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1 Introduction

In this chapter, Machine Learning solutions for Cyber-Physical Systems (CPSs) in a
Smart Factory are outlined using productions plants as an example. The increasing
complexity of production plants is still a present issue within the industry. Due to an
increasing number of product variances, an increasing product complexity and
increasing pressure for efficiency in a distributed and globalized production chain,
production systems are evolving rapidly: They are becoming modular, can be
parameterized and comprise a growing set of sensors. These new features are
needed from a production point of view, but they overstrain the capabilities of most
users: Too many parameters to optimize and too complex inter-dependencies need
to be understood.

According to Lee [8], CPSs “are complex engineering systems that integrate
physical, computation and networking, and communication processes. CPSs can be
illustrated as physical devices, objects, equipment that is translated into cyberspace
as a virtual model. With networking capabilities, the virtual model can monitor and
control its physical aspect, while the physical aspect sends data to update its virtual
model”. The physical world and the cyber world are decoupled by a data-to-feature
level, where the data is processed to deliver information in cyberspace at different
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levels of abstraction, beginning with information about the condition of a machine
component leading to the overall throughput and quality risk of a manufacturing
line. Therefore, CPSs aim to develop user functions for removing this burden from
user capabilities, e.g. for self-diagnosis and self-optimization.

CPSs often tackle the challenge of self-diagnosis and self-optimization in a new
and innovative way: Instead of relying on human expertise and additional engineering
steps formalizing the necessary knowledge, self-diagnosis and self-optimization is
performed in a data-driven way, i.e. by applying ideas from the field of Big Data. Data
such as sensor and actuator signals will be stored and analyzed both locally in sensor
and control devices, and also globally in Big Data platforms. Based on these data,
algorithms will learn models of the normal system behavior. Hence, these models will
be used to detect deviations from normal workflow as anomaly (e.g. condition
monitoring), find root causes for such anomalies (e.g. diagnosis), calculate optimal
parameters and predict the future system behavior (e.g. predictive maintenance,
energy optimization).

In this chapter, the following topics are covered:

1. Application of Big Data platforms in CPSs (Sect. 2).
2. Capture relevant data in sufficient quality (Sect. 3).
3. Machine learning algorithms to abstract system observations into such models

(Sects. 4 and 5).
4. Usage of models for condition monitoring, predictive maintenance and diag-

nosis (Sect. 4).
5. Usage of models for the automatic system optimization, e.g. energy consump-

tion (Sect. 5).
6. Application scenarios from the SmartFactoryOWL and from industrial appli-

cations (Sect. 6).

2 Big Data in CPSs

The term “Big Data” is not clearly defined in the literature. In common parlance, it
describes any data analysis dealing with a huge amount of data. This is not a formal
definition, but hit the core of the problem. According to the International Data
Corporation (IDC), the volume of data is doubling every two years (http://
idcdocserv.com/1678). In year 2014 the world-wide amount of data was about 4.4
Zettabyte. In 2020, the amount will be ten times bigger, around 44 Zettabytes.
Werner Vogels, Amazon’s chief technology officer, told the BBC (http://www.bbc.
com/news/business-26471415): “You can never have too much data—bigger is
definitely better. The more data you can collect the finer-grained the results can be.”
For companies, this means diverse challenges. One of the challenges is the inter-
connection of the data: A huge amount of the data volumes exists without any
connection to other data. Therefore, a challenge to Big Data concepts is to connect
data to gain competitive advantages and savings, and to form new business.

474 A. Maier et al.

http://idcdocserv.com/1678
http://idcdocserv.com/1678
http://www.bbc.com/news/business-26471415
http://www.bbc.com/news/business-26471415


Although the best-known applications of Big Data refer to customer data in
internet (Google, Facebook, Amazon and others), Big data in manufacturing holds a
similar potential. Every used kilowatt hour, from each produced screw to each car,
even each switching of a proximity sensor and each change of a temperature sensor
generates raw data that holds an enormous potential if it is stored and provided for
intelligent analysis. The acquisition, handling and analysis of these data present
several challenges.

Due to the heterogeneous data sources providing a different time base, the data
has to be synchronized. Several solutions have been proposed for the time syn-
chronization (e.g. IEEE 1588) as well as for the transmission (e.g. Profinet) and
semantic annotation of the data (e.g. OPC UA).

The analysis of historical process data throughout the product lifecycle requires
new architectures and platforms for dealing with the enormous volume of data, and
the variation and speed of data. The data analysis drives the conventional data
acquisition and storage to their limits, that is why Big Data platforms are needed.

One of the most used Big Data platforms is the Hadoop ecosystem. A typical Big
Data platform is structured as follows: The CPS is connected via a standardized
interface (e.g. by OPC UA) with a Hadoop ecosystem. Hadoop itself is a software
framework for scalable, distributed computing. The process data is stored in a
non-relational database (HBase), which is based on a Hadoop Distributed File
System (HDFS). In addition to HBase, a time series database OpenTSDB serves as
an interface for data analysis. This database provides simple statistical functions
such as mean values, sums or differences that are usually not available in a
non-relational data storage. The interfaces of OpenTSDB or Hadoop thus enable
data analysis directly on the storage system. Because the algorithms can process the
data locally, the volume of a historical dataset does not need to be loaded into a
single computer system. Via a web interface, both the data and the calculated results
can be visualized (e.g. using Grafana).

Figure 1 illustrates the architecture of a Big Data platform using a Hadoop
ecosystem.

While classical condition monitoring is mainly about monitoring of specified
signals and checking the crossing of some predefined thresholds to find anomalies,
Big data is about discovering the data and finding relationships in the data without
specifically looking for something special. This requires the use of novel

Fig. 1 Example big data architecture
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approaches and algorithms. A main issue is the high amount of data which possibly
is stored in the cloud and has to be transferred via internet. The limited bandwidth
would lead to a delayed analysis. Therefore, the in-memory algorithms are required
that perform (a part of) the analysis directly on the data hosting server. Further
approaches for the speed-up of the analysis point towards the direction of paral-
lelization. An example mentioned here is the MapReduce technology, which
divides the problem into several sub-problems that can be parallelized to gain a
computation speed increase, more details will follow in Sect. 4.2.

3 Requirements and Challenges to Data Quality

Smart Factories are built from many assets, consisting of a multitude of different
components. The Reference Architecture Model Industry 4.0 (RAMI 4.0, for details
see: www.plattform-i40.de) includes the hierarchically ordered assets Product, Field
Device, Control Device, Station, Work Centers, Enterprise and the Connected
World. All of these physical assets generate or apply data over the application’s life
cycle. The assets are connected by an Integration and Communication Layer to the
functional information processing. The Integration and Communication Layer
technologies influence the quality of the information about the physical assets. Low
sampling rates, unsynchronized and patchy data do not represent the exact physical
state/behavior of the asset, and valuable information is lost. Often, small changes in
the time series of signals or energy consumption of specific actors caused by wear
of the asset point to a future failure and maintenance requirement. Modern indus-
trial communication systems can fulfill these high performance requirements
regarding the data acquisition:

• PROFINET IRT offers sampling rates down to 32,15 µs.
• OPC UA includes semantic data annotations, historical data access and the

vertical communication including the Internet and Cloud solutions.
• Time synchronization with PTP—Precision Time Protocol (IEEE 1588) enables

factory wide data synchronization with a precision of 100 ns and less [15].

But due to different reasons like device availability, costs, allover system integra-
tion and interoperability, these technologies today are often not integrated in one
application. Many Machines are communicating with PROFINET, but they are not
synchronized to other machines and they do not have historical data access. Often a
specific gateway copies the data from the PROFINET system to the OPC UA
address space—this works, but due to the performance of the Gateway and due to
the performance of the (non-real time capable) OPC UA interface, the data quality
is lost: The sampling rate decreases; due to jitter and latencies the synchronization
accuracy of the data decreases and often data is lost completely due to bandwidth
problems. For this reason, the handling of poor process data is a basic feature of
machine data analytic solutions.
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On top of these challenges in data quality and data acquisition, it depends on the
asset (Product, Field Device, Control Device, Station, Work Centers) what kind of
model formalism is useful for further functional data analytics: Discrete manufac-
turing work centers like straight-line machine sequences can be represented using
state machines; continuous processes like rotating machines (generators) need
modeling formalisms like clustering.

4 Condition Monitoring and Diagnosis

4.1 Anomaly Detection Using Identified Hybrid Timed
Automata

Modern production plants in manufacturing industry are mostly programmed using
state machines. The advantage is that the meaning of state machines is easy
understandable to humans since they think in a similar way. Therefore, the usage of
state machines for anomaly detection in CPSs is obvious. In addition, state
machines can be identified automatically from observations. Since production
plants are mostly dependent on time, this factor has to be considered as well
resulting in a timed automaton as used formalism.

While the identification of untimed stochastic automata is an adequately studied
research area [1, 3, 11, 16], the identification of discrete-time behavior in CPSs is a
new research area, which arose in the last few years. Various algorithms have been
developed to study such timed automata, including RTI + [17] and HyBUTLA
[10], which also identifies a hybrid timed automaton. As extension, Markov
machines can be used if the probability of the next event depends on a number of
previous events, an example is given in Ray [13]. An example for the identification
of Bayesian networks is given in de Campos [5].

Most of the aforementioned automaton learning algorithms use the state merging
approach for the identification of the resulting automaton. Based on the initially
constructed prefix tree acceptor, which comprises all prefixes of recorded produc-
tion cycles, all pairs of states are checked for compatibility in an iterative manner. If
two states are compatible according to a specified criterion, they are merged. After
the compatibility of all pairs of states has been computed and the compatible states
have been merged, the resulting automaton represents the normal behavior of the
considered CPS.

The automaton identification algorithms, which are based on the state merging
approach mentioned above, work in an offline manner, i.e. all recordings have to be
stored and be available for the state merging procedure. The algorithm OTALA,
introduced in Maier [9] is the first algorithm for the identification of timed automata
in an online manner. It is based on the assumption that each state in the observed
CPS can be represented by a signal vector and each signal vector corresponds to
one state in the final automaton. Using OTALA for identification, the observations
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do not have to be stored since each observation is included directly into the final
automaton. The basic functionality of the algorithm is shown in Fig. 2.

Basically, the identification of timed automata does not require expert knowl-
edge (except of some parameters which are mostly equal for the different use cases).
The states and transitions with the corresponding events are identified by the
algorithm. However, structural information about the system (e.g. asynchronous
subsystems) is needed to identify one separated model for each asynchronously
running subsystem.

The identified automata are finally used for anomaly detection. Much work has
been done in this area (c.f. Sarkar et al. [14] for a comprehensive overview). In
Vodencarevic et al. [18], the algorithm ANODA (Anomaly Detection Algorithm)
has been presented which takes the identified timed automaton as input and detects
anomalies in the CPS. The behavior of the CPS can be considered as a path through
the identified automaton. Whenever an event is observed in the CPS that cannot be
depicted by the automaton in a certain state or if the observed timing does not fit
into the identified time range, an anomaly is signaled.

4.2 Identification of Behavior Models Using Map/Reduce
Technology

Due to the enormous amount of data, conventional data analysis methods are
overcharged. In the context of Big Data, extended analysis methods are required to
cope with the data flood. As described in the previous sections, the behavior models
can be identified from data collected for the system and its components in normal,
fault-free operation, using algorithms such as (Hy-) BUTLA or OTALA. These
algorithms can be used in Big Data context as well, however, the data handling has
to be adapted. Since CPSs create a huge amount of data, the MapReduce tech-
nology can be applied to parallelize the identification of behavior models. One
possible solution is presented in [19]: OTALA is applied for model learning of the
discrete states, and quadratic regression models (QRM) are generated for contin-
uous behavior. Both model learning algorithms have been parallelized applying the
MapReduce technology. The MapReduce version of OTALA allows to distribute
the workload on |T| nodes, and therefore a speedup is achieved as each transition

Fig. 2 Online timed automaton learning algorithm (OTALA)
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T can be processed in parallel to the REDUCE function. For the MapReduce
version of QRM, distribution of workload on |S| nodes is possible by processing the
states S of the automaton in parallel to the REDUCE function. Furthermore, online
algorithms have been proposed, which efficiently handle novel observations to
update the models that have been created from large historical data sets.

4.3 Condition Monitoring in Continuous Processes

Condition Monitoring and Anomaly Detection in continuous processes require
different approaches than in discrete manufacturing processes. As stated before, Big
Data is more than just detecting the crossing of a predefined threshold of a specified
signal. It requires unsupervised machine learning techniques, which autonomously
find relationships in the data and use these for condition monitoring, for instance.

Clustering approaches are commonly used approaches for these tasks. However,
as the data becomes high dimensional, clustering methods (such as DBSCAN, e.g.
see Zhu [20] reach their limit since density is more difficult to define in high
dimensional space. Therefore, dimension reduction methods are needed to pre-
process the data. After reducing the dimensionality of the input data, conventional
clustering algorithms can be used to create a behavior model. In [6] self-organizing
maps are used to reduce the input dimension and to generate a two dimensional map
which visualizes the observed process. A further possibility is the Multidimensional
Scaling (MDS, e.g. in Borg and Groenen [2]) which is a set of techniques from the
mathematical statistics. The goal is the arrangement of objects and their relation to
each other. The farther the objects are from each other, the more dissimilar they are
and the closer they are, the more similar they are. There are thus collected infor-
mation about pairs of objects to identify them to metric information about objects.

The Principal Component Analysis (PCA) is a commonly used method to reduce
the dimensionality of the input data. The method basically assumes that features
with a low variance provide a small contribution to the final model and therefore
can be neglected. To minimize the information loss, the PCA computes the prin-
cipal components, which are new features that are mostly uncorrelated. The
dimensionality of the dataset is then reduced by using the most relevant (see step six
in the subsequent procedure for calculating the PCA) of the principal components to
describe the dataset. When the PCA is used for visualization purpose, the three first
principal components are selected creating a three-dimensional figure. The negli-
gence of the remaining principal components is possible, because most of the
variance of the original dataset, i.e. the information, is represented by the first few
principal components [7].

The principal components are determined by performing the following six steps:

1. Center and scale the data matrix X ̄.
2. Compute covariance matrix of data.
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3. Calculate the eigenvectors covariance matrix.
4. Sort eigenvectors decreasingly by corresponding eigenvalues.
5. Resulting eigenvector matrix is used as transformation/rotation matrix.
6. Choose x highest dimensions as reduction for PCA.

The PCA is an effective method for dimension reduction. For example, reducing
a dataset from 30 signals to 3 principal components (reduction of 90 %), which
allows keeping 80 % of the information (corresponds to a loss of 20 %), is a quite
effective way of dimensionality reduction.

After the model has been identified using PCA and DBSCAN, it is used for
anomaly detection. The anomaly detection is based on the assumption denoted by
Chandola et al. [4]: “Normal data instances lie close to their closest cluster centroid,
while anomalies are far away from their closest cluster centroid.” Therefore, the
following two steps are performed for each observation:

1. Transform data from input space to feature space: The transformation matrix
(see step 6 from above) is used to transform each incoming observation from the
original input space to the reduced feature space.

2. Compute distance to model (see Fig. 3): To determine whether the new
observation belongs to the normal operation phase, distances to each point of the
model is checked. Several distance functions can be used (e.g. Euclidean or
Mahalanobis Distance). The core distance is determined using the Marr
Wavelet. In contrast to the Euclidean Distance, the Marr Wavelet crosses the
abscissa, the corresponding values are used as core distance.

3. Check thresholds: If the calculated distance exceeds a predefined threshold
(identified core distances from the previous step), an anomaly is signaled. As it
can be seen in Fig. 3, the first observation was classified as normal, whereas the
second observation is identified as an anomaly.

Fig. 3 Distance of
observations to normal
behavior model
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The PCA can also be used for predictive analytics. For this, two core distances
have to be used. Crossing the first threshold, a warning is given, crossing the second
threshold, an anomaly is signaled.

5 System Optimization

Another application of smart services in manufacturing is the self-optimization of
industrial processes. Optimization can be carried out regarding different influencing
variables (e.g. time or speed), but in this section we focus on the optimization of the
energy consumption. The goal is the analysis and improvement of the performance
and efficiency of a manufacturing plant, leading to an optimized operation. Due to
increasing energy prices, a special focus for this smart service is the optimization of
the energy efficiency in industrial automation systems.

Typically, the optimization of energy efficiency is a manual process, performed
by experts of the plant by exchanging old and inefficient drives against new and
efficient drives. This is a useful and necessary step, however, it still requires man
power and finance investments. Further methods require a manual time planning of
the production steps in the Manufacturing Execution System (MES) to obtain an
energy-efficient process, or special energy controllers that are typically located at
the energy meter and monitor the trend of the energy consumption. If the trend
points to unwanted levels, the controller switches off equipment, based on certain
priorities and other rules. Typical time periods are in the range of 15–30 min [12].

When it comes to active methods to implement real-time optimization at second
or millisecond intervals, only little research has been carried out, because many
applications require process parameters to be rapidly adapted to changing operating
conditions due to their process dynamics. An active optimization of the process
requires models that are able to predict the future process behavior for various
parameter combinations in order to determine the optimum process parameters.

Especially in transportation and logistics applications, electrical drive systems
are the most voracious energy consumers. Therefore in this application use case,
optimization is performed regarding to the energy consumption and load man-
agement of electrical drive systems. Figure 4 illustrates an exemplary plant setup of
two drives.

The main optimization problem in this application is the minimization of the
overall energy consumption of the two converters (EL,WR) and motors (EL,mot) for
time instances k = 0…n−1. Additionally, the energy Eg(k) which is fed back into
the internal DC link (difference between regenerative and motive power) has to be
minimized. To achieve this, the energy consumption and the energy feedback are
weighted with the factor λ according to the primary usage of power feedback
(consumption at braking resistances, regenerative feedback to the mains, and
temporary storage in capacitors). Altogether, the optimal driving speeds v of the
conveying system can be obtained as solution of the following optimization
problem:
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v= argmin ∑
n− 1

k=0
∑

nc − 1

c=0
ycðkÞ+ λ ∑

n− 1

k=0
EgðkÞ

� �

Further information regarding the optimization constraints of the energy flows
and the sequences of movements (starting position, end position, speed limits, and
positioning time) can be found in [19]. The obtained optimization problem is a
mixed integer quadratically constrained problem (MIQP). It can be efficiently
solved with standard methods. Evaluation results for energy-efficiency optimization
of movements in conveying systems verify energy savings of around 7 %. The
common optimization of the two drives leads to a motion profile in which the first
drive is slowed down just during the acceleration phase of the second drive. In this
particular application case, the complete regenerative energy of the first drive has
been recovered as input for the second drive. Thus, the automatic coordination of
motor speeds prevents undesired energy feedback.

6 Smart Services and Applications

The described technologies, data-driven condition monitoring and optimization of
machines or production lines are the basic feature for new technical services (also
known as Smart Services), like remote machine operation and new business
models. Today, the most usual life cycle of a machine is: The machine builder
constructs and sells the machine to the producing company. The producing com-
pany operates the machines and produces their products. But the machine-operator
is not the overall machine expert (that is the machine builder). Because of this
reason, machines are not often driven with the best operation parameters: best
product quality, high output, save material and energy, ecology. Summarized: the
total production costs are high.

Fig. 4 Two motors connected to a DC circuit
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A data-driven condition monitoring and optimization of machines enables two
basic features: The machines operate more independent from human operators than
before, and the remote operation with machine experts and process experts becomes
possible. Due to this, the producing (product) company does not have to be the
operator any more. The machine builder could fulfill the role of the machine
operator. With this the business model can be transformed: The machine itself is no
longer sold to the producing company, it remains the machine builder. Production
capacities are leased to the product company. With this, the producing company can
concentrate to their main competencies (products) and save investment cost. With
this, the machine builder implements a complete new business model, and can use
his know-how in their own machine for (1) the construction of new machines and
(2, new) for efficient operation of machines.

Fraunhofer evaluated the technical potential of data-driven Smart Services and
Applications like condition monitoring and optimization in production lines at
various companies like Miele, Wesergold, Audi and Deutsche Windtechnik. These
examples are described below. Problem statements for each application are given
and the data-driven Smart Service solution is explained.

Miele is a manufacturer of domestic appliances, commercial equipment and
fitted kitchens, based in Gütersloh, Germany. Miele is owner-managed company,
founded in 1899. The production of dish washers for the very cost-sensitive con-
sumer market has to be as much efficient as production time (machine output),
material and energy. Today, process, production and product experts at Miele are
running process and machine optimization based on their specific product and
machine knowledge. This guarantees maximum product quality, which is the most
important objective at Miele. But for an efficient production, the machine opti-
mization has to involve aims like a high machine output, material and energy
savings. Often, these are conflicting objectives that cannot be solved by a specific
expert. Because of this reason, Fraunhofer evaluated a data-driven Smart Services
for Miele. The machine signals of specific production processes were acquired and
learned using the machine learning algorithm OTALA. The result was a timed
discrete automaton. The automaton showed the time variance for specific process
states. Based on this knowledge, better parameters for a higher output were
identified.

Tönsmeier is a German company with more than 70 locations, 3000 employees,
1100 vehicles and 30 processing facilities in the waste management industry. The
headquarter is located in Porta Westfalica, Germany. Tönsmeier was founded in
1927 by Karl Tönsmeier. In the processing facilities, Tönsmeier is sorting waste
with the objective of recycling. The availability of sorting machines is critical
because the input of the machine (waste) is often very different and causes failures
like plugging and stoppage of the whole sorting machine. With the aim of the
prediction and preventing of the plugging problem, Fraunhofer evaluated the per-
formance of data-driven real-time condition monitoring for Tönsmeier.

Big Data and Machine Learning for the Smart Factory … 483



At the automobile manufacturer Audi, Fraunhofer tested machine learning
algorithms with the objective of functionality checks in new production systems.
The production systems at Audi are very complex. In the start-up phase of new
systems, a lot of time is needed for failure detection and system tests. By optimizing
this start-up phase, Fraunhofer evaluated a data-driven assistance system that col-
lects process data from the PROFINET communication of machines, and learns the
machine behavior as a discrete state machine. The state machine is a reduced
visualization of the complex machine behavior. This simple visualization is used by
Audi process engineers searching problems and helps to program the PLCs, and it is
also used for acceptance and certification tests of the machines at the end of the
start-up phase. This Smart Service is a machine start-up assistance system that helps
decreasing start-up phases and increasing the PLC programming quality.

In a research project, Fraunhofer and Resolto implemented a condition moni-
toring systems that is able to predict ware in wind power plants. The objective was
to detect even small changes in processes before they mature into a system error.
The system was tested in a wind power plant of the project partner Deutsche
Windtechnik. All data of the wind turbines (as sensor values, energy data, weather
data, etc.) were collected and analyzed by the self-learning system to model normal
behavior of the process. By the help of an adapter and the industrial communication
protocol OPC UA, the wind turbines were connected to the Internet. The process
data were transmitted to a central server making data analysis. The analysis algo-
rithms were applied to detect discrepancies between the real-time data and the
identified model. The models were generated by a principal component analysis.

7 Summary and Outlook

One of the biggest challenges in Big Data is the generation of added value from
data obtained in CPS.

In this chapter, we presented some algorithms that address the challenges of Big
Data and automatically learn models of normal behavior. The identified models are
used for condition monitoring, anomaly detection and predictive analytics. The
main benefit of the proposed approaches is that only little expert knowledge is
required. The behavior models are largely identified automatically, as well as the
parameters needed for anomaly detection and predictive analytics.

A further benefit is the possibility of self-optimization. Based on the identified
behavior models and given restrictions, new moving profiles in a storage can be
calculated.

Various case studies proved the applicability of the presented machine learning
approaches for condition monitoring, anomaly detection and optimization.
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