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Preface

The 2014 Joint Applied Statistics Symposium of the International Chinese Statis-
tical Association and the Korean International Statistical Society was successfully
held from June 15 to June 18, 2014, at the Marriott Downtown Waterfront Hotel,
Portland, Oregon, USA. It was the 23rd annual Applied Statistics Symposium of the
ICSA and the first of the KISS. Over 400 participants attended the conference from
academia, industry, and government agencies around the world including North
America, Asia, and Europe. The conference offered three keynote speeches, seven
short courses, 76 scientific sessions, student paper sessions, and social events.

The 11 papers in this volume were selected from the presentations in the
conference. They cover new methodology and application for clinical research
and information technology, including model development, model checking, and
innovative clinical trial design and analysis. All papers have gone through peer-
review process of at least two referees and an editor. We believe they provide
invaluable addition to the statistical community.

We would like to thank the authors for their contribution and their patience and
dedication.

We also would like to thank referees who devoted their valuable time for the
excellent reviews.

New York, NY, USA Zhezhen Jin
New York, NY, USA Mengling Liu
Summit, NJ, USA Xiaolong Luo
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Dual Model Misspecification in Generalized
Linear Models with Error in Variables

Xianzheng Huang

Abstract We study maximum likelihood estimation of regression parameters in
generalized linear models for a binary response with error-prone covariates when
the distribution of the error-prone covariate or the link function is misspecified. We
revisit the remeasurement method proposed by Huang et al. (Biometrika 93:53–64,
2006) for detecting latent-variable model misspecification and examine its operating
characteristics in the presence of link misspecification. Furthermore, we propose a
new diagnostic method for assessing assumptions on the link function. Combining
these two methods yields informative diagnostic procedures that can identify which
model assumption is violated and also reveal the direction in which the true latent-
variable distribution or the true link function deviates from the assumed one.

1 Introduction

Since the seminal paper of Nelder and Wedderburn (1972), the class of generalized
linear models (GLM) has received wide acceptance in a host of applications
(McCullagh and Nelder, 1989). Studies in these applications often involve covari-
ates that cannot be measured precisely or directly. For example, in the Framingham
Heart Study (Kannel et al., 1986), a logistic regression model was used to relate
the indicator for the presence of coronary heart disease with covariates such as
one’s smoking status, body mass index, age, serum cholesterol level, and long-
term systolic blood pressure (SBP). Among these covariates, measures of one’s
serum cholesterol level were imprecise, and the actual observed blood pressure of a
subject is merely a noisy surrogate of the long-term SBP, which cannot be measured
directly. Taking the structural model point of view to account for measurement error
as opposed to the functional model point of view (Carroll et al., 2006, Sect. 2.1), one
needs to assume a model for the latent true covariates in order to derive the observed
data likelihood function. Together the latent-covariate model, the model that relates
the true covariates with their noisy surrogates, and the GLM as the conditional
model of the response given the true covariates, one has the complete specification

X. Huang (�)
Department of Statistics, University of South Carolina, Columbia, SC 29208, USA
e-mail: huang@stat.sc.edu

© Springer International Publishing Switzerland 2016
Z. Jin et al. (eds.), New Developments in Statistical Modeling, Inference
and Application, ICSA Book Series in Statistics, DOI 10.1007/978-3-319-42571-9_1
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4 X. Huang

of a structural measurement error model for the observed data. From that point on,
one can draw parametric inference on the regression parameters straightforwardly.

Like most model-based inference, the validity of inference derived from the
structure measurement error model relies on the assumed latent-variable model
as well as the posited GLM. In the measurement error community there is a
general concern about imposing models for unobserved covariates, as one can
easily make inappropriate assumptions on unobservable covariates that often lead
to misleading inference (Huang et al., 2006). The widely entertained GLMs for a
binary response often assume one of the popular links such as logistic, probit, and
complementary log-log. The choice of these popular links is mostly encouraged
by ease of interpretation, the familiarity among practitioners, and its convenient
implementation using standard statistical software. However, for one particular
application, a link function outside of this popular suite of links may be able
to capture the underlying association between the response and covariates more
accurately. Li and Duan (1989) studied the properties of regression analysis under a
misspecified link function in general regression settings. Czado and Santner (1992)
focused on the effects of link misspecification on regression analysis based on
GLMs for a binary response. Without considering measurement error in covariates,
these authors provided theoretical and empirical evidence of the adverse effects of
a misspecified link in GLM on likelihood-based inference. They showed that the
maximum likelihood estimators (MLE) of regression coefficients obtained under an
inappropriate link can be biased and inefficient.

In this article, we address both sources of model misspecification and propose
diagnostic procedures to assess these model assumptions. There are only a handful
of diagnostic methods available for testing either one of these assumptions (e.g.,
Brown, 1982; Huang et al., 2009; Pregibon, 1980; Stukel, 1988), and most existing
tests for GLM, with or without error-prone covariates, are omnibus tests designed
for testing overall goodness-of-fit (GOF) rather than assessing specific assumptions
of a hierarchical model (e.g., Fowlkes, 1987; Hosmer and Lemeshow, 1989; Le
Cessie and van Houwelingen, 1991; Ma et al., 2011; Tsiatis, 1980). To the best
of our knowledge, there is no existing work that address the dual misspecification
considered in our study. Huang et al. (2006) proposed the so-called remeasurement
method, referred to as RM henceforth, to detect latent-variable model misspeci-
fication in structural measurement error models. This method also has successes
in testing latent-variable model assumptions in the bigger class of joint models
(Huang et al., 2009), and was later improved to adapt to more challenging data
structures (Huang, 2009). To detect link misspecification without involving error-
prone covariates, Pregibon (1980) proposed a test derived from linearizing the
discrepancy between the assumed link and the true link. His test was developed
under the assumption that the assumed link and the true link belong to the same
family, which can be a stringent assumption. Moreover, his test fails easily if
the local linear expansion of the true link about the assumed link is a poor
approximation of the true link. For logistic regression models in the absence of
measurement error, Hosmer et al. (1997) compared nine GOF tests for three types
of model misspecification, including link misspecification, and found none of these
tests have satisfactory power to detect link misspecification.
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Inspired by the rationale behind RM, we propose a new diagnostic method
initially aiming to detect link misspecification, called the reclassification method, or
RC for short. This new method is described in Sect. 2, where we first define generic
notations in a structural measurement error model, followed by a brief review of
RM. Both RM and RC are motivated by theoretical findings on the effects of
either type of misspecification on MLEs. For illustration purposes, we focus on one
particular assumed structural measurement error model for the majority of the study
and formulate a class of true flexible models. Under such formulation we present
properties of the MLEs in the presence of one or both sources of misspecification
in Sect. 3. In Sect. 4 we report finite-sample simulation studies to illustrate the
performance of the proposed diagnostic procedures. Two real-life data examples
are used to demonstrate the implementation of these methods in Sect. 5. Finally,
discussions on our findings and follow-up research directions ensue in Sect. 6.

2 Models and Two Diagnostic Methods

2.1 Models

Denote by Yi the binary response of subject i, for i D 1; : : : ; n, and the true
distribution of Yi conditioning on covariates Xi is specified by a GLM,

P.Yi D 1jXiIˇ/ D H.ˇ0 C ˇt
1Xi/; (1)

where ˇ D .ˇ0; ˇ
t
1/

t is the vector of regression coefficients, and H.s/ is the inverse
link function, assumed to be a nondecreasing and differentiable function of s. For a
succinct exposition, we assume a scalar error-prone covariate Xi in the sequel, and
the observed covariate, Wi, relates to Xi via a classical measurement error model
(Carroll et al., 2006, Sect. 1.2), for i D 1; : : : ; n,

Wi D Xi C Ui; (2)

where Ui � N.0; �2u / is the nondifferential measurement error (Carroll et al., 2006,
Sect. 2.5). Estimation of �2u is straightforward when replicate measures of each Xi

(i D 1; : : : ; n) are available (Carroll et al., 2006, Eq. (4.3)). For notational simplicity,
�2u is assumed known in the majority of this article. Lastly, suppose that fXign

iD1 is
a random sample from a distribution specified by the probability density function
(pdf) f .t/X .xI �/, indexed by parameters � . The three component models, (1), (2), and

f .t/X .xI �/, constitute the structural measurement error model, based on which one
has the correct likelihood function of the observed data for subject i, .Yi; Wi/, given
by f .t/Y;W.Yi;WiI˝.t/; �2u / D R fH.ˇ0 C ˇ1x/gYi f1 � H.ˇ0 C ˇ1x/g1�Yi ��1

u �f.Wi �
x/=�ugf .t/X .xI �/dx, where �.s/ is the pdf of the standard normal distribution, and
˝.t/ D .ˇt; � t/t is the vector of all unknown parameters under the correct model
specification.
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Suppose that one assumes the link function to be J.s/, which may differ from
H.s/ in (1), and one posits a model for Xi with pdf give by fX.xI �/, indexed by
parameters �. Then one has the assumed likelihood function of the observed data
for subject i, denoted by fY;W.Yi;WiI˝; �2u /, similarly derived as above, where˝ D
.ˇt; �t/t is the p-dimensional vector of all unknown parameters under the assumed
model.

2.2 Remeasurement Method and Reclassification Method

It was shown in Huang et al. (2006) that, when the model for the true covariate,
that is, the X-model, is misspecified, the MLE of ˇ is usually inconsistent with
bias depending on the measurement error variance. By exploiting this dependence,
they proposed further contaminating fWign

iD1 to generate W�
b;i D Wi C p

��uZb;i,
for b D 1; : : : ;B, i D 1; : : : ; n, where � is a user-specified positive constant
and Zb;i’s are independent pseudo errors from N.0; 1/. Note that the measurement
error variance associated with fW�

b;i; b D 1; : : : ;Bgn
iD1 is equal to .1 C �/�2u .

They then constructed a test statistic based on the difference between the MLE of
ˇ, Ǒ, computed using the raw data, f.Yi; Wi/gn

iD1, and the counterpart MLE, Ǒ
r,

obtained from the remeasured data, f.Yi; W�
i /gn

iD1, where W�
i D .W�

1;i; : : : ;W
�
B;i/,

for i D 1; : : : ; n. Take ˇ1 as an example, the test statistic associated with ˇ1 is
defined by Tˇ1 D . Ǒ

1 � Ǒ
1r/= O�ˇ1 , where O�ˇ1 is an estimator of the standard error of

Ǒ
1� Ǒ

1r . Each so-constructed test statistic for a parameter in˝ follows a Student’s t
distribution with n � p degrees of freedom asymptotically under the null hypothesis
that the two MLEs being compared converge to the same limit as n ! 1. If the
value of a test statistic deviates significantly from zero, one finds evidence that the
assumed latent-variable model is inappropriate. Derivations of the standard error
estimator and the proof of the null distribution, omitted here, are given in Huang
et al. (2006).

It is assumed in this existing work that all aspects of the structural measurement
error model are correctly specified except for the X-model. But one may legitimately
question the adequacy of the assumed link in the GLM. And if the link is indeed
misspecified, one may wonder if RM can also detect the link misspecification
and how its ability to reveal latent-variable model misspecification is affected by
this additional misspecification. As an important step in RM, pseudo measurement
error are added to the observed covariates fWign

iD1 to produce the remeasured data.
A natural extension of this idea is to add measurement error to the responses
fYign

iD1. For binary data, measurement error lead to misclassified binary responses.
Parallel with adding noise to W to detect latent-variable model misspecification,
we propose to detect link misspecification by adding noise to Y, producing the so-
called reclassified data. Now one may think of Ǒ

r as the MLE of ˇ obtained from
the reclassified data. If Ǒ is biased due to link misspecification, then Ǒ

r is usually
also biased. If the bias of Ǒ

r depends on some parameter in the user-specified
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reclassification model according to which the reclassified data are created, then
Ǒ
r can differ noticeably from Ǒ. Such difference can serve as evidence of link

misspecification. And test statistics like those constructed in RM can be used
to quantify the significance of the difference. We refer to this strategy as the
reclassification method, or, RC for short.

Under regularity conditions, the MLE of ˇ follows a normal distribution asymp-
totically, despite the source of model misspecification (White, 1982) and the type
of measurement error. Because both RM and RC rely on the discrepancy between
the MLEs of ˇ before and after pseudo measurement error are added (to W or Y),
one important clue to answering the question, “Does RM/RC work?”, is the means
of these asymptotic normal distributions associated with the MLEs from data with
measurement error (in X or Y) in the presence of different model misspecification.
The next section is devoted to studying these asymptotic quantities, i.e., the limiting
MLEs of ˇ.

3 Limiting Maximum Likelihood Estimators

3.1 Estimating Equations

Denote by ˇm and ˇc the limiting MLEs of ˇ associated with the raw data and the
reclassified data, respectively, as n ! 1. By the theory of maximum likelihood
estimation in the presence of model misspecification (White, 1982), ˇm and ˇc

uniquely satisfy the following score equations respectively,

EW
�
EYjW

˚
.@=@̌ /fY;W.Yi;WiI˝; �2u /jˇDˇm

�� D 0; (3)

EW
�
EY�jW

˚
.@=@̌ /fY�;W.Y

�
i ;WiI˝; �2u /jˇDˇc

�� D 0; (4)

where fY�;W.Y�
i ;WiI˝; �2u / is the likelihood of the reclassified data for subject i,

.Y�
i ;Wi/, and the subscripts attached to “E” signify that the expectations are defined

with respect to the relevant true model.
In order to focus on inference for ˇ, we treat the parameters in the assumed X-

model, �, as known constants in (3) and (4). Although in practice one has to estimate
� along with ˇ, this seemingly unrealistic treatment of � does not make the follow-
up theoretical findings less practically valuable if � can be estimated consistently (in
some sense). Consistent estimation of � in the presence of model misspecification
is often possible in many scenarios. For example, when both the assumed and the
true X-models can be fully parameterized via some moments (included in �) up to a
finite order, the interpretation of � remains meaningful even if the assumed X-model
differs from the true model, and hence one can still conceptualize the “true” value
of �, which are simply the moments of the true X-distribution. Moreover, such �
usually can be consistently estimated, say, using the method of moments based on
fWign

iD1, even in the presence of dual misspecification.
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In general, the above estimating equations cannot be solved explicitly, thus
closed form expressions of their solutions, ˇm and ˇc, are usually unattainable.
Without sacrificing too much the generality of the theoretical investigation, we next
formulate the assumed model and true models that make these limiting MLEs more
transparent.

3.2 Assumed and True Models

For tractability, we fix the assumed structural measurement error model at the
probit-normal model, which is one of the favorite toy examples entertained in the
measurement error literature. In this model, one posits a probit link in the primary
model (1) and assumes X � N.�x; �

2
x /. As for the true model, we formulate a class

of the so-called mixture-probit-normal models, which contains the probit-normal
model as a special member. In this class of true models, the link function H.s/ is
the cdf of a two-component mixture normal, referred to as the mixture probit. With
a mixture probit link, the primary model is a GLM given by

P.Yi D 1jXiIˇ/ D ˛˚

�
ˇ0 C ˇ1Xi � �1

�1

�

C .1 � ˛/˚

�
ˇ0 C ˇ1Xi � �2

�2

�

; (5)

where ˛ 2 Œ0; 1	, �k and �k > 0 (k D 1, 2) are chosen such that the corresponding
mixture normal, ˛N.�1; �21 /C .1�˛/N.�2; �22 /, is of zero mean and unit variance.
The true X-model in this class is a mixture normal.

To achieve explicit likelihood for the reclassified data without being overly
restrictive in the creation of reclassified data, we consider reclassification models of
the form P.Y�

i D YijWi/ D 
i, for i D 1; : : : ; n, according to which the reclassified
responses, fY�

i gn
iD1, are generated. Combining the assumed raw-data likelihood,

fY;W.Yi;WiI˝; �2u /, and the reclassification model yields the likelihood of .Y�
i ;Wi/

under the probit-normal model, fY�;W.Y�
i ;WiI˝; �2u /.

Under the formulated assumed and true models, all needed ingredients for
deriving the score equations in (3) and (4) become available in closed form.
These ingredients include the true mean of Yi and Y�

i given Wi, the assumed-
model likelihood for the raw data, fY;W.Yi;WiI˝; �2u /, and that for the reclassi-
fied data, fY�;W.Y�

i ;WiI˝; �2u /, the true-model likelihood for both types of data,

f .t/Y;W.Yi;WiI˝.t/; �2u / and f .t/Y�;W.Y
�
i ;WiI˝.t/; �2u /. The explicit expressions of these

quantities are provided in Appendix 1. Some interesting findings regarding ˇm and
ˇc are presented next, in which we only consider cases where ˇ1 ¤ 0. The special
case with ˇ1 D 0 is discussed in Appendix 2, where the expressions of ˇm and ˇc are
derived. This is a rare case where (3) and (4) can be solved explicitly, and also a rare
case where the MLE of ˇ1 is consistent despite the type of model misspecification.
When ˇ1 ¤ 0, although (3) and (4) cannot be solved explicitly, we are able to make
use the aforementioned intermediate results in Appendix 1 to study the limiting
MLEs.
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3.3 Limiting MLEs from Data with Measurement Error
Only in X

Fixing the assumed model at the probit-normal model, we consider combinations of
five true links and five true X-distributions in the formulation of the true model. The
five true links are, (L0) probit link, and four mixture probit links with the following
parameter configurations: (L1) ˛ D 0:3, �1 D 0:3, �1 D 0:1; (L2) ˛ D 0:3, �1 D
�0:3, �1 D 0:1; (L3) ˛ D 0:7, �1 D 0:5, �1 D 0:2; (L4) ˛ D 0:7, �1 D �0:5,
�1 D 0:2. The upper panels of Fig. 1 depict these five links. For two link functions,
H1.s/ and H2.s/, we say that H1.s/ and H2.s/ are symmetric of each other if H1.s/ D
1 � H2.�s/. Among the four mixture probit links, (L1) and (L2) are symmetric of
each other, and (L3) and (L4) are symmetric of each other, with the latter two links
deviating from probit more than the former two. The five true X-distributions are,
(D0) N.0; 1/, and four mixture normals with mean zero and variance one formulated
by varying the mixing proportion �, skewness �, and excessive kurtosis  as follows:
(D1) � D 0:3, � D �1,  D 2; (D2) � D 0:3, � D 1,  D 2; (D3) � D 0:1,
� D �1:5,  D 2; (D4) � D 0:1, � D 1:5,  D 2. The lower panels of Fig. 1 show
the pdf’s of these five distributions. Among the four mixture normal distributions,
(D1) and (D2) are symmetric of each other, and (D3) and (D4) are symmetric of
each other, with the latter pair deviating from normal further than the former pair.
In the true GLM in (5), we set ˇ0 D 0 and ˇ1 D 1. For ease of presentation, we use
“f” to connect a true X-model with a true link to refer to a true model specification.
For example, (D1)f(L3) refers to the true model with X following a distribution
specified by (D1) and the link configured according to (L3).

Under each of the above true model specifications, we numerically solve (3) for
ˇm. Figure 2 presents ˇm under different true models as �2u increases from 0 to 1.
This range of �2u yields a reliability ratio ! that drops from 1 to 0.5, where ! D
�2x =.�

2
x C �2u /. The top panels of Fig. 2, where the true X-model coincides with the

assumed, show that ˇm only changes slightly as �2u increases in the presence of link
misspecification. This suggests that, unless information in both the raw data and the
remeasured data are rich enough to allow detection of the weak dependence of ˇm

on �2u , RM will have low power to detect link misspecification despite the amount
of bias in ˇm due to link misspecification. When the true X-model deviates from
normal (see the middle and the bottom panels of Fig. 2), although the dependence
of ˇ1m on �2u is stronger than before, ˇ1m changes noticeably mainly over a narrow
range of �2u . This phenomenon for cases with dual misspecification indicates that,
although RM has been shown to be effective in diagnosing latent-variable model
misspecification, its power in this regard can be substantially compromised by the
coexistence of link misspecification.

Besides Fig. 2, we show analytically in Appendix 3 that, under certain conditions,
ˇ1m is unchanged by a symmetric flip of either the true X-distribution or the true link,
and only ˇ0m is affected. This property is stated next, with empirical justification
relegated to Appendix 5.
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Fig. 1 Upper panels give four mixture probit links formulated in Sect. 3.3, where the upper left
panel gives link (L1) (dashed line) and link (L2) (dot-dashed line), and the upper right panel gives
link (L3) (dashed line) and link (L4) (dot-dashed line). Solid lines are the probit link. Lower panels
show four mixture normal density functions formulated in Sect. 3.3, where the lower left panel
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distributions (D3) (dashed line) and (D4) (dot-dashed line). Solid lines are the density function of
N.0; 1/
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Fig. 2 Plots of ˇ0m (left column) and ˇ1m (right column) versus �2u when fixing the true X-model
at N.0; 1/ (top row), (D1) (middle row), and (D3) (bottom row), respectively, then varying the true
link among the five links: probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
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Proposition 3.1. Let f1.x/ and f2.x/ be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1.s/ and H2.s/ be two true links that are
symmetric of each other. Denote by ˇ.jk/m the limiting MLE of ˇ based on data with
measurement error only in X when the true model is fj.x/ f Hk.s/, for j; k D 1; 2. If

E.X/ D ˇ0 D 0, then ˇ.11/0m D �ˇ.22/0m and ˇ.11/1m D ˇ
.22/
1m .

Note that Proposition 3.1 includes two special cases: one is when H1.s/ ¤ H2.s/
and f1.x/ D f2.x/ D f .x/, where f .x/ is a pdf symmetric around zero; the other is
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when f1.x/ ¤ f2.x/ and H1.s/ D H2.s/ D H.s/, where H.s/ is the cdf associated
with a distribution symmetric around zero. This is because f1.x/ D f2.x/ D f .x/
implies f1.x/ D f2.�x/, since f .x/ D f .�x/, and thus f1.x/ and f2.x/ are symmetric
of each other. Similarly, H1.s/ D H2.s/ D H.s/ implies H1.s/ D 1 � H2.�s/,
as H.s/ D 1 � H.�s/, hence H1.s/ and H2.s/ are symmetric of each other. This
proposition implies that ˇ0m can distinguish two true X-models that are symmetric
of each other, and can also tell apart two true links that are symmetric of each other.
For the purpose of model diagnosis, one can exploit this and other properties of ˇ0m

to obtain a directional test based on RM that can identify the direction of model
misspecification. This potential of RM is supported by the following observations
of ˇ0m under the conditions stated in Proposition 3.1:

(M1) Despite the skewness of the true link, when the true X-model is not normal,
ˇ0m is increasing in �2u when the true X-model is left-skewed, and it is decreasing
in �2u when the true X-model is right-skewed.

(M2) When the true X-model is normal and the true link is not probit, ˇ0m is
increasing in �2u when the true link is right-skewed, and it is decreasing in �2u
when the true link is left-skewed.

The middle and bottom panels of Fig. 2, which are associated with two left-skewed
true X-models, illustrate the first half of (M1), and the second half of (M1) is
indicated by Proposition 3.1. Empirical evidence of (M1) is given in Appendix 5.
Viewing a link function as a cdf, we say that a link function is left-skewed if the
corresponding pdf is left-skewed. Among the four considered mixture probit links,
(L1) and (L3) are left-skewed and (L2) and (L4) right-skewed. The top panel of
Fig. 2 illustrates (M2). In Sect. 4.4, we propose a directional test based on RM that
utilizes the properties of ˇ0m summarized in (M1) and (M2).

3.4 Limiting MLEs Based on Reclassified Data

Under the same configurations for the assumed/true models as in Sect. 3.3, we
solve (4) numerically for ˇc based on reclassified data generated according to the
reclassification model P.Y�

i D YijWi/ D ˚.Wi C �/, for i D 1; : : : ; n, where � is
a constant. Figure 3 presents ˇc when � D 0, which shows stronger dependence on
�2u compared to Fig. 2, especially for ˇ0c. This implies that, if one applies RM to the
reclassified data, Tˇ0 can be much more significant than the counterpart test statistic
from RM only (without adding noise to Y).

Viewing ˇc as a function of � and thinking of ˇc as ˇc.�/ symbolically, Fig. 4
presents ˇc.�2/ � ˇc.0/ as �2u varies. This figure reveals that the changes in ˇc

as � changes can be substantial when �2u is small. This phenomenon suggests that
RC alone (without adding further noise to W) can have good power to detect X-
model misspecification or link misspecification, and the power is higher when the
error contamination in X is milder. If the X-model is correctly specified, both ˇ0c

and ˇ1c can change substantially as � varies when �2u is fixed at a lower level,
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Fig. 3 Plots of ˇ0c (left column) and ˇ1c (right column) when P.Y�

i D YijWi/ D ˚.Wi/, for i D
1; : : : ; n, versus �2u , with the true X-model being N.0; 1/ (top), (D1) (middle), and (D3) (bottom),
and the true link being probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
(dot-dashed lines), and (L4) (long dashed lines)

including 0. Hence, in the absence of measurement error in X, and thus without
involving RM, RC alone is expected to possess some power to detect moderate to
severe link misspecification.

In Appendix 4, we show that, if the reclassification model is P.Y�
i D YijWi/ D


.Wi/, where 
.t/ is an even function or when 
.t/ satisfies 
.�t/ D 1�
.t/, then
ˇc has the same property of ˇm under the same conditions stated in Proposition 3.1.
Empirical justification of this finding are given in Appendix 5.
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4 Testing Procedures

The investigation in Sect. 3 on the limiting MLEs of ˇ based on data with
measurement error in X or Y in the presence of X-model misspecification or link
misspecification are helpful for understanding the operating characteristics of the
test statistics, Tˇ0 and Tˇ1 . When the true model is not in the class of mixture-
probit-normal models, and the assumed model is probit-normal, the phenomena
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described in Sects. 3.3 and 3.4 that motivate the upcoming testing strategies are still
observed in extensive simulations we carried out. Some of these simulation studies
are presented in the upcoming subsections.

Similar comments apply to scenarios where the assumed model is the logit-
normal model. This point is practically less relevant because, although one cannot
choose a true model in reality, one can choose an assumed model and use it as a
reference model for the purpose of exploring features of the unknown true model.
Hence, with well-grounded and effective testing procedures developed with a probit-
normal assumed model, using this particular assumed model serves the purpose
of diagnosing model misspecification well enough. Regardless, for completeness,
we present some simulation results in Appendix 5 where the assumed model is a
logit-normal model. In this section, we keep the assumed model as probit-normal to
first study via simulation the operating characteristics of the aforementioned test
statistics resulting from three diagnostic methods: first, RM; second, RC; third,
a hybrid method that combines RM and RC. Then we propose more informative
testing procedures that can disentangle two sources of misspecification and point at
the direction of misspecification.

4.1 Simulation Design

Fixing the sample size n at 500, we create the raw data, f.Yi;Wi/gn
iD1, from different

true models resulting from varying three factors in the simulation experiments. The
first factor is the true X-model, taking five levels (D0)–(D4) as defined in Sect. 3.3.
The second factor is the true link function, for which we consider seven true links,
(L0)–(L4), i.e., the probit and mixture-probit links formulated in Sect. 3.3, and
two generalized logit links (Stukel, 1988), referred to as (L5) and (L6). These
two generalized logit links are symmetric of each other, with (L5) left-skewed
and (L6) right-skewed, as depicted in Fig. 5. The third factor is the value of �2u
used to generate fWign

iD1 according to (2), with four values leading to reliability
ratio ! ranging from 0.7 to 1 at increments of 0.1. Under each simulation setting,
1000 Monte Carlo (MC) replicates are generated. After each replicate is generated,
assuming a probit-normal model, we compute Tˇ0 and Tˇ1 associated with the
aforementioned three diagnostic methods.

When implementing RM, Ǒ
r is the MLE from the remeasured data f.Yi;W�

i /gn
iD1,

where W�
i D .W�

1;i; : : : ;W
�
B;i/, in which W�

b;i D Wi C �uZb;i, with Zb;i � N.0; 1/
independent across b D 1; : : : ;B, i D 1; : : : ; n, and B D 100. When carrying out
RC, Ǒ

r is the estimate computed from the reclassified data, f.Y�
i ;Wi/gn

iD1, where
the reclassified responses, Y�

i D .Y�
1;i; : : : ;Y

�
B;i/, for i D 1; : : : ; n, are generated

according to P.Y�
b;i D YijWi/ D ˚.Wi/. When employing the hybrid method, we

first generate fW�
b;i; b D 1; : : : ;Bgn

iD1 as in RM above, then the reclassified responses

are generated according to P.Y�
b;i D YijW�

b;i/ D ˚.W�
b;i/; finally one obtains Ǒ

r

based on the hybrid data that have measurement error in both X and Y, f.Y�
b;i;W

�
b;i/;
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Fig. 5 Two generalized logit links, (L5) (dashed line) and (L6) (dot-dashed line), in comparison
with the logit link (solid line)

b D 1; : : : ;Bgn
iD1. Using a significance level of 0.05, we monitor how often the

value of a test statistic turns out significant, leading to rejection of a null hypothesis,
which states that two MLEs being compared in the test statistic have the same limit
as n ! 1.

4.2 Simulation Results

Table 1 presents the rejection rate of each test statistic under each simulation
setting across 1000 MC replicates for a representative subset of all considered true-
model configurations. This subset of true models includes five models belonging
to the class of mixture-probit-normal models, (D3)f(L0), (D0)f(L3), (D3)f(L3),
(D4)f(L3), and (D3)f(L4); and four models in the class of generalized-logit-normal
models, (D0)f(L5), (D3)f(L5), (D4)f(L5), and (D3)f(L6). Among these nine
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Table 1 Rejection rates across 1000 Monte Carlo replicates of each test statistic under each
testing procedure considered in Sect. 4 at different levels of reliability ratio ! when the assumed
model is probit-normal

! D 0:7 ! D 0:8 ! D 0:9 ! D 1

True model RM RC HB RM RC HB RM RC HB RM RC HB

(D3)f(L0) Tˇ0 0:99 0:53 0:85 1:00 0:40 0:75 1:00 0:23 0:38 0 0:09 0:09

Tˇ1 0:47 0:51 0:39 0:81 0:52 0:41 0:93 0:34 0:23 0 0:07 0:07

(D0)f(L3) Tˇ0 0:18 0:75 0:72 0:31 0:92 0:92 0:48 0:98 0:99 0 1:00 1:00

Tˇ1 0:04 0:08 0:06 0:05 0:09 0:08 0:08 0:08 0:09 0 0:06 0:06

(D3)f(L3) Tˇ0 0:82 0:09 0:08 0:88 0:44 0:16 0:76 0:80 0:90 0 0:70 0:70

Tˇ1 0:58 0:09 0:05 0:67 0:11 0:16 0:59 0:36 0:62 0 0:63 0:63

(D4)f(L3) Tˇ0 1:00 0:89 0:97 1:00 0:89 0:96 1:00 0:96 0:96 0 1:00 1:00

Tˇ1 0:03 0:53 0:66 0:10 0:74 0:83 0:45 0:81 0:84 0 0:80 0:80

(D3)f(L4) Tˇ0 1:00 0:85 0:97 1:00 0:89 0:96 1:00 0:95 0:96 0 1:00 1:00

Tˇ1 0:03 0:55 0:69 0:11 0:74 0:82 0:45 0:82 0:83 0 0:74 0:74

(D0)f(L5) Tˇ0 0:08 0:36 0:36 0:13 0:54 0:53 0:18 0:73 0:73 0 0:91 0:91

Tˇ1 0:03 0:06 0:06 0:04 0:07 0:06 0:05 0:08 0:09 0 0:06 0:06

(D3)f(L5) Tˇ0 0:41 0:05 0:21 0:57 0:09 0:06 0:61 0:35 0:17 0 0:89 0:89

Tˇ1 0:05 0:08 0:16 0:06 0:06 0:10 0:06 0:05 0:05 0 0:10 0:10

(D4)f(L5) Tˇ0 0:95 0:86 0:98 1:00 0:89 0:99 1:00 0:89 0:97 0 0:80 0:80

Tˇ1 0:54 0:70 0:63 0:87 0:78 0:79 0:96 0:75 0:75 0 0:50 0:50

(D3)f(L6) Tˇ0 0:90 0:85 0:99 0:99 0:87 0:99 1:00 0:83 0:95 0 0:69 0:69

Tˇ1 0:46 0:67 0:65 0:73 0:72 0:77 0:89 0:65 0:71 0 0:45 0:45

true-models configurations, (D3)f(L0) represents the scenario where only the X-
model is misspecified, (D0)f(L3) and (D0)f(L5) represent the case where only the
link is misspecified, and the remaining six configurations represent cases with dual
misspecification. Albeit not included in Table 1, we observe rejection rates for all
tests well controlled at around 0.05 when the true model is (D0)f(L0), that is, when
there is no model misspecification. Some noteworthy observations regarding RM
and RC from the simulation are summarized in the following three remarks.

Remark 1. When �2u D 0, that is, the covariate is measured without error (! D 1),
RM can detect neither source of misspecification. This is due to the definition of the
remeasured data, W�

b;i D Wi C p
��uZb;i, resulting in the remeasured data identical

to the raw data when �2u D 0. In contrast, when �2u D 0, RC has impressive power
to detect link misspecification, whether or not the X-model is also misspecified.

Remark 2. When �2u ¤ 0, the power of RM to detect X-model misspecification
surpasses that of RC if this is the only source of misspecification; but when only the
link is misspecified, the test based on Tˇ0 from RC is the clear winner in detecting
link misspecification, whose power increases as �2u decreases.

Remark 3. Although RM is designed for detecting X-model misspecification, and
RC is proposed aiming at detecting link misspecification, each of them can be
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influenced in nontrivial ways by the other source of misspecification. Take RM as
an example. When only the X-model is misspecified, such as case (D3)f(L0) in
Table 1, RM is expectedly effective in picking up this type of misspecification.
But its power is mostly weakened by the additional link misspecification as in
case (D3)f(L3). Note that, when the true model is (D3)f(L3), the directions of
the two misspecification are the same in the sense that the true X-model is left-
skewed and so is the true link. This tampering effect on the power of RM due to the
added link misspecification is not observed for Tˇ0 when the dual misspecification
are of opposite directions, such as in cases (D3)f(L4) and (D3)f(L6). Similar
nontrivial patterns are observed for RC when X-model misspecification is added on
top of link misspecification. In summary, whether or not the added misspecification
compromises the power of a method to detect the type of misspecification it
is originally designed for depends on how the two types of misspecification
interact.

Although the empirical power associated with Tˇ1 from RM lingers around 0.60
in the case (D3)f(L3) when ! D 0:7, 0.8, and 0.9, it drops to around 0.33 and 0.22
when ! D 0:6 and 0.55 (not included in Table 1), respectively. This abrupt drop
in power can be explained by the large-sample phenomenon in Sect. 3.3 depicted in
Fig. 2. It is pointed out there that, in the presence of dual model misspecification,
as in case (D3)f(L3), ˇ1m changes noticeably mainly over a narrow (lower) range
of �2u . For this case in particular, as shown in the lower right panel of Fig. 2 (with
the dot-dashed line referring to case (D3)f(L3)), ˇ1m stays nearly flat soon after �2u
passes 0.25 (i.e., soon after ! drops below 0.8). The (nearly) flat region of �2u or !
is where Tˇ1 from RM exhibits low power.

Finally, the hybrid method is the same as RC when �2u D 0. And, according
to Table 1, when �2u ¤ 0, the hybrid method performs similarly as RC when only
the link is misspecified. In other cases, the power of the hybrid method mostly lies
between that of RM and RC. We recommend use the hybrid method with caution
due to the amount of information loss when creating the hybrid data.

4.3 Sequential Tests

Although we caution use of the hybrid method in practice, sequentially using
test results from RM and those from RC can help to disentangle two types of
misspecification. We now illustrate some sequential testing procedures when the
covariate is measured with error. To distinguish the test statistics from two methods,
denote by T.m/� and T.c/� the test statistics associated with RM and RC, respectively,
where � denotes a generic parameter. Suppose one implements RM, with only
W-data further contaminated, and then implements RC, with only Y-data contami-
nated (and the W-data left as originally observed). Implementing these two methods
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sequentially yields four test statistics of interest, T.m/ˇ0
, T.m/ˇ1

, T.c/ˇ0 , and T.c/ˇ1 . In light of
the operating characteristics of these test statistics revealed in Sect. 4.2, we consider
the following three sequential testing strategies.

First, if T.m/ˇ0
is highly significant and T.c/ˇ0 is insignificant, one may interpret this

as evidence that the X-model is misspecified and the assumed link may be adequate
for the observed data. For instance, when the true model is (D3)f(L0), using this
testing criterion, one concludes “only the X-model is misspecified” 55, 70, and 84 %
of the time when ! D 0:7; 0:8; 0:9, respectively, based on the simulation results in
Sect. 4.2. When summarizing the preceding rejection rates, we apply the Bonferroni
correction for multiple testing and use a significance level of 0:025.D 0:05=2/ now
that two test statistics are used simultaneously.

Second, if T.m/ˇ1
turns out insignificant whereas T.c/ˇ0 is highly significant, one

may view this as indication that the assumed X-model may be appropriate but the
assumed link is inadequate. Revisiting the simulation results in Sect. 4.2, when the
true model is (D0)f(L3), using this sequential testing strategy, one concludes “only
the link is misspecified” 67, 86, and 94 % of the time when ! D 0:7; 0:8; 0:9,
respectively.

Third, having observed promising power from the above two sequential tests, one
would hope that having both T.m/ˇ0

and T.c/ˇ0 significant can be interpreted as an indi-
cation of dual misspecification. Unfortunately, due to the complicated interaction
between the two misspecification described in Remark 3 in Sect. 4.2, this criterion
is a reliable indicator of dual misspecification only when two misspecification are
of opposite directions. For example, when the true model is (D4)f(L3), the criterion
of both T.m/ˇ0

and T.c/ˇ0 being significant is met 79, 85, and 93 % of the time across
1000 MC replicates when ! D 0:7; 0:8; 0:9, respectively. Similar high power is also
observed when the true model is (D3)f(L4), (D4)f(L5), or (D3)f(L6). However,
if the true model is (D3)f(L3), the rejection rates according to this same criterion
drop to 1, 13, and 29 % when ! D 0:7; 0:8; 0:9, respectively.

Despite the complication arising from dual misspecification, empirical evidence
from the above three sequential tests give much encouragement to use the combi-
nation of two tests from two diagnostic methods, such as T.m/ˇ0

(or T.m/ˇ1
) and T.c/ˇ0 , in

order to learn more from the data regarding the two model assumptions.

4.4 Directional Tests

The properties of ˇ0m described in (M1)–(M2) in Sect. 3.3 suggest that the sign
of T.m/ˇ0

can indicate in which direction the true X-model deviates from normal or
the true link function deviates from probit (or logit). More specifically, if there is
strong evidence against a normal X-distribution, then, despite what the true link is,
a significantly negative (positive) T.m/ˇ0

implies that the true X-distribution is left-
skewed (right-skewed). This is supported by (M1). On the other hand, suppose one
has evidence to suggest that the assumed normal X-model is likely appropriate, but
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Table 2 Rejection rates associated with a one-sided test based on T
.m/
ˇ0

at
significance level 0.05 under different true model configurations defined
in Sect. 3.3 at different levels of reliability ratio !

(D0)f(L1) (D0)f(L3) (D0)f(L4) (D0)f(L5)

! [R] [R] [L] [R]

0:7 0:09 0:29 0:26 0:15

0:8 0:10 0:45 0:42 0:22

0:9 0:13 0:62 0:60 0:27

(D1)f(L0) (D3)f(L0) (D4)f(L0) (D1)f(L1) (D2)f(L1)

! [L] [L] [R] [L] [R]

0:7 0:87 1:00 1:00 0:83 0:93

0:8 0:98 1:00 1:00 0:95 1:00

0:9 1:00 1:00 1:00 0:99 1:00

(D3)f(L3) (D3)f(L5) (D3)f(L6) (D4)f(L3) (D4)f(L5)

! [L] [L] [L] [R] [R]

0:7 0:95 0:62 0:96 1:00 0:98

0:8 0:98 0:78 1:00 1:00 1:00

0:9 0:96 0:83 1:00 1:00 1:00

Codes beneath the true model codes, [L] and [R], indicate left-sided and
right-sided tests, respectively

suspects that the assumed probit link may be inadequate, then one further gains
evidence to support a right-skewed link if T.m/ˇ0

< 0, and left-skewed otherwise. This
is justified by (M2).

As empirical evidence, Table 2 presents the rejection rates (at significance level
0.05) from the same simulation study described in Sect. 4.1 but associated with a
one-sided test based on T.m/ˇ0

, assuming one knows a priori the right side of the
test (as we do in simulations). The high rejection rates for the cases with X-model
misspecification tabulated in Table 2 indicate that, if one is mostly interested in the
skewness of the true X-distribution, the sign of T.m/ˇ0

is indeed an effective indicator
of the direction of skewness, regardless whether or not (and how) the link function is
misspecified. In the absence of X-model misspecification, T.m/ˇ0

requires milder error
contamination in X in order to more effectively reveal the direction of skewness of
the true link.

5 Application to Real Data Examples

We now apply the above testing procedures to two data examples, beginning with a
data set from the Framingham Heart Study briefly described in Sect. 1.
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5.1 Framingham Heart Study

The data considered in this example consist of information on 1615 subjects, who
were followed for the development of coronary heart disease over six examination
periods. Denote by Yi the binary indicator of the first evidence of coronary heart
disease for subject i within an 8-year follow-up period from the second examination
period, for i D 1; : : : ; 1615. At each of the second and third examination periods,
each subject’s SBP was measured twice. We first center all observed SBP measures
from the second examination. Then, for subject i.D 1; : : : ; 1615), we compute
the average of the two (centered) SBP measures divided by 100 from the second
examination, and use it as Wi, the error-contaminated version of the unobservable
(centered) long-term SBP, Xi. Using the two replicate measures in the second exam
and applying Eq. (4.3) in Carroll et al. (2006) gives an estimated ! for the so-
defined W as around 0.92. Assuming a probit-normal structural measurement error
model for the observed data f.Yi;Wi/g1615iD1 , we apply RM with � D 1 and B D 100.

The resulting test statistics are T.m/ˇ0
� 2:349 (0.019) and T.m/ˇ1

� �2:387 (0.017),
with the corresponding p-values in parentheses. These test results yield significant
evidence that the normality assumption on X is inadequate. This finding is not new
(see, e.g., Huang, 2009; Huang et al., 2006). What is new here is that, because now
T.m/ˇ0

is significantly positive (at significance level 0.05), using the directional test
described in Sect. 4.4, we also find evidence that the true X-distribution is right-
skewed. This new finding (from a model diagnostics standpoint) agrees with the
kernel density estimate for X in Wang and Wang (2011, Fig. 5), who applied the
deconvoluting kernel density estimation (Stefanski and Carroll, 1990) to estimate
the density of X based on W-data.

We also apply the RC method using the reclassification model, P.Y�
i D YijWi/ D

˚.Wi/, for i D 1; : : : ; 1615, to generate the reclassified data. The resultant test
statistics are T.c/ˇ0 � �1:474 (0.141) and T.c/ˇ1 � 1:474 (0.141), with the associated
p-values in parentheses. Based on these we conclude that the current data do not give
sufficient evidence to imply that the probit link is inappropriate for this application.
To this end, we are comfortable with the probit link in the GLM and lean toward a
right-skewed distribution for X as opposed to normal.

5.2 Beetle Mortality

Pregibon (1980) studied the association between mortality of adult beetles and
exposure to gaseous carbon disulfide. Using his test for link specification, he found
strong evidence to support an asymmetric link as opposed to the logit link. The data
include logarithm of dosages of carbon disulfide exposure for a total of 481 adult
beetles, and the status (being killed or surviving) of each beetle after 5 h exposure.
Let Yi denote the indicator of being killed after exposure to carbon disulfide for the
ith beetle, and denote by Xi the standardized (via centering and scaling) logarithm
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of dosage this beetle was exposed to, for i D 1; : : : ; 481. Here, the covariate of
interest, log(dosage), is free of measurement error, making assumptions on X-model
irrelevant to estimating ˇ. Hence, we first focus on using RC to assess the adequacy
of a probit GLM relating Y and X. The reclassification model used for this purpose
is P.Y�

i D YijXi/ D 0:2, for i D 1; : : : ; 481. The values of the test statistics of

interest are, with the corresponding p-values in parentheses, T.c/ˇ0 � 3:184 (0.002)

and T.c/ˇ1 D 0:241 (0.810). This round of test provides strong evidence that the
assumed probit link may be inappropriate.

Log transformation is a popular transformation used by data analysts in biology
and medicine to alleviate departure from normality of data. We are now curious
about what RM can tell us about the normality assumption on the covariate,
log(dosage), in this study. To make RM applicable, we create noisy surrogate
covariate data, fWig481iD1, according to (2) with an estimated ! to be 0.8. Using the
new data, f.Yi;Wi/g481iD1, treating them as the “raw” observed data, and assuming a
probit-normal model, we implement RM, RC, and the hybrid method, successively.
When carrying out RM, the remeasured data, fW�

b;i; b D 1; : : : ; 100g481iD1, are
generated according to W�

b;i D Wi C �uZb;i with Zb;i � N.0; 1/, for b D 1; : : : ; 100,
i D 1; : : : ; 481. For RC and the hybrid method, the reclassified responses are
generated according to P.Y�

b;i D YijWi/ D 0:2 and P.Y�
b;i D YijW�

b;i/ D 0:2,
respectively, for b D 1; : : : ; 100, i D 1; : : : ; 481. The resultant test statistics are
listed below, with p-values in parentheses. From RM, T.m/ˇ0

� �0:618 (0.537) and

T.m/ˇ1
� �1:724 (0.085); from RC, T.c/ˇ0 � 2:904 (0.004) and T.c/ˇ1 � 0:090 (0.929);

and finally, from the hybrid method, Tˇ0 � 2:903 (0.004) and Tˇ1 � 0:086 (0.932).
The pattern of these three sets of tests is mostly consistent with what is observed
in Sect. 4.2 when only the link is misspecified. Following the sequential testing
strategy proposed in Sect. 4.3, with the insignificant T.m/ˇ1

and the highly significant

T.c/ˇ0 (at significance level 0.025), one can also conclude that the current data only
provide strong evidence against the assumed link but not the normality assumption
on log(dosage). In addition, using the directional test described in Sect. 4.4, although
insignificant, the negative sign of T.m/ˇ0

may be an indication that the true link is right-
skewed.

For illustration purposes, we drop the log transformation on the dosage levels
in the raw data and view the standardized dosage as the true covariate X. Then
we repeat the same data generation procedure to create the (hypothetical) error-
contaminated observed data, f.Yi;Wi/g481iD1, based on which we further generate the
remeasure data and the reclassified data as above, and implement RM, RC, and
the hybrid method. The test statistics are: from RM, T.m/ˇ0

� �1:192 (0.234) and

T.m/ˇ1
� �4:067 (0.000); from RC, T.c/ˇ0 � 1:938 (0.053) and T.c/ˇ1 � �1:320 (0.188);

from the hybrid method, Tˇ0 � 1:253 (0.211) and Tˇ1 � �0:843 (0.400). Now the

test based on T.m/ˇ1
from RM indicates that the assumed normality on “dosage” is

highly suspicious. The nearly significant T.c/ˇ0 (at significance level 0.05) from RC
may also suggest the probit link questionable, although the evidence is weaker than
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the previous round of testing from RC when log(dosage) is the true covariate. This
seems to suggest that the power of RC to detect link misspecification is somewhat
compromised by the coexistence of an inappropriate assumed X-model. Finally,
using the directional test proposed in Sect. 4.4, the fact that T.m/ˇ0

< 0, although
insignificant, may be evidence that the true distribution of dosage is left-skewed.

6 Discussion

In this study we tackle the challenging problem of model diagnostics for GLM
with error-prone covariates, where there are two potential sources of model
misspecification. Motivated by the rationale behind the remeasurement method
(RM) designed for assessing latent-variable model assumptions, we propose the
reclassification method (RC) mainly for detecting a misspecified link in GLM. We
carry out rigorous theoretical investigation to study the properties of MLEs for the
regression coefficients in GLM when only the link is misspecified, and also when
both the assumed link and the assumed latent-variable distribution differ from the
truth. These estimators include MLEs resulting from data with measurement error
only in the covariate, and also MLEs based on data with measurement error in
the binary response. These properties of the estimators justify use of RM and RC
for assessing different model assumptions, and further motivate more informative
sequential/directional tests that can reveal how the true link or true latent-variable
model deviates from the assumed one.

Although starting from Sect. 3.2 we focus on the (mixture-)probit-normal model
as the assumed/true models, the theoretical findings in Sects. 3.3 and 3.4 have
broader implications beyond this formulation. For example, when the assumed
link is logit and/or the true link belongs to the class of generalized logit links,
plenty empirical evidence (partly given in Sect. 4 and Appendix 5) suggest that
most properties of ˇm and ˇc stated in Sects. 3.3 and 3.4 are still observed.
Hence, the assumed/true models formulated in Sect. 3.2 help us make great strides
toward understanding the asymptotic properties of MLEs in the presence of model
misspecification, and the findings under this formulation provide answers to more
general questions like “What happen to the MLE when one assumes a symmetric
(not necessarily normal/probit) X-model/link whereas the true X-model/link is
asymmetric?”. Because of the generality of their implications, similar operating
characteristics of the proposed testing procedures described in Sect. 4.2 also carry
over to cases outside of the (mixture-)probit-normal formulation, as evidenced in
Table 1 and Appendix 5.

When multiple model assumptions are in question simultaneously, a potential
obstacle for model diagnostics, and for inference in general, is non-identifiability.
For example, in the framework of generalized linear mixed models (GLMM), it is
only meaningful to test a posited model for the random effects when one assumes
that the model for the response given the random effects is correct because these two
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models cannot be identified/validated simultaneously (Alonso et al., 2010; Verbeke
and Molenberghs, 2010). In the context of our study, although the true covariate X in
the primary model is a latent variable like random effects in GLMM, the existence of
an observed surrogate W, which relates to X via a known model, clears the obstacle
of non-identifiability encountered in GLMM, and thus it is possible to assess the
assumed primary model and the assumed latent-variable model simultaneously.
Concrete evidence of such identifiability is partly given by Proposition 3.1.

In the actual implementation of RC, one open question relates to the choice
of reclassification model. In this work, we choose this model mostly for ease of
deriving the reclassified-data likelihood and also try to avoid too much information
loss in the reclassified responses. An interesting follow-up research topic is to find
some optimal ways of creating reclassified data to maximize the power of RC. This
direction of research will require involvement of the asymptotic variance of the MLE
of ˇ, a quantity yet to be studied besides the asymptotic means which we focus
on in this article. Other practical concerns worth addressing in the future research
are incorporation of multivariate error-prone covariates and relaxing the normality
assumption on the measurement error.

Appendix 1: Likelihood and Score Functions Referenced
in Sect. 3.2

Likelihood and Score Functions Under the Assumed Model

If one posits a probit link in the primary model and assumes X � N.�x; �
2
x /, the

observed-data likelihood for subject i is

fY;W.Yi;WiI˝; �2u / D eiŒ˚fhi.ˇ/ggYi Œ˚f�hi.ˇ/g	1�Yi ; for i D 1; : : : ; n; (6)

where ˚.�/ is the cumulative distribution function (cdf) of N.0; 1/, and

ei D 1
p
�2u C �2x

�

 
Wi � �xp
�2u C �2x

!

; (7)

hi.ˇ/ D
�

ˇ0 C ˇ1
�2x Wi C �2u�x

�2u C �2x

��

1C ˇ21�
2
u�

2
x

�2u C �2x

��1=2
: (8)

If the reclassification model is

P.Y�
i D YijWi/ D 
i; for i D 1; : : : ; n; (9)
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the likelihood of the ith reclassified data, .Y�
i ;Wi/, under the assumed model is

fY�;W.Y
�
i ;WiI˝; �2u / D eiŒ
i˚fhi.ˇ/g C .1 � 
i/˚f�hi.ˇ/g	Y�

i

�Œ.1 � 
i/˚fhi.ˇ/g C 
i˚f�hi.ˇ/g	1�Y�

i : (10)

Differentiating the logarithm of (6) with respect to ˇ yields the normal scores
associated with ˇ based on the raw data with measurement error only in X; and,
similarly, differentiating the logarithm of (10) with respect to ˇ gives the counterpart
normal scores for the reclassified data with measurement error in both X and Y.
These two sets of scores are respectively

 m.ˇI Yi;Wi/ D h0
i.ˇ/�fhi.ˇ/g˚�1f�hi.ˇ/g

�
Yi

˚fhi.ˇ/g � 1

�

; (11)

 c.ˇI Y�
i ;Wi/ D h0

i.ˇ/�fhi.ˇ/g˚�1f�hi.ˇ/gd�1
i .ˇ/

�
�

Y�
i .2
i � 1/˚f�hi.ˇ/g

1 � di.ˇ/
C 1 � di.ˇ/ � 
i

�

; (12)

where

di.ˇ/ D .1� 
i/˚fhi.ˇ/g C 
i˚f�hi.ˇ/g; (13)

and h0
i.ˇ/ D .@=@̌ /hi.ˇ/ consists of the following two elements,

@hi.ˇ/

@̌ 0

D
�

1C ˇ21�
2
u�

2
x

�2u C �2x

��1=2
;

@hi.ˇ/

@̌ 1

D .�2x Wi C �2u�x/ f.@=@̌ 0/hi.ˇ/g�1 � ˇ1�
2
u�

2
x hi.ˇ/

�2u C �2x C ˇ21�
2
u�

2
x

:

A close inspection of the scores in (11) and (12) reveals some values of 
i that
one should avoid when specifying the reclassification model in (9). First, note that
the score function in (12) is identically zero if 
i D 0:5 for all i D 1; : : : ; n.
Consequently, ˇ is non-estimable from the reclassified data generated according
to P.Y�

i D YijWi/ D 0:5 for all i D 1; : : : ; n. This is not surprising as, with all

i’s equal to 0.5, fY�

i gn
iD1 virtually contains no information of the true responses.

Second, the two sets of scores are equal when 
i D 0 for i D 1; : : : ; n, or, 
i D 1

for i D 1; : : : ; n. This is also expected as this is the case where fY�
i gn

iD1 literally
contains the same information as fYign

iD1, and hence MLEs of ˇ from these two data
sets are identical, whether or not the assumed model is correct. Therefore, for the
purpose of model diagnosis, we avoid setting 
i in (9) identically as 0.5, or 0, or 1,
for all i D 1; : : : ; n.
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Score Estimating Equations

Under regularity conditions, the limiting MLE of ˇ based on the raw data and that
based on the reclassified data as n ! 1, ˇm and ˇc, uniquely satisfy the following
score equations respectively,

EY;W f m.ˇmI Yi;Wi/g D 0; (14)

EY�;W
˚
 c.ˇcI Y�

i ;Wi/
� D 0; (15)

where the subscripts attached to Ef�g signify that the expectations are defined with
respect to the relevant true model.

Using iterated expectations, one can show that (14) boils down the following set
of two equations,

EW

�

�fhi.ˇm/g pi � ˚fhi.ˇm/g
˚fhi.ˇm/g˚f�hi.ˇm/g

�

D 0; (16)

EW

�

Wi�fhi.ˇm/g pi � ˚fhi.ˇm/g
˚fhi.ˇm/g˚f�hi.ˇm/g

�

D 0; (17)

where pi is the mean of Yi given Wi under the true model, that is, pi D P.t/.Yi D
1jWi/ evaluated at ˇ (the true parameter value), for i D 1; : : : ; n. Similarly, one can
deduce that (15) is equivalent to the following system of equations,

EW

�

�fhi.ˇc/g .1� 2
i/f1� di.ˇc/� qig
di.ˇc/f1 � di.ˇc/g

�

D 0; (18)

EW

�

Wi�fhi.ˇc/g .1� 2
i/f1� di.ˇc/� qig
di.ˇc/f1 � di.ˇc/g

�

D 0; (19)

where qi is the mean of Y�
i given Wi under the true model, that is,

qi D P.t/.Y�
i D 1jWi/ D 
ipi C .1 � 
i/.1 � pi/; for i D 1; : : : ; n: (20)

Likelihood Function Under the True Model

Under the mixture-probit-normal model specified in Sect. 3.2, the likelihood of
.Yi; Wi/ is

f .t/Y;W.Yi;WiI˝.t/; �2u / D �e1ip
Yi
1i.1 � p1i/

1�Yi C .1 � �/e2ip
Yi
2i.1 � p2i/

1�Yi ;
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where, for ` D 1; 2,

e`i D 1
q
�2u C �2x`

�

0

B
@

Wi � �x`
q
�2u C �2x`

1

C
A ;

p`i D ˛˚.h`1i/C .1 � ˛/˚.h`2i/;

h`ki D
 

ˇ0 � �k C ˇ1
�2x`Wi C �2u�x`

�2u C �2x`

! 

�2k C ˇ21�
2
u�

2
x`

�2u C �2x`

!�1=2
; for k D 1; 2:

It follows that, as the true mean of Yi given Wi,

pi D P.t/.Yi D 1jWi/ D �e1ip1i C .1 � �/e2ip2i

�e1i C .1 � �/e2i
; for i D 1; : : : ; n: (21)

Evaluating (20) at this pi, one obtains the true mean of Y�
i given Wi, that is,

qi D P.t/.Y�
i D 1jWi/, and further deduces that the true-model likelihood of the

reclassified data .Y�
i ;Wi/ is, for i D 1; : : : ; n,

f .t/Y�;W.Y
�
i ;WiI˝.t/; �2u / D f�e1i C .1 � �/e2igq

Y�

i
i .1 � qi/

1�Y�

i :

Appendix 2: Limiting Maximum Likelihood Estimators
When “1 D 0

When ˇ1 D 0, the limiting MLEs of ˇ are given in the following proposition.

Proposition 1. Suppose that the true primary model is a GLM with a mixture probit
link and ˇ1 D 0. Under the assumed probit-normal model, ˇc D ˇm D .ˇ0m; 0/

t,
where

ˇ0m D ˚�1
	

˛˚

�
ˇ0 � �1

�1

�

C .1 � ˛/˚
�
ˇ0 � �2
�2

�


: (22)

The proof is given next, which does not depend on the true X-model or the
reclassification model. Proposition 1 indicates that, if ˇ1 D 0, ˇm does not depend
on �2u , suggesting that RM cannot detect either misspecification. Also, ˇc does not
depend on 
i, which defeats the purpose of creating reclassified data, hence RC does
not help in model diagnosis either. This implication should not raise much concern
because, after all, now ˇ1m D ˇ1c D ˇ1.D 0/, suggesting that MLEs of ˇ1 remain
consistent despite model misspecification.

Proof. By the uniqueness of the solution to (14), it suffices to check if ˇm D
.ˇ0m; 0/

t solves (16)–(17), where ˇ0m is given in (22).
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Because ˇ1 D 0,

pi D P.t/.Yi D 1jWi/

D f .t/.Yi D 1;WiI˝.t/; �2u /

f .t/W .WiI �; �2u /

D
R

P.t/.Yi D 1jxIˇ/f .t/WjX.WijxI �2u /f .t/X .xI �/dx

f .t/W .WiI �; �2u /
ŒNotethat P.t/.Yi D 1jxIˇ/ isfreeof x when ˇ1 D 0:	

D P.t/.Yi D 1jxIˇ/f .t/W .WiI �; �2u /
f .t/W .WiI �; �2u /

D ˛˚

�
ˇ0 � �1

�1

�

C .1 � ˛/˚
�
ˇ0 � �2

�2

�

: (23)

Suppose one assumes for now that ˇ1m D 0, then by, (8), hi.ˇm/ D ˇ0m. With both
hi.ˇm/ and pi in (23) free of Wi, (16) reduces to pi � ˚fhi.ˇm/g D 0, or, ˚.ˇ0m/ D
pi. Therefore, ˇ0m D ˚�1.pi/, which proves (22). And with pi � ˚fhi.ˇm/g D 0,
(17) holds automatically. This completes proving the result regarding ˇm.

Next we show that ˇm established above also solves (18)–(19), that is, ˇc D ˇm.
Suppose ˇ1c D 0, then hi.ˇc/ D ˇ0c, and di.ˇc/ D .1 � 
i/˚.ˇ0c/ C 
i˚.�ˇ0c/.
Note that, inside (18), with qi D 
ipiC.1�
i/.1�pi/ and di.ˇc/ D .1�
i/˚.ˇ0c/C

i˚.�ˇ0c/, one has 1 � di.ˇc/ � qi D .1 � 2
i/fpi � ˚.ˇ0c/g. Therefore, if ˇ0c D
˚�1.pi/, then 1�di.ˇc/�qi D 0 and (18) holds for all 
i. Furthermore, 1�di.ˇc/�
qi D 0 immediately makes (19) hold. This shows that ˇc D ˇm.

This completes the proof for Proposition 1. ut

Appendix 3: Proof of Proposition 3.1

The following four results are crucial for proving Proposition 3.1. For clarity, we
incorporate the dependence of hi.ˇ/ in (8) on Wi by re-expressing this function as
h.ˇ0; ˇ1;w/, with the subscript i suppressed.

• (R1) If �x D 0, then h.�ˇ0m; ˇ1m;�w/ D �h.ˇ0m; ˇ1m;w/.
• (R2) If �x D 0, then � fh.�ˇ0m; ˇ1m;�w/g D C� fh.ˇ0m; ˇ1m;w/g, where C

does not depend on w.
• (R3) If f1.x/ D f2.�x/ and fU.u/ D fU.�u/, then f .1/W .w/ D f .2/W .�w/, where fU.u/

is the pdf of the measurement error U, f .1/W .w/ and f .2/W .w/ are the pdf of W when
the pdf of X is f1.x/ and f2.x/, respectively.
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• (R4) If f1.x/ D f2.�x/, fU.u/ D fU.�u/, H1.s/ D 1 � H2.�s/, �x D 0, and
ˇ0 D 0, then p.22/.�w/ D 1 � p.11/.w/, where p.jk/.w/ denotes the conditional
mean of Yi given Wi D w under the true model fj.x/ f Hk.s/, for j; k D 1; 2.

The first two results, (R1) and (R2), follow directly from the definition of hi.ˇ/

in (8); (R3) can be easily proved by using the convolution formula based on the
error model given in Eq. (2) in the main article. The proof for (R4) is given next.

Proof. By the definition of p.jk/.w/, one has, with ˇ0 D 0,

p.11/.w/ D P.t/.Yi D 1jWi D w/ D
Z 1

�1
H1.ˇ1x/fU.w � x/f1.x/dx=f .1/W .w/:

Similarly, p.22/.�w/ is equal to

Z
1

�1

H2.ˇ1x/fU.�w � x/f2.x/dx=f .2/W .�w/

D
Z

1

�1

f1 � H1.�ˇ1x/gfU.�w � x/f1.�x/dx=f .1/W .w/; by.R3/;

D
Z

1

�1

fU.�w � x/f1.�x/dx=f .1/W .w/ �
Z

1

�1

H1.�ˇ1x/fU.�w � x/f1.�x/dx=f .1/W .w/

D
Z

1

�1

fU.�w C s/f1.s/ds=f .1/W .w/ �
Z

1

�1

H1.ˇ1s/fU.�w C s/f1.s/ds=f .1/W .w/

D
Z

1

�1

fU.w � s/f1.s/ds=f .1/W .w/ �
Z

1

�1

H1.ˇ1s/fU.w � s/f1.s/ds=f .1/W .w/

D 1 � p.11/.w/:

This completes the proof of (R4).

Now we are ready to show Proposition 3.1. In essence, we will show that, if
.ˇ0m; ˇ1m/ solves (16)–(17) when the true model is f1.x/ f H1.s/, then .�ˇ0m; ˇ1m/

solves (16)–(17) when the true model is f2.x/ f H2.s/. More specifically, evaluat-
ing (16) and (17) at its solution under the true model f1.x/ f H1.s/, we will show
that the following two equations,

Z 1

�1
�fh.ˇ0m; ˇ1m;w/g p.11/.w/ �˚ fh.ˇ0m; ˇ1m;w/g

˚ fh.ˇ0m; ˇ1m;w/g˚ f�h.ˇ0m; ˇ1m;w/g f .1/W .w/dw D 0;

(24)
Z 1

�1
w�fh.ˇ0m; ˇ1m;w/g p.11/.w/ �˚ fh.ˇ0m; ˇ1m;w/g

˚ fh.ˇ0m; ˇ1m;w/g˚ f�h.ˇ0m; ˇ1m;w/g f .1/W .w/dw D 0;

(25)
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imply the following two identities,

Z 1

�1
�fh.�ˇ0m; ˇ1m;w/g p.22/.w/ � ˚ fh.�ˇ0m; ˇ1m;w/g

˚ fh.�ˇ0m; ˇ1m;w/g˚ f�h.�ˇ0m; ˇ1m;w/g
� f .2/W .w/dw D 0; (26)

Z 1

�1
w�fh.�ˇ0m; ˇ1m;w/g p.22/.w/� ˚ fh.�ˇ0m; ˇ1m;w/g

˚ fh.�ˇ0m; ˇ1m;w/g˚ f�h.�ˇ0m; ˇ1m;w/g
� f .2/W .w/dw D 0: (27)

Take (27) as an example, the left-hand side of it is equal to, by (R1)–(R4) and
˚.�t/ D 1 � ˚.t/,

Z 1

�1
.�v/�fh.�ˇ0m; ˇ1m;�v/g p.22/.�v/ �˚ fh.�ˇ0m; ˇ1m;�v/g

˚ fh.�ˇ0m; ˇ1m;�v/g˚ f�h.�ˇ0m; ˇ1m;�v/g
� f .2/W .�v/dv

D �C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g 1� p.11/.v/ � ˚ f�h.ˇ0m; ˇ1m; v/g

˚ f�h.ˇ0m; ˇ1m; v/g˚ fh.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D �C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g 1 � p.11/.v/ � 1C˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D C
Z 1

�1
v�fh.ˇ0m; ˇ1m; v/g p.11/.v/ �˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv

D 0; according to .25/:

Following similar derivations, one can show that the left-hand side of (26) is equal to

�C
Z 1

�1
�fh.ˇ0m; ˇ1m; v/g p.11/.v/ �˚ fh.ˇ0m; ˇ1m; v/g

˚ fh.ˇ0m; ˇ1m; v/g˚ f�h.ˇ0m; ˇ1m; v/g f .1/W .v/dv;

which is also equal to 0 according to (24). Therefore, ˇ.11/0m D �ˇ.22/0m and ˇ.11/1m D
ˇ
.22/
1m . This completes the proof of Proposition 3.1.

Appendix 4: A Counterpart Proposition of Proposition 3.1
for “c

Proposition 2. Let f1.x/ and f2.x/ be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1.s/ and H2.s/ be two true links that are
symmetric of each other. Denote by ˇ.jk/c the limiting MLE of ˇ based on reclassified
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data generated according to P.Y�
i D YijWi/ D 
.Wi/ when the true model is fj.x/f

Hk.s/, for j; k D 1; 2. If �x D ˇ0 D 0 and 
.t/ is an even function or 
.t/ satisfies

.�t/ D 1 � 
.t/, then ˇ.11/0c D �ˇ.22/0c and ˇ.11/1c D ˇ

.22/
1c .

We will elaborate the proof when 
.t/ is an even function in this Appendix. The
following two lemmas are needed in the proof, one lemma concerning di.ˇ/ defined
in (13), and the other relates to qi defined in (20). To elaborate the dependence of
di.ˇ/ on Wi in (13), we re-express this function as d.ˇ0; ˇ1;w/, with the subscript i
suppressed.

Lemma 1. If �x D 0 and 
.t/ is an even function, then d.�ˇ0c; ˇ1c;�w/ D 1 �
d.ˇ0c; ˇ1c;w/.

Proof. By (13),

d.�ˇ0c; ˇ1c;�w/

D f1 � 
.�w/g˚ fh.�ˇ0c; ˇ1c;�w/g C 
.�w/˚ f�h.�ˇ0c; ˇ1c;�w/g
D f1 � 
.w/g˚ f�h.ˇ0c; ˇ1c;w/g C 
.w/˚ fh.ˇ0c; ˇ1c;w/g
ŒNextuse.R1/andthefactthat
.t/ D 
.�t/:	

D f1 � 
.w/g Œ1 � ˚ fh.ˇ0c; ˇ1c;w/g	C 
.w/ Œ1 � ˚ f�h.ˇ0c; ˇ1c;w/g	
D 1 � d.ˇ0c; ˇ1c;w/:

This completes the proof of Lemma 1. ut
Lemma 2. If f1.x/ D f2.�x/, fU.u/ D fU.�u/, H1.s/ D 1 � H2.�s/, �x D 0,
ˇ0 D 0, and 
.t/ is an even function, then q.22/.�w/ D 1� q.11/.w/, where q.jk/.w/
denotes the conditional mean of Y�

i given Wi D w under the true model fj.x/fHk.s/,
for j; k D 1; 2.

Proof. By (20),

q.22/.�w/

D f1 � 
.�w/g ˚1 � p.22/.�w/
�C 
.�w/p.22/.�w/

D f1 � 
.w/g p.11/.w/C 
.w/
˚
1 � p.11/.w/

�
; by.R4/and 
.�t/ D 
.t/;

D 1 � q.11/.w/:

This completes the proof of Lemma 2. Following similar derivations, one can show
that q.12/.�w/ D 1 � q.21/.w/.

If, instead of being an even function, 
.t/ satisfies 
.�t/ D 1 � 
.t/, then
the conclusion in Lemma 1 becomes d.�ˇ0c; ˇ1c;�w/ D d.ˇ0c; ˇ1c;w/, and the
conclusion in Lemma 2 changes to q.22/.�w/ D q.11/.w/.

Now we are ready to show that, if .ˇ0c; ˇ1c/ solves (18)–(19) under the true
model f1.x/ f H1.s/, then .�ˇ0c; ˇ1c/ solves (18)–(19) under the true model
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f2.x/ f H2.s/. Given that .ˇ0c; ˇ1c/ solves (18) and (19) under the true model
f1.x/ f H1.s/, one has, by elaborating (18) and (19),

Z 1

�1
� fh.ˇ0c; ˇ1c;w/g

d.ˇ0c; ˇ1c;w/ f1 � d.ˇ0c; ˇ1c;w/g f1 � 2
.w/g
˚
1 � q.11/.w/ � d.ˇ0c; ˇ1c;w/

�
f .1/W .w/dw D 0; (28)

Z 1

�1
w

� fh.ˇ0c; ˇ1c;w/g
d.ˇ0c; ˇ1c;w/ f1 � d.ˇ0c; ˇ1c;w/g f1 � 2
.w/g

˚
1 � q.11/.w/ � d.ˇ0c; ˇ1c;w/

�
f .1/W .w/dw D 0: (29)

Now we check if .�ˇ0c; ˇ1c/ solves (18)–(19) under the true model f2.x/ f H2.s/.
Plugging .�ˇ0c; ˇ1c/ in (18) gives, where we set v D �w in the first equality,

Z 1

�1
� fh.�ˇ0c; ˇ1c;w/g

d.�ˇ0c; ˇ1c;w/ f1 � d.�ˇ0c; ˇ1c;w/g f1 � 2
.w/g
˚
1 � q.22/.w/ � d.�ˇ0c; ˇ1c;w/

�
f .2/W .w/dw

D
Z 1

�1
� fh.�ˇ0c; ˇ1c;�v/g

d.�ˇ0c; ˇ1c;�v/ f1 � d.�ˇ0c; ˇ1c;�v/g f1 � 2
.�v/g
˚
1 � q.22/.�v/ � d.�ˇ0c; ˇ1c;�v/

�
f .2/W .�v/dv

ŒNextuse.R1/� �.R3/;Lemmas 1; 2; and 
.t/ D 
.�t/:	

D
Z 1

�1
C� fh.ˇ0c; ˇ1c; v/g

f1 � d.ˇ0c; ˇ1c; v/g d.ˇ0c; ˇ1c; v/
f1 � 2
.v/g

˚�1C q.11/.v/C d.ˇ0c; ˇ1c; v/
�

f .1/W .v/dv

D �C
Z 1

�1
� fh.ˇ0c; ˇ1c; v/g

d.ˇ0c; ˇ1c; v/ f1 � d.ˇ0c; ˇ1c; v/g f1 � 2
.v/g
˚
1 � q.11/.v/ � d.ˇ0c; ˇ1c; v/

�
f .1/W .v/dv

D 0; by .28/:

Similarly, one can show that (29) implies

Z 1

�1
w

� fh.�ˇ0c; ˇ1c;w/g
d.�ˇ0c; ˇ1c;w/ f1 � d.�ˇ0c; ˇ1c;w/g f1� 2
.w/g

˚
1 � q.22/.w/ � d.�ˇ0c; ˇ1c;w/

�
f .2/W .w/dw D 0:

Hence, .�ˇ0c; ˇ1c/ does solve (18)–(19) under the true model f2.x/fH2.s/. In other
words, ˇ.11/0c D �ˇ.22/0c and ˇ.11/1c D ˇ

.22/
1c . Following parallel arguments as above

one can show that ˇ.12/0c D �ˇ.21/0c and ˇ.12/1c D ˇ
.21/
1c . This completes the proof of

Proposition 2. �
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Appendix 5: Additional Simulation Results from Sect. 4

When the assumed model is not probit-normal or the true model is not in the class
of mixture-probit-normal, analytic exploration, as elaborated in Appendices 1–4
leading to the properties of the limiting MLEs of ˇ, ˇm and ˇc, become infeasible.
To provide empirical justification of these results, such as those summarized in
Proposition 3.1 and (M1) in Sect. 3.3, under and outside this assumed/true-model
configuration, Table 3 presents Monte Carlo averages of Ǒ

m and Ǒ
c obtained under

some simulation settings considered or mentioned in Sect. 4. When computing Ǒ
c,

we consider two forms of 
.t/ in the reclassification model P.Y�
b;i D YijWi/ D


.Wi/. One is used in Sect. 4, i.e., P.Y�
b;i D YijWi/ D ˚.Wi/, and the other is

P.Y�
b;i D YijWi/ D 0:2. The former 
.t/ satisfies the condition that 
.�t/ D

1 � 
.t/, and the latter is an even function, providing two examples satisfying the
condition regarding 
.t/ under Proposition 2.

Table 4 provides rejection rates across 1000 Monte Carlo replicates when data
are generated from four true models in the class of generalized-logit-normal and
the assumed model is logit-normal. Overall the operating characteristics of all
considered tests are very similar to those when the assumed model is probit-normal

Table 3 Averages of maximum likelihood estimates of ˇ across 1000 Monte Carlo replicates
under different true models

Assumed model True model ! Ǒ
0m Ǒ

1m Ǒ.1/
0c

Ǒ.1/
1c

Ǒ.2/
0c

Ǒ.2/
1c

Probit-normal (D3)f(L4) 0:7 0:431 0:874 0:210 0:980 0:490 0:903

(D4)f(L3) �0:428 0:874 �0:207 0:983 �0:488 0:905

(D3)f(L4) 0:8 0:409 0:881 0:168 1:001 0:467 0:892

(D4)f(L3) �0:407 0:881 �0:164 1:001 �0:465 0:894

(D3)f(L4) 0:9 0:381 0:903 0:117 1:023 0:436 0:909

(D4)f(L3) �0:380 0:902 �0:114 1:022 �0:434 0:910

Probit-normal (D3)f(L6) 0:7 �0:050 0:585 �0:228 0:671 �0:032 0:540

(D4)f(L5) 0:045 0:635 0:226 0:730 0:022 0:585

(D3)f(L6) 0:8 �0:059 0:599 �0:249 0:693 �0:037 0:547

(D4)f(L5) 0:056 0:653 0:249 0:757 0:029 0:594

(D3)f(L6) 0:9 �0:070 0:621 �0:257 0:711 �0:046 0:563

(D4)f(L5) 0:071 0:682 0:262 0:783 0:041 0:617

Logit-normal (D3)f(L6) 0:7 �0:073 0:951 �0:379 1:116 �0:042 0:881

(D4)f(L5) 0:069 1:030 0:380 1:223 0:034 0:950

(D3)f(L6) 0:8 �0:087 0:973 �0:421 1:160 �0:051 0:890

(D4)f(L5) 0:086 1:061 0:427 1:277 0:046 0:966

(D3)f(L6) 0:9 �0:108 1:009 �0:452 1:205 �0:067 0:916

(D4)f(L5) 0:109 1:111 0:464 1:337 0:068 1:007

Monte Carlo standard errors associated with the averages are in the range between 0.002 and
0.005. Results under Ǒ.1/c are for the case when P.Y�

b;i D YijWi/ D ˚.Wi/. Results under Ǒ.2/c

are for the case when P.Y�

b;i D YijWi/ D 0:2
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Table 4 Rejection rates across 1000 Monte Carlo replicates of each test statistic under each
testing procedure considered in Sect. 4 at different levels of reliability ratio ! when the assumed
model is logit-normal

! D 0:7 ! D 0:8 ! D 0:9 ! D 1

True model RM RC HB RM RC HB RM RC HB RM RC HB

(D0)f(L5) Tˇ0 0:03 0:37 0:40 0:03 0:57 0:58 0:04 0:76 0:76 0 0:92 0:92

Tˇ1 0:04 0:06 0:07 0:04 0:06 0:08 0:04 0:09 0:10 0 0:10 0:10

(D3)f(L5) Tˇ0 0:67 0:05 0:18 0:89 0:09 0:06 0:95 0:32 0:18 0 0:87 0:87

Tˇ1 0:04 0:08 0:14 0:08 0:06 0:08 0:13 0:04 0:04 0 0:12 0:12

(D4)f(L5) Tˇ0 0:81 0:87 0:98 0:98 0:90 0:98 1:00 0:91 0:97 0 0:90 0:90

Tˇ1 0:36 0:78 0:75 0:67 0:85 0:87 0:91 0:87 0:88 0 0:74 0:74

(D3)f(L6) Tˇ0 0:73 0:86 0:99 0:94 0:89 0:98 1:00 0:87 0:95 0 0:80 0:80

Tˇ1 0:29 0:68 0:73 0:56 0:77 0:84 0:82 0:75 0:80 0 0:62 0:62

“HB” refers to the hybrid method

(see the lower half of Table 1). Indeed, from a practical point of view when it
comes to model diagnosis, it should not matter whether one assumes probit-normal
or logit-normal. If one concludes existence of model misspecification under one
assumed model, certainly one should not believe in the other assumed model. If one
concludes lack of sufficient evidence of model misspecification under one assumed
model, the other assumed model is clearly equally plausible. After all, the logit
link and the probit link are virtually indistinguishable in most inference contexts
(Chambers and Cox, 1967).
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Joint Analysis of Longitudinal Data
and Informative Observation Times
with Time-Dependent Random Effects

Yang Li, Xin He, Haiying Wang, and Jianguo Sun

Abstract Longitudinal data occur in many fields such as the medical follow-up
studies that involve repeated measurements. For their analysis, most existing
approaches assume that the observation or follow-up times are independent of
the response process either completely or given some covariates. In practice, it
is apparent that this may not be true. We present a joint analysis approach that
allows the possible mutual correlations that can be characterized by time-dependent
random effects. Estimating equations are developed for the parameter estimation
and the resulting estimators are shown to be consistent and asymptotically normal.

1 Introduction

Longitudinal data occur in many fields such as the medical follow-up studies that
involve repeated measurements. In these situations, study subjects are generally
observed only at discrete times. Therefore, for the analysis of longitudinal data, two
processes need to be considered: one is the response process, which is usually of the
primary interest but not continuously observable; the other one is the observation
process, which is nuisance but gives rise to the discrete times when the responses
are observed.
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An extensive literature exists for the analysis of longitudinal data. Sun and
Kalbfleisch (1995) and Wellner and Zhang (2000) investigated nonparametric
estimation of the mean function when the response process is a counting process.
Cheng and Wei (2000), Sun and Wei (2000), Zhang (2002) and Wellner and Zhang
(2007) developed some semiparametric approaches for regression analysis under
the proportional means models. However, with respect to the observation process,
most existing approaches assume that the observation times are independent of the
underlying response process either completely or given some covariates. For the
analysis with a correlated observation process, there is limited work and most of
them assume independent censoring or require some restrictive conditions such as
the Poisson assumption or specified correlation structure for dependence (He et al.
2009; Huang et al. 2006; Kim et al. 2012; Li et al. 2013; Sun et al. 2007; Zhao and
Tong 2011; Zhao et al. 2013; Zhou et al. 2013).

In many situations, however, the response process, the observation and censoring
times may be mutually correlated. In addition, such correlations may be time-
dependent. For instance, both the observation times and longitudinal responses may
depend on the stage of disease progression. Their correlation may change over time
and so are their correlations with the follow-up times. He et al. (2009) considered
such correlations in shared frailty models. However, their method requires the
assumptions that the underlying random effect is normally distributed and the
observation process is a nonhomogeneous Poisson process. Also all correlations
between the three processes are assumed to be fixed over time. Zhao et al. (2013)
proposed a robust estimation procedure and relaxed the Poisson assumption required
in He et al. (2009). However, the follow-up times are assumed to be independent
from covariates, responses and observation times; and the possible correlations
between responses and observation times are time-independent. More recently, Sun
et al. (2012) presented a joint model with time-dependent correlations between the
response process, the observation times and a terminal event, where the random
effect associated with the terminal event is fixed over time and follow a specified
distribution. In practice, however, such conditions may not hold or be difficult to
check when informative censoring involves.

We consider regression analysis of longitudinal data when the underlying
response process, the observation and censoring times are mutually correlated and
none of the correlations is restricted by specified forms or distributions. A general
estimation approach is proposed. The remainder of this chapter is organized as
follows: In Sect. 2, we introduce the notation and present the model. Section 3
presents the estimation procedure and establishes the asymptotic properties of the
resulting estimators. In Sect. 4, a simulation study is performed to evaluate the finite
sample properties of the proposed estimators. Some concluding remarks are given
in Sect. 5.
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2 Notation and Models

Consider a longitudinal study in which the response process of interest is observed
only at some discrete sampling time points. For each subject i, i D 1; � � � ; n, let Ni.t/
be the observation process, which gives the cumulative number of observation times
up to time t. In practice, one observeseNi.t/ D Ni.t^Ci/where a^b D min.a; b/ and
Ci denotes the censoring or follow-up time. Let Yi.t/ denote the response process,
which gives the response of interest at time t but is observed only at mi discrete
observation times fTi;1; � � � ;Ti;mi g when eNi.t/ has jumps. Suppose that there exists
a p-dimensional vector of covariates denoted by Zi, which will be assumed to be
time-independent.

In the following, we model the correlation between Yi.t/, Ni.t/ and Ci through
an unobserved random vector bi.t/ D .b1i.t/; b2i.t/; b3i.t//0, which could be time-
dependent. Define Bit D fbi.s/; s � tg. It will be assumed that the bi.t/’s are
independent and identically distributed, Bit is independent of Zi, and given Zi and
Bit, Ci, Ni.t/ and Yi.t/ are mutually independent. To be specific, the mean function
of Yi.t/ is assumed to follow the proportional means model

EfYi.t/jZi;bi.t/g D ƒ0.t/ expfˇ0Zi C b1i.t/g; (1)

where ƒ0.t/ is an unknown baseline mean function and ˇ denotes a vector of
p-dimensional regression coefficients. When b1i.t/ D 0 meaning that Yi.t/ is
independent of both Ni.t/ of Ci, model (1) has been considered extensively by
Cheng and Wei (2000), Sun and Wei (2000), Zhang (2002) and Hu et al. (2003)
among others. When b1i.t/ is time-independent, model (1) is equivalent to model
(3) considered in Zhao et al. (2013). In general, b1i.t/ is unknown and may follow
an arbitrary distribution.

The observation process Ni.t/ follows the proportional rates model

EfdNi.t/jZi;bi.t/g D expf� 0Zi C b2i.t/gd�0.t/ ; (2)

where � is a vector of unknown parameters and d�0.t/ is an unknown baseline
rate function. For the C0

i s, motivated by the additive hazards models that have been
commonly used in survival analysis (Kalbfleisch and Prentice 2002; Lin and Ying
2001; Zhang et al. 2005), we consider the additive hazards model. That is, the hazard
�i.tjZi;bi.t// of Ci, defined as the rate of observing Ci at time t provided that Ci is
no larger than t, is given by

�i.tjZi;bi.t// D �0.t/C � 0Zi C b3i.t/ : (3)

Here �0.t/ is an unknown baseline hazard function and � denotes the effect of
covariates on the hazard function of C0

is. Note that instead of model (3), one may
consider the proportional hazards model. As pointed out by Lin et al. (1998) and
others, the additive model (3) can be more plausible than the proportional hazards
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model in many applications. Related applications and model-checking techniques
of model (3) can be found in Yuen and Burke (1997), Kim and Lee (1998), Ghosh
(2003) and Gandy and Jensen (2005) among others.

In the above, models (1)–(3) can be viewed as natural generalizations of some
existing and commonly used models. In fact, when any of the bki.t/’s (k D
1; 2; 3) is zero or independent from other bji.t/’s (j D 1; 2; 3 and j ¤ k), the
corresponding process is independent from the others. Therefore, the proposed joint
model also applies to special cases when either the observation or censoring times
are noninformative. In general, since the form or distribution of bi.t/ is arbitrary and
completely unspecified, the joint model described above is quite flexible compared
to many existing procedures.

Note that in models (1)–(3), for simplicity, we have assumed that the set of
covariates that may affect Yi.t/, Ni.t/ and Ci is the same. In practice, it is apparent
that this may not be the case and actually the estimation procedure proposed below
still applies as long as one replaces Zi by appropriate covariates. As an alternative,
one can define a single and big covariate vector by combining all different covariates
together. In the following, we will focus on estimation of regression parameters ˇ
along with � and �. For this, it is easy to see that the use of the existing procedures
that assume independence could give biased or even misleading results.

3 Estimation Procedure

In this section, we will present an inference procedure for estimation of ˇ which is
usually of the primary interest. For this, first note that the counting processeNi.t/ D
Ni.t ^ Ci/ jumps by one at time t if and only if Ci � t and dNi.t/ D 1. Also we have

EfdeNi.t/jZig D EfI.t � Ci/dNi.t/jZig

D E

�

EfI.t � Ci/dNi.t/jZi;Bitg
ˇ
ˇ
ˇ
ˇZi

�

D E

�

EfI.t � Ci/jZi;BitgEfdNi.t/jZi;Bitg
ˇ
ˇ
ˇ
ˇZi

�

D E

�

expf�ƒ�
0 .t/ � Bi.t/ � � 0Z�

i .t/g expf� 0Zi C b2i.t/gd�0.t/

ˇ
ˇ
ˇ
ˇZi

�

D expf� 0Zi � � 0Z�
i .t/gdƒ�

1 .t/; (4)

where

ƒ�
0 .t/ D

Z t

0

�0.s/ds; Bi.t/ D
Z t

0

b3i.s/ds; Z�
i .t/ D

Z t

0

Zids

and

dƒ�
1 .t/ D expf�ƒ�

0 .t/gEŒexpfb2i.t/ � Bi.t/g	d�0.t/:
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Define

dM�
i .tI �/ D deNi.t/ � e�

0Xi.t/dƒ�
1 .t/

and dM�
i .t/ D dM�

i .tI �0/, where � D .�; �/0, Xi.t/ D .Zi; �Z�
i .t//

0 and �0
denotes the true value of �. It can be shown that M�

i .t/ is a mean-zero stochastic
process. It follows that the estimators of � and dƒ�

1 .t/ can be obtained by solving
the following two estimating equations

U�.�/ D
nX

iD1

Z �

0

	

Xi.t/ � NX.tI �/



deNi.t/ D 0 (5)

and

nX

iD1

�

deNi.t/ � e�
0Xi.t/dƒ�

1 .t/

�

D 0: (6)

In the above, � is the longest follow-up time, NX.tI �/ D S.1/.tI �/=S.0/.tI �/
and S.k/.tI �/ D n�1Pn

iD1 e�
0Xi.t/Xi.t/˝k with a˝0 D 1, a˝1 D a, Nx.t/ D

limn!1 NX.tI �0/ and s.k/.t/ D limn!1S.k/.tI �0/; k D 0; 1:

To estimate ˇ, consider

EfYi.t/deNi.t/jZi;Bitg
D EfI.t � Ci/Yi.t/dNi.t/jZi;Bitg
D EfI.t � Ci/jZi;BitgEfYi.t/jZi;BitgEfdNi.t/jZi;Bitg
D expf�ƒ�

0 .t/ � Bi.t/ � � 0Z�
i .t/g

ƒ0.t/ expfˇ0Zi C b1i.t/g expf� 0Zi C b2i.t/gd�0.t/

D expf.ˇ C �/0Zi � � 0Z�
i .t/g

expf�ƒ�
0 .t/C b1i.t/C b2i.t/ � Bi.t/gƒ0.t/d�0.t/;

and therefore

EfYi.t/deNi.t/jZig D expfˇ0Zi C �0Xi.t/gdƒ�
2 .t/; (7)

where

dƒ�
2 .t/ D expf�ƒ�

0 .t/gƒ0.t/EŒexpfb1i.t/C b2i.t/ � Bi.t/g	d�0.t/:

Define

dMi.tIˇ; �/ D Yi.t/deNi.t/ � expfˇ0Zi C �0Xi.t/gdƒ�
2 .t/
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and dMi.t/ D dMi.tIˇ0; �0/, where ˇ0 denotes the true value of ˇ. Then Mi.t/ is
a mean-zero stochastic process. This naturally suggests the following estimating
equations to estimate ˇ and dƒ�

2 .t/:

Uˇ.ˇI O�/ D
nX

iD1

Z �

0

W.t/Zi

�

Yi.t/deNi.t/ � eˇ
0ZiCO�0Xi.t/dƒ�

2 .t/

�

D 0; (8)

and

nX

iD1

�

Yi.t/deNi.t/ � eˇ
0ZiCO�0Xi.t/dƒ�

2 .t/

�

D 0; 0 � t � �; (9)

where O� D . O�; O�/0 and dbƒ�
1 .t/ are the estimators of � and dƒ�

1 .t/, respectively,
solved from (5) and (6), and W.t/ is a possibly data-dependent weight function. We
denote the estimates of ˇ and dƒ�

2 .t/ by Ǒ and dbƒ�
2 .t/, respectively, solved from (8)

and (9).
To establish the asymptotic properties of Ǒ and O�, define

bM�
i .t/ D eNi.t/ �

Z t

0

e O�0Xi.s/dbƒ�
1 .sI O�/;

bMi.t/ D
Z t

0

Yi.s/deNi.s/ �
Z t

0

e
Ǒ0ZiCO�0Xi.s/dbƒ�

2 .sI Ǒ; O�/;

bEZ.tIˇ; �/ D
Pn

iD1 Zieˇ
0ZiC�0Xi.t/

Pn
iD1 eˇ0ZiC�0Xi.t/

and ez.t/ D limn!1bEZ.tIˇ0; �0/:

The following theorem gives the consistency and asymptotic normality of Ǒ and O�.

Theorem 1. Assume that the conditions (C1)–(C5) given in the Appendix hold.
Then O� and Ǒ are consistent estimators of �0 and ˇ0, respectively. The distributions
of n1=2. O� � �0/ and n1=2. Ǒ � ˇ0/ can be asymptotically approximated by the
normal distributions with mean zero and covariance matrices ḃ� D b̋�1

�
b� b̋�1

�

and ḃ
ˇ D bA�1

ˇ
ḃbA�1

ˇ , respectively, where a˝2 D aa0, b� D n�1Pn
iD1 Ou˝2

i ,
ḃ D n�1Pn

iD1. Ov1i � Ov2i/
˝2,

Oui D
Z �

0

�
Xi.t/ � NX.tI O�/

�
dbM�

i .t/ ;

Ov1i D
Z �

0

W.t/
�

Zi �bEZ.tI Ǒ; O�/
�

dbMi.t/ ;

Ov2i D
Z �

0

bA� b̋
�1
�

�
Xi.t/ � NX.tI O�/

�
dbM�

i .t/ ;
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bAˇ D n�1
nX

iD1

Z �

0

W.t/e
Ǒ0ZiCO�0Xi.t/

�
Zi �bEZ.tI Ǒ; O�/

�˝2
db��

2 .tI Ǒ; O�/;

bA� D n�1
nX

iD1

Z �

0

W.t/e
Ǒ0ZiCO�0Xi.t/

�
Zi �bEZ.tI Ǒ; O�/

�
X0

i.t/db�
�
2 .tI Ǒ; O�/

and

b̋
� D n�1

nX

iD1

Z �

0

fXi.t/ � NX.tI O�/g˝2e O�0Xi.t/db��
1 .tI O�/:

4 A Simulation Study

In this section, we report some results obtained from a simulation study conducted
to assess the finite sample behavior of the estimation procedure proposed in the
previous sections. For each subject i, the covariate Zi was assumed to be a Bernoulli
random variable with the probability of success being 0:5. Given Zi and some
unobserved random effects bi.t/ D .b1i.t/; b2i.t/; b3i.t//0, the hazard function of
the censoring time Ci was assumed to have the form

�i.tjZi;Bit/ D �0 C �Zi C b3i.t/; (10)

with the largest follow-up time � D 1. The number of observations eNi.t/ was
assumed to follow a Poisson process on .0;Ci/ with the mean function

EfNi.t/jZi;Bitg D
Z t

0

expf�Zi C b2i.s/gd�0.s/ : (11)

In practice, the exact time of Ci may not be observable and deNi.t/ is observed
instead of dNi.t/, thus we considered EfeNi.t/jBitg for the observation process.
From (10) and (11),

EfdeNi.t/jZi;Bitg D expf�Zi � �Zitgdƒ�
1 .t/;

where dƒ�
1 .t/ D expf��0t C b2i.t/ � Bi.t/gd�0.t/ and Bi.t/ D R t

0
b3i.s/ds. Given

Zi and Bit, eNi.t/ was assumed to follow a nonhomogeneous Poisson process and
the total number of observation times mi was generated with mean Efmig D
EfeNi.�/jZi;Bi� g. Then the observation times fTi;1; : : : ;Ti;mi g were taken as mi order
statistics from the density function

feN.t/ D expf�Zi � �Zitgdƒ�
1 .t/R �

0 expf�Zi � �Zitgdƒ�
1 .t/

:
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The longitudinal response Yi.t/ was generated from a mixed Poisson process with
the mean function

EfYi.t/jZi;Bitg D Qiƒ0.t/ expf�ˇZi C b1i.t/g; (12)

where Qi was generated independently from a gamma distribution with mean 1 and
variance 0.5. The results given below are based on the sample size of 100 or 200
with 1000 replications and W.t/ D Wi D 1.

Table 1 shows the estimation results on ˇ for the situation when b1i, b2i and b3i

are time-independent. Note that here �0 D 0 or �0 D 0 represents the cases when
either censoring or the observation times is independent of covariates, respectively.
For the random effects, we took b1i D b2i D b3i D bi, where the b0

is were generated
from the uniform distribution over .�0:5; 0:5/. It can be seen that the proposed
estimates seem unbiased and the estimated standard errors (SEE) are close to the
sample standard errors (SSE). Also the empirical 95 % coverage probabilities (CP)
are quite accurate.The same conclusions are also obtained for the situation when b1i,
b2i and b3i are time-dependent, for which the results are presented in Table 2. Here
we took b1i.t/ D bi t1=3, b2i.t/ D bi t1=2 and b3i D bi with the same bi generated as
for Table 1. We also considered other set-ups such as using different baselines and
with Zi being a continuous variable and obtained similar results.

Table 1 Estimation results
with �0 D 2, �0.t/ D 20t,
ƒ0.t/ D 5t, b1i D b2i D b3i

n D 100 n D 200

ˇ0 0 0.2 0.5 0 0.2 0.5

.�0; �0/ D .0; 0/

Bias 0.007 0.012 0.000 �0.009 �0.005 �0.003

SEE 0.177 0.177 0.179 0.127 0.128 0.129

SSE 0.194 0.188 0.199 0.134 0.129 0.132

CP 0.924 0.934 0.905 0.934 0.946 0.934

.�0; �0/ D .0; 0:2/

Bias 0.036 0.035 0.042 0.036 0.036 0.042

SEE 0.178 0.180 0.182 0.127 0.128 0.130

SSE 0.192 0.186 0.197 0.133 0.134 0.138

CP 0.922 0.937 0.921 0.922 0.932 0.923

.�0; �0/ D .0:5; 0/

Bias 0.006 �0.005 0.004 0.004 �0.003 0.002

SEE 0.173 0.174 0.174 0.123 0.125 0.125

SSE 0.177 0.179 0.183 0.126 0.130 0.130

CP 0.938 0.939 0.937 0.934 0.943 0.927

.�0; �0/ D .0:5; 0:2/

Bias 0.047 0.043 0.035 0.042 0.037 0.041

SEE 0.174 0.173 0.176 0.125 0.125 0.126

SSE 0.181 0.184 0.182 0.128 0.131 0.134

CP 0.918 0.922 0.936 0.929 0.931 0.923
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Table 2 Estimation results with �0 D 2, �0.t/ D 20t, ƒ0.t/ D 5t,
b1i.t/ D bit1=3, b2i.t/ D bi

p
t and b3i.t/ D bi

n D 100 n D 200

ˇ0 0 0:2 0:5 0 0:2 0:5

.�0; �0/ D .0; 0/

Bias 0.003 �0.005 �0.006 �0.003 �0.001 �0.004

SEE 0.172 0.171 0.173 0.123 0.123 0.125

SSE 0.182 0.181 0.181 0.127 0.128 0.130

CP 0.940 0.928 0.933 0.940 0.944 0.942

.�0; �0/ D .0; 0:2/

Bias 0.045 0.038 0.040 0.036 0.044 0.042

SEE 0.173 0.173 0.175 0.123 0.125 0.127

SSE 0.183 0.186 0.185 0.129 0.132 0.133

CP 0.921 0.923 0.927 0.927 0.918 0.926

.�0; �0/ D .0:5; 0/

Bias 0.006 �0.004 �0.002 �0.006 0.006 0.002

SEE 0.168 0.168 0.169 0.120 0.120 0.121

SSE 0.178 0.181 0.173 0.129 0.127 0.122

CP 0.939 0.933 0.944 0.939 0.928 0.944

.�0; �0/ D .0:5; 0:2/

Bias 0.051 0.043 0.035 0.037 0.044 0.036

SEE 0.166 0.169 0.171 0.120 0.120 0.122

SSE 0.182 0.179 0.169 0.126 0.123 0.128

CP 0.911 0.921 0.939 0.922 0.914 0.925

To further investigate the performance of the proposed estimators of ˇ in
comparison with those proposed by He et al. (2009) and Sun et al. (2012), we carried
out a simulation study and estimated ˇ using all four methods. Note that unlike
the proposed estimation procedures, the latter two methods require observing the
exact time of a censoring or terminal event Ci. For this, we used the subjects’ last
observation times as commonly done in practice. With respect to the method given
by Sun et al. (2012), we applied it by using Ci as its original terminal event time Di

and � as its Ci. Note that as mentioned earlier, both He et al. (2009) and Sun et al.
(2012) considered the distribution-based random effects for possible correlations.
For the comparison, we focus on the performances of their procedures when the
random effects follow various distributions besides those assumed. However, since
both of them involve covariate effects in forms different from those considered by
our proposed models, we fix ˇ0 D 0 and �0 D 0 in order to avoid unfair comparisons
caused by the misspecification of covariate effects. The estimation results are given
in Table 3 with three set-ups. In the first set-up, referred to as M1, we considered
the situation as used for Table 1 except �0.t/ D 10t and b1i D �b2i D b3i. In the
second and third set-ups called M2 and M3, we generated b1i.t/, b2i.t/ and b3i.t/ from
various distributions such that the assumptions required by either Sun et al. (2012)
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Table 3 Estimation results
on ˇ based on the proposed
procedure and the procedures
given in Sun et al. (2012) and
He et al. (2009) with
ˇ0 D �0 D �0 D 0

Proposed Sun et al. (2012) He et al. (2009)

M1; n D 100

Bias �0.003 �0.004 0.009

SSE 0.162 0.261 0.206

M1; n D 200

Bias �0.003 �0.003 0.007

SSE 0.116 0.184 0.154

M2; n D 100

Bias 0.004 0.004 0.003

SSE 0.123 0.306 0.184

M2; n D 200

Bias �0.001 �0.003 0.011

SSE 0.089 0.227 0.145

M3; n D 100

Bias 0.001 �0.010 0.000

SSE 0.074 0.221 0.071

M3; n D 200

Bias 0.002 0.000 �0.003

SSE 0.055 0.150 0.051

Set-up M1: �0.t/ D 10t, �0 D 2, ƒ0.t/ D 5t, b1i D �b2i D
b3i D bi, where bi followed a uniform distribution on (�0.5,
0.5)
Set-up M2: �0.t/ D 10t, �0 D 0, ƒ0.t/ D 5t, b1i D �b2i D
bi, where bi followed a uniform distribution on (�0.5, 0.5) and
b3i followed an extreme value distribution with distribution
function F.t/ D 1 � expf� exp.t/g Set-up M3: �0.t/ D 4t,
�0 D 0,ƒ0.t/ D 5t, b1i D 0:2b2i C 0:2b2i, b2i D log.b�

2i/ and
b3i D exp.vi/, where vi and b�

2i were generated, respectively,
from a normal distribution with mean 0 and standard deviation
0:5 and gamma distribution with mean 4 and variance 8

or He et al. (2009) are satisfied. For example, we took �0.t/ D 0 and generated
b3i.t/ from an extreme-value distribution as assumed by Sun et al. (2012). We also
generated b1i.t/, b2i.t/ and b3i.t/ from the assumed distributions required by He
et al. (2009).

Note that in all set-ups considered above, our proposed models are correctly
specified because there are no assumed distributions on b1i.t/, b2i.t/ or b3i.t/. In
contrast, the models from either of He et al. (2009) or Sun et al. (2012) are only
correctly specified in one of the set-ups. On the other hand, since there are no
covariate effects in all set-ups, we do not expect that the point estimates of ˇ
given by He et al. (2009) or Sun et al. (2012) are much biased even if the imposed
distributions are misspecified in the estimation. For their variance estimates, we
expect that SEE and SSE agree for both, because the former applied bootstrap
resampling and the latter did not involve any assumed distribution of random effects
in their variance estimation. Therefore, we only compare bias and SSE. It can
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be seen that all estimation procedures gave comparably small bias as expected.
However, it appears that the proposed estimators are more efficient for all cases in
general. In comparison, the method given by He et al. (2009) is comparably efficient
to the proposed estimators only under M3 when all its distribution assumptions are
satisfied. For the method given by Sun et al. (2012), it is worth noting that when Di

is substituted by the last observation time Ci from subject i, it gives relatively large
SSE, especially when Ci’s vary much, regardless of whether the assumption about
b3i.t/ is satisfied (for M2) or not (for M3).

5 Concluding Remarks

We proposed a joint model for analyzing longitudinal data with informative censor-
ing and observation times. The mutual correlations are characterized via a shared
vector of time-dependent random effects. As mentioned earlier, several procedures
have been developed in the literature for longitudinal data when either censoring
or observation process is informative. However when both of them are informative,
there is limited work that can apply except those given in He et al. (2009) and Sun
et al. (2012). In addition, all the existing procedures assumed time-independent or
specifically distributed correlation structures. The proposed joint model is flexible
in that the shared vector of random effects can be time-dependent and neither of its
structure nor distribution are specified. For the parameter estimation, the proposed
procedure is simple and easy to implement.

There exist several directions for future research. One is that as mentioned above,
one may want to consider other models rather than models (1)–(3) and develop
similar estimation procedures. Of course, a related problem is model selection and
one may want to develop some model selection techniques to choose the optimal
model among several candidate models (Tong et al. 2009; Wang et al. 2014). Note
that in the proposed method, we have employed a weight function W.t/ and it
would be desirable to develop some procedures for the selection of an optimal W.t/.
As in most similar situations, this is clearly a difficult problem as it requires the
specification of the covariance function of Yi.t/ and eNi.t/ (Sun et al. 2012). Finally
in the above, we have focused on regression analysis of Yi.t/ with time-independent
covariates. Sometimes one may face time-dependent covariates and thus it would be
helpful to generalize the proposed method to this latter situation. Also sometimes
nonparametric estimation of Yi.t/ or the baseline functions may be of interest. For
those purposes, some constraints should be imposed on bi.t/ for identifiability,
for example, Efbi.t/g D 0. When panel count data arise (Sun and Zhao, 2013),
the generalization of existing nonparametric estimation procedures to cases with
informative observation or censoring times is a challenging direction for future
work too.
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Appendix

Proof of Theorem 1

To derive the asymptotic properties of the proposed estimators Ǒ and O�, we need the
following regularity conditions:

(C1) feNi.�/;Yi.�/;Ci;Zign
iD1 are independent and identically distributed.

(C2) There exists a � > 0 such that P.Ci � �/ > 0.
(C3) Both eNi.t/ and Yi.t/ (0 � t � � , i D 1; : : : ; n) are bounded.
(C4) W.t/ and Zi, i D 1; : : : ; n, have bounded variations and W.t/ converges almost

surely to a deterministic function w.t/ uniformly in t 2 Œ0; �	.
(C5) Aˇ D EfR �

0
w.t/eˇ

0

0ZiC�0

0Xi.t/ŒZi � ez.t/	˝2dƒ�
2 .t/g and ˝� D E

h R �
0

˚
Xi.t/ �

Nx.t/�˝2
e�

0

0Xi.t/dƒ�
1 .t/

i
are both positive definite.

Under condition (C2), we define

U1.ˇI O�/ D
nX

iD1

Z �

0

W.t/Zi

�

Yi.t/deNi.t/ � eˇ
0ZiCO�0Xi.t/dbƒ�

2 .t/

�

;

which is integrable under conditions (C3) and (C4). Also note that dbƒ�
2 .t/ satisfies

nX

iD1

�

Yi.t/deNi.t/ � eˇ
0ZiCO�0Xi.t/dbƒ�

2 .t/

�

D 0; 0 � t � �: (13)

Let

bAˇ.ˇ/ D �n�1@U1.ˇ; O�/=@̌ 0;bA�.�/ D �n�1@U1.ˇ0; �/=@�
0;

and under (C1), let

Aˇ D lim
n!1

bAˇ.ˇ0/; A� D lim
n!1

bA�.�0/:

The consistency of Ǒ and O� follows from the facts that U1.ˇ0I O�/ and U�.�0/ both
tend to 0 in probability as n ! 1, and that under condition (C5), bAˇ.ˇ/ and
�n�1@U�.�/=@�

0 both converge uniformly to the positive definite matrices Aˇ and
˝� over ˇ and �, respectively, in neighborhoods around the true values ˇ0 and �0.
Then the Taylor series expansions of U1. ǑI O�/ at .ˇ0I O�/ and .ˇ0; �0/ yield n1=2. Ǒ �
ˇ0/ D A�1

ˇ n�1=2U1.ˇ0I O�/Cop.1/ D A�1
ˇ

n
n�1=2U1.ˇ0I �0/�A�n1=2. O���0/

o
Cop.1/:
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The proof of Theorem 1 is sketched as follows:

(1) First, using some derivation operation to U1.ˇI O�/ and (13), we can get

bAˇ.ˇ/ D n�1
nX

iD1

Z �

0

W.t/
˚
Zi �bEZ.tIˇ; O�/�˝2

eˇ
0ZiCO�0Xi.t/dbƒ�

2 .tIˇ; O�/:

(2) Solving dbƒ�
2 .tIˇ0; �0/ from (13) and applying to U1.ˇ0I �0/ yields

U1.ˇ0I �0/ D
nX

iD1

Z �

0

w.t/
�

Zi � ez.t/
�

dMi.t/C op.n
1=2/;

where ez.t/ D limn!1bEZ.tIˇ0; �0/ as defined earlier in Sect. 3 and w.t/ is a
deterministic function defined under (C5).

(3) Differentiation of U1.ˇ0; �/ and (13) with respect to � yields

bA�.�/ D n�1
nX

iD1

Z �

0

W.t/
�
Zi �bEZ.tIˇ0; �/

�
eˇ

0

0ZiC�0Xi.t/X0
i.t/dbƒ

�
2 .tIˇ0; �/ :

(4) According to Eq. (5) and by using the asymptotic results in Lin et al. (2000)
(A.5), one can show that

n1=2f O�� �0g D ˝�1
� n�1=2

nX

iD1

� Z �

0

�
Xi.t/ � s.1/.t/

s.0/.t/

�
dM�

i .t/

�

C op.1/;

where ˝� D E
h R �

0

˚
Xi.t/ � Nx.t/�˝2

e�
0

0Xi.t/dƒ�
1 .t/

i
, which is invertible under

(C5).

Combining the results in steps (1)–(4), we have

U1.ˇ0I O�/ D
nX

iD1

� Z �

0

w.t/
˚
Zi � ez.t/

�
dMi.t/

�

�A�˝
�1
�

nX

iD1

� Z �

0

˚
Xi.t/ � Nx.t/�dM�

i .t/

�

C op.n
1=2/:

Since Aˇ is also invertible under (C5), it then follows from the multivariate central
limit theorem that the conclusions hold.
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A Markov Switching Model with Stochastic
Regimes with Application to Business Cycle
Analysis

Haipeng Xing, Ning Sun, and Ying Chen

Abstract Since the publication of Hamilton’s seminal work on Markov switching
model, a large amount of its applications have been found in economics and
finance. As existing Markov switching models describe the regimes or parameter
values in a categorical way, it is restrictive in practical analysis. In this paper,
we consider a Markov switching model with stochastic regimes, in which the
regimes and model parameters are represented both categorically and continuously.
Assuming conjugate priors, we develop closed-form recursive Bayes estimates
of the regression parameters, an approximation scheme that has much lower
computational complexity and yet are comparable to the Bayes estimates in
statistical efficiency, and an expectation-maximization procedure to estimate the
unknown hyperparameters. We conduct intensive simulation studies to evaluate the
performance of our estimators. We also use our model to analyze the series of the
U.S. monthly total nonfarm employee.

1 Introduction

Many economic time series occasionally exhibit Markov switching and dynamical
instability in their behavior. After Hamilton (1989, 1990) used Markov switching
regressions to characterize time-varying parameters in an autoregressive process as
a finite-state hidden Markov chain for business cycles, the idea of Markov switching
among finite regimes has been used to study various problems in economics and
finance. For instance, to make state transition probabilities dependent on economic
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variables, finite-state Markov switching regression models have been extended to
allow economic variables (Diebold and Rudebusch 1996; Durland and McCurdy
1994; Filardo and Gordon 1998; Kim et al. 2008). In more complicated applications,
the idea of Markov switching with finite regimes is combined with other state-of-
the-art models in finance, economics, and statistics. This, for example, includes
volatility models of stock returns and interest rates (Ang and Bekaert 2002a,b; Cai
1994; Gray 1996; Hamilton and Susmel 1994; So et al. 1998), term structure models
of interest rates (Smith 2002), state space models (Kim 1994), and others.

In classical Markov switching models with finite regimes, an essential assump-
tion is that the unobserved model parameters follow a hidden Markov chain with
finite categorical states, and hence the behavior of interested economic variables
can be described by the dynamical system with regime-dependent parameters. Then
using the developed statistical inference procedures such as likelihood-based or
Bayesian estimates of finite state regimes and switching times, one is able to make
inference on the switching times among finite categorical regimes, the probability
of each categorical regime, and the parameter values of the dynamic system in each
period, and hence provides an interpretation for the mechanism of the dynamical
system within and across economic cycles. Such treatment brings much convenience
into business cycle analysis, however, as pointed out by Hamilton (1996) and many
others, the approach is challenged by the difficulty of making proper inference
on the number of regimes and their corresponding numerical values in real data
analysis.

Intuitively, this difficulty is due to the categorical specification of regimes in
the model, for example, model parameters in different economic recessions are
usually different. To account for this difficulty, we consider another type of Markov
switching regression model with stochastic regimes that have both categorical
and continuous representations of regimes for interested business-cycle-related
variables. In particular, we assume a finite-state hidden Markov chain to represent
categorically economic regimes at each period and a regime-dependent continuous
prior distribution for model parameters in each categorical regime. In this way,
the model parameters may take different numerical values at two different periods
with same categorical regimes. Such specification not only shares the original
motivation of analyzing economic cycles with finite categorical regimes, but also
describe numerically variations of the parameter values over time. Therefore, the
proposed model gets around the issue of testing the number of categorical regimes
and provide more intuitive inference on dynamics of both economic cycles and their
corresponding parameter values over time.

Since the proposed model has both categorical and continuous components
in regime-dependent parameters, we consider an inference framework that has
attractive statistical and computational properties. In particular, we derive the
explicit filters and smoothers and provide nonlinear inference for both the cat-
egorical and continuous representations of regime-dependent parameters in the
model. The derived explicit filter and smoother for continuous representation of
regimes at a given time are mixtures of posterior distributions, and the weight
of mixture components can be computed recursively. Furthermore, the filters and
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smoothers for the probabilities of categorical regimes are expressed as sums of
mixture weights. Computationally, the derived filter and smoother yield a Bayes
algorithm with quadratic and cubic computational complexity, respectively. To
further reduce the computational complexity, we develop an efficient approximation
scheme whose computational complexity is only linear, for the Bayes filter and
smoother. To estimate the hyperparameters in the proposed model, which consist of
the transition matrix and the parameters of prior distribution of regimes, we develop
an expectation-maximization (EM) procedure, and discuss how the estimation
procedures for hyperparameters relates to the identification issues of categorical
regimes via some simulation examples.

We then use the model to analyze the U.S. monthly total nonfarm employee
from February 1968 to June 2011. We show that, while a Markov switching model
with categorical regimes don’t provide a satisfactory analysis, the proposed model
does catch the categorical and continuous features of regime-dependent parameters
during economic cycles. The estimated categorical representations of regimes are
economically meaningful and the recession periods inferred from our model match
well with the ones announced by NBER. The estimated model parameters show
indeed different values over different periods even when the parameters belong to
the same categorical regime.

The rest of the paper is organized as follows. Section 2 specifies the model
and derives the filtering and smoothing estimates of model parameters. Bounded
complexity of mixtures approximation and hyperparameter estimation are also
introduced there. In Sect. 3, we study the performance of our estimators and issues
on hyperparameter estimation via extensive simulation studies. Section 4 analyze
the U.S. monthly total nonfarm employee data using the proposed model, and
compare the result with the one obtained from a Markov switching model with
categorical regimes. Some concluding remarks are given in Sect. 5.

2 A Markov Switching Regression Model with Both
Categorical and Continuous Regimes

2.1 Model Specification

We assume that observations fytg follow the stochastic regression model

yt D ˇ0
t xt C �t; t D 1; : : : ;T; (1)

where �t are independent and identically distributed normal random variables with
mean 0 and variance �2, xt 2 Rd are stochastic regressor consisting of the historical
observations yt�1; yt�2; : : : and exogenous variables, ˇt is a continuous state Markov
chain that is determined by an unobserved finite state Markov chain fstg with the
following constraints
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(A1) The Markov chain fst 2 f1; : : : ;Kgjt � 0g is irreducible, and follows the
transition probability matrix Q D .qij/1�i;j�K , i.e., qij D P.st D jjst�1 D i/.

(A2) The Markov chain fst; t � 0g has a stationary distribution
 D .
1; : : : ; 
K/
T .

Assumption (A2) is appropriate in practical analysis, as it provides distribution of
st when the economy with business cycles reaches equilibrium. Furthermore, if fstg
is initialized at the stationary distribution 
 , a time-reversed Markov chain can be
defined, which has transition matrix eQ D .Qqij/1�i;j�K with

Qqij D P.st D jjstC1 D i/ D qji
j=
i: (2)

To specify the dynamics of ˇt. We assume that, at time t, if there is no regime
switching, i.e., st D st�1, then ˇt D ˇt�1; if regime switching occurs, i.e., st ¤ st�1,
then ˇt will jump to a new value which follows a regime-dependent normal prior
distribution. This specification allows ˇt take new values that are different from
those in the same categorical regime before time t�1, and introduces more flexibility
to the dynamics of ˇt. We summarize this as the following assumption

(A3) The dynamics of ˇt is given by ˇt D 1fstDst�1gˇt�1 C 1fst¤st�1gzt, in which
zt are independent and identically distributed normal random variables with
mean z.st/ and covariance matrix V.st/. For convenience, we assume s1 ¤ s0.

2.2 Filtering Estimate

Denote that Yt D .y1; : : : ; yt/, 1 � t � T, and Yij D .yi; : : : ; yj/, 1 � i < j � T. Let

J.k/t D maxfi � t W si�1 ¤ si D � � � D st D kg be the most recent switching time up
to time t. Then at J.k/t , st switches to regime k from another regime. Let

�
.k/
t D P.st D kjYt/; �

.k/
i;t D P.J.k/t D ijYt/; (3)

for 1 � i � t and 1 � k � K. By definition, �.k/t D Pt
iD1 �

.k/
i;t . Since the conditional

distribution of ˇt given Yt and J.k/t D i is Normal.z.k/i;t ;V
.k/
i;t /, where

V.k/
i;j D

��
V.k/

��1 C 1

�2

jX

uDi

xux0
u

��1
; z.k/i;j D V.k/

i;j

��
V.k/

��1
z.k/ C 1

�2

jX

uDi

xuyu

�
;

for j � i, it follows that the posterior distribution of ˇt given Yt is a mixture of
normal distributions:

ˇtjYt �
KX

kD1

tX

iD1
�
.k/
i;t Normal.z.k/i;t ;V

.k/
i;t /: (4)
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Denote g.k/i;j .u/ the density function of Normal.z.k/i;t ;V
.k/
i;t / distribution at point u, i.e.,

g.k/i;j .u/ D .2
/�d=2jV.k/
i;j j�1=2 exp

˚ � 1
2
.u � z.k/i;t /

0�V.k/
��1
.u � z.k/i;t /

�
. Making use of

PK
kD1

Pt
iD1 �

.k/
i;t D 1, we can show that conditional probabilities �.k/i;t are determined

by �.k/i;t D �
.k/�
i;t

.hPK
hD1

Pt
jD1 �

.h/�
j;t

i
, in which

�
.k/�
i;t WD

( P
l¤k �

.l/
t�1qlk

�
 
.k/
0;0

ı
 
.k/
t;t i D t;

qkk�
.k/
i;t�1 

.k/
i;t�1

ı
 
.k/
i;t i < t;

(5)

 
.k/
0;0 D g.k/0;0.0/, and  .k/i;j D g.k/i;j .0/. Then expressions (3) and (4) implies

P.st D kjYt/ D
tX

iD1
�
.k/
i;t ; E.ˇtjYt/ D

KX

kD1

tX

iD1
�
.k/
i;t z.k/i;t : (6)

2.3 Smoothing Estimate

Assumptions (A1)–(A3) imply that, a stationary distribution of ˇt exists and is
expressed as

PK
kD1 
k Normal.z.k/;V.k//. Then if ˇt is initialized at the stationary

distribution, its time-reversed Markov chain eQ D .Qqlk/ is defined by (2). Note
that this also imposes stationarity conditions for yt, for instance, if the regression
model has an autoregressive component, the stationarity condition for components
of ˇt should be imposed. In such case, we shall replace the Normal distribution
in the stationary distribution

PK
kD1 
k Normal.z.k/;V.k// by a truncated Normal

distribution that has support in stability region. Such treatment also applies for the
smoothing estimates of ˇt. For notational convenience, we still use Normal (instead
of truncated Normal) in the sequel.

We then use the time-reversed chain of ˇt to obtain a backward analog of (4),

ˇtC1jYtC1;T �
KX

kD1

TX

jDtC1
�
.k/
tC1;jNormal.z.k/tC1;j;V

.k/
tC1;j/; (7)

in which the weights �.k/tC1;j can be obtained by backward induction using the time-
reversed analog of (5):

�
.k/
tC1;j / �

.k/�
tC1;j WD

( P
l¤k �

.l/
tC2 Qqlk

�
 
.k/
0;0= 

.k/
tC1;tC1 j D t C 1;

Qqkk�
.k/
tC2;j 

.k/
tC2;j= 

.k/
tC1;j j > t C 1:

(8)

Since for B 	 Rd, P.ˇt 2 BjYt;T/ D R
P.ˇt 2 BjˇtC1/dP.ˇtC1jYt;T/, it follows

from (7) that
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ˇtjYtC1;T �
KX

kD1

n
Qqkk

TX

jDtC1
�
.k/
tC1;jNormal.z.k/tC1;j;V

.k/
tC1;j/

C
�X

l¤k

Qqlk�
.l/
tC1
�

Normal.z.k/;V.k//
o
: (9)

Next, we shall use Bayes’ theorem to combine the forward filter (4) with its
backward variant (9) to derive the posterior distribution of ˇt given YT .1 � t < T/,
which is expressed as the following mixture of normal distributions

ˇtjYT �
KX

kD1

X

1�i�t�j�T

˛
.k/
ij;t Normal.z.k/i;j ;V

.k/
i;j /; (10)

in which the mixture weights ˛.k/ij;t are posterior probabilities explained below.

Consider the event C.k/
ij D fsi D � � � D sj D k; si ¤ si�1; sj ¤ sjC1g, We can

show that, for i � t � j, ˛.k/ijt D P.C.k/
ij jYn/ and ˛.k/ij;t can be calculated by

˛
.k/
ijt D ˛

.k/�
ijt

.
Dt; Dt D

KX

kD1

X

1�i�t�j�T

˛
.k/�
ijt ;

˛
.k/�
ijt D

8
<

:

�
.k/
i;t

P
l¤k �

.l/
tC1qkl=
l

�
i � t D j;

qkk�
.k/
i;t �

.k/
tC1;j 

.k/
i;t  

.k/
tC1;j

ı
.
k 

.k/
i;j  

.k/
0;0/ i � t < j:

(11)

Therefore, the smoothing estimates of ˇt and st given YT are given by

E.ˇtjYT/ D
KX

kD1

X

1�i�t�j�T

˛
.k/
ijt z.k/i;j : (12)

P.st D kjYT/ D
X

1�i�t�j�T

˛
.k/
ijt : (13)

One concern here is that, since (12) are represented as K mixtures of mixtures of
normals, it is questionable whether the smoothing formula could differentiate the
values of ˇt when K regimes are close to each other. Such identification issue is
closed related to the choice of appropriate hyperparameters, and will be discussed
in Sect. 3.



A Markov Switching Model with Stochastic Regimes 59

2.4 Bounded Complexity Mixture Approximation

Although the Bayes filter (4) uses a recursive updating formula (5) for weights
�
.k/
i;t .1 � i � t; 1 � k � K/, the number of weights increases dramatically with t,

resulting in rapidly increasing computational complexity and memory requirements
in estimating ˇt as t keeps increasing. To address the issue of computational effi-
ciency, we follow Lai and Xing (2011) and consider a bounded complexity mixture
(BCMIX) approximation procedure with much lower computational complexity yet
comparable to the Bayes estimates in statistical efficiency. The idea of BCMIX
approximation is to keep only a fixed number M of weights at every stage t, in
particular, the most recent m .1 � m < M/ weights �.k/i;t (with t � m < i � t) and the
largest M � m of the remaining weights.

Denote K
.k/

t�1 the set of indices i for which �.k/i;t�1 in (5) is kept at stage t � 1

for regime k. Note that there are at most M indices in K
.k/

t�1 and K
.k/

t�1 
 ft �
1; � � � ; t � mg. When a new observation arrives at time t, we still define �.k/�i;t by (5)

for i 2 ftg [K .k/
t�1 and denote it the index not belonging to the most recent m stages,

ft; t � 1; : : : ; t � m C 1g, such that

�
.k/�
it ;t

D minf�.k/�i;t W i 2 K
.k/

t�1 and i � t � mg; (14)

choosing i.k/t to be the one farthest from t if the minimizing set in (14) has more than
one element. Define K .k/

t D ftg [ .K .k/
t�1 � fi.k/t g/, and then

�
.k/
i;t D

�
�
.k/�
i;t

. X

j2K .k/
t

�
.k/�
j;t

�
; i 2 K

.k/
t ; (15)

yields a BCMIX approximation to the forward filter.
Similarly, to obtain a BCMIX approximation to the backward filter (8), let fK .k/

tC1
denote the set of indices j for which �.k/j;tC1 in (8) is kept at stage t C 1 for regime k;

thus, fK .k/
tC1 
 ft C1; � � � ; t C mg. At time t, define �.k/j;t by (8) for j 2 ftg [K

.k/
tC1 and

let jt be the index not belonging to the most recent m stages, ft; t C1; � � � ; t Cm �1g
such that

�
.k/�
jt ;t

D minf�.k/�j;t W j 2 fK .k/
tC1 and j � t C mg; (16)

choosing j.k/t to be the one farthest from t if the minimizing set in (16) has more than
one element. Define fK .k/

t D ftg [ .K .k/
tC1 � fi.k/t g/, and then

�
.k/
j;t D

�
�
.k/�
j;t

. X

j2eK .k/
t

�
.k/�
j;t

�
; j 2 fK .k/

t ; (17)

yields a BCMIX approximation to the backward filter.
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For the smoothing estimate E.ˇtjYT/ and its associated posterior distribution,
we construct BCMIX approximations by combining the preceding forward and
backward BCMIX filters with index sets K .k/

t and fK .k/
tC1, respectively, at time t.

Then the BCMIX approximations to (11) are given as

Q̨ ijt D ˛�
ijt

ı
eDt; eDt D

X

i2K .k/
t ;j2ftg[eK .k/

tC1

˛�
ijt;

˛
.k/�
ijt D

8
<

:

�
.k/
i;t

P
l¤k �

.l/
tC1qkl=
l

�
i 2 K .k/

t ;

qkk�
.k/
i;t �

.k/
tC1;j 

.k/
i;t  

.k/
tC1;j

ı
.
k 

.k/
i;j  

.k/
0;0/ i 2 K

.k/
t ; j 2 ftg [ fK .k/

tC1:

Therefore, the BCMIX smoother for ˇt and st given YT are expressed as

E.ˇtjYT/ �
KX

kD1

X

i2K .k/
t ;j2ftg[eK .k/

tC1

Q̨ .k/ijt z.k/i;j ; (18)

P.st D kjFT/ �
KX

kD1

X

i2K .k/
t ;j2ftg[eK .k/

tC1

Q̨ .k/ijt : (19)

The BCMIX approximation fixes the number of filters as M at each time, and
keeps the m closest weights and the other M � m largest weights. This greatly
reduces the computational complexity O.T2/ of the filter in Sect. 2.2 and O.T3/
of the smoother in Sect. 2.3 to O.T/. The specification of M and m are discussed in
Sect. 3.

2.5 Hyperparameter Estimation

The above inference procedure involve hyperparameters˚ D fQ; z.1/;V.1/; : : : ; z.K/,
V.K/; �2g, which can be replaced by their estimates in practice. Since ˚ contains
Œ.K � 1/K C d.d C 1/K C 1	 unknown parameters, we use an EM algorithm to
estimate ˚ . Specifically, we note that the log likelihood lc.˚/ of the complete data
f.yt; st; ˇt/; 1 � t � Tg is given as

lc.˚ js0/ D
TX

tD1
f .yt; ˇt; stjfyi; ˇi; siI i D 0; : : : ; t � 1g/

D
TX

tD1

n
log f .ytjˇt/C

KX

kD1
f .ˇtjst D k/1fstDkg C

KX

k;lD1
log.qkl/1fst�1Dk;stDlg

o
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D �1
2

TX

tD1

n .yt � ˇ0
t xt/

2

�2
C log.2
�2/

o
C

TX

tD1

KX

k;lD1
log.qkl/1fst�1Dk;stDlg

�1
2

TX

tD1

KX

kD1

n
.ˇt � z.k//0

�
V.k/

��1
.ˇt � z.k//C log..2
/djV.k/j/

o
1fstDk;st¤st�1g

(20)

The E-step of the EM algorithm involves the computation of the conditional
probabilities, P.st D kjYT/ and P.st�1 D k; st D ljYT/, and the conditional
expectations, EŒ.yt �ˇ0

t xt/
2jYT 	 and EŒ.ˇt � z.k//0

�
V.k/

��1
.ˇt � z.k//1fstDkgjYT 	. The

M-step of the EM algorithm involves calculating the partial derivatives of (20) with
respect to ˚ . Simple algebra yields the following updating formulas for ˚ .

Oqkl;new D
PT

tD2 P.st�1 D k; st D ljYT ; b̊old/
PT

tD2 P.st�1 D kjYT ; b̊old/
; (21)

Oz.k/new D
PT

tD1 E.ˇt1fstDkgjYT ; b̊old/
PT

tD1 P.st D kjYT ; b̊old/
; (22)

bV.k/
new D

PT
tD1 EŒ.ˇt � Oz.k/old/.ˇt � Oz.k/old/

01fstDkgjYT ; b̊old	
PT

tD1 P.st D kjYT ; b̊old/
; (23)

O�2new D 1

T

TX

tD1
EŒ.yt � ˇ0

t xt/
2jYT ; b̊old	: (24)

In above, P.st D kjYT/ can be computed by (13), and other items are given as
follows,

P.st�1 D k; st D ljYT/ D f .l/t;t =f .l/0;0qkleQ0
l�tC1=
l

PK
iD1

h
f .i/t;t =f .i/0;0qkieQ0

i�tC1=
i

i
X

1�i�t�1�j�T

˛
.k/
i;j;t�1: (25)

E.ˇt1fstDkgjYT/ D
X

1�i�t�j�T

˛
.k/
ijt z.k/i;j ; (26)

E
�
.ˇt � z.k//0.ˇt � z.k//1fstDkgjYT

�

D
X

1�i�t�j�T

˛
.k/
ijt

h�
z.k/i;j

�0
z.k/i;j C V.k/

i;j � 2z.k/i;j z.k/ C �
z.k/
�0

z.k/
i (27)

EŒ.yt � ˇ0
t xt/

2jYT 	 D
TX

tD1

KX

kD1
˛
.k/
ijt

h
.yt � x0

tz
.k/
i;j /

2 C x0
tV
.k/
i;j xt

i
: (28)

The iteration schemes (21)–(24) are carried out until convergence or until some
prescribed upper bound on the number of iterations is reached.
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To speed up the computations involved in the EM algorithm, one can use
the BCMIX approximations in Sect. 2 instead of the full recursions to compute
(25)–(28). Our simulation studies show that the EM procedure converges vary fast.

3 Numerical Studies

We now present some simulation studies on the performance of Bayes and
BCMIX estimates from both frequentist and Bayesian viewpoints. We consider the
four measures for different purpose. The mean Kullback-Leibler (KL) divergence
measures the mean error between the estimates Ǒ

t and the true ˇt, i.e.,  WD
1
T

PT
tD1 KL.ˇt; Ǒ

t/ D 1
2�2T

PT
tD1

�
. Ǒ

t � ˇt/
0xt
�2
: The mean residual sum of squares

(RSS) measures the goodness of fit using an estimation procedure, i.e., � WD
1
T

PT
tD1.yt � Ǒ0xt/

2: The l2 distance of ˇt and Ǒ
t measures the Euclidean distance

between the true ˇt and their estimates, l2 WD 1
T

PT
tD1 jj Ǒ

t � ˇtjj2: The fourth
measure is to measure the accuracy of our inference on the underlying regimes st.
Since our model only computes the posterior probability of st given YT , we estimate
the regime of time t as the one whose posterior probability of st given YT exceeds
0.5, i.e,

Ost WD maxfkjk 2 f1; : : : ;Kg;P.st D kjYT/ > 0:5g: (29)

Based on Ost, we define the mean misclassification ratio as � D 1
T

PT
tD1 1fst¤Ostg:

3.1 Performance of Bayes and BCMIX Estimates
in Frequentist Scenarios

We first evaluate the performance of Bayes estimates (12) and (13) and BCMIX
estimates (18) and (19) via simulations. For illustration purpose, we consider an
AR(1) model with time-varying autoregressive coefficients,

yt D ˛tyt�1 C �t; (30)

in which �t are independent and identically distributed normal random variables
with mean 0 and variance �2, and ˛t are time-varying parameters with two regimes,
i.e., K D 2 and st 2 f1; 2g. We consider four scenarios which have one, two or three
regime switchings, respectively.

S1. st D 1 for t=T 2 .0; 0:3	 and st D 2 for t=T 2 .0:3; 1	.
S2. st D 1 for t=T 2 .0; 0:5	 and st D 2 for t=T 2 .0:5; 1	.
S3. st D 1 for t=T 2 .0; 0:35	[ .0:7; 1	 and st D 2 for t=T 2 .0:35; 0:7	.
S4. st D 1 for t=T 2 .0; 0:2	[ .0:5; 0:6	 and st D 2 for t=T 2 .0:2; 0:5	[ .0:6; 1	.
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Then given the period segmented by the piecewise constant st D k 2 f1; 2g, the AR
coefficient ˛t are also piecewise constant and sampled from the prior distribution
Normal.z.k/;V.k// with z.1/ D 0:5, z.2/ D �0:5, V.1/ D V.2/ D 0:16, and �2 D 1.
Note that the parameter ˛t with the same st over different periods are not same. For
example, regime 1 in Scenario 4 suggest that ˇt are constant in the period .0; 0:2T	
and .0:5T; 0:6T	, respectively, but ˛1 D � � � D ˛200 ¤ ˛501 D � � � D ˛600 although
there are in the same categorical regime. To avoid the nonstationarity issue, we
impose the restriction j˛tj < 1.

We then fit our model to the data by letting xt D yt�1 and ˇt D ˛t in (1), and apply
the EM algorithm for hyperparameter and the Bayes and BCMIX smoothers for ˛t

and st in Sect. 2. For each scenario, 500 samples of size T D 1000 were generated
to evaluate the performance of Bayes and BCMIX estimates. To demonstrate the
performance, we also consider a much simpler benchmark in which the regime
switching times are known so that the Bayes estimates of ˇt between two switching
times are given by the standard Bayesian formulas for normal populations. We call
this benchmark “oracle” estimate. For BCMIX smoother, since its performance
seems to relate to the choice of M and m, we compare BCMIX smoothers with
.M;m/ D .10; 5/; .20; 10/; .30; 15/; .40; 20/. We first estimate the hyperparameters
by the EM algorithm and then apply Bayes and BCMIX estimation formulas derived
in Sect. 2. Table 1 compares the oracle smoother (Oracle), Bayes smoother (Bayes),
and BCMIX smoothers (BCMIX) in terms of RSS, KL and l2 measures. The
average of RSS computed by different methods are very close to each other in
each scenario, indicating that the Bayes and BCMIX smoothers all gives good fit
to the data. The average of KL and l2 distance between the true and estimated
autoregression coefficients and the misclassification rate of regimes show that the
Bayes and BCMIX smoothers are very close, and both provide good estimates of
autoregression coefficients and regimes. Actually, with slight modification of the
proofs in Lai and Xing (2011), we can show that the BCMIX smoother converges
to the true value under certain regularity conditions. Therefore, in the rest of the
paper, we only present the result based on BCMIX smoother (in particular, we use
.M;m/ D .20; 10/).

3.2 Performance of the BCMIX Smoother Under
Bayesian Scenarios

We then study the performance of the BCMIX smoother for series that are simulated
from the following AR(1) model with intercept

yt D �t C ˛tyt�1 C �t; (31)

in which �t are independent and identically distributed normal random variables
with mean 0 and variance �2, and the dynamics of the regression coefficient ˇt D
.�t; ˛t/

0 follow (A1)–(A3) with K D 2, �2 D 1 and
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z.1/ D
�

0:2

�0:3
�

; z.2/ D
�

0:5

�0:5
�

; V.1/ D V.2/ D
�
0:16 0

0 0:16

�

:

To make fytg stationary in each regime, ˛t is restricted by j˛tj < 1. The transition
matrix has the structure

P D
�
1 � p p

q 1 � q

�

;

in which p and q takes the following four sets of values: .p; q/ D (0.002,
0.001), (0.004, 0.001), (0.016, 0.008), and (0.016, 0.016), we will number them
as Case 1 to 4, respectively. For each case, 500 samples of size T D 3000,
4000, 5000, 6000, 7000 and 8000 were generated to evaluate the performance of
the BCMIX(20,10) smoother. In all simulations, the hyperparameters are assumed
unknown and estimated by the EM algorithm in Sect. 2.5. Figure 1 shows one of
500 simulated series of T D 3000 and its estimates in the 9th case. We notice
that the regression coefficients ˇt has only two regimes but could take different
values over time even ˇt are in the same regime. Table 2 shows the averaged KL
and l2 distance of the true and estimated regression coefficients, the averaged RSS
and total misclassification ratio. In each case, as T increases,  and l2 seem to
converge to certain values, and the limiting value are different in each case. On the
other hand,  and l2 get larger when the values of p and/or q increase (i.e., regime
switching happens more frequently). The averaged RSS are similar in all cases, and
the misclassification rate decreases when the sample size T increases.

3.3 Identification Issues and Sensitivity Analysis

As shown in Sect. 2.3, the smoothing estimate (12) is K mixtures of mixture
distributions, which indicates that the smoothing estimates largely depend on the
specification of the prior distribution Normal.z.k/, V.k// of each regime. When
regimes are not very close or their prior distributions don’t have much overlap, the
EM procedure of estimating hyperparameters can gradually learn the true regimes
through iterations, whether one has knowledge or information on the true regimes
or not. Sections 3.1 and 3.2 have shown the good performance of the Bayes and
BCMIX smoother of our model under this circumstance. When two regimes (or their
prior distributions) overlaps a lot, a natural question is whether the EM algorithm
can learn (or calibrate) the right prior parameters so that the model still gives good
estimates. We now discuss this issue via two numerical examples.

Example 1. Assume that the observations yt are generated by the AR(1) model (30)
of Scenario 4 with fixed regime switching times in Sect. 3.1 with different .z.k/,
V.k//, 1 � k � K D 2 and T D 1000. The autoregression coefficients ˛t are
generated by the priors with z.1/ D 0:5, z.2/ D 0:4, and V.1/ D V.2/ D 0:16.
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Fig. 1 A simulation example in Case 9 (x-axis: time; y-axis: numerical values): simulated series
(top left), true and estimated st (top right), �t (bottom left), and ˛t (bottom right)

Note that these two regimes cannot be easily distinguished as the standard deviation
of each regime is large (

p
V.1/ D p

V.2/ D 0:4), compare to the distance between
z.1/ and z.2/. We use our model as a working model and z.1/0 D 0:2, z.2/0 D 0:6, and

V.1/
0 D V.2/

0 D 0:2 to initialize the EM algorithm for hyperparameter estimation.
We then use the estimated hyperparameter and apply the smoother in Sect. 3.3. The
left panel in Fig. 2 shows the simulated yt and our estimates. We notice that the
probabilities of regimes over time are poorly estimated, and the regime shift in t=T 2
.0:5; 0:6/ are completely missed. The reason of such poor estimation is that the
EM algorithm doesn’t give (or learn) the right prior on regimes since the regimes
themselves are undistinguishable.

Example 2. The yt and ˛t are generated in the same way as in Example 1. We still
use our model as the working model, but different from the initial value specification
of the EM estimation in Example 1, we use z.1/0 D 0:6, z.2/0 D 0:2, and V.1/

0 D
V.2/
0 D 0:2 as initial values of the EM algorithm. The right panel of Fig. 2 shows

the simulated yt and our estimates. We notice that the regime switching of ˛t are
nicely caught by our estimation procedure. The estimated probabilities of st D 1,
though not perfectly 0 and 1, shows the regime shifts as well. This indicates that
some misspecified hyperparameter can provide nice results even when the regimes
are undistinguishable.
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Table 2 Averaged KL, l2, RSS, misclassification ratio and their standard errors
(in parenthesis) of BCMIX(20,10) estimates

Case 3000 4000 5000 6000 7000 8000

103 2 4:837 4:563 4:473 4:474 4:414 4:408

(0.148) (0.109) (0.096) (0.096) (0.083) (0.083)

4 5:605 5:228 5:307 5:086 5:105 5:074

(0.151) (0.130) (0.114) (0.100) (0.092) (0.087)

8 15:371 15:244 15:083 15:239 14:991 15:088

(0.204) (0.176) (0.149) (0.147) (0.126) (0.118)

9 17:750 17:361 17:414 17:331 17:313 17:267

(0.212) (0.173) (0.160) (0.144) (0.138) (0.120)

� 2 0:994 0:994 0:994 0:994 0:994 0:994

(1.2e�3) (1.0e�3) (9.6e�4) (8.7e�4) (7.7e�4) (7.3e�4)

4 0:994 0:994 0:993 0:993 0:994 0:994

(1.2e�3) (1.0e�3) (9.5e�4) (8.7e�4) (7.8e�4) (7.3e�4)

8 0:984 0:984 0:984 0:983 0:984 0:984

(1.2e�3) (1.0e�3) (9.6e�4) (8.7e�4) (7.7e�4) (7.3e�4)

9 0:982 0:982 0:981 0:981 0:982 0:982

(1.2e�3) (1.0e�3) (9.4e�4) (8.7e�4) (7.6e�4) (7.3e�4)

103l2 2 1:284 1:111 0:991 0:918 0:841 0:786

(0.022) (0.015) (0.012) (0.011) (0.009) (0.008)

4 1:401 1:196 1:073 0:980 0:905 0:842

(0.021) (0.017) (0.013) (0.010) (0.009) (0.008)

8 2:475 2:118 1:877 1:730 1:585 1:484

(0.018) (0.013) (0.010) (0.009) (0.007) (0.006)

9 2:635 2:259 2:023 1:846 1:699 1:593

(0.016) (0.012) (0.010) (0.008) (0.007) (0.006)

102� 2 3:1 1:8 1:2 1:5 1:1 1:0

(0.690) (0.471) (0.325) (0.388) (0.305) (0.226)

4 3:0 1:6 1:2 1:8 1:2 0:8

(0.677) (0.464) (0.339) (0.452) (0.306) (0.182)

8 1:3 1:1 1:1 1:1 1:1 0:9

(0.140) (0.090) (0.089) (0.075) (0.068) (0.025)

9 1:3 1:2 1:2 1:2 1:2 1:1

(0.085) (0.068) (0.059) (0.045) (0.047) (0.026)

The above examples shows that, when regimes are close to each other, the EM
or purely data-driven statistical procedure might not work well, or the performance
of the smoothing estimates (13) on regimes may depends on the specification of the
prior distributions Normal.z.k/, V.k//. For example, the numerical estimates can be
improved if the variances (or covariance matrices) V.k/ are specified small enough
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Fig. 2 The simulated series and estimates by our model in Examples 1 and 2 (x-axis: time; y-axis:
numerical values). Top: simulated yt; Middle: ˛t (solid line) their BCMIX estimates (dashed line);
Bottom: the probability of regime 1 (solid line) and their estimates (dashed line)

so that the prior distributions N.z.k/;V.k// has small overlap. This also corresponds
to specifying informative prior in statistics or having knowledge on regimes in
economics before the data analysis.

4 Real Data Analysis

We now use our model to study the series of U.S. monthly total nonfarm employee
(in millions) from February 1968 and June 2011. Released by the U.S. Department
of Labor every month, the total nonfarm employee is an important labor statistic
used to determine the health of the job market due to its large sample size and
historical significance in relation to interpreting business cycles accurately. The data
we used here has been deseasonalized and can be downloaded from the Federal
Reserve Bank of St. Louis. The top panel of Fig. 3 show the series of monthly
total nonfarm employee, denoted by wt, in solid curve, and the recession periods
announced by NBER in shaded areas. We can see that the total nonfarm employee
increases almost exponentially during the non-recession periods, and decreases
during all recessions, indicating a rising unemployment rate during recessions.

Since the series wt is clearly nonstationary, we consider the differenced series
yt D wt � wt�1, t D January 1970, : : : , June 2011, as shown in the bottom panel of
Fig. 3. An augmented Dickey-Fuller test yields a p-value less than 0.001, indicating
the differenced series is stationary. In the sequel, we analyze the differenced series
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Fig. 3 The U.S. monthly total nonfarm employee (top) and its differenced series (bottom) from
February 1968 to June 2011 (unit: millions)

yt using the classic Markov switching models in Sect. 2 and the proposed model in
Sect. 3, respectively. Both models assume a first-order autoregressive model with
time-varying coefficient.

yt D �t C ˛tyt�1 C �t; (32)

where �t are independent and identically distributed normal random variables with
mean 0 and variance �2, and the regression coefficient ˇt D .�t; ˛t/

0 are time-
varying and their dynamics are specified later. The model can be viewed as a
stochastic regression model (1) with xt D .1; yt�1/0. Since the series is closely
related to economic expansion and contraction, we assume only two regimes, i.e.,
K D 2, and denote 1 and 2 for booming and recession regimes, respectively.

We first analyze yt using the classic regime switching model [denoted as
model (A)]. In this model, the coefficient fˇtg is a two-state hidden Markov chain
with state space fˇ.1/; ˇ.2/g and a probability transition matrix QA D faijgf1�i;j�2g,
where a12 D 1� a11 and a21 D 1� a22. We then use the method in Hamilton (1989)
to compute the ML estimates, which are given as follows (standard errors are given
in brackets):

Oa11 D 0:9051.0:0320/; Oa22 D 0:9370.0:0430/; O�2 D 0:0162.0:0011/;

Ǒ.1/ D
�

0:2891.0:0211/

�0:2258.0:0662/
�

; Ǒ.2/ D
�
0:0014.0:0076/

0:8331.0:0344/

�

:
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Fig. 4 Estimated probabilities of booming states in the classic Markov switching regression model
(top) and in our model (bottom)

The top panel of Fig. 4 shows the estimated probabilitybPA.st D 1jYT/ of booming
states using the estimated parameter above. Note that, although the recession
regimes inferred frombPA.st D 1jYT/ overlap with the ones announced by NBER,
the booming states are a little blurred among the recessions and such indistinction
cannot be simply explained as a long transition period. For example,bPA.st D 1jYT/

have several ups and downs between the July 1981–November 1982 and July 1990–
March 1991 recessions, and similar patterns are found in the periods between two
recessions.

We then fit our model [denoted as model (B)] to the differenced series. Note
that the proposed model also admits a two-state hidden Markov chain with the
probability transition matrix QB D fbijgf1�i;j�2g, where b12 D 1 � b11 and b21 D
1 � b22, and each regime k 2 f1; 2g is associated with a regime-dependent Normal
prior distribution with mean z.k/ and covariance V.k/. We use the EM algorithm to
estimate hyperparameters in the model and obtain

Ob11 D 0:8747; Ob22 D 0:6334; O�2 D 0:006518;

Oz.1/ D
�
0:1866

0:1514

�

; 100bV.1/ D
�
0:2704 0:0535

0:0535 5:3052

�

;
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Oz.2/ D
��0:0639

0:2285

�

; 100bV.2/ D
�

0:1230 �0:0887
�0:0887 21:614

�

:

Then we use the above hyperparameters and apply the smoothing formulas in
Sect. 2.3 to compute the estimates of coefficients �t, ˛t, and probabilities of
booming states PB.st D 1jYT/ (Our result shows almost no difference between
the Bayes and BCMIX estimates, so we only present the BCMIX results with
.M;m/ D .20; 10/).

The bottom panel of Fig. 4 shows the estimated probabilities of the booming
states, bPB.st D 1jYT/. Comparing to those computed from the Markov switching
model with two categorical regimes in the top panel of Fig. 4, the proposed model
provides a much more distinctive representation of booming and recessions states.
Not only the recession periods announced by NBER are clearly shown, but the
booming periods as well. Figure 5 shows the estimated regression coefficients �t

and ˛t in the top and bottom panels, respectively. Note that the estimated�t and ˛t in
Fig. 5 show clear time variations that cannot be solely explained by two categorical
regimes, suggesting that the categorical description of Markov switching is too
restrictive, while the proposed model removes such restriction.

To study the dates of booming and recession regimes inferred from models (A)
and (B), we use the rule (29) to define the inferred regimes. We notice that both
models (A) and (B) estimate the dates of recessions very well, while model (B)
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Fig. 5 The smoothing estimates of regression coefficient in the proposed model: O�t (top) and Ǫ t

(bottom)
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gives a clearer cut on the boundaries between booming and recession. In fact, if
we use the booming and recession periods announced by NBER as a benchmark
and denote �A;k and �B;k the misclassification rate for the kth regime in models
(A) and (B), respectively, we obtain that �A;1 D 0:469, �A;2 D 0:011, and
�B;1 D 0:104, �B;2 D 0:2. This result is consistent with the blurred boundaries
between booming and recessions in the top panel of Fig. 4. We further summarize
the dates of recessions given by NBER and estimated models (A) and (B) and the
estimated regression coefficients by model (B) in Table 3. We first notice that the
regression coefficients in model (B) varies significantly, even all of them are in
the recession regime. Furthermore, the estimated coefficients in Fig. 5 shows that
the autoregressive coefficients ˛t in recessions are generally larger than those in
booming periods, indicating a high persistence of the series during the recessions
(or the bad employment situation is lingering around).

5 Conclusion

We consider herein a class of regime switching models with both categorical and
continuous states to analyze economic variables related to business cycles. Our
model is different from the classic Markov switching models with categorical
regimes as it allows both categorical and continuous descriptions of model parame-
ters, and provides more flexibility in practical analysis. We also developed a filtering
based approach to make inference on model parameters, which has attractive statisti-
cal and computational properties in practical analysis. Furthermore, we also develop
an approximation algorithm, which has much lower computational complexity yet
comparable to the Bayes estimates in statistical efficiency. Simulation studies have
shown that the smoothers in our model can give very good estimates in various
situations. Our real data analysis of the U.S. monthly employee series shows that
our model provides a better interpretation than classical regime switching models.

Acknowledgements Xing’s research is partially supported by the National Science Foundation
DMS-0906593 and DMS-1206321.

Appendix: Proofs in Sects. 2.2 and 2.3

Proof of (5). First note that
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f .ˇt; yt; st�1 D kjYt�1/ D
KX

lD1

f .ˇt; yt; st�1 D k; st D ljYt�1/

D X

l¤k

f .ˇt; ytjYt�1; st�1 D k; st D l/P.st�1 D k; st D ljY1;t�1/

C
t�1X

iD1

f .Jt�1 D i; st�1 D st D k; ˇt; ytjYt�1/

D p.k/t�1

X

l¤k

aklf .ytjst D l; Jt D t/f .l/t;t .ˇt/C
t�1X

iD1

p.k/i;t�1akkf .ˇt; ytjYt�1; st D k; Jt D i/

D p.k/t�1

X

l¤k

aklf .ytjst D l; Jt D t/f .l/t;t .ˇt/C akk

t�1X

iD1

p.k/i;t�1f .ytjYt�1; st D k; Jt D i/f .k/i;t .ˇt/

D X

l¤k

p.k/t�1aklf .ytjst D l; Jt D t/f .l/t;t .ˇt/C
t�1X

iD1

p.k/�i;t f .k/i;t .ˇt/:

Then

f .ˇtjYt/ /
KX

kD1
f .ˇt; yt; st�1 D kjYt�1/

D
KX

kD1

X

l¤k

p.k/t�1aklf .ytjst D l; Jt D t/f .l/t;t .ˇt/C
KX

kD1

t�1X

iD1
p.k/�i;t f .k/i;t .ˇt/

D
KX

lD1

X

k¤l

p.l/t�1alkf .ytjst D k; Jt D t/f .k/t;t .ˇt/C
KX

kD1

t�1X

iD1
p.k/�i;t f .k/i;t .ˇt/

D
KX

kD1
p.k/�t;t f .k/t;t .ˇt/C

KX

kD1

t�1X

iD1
p.k/�i;t f .k/i;t .ˇt/:

Proof of (9). We first note that

f .ˇtjYtC1;T/ D
KX

kD1
f .ˇt; stC1 D kjYtC1;T/

D
KX

kD1
P.stC1 D kjYtC1;T/f .ˇtjstC1 D k;YtC1;T /

D
KX

kD1

KX

lD1
P.stC1 D kjYtC1;T/Qqklf .ˇtjstC1 D k; st D l;YtC1;T/:
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Then using the fact

QqkkP.stC1 D kjYtC1;T/f .ˇtjstC1 D k; st D k;YtC1;T /

D Qqkkf .ˇ; stC1 D ijYtC1;T/
ˇ
ˇ
ˇ
ˇDˇt

D Qqkk

TX

jDtC1
q.k/tC1;jf

.k/
tC1;j.ˇ/

ˇ
ˇ
ˇ
ˇDˇt

:

for the case k D l, and For the case k ¤ l,

QqklP.stC1 D kjYtC1;T/f .ˇtjstC1 D k; st D l;YtC1;T/ D Qqklq
.k/
tC1f .ˇjst D l/

ˇ
ˇ
ˇ
ˇDˇt

;

for the case k ¤ l, we can show (9).

Proofs of (10) and (11). Let ft.�jYT/, ft.�jYt/, and ft.�jYtC1;T/ denote the density
functions of the absolutely continuous components of ˇt given YT , Yt, and YtC1;T ,
respectively. Then applying Bayes’ theorem,

ft.ˇjYT / D
KX

kD1
ft.ˇ; st D kjYT / /

KX

kD1
ft.ˇ; st D kjYt/ft.ˇ; st D kjYtC1;T /

ı

.ˇ; st D k/:

The right hand side is a mixture of different states, hence for the event Œst D k	, we
have

ft.ˇ; st D kjYt/ft.ˇ; st D kjYtC1;T/
ı

.ˇ; st D k/

D
n tX

iD1
p.k/it f .k/i;t .ˇ/

on
Qqkk

TX

jDtC1
q.k/tC1;jf

.k/
tC1;j.ˇ/C

�X

l¤k

Qqlkq.l/tC1
�

f .k/0;0 .ˇ/
o.


kf .k/0;0 .ˇ/
�

D
tX

iD1
p.k/it

�X

l¤k

Qqlk


k
q.l/tC1

�
f .k/i;t .ˇ/C Qqkk


k

X

1�i�t<j�T

p.k/it q.k/tC1;j
f .k/i;t .ˇ/f

.k/
tC1;j.ˇ/

f .k/0;0 .ˇ/
:

Simple algebra shows that

f .k/i;t .ˇ/f
.k/
tC1;j.ˇ/

ı
f .k/0;0 .ˇ/ D

�
 
.k/
ij

ı
. 

.k/
it  

.k/
tC1;j/

�
f .k/i;j .ˇ/:

Hence (10) and (11) are proved.
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Direction Estimation in a General Regression
Model with Discrete Predictors

Yuexiao Dong and Zhou Yu

Abstract Consider a general regression model, where the response Y depends on
discrete predictors X only through the index ˇTX. It is well-known that the ordinary
least squares (OLS) estimator can recover the underlying direction ˇ exactly if the
link function between Y and X is linear. Li and Duan (Ann Stat 17:1009–1052,
1989) showed that the OLS estimator can recover ˇ proportionally if the predictors
satisfy the linear conditional mean (LCM) condition. For discrete predictors, we
demonstrate that the LCM condition generally does not hold. To improve the OLS
estimator in the presence of discrete predictors, we model the conditional mean
E.X j ˇTX/ as a polynomial function of ˇTX and use the central solution space
(CSS) estimator. The superior performances of the CSS estimators are confirmed
through numerical studies.

1 Introduction

Consider univariate response Y 2 R and q-dimensional predictor X 2 R
q. For

ˇ 2 R
q, let � D ˇTX be a linear combination of the predictor X. Suppose the

probability distribution function of Y depends on X only through � , such that

Y � F� .Y/; where � D ˇTX: (1)

Model (1) allows Y to be continuous or discrete, and we will refer to it as the general
regression model. Many popular regression models can be formulated under this
framework, such as linear regression, single index model, transformation models,
and generalized linear regression.

As a special case of the general regression model (1), single index model
(SIM) considers Y D g.ˇTX/ C " for continuous response Y and unknown link
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function g W R 7! R. SIM is a semiparametric model that allows for flexibility
through the nonparametric link function and mitigates the curse of dimensionality
through the parametric index structure. The estimation problem in SIM involves
estimation of the index ˇ and the link function g.�/ simultaneously. Some classical
references include Powell et al. (1989), Härdle et al. (1993), Ichimura (1993),
Horowitz and Härdle (1996), Carroll et al. (1997), etc. Cui et al. (2011) considered
a more general model, where the response can be continuous or discrete, and the
single index appears in both the mean component and the variance component.
Since nonparametric smoothing is involved in all the aforementioned methods,
theses methods require that the link function g.�/ is smooth and at least one predictor
is continuous. To avoid nonparametric smoothing, methods based on distance
covariance and Hilbert-Schmidt Independence Criterion are proposed, respectively,
in Sheng and Yin (2013) and Zhang and Yin (2015).

In this paper, we aim to estimate the index � D ˇTX in the general regression
model (1), where all the predictors are discrete. To the best of our knowledge, Cook
and Li (2009) and Sheng and Yin (2013) are the only methods in the literature
that allow all the predictors to be discrete. Let X D .X1; : : : ;Xq/

T . Cook and Li
(2009) assumed that the conditional distribution of Xi j Y follows a one-parameter
exponential family distribution for i D 1; : : : ; q, and used the maximum likelihood
estimator of the inverse regression model to recover the direction ˇ in the original
forward regression. On the other hand, Sheng and Yin (2013) argued that ˇ can
be recovered through maximizing the distance covariance between �TX and Y
over � 2 R

p. The estimator in Sheng and Yin (2013) is desirable as its asymptotic
normality has been established under some technical conditions.

We provide an alternative method for direction recovery with discrete predictors.
Denote var.X/ D † and assume E.X/ D 0 without loss of generality. The
classical ordinary least squares (OLS) estimator from the linear regression model
is ˇOLS D †�1E.XY/. A surprising fact revealed by Li and Duan (1989) is that
ˇOLS is proportional to the true direction ˇ in model (1) under the following linear
conditional mean (LCM) condition

E.X j ˇTX/ is a linear function of ˇTX: (2)

For continuous X, it is well-known that if (2) holds for all ˇ 2 R, then X has to
follow an elliptically-contoured distribution. Variable transformation and elliptical
trimming (Cook and Nachtsheim 1994) are thus useful data preprocessing tools for
continuous predictors. For discrete predictors, variable transformation and elliptical
trimming no longer work, and new direction recovery method is needed when the
LCM condition (2) is violated. This motivates us to consider the OLS estimator
based on the central solution space (CSS). Although the CSS estimators have been
systematically studied in Li and Dong (2009), Dong and Li (2010), and Dong and
Yu (2012), we are the first to study CSS estimators in the presence of exclusively
discrete predictors.

The rest of the paper is organized as follows. In Sect. 2, we examine the OLS
estimator with discrete predictors and examine the role of the LCM condition. In
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Sect. 3, we demonstrate that the LCM condition is oftentimes violated with discrete
predictors, and introduce the central solution space estimator as an extension of
OLS. Numerical studies are performed in Sect. 4 and we conclude the paper with
some discussions in Sect. 5.

2 Two Scenarios That OLS Works

We explore the two scenarios when ˇOLS can be used to recover the true direction
ˇ. In the first scenario, the response Y and the discrete predictor X have a linear
relationship. In the second scenario, the discrete predictor X satisfies the LCM
condition (2). We assume E.X/ D 0 unless specified otherwise.

2.1 OLS with Linear Link Function

In the case with continuous Y, suppose Y and X follow the linear model Y D ˛ C
ˇTX C", where ˛ 2 R, ˇ 2 R

q, and " is independent of X. Then obviously we have

ˇOLS D †�1E.XY/ D ˛†�1E.X/C †�1E.XXT/ˇ C †�1E.X/E."/ D ˇ;

where the last equality holds because E.X/ D 0 and E.XXT/ D †.
In the case with discrete Y, ˇOLS can be a good estimator of ˇ when Y and X

satisfy Y D ˛ C ˇTX, which will be referred to as the no-error linear model. To fix
the idea, consider the following two examples. We will see that the response and the
predictors exactly follow the no-error linear model in Example 1, while the no-error
linear model is a good approximation in Example 2.

Example 1. Consider the zoo data from the UCI machine learning repository http://
archive.ics.uci.edu/ml/datasets/Zoo. This data set contains 101 animals with 16
attributes. Except for the number of legs, all the other attributes (aquatic or not;
feathers or not; milk or not; etc.) are binary. The response is the type of the
animal, with mammals (41 cases) and birds (20 cases) being the two dominant
types. We collapse the other 40 cases into the third category, which includes
insects, fish, reptiles, molluscs, and amphibians. The sample OLS estimator has
only two coefficients that are significantly different from zero. Not surprisingly, the
corresponding attributes are feathers and milk. For this particular data set, all the
animals that milk are mammals, and all the animals with feathers are birds.

Example 2. Consider the congressional voting records from the 98th Congress,
2nd session in 1984, which is available at the UCI machine learning repository
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records. The data set
consists of votes from 435 U.S. House of Representatives Congressmen on 16
subjects, with each vote being one of the three categories: yea, nay, and unknown

http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets/Zoo
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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disposition. The response here is whether the Congressman is democrat or repub-
lican. From the sample OLS estimator, we see that the most dominant coefficient
corresponds to a bill related to physician fee freeze. It turns out that 245 of 267
democrats voted against this bill, while 163 of 168 republicans voted for the same
bill.

2.2 OLS with the LCM Condition

For nonlinear link functions, Li and Duan (1989) showed that ˇOLS is proportional
to the true direction ˇ in model (1) under the LCM condition (2). For a;b 2 R

q,
the †-inner product between a and b is ha;bi† D aT†b. Let P†.ˇ/ D
†ˇ.ˇT†ˇ/�1ˇT be the projection matrix onto the column space of ˇ under the
†-inner product. The LCM condition (2) then implies that E.X j ˇTX/ D P†.ˇ/X.
Under model (1), we have

E.XY/ D EfXE.Y j X/g D EfXE.Y j ˇTX/g D EfE.X j ˇTX/Yg: (3)

Plug in E.X j ˇTX/ D P†.ˇ/X and pre-multiply †�1, we get

ˇOLS D †�1E.XY/ D †�1P†.ˇ/E.XY/ D ˇ.ˇT†ˇ/�1ˇTE.XY/ / ˇ;

where “/” means proportional to.

Remark 1. A related concept is sufficient dimension reduction (SDR) (Cook 1998).
SDR aims to find B D fˇ1; : : : ;ˇdg 2 R

q�d with the smallest possible column
space, such that

Y X j BTX; (4)

where “ ” means statistical independence. Correspondingly, the smallest column
space is called the central space for the regression between Y and X, and is denoted
as SYjX. (4) implies that Y depends on X only through BTX. Under the general
regression model (1), Y is independent of X given the index � D ˇTX, which
guarantees the second equality in (3). Model (1) can thus be viewed as a special
case of (4) with the number of indices d D 1. Using the SDR terminology, the
finding in Li and Duan (1989) becomes that ˇOLS 2 SYjX.

Remark 2. Sheng and Yin (2013) proposed direction recovery in model (1) through
distance covariance. They require a technical condition that

P†.ˇ/X Q†.ˇ/X; (5)

where Q†.ˇ/ D Iq � P†.ˇ/ with Iq being the q � q dimensional identity matrix.
Note that Y Q†.ˇ/X j P†.ˇ/X under model (1). Together with (5), we have
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fY;P†.ˇ/Xg Q†.ˇ/X. It follows that

E.XY/ D EfP†.ˇ/XYg C EfQ†.ˇ/XYg D EfP†.ˇ/XYg D P†.ˇ/E.XY/;

where the second equality holds because EfQ†.ˇ/XYg D Q†.ˇ/E.X/E.Y/ D 0.
Under the same technical condition (5) as in Sheng and Yin (2013), we have shown
that ˇOLS / ˇ.

Next we present an example with discrete predictors and demonstrate that
ˇOLS / ˇ when the LCM condition (2) is satisfied. The square link function is used
for the ease of demonstration. Other types of link functions lead to similar results.
We do not require E.X/ D 0, and the OLS estimator ˇOLS D †�1Ef.X � E.X//Yg
is used in this example.

Example 3. Consider X D .X1;X2/T , ˇ D .1; 1/T , and Y D .ˇTX/2.

Case i: X1 � Poisson.l1/, X2 � Poisson.l2/, and X1 X2. It is easy to see

X1 j .X1 C X2 D m/ � Binomial .m; �/ with � D l1=.l1 C l2/:

It follows that E.X1 j X1 C X2/ D �.X1 C X2/ is linear in X1 C X2. Similarly
E.X2 j X1 C X2/ is linear in X1 C X2. Together the LCM condition (2) holds. On
the other hand, we have

† D
�

l1 0
0 l2

�

and Ef.X � E.X//Yg D
�

l1.2l1 C 2l2 C 1/

l2.2l1 C 2l2 C 1/

�

:

It follows that

ˇOLS D †�1Ef.X � E.X//Yg D
�
2l1 C 2l2 C 1

2l1 C 2l2 C 1

�

/
�
1

1

�

D ˇ:

Case ii: X1 � Binomial.n1; p/, X2 � Binomial.n2; p/, and X1 X2. Then

X1 j .X1 C X2 D m/ � Hypergeometric.n1 C n2;m; n1/:

It is easy to see that the LCM condition is satisfied. We also have

† D
 

n1p 0

0 n2p

!

and Ef.X � E.X//Yg D
 

n1p.1 � p/.1 � 2p C 2n1p C 2n2p/
n2p.1 � p/.1 � 2p C 2n1p C 2n2p/

!

:

It follows that

ˇOLS D †�1Ef.X � E.X//Yg D
 
.1 � p/.1 � 2p C 2n1p C 2n2p/
.1 � p/.1 � 2p C 2n1p C 2n2p/

!

/
 
1

1

!

D ˇ:
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Case iii: .X1;X2;W/T � Multinomial.n; .p1; p2; p3//. We have

X1 j .X1 C X2 D m/ � Binomial .m; 
/ with 
 D p1=.p1 C p2/:

Thus the LCM condition is satisfied. The explicit calculation of ˇOLS shows that it
is proportional to ˇ, and the details are provided in the Appendix.

3 Central Solution Space with Discrete Predictors

We have seen in Sect. 2 that the LCM condition plays an important role for ˇOLS to
recover ˇ in model (1). We will see that the LCM condition is more often than not
violated with discrete predictors. Transformation or trimming, which are popular
methods for continuous predictors, are not applicable for discrete predictors. This
motivates us to consider the central solution space estimator (Li and Dong 2009),
which does not require the LCM condition.

3.1 Beyond the LCM Condition

Consider X D .X1;X2/T , X1 � Binomial.n1 D 2; p1/, X2 � Binomial.n2 D 3; p2/,
and X1 X2. We are interested in E.X1 j ˇTX/ as a function of ˇTX for different
combinations of p1, p2 and ˇ. The explicit form of E.X1 j ˇTX/ may not be easily
derived. Instead, we generate N D 106 random samples and calculate the sample
conditional mean EN.X1 j ˇTX/ as an approximation of E.X1 j ˇTX/. Specifically,
let fX.i/; i D 1; : : : ;Ng be an i.i.d. sample of X, where X.i/ D .X.i/1 ;X

.i/
2 /

T . Suppose
˝ is the support of ˇTX. For any ! 2 ˝ , let I.ˇTX D !/ be the indicator function
of ˇTX D !. Then E.X1 j ˇTX D !/ can be approximated by

EN.X1 j ˇTX D !/ D ENfX1I.ˇ
TX D !/g

ENfI.ˇTX D !/g D
PN

iD1 X.i/1 I.ˇTX.i/ D !/
PN

iD1 I.ˇTX.i/ D !/
:

We plot EN.X1 j ˇTX/ versus ˇTX in Fig. 1. The linear, quadratic and cubic fit
between EN.X1 j ˇTX/ and ˇTX are also included. The upper left panel confirms
the finding in case ii of Example 3. Namely, E.X1 j ˇTX/ is a linear function of
ˇTX and the LCM condition is satisfied when p1 D p2 and ˇ D .1; 1/T . In the first
row of Fig. 1, we fix ˇ D .1; 1/T and modify p1 and p2. It is clear that E.X1 j ˇTX/
is a nonlinear function of ˇTX when p1 ¤ p2. In the second row of Fig. 1, we
fix p1 D p2 D 0:1 and modify ˇ. We see that the LCM condition will not hold
when ˇ is not proportional to .1; 1/T . Similar results hold true for cases i and iii of
Example 3, which are not reported here.
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Fig. 1 EN .X1 j ˇT X/ v.s. ˇT X. N D 106 , X1 � Binomial .2; p1/, X2 � Binomial .3; p2/, and X1
independent of X2

We see from Fig. 1 that the LCM condition could easily be violated with discrete
predictors. The next example demonstrates that without the LCM condition, ˇOLS
may not be able to recover ˇ.

Example 4. Let X D .X1;X2/T , ˇ D .1; 1/T , and Y D .ˇTX/3. Suppose X1 �
Bernoulli.p1/, X2 � Bernoulli.p2/, and X1 X2. Similar to Fig. 1, one can check
that the LCM condition is violated if p1 ¤ p2. On the other hand, we have

† D
�

p1 0
0 p2

�

and Ef.X � E.X//Yg D
�

p1 � p21 C 6p1p2 � 6p21p2
p2 � p22 C 6p1p2 � 6p1p22

�

:

It follows that

ˇOLS D †�1Ef.X � E.X//Yg D
�
1 � p1 C 6p2 � 6p1p2
1 � p2 C 6p1 � 6p1p2

�

;

which is not proportional to ˇ D .1; 1/T unless p1 D p2.
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3.2 The Central Solution Space Estimator

The OLS-based central solution space (CSS) estimator was first proposed in Li and
Dong (2009), which does not require the LCM condition. Although Li and Dong
(2009) focused on CSS with continuous predictors, the CSS method can be applied
to discrete predictors as well.

Suppose E.X/ D 0. Under model (1), we observe the following equality

E.XY/ D EfE.X j ˇTX/Yg: (6)

Denote the solution of Eq. (6) as ˇCSS. The following result is a special case of
Theorem 4.1 in Li and Dong (2009).

Proposition 1. Suppose Pr.EfE.X j �TX/Yg ¤ EfE.X j ˇTX/Yg/ > 0 whenever
� is not proportional to ˇ. Then under model (1), the solution of Eq. (6) is unique
up to a scalar multiplication, and satisfies ˇCSS / ˇ. Furthermore, if the LCM
condition (2) holds, then ˇCSS / ˇOLS.

The first part of Proposition 1 states that one can use ˇCSS to recover ˇ without the
LCM condition (2). The second part reveals that ˇCSS coincides with ˇOLS when the
LCM condition is true. Ichimura (1993) provided an example that the parameters in
the index ˇ are unidentifiable when the predictors are all discrete. Our assumption in
Proposition 1 eliminates such pathological situations, and guarantees that the CSS
estimator is unique even with exclusively discrete predictors.

For a D .a1; : : : ; aq/
T 2 R

q, let kak D
qPq

iD1 a2i . To find the solution of Eq. (6),
Li and Dong (2009) suggested solving the following optimization problem

minimize L.�/ over � 2 R
q; where L.�/ D kEfXY � E.X j �TX/Ygk2: (7)

Denote the minimizer of L.�/ as �0. As long as all the moments involved exist,
Theorem 4.2 in Li and Dong (2009) states that �0 is proportional to ˇCSS under the
same condition as in Proposition 1.

The sample level CSS estimator is based on minimizing LN.�/, the sample
objective function of L.�/ in (7). Motivated from the observations in Sect. 3.1, we
model E.X j �TX/ as a polynomial function of �TX. As we have seen in Fig. 1,
for discrete predictors, using quadratic and cubic functions of �TX may be more
suitable than using linear functions of �TX. For any function r.X;Y/ and an i.i.d.
sample f.X.i/;Y.i//; i D 1; : : : ;Ng, we denote the sample estimator of Efr.X;Y/g by
ENfr.X;Y/g D N�1PN

iD1 r.X.i/;Y.i//. The step-by-step algorithm is as follows.

1. Center Y.i/ and X.i/ as OY .i/ D Y.i/ � EN.Y/, OX.i/ D X.i/ � EN.X/.
2. Set k D 2 or k D 3. Denote G.�T OX.i// as f1;�T OX.i/; : : : ; .�T OX.i//kgT . The sample

estimator of E. OX j �T OX/ becomes

EN. OX j �T OX/ D ENf OXGT.�T OX/g
�

ENfG.�T OX/GT.�T OX/g
��1

G.�T OX/:
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3. Estimate ˇ by solving the following optimization problem

minimize LN.�/ over � 2 R
q; where LN.�/ D kENf OX OY � EN. OX j �T OX/ OYgk2;

where the minimizer is denoted as Ǒ .k/
CSS.

A Newton-Raphson type estimator can be implemented to find the minimizer in
step 3 of the above algorithm. See, for example, Cook and Li (2009), Dong and Yu
(2012).

4 Numerical Studies

In this section, we demonstrate the effectiveness of CSS estimator with discrete
predictors via simulation studies. For X D .X1; : : : ;Xq/

T and ˇ 2 R
q, consider

three settings of ˇTX as follows,

Case (i): ˇ D .1;�1; 1; 0; : : : ; 0/T ;X1 � Binomial.2; 0:1/;X2 � Binomial.3; 0:9/;

X3; : : : ;Xq � Bernoulli.0:5/; and Xi Xj for i ¤ j:

Case (ii): ˇ D .�1;�1; 3; 0; : : : ; 0/T ;X1 � Poisson.1/;X2 � Poisson.0:5/;

X3; : : : ;Xq � Bernoulli.:5/; and Xi Xj for i ¤ j:

Case (iii): ˇD.1; 0;�1; 0; : : : ; 0/T ; .X1;X2;W/T � Multinomial.4; .0:2; 0:4; 0:4//;

X3; : : : ;Xq � Bernoulli.0:5/; and Xi Xj for i ¤ j except for X1 and X2:

For each combination of ˇ and X, consider the following models

Model I: Y D 0:2 exp.ˇTX C 2/C 0:2";

Model II: Y D 0:2.ˇTX/3 C 0:2";

Model III: Y D
(
1 ifˇTX � 0;

0 ifˇTX < 0:

In Model I and II, we have continuous response with error " � N.0; 1/ and
" X. The response in Model III is discrete. All three models are special cases
of the general regression model (1). Denote †N as the sample covariance matrix
of X. Then the classical ordinary least squares estimator is Ǒ

OLS D †�1
N ENf.X �

EN.X//Yg. Two CSS estimators Ǒ .2/
CSS and Ǒ .3/

CSS are also included for the comparison,
where we estimate E.X j ˇTX/ as a quadratic or a cubic function of ˇTX. Let

R2. Ǒ ;ˇ/ be the squared sample Pearson correlation between ˇTX and Ǒ T
X, which

will be used to measure the performances of different estimators.
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Table 1 Comparison of OLS and CSS estimators based on 100 repeti-
tions

Case Model bR2
 Ǒ

OLS;ˇ
�

bR2
 Ǒ .2/

CSS;ˇ
�

bR2
 Ǒ .3/

CSS;ˇ
�

(i) I 0.9262 (0.0032) 0.9562 (0.0021) 0.9712 (0.0018)

II 0.9641 (0.0012) 0.9984 (0.0001) 0.9994 (0.0001)

III 0.8038 (0.0084) 0.7976 (0.0144) 0.8700 (0.0099)

(ii) I 0.9721 (0.0015) 0.9547 (0.0020) 0.9803 (0.0013)

II 0.8997 (0.0035) 0.9180 (0.0034) 0.9430 (0.0040)

III 0.9593 (0.0020) 0.9543 (0.0021) 0.9803 (0.0009)

(iii) I 0.9602 (0.0018) 0.9855 (0.0020) 0.9977 (0.0004)

II 0.9389 (0.0023) 0.9647 (0.0025) 0.9880 (0.0008)

III 0.9102 (0.0029) 0.9846 (0.0009) 0.9794 (0.0015)

We fix predictor dimension q D 10, sample size N D 200, and report the
simulation results in Table 1 based on 100 repetitions. Each entry of Table 1 is
formatted as a.b/, where a is the average ofbR2. Ǒ ;ˇ/ across the 100 repetitions, and

b is the standard error of the average. We see that Ǒ .2/
CSS outperforms Ǒ

OLS in six

out of nine settings, while Ǒ .3/
CSS consistently outperforms Ǒ

OLS in all nine settings.
Ǒ .3/

CSS enjoys the best overall performances, as it is better than Ǒ .2/
CSS in all but one

setting. This simulation study confirms our intuition in Sect. 3. Namely, when the
LCM condition is violated and E.X j ˇTX/ can not be modeled by linear functions
of ˇTX, the CSS estimators can improve the OLS estimator as long as we can model
E.X j ˇTX/ properly.

5 Discussion

To recover the direction ˇ in the general regression model (1) with discrete
predictors, we examine the OLS and the CSS-based OLS estimators in this paper. In
the case when the link function is linear, or when the predictor distribution satisfies
the LCM condition, OLS can recover the true direction up to a multiplicative scalar.
If the link function is nonlinear and the LCM condition is not satisfied, OLS is
no longer suitable. By relaxing the LCM condition and modeling E.X j ˇTX/ as
polynomial functions of ˇTX, the CSS-based estimators improve OLS and lead to
better accuracy at recovering ˇ. Our development addresses a gap in the existing
CSS literature, which mainly focuses on continuous predictors (Dong and Li 2010;
Dong and Yu 2012; Li and Dong 2009). In the case of continuous predictors,
Theorem 6.1 in Li and Dong (2009) provides the consistency results of the CSS
estimators. From Fig. 1, it is obvious that E.X j ˇTX/ can not be consistently
estimated by polynomial functions of ˇTX. Finding consistent CSS estimators with
discrete predictors is a topic worth future investigation.
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Appendix

Proof of ˇOLS / ˇ in Example 3, case iii. For .X1;X2;W/T � Multinomial
.n; .p1; p2; p3//, it is well-known that Xi � Binomial.n; pi/ for i D 1; 2, and
cov.X1;X2/ D �np1p2. It follows that E.X1X2/ D n.n � 1/p1p2. It can be shown
that

E.X31/ D np1 C 3n.n � 1/p21 C n.n � 1/.n � 2/p31:

Next we denote k3 D n � k1 � k2 and calculate E.X21X2/ as follows

E.X21X2/ D
X

k1;k2

k21k2
nŠ

k1Šk2Šk3Š
pk1
1 pk2

2 pk3
3

D n.n � 1/p1p2
X

k1;k2

.k1 � 1C 1/
.n � 2/Š

.k1 � 1/Š.k2 � 1/Šk3Š
pk1�1
1 pk2�1

2 pk3
3

D n.n � 1/.n � 2/p21p2
X

k1;k2

.n � 3/Š
.k1 � 2/Š.k2 � 1/Šk3Š

pk1�2
1 pk2�1

2 pk3
3

C n.n � 1/p1p2
X

k1;k2

.n � 2/Š
.k1 � 1/Š.k2 � 1/Šk3Š

pk1�1
1 pk2�1

2 pk3
3

D n.n � 1/p1p2.1C np1 � 2p1/:

For Y D .X1 C X2/2, we thus have

Ef.X1 � E.X1//Yg D E.X31/ � E.X1/E.X21/C E.X1X22/C E.X1X22/

� E.X1/E.X
2
2/C 2E.X21X2/� 2E.X1/E.X1X2/

D np1f1C .2n � 3/p1 � .2n � 2/p21 C p2.2n � 3� .2n � 2/p2 � .4n � 4/p1/g:

Similarly, Ef.X2 � E.X2//Yg is equal to

np2f1C .2n � 3/p2 � .2n � 2/p22 C p1.2n � 3 � .2n � 2/p1 � .4n � 4/p2/g:

Recall that X D .X1;X2/T and var.X/ D †. Let j†j be the determinant of †.
Since the first row of †�1 is j†j�1fnp2.1�p2/; np1p2g, the first component of ˇOLS
becomes

j†j�1Œnp2.1 � p2/Ef.X1 � E.X1//Yg C np1p2Ef.X2 � E.X2//Yg	
D j†j�1n2p1p2f1C .2n � 3/.p1 C p2/ � .2n � 2/.p21 C p22/g:
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Due to the symmetry between p1 and p2 in the expression above, the second
component of ˇOLS is exactly the same as the first component. Thus we have
ˇOLS / .1; 1/T D ˇ. ut
Proof of Proposition 1. Assume EfE.X j �TX/Yg D EfE.X j ˇTX/Yg with
probability 1 for some �, such that � is not proportional to ˇ. Then both � and
ˇ will satisfy Eq. (6), which means the solution of (6) is not unique up to a
scalar multiplication. Thus under the assumption that Pr.EfE.X j �TX/Yg ¤
EfE.X j ˇTX/Yg/ > 0 whenever � is not proportional to ˇ, the solution of (6)
is unique. Because ˇ satisfies (6) and the solution of (6) is unique up to a scalar
multiplication, we have ˇCSS / ˇ. Under the additional LCM condition (2), ˇOLS
is also proportional to ˇ. Consequently we have ˇCSS / ˇOLS. ut

References

Carroll, R. J., Fan, J., Gijbels, I., & Wand, M. P. (1997). Generalized partially linear single-index
models. Journal of the American Statistical Association, 92, 477–489.

Cook, R. D. (1998). Regression graphics. New York: Wiley.
Cook, R. D., & Li, L. (2009). Dimension reduction in regressions with exponential family

predictors. Journal of Computational and Graphical Statistics, 18, 774–791.
Cook, R. D., & Nachtsheim, C. (1994). Reweighting to achieve elliptically contoured covariates in

regression. Journal of the American Statistical Association, 89, 592–599.
Cui, X., Härdle, W., & Zhu, L. X. (2011). The EFM approach for single-index models. The Annals

of Statistics, 39, 1658–1688.
Dong, Y., & Li, B. (2010). Dimension reduction for non-elliptically distributed predictors: Second

order methods. Biometrika, 97, 279–294.
Dong, Y., & Yu, Z. (2012). Dimension reduction for the conditional kth moment via central solution

space. Journal of Multivariate Analysis, 112, 207–218.
Härdle, W., Hall, P., & Ichimura, H. (1993). Optimal smoothing in single-index models. The Annals

of Statistics, 21, 157–178.
Horowitz, J. L., & Härdle, W. (1996). Direct semiparametric estimation of single-index models

with discrete covariates. Journal of the American Statistical Association, 91, 1632–1640.
Ichimura, H. (1993). Semiparametric least square (SLS) and weighted SLS estimation of single-

index models. Journal of Econometrics, 58, 71–120.
Li, B., & Dong, Y. (2009). Dimension reduction for non-elliptically distributed predictors. The

Annals of Statistics, 37, 1272–1298.
Li, K. C., & Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics,

17, 1009–1052.
Powell, J. L., Stock, J. M., & Stoker, T. M. (1989). Semiparametric estimation of index coefficients.

Econometrica, 57, 1403–1430.
Sheng, W., & Yin, X. (2013). Direction estimation in single-index models via distance covariance.

Journal of Multivariate Analysis, 122, 148–161.
Zhang, N., & Yin, X. (2015). Direction estimation in single-index regressions via Hilbert-Schmidt

independence criterion. Statistica Sinica, 25, 743–758.



Part II
New Developments in Trial Design



Futility Boundary Design Based on Probability
of Clinical Success Under New Drug
Development Paradigm

Yijie Zhou, Ruji Yao, Bo Yang, and Ramachandran Suresh

Abstract Statistical significance has been the traditional focus of clinical trial
design due to the classic requirement for regulatory approval of a new therapy.
However, an increasing emphasis is placed on a medical and payer perspective,
where the value of a new therapy is generally measured by the magnitude of
treatment effect based on point estimates. It is often the case that the magnitude
of point estimates to demonstrate sufficient medical value is larger than that to
demonstrate statistical significance. Therefore, a new clinical trial design should
take into account both statistical significance and the magnitude of point estimates.

In line with the traditional trial design focus being on statistical significance,
traditional futility analysis is designed based on power or conditional power to
preserve the probability of achieving statistical significance at the end of a trial.
With the additional trial objective for a sufficiently large point estimate, we propose
an alternative futility analysis design approach where futility boundaries are selected
based on the probability of observing a sufficiently large point estimate of treatment
effect. We denote such probability as “probability of clinical success”. Additionally,
we define “relative retention rate” of this probability, and propose one futility
boundary selection criteria to be 90 % relative retention rate. Via an illustrative
example, we have extensively evaluated the operational characteristics of this
approach including the conditional probability of clinical success based on the
interim data and the probability of correct and incorrect stopping, all of which
can/should be taken in consideration for futility boundary selection.
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1 Introduction

1.1 A New Paradigm of Drug Development from Medical
and Payer Perspective

To obtain regulatory approval of a new therapy has been the focus of classic drug
development, where statistical significance on the primary and/or key secondary
efficacy endpoints is required in two replicated confirmatory clinical trials. As a
result, demonstrating statistical significance has been viewed as the classic criterion
for trial success. More importantly in the clinical trial design stage, substantial
emphasis has been placed on statistical testing such as sample size and power
calculation, as well as multiplicity control on the family-wise type I error rate across
testing multiple hypotheses (e.g., testing of multiple endpoints or multiple doses).

However, direct users of a therapy including (1) physicians and clinicians who
are the prescribers of therapies and who represent the medical community and (2)
insurance companies and patients who are the payers of therapies, view clinical
trial data from a different angle. They pay more attention to point estimates as
a representation of efficacy instead of statistical significance or p-values. This
perspective from medical community and payers gains increasing importance
nowadays. This is because given the availability of existing drugs and competitive
landscape of drug development, new therapies need to offer sufficient clinical benefit
in order to be viewed valuable by the medical community and thus to reach patients
who need them (Man-Son-Hing et al. 2002; The Practice Committee 2008; Dearing
et al. 2014; Hoffmann et al. 2014). Point estimates play a critical role here because in
the absence of head-to-head comparison within a single trial, it is a common practice
that the cross-trial indirect comparison of point estimates measures the relative
clinical benefit across different therapies, and the magnitude of point estimates to
be viewed as clinically meaningful can be beyond that to demonstrate statistical
significance.

Moreover, it is often the case that confirmatory clinical trials are sized large
to meet the regulatory safety database requirement and thus are overpowered for
efficacy endpoints. With a large sample size, the magnitude of point estimates
required to demonstrate statistical significance can be small and therefore the
clinical relevance of the point estimates becomes more important.

1.2 A Motivating Example

The example utilizes the clinical trial frame work of an investigational therapy for
Crohns’ Disease; however, the idea applies to clinical trials in general.

Crohn’s Disease is an inflammatory disease that can cause a variety of systemic
symptoms including abdominal pain, diarrhea, vomiting, and weight loss, etc. Exist-
ing therapies include corticosteroids, immuno-suppressant such as azathioprine
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and methotrexate, and biologic treatments such as infliximab, adalimumab, cer-
tolizumab, and natalizumab. A patient’s disease activity is assessed using the
Crohn’s Disease Activity Index (CDAI) score, with a lower score indicating a lower
disease activity. One typical efficacy endpoint in a Crohn’s Disease clinical trial is
the Binomial proportion of patients achieving a response based on reduction of the
CDAI score.

Given the multiple therapies that are currently available, it is determined
clinically that a new therapy needs to demonstrate 20 % (0.2) or more increase in
response rate when compared with placebo in order to bring additional medical
benefit to treating the disease. It is natural to design a clinical trial assuming an
underlying placebo-adjusted treatment difference of 20 % in the response rate. The
placebo group response rate is assumed at 25 % based on historical data. With a
sample size of 100 subjects per group, the trial has approximately 85 % power to
reject the null hypothesis when assuming �D 20 % and Ppbo D 25 %, with 2-sided
’ of 0.05 based on a Chi-square test.

With the sample size of 100 subjects per group, the required point estimate
of treatment difference to reject the null hypothesis, i.e., to achieve statistical
significance with 2-sided p-value < 0.05, is approximately 13 %. However, as stated
earlier a difference of 20 % or more is required for this investigational therapy
to be competitive with existing therapies. Therefore, success of this clinical trial
constitutes a point estimate of 20 % or more for treatment difference at the final
analysis, which is beyond merely rejecting the null hypothesis.

1.3 Futility Analysis Under the New Perspective

Futility analysis is commonly used when designing a clinical trial for a new therapy,
where the trial can be stopped early due to lack of efficacy. It provides the advantage
to limit patient exposure to non-efficacious therapies and more importantly to
save time and resource towards identifying better therapies as quickly as possible.
Futility analysis is implemented through interim monitoring during trial conduct,
and interim monitoring is typically performed by an independent data monitoring
committee in order to protect the integrity of trial data. Therefore, a concrete futility
stopping criteria, i.e., a futility boundary, needs to be prespecified to facilitate
decision making by the data review committee.

Various statistical methods have been developed to derive futility stopping
boundaries in clinical trial settings (Snapinn et al. 2006), including group sequential
design to specify the beta-spending functions (Pocock 1977; O’Brien and Fleming
1979; Lan and DeMets 1983; Chang et al. 1998; Jennison and Turnbull 2000;
DeMets and Ware 1980, 1982; Pampallona and Tsiatis 1994; Pampallona et al.
2001), the use of stochastic curtailment such as conditional power (Lan et al. 1982;
Halperin et al. 1982; Lachin 2005), predictive power (Spiegelhalter et al. 1986;
Choi et al. 1985; Choi and Pepple 1989) and predictive probabilities (Dmitrienko
and Wang 2006; Daimon 2008). However, majority of the existing methods are



94 Y. Zhou et al.

in line with the classic drug development paradigm which focuses on statistical
significance. This is because both power and conditional power are essentially the
probability to achieve statistical significance. In another words, the term “futility”
thus far in literature and statistical research refers only to the situation that it is
unlikely to achieve statistical significance if the study would proceed to the end.
Under the new paradigm of drug development from medical and payer perspective,
the objective of interim monitoring for futility should be shifted accordingly. The
term “futility” should be considered in a broader sense as the inability of an
investigational therapy to demonstrate sufficient efficacy which includes a non-
satisfactory point estimate. Therefore, instead of targeting on the ability to achieve
statistical significant at the end of the trial, a futility analysis should be designed to
target on the ability to achieve a desired point estimate in addition to the statistical
significance at the end of the trial. In the motivating example, a futility analysis
should be designed to protect the probability of observing a desired point estimate
of 20 % or more treatment difference at the final analysis, rather than the 13 % or
more for statistical significance.

The predictive probability approach (Dmitrienko and Wang 2006; Daimon 2008)
where the inference is based on the Bayesian posterior distribution also utilizes
probability for the decision making on trial success or futility. Under certain
parameterization and a non-informative prior, this posterior probability decision
criteria is similar or equivalent to the above mentioned probability based on the
observed point estimate. However, the proposed cutoff selection for the posterior
probability decision criteria is still derived from the hypothesis testing setting and
related to the frequentist significant level. As a result, the suggested selection of the
futility criteria parameter is also based on the hypothesis testing setting and therefore
is not directly applicable when trial success is based on observing a desired point
estimate.

In the context of this paper, we consider the “success” of a clinical trial as
achieving a desired point estimate in addition to the statistical significance, and
propose a futility boundary design based on the probability of “clinical success”
(POCS). POCS is defined as the probability of observing certain treatment effect at
the end of the trial and thus differs from the concept of “probability of success
(POS)” in literature which is typically related to average or expected power
(Chuang-Stein 2006; Jiang 2011; Carroll 2013; Ibrahim et al. 2015). As an analogue
to the power calculation in the commonly used group sequential design accounting
for futility analyses, POCS decreases with the incorporation of futility analyses
because additional opportunities are provided to make a false negative decision.
However, unlike power where people have a general expectation (e.g., 80 % or 90 %
power), the scale of POCS and its decrease can vary largely depending on the desired
target value, and thus selecting a futility boundary based on the absolute value of
POCS or conditional POCS can be challenging. Therefore, we propose a futility
design based on the relative scale of POCS. Specifically, we calculate the POCS
with and without a futility analysis and we define the ratio of the two probabilities
as “relative retention rate”, and propose one futility boundary selection criteria
such as greater or equal to 90 % relative retention rate. Under the framework of
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the motivating example in Sect. 1.2, we have extensively evaluated the operational
characteristics of this approach including the conditional probability of “success”
based on the interim data and the probability of correct and incorrect stopping, all
of which should be taken into consideration when designing a futility boundary.
Specifically, the above mentioned operational characteristics are evaluated as a
function of potential futility boundary, the underlying true treatment difference, and
the timing of the futility analysis.

The article is structured as follows. In Sect. 2, we describe the proposed futility
boundary design based on the probability of observing the desired point estimate.
Section 3 presents the analysis of the motivating example trial with simulation to
evaluate the operational characteristics of the proposed futility boundary design.
Discussion in Sect. 4 follows.

2 Futility Analysis Design Based on Probability
of Clinical Success

2.1 Probability of Clinical Success (POCS)

We introduce the concept of probability of clinical success (POCS) when rejecting
the null hypothesis is no longer sufficient for trial success. In the motivating example
in Sect. 1.2, the probability of clinical success is the probability of observing a point
estimate of 20 % or more treatment difference at the final analysis. In this article,
we consider POCS in the following form:

Pr .observed treatment difference � c/ ; (1)

where the value c is larger than the value required to reject the null hypothesis, so
achieving statistical significance is implied.

Consider testing the treatment difference between two independent means or
proportions. Let n1 and n2 denote the sample size per group before and after an
interim analysis, respectively, and n D n1 C n2. Let random variables X1 and X2

denote the treatment difference before and after the interim analysis, respectively.
Note that X1 and X2 are independent of each other. The POCS defined in Eq. (1) can
be written as

POCS D Pr .w1X1 C w2X2 � c/ ; (2)

where w1 and w2 are the sample size based weight that w1 D n1/n and w2 D n2/n.
POCS accounting for an interim futility analysis, also called overall POCS, can
then be presented as

POCSoverall D Pr .w1X1 C w2X2 � c AND X1 > �/ (3)
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where Ÿ is the futility boundary. Let f1 and f2 denote the density function for X1 and
X2 with the corresponding cumulative distribution functions denoted by F1 and F2

respectively. The probability in Eq. (3) can be written as

1Z

�

�

1 � F2

�
c � w1x

w2

��

f1.x/dx (4)

which can be calculated by numerical integration. As an analogue to conditional
power, the conditional POCS given the observed data at the interim analysis can be
presented as

POCSc D Pr
�

w1X1 C w2X2 � c
ˇ
ˇ
ˇX1 D x1

�

D 1 � F2

�
c � w1x1

w2

�

(5)

When the variables being analyzed are continuous, X1 and X2 are differences in
means that typically are assumed to follow a normal distribution. Therefore, f1 .�/and
f2 .�/ are the corresponding normal density functions andF1 .�/and F2 .�/ are the
corresponding cumulative normal distribution function ˆ1 .�/and ˆ2 .�/. In cases
that X1 and X2 are differences in binomial proportions, the integration can be
presented as the summation below. Denote D1 D n1X1 and D2 D n2X2 which are the
difference in the number of cases up to and after an interim analysis, respectively.

POCSoverall D
n1X

kD�n1C1
Pr .D2 � cn � k/ Pr .D1 D k/; (6)

where Pr (D2 � cn - k) is POCSc conditioned on D1 D k. Without loss of generality,
we assume k � 0. Therefore

Pr .D1 D k/ D
n1�kX

jD0
CkCj

n1 p1
kCj.1 � p1/

n1�.kCj/Cj
n1p2

j.1 � p2/
n1�j; (7)

where p1 and p2 are the Binary probabilities for the two groups, and

Pr .D2 � cn � k/ D
n2X

iDcn�k

Pr .D2 D i/ (8)

where Pr .D2 D i/can be calculated similarly as Pr .D1 D k/.
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2.2 Relative Retention of POCS

When the goal of trial design has shifted from simply achieving statistical signifi-
cance to a more aggressive criterion which is to observe a sufficiently large point
estimate, we propose to design a futility analysis accordingly. In analogue with the
conventional group sequential design, it is noted that

1. Adding a futility interim analysis will reduce the overall POCS, similarly as
reducing the overall power due to the additional opportunities to make a type
II error.

2. A high futility boundary is desired to maximize the probability of interim
stopping when the trial is less likely to meet the success criteria at the final
analysis. Such futility boundary is expected to be higher than that from a
conventional group sequential design if the success criterion is more aggressive
than achieving statistical significance.

3. The higher the futility boundary, the lower the overall POCS because it is more
likely to stop the trial, even if the underlying true treatment effect exists as
desired.

Given these observations, we could design a futility analysis based on POCS
preservation instead of power or conditional power preservation. To measure the
extent of POCS preservation, we define the relative percentage

POCSoverall= POCS; (9)

as relative retention rate. Using this metric, the futility boundary could be designed
as the highest one with at least 90 % relative retention rate when calculating POCS
and POCSoverall under assumed �.

2.3 Probability of Interim Stopping

We define a positive (negative) trial based on observing a point estimate for
treatment difference of c or more (less than c) at the final analysis. Note that we
assume statistical significance is achieved when observing c. As analogues to the
probability of interim stopping under H0 and Ha in the conventional group sequential
design, we define the probability of correct (incorrect) interim stopping as the
probability that a negative (positive) trial is stopped at the futility interim analysis.
In another words,

Pr .correct stopping/ D Pr
�

X1 � �
ˇ
ˇ
ˇ w1X1 C w2X2 < c

�

D
�Z

�1
F2

�
c � w1x

w2

�

f1.x/dx=F.c/; (10)
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and

Pr .incorrect stopping/ D Pr
�

X1 � �
ˇ
ˇ
ˇ w1X1 C w2X2 � c

�

D
�Z

�1

�

1 � F2

�
c � w1x

w2

��

f1.x/dx= Œ1 � F.c/	 ; (11)

where F is the cumulative distribution for the difference regardless of interim
analysis.

For continuous variable, normal density function and normal cumulative func-
tions will be used in Eqs. (10) and (11). For Binomial proportions,

Pr .correct stopping/ D
�nX

kD�n1

Pr .D2 < cn � k/ Pr .D1 D k/= Pr .D < cn/ ; (12)

Pr .incorrect stopping/ D
�nX

kD�n1

Pr .D2 � cn � k/ Pr .D1 D k/= Pr .D � cn/ ; (13)

where D is the difference in the number of cases at final analysis.

3 Analysis of the Motivating Example Trial

In the motivating example in Sect. 1.2, a futility analysis is planned when data of 40
subjects per group are available. It is a common practice to conduct futility analysis
when 40 % or 50 % of the information is available (Gould 2005). In general, a futility
analysis conducted earlier than that is associated with great uncertainty; on the same
token, a futility analysis conducted later than that has limited time and resource
saving.

The conventional group sequential futility design is provided in Table 1, where
we present 2 scenarios based on overall power preservation at 80 % and sufficient
conditional power at 20 %. The corresponding futility boundaries are 7.5 and 8.5 %,
respectively. The calculations are conducted in EAST 5.4 using non-binding efficacy
and futility boundaries.

As pointed out earlier, such selected futility boundaries are not directly linked to
the trial objective of observing a point estimate of 20 % or more.

To help meet the trial success criterion of observing a point estimate of
20 % or more, we design the futility boundaries using the proposed approach
based on POCS. With this sample size of 40 per treatment group at the interim
futility analysis, one additional subject being a responder corresponds to a 2.5 %
incremental in the Binomial proportion of response rate with a group. Therefore, we
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Table 1 Conventional futility interim analysis design for a parallel-design two-group clinical
trial with Binomial outcome (n D 100 per group, futility analysis n1 D 40 per group, assuming
Ppbo D 25 %, Pactive�Ppbo D 20 %, 2-sided ’D 0.05, calculation in EAST 5.4 using non-binding
efficacy and futility boundaries.)

Scenario 1: power
preservation
at 0.80

Scenario 2: conditional
power at 0.20 under
observed difference

Decision criteria in terms of observed
treatment difference

Futile if
<7.5 %

Futile if
<8.5 %

Conditional powera 0.15 0.20
Overall power 0.80 0.78
Probability of futility stopping Under H0 0.76 0.79

Under Ha 0.11 0.14
Probability of passing Under H0 0.24 0.21

Under Ha 0.89 0.86
“ spending At interim 0.11 0.14

At final analysis 0.09 0.08
aConditional power under observed difference

Table 2 Futility interim analysis design for a parallel-design two-group clinical trial with
Binomial outcome based on POCS under Ha (Trial setting: parallel 2-arm trial with Binomial
endpoint, n D 100 per group, futility analysis at 40 per group, assuming Ppbo D 25 %)

POCS D Pr(•� 20 %)
Without futility With futility

True effect
size POCS

Futility
bound POCSoverall

Relative
retention
rate POCSc

a

Pr
(correct
stopping)

Pr
(incorrect
stopping)

�D 20 % 53.2 % •� 7.5 % 51.3 % 96.4 % 2.8 % 12.2 % 1.9 %
• � 10 %* 49.9 % 93.6 % 8.1 % 16.7 % 3.4 %
•� 12.5 % 47.5 % 89.2 % 18.7 % 21.6 % 5.5 %

•: observed treatment difference
aCalculated at observed difference at interim, i.e., assuming � is the same as futility bound
*: selected futility bound based on criteria “Relative retention rate > 90 %”

consider the distinct potential futility boundaries that are in incremental of 2.5 %.
Table 2 presents the POCS without the futility analysis, overall POCS with the
futility analysis, the relative retention rate, the conditional POCS, the probability
of correct and incorrect stopping for 3 futility boundary candidates: 7.5, 10, and
12.5 %. According to the proposed criteria of selecting the highest futility boundary
with at least 90 % relative retention rate, the boundary of 10 % is selected.

Figure 1a plots the overall power and overall POCS under various futility
boundaries ranging from 0 to 20 % with incremental change of 2 %. Reference lines
are placed at 86 and 53.2 % which correspond to the original power and POCS
without futility analysis. It can be seen from the plot that there is a significant power
loss as the futility boundary increases; on the contrast, the POCS loss is relatively
small.
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Fig. 1 (a) Overall power and overall POCS for futility analysis at timing of 40 % sample size; (b)
Overall power and overall POCS, (c) relative retention rate, (d) conditional POCS and conditional
power calculated at observed difference at interim, for futility analysis at timing of 30, 40, 50
and 60 % of total sample size. Reference lines for overall power and overall POCS are placed at
86 % and 53.2 %, respectively, which are the original power and POCS without futility analysis.
Reference line for relative retention rate is placed at 90 % which is the futility boundary selection
criteria. (Trial setting: parallel 2-arm trial with Binomial endpoint, n D 100 per group, assuming
Ppbo D 25 % and �D 20 %)

We further evaluate the operational characteristics of the proposed futility
analysis design for various futility boundaries, and its sensitivity with respect to the
timing of the futility analysis as well as to the underlying true treatment difference.
Under the assumed true treatment difference of 20 %, Fig. 1b plots the overall power
and overall POCS for different futility boundaries and for different timing of the
futility analysis at 30%, 40 %, 50 % or 60 % of the sample size, and Fig. 1c plots
the corresponding relative retention rate. It can be seen that when the underlying
true treatment difference is as desired, conducting a futility analysis at a later timing
can lead to higher values in overall power, overall POCS and relative retention rate.



Futility Boundary Design Based on Probability of Clinical Success. . . 101

This is not unexpected because a futility analysis at a later timing has a larger sample
size and utilizes more information, and therefore has a higher likelihood to make the
correct decision. When comparing the two commonly used middle timing at 40 %
or 50 % of the sample size, it can be seen that the difference in relative retention
rate is relatively small. This result supports the initial timing selection of 40 % for
early decision making without a large compromise in the data evidence available
for this decision making. Figure 1d plots the conditional POCS in comparison
with conditional power calculated under the observed difference at the interim, for
different futility boundaries and for different timing of the futility analysis at 30 %,
40 %, 50 % or 60 % of the sample size. As expected, the conditional POCS is much
lower than the conditional power, which supports again that futility boundaries
derived using conditional power are disconnected with the trial objective based on
the desired point estimate.

Figure 2a plots the probability of a positive trial and a negative trial, and
probability of correct and incorrect interim stopping when using the 10 % futility
boundary, with respect to different scenarios for the underlying true treatment
difference. As defined in Sect. 2.3, a positive (negative) trial refers to observing
20 % or more (less than 20 %) treatment difference at the final analysis, and the
probability of correct (incorrect) interim stopping refers to the probability that a
negative (positive) trial is stopped at the futility interim analysis. Figure 2b further
plots these probabilities with respect to different timing of the futility analysis at
30 %, 40 %, 50 % or 60 % of the sample size. It can be seen from Fig. 2a that
as expected, the probability of a negative trial decreases (thus the probability of
a positive trial increases) as the underlying true treatment difference increases.
In addition, the larger the underlying true treatment difference, the lower the
probability to stop the trial because the interim analysis data are more likely to
exceed the pre-specified futility boundary. By using the futility boundary of 10 %,
majority of the negative trials can be stopped at the futility analysis, especially when
the underlying true treatment difference is not as large as the desired 20 %. In the
meanwhile, the tradeoff in terms of incorrect stopping is very small, because only
a negligible portion of the positive trials are stopped at the interim futility analysis.
This is observed throughout all scenarios of the underlying true treatment difference
that are considered. Figure 2b suggests that when the underlying true treatment
difference is around the desired magnitude which is 20 %, an earlier futility interim
analysis has slightly higher probability to stop a negative trial. This is because the
sampling distribution from a smaller sample size has a wider spread and therefore
the left tail probability of less than 10 % futility boundary is larger. However, the
probability of incorrectly stopping a positive trial is also increased for an earlier
timing, and the magnitude of increase is significant for the early timing at 30 % of
the sample size.

Figure 2c further displays the partition of correct and incorrect stopping among
the overall futility interim stopping for different scenarios of underlying true
treatment difference. It can be seen that the proportion of incorrect stopping
increases dramatically for earlier timing of futility interim analysis, which suggests
that we should design the futility interim analysis with a comfortable level of data
evidence.
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Fig. 2 (a) Probability of a positive trial and a negative trial, and probability of correct and incorrect
interim stopping with a futility boundary of 10 % at timing of 40 % sample size for different true
treatment effect size �; (b) Probability of correct and incorrect interim stopping, (c) Proportion
of correct and incorrect stopping out of total futility interim stopping, with a futility boundary
of 10 % at timing of 30, 40, 50 and 60 % of total sample size. A positive (negative) trials refers
to observing 20 % or more (less than 20 %) treatment difference in the final analysis, and the
probability of correct (incorrect) interim stopping refers to the probability that a negative (positive)
trial is stopped at the futility interim analysis. (Trial setting: parallel 2-arm trial with Binomial
endpoint, n D 100 per group, assuming Ppbo D 25 %)

4 Discussion

When the benefit of a therapy is evaluated though the magnitude of treatment
effect, achieving statistical significance is no longer sufficient for a clinical trial
to be successful. The conventional futility design to preserve the probability of
achieving statistical significance becomes de-linked with the evolved trial success
objectives. In this article, we propose an alternative futility analysis design approach
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based on POCS which directly targets the desired trial success criteria on clinical
relevance, i.e., observing a sufficiently large point estimate in addition to statistical
significance. Note that power is also a form of POCS where the threshold c equals
z1-’/2*

p
[Var(w1X1 C w2X2)]. It is worth pointing out that both statistical signifi-

cance and clinical relevance are important for a clinical trial to be successful (Carroll
2009), and in this article, we consider the scenario that meeting clinical relevance
automatically implies meeting statistical significance. If statistical significance is
not achieved even with a sufficiently large point estimator, it is likely due to
variability. For example, the actual variability is larger than the planned variability,
which we won’t know at the design stage.

The concept of POCS can also be applied in the drug development program
besides within a single trial. The thinking in developing a best-in-class drug can
be very different from that in developing a first-in-class drug. In addition to the
minimal requirement of statistical significance, there is a target product profile that
a best-in-class drug candidate needs to achieve in order to bring additional benefit
to the patient, medical community and payers. If statistical significance is achieved
but the target product profile is not met in Phase 2, the chance of meeting it in Phase
3 is likely to be low. While making a decision of futility stop during Phase 3, the
totality of data including the second trial data in the program should be carefully
considered before such futility decision can be made.

We define a quantity relative retention rate to measure the degree of POCS
preservation, and propose a futility boundary selection criteria based on relative
retention rate (e.g., greater or equal to 90 % relative retention rate). Note that
when true �D c, POCS D 50 % if it is a symmetrical distribution (e.g., normal
distribution), and this probability is independent of sample size. In this situation,
POCSoverall/POCS D 90 % is equivalent to POCSoverall D 45 %. Similarly as in group
sequential design, conditional POCS, probabilities of correct and incorrect stopping
can be evaluated for the proposed futility analysis design approach. Sample size
adjustment based on the loss of POCS can also be considered.

It is important to note that relative retention rate is one of several metrics that can
be used to design a futility boundary. The futility boundary can also be designed
based on probability of correct stopping, probability of incorrect stopping, and
conditional POCS, or all these factors above taken into consideration. This is similar
to the common practice in a conventional group sequential design that, maintaining a
decent overall power after accounting for a futility analysis is one approach to select
futility boundary and there are many other metrics that can be used for boundary
selection, including conditional power, probability of correct stopping under the
null, and probability of incorrect stopping under the alternative, etc.

We use a Crohn’s Disease clinical trial as an example to illustrate the proposed
futility analysis design, and perform extensive evaluation of the operational charac-
teristics of the proposed design in terms of conditional POCS based on interim data,
probability of correct and incorrect stopping, with respect to different underlying
true treatment differences and different timing of the futility interim analysis. The
results suggest that such proposed futility design has a high chance to correctly stop
a trial if the outcome at the final analysis is undesired, and at the same time has a very
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low chance to incorrectly stop a trial if the outcome at final analysis is satisfactory,
which is a negligible tradeoff. While the group sequential futility analysis design is
typically evaluated only at H0 D 0, Ha D� and Ha D�/2, we propose to evaluate
the selected futility boundary over the continuous range between H0 D 0 and the
desired magnitude for true treatment difference, because it is also of great interest
how the futility stopping boundary performs when treatment effect exists but not as
large as desired. Additionally, the results also suggest that the timing of the futility
analysis around 40 % of the planned sample size provides sufficient data evidence
as well as POCS preservation.

When the trial success criteria are more aggressive than rejecting the null
hypothesis, POCS is generally lower than power. Comparing the overall power
with overall POCS, we note that a high futility boundary can cause significant
amount of power loss, but relatively small POCS loss. Therefore, one should not
be concerned about power loss in selecting the futility boundary when achieving
statistical significance is not the ultimate goal.
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Bayesian Modeling of Time Response and Dose
Response for Predictive Interim Analysis
of a Clinical Trial

Ming-Dauh Wang, Dominique A. Williams, Elisa V. Gomez,
and Jyoti N. Rayamajhi

Abstract Bayesian approach has been increasingly applied to various aspects of
design and analysis of clinical trials. We present one application concerning an
interim futility analysis of a trial. Longitudinal data were collected for a range of
the studied doses. Bayesian analysis was first conducted to predict observations at
the end of treatment for patients not yet followed through treatment, based on all
interim observed data. The predicted data in combination with observed data at the
end of treatment were then analyzed using a Bayesian normal dynamic linear model
for dose response inference. Summary of the Bayesian analysis was used to aid an
interim futility decision.

1 Introduction

Clinical trials conducted for drug development in the exploratory stage, commonly
Phase 1 or 2, are often designed to optimize the learning of response curves in
relation to time and dose. Consequently, one dose or two of the experimental drug
can be selected for further confirmatory testing. Better quantification of the response
curves in the former would more clearly inform dose selection as well as dosing
frequency for the latter. Patient exposure to the experimental drug of an exploratory
trial is typically short with respect to its stabilized effect on the target biomarker or
clinical endpoint after long-term use. Thus the study would often be longitudinal to
enhance estimation of the time response curve and prediction of the long-term effect.
Meanwhile, the focus would still be primarily on the end of treatment duration as it
tends to most closely resemble the long-term repeated use of the drug than interim
time points, and dose response learned at the end of treatment would normally drive
dose selection for subsequent trials.
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Modeling of time and dose responses can be approached through well-defined
mean response functions if shapes of the curves are sure to reasonably explain the
relationships. For example, Emax models and their variations have been widely
validated to be useful in early phase drug development (Fu and Manner, 2010;
Thomas et al., 2014). Nevertheless, in cases where time or dose response is not
confidently known, other less shape-specific models can be applied. Among such,
models that utilize the Markov property for the description of dependence across
doses or time points seem a flexible choice. A class of such models are called
Normal Dynamic Linear Models (NDLMs) (Bornkamp et al., 2007; Krams et al.,
2003; Smith et al., 2006; West and Harrison, 1997).

Interim analysis is frequently conducted for exploratory as well as confirmatory
trials for both economical and ethical reasons. In the case of interim futility analysis
in an exploratory trial where time and dose responses are yet being learned, certainty
of the learning for interim decisions could be low given partially observed data of the
already relatively small trial at the interim look. Thus interim analysis approaches
that account for not only the interim observed data but also future observables could
increase the probability of correct interim decisions. A Bayesian predictive approach
to interim analysis of such like was proposed by Dmitrienko and Wang (2006),
where formulas for the normal and binary cases are provided. The approach can be
generalized for application in more complex cases through Bayesian simulation.

Taking the Bayesian predictive approach, the first step of an interim analysis
is to predict observations not yet available at later time points, especially at the
end of treatment duration. So the emphasis is first on the longitudinal dimension
of drug response. The predicted observables along with the interim observed data
are then analyzed to illuminate dose response at the end of treatment duration for
interim decision. The first step is about prediction, where patients still ongoing in
the trial, but have not progressed to the primary time point would have their yet
unobserved measurements predicted given all available longitudinal data from all
subjects. Afterwards, dose response inference for the time point of interest is made
with both the observed and predicted data, and posterior probabilities of hypotheses
on parameters of interest are computed for use in the interim decision.

We specify and discuss the time and dose response models employed for the
Bayesian predictive interim futility analysis of a Phase 2 clinical trial in Sect. 2.
Section 3 contains simulations performed to assess operating characteristics of the
applied approach prior to the interim analysis. The actual interim analysis for the
futility decision is presented in Sect. 4. We conclude with discussion in Sect. 5.

2 Bayesian Predictive Interim Analysis

A generalized application of the Bayesian predictive approach to interim analysis
proposed by Dmitrienko and Wang (2006) is illustrated through its implementation
in a Phase 2 clinical trial.
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2.1 A Phase 2 Clinical Trial

A Phase 2 clinical trial was conducted for an experimental drug, with a continuous
measure for the primary efficacy assessment. The primary endpoint of the trial was
percent change from baseline to the end of the treatment period in the primary
efficacy measure. Still yet exploratory, three doses of the drug were studied to
understand the response in relation to dose, along with a placebo group as the
control. Power calculation was performed for detecting a meaningful difference in
the primary endpoint between the active doses and placebo, which was performed
through Bayesian simulation. One particular aspect of the sample size determination
was that it was addressed by probability of study success (PrSS or POS) (Chuang-
Stein, 2006; Wang, 2015; Wang and Li, 2013) rather than the conventional
frequentist approach. Resulted from the Bayesian sample size calculation, about 100
patients were planned to be enrolled to each of the three active doses and placebo,
with approximately 80 to reach the end of treatment. In addition to the primary
endpoint at the end of treatment, for the purpose of eliciting longitudinal properties
of response to treatment, as well as for providing intermediate data to enhance
interim prediction of response at the primary time point, another measurement of the
primary efficacy measure was taken at an earlier time point. Due to the consideration
of cost, there was only one interim measurement.

The dose response relationship of the primary endpoint was still highly uncertain
when the trial was designed. For this reason, a planned interim analysis was
embedded in the design for allowance of a futility stopping. If the interim efficacy
signal was convincingly weak at all active doses, it would be wise to suspend the
trial and reassess further development of the drug. On the other hand, if promising
efficacy was demonstrated earlier at the interim, the trial would still continue for
gathering more information to better design subsequent trials. To be consistent in
the manner of assessing study success, the interim analysis was centered around
calculating probabilities of hypotheses of parameters that had been looked at for the
same size determination of the trial, which are to be presently defined. Since the
interim analysis was not intended for claiming efficacy earlier, inflation of type-I
error was not of concern. Our current emphasis is on the interim analysis of the
trial, thus the design of the trial will not be further elaborated.

2.2 Modeling of Time Response and Dose Response

To specify the models, denote the primary endpoint of subject i at dose d and time t
as Yi;d;t, d D 1; 2; 3; 4, t D 1; 2, where d D 1 is for placebo and d D 2; 3; 4 are for
the low, middle, and high doses of the tested drug; t D 1 is for the time point of the
interim measurement of the primary efficacy measure and t D 2 is for the primary
time point at the end of treatment. Although the notation as well as the models to
be defined are for the specific trial here considered, they can be extended to cases
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with more time points or doses. Observations at the primary time point were first
predicted for patients that were still in the trial but had not progressed to the end of
treatment. The predicted values along with the observed at the primary time point
were then analyzed through a dose response model. To note, only patients with an
interim or a final observation were included in the analysis.

2.2.1 Modeling Time Response for Prediction

For the goal of predicting the data yet unobserved at the primary time point, using
all available interim data, the following simple regression model was first used:

Yi;d;2jyi;d;1 � ˛D C ˇDyi;d;1 C N.0; �2D/;D D 1; 2;

where D D 1 for placebo is to distinguish from D D 2 for the active doses. It
indicated the state of belief that time dependence of the response is different between
placebo and the active doses, and the trend is consistent among the active doses.
If more suitable for other situations, the consistency assumption can be relaxed
to allow for incongruent coefficients across active doses. Also, covariates deemed
relevant can be added to the model. Priors of the regression coefficients and random
errors ˛D; ˇD; �

2
D;D D 1; 2 were assigned common for placebo and the active doses

as the following Normal (N) and Inverse Gamma (IG) distributions:

˛D � N.�˛; �
2
˛/;

ˇD � N.�ˇ; �
2
ˇ/;

�2D � IG

 
�n

2
:
�2��n

2

!

:

The values of the prior parameters actually used for analysis were: �˛ D 0,
�˛ D 10, �ˇ D 0, �ˇ D 10, �� D 5, and �n D 1, which together represented
a vague knowledge about the parameters at the time of the interim analysis.

In addition, the following more general mixed model repeated measures
(MMRM) model was employed:

Yi;d;t � si C ˛d;t C N.0; �2D/;

where si is the random subject effect, ˛t;d is the fixed effect at dose d and time t,
and �2D is the variance of observation random error. Again, relevant covariates can
be incorporated. Prior distributions of the model parameters were designated as

si � N.0; �2s /;

˛d;t � N.�d;t; �
2
d;t/;
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Making the priors diffuse, the values of the prior parameters actually used for the
interim analysis were: �s D 10, �d;t D 0, �d;t D 10, �� D 5, and �n D 1.

Our simulations and interim analysis showed that the regression and MMRM
models resulted in similar results. Thus in the subsequent simulations and analysis
sections, we only present results by the MMRM model. The MMRM model indeed
simultaneously models time and dose effects, and it is not response shape driven, so
is generally flexible. But to more specifically focus on the end time point of interest,
we chose an NDLM model for dose response estimation to be next developed.

As the primary objective of the first step, prediction of the unobserved data at tD2
was through the Bayesian predictive paradigm. In general, if � denotes the model
parameters, Yo the observed data, and Yu the unobserved, then prediction of Yu is by

f .yujyo/ /
Z

f .yuj�/f .� jyo/d
.�/;

where f signifies a density or likelihood function and 
.�/ is the given prior density.
In the case now presented, Yo consists of all data observed at t D 1 and 2, and Yu

designates the data yet to be observed at t D 2. Such Bayesian predictive inference
is according to the likelihood principle (Wang and Li, 2013).

2.2.2 Modeling Dose Response for Interim Decision

With aggregation of the observed data at the time of the interim analysis and the
predicted values of unobserved data from the preceding time response modeling
step, dose response relationship at the primary time point was modeled, adjusting
for certain covariates. This was performed through the following NDLM model
adjusted for the baseline value of the primary measure and age:

Yi;d;2 � N.�d C ˇbxi;0 C ˇageyi;0; �
2/; d D 1; 2; 3; 4;

�d � N.�d�1 C �d�1; �2d�1/; d D 2; 3; 4;

where �d is the mean response of dose group d D 1; 2; 3; 4, xi;0 and yi;0 are the
baseline values for the primary measure and age respectively, ˇb and ˇage are the
coefficients for xi;0 and yi;0, �2 is the variance of the response, �d is the slope
parameter that allows movement from dose d � 1 to dose d; d D 2; 3; 4, and
�2d ; d D 2; 3; 4 permit variability around relations between the mean responses. Note
that we did not define �d’s recursively as in Smith et al. (2006), and thus to avoid
over smoothing. We further define

�2d�1 D �2.�d � �d�1/;



112 M.-D. Wang et al.

where �d is the actual dosage of dose d, with �1 D 0 for placebo. It indicated that the
more distant apart between 2 neighboring doses, the more uncertain of their relation.
The difference of dosages can be replaced by a function of the dosages to generalize
the application.

Our NDLM analysis was Bayesian, with the following prior distributions for the
model parameters:

ˇb � N.�ˇb ; �
2
ˇb
/;

ˇage � N.�ˇage ; �
2
ˇage
/;

�2 � IG

 
�n

2
;
�2��n

2

!

;

�1 � N.�01; �
2
01/;

�d � N.�d0; �
2
d0/; d D 1; 2; 3;

�2 � IG

 
�n

2
:
�n�

2
�

2

!

:

The actual assigned values of the parameters in the prior distributions were�ˇb D 0,
�ˇb D 100, �ˇage D 0, �ˇage D 100, �� D 12, �n D 1, �01 D 0, �01 D 20, �d0 D 0,
�d0 D 20, �� D 8, and �n D 1, which again expressed the lack of knowledge of the
parameters at the time of the interim analysis.

2.3 Interim Futility Decision Rule

The interim futility decision rule was defined so that a decision to abort the trial
early was deemed reasonable in the standard of exploratory drug development. By
the proposed Bayesian predictive approach, our interest was in testing hypotheses
directly on the parameters than by a statistical test (Wang, 2015; Wang and Li,
2013). Our application compared the three active doses respectively with placebo
and checked if a greater response in the primary endpoint than placebo by a given
margin was demonstrated. It was expressed in terms of probabilities as

Pd D Pr .�d � �1 > ı/ ; d D 2; 3; 4:

The maximum of these probabilities among the doses is denoted as

Pm D Max fPd; d D 2; 3; 4g :

If none of the active doses showed a probability greater than a pre-specified
threshold probability �, i.e. if Pm < �, the trial would be regarded futile. To take into



Bayesian Modeling of Time Response and Dose Response for Predictive. . . 113

account the correlations among the doses in making interim decisions, the following
probability was also looked at:

Pa D Pr ..�2 � �1 < ı/ or .�3 � �1 < ı/ or .�4 � �1 < ı// ;

which was then again compared to �.
The principle for the choice of � is that for an exploratory purpose, � is not set

too high, so as to avoid attrition of a potential efficacious drug candidate with a
high probability. Reflecting this principle, � D 0:2 was suggested (Dmitrienko and
Wang, 2006).

3 Simulations Prior to Interim Analysis

To adequately prepare for the interim analysis, simulations were performed to
illuminate likely outcomes under different scenarios. Three of the scenarios are
summarized in Table 1, representing the more promising (scenario 1), neutral
(scenario 2), and futile (scenario 3) cases, respectively. The main purpose was to
make sure the approach would inform a clear-cut interim futility stopping for cases
with all drug doses inefficacious and suggest unambiguous continuation of the trial
for cases with some active doses clearly superior to placebo. The within-subject
correlation between the two time points was considered. All patients were assumed
having progressed to the first time point, and a percentage were yet without an
observation at the end time point. In each scenario, the number of patients in each
treatment group was set at 25 to reflect the timing of the actual interim analysis, and
the standard deviation of the primary end point was estimated to be 6:7% across
treatment groups. For example, in the first scenario, the mean responses with the
doses are 0; 0:25; 0:75, and 1:75% at the first time point, and are 0; 0:5; 0:75, and
3:5% at the end time point; within-subject correlation coefficient between the two
time points is 0.6; only 50% of patients have values observed at the end time point.

Table 1 Scenarios for pre-trial simulations

Mean of primary endpoint (%)

Scenario Time point Placebo Low dose Med dose High dose

1 1 0 0.25 0.75 1.75

2 0 0.50 1.50 3.50

2 1 0 0.25 0.25 0.75

2 0 0.50 0.50 1.75

3 1 0.10 0.10 0.10 0.10

2 0.25 0.25 0.25 0.25

Within-subject correlation coefficient between time points: 0.6
Percentage of patients with observation at TimeD2: 50%
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Table 2 Summary of
Bayesian analysis of
simulated trials

Primary endpoint (%)

Mean of posterior means of simulated trials

Scenario Placebo Low dose Med dose High dose

1 �0:03 0:55 1:51 3:46

2 0:02 0:53 0:51 1:73

3 0:27 0:25 0:25 0:25

For each scenario, N D 1000 trials (which was assessed as adequate) were
simulated, and the proposed Bayesian predictive approach was applied to analyze
the simulated trials. The simulations and analysis were conducted in R and the
R package BRrugs for Markov Chain Monte Carlo (MCMC). MCMC properties,
including convergence and auto-correlations, were monitored to ensure adequacy of
the MCMC simulations. To compare the estimated effects with the assumed in the
scenarios, Table 2 summarizes the means of posterior means of treatment effects at
the end time point over the simulated trials for the scenarios, where the exhibited
estimation accuracy by comparison with the numbers in Table 1 shows the adequacy
of the proposed approach.

For each simulated trial, its predictive probabilities of showing superiority of the
drug, individually by Pi; i D 2; 3; 4 and collectively by Pa and Pm, were calculated.
To proffer more comprehensive information for internal development decisions on
an exploratory trial, it is beneficial to look at a set of values of ı than to fix at one.
With this in mind, a few values of the superiority margin ı, namely 0:5; 1:5; 2:5%,
were explored. An interim futility stopping would be recommended by predictive
probabilities that are less than the pre-specified threshold � D 0:2. Within each
scenario, the percentage of the simulated trials that were labeled for futility stopping
was the estimated predictive probability of stopping a trial at the interim for futility.
The predictive probabilities of futility stopping for the scenarios are summarized
in the upper panel of Table 3, with the collective probability Pa or Pm driving the
interim decision.

The simulation results show that the probability of falsely stopping the trial is
low for scenario 1 (promising case) across the different superiority margins, and
that the probability of falsely continuing the trial is low for scenario 3 (futile case)
as long as the rule for stopping is not set too loose by using a very low superiority
margin as ı D 0:5. The summary assured us on the appropriateness of applying the
proposed Bayesian predictive approach to the interim futility analysis. It was also
observed that the two collective probabilities Pa and Pm were generally very close.

To demonstrate the benefit of incorporating the predicted data in the interim
analysis, the same Bayesian analysis was repeated on only interim observed data
without prediction. The results are summarized in the lower panel of Table 3
as compared against the predictive analysis in the upper panel. The comparison
indicates higher probabilities of correct decisions by the predictive approach than
without prediction. For instance, for scenario 2 with ı D 2:5, all active doses
are below expectation by assumption; for which the predictive approach renders
a probability of Pa D 0:6 for futility stopping, whereas the probability is only 0.38
if estimated without prediction.
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Table 3 Summary of simulations

Probability of futility: Pr.P < �/; � D 0:2

Scenario ı P D P2 P D P3 P D P4 P D Pa P D Pm

With predicted observations at Time 2

1 2.5 0.95 0.63 0.07 0.07 0.07

1.5 0.71 0.25 < 0.01 < 0.01 < 0.01

0.5 0.30 0.03 < 0.01 < 0.01 < 0.01

2 2.5 0.95 0.95 0.64 0.60 0.62

1.5 0.70 0.73 0.22 0.17 0.19

0.5 0.31 0.31 0.04 0.02 0.03

3 2.5 0.98 0.99 0.99 0.96 0.96

1.5 0.86 0.86 0.86 0.69 0.71

0.5 0.52 0.52 0.50 0.24 0.26

Without predicted observations at Time 2

1 2.5 0.85 0.50 0.04 0.04 0.03

1.5 0.56 0.15 < 0.01 < 0.01 < 0.01

0.5 0.21 0.02 < 0.01 < 0.01 < 0.01

2 2.5 0.85 0.88 0.47 0.38 0.43

1.5 0.56 0.58 0.15 0.08 0.12

0.5 0.21 0.20 0.02 0.01 0.01

3 2.5 0.95 0.95 0.94 0.84 0.87

1.5 0.75 0.76 0.74 0.45 0.52

0.5 0.38 0.39 0.38 0.10 0.15

4 Actual Interim Analysis

The interim futility analysis was conducted when about a third of the number of
patients planned to enroll had observations at the intended end time point, with
results summarized in the upper panel of Table 4. Compared to � D 0:2, the
predictive probabilities seem overwhelmingly pointing to futility, except for the
low superiority margin ı D 0:5. A further look into the data showed one patient
on placebo responded extremely well, the best among all. As an exploration, this
observation was regarded an outlier and removed, and the results of re-analysis are
summarized in the lower panel of Table 4. It did show improved results toward the
benefit of the drug, but it would still suggest stopping for futility if the decision rule
is set with a higher superiority margin as ı D 2:5.

It was also found that the observed variability of the primary endpoint was
much higher than what was assumed in the design stage. This discrepancy could
be attributed to the lack of information about treatment of the disease state for
which the drug was developed. There was yet no approved or even experimental
drug for this disease, and thus there was no reliable data available about the intended
endpoint. Also, the ascertained endpoint as a biomarker was yet highly exploratory
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Table 4 Summary of interim analysis

With the outlier

Treatment

Primary endpoint (�) Placebo Low dose Med dose High dose

Posterior mean 1.80 0.59 1.13 1.58 pa pm

Pr.�Trt ��Pbo > 2:5/ < 0.01 < 0.01 0.02 0.02 0.03

Pr.�Trt ��Pbo > 1:5/ 0.03 0.05 0.10 0.10 0.15

Pr.�Trt ��Pbo > 0:5/ 0.12 0.18 0.30 0.30 0.40

Without the outlier

Treatment

Primary endpoint (�) Placebo Low dose Med dose High dose

Posterior mean 1.07 0.73 1.08 1.58 pa pm

Pr.�Trt ��Pbo > 2:5/ 0.02 0.02 0.07 0.07 0.09

Pr.�Trt ��Pbo > 1:5/ 0.10 0.12 0.22 0.22 0.31

Pr.�Trt ��Pbo > 0:5/ 0.28 0.35 0.50 0.50 0.63

� percent change from baseline

Fig. 1 Posterior distributions of treatment effects at interim analysis

in its correlations with potential clinical endpoints to be next pursued in more
confirmatory trials. For the stated reasons and benefits of collecting more data for
further elicitation, the trial was continued to the planned end.

To provide a more informative decision making kit, the posterior distributions of
the individual treatment effects were plotted alongside one another with different
colors for more catching visual comparisons, see Fig. 1. This type of plots have
shown to be useful to decision makers, especially non-statisticians.
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5 Analysis of Final Data

Given the decision to complete the trial, there was the opportunity to analyze
the final data. The analysis results are summarized in Table 5. Differentiation
between the active doses and placebo was more clearly demonstrated, which was
encouraging for continuing development of the drug.

Posterior distributions of treatment effects are depicted in Fig. 2 for aid in further
planning.

Table 5 Summary of final analysis

Treatment

Primary endpoint (�) Placebo Low dose Med dose High dose

Posterior mean 0.13 0.69 1.00 1.32 pa pm

Pr.�Trt ��Pbo > 2:5/ < 0.01 < 0.01 0.03 0.03 0.03

Pr.�Trt ��Pbo > 1:5/ 0.08 0.17 0.32 0.32 0.40

Pr.�Trt ��Pbo > 0:5/ 0.54 0.71 0.85 0.85 0.92

� percent change from baseline

Fig. 2 Posterior distributions of treatment effects at final analysis
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6 Discussion

We conducted Bayesian modeling of time response and dose response for the
interim futility analysis of a clinical trial. A simulation based generalization of
the Bayesian predictive approach proposed by Dmitrienko and Wang (2006) was
applied. Prediction of observations not yet seen at the interim analysis was first
made for the time point of interest by a Bayesian regression or MMRM model.
The predicted values were then incorporated in the modeling of dose response at
the time point of interest by a Bayesian NDLM model. Pre-interim simulations
showed that this Bayesian predictive approach adequately estimated the assumed
dose responses. High predictive probabilities of making correct futility decisions
for different scenarios were evidenced. It also demonstrated increased probabilities
of making correct decisions than inference without prediction.

For the actual interim analysis, even border-line futility was manifested, the esti-
mated predictive probabilities along with other considerations as given contributed
to a no-stop decision. Bayesian analysis of the completed trial revealed more
encouraging results, which retrospectively confirmed the interim no-stop decision.
The graphical presentation of posterior distributions of the Bayesian analysis for
treatment comparisons as employed was found useful for communication with and
use by decision makers.

Concerning sensitivity to prior selection in the application of the proposed
Bayesian predictive approach, the almost absolute lack of prior information on
the intended endpoint did not justify us to conduct analysis with more informative
priors. Nevertheless, it would be critical in more informed situations to compare
different priors for the impact on interim decisions.

Although we presented our methodology through the illustration of its imple-
mentation in the discussed trial, the Bayesian predictive approach can be applied
for general clinical trials when more comprehensive and accurate interim decisions
are of concern. It also accommodates cases where interim measurements are of a
different type than the intended measurement at the end time point, such as a binary
interim endpoint and a continuous final endpoint, or an interim biomarker and a final
clinical endpoint.
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An ROC Approach to Evaluate Interim
Go/No-Go Decision-Making Quality
with Application to Futility Stopping
in the Clinical Trial Designs

Deli Wang, Lu Cui, Lanju Zhang, and Bo Yang

Abstract Interim analyses can be planned to make Go/No-Go decisions in late
phase clinical trials and decision quality is an issue of interest because of the timing
of interim analysis is often selected based on empirical experience and thresholds
for interim Go/No-Go decisions are determined arbitrarily. There is no systematic
research to investigate interrelationship among three commonly used statistical
methods for interim decision-making, namely conditional power, predictive power,
and predicted confidence interval methods. We used a receiver operating character-
istic (ROC) approach to evaluate decision-making quality of these methods and they
are proved to be equivalent analytically and verified by simulations. To achieve the
pre-specified sensitivity and specificity for Go/No-Go decision-making at interim,
the required minimum sample size for interim analysis and the threshold for each of
three statistical methods can be systematically determined based on the target design
parameters of the clinical trials. The application of the obtained results is given for
continuous outcome measures.

1 Introduction

Interim analysis is traditionally used to monitor the safety and efficacy of an
experimental drug in phase II and III clinical trials. The purpose of the interim
analysis is to use the accumulated data in the mid-course of the trial to capture
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signals of potential undue harm or unexpected efficacy of the experimental drug
early so that a decision regarding whether the trial should be continued can be made.
The role of interim analysis is further broadened to include possibility to stop a study
(Lachin, 2005) if the trial does not have potential to demonstrate the drug efficacy
at the end of the study given data observed at interim. In the adaptive design setting,
the information based on the analysis of interim data may be used to make various
decisions on potential modification of trial parameters or designs. For example,
an interim analysis can be used under the adaptive seamless phase II/III design
to evaluate the performance of individual doses in a phase II dose ranging phase
with the discontinuation of inefficacious doses followed by the confirmation phase
to demonstrate the efficacy of a chosen dose.

Various interim decision-making methods have been developed. For example, the
group sequential method (Lan and DeMets, 1983; O’Brien and Fleming, 1979; Peto
et al., 1976; Pocock, 1977; Wang and Tsiatis, 1987) is often used for the interim
analysis intended to stop the trial early for safety or efficacy. Mazumdar and Liu
(2003) extended group sequential design method to use standardized AUC (area
under the curve) difference statistic in the comparative clinical trials in diagnostic
medicine. Futility analysis approaches in clinical trial interim monitoring have
also been widely investigated in the literature (DeMets, 2006; Dobbins, 2013;
Friedlin et al., 2010; Lachin, 2009; Lan and Wittes, 1988; Zhang and Clarke, 2010).
Conditional power (CP), predictive probability (PP), and predictive confidence
interval (PCI) methods are commonly used for the interim futility analysis and dose
selection with potential dropping off inefficacious doses. The conditional power is
the probability that the final trial result would be statistically significant, given the
data observed at interim and a specific assumption about the pattern of the data to
be observed in the remainder of the study. If the conditional power calculated at
interim is less than a pre-specified threshold, the trial will be stopped for futility,
otherwise, continue as is. Lachin (2005) provided a systematic review of methods
for futility stopping based on the conditional power which can be calculated based
on the null hypothesis, the current trend in the data at interim, or under the original
design. The conditional power considers only the interim estimate of the primary
efficacy measurement but ignores the potential variability of the estimate at interim.
On the other hand, the predictive power method (Spiegelhalter et al., 1986) takes
the variability of estimates of interest into consideration for decision-making at
interim. It is the average conditional power over the entire posterior distribution
of the true parameter of interest based on the observed interim data. Evans et al.
(2007) proposed to use the predicted confidence interval calculated at interim for
decision-making. They defined the minimum clinical meaningful difference as
the pre-specified threshold and compared it to the upper bound of the predicted
confidence interval for interim decisions.

Interrelationship between conditional power and predictive power has been
reviewed (Gallo et al., 2014; Lan et al., 2009) recently in interim futility analysis.
However, there is no systematic research to compare conditional power, predictive
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power, and predicted confidence interval methods and their decision-making quality,
performance, and their interconnected relationship. Timing of interim analysis is
often selected based on empirical experience and thresholds for interim Go/No-Go
decisions are determined arbitrarily. Some researchers used a pre-specified threshold
1 � � , where � is the futility index (ranging from 0.8 to 1) (Halperin et al., 1982;
Jennison et al., 1990; Lan et al., 1987; Tan, 2008), for conditional power in futility
analysis. Methods to determine the timing and thresholds for interim analysis are not
clearly defined. ROC curves (Green and Swets, 1966) are widely used to measure
the discriminative capability of medical tests and other decision-making procedures
(Obuchowski, 2003; Pepe, 2003; Zweig and Campbell, 1993). Chuang-Stein et al.
(2011) applied the concept of sensitivity and specificity to Go/No-Go decision-
making in drug development. Interim decision quality of different methods were
not investigated in the paper by Chuang-Stein et al. (2011). The present research is
to investigate the performance and the relationship of three commonly used methods
for interim decision-making and also to define a way to determine the timing and
threshold for interim analysis via a Receiver Operating Characteristics (ROC) based
approach.

In this paper, we assume that the outcome follows a normal distribution. The
presentation will be organized as the following. Section 2 will introduce the
sensitivity and specificity of a decision-making method relevant to the true desired
and undesired treatment effects space. Borrowing the concept of evaluation of
diagnostic testing method, an ROC curve associated with each method is derived
and relationship among three methods is also demonstrated in Sect. 2. Simulation
results will be presented in Sect. 3 to assess the performance characteristics based on
the calculated sensitivity, specificity, positive and negative predictive values under
assumed ranges of desired treatment effects (usually the target minimum treatment
effects) as well as an undesired treatment effect. Utilization of the ROC approach to
systematically determining the timing of interim analysis and the threshold for each
statistical method and application of the proposed method to the design optimization
are presented in Sect. 4 and finally conclusions and discussions follow.

2 ROC Curves for Interim Go/No-Go Decisions for CP, PP,
and PCI Methods

An ROC curve can be constructed based on the sensitivity and the specificity of
a diagnostic test which uses a cutoff to declare a disease or an abnormal physical
condition. Analogy between clinical trials and diagnostic tests was discussed two
decades ago by Pater and Willan (1984). Chuang-Stein et al. (2011) applied the
concept of sensitivity and specificity in the hypothesis testing setting for Go/No-
Go decisions in different stages of drug development; for example, developing
a compound from Phase I to Phase II or moving from Phase II to Phase III
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development. The sensitivity and specificity of the statistical method for interim
Go/No-Go decision-making can be viewed as the probabilities that a positive or
negative result based on the statistical method matches the underlying truth. In
clinical trials with interim analysis, a positive (negative) result often leads to a
Go (No-Go) decision, the sensitivity (specificity) can also be interpreted as the
probability of a Go (No-Go) decision while the underlying condition in truth is
desirable/favorable ( undesirable/unfavorable). In the following, we will substantial-
ize the aforementioned concepts and show relevant applications in characterization
of the decision-making quality based on CP, PP, and PCI methods.

Let � be the true treatment difference (a larger treatment effect is more desirable,
i.e., � � 0) of the normally distributed endpoint between a treatment arm and a
placebo arm in a clinical trial and � be the common standard deviation across two
arms which is assumed to be known for simplicity. One interim futility analysis
is planned with stopping for futility only. Let N D n C m be the total number
of subjects per arm in the clinical trial. The interim analysis is performed when n
subjects per arm are available for the analysis and additional m subjects per arm will
be enrolled if a Go decision is made at the interim, and t D n

N is the information
fraction under the assumption that subjects are equally allocated between two arms
in the interim analysis. Denote NXn and NXm as the mean treatment difference between
two arms from the first 2n subjects at the interim and the last 2m subjects after
the interim, respectively. Denote C as the critical value for the final test statistics,
C D Z1�˛=2 where Z1�˛=2 is the .1�˛=2/�100% percentile of the standard normal
distribution, ˛ is the significance level. Let Zn denote the interim Z-statistics based
on information from the first 2n subjects and ZN denote the final Z- statistics based
on information from all 2N subjects at the end of the trial.

For the treatment difference parameter � 2 R, define the undesired treatment
effect space as R0 D Œ0; �0	 and the desired treatment effect space as R1 D
Œ�1;C1/, where �0 and �1 (�0 � �1) are two thresholds of the treatment effect
difference between two arms which can be pre-specified in the design stage based
on clinical, commercial or other considerations of a clinical trial. We assume a
larger treatment effect is more desirable and the target favorable treatment effect
is � � �1 or � 2 R1 and the unfavorable treatment effect is � � �0 or � 2 R0.
An interim decision is often made based on whether or not a test statistics can pass
a pre-determined threshold. A Go decision can be made if it is believed that the true
treatment difference falls in the desired space R1 given the observed interim data.
A No-Go decision can be made if it is believed that the true treatment difference
falls in the undesired space R0 given the observed interim data. We name Sw.uw; �1/

as the sensitivity for Method w D cp; pp; pci, which is defined as the probability
of a correct interim Go decision at threshold uw based on an interim test statistics
given the underlying true treatment difference is from the desired treatment space
R1 (e.g. �1 2 R1). We name Sw.uw; �0/ as the specificity, which is defined as the
probability of a correct interim No-Go decision at threshold uw based on an interim
test statistics given the underlying true treatment difference is from the undesired
treatment space R0 (e.g. �0 2 R0). The threshold uw in Sw.uw; �1/ and Sw.uw; �0/ is
the method specific cutoff value for the interim decision-making. Hence, Sw.uw; �1/

and 1 � Sw.uw; �0/, �1 < uw < C1, define a curve with respective to uw.
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We still name it the ROC curve since the curve describes the receiving operating
characteristics of a statistical decision method. This research focuses on evaluation
of the interim decision-making quality of three commonly used statistical methods,
namely the conditional power, the predictive power, and the predicted confidence
interval methods. The ROC curves for the interim Go and No-Go decisions and
functional forms of the three methods for sensitivity and specificity are derived in
the following subsections.

2.1 Conditional Power ROC

The conditional power is the conditional probability of a statistically significant
result at the end of a clinical trial given the current data observed at interim and
a specific assumption of the treatment effect of remaining data in the study. The
assumption could be the current observed treatment effect will be the same in the
remaining part of the trial after the interim, or the original design effect holds
for the remaining data, or the treatment effect is similar to the null hypothesis
(Lachin, 2005). Following a commonly used assumption, we assume the trend of the
treatment effect observed at interim continues, i.e. � D NXn. With some algebra (see
section “Conditional Power Derivation in Sect. 2.1” in Appendix), the conditional
power based on Z-test at interim time t can be obtained as

CPt D P

ZN � C j NXn

�

D ˆ
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m
C Np

m

NXn

�

!

; (1)

whereˆ is the standard normal distribution function. A Go/No-Go decision is made
based on the conditional power projected at the end of the trial with additional m
subjects per arm enrolled based on the interim data. Suppose a Go decision will be
made at interim t if the conditional power calculated in Eq. (1) is greater than or
equal to a threshold &.0 < & < 1/, i.e., CPt � & . The decision function for CP
based on the interim data is defined as
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After some algebra (see section “Conditional Power Derivation in Sect. 2.1” in
Appendix), the probability of a Go decision based on CPt with the treatment effect
difference of � is
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The probability of a No-Go decision with the treatment effect difference of � is
1-Prob(D=1), i.e.,

Prob.D D 0/ D ˆ

�
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�

: (3)

The sensitivity for CP at interim t is the probability of a correct interim Go decision
(DD 1) based on a conditional power criterion (CPt � &) calculated from the
observed interim data under the target treatment effect� D �1 2 R1. The specificity
for CP at interim t is the probability of a correct No-Go decision (D=0) based on
a conditional power criterion (CPt < &) calculated from the observed interim data
under the undesired treatment effect � D �0 2 R0. Replacing � with �1 and �0
in Eqs. (2) and (3), respectively, the sensitivity and the specificity for CP at interim
time t at cutoff u are obtained as the following
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Accordingly, the ROC curve for the interim Go and No-Go decision based on CP
can be constructed by varing u in �1 < u < C1.

2.2 Predictive Power ROC

The predictive power (Spiegelhalter et al., 1986) uses weighted average of con-
ditional power values to consider the variability of the estimate of � at interim.
Suppose the prior distribution of the true treatment difference � is g.�/ and its
posterior probability density function is g.� j NXn/, then the predictive power at
interim time t is

PPt D
Z

CPt.�/g.� j NXn/d�:

Suppose the mean treatment difference of the remaining m subjects after the interim
is NXm � N.�; �2=m/. As suggested by Lan et al. (2009) based on a fiducial argument
(Spiegelhalter et al., 1986) and assume a non-informative prior distribution g.�/ D
1, the posterior probability density is g.� j NXn/ D N. NXn; �

2=n/ given the interim
data (Tan, 2008). Condition on the interim data, the marginal distribution of NXm

is normally distributed with mean and variance (see section “Predictive Power
Derivation in Sect. 2.2” in Appendix) as the following,
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E. NXm/ D E.E. NXmj�// D E.�/ D NXn;

Var. NXm/ D �2.1=n C 1=m/:

Then the predictive power is given by

PPt D
Z

CPt.�/g.� j NXn/d� D 1 �ˆ

"r
n

m

 

C �
NXn

p
N

�

!#

; (6)

where NXn are the mean treatment difference between two arms at the interim. It

can be shown that
p

n NXn

�
D Zn C

p
n�
�

where Zn D
p

n. NXn��/
�

. Then Eq. (6) can be
re-written as the following,

PPt D ˆ

 

�C

r
n

m
C Zn

r
N

m
C
r

Nn

m

�

�

!

: (7)

Similar to the argument for the conditional power method, suppose a Go decision
(D=1) is made at interim t if the predictive power calculated in Eq. (7) is greater
than or equal to a threshold &.0 < & < 1/, i.e., PPt � & , then the decision function
for PP based on the interim data is given by

D D
	
1 if PPt � & I
0 otherwise,

which is equivalent to D=1 when �C
p n

m C Zn

q
N
m C

q
Nn
m
�

�
� u, D=0 otherwise,

where ˆ.u/ D & . After some algebra (see section “Predictive Power Derivation
in Sect. 2.2” in Appendix), the probability of a Go decision based on PPt with the
treatment effect difference of � is

Prob.D D 1/ D P

 

�C

r
n

m
C Zn

r
N

m
C
r

Nn

m

�

�
� u

!

: (8)

Similar to the argument for the conditional power method, the sensitivity and the
specificity at interim time t at cutoff u for PP will be

Spp.u; �1/ D 1 �ˆ
�

C

r
n

N
�

p
n�1
�

C
r

m

N
u

�

; (9)

Spp.u; �0/ D ˆ

�

C

r
n

N
�

p
n�0
�

C
r

m

N
u

�

: (10)

Accordingly, the ROC curve for the interim Go and No-Go decision based on PP
can be constructed by varing u in �1 < u < C1.
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2.3 Predicted Confidence Interval ROC

Proposed by Evans et al. (2007), the predicted confidence interval (PCI) is the
confidence interval predicted for a future time point (e.g., the end of the study)
conditional on data observed at interim, or based on some assumptions for the future
data yet to be collected. These assumptions could be the trend of the observed data
continues, or the future data is the same as the null hypothesis, or the future data
is the same as the alternative hypothesis, or the best/worst scenarios (Evans et al.,
2007). The predicted confidence interval at the interim can be expressed as

n NXn C m NXm

N
˙ C

�p
N
:

where NXm is the simulated group mean difference assuming the current trend
observed at interim continues, i.e. NXm � N. NXn; �

2=m/. Let CPCIt be the conditional
probability of the upper bound of PCI less than or equal to a threshold d at interim
time t given interim data. It is the proportion of PCIs whose upper bounds are
less than or equal to threshold d given observed interim data. Simulations can
be conducted to obtain CPCIt using the observed interim data. The theoretical
CPCIt can be obtained as the following (see section “Predicted Confidence Interval
Derivation in Sect. 2.3” in Appendix),

CPCIt D P

�
n NXn C m NXm

N
C C�p

N
� d j NXn

�

D ˆ

 

�C

r
N

m
C Nd

�
p

m
� N NXn

�
p

m

!

: (11)

A Go decision (D=1) is made at interim t when CPCIt in Eq. (11) is less than or
equal to & where 0 < & < 1, i.e., CPCIt � & . In other words, the smaller the CPCIt

the lower the chance that the PCI upper bound will be less than or equal to d, a Go
decision should be made. Otherwise, a No-Go decision should be made. Similar to
the argument for the conditional power method, the decision function for PCI based
on the interim data is

D D
	
1 if CPCIt � & I
0 otherwise,

which is equivalent to D=1 when �C
q

N
m C Nd

�
p

m
� N NXn

�
p

m
� u, D=0 otherwise,

where ˆ.u/ D & . After some algebra (see section “Predicted Confidence Interval
Derivation in Sect. 2.3” in Appendix), the probability of a Go decision (D=1) at
interim with the treatment effect difference of � for PCI can be obtained as the
following,
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Prob.D D 1/ D P

 

�C

r
N

m
C Nd

�
p

m
� N NXn

�
p

m
� u

!

D ˆ

�

C

r
n

N
� .d � �/

p
n

�
C u

p
mn

N

�

: (12)

Similar to the argument for the conditional power method, the sensitivity and the
specificity at interim time t at cutoff u, an upper bound threshold d for the PCI
method are

Spci.u; �1/ D ˆ

�

C

r
n

N
� .d � �1/pn

�
C

p
mn

N
u

�

; (13)

Spci.u; �0/ D 1 �ˆ

�

C

r
n

N
� .d � �0/

p
n

�
C

p
mn

N
u

�

: (14)

Accordingly, the ROC curve for the interim Go and No-Go decision based on PCI
can be constructed by varing u in �1 < u < C1.

2.4 Equivalent Conversion of CP, PP, and PCI Methods

It is known that an ROC curve for diagnostic testing is invariant under monotonic
transformation of a decision function. For the same reason, the ROC curves defined
in Sects. 2.1–2.3 should be identical. In the following, a unified expression is
derived, and the conversion formula of cutoff points of different decision methods
are derived. ROC curves for CP, PP, and PCI methods have been constructed using
the sensitivity and 1-specificity. Considering the conditional power method, let
y D Scp.u; �1/ and x D 1 � Scp.u; �0/, then from Eq. (5),

p
mn

N
u D �C

r
n

N
C

p
n�0
�

�ˆ�1.x/ (15)

Substituting
p

mn
N u from Eq. (15) into Eq. (4) and we obtain

y D Scp.u; �1/ D ˆ

�

ˆ�1.x/C
p

n.�1 � �0/
�

�

: (16)

Equation (16) is a non-parametric expression of an ROC curve based on the
conditional power method. It can be shown that the same non-parametric expression
of ROC curve can be obtained for the predictive power method and the predicted
confidence interval method. Identical ROC curves for the three methods imply
equivalence of CP, PP, and PCI in terms of decision-making at interim and they
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Fig. 1 Simulated ROC curves (points) match theoretical ROC curves for CP, PP, and PCI methods.
CP stands for the conditional power method, PP stands for the predictive power method, and PCI
stands for the predicted confidence interval method. The simulation (10,000 runs) used a total
sample size of N = 60 per arm and the interim sample size was n = 30 per arm. Effect sizes 0.7, 0.5,
and 0.3 were assumed as desired effect sizes (�1) for three ROC curves from the top to the bottom.
The undesired effect size (�0) was 0.1 for all three curves and the common standard deviation was
assumed to be 1 in the simulation

are unified by the ROC criteria. Our simulation results presented in Fig. 1 showed
the consistency between theoretical ROC curves and simulated ROC curves, which
indicates equivalence of the three methods for interim decision-making. For each
scenario in Fig. 1, the simulated ROC curves for CP, PP, and PCI are well overlapped
with their theoretical ROC curves.

Although three statistical methods are equivalent in terms of overall quality of
interim decision-making but thresholds vary among the three methods for the same
quality of interim decision-making in terms of the sensitivity and the specificity. The
formula for conversion of thresholds between each pair of the three methods can be
derived. Let ucp, upp, and upci be thresholds for CP, PP, and PCI methods to have
the same decision-quality in terms of the sensitivity and the specificity at interim,
respectively. After some algebra, the conversion formula of three thresholds are

upp D ucp

r
n

N
;
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Table 1 Optimal thresholds which maximize accuracy of decision-making at interim
for the three methods (CP, PP, and PCI) under different desired effect sizes

�1 Method Threshold Accuracy �1 Method Threshold Accuracy

0.7 CP 0.628 0.877 0.3 CP 0.111 0.651

PP 0.591 0.877 PP 0.194 0.651

PCI 0.031 0.877 PCI 0.373 0.651

0.6 CP 0.476 0.834 0.2 CP 0.054 0.577

PP 0.483 0.834 PP 0.127 0.577

PCI 0.069 0.834 PCI 0.525 0.577

0.5 CP 0.327 0.781 0.1 CP 0.023 0.500

PP 0.376 0.781 PP 0.079 0.500

PCI 0.136 0.781 PCI 0.674 0.500

0.4 CP 0.202 0.719 0.0 a CP 0.003 0.500

PP 0.277 0.719 PP 0.025 0.500

PCI 0.238 0.719 PCI 0.890 0.500

Note: CP the conditional power method; PP the predictive power method; PCI the
predicted confidence interval method where d D 0:516 is chosen so that a sample
size of 60/arm (N) has 80 % power with a two-sided ˛ D 0:05 test
a�0 D 0, otherwise �0 D 0:1. The interim analysis is performed at n = 30
subjects/arm

upci D �2C

r
N

m
C dNp

m�
� ucp;

upci D �2C

r
N

m
C dNp

m�
� upp

r
N

n
:

Numerical examples of this mapping can be found in Table 1.

3 Performance Characteristics of ROC Curves

3.1 Factors Associated with the Discriminative Capacity
of ROC Curves

As shown in Eq. (16) in Sect. 2.4, the three methods for interim decision-making
are equivalent as demonstrated based on ROC criteria. Given a specificity, factors
determining the shape of an ROC curve are the interim sample size (n) and the
standardized treatment difference between a desired effect and an undesired effect
(�1��0

�
). Figure 2 presents how the shape of ROC curve changes when the sample

sizes increases at interim given a desired effect size is 0.6 and an undesired effect
size is 0.1 (Fig. 2a). The area under the ROC curve (AUC), which is the overall
measure of decision quality and is the probability of a statistical test to discriminate
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Fig. 2 Conditional power ROC curves at different sample sizes at interim analysis (n = 1, 10, 20,
30, 40, and 50) for a desired effect size of 0.6 and an undesired effect size of 0.1 (a). The number
on each curve is the assumed sample size/arm associated with that ROC curve at interim. The area
under ROC curve in a increases along with the increase of the sample size (b)

the true positive and the true negative, increases monotonically along with the
sample size increases at interim (Fig. 2b). This indicates that the decision quality
at interim will be better if more subjects are included in the interim analysis.
However, the increase of the AUC is steeper for early cumulative subjects than
those accumulated in the later stage of a trial. For example in Fig. 2b, the first
10 subjects/arm contribute 33 % increase of the AUC relative to the AUC with
one subject/arm available for interim analysis. About 47 % increase of the AUC is
achieved when 20 subjects/arm are available at interim analysis. However, the AUC
increase is less than 5 % every 10 subjects/arm increase after 30 subjects/arm are
available at interim. Both the sample size at interim and the difference of effect sizes
contribute to quality of interim decision-making in terms of AUC. If the sample size
is fixed, the larger the difference between the desired and the undesired treatment
effects the higher the AUC.

3.2 Performance Comparisons Among the Three Methods
by Simulation

One way to evaluate performance of the three methods on the interim decision-
making quality is to assess overall accuracy, defined as the average of the sensitivity
and the specificity. There are many methods available in the literature to identify
optimal points on ROC curves, including minimizing the Euclidean distance method
and Youden index (Fluss et al., 2005; Hajian-Tilaki, 2013; Perkins and Schisterman,
2006). We used the method which minimizes the Euclidean distance from the
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point (x=0,y=1) on the upper left hand corner of the ROC space to any point on
the ROC curve to find the optimal point. Suppose the optimal point on the ROC
curve described by Eq. (16) has coordinate .x0; y0/, then y0 D h.x0/ where h.x0/
is the function of the ROC curve specified by Eq. (16). The approach to identify
the optimal point .x0; y0/ is to minimize the Euclidean distance between Point
.0; 1/ and a point .x0; y0/ on the ROC curve defined by Eq. (16), i.e., to minimizep

x2 C .h.x/� 1/2 to obtain .x0; y0/, where .x; y/ is any data point on the ROC
curve.

Simulations were conducted to validate the theoretical findings and to compare
performance of the three methods in terms of quality of decision-making at interim.
We used the following settings to simulate late phase clinical trials with two arms:
the total sample size for each arm was 60 which had 80 % power to detect an
effect size of 0.516 or had 90 % power to detect 0.6 effect size using a two-sided
t-test at the 5 % significance level. The interim analysis was conducted when a
half of subjects (30/arm) were available for the analysis. An optimal threshold
for each method (CP, PP, or PCI) was identified from theoretical ROC curves and
are presented in Table 1 under various desired treatment effect sizes. Performance
of optimal thresholds and other thresholds (0.3, 0.4, and 0.5 in the probability
scale) for interim decision-making was compared. Besides the probability threshold,
an upper bound threshold d in PCI is also required in the simulation. A clinical
meaningful threshold is often chosen as d at the design stage. We used a constant
(e.g., 0.516) in the simulations using R software (R Development Core Team,
2011). Decision quality was evaluated using the following parameters: sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), and
overall power. PPV and NPV are commonly used to assess ability of a test to
correctly predict the underlying truth using the test result. PPV is the probability to
correctly predict the positive truth given the test is positive. NPV is the probability
to correctly predict the negative truth given the test is negative.

Performance comparisons among the three methods are presented in Table 2
(d D 0:516 in PCI). As expected, all comparative parameters decreased for all three
methods when the desired treatment effect decreased at the optimal thresholds. For
example, the sensitivity decreased from �88 % at �1 D 0:7 to �50 % at �1 D 0:1

which was the undesired effect size or �1 D 0 at the null. For other thresholds used
at interim decision-making, CP and PP behaved similarly with slightly different
numerical values for each comparative parameter but PCI performed differently
comparing to CP and PP methods. PCI had a higher sensitivity than CP and PP
methods at each desired effect size and the sensitivity decreased when the assumed
�1 decreased. The specificity for PCI was smaller than CP and PP at each �1 level.
PCI had a slightly higher NPV and overall power but a slightly lower PPV than
CP and PP at each �1 level. The type I error rate was well controlled for all three
methods at different thresholds except a minor inflation for optimal thresholds. In
summary, if optimal thresholds were used for interim decision-making, the three
methods performed similarly in terms of decision quality parameters across different
desired treatment effect sizes. This result is consistent with our theoretical findings
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that CP, PP, and PCI are equivalent in decision-making quality if appropriate
thresholds are chosen for each method.

In practice, the true treatment effect is often unknown and is estimated from
previous studies for the similar therapy and the estimated treatment effect is used
to design a clinical trial. Suppose a treatment effect size is 0.5, a trial is designed
to have 60 subjects/arm to detected this treatment effect with 80 % power using
one-sided test at 0.025 level. If the observed treatment effect is also 0.5, then
an optimal threshold 0.327 for conditional power has both 78 % sensitivity and
specificity for interim Go/No-Go decision making. If the observed treatment effect
size is 0.7, then this threshold has 94 % sensitivity and 78 % specificity for interim
decision-making. If the observed treatment effect size is 0.3, then this threshold
has 50 % sensitivity and 78 % specificity for interim decision-making. Therefore,
the assumed true treatment effect is critical for determining criteria which controls
interim decision quality.

4 Applications to Design Optimization in Late Phase
Clinical Trials

4.1 Timing and Threshold of Interim Analysis Based
on ROC Criteria

In late phase clinical trials with interim analyses, one common question is how
to determine the time when the interim analysis should be conducted for interim
Go/No-Go decisions. The proposed ROC based approach provides an answer to
this question. If the sensitivity and the specificity for interim decision-making is
pre-specified at the design stage of a trial, then timing of the interim analysis and
associated threshold can be determined from the ROC curve. For example, Eqs. (15)
and (16) can be used to determine the timing and threshold of interim analysis for
the conditional power method. We used the conditional power method to illustrate
the details of the application and results are presented in Table 3. For example, at a
given total sample size N=60/arm, if the pre-specified sensitivity and specificity both
are 85 %, then the interim analysis should be performed when at least 24 subjects
per arm are available for the analysis using the conditional power threshold 0.617
for the desired true treatment effect size of 0.7. If the true treatment effect size is
0.5, then the minimum required sample size is 54 subjects per arm for the interim
analysis with threshold 0.164. If the true effect size is 0.4, then the current total
sample size 60/arm cannot achieve both 85 % sensitivity and 85 % specificity for
interim decision-making. In stead, 95 subjects/arm is the minimum required sample
size for the same interim decision quality.



Interim Go/No-Go Decision in Clinical Trials 137

Table 3 Sample sizes required under different desired treatment effect sizes to achieve the pre-
specified sensitivity and specificity using the conditional power

Pre-specified �1

Sensitivity Specificity Threshold 0:7 0:6 0:5 0:4 0:3 0:2

0:90 0:90 na 37 52 59 59 59 59

ˆ.u/b 0:644 0:452 0:0 0:0 0:0 0:0

n�c 37 52 82 146 328 1314

0:85 n 30 43 59 59 59 59

ˆ.u/ 0:532 0:362 0:0 0:0 0:0 0:0

n� 30 43 67 119 269 1075

0:80 n 25 36 56 59 59 59

ˆ.u/ 0:443 0:302 0:014 0:0 0:0 0:0

n� 25 36 56 100 225 902

0:85 0:90 n 30 43 59 59 59 59

ˆ.u/ 0:716 0:576 0:0 0:0 0:0 0:0

n� 30 43 67 119 269 1075

0:85 n 24 34 54 59 59 59

ˆ.u/ 0:617 0:474 0:164 0:0 0:0 0:0

n� 24 34 54 95 215 859

0:80 n 20 28 44 59 59 59

ˆ.u/ 0:529 0:400 0:202 0:0 0:0 0:0

n� 20 28 44 78 176 705

0:80 0:90 n 25 36 56 59 59 59

ˆ.u/ 0:773 0:648 0:358 0:0 0:0 0:0

n� 25 36 56 100 225 902

0:85 n 20 28 44 59 59 59

ˆ.u/ 0:688 0:554 0:347 0:0 0:0 0:0

n� 20 28 44 78 176 705

0:80 n 16 23 35 59 59 59

ˆ.u/ 0:606 0:478 0:310 0:0 0:0 0:0

n� 16 23 35 63 142 567

a The smallest sample size for the interim analysis with the total sample size of 60/arm
b Optimal threshold for interim decision-making with N=60/arm using conditional power
c The sample size/arm required to achieve the pre-specified sensitivity and specificity

4.2 Designs with Global Optimization

Satisfying both high sensitivity and high specificity for a clinical trial design could
be difficult in practice as described in the last subsection. An alternative approach
is only to use the sensitivity and the overall power to search an optimal design with
the minimum average sample size under the undesired treatment effect. In late phase
clinical trials, the overall sample size (N/arm), the sample size at interim (n/arm),
and the threshold (u) for Go/No-Go decision at interim analysis are typically



138 D. Wang et al.

pre-specified in the protocol so that the type I error rate is well controlled and
the desired power can be achieved. Motivated by Simon’s two-stage design in
Phase II clinical trials with binary outcomes (Simon, 1989), we propose to use
the ROC based approach to optimize a design with interim futility analysis for a
continuous endpoint by minimizing the average sample size while maintaining the
overall power of the trial. The goal of the proposed design is to minimize the average
sample size (ASS) if the underlying treatment effect is undesired while the overall
power is reserved. The average sample size under the undesired treatment effect �0
is defined as

ASS�0 D n C .1 � x/.N � n/;

where x is the specificity defined by any of three methods. Let y be the sensitivity
defined by any of three methods, and

1 � x D ˆ

�

ˆ�1.y/�
p

n.�1 � �0//

�

�

:

To optimize the design, a global search in parameter space for fN; n; u; yg needs
to be conducted to identify a quadruple fN�; n�; u�; y�g so that ASS�0 is minimized
and the target overall power is still achieved and the type I error rate is controlled.
The following procedure can be utilized to find the quadruple fN�; n�; u�; y�g
numerically.

1. Determine �1 and �0 and the maximum sample size Nmax (based on the resource
and time-line considerations);

2. Determine the target power at�1 (i.e., 1�ˇ) and the type I error rate ˛. Calculate
the sample size N0 for the target power based on a fixed sample size design
without interim analysis;

3. Choose a sensitivity at �1 or y where 1 � ˇ < y < 1;
4. For each N from N0 to Nmax, find n in the range of (1,N-1) such that the power of

the trial at �1 is at least 1�ˇ with the minimized ASS�0 at threshold u under �0;
5. Repeat Steps 3 to 4 until a quadruple fN�; n�; u�; y�g minimizing ASS�0 is

identified.

This search procedure is named a global search procedure in parameter space for
fN; n; u; yg so that the global optimal design can be found. Now, instead of varying
N in Step 4, a simplified approach is to determine N upfront using the target power
and the sensitivity. Specifically, calculate N� to target an inflated power .1 � ˇ/=y
so that the final overall power is no less than the target power. The final n� and
u� minimizing ASS�0 are identified as described in Step 4. This simplified search
procedure eliminates the search dimension for N in the global search procedure.

One important calculation of the global search procedure is to determine the
power in Step 4 for a given quadruple fN; n; u; yg. Considering equivalence of CP,
PP, and PCI methods as shown in Sect. 2.4, we choose CP to demonstrate how the
power is calculated in Step 4 in the global search procedure. The overall power is
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the probability to reject the null hypothesis at the end of a trial with a Go decision
at interim. Under the desired treatment effect � D �1, it is calculated as

1 � ˇ D P

 NXN

p
N

�
> C; NXn > .u C C

r
N

m
/

p
m�

N
j � D �1

!

D P

 NXN � �1
�=

p
N

> C � �1

�=
p

N
;

NXn � �1

�=
p

n
> .u C C

r
N

m
/

p
m�

N�=
p

n
� �1

�=
p

n

!

D P

�

ZN > C � �1

�=
p

N
;Zn >

u
p

mn

N
C C

r
n

N
� �1

p
n

�

�

D
1Z

k

1Z

h

g.ZN ;Zn/ dZN dZn ;

where k D C� �1

�=
p

N
, h D u

p
mn

N CC
p n

N � �1
p

n
�

, g.ZN ;Zn/ is the density function of

a bivariate normal distribution with mean � D 
0
0

�
and variance covariance matrix

† D
�
1
�
�
1

�
with � D p n

N for the correlation coefficient between ZN and Zn.

An illustration example of this application using the conditional power method
is presented in Table 4 for the desired effect size of 0.6 and the undesired treatment
effect size of 0.1. Thresholds for PP and PCI were calculated from the CP thresholds
using the conversion formula described in Sect. 2.4. With a slightly larger initial
sample size, both search procedures led to optimal stopping rules for futility which
significantly reduced average sample size by 23–30 % as compared to corresponding
fixed sample size designs. The global search procedure had a marginal efficiency
than the simplified procedure but both procedures generated designs with similar
decision quality at interim.

4.3 An Example

The global optimization procedure based on the proposed method can be easily
applied in real clinical trial designs. We used a published phase III clinical trial
data as an example to show how to design a trial using the proposed method.
Burmester et al. (2013) conducted a study to test if tofacitinib (CP-690,550)
was safe and effective in moderate-to-severe rheumatoid arthritis patients taking
methotrexate who had an inadequate response to tumor necrosis factor inhibitor
treatment. The trial was a 6 month, randomized, double-blind and parallel-group
phase 3 study. A total of 399 subjects were equally randomized to receive twice a
day treatment with tofacitinib 5 mg, tofacitinib 10 mg or placebo (133 subjects/arm).
At Month 3, placebo subjects were equally randomized again to two tofacitinib dose
groups. One of the co-primary efficacy endpoints was the change from baseline in
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DAS28-4(ESR) at Month 3. This sample size has 90 % power to detect an effect
size of 0.4 for a pairwise comparison (treatment vs. placebo) at the 5 % significance
level using a two-sided test.

Suppose we want to design a new late phase clinical trial where two treatment
arms (a high dose and a low dose) and a placebo arm are included with an allocation
ratio of 1:1:1 among three arms. We assume the patient population is similar to one
described by Burmester et al. (2013). One interim analysis is planned for futility
analysis. We assume the desired effect size �1 D 0:4 and the undesired effect
size is �0 D 0:1, the target power is 90 %, and the significant threshold C for the
test is 1.96 under the normal distribution. An optimal design using the proposed
method is found that 146 subjects are needed for each arm, an interim analysis
could be performed when at least 64 subjects/arm are available for the analysis, the
conditional power threshold 0.085 can be used for futility analysis to drop undesired
dose arm(s). This design has 95 % chance to make a Go decision and 52 % chance
to make a No-Go decision for futility at interim for each dose arm. The average
sample size is 103.29 subjects/arm under the undesired effect size of 0.1 and the
target power 90 % is reserved for this design. The proposed design has a smaller
average sample size than the single stage design if the treatment effect falls in the
space of undesired treatment effect. If the undesired treatment effect size is the same
as the null hypothesis, i.e. �0 D 0,then the optimal design is: 164 subjects/arm are
needed, the required minimum interim sample size is 57/ arm, and the conditional
power threshold is 0.15 for the interim futility decision-making. The average sample
size under the space of undesired treatment effect (the null hypothesis) is 84.26
subjects/arm. This design has 93 % chance to make a Go decision and 74 % chance
to make a No-Go decision for futility at interim.

5 Conclusions and Discussions

Interim data monitoring has been used for interim Go/No-Go decision-making in
late stage clinical trials. Various interim analysis methods have been used, including
conditional power, predictive power and predicted confidence interval. However,
the thresholds used for these methods are arbitrary and time (in terms of the sample
size) for interim analysis are often chosen based on experience. In addition, although
some have discussed the relationship between conditional power and predictive
power (Gallo et al., 2014; Lan et al., 2009) , there is no systematic approach to
evaluate the performance and relationship among these three methods. In this paper,
we propose to use an ROC approach for evaluation of overall decision quality of
different interim analysis methods. With this approach, three interim monitoring
methods have been shown to be equivalent, leading to the same ROC curve for the
same clinical trial. This approach also provides a systematic way of determining the
sample size for interim analysis. It was shown that the AUC increased as the interim
sample size increased, implying that the interim decision-making quality increased.
However, the AUC increase diminished as the interim sample size became larger.
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This provides guidance to choose an appropriate interim analysis sample size. For
example, one can choose an interim sample size such that the AUC increase does
not exceed 5 %. This approach also provides a way of selecting an interim analysis
threshold with desired sensitivity and specificity. An ROC curve is furbished once
the interim analysis sample size is determined. Then one can choose an interim
analysis threshold that meets a target sensitivity and/or specificity. This threshold
can then be translated into a cutoff point for conditional power, predictive power, or
predicted confidence interval, based on one’s preference.

In addition to the application in interim monitoring, this ROC approach can
also be integrated into an optimal two-stage design. With obtained expressions
of sensitivity and specificity, the global search can be easily conducted and an
optimal two-stage design similar to Simon’s two-stage design (Simon, 1989) but
for continuous outcome (Wason and Mander, 2012) can be obtained. The design
with the optimally chosen futility rule minimizes the average sample size while the
underlying treatment effect is small. This futility rule can be easily explained to
clinicians in terms of conditional power, predictive power or predicted confidence
interval which is associated with the sensitivity and the specificity of the interim
decision.

This research mainly focuses on the normally distributed endpoint with the equal
sample size per arm in clinical trials. It can be easily extended to designs with
a unequal sample size per arm. The proposed method can also be extended to
the binary endpoint using a normal approximation. Assuming that the underlying
treatment response rates for the treatment and placebo arms are Pe and Pc.Pc >

Pe/, the probabilities of Go/No-Go decisions can be obtained by replacing � and
� with Pc � Pe and � D p

Pc.1 � Pc/C Pe.1 � Pe/ in equations in Sect. 2,
respectively. Due to the poor coverage probability for Wald type confidence
intervals for the binary endpoint (Agresti and Caffo, 2000; Brown et al., 2001;
Newcombe, 1998), especially for scenarios that the sample size is small and the
proportion is closed to 0 or 1, the arcsine square root transformation of binomial
proportions should be used to calculate predicted confidence intervals to improve
the coverage probability of Wald type predicted confidence intervals. The proposed
ROC approach can also be extended to the time-to-event endpoint using the normal
approximation.
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Appendix

Conditional Power Derivation in Sect. 2.1

As shown in Eq. (1),
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By plugging in � D NXn under the assumption that the current trend of treatment
effect at interim continues, the conditional power is
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Then Eq. (1) is obtained.

Predictive Power Derivation in Sect. 2.2

Var. NXm/ D Var.E. NXmj�//C E.Var. NXmj�//
D Var.�/C E.�2=m/
D �2.1=n C 1=m/

The predictive power in Eq. (6) is given by
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Assuming a non-informative prior distribution g.�/ D 1, the posterior probability
density is g.� j NXn/ D N. NXn; �

2=n/ given the interim data (Tan, 2008). Condition on
the interim data, the marginal distribution of NXm is normally distributed with mean
NXn and variance derived above, then the predictive power at interim time t is
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Predicted Confidence Interval Derivation in Sect. 2.3

Assuming NXm is the predicted group mean difference given the current trend
observed at interim continues in the second half of a trial after the interim, i.e.
NXm � N. NXn; �

2=m/. Then the probability of the predicted confidence interval upper
bound is less than or equal to a threshold d is
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A Go decision (D=1) is made at interim if CPCIt � & D ˆ.u/, expressed in the
mathematical equation in the following,
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Then the probability of a Go decision at interim is,
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Then Eqs. (13) and (14) in Sect. 2.3 are obtained for Spci.u; �1/ and Spci.u; �0/,
respectively.

References

Agresti, A., & Caffo, B. (2000). Simple and effective confidence intervals for proportions and
differences of proportions results from adding two successes and two failures. The American
Statistician, 54, 280–288.

Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion.
Statistical Science, 16, 101–117.

Burmester, G. R., Blanco, R., Charles-Schoeman, C., Wollenhaupt, J., Zerbini, C., Benda, B.,
et al. (2013). Tofacitinib (cp-690,550) in combination with methotrexate in patients with
active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors:
a randomised phase 3 trial. The Lancet, 381, 451–460.

Chuang-Stein, C., Kirby, S., French, J., Kowalski, K., Marshall, S., Smith, M. K., et al. (2011).
A quantitative approach for making go/no-go decisions in drug development. Drug Information
Journal, 45, 187–202.

DeMets, D. L. (2006). Futility approaches to interim monitoring by data monitoring committees.
Clinical Trials, 3, 522–529.

Dobbins, T. W. (2013). The type II error probability of a group sequential test of efficacy and
futility, and considerations for power and sample size. Journal of Biopharmaceutical Statisticis,
23, 378–393.

Evans, S. R., Li, L. L., & Wei, L. J. (2007). Data monitoring in clinical trials using prediction.
Drug Information Journal, 41, 733–742.

Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of youden index and its associated cutoff
point. Biomedical Journal, 47, 458–472.

Friedlin, B., Korn, E. L., & Gray, R. (2010). A general inefficacy interim monitoring rule for
randomized clinical trials. Clinical Trials, 7, 197–208.

Gallo, P., Mao, L., & Shih, V. H. (2014). Alternative views on setting clinical trial futility criteria.
Journal of Biopharmaceutical Statisticis, 24, 976–993.

Green, D. M. & Swets, J. A. (Eds.). (1966). Signal detection theory and psychophysics. New York,
NY: Wiley.



146 D. Wang et al.

Hajian-Tilaki, K. (2013). Receiver operating characteristics (ROC) curve analysis for medical
diagnostic test evaluation. Caspian Journal of Internal Medicine, 4, 627–635.

Halperin, M., Lan, K. K. G., Ware, J. H., Johnson, N. J., & DeMets, D. L. (1982). An aid to data
monitoring in long-term clinical trials. Controlled Clinical Trials, 3, 311–323.

Jennison, C., & Turnbull, B. W. (1990). Statistical approaches to interim monitoring of medical
trials: a review and commentary. Statistical Science, 5, 299–317.

Lachin, J. M. (2005). A review of methods for futility stopping based on conditional power.
Statistics in Medicine, 24, 2747–2764.

Lachin, J. M. (2009). Futility interim monitoring with control of type i and type ii error
probabilities using the interim z-value or confidence limit. Clinical Trial, 6, 565–573.

Lan, K. K. G., & DeMets, D. L. (1983). Discrete sequential boundiaries for clinical trials.
Biometrika, 70, 659–663.

Lan, K. K. G., Hu, P., & Proschan, M. A. (2009). A conditional power approach to the evaluation
of predictive power. Statistics in Biopharmaceutical Research, 1, 131–136.

Lan, K. K. G., Simon, R., & Halperin, M. (1987). Stochastically curtailed tests in long-term clinical
trials. Communications in Statistics, C1, 207–219.

Lan, K. K. G., & Wittes, J. (1988). The b-value: A tool for monitoring clinical trial. Biometrics,
44, 579–585.

Mazumdar, M., & Liu, A. (2003). Group sequential design for comparative diagnostic accuracy
studies. Statistics in Medicine, 22, 727–739.

Newcombe, R. G. (1998). Interval estimation for the difference between independent proportions:
Comparison of eleven methods. Statistics in Medicine, 17, 873–890.

O’Brien, P. C., & Fleming, T. R. (1979). A multiple testing procedure for clinical trials. Biometrics,
35, 549–556.

Obuchowski, N. A. (2003). Receiver operating characteristic curves and their use in radiology.
Radiology, 229, 3–8.

Pater, J. L., & Willan, A. R. (1984). Clinical trials as diagnostic tests. Controlled Clinical Trials,
5, 107–113.

Pepe, M. S. (Ed.) (2003). The statistical evaluation of medical tests for classification and
prediction. New York, NY: Oxford.

Perkins, N. J., & Schisterman, E. F. (2006). The inconsistency of optimal cut-points obtained
using two criteria based on receiver operating characteristics curve. American Journal of
Epidemiology, 163, 670–675.

Peto, R., Pike, M. C., Armitrage, P., Breslow, N. E., Cox, D. R., Howard, S. V., et al. (1976). Design
and analysis of randomized clinical trials requiring prolonged observation of each patient. I.
introduction and design. British Journal of Cancer, 34, 585–612.

Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials.
Biometrika, 64, 191–199.

R Development Core Team (2011). R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. ISBN:3-900051-07-0.

Simon, R. (1989). Optimal two-stage designs for phase II clinical trials. Controlled Clinical Trials,
10, 1–10.

Spiegelhalter, D. J., Freedman, L. S., & Blackburn, P. R. (1986). Monitoring clinical trials:
conditional or predictive power ? Controlled Clinical Trials, 7, 8–17.

Tan, M. T. (2008). Conditional power in clinical trial monitoring. Wiley encyclopedia of clinical
trials (pp. 1–7). http://onlinelibrary.wiley.com/. doi:10.1002/9780471462422.eoct448/full

Wang, S. K., & Tsiatis, A. A. (1987). Approximately optimal one-parameter boundaries for group
sequential trials. Biometrics, 43, 193–199.

Wason, J. M. S., & Mander, A. P. (2012). Minimizing the maximum expected sample size in
two-stage phase II clinical trials with continuous outcomes. Journal of Biopharmaceutical
Statistics, 22, 836–852.

http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1002/9780471462422.eoct448/full


Interim Go/No-Go Decision in Clinical Trials 147

Zhang, Y., & Clarke, W. R. (2010). A flexible futility monitoring method with time-varying
conditional power boundary. Clinical Trials, 7, 209–218.

Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A funda-
mental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561–577.



Part III
Novel Applications and Implementation



Recent Advancements in Geovisualization,
with a Case Study on Chinese Religions

Jürgen Symanzik, Shuming Bao, XiaoTian Dai, Miao Shui, and Bing She

Abstract Producing high-quality, map-based displays for economic, medical, edu-
cational, or any other kind of statistical data with geographic covariates has always
been challenging. Either it was necessary to have access to high-end software or one
had to do a lot of detailed programming. Recently, R software for linked micromap
(LM) plots has been enhanced to handle any available shapefiles from Geographic
Information Systems (GIS). Also, enhancements have been made that allow for a
fast overlay of various statistical graphs on Google maps. In this article, we provide
an overview of the necessary steps to produce such graphs in R, starting with GIS-
based data and shapefiles and ending with the resulting graphs in R. We will use data
from a study on Chinese religions and society (provided by the China Data Center
at the University of Michigan) as a case study for these graphical methods.

1 Introduction

Geographic visualization, short geovisualization, plays an important role in explor-
ing and mining information from today’s huge collections of data with a geographic,
that is, spatial context (MacEachren et al., 2004, 1999). Naturally, maps and, even
more, interactive maps are an essential tool to extract, visualize, and compre-
hend complex spatial information (Andrienko and Andrienko, 1999; Andrienko
et al., 2001; Roth, 2013). Geovisualization is closely related to exploratory spatial
data analysis (ESDA), discussed in detail in Anselin (1994), Bivand (2010), and
Symanzik (2014). In fact, Bivand (2010) indicates that “geovisualization is not
separate from exploratory spatial data analysis, but rather constitutes the backbone
of ESDA, joining up the large range of techniques proposed for examining spatial
data in a shared and easily comprehended visualization framework.”
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In this article, we will discuss advances in geovisualization that make use of
two types of maps, that is, linked micromap (LM) plots and overlays on Google
maps. The data of interest are Chinese religions at the provincial level, introduced
in Sect. 2. In Sect. 3, we discuss LM plots and demonstrate how those can be used
for the effective visualization and exploration of the Chinese religions data. In the
following Sect. 4, we describe how LM plots can be created interactively in the
online Religion Explorer software. We briefly describe in Sect. 5 how Google maps
can be used as an alternative way to visualize the Chinese religions data. This article
is concluded by a brief discussion and outlook in Sect. 6.

2 Religion in China

Religion has a considerable impact on the cultural, social, and economic develop-
ment of a country. According to Lai (2003), China has experienced a major revival
of religious faith and practice since 1979. Based on official statistics, there were
about 144 million believers in China in 2003. According to unofficial sources, this
number was about 200 million. Apparently, most of the data on this subject are not
publicly available or are simply unknown.

The China Data Center (CDC) at the University of Michigan in Ann Arbor,
MI, is an international center designed to advance the study and understanding of
China (http://chinadatacenter.org/). A primary goal of the CDC is the integration of
historical, social, and natural science data in a GIS, where spatial and temporal
references are maintained through a relational database. The main data used in
this article were derived from the 2004 Economic Census of China provided by
the National Bureau of Statistics of the People’s Republic of China. This data
set includes rough estimates of religious sites and organizations. It consists of
72,968 officially registered religious organizations. The data fields are site name,
site address, contact information, year of establishment, ownership type, employee
scale, revenue range, primary activities classification, GB (Guo Biao—National
Standard) codes for province, city, county and township, province name, city name,
county name and township name, zip code, latitude and longitude (Zhu et al., 2014).

Buddhism, Protestantism, Catholicism, Islam, and Daoism (sometimes called
“Taoism”) are the five big officially recognized religions in China (Hackett et al.,
2011; Lai, 2003, Appendix C, p. 99). Zhu et al. (2014) combined Protestantism
and Catholicism to Christianity and classified the data to five religious types,
based on the name, characteristics, and primary activities of those religious sites
and organizations. The five types are Buddhism, Christianity, Daoism, Islam, and
“Administration”. Administration means administrative organizations like Bureau
of Religious Affairs, Religious Authority, Anti-cult Association, religious associa-
tions, and so on.

http://chinadatacenter.org/
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Table 1 Reproduction of Table 1 from Zhu et al. (2014), showing the number of religious sites
and organizations for Administration, Buddhism, Daoism, Islam, and Christianity, by province
in 2004

ProvinceID Province Administration Buddhism Daoism Islam Christianity Total

11 Beijing 0 2 0 22 5 29

12 Tianjin 1 6 0 30 25 62

13 Hebei 0 98 31 246 399 774

14 Shanxi 3 280 25 29 411 748

15 Neimenggu 4 109 2 126 304 545

21 Liaoning 2 312 47 89 821 1271

22 Jilin 0 71 8 56 745 880

23 Heilongjiang 1 100 9 64 473 647

31 Shanghai 1 73 21 7 175 277

32 Jiangsu 7 415 62 35 1039 1558

33 Zhejiang 2 2956 1868 10 2830 7666

34 Anhui 3 675 40 98 2132 2948

35 Fujian 10 2745 1030 6 1804 5595

36 Jiangxi 9 1133 288 5 633 2068

37 Shandong 5 14 7 122 306 454

41 Henan 10 187 128 444 1988 2757

42 Hubei 9 756 205 31 198 1199

43 Hunan 5 763 178 36 160 1142

44 Guangdong 10 617 81 3 440 1151

45 Guangxi 1 61 0 14 101 177

46 Hainan 0 2 0 0 5 7

50 Chongqing 1 102 11 3 88 205

51 Sichuan 9 1412 124 116 196 1857

52 Guizhou 1 178 15 80 158 432

53 Yunnan 1 701 102 525 682 2011

54 Xizang 7 1320 0 2 1 1330

61 Shaanxi 2 186 131 69 464 852

62 Gansu 6 530 400 3680 202 4818

63 Qinghai 1 627 42 1266 16 1952

64 Ningxia 0 211 68 3416 22 3717

65 Xinjiang 8 47 1 23;678 105 23;839

Variables related to religions at the provincial level are listed in Table 1.
ProvinceID represents the administrative code of a province, and Province is the
English name of the 31 provinces from mainland China. “Total” is the total number
of all religious sites and organizations within a province, based on available data for
2004.
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3 Linked Micromap Plots

Linked micromap plots were introduced about 20 years ago (Carr and Pierson,
1996; Olsen et al., 1996) to overcome some of the limitations of choropleth maps.
Rather than focusing on a single detailed geographic map, there are multiple small
maps (micromaps) in a LM plot. Areas in these small maps are linked via color
to the names of these areas and to one or more statistical panels. The statistical
panels may contain any type of statistical plot, such as dotplots with or without
confidence intervals or error bars, boxplots, bar charts, line charts or time series
plots, scatterplots, and others. With the inclusion of informative statistical plots,
information loss that frequently occurs in choropleth maps is no longer a problem
in LM plots. A detailed discussion of LM plots can be found in Symanzik and Carr
(2008) and Carr and Pickle (2010) and a motivational example with a hypothetical
LM plot can be found in Gebreab et al. (2008).

Computer code to construct LM plots has been made available since their
introduction in 1996, as summarized in Symanzik and Carr (2008, Sect. 1.5).
Numerous developments of code for the production of LM plots in the statistical
computing environment R (R Core Team, 2014) followed, as summarized in
Symanzik and Carr (2013). However, Payton et al. (2012) observed: “Producing
LMplots [: : :] has typically been somewhat difficult, and therefore LMplots have
seen limited use.” This changed recently due to the introduction of the two R
packages micromap (Payton et al., 2015; Payton and Olsen, 2015) and micromapST
(Carr and Pearson Jr., 2015; Pickle et al., 2015). micromapST is focused on LM plots
for the United States and micromap can be used for any geographic regions, as long
as the necessary geographic boundary information (ideally from GIS shapefiles) is
available.

3.1 Preparation of Shapefiles

Despite the fact that the newly introduced R packages for micromaps considerably
simplify the construction of LM plots, there remains a major practical problem.
Many GIS shapefiles are not immediately suitable for use in LM plots. This can
be due to the relatively small geographic areas that are almost invisible in a small
map as used in LM plots. Similarly, regions that are far away from the main area of
interest result in a large unoccupied area in the center of the maps and, furthermore,
reduce the size of all areas. Examples for the United States are Washington, D.C.
(which is almost invisible in a small map) and Alaska and Hawaii (which are far
away from the main area of interest). For LM plots for the United States, this
problem was resolved long ago by manually resizing and shifting such areas.

Recently, Symanzik et al. (2014) developed R code that allows to resize and
shift problematic areas from arbitrary shapefiles. This R code was further refined
and enhanced to facilitate the adjustment of a shapefile from China for use in
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LM plots. In the first step, the shapefile was thinned. Thinning, in the context
of spatial polygons that represent the outlines of the geographic regions in a
shapefile, means that points from the boundaries of a polygon are removed, thus
simplifying the boundary and speeding up the drawing of the polygon. Moreover,
polygons that describe an area below a particular threshold are removed entirely.
The thinnedSpatialPoly function from the maptools (Bivand and Lewin-Koh, 2014)
R package provides an implementation for the thinning of spatial polygons, based on
the Douglas–Peucker algorithm (Douglas and Peucker, 1973). This step simplified
many of the borders and numerous small islands in the South China Sea that were
hardly visible in the maps were removed, thus enlarging all other areas.

In the second step, six small provinces, several of them composed of a single city,
had to be enlarged. These were the provinces Beijing, Tianjin, Shanghai, Ningxia,
Chongqing, and Hainan. The enlargement of each small province took place in such
a way that one of its boundaries was shifted into one of its neighboring provinces
(usually the largest one), thus making the small province relatively bigger while
reducing the bigger province a bit in size. This step was based on further generalized
and enhanced R code that was originally developed for Symanzik et al. (2014).

Overall, these steps required some careful visual reassessment of the resulting
new boundaries to guarantee that individual provinces and their relative locations
are still recognizable. Too much thinning and/or enlarging one (or multiple) of the
provinces by too much might have resulted in a distorted map. No province had to
be shifted to produce a map of China suitable for use in LM plots. Figure 1 (left)
shows the raw version of the map at the provincial level, Fig. 1 (center) shows the
version after thinning and removal of small islands, and Fig. 1 (right) shows the final
version after the enlargement of six provinces.

Fig. 1 Provinces from mainland China: Raw version (left), after thinning and removal of small
islands (center), and after enlargement of six small provinces (right). The enlarged provinces are
shown in red before enlargement (center) and after enlargement (right)
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3.2 LM Plots of Chinese Religions

Researchers interested in Chinese religions might have the following questions with
respect to the data set shown in Table 1:

1. For the provinces with the highest numbers of religious sites and organizations
related to Christianity, how widely is Buddhism represented in those provinces?

2. Is there any association between the number of religious sites and organizations
related to Buddhism and Daoism? If so, is this a positive or negative association?
Are there regional differences?

3. Is there an outlier, i.e., a province that has an unusually large number of religious
sites and organizations related to one of the main religions? How big is this
number? And is this also a spatial outlier?

Questions like these cannot be answered easily through a tabular representation
as in Table 1. However, answers to these questions (and to many other similar
questions) can be easily obtained through LM plots. Figures 2, 3, and 4 show three
LM plots that are based on the same data from Table 1. For each of the four religions
(Christianity, Buddhism, Daoism, and Islam), the data panel displays a dot plot
that shows the number of religious sites and organizations related to one of these
religions. Administration and Total have been omitted from these figures.

Different ways exist (see Carr and Pickle, 2010, pp. 64–67, for details) how
to highlight additional regions in each of the small maps, beyond the regions that
belong to the current perceptual group of the data. In Figs. 2, 3, and 4, two-ended
cumulative maps are used. Here, this means that in the top (bottom) panel, only the
provinces with the five highest (lowest) counts with respect to the sorting variable
are highlighted in color. In the second panel from the top (from the bottom), the
provinces with the five next highest (lowest) counts with respect to the sorting
variable are highlighted in color, but also the provinces with the five highest (lowest)
counts from the panel above (below) are highlighted in gray. Finally, in the third
panel from the top (from the bottom), the provinces with the five next highest
(lowest) counts with respect to the sorting variable are highlighted in color, but also
the provinces with the ten highest (lowest) counts from the panel above (below)
are highlighted in gray. Moreover, the median (here, the sixteenth largest/smallest
value) is highlighted in a different gray in both adjacent maps. These two-ended
cumulative maps make it easy to assess whether there is a general pattern with
respect to provinces that have values above and below the median.

In Fig. 2, the provinces and data rows are sorted with respect to decreasing
numbers of religious sites and organizations related to Christianity. This allows
to answer question 1 from above. Zhejiang and Fujian, which had the largest and
fourth largest numbers of religious sites and organizations related to Christianity,
also had the largest and second largest numbers of religious sites and organizations
related to Buddhism. In Anhui and Henan, ranked second and third with respect to
Christianity, Buddhism was much less present. In addition, this figure also shows
that for some provinces where Christianity is only rarely present, in particular
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Fig. 2 LM plot of Chinese religions, sorted according to Christianity

Sichuan and Xizang, Buddhism is far more present. In fact, as the next figure will
show, these two provinces are ranked third and fourth, respectively, with respect to
the number of religious sites and organizations related to Buddhism. When looking
at the small maps, it becomes apparent that Christianity was most present in the
coastal regions of China in the southeast, reaching as far north as Heilongjiang
and as far west as Yunnan. Christianity was less present in the western and central
provinces of China.

In Fig. 3, the provinces and data rows are sorted with respect to decreasing
numbers of religious sites and organizations related to Buddhism. This allows to
answer question 2 from above. It can be seen that the data columns for Buddhism
and Daoism run almost parallel to each other, with two exceptions. As discussed
in Gebreab et al. (2008), such a pattern is a strong indicator of a strong positive
linear association between the numbers of religious sites and organizations related
to Buddhism and Daoism. The exceptions are Xizang, where Daoism was far less
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Fig. 3 LM plot of Chinese religions, sorted according to Buddhism

present than the overall relationship with Buddhism would suggest and Gansu,
where Daoism was far more present than the overall relationship with Buddhism
would suggest. Geographically, the small maps reveal that Buddhism was most
present in the southern provinces of China, ranging from Zhejiang in the east to
Xizang in the west.

In Fig. 4, the provinces and data rows are sorted with respect to decreasing
numbers of religious sites and organizations related to Islam. This allows to answer
question 3 from above. A careful look at Table 1 may reveal that the number of
23,678 religious sites and organizations related to Islam in Xinjiang is unusually
large. In fact, this number is about eight times bigger then the next highest number
of 2956 religious sites and organizations related to Buddhism in Zhejiang. So,
this number could be an outlier overall. However, when looking at this province
and its neighboring provinces in the maps, it becomes apparent that this is not an
overall outlier and not even a spatial outlier. Islam was most present in the western
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Fig. 4 LM plot of Chinese religions, sorted according to Islam

and northern provinces of China. This is easily explainable by the fact that China
is bordered by predominantly Islamic countries to the west, including Pakistan,
Afghanistan, Tajikistan, Kyrgyzstan, and Kazakhstan.

4 Interactive LM Plots and Religion Explorer

As we can see in Figs. 2, 3, and 4, a different sorting of the provinces and data rows
in these LM plots can reveal different aspects about the data that otherwise would
not be visible. However, to make such changes, the user needs to manually modify
the R code, e.g., update arguments for the mmplot function, replace the name of
the sorting variable, etc. This naturally leads to the concept of interactive LM plots,
further discussed in this section.
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As summarized in Symanzik (2004), when we speak of interactive statistical
graphics, this means that the user manipulates the currently visible graphic with
various input devices such as the mouse, keyboard, etc., but without modifying
any underlying computer code. In particular, for interactive LM plots, Symanzik
(2004, p. 321) indicates: “Micromap implementations that allow the user to create
new LM plots ‘on the fly’ often provide features to switch from one geographic
region or subregion to another, choose among several variables, resort the data
increasingly or decreasingly according to different statistics (such as mean, median,
minimum, or maximum of the data values in the underlying geographic region),
and display different graphical summaries of the data (e.g., dotplots, boxplots,
confidence intervals, or even time series).”

The idea to access interactive LM plots on the Web is almost as old as LM plots
themselves. In 1998, the U.S. Environmental Protection Agency (EPA) planned
to give the general public access to its hazardous air pollutant (HAP) data set
at different geographic locations and at different levels of geographic resolution
(e.g., state, county, census tract level in the United States) via interactive tables
and micromaps (Symanzik et al., 1999a,b, 2000). Due to outside concerns that the
underlying data were outdated at the time of the planned release of this web site in
1999, the interactive LM plots were never made available to the general public and
only a prototype was accessible for researchers at the EPA.

The U.S. Department of Agriculture—National Agricultural Statistics Service
(USDA–NASS), Research and Development Division, released a Web site (http://
www.nass.usda.gov/research/sumpant.htm) in September 1999 that uses interactive
LM plots to display data from the 1997 Census of Agriculture. This USDA–NASS
Web site, still accessible today, displays acreage, production, and yield of harvested
cropland for corn, soybeans, wheat, hay, and cotton.

The National Cancer Institute (NCI) released the State Cancer Profiles Web site
in April 2003 that provided interactive access to the NCI cancer data via LM plots.
This Web site was Java-based and created micromaps “on the fly” (Carr et al., 2003,
2002; Wang et al., 2002).

4.1 Previous Software Developments at the CDC

Since 2009, researchers at the CDC have developed a series of closely related
online software products for the analysis of data in different geographic regions.
These software products include China Geo-Explorer I & II, Urban and Regional
Explorer, Religion Explorer, and US Geo-Explorer (Bao et al., 2014; She et al.,
2010, 2011; Zhang et al., 2010, 2009). While some of them are freely accessible,
others are only accessible for researchers affiliated with the CDC. A common
gateway to all of these software products is http://chinadataonline.org/.

http://www.nass.usda.gov/research/sumpant.htm
http://www.nass.usda.gov/research/sumpant.htm
http://chinadataonline.org/
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Fig. 5 LM Plot of Chinese religions in the Religion Explorer software. The background map is
rendered with OpenStreetMap

4.2 LM Plots in the Religion Explorer Software

In a prototypic implementation, interactive LM plots were first added to the Religion
Explorer software at the CDC. The overall workflow for the creation and display of
LM plots in this environment can be summarized as follows: A user on the client site
selects regions, variables of interest, and display attributes via a Web browser. This
information is further processed, packaged, and sent to the server. On the server
site, queries are made to the underlying data bases to extract relevant geographic
and statistical data. These data are packed into XML (eXtended Markup Language)
format and are sent to Rserve, a TCP/IP server which allows other programs to
use facilities of R (http://rforge.net/Rserve/). After unpacking the data, a LM plot
is produced in R, returned to the server, and finally displayed in the Web browser
on the client site. This prototype is accessible at http://www.chinadataonline.org/
religionexplorer2/. LM plots can be produced via the Graphic Analysis menu after
selecting the regions of interest (see Fig. 5). In this example, Christianity and
Buddhism have been selected and Christianity has been used as sorting variable for
the provinces and data rows. In the background, the main window of the Religion
Explorer software can be seen.

5 Google Maps of Chinese Religions

The R package RgoogleMaps (Loecher, 2015), further described in Loecher (2012)
and Loecher and Ropkins (2015), provides an R interface to query the Google map
server for static maps and to use these maps as background images for other plots in

http://rforge.net/Rserve/
http://www.chinadataonline.org/religionexplorer2/
http://www.chinadataonline.org/religionexplorer2/
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Fig. 6 Chinese religions overlayed on a Google map

R. It is possible to display spatial point patterns on these maps and to overlay more
advanced plot types such as bar charts, histograms, pie charts, and fourfold plots for
different subregions on these maps (Ahn and Park, 2013; Mun et al., 2013). Several
other uses of Google maps as a background for statistical data exist (Ibraliu et al.,
2011a,b; Lee and Marcovitz, 2011; Li et al., 2011; Yazdanparast et al., 2011).

Based on the R code developed by Mun et al. (2013), a Google map overlay for
Chinese religions is shown in Fig. 6. For each of the 31 provinces from mainland
China, a pie chart is shown in the geographic centers of the provinces. This figure
shows that Christianity is dominant in the coastal and some interior provinces in
the east, Buddhism is dominant in most of the southern and the remaining interior
provinces, and Islam is dominant in the western and northern provinces of China.
Daoism isn’t dominant in any of these 31 provinces and doesn’t contribute to more
than 25 % of the number of religious sites and organizations in any province.
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6 Discussion and Outlook

In this article, we have described the steps that are necessary to modify shapefiles to
be able to produce meaningful LM plots for China. With these adjusted shapefiles,
Chinese LM plots can now be created via the micromap R package and via the
online Religion Explorer software at the CDC. This makes China the second country
in Asia for which meaningful LM plots can be produced, in addition to previously
introduced LM plots for Korea (Ahn, 2013; Han et al., 2014).

As indicated in Sect. 4.2, so far only a prototypic implementation of interactive
LM plots in Religion Explorer exists. It is necessary to further enhance, test, and
debug the current implementation. Eventually, the LM plot functionality will be
added to some of the other software products developed at the CDC.

Acknowledgements We would like to acknowledge the contributions of Marc H. Weber, Michael
G. McManus, Quinn Payton, Jeong Yong Ahn, and Se Jin Park to the recent advancements of
linked micromap plots and Google map overlays that form the basis of this article.
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The Efficiency of Next-Generation Gibbs-Type
Samplers: An Illustration Using a Hierarchical
Model in Cosmology

Xiyun Jiao, David A. van Dyk, Roberto Trotta, and Hikmatali Shariff

Abstract Supernovae occur when a star’s life ends in a violent thermonuclear
explosion, briefly outshining an entire galaxy before fading from view over a period
of weeks or months. Because so-called Type Ia supernovae occur only in a particular
physical scenario, their explosions have similar intrinsic brightnesses which allows
us to accurately estimate their distances. This in turn allows us to constrain the
parameters of cosmological models that characterize the expansion history of the
universe. In this paper, we show how a cosmological model can be embedded into a
Gaussian hierarchical model and fit using observations of Type Ia supernovae. The
overall model is an ideal testing ground of new computational methods. Ancillarity-
Sufficiency Interweaving Strategy (ASIS) and Partially Collapsed Gibbs (PCG) are
effective tools to improve the convergence of Gibbs samplers. Besides using either
of them alone, we can combine PCG and/or ASIS along with Metropolis-Hastings
algorithm to simplify implementation and further improve convergence. We use four
samplers to draw from the posterior distribution of the cosmological hierarchical
model, and confirm the efficiency of both PCG and ASIS. Furthermore, we find that
we can gain more efficiency by combining two or more strategies into one sampler.

1 Introduction

The Physics Nobel Prize (2011) was awarded for the discovery that the expansion
of the universe is accelerating, a phenomenon attributed to the existence of “dark
energy”. Type Ia supernova (SN) observations have been instrumental in this
discovery and remain an important tool to quantify the characteristics of dark energy
(March et al. 2011). Although details remain unclear, it is thought that a Type Ia
SN occurs when a compact, carbon-oxygen white dwarf star accumulates extra
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material until its mass approaches a critical threshold (“Chandrasekhar threshold”:
1.44 Mˇ, where Mˇ is the mass of the sun). Because of their common formation
mechanism, all Type Ia SNe have similar absolute luminosity (which is measured
in absolute magnitudes, i.e., the negative logarithm of flux). This means that their
distance can be estimated from their apparent magnitude (i.e., their brightness as
viewed from earth). We can also directly measure their redshift due to the expansion
of the universe, a stretching of the wavelength of light emanating from objects
moving away from us. The underlying cosmological models of interest predict
the relationship between redshift and the difference between apparent and absolute
magnitudes, called “distance modulus”. We embed the cosmological model into a
Gaussian hierarchical model that naturally represents the structure of the problem
and dependence among its parameters. (See March et al. (2011) for more details on
the formation of Type Ia SNe and their utility in fitting cosmological models.)

Markov Chain Monte Carlo (MCMC) methods have greatly facilitated the
development of Bayesian inference, since they make it possible to sample from
the distributions of highly-structured models. Gibbs sampling (Geman and Geman
1984) and the Data Augmentation (DA) algorithm (Tanner and Wong 1987; van Dyk
and Meng 2001), which is a special case of the Gibbs sampler, are both widely
used MCMC methods. However, their sometimes slow convergence rate can be
problematic. To improve their efficiency, a variety of extensions have been proposed.
Among them, the Ancillarity-Sufficiency Interweaving Strategy (ASIS) (Yu and
Meng 2011) is an effective tool to improve the convergence properties of the DA
algorithm, and the Partially Collapsed Gibbs (PCG) sampler (van Dyk and Park
2008) can improve the convergence of Gibbs samplers. Note that in a Gibbs-type
sampler, we often need the help of the Metropolis-Hastings (MH) algorithm (Hast-
ings 1970; Metropolis et al. 1953), when sampling from a conditional distribution
that is not standard. In this paper, we explore the relative efficiencies of these
strategies when fitting our Bayesian hierarchical model. In particular, we consider
four samplers, MH within Gibbs, MH within PCG, ASIS and PCG within ASIS.
By comparing their convergence, we demonstrate the higher efficiency of PCG and
ASIS. Moreover, we obtain further efficiency by combining these strategies into a
single sampler. Our general strategy for combining PCG and ASIS will appear in a
separate paper that is currently in preparation (Jiao and van Dyk 2016).

This paper is organized as follows. In Sect. 2, we present the Bayesian cos-
mological hierarchical model. In Sect. 3, we review the DA algorithm, the Gibbs
sampler, and their extensions—ASIS and PCG sampling, and then introduce the four
samplers designed to sample from the posterior of the cosmological hierarchical
model. In Sect. 4, we use a real-data analysis to illustrate the varying efficiency of
the four samplers. Concluding remarks appear in Sect. 5.



An Illustration of Efficient Gibbs-Type Samplers in Cosmology 169

2 Bayesian Hierarchical Model for Supernova Cosmology

We assume the absolute magnitudes of Type Ia SNe follow a Gaussian population
distribution, that is,

Mo
i

iid� N.M0; �
2
0 /; for i D 1; : : : ; n: (1)

Since the absolute magnitudes are similar, �0 is relatively small, but still too large
to use Type Ia SNe as distance indicators without further adjustment. This intrinsic
variability in the absolute magnitudes is due to variations in the properties of the
progenitor star (e.g., mass and composition) and/or its environment. Fortunately, we
can adjust for two covariates, the stretch parameter, xi, and the color correction
parameter, ci, to reduce this scatter; these empirical adjustments are known as
“Phillips corrections”, see (Phillips 1993; Phillips et al. 1999) for details. Specif-
ically,

Mo
i D Mi � ˛xi C ˇci; for i D 1; : : : ; n; with Mi

iid� N.M0; �
2
res/; (2)

where Mi is the adjusted absolute magnitude and �2res � �20 . (Because of their
similar adjusted absolute magnitudes, Type Ia SNe are called “standardizable
candles”.)

For Type Ia SN i .i D 1; : : : ; n/, four quantities are observed with error, the
apparent magnitude OmBi, the observed stretch and color correction parameters, Oxi

and Oci, and the redshift zi.1 That is,
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Because its measurement error is very small, in this article, we assume zi is known.
For illustration, we ignore the small correlations among the observed quantities
and take the matrix OCi to be diagonal, i.e., OCi D Diag

 O�2ci
; O�2xi

; O�2mBi

�
. The distance

modulus is defined to be �i D mBi � Mo
i , so that (2) can be written as

mBi D �i C Mi � ˛xi C ˇci; for i D 1; : : : ; n: (4)

1The raw data are time-series observations of the evolving SN explosion in each of several color
bands. These observations are summarized into the apparent magnitude, stretch parameter and
color parameter using the SALT-II method (Guy et al. 2007). The apparent magnitude is the peak
magnitude in the B-band.
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This forms the first level of our hierarchical model and because of (3), it can be
viewed as an errors-in-variables regression model (Carroll et al. 2006). The second
level of the hierarchical model describes the population distribution of the SNe,

Mi � N.M0; �
2
res/; xi � N.x0;R

2
x/; ci � N.c0;R

2
c/; for i D 1; : : : ; n: (5)

We use the �CDM cosmological model which predicts that the distance modulus,
�i, as a deterministic function of the dark energy density ˝�, matter density ˝m,
Hubble constant H0, and redshift zi. Specifically,

�i D 25C 5log10

�
c

H0

dL.zi;˝�;˝m;H0/

�

; (6)

where the speed of light c D 3 � 105 km/s, and

dL.zi; ˝�;˝m;H0/ D .1C zi/pj˝ j sinn

	pj˝ j
Z zi

0

h
.1C z0/

3
˝m C˝� C .1C z0/

2
˝

i
�1=2

dz0




;

(7)

with ˝ the curvature parameter that is completely determined by ˝� and ˝m via
˝ D 1 � ˝� � ˝m; sinn.x/ D x, sinn.x/ D sin.x/, or sinn.x/ D sinh.x/ for
˝ D 0, ˝ < 0, and ˝ > 0, respectively. Because the Hubble constant, H0, is
completely degenerate with M0, we fix its value at 72 km=s=mpc (as determined by
other measurements) and we write �i D �.zi;˝�;˝m/.

Finally, we specify weakly informative prior distributions for model parameters,

M0 � N.Mm; �
2
M0
/; x0 � N.0; �2x0 /; c0 � N.0; �2c0/; (8)

where Mm D �19:3, �M0 D 2, �x0 D 10 and �c0 D 1. According to March
et al. (2011), these variances are large enough to make the priors for M0, x0 and
c0 sufficiently diffuse. They also find that the choice of mean and variance in the
prior distribution of M0 has little influence on numerical results. Furthermore, we
specify log.�res/ � Unif.�5; 2/, log.Rx/ � Unif.�5; 2/, log.Rc/ � Unif.�5; 2/,
˛ � Unif.0; 1/, ˇ � Unif.0; 4/, ˝� � Unif.0; 2/, and ˝m � Unif.0; 1/. We
choose ranges of these uniform priors following March et al. (2011), which states
that they generously cover all scientifically plausible values of the parameters.

3 Statistical Computation

3.1 Algorithm Review

Suppose we wish to obtain a Monte Carlo sample from the posterior distribution
p. jYobs/, where  is an unknown model parameter and Yobs is the observed data.
The Gibbs sampler partitions  into  D . 1; : : : ;  N/, where N � 2, and samples
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each component of  from its complete conditional distribution in turn. That is,
at each iteration, each  i is sampled from its conditional posterior distribution
given the current value of the other components of  . (We consider systematic-
scan samplers, where the components are updated in a fixed order, see Liu et al.
(1995).) After suitable burn-in, f .t/; t D Tb C 1;Tb C 2; : : : ;Tg can be regarded
as a Monte Carlo sample from p. jYobs/, see e.g., Robert and Casella (2004), for
details, conditions, and practical advice.

When N D 2, the Gibbs sampler is sometimes called the Data Augmentation
Algorithm. To be consistent with the notation of the DA algorithm, we write
 D .�;Ymis/ in this case. When the DA algorithm is used, the target posterior
distribution is typically p.� jYobs/ and Ymis is introduced to enable Gibbs-type
sampling. As mentioned in Sect. 1, ASIS and PCG can dramatically improve the
convergence of the DA algorithm and Gibbs sampler.

3.1.1 Ancillarity-Sufficiency Interweaving Strategy

ASIS combines a pair of special DA schemes, each with a different choice of Ymis.
One uses a sufficient augmentation, Ymis;S, which means p.YobsjYmis;S; �/ is free of
� . The other uses an ancillary augmentation, Ymis;A, for which p.Ymis;Aj�/ does not
depend on � . Normally, given � , Ymis;S is related to Ymis;A via a one-to-one mapping,
F� , that is, Ymis;A D F� .Ymis;S/ (but see Yu and Meng (2011) for an exception).
We assume F� is differentiable when Ymis;S is continuous. In practice, it is often the
case that if the sampler constructed via one of these two augmentations is fast, the
other is slow. ASIS takes advantage of this “beauty-and-beast” feature of the two
DA algorithms by interweaving them to produce a more powerful sampler (Yu and
Meng 2011). The algorithm proceeds as

Step 1: Y.tC1/mis;S � p.Ymis;Sj�.t/;Yobs/, (Sampler 3.1)

Step 2: �.tC1=2/ � p.� jY.tC1/mis;S ;Yobs/; Y.tC1/mis;A D F�.tC1=2/ .Y
.tC1/
mis;S /,

Step 3: �.tC1/ � p.� jY.tC1/mis;A ;Yobs/,

where �.tC1=2/ represents the intermediate draw that facilitates the transition from
�.t/ to �.tC1/; it is not part of the marginal chain for � . Because Ymis;S and Ymis;A are
both legitimate augmentation schemes, p.Ymis;S; � jYobs/ and p.Ymis;A; � jYobs/ share
the same marginal distribution of � , i.e., p.� jYobs/. Since Step 2 of Sampler 3.1
is equivalent to sampling Y.tC1/mis;A from p.Ymis;AjY.tC1/mis;S ;Yobs/, the marginal Markov
transition kernel of � is

K .�.tC1/j�.t// D (9)
Z Z

p.�.tC1/jY.tC1/mis;A ;Yobs/p.Y
.tC1/
mis;A jY.tC1/mis;S ;Yobs/p.Y

.tC1/
mis;S j�.t/;Yobs/dY.tC1/mis;S dY.tC1/mis;A :
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Fig. 1 An example of using three stages to transform a Gibbs sampler into a proper PCG sampler.
The conditional distributions sampled in each step of the samplers are given; a prime in the
superscript denotes the current state of a parameter. The parent Gibbs sampler appears in (a). The
sampler in (b) updates  3 rather than conditioning on it in Step 1. The steps of this sampler are
permuted in (c) to make the draw of  ?

3 —in Step 2 of (c)—redundant. Trimming  ?
3 , we obtain

the proper PCG sampler in (d)

It is easy to verify that the stationary distribution of K .�.tC1/j�.t// is p.� jYobs/,
see Yu and Meng (2011) for details.

Yu and Meng (2011) find that Steps 1–3 of Sampler 3.1 can be regarded as
sampling .�;Ymis;S/ along different directions. ASIS selects a particular combination
of sampling directions (defined by the ancillary and sufficient augmentations) that
yields substantial improvement over both parent DA samplers, while the additional
computational expense is fairly small, see Yu and Meng (2011).

3.1.2 Partially Collapsed Gibbs Sampler

The PCG sampler improves convergence by reducing conditioning, that is, replacing
some complete conditional distributions of an ordinary Gibbs sampler with the
complete conditionals of marginal distributions of the target joint posterior dis-
tribution (van Dyk and Park 2008). This generally leads to larger variance of the
conditional distribution, and hence bigger jumps.

Care must be taken to make sure that the stationary distribution of a PCG sampler
is the desired target. We review the three stages used to transform a Gibbs sampler
into a PCG sampler, while maintaining the target distribution. They are provided by
van Dyk and Park (2008) and named as marginalization, permutation and trimming
respectively. Here we refer to a sampler as proper if its stationary distribution
is the target and improper otherwise. For illustration, suppose we sample from
p. jYobs/ with the (proper) Gibbs sampler in Fig. 1(a), with  D . 1; : : : ;  4/.
In the marginalization stage we replace one or more steps of the Gibbs sampler,
with steps that sample some components of  that were conditioned upon in
the original Gibbs, see Step 1 in Fig. 1(b). This results in the same component
sampled in two or more steps. Note that we use the superscript “?” to indicate
the intermediate quantities which are updated in a sampler but not part of the
final output, e.g.,  3 in Step 1 of Fig. 1(b). Then we permute the steps of the
marginalized sampler to make as many intermediate updates as possible to be
redundant quantities, which are intermediate quantities not conditioned on in any
subsequent draws. The value of redundant quantities does not affect the transition
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kernel of the sampler; ?3 in Step 2 of Fig. 1(c) is an example of a redundant quantity.
Finally, we trim the redundant quantities resulting in a step that samples from the
conditional distribution of a marginal of p. jYobs/, i.e., Step 2 in Fig. 1(d). We
refer to such steps as reduced steps. Since all three stages preserve the stationary
distribution of the parent Gibbs sampler, the resulting PCG sampler is proper. More
details and examples of implementing the three stages can be found in van Dyk and
Park (2008), Park and van Dyk (2009) and van Dyk and Jiao (2015).

In some cases the PCG sampler is simply a blocked or collapsed version of the
parent Gibbs sampler (Liu et al. 1994). In other cases, however, it is composed
of samples from a set of incompatible conditional distributions. That is, there is
no joint distribution corresponding to this set of conditional distributions, e.g., the
PCG sampler in Fig. 1(d). The incompatibility is introduced by trimming. Unlike
the Gibbs sampler, changing the order of the steps of a PCG sampler may alter its
stationary distribution.

Marginalization can significantly improve the rate of convergence, while per-
mutation typically has a minor effect and trimming has no effect on the rate of
convergence (van Dyk and Park 2008). Thus, we generally expect the PCG sampler
to exhibit better and often much better convergence properties than its parent Gibbs
sampler.

3.2 Bayesian Fitting of the Cosmological Hierarchical Model

We now show how ASIS and PCG can be implemented to fit the model in Sect. 2,
and illustrate how they can be combined to further improve convergence. To
simplify notation, we let Y denote the .3n � 1/ vector of observed quantities,
i.e., Y D .Oc1; Ox1; OmB1; : : : ; Ocn; Oxn; OmBn/, � denote the .3 � 1/ mean vector of the
distribution in the second level of the hierarchical model, i.e., � D .c0; x0;M0/, and
X denote the .3n�1/ vector of latent variables, i.e., X D .c1; x1;M1; : : : ; cn; xn;Mn/.

Sampler 1 is a standard Gibbs sampler, where each (sometimes multivariate)
component is updated from its complete conditional distribution. We list the steps
of Sampler 1 in the top-left panel of Fig. 2. We sample .˝m;˝�/ with the help
of MH because its conditional distribution is not in closed form. (It is evaluated
numerically.) Details of this and the other samplers, including the MH updates,
appear in the Appendix.

In order to improve the convergence of the parameters .˝m;˝�/ and .˛; ˇ/, we
consider three other samplers. Sampler 2 is an MH within PCG sampler. It uses
MH to update .˝m;˝�/ and .˛; ˇ/ without conditioning on � or X, see the top-
right panel of Fig. 2. While using MH within Gibbs samplers is a standard strategy,
embedding MH into PCG samplers leads to subtleties in both theory and application,
see van Dyk and Jiao (2015). We derive Sampler 2 from Sampler 1 using the three
stages exactly as described in van Dyk and Jiao (2015), see Fig. 3. This guarantees
that Sampler 2 has the target stationary distribution. Note that in Step 2 of Fig. 3(b),
we sample .˝m;˝�/ together with .�;X/. This full step is in fact composed of two
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Fig. 2 Samplers 1–4. The top-left, top-right, bottom-left and bottom-right panels show the steps
of the MH within Gibbs sampler (Sampler 1), the proper MH within PCG sampler (Sampler 2),
the ASIS sampler (Sampler 3) and the PCG within ASIS sampler (Sampler 4), respectively

sub-steps: (1) MH is used to update .˝m;˝�/ from the reduced step with � and X
integrated out; and (2) .�;X/ is sampled from its complete conditional distribution.
The joint update is denoted by M ?; Step 3 of Fig. 3(b) has the same structure.

Next, we construct an ASIS sampler. We derive the sufficient and ancillary
augmentations for .˝m;˝�/ and .˛; ˇ/ conditioning on the other parameters �,
Rc, Rx and �res. The distribution of X conditioning on .˝m;˝�/ and .˛; ˇ/ is

Xj˝m;˝�; ˛; ˇ � N.J�;˙P/; (10)

where J.3n�3/ D .I; : : : ; I/T with I D Diag.1; 1; 1/, and˙P.3n�3n/ D Diag.S; : : : ; S/
with S D Diag.R2c ;R

2
x ; �

2
res/. Because this distribution is free of .˝m;˝�/ and

.˛; ˇ/, X is an ancillary augmentation for both of them. To derive a sufficient
augmentation, we set QX D AX C L, where A.3n�3n/ D Diag.T; : : : ;T/ with



An Illustration of Efficient Gibbs-Type Samplers in Cosmology 175

Fig. 3 Three-stage framework used to derive Sampler 2 from its parent MH within Gibbs sampler,
i.e., Sampler 1. The parent sampler appears in (a) with Step 2 requiring MH. Steps 2 and 3 are
marginalized in (b). The steps are permuted in (c) to allow redundant draws of .�;X/ to be trimmed
in Steps 1–2. The resulting proper MH within PCG sampler, that is, Sampler 2, appears in (d)

T.3�3/ D
�
1 0 0

0 1 0

ˇ �˛ 1

�

, and let L denote the .3n�1/ vector .0; 0; �1; : : : ; 0; 0; �n/, which

is a deterministic function of .˝m;˝�/. The distribution of observed quantities Y
conditioning on QX, .˝m;˝�/ and .˛; ˇ/ is

Yj QX;˝m;˝�; ˛; ˇ � N. QX; ˙C/; (11)

where˙C.3n�3n/ D Diag. OC1; : : : ; OCn/. Because this distribution is free of .˝m;˝�/

and .˛; ˇ/, QX is a sufficient augmentation for both parameters. Sampler 3 is the
ASIS sampler corresponding to this pair of sufficient and ancillary augmentations.
Specifically, we implement ASIS conditioning on �, Rc, Rx and �res: (1) .�;X/ is
sampled from its complete conditional distribution; (2) .˝m;˝�/ and .˛; ˇ/ are
updated conditioning on X, and X is transformed to QX conditioning on .˝m;˝�/

and .˛; ˇ/; and (3) .˝m;˝�/ and .˛; ˇ/ are updated again but conditioning on QX.
Both of the updates of .˝m;˝�/ require MH. See the bottom-left panel of Fig. 2 for
the steps of Sampler 3.

Sampler 4 combines MH within PCG and ASIS. Conditioning on .˛; ˇ/, we
update .˝m;˝�/ with MH within PCG, and then conditioning on .˝m;˝�/, we
update .˛; ˇ/ with ASIS. See the bottom-right panel of Fig. 2 for its steps. It is
easy to verify that Sampler 4 is proper. Assume .� 0;X0;˝ 0

m;˝
0
�; ˛

0; ˇ0;R0
c;R

0
x; �

0
res/

is a draw from the target distribution. Although in Step 1 of Sampler 4, we
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sample .˝m;˝�/ without conditioning on .�;X/, the marginal distribution of
.˝m;˝�; ˛

0; ˇ0;R0
c;R

0
x; �

0
res/ is still that of the target. After updating .�;X/ from

its complete conditional distribution in Step 2, .�;X;˝m;˝�; ˛
0; ˇ0;R0

c;R
0
x; �

0
res/

follows the target distribution. Since the distribution of .X; ˛; ˇ/ is equivalent to
that of . QX; ˛; ˇ/ conditioning on the other parameters, when we transform back to
.X; ˛; ˇ/ at the end of Step 4, .�;X;˝m;˝�; ˛; ˇ;R0

c;R
0
x; �

0
res/ follows the target

distribution. In addition, the steps that sample Rc, Rx and �res are standard Gibbs
steps which preserve the target stationary distribution. Thus, Sampler 4 is proper.

4 Analysis of Observed Type Ia SNe

To illustrate the relative efficiencies of Samplers 1–4, we use a data set consisting of
288 Type Ia SN observations compiled by Kessler (2009). To sample from the pos-
terior distribution of the hierarchical Gaussian model, we run each of Samplers 1–4,
starting with the same sets of initial values.2 While we run Samplers 2–4 for 11,000
iterations with a burn-in of 1000, we run Sampler 1 for 12,000 iterations with a
burn-in of 2000. We double the length of burn-in for Sampler 1 to obtain satisfactory
convergence.3

Figures 4 and 5 show the convergence properties of Samplers 1–4. For each
sampler, we display the time-series plots (left column) and autocorrelation plots
(right column) for˝m,˝�, ˛ and ˇ. For all four parameters, Samplers 2–4 produce
chains with much faster mixing and lower autocorrelation than Sampler 1. To further
compare the convergence, we estimate the effective sample size (ESS),

ESS. / D T

1C 2
P1

tD1 �t. /
; (12)

where T is the total posterior sample size and �t. / is the lag-t autocorrelation of
the parameter  . The ESS approximates the size of an independent sample with
equivalent information in terms of the Monte Carlo variance of the sample mean,
and is indicative of how well the chain mixes, see Kass et al. (1998) and Liu (2001).
We use the function “effectiveSize” in the R package coda to estimate the ESS. We
display the ESS (in parentheses) and ESS per second of˝m,˝�, ˛ and ˇ in Table 1.
(The total CPU time required by each sampler is also reported in Table 1.) The
larger the ESS per second, the more efficient is the sampler. By this measurement,
Samplers 2–4 all substantially improve the convergence properties of Sampler 1.

2We use Python to implement all the samplers, and all the chains are run on a Macbook Pro with a
system of OS X 10.8.5 and a processor of 2.5 GHz Intel Core i5.
3To check convergence, we ran each sampler with three different overdispersed initial values.
The Gelman-Rubin statistic (Gelman et al. 2013; Gelman and Rubin 1992) suggested adequate
convergence after only a few iterations for Samplers 2–4. (A burn-in of 1000 iterations was quite
conservative for Samplers 2–4.) For Sampler 1, however, a burn-in of 2000 iterations was required.
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Fig. 4 The sampling results of Samplers 1 and 2. The left two columns are the time-series and
autocorrelation plots for the posterior draws of ˝m, ˝�, ˛ and ˇ respectively from Sampler 1,
while the right two columns are those from Sampler 2

Thus we confirm that both PCG and ASIS are efficient in improving convergence.
More interestingly, ASIS is less efficient in improving the convergence of .˝m;˝�/

than MH within PCG, while better in improving the convergence of .˛; ˇ/. When we
combine these two strategies into Sampler 4, the result outperforms both Samplers 2
and 3 in terms of ESS per second. (Although Sampler 3 is slightly better than
Sampler 4 for ˛, it takes around 15% longer to obtain the same ESS for ˇ, and
more than four times longer for both˝m and˝�.) Even though CPU time can vary
somewhat from run to run, the ESS also clearly shows the advantage of Sampler 4.
See Jiao and van Dyk (2016) for more on a general strategy for combining several
state-of-the-art strategies into a single sampler.

Finally, in Table 2, we report the posterior means and standard deviations of˝m,
˝�, ˛, ˇ, �res, Rc and Rx for Samplers 1–4. We also plot the 68% and 95% contours
of the joint posterior distribution of˝m and˝�, and the marginal posterior densities
of˝m,˝�, ˛ and ˇ computed with Samplers 1–4, see Fig. 6. Although the samplers
all give similar estimates of the posterior moments, Samplers 2–4 better represent
the shape of the joint posterior distribution of ˝m and ˝�; see left panel of Fig. 6.
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Fig. 5 The sampling results of Samplers 3 and 4. The left two columns are the time-series and
autocorrelation plots for the posterior draws of ˝m, ˝�, ˛ and ˇ respectively from Sampler 3,
while the right two columns are those from Sampler 4

Table 1 The ESS per second and ESS (in parentheses) of ˝m, ˝�,
˛ and ˇ for Samplers 1–4

Sampler 1 Sampler 2 Sampler 3 Sampler 4

˝m 0.0017 0.0366 0.0097 0.0411
(32.0544) (1030.40) (251.552) (1021.14)

˝� 0.0010 0.0229 0.0060 0.0269
(18.2937) (643.963) (155.240) (667.807)

˛ 0.0075 0.0507 0.0759 0.0731
(139.844) (1428.54) (1976.15) (1816.16)

ˇ 0.0096 0.0285 0.0643 0.0737
(178.910) (801.793) (1673.59) (1829.53)

CPU time (s) 18630.82 28178.60 26021.07 24832.64

The CPU time consumed by each of the four samplers is reported in
the last row
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Table 2 Posterior means (and standard deviations) of ˝m, ˝�, ˛, ˇ,
�res, Rc and Rx computed with Samplers 1–4

Sampler 1 Sampler 2 Sampler 3 Sampler 4

˝m 0.353 (0.085) 0.337 (0.085) 0.335 (0.086) 0.341 (0.090)

˝� 0.730 (0.172) 0.706 (0.167) 0.701 (0.177) 0.710 (0.174)

˛ 0.124 (0.016) 0.125 (0.015) 0.125 (0.015) 0.125 (0.015)

ˇ 2.710 (0.136) 2.710 (0.132) 2.709 (0.138) 2.713 (0.135)

�res 0.127 (0.011) 0.127 (0.011) 0.127 (0.011) 0.127 (0.011)

Rc 0.101 (0.005) 0.102 (0.006) 0.101 (0.005) 0.101 (0.006)

Rx 0.904 (0.052) 0.905 (0.050) 0.904 (0.050) 0.903 (0.050)

Fig. 6 Graphical representation of the posterior distribution computed with each of Samplers 1–4.
The left panel gives the 68% and 95% contours of the joint posterior distribution of ˝m and
˝�. (These correspond to highest posterior density regions.) The right panel gives the marginal
posterior distributions of ˝m, ˝�, ˛ and ˇ. Blue, red, black and orange represent Samplers 1, 2,
3 and 4 respectively. For Sampler 1, we use dark and light blue to represent the 68% and 95%
contours; for the other samplers we use dashed and solid lines to distinguish

5 Conclusion

To explore the acceleration of the expansion of the universe, we analyze Type Ia
SN data by embedding a cosmological model into a Bayesian hierarchical Gaussian
model. This hierarchical model naturally reflects the structure of the problem and
treats the uncertainties in a more consistent way.

Because of its complexity, the hierarchical model is an ideal testing ground for
our new algorithms. By comparing the performance of four samplers, we confirm
the efficiency of both PCG and ASIS in improving convergence properties of Gibbs-
type samplers. Furthermore, we find that we can gain more efficiency by combining
two or more strategies into a single sampler. Sometimes, it is necessary to do this.
For example, when using an MH algorithm within a Gibbs-type sampler because
direct sampling from some conditionals is difficult (Gilks et al. 1995; van Dyk and
Jiao 2015). But more intriguingly, when there is more than one parameter whose
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convergence requires improvement, it is sometimes the case that one strategy can
significantly improve the convergence of one parameter but has little effect on other
parameters, while another strategy has the opposite effect. Under this circumstance,
we can gain more efficiency by combining two or more strategies than by using
either alone. Even if one strategy alone is fairly good for all the parameters, we
prefer to use a combination, as long as the gained efficiency can compensate the
extra computational burden.
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Curie Career Integration Grant (FP7-PEOPLE-2012-CIG-321865) provided by the European
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Appendix

This appendix details the sampling steps of the MH within Gibbs, MH within
PCG, ASIS and PCG within ASIS samplers, i.e., Samplers 1, 2, 3 and 4, for the
cosmological hierarchical model.

The posterior distribution of .�;X;˝m;˝�; ˛; ˇ;R2c ;R
2
x ; �

2
res/ is

p.�;X;˝m;˝�; ˛; ˇ;R
2
c ;R

2
x ; �

2
resjY/ (13)

/ j˙Cj�1=2j˙Pj�1=2j˙0j�1=2exp

	

� 1

2

�
.Y � AX � L/T˙�1

C .Y � AX � L/

C .X � J�/T˙�1
P .X � J�/C .� � �m/

T˙�1
0 .� � �m/

�


1

R2c

1

R2x

1

�2res
;

where �m D .0; 0;Mm/ and ˙0 D Diag.�2c0 ; �
2
x0 ; �

2
M0
/; ˙C, ˙P, J, A and L

are defined in Sect. 3.2. Setting QX D AX C L, the joint posterior distribution of
.�; QX;˝m;˝�; ˛; ˇ;R2c ;R

2
x ; �

2
res/ is

p.�; QX;˝m;˝�; ˛; ˇ;R
2
c ;R

2
x ; �

2
resjY/ (14)

/ j˙Cj�1=2j˙Pj�1=2j˙0j�1=2exp

	

� 1

2

h
.Y � QX/T˙�1

C .Y � QX/

C .A�1 QX � A�1L � J�/
T
˙�1

P .A�1 QX � A�1L � J�/

C.� � �m/
T˙�1

0 .� � �m/
i
 1

R2c

1

R2x

1

�2res
:

Furthermore, integrating out .�;X/, the marginal distribution of .˝m;˝�; ˛; ˇ;R2c ,
R2x ; �

2
res/ is
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p.˝m;˝�; ˛; ˇ;R
2
c ;R

2
x ; �

2
resjY/ (15)

/ j˙Cj�1=2j˙Pj�1=2j˙Aj1=2jKj1=2j˙0j�1=2 1
R2c

1

R2x

1

�2res

� exp

	

�1
2

�
.Y � L/T˙�1

C .Y � L/��T˙A� � kT
0K�1k0 C �T

m˙
�1
0 �m

�



;

where ˙�1
A D AT˙�1

C A C ˙�1
P , K�1 D �JT˙�1

P ˙A˙
�1
P J C JT˙�1

P J C ˙�1
0 ,

� D AT˙�1
C .Y � L/, and k0 D K.JT˙�1

P ˙A�C˙�1
0 �m/.

When MH updates are required in any of the samplers, we use truncated normal
distributions as the proposal distributions. These distributions are centered at the
current draws with variance-covariance matrices adjusted to obtain an acceptance
rate of around 25%. The truncation enforces prior constraints and in all cases the
MH updates are bivariate.

When generating parameters from a truncated distribution, we repeat drawing
from the corresponding unconstrained distribution until the truncation condition is
satisfied. In the cosmological example, rejection sampling is not computationally
demanding, since the ranges of the prior distributions are fairly large.

The steps of Sampler 1 are

1. Sample .�;X/, which consists of two sub-steps:

• Sample � from N.k0;K/;
• Sample X from N.�A; ˙A/, where �A D ˙A.�C˙�1

P J�/.

2. Use MH to sample .˝m;˝�/ from p.˝m;˝�jY; �;X; ˛; ˇ;R2c ;R2x ; �2res/, which
is proportional to p.�;X;˝m;˝�; ˛; ˇ;R2c ;R

2
x ; �

2
resjY/, under the constraint

.˝m;˝�/ 2 Œ0; 1	 � Œ0; 2	.
3. Sample .˛; ˇ/ from N.�B; ˙B/ with constraint .˛; ˇ/ 2 Œ0; 1	 � Œ0; 4	, where

˙�1
B D

2

6
6
4

nP

iD1
x2i

O�2mBi

nP

iD1
�xici
O�2mBi

nP

iD1
�xici
O�2mBi

nP

iD1
c2i

O�2mBi

3

7
7
5 and �B D ˙B

2

4

Pn
iD1

xi.Mi� OmBiC�i/

O�2mBiPn
iD1

�ci.Mi� OmBiC�i/

O�2mBi

3

5 : (16)

4. Sample R2c from Inv-Gamma
h

n
2
;
Pn

iD1 .ci�c0/
2

2

i
with log.Rc/ 2 Œ�5; 2	.

5. Sample R2x from Inv-Gamma
h

n
2
;
Pn

iD1 .xi�x0/
2

2

i
with log.Rx/ 2 Œ�5; 2	.

6. Sample �2res from Inv-Gamma
h

n
2
;
Pn

iD1 .Mi�M0/
2

2

i
with log.�res/ 2 Œ�5; 2	.
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The steps of Sampler 2 are

1. Use MH to sample .˝m;˝�/ from p.˝m;˝�jY; ˛; ˇ;R2c ;R2x ; �2res/, which is
proportional to p.˝m;˝�; ˛; ˇ;R2c ;R

2
x ; �

2
resjY/, with .˝m;˝�/ 2 Œ0; 1	 � Œ0; 2	.

2. Use MH to sample .˛; ˇ/ from p.˛; ˇjY;˝m;˝�;R2c ;R
2
x ; �

2
res/, which is propor-

tional to p.˝m;˝�; ˛; ˇ;R2c ;R
2
x ; �

2
resjY/, with .˛; ˇ/ 2 Œ0; 1	 � Œ0; 4	.

3. Sample .�;X/, which consists of two sub-steps:

• Sample � from N.k0;K/;
• Sample X from N.�A; ˙A/, where �A D ˙A.�C˙�1

P J�/.

4. Sample R2c from Inv-Gamma
h

n
2
;
Pn

iD1 .ci�c0/
2

2

i
with log.Rc/ 2 Œ�5; 2	.

5. Sample R2x from Inv-Gamma
h

n
2
;
Pn

iD1 .xi�x0/
2

2

i
with log.Rx/ 2 Œ�5; 2	.

6. Sample �2res from Inv-Gamma
h

n
2
;
Pn

iD1 .Mi�M0/
2

2

i
with log.�res/ 2 Œ�5; 2	.

The steps of Sampler 3 are

1. Sample .�;X?/, which consists of two sub-steps:

• Sample � from N.k0;K/;
• Sample X? from N.�A; ˙A/, where �A D ˙A.�C˙�1

P J�/.

2. Use MH to sample .˝?
m;˝

?
�/ from p.˝m;˝�jY; �;X?; ˛; ˇ;R2c ;R2x ; �2res/, which

is proportional to p.�;X?;˝?
m;˝

?
�; ˛; ˇ;R

2
c ;R

2
x ; �

2
resjY/, under the constraint

.˝?
m;˝

?
�/ 2 Œ0; 1	 � Œ0; 2	; Use .˝?

m;˝
?
�/ to construct L?.

3. Sample .˛?; ˇ?/ from N.�B; ˙B/ with constraint .˛?; ˇ?/ 2 Œ0; 1	 � Œ0; 4	; Use
.˛?; ˇ?/ to construct A?. Then set QX D A?X? C L?.

4. Use MH to sample .˝m;˝�/ from p.˝m;˝�jY; �; QX; ˛?; ˇ?;R2c ;R2x ; �2res/, which
is proportional to p.�; QX;˝m;˝�; ˛

?; ˇ?;R2c ;R
2
x ; �

2
resjY/, under the constraint

.˝m;˝�/ 2 Œ0; 1	 � Œ0; 2	; Use .˝m;˝�/ to construct L.
5. Sample .˛; ˇ/ from N.�D; ˙D/ with constraint .˛; ˇ/ 2 Œ0; 1	 � Œ0; 4	, where

˙�1
D D

2

6
6
4

nP

iD1
Qx2i
�2res

nP

iD1
�QxiQci
�2res

nP

iD1
�QxiQci
�2res

nP

iD1
Qc2i
�2res

3

7
7
5 and �D D ˙D

2

4
Pn

iD1
Qxi.M0� QMi/

�2resPn
iD1

�Qci.M0� QMi/

�2res

3

5 ; (17)

where Qci, Qxi and QMi are the .3i � 2/th, .3i � 1/th and .3i/th components of . QX �L/;
Use .˛; ˇ/ to construct A. Then set X D A�1. QX � L/.

6. Sample R2c from Inv-Gamma
h

n
2
;
Pn

iD1 .ci�c0/
2

2

i
with log.Rc/ 2 Œ�5; 2	.

7. Sample R2x from Inv-Gamma
h

n
2
;
Pn

iD1 .xi�x0/
2

2

i
with log.Rx/ 2 Œ�5; 2	.

8. Sample �2res from Inv-Gamma
h

n
2
;
Pn

iD1 .Mi�M0/
2

2

i
with log.�res/ 2 Œ�5; 2	.
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The steps of Sampler 4 are

1. Use MH to sample .˝m;˝�/ from p.˝m;˝�jY; ˛; ˇ;R2c ;R2x ; �2res/, which is
proportional to p.˝m;˝�; ˛; ˇ;R2c ;R

2
x ; �

2
resjY/ with .˝m;˝�/ 2 Œ0; 1	 � Œ0; 2	;

Use .˝m;˝�/ to construct L.
2. Sample .�;X?/, which consists of two sub-steps:

• Sample � from N.k0;K/;
• Sample X? from N.�A; ˙A/, where �A D ˙A.�C˙�1

P J�/.

3. Sample .˛?; ˇ?/ from N.�B; ˙B/ with constraint .˛?; ˇ?/ 2 Œ0; 1	 � Œ0; 4	; Use
.˛?; ˇ?/ to construct A?. Then set QX D A?X? C L.

4. Sample .˛; ˇ/ from N.�D; ˙D/with constraint .˛; ˇ/ 2 Œ0; 1	�Œ0; 4	; Use .˛; ˇ/
to construct A. Then set X D A�1. QX � L/.

5. Sample R2c from Inv-Gamma
h

n
2
;
Pn

iD1 .ci�c0/
2

2

i
with log.Rc/ 2 Œ�5; 2	.

6. Sample R2x from Inv-Gamma
h

n
2
;
Pn

iD1 .xi�x0/
2

2

i
with log.Rx/ 2 Œ�5; 2	.

7. Sample �2res from Inv-Gamma
h

n
2
;
Pn

iD1 .Mi�M0/
2

2

i
with log.�res/ 2 Œ�5; 2	.
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Dynamic Spatial Pattern Recognition
in Count Data

Xia Wang, Ming-Hui Chen, Rita C. Kuo, and Dipak K. Dey

Abstract This study explores a Bayesian regression analysis for count data in
the presence of spatial and temporal correlations. The contribution is to develop
a regression model for count data that provides flexibility in modeling the com-
plexity of zero-inflation, overdispersion, as well as spatial patterns in a dynamic
manner. More importantly, it improves the computational efficiency via dimension
reduction while handling the high-dimensional correlation structure in the data. The
proposed model is applied to the survey data by the Northeast Fisheries Sciences
Center (NEFSC) for estimation and prediction of the Atlantic cod in the Gulf of
Maine—Georges Bank region. Both zero-inflated Poisson and negative binomial
models are fitted. Model comparison shows the improvement in model fitting with
consideration in the spatial-temporal correlation as well as the overdispersion in the
count data.

1 Introduction

Count data are commonly available in the fields of ecology, epidemiology, mar-
keting, political sciences, and many others. Quite often, the locations and the time
stamps regarding the count data are also available. For instance, Wang et al. (2015)
described a survey data by the Northeast Fisheries Sciences Center (NEFSC) in
the Gulf of Maine—Georges Bank region during 1970–2008. Figure 1 shows a
snapshot of data for the presence and the number of Atlantic cods caught in 1977,
1987, 1997, and 2007. There is a large proportion of zero counts in the number
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Fig. 1 A 40-year snapshot of survey locations, presence and abundance for the Atlantic cods in
NEFSC survey data. Upper panel: surveyed grids with fish caught (solid circle (1)), surveyed grids
without fish caught (empty circle (0)) and grids that were not surveyed (dot (-1)). Lower panel:
counts of fish caught in the surveyed grids (capped at 40)

of cods caught in a tow, which can be clearly seen in Fig. 2 as a histogram for
the counts. A few very large count values also suggest that there are potential
extra overdispersion that cannot be accounted by the Poisson model. In an initial
exploratory analysis, a simple zero-inflated Poisson model (ZIP) is fitted to these
count data. The Pearson �2 statistic computed based on the ZIP model shows that
X2 D 23545:74 with 4852:61 degrees of freedom (d:f :), which is much larger than
the one under the Poisson assumption (i.e., X2=d:f : � 1). Thus, besides the potential
spatial and temporal correlation features, these data, like many other count data, are
also complicated by excess zeros and overdispersion.

This paper sets out to consider the task of modeling count data with the above
complications, that is, spatially and temporally correlated count data in the presence
of excess zeros and overdispersion. Particularly, our contributions lie in two aspects.
First, it explores and compares the zero-inflated Poisson (ZIP) and the zero-inflated
negative binomial (ZINB) models with dynamic and spatial correlated random
effects. It is one of few studies that carry out this comparison directly. Second, it
applies the newly developed Bayesian spatial-temporal model (Wang et al. 2015) to
improve the computational efficiency with the overdispersion parameter introduced
in the model.
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Fig. 2 The counts of Atlantic cod caught in a tow in the Gulf of Maine—Georges Bank region
during 1970–2008

Zero counts in the data can have quite different scientific implications: a “true”
zero when the surveyed subject truly does not exist or a “false” zero when the
surveyed subject exists but was randomly sampled as zero due to imperfect detection
or other mechanisms leading to insufficient information. Some data contain only
“true” zeros, while other data contain a mixture of “true” and “false” zeros. How
to model the excess zeros depends on the generating process of zeros in the data.
A case with only “true” zeros is illustrated in Ver Hoef and Jansen (2007). In their
study of haulout patterns of harbor seals on glacial ice, it is stated that it is highly
likely for seals to be detected, if present, because of the good quality video showing
a high contrast between the dark seals and the lighter-colored ice. In this case, it
is reasonable to treat the zeros in data as true absence. When the zeros can only
be true zeros, a two-stage model is applied first to model the zero versus nonzero
observations and then to model the count process conditional on positive outcomes
(Recta et al. 2012; Ver Hoef and Jansen 2007). In our motivating example, though,
zeros may be either true absence or presence but not caught. The zero-inflated count
model is a natural way to model the two types of zeros via a mixture of a Bernoulli
distribution and a count distribution, such as ZIP or ZINB.

Compared to the ZIP model, the ZINB model provides flexibility in modeling
overdispersion and explicitly accommodating heterogeneity. Overdispersion often
presents in count data collected in a survey study, such as our motivating example,
due to the presence of heterogeneity among the sampling units. For example,
there may be a rich collection of environmental and individual characteristics that
influence the count of a given species at a survey location. Ideally, a model should
account for these characteristics. However, it is usually not possible in practice:
information on these characteristics has not been or cannot be collected. This is then
a source of the extra-Poisson variation in the data. That is, the observed variability
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is much larger than the observed mean. The additional variability can be partially
accommodated by observation-specific random effects along with the conditional
Poisson distribution. When a gamma distribution is assumed for the random effects,
the marginal distribution of the count is a negative binomial (NB) distribution. When
the NB distribution is constructed in the terms of the gamma mixture of Poisson
distributions as above, it not only leads to an analytically tractable probability
function but also provides a simple and intuitive accommodation of heterogeneity in
the data. In addition, its overdispersion parameter explicitly measures the magnitude
of overdispersion with respect to the Poisson variation. The Poisson distribution
becomes a special case of the NB distribution with the overdispersion parameter
approaching 0. In this study, we compare ZIP and ZINB models under five different
spatial-temporal random effects structures, showing gains in model fitting through
accommodating overdispersion by the NB distribution under various scenarios.

The zero-inflated Poisson model has been widely used to model the spatial
(Agarwal et al. 2002; Fei and Rathbun 2006) or spatial-temporal correlated count
data (Fernandes et al. 2009; Ver Hoef and Jansen 2007; Wang et al. 2015;
Wikle and Anderson 2003). The literature on the zero-inflated negative binomial
model, especially for spatial-temporal correlated count data, is still sparse. When
overdispersion is in question, the prior studies have shown the better performance of
the ZINB model compared to the ZIP model for spatially correlated data (Alexander
et al. 2000; Lee and Bell 2009; Li 2008; Mohebbi et al. 2014). A recent study by
Rumisha et al. (2014) developed a zero-inflated spatial-temporal negative binomial
model for the study of malaria transmission heterogeneity. In their model, the
spatial and temporal random effects are assumed to be additive. The current study
is motivated by and extended from our previous study of the survey data by NEFSC
(Wang et al. 2015), in which we propose a more flexible spatial-temporal correlation
structure as well as a more efficient computation scheme. In our study, we focus on
modeling the count data in the presence of both “true” and “false” zero counts. Our
proposed algorithm, though, can be easily modified to fit the two-stage model with
only “true” zeros.

For regression models on zero-inflated count data, researchers have developed
both maximum likelihood methods (Kassahun et al. 2015; Min and Agresti 2005)
and Bayesian approaches (Fu et al. 2015; Ghosh et al. 2006). Most of studies,
though, used the Bayesian approach when comparing ZIP and ZINB models with
spatial or spatial-temporal random effects (Alexander et al. 2000; Lee and Bell
2009; Li 2008; Mohebbi et al. 2014; Rumisha et al. 2014). This is because of
several potentially attractive modeling and computational advantages provided by
the Bayesian approach over the maximum likelihood-based approach, especially for
modeling spatial and spatial-temporal data. First, the Bayesian hierarchial model is
particularly useful in constructing a multiple-layer model that is easy to understand
and compute for the complex data structure like the non-Gaussian, spatial-temporal
data in our example (Banerjee et al. 2004). Secondly, with the high dimensionality
of random effects, the optimization of the likelihood function usually involves high
dimensional integrals, which are analytically intractable. The Bayesian approach
overcomes this challenge via the Markov chain Monte Carlo (MCMC) simulation.
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Finally, the Bayesian approach treats all parameters as random, which provides a
straightforward mechanism to incorporate scientific knowledge into the statistical
model through the prior distributions. In the current study, we choose to use the
Bayesian approach given the complexity of our data and our proposed model. The
main challenge in the MCMC simulation is the big “N” problem, which is common
in modeling large-scale spatial-temporal data. One of our contributions is to improve
computation efficiency by dimension reduction techniques.

The remainder of the paper is organized as follows. Within the generalized
linear mixed model framework, the proposed zero-inflated spatial-temporal model
is developed in Sect. 2. Also in Sect. 2, the priors and the values of hyperparameters
are specified and the posterior computation and the model comparison are discussed.
Section 3 presents the Atlantic cod data and provides the results on fitting a group of
ZIP and ZINB models under the different structures of spatial and temporal random
effects. Section 4 concludes the paper with discussion and future research problems.

2 The Model

Within the framework of the generalized linear mixed effects model, the proposed
regression model for count data is composed of three modules: the random
component, the systematic component, and the link function. The variations of the
proposed regression model can be obtained by changing one or several modules.
For example, in the classical setting of independent data, the generalized linear
model (GLM) as introduced by Nelder and Wedderburn (1972) is obtained from an
extension in the random component from Gaussian data to both Guassian and non-
Gaussian data. The generalized linear mixed model (GLMM), as a further extension
from GLM, changes the systematic component by introducing unobservable random
effects into the linear systematic component (Breslow and Clayton 1993). Diggle
et al. (1998) then specified the structure in the random components for modeling
geostatistical data which leads to the spatial generalized linear model. It is presented
as a natural extension of the mixed model by assuming the random effects as the
underlying Gaussian signal process at each of the sample locations. The same
GLMM framework is also used for areal or lattice data with a Gaussian Markov
random field model (Banerjee et al. 2004). This module view of the regression
model nicely unifies a rich family of regression models and further suggests
potential new models, including the zero-inflated spatial-temporal model proposed
here. It also greatly simplifies the algorithm development.

2.1 Zero-Inflated Models: A Step-by-Step Journey

We first introduce the notation used in the spatial-temporal model. Suppose data
are collected from N areal units in the region of interest over T time points. Let
yt;i denote the count data collected and Et;i be the binary indicator of whether the
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surveyed subject is truly presence/absence in the areal unit i in year t, i D 1; : : : ;N
and t D 1; : : : ;T. The presence status is unobservable if yt;i D 0, and may be
influenced by a rich collection of environmental and subject-specific characteristics.
A hierarchical model can be built through three modules: data models, process
models, and parameter models. The data model for zero-inflated data is usually
specified as

Et;i D
(
1; with probability pt;i;

0; with probability 1 � pt;i;

Prob.Yt;i D yt;ijEt;i/ D
(
1; if Et;i D 0;

PCount.yt;ij� t;i/; if Et;i D 1;

where PCount.yt;ij� t;i/ is the probability mass function of a random variable Yt;i with
distribution PCount.�I �/, whose mean and variance are decided by the parameter � .
It is assumed that, conditioned on pt;i, the Et;i’s are independent Bernoulli random
variables with E.Et;i/ D pt;i. Given Et;i D 1, the Yt;i’s are conditionally independent.

Here we consider two count distributions: Poisson and negative binomial. The
Poisson model is denoted by Poisson.yt;ijEt;i D 1; �t;i/ under the assumption that the
mean and the variance are equal, that is, E.Yt;i/ D Var.Yt;i/ D �t;i. The probability
mass function is given as

P.Yt;i D yt;ijEt;i D 1; �t;i/ D exp.��t;i/�
yt;i
t;i

� .yt;i C 1/
: (1)

The negative binomial model is denoted by NB.yt;ijEt;i D 1; �t;i; a/ with the
probability mass function as

P.Yt;i D yt;ijEt;i D 1; �t;i; a/ D � .yt;i C 1
a /

� .yt;i C 1/� . 1a /

 
1
a

1
a C �t;i

! 1
a
 

�t;i
1
a C �t;i

!yt;i

: (2)

The negative binomial distribution has its variance always greater than the mean and
thus is used to model the extra-Poisson variability in the count data. The parameter
a is an overdispersion parameter, with a larger value indicating higher heterogeneity
in the count values. The Poisson distribution is nested in the family of negative
binomial distributions when a ! 0.

The process models on the binary probability pt;i and the mean of the count �t;i

are constructed within the framework of generalized linear mixed model as

binary part W g.pt;i/ D x0
t;iˇt;i C wt;i; (3)

count part W log.�t;i/ D Qx0
t;i˛t;i C Qwt;i; (4)
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Table 1 Five regression models for count data

Model Binary part Count part

Model 1 g.pi/ D x0

iˇ, log.�i/ D Qx0

i ˛

Model 2 g.pt;i/ D x0

t;iˇ C wt;i log.�t;i/ D Qx0

t;i˛

wt;i
iid�N.0; 1/

Model 3 g.pt;i/ D x0

t;iˇ C wt;i, log.�t;i/ D Qx0

t;i˛

wt�MVNN.0; †b.�b//, for t D 1; : : : ; T

Model 4 g.pt;i/ D x0

t;iˇ C wt;i, log.�t;i/ D Qx0

t;i˛ C Qwi,

wt�MVNN.0; †b.�b//, for t D 1; : : : ; T Qw � MVNN.0; �
2†c.�c//

Model 5 g.pt;i/ D x0

t;iˇ C wt;i, log.�t;i/ D Qx0

t;i˛ C Qwt;i,

wt�MVNN.0; †b.�b//, for t D 1; : : : ; T Qw � MVNNT.0; �
2†c.�c; �c//

where g is the link function for the binary regression, xt;i and Qxt;i are the vectors
of covariates, which may be spatially and temporally related, ˇt;i and ˛t;i are the
vectors of the corresponding regression coefficients, and wt;i and Qwt;i are the random
components. The link function g.�/ is chosen to be Probit link here. Other link
functions are also possible but we do not explore further here.

Wang et al. (2015) discussed and compared count data models with different
specifications on the random components wt;i and Qwt;i with the regression coeffi-
cients ˇt;i and ˛t;i constant across space and time. Only ZIP models were considered
in Wang et al. (2015). Here we extend the ZIP model to the ZINB model to account
for potential extra overdispersion presented in count data. Specifically, the five types
of ZIP or ZINB models are constructed and shown in Table 1.

These five models represent a few most commonly used regression models for
count data. For example, Model 3 is similar to the one used in Fei and Rathbun
(2006), where the spatial random effects are included only in the binary part. Model
5 is similar to those in Ver Hoef and Jansen (2007) and Wang et al. (2015) with
correlated spatial and temporal random effects in both the binary part and the count
part. These models differ in the specification of the structure of the random effects.
Here we describe the model structures and introduce our proposed model (Model 5)
by changing the random effects in the systematic component module gradually. In
all five models, the regression coefficients ˇ and ˛ are constant across space and
time. For details, see Wang et al. (2015).

Model 1 is a simple zero-inflated model, without considering any random effects.
Model 2 is a zero-inflated model assuming independent random effects in the binary
part.

Model 3 is a zero-inflated model assuming spatially correlated random effects
in the binary part only. We employ the conditional autoregressive model (CAR)
on the spatial random effects !t D .!t;1; : : : ; !t;N/ in year t (Cressie 1993). That
is, !t � MVN.0; �2.I � �W/�1/, where MVN.�;†/ is a multivariate normal
distribution with a mean vector � and a variance-covariance matrix †, �2 is the
spatial nugget parameter, � is the spatial range parameter, and W is the adjacency
matrix with wii D 0, wi` D 1 if the areal unit i and ` are neighbors, and wi` D 0
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if they are not (i ¤ `). The neighborhoods of two areal units are defined according
to a second-order neighbor definition (Banerjee et al. 2004). To make .I � �W/�1
nonsingular, we assume � 2 .1=�.1/; 1=�.N//, where �.1/ < �.2/ < : : : < �.N/ are
the ordered eigenvalues of W. To ensure identifiability, �2 is set to 1 (De Oliveira
2000; Fei and Rathbun 2006). The latent variables Z are introduced in the model to
facilitate the data augmentation method in MCMC computation (Albert and Chib
1993).

Model 4 is a zero-inflated count model incorporating spatial random effects
in both binary and count parts. The structure of the spatial random effects in
the binary part is the same as in Model 3. For the spatial random effects in
the count part, Model 4 assumes a continuous spatial covariance depending on
distance, instead of the neighborhood structure as in the CAR model. This is
because the spatial correlation in the count part is only estimated using the data
from two areal units with the binary part Et;i D 1. This may lead to one or
a group of isolated areal units, which are assumed spatially independent from
the rest of the region if the spatial covariance structure is assumed depending
on the neighborhood structure. We find this unsatisfactory and thus propose to
use a continuous correlation function (Fernandes et al. 2009; Wang et al. 2015;
Wikle and Anderson 2003). Here we use the Matérn correlation function specified
as .� .�2/2.�2�1//�1 .2�1=22 d.s; s0/=�1/�2K�2.2�

1=2
2 d.s; s0/=�1/, where K�2 is a

modified Bessel function of the second kind of order �2, d.s; s0/ is the Euclidean
distance between two locations s and s0, �1 is the range parameter which measures
how fast the correlation decays with distance, and �2 is the smoothness parameter
that measures the degree of smoothness of the spatial process. The higher the value
of �2, the smoother the spatial process would be. We assume the parameter �2 D 1

to avoid the weak identification problem (Whittle 1954).
A continuous correlation structure makes it possible to investigate “hot spots” or

“cold spots” effects (Wang et al. 2015). A challenge using the continuous covariance
function is that it involves the inversion of an N � N matrix with the dimension
increasing with the number of locations N and the computation of the order of N3.
Here, we employ the Gaussian predictive process approach (Banerjee et al. 2008)
and specify the spatial random effects Qwi as Qwi D D0

i� , where the basis function
D is constructed using the predictive process with D D ŒD.s/	i D V.s/0H�1,
V.s/ D �2.v.s; s�

1 I �/; : : : ; v.s; s�
MI �//, and Hlk D �2v.s�

l ; s
�
k I �/, s�

1 ; : : : ; s
�
M are

the selected knots in the study area with M << N, v.�I �/ is a valid correlation
function, and � � N.0;H/.

Model 5 is recently proposed for the zero-inflated Poisson regression model with
spatial-temporal random effects (Wang et al. 2015). The random effects Qwt;i are
specified as Qwt;i D D0

i� t, with the same basis function as in Model 4. The temporal
evolution of � t is specified as � t D �� t�1Cvt, where vt � N.0;H/ and �1 < � < 1.
An interesting result was derived based on the spectral decomposition of H (Salazar
et al. 2011): H D �2PƒP, where P is an orthogonal matrix and ƒ is a diagonal
matrix with the eigenvalues of H=�2 as the diagonal elements. Letting � t D P� t for
all t, we have
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D.s/P�t D � .s/� t; �t � N.�� t�1; �2ƒ/; (5)

where � .s/ D D.s/P D V.s/0H�1P and �t D ��t�1 C 	t with 	t � N.0; �2ƒ/
and �0 � N.m0;C0/. As a result, the temporal changes in spatial patterns
can be modeled as M independent processes Q� i D f�1;i; �2;i; : : : ; �t;i; : : : ; �T;ig;
i D 1; : : : ;M.

The model complexity increases from Model 1 to 5 in the random effects
structure. We also include both the Poisson distribution and the negative binomial
distribution in the random component in the count part. Thus, we fit both the ZIP
and ZINB models with various types of spatial-temporal random effects. With
this model development trajectory, we hope to address the following potential
complications which are common in modeling count data: (1) overdispersion; (2)
excess zeros; (3) spatial-temporal correlations; and (4) computational challenges
when the data are large.

2.2 Prior Specification, Posterior Computation and Model
Assessment

We discuss the prior specification under Model 5, which has the largest set of
parameters to be estimated. The prior specifications under other models are similar.
The parameters under Model 5 include ˇ;˛; �b; �

2; �c, �, and a. The priors for these
parameters are specified as follows: ˇ � N.0; gˇ.X0X/�1/, where gˇ D 1000;
˛ � N.0; g˛I/, where g˛ D 1000; �b � U.�min; �max/, which ensures the positive
definiteness of the dispersion matrix .I � �W/�1; �2 � IG.c; d/, where c D 2

and d D 1; � � U.�1; 1/, and a � Gamma.1=�; �/, where � D 3. The prior for
the range parameter �c in the Matérn correlation function is set as �c � IG.2; h/,
where h D max.d.s; s0/=.�2 log.0:05//. With this prior specification, �c has a large
variance and mean based on a crude estimated range, � log.0:05/ � �c, taken to be
the half of the maximum interlocation distance max.d.s; s0//. Details on this prior
specification can be found in Banerjee et al. (2004), Banerjee (2005), Lopes et al.
(2008), and Salazar et al. (2011). The hyper-parameters in priors for all the other
parameters are also chosen to ensure that relatively weak informative priors are used
in Bayesian estimation.

Since there is no prior information available on �0 in our application, we specify
a normal prior for the first state vector �1 � N.m1;C1/ (West and Harrison 1997).
The hyperparameters m1 and C1 are specified as an M � 1 vector 0 and an M � M
diagonal covariance matrix 106 � I.

The posterior estimates of the parameters are computed via MCMC sampling.
The detailed development of the MCMC sampling algorithm for the ZIP model
is given in Section S1 in Supplementary Material of Wang et al. (2015). The
computation for the extension of Bayesian ZIP model to ZINB model is carried
out by considering the negative binomial distribution as a mixture of Poisson-
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Gamma distribution. Assuming Yt;ijEt;i D 1; �t;i � Poisson.�t;i�t;i/ and �t;i �
Gamma.1=a; a/, the marginal distribution of Yt;i is NB.�t;i; a/. The conditional
posterior distribution for the gamma random variable �t;i is Gamma.1=a; a/ if
Et;i D 0 and Gamma.yt;i C 1=a; Œ1=a C exp.Qx0

t;i˛ C � .si/
0�t/	

�1/ if Et;i D 1.
The conditional posterior distribution of the dispersion parameter a does not have
a closed form. It is sampled using the Metropolis-Hastings algorithm. The R boa
package (Smith 2007) is used for convergence diagnostics of MCMC chains.

We use two Bayesian model selection criteria; namely, the deviance information
criterion (DIC) (Spiegelhalter et al. 2002) and the conditional predictive ordinates
(CPO) (Gelfand et al. 1992).

The DIC can be calculated in different ways depending on what is in ‘focus’
(Spiegelhalter et al. 2002). Here we use the method in Hadfield (2010) and calculate
the likelihood for the lowest level of the hierarchy. Therefore, the likelihood function
of a data point yt;i depends on the Bernoulli probabilities and the means .pt;i; �t;i/ for
the ZIP model, and .pt;i; �t;i/ as well as the overdispersion parameter a for the ZINB
model. That is, for i D 1; : : : ;N and t D 1; : : : ;T, the logarithm of the likelihood
function of the observation in the areal unit i in year t is

l.yt;ij� t;i/ D logf.1 � pt;i/I.yt;i D 0/C pt;iPCount.yt;ij� t;i/g;

where PCount.yt;ij� t;i/ is as specified as in Eq. (1) (ZIP) or (2) (ZINB), and � t;i D
fpt;i; �t;ig in the ZIP model or fpt;i; �t;i; ag in the ZINB model. Based on the GLMM
model specified in Eqs. (3) and (4), pt;i D g�1.x0

t;iˇt;i Cwt;i/ and �t;i D exp.Qx0
t;i˛t;i C

Qwt;i/, where ˛;ˇ; fwt;ig; f Qwt;ig as well as the overdispersion parameter a are obtained
using MCMC sampling.

The DIC measure is then calculated as DIC D ODavg.y/ C pD, where pD is
the effective number of parameters of a Bayesian model. The average deviance
function ODavg.y/ is calculated as ODavg.y/ D fPL

lD1 D.y;� l/g=L using L sampling
points, where � l is the lth sampling value for the parameter � D f� t;ig. The
deviance function D.y;�/ is negative two times the logarithm of the likelihood,
�2PT

tD1
PN

iD1 l.yt;ij� t;i/. We calculated pD as Op D ODavg.y/�D O�.y/, where D O� .y/ D
D.y; O�.y// and O� is the posterior mean of the MCMC samples. The smaller the DIC
value, the better the model fits the data.

CPO is a Bayesian cross-validation statistic by computing the conditional
predictive distribution after deleting a single observation. Let D�.t;i/

obs denote the
data with the observation in the areal unit i in year t deleted, i D 1; : : : ;N and
t D 1; : : : ;T. For the deleted observation yt;i, CPOt;i is the marginal posterior
predictive density of yt;i given D�.t;i/

obs , which can be expressed as (Dey et al. 1997)

CPOt;i D
( Z

�


.� jDobs/

l.yt;ijD�.t;i/
obs ;�/

d�

)�1
:
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A Monte Carlo approximation of CPOt;i is given by

bCPOt;i D
(
1

M

MX

mD1

1

l.yt;ijD�.t;i/
obs ;� .m//

) �1
:

By assuming conditional independence of yt;i, where i D 1; : : : ;N and t D 1; : : : ;T,
l.yt;ijD�.t;i/

obs ;� .m// is simplified to l.yt;ij�.m//. We compute the log-pseudo marginal
likelihood (LPML) by summarizing all CPOt;i’s, which is

LPML D
TX

tD1

NX

iD1
log.bCPOt;i/:

The larger the value of LPML is, the better the fit of the model is.

3 Application: Analysis of the Presence and Abundance
of Atlantic Cod in the Gulf of Maine-Georges Bank Region

The Northeast Fisheries Sciences Center (NEFSC) has been collecting data on
ocean fishery through a standardized research survey since Fall, 1963. The survey is
carried out on a regular basis in each of the four seasons each year. Geographically,
the survey area covers the area from the Gulf of Maine to Cape Hatteras, NC.
Approximately 350–400 stations are surveyed during each survey season, with
locations selected by a stratified random sampling design to assure that the number
of stations allocated to strata are roughly in proportion to area. Samples are collected
in depths of 27–350 m with 4 depth zones. Data recorded on site include the species
caught, weight, counts of fish, surface and bottom water temperature, and bottom
depth of the tow along with many other variables.

Wang et al. (2015) are the first to apply a Bayesian spatial-temporal model in
understanding the presence and abundance of Atlantic cods stocks. The study area
is divided into 1325 (N D 1325) 10 km by 10 km grids. The survey data used here
were collected during the period of fall 1970 to fall 2008 (T D 39). The ocean
geographical characteristics included in the model are the average depth of the ocean
and the depth standard deviation (see Figure S1 in Wang et al. 2015) that show
a wide variation in the area. The latitude and the sampling year are considered in
the model. All of the covariates are standardized by their corresponding means and
standard deviations to improve MCMC convergence.

The study conducted by Wang et al. (2015) was based on the Poisson assumption
in the count data part. As discussed in the Introduction section, the data exhibits
evidence of overdispersion in a simple ZIP fit. A negative binomial model may
improve the fit of these count data, with or without the spatial and spatial-temporal
random effects. We fit both the ZIP and ZINB distributions in Model 1–5. Table 2
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Table 2 Model comparison among ZIP and ZINB Model 1–5

Model 1 Model 2 Model 3 Model 4 Model 5

DIC

ZIP 42110.66 41891.21 40954.10 34918.73 25086.17

ZINB 17370.98 17268.20 16807.35 16388.40 16254.58

LPML

ZIP �21040.56 �20929.13 �19604.22 �16629.97 �11263.29

ZINB �8674.22 �8621.38 �8100.34 �7956.95 �7654.31

DIC is the deviance information criterion and LPML is the log-pseudo marginal
likelihood

shows the DIC and LPML for all models. Model 5 with ZINB distribution is
the best model, which accounts for spatial-temporal correlation, excess zeros, and
the overdispersion in the count data. Comparison between models under the same
column with either Poisson or NB distributions assumption confirms the importance
of modeling overdispersion in the data.

We proceed with detailed discussion on ZINB Model 1–5. Tables 3 and 4
show detailed results on these models as well as those of ZIP Model 4 and 5 for
comparison. For the details regarding the fit of all ZIP models, see Wang et al.
(2015).

ZINB Model 1, which is a simple negative binomial zero-inflated model, is
clearly not sufficient to fit the data. It has the largest DIC as 17370.98. ZINB Model
2 includes independent random effects in the binary part and adds the time as a
covariate in the count part. It shows improvement over Model 1 with a smaller DIC.
The spatial random effects are included in the binary part in Model 3 and in both
binary and count parts in Model 4, which leads to a lower DIC value. While the
direction and significance of most covariates effects do not change a lot from Models
2–4, the latitude becomes an insignificant factor in abundance variation when the
spatial random effects are included in the count part (Model 4). All these 4 models
assume the same pattern across years, independent or spatially correlated random
effects, with the only change in the overall probability or abundance.

ZINB Model 5 does not require this assumption and it models the inseparable
spatial-temporal random effects. The estimates based on Model 5, then, do not
assume the same spatial correlation patterns across the years. Figure 3 shows the
posterior means of the mean count estimates (pt;i�t;i) under ZIP Model 4, ZIP
Model 5, ZINB Model 4, and ZINB Model 5 for the four snap-shot years in Fig. 1.
As shown in Fig. 3, the estimates from ZIP Model 5 and ZINB Model 5 exhibit
an overall decreasing trend in the mean estimates of the Atlantic cod abundance,
however, the spatial patterns are different from year to year and more importantly,
the abundance increases relatively to 10 years ago in the west in 2007. Thus,
the proposed spatial-temporal model captures the dynamic changes in the spatial
patterns and the nonlinear trend in some regions. As to Table 4, ZIP Models 4 and
5 have higher DIC values compared to the ZINB models. Thus, the ZINB model is
more appropriate for the motivating count data. The covariate “time” is significantly
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Table 3 Posterior estimates under Models 1–3

ZINB Model 1 ZINB Model 2 ZINB Model 3
Variables Est. SD Est. SD Est. SD

Binary part

Intercept 2.00 0.13 2.32 0.14 3.01 0.21

Mean depth 0.29 0.10 0.43 0.11 0.43 0.15

.meandepth/2 �0.15 0.07 �0.14 0.08 �0.20 0.09

sd.of depth �0.07 0.05 �0.13 0.05 �0.11 0.07

Latitude 1.90 0.09 2.06 0.10 2.68 0.14

� 0.1255 0.00006

Count part

Intercept 1.12 0.03 1.02 0.04 1.07 0.03

Mean depth �1.29 0.04 �1.29 0.04 �1.31 0.04

.meandepth/2 �0.16 0.05 �0.17 0.06 �0.14 0.05

sd.of depth 0.48 0.04 0.50 0.04 0.48 0.04

Latitude �0.09 0.04 �0.06 0.04 �0.10 0.04

Time �0.31 0.03 �0.28 0.03

a 2.52 0.09 2.49 0.09 2.29 0.08

�1 – –

�2 – –

� – –

DIC 17370.98 17268.20 16807.35

�2llike 17352.27 17247.20 16521.59

pD 9.36 10.50 142.88

DIC is the deviance information criterion; �2llike is the deviance evaluated
at the posterior means of parameters; pD is the effective number of model
parameters in DIC. Model 1: the ZINB model on data combined across years
and locations. Model 2: the ZINB model on the data combined across locations
with year as a covariate (time) in the count part. Model 3: the ZINB model
with the spatial correlation on the binary part and with time as a covariate in
the count part

negative and this effect is consistent across ZINB Model 1–5. The effect is only
slightly weaker in Model 5 when the temporal random effects are included. This
reflects the overall decreasing trend in the fish’s abundance. The overdispersion
parameter a in the ZINB distribution decreases from ZINB Model 1 to ZINB Model
5, as part of the overdispersion is modeled by spatial random effects or spatial-
temporal random effects.

4 Discussion

The significant dynamic spatial patterns may imply that there are some important
factors to be considered in estimation and prediction of the Atlantic cod abundance.
For example, our preliminary study showed that the abundance has a similar
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Table 4 Posterior estimates under Models 4–5 for ZIP and ZINB

ZINB Model 4 ZINB Model 5 ZIP Model 4 ZIP Model5
Variables Est. SD est. SD Est. SD Est. SD

Binary part

Intercept 2.99 0.34 3.12 0.14 0.09 0.05 0.27 0.05

Mean depth 0.61 0.21 0.47 0.14 �0.26 0.04 �0.25 0.05

.meandepth/2 �0.08 0.15 �0.16 0.09 �0.28 0.05 �0.23 0.06

sd.of depth �0.19 0.13 �0.12 0.07 0.22 0.03 0.20 0.03

Latitude 1.90 0.27 2.68 0.11 0.29 0.04 0.36 0.05

� 0.1255 0.0001 0.1255 0.00007 0.1250 0.0002 0.1251 0.0002

Count part

Intercept 0.19 0.29 0.81 0.10 �0.78 0.22 0.36 0.17

Mean depth �1.21 0.05 �1.21 0.05 �0.92 0.02 �1.02 0.02

.meandepth/2 �0.26 0.06 �0.27 0.06 �0.09 0.02 �0.13 0.03

sd.of depth 0.44 0.04 0.43 0.04 0.25 0.01 0.22 0.01

Latitude 0.13 0.20 �0.08 0.08 �0.68 0.11 �0.49 0.08

Time �0.37 0.03 �0.30 0.08 �0.17 0.01 �0.64 0.13

a 2.13 0.08 1.73 0.07

�1 74.87 1.54 61.53 0.25 92.33 5.58 66.35 1.45

�2 2.65 0.98 1.37 0.21 6.19 2.22 8.06 0.75

� 0.13 0.05 0.42 0.03

DIC 16388.40 16254.58 34918.73 25086.17

�2llike 16197.54 15651.32 33961.71 23431.25

pD 95.43 301.63 478.51 827.46

DIC is the deviance information criterion; �2llike is the deviance evaluated at the posterior
means of parameters; pD is the effective number of model parameters in DIC. ZINB Model 4:
the ZINB model with spatial correlation on the binary part and the count part and with time
as a covariate in the count part. For the predictive process, 16 knots were selected as shown in
the left panel of Figure S5 in Wang et al. (2015). ZINB Model 5: the ZINB model with spatial
correlation on the binary part and with spatial-temporal correlation in the count part and with
time as a covariate in the count part. Knots were selected as in ZINB Model 4. ZIP model 4 and
ZIP model 5 are the corresponding models with the ZIP distribution

temporal pattern with the index of the North Atlantic Oscillation (NAO), which
can be used as an indicator for the strength and direction of westerly winds and
storm tracks across the North Atlantic. Our empirical results then suggest a further
investigation of potential important factors on studying the Atlantic cod, which can
be explored to see if it can explain the spatial, temporal, or spatial-temporal patterns
in the random effects and thus reduce the overdispersion in the count data.

While such information is not readily available, a statistical model that considers
these complications is important. There are different methods to deal with these
types of count data. Our contribution here is to extend the newly developed spatial-
temporal model for zero-inflated count data to the count data with overdispersion,
under different structures of the spatial-temporal random effects. Another possibility
is to use spatially varying regression coefficients as in Wikle and Anderson
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Fig. 3 The logarithm of posterior mean count at each grid from Model 4 and 5 for ZIP and ZINB
models
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(2003). da Silva and Rodrigues (2014) proposed a geographically weighted negative
binomial regression method with spatially varying regression coefficients. The
parameters are estimated using a combination of the Iteratively Reweighted Least
Squares and the Newton-Raphson algorithm. A fully Bayesian approach is possible
to fit a ZINB with spatial-temporally varying regression coefficients.

In our data analysis, we used weakly informative priors on the parameters, except
that we fixed the smooth parameter �2 D 1 in the Matérn correlation function
to avoid the weak identification problem (Whittle 1954). If �2 can be identified
in a given data set, it is possible to impose a uniform prior U.0; 2/ on �2 as
in Banerjee (2005). Another aspect to consider is regarding the selection of the
number and locations of knots. We examined the ZIP models with different numbers
of knots (i.e., 16, 32, 56, 64, 150). Computation stability becomes problematic
when the number of knots reached 150. Also, the results suggested that the model
performance does not necessarily improve with a larger number of knots. The results
discussed in Sect. 3 was based on 16 evenly spaced knots with arbitrarily selected
locations in this study. It is possible that the selected locations do not provide
the optimal approximation of the parent process. To further improve the spatial-
temporal modeling, the selection of the optimal number and their optimal locations
of knots can be investigated as in Finley et al. (2009). The reversible jump MCMC
algorithm may also be applied to estimate the number and locations of knots (Lopes
et al. 2011).

There are a few interesting aspects of the proposed model that may be extended
to allow more modeling flexibility. First, we only considered the probit link function
in Eq. (3). In some studies, the logistic link function is used in the binary part
(Rumisha et al. 2014). Both probit and logistic link functions are symmetric. When
it is suspected that there exists skewness in the response probability function, it
may be more appropriate to employ some flexible link functions to accommodate
this data feature, such as the GEV link in Wang and Dey (2010) and the power
link in Jiang et al. (2013). Secondly, we assumed that count data follows a zero-
inflated Poisson distribution or a zero-inflated negative binomial distribution by a
mixture model approach. Thus, the binary and the count parts are assumed as two
independent processes. In the hurdle model, where the zero observations and the
positive counts are handled separately, it is common that the binary and the counts
are jointly modeled with potential correlation structures (Min and Agresti 2005;
Recta et al. 2012). It is interesting to investigate theoretical and computational
properties of our proposed model if the dependence between the binary and the
count processes is assumed. Thirdly, note that the ZINB model is a special type of
the ZIP model with random effects followed a gamma distribution (Kassahun et al.
2015). It is possible to construct a ZIP model with more general assumptions on the
random effects to accommodate overdispersion. We thank an anonymous referee for
the above comments.
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Bias-Corrected Estimators of Scalar Skew
Normal

Guoyi Zhang and Rong Liu

Abstract One problem of a skew normal model is the difficulty in estimating the
shape parameter, for which the maximum likelihood estimate may be infinite when
sample size is moderate. The existing estimators suffer from large bias even for
moderate size samples. In this paper, we proposed five estimators of the shape
parameter for a scalar skew normal model, either by bias correction method or by
solving a modified score equation. Simulation studies show that except bootstrap
estimator, the proposed estimators have smaller bias compared to those estimators
in literature for small and moderate samples.

1 Introduction

The skew normal Y � SN.�; �; �/ is a class of distributions that includes the normal
distribution (� D 0) as a special case. Its density function is as follows

f .yI�;�; �/ D 2

�
�
�y � �

�

�
˚
�
� � y � �

�

�
;

where � and ˚ are the N.0; 1/ density and distribution function, parameters �; �
and � regulate location, scale and shape respectively. The distribution is positively
or negatively asymmetric, in agreement with the sign of �.

Azzalini (1985, 1986) introduced scalar skew normal problem and derived prop-
erties of the scalar skew normal density function. Generalization to the multivariate
case is given by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999),
and Azzalini (2005, 2011). The skew t family has been investigated by Branco and
Dey (2001), Azzalini and Capitanio (2003), Gupta (2003) and Lagos-Álvarez and
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Jiménez-Gamero (2012). Based on the method introduced by Firth (1993), Sartori
(2006) investigated bias prevention of the maximum likelihood estimate (MLE) for
scalar skew normal and t distribution. If the MLE is subject to a positive bias b.�/
(true for skew normal), Firth (1993) suggested shifting the score function U.�/
downward by an amount of U0.�/b.�/ at each point of � (illustrated in Fig. 1) to
derive a modified score function U.�/ C U0.�/b.�/. It is proved by Firth (1993)
that bias of the MLE could be reduced by modifying the score function. Bayes
and Branco (2007) developed a simple closed form for the bias correction factor
suggested by Sartori (2006) through a rescaled logistic distribution. Azzalini and
Arellano-Valle (2013) formulated a general frame work for penalization of the log-
likelihood function and proposed maximum penalized likelihood estimate (MPLE)
to correct some undesirable behavior of the MLE. Genton (2004) gives a general
overview of the skew distributions and their applications.

The existing work of skew normal and t distribution mainly include the bias
prevention estimators: Sartori (2006)’s estimator (call Q�1), Bayes and Branco
(2007)’s estimator (call Q�2) and Azzalini and Arellano-Valle (2013)’s estimator (call
Q�3). With a moderate sample n D 20, and shape parameter � D 10, the probability
that all observations are nonnegative reaches 52.5 %, for which MLE D 1 and
bias is 1 as well. For such situations, Q�1, Q�2 and Q�3 provided finite solutions for
the shape parameter �, but with large bias. For example, simulations from Sartori
(2006) show that under the setting with � D 10; n D 20, bias of Q�1 reached �5:897.
Similar results can be found from Q�2 and Q�3. The bias prevention estimators work
well only for large samples.

In this paper, we proposed five estimators for the shape parameter � from
different perspectives: bias correction approach and score function modification
approach. This paper is organized as follows. In Sect. 2, we give a background
review of Sartori (2006)’s bias prevention estimator, Bayes and Branco (2007)’s
approximation estimator and Azzalini and Arellano-Valle (2013)’s MPLE. In
Sect. 3, we propose five estimators. In Sect. 4, we perform simulation studies and
compare the proposed estimators with those reviewed in Sect. 2. Section 5 gives
conclusions.

2 Background

Let Z1;Z2; � � � ;Zn be a random sample from SN.0; 1; �/ and let l.�/ be the log-
likelihood function denoted as

l.�/ D constant C
nX

iD1
logf2˚.�Zi/g:
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Let U.�/ be the score function of l.�/,

U.�/ D
nX

iD1

�.�Zi/

˚.�Zi/
Zi:

U0.�/ can be derived as follows,

U0.�/ D ��
nX

iD1

�.�Zi/

˚.�Zi/
Z3i �

nX

iD1

�
�.�Zi/

˚.�Zi/

�2
Z2i :

Based on Firth (1993), Sartori (2006) modified the usual score equation U.�/ D 0

by adding an order O(1) term M.�/ D EfU0.�/b.�/g (the expected value is used to
remove the first-order bias of O�), so that the modified score equation is

U.�/C M.�/ D 0: (1)

Sartori’s estimator Q�1 is the solution of Eq. (1) after replacing M.�/ by M1.�/ as
follows,

M1.�/ D ��
2

� a42.�/

a22.�/
;

where akh.�/ D E

(

Zk

�
�.�Z/

˚.�Z/

�h
)

, and the expected values need to be numeri-

cally computed.
Bayes and Branco (2007)’s estimator is the solution of Eq. (1) after replacing

M.�/ by

M2.�/ D �3�
2

�

1C 8�2


2

��1
;

where M2.�/ is a simple closed form approximation of M1.�/ using a rescaled
logistic distribution.

Azzalini and Arellano-Valle (2013) proposed MPLE Q�3. They replace M.�/ in
Eq. (1) by

M3.�/ D �2C1C2
�

1C C2�2
; (2)

where C1 D 0:875913;C2 D 0:856250. It is easy to see that M1.�/ � M2.�/ �
M3.�/ D O.��1/. Hence, the finite solution of � exists for all of the three methods.
It can be shown that for Q�1; Q�2 and Q�3, E. Q�i � �/ D O.n�2/.
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Fig. 1 Modifications of the unbiased score function

3 Bias Reduction Techniques for Scalar Skew Normal

All the three estimators Q�1; Q�2 and Q�3 suffer from large bias when the sample
size is small or moderate. One intuitive way is to estimate the bias and subtract
the bias from the estimator. Also notice the systematic negative bias of the three
estimators from simulation studies, we propose adjusting the score function to offset
the systematic trend. We also examined jackknife and bootstrap bias correction
methods for comparison purpose.
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3.1 Bias Correction for MLE and Q
3

For a general MLE O�, it is well known that O� is consistent with asymptotic
distribution

p
n. O� � �/

d! N.0; i.�/�1/; n ! 1;

where i.�/ is the expected Fisher information for a single observation. Consider the
second order expression for the mean of the limiting distribution of O�,

0 D U. O�/ D U.�/C . O� � �/U0.�/C 1

2
. O� � �/2U00.�/C Op.n

� 1
2 /: (3)

Taking expectations through (3), we obtain

E. O� � �/E ˚U0.�/
�C cov. O�;U0.�//

C1

2
E. O� � �/2EfU00.�/g C 1

2
covf. O� � �/2;U00.�/g

D O.n� 1
2 /:

Let l2 be the log-likelihood for one single observation. For convenience, define

Krs.�/ D EŒfl02.�/grfl002.�/C i.�/gs	:

We can show that

Efl0002 .�/g D �3K11.�/� K30.�/;

covf O�;U0.�/g D o.n�1/;

and

covf. O� � �/2;U00.�/g D o.n�1/:

For detailed derivation of the above equations in this section, please refer to Cox and
Hinkley (1974, p. 309) and Cox and Snell (1968). Some manipulation then gives

b.�/ D E. O� � �/ D �K11.�/C K30.�/

2ni2.�/
C o.n�1/

D 1

2
� �a42.�/

na222.�/
C o.n�1/:
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The proposed bias-corrected MLE takes the form of

O�bc D O� � b. O�/; (4)

with b.�/ D �a42.�/=2na222.�/: If the MLE does not exist, the bias prevention
estimator Q�1 will be used instead.

Now, we consider bias correction of the estimator Q�3. Recall that Q�3 is the MPLE
proposed by Azzalini and Arellano-Valle (2013). Let

U�.�/ D U.�/C M3.�/; (5)

where M3.�/ is defined as in Eq. (2). Take derivative of U�.�/, we have

U�0

.�/ D U0.�/C M0
3.�/;

where M0
3.�/ D �2C1C2.1 � C2�2/=.1C C2�2/2: It is easy to show that M3.�/ D

O.��1/ and M0
3.�/ D O.��2/. Applying Taylor theorem for U�. Q�3/ at the

neighborhood of �, we have

0 D U�. Q�3/ D U�.�/C U�0

.�/. Q�3 � �/: (6)

Replacing U�0

.�/ by EfU�0

.�/g and use the fact that ni.�/ D �EfU0.�/g, Q�3 � �

can be expressed as the following,

Q�3 � � D � U�.�/
EfU�0

.�/g (7)

D U.�/C M3.�/

ni.�/ � M0
3.�/

:

Using the result in Eq. (7) and take expectation through Eq. (6), we have

0 D EfU�.�/g C EfU�0

.�/gE. Q�3 � �/C covfU�0

.�/; Q�3 � �g
D M3.�/C fM0

3.�/ � na22.�/gE. Q�3 � �/

C 1

na22.�/� M0
3.�/

f�n.�a42.�/C a33.�//g:

Therefore, the bias of Q�3 is

E. Q�3 � �/ D
�na42.�/C na33.�/

na22.�/� M0
3

� M3

M0
3 � na22.�/

D ��na42.�/C na33.�/C M0
3M3 � na22.�/M3

.M0
3 � na22.�//2

:
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The proposed bias-corrected Q�3 takes the form of

Q�sc D Q�3 � b. Q�3/; (8)

with b. Q�3/ D � ˚�na42.�/C na33.�/C M0
3M3 � na22.�/M3

�
=.M0

3 � na22.�//2:

3.2 Adjusted Estimator

Considering Fig. 1, U.�/ cross the x-axis when Zis are with opposite sign numbers
( O� exists); and U.�/ approaches x-axis without crossing it when Zis are all positive
or all negative ( O� D ˙1). For O� D ˙1 cases, the bias prevention idea is to shift
the score function by an amount of f�U0.�/b.�/g to force it cross the x-axis to
obtain a finite MLE. From simulation studies, we have noticed systematic negative
biases of the three estimators Q�1; Q�2 and Q�3. This means that the amount of shift
f�U0.�/b.�/g is too large for the three estimators. Therefore it should be reduced
by a certain amount to allow the score function U.�/ cross the x-axis but produce
less bias. We propose adding M4.�/ to the score function U.�/, so that

U.�/C M4.�/ D 0; (9)

where

M4.�/ D � n

n C d�
� �a42.�/

2a22.�/
:

Define a constant c such as

c D supfdjU.��/C M4.�
�/ D 0;where �� has negative biasg: (10)

We can see that for any fixed d and �, jM4.�/j < jM1.�/j, i.e. the shifted amount
M4.�/ of the score function is smaller than that of Q�1. As n ! 1, n=.n C d�/ ! 1,
hence M4.�/ �! M1.�/. Equation (10) indicates that d 2 Œ0; c	, and that we are
looking for a constant c such that �� has the smallest negative bias (close to the
true value). The proposed adjusted estimator Q�ad naturally follows as the solution of
Eq. (11),

U.�/C M5.�/ D 0; (11)

with M5.�/ D � n

n C c�
� �a42.�/

2a22.�/
. The following theorem can be derived.



210 G. Zhang and R. Liu

Theorem 1. The adjusted estimator Q�ad has the following properties: (1) Q�ad has
finite solution; (2) Bias. Q�ad/ D O.n�2/; and (3) Q�ad converges in probability to

Sartori (2006)’s estimator Q�1 as n ! 1, i.e., Q�ad
p! Q�1.

Proof. Proof follows from Sartori (2006).

3.3 Jackknife and Bootstrap Bias Correction

Following Lagos-Álvarez et al. (2011) for bias correction in the Type I generalized
logistic distribution, we consider jackknife and bootstrap bias correction. The
jackknife was introduced by Quenouille (1949, 1956) to reduce bias of estimators.
Shao and Tu (1995) discussed several forms of the jackknife. The bootstrap was
introduced by Efron (1990) for estimating the sampling distribution of a statistic
and its characteristics. Both jackknife and bootstrap are popularly used since then.
In the following, we will consider delete-1 jackknife and bootstrap bias correction
of the estimator Q�3.

Recall that Z1;Z2; � � � ;Zn is a random sample from SN.0; 1; �/. Let Q�3.i/ be the
solution of the equation

U.�/C M3.�/ D 0; (12)

with observation Zi deleted. Define NQ�3 D Pn
iD1 Q�3.i/=n. The jackknife bias is defined

as bbiasjack D .n � 1/.
NQ�3 � Q�3/ and the jackknife bias-corrected estimator of � is

Q�jack D Q�3 � bbiasjack D n Q�3 � .n � 1/
NQ�3: (13)

For bootstrap bias correction, we use nonparametric bootstrap to approximate
the bias of Q�3. First, we draw B independent bootstrap samples from Z1;Z2; � � � ;Zn

with replacement. Let Z.i/1 ;Z
.i/
2 ; � � � ;Z.i/n ; i D 1; � � � ;B; be the ith bootstrap sample,

and Q�.i/3 be the solution of Eq. (12) with the ith bootstrap samples. The bias can be
estimated as follows

bbiasboot D

BP

bD1
Q�.i/3

B
� Q�3:

The bootstrap bias-corrected estimator of � is

Q�boot D Q�3 � bbiasboot D 2 Q�3 �
BX

bD1
Q�.i/3 =B: (14)
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4 Simulation Studies

In this section, a small simulation study was conducted to evaluate the five proposed
estimators. We consider the shape parameter � D 5 and � D 10, and generate
2000 skew normal SN.�/ samples with sizes n D 5; 10; 20; 50 and 100. For
each generated sample, the following estimators and their bias were computed: Q�1
Sartori (2006), Q�2 Bayes and Branco (2007), Q�3 Azzalini and Arellano-Valle (2013),
O�bc (bias-corrected MLE), Q�sc (bias-corrected Q�3), Q�ad (adjusted estimator), Q�jack

(jackknife bias-corrected estimator) and Q�boot (bootstrap bias-corrected estimator).
The adjusted estimator Q�ad is calculated as the solution of (9) with d D 2, which is
found by a comparison of several numbers of d in reducing the bias and was used to
approximate the constant c in (10). Empirical mean bias, mean variance and mean
MSE (mean square error) are reported by Tables 1, 2 and 3 respectively. Notice
that the three estimators Q�1, Q�2 and Q�3 perform similarly without any noticeable
difference in bias and variance.

Tables 1, 2 and 3 show that except bootstrap method, all the four proposals work
very well for small and medium samples (n � 20) in bias reduction. For large
samples, the existing methods work better. We also notice that bias correction is
more needed for samples with large shape parameter. From MSE perspective, only
Q�sc is admissible for small and moderate samples. We think that there is still room
to improve Q�ad. In simulation study, we used d D 2 to approximate the constant c
defined in (10). Future research may consider looking for a better approximation of
the constant c.

5 Conclusions

The difficulty of the shape parameter estimation in a scalar skew normal model lies
in the fact that there is a considerable percentage of samples in which MLE goes
to infinity. The bias prevention estimators in literature are based on large sample
properties. They do not work well for small and moderate samples. In this research,
we have studied this problem from different perspectives, such as bias correction
approach and score function modification approach. Simulation studies show that
O�bc (bias-corrected MLE), Q�sc (bias-corrected Q�3), Q�ad (adjusted estimator) and
Q�jack (jackknife bias-corrected estimator) are all effective in reducing bias for small
and moderate samples. However, the price paid for reduced bias is the relatively
large variance. For scalar skew normal shape parameter estimation, if sample size is
large, the existing estimators Q�1, Q�2, Q�3 all work well, there is no need to perform
bias correction; if sample size is small or moderate, we suggest using the proposed
estimators Q�sc since it has smaller bias and MSE.

Acknowledgements The authors thank the referees for their constructive and insightful comments
and suggestions to improve the manuscript.
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Table 2 Variance comparison among eight estimators: Q�1 (Sartori 2006), Q�2 (Bayes
and Branco 2007), Q�3 (Azzalini and Arellano-Valle 2013), O�bc (bias-corrected MLE),
Q�sc (bias-corrected Q�3), Q�ad (adjusted estimator), Q�jack (jackknife estimator) and Q�boot

(bootstrap estimator)

Variance comparison

� n Q�1 Q�2 Q�3 O�bc Q�sc Q�ad Q�jack Q�boot

5 5 0:0733 0:0675 0:0781 49:9059 0:1746 32:115 0:4369 0:0778

10 0:3078 0:2815 0:3002 52:8567 0:7884 39:1468 2:5469 0:3582

20 1:1035 0:9790 1:1616 42:6702 2:7217 16:1576 8:3396 1:2477

50 3:3111 2:4887 2:7447 15:4587 5:6216 8:5271 16:6452 2:7521

100 2:5556 2:2694 2:5770 3:9826 3:7198 3:0563 8:9424 2:4476

10 5 0:0567 0:0569 0:0570 60:5340 0:1472 45:0309 0:3815 0:0625

10 0:3970 0:2752 0:3695 69:2983 0:9511 47:9203 2:9509 0:4101

20 1:3551 1:2935 1:5519 65:8202 4:2194 34:7103 10:7657 1:7632

50 6:6020 5:0796 6:1174 41:4082 14:0655 27:7209 40:6141 7:2765

100 11:4856 10:5395 10:8033 27:2896 23:5940 20:3222 37:6914 13:2780

Table 3 MSE comparison among eight estimators: Q�1 (Sartori 2006), Q�2 (Bayes and
Branco 2007), Q�3 (Azzalini and Arellano-Valle 2013), O�bc (bias-corrected MLE),
Q�sc (bias-corrected Q�3),Q�ad (adjusted estimator), Q�jack (jackknife estimator) and Q�boot

(bootstrap estimator)

Mean square errors comparison

� n Q�1 Q�2 Q�3 O�bc Q�sc Q�ad Q�jack Q�boot

5 5 14:7938 14:7969 14:6470 52:2797 8:3296 32:4795 9:4817 14:801

10 8:9050 9:1615 8:8955 57:6934 4:6910 39:1449 4:6647 9:5066

20 4:0637 4:1777 3:9881 46:4340 2:9933 16:1548 8:4176 4:9049

50 3:3722 2:6783 2:8437 16:1178 6:1136 8:6150 17:0733 3:5518

100 2:5545 2:2703 2:5759 4:0328 4:0847 3:0684 8:9534 2:7092

10 5 77:3094 77:6356 77:0203 64:5895 60:7964 63:0859 62:6313 77:1880

10 60:0059 61:2160 59:4488 69:4955 45:3560 59:6515 37:0267 61:8014

20 36:7557 38:1067 36:1955 66:4125 23:1692 41:5257 18:7614 39:4021

50 13:0050 13:3305 12:7865 41:8565 14:1574 27:9780 42:4897 16:8631

100 11:7729 11:1113 11:0714 27:8714 25:3464 20:3776 38:0165 15:0624
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