˇ0m can distinguish two true X-models that are symmetric
of each other, and can also tell apart two true links that are symmetric of each other.
For the purpose of model diagnosis, one can exploit this and other properties of ˇ0m

to obtain a directional test based on RM that can identify the direction of model
misspecification. This potential of RM is supported by the following observations
of ˇ0m under the conditions stated in Proposition 3.1:

(M1) Despite the skewness of the true link, when the true X-model is not normal,
ˇ0m is increasing in �2u when the true X-model is left-skewed, and it is decreasing
in �2u when the true X-model is right-skewed.

(M2) When the true X-model is normal and the true link is not probit, ˇ0m is
increasing in �2u when the true link is right-skewed, and it is decreasing in �2u
when the true link is left-skewed.

The middle and bottom panels of Fig. 2, which are associated with two left-skewed
true X-models, illustrate the first half of (M1), and the second half of (M1) is
indicated by Proposition 3.1. Empirical evidence of (M1) is given in Appendix 5.
Viewing a link function as a cdf, we say that a link function is left-skewed if the
corresponding pdf is left-skewed. Among the four considered mixture probit links,
(L1) and (L3) are left-skewed and (L2) and (L4) right-skewed. The top panel of
Fig. 2 illustrates (M2). In Sect. 4.4, we propose a directional test based on RM that
utilizes the properties of ˇ0m summarized in (M1) and (M2).

3.4 Limiting MLEs Based on Reclassified Data

Under the same configurations for the assumed/true models as in Sect. 3.3, we
solve (4) numerically for ˇc based on reclassified data generated according to the
reclassification model P.Y�

i D YijWi/ D ˚.Wi C �/, for i D 1; : : : ; n, where � is
a constant. Figure 3 presents ˇc when � D 0, which shows stronger dependence on
�2u compared to Fig. 2, especially for ˇ0c. This implies that, if one applies RM to the
reclassified data, Tˇ0 can be much more significant than the counterpart test statistic
from RM only (without adding noise to Y).

Viewing ˇc as a function of � and thinking of ˇc as ˇc.�/ symbolically, Fig. 4
presents ˇc.�2/ � ˇc.0/ as �2u varies. This figure reveals that the changes in ˇc

as � changes can be substantial when �2u is small. This phenomenon suggests that
RC alone (without adding further noise to W) can have good power to detect X-
model misspecification or link misspecification, and the power is higher when the
error contamination in X is milder. If the X-model is correctly specified, both ˇ0c

and ˇ1c can change substantially as � varies when �2u is fixed at a lower level,
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Fig. 3 Plots of ˇ0c (left column) and ˇ1c (right column) when P.Y�

i D YijWi/ D ˚.Wi/, for i D
1; : : : ; n, versus �2u , with the true X-model being N.0; 1/ (top), (D1) (middle), and (D3) (bottom),
and the true link being probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
(dot-dashed lines), and (L4) (long dashed lines)

including 0. Hence, in the absence of measurement error in X, and thus without
involving RM, RC alone is expected to possess some power to detect moderate to
severe link misspecification.

In Appendix 4, we show that, if the reclassification model is P.Y�
i D YijWi/ D


.Wi/, where 
.t/ is an even function or when 
.t/ satisfies 
.�t/ D 1�
.t/, then
ˇc has the same property of ˇm under the same conditions stated in Proposition 3.1.
Empirical justification of this finding are given in Appendix 5.
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4 Testing Procedures

The investigation in Sect. 3 on the limiting MLEs of ˇ based on data with
measurement error in X or Y in the presence of X-model misspecification or link
misspecification are helpful for understanding the operating characteristics of the
test statistics, Tˇ0 and Tˇ1 . When the true model is not in the class of mixture-
probit-normal models, and the assumed model is probit-normal, the phenomena
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described in Sects. 3.3 and 3.4 that motivate the upcoming testing strategies are still
observed in extensive simulations we carried out. Some of these simulation studies
are presented in the upcoming subsections.

Similar comments apply to scenarios where the assumed model is the logit-
normal model. This point is practically less relevant because, although one cannot
choose a true model in reality, one can choose an assumed model and use it as a
reference model for the purpose of exploring features of the unknown true model.
Hence, with well-grounded and effective testing procedures developed with a probit-
normal assumed model, using this particular assumed model serves the purpose
of diagnosing model misspecification well enough. Regardless, for completeness,
we present some simulation results in Appendix 5 where the assumed model is a
logit-normal model. In this section, we keep the assumed model as probit-normal to
first study via simulation the operating characteristics of the aforementioned test
statistics resulting from three diagnostic methods: first, RM; second, RC; third,
a hybrid method that combines RM and RC. Then we propose more informative
testing procedures that can disentangle two sources of misspecification and point at
the direction of misspecification.

4.1 Simulation Design

Fixing the sample size n at 500, we create the raw data, f.Yi;Wi/gn
iD1, from different

true models resulting from varying three factors in the simulation experiments. The
first factor is the true X-model, taking five levels (D0)–(D4) as defined in Sect. 3.3.
The second factor is the true link function, for which we consider seven true links,
(L0)–(L4), i.e., the probit and mixture-probit links formulated in Sect. 3.3, and
two generalized logit links (Stukel, 1988), referred to as (L5) and (L6). These
two generalized logit links are symmetric of each other, with (L5) left-skewed
and (L6) right-skewed, as depicted in Fig. 5. The third factor is the value of �2u
used to generate fWign

iD1 according to (2), with four values leading to reliability
ratio ! ranging from 0.7 to 1 at increments of 0.1. Under each simulation setting,
1000 Monte Carlo (MC) replicates are generated. After each replicate is generated,
assuming a probit-normal model, we compute Tˇ0 and Tˇ1 associated with the
aforementioned three diagnostic methods.

When implementing RM, Ǒ
r is the MLE from the remeasured data f.Yi;W�

i /gn
iD1,

where W�
i D .W�

1;i; : : : ;W
�
B;i/, in which W�

b;i D Wi C �uZb;i, with Zb;i � N.0; 1/
independent across b D 1; : : : ;B, i D 1; : : : ; n, and B D 100. When carrying out
RC, Ǒ

r is the estimate computed from the reclassified data, f.Y�
i ;Wi/gn

iD1, where
the reclassified responses, Y�

i D .Y�
1;i; : : : ;Y

�
B;i/, for i D 1; : : : ; n, are generated

according to P.Y�
b;i D YijWi/ D ˚.Wi/. When employing the hybrid method, we

first generate fW�
b;i; b D 1; : : : ;Bgn

iD1 as in RM above, then the reclassified responses

are generated according to P.Y�
b;i D YijW�

b;i/ D ˚.W�
b;i/; finally one obtains Ǒ

r

based on the hybrid data that have measurement error in both X and Y , f.Y�
b;i;W

�
b;i/;
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Fig. 5 Two generalized logit links, (L5) (dashed line) and (L6) (dot-dashed line), in comparison
with the logit link (solid line)

b D 1; : : : ;Bgn
iD1. Using a significance level of 0.05, we monitor how often the

value of a test statistic turns out significant, leading to rejection of a null hypothesis,
which states that two MLEs being compared in the test statistic have the same limit
as n ! 1.

4.2 Simulation Results

Table 1 presents the rejection rate of each test statistic under each simulation
setting across 1000 MC replicates for a representative subset of all considered true-
model configurations. This subset of true models includes five models belonging
to the class of mixture-probit-normal models, (D3)f(L0), (D0)f(L3), (D3)f(L3),
(D4)f(L3), and (D3)f(L4); and four models in the class of generalized-logit-normal
models, (D0)f(L5), (D3)f(L5), (D4)f(L5), and (D3)f(L6). Among these nine
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Table 1 Rejection rates across 1000 Monte Carlo replicates of each test statistic under each
testing procedure considered in Sect. 4 at different levels of reliability ratio ! when the assumed
model is probit-normal

! D 0:7 ! D 0:8 ! D 0:9 ! D 1

True model RM RC HB RM RC HB RM RC HB RM RC HB

(D3)f(L0) Tˇ0 0:99 0:53 0:85 1:00 0:40 0:75 1:00 0:23 0:38 0 0:09 0:09

Tˇ1 0:47 0:51 0:39 0:81 0:52 0:41 0:93 0:34 0:23 0 0:07 0:07

(D0)f(L3) Tˇ0 0:18 0:75 0:72 0:31 0:92 0:92 0:48 0:98 0:99 0 1:00 1:00

Tˇ1 0:04 0:08 0:06 0:05 0:09 0:08 0:08 0:08 0:09 0 0:06 0:06

(D3)f(L3) Tˇ0 0:82 0:09 0:08 0:88 0:44 0:16 0:76 0:80 0:90 0 0:70 0:70

Tˇ1 0:58 0:09 0:05 0:67 0:11 0:16 0:59 0:36 0:62 0 0:63 0:63

(D4)f(L3) Tˇ0 1:00 0:89 0:97 1:00 0:89 0:96 1:00 0:96 0:96 0 1:00 1:00

Tˇ1 0:03 0:53 0:66 0:10 0:74 0:83 0:45 0:81 0:84 0 0:80 0:80

(D3)f(L4) Tˇ0 1:00 0:85 0:97 1:00 0:89 0:96 1:00 0:95 0:96 0 1:00 1:00

Tˇ1 0:03 0:55 0:69 0:11 0:74 0:82 0:45 0:82 0:83 0 0:74 0:74

(D0)f(L5) Tˇ0 0:08 0:36 0:36 0:13 0:54 0:53 0:18 0:73 0:73 0 0:91 0:91

Tˇ1 0:03 0:06 0:06 0:04 0:07 0:06 0:05 0:08 0:09 0 0:06 0:06

(D3)f(L5) Tˇ0 0:41 0:05 0:21 0:57 0:09 0:06 0:61 0:35 0:17 0 0:89 0:89

Tˇ1 0:05 0:08 0:16 0:06 0:06 0:10 0:06 0:05 0:05 0 0:10 0:10

(D4)f(L5) Tˇ0 0:95 0:86 0:98 1:00 0:89 0:99 1:00 0:89 0:97 0 0:80 0:80

Tˇ1 0:54 0:70 0:63 0:87 0:78 0:79 0:96 0:75 0:75 0 0:50 0:50

(D3)f(L6) Tˇ0 0:90 0:85 0:99 0:99 0:87 0:99 1:00 0:83 0:95 0 0:69 0:69

Tˇ1 0:46 0:67 0:65 0:73 0:72 0:77 0:89 0:65 0:71 0 0:45 0:45

true-models configurations, (D3)f(L0) represents the scenario where only the X-
model is misspecified, (D0)f(L3) and (D0)f(L5) represent the case where only the
link is misspecified, and the remaining six configurations represent cases with dual
misspecification. Albeit not included in Table 1, we observe rejection rates for all
tests well controlled at around 0.05 when the true model is (D0)f(L0), that is, when
there is no model misspecification. Some noteworthy observations regarding RM
and RC from the simulation are summarized in the following three remarks.

Remark 1. When �2u D 0, that is, the covariate is measured without error (! D 1),
RM can detect neither source of misspecification. This is due to the definition of the
remeasured data, W�

b;i D Wi C p
��uZb;i, resulting in the remeasured data identical

to the raw data when �2u D 0. In contrast, when �2u D 0, RC has impressive power
to detect link misspecification, whether or not the X-model is also misspecified.

Remark 2. When �2u ¤ 0, the power of RM to detect X-model misspecification
surpasses that of RC if this is the only source of misspecification; but when only the
link is misspecified, the test based on Tˇ0 from RC is the clear winner in detecting
link misspecification, whose power increases as �2u decreases.

Remark 3. Although RM is designed for detecting X-model misspecification, and
RC is proposed aiming at detecting link misspecification, each of them can be
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influenced in nontrivial ways by the other source of misspecification. Take RM as
an example. When only the X-model is misspecified, such as case (D3)f(L0) in
Table 1, RM is expectedly effective in picking up this type of misspecification.
But its power is mostly weakened by the additional link misspecification as in
case (D3)f(L3). Note that, when the true model is (D3)f(L3), the directions of
the two misspecification are the same in the sense that the true X-model is left-
skewed and so is the true link. This tampering effect on the power of RM due to the
added link misspecification is not observed for Tˇ0 when the dual misspecification
are of opposite directions, such as in cases (D3)f(L4) and (D3)f(L6). Similar
nontrivial patterns are observed for RC when X-model misspecification is added on
top of link misspecification. In summary, whether or not the added misspecification
compromises the power of a method to detect the type of misspecification it
is originally designed for depends on how the two types of misspecification
interact.

Although the empirical power associated with Tˇ1 from RM lingers around 0.60
in the case (D3)f(L3) when ! D 0:7, 0.8, and 0.9, it drops to around 0.33 and 0.22
when ! D 0:6 and 0.55 (not included in Table 1), respectively. This abrupt drop
in power can be explained by the large-sample phenomenon in Sect. 3.3 depicted in
Fig. 2. It is pointed out there that, in the presence of dual model misspecification,
as in case (D3)f(L3), ˇ1m changes noticeably mainly over a narrow (lower) range
of �2u . For this case in particular, as shown in the lower right panel of Fig. 2 (with
the dot-dashed line referring to case (D3)f(L3)), ˇ1m stays nearly flat soon after �2u
passes 0.25 (i.e., soon after ! drops below 0.8). The (nearly) flat region of �2u or !
is where Tˇ1 from RM exhibits low power.

Finally, the hybrid method is the same as RC when �2u D 0. And, according
to Table 1, when �2u ¤ 0, the hybrid method performs similarly as RC when only
the link is misspecified. In other cases, the power of the hybrid method mostly lies
between that of RM and RC. We recommend use the hybrid method with caution
due to the amount of information loss when creating the hybrid data.

4.3 Sequential Tests

Although we caution use of the hybrid method in practice, sequentially using
test results from RM and those from RC can help to disentangle two types of
misspecification. We now illustrate some sequential testing procedures when the
covariate is measured with error. To distinguish the test statistics from two methods,
denote by T.m/� and T.c/� the test statistics associated with RM and RC, respectively,
where � denotes a generic parameter. Suppose one implements RM, with only
W-data further contaminated, and then implements RC, with only Y-data contami-
nated (and the W-data left as originally observed). Implementing these two methods
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sequentially yields four test statistics of interest, T.m/ˇ0
, T.m/ˇ1

, T.c/ˇ0 , and T.c/ˇ1 . In light of
the operating characteristics of these test statistics revealed in Sect. 4.2, we consider
the following three sequential testing strategies.

First, if T.m/ˇ0
is highly significant and T.c/ˇ0 is insignificant, one may interpret this

as evidence that the X-model is misspecified and the assumed link may be adequate
for the observed data. For instance, when the true model is (D3)f(L0), using this
testing criterion, one concludes “only the X-model is misspecified” 55, 70, and 84 %
of the time when ! D 0:7; 0:8; 0:9, respectively, based on the simulation results in
Sect. 4.2. When summarizing the preceding rejection rates, we apply the Bonferroni
correction for multiple testing and use a significance level of 0:025.D 0:05=2/ now
that two test statistics are used simultaneously.

Second, if T.m/ˇ1
turns out insignificant whereas T.c/ˇ0 is highly significant, one

may view this as indication that the assumed X-model may be appropriate but the
assumed link is inadequate. Revisiting the simulation results in Sect. 4.2, when the
true model is (D0)f(L3), using this sequential testing strategy, one concludes “only
the link is misspecified” 67, 86, and 94 % of the time when ! D 0:7; 0:8; 0:9,
respectively.

Third, having observed promising power from the above two sequential tests, one
would hope that having both T.m/ˇ0

and T.c/ˇ0 significant can be interpreted as an indi-
cation of dual misspecification. Unfortunately, due to the complicated interaction
between the two misspecification described in Remark 3 in Sect. 4.2, this criterion
is a reliable indicator of dual misspecification only when two misspecification are
of opposite directions. For example, when the true model is (D4)f(L3), the criterion
of both T.m/ˇ0

and T.c/ˇ0 being significant is met 79, 85, and 93 % of the time across
1000 MC replicates when ! D 0:7; 0:8; 0:9, respectively. Similar high power is also
observed when the true model is (D3)f(L4), (D4)f(L5), or (D3)f(L6). However,
if the true model is (D3)f(L3), the rejection rates according to this same criterion
drop to 1, 13, and 29 % when ! D 0:7; 0:8; 0:9, respectively.

Despite the complication arising from dual misspecification, empirical evidence
from the above three sequential tests give much encouragement to use the combi-
nation of two tests from two diagnostic methods, such as T.m/ˇ0

(or T.m/ˇ1
) and T.c/ˇ0 , in

order to learn more from the data regarding the two model assumptions.

4.4 Directional Tests

The properties of ˇ0m described in (M1)–(M2) in Sect. 3.3 suggest that the sign
of T.m/ˇ0

can indicate in which direction the true X-model deviates from normal or
the true link function deviates from probit (or logit). More specifically, if there is
strong evidence against a normal X-distribution, then, despite what the true link is,
a significantly negative (positive) T.m/ˇ0

implies that the true X-distribution is left-
skewed (right-skewed). This is supported by (M1). On the other hand, suppose one
has evidence to suggest that the assumed normal X-model is likely appropriate, but
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Table 2 Rejection rates associated with a one-sided test based on T.m/ˇ0
at

significance level 0.05 under different true model configurations defined
in Sect. 3.3 at different levels of reliability ratio !

(D0)f(L1) (D0)f(L3) (D0)f(L4) (D0)f(L5)

! [R] [R] [L] [R]

0:7 0:09 0:29 0:26 0:15

0:8 0:10 0:45 0:42 0:22

0:9 0:13 0:62 0:60 0:27

(D1)f(L0) (D3)f(L0) (D4)f(L0) (D1)f(L1) (D2)f(L1)

! [L] [L] [R] [L] [R]

0:7 0:87 1:00 1:00 0:83 0:93

0:8 0:98 1:00 1:00 0:95 1:00

0:9 1:00 1:00 1:00 0:99 1:00

(D3)f(L3) (D3)f(L5) (D3)f(L6) (D4)f(L3) (D4)f(L5)

! [L] [L] [L] [R] [R]

0:7 0:95 0:62 0:96 1:00 0:98

0:8 0:98 0:78 1:00 1:00 1:00

0:9 0:96 0:83 1:00 1:00 1:00

Codes beneath the true model codes, [L] and [R], indicate left-sided and
right-sided tests, respectively

suspects that the assumed probit link may be inadequate, then one further gains
evidence to support a right-skewed link if T.m/ˇ0

< 0, and left-skewed otherwise. This
is justified by (M2).

As empirical evidence, Table 2 presents the rejection rates (at significance level
0.05) from the same simulation study described in Sect. 4.1 but associated with a
one-sided test based on T.m/ˇ0

, assuming one knows a priori the right side of the
test (as we do in simulations). The high rejection rates for the cases with X-model
misspecification tabulated in Table 2 indicate that, if one is mostly interested in the
skewness of the true X-distribution, the sign of T.m/ˇ0

is indeed an effective indicator
of the direction of skewness, regardless whether or not (and how) the link function is
misspecified. In the absence of X-model misspecification, T.m/ˇ0

requires milder error
contamination in X in order to more effectively reveal the direction of skewness of
the true link.

5 Application to Real Data Examples

We now apply the above testing procedures to two data examples, beginning with a
data set from the Framingham Heart Study briefly described in Sect. 1.
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5.1 Framingham Heart Study

The data considered in this example consist of information on 1615 subjects, who
were followed for the development of coronary heart disease over six examination
periods. Denote by Yi the binary indicator of the first evidence of coronary heart
disease for subject i within an 8-year follow-up period from the second examination
period, for i D 1; : : : ; 1615. At each of the second and third examination periods,
each subject’s SBP was measured twice. We first center all observed SBP measures
from the second examination. Then, for subject i.D 1; : : : ; 1615), we compute
the average of the two (centered) SBP measures divided by 100 from the second
examination, and use it as Wi, the error-contaminated version of the unobservable
(centered) long-term SBP, Xi. Using the two replicate measures in the second exam
and applying Eq. (4.3) in Carroll et al. (2006) gives an estimated ! for the so-
defined W as around 0.92. Assuming a probit-normal structural measurement error
model for the observed data f.Yi;Wi/g1615iD1 , we apply RM with � D 1 and B D 100.

The resulting test statistics are T.m/ˇ0
� 2:349 (0.019) and T.m/ˇ1

� �2:387 (0.017),
with the corresponding p-values in parentheses. These test results yield significant
evidence that the normality assumption on X is inadequate. This finding is not new
(see, e.g., Huang, 2009; Huang et al., 2006). What is new here is that, because now
T.m/ˇ0

is significantly positive (at significance level 0.05), using the directional test
described in Sect. 4.4, we also find evidence that the true X-distribution is right-
skewed. This new finding (from a model diagnostics standpoint) agrees with the
kernel density estimate for X in Wang and Wang (2011, Fig. 5), who applied the
deconvoluting kernel density estimation (Stefanski and Carroll, 1990) to estimate
the density of X based on W-data.

We also apply the RC method using the reclassification model, P.Y�
i D YijWi/ D

˚.Wi/, for i D 1; : : : ; 1615, to generate the reclassified data. The resultant test
statistics are T.c/ˇ0 � �1:474 (0.141) and T.c/ˇ1 � 1:474 (0.141), with the associated
p-values in parentheses. Based on these we conclude that the current data do not give
sufficient evidence to imply that the probit link is inappropriate for this application.
To this end, we are comfortable with the probit link in the GLM and lean toward a
right-skewed distribution for X as opposed to normal.

5.2 Beetle Mortality

Pregibon (1980) studied the association between mortality of adult beetles and
exposure to gaseous carbon disulfide. Using his test for link specification, he found
strong evidence to support an asymmetric link as opposed to the logit link. The data
include logarithm of dosages of carbon disulfide exposure for a total of 481 adult
beetles, and the status (being killed or surviving) of each beetle after 5 h exposure.
Let Yi denote the indicator of being killed after exposure to carbon disulfide for the
ith beetle, and denote by Xi the standardized (via centering and scaling) logarithm
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of dosage this beetle was exposed to, for i D 1; : : : ; 481. Here, the covariate of
interest, log(dosage), is free of measurement error, making assumptions on X-model
irrelevant to estimating ˇ. Hence, we first focus on using RC to assess the adequacy
of a probit GLM relating Y and X. The reclassification model used for this purpose
is P.Y�

i D YijXi/ D 0:2, for i D 1; : : : ; 481. The values of the test statistics of

interest are, with the corresponding p-values in parentheses, T.c/ˇ0 � 3:184 (0.002)

and T.c/ˇ1 D 0:241 (0.810). This round of test provides strong evidence that the
assumed probit link may be inappropriate.

Log transformation is a popular transformation used by data analysts in biology
and medicine to alleviate departure from normality of data. We are now curious
about what RM can tell us about the normality assumption on the covariate,
log(dosage), in this study. To make RM applicable, we create noisy surrogate
covariate data, fWig481iD1, according to (2) with an estimated ! to be 0.8. Using the
new data, f.Yi;Wi/g481iD1, treating them as the “raw” observed data, and assuming a
probit-normal model, we implement RM, RC, and the hybrid method, successively.
When carrying out RM, the remeasured data, fW�

b;i; b D 1; : : : ; 100g481iD1, are
generated according to W�

b;i D Wi C �uZb;i with Zb;i � N.0; 1/, for b D 1; : : : ; 100,
i D 1; : : : ; 481. For RC and the hybrid method, the reclassified responses are
generated according to P.Y�

b;i D YijWi/ D 0:2 and P.Y�
b;i D YijW�

b;i/ D 0:2,
respectively, for b D 1; : : : ; 100, i D 1; : : : ; 481. The resultant test statistics are
listed below, with p-values in parentheses. From RM, T.m/ˇ0

� �0:618 (0.537) and

T.m/ˇ1
� �1:724 (0.085); from RC, T.c/ˇ0 � 2:904 (0.004) and T.c/ˇ1 � 0:090 (0.929);

and finally, from the hybrid method, Tˇ0 � 2:903 (0.004) and Tˇ1 � 0:086 (0.932).
The pattern of these three sets of tests is mostly consistent with what is observed
in Sect. 4.2 when only the link is misspecified. Following the sequential testing
strategy proposed in Sect. 4.3, with the insignificant T.m/ˇ1

and the highly significant

T.c/ˇ0 (at significance level 0.025), one can also conclude that the current data only
provide strong evidence against the assumed link but not the normality assumption
on log(dosage). In addition, using the directional test described in Sect. 4.4, although
insignificant, the negative sign of T.m/ˇ0

may be an indication that the true link is right-
skewed.

For illustration purposes, we drop the log transformation on the dosage levels
in the raw data and view the standardized dosage as the true covariate X. Then
we repeat the same data generation procedure to create the (hypothetical) error-
contaminated observed data, f.Yi;Wi/g481iD1, based on which we further generate the
remeasure data and the reclassified data as above, and implement RM, RC, and
the hybrid method. The test statistics are: from RM, T.m/ˇ0

� �1:192 (0.234) and

T.m/ˇ1
� �4:067 (0.000); from RC, T.c/ˇ0 � 1:938 (0.053) and T.c/ˇ1 � �1:320 (0.188);

from the hybrid method, Tˇ0 � 1:253 (0.211) and Tˇ1 � �0:843 (0.400). Now the

test based on T.m/ˇ1
from RM indicates that the assumed normality on “dosage” is

highly suspicious. The nearly significant T.c/ˇ0 (at significance level 0.05) from RC
may also suggest the probit link questionable, although the evidence is weaker than
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the previous round of testing from RC when log(dosage) is the true covariate. This
seems to suggest that the power of RC to detect link misspecification is somewhat
compromised by the coexistence of an inappropriate assumed X-model. Finally,
using the directional test proposed in Sect. 4.4, the fact that T.m/ˇ0

< 0, although
insignificant, may be evidence that the true distribution of dosage is left-skewed.

6 Discussion

In this study we tackle the challenging problem of model diagnostics for GLM
with error-prone covariates, where there are two potential sources of model
misspecification. Motivated by the rationale behind the remeasurement method
(RM) designed for assessing latent-variable model assumptions, we propose the
reclassification method (RC) mainly for detecting a misspecified link in GLM. We
carry out rigorous theoretical investigation to study the properties of MLEs for the
regression coefficients in GLM when only the link is misspecified, and also when
both the assumed link and the assumed latent-variable distribution differ from the
truth. These estimators include MLEs resulting from data with measurement error
only in the covariate, and also MLEs based on data with measurement error in
the binary response. These properties of the estimators justify use of RM and RC
for assessing different model assumptions, and further motivate more informative
sequential/directional tests that can reveal how the true link or true latent-variable
model deviates from the assumed one.

Although starting from Sect. 3.2 we focus on the (mixture-)probit-normal model
as the assumed/true models, the theoretical findings in Sects. 3.3 and 3.4 have
broader implications beyond this formulation. For example, when the assumed
link is logit and/or the true link belongs to the class of generalized logit links,
plenty empirical evidence (partly given in Sect. 4 and Appendix 5) suggest that
most properties of ˇm and ˇc stated in Sects. 3.3 and 3.4 are still observed.
Hence, the assumed/true models formulated in Sect. 3.2 help us make great strides
toward understanding the asymptotic properties of MLEs in the presence of model
misspecification, and the findings under this formulation provide answers to more
general questions like “What happen to the MLE when one assumes a symmetric
(not necessarily normal/probit) X-model/link whereas the true X-model/link is
asymmetric?”. Because of the generality of their implications, similar operating
characteristics of the proposed testing procedures described in Sect. 4.2 also carry
over to cases outside of the (mixture-)probit-normal formulation, as evidenced in
Table 1 and Appendix 5.

When multiple model assumptions are in question simultaneously, a potential
obstacle for model diagnostics, and for inference in general, is non-identifiability.
For example, in the framework of generalized linear mixed models (GLMM), it is
only meaningful to test a posited model for the random effects when one assumes
that the model for the response given the random effects is correct because these two
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models cannot be identified/validated simultaneously (Alonso et al., 2010; Verbeke
and Molenberghs, 2010). In the context of our study, although the true covariate X in
the primary model is a latent variable like random effects in GLMM, the existence of
an observed surrogate W, which relates to X via a known model, clears the obstacle
of non-identifiability encountered in GLMM, and thus it is possible to assess the
assumed primary model and the assumed latent-variable model simultaneously.
Concrete evidence of such identifiability is partly given by Proposition 3.1.

In the actual implementation of RC, one open question relates to the choice
of reclassification model. In this work, we choose this model mostly for ease of
deriving the reclassified-data likelihood and also try to avoid too much information
loss in the reclassified responses. An interesting follow-up research topic is to find
some optimal ways of creating reclassified data to maximize the power of RC. This
direction of research will require involvement of the asymptotic variance of the MLE
of ˇ, a quantity yet to be studied besides the asymptotic means which we focus
on in this article. Other practical concerns worth addressing in the future research
are incorporation of multivariate error-prone covariates and relaxing the normality
assumption on the measurement error.

Appendix 1: Likelihood and Score Functions Referenced
in Sect. 3.2

Likelihood and Score Functions Under the Assumed Model

If one posits a probit link in the primary model and assumes X � N.�x; �
2
x /, the

observed-data likelihood for subject i is

fY;W.Yi;WiI˝; �2u / D eiŒ˚fhi.ˇ/ggYi Œ˚f�hi.ˇ/g	1�Yi ; for i D 1; : : : ; n; (6)

where ˚.�/ is the cumulative distribution function (cdf) of N.0; 1/, and

ei D 1
p
�2u C �2x

�

 
Wi � �xp
�2u C �2x

!

; (7)

hi.ˇ/ D
�

ˇ0 C ˇ1
�2x Wi C �2u�x

�2u C �2x

��

1C ˇ21�
2
u�

2
x

�2u C �2x

��1=2
: (8)

If the reclassification model is

P.Y�
i D YijWi/ D 
i; for i D 1; : : : ; n; (9)
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the likelihood of the ith reclassified data, .Y�
i ;Wi/, under the assumed model is

fY�;W.Y
�
i ;WiI˝; �2u / D eiŒ
i˚fhi.ˇ/g C .1 � 
i/˚f�hi.ˇ/g	Y�

i

�Œ.1 � 
i/˚fhi.ˇ/g C 
i˚f�hi.ˇ/g	1�Y�

i : (10)

Differentiating the logarithm of (6) with respect to ˇ yields the normal scores
associated with ˇ based on the raw data with measurement error only in X; and,
similarly, differentiating the logarithm of (10) with respect to ˇ gives the counterpart
normal scores for the reclassified data with measurement error in both X and Y .
These two sets of scores are respectively

 m.ˇI Yi;Wi/ D h0
i.ˇ/�fhi.ˇ/g˚�1f�hi.ˇ/g

�
Yi

˚fhi.ˇ/g � 1
�

; (11)

 c.ˇI Y�
i ;Wi/ D h0

i.ˇ/�fhi.ˇ/g˚�1f�hi.ˇ/gd�1
i .ˇ/

�
�

Y�
i .2
i � 1/˚f�hi.ˇ/g

1 � di.ˇ/
C 1 � di.ˇ/ � 
i

�

; (12)

where

di.ˇ/ D .1 � 
i/˚fhi.ˇ/g C 
i˚f�hi.ˇ/g; (13)

and h0
i.ˇ/ D .@=@ˇ/hi.ˇ/ consists of the following two elements,

@hi.ˇ/

@ˇ0
D
�

1C ˇ21�
2
u�

2
x

�2u C �2x

��1=2
;

@hi.ˇ/

@ˇ1
D .�2x Wi C �2u�x/ f.@=@ˇ0/hi.ˇ/g�1 � ˇ1�2u�2x hi.ˇ/

�2u C �2x C ˇ21�
2
u�

2
x

:

A close inspection of the scores in (11) and (12) reveals some values of 
i that
one should avoid when specifying the reclassification model in (9). First, note that
the score function in (12) is identically zero if 
i D 0:5 for all i D 1; : : : ; n.
Consequently, ˇ is non-estimable from the reclassified data generated according
to P.Y�

i D YijWi/ D 0:5 for all i D 1; : : : ; n. This is not surprising as, with all

i’s equal to 0.5, fY�

i gn
iD1 virtually contains no information of the true responses.

Second, the two sets of scores are equal when 
i D 0 for i D 1; : : : ; n, or, 
i D 1

for i D 1; : : : ; n. This is also expected as this is the case where fY�
i gn

iD1 literally
contains the same information as fYign

iD1, and hence MLEs of ˇ from these two data
sets are identical, whether or not the assumed model is correct. Therefore, for the
purpose of model diagnosis, we avoid setting 
i in (9) identically as 0.5, or 0, or 1,
for all i D 1; : : : ; n.
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Score Estimating Equations

Under regularity conditions, the limiting MLE of ˇ based on the raw data and that
based on the reclassified data as n ! 1, ˇm and ˇc, uniquely satisfy the following
score equations respectively,

EY;W f m.ˇmI Yi;Wi/g D 0; (14)

EY�;W
˚
 c.ˇcI Y�

i ;Wi/
� D 0; (15)

where the subscripts attached to Ef�g signify that the expectations are defined with
respect to the relevant true model.

Using iterated expectations, one can show that (14) boils down the following set
of two equations,

EW

�

�fhi.ˇm/g pi � ˚fhi.ˇm/g
˚fhi.ˇm/g˚f�hi.ˇm/g

�

D 0; (16)

EW

�

Wi�fhi.ˇm/g pi � ˚fhi.ˇm/g
˚fhi.ˇm/g˚f�hi.ˇm/g

�

D 0; (17)

where pi is the mean of Yi given Wi under the true model, that is, pi D P.t/.Yi D
1jWi/ evaluated at ˇ (the true parameter value), for i D 1; : : : ; n. Similarly, one can
deduce that (15) is equivalent to the following system of equations,

EW

�

�fhi.ˇc/g .1 � 2
i/f1 � di.ˇc/ � qig
di.ˇc/f1 � di.ˇc/g

�

D 0; (18)

EW

�

Wi�fhi.ˇc/g .1 � 2
i/f1 � di.ˇc/ � qig
di.ˇc/f1 � di.ˇc/g

�

D 0; (19)

where qi is the mean of Y�
i given Wi under the true model, that is,

qi D P.t/.Y�
i D 1jWi/ D 
ipi C .1 � 
i/.1 � pi/; for i D 1; : : : ; n: (20)

Likelihood Function Under the True Model

Under the mixture-probit-normal model specified in Sect. 3.2, the likelihood of
.Yi; Wi/ is

f .t/Y;W.Yi;WiI˝.t/; �2u / D �e1ip
Yi
1i.1 � p1i/

1�Yi C .1 � �/e2ip
Yi
2i.1 � p2i/

1�Yi ;
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where, for ` D 1; 2,

e`i D 1
q
�2u C �2x`

�

0

B
@

Wi � �x`q
�2u C �2x`

1

C
A ;

p`i D ˛˚.h`1i/C .1 � ˛/˚.h`2i/;

h`ki D
 

ˇ0 � �k C ˇ1
�2x`Wi C �2u�x`

�2u C �2x`

! 

�2k C ˇ21�
2
u�

2
x`

�2u C �2x`

!�1=2
; for k D 1; 2:

It follows that, as the true mean of Yi given Wi,

pi D P.t/.Yi D 1jWi/ D �e1ip1i C .1 � �/e2ip2i

�e1i C .1 � �/e2i
; for i D 1; : : : ; n: (21)

Evaluating (20) at this pi, one obtains the true mean of Y�
i given Wi, that is,

qi D P.t/.Y�
i D 1jWi/, and further deduces that the true-model likelihood of the

reclassified data .Y�
i ;Wi/ is, for i D 1; : : : ; n,

f .t/Y�;W.Y
�
i ;WiI˝.t/; �2u / D f�e1i C .1 � �/e2igq

Y�

i
i .1 � qi/

1�Y�

i :

Appendix 2: Limiting Maximum Likelihood Estimators
When “1 D 0

When ˇ1 D 0, the limiting MLEs of ˇ are given in the following proposition.

Proposition 1. Suppose that the true primary model is a GLM with a mixture probit
link and ˇ1 D 0. Under the assumed probit-normal model, ˇc D ˇm D .ˇ0m; 0/

t,
where

ˇ0m D ˚�1
	

˛˚

�
ˇ0 � �1
�1

�

C .1 � ˛/˚
�
ˇ0 � �2
�2

�


: (22)

The proof is given next, which does not depend on the true X-model or the
reclassification model. Proposition 1 indicates that, if ˇ1 D 0, ˇm does not depend
on �2u , suggesting that RM cannot detect either misspecification. Also, ˇc does not
depend on 
i, which defeats the purpose of creating reclassified data, hence RC does
not help in model diagnosis either. This implication should not raise much concern
because, after all, now ˇ1m D ˇ1c D ˇ1.D 0/, suggesting that MLEs of ˇ1 remain
consistent despite model misspecification.

Proof. By the uniqueness of the solution to (14), it suffices to check if ˇm D
.ˇ0m; 0/

t solves (16)–(17), where ˇ0m is given in (22).
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Because ˇ1 D 0,

pi D P.t/.Yi D 1jWi/

D f .t/.Yi D 1;WiI˝.t/; �2u /

f .t/W .WiI �; �2u /

D
R

P.t/.Yi D 1jxIˇ/f .t/WjX.WijxI �2u /f .t/X .xI �/dx

f .t/W .WiI �; �2u /
ŒNotethat P.t/.Yi D 1jxIˇ/ isfreeof x when ˇ1 D 0:	

D P.t/.Yi D 1jxIˇ/f .t/W .WiI �; �2u /
f .t/W .WiI �; �2u /

D ˛˚

�
ˇ0 � �1
�1

�

C .1 � ˛/˚
�
ˇ0 � �2
�2

�

: (23)

Suppose one assumes for now that ˇ1m D 0, then by, (8), hi.ˇm/ D ˇ0m. With both
hi.ˇm/ and pi in (23) free of Wi, (16) reduces to pi � ˚fhi.ˇm/g D 0, or, ˚.ˇ0m/ D
pi. Therefore, ˇ0m D ˚�1.pi/, which proves (22). And with pi � ˚fhi.ˇm/g D 0,
(17) holds automatically. This completes proving the result regarding ˇm.

Next we show that ˇm established above also solves (18)–(19), that is, ˇc D ˇm.
Suppose ˇ1c D 0, then hi.ˇc/ D ˇ0c, and di.ˇc/ D .1 � 
i/˚.ˇ0c/ C 
i˚.�ˇ0c/.
Note that, inside (18), with qi D 
ipiC.1�
i/.1�pi/ and di.ˇc/ D .1�
i/˚.ˇ0c/C

i˚.�ˇ0c/, one has 1 � di.ˇc/ � qi D .1 � 2
i/fpi � ˚.ˇ0c/g. Therefore, if ˇ0c D
˚�1.pi/, then 1�di.ˇc/�qi D 0 and (18) holds for all 
i. Furthermore, 1�di.ˇc/�
qi D 0 immediately makes (19) hold. This shows that ˇc D ˇm.

This completes the proof for Proposition 1. ut

Appendix 3: Proof of Proposition 3.1

The following four results are crucial for proving Proposition 3.1. For clarity, we
incorporate the dependence of hi.ˇ/ in (8) on Wi by re-expressing this function as
h.ˇ0; ˇ1;w/, with the subscript i suppressed.

• (R1) If �x D 0, then h.�ˇ0m; ˇ1m;�w/ D �h.ˇ0m; ˇ1m;w/.
• (R2) If �x D 0, then � fh.�ˇ0m; ˇ1m;�w/g D C� fh.ˇ0m; ˇ1m;w/g, where C

does not depend on w.
• (R3) If f1.x/ D f2.�x/ and fU.u/ D fU.�u/, then f .1/W .w/ D f .2/W .�w/, where fU.u/

is the pdf of the measurement error U, f .1/W .w/ and f .2/W .w/ are the pdf of W when
the pdf of X is f1.x/ and f2.x/, respectively.



Dual Model Misspecification in Generalized Linear Models with Error in Variables 29

• (R4) If f1.x/ D f2.�x/, fU.u/ D fU.�u/, H1.s/ D 1 � H2.�s/, �x D 0, and
ˇ0 D 0, then p.22/.�w/ D 1 � p.11/.w/, where p.jk/.w/ denotes the conditional
mean of Yi given Wi D w under the true model fj.x/ f Hk.s/, for j; k D 1; 2.

The first two results, (R1) and (R2), follow directly from the definition of hi.ˇ/

in (8); (R3) can be easily proved by using the convolution formula based on the
error model given in Eq. (2) in the main article. The proof for (R4) is given next.

Proof. By the definition of p.jk/.w/, one has, with ˇ0 D 0,

p.11/.w/ D P.t/.Yi D 1jWi D w/ D
Z 1

�1
H1.ˇ1x/fU.w � x/f1.x/dx=f .1/W .w/:

Similarly, p.22/.�w/ is equal to

Z
1

�1

H2.ˇ1x/fU.�w � x/f2.x/dx=f .2/W .�w/

D
Z

1

�1

f1 � H1.�ˇ1x/gfU.�w � x/f1.�x/dx=f .1/W .w/; by.R3/;

D
Z

1

�1

fU.�w � x/f1.�x/dx=f .1/W .w/ �
Z

1

�1

H1.�ˇ1x/fU.�w � x/f1.�x/dx=f .1/W .w/

D
Z

1

�1

fU.�w C s/f1.s/ds=f .1/W .w/ �
Z

1

�1

H1.ˇ1s/fU.�w C s/f1.s/ds=f .1/W .w/

D
Z

1

�1

fU.w � s/f1.s/ds=f .1/W .w/ �
Z

1

�1

H1.ˇ1s/fU.w � s/f1.s/ds=f .1/W .w/

D 1 � p.11/.w/:

This completes the proof of (R4).

Now we are ready to show Proposition 3.1. In essence, we will show that, if
.ˇ0m; ˇ1m/ solves (16)–(17) when the true model is f1.x/ f H1.s/, then .�ˇ0m; ˇ1m/

solves (16)–(17) when the true model is f2.x/ f H2.s/. More specifically, evaluat-
ing (16) and (17) at its solution under the true model f1.x/ f H1.s/, we will show
that the following two equations,

Z 1

�1
�fh.ˇ0m; ˇ1m;w/g p.11/.w/ � ˚ fh.ˇ0m; ˇ1m;w/g

˚ fh.ˇ0m; ˇ1m;w/g˚ f�h.ˇ0m; ˇ1m;w/g f .1/W .w/dw D 0;

(24)
Z 1

�1
w�fh.ˇ0m; ˇ1m;w/g p.11/.w/ � ˚ fh.ˇ0m; ˇ1m;w/g

˚ fh.ˇ0m; ˇ1m;w/g˚ f�h.ˇ0m; ˇ1m;w/g f .1/W .w/dw D 0;

(25)
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imply the following two identities,

Z 1

�1
�fh.�ˇ0m; ˇ1m;w/g p.22/.w/ � ˚ fh.�ˇ0m; ˇ1m;w/g

˚ fh.�ˇ0m; ˇ1m;w/g˚ f�h.�ˇ0m; ˇ1m;w/g
� f .2/W .w/dw D 0; (26)

Z 1

�1
w�fh.�ˇ0m; ˇ1m;w/g p.22/.w/ � ˚ fh.�ˇ0m; ˇ1m;w/g

˚ fh.�ˇ0m; ˇ1m;w/g˚ f�h.�ˇ0m; ˇ1m;w/g
� f .2/W .w/dw D 0: (27)

Take (27) as an example, the left-hand side of it is equal to, by (R1)–(R4) and
˚.�t/ D 1 � ˚.t/,
Z 1

�1
.�v/�fh.�ˇ0m; ˇ1m;�v/g p.22/.�v/ � ˚ fh.�ˇ0m; ˇ1m;�v/g

˚ fh.�ˇ0m; ˇ1m;�v/g˚ f�h.�ˇ0m; ˇ1m;�v/g
� f .2/W .�v/dv

D �C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g 1 � p.11/.v/ � ˚ f�h.ˇ0m; ˇ1m; v/g

˚ f�h.ˇ0m; ˇ1m; v/g˚ fh.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D �C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g 1 � p.11/.v/ � 1C ˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g p.11/.v/ � ˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D 0; according to .25/:

Following similar derivations, one can show that the left-hand side of (26) is equal to

�C
Z 1

�1
�fh.ˇ0m; ˇ1m; v/g p.11/.v/ � ˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv;

which is also equal to 0 according to (24). Therefore, ˇ.11/0m D �ˇ.22/0m and ˇ.11/1m D
ˇ
.22/
1m . This completes the proof of Proposition 3.1.

Appendix 4: A Counterpart Proposition of Proposition 3.1
for “c

Proposition 2. Let f1.x/ and f2.x/ be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1.s/ and H2.s/ be two true links that are
symmetric of each other. Denote by ˇ.jk/c the limiting MLE of ˇ based on reclassified
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data generated according to P.Y�
i D YijWi/ D 
.Wi/ when the true model is fj.x/f

Hk.s/, for j; k D 1; 2. If �x D ˇ0 D 0 and 
.t/ is an even function or 
.t/ satisfies

.�t/ D 1 � 
.t/, then ˇ.11/0c D �ˇ.22/0c and ˇ.11/1c D ˇ

.22/
1c .

We will elaborate the proof when 
.t/ is an even function in this Appendix. The
following two lemmas are needed in the proof, one lemma concerning di.ˇ/ defined
in (13), and the other relates to qi defined in (20). To elaborate the dependence of
di.ˇ/ on Wi in (13), we re-express this function as d.ˇ0; ˇ1;w/, with the subscript i
suppressed.

Lemma 1. If �x D 0 and 
.t/ is an even function, then d.�ˇ0c; ˇ1c;�w/ D 1 �
d.ˇ0c; ˇ1c;w/.

Proof. By (13),

d.�ˇ0c; ˇ1c;�w/

D f1 � 
.�w/g˚ fh.�ˇ0c; ˇ1c;�w/g C 
.�w/˚ f�h.�ˇ0c; ˇ1c;�w/g
D f1 � 
.w/g˚ f�h.ˇ0c; ˇ1c;w/g C 
.w/˚ fh.ˇ0c; ˇ1c;w/g
ŒNextuse.R1/andthefactthat
.t/ D 
.�t/:	

D f1 � 
.w/g Œ1 � ˚ fh.ˇ0c; ˇ1c;w/g	C 
.w/ Œ1 � ˚ f�h.ˇ0c; ˇ1c;w/g	
D 1 � d.ˇ0c; ˇ1c;w/:

This completes the proof of Lemma 1. ut
Lemma 2. If f1.x/ D f2.�x/, fU.u/ D fU.�u/, H1.s/ D 1 � H2.�s/, �x D 0,
ˇ0 D 0, and 
.t/ is an even function, then q.22/.�w/ D 1� q.11/.w/, where q.jk/.w/
denotes the conditional mean of Y�

i given Wi D w under the true model fj.x/fHk.s/,
for j; k D 1; 2.

Proof. By (20),

q.22/.�w/

D f1 � 
.�w/g ˚1 � p.22/.�w/
�C 
.�w/p.22/.�w/

D f1 � 
.w/g p.11/.w/C 
.w/
˚
1 � p.11/.w/

�
; by.R4/and 
.�t/ D 
.t/;

D 1 � q.11/.w/:

This completes the proof of Lemma 2. Following similar derivations, one can show
that q.12/.�w/ D 1 � q.21/.w/.

If, instead of being an even function, 
.t/ satisfies 
.�t/ D 1 � 
.t/, then
the conclusion in Lemma 1 becomes d.�ˇ0c; ˇ1c;�w/ D d.ˇ0c; ˇ1c;w/, and the
conclusion in Lemma 2 changes to q.22/.�w/ D q.11/.w/.

Now we are ready to show that, if .ˇ0c; ˇ1c/ solves (18)–(19) under the true
model f1.x/ f H1.s/, then .�ˇ0c; ˇ1c/ solves (18)–(19) under the true model
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f2.x/ f H2.s/. Given that .ˇ0c; ˇ1c/ solves (18) and (19) under the true model
f1.x/ f H1.s/, one has, by elaborating (18) and (19),

Z 1

�1
� fh.ˇ0c; ˇ1c;w/g

d.ˇ0c; ˇ1c;w/ f1 � d.ˇ0c; ˇ1c;w/g f1 � 2
.w/g
˚
1 � q.11/.w/ � d.ˇ0c; ˇ1c;w/

�
f .1/W .w/dw D 0; (28)

Z 1

�1
w

� fh.ˇ0c; ˇ1c;w/g
d.ˇ0c; ˇ1c;w/ f1 � d.ˇ0c; ˇ1c;w/g f1 � 2
.w/g

˚
1 � q.11/.w/ � d.ˇ0c; ˇ1c;w/

�
f .1/W .w/dw D 0: (29)

Now we check if .�ˇ0c; ˇ1c/ solves (18)–(19) under the true model f2.x/ f H2.s/.
Plugging .�ˇ0c; ˇ1c/ in (18) gives, where we set v D �w in the first equality,

Z 1

�1
� fh.�ˇ0c; ˇ1c;w/g

d.�ˇ0c; ˇ1c;w/ f1 � d.�ˇ0c; ˇ1c;w/g f1 � 2
.w/g
˚
1 � q.22/.w/ � d.�ˇ0c; ˇ1c;w/

�
f .2/W .w/dw

D
Z 1

�1
� fh.�ˇ0c; ˇ1c;�v/g

d.�ˇ0c; ˇ1c;�v/ f1 � d.�ˇ0c; ˇ1c;�v/g f1 � 2
.�v/g
˚
1 � q.22/.�v/ � d.�ˇ0c; ˇ1c;�v/

�
f .2/W .�v/dv

ŒNextuse.R1/ � �.R3/;Lemmas 1; 2; and 
.t/ D 
.�t/:	

D
Z 1

�1
C� fh.ˇ0c; ˇ1c; v/g

f1 � d.ˇ0c; ˇ1c; v/g d.ˇ0c; ˇ1c; v/
f1 � 2
.v/g

˚�1C q.11/.v/C d.ˇ0c; ˇ1c; v/
�

f .1/W .v/dv

D �C
Z 1

�1
� fh.ˇ0c; ˇ1c; v/g

d.ˇ0c; ˇ1c; v/ f1 � d.ˇ0c; ˇ1c; v/g f1 � 2
.v/g
˚
1 � q.11/.v/ � d.ˇ0c; ˇ1c; v/

�
f .1/W .v/dv

D 0; by .28/:

Similarly, one can show that (29) implies

Z 1

�1
w

� fh.�ˇ0c; ˇ1c;w/g
d.�ˇ0c; ˇ1c;w/ f1 � d.�ˇ0c; ˇ1c;w/g f1 � 2
.w/g

˚
1 � q.22/.w/ � d.�ˇ0c; ˇ1c;w/

�
f .2/W .w/dw D 0:

Hence, .�ˇ0c; ˇ1c/ does solve (18)–(19) under the true model f2.x/fH2.s/. In other
words, ˇ.11/0c D �ˇ.22/0c and ˇ.11/1c D ˇ

.22/
1c . Following parallel arguments as above

one can show that ˇ.12/0c D �ˇ.21/0c and ˇ.12/1c D ˇ
.21/
1c . This completes the proof of

Proposition 2. �
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Appendix 5: Additional Simulation Results from Sect. 4

When the assumed model is not probit-normal or the true model is not in the class
of mixture-probit-normal, analytic exploration, as elaborated in Appendices 1–4
leading to the properties of the limiting MLEs of ˇ, ˇm and ˇc, become infeasible.
To provide empirical justification of these results, such as those summarized in
Proposition 3.1 and (M1) in Sect. 3.3, under and outside this assumed/true-model
configuration, Table 3 presents Monte Carlo averages of Ǒ

m and Ǒ
c obtained under

some simulation settings considered or mentioned in Sect. 4. When computing Ǒ
c,

we consider two forms of 
.t/ in the reclassification model P.Y�
b;i D YijWi/ D


.Wi/. One is used in Sect. 4, i.e., P.Y�
b;i D YijWi/ D ˚.Wi/, and the other is

P.Y�
b;i D YijWi/ D 0:2. The former 
.t/ satisfies the condition that 
.�t/ D

1 � 
.t/, and the latter is an even function, providing two examples satisfying the
condition regarding 
.t/ under Proposition 2.

Table 4 provides rejection rates across 1000 Monte Carlo replicates when data
are generated from four true models in the class of generalized-logit-normal and
the assumed model is logit-normal. Overall the operating characteristics of all
considered tests are very similar to those when the assumed model is probit-normal

Table 3 Averages of maximum likelihood estimates of ˇ across 1000 Monte Carlo replicates
under different true models

Assumed model True model ! Ǒ
0m Ǒ

1m Ǒ.1/
0c

Ǒ.1/
1c

Ǒ.2/
0c

Ǒ.2/
1c

Probit-normal (D3)f(L4) 0:7 0:431 0:874 0:210 0:980 0:490 0:903

(D4)f(L3) �0:428 0:874 �0:207 0:983 �0:488 0:905

(D3)f(L4) 0:8 0:409 0:881 0:168 1:001 0:467 0:892

(D4)f(L3) �0:407 0:881 �0:164 1:001 �0:465 0:894

(D3)f(L4) 0:9 0:381 0:903 0:117 1:023 0:436 0:909

(D4)f(L3) �0:380 0:902 �0:114 1:022 �0:434 0:910

Probit-normal (D3)f(L6) 0:7 �0:050 0:585 �0:228 0:671 �0:032 0:540

(D4)f(L5) 0:045 0:635 0:226 0:730 0:022 0:585

(D3)f(L6) 0:8 �0:059 0:599 �0:249 0:693 �0:037 0:547

(D4)f(L5) 0:056 0:653 0:249 0:757 0:029 0:594

(D3)f(L6) 0:9 �0:070 0:621 �0:257 0:711 �0:046 0:563

(D4)f(L5) 0:071 0:682 0:262 0:783 0:041 0:617

Logit-normal (D3)f(L6) 0:7 �0:073 0:951 �0:379 1:116 �0:042 0:881

(D4)f(L5) 0:069 1:030 0:380 1:223 0:034 0:950

(D3)f(L6) 0:8 �0:087 0:973 �0:421 1:160 �0:051 0:890

(D4)f(L5) 0:086 1:061 0:427 1:277 0:046 0:966

(D3)f(L6) 0:9 �0:108 1:009 �0:452 1:205 �0:067 0:916

(D4)f(L5) 0:109 1:111 0:464 1:337 0:068 1:007

Monte Carlo standard errors associated with the averages are in the range between 0.002 and
0.005. Results under Ǒ.1/c are for the case when P.Y�

b;i D YijWi/ D ˚.Wi/. Results under Ǒ.2/c

are for the case when P.Y�

b;i D YijWi/ D 0:2
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Table 4 Rejection rates across 1000 Monte Carlo replicates of each test statistic under each
testing procedure considered in Sect. 4 at different levels of reliability ratio ! when the assumed
model is logit-normal

! D 0:7 ! D 0:8 ! D 0:9 ! D 1

True model RM RC HB RM RC HB RM RC HB RM RC HB

(D0)f(L5) Tˇ0 0:03 0:37 0:40 0:03 0:57 0:58 0:04 0:76 0:76 0 0:92 0:92

Tˇ1 0:04 0:06 0:07 0:04 0:06 0:08 0:04 0:09 0:10 0 0:10 0:10

(D3)f(L5) Tˇ0 0:67 0:05 0:18 0:89 0:09 0:06 0:95 0:32 0:18 0 0:87 0:87

Tˇ1 0:04 0:08 0:14 0:08 0:06 0:08 0:13 0:04 0:04 0 0:12 0:12

(D4)f(L5) Tˇ0 0:81 0:87 0:98 0:98 0:90 0:98 1:00 0:91 0:97 0 0:90 0:90

Tˇ1 0:36 0:78 0:75 0:67 0:85 0:87 0:91 0:87 0:88 0 0:74 0:74

(D3)f(L6) Tˇ0 0:73 0:86 0:99 0:94 0:89 0:98 1:00 0:87 0:95 0 0:80 0:80

Tˇ1 0:29 0:68 0:73 0:56 0:77 0:84 0:82 0:75 0:80 0 0:62 0:62

“HB” refers to the hybrid method

(see the lower half of Table 1). Indeed, from a practical point of view when it
comes to model diagnosis, it should not matter whether one assumes probit-normal
or logit-normal. If one concludes existence of model misspecification under one
assumed model, certainly one should not believe in the other assumed model. If one
concludes lack of sufficient evidence of model misspecification under one assumed
model, the other assumed model is clearly equally plausible. After all, the logit
link and the probit link are virtually indistinguishable in most inference contexts
(Chambers and Cox, 1967).
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