
Michael Kohlhase · Moa Johansson
Bruce Miller · Leonardo de Moura
Frank Tompa (Eds.)

 123

LN
AI

 9
79

1

9th International Conference, CICM 2016
Bialystok, Poland, July 25–29, 2016
Proceedings

Intelligent
Computer Mathematics

Lecture Notes in Artificial Intelligence 9791

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Michael Kohlhase • Moa Johansson
Bruce Miller • Leonardo de Moura
Frank Tompa (Eds.)

Intelligent
Computer Mathematics
9th International Conference, CICM 2016
Bialystok, Poland, July 25–29, 2016
Proceedings

123

Editors
Michael Kohlhase
Jacobs University Bremen
Bremen
Germany

Moa Johansson
Chalmers University
Göteborg
Sweden

Bruce Miller
National Institute of Standards
and Technology

Gaithersburg, MD
USA

Leonardo de Moura
Microsoft Research
Redmond, WA
USA

Frank Tompa
University of Waterloo
Waterloo, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-42546-7 ISBN 978-3-319-42547-4 (eBook)
DOI 10.1007/978-3-319-42547-4

Library of Congress Control Number: 2016944413

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Mathematics is “the queen of the sciences” (Friedrich Gauss), and “the language with
which God has written the universe” (Galileo Galilei). This language is at the same
time flexible enough to describe a wide variety of complex phenomena and rigorous
enough to be verified in detail based on a small set of assumptions. But the collection of
mathematical knowledge is exploding, and it can no longer be handled by the
paradigmatic “pencil and paper” approach: Each year there are 120,000 new articles,
and this week there was an announcement of a 200-terabyte “proof” of the Boolean
Pythagorean triples conjecture.

The Conference on Intelligent Computer Mathematics (CICM) offers a venue for
discussing and developing ways of involving computers in the process of “doing
mathematics” in the broadest sense. The conference is the result of merging three
independent meetings with considerable overlap: CALCULEMUS (integration of
deduction and symbolic calculation), Mathematical Knowledge Management (MKM),
and Digital Mathematical Libraries (DML). CICM has been held annually since 2008,
with previous meetings in Birmingham (UK 2008), Grand Bend (Canada 2009), Paris
(France 2010), Bertinoro (Italy 2011), Bremen (Germany 2012), Bath (UK 2013),
Coimbra (Portugal 2014), and Washington, DC (USA 2015).

CICM 2016 was held in Białystok, Poland. As in previous years, we had several
tracks: CALCULEMUS, Digital Mathematics Libraries (DML), and Mathematical
Knowledge Management (MKM), which mirror the three main communities that form
CICM, and a track each on “Systems and Data” and “Projects and Surveys.” The
papers accepted to these five tracks form the content of these proceedings. CICM 2016
had invited talks by John Harrison (Intel), Claudio Sacerdoti-Coen (University of
Bologna), and Nicolas M. Thiéry (LRI University of Paris Sud). Additionally, the
conference had seven workshops, two tutorials, a doctoral mentoring program, and an
informal track for presenting work in progress; the proceedings of these events are
published with CEUR-WS. The program of the meeting, as well as additional mate-
rials, is available at http://cicm-conference.org/2016/.

The track structure of CICM provides a framework for organizing the conference.
The CALCULEMUS track examines the integration of symbolic computation and
mechanized reasoning. The Digital Mathematics Libraries track deals with math-aware
technologies, standards, algorithms, and processes. The Mathematical Knowledge
Management track is concerned with all aspects of managing mathematical knowledge
in informal, semi-formal, and formal settings. The Systems and Data track contains
descriptions of systems and data collections, both of which are key to a research topic
where theory and practice interact on explicitly represented knowledge. The Projects
and Surveys track keeps the community informed of relevant projects and consolidates
knowledge where the subject matter fits into one of the other four tracks.

http://cicm-conference.org/2016/

This year, CICM had 41 submissions. Each submission received at least four
reviews. The reviewing included a response period, in which authors could clarify
points raised by the reviewers. This made for a highly productive round of deliberations
before the final decisions were taken. In the end, the track Program Committees
decided to accept 12 papers for these proceedings.

The Program Committee work for the tracks was managed using the EasyChair
system. This year we modeled the multi-track Program Committee as a single com-
mittee and the track assignments as “keywords.” This made track assignments and
cross-track reviewing more flexible than in previous years. The fact that we had five
chairs—the general chair and four track chairs—together with excellent conflict
management made transparent and “safe” handling of submissions authored or
co-authored by any of the chairs almost painless.

As in previous years, several workshops and informal programs were organized in
conjunction with CICM 2015. This year these were:

– The CICM Doctoral Program, providing a dedicated forum for PhD students to
present their on-going or planned research and receive feedback, advice, and sug-
gestions from a dedicated research advisory board.

– The CICM Work-in-Progress Session, a forum for the presentation of original work
not yet in a suitable form for communication as a formal paper.

– ThEdu 2016: Theorem Provers Components for Educational Software, with the
goal of combining and focusing on systems from theorem proving, computer
algebra, and dynamic geometry to enhance existing educational software and the
design of the next generation of mechanized mathematics assistants. ThEdu was
organized by Walther Neuper, Graz University of Technology, Austria, and Pedro
Quaresma, University of Coimbra, Portugal.

– MathUI 2016: 11th Workshop on Mathematical User Interfaces, an international
workshop to discuss how users can be best supported when doing/learning/
searching for/interacting with mathematics using a computer. MathUI was orga-
nized by Andrea Kohlhase, University of Applied Sciences Neu-Ulm, and Paul
Libbrecht, University of Education of Weingarten, Germany.

– Formal Mathematics for Mathematicians, a workshop dealing with developing large
repositories of advanced mathematics. It was organized by Adam Naumowicz,
University of Białystok, Poland.

– The 27th OpenMath Workshop. OpenMath is a language for exchanging mathe-
matical formulae across applications (such as computer algebra systems and theo-
rem provers). The workshop was organized by James Davenport, the University of
Bath, Jan-Willem Knopper, Eindhoven University, and Michael Kohlhase, Jacobs
University Bremen.

– The Proof Engineering Workshop, which brings together researchers interested in
the new field of proof engineering, defined as the construction, maintenance, doc-
umentation, and presentation of large formal proof developments. This workshop
was organized by David Aspinall (School of Informatics, University of Edinburgh,
UK) and Christoph Lüth (DFKI Bremen and University of Bremen, Germany)

VI Preface

– The Tetrapod Workshop, which studies the deep interactions of (a) mathematical
knowledge (formal and informal), (b) specification-based computation, (c) logic,
and (d) algorithms and data structures. The workshop was organized by Jacques
Carette, Bill Farmer (both McMaster University, Canada), Michael Kohlhase, and
Florian Rabe (both Jacobs University Bremen, Germany)

– The Mizar Hands-On Tutorial by Adam Naumowicz et al.
– The MMT Tutorial by Florian Rabe et al.

We thank all those who contributed to this meeting. In particular we would like to
thank the EasyChair team (Andrei Voronkov et al.) for the EasyChair system, which
we found indispensable. We would like also to thank the invited speakers, the con-
tributing authors, the reviewers, the members of the Program Committee, and the local
organizers, all of whose efforts contributed to the practical and scientific success of the
meeting.

June 2016 Michael Kohlhase
Moa Johansson

Bruce Miller
Leonardo de Moura

Frank Tompa

Preface VII

Organization

CICM Steering Committee

Volker Sorge (secretary)
Wolfgang Windsteiger (Calculemus representative)
Petr Sojka (DML representative)
Adam Naumowicz (MKM representative)
Bill Farmer (Treasurer)
Manfred Kerber (outgoing PC chair)
Michael Kohlhase (incoming PC chair)

CICM 2015 Organizing Committee

General Program Chair, Projects and Surveys Track Chair

Michael Kohlhase Jacobs University Bremen, Germany

Conference Chair

Adam Naumowicz University of Białystok, Poland

Calculemus Track Chair

Leonardo de Moura Microsoft, USA

DML Track Chair

Frank Tompa University of Waterloo, Canada

MKM Track Chair

Bruce Milller NIST, USA

Systems and Data Chair

Moa Johansson Chalmers University, Sweden

Doctoral Program Chair

Martin Suda TU Wien, Austria

Publicity and Workshops Chair

Serge Autexier DFKI Bremen, Germany

Program Committee

Akiko Aizawa (DML) National Institute of Informatics, The University
of Tokyo, Japan

Andrea Asperti (DML) University of Bologna, Italy
David Aspinall (MKM) University of Edinburgh, UK
Serge Autexier

(Systems and Data)
DFKI Bremen, Germany

Thierry Bouche (DML) Université Joseph Fourier (Grenoble), France
Christopher Brown

(CALCULEMUS)
United States Naval Academy, USA

Jacques Carette
(CALCULEMUS)

McMaster University, Canada

Joseph Corneli (DML) Knowledge Media Institute, The Open University
James H. Davenport

(CALCULEMUS)
University of Bath, UK

Leonardo de Moura
(CALCULEMUS track
chair)

Microsoft Research

Georges Gonthier
(CALCULEMUS)

Microsoft Research

Gudmund Grov (MKM) Heriot-Watt University, UK
Yannis Haralambous

(DML)
Institut Mines-Télécom, Télécom Bretagne

and UMR CNRS 6285 Lab-STICC, France
Mateja Jamnik

(Systems and Data)
University of Cambridge, UK

Moa Johansson (Systems
and Data track chair)

Chalmers Tekniska Högskola, Sweden

Cezary Kaliszyk (MKM) University of Innsbruck, Austria
Andrea Kohlhase

(Systems and Data)
University of Applied Sciences Neu-Ulm, Germany

Michael Kohlhase
(Systems and Data)

Jacobs University Bremen, Germany

Laura Kovacs
(Systems and Data)

Chalmers University of Technology, Sweden

Christoph Lange (MKM) University of Bonn, Germany
Assia Mahboubi

(CALCULEMUS)
Inria, France

Ursula Martin
(CALCULEMUS)

University of Oxford, UK

Fiona McNeill
(Systems and Data)

Heriot-Watt University, UK

Bruce Miller
(MKM track chair)

NIST, Australia

X Organization

Lawrence Paulson
(CALCULEMUS)

University of Cambridge, UK

Jim Pitman (DML) University of California at Berkeley, USA
Florian Rabe (MKM) Jacobs University Bremen, Germany
Nicholas Smallbone

(Systems and Data)
Chalmers University of Technology, Sweden

Elena Smirnova (MKM) Texas Instruments, USA
Petr Sojka (DML) Masaryk University, Czech Republic
Volker Sorge (DML) University of Birmingham, UK
Adam Strzeboński

(CALCULEMUS)
Wolfram Research Inc.

Geoff Sutcliffe
(Systems and Data)

University of Miami, USA

Frank Tompa
(DML track chair)

University of Waterloo, Canada

Josef Urban
(Systems and Data)

Czech Technical University in Prague, Czech Republic

Abdou Youssef (DML) George Washington University, USA
Richard Zanibbi (MKM) Rochester Institute of Technology, USA

Additional Reviewers

Avigad, Jeremy
Beeson, Michael
Brown, Chad
Corzilius, Florian
Gauthier, Thibault
Iancu, Mihnea
Kotelnikov, Evgenii

Krishnaswami, Neelakantan
Megill, Norman
Müller, Dennis
Petersen, Niklas
Reger, Giles
Vahdati, Sahar
Yamada, Akihisa

Organization XI

Contents

CALCULEMUS

Mathematical Theory Exploration in Theorema: Reduction Rings 3
Alexander Maletzky

Formalization of Bing’s Shrinking Method in Geometric Topology 18
Ken’ichi Kuga, Manabu Hagiwara, and Mitsuharu Yamamoto

SC2: Satisfiability Checking Meets Symbolic Computation: (Project Paper) . . . 28
Erika Ábrahám, John Abbott, Bernd Becker, Anna M. Bigatti,
Martin Brain, Bruno Buchberger, Alessandro Cimatti,
James H. Davenport, Matthew England, Pascal Fontaine,
Stephen Forrest, Alberto Griggio, Daniel Kroening, Werner M. Seiler,
and Thomas Sturm

Formalization of Normal Random Variables in HOL 44
Muhammad Qasim, Osman Hasan, Maissa Elleuch, and Sofiène Tahar

Digital Mathematics Libraries

Progress of Self-Archiving Within the DML Corpus, with a View Toward
Community Dynamics . 63

Fabian Müller and Olaf Teschke

Mathematical Knowledge Management

Accessing the Mizar Library with a Weakly Strict Mizar Parser 77
Adam Naumowicz and Radosław Piliszek

Incorporating Quotation and Evaluation into Church’s Type Theory:
Syntax and Semantics . 83

William M. Farmer

Extracting Higher-Order Goals from the Mizar Mathematical Library 99
Chad E. Brown and Josef Urban

http://dx.doi.org/10.1007/978-3-319-42547-4_1
http://dx.doi.org/10.1007/978-3-319-42547-4_2
http://dx.doi.org/10.1007/978-3-319-42547-4_3
http://dx.doi.org/10.1007/978-3-319-42547-4_4
http://dx.doi.org/10.1007/978-3-319-42547-4_5
http://dx.doi.org/10.1007/978-3-319-42547-4_5
http://dx.doi.org/10.1007/978-3-319-42547-4_6
http://dx.doi.org/10.1007/978-3-319-42547-4_7
http://dx.doi.org/10.1007/978-3-319-42547-4_7
http://dx.doi.org/10.1007/978-3-319-42547-4_8

Surveys and Projects

Interoperability in the OpenDreamKit Project: The Math-in-the-Middle
Approach . 117

Paul-Olivier Dehaye, Mihnea Iancu, Michael Kohlhase,
Alexander Konovalov, Samuel Lelièvre, Dennis Müller, Markus Pfeiffer,
Florian Rabe, Nicolas M. Thiéry, and Tom Wiesing

Formal Dependability Modeling and Analysis: A Survey 132
Waqar Ahmad, Osman Hasan, and Sofiène Tahar

Systems and Data

Extending E Prover with Similarity Based Clause Selection Strategies 151
Jan Jakubův and Josef Urban

Enhancement of MIZAR Texts with Transitivity Property of Predicates 157
Artur Korniłowicz

Erratum to: Formal Dependability Modeling and Analysis: A Survey E1
Waqar Ahmad, Osman Hasan, and Sofiène Tahar

Author Index . 163

XIV Contents

http://dx.doi.org/10.1007/978-3-319-42547-4_9
http://dx.doi.org/10.1007/978-3-319-42547-4_9
http://dx.doi.org/10.1007/978-3-319-42547-4_10
http://dx.doi.org/10.1007/978-3-319-42547-4_11
http://dx.doi.org/10.1007/978-3-319-42547-4_12

CALCULEMUS

Mathematical Theory Exploration
in Theorema: Reduction Rings

Alexander Maletzky(B)

Doctoral Program “Computational Mathematics” and
RISC, Johannes Kepler University, Linz, Austria

alexander.maletzky@dk-compmath.jku.at

Abstract. In this paper we present the first-ever computer formaliza-
tion of the theory of Gröbner bases in reduction rings in Theorema. Not
only the formalization, but also the formal verification of all key results
has already been fully completed by now; this, in particular, includes
the generic implementation and correctness proof of Buchberger’s algo-
rithm in reduction rings. Thanks to the seamless integration of proving
and computing in Theorema, this implementation can now be used to
compute Gröbner bases in various different domains directly within the
system. Moreover, a substantial part of our formalization is made up
solely by “elementary theories” such as sets, numbers and tuples that are
themselves independent of reduction rings and may therefore be used as
the foundations of future theory explorations in Theorema.

In addition, we also report on two general-purpose Theorema tools we
developed for efficiently exploring mathematical theories: an interactive
proving strategy and a “theory analyzer” that already proved extremely
useful when creating large structured knowledge bases.

Keywords: Gröbner bases · Reduction rings · Computer-supported
theory exploration · Automated reasoning · Theorema

1 Introduction

This paper reports on the formalization and formal verification of the theory of
reduction rings in Theorema that has recently been completed. Reduction rings,
introduced by Buchberger in [3], generalize the domains where Gröbner bases
can be defined and algorithmically computed from polynomial rings over fields to
arbitrary commutative rings with identity, and may thus become more and more
an important tool in computational commutative algebra, just as Gröbner bases
in the original setting already are. Since definitions, theorems and proofs tend
to be technical and lengthy, we are convinced that our formalization in a math-
ematical assistant system has the potential to facilitate the further development
of the theory in the future (e. g. to non-commutative reduction rings).

A. Maletzky—This research was funded by the Austrian Science Fund (FWF): grant
no. W1214-N15, project DK1.

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-42547-4 1

4 A. Maletzky

To the best of our knowledge, reduction rings have never been the subject
of formal theory exploration1 in any software system so far; Gröbner bases in
polynomial rings over fields have already been formalized in ACL2 [9], Coq and
OCaml [6,15] and Mizar [12], though. Moreover, a formalization in Isabelle by
the author of this paper is currently in progress, and the purely algorithmic
aspect (no theorems and proofs) of a variation of reduction rings has already
been implemented in Theorema in [4]. Theorema is also the software system
we chose for our formalization, or, more precisely, Theorema 2.0 (see [5,18] for
an overview and [5] for a brief comparison to other systems). Note that The-
orema 2.0 is quite new: it was released only two years ago, in summer 2014,
meaning that it still lacks a couple of useful features that are available in many
other proof assistants. This, however, was not a reason for not using the system
for our work, but just the converse is true: on the one hand, we wanted to demon-
strate what can be done with Theorema 2.0 already, and on the other hand we
wanted to find out what exactly is still missing for effectively and efficiently for-
malizing mathematics in the system (some of these features have already been
implemented in the meantime, see Sect. 5). Besides that, another motivation for
using Theorema 2.0 was to formalize a handful of elementary mathematical the-
ories (about sets, numbers, tuples, . . .) as well, that may form the foundations
of future theory explorations in the system.

The rest of this paper is organized as follows: Sect. 2 introduces the most
important concepts of reduction rings and states the Main Theorem of the the-
ory. Section 3 presents Buchberger’s algorithm for computing Gröbner bases in
reduction rings as well as its implementation in Theorema, and briefly gives
an idea about its correctness proof. Section 4 describes the overall formalization
of the theory and its individual components in a bit more detail, and Sect. 5
presents the interactive proving strategy and the TheoryAnalyzer tool that we
developed and already heavily used in the course of the formalization and that
will be useful also in future theory explorations. Section 6, finally, summarizes
our findings and contains an outlook on future work.

2 Gröbner Bases and Reduction Rings

In this section we review the main concepts of the theory whose formal treatment
in Theorema is the content of this paper. To this end, we first give a short
motivation of Gröbner bases and reduction rings, and then present the most
important definitions and results of the theory. A far more thorough introduction
can be found in the literature, e. g. in [1].

Originally, the theory of Gröbner bases was invented for multivariate polyno-
mial rings over fields. There, it can be employed to decide the ideal membership
problem, to solve systems of algebraic equations, and many more, and hence is
of great importance in computer algebra and many other areas of mathematics,
computer science, engineering, etc.
1 As one reviewer pointed out, theory exploration can be understood in several ways. In

this paper, we use it as a mere synonym for formalization of mathematical theories.

Mathematical Theory Exploration in Theorema: Reduction Rings 5

Because of their ability to solve non-trivial, frequently occurring problems in
mathematics, it is only natural to try to generalize Gröbner bases from polyno-
mial rings over fields to other algebraic structures. And indeed, nowadays quite
some generalizations exist: to non-commutative polynomial rings, to polynomial
rings over the integers and other Euclidean- or integral domains, and many more.
Reduction rings are a generalization as well, but in a slightly different spirit: in
contrast to the other generalizations, reduction rings do not require the domain
of discourse to have any polynomial structure. Instead, arbitrary commutative
rings with identity element may in principle be turned into reduction rings, only
by endowing them with some additional structure (see below). It must be noted,
however, that not every commutative ring with identity can be made a reduc-
tion ring; known examples of reduction rings are all fields, the integers, quotient
rings of integers modulo arbitrary n ∈ IN (which may contain zero-divisors!),
and polynomial rings over reduction rings.

2.1 Reduction Rings

Reduction rings were first introduced by Buchberger in 1984 [3] and later further
generalized by Stifter in the late-1980s [13,14]; our formalization is mainly based
on [14]. Here, we only recall the key ideas and main definitions and results of
the theory. For this, let in the sequel R be a commutative ring with identity
(possibly containing zero-divisors).

In order to turn R into a reduction ring, it first and foremost has to be
endowed by two additional entities: a function M : R → P(R) that maps every
ring element c to a set of ring elements (denoted by Mc) called the set of multi-
pliers of c, and a partial Noetherian (i. e. well-founded) order relation �. With
these ingredients it is possible to introduce the crucial notion of reduction rings,
namely that of reduction:

Definition 1 (Reduction). Let C ⊆ R. The reduction relation modulo C,
denoted by →C , is a binary relation on R such that a →C b iff b ≺ a and there
exists some c ∈ C and some m ∈ Mc such that b = a − mc.

As usual, →∗
C and ↔∗

C denote the reflexive-transitive- and the symmetric-
reflexive-transitive closure of →C , respectively. Moreover, for a given z ∈ R, a
and b are said to be connectible below z, denoted by a ↔≺z

C b, iff a ↔∗
C b and

all elements in the chain between a and b are strictly less than z (w. r. t. �).

Of course, the function M and the relation � cannot be chosen arbitrarily
but, together with the usual ring operations, have to satisfy certain non-trivial
constraints, the so-called reduction ring axioms. In total, there are 14 of them,
with some being quite simple (0 must be the least element w. r. t. �, for instance),
others are extremely technical. The complete list underlying our formalization
is omitted here because of space limitations but can be found in [7].

Example 1. In a field K, suitable definitions of Mc and � are Mc := K\{0}
and x � y :⇔ x = 0. In ZZn = ZZ/nZZ, represented as {[0]n, . . . , [n − 1]n},

6 A. Maletzky

we have M[c]n := {[1]n, . . . , [k]n, [n − k]n, . . . , [n − 1]n}, where k is the least
positive integer such that [c (k + 1)]n = [0]n; the ordering is simply defined as
[x]n � [y]n :⇔ x < y.

In polynomial rings, finally, matters are a bit more complicated. There, the
sets Mc and the ordering � not only depend on the respective objects in the
coefficient ring, but also on an admissible term order [11] on the set of all power-
products.

Note that in reduction rings ↔∗
C coincides with the congruence relation mod-

ulo the ideal generated by C. Hence, if it is possible to decide ↔∗
C , then the ideal

membership problem could effectively be solved—and this is where Gröbner
bases come into play.

2.2 Gröbner Bases

We can start with the definition of Gröbner bases in reduction rings right away:

Definition 2 (Gröbner basis). Let G ⊆ R. Then G is called a Gröbner basis
iff G is finite and →G is Church-Rosser, i. e. whenever a ↔∗

G b there exists a
common successor s with a →∗

G s and b →∗
G s.

For C ⊆ R, G is called a Gröbner basis of C iff it is a Gröbner basis and 〈G〉
(i. e. the ideal generated by G over R) is the same 〈C〉.

If reduction can effectively be carried out, i. e. whenever a is reducible modulo
C then some b with a →C b can be computed, and for any given C ⊆ R a
Gröbner basis G of C exists and can be computed, then the problem of deciding
membership in 〈C〉 can be solved: a given candidate a simply has to be totally
reduced modulo G until an irreducible element h is obtained; then a ∈ 〈C〉 iff
h = 0.

The axioms of reduction rings ensure that for every C ⊆ R a Gröbner basis
does not only exist, but can even be effectively computed (see Sect. 3). This key
result is based on the following

Theorem 1 (Buchberger’s Criterion). Let G ⊆ R finite. Then G is a
Gröbner basis iff for all g1, g2 ∈ G (not necessarily distinct) and all minimal non-
trivial common reducibles z of g1 and g2, we have a1 ↔≺z

G a2, where z →{gi} ai

for i = 1, 2. (a1, a2) is called a critical pair of g1 and g2 w. r. t. z.

The precise definition of minimal non-trivial common reducible (mntcr) is
slightly technical and omitted here; the interested reader may find it in the
referenced literature. Intuitively, a mntcr of g1 and g2 is an element that can be
reduced both modulo {g1} and modulo {g2} in a non-trivial way.

Example 2. In a field K, the set of mntcrs of any two non-zero field elements
is just K\{0}. In ZZn, the only mntcr of two non-zero elements [c]n and [d]n is
[max{gcd(c, n), gcd(d, n)}]n. In R[X], the mntcrs of two non-zero polynomials
p and q are all monomials of the form c τ , where c is a mntcr of the leading
coefficients of p and q in R and τ is the least common multiple of the leading
power-products of p and q, w. r. t. the chosen term order.

Mathematical Theory Exploration in Theorema: Reduction Rings 7

Example 3. Let us consider ZZ24[x, y] and the singleton C := {p := 16xy+2} (we
write 16 and 2 instead of [16]24 and [2]24, respectively, for the sake of brevity).
No matter which term order we choose, the leading power-product of p is xy
and its leading coefficient is 16, meaning that the only mntcr of p and p is
gcd(16, 24)xy = 8xy. Reducing 8xy modulo p once (in two different ways) yields
the critical pair (8xy−2(16xy+2), 8xy−17(16xy+2)) = ([20]24, [14]24). Neither
of the two constituents of the critical pair can be reduced further modulo C,
meaning that the critical pair cannot be connected below 8xy, and hence C is
no Gröbner basis.

2.3 Contributions to the Theory

Before moving on to Buchberger’s algorithm, we want to point out two contri-
butions we managed to make to the theory of reduction rings itself. Namely,
during the formalization, when turning to the computer-assisted verification of
the results, we discovered two problems in the literature on reduction rings. The
first of these problems is related to the notion of irrelativity as introduced in
[14]: without going into details here, irrelativity basically is a binary relation on
the set of all elements of a reduction ring, which clearly ought to be symmetric.
Irrelativity according to [14], however, is not symmetric, and a close look at the
proofs of the main results revealed that they contain a very subtle error mainly
because of that reason. Therefore, the definition of irrelativity had to be adjusted
in order to proceed with the formal verification, which we finally managed to
do. More details can be found in [7].

The second problem concerns fields as reduction rings: in an infinite field, two
elements have infinitely many mntcrs (see Example 2), although for an algorith-
mic treatment one axiom of reduction rings requires the number of mntcrs to be
finite. Although this problem was already known in [3], no attempts have been
made to fix it so far. We solved it by introducing an equivalence relation in reduc-
tion rings and weakening said axiom to require only the number of equivalence
classes of mntcrs to be finite.

3 Buchberger’s Algorithm

Theorem 1 not only yields a finite criterion for checking whether a given set G is a
Gröbner basis or not, but it even gives rise to an algorithm for actually computing
Gröbner bases. This algorithm, presented in Fig. 1, is a critical-pair/completion
algorithm that, given an input set C ⊆ R, basically checks the criterion of
Theorem 1 for all pairs of elements of C, and if it fails for a pair (Ci, Cj), then
C is completed by a new element h that makes the criterion hold for (Ci, Cj).
Of course, afterward all pairs involving the new element h have to be considered
as well.

Figure 1 presents the algorithm as implemented in a functional style in The-
orema. Function GB is the main function that takes as input the tuple2 C a
2 GB is implemented for tuples rather than sets, for practical reasons.

8 A. Maletzky

Fig. 1. Buchberger’s algorithm in Theorema.

Gröbner basis shall be computed for. It then calls GBAux with suitable initial
arguments, whose first argument serves as the accumulator of the tail-recursive
function. Its second argument is the tuple of all pairs of indices of C that have
not been dealt with yet, and its third and fourth arguments are the indices i
and j of the elements currently under consideration. The last argument, finally,
is the tuple of all mntcrs of Ci and Cj that still have to be checked. Formula
(GBAux 3) is the crucial one: The constituents of the critical pair originating
from Ci and Cj and mntcr z are totally reduced modulo the current basis C,
and the difference is assigned to h. If h = 0, the critical pair can be connected
below z according to the condition in Theorem 1, so nothing else has to be done
in this case. Otherwise, h is added to C, ensuring connectibility below the new
basis, and the index-pair-tuple is updated to include also the pairs involving the
new element h.

Buchberger’s algorithm, or, more precisely, function GB, can be proved to
behave according to the following specification:

If R is a reduction ring and C is a tuple of elements of R, GB terminates
and returns again a tuple G of elements of R. G is a Gröbner basis of C.

The proof of this claim was carried out formally in Theorema. It heavily depends
on Theorem 1, of course, but also quite some other technicalities (concerning the

Mathematical Theory Exploration in Theorema: Reduction Rings 9

Fig. 2. A sample computation in Theorema. The “< <” and “> >” are only responsible
for the in- and output of polynomials and do not affect the actual computation.

indices, for instance) have to be taken into account. Furthermore, termination
of GBAux is by no means obvious: its second argument, which must eventually
become empty, is enlarged in the second case of (GBAux 3), meaning that this
case must be shown to occur only finitely often. A separate reduction ring axiom
is needed to ensure this.

Function GB is not only of theoretical interest for our formalization, but
can also be executed on concrete input to actually compute Gröbner bases,
provided that the underlying domain R is a reduction ring and implements a
couple of auxiliary functions GB depends upon (most importantly, the usual ring
operations). At the moment, the following domains included in the formalization
meet these requirements; the proofs thereof are part of the formalization, of
course (see also Sect. 4.2):

– all fields, in particular the Theorema built-in fields Q, IR and C,
– ZZ,
– ZZn for arbitrary n ∈ IN,
– multivariate polynomial rings over the aforementioned domains.

Function GB always returns provenly correct results when used in these
domains. Figure 2 shows a sample computation in ZZ24[x, y], carried out directly
within Theorema 2.0: as discussed in Example 3, {16xy+2} is no Gröbner basis,
because the constituents of the critical pair ([20]24, [14]24) cannot be connected.
Therefore, their difference [14]24 = [15]24 must be added to the basis in a first
step. Figure 2 reveals that this is still not sufficient, since one further element
must be added afterward.

For the sake of completeness we have to point out that Buchberger’s algo-
rithm and Theorem 1 as presented here were simplified a bit compared to our
actual formalization. For one thing, the sets of multipliers Mc have to be split
into several (finitely many) indexed subsets M i

c , and the notion of mntcr depends
on these indices; mntcrs for all pairs of indices have to be considered separately,
both in the theorem and in the algorithm. Also, the actual implementation of GB
employs the so-called chain criterion for avoiding useless reductions; this crite-
rion, hence, increases efficiency and works in reduction rings in pretty much the
same way as in the original setting of polynomials over fields, see [2]. The inter-
ested reader is referred to [7] for an unsimplified statement of Theorem 1, and to
[8] for a more detailed discussion of Buchberger’s algorithm in our formalization.

10 A. Maletzky

4 Structure of the Formalization

In this section we have a closer look at the formalization of all of reduction ring
theory in Theorema. In particular, the emphasis is on how the theory is split into
smaller sub-theories, what these sub-theories consist of, how they are related to
each other, and how big they are in terms of formulas and proofs.

Before, however, some remarks on theory exploration in Theorema 2.0 in
general are in place. Theorema theories are essentially Mathematica notebooks
consisting of both formal (mathematical formulas) and informal (explanatory
text, diagrams, tables, etc.) content. Users are free to compose such notebooks
in whatever way they want, making use of Mathematica’s rich typesetting capa-
bilities, yielding nicely-formatted documents. Proving proceeds by first setting
up proof tasks and then either calling an automatic prover or an interactive proof
strategy (see Sect. 5). In any case, the resulting proofs are stored as abstract proof
objects in external files; they can be inspected in automatically generated proof
documents displaying the proofs in a human-readable form that closely resem-
bles the way how proofs are usually presented in mathematical text-books (again,
heavily relying on Mathematica’s typesetting capabilities). Since this paper does
not aim at presenting Theorema 2.0, and in particular how theory exploration
in the system proceeds, in detail, the interested reader is referred to our recent
article [5] instead.

Although the paper has only been about reduction rings so far, it must be
noted that a substantial part of our formalization is actually concerned with
rather basic concepts, such as sets, algebraic structures, numbers, tuples (or
lists) and sequences that are themselves independent of reduction ring theory and
merely serve as its logical backbone. In this respect, our formalization can also
be regarded a major contribution to a structured knowledge base of elementary
mathematical theories in Theorema 2.0 that can be reused in future theory
explorations. Such a knowledge base did not exist in Theorema 2.0 before, which
justifies, in our opinion, presenting it just alongside the formal treatment of
reduction rings in this section (only superficially, though).

Figure 3 shows the dependencies of the individual sub-theories on each other.
Each node represents a sub-theory, contained in a separate Theorema notebook,
and a directed edge from theory A to theory B means that B logically depends
on A in the sense that formulas (i. e. definitions or theorems) contained in A were
used in the proof of a theorem in B. Theories corresponding to framed nodes
are directly related to reduction rings (see Sect. 4.2), whereas all other theories
belong to the knowledge base of elementary theories (see Sect. 4.1). Note also
that transitive edges are omitted for better readability, e. g. theory Numbers.nb
not only depends indirectly on theory LogicSets.nb (via AlgebraicStructures.nb),
but also directly ; this fact is not reflected in Fig. 3.

The total number of proved theorems in the whole formalization in 2464, the
total number of unproved definitions and axioms is 484. Hence, the total number
of formulas is 2948. The complete formalization is available online from http://
www.risc.jku.at/people/amaletzk/Formalizations.html.

http://www.risc.jku.at/people/amaletzk/Formalizations.html
http://www.risc.jku.at/people/amaletzk/Formalizations.html

Mathematical Theory Exploration in Theorema: Reduction Rings 11

LogicsSets.nb AlgebraicStructures.nb Numbers.nb NatInt.nb

NatIntExtended.nbTuples.nbSequences.nb

ReductionRings.nb GroebnerRings.nb Functors.nbFields.nb

IntegerQuotientRings.nbIntegers.nb Polynomials.nb PolyTuples.nb

Fig. 3. The theory dependency graph.

4.1 Elementary Theories

Most of the sub-theories in this category have rather self-explanatory names,
and we will not go into details regarding their contents. Some remarks are still
in place, though.

Theories Numbers.nb, NatInt.nb and NatIntExtended.nb are all about natural
numbers and integers: the very definition of natural numbers by purely set-
theoretic means, as well as the definition of integers as some quotient domain of
pairs of natural numbers are contained in Numbers.nb, and the other two theories
basically consist of hundreds of results about linear and non-linear arithmetic,
division with quotient and remainder, the greatest common divisor, finite sums
and mappings from IN to IN (needed for infinite sequences).

Theory Functors.nb contains a couple of general Theorema functors, mainly
for constructing product domains from given ones.3 The most important func-
tor in this theory, LexOrder, maps two ordered domains to their lexicographic
product; this functor was needed for proving termination of function GB (see
Sect. 3). Functors.nb also proves that the order in the new domain is still par-
tial/total/Noetherian if the orders in the original domains are.

4.2 Reduction Ring Theory

ReductionRings.nb contains the definitions of several auxiliary notions in reduc-
tion rings, like reducibility, the reduction relation (and its various closures) and
properties of binary relations (confluence, local confluence, Church-Rosser), as
well as the definitions of reduction rings and Gröbner bases. Reduction rings are
defined through a unary predicate, isReductionRing, that is simply the con-
junction of all reduction ring axioms together with the axioms of commutative
rings with identity.

Besides these definitions, the main contents of ReductionRings.nb are the
Main Theorem of reduction ring theory, Theorem 1, and the theorem that states

3 For information on functors and domains in Theorema, see [4,17].

12 A. Maletzky

that the symmetric-reflexive-transitive closure of the reduction relation modulo
a set C coincides with ideal congruence modulo the same set C, together with
their proofs. The proof of Theorem 1 is non-trivial and lengthy, which is reflected
by the fact that many auxiliary lemmas were needed before it could finally
be completed, and one of these lemmas in fact deserves special attention: the
Generalized Newman Lemma. The Generalized Newman Lemma is a general
result about sufficient conditions for binary relations to be confluent (and thus
Church-Rosser) that was first introduced in [19].

Please note that everything in this theory is non-algorithmic in the sense that
no single algorithm is implemented or specified. All algorithmic aspects of our
formal reduction ring theory, in particular Buchberger’s algorithm for computing
Gröbner bases, are part of GroebnerRings.nb.

GroebnerRings.nb contains all the algorithmic aspects of the formalization,
like the implementation and specification of Buchberger’s algorithm. More pre-
cisely, the theory contains a functor called GroebnerRing that extends a given
input domain D by the function GB that implements Buchberger’s algorithm and
can thus be used for computing Gröbner bases. GB is defined in terms of auxiliary
functions provided by the underlying domain D, such as the basic ring opera-
tions and the partial Noetherian ordering in reduction rings. However, following
a general principle of functors and domains in Theorema, D can be completely
arbitrary: it does not need to be a reduction ring, nor even a ring, meaning
that some operations used in function GB are possibly undefined – and this is
perfectly fine, except that one cannot expect to obtain a Gröbner basis when call-
ing the function. But if D is a reduction ring, i. e. isReductionRing[D] holds,
then the function really behaves according to its specification. The proof of this
claim is non-trivial, even if Theorem 1 is already known, and also contained in
GroebnerRings.nb.

In addition to the implementation, specification and correctness proof of
Buchberger’s algorithm, various sample computations of Gröbner bases in dif-
ferent domains (ZZ24, ZZ24[x, y],Q[x, y, z], for instance) are included in Groebn-
erRings.nb as well.

Fields.nb contains a Theorema functor, ReductionField, that takes an input
domain K and extends it by those objects (function M and relation �) that turn
K into a reduction ring. These new objects are defined in such a way that if K
is a field, then the extension really is a reduction ring – otherwise nothing can
be said about it. The proof of this claim is of course also contained in Fields.nb,
and actually it is quite straight-forward.

Integers.nb contains a Theorema functor, ReductionIntegers, that does not
take any input domains but simply constructs a new domain whose carrier is ZZ
and that provides the additional objects for turning ZZ into a reduction ring,
following [3]. The proof of this claim is included in the theory as well.

IntegerQuotientRings.nb contains a Theorema functor, ReductionIQR, that
takes a positive integer n and constructs a new domain whose carrier is the
set {0, . . . , n − 1} and that provides the additional objects for turning ZZn,
represented by {0, . . . , n − 1}, into a reduction ring, following [13]. The proof

Mathematical Theory Exploration in Theorema: Reduction Rings 13

of this claim is of course included in the theory as well. Surprisingly, although
turning ZZn into a reduction ring is more involved than ZZ4, fewer auxiliary
results were needed in IntegerQuotientRings.nb than in Integers.nb. This is due to
the fact that the reduction ring ordering � in ZZn is much simpler than in ZZ.

Polynomials.nb contains the general result that the n-variate polynomial ring
over a reduction ring is again a reduction ring, if the sets of multipliers and the
order relation are defined appropriately. This is accomplished by first introducing
the class of reduction polynomial domains over a coefficient domain R and a
power-product domain T . A domain P belongs to this class iff it provides the
usual ring operations, a coefficient function that maps each power-product from
T to a coefficient in R, a set of multipliers for each element in P (i. e. the function
M), and an order relation �, and all these objects satisfy certain constraints
(e. g. the coefficient function must have finite support and must interact with
+ and · in the usual way, the sets of multipliers must be of a particular form,
and the ordering must be defined in a certain way). These constraints, whose
precise formulations can be found in [3], ensure that if R is a reduction ring
and T is a domain of commutative power-products, then P is a reduction ring
as well. This is one of the fundamental results of reduction ring theory, and its
proof is very complicated and tedious (even more complicated than the proof
of Theorem 1). Nevertheless, it has been entirely completed already and is also
part of Polynomials.nb.

Note that all definitions and results in this theory are on a very abstract
level: no concrete representation of multivariate polynomials, be it as tuples of
monomials, as iterated univariate polynomials, or whatsoever, is ever mentioned
in the whole theory, but instead polynomials are essentially viewed as functions
from T to R with finite support. This approach has the advantage that the
results can easily be specialized to many different representations of polynomials,
if necessary, and this is just what is made use of in theory PolyTuples.nb.

PolyTuples.nb contains a functor, PolyTuples, that takes two domains R and
T as input and constructs the domain P of reduction-polynomials over coeffi-
cient domain R and power-product domain T represented as ordered (w. r. t.
the ordering on T) tuples of monomials. Monomials, in turn, are represented as
pairs of coefficients and power-products. P provides the additional functions and
relations needed to prove that it belongs to the class of reduction polynomial
domains, and thus is a reduction ring thanks to the key result in Polynomials.nb.5

The proof of this claim is part of the theory, of course.
Besides functor PolyTuples, three additional functors for constructing

domains of commutative power-products are also contained in PolyTuples.nb: one
for a purely lexicographic term order, one for a degree-lexicographic term order,
and one for a degree-reverse-lexicographic term order. In either case, power-
products are represented as tuples of natural numbers.

4 The first attempt in [3] was erroneous.
5 Once again, this is only true if R is a reduction ring and T is a domain of commu-

tative power-products.

14 A. Maletzky

5 New Tools

In this section we present two useful tools that we developed in the course of
the formalization of reduction rings: an interactive proof strategy and a mech-
anism for analyzing the logical structure of Theorema theories. As will be seen
in the following two subsections, the tools are general-purpose tools and thus
completely independent of our concrete formalization, and hence may be used
in any other theory exploration in Theorema as well. For that reason, they are
planned to be integrated into the official version of the system in the near future.

5.1 Interactive Proof Strategy

In contrast to most other proof assistants, the interactive proof strategy in The-
orema 2.0 described below is not text-based, but dialog-oriented (similar to the
one in Theorema 1 [10]): whenever a new proof situation that cannot be handled
automatically6 arises during the proof search, a dialog window pops up. This
window displays the current proof situation, characterized by the current proof
goal and the current set of assumptions, and asks the user how to proceed. He
may now either

– choose an inference rule to apply,
– choose a different pending proof situation where to continue with the proof

search,
– inspect the proof so far, in a nicely-formatted proof document,
– inspect the internal representation of the proof object for debugging,
– save the current status of the proof in an external file,
– adjust the configuration of the prover (maybe even switching from the inter-

active mode to a fully automatic one), or
– abort the proof attempt.

When choosing an inference rule that shall be applied (or, more precisely, tried),
the user even has the possibility to indicate the formula(s) to be considered by
the rule (for instance, if one of several universally quantified assumptions is to
be instantiated). Furthermore, he may then be asked to provide further infor-
mation about the concrete application of the rule (like specifying the concrete
term a formula shall be instantiated with); this, however, solely depends on the
implementation of the inference rule and is thus not affected by our interactive
proof strategy.

Figure 4 shows a screen-shot of the interactive dialog window. In the mid-
dle, the current goal (top) and the current assumptions (bottom) are displayed.
Above, the inference rule to be applied next, as chosen by the user, is indicated,
and the menu bar is located at the very top.

6 So, there is still some automation of very trivial tasks.

Mathematical Theory Exploration in Theorema: Reduction Rings 15

Fig. 4. A “Proof Commander” dialog window for interactive proving.

5.2 TheoryAnalyzer

The TheoryAnalyzer is a Mathematica package that provides a collection of func-
tions for analyzing the logical structure of Theorema theories and the logical
dependencies of formulas on each other. If theories grow big, as in our case, it
becomes more and more difficult to keep track of which formulas were used in
the proofs of which other formulas, which formulas are affected when another
formula is modified, and whether the order of formulas in a notebook agrees with
their logical order. It is clear, however, that these questions are of utmost impor-
tance for a consistent, coherent and systematic development of a mathematical
theory; after all, if a formula ϕ is modified, then all of its consequences (that is,
the theorems that use ϕ as an assumption in their proofs) must be re-proved,
and so one needs to know what these consequences are in the first place—and
this was the main motivation for the development of the TheoryAnalyzer.

Summarizing, the TheoryAnalyzer allows to automatically

– inspect all direct or indirect assumptions of a given theorem,
– inspect all direct or indirect consequences of a given formula,
– ensure that theories do not contain circular arguments,
– check whether the order of formulas in a notebook agrees with their logical

order, and
– draw nicely-formatted theory-dependency-graphs (as the one in Fig. 3) and

formula-statistics-diagrams.

16 A. Maletzky

6 Conclusion

The work described in this paper is expected to have, and already had, various
positive effects on theory explorations in Theorema 2.0 and on reduction ring
theory: the existing formalization, in particular of the elementary mathematical
theories, may serve as the basis of future theory explorations, perhaps even in
completely different areas of mathematics. The tools presented in Sect. 5 proved
extremely useful already and will definitely be of use for other users as well,
once they are integrated into the system. And, finally, the contributions to the
theory of reduction rings mentioned in Sect. 2.3 give evidence to the claim that
mathematics profits from being treated formally in computer systems.

There are many possibilities for future work. On the theory level, other
aspects of, and approaches to, Gröbner bases (again in the original setting)
could be formalized, for instance the computation of Gröbner bases by matrix
triangularizations [16]. For this, the further improvement of the tools described
in Sect. 5 and the development of new tools might be necessary (more flexible
interactive proving strategy, proof checker, . . .).

Acknowledgments. I thank the anonymous referees for their valuable remarks and
suggestions.

This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1.

References

1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Stud-
ies in Mathematics, vol. 3. American Mathematical Society, Providence (1994).
doi:10.1090/gsm/003. ISSN: 1065-7339, ISBN: 0-8218-3804-0

2. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner bases. In: Ng, E.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 3–21.
Springer, Heidelberg (1979)

3. Buchberger, B.: A critical-pair/completion algorithm for finitely generated ideals
in rings. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) Logic and Machines:
Decision Problems and Complexity. LNCS, vol. 171, pp. 137–161. Springer,
Heidelberg (1984)

4. Buchberger, B.: Gröbner Rings in Theorema: A Case Study in Functors and
Categories. Technical report 2003–49, Johannes Kepler University Linz, Spezial-
forschungsbereich F013, November 2003

5. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema
2.0 computer-assisted natural-style mathematics. J. Formalized Reasoning 9(1),
149–185 (2016)

6. Jorge, J.S., Guilas, V.M., Freire, J.L.: Certifying properties of an efficient functional
program for computing Gröbner bases. J. Symbolic Comput. 44(5), 571–582 (2009)

7. Maletzky, A.: Exploring reduction ring theory in theorema. Technical report 2016–
06, Doctoral Program “Computational Mathematics”, Johannes Kepler University
Linz, Austria, July 2015

http://dx.doi.org/10.1090/gsm/003

Mathematical Theory Exploration in Theorema: Reduction Rings 17

8. Maletzky, A.: Verifying Buchberger’s algorithm in reduction rings. In: Jebelean,
T., Wang, D. (eds.) Proceedings of PAS 2015 (Program Verification, Automated
Debugging and Symbolic Computation, Beijing, China, 21–23 October 2015.
arXiv:1604.08736

9. Medina-Bulo, I., Palomo-Lozano, F., Ruiz-Reina, J.L.: A verified common lisp
implementation of Buchberger’s algorithm in ACL2. J. Symbolic Comput. 45(1),
96–123 (2010)

10. Piroi, F., Kutsia, T.: The Theorema environment for interactive proof development.
In: Sutcliffe, G., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. LNCS, vol. 3835, pp. 261–275. Springer, Heidelberg (2005)

11. Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B.F. (ed.)
EUROCAL 1985. LNCS, vol. 204, pp. 513–517. Springer, Heidelberg (1985)

12. Schwarzweller, C.: Gröbner bases — theory refinement in the mizar system. In:
Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 299–314. Springer,
Heidelberg (2006)

13. Stifter, S.: A generalization of reduction rings. J. Symbolic Comput. 4(3), 351–364
(1988)

14. Stifter, S.: The reduction ring property is hereditary. J. algebra 140(89–18), 399–
414 (1991)

15. Thery, L.: A machine-checked implementation of Buchberger’s algorithm. J.
Autom. Reasoning 26, 107–137 (2001)

16. Wiesinger-Widi, M.: Gröbner Bases and Generalized Sylvester Matrices. Ph.D.
Thesis, Johannes Kepler University Linz (2015). http://epub.jku.at/obvulihs/
content/titleinfo/776913

17. Windsteiger, W.: Building up hierarchical mathematical domains using functors in
theorema. In: Armando, A., Jebelean, T. (eds.) Proceedings of Calculemus 1999,
Trento, Italy. ENTCS, vol. 23, pp. 401–419. Elsevier, Amsterdam (1999)

18. Windsteiger, W.: Theorema 2.0: a system for mathematical theory exploration.
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 49–52. Springer,
Heidelberg (2014)

19. Winkler, F., Buchberger, B.: A criterion for eliminating unnecessary reductions in
the Knuth-Bendix algorithm. In: Colloqium on Algebra, Combinatorics and Logic
in Computer Science, pp. 849–869 (1983)

http://arxiv.org/abs/1604.08736
http://epub.jku.at/obvulihs/content/titleinfo/776913
http://epub.jku.at/obvulihs/content/titleinfo/776913

Formalization of Bing’s Shrinking Method
in Geometric Topology

Ken’ichi Kuga(B), Manabu Hagiwara, and Mitsuharu Yamamoto

Department of Mathematics and Informatics, Faculty of Science, Chiba University,
Yayoi 1-33, Inage-ku, Chiba City 263-0022, Japan

{kuga,hagiwara,mituharu}@math.s.chiba-u.ac.jp

Abstract. Bing’s shrinking method is a key technique for construct-
ing homeomorphisms between topological manifolds in geometric topol-
ogy. Applications of this method include the generalized Schoenflies
theorem, the double suspension theorem for homology spheres, and the
4-dimensional Poincaré conjecture. Homeomorphisms obtained in this
method are sometimes counter-intuitive and may even be pathological.
This makes Bing’s shrinking method a good target of formalization by
proof assistants. We report our formalization of this method in Coq/Ss-
reflect.

Keywords: Formalization · Geometric topology · Bing’s shrinking
method · Coq · Ssreflect

1 Introduction

The Jordan curve theorem is one of the classical theorems in topology that has
been successfully formalized using proof systems (in HOL Light [10], and in
Mizar [9]). These formalizations in topology show significant differences between
traditional proofs based on geometric/topological intuition and computer check-
ing of those traditional proofs. In fact, trained geometers and topologists can
reproduce mathematically rigorous proof steps by reading traditional arguments
appealing to geometric intuition, but this reproduction process can frequently
be nontrivial to formalize. When it comes to the Schoenflies problem, which is
an essential refinement to the Jordan curve theorem, formalization becomes even
less trivial.

The Schoenflies problem asks whether the region bounded by a Jordan curve
is topologically equal to the disk. In the category of topological spaces, we say two
objects are “equal” when there exists a homeomorphism between them. However,
finding a homeomorphism is a fairly non-trivial issue even when the two spaces
appear similar. In fact, while the original 2 dimensional Schoenflies problem
can be affirmatively answered using a fairly nontrivial topological argument or
applying Carathéodory’s theorem in complex analysis ([1]), the 3 dimensional
analogue fails to hold due to the existence of counter-intuitive examples such
as Alexander’s horned sphere ([2] Fig. 1). This pathological phenomenon is a
c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 18–27, 2016.
DOI: 10.1007/978-3-319-42547-4 2

Formalization of Bing’s Shrinking Method 19

Fig. 1. Alexander’s horned sphere [16] The complement of this wild sphere in
the 3-dimensional sphere S3 is not homeomorphic to the standard 3-dimensional ball.
This follows from the observation that the linking circle depicted in the picture is not
contractible in the complement. However, gluing two copies of the complement along
the horned sphere yields the standard 3-dimensional sphere S3. Bing constructed this
counter-intuitive homeomorphism using his shrinking method in 1952 [3].

characteristic aspect of geometric topology in the topological category, and this
counter-intuitive aspect makes geometric topology a good target of computer
formalization.

To avoid the pathology of Alexander’s horned sphere and recover the Scheon-
flies problem in arbitrary dimensions, a correct assumption to impose on the
topological embeddings of the n − 1 sphere in the n sphere turned out to be
“local flatness”: An embedding of the n − 1 dimensional sphere Sn−1 into the
n dimensional sphere Sn, φ : Sn−1 → Sn, is locally flat when there exists a
topological embedding φ : Sn−1 × R → Sn such that φ(x, 0) = φ(x) for all
x ∈ Sn−1.

Thus in 1960 Morton Brown succeeded in proving the following theorem [4]:

Generalized Schoenflies Theorem (GST). Let φ : Sn−1 → Sn be a locally
flat topological embedding. Then the closure of each connected component of
the complement of φ(Sn−1) is homeomorphic to the n dimensional disk Dn.

Here, the n dimensional sphere Sn is most often concretely defined as the
unit sphere in the Euclidean n + 1 space:

Sn := {(x1, x2, · · · , xn+1) ∈ R
n+1 | x2

1 + x2
2 + · · · + xn+1

2 = 1}

20 K. Kuga et al.

with subspace topology. Similarly, the n dimensional disk Dn is usually defined
concretely as the unit disk in the Euclidean n space:

Dn := {(x1, x2, · · · , xn) ∈ R
n | x2

1 + x2
2 + · · · + x2

n ≤ 1}

However, we may also define Dn to be the cube Dn := [0, 1]n, the standard n
simplex, or some appropriate compactification of Euclidean n space.

The choice of these concrete definitions of Sn or Dn or any space in topol-
ogy is mathematically immaterial, but it does change the resulting formalization
significantly and makes it less portable. Hence it is a better idea to abstract the
essential property of disks and spheres required in the proof of the GST to
a greater extent in formalization than in traditional mathematics. The essen-
tial property of these spaces needed for constructing required homeomorphisms
is certain self-shrinkability of disks and spheres. We will briefly explain some
abstraction of this self-shrinkability later, but the point here is this property
ensures that any surjection f : Dn → Dn with finitely many nontrivial inverses
is “shrinkable” in the following sense.

Definition (Bing Shrinkability). Let f : X → Y be a continuous mapping
between compact metric spaces with metrics d and d′ respectively. We say f is
called Bing shrinkable if for each positive ε > 0 there exists a homeomorphism
hε : X → X such that for all y ∈ Y , diamdhε(f−1(y)) < ε and for all x ∈ X,
d′(f(x), f(hε(x))) < ε.

This property is the key property when we wish to show two topological
spaces are “equal” because of the following theorem.

Bing Shrinking Theorem (BST). Suppose f : X → Y is a continuous sur-
jection between compact metric spaces and f is Bing shrinkable. Then f can
be approximated by homeomorphisms, that is, for each positive δ there exists
a homeomorphism kδ : X → Y such that for all x ∈ X, d′(f(x), kδ(x)) < δ. In
particular X and Y are homeomorphic.

This shrinking method was first invented and used by R. H. Bing in 1952
when he produced an exotic involutive self-homeomorphism of the three sphere
S3 whose fixed point set is the Alexander horned sphere [3]. In his construction,
a certain map f : S3 → Y from the three sphere to a potentially non-manifold
space Y was approximated by homeomorphisms. Hence it follows that the target
space is actually a three sphere.

Other applications of this shrinking construction of non-trivial homeomor-
phisms include the celebrated double suspension theorem of J. Cannon and R.
Edwards, and M. Freedman’s proof of the 4-dimensional Poincaré conjecture.
Homeomorphisms obtained in this theorem are relatively general and beyond
what can be easily understood concerning equality of topological spaces, which
makes this theorem an attractive target of formalization.

The purpose of this paper is to report our formalization of this method in
Coq/Ssreflect. We note that our formalization is essentially non-constructive.
In fact, a characteristic feature of the shrinking construction is the appear-
ance of infinite iterations producing possibly conter-intuitive homeomorphisms.

Formalization of Bing’s Shrinking Method 21

Thus Bing’s Shrinking criterion in its generality requires the Axiom of Choice in
the form of the Baire Category Theorem. Our formalization also uses a topology
library by Schepler [13] which assumes the classical propositional logic in the
standard library of Coq.

2 Formalization

In this section we explain our formalization of the previously stated Bing Shrink-
ing Theorem in Coq/Ssreflect. Our formalization uses the current version of
Coq(Coq-8.5) with the Standard Library and its Ssreflect extension contained
in Mathcomp-1.6. Our formalization also uses the Topology library in Coq by
Daniel Schepler in [12] as our starting point. We also made a small library of
topological lemmas, LemmasForBSC.v, and a formalization of the Baire Cat-
egory Theorem, BaireSpaces.v, needed in our main formalization BingShrink-
ingCriterion.v. These files with complete code are in [11].

In [12] (or more or less in any topology library in Coq, e.g. [13–15]) topological
spaces are formalized according to the axiom for the system of open subsets:

Record TopologicalSpace : Type := {

point_set : Type;

open : Ensemble point_set → Prop;

open_family_union : ∀ F : Family point_set ,

(∀ S : Ensemble point_set , In F S → open S) →
open (FamilyUnion F);

open_intersection \,2: ∀ U V:Ensemble point_set ,

open U → open V → open (Intersection U V);

open_full : open Full_set

}.

Here we remark on one aspect where our formalization might look different
from informal arguments. That is about subspaces of Xt (we reserve X for the
underlying type point set Xt of the topological space Xt). A subset A of Xt:
TopologicalSpace is of type

Ensemble (point_set Xt) := (point_set Xt) → Prop.

There is a natural topology, say At, on A induced from Xt called a relative
topology or a subspace topology. Informally, a subset U of A is open in At if
and only if U = A ∩ V for some open set V of Xt. Formally, however, U is an
element of the type

Ensemble {x : point_set Xt | A x}

Especially when subsets are nested, X ⊃ A ⊃ B, identifications of various induced
topologies become non-trivial.

Another factor which complicates this situation is that we begin with metric
spaces (X,d), (Y,d′) where d and d′ are distance functions (d : X → X → R)
(d′ : Y → Y → R) and R is the set of real numbers. These metrics are subject to
the standard metric space axioms such as the triangle inequality. These metrics

22 K. Kuga et al.

induce a metric topology on X and Y yielding topological spaces Xt and Yt. If
A is a subset of X, then d restricts to a metric dA on A. Then the metric space
(A,dA) induces a topology on A which is equivalent to the subspace topology
from Xt. Again this identification is non-trivial.

2.1 Bing Shrinking Criterion

Let’s begin with X Y: Type as underlying point sets and (d: X → X → R) (d’: Y
→ Y→ R) as metrics on them. These metrics define topological spaces Xt and
Yt. Then the Bing Shrinkability for compact spaces is formalized as

Hypothesis X_compact: compact Xt.

Hypothesis Y_compact: compact Yt.

Definition Bing_shrinkable (f:X→Y): Prop:=

∀ eps:R, eps >0 →
∃ h : point_set Xt → point_set Xt,

homeomorphism h ∧
(∀ x:X, d’ (f x) (f (h x)) < eps) ∧
(∀ x1 x2:X, (f x1) = (f x2) → d (h x1) (h x2) < eps).

Defining the conclusion as approximability by homeomorphisms, the BST is
formalized as follows.

Definition approximable_by_homeos (f:X→Y): Prop:=

∀ eps:R, eps >0 →
∃ h:point_set Xt → point_set Yt,

homeomorphism h ∧
(∀ x:X, d’ (f x) (h x) < eps).

Theorem Bing_Shrinking_Theorem:

∀ f: point_set Xt → point_set Yt ,

continuous f → surjective f →
(Bing_shrinkable f → approximable_by_homeos f).

We formalized the proof of the Bing Shrinking Theorem following the line of
argument of R.D.Edwards’ ICM talk in 1978 [5]. Edward’s argument is different
from Bing’s original proof and quite succinctly outlined. This is made possible by
going to the function space of continuous functions. This function space becomes
a metric space with uniform topology. This formalization is a good example
where formal proof becomes considerably longer than the intuitively outlined
proof because of various non-trivial identifications of topologies on subspaces
of function spaces with metrics, etc., which are usually unnoticed by experts
in topology.

We thus consider the function space

Let CMap :=

{f:X→Y | bound (Im Full_set

(fun x:X⇒ d’ (y0 x) (f x)))∧
@continuous Xt Yt f}.

Formalization of Bing’s Shrinking Method 23

This CMap becomes a complete metric space with a uniform metric. Mathemati-
cally the boundedness condition is redundant as it follows immediately when the
spaces are compact. However, it is added to make the definability of a uniform
metric on CMap obvious.

We then suppose f :CMap satisfies the Bing shrinking criterion: Bing shrinkable f.

set fH : Ensemble (point_set CMapt) :=

fun gP: CMap ⇒ ∃ hx: point_set Xt → point_set Xt,

homeomorphism hx ∧
∀ x: point_set Xt, (proj1_sig gP) x = f (hx x).

set CfH := closure fH.

set CfHt := SubspaceTopology CfH.

Then we can check that CfHt becomes a complete metric space and hence by
applying the Baire Category Theorem this space is a Baire space:

have CfHt_baire: baire_space CfHt.

apply BaireCategoryTheorem

with um_restriction um_restriction_metric.

We construct a sequence of open dense subsets of CfHt by setting:

Let W (eps:R):

Ensemble (point_set CMapt) :=

fun g:CMap ⇒ ∀ (x1 x2:X),

(proj1_sig g x1) = (proj1_sig g x2) → d x1 x2 < eps.

From the reasons mentioned above the openness of W is not as straightforward
as it might look:

Lemma W_is_open: ∀ (eps:R),

eps > 0 → open (W eps).

The point of the Bing shrinkability is that this property amounts to saying each
such W is dense.

Then

set Wn: IndexedFamily nat (point_set CfHt) := fun n:nat ⇒
inverse_image (subspace_inc CfH) (W (/INR (S n))).

have WnOD: ∀ n:nat , open (Wn n) ∧ dense (Wn n).

Then applying the Baire property, the intersection of Wn’s is dense.

have IWn_dense: dense (IndexedIntersection Wn).

apply CfHt_baire.

by apply WnOD.

This intersection consists of the desired homeomorphisms, which completes the
formalization.

24 K. Kuga et al.

2.2 Baire Category Theorem

As we needed the Baire Category Theorem (BCT) in our formalization of the
BST, we formalized the BCT for compact metric spaces.

Variable T: Topological_space.

Definition baire_space : Prop :=

∀ V : IndexedFamily nat (point_set T),

(∀ n: nat , (open (V n)) ∧ (dense (V n))) →
dense (IndexedIntersection V).

Let X be a point set (Type) and d a metric (X → X → R) defining a metric
topology on X. Then

Theorem BaireCategoryTheorem :

complete d d_metric → baire_space.

Our formalization follows a more or less straightforward argument of choosing
an appropriate convergent sequence. One point we need to mention here is that
to choose this sequence it is inevitable to assume the Axiom of Choice. In this
sense, our formalization is essentially non-constructive. Explicitly we used the
following form of the Axiom of Choice:

Axiom FDC : FunctionalDependentChoice_on

(point_set X * {r:R | r > 0} * nat).

(In our code in BaireCategory.v [11], it is a lemma derived from the Coq standard
library.)

3 Relation to Some Theorems in Geometric Topology

In this section, to give an idea how Bing’s shrinking method is used in more con-
crete geometric situations, we first sketch a traditional proof of the Generalized
Schoenflies Theorem using this method (Details can be found in [4,7]).

3.1 Proof Sketch of the GST Using Bing’s Shrinking Method

Consider a map f : Sn → ΣSn−1, where ΣSn−1 is the suspension of Sn−1,
i.e., the compact space obtained from the infinite cylinder Sn−1 × R by adding
two ideal points +∞ and −∞. Define f to be the map collapsing two bounded
regions of Sn−φ(Sn−1×R) and mapping them to the corresponding ideal points
±∞. By drilling a small ball from the image of φ, the GST becomes the k = 2
case of the following ‘Disk to Disk Theorem’.

Theorem (Disk to Disk Theorem). Suppose f : Dn → Dn is a map such
that there are only finitely many points (say k points) pi with the property
Card(f−1(pi)) > 1. If all pi are in the interior of Im(f) then f is Bing shrinkable.

Formalization of Bing’s Shrinking Method 25

For the sake of simplicity we assume there is only one such point pi = p.
To shrink the point inverse f−1(p), consider the homeomorphism h : Dn → Dn

obtained by applying the Relative Annulus Property of (Dn, N,B) where N is
a standard thin collar neighborhood of ∂Dn and B is a small ball around p.

Then the map σ : Dn → Dn defined by σ(x) = x for x ∈ f−1(p) and
σ(x) = f−1(h(f(x))) for x ∈ Dn − f−1(p) turns out to be a homeomorphism.
This σ is used to produce nested neighborhoods of f−1(p), which then shows the
Bing Shrinkability of f .

3.2 Abstract Property of Disks Necessary for Shrinking Arguments

A problem which arises as soon as we try to formalize concrete theorems in
Geometry/Topology is that geometric objects are usually given concretely in
terms of some specific representation using coordinates. However, formalizations
based on these specific representations make them less portable. Thus we state
our example using an abstraction of disks from our on-going formalization of a
key property of subsets called cellularity.

Suppose D is the standard disk Dn in the Euclidean space formalized using
coordinates in some specific way. Given a point x in the interior of D, an open
neighborhood U of x, and a closed subset K in the interior of D, we can construct
a concrete homeomorphism h of the Euclidean space which moves interior points
of D towards x until K is contained in U while at the same time fixing exterior
points of D. This is the property abstracted in the following definition. (Here, a
coercion from TopologicalSpace to Sortclass is defined).

(∗ De f i n i t i o n o f a b s t r a c t c e l l ∗)
Definition abstract_cell (D : Ensemble X) : Prop :=

Inhabited (interior D) ∧ closed D ∧
∀ (x : X) (U K : Ensemble X), open U → In U x

→ Included U D → closed K → Included K (interior D) →
∃ h : X → X, homeomorphism h ∧ h x = x ∧

Included (Im K h) U ∧
(∀ y : X, In (Complement D) y → h y = y).

This abstract property of disks is sufficient for us to formulate a property of
subsets called cellularity, and it makes formalizations of the main body of the
proofs using cellularity independent of concrete coordinate representations of
disks.

Also, in this definition, abstract cell is defined not as a property of topological
spaces but of subsets of a fixed ambient type X, and each homeomorphism h is
defined all over X. This kind of flattening is important in practice, especially for
dealing with infinitely nested structures. Cellularity, abstractly defined below, is
a typical example of such an infinite nesting. Concretely, a subset of a manifold
(such as the n-disk or the n-sphere) is cellular if it is the intersection of some
decreasing sequence of disks in the manifold. When a subset is cellular, we can

26 K. Kuga et al.

shrink it explicitly without using the Baire Category Theorem. Our abstract
cellularity is:

(∗ De f i n i t i o n o f a b s t r a c t c e l l u l a r i t y ∗)
Definition abstract_cellular (K : Ensemble X) : Prop :=

∃ D : IndexedFamily nat X,

(∀ n : nat , abstract_cell (D n) ∧
Included (D (S n)) (interior (D n))) ∧
IndexedIntersection D = K.

If a surjective map between spheres (of the same dimension) has only finitely
many non-trivial point-inverses, then these point-inverses are inevitably cellu-
lar and that map can be approximated arbitrarily closely by homeomorphisms.
The Generalized Schoenflies Theorem corresponds to the case of two non-trivial
point-inverses. The Sphere to Sphere theorem in the next section corresponds to
the case of countablely many nontrivial point-inverses:

3.3 Future Plan

M. Freedman’s proof of the 4-dimensional Poincaré Conjecture is a triumph of
geometric topology. The Bing shrinking construction of homeomorphisms we
have discussed in this article plays an essential role in this proof. In fact the core
theorem in [6] asserts certain topological objects, called the Casson handles, are
homeomorphic to D2×R

2. This result is obtained by placing a Casson handle CH
in the 4 dimensional sphere S4 and applying the following theorem to construct
a homeomorphism CH ≈ S2 × R

2.

Theorem (Sphere to Sphere Theorem)) [6,8]. Suppose f : Sn → Sn is a
surjective map such that there are only countably many points pi, (i ∈ N) with
the property Card(f−1(pi)) > 1. We assume limi→∞ diam(f−1(pi)) = 0 and the
subset {pi | i ∈ N} ⊂ Sn is nowhere dense. Then f is Bing shrinkable.

This theorem is the Disk to Disk Theorem for k = ∞ and its proof can be
restated in terms of abstract cells defined in Sect. 3. Thus formalization of this
theorem may not be far from our formalization of the Bing Shrinking method.

4 Conclusion

We formalized the Bing shrinking theorem, a basic method of constructing possi-
bly wild and even pathological homeomorphisms in geometric topology. We also
extracted an abstract property of the disk to further facilitate formalization of
arguments using the shrinking method.

Formalization of Bing’s Shrinking Method 27

References

1. Carathéodory, C.: Mathematische Annalen (Springer, Berlin / Heidelberg) 73(2),
305–320 (1913)

2. Alexander, J.W.: An example of a simply connected surface bounding a region
which is not simply connected. Proc. Nat. Acad. Sci. U.S.A. 10(1), 8–10 (1924)

3. Bing, R.H.: A homeomorphism between the 3-sphere and the sum of two solid
horned spheres. Ann. Math. 56, 354–362 (1952)

4. Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc.
66, 74–76 (1960)

5. Edwards, R.D.: The topology of manifolds and cell-like maps. In: Proceedings of
the ICM, Helsinki, pp. 111–127 (1978)

6. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom.
17(3), 357–453 (1982)

7. Freedman, M.H.: Bing topology and Casson handles, notes by S. Behrens, Santa
Barbara Lectures (2013)

8. Freedman, M.H., Quinn, F.: Topology of 4-Manifolds. PMS, vol. 39. Princeton
University Press, Princeton (1990)

9. Mizar formalization of the Jordan curve theorem. http://mizar.uwb.edu.pl/jordan/
10. Hales, T.: The Jordan curve theorem, formally and informally. Am. Math. Mon.

114(10), 882–894 (2007)
11. BingShrinkingCriterion. https://github.com/CuMathInfo/Topology/tree/master/

BingShrinkingCriterion
12. Schepler, D.: Topology/v8.5 in coq-contribs. https://scm.gforge.inria.fr/anonscm/

git/coq-contribs/coq-contribs.git
13. https://github.com/c-corn/corn/tree/master/metric2
14. http://www-sop.inria.fr/marelle/Guillaume.Cano/
15. http://coquelicot.saclay.inria.fr/html/Coquelicot.Coquelicot.html
16. “Alexander Horned Sphere” From MathWorld–A Wolfram Web Resource. http://

mathworld.wolfram.com/AlexandersHornedSphere.html

http://mizar.uwb.edu.pl/jordan/
https://github.com/CuMathInfo/Topology/tree/master/BingShrinkingCriterion
https://github.com/CuMathInfo/Topology/tree/master/BingShrinkingCriterion
https://scm.gforge.inria.fr/anonscm/git/coq-contribs/coq-contribs.git
https://scm.gforge.inria.fr/anonscm/git/coq-contribs/coq-contribs.git
https://github.com/c-corn/corn/tree/master/metric2
http://www-sop.inria.fr/marelle/Guillaume.Cano/
http://coquelicot.saclay.inria.fr/html/Coquelicot.Coquelicot.html
http://mathworld.wolfram.com/AlexandersHornedSphere.html
http://mathworld.wolfram.com/AlexandersHornedSphere.html

SC2: Satisfiability Checking Meets
Symbolic Computation

(Project Paper)

Erika Ábrahám1, John Abbott12, Bernd Becker2, Anna M. Bigatti3,
Martin Brain11, Bruno Buchberger4, Alessandro Cimatti5,

James H. Davenport6(B), Matthew England7, Pascal Fontaine9,
Stephen Forrest10, Alberto Griggio5, Daniel Kroening11,

Werner M. Seiler12, and Thomas Sturm8,13

1 RWTH Aachen University, Aachen, Germany
abraham@cs.rwth-aachen.de

2 Albert-Ludwigs-Universität, Freiburg, Germany
3 Università Degli Studi di Genova, Genova, Italy

4 Johannes Kepler Universität, Linz, Austria
5 Fondazione Bruno Kessler, Trento, Italy

6 University of Bath, Bath, UK
7 Coventry University, Coventry, UK

8 CNRS, LORIA, Inria, Nancy, France
9 LORIA, Inria, Université de Lorraine, Nancy, France

10 Maplesoft Europe Ltd., Aachen, Germany
11 University of Oxford, Oxford, UK

12 Universität Kassel, Kassel, Germany
13 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Symbolic Computation and Satisfiability Checking are two
research areas, both having their individual scientific focus but shar-
ing also common interests in the development, implementation and
application of decision procedures for arithmetic theories. Despite their
commonalities, the two communities are rather weakly connected. The
aim of our newly accepted SC2 project (H2020-FETOPEN-CSA) is to
strengthen the connection between these communities by creating com-
mon platforms, initiating interaction and exchange, identifying common
challenges, and developing a common roadmap from theory along the
way to tools and (industrial) applications. In this paper we report on
the aims and on the first activities of this project, and formalise some
relevant challenges for the unified SC2 community.

Keywords: Logical problems · Symbolic computation · Computer
algebra systems · Satisfiability checking · Satisfiability modulo theories

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 28–43, 2016.
DOI: 10.1007/978-3-319-42547-4 3

SC2: Satisfiability Checking Meets Symbolic Computation 29

1 Introduction

The use of advanced methods to solve practical and industrially relevant prob-
lems by computers has a long history. While it is customary to think that “com-
puters are getting faster” (and indeed, they were, and are still getting more
powerful in terms of multicores etc.), the progress in algorithms and software
has been even greater. One of the leaders in the field of linear and mixed integer
programming points out [9, slide 37] that you would be over 400 times better
off running today’s algorithms and software on a 1991 computer than you would
running 1991 software on today’s computer. The practice is heavily inspired by
the theory: [9, slide 31] shows that the biggest version-on-version performance
advance in software was caused by “mining the theory”. But this progress has
been in what is, mathematically, quite a limited domain: that of linear program-
ming, possibly where some of the variables are integer-valued.

There has been also much progress in the use of computers to solve hard non-
linear algebraic1 problems. This is the area generally called Symbolic Computation
(or Computer Algebra). It includes solving non-linear problems over both the real
and complex numbers, though generally with very different techniques. This has
produced many new applications and surprising developments: in an area everyone
believed was solved, non-linear solving over the reals (using cylindrical algebraic
decomposition — CAD) has recently found a new algorithm for computing square
roots [35]. CAD is another area where practice is (sometimes) well ahead of theory:
the theory [18,29] states that the complexity is doubly exponential in the number
of variables, but useful problems can still be solved in practice ([3] points out that
CAD is the most significant engine in the “Todai robot” project).

Independently and contemporaneously, there has been a lot of practical
progress in solving the SAT problem, i.e., checking the satisfiability of logi-
cal problems over the Boolean domain. The SAT problem is known to be NP-
complete [27]. Nevertheless, the Satisfiability Checking [8] community has devel-
oped SAT solvers which can successfully handle inputs with millions of Boolean
variables. Among other industrial applications, these tools are now at the heart
of many techniques for verification and security of computer systems.

Driven by this success, big efforts were made to enrich propositional SAT-
solving with solver modules for different theories. Highly interesting techniques
were implemented in SAT-modulo-theories (SMT) solvers [6,42] for checking
easier theories, but the development for quantifier-free non-linear real and integer
arithmetic (see Footnote 1) is still in its infancy.

Figure 1 shows a non-exhaustive history of tool developments in these two
areas. It illustrates nicely the historically deeper roots of computer algebra sys-
tems, but also the high intensity of research in both areas. The resulting tools

1 It is usual in the SMT community to refer to these constraints as arithmetic. But,
as they involve quantities as yet unknown, manipulating them is algebra. Hence both
words occur, with essentially the same meaning, throughout this document.

30 E. Ábrahám et al.

1960 1970 1980 1990 2000 2010 2020

CAS

SAT

SMT

Sc
ho
on
sc
hi
p

MA
TH
LA
B

Re
du
ce

Al
tr
an

Sc
ra
tc
hp
ad
/A
xi
om

Ma
cs
ym
a

SM
P

mu
MA
TH

Ma
pl
e

Ma
th
ca
d
SA
C
GA
P

Co
Co
A
Ma
th
Ha
nd
bo
ok

Ma
th
om
at
ic

Ma
th
em
at
ic
a
De
ri
ve

FO
RM

KA
SH
/K
AN
T
PA
RI
/G
P

Ma
gm
a
Fe
rm
at

Er
ab
le

Ma
ca
ul
ay
2

Si
ng
ul
ar

Sy
mb
ol
ic
C+
+

Ma
xi
ma

Xc
as
/G
ia
c

Ya
ca
s

SA
GE

SM
at
h
St
ud
io

Ca
da
br
a
Sy
mP
y
Op
en
Ax
io
m

MA
TL
AB

Mu
PA
D

Wo
lf
ra
m
Al
ph
a
TI
-N
sp
ir
e
CA
S

Ma
th
ic
s
Sy
mb
ol
is
m
Fx
So
lv
er

Ca
lc
in
at
or

Sy
MA
T
Ma
th
em
ag
ix

WalkSAT
SATO

Simplify
SVC

GRASP
Chaff

BCSAT

MiniSAT
Berkmin

zChaff
Siege

ICS
Uclid

MathSAT
Barcelogic

HyperSat
RSat

Sat4j

Yices
CVC

HySAT/iSAT
DPT

Z3
Alt-Ergo

Beaver
ABsolver

Boolector
PicoSAT

Spear

MiniSmt
STP

veriT
OpenCog

ArgoSat
OpenSMT

SatEEn
SWORD

Glucose
CryptoMiniSat

SONOLAR

Lingeling
UBCSAT

SMTInterpol

SMT-RAT
SMCHR

UCLID
Clasp

Fast

re
vl

oS
TA

S

raSAT

Fig. 1. History of some computer algebra systems and SAT/SMT solvers (not exhaus-
tive; years approximate first release as far as known and as positioning allowed) [2]

are successfully applied in several academic and industrial areas, however, the
current state is still not satisfactory, as described in [51]:

“Despite substantial advances in verification technology, complexity issues
with classical decision procedures are still a major obstacle for formal ver-
ification of real-world applications, e.g., in automotive and avionic indus-
tries.”

Both communities address similar problems and share the challenge to improve
their solutions to achieve applicability on complex large-scale applications. How-
ever, the Symbolic Computation community and the Satisfiability Checking com-
munity are largely in their own silos and traditionally do not interact much with
each other.

To connect these communities, we successfully applied for a European Hori-
zon 2020 Coordination and Support Action, with an envisaged project start in
July 2016. The overall aim of this project is to create a new research community
bridging the gap between Satisfiability Checking and Symbolic Computation,
whose members will ultimately be well informed about both fields, and thus able
to combine the knowledge and techniques of both fields to develop new research
and to resolve problems (both academic and industrial) currently beyond the
scope of either individual field. We call the new community SC2, as it will join
the communities of Satisfiability Checking and Symbolic Computation.

The contributions of this paper are twofold: Firstly, we discuss the potentials
of closer connection and more intensive exchange between the two communities,
and list a number of challenges that are currently out of reach but could be tack-
led by a unified SC2 community (Sect. 3). Secondly, we discuss what is needed to

SC2: Satisfiability Checking Meets Symbolic Computation 31

trigger and support these developments, and describe the actions of our project
to satisfy these needs (Sect. 4).

2 Background

Before describing our project, we give a short description of the state-of-the-art
in Satisfiability Checking and Symbolic Computation. Parts of this section are
taken from [2].

2.1 Symbolic Computation and Computer Algebra Systems

Computer Algebra, the use of computers to do algebra rather than simply arith-
metic, is almost as old as computing itself, with the first PhD theses [41,50]
dating back to 1953. This initial work consisted of programs to do one thing,
but the focus soon moved on to ‘systems’, capable of doing a variety of tasks.
One early such system was Collins’ SAC [24], written in Fortran. Many of the
early systems were written in LISP, largely because of its support for recursion,
garbage collection and large integers. The group at M.I.T. developed Macsyma

[45] in the 1960s. about the same time, Hearn developed Reduce [38], and shortly
after a group at IBM Yorktown Heights produced SCRATCHPAD, then AXIOM [39], a
system that attempted to match the generality of Mathematics with some kind
of generic programming, to allow algorithms to be programmed in the generality
in which they are conventionally stated, e.g., polynomials over a ring.

Symbolic Computation was initially seen as part of Artificial Intelligence,
with major triumphs such as [54] being “A Heuristic Program that Solves Sym-
bolic Integration Problems in Freshman Calculus”, firmly in the AI camp. By
the end of the 1960s, this approach to integration had been replaced by an algo-
rithm [46], which had the great advantage that, when backed up with a suitable
completeness theorem [52] it could prove unintegrability: “there is no formula
made up of exponentials, logarithms and algebraic functions which differentiates
to e−x2

”, in other words “e−x2
is unintegrable”.

The 1960s and 70s also saw great advances in other areas. We had much more
efficient algorithms to replace naive use of Euclid’s algorithm for greatest com-
mon divisor computation (and hence the simplification of fractions), far better
algorithms than the search-based methods for polynomial factorisation, and so
on. All this meant that Symbolic Computation firmly moved into the camps of
algorithmics and complexity theory, and the dominant question became “what
is the worst-case complexity of this algorithm”.

Gröbner bases. One great success of this period was the method of Gröbner
bases [20]. This allows effective, and in many cases efficient, solution of many
problems of polynomials over algebraically-closed fields (typically the complex
numbers, though applications over finite fields and in cryptography abound).
This notion paved the way for the discovery of numerous effective methods for
polynomial ideals; many applications in other areas of Mathematics quickly fol-
lowed. Buchberger’s algorithm for computing a Gröbner basis is a prime example

32 E. Ábrahám et al.

of the huge gulf that can separate an abstract algorithm from a usably effi-
cient implementation. Over the fifty years since its initial publication, research
into the algorithm’s behaviour has produced several significant improvements:
the modern refined version is typically thousands of times faster than the origi-
nal. The search for further improvements continues today.

The remarkable computational utility of Gröbner bases prompted the devel-
opment of a number of distinct, independent implementations of refined versions
of Buchberger’s algorithm. The main commercial general-purpose computer alge-
bra systems (including MAGMA [12], Maple [43], Mathematica [58]) can all compute
Gröbner bases; researchers needing the flexibility and ability to experiment with
new algorithms also use computer algebra systems such as CoCoA/CoCoALib [1],
Macaulay/Macaulay2 [37] and Singular [32] and Reduce [38] which are freely down-
loadable from their respective websites.
Cylindrical algebraic decomposition. Another great success of the 1970s was the
development of cylindrical algebraic decomposition (CAD) in [25]. This replaced
the non-elementary complexity (no finite tower of exponentials bounds the com-
plexity) of Tarski’s method for real algebraic geometry, by a doubly exponential
method. A CAD is a decomposition of Rn into cells arranged cylindrically (mean-
ing their projections are equal or disjoint) and described by semi-algebraic sets.
For a detailed description of modern CAD, see [15].

Hong created a C version of both the SAC library and the comprehensive CAD
code, which is now open-source and freely available as SACLIB and QEPCAD-B
[17]. Another example is the Redlog package [33] of the computer algebra sys-
tem Reduce, which offers an optimised combination of the cylindrical algebraic
decomposition with virtual substitution (see below) and Gröbner basis methods.
Virtual substitution. To mention a last algorithm, virtual substitution [57] focuses
on non-linear real arithmetic formulas where the degree of the quantified vari-
ables is not too large. Although the method can be generalised to arbitrary
degrees, current implementations are typically limited to input, where the total
degree of the quantified variables does not exceed 2. In practice, this limitation is
somewhat softened by employing powerful heuristics like systematic degree shifts
or polynomial factorisation. One key idea is to eliminate existential quantifiers
in favour of finite disjunctions plugging in test terms that are derived from the
considered formula.

These methods and their numerous refinements belong to the usual tool box
of state-of-the-art computer algebra systems, and enable them to tackle hard
arithmetic problems.

2.2 Satisfiability Checking

In the 1960s, another line of research on Satisfiability Checking [8] for proposi-
tional logic started its career. The first idea used resolution for quantifier elim-
ination [31], and had serious problems with the steeply increasing requirements
on computational and memory resources with the increase of the problem size.
Another research line [30] suggested a combination of enumeration and Boolean

SC2: Satisfiability Checking Meets Symbolic Computation 33

SAT solver

input formula in CNF

theory constraint set
(partial) SAT or

UNSAT + explanation

theory solver(s)

SAT or
UNSAT

solution or

unsatisfiable

Boolean abstraction

(partial) solution

Fig. 2. The functioning of SMT solvers

constraint propagation (BCP). A major improvement was achieved in the 1990s
by combining the two approaches, leading to conflict-driven clause-learning
and non-chronological backtracking [44]. Later on, this impressive progress was
continued by novel efficient implementation techniques (e.g., sophisticated deci-
sion heuristics, two-watched-literal scheme, restarts, cache performance, etc.),
resulting in numerous powerful SAT solvers.

Driven by this success, big efforts were made to enrich propositional SAT-
solving with solver modules for different existentially quantified theories. Highly
interesting techniques were implemented in SAT-modulo-theories (SMT) solvers
for checking, e.g., equality logic with uninterpreted functions, array theory, bit-
vector arithmetic and quantifier-free linear real and integer arithmetic, but the
development for quantifier-free non-linear real and integer arithmetic is still in
its infancy. For further reading, see, e.g., [6,42].

Modern SMT solvers typically combine a SAT solver with one or more the-
ory solvers as illustrated in Fig. 2. First the input formula is transformed into
conjunctive normal form (CNF), a conjunction of disjunctions (clauses); this
transformation can be done in linear time and space using Tseitin’s transforma-
tion on the cost of additional variables. Next, the resulting CNF is abstracted to
a pure Boolean propositional logic formula by replacing each theory constraint
by a fresh Boolean proposition. Intuitively, the truth value of each fresh proposi-
tion defines whether the theory constraint, which it substitutes, holds. The SAT
solver tries to find solutions for this propositional abstraction and during solving
it consults the theory solver(s) to check the consistency of the theory constraints
that should hold according to the current values of the abstraction variables.

On the one hand, theory solvers only need to check conjunctions (sets) of the-
ory constraints, instead of arbitrary Boolean combinations. On the other hand,
theory solvers should have the following properties for being SMT-compliant :

– They should work incrementally, i.e., after they determine the consistency
of a constraint set, they should be able to take delivery of some additional
constraints and re-check the extended set, thereby making use of results from
the previous check.

34 E. Ábrahám et al.

– In case of unsatisfiability, they should be able to return an explanation for
inconsistency, e.g., by a preferably small inconsistent subset of the constraints.

– They should support backtracking, i.e., the removal of previously added
constraints.

Optimally, theory solvers should also be able to provide a satisfying solution, if
the problem is satisfiable, and a proof of unsatisfiability for the explanation, if
the problem is unsatisfiable.

A great advantage of the SMT technology is that it can employ decision pro-
cedures not only in isolation, but also in combination. For example, solving non-
linear arithmetic formulas can often be speeded up by first checking linear abstrac-
tions or linear problem parts using more efficient decision procedures, before
applying heavier procedures. Additionally, theories can also be combined already
in the input language of SMT solvers. For example, deductive program verifica-
tion techniques generate verification conditions, which might refer to arrays, bit-
vectors as well as integers; in such cases, dedicated SMT solvers can apply several
decision procedures for different theories in combination.

When combining decision procedures, incomplete but efficient procedures are
also valuable, if they guarantee termination but not necessarily return a conclu-
sive answer. Such incomplete methods are frequently applied in SMT solving, a
typical example being interval constraint propagation, based on interval arith-
metic. Some solvers combine such incomplete methods with complete decision
procedures, in order to guarantee the solution of the problem, while increasing
efficiency. Other solvers even sacrifice completeness and might return a “don’t
know” answer, but still they are able to solve certain extremely large problems,
which are out of reach for complete methods, very fast. Furthermore, incomplete
procedures are the only way to support problems from undecidable theories, like
formulas containing exponential or trigonometric functions.

SAT and SMT solvers are tuned for efficiency. Combining complete and
incomplete decision procedures, making use of efficient heuristics, learning not
only propositional facts but also (Boolean abstractions of) theory lemmas at
the SAT level allow modern SMT solvers to solve relevant large-size problems
with tens of thousands of variables, which could not be solved before by single
decision procedures in isolation. For some example applications see, e.g., [5].

Examples for solvers that are able to cope with linear arithmetic problems
(either in a complete or in an incomplete manner) are Alt-Ergo [26], CVC4 [4],
iSAT3 [36,53], MathSAT [22], OpenSMT2 [19], SMT-RAT [28], veriT [13], Yices2 [34],
and Z3 [48]. A further interesting SMT-approach for linear integer arithmetic is
proposed in [16].

Much less activity can be observed for SMT solvers for non-linear arithmetic.
A few SMT tools embedded some (complete as well as incomplete) decision pro-
cedures. Such a solver is iSAT3, which uses interval constraint propagation. The
SMT solver MiniSmt [59] tries to reduce non-linear real arithmetic problems to
linear real arithmetic and can solve only satisfiable instances this way. We are
aware of only two SMT solvers that are complete for non-linear real arithmetic:
Firstly, the prominent Z3 solver developed at Microsoft Research, which uses an

SC2: Satisfiability Checking Meets Symbolic Computation 35

elegant SMT-adaptation of the cylindrical algebraic decomposition method [40].
Secondly, SMT-RAT [28], using solver modules for simplex, the cylindrical alge-
braic decomposition, the virtual substitution method, Gröbner bases, interval
constraint propagation, branch and bound, and their strategic combination [47].

Even fewer SMT solvers are available for non-linear integer arithmetic, which
is undecidable in general. A linearisation approach was proposed in [11]. The
SMT solving spin-off of AProVE [23] uses bit-blasting. To our knowledge, Z3

implements a combination of linearisation and bit-blasting. iSAT3 uses inter-
val constraint propagation, whereas Alt-Ergo combines the idea of [10] with an
axiom-based version of interval constraint propagation. SMT-RAT can tackle this
theory using a generalised branch-and-bound technique.

The increasing variety of the theories considered by SMT solvers created an
urgent need for a common input language. The SMT-LIB initiative [7] defined
a standard input language for SMT solvers with a first release in 2004, and pro-
vides a large and still increasing number of benchmarks, systematically collected
for all supported theories. SMT-LIB also enabled the start of SMT competitions;
the first one took place in 2005 with 12 participating solvers in 7 divisions (the-
ories, theory combinations, or fragments thereof) on 1360 benchmarks, which
increased in 2014 to 20 solvers competing in 32 divisions on 67426 benchmarks.
The SMT-LIB standard and the competitions not only intensified the SMT
research activities, but also gave visibility and acceptance for SMT solving in
computer science and beyond. Once a problem is formulated in the SMT-LIB
language, the user can employ any SMT solver to solve the problem.

3 Some Scientific Challenges and Opportunities

On the one hand, SMT solving has its strength in efficient techniques for explor-
ing Boolean structures, learning, combining solving techniques, and developing
dedicated heuristics, but its current focus lies on easier theories and it makes use
of Symbolic Computation results only in a rather naive way. There are fast SMT
solvers available for the satisfiability checking of linear real and integer arith-
metic problems, but just a few can handle non-linear arithmetic. On the other
hand, Symbolic Computation is strong in providing powerful procedures for sets
(conjunctions) of arithmetic constraints, but it does not exploit the achievements
in SMT solving for efficiently handling logical fragments, using heuristics and
learning to speed-up the search for satisfying solutions.

The Satisfiability Checking community would definitely profit from further
exploiting Symbolic Computation achievements and adapting and extending
them to comply with the requirements on embedding in the SMT context. How-
ever, it is a highly challenging task, as it requires a deep understanding of com-
plex mathematical problems, whose embedding in SMT solving is not trivial.

Symmetrically, Symbolic Computation could profit from exploiting success-
ful SMT ideas, but it requires expertise in efficient solver technologies and their
implementation, like dedicated data structures, sophisticated heuristics, effective

36 E. Ábrahám et al.

learning techniques, and approaches for incrementality and explanation genera-
tion in theory solving modules.

In this section we describe some ideas of how algorithms and tools from both
communities could be made more powerful by exploiting scientific exchange and
technology transfer.

3.1 Symbolic Computation Techniques for Satisfiability Checking

Many practical decision procedures, designed by the Symbolic Computation
community, are implemented in computer algebra systems (e.g., linear real and
integer arithmetic, non-linear real arithmetic, linear programming, quantified
formulas, Gröbner and involutive bases). To use them in a Satisfiability Check-
ing context, some scientific and engineering issues need solutions, notably to
find new ways of incremental solving, explaining unsatisfiability and generating
lemmas.

Whereas for linear real arithmetic useful procedures have been adapted to
satisfy the requirements for SMT embedding, many opportunities remain to be
explored for non-linear arithmetic. For example, there are (to the best of our
knowledge) just two SMT solvers, Z3 and SMT-RAT, which make use of the CAD
method, but in a different way: Z3 uses a very elegant solution to explore the state
space by a close integration of theory decisions and theory propagation in the
Boolean SAT search, and constructs CAD only partially to explain conflicts in
the above search (more precisely, to compute a semi-algebraic description of CAD
cells that do not satisfy a given sign condition). In contrast, SMT-RAT implements
an incremental version of the CAD method, which works hand-in-hand with
the search at the logical level. For this latter approach, the power of heuristics
(variable and polynomial ordering for incremental projection, choice and order
of sample points for lifting) and the generation of lemmas (most importantly
the computation of explanations for unsatisfiability) is still far from being fully
exploited.

There is still great potential for improvements not only for the SMT embed-
ding of the CAD method, but also other non-linear arithmetic decision proce-
dures like virtual substitution or Gröbner bases, and their strategic combination
with each other and further light-weight methods such as interval constraint
propagation.

Another important aspect is the Symbolic Computation community’s exper-
tise in simplification and preprocessing. The complexity of the problems this
community handles is often extremely high, and no practical procedure would
exist without significant techniques to prepare the input problems. Such tech-
niques do exist for Satisfiability Checking, but they rather focus on easier the-
ories. A transfer of the savoir-faire in simplification and preprocessing for non-
linear real and integer arithmetic would certainly be highly profitable.

SC2: Satisfiability Checking Meets Symbolic Computation 37

3.2 Satisfiability Checking Techniques for Symbolic Computation

A key ingredient in the success of the Satisfiability Checking tools is the use of
learning and non-chronological backtracking techniques to speed up the search
through tree-shaped search structures. Traditionally (and in the majority of cases)
CAD proceeds through a two stage process: first, projecting the problem through
lower dimensions; then lifting: incrementally building a solution in increasing
dimensions. An alternative approach using triangular decomposition was intro-
duced in [21] where first the complex domain is cylindrically decomposed and then
refined to a CAD of the real domain, where all data is in a tree-shaped structure.

Other techniques are certainly amenable for learning with the non-
chronological backtracking approach. For instance, first prototypes integrating
CDCL-style learning techniques with virtual substitution for linear quantifier
elimination have been successfully created and studied. Integration of learning
techniques with the computation of comprehensive Gröbner bases [56] should
also be investigated.

Incrementality, which played an important role in the success of Satisfia-
bility Checking, may also be used to make Symbolic Computation techniques
more efficient. The alternative CAD construction method described above is
also incremental in nature [14] and so may offer one option here. An incremen-
tal CAD-based decision procedure for solving polymial constraint systems was
proposed in [55]. There exist algorithms for computing Gröbner bases which
exploit known mathematical facts about the ideal generated by the basis like
its Hilbert function or some syzygies. Traditionally, this has been seen as a way
to speed up computations. However, these approaches can naturally be adapted
into incremental algorithms.

A central aspect of Satisfiability Modulo Theories is the combination frame-
works for theories and decision procedures. Combining theories in Symbolic Com-
putation (combined real/floating point theories, interval constraint propagation
with other arithmetic theories) might also bring a number of advantages and
possibilities, for instance, more expressive languages, or efficiency due to hier-
archical reasoning. While combination of theories in Symbolic Computation are
typically very specific and ad hoc, the SMT community systematically uses the
generic Nelson–Oppen framework [49] for disjoint theories. Such a framework
can of course not be used as it is, but it might be an inspiration for a modular
approach in Symbolic Computation.

3.3 Standard Languages and Benchmarks

The initiation and maintenance of a common problem specification language
standard SMT-LIB [7] and of competitions form an important part of the Sat-
isfiability Checking community effort. Besides providing a stimulating event for
tool developers to exhibit their systems, the competitions are also a vehicle for
publishing practical progress. Competition results are advertised, and consulted
by users to pick the best tools and techniques to solve problems.

38 E. Ábrahám et al.

The Symbolic Computation community does not have a similar tradition, and
indeed, to quote one major system developer: “it is very hard to get any practical
improvements published — the reviewers will often say this is not hard science”.
Although it is not good to only focus on a small library of benchmarks and have
the competition as sole goal, competitions do have a tremendously positive effect
on tools and techniques, as witnessed in the Satisfiability Checking community,
especially if the competition challenges are concrete industrial challenges. Such
driving forces could be also established in Symbolic Computation.

Though in Satisfiability Checking the standard input language allowed to
provide large benchmark sets to the community, benchmarks for non-linear arith-
metic theories are still rare, and harder to describe without ambiguity. Therefore,
also the Satisfiability Checking community would profit from a common standard
with an increased number of non-linear arithmetic benchmarks.

4 Project Actions

The solution of challenging problems, as mentioned in the previous section, could
be within reach, when supported by a stronger collaboration between both SC2

research areas, creating an infrastructure for dialogue and knowledge transfer.
However, the research areas of Satisfiability Checking and Symbolic Computa-
tion are still quite disconnected, as reflected in their communication platforms
and support structures. Symbolic Computation has its own conferences (ACA,
CASC, ISSAC, etc.), several dedicated journals (e.g., AAECC, JSC, MSC), and
the SIGSAM forum. Similarly, Satisfiability Checking is supported by its own
conferences (CADE, IJCAR, SMT, etc.) and journals (e.g., JAR), the SatLive
forum to keep up-to-date with research, SMT standards, and SAT- and SMT-
solver competitions.

The main aims of our project are to create communication platforms and
propose standards to enable the interaction between the two communities, and
to use these platforms to initiate discussions and cooperation and to identify
potentials, challenges and obstacles for future research and practical applications.
In the following we shortly describe planned actions of our SC2 project to achieve
these goals.
Communication Platforms. To bridge the SC2 communities, we will initiate plat-
forms to support the interaction of the currently disjoint groups. We organised
a Dagstuhl Seminar Symbolic Computation and Satisfiability Checking2 15–20th
November, 2015, which already led to numerous interesting discussions and inter-
actions. At CASC 2016, we will organise a topical session devoted to topics from
the cross-community SC2 area. Furthermore, we will establish a workshop series
in the area of SC2, covering the interests of both communities, and having its
first edition affiliated with SYNASC 2016. These workshops will serve as plat-
forms for scientific exchange, discussion and cooperation within and between the
currently disjoint communities. To support and attract young new community

2 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471.

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471

SC2: Satisfiability Checking Meets Symbolic Computation 39

members, we will organise a dedicated summer school aimed at interested young
researchers from SC2 areas, with courses specifically tailored to their needs.
Research Roadmap. The above platforms will initiate cross-community inter-
actions, and help to clearly identify unused potentials. We aim at initiating
discussions on what the communities can learn from each other, what are the
common challenges which they can solve together, what Satisfiability Checking
could learn from Symbolic Computation achievements, and which Satisfiability
Checking results could be adapted to improve Symbolic Computation solutions.

Our long-term objective is to create a research roadmap of potentials and
challenges, both to the two traditional subject silos, but also challenges that
only the new joined SC2 community can address. This roadmap should identify,
within the problems currently faced in the industry, the particular points that
can be expected to be solved by the SC2 community in the short and middle
term, and will provide recommendations for spin-off projects.
Standards, Benchmarks, Competitions. We aim to create a standard problem
specification language capable of representing common problems of the SC2 com-
munity. We plan on extending the SMT-LIB language, which is already mature
and fully accepted among the SMT (Satisfiability Checking) community, to han-
dle features needed for the Symbolic Computation community. This will be done
in a modular way, with a particular focus on extensibility for new features.

Agreeing on a common language, and being able to share challenging prob-
lems is an essential aspect for building a dynamic community. This will foster fur-
ther discussions and uncover problems that can be solved by the SC2 community
altogether, set clear challenges on which various approaches can be evaluated,
classify the approaches according to their strength and weaknesses on the various
kinds of problems. Mixed approaches will naturally emerge, to tackle problems
exhibiting several orthogonal difficulties. The standard could also serve as a
communication protocol for platforms mixing tools, to build meta-tools to solve
large and difficult problems out of reach of current techniques often specialised
to just one kind of job.
How to Become an Associate? This project cannot reach its aims by involving
just a small number of core project members. To be able to cover sufficiently wide
research and application areas and to take into account their needs and interests,
there are currently 37 SC2 associates from both research communities as well
as from industry. Our associates will be regularly informed about the project
activities and they will be invited to take part in the corresponding events.

The SC2 Coordination and Support Action will be an optimal platform for
industrial and academic partners and associates to form smaller working groups
and initiate specific projects. If you would like to participate in the project as
an associate, please contact the Project Coordinator James Davenport3.

3 Email contact: J.H.Davenport@bath.ac.uk.

40 E. Ábrahám et al.

5 Conclusions and Future Work

In this paper we gave a short description of the aims and actions of our upcoming
EU Coordination and Support Action SC2.

The SC2 project will maintain a website (http://www.sc-square.org) making
readily accessible all the public information of the project (e.g., contact informa-
tion, details of past and forthcoming SC2 workshops and other similar events).

Acknowledgements. We thank the anonymous reviewers for their comments. We
are grateful for support by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689)
and the ANR project ANR-13-IS02-0001-01 SMArT. Earlier work in this area was also
supported by the EPSRC grant EP/J003247/1.

References

1. Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: a system for doing computations
in commutative algebra. http://cocoa.dima.unige.it

2. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings ISSAC 2015, pp. 1–6. ACM (2015)

3. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Pro-
ceedings ISSAC 2014, pp. 1–8. ACM (2014)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CV C4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

5. Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: effi-
cient solvers for satisfiability modulo theories. Technical report 3, London Mathe-
matical Society and Smith Institute for Industrial Mathematics and System Engi-
neering, Knowledge Transfer Report (2014). http://www.cs.nyu.edu/∼barrett/
pubs/BKM14.pdf

6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185, pp.
825–885. IOS Press, Amsterdam (2009)

7. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-
LIB) (2010). www.SMT-LIB.org

8. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

9. Bixby, R.E.: Computational progress in linear and mixed integer programming. In:
Presentation at ICIAM 2015 (2015)

10. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout,
A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear
integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)

11. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-Carbonell, E., Rubio,
A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg
(2009)

http://www.sc-square.org
http://cocoa.dima.unige.it
http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf
http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf
www.SMT-LIB.org

SC2: Satisfiability Checking Meets Symbolic Computation 41

12. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational Algebra
and Number Theory (London, 1993). http://dx.doi.org/10.1006/jsco.1996.0125

13. Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: an
open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

14. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS,
vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

15. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. J. Symbol. Comput. 76, 1–35 (2016)

16. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited.
In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 623–637.
Springer International Publishing, Switzerland (2015)

17. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

18. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings ISSAC 2007, pp. 54–60. ACM
(2007)

19. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT2 solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

20. Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University
of Innsbruck (1965). English translation: J. Symbolic Computation 41, 475–511
(2006)

21. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings ISSAC 2009, pp. 95–
102. ACM (2009)

22. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT solver.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107.
Springer, Heidelberg (2013)

23. Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring con-
straints. In: Proceedings SMT 2013. EPiC Series, vol. 20, pp. 88–97. EasyChair
(2013)

24. Collins, G.E.: The SAC-1 system: an introduction and survey. In: Proceedings
SYMSAC 1971, pp. 144–152. ACM (1971)

25. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

26. Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-
linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings SYNASC 2013,
pp. 161–168. IEEE (2013)

27. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC
1971, pp. 151–158. ACM (1971). http://doi.acm.org/10.1145/800157.805047

28. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Switzerland (2015)

29. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbol. Comput. 5, 29–35 (1988)

http://dx.doi.org/10.1006/jsco.1996.0125
http://doi.acm.org/10.1145/800157.805047

42 E. Ábrahám et al.

30. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

31. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

32. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A com-
puter algebra system for polynomial computations (2015). http://www.singular.
uni-kl.de

33. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM
SIGSAM Bull. 31(2), 2–9 (1997)

34. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

35. Eraşcu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (Case study: Square root computation). In: Proceedings ISSAC
2014, pp. 162–169. ACM (2014)

36. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisfiability Boolean Model. Comput. 1(3–4), 209–236 (2007)

37. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

38. Hearn, A.C.: REDUCE: The first forty years. In: Proceedings A3L, pp. 19–24. Books
on Demand GmbH (2005)

39. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer,
New York (1992)

40. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS(LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

41. Kahrimanian, H.G.: Analytic differentiation by a digital computer. Master’s thesis,
Temple University Philadelphia (1953)

42. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, New York (2008)

43. Maple. http://www.maplesoft.com/
44. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional

satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)
45. Martin, W.A., Fateman, R.J.: The Macsyma system. In: Proceedings SYMSAC

1971, pp. 59–75. ACM (1971)
46. Moses, J.: Symbolic integration. Ph.D. thesis, MIT & MAC TR-47 (1967)
47. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:

Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

48. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

49. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

50. Nolan, J.: Analytic differentiation on a digital computer. Master’s thesis, MIT
(1953)

51. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

52. Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc.
139, 167–189 (1969)

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://www.maplesoft.com/

SC2: Satisfiability Checking Meets Symbolic Computation 43

53. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT
solver iSAT. In: Proceedings MBMV 2013, pp. 231–241. Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik,
Universität Rostock (2013)

54. Slagle, J.: A heuristic program that solves symbolic integration problems in fresh-
man calculus. Ph.D. thesis, Harvard University (1961)

55. Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented
by cylindrical algebraic formulas. In: Proceedings ISSAC 2012, pp. 335–342. ACM
(2012)

56. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbol. Comput. 14(1), 1–29
(1992)

57. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

58. Wolfram Research, Inc.: Mathematica, version 10.4. Wolfram Research, Inc.,
Champaign, Illinois (2016)

59. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500.
Springer, Heidelberg (2010)

Formalization of Normal Random
Variables in HOL

Muhammad Qasim1(B), Osman Hasan1, Maissa Elleuch2,3, and Sofiène Tahar1

1 Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, Canada
{m qasi,o hasan,tahar}@ece.concordia.ca

2 CES Laboratory, Sfax University, Sfax, Tunisia
maissa.elleuch@ceslab.org

3 Digital Research Center of Sfax, Sfax, Tunisia

Abstract. Many components of engineering systems exhibit random
and uncertain behaviors that are normally distributed. In order to con-
duct the analysis of such systems within the trusted kernel of a higher-
order-logic theorem prover, in this paper, we provide a higher-order-logic
formalization of Lebesgue measure and Normal random variables along
with the proof of their classical properties. To illustrate the usefulness of
our formalization, we present a formal analysis of the probabilistic clock
synchronization in wireless sensor networks.

1 Introduction

Many engineering systems exhibit normally distributed elements of random-
ness. Some notable examples include noise in communication channels, lengths
and weights of manufactured goods, message arrival times in communication
networks, blood pressure readings of a general population, lifetimes of an elec-
tric bulb and maximum speed of a car. The importance of normal distribution
is also evident from its relationship with the central limit theorem [2], which
states that, given certain conditions, the arithmetic mean of a sufficiently large
number of iterations of independent random variables, each with a well-defined
expected value and variance, is approximately normally distributed, regardless
of the underlying distribution [20]. Therefore, if the sample size is large enough,
the sample mean of other distributions may also be treated as normal.

Traditionally, paper-and-pencil based approaches are used for carrying out
probabilistic analysis. This method, however, is prone to human error and is
not scalable to deal with large systems. Similarly, simulation cannot provide
accurate results due to approximations in numerical computations and its in-
completeness, which is an outcome of enormous processing time requirements.

Given the safety-critical nature of present age engineering systems, these
inaccuracies cannot be tolerated. Higher-order-logic theorem proving, which pro-
vides computerized mathematical proofs, can overcome the above-mentioned
limitations and has been used to formalize probability theory [16], Markov

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 44–59, 2016.
DOI: 10.1007/978-3-319-42547-4 4

Formalization of Normal Random Variables in HOL 45

Chains [10,12] and discrete [8] and continuous [7] random variables. These foun-
dations have been used to formally analyze many aspects of engineering appli-
cations, including the Stop-and-Wait protocol [9], wireless sensor networks [3],
anonymity and confidentiality protocols [17], oil and gas pipelines [1], multi-
processor systems [13] and reconfigurable memory arrays [6]. However, to the
best of our knowledge, no system, exhibiting the Normal random variables,
has been reported in the literature. In Isabelle/HOL, there is a formalization
of exponential, uniform and normal distributions [19], however, they lack the
notion of probability density function and random variables, which play a vital
role in analyzing real-world systems. To overcome this limitation, we ported
Lebesgue-Borel measure from Isabelle/HOL [11] to HOL4 theorem prover and
built upon Mhamdi’s formalization of measure, Lebesgue and probability theo-
ries [16], available in the HOL4 theorem prover, to formalize probability density
function and Normal random variables. We formally verify the correctness of our
formalization of Normal random variables by verifying their various properties.
These formalizations allow us to formally reason about the correctness of many
engineering systems that involve Normal random variables. For illustration pur-
poses, we present a formal analysis of the probabilistic clock synchronization in
wireless sensor networks.

2 Preliminaries

2.1 Measure Theory

A measure assigns a number to a set corresponding to its size. Formally, a
function defined on a set is a measure if it is positive and countably additive [16].

Definition 1 (Measure Space).
A triplet (X,A, μ) is a measure space iff (X,A) is a σ-field and μ : A → R (i.e.,
R ∪ {-∞,+∞}) is a non-negative and countably additive measure function.
� measure space (X,A,μ) =

sigma algebra (X,A) ∧ positive (X,A,μ) ∧ countably additive (X,A,μ)

The pair (X,A) is called a σ-field or a measurable space and A is called a sigma
algebra over X or a set of measurable sets.

Definition 2 (Sigma Algebra).
Let A be a collection of subsets (or subset class) of a space X. A defines a sigma
algebra on X iff A contains the empty set {}, and is closed under countable
unions and complementation within the space X.
� sigma algebra (X,A) = subset class X A ∧ (∀s. s ∈A ⇒ X DIFF s ∈A) ∧

{} ∈ A ∧ (∀c. countable c ∧ c ⊆ A ⇒ BIGUNION c ∈A)

where subset class and countable are defined as:

� subset class X A = ∀s. s ∈ A ⇒ s ⊆ X

� countable s = ∃f. ∀x. x ∈s⇒ ∃(n:num). f n = x

46 M. Qasim et al.

For any collection G of subsets of X, there is at least one sigma algebra on
X containing G, namely the powerset of X. The smallest sigma algebra on X
containing G is an intersection of all those sigma algebras, and is called the
sigma algebra on X generated by G. This notion is defined in HOL as:

� sigma X G = (X, BIGINTER {s | G ⊆ s ∧ sigma_algebra (X,s)})
Some helper functions [16] for a σ-field or a measure space are

� space (X,A) = X ∧subsets (X,A) = A

� m space (X,A,μ) = X ∧ measurable sets (X,A,μ) = A ∧ measure (X,A,μ) = μ

For measurable functions, the inverse image of each measurable set is measurable.

Definition 3 (Measurable Functions).
Let (X1,A1) and (X2,A2) be two measurable spaces. A function f : X1 → X2 is
called measurable with respect to (A1,A2) (or (A1,A2) measurable) iff f−1(A) ∈
A1 for all A ∈ A2.
� f ∈measurable a b =

sigma algebra a ∧ sigma algebra b ∧ f ∈(space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈subsets a

2.2 Lebesgue Integration Theory

Similar to the way in which step functions are used in the development of the
Riemann integral, the Lebesgue integral makes use of a special class of functions
called positive simple functions. In HOL [15] a positive simple function g is
represented by the triplet (s, a, α) as a finite linear combination of indicator
functions of measurable sets (ai) that form a partition of the space X.

∀x ∈ X, g(x) =
∑

i∈s

αiIai(x), αi ≥ 0 (1)

where s is a set of partition tags, ai is a sequence of measurable sets, αi is a
sequence of real numbers and Iai

is an indicator function on ai:

� indicator fn A = (λx. if x ∈ A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then
extended to non-negative functions.

Definition 4 (Lebesgue Integral of Positive Simple Functions).
Let (X,A, μ) be a measure space. The integral of the positive simple function g
with respect to the measure μ is defined as

∫
X

g dμ =
∑

i∈s αiμ(ai).
� pos simple fn integral m s a α = SIGMA (λi. αi * measure m (a i)) s

Definition 5 (Lebesgue Integral of Non-Negative Measurable Functions).
Let (X,A, μ) be a measure space. The integral of a non-negative mea-
surable function f is defined as

∫
X

f dμ = sup {
∫
X

g dμ | g ≤
f and g positive simple function}.
� pos fn integral m f = sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}

Formalization of Normal Random Variables in HOL 47

where r ∈ psfis m g is equivalent to r = pos simple fn integral m s a α
and g is a positive simple function represented by (s, a, α).

2.3 Probability Theory

The probability space is defined in HOL [16] as a measure space, i.e., (Ω,F, p),
where Ω is the sample space, F is a set of events and p is the probability measure
such that p(Ω) = 1. A random variable is defined as a measurable function.

Definition 6 (Random Variable).
� random variable X p s ⇔

prob space p ∧ X ∈ measurable (p space p,events p) s

where p space is a renaming of m space and events is a renaming of
measurable sets. The probability distribution of a random variable X is defined
as the function assigning to A the probability of the event {X ∈ A}.

∀A ∈ B(R), p({X ∈ A}) = p(X−1(A))

Definition 7 (Probability Distribution).
� distribution p X = (λA. prob p (PREIMAGE X A ∩ p space p))

3 Formalization of Lebesgue-Borel Measure

For evaluating an integral using the Lebesgue integral [16], a suitable Lebesgue
measure is required. For this purpose, we have defined a Lebesgue measure based
on the Gauge integral. Our formalization is greatly inspired from the formaliza-
tions of Lebesgue measure in Isabelle/HOL [11].

3.1 Gauge Integral

Definition 8 (Gauge Integral).
Let f:[a,b]→ R be some function, and let y be some number. We say that y is
the Gauge integral of f over i written y =

∫
i

f(x) dx, if for each number e > 0
there exists a Gauge d such that |

∑
p f - y | < e, where, p is a tagged division

of i and p is δ-fine with respect to p.
� (f has integral compact interval y) i = ∀e. 0 < e ⇒ ∃d. gauge d ∧

∀p. p tagged division of i ∧ d fine p ⇒
abs (sum p (λ(x,k). content (k) * f(x)) - y) < e

An alternate definition of the Gauge integral that simplifies the proof steps for
integration over intervals is given as:

� (f has_integral y) i =
if ∃a b. i = interval [a,b] then (f has_integral_compact_interval y) i
else ∀e. 0 < e ⇒ ∃B. 0 < B ∧ ∀a b. ball (0,B) SUBSET interval [a,b] ⇒

∃z. ((λx. if x ∈ i then f x else 0) has_integral_compact_interval z)

(interval [a,b]) ∧ abs (z - y) < e

48 M. Qasim et al.

The functional form of the above definition, using the Hilbert choice operator
(@), is as follows,

� integral i f = @y. (f has_integral y) i

3.2 Borel Measurable Sets

A collection of all borel measurable sets on the real line forms a sigma alge-
bra, called the Borel sigma algebra. It allows us to prove various properties of
measurable functions. The Borel sigma algebra is defined as the smallest sigma
algebra generated by the open sets of the real line. Mhamdi [16] formalized Borel
sigma algebra in the Measure theory as a sigma algebra generated by open inter-
vals of extended real numbers R. Because the Gauge integral is formalized for
real numbers R and we are working with Borel measurable functions, we had
to formalize real valued Borel sigma algebra in addition to extended real valued
Borel sigma algebra. We formalize the real valued Borel sigma algebra in HOL
with the help of the sigma function, defined in Sect. 2.1.

� borel = sigma UNIV {s | open s}

where UNIV is the universal set of real numbers R and open is defined as:

Definition 9 (Open Set).
A set s is called open if, given any point x ∈ s, there exists a real number ε > 0
such that, given any point y ∈ R whose distance from x is smaller than ε, y ∈ s.
� open s = ∀x. x ∈ s ⇒ ∃ ε. ε> 0 ∧ ∀y. dist (y,x) < ε ⇒ y ∈s

Using the above definition of borel, we proved that all open and closed sets are
in Borel sigma algebra.

Theorem 1. All open and closed sets of R are in B(R).
� ∀s. {s | open s} ∈ subsets borel ∧{s | closed s} ∈subsets borel

In order to reuse the proof steps of Mhamdi for proving various properties of
our Borel sigma algebra, generated by open sets of real numbers R, we proved
that our Borel sigma algebra can also be generated by open intervals of real
numbers R.

Theorem 2. B(R) is also generated by open intervals of real numbers.
� borel = sigma UNIV (IMAGE (λ(a,b). interval (a,b)) UNIV)

Real-Valued Borel Measurable Functions: For a function to be integrable
over a Borel measurable set, it has to be Borel measurable, i.e., the inverse image
of the function should belongs to the Borel sigma algebra.

Formalization of Normal Random Variables in HOL 49

Theorem 3. If f and g are (A,B(R)) measurable and c ∈ R then c∗ f , |f |, fn,
f + g, f ∗ g and max(f, g) are (A,B(R) measurable.
� ∀a f g h c. sigma algebra a ∧

f ∈measurable a Borel ∧g ∈measurable a Borel ⇒
((λx. c * f x) ∈measurable a Borel) ∧
((λx. abs(f x)) ∈measurable a Borel) ∧
((λx. f x pow n) ∈measurable a Borel) ∧
((λx. f x + g x) ∈measurable a Borel) ∧
((λx. f x * g x) ∈measurable a Borel) ∧
((λx. max (f x) (g x)) ∈measurable a borel)

Theorem 4. Every continuous functions is (B(R),B(R)) measurable.
� ∀g. g continuous UNIV(:real) ⇒g ∈ measurable borel Borel

Notice that borel is our Borel sigma algebra generated by open sets of real
numbers R and Borel is the Borel sigma algebra of Mhamdi [16] generated by
open intervals of extended real numbers R.

3.3 Lebesgue Measure

The Lebesgue measure is defined as the supremum of Gauge integrals of Xa for
all intervals [-n,n] (or line n), where Xa is the indicator function of a set A.
We define it as a triplet by pairing it with the Lebesgue space and Lebesgue
measurable sets, i.e., all sets for which their indicator function is integrable with
respect to the inertval [-n,n].

Definition 10 (Lebesgue Measure).
� lebesgue = (univ(:real), {A | ∀n. indicator A integrable on line n},
(λA. sup {Normal (integral (line n) (indicator A)) | n IN univ(:real)}))

where the function Normal is used to map real numbers to their corresponding
extended real numbers. We prove that Borel measurable sets are also Lebesgue
measurable.

Theorem 5. borel ⊂ lebesgue
� ∀s. s ∈subsets borel ⇒s ∈ measurable sets lebesgue

3.4 Lebesgue-Borel Measure

A Lebesgue measure assigned to Borel measurable sets is called a Lebesgue-
Borel measure. We work with the Lebesgue-Borel measure to leverage upon the
available formally verified properties of Borel sigma algebra and Borel measur-
able functions. Thus, we define the triplet of Lebesgue-Borel measure by pairing
Lebesgue measure with Borel space and Borel sigma algebra. Also, we prove that
Lebesgue-Borel is a sigma finite measure.

Definition 11 (Lebesgue-Borel Measure).
� lborel = (space borel, subsets borel, measure lebesgue)

50 M. Qasim et al.

Theorem 6. Lebesgue-Borel measure is σ-finite.
� sigma finite measure lborel

where sigma finite measure is defined in HOL as:

� sigma_finite_measure (X,A,u) =
∃s. countable s ∧ s SUBSET A ∧ (BIGUNION A = X) ∧

(∀a. a ∈ A ⇒ (u a �= PosInf))

4 Formalization of Normal Random Variables

Like any other continuous distribution, normal distribution is generally defined
by its probability distribution function (PDF) [20]:

N(μ, σ) =
1

σ
√
2π

exp
(− (x−μ)2

2σ2) (2)

where μ represents its mean and σ is the standard deviation.

4.1 Radon Nikodym Theorem

The Radon-Nikodym derivative of a measure ν with respect to the measure
μ is defined as a non-negative measurable function f , satisfying the following
formula [5], for any measurable set A:

∫

A

f dμ = ν(A) (3)

� RN_deriv m v = @f. f IN measurable (X,S) Borel ∧ ∀x ∈ X, 0 ≤ f x ∧
∀a ∈ S, integral m (λx. f x × Ia x) = v a

The existence of the Radon-Nikodym derivative is guaranteed for absolutely con-
tinuous measures by the Radon-Nikodym theorem stating that if ν is absolutely
continuous with respect to μ, then there exists a non-negative measurable func-
tion f satisfying Eq. (3) for any measurable set A. Mhamdi [16] proved the Radon
Nikodym theorem for finite measures. Our main objective is to define the prob-
ability density function as a Radon Nikodym derivative of probability measure
with respect to the Lebesgue-Borel measure. However, since the Lebesgue-Borel
measure is not finite so we have to first generalize the Radon-Nikodym theorem
for sigma finite measures.

Theorem 7. Given a measurable space (X,S), if a measure ν on (X,S) is
absolutely continuous with respect to a sigma-finite measure μ on (X,S), then
there is a measurable function f, such that for any measurable subset A ⊂ X,∫
A
f dμ = ν(A).

� ∀u v X S. sigma_finite_measure (X,S,u) ∧
measure_space (X,S,u) ∧ measure_space (X,S,v) ∧
measure_absolutely_continuous (X,S,u) (X,S,v) ⇒
∃f. f ∈ measurable (X,S) Borel ∧ ∀x ∈ X, 0 ≤ f x ∧

∀a ∈ S, pos_fn_integral u (λx. f x × Ia x) = v a

Formalization of Normal Random Variables in HOL 51

where measure absolutely continuous is defined in HOL as:

Definition 12 (Absolutely Continuous Measures).
If u and v are two measures on a measure space (X,S), then v is absolutely
continuous with respect to u if v(A) = 0 for any A ∈ S such that u(A) = 0.
� ∀u v. measure absolutely continuous u v =

∀A. A ∈ measurable sets u ∧ (measure v A = 0) ⇒ (measure u A = 0)

4.2 Probability Density Function

The distribution of a continuous random variable is usually defined by its PDF:

P (x1 < x < x2) =
∫ x2

x1

p(x) dx

where p(x) represents the PDF of the random variable x. Formally, the PDF can
be defined as a Radon-Nikodym derivative. The distribution of random variables
paired with Borel space and Borel sigma algebra gives the probability measure.
The PDF of a random variable X is the derivative of the probability measure
with respect to the Lebesgue-Borel measure.

Definition 13 (Probability Density Function).
� PDF X p = RN deriv lborel

(space borel, subsets borel, measurable distr p X)

where measurable distr is the same as the distribution in the Probability the-
ory but limited to sets measurable with respect to the Lebesgue-Borel measure.
We introduced measurable distr because it is not possible to find the distrib-
ution of non-measurable sets.

Definition 14 (Measurable Distribution).
� measurable distr p X =

(λA. if A ∈ measurable sets lborel then distribution p X A else 0)

With the help of the Radon-Nikodym Theorem, discussed in Sect. 4.1, the fol-
lowing properties of PDF were proved in HOL.

Theorem 8. PDF of a random variable is always positive.
� ∀p X v. (v = (space borel, subsets borel, measurable distr p X)) ∧

measure space v ∧ measure absolutely continuous v lborel ⇒
∀x. 0 ≤ PDF p X x

Theorem 9. Integral of PDF over the whole space is equal to 1.
� ∀p X v. (v = (space borel, subsets borel, measurable distr p X)) ∧

prob space v ∧ measure absolutely continuous v lborel ⇒
(integral m (PDF p X) = 1)

52 M. Qasim et al.

4.3 Normal Random Variables

From Eq. (2), it is clear that the probability density of a Normal random variable,
called normal density, is defined by its mean μ and variance σ2.

Definition 15 (Normal Density).
� normal density μ σ x =

1 / sqrt (2 * π * σ pow 2) * exp (- (x - μ) pow 2 / 2 * σ pow 2)

We verified the following useful properties of the normal density.

Theorem 10. Normal density is always positive.
� ∀ μ σ x. 0 ≤ normal density μ σ x

Theorem 11. If 0 < σ, then normal density is also greater than 0.
� ∀ μ σx. 0 < σ ⇒0 < normal density μ σ x

Theorem 12. Normal density is a Borel measurable function.
� ∀ μ σ. (λx. Normal (normal density μ σ x)) ∈
measurable (m space lborel, measurable sets lborel) Borel

where the function Normal is used to map real numbers to their corresponding
extended real numbers. To prove various properties of Normal random variables,
it is required to perform Lebesgue integration on normal density and since the
Lebesgue Integral is defined for extended real valued functions, we have to use
the function Normal in our formalization of normal density.

Now we formalize the probability that an event A (i.e., P (X ∈ A)) will occur
for a Normal random variable X.

Definition 16 (Normal Probability Measure).
� normal pmeasure μ σA =

if A ∈ measurable sets lborel

then pos fn integral lborel

(λx. Normal (normal density μ σ x) * indicator fn A x) else 0

Our definition is limited to measurable functions since it is not possible to eval-
uate the integral of a function over non-measurable sets.

Definition 17 (Normal Random Variable).
� normal rv X p μ σ=

random variable X p borel ∧ (measurable distr p X = normal pmeasure μ σ)

The first conjunct indicates that X is a real random variable, i.e., it is measurable
from the probability space to Borel space and the second conjunct ensures that
it is a Normal random variable.

Formalization of Normal Random Variables in HOL 53

4.4 Properties of Normal Random Variables

In this section, we prove some interesting properties of Normal random variables.
These properties are going to be very useful in minimizing the formal reasoning
effort while conducting the formal analysis of real-world applications involving
Normal random variables.

Theorem 13. PDF of a Normal random variable is non-negative.
� ∀X p μ σ. normal rv X p μ σ ⇒ ∀x. 0 ≤ PDF p X x

Theorem 14. PDF interval over the whole space is equal to 1
� ∀X p μ σ. normal rv X p μ σ ⇒ (integral lborel (PDF p X) = 1)

Theorem 15. For a Normal random variable X,
∫ µ

µ−a

PDF p X dx =
∫ µ+a

µ

PDF p X dx

� ∀X p μ σ a. normal_rv X p μ σ ⇒
pos_fn_integral lborel

(λx. PDF p X x * indicator_fn {x | μ-a ≤ x ∧ x ≤ μ} x) =

pos_fn_integral lborel

(λx. PDF p X x * indicator_fn {x | μ ≤ x ∧ x ≤ μ+a } x)

Theorem 16. For a normal random variable X with p(x) = N(μ, σ),
∫ ∞

−∞
p(x) dx =

∫ µ

−∞
p(x) dx +

∫ ∞

µ

p(x) dx

� ∀X p μ σ. normal_rv X p μ σ ∧
(A = {x | x ≤ μ}) ∧ (B = {x | μ ≤ x}) ⇒
pos_fn_integral lborel (λx. PDF p X x) =

pos_fn_integral lborel (λx. PDF p X x * indicator_fn A x) +

pos_fn_integral lborel (λx. PDF p X x * indicator_fn B x)

Theorem 17. For a normal random variable X with p(x) = N(μ, σ),
∫ µ

−∞
p(x) dx =

∫ ∞

µ

p(x) dx =
1
2

� ∀X p μ σ. normal rv X p μ σ ∧A = {x | x ≤ μ} ∧B = {x | μ ≤x} ⇒
(pos fn integral lborel (λx. PDF p X x * indicator fn A x) = 1 / 2) ∧
(pos fn integral lborel (λx. PDF p X x * indicator fn B x) = 1 / 2)

Theorem 18. If X is a Normal random variable with mean μ and standard devi-
ation σ, then Y = b + a ∗ X is also a Normal random variable with mean b + a * μ
and standard deviation | a | * σ.
� ∀X p μ Y a b. normal rv X p μ σ ∧ (∀x. Y x = b + a * X x) ∧

a �= 0 ∧ 0 < σ ∧ ⇒ normal rv Y p (b + a * μ) (abs a * σ)

54 M. Qasim et al.

Theorem 19. Convolution of Normal density with mean μ = 0.
� ∀ σ1 σ2 p X Y x. 0 < σ1 ∧0 < σ2 ∧ normal rv X p 0 σ1 ⇒
pos fn integral lborel

(λy. Normal (normal density 0 σ1 (x - y) *

Normal (normal density 0 σ2 y))) =

Normal (normal density 0 (sqrt (σ1 pow 2 + σ2 pow 2)) x)

Theorem 20. If X ∼ N(μ1,σ12) and Y ∼ N(μ2, σ22) are two independent
Normal random variables, then Z = X + Y is also normal with mean (μ1 + μ2)
and variance (σ12 + σ22).
� ∀p X Y μ1 μ2 σ1 σ2. prob space p ∧0 < σ1 ∧0 < σ2 ∧
indep var p borel triplet X borel triplet Y ∧
normal rv X p μ1 σ1 ∧ normal rv Y p μ2 σ2 ⇒
normal rv (λx. X x + Y x) p (μ1 + μ2) (sqrt (σ1 pow 2 + σ2 pow 2))

where borel triplet represents (borel space, subsets borel, (λx. 0)).

Theorem 21. If Xi ∼ N(μi,σ2
i) is a finite set of independent Normal random

variables, and Z = Σ Xi then, Z ∼ N(Σ μi, Σ σ2
i).

� ∀p X μ σ I. prob space p ∧ FINITE I ∧ ∧ I �= {} ∧
indep vars p (λi. borel triplet) X I ∧ (∀i, i ∈ I ⇒ 0 < σ i) ∧
(∀i, i ∈ I ⇒ normal rv (X i) p (μ i) (σ i)) ⇒
normal rv (λx. sum I (λx. X i x)) p (sum I μ)

(sqrt (sum I (λi. (σ i) pow 2)))

where indep vars and indep sets are defined as:

� indep_vars p M X I =

(∀i. i ∈ I ⇒
random_variable (X i) p (m_space (M i), measurable_sets (M i))) ∧

indep_sets p

(λi. PREIMAGE X A INTER p_space p | A ∈ measurable_sets (M i)) I

� indep_sets p F I = prob_space p ∧
(∀i. i ∈ I ⇒ F i SUBSET events p) ∧
(∀J. J SUBSET I ∧ J �= {} ∧ FINITE J ⇒)

∀A. A ∈ (Pi J F) ⇒ (prob p (BIGINTER A j| j ∈ J) =

Normal (product J (λj. real (prob p (A j)))))

where Pi J F represents {f | ∀x. x ∈ J ⇒ f(x) ∈ F (x)}. Using above definition
of indep vars, two independent random variables are defined as:

� indep_var p M_a A M_b B =

indep_vars p (λi. if i = 0 then M_a else M_b)

(λi. if i = 0 then A else B) UNIV

In the proof of above properties, the theories of Extended Real, Measure,
Lebesgue Integral and Probability from HOL4 along with the theory of Lebesgue
measure ported from Isabelle/HOL were used. Also, the tactics SET TAC and

Formalization of Normal Random Variables in HOL 55

Induct (on Borel measurable functions) proved to be very useful and were ported
from HOL Light and Isabelle/HOL theorem provers. The proof script of the for-
malization and verification of the notions presented in this paper required around
17500 lines of HOL4 code.

5 Application: Probabilistic Clock Synchronization in
Wireless Sensor Networks

Wireless sensor networks involve highly accurate clock synchronization protocols,
which require more processing and hence more energy consumption. Due to these
unique characteristics, it is difficult to apply traditional approaches for clock
synchronization. Elson et al. [4] presented an analytical way to convert service
specifications to protocol parameters, called Reference Broadcast Sychronization
(RBS). PalChaudhuri et al. [18] extended this work and provided probabilistic
bounds on clock synchronization error for single and multi-hop networks. We
conduct the formal analysis for both of these cases as an illustrative example.

The main cause of error in clock synchronization is the non-determinism
in message delivery latency. The RBS protocol entails synchronizing a set of
receivers with each other, in contrast to synchronizing with the sender. For
this reason, the time required to build the message at the sender node and the
waiting time required to get access to the transmission channel are identical for
all receivers. While the time required for the message to reach the receiver and
the processing time required at the receiver may vary.

5.1 Single-Hop Network

Elson et al. [4] discovered the distribution of the synchronization error among
receivers. Multiple pulses are sent from the sender to the set of receivers. The
difference in actual reception time at the receivers is plotted. As each of these
pulses are independently distributed, the difference in reception times gives a
normal distribution with zero mean. PalChaudhuri et al. [18] extended this work
and provided probabilistic bounds on clock synchronization error. If the maxi-
mum error that is allowed between two sensors is εmax, then the probability of
synchronization with an error ε ≤ εmax is given as

P (|ε| ≤ εmax) =

∫ εmax

−εmax
exp− x2

2

√
2π

(4)

For n reference packets from the sender, the receivers exchange their observa-
tions. The slope of the skew between the receivers is found by a least square
linear estimation using the n data points. The calculated slope of the skew has
an associated error in it. This error is the difference in phase between the calcu-
lated slope and the actual slope. As the points have a normal distribution, this
error can be calculated as

P (|ε| ≤ εmax) = 2 erf

(√
nεmax

σ

)
(5)

56 M. Qasim et al.

where ε is the synchronization error, i.e., difference in packet reception time
between two sensors, εmax is the maximum allowable error, n is the minimum
number of synchronization messages to guarantee the specified error, σ2 is the
variation of the distribution and erf is the error function given as

erf (z) =

∫ z

0
exp− x2

2 dx√
2π

(6)

Definition 18 (Error Function).
� err func z = pos fn integral lborel

(λx. Normal (1 / sqrt (2 * π) * exp (-(x pow 2) / 2)) *

indicator fn {x | 0 ≤ x ∧ x ≤ z} x)

Now we formally verify the result of Eq. (5).

Theorem 22. Probability of synchronization error for single hop network
� ∀p X μ σ n Emax. prob space p ∧ (I = (1 .. n)) ∧

(0 < σ) ∧ (0 < n) ∧ (∀i. i ∈ I ⇒ sync error (X i) p μ σ) ∧
(Z = (λx. sum I (λi. X i x) / n)) ∧ (μ = 0) ∧ 0 ≤ Emax ⇒
(prob sync error p Z {x | abs (x) ≤ Emax} =

2 * err func (Emax * sqrt n / σ))

where sync error is a Normal random variable, Z is the average error for n
reference packets, prob sync error p Z represents the distribution of random
variable Z, i.e., measurable distr p Z and Emax is the maximum allowable
synchronization error.

5.2 Multi-hop Network

For this protocol, the senders are considered at various levels. A sender which
does not need any synchronization is called a sender at level 0. A sensor node
which is within the broadcast region of a sender at level 0 can behave as a
sender in order to synchronize sensor nodes, which are two hops away from the
sender at level 0. Such a sender is called a sender at level 1. Receivers within
the broadcast region of the sender at level 0 are synchronized using the same
method discussed in the previous section. Once these receivers get synchronized,
each receiver starts behaving as a sender at level 1. In the same manner, suitable
time transformations can be performed all along the routing path of the message.
We define the transformation for multi-hops in HOL as the sum of synchro-
nization errors and find the maximum synchronization possible along with the
probability that the error will stay within bounds for k hops.

Definition 19 (Transformation).
� transformation X k = (λx. sum (1 .. k) (λi. X i x))

Theorem 23. If Emax is the max allowable error for a single hop, then the
maximum error between two sensor nodes, k hops apart, is k * Emax.
� ∀X Emax k. 0 ≤ Emax ⇒
(∀x. (∀i. (X i) x ∈ {x:real | abs (x) ≤ Emax}) ⇒
transformation X k x ∈ {x:real | abs (x) ≤ Emax * &k})

Formalization of Normal Random Variables in HOL 57

Theorem 24. If we consider the error over a single hop to Emax then the error
over k hops will be sqrt (k) * Emax.
� ∀p X μ σ k Emax.

prob space p ∧ (I = (1 .. n)) ∧ (0 < σ) ∧
indep vars p (λi. borel triplet) X I ∧
(0 < k) ∧ (∀i. i ∈ I ⇒ sync error (X i) p μ σ) ∧
(Z = (λx. sum I (λi. X i x))) ∧ (μ = 0) ∧ (0 ≤ Emax) ⇒
(prob sync error p Z {x | abs (x) ≤ Emax * sqrt(k)} =

prob sync error p (X k) {x | abs (x) ≤ Emax})

5.3 Discussion

In this case study, we were able to formally reason about the probabilities of clock
synchronization error in single-hop and multi-hop wireless sensor networks with
universally quantified variables for various design. This is a novelty which is not
available in the simulation based approaches. This added benefit comes at the cost
of a significant amount of time and effort spent, while formalizing the systems
behavior, by the user. However, the formalization of Normal random variables,
presented in Sect. 4 of this paper, greatly facilitated the reasoning process and the
proof script corresponding to the application, which only consists of 500 lines of
HOL4 code. Besides simulation and testing, the analysis of clock synchronization
algorithms for WSN has been sometimes performed using timed automata model
checking (e.g. [14,21,22]). However, both probability modeling and scalability in
these works were very limited. For example, only a 7 node network was analysed
in [14], which is very restricting for wireless sensor networks.

6 Conclusion

The analysis of engineering systems used in safety critical domains, such as trans-
portation and medicine, is usually done using informal techniques. The unreli-
able results produced using such techniques may lead to heavy financial loss, or
even the loss of human lives. Therefore, in this paper we propose to conduct the
probabilistic analysis of engineering systems exhibiting normally distributed ran-
domness using higher-order-logic theorem proving. To do so, we have provided a
formalization of Normal random variables along with the mathematical notions
required to formalize them. Compared to the standard techniques of computer
simulation and paper-and-pencil analysis, our approach provides more accurate
and trusted results by exploiting the soundness of theorem proving. It also allows
to provide generic results instead of proving the properties for specific instances
of the system. To prove the usefulness of our formalization, we conducted the
formal analysis of the probabilistic clock synchronization in wireless sensor net-
works. This application highlight the feasibility and benefits of conducting a for-
mal probabilistic analysis using a higher-order-logic theorem prover. Our HOL4
proof script is available for download at http://hvg.ece.concordia.ca/projects/
prob-it/pr7.html, and thus can be used for further developments and analysis of
different engineering systems.

http://hvg.ece.concordia.ca/projects/prob-it/pr7.html
http://hvg.ece.concordia.ca/projects/prob-it/pr7.html

58 M. Qasim et al.

Acknowledgement. This publication was made possible by NPRP grant # [5 - 813 -
1 134] from the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the author[s].

References

1. Ahmed, W., Hasan, O., Tahar, S., Hamdi, M.S.: Towards the formal reliability
analysis of oil and gas pipelines. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 30–44. Springer,
Heidelberg (2014)

2. Billingsley, P.: Probability and Measure. Wiley, New York (2012)
3. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal probabilistic analysis of detec-

tion properties in wireless sensor networks. Formal Aspects Comput. 27(1), 79–102
(2015)

4. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. ACM SIGOPS Oper. Syst. Rev. 36(SI), 147–163 (2002)

5. Goldberg, R.R.: Methods of Real Analysis. Wiley, New York (1976)
6. Hasan, O., Abbasi, N., Tahar, S.: Formal probabilistic analysis of stuck-at faults

in reconfigurable memory arrays. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009.
LNCS, vol. 5423, pp. 277–291. Springer, Heidelberg (2009)

7. Hasan, O., Tahar, S.: Formalization of continuous probability distributions. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007)

8. Hasan, O., Tahar, S.: Using theorem proving to verify expectation and variance
for discrete random variables. Autom. Reasoning 41(3–4), 295–323 (2008)

9. Hasan, O., Tahar, S.: Performance analysis and functional verification of the stop-
and-wait protocol in HOL. Autom. Reasoning 42(1), 1–33 (2009)

10. Hölzl, J.: Analyzing discrete-time Markov chains with countable state space in
Isabelle/HOL (2013). http://home.in.tum.de/hoelzl/classifying/

11. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011)

12. Liu, L., Hasan, O., Tahar, S.: Formalization of finite-state discrete-time Markov
chains in HOL. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 90–104. Springer, Heidelberg (2011)

13. Liu, L., Hasan, O., Tahar, S.: Formal analysis of memory contention in a multi-
processor system. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195,
pp. 195–210. Springer, Heidelberg (2013)

14. McInnes, A.I.: Model-checking the flooding time synchronization protocol. In:
International Conference on Control and Automation, pp. 422–429. IEEE (2009)

15. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the Lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010)

16. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 233–248. Springer, Heidelberg (2011)

17. Mhamdi, T., Hasan, O., Tahar, S.: Evaluation of anonymity and confidentiality
protocols using theorem proving. Formal Methods Syst. Des. 47(3), 265–286 (2015)

http://home.in.tum.de/hoelzl/classifying/

Formalization of Normal Random Variables in HOL 59

18. PalChaudhuri, S., Saha, A.K., Johnson, D.B.: Adaptive clock synchronization in
sensor networks. In: Information Processing in Sensor Networks, pp. 340–348. ACM
(2004)

19. Isabelle/HOL Probability Distribution Repository (2016). https://isabelle.in.tum.
de/dist/library/HOL/HOL-Probability/Distributions.html

20. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press, Pacific
Grove (1995)

21. Schuts, M., Zhu, F., Heidarian, F., Vaandrager, F.: Modelling clock synchronization
in the Chess gMAC WSN protocol. In: Quantitative Formal Methods: Theory and
Applications. EPTCS, vol. 13, pp. 41–54 (2009)

22. Zhang, F., Bu, L., Wang, L., Zhao, J., Chen, X., Zhang, T., Li, X.: Modeling
and evaluation of wireless sensor network protocols by stochastic timed automata.
Electron. Notes Theoret. Comput. Sci. 296, 261–277 (2013)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Probability/Distributions.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Probability/Distributions.html

Digital Mathematics Libraries

Progress of Self-Archiving Within the DML
Corpus, with a View Toward

Community Dynamics

Fabian Müller and Olaf Teschke(B)

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure,
Franklinstr. 11, 10587 Berlin, Germany

olaf.teschke@fiz-karlsruhe.de

Abstract. Self-archiving has developed as a key component to realize
Open Access within the DML framework, with the arXiv being by far
the most widely used platform. Important features like full-text formula
search are facilitated by the openly available LATEX sources. However,
despite the obvious growth of the arXiv corpus, it is not clear what share
of the published mathematical literature is already openly accessible in
this way, and whether it might eventually converge to full coverage. We
present the methodology of the matching procedure of the zbMATH cor-
pus (comprising most of the published math literature since 1868) to the
arXiv, and derive from the granular zbMATH data a detailed analysis
of the progress of self-archiving within the different mathematical com-
munities, taking into account subject specifics, publication delays, peer
review policies, and author networks, among other things. On this basis
we give some projections of future developments.

Keywords: Green Open Access · Community behavior · Self-archiving ·
Corpus analysis

1 Introduction1

About 25 years ago, Paul Ginsparg started the central repository for physics
preprints that would later develop into what is now widely known as the arXiv
[1]. Even anticipating the Self-Archiving Initiative [12] (nowadays frequently
termed Green Open Access), it is perhaps not surprising that since then the
service prevailed as the dominating infrastructure for centralized self-archiving
not just in physics, but also in other fields like mathematics. Indeed, though
several alternatives exist (e.g., the open archive HAL [11], which has an auto-
mated depositing agreement with arXiv), a heuristic analysis of about 16 million
references from mathematical publications in the zbMATH database [22] indi-
cates that the number of preprint citations pointing to the arXiv is significantly

1 A short announcement of some results contained in this article has been published
in [16].

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 63–74, 2016.
DOI: 10.1007/978-3-319-42547-4 5

64 F. Müller and O. Teschke

higher than to the sum of all other preprint sources, including personal home-
pages (which seems to coincide with public perception). Hence, when analysing
the progress of self-archiving in mathematics, it is acceptable to restrict to the
arXiv.

From a DML viewpoint, the arXiv has at least three key features: Its time-
liness, its openness, and the availability of source files (especially LATEX). The
timeliness is naturally connected to the arXiv’s initial main purpose of a quick
dissemination and allows for a coverage of the most recent research (cf. Sect. 3
for an estimate of the head start caused by publication delay). Its openness
provides a basis to apply DML tools to the content, though the arXiv’s interop-
erability is somewhat restricted in this regard by technical and legal limitations.
Finally, the availability of source files (especially LATEX files for mathematical
content) distinguishes it from most other electronic libraries (though e.g. for a
considerable fraction of the ELibM [7] such sources are available as well). For
various advanced DML features for mathematical content analysis and retrieval,
like formula search [14], the existence of appropriate LATEX data is currently
indispensable.

With these advantages in mind, a natural question arises: can a significant
part of the research corpus relevant for a comprehensive DML be made available
via community-based self-archiving efforts? Despite obviously being highly rele-
vant for the architecture of the envisioned Global Digital Mathematics Library
[4], answers so far have been at most roughly approximate and based on sheer
magnitudes, an approach which omits key aspects like the scope definition, the
actual overlap or the effects of publication delay. The overlap question has so
far been addressed only for selected journals in physics by a tedious intellectual
analysis of a sample of some thousand articles [13].2

The starting point of our analysis is the recent complete matching of the
zbMATH database to the math set of the arXiv. zbMATH is a database aim-
ing at the coverage of the complete mathematical peer-reviewed research liter-
ature. It currently indexes almost 3.6 million documents published since 1755
(with an almost complete coverage since 1868), along with large amounts of
additional information like reviews, author data, references, and classifications.
Section 2 explains the methodology of the matching and gives an error estimate.
In Sect. 3 we give a first application to explore the effects caused by publication
and indexing delay. By evaluating the differences of publication and arXiv sub-
mission years, we can also answer the question of feasibility of crowd-sourced
retroarchiving, that is, self-archiving of papers published in the past. Unfortu-
nately, current figures indicate that this happens only very rarely, which seems to
emphasise the importance of establishing appropriate moving wall policies (i.e.,
research publications becoming open access after a certain embargo period) on

2 The generic approach of [9] has the immense methodological drawback of testing
just accessibility, therefore mixing self-archiving, academic, gold and predatory open
access, and relying on Google Scholar and Microsoft Academic Search related esti-
mates, with their inherent high imprecision due to possibly inflated data and largely
unsolved questions of scope and quality.

Progress of Self-Archiving Within the DML Corpus 65

a comprehensive scale. Taking these effects into account, we give estimates of
the overall progress of self-archiving in mathematics in Sect. 4. It becomes clear
that after an enormous two-decade growth, there is now a natural slow-down,
indicating that the potential might be partially exhausted. More detailed causes
of such saturation effects can be given by analysing the community behaviour
with respect to arXiv submission. For this purpose, we employ some zbMATH
features – namely, author identification and MSC [15] indexing in Sects. 5 and 6,
respectively – to give a more granular analysis of community dynamics with
respect to self-archiving.

2 Matching the arXiv and zbMATH: Methodology
and Precision

In this section we give a detailed description of the methodology for matching
entries in the zbMATH database to arXiv submissions from the arXiv:math
set. More precisely, bibliographic data for the published version of the paper as
recorded in the zbMATH database is compared to the information available via
the arXiv’s OAI interface. Only the most recent arXiv version of an article is
considered for this, since versions submitted earlier are not exposed via the OAI
interface. The amount of information available for matching is rather limited,
however, since DOIs are available for a large share of the data, there exists a
natural evaluation dataset. It turns out that an algorithm originally developed
for matching reference citation strings to zbMATH entries provides surprisingly
good results, namely, a precision of 97.0 % on this evaluation set.

During the course of 2015, zbMATH released its new citation matching inter-
face (at times affectionately called zbMATcH) [21]. It consists of a web interface
and a REST API, where a user can submit a citation string that the algorithm
will attempt to match with a bibliographic entry of the zbMATH database. Due
to several factors such as the wealth of different citation formats and norms, the
possibility of misspellings, and the existence of different competing transcription
systems for non-English author names, this algorithm must be flexible enough
to allow for a certain degree of variation.

Citation information can be supplied both in a structured fashion, i.e., bro-
ken down by author, title, journal source, etc., or as a plain string containing all
this information in a human-readable format. In the latter case, the structured
semantic information first needs to be extracted from this string. For this we
employ the machine learning library Grobid [10], which provides methods to
analyse a citation string and return structured bibliographic metadata in the
TEI XML format [20]. In either case, the extracted or supplied structured infor-
mation can then be used to query a full-text search index built on the basis
of the popular commercial open-source software Elasticsearch [6]. The query
returns a number of matching documents, each of which is accompanied by a
matching score that quantifies the extent to which it matches the search query.
The matching score is computed according to the tf-idf algorithm together with
a suitable weighting for different parts of the query.

66 F. Müller and O. Teschke

The natural subsequent problem is to settle on an appropriate minimum
threshold smin that the matching result has to exceed in order to be accepted. We
extracted an evaluation dataset consisting of about 4,800,000 references matched
via DOI (Digital Object Identifier) – implying a large degree of confidence – as
well as overlap with articles from the computer science bibliography dblp [5].
This dataset was split up into categories according to article type (journal article,
book article or book), and from the results for each category, a weighted average
according to the prevalence of the respective type in the zbMATH database was
calculated. The metric used was informedness, computed as

Infβ = tpr − βfpr,

where tpr and fpr are the true and false positive rates, respectively, and β is a
weighting factor that quantifies the relative penalty from a false positive against
the bonus obtained from a true positive. The more common Fβ measure, defined
as the weighted harmonic mean of precision and recall, was unsuitable in this case
due to the varying rates of real positives versus real negatives in the evaluation
datasets within the individual categories. For a factor of β = 2 we determined a
minimum score of smin = 5.0 to be optimal with respect to the weighted average
mentioned above (see Fig. 1).

Fig. 1. Inf2 metric for zbMATH/arXiv matching with varying smin (Color figure online)

The same algorithm can be used to match zbMATH entries to corresponding
preprints available on the arXiv. The arXiv provides an interface for harvesting
metadata according to the OAI (Open Archives Initiative) standard, which is
also supported by several other large institutional repository providers [3]. While
the bibliographic information in this case is already split into author and title,
the matching is made more difficult due to the common lack of journal source

Progress of Self-Archiving Within the DML Corpus 67

and pagination data. A subset of arXiv preprints from the math set contains
DOI information supplied retroactively by authors after publication, or directly
in the case of retroarchiving (i.e., submission of already published papers). There
are about 60,000 articles in the arXiv math set that contain a DOI, of which
45,000 have corresponding entries in zbMATH. This enabled us to create another
reliable evaluation dataset and compute a new minimum matching score appro-
priate to this use case (this time it came out at smin = 8.0 due to the less reliable
information available for matching). In this way we were able to match more than
75,000 further zbMATH articles to their corresponding arXiv preprints with a
precision of 97.0 %, bringing the total number of articles with an arXiv link to
over 120,000.

3 Time Lag Effect: Retroarchiving and Publication/
Indexing Delay

In this section we analyse the time difference between arXiv submission and pub-
lication in a peer-reviewed journal or collection, especially from the viewpoint of
identifying the amount of retroarchived papers and the time lag caused by publi-
cation delay. The data reflect the information contained in zbMATH as of March
14, 2016; however, the reader can easily reproduce more recent information from
the database by searching for, e.g., “arXiv:08*” (using arXiv identifiers in the
new format in use since 2007), or “arXiv:math/06*”, “arXiv:math-ph/06*”,
etc. (for the format used until 2007). The number of items in the respective
publication years can then be read off from the filters in the right hand column.

In principle, a self-archiving structure like the arXiv has no limitations with
respect to the covered time-frame: Though the initial main purpose had been
the dissemination of recent results, it is in principle possible to submit adapted
versions of published papers to the repository (a process generally referred to
as retroarchiving). However, lacking the incentive of notifying other researchers
about current developments, it is the question whether such a function can be
achieved via a community effort.

Indeed, the data shows that the amount of retroarchived papers is negligible:
The overall quota is smaller than 5 %, with no clear trend recognisable. Taking
into account the matching imprecision, it becomes obvious that no clear devel-
opment can be read off the data except for the fact that there is no sign that
a comprehensive repository including historical publications can be achieved by
individual self-archiving efforts.3 Frameworks like the European Digital Math-
ematics Library [8], which rely on suitable moving wall policies, seem to be a
more adequate solution for gathering the historical heritage of mathematics.

Figure 2 shows the delay between arXiv submission and publication year
as recorded in zbMATH (i.e., the year an article appeared in a peer-reviewed
publication). The graph approximately follows a Poisson distribution, with a

3 There are of course prominent exceptions like the famous [18], currently the
arXiv:math document with the earliest publication year.

68 F. Müller and O. Teschke

Fig. 2. Time lag between arXiv submission and zbMATH publication year for arXiv
submission years 1992–2015 (Color figure online)

clear peak in the year following the submission, then the year after that and the
submission year. On average the publication delay amounts to about 1.5 years.
It might be noted that there is a significant bias here due to the Journal of
High Energy Physics – its considerable bulk of papers (basically all of which are
on the arXiv) in some years accounts for almost 10 % of the arXiv/zbMATH
overlap and, for a large proportion of them, the time gap between submission
and publication is only about two months. This accounts for a large share of the
same-year publications and decreases the total average by almost two months
overall. These figures ought to be kept in mind when doing a projection into the
future. It should also be noted that this is an ongoing process, as some research
might be published with a huge delay that is not yet visible.4

An additional effect that should be taken into account is the indexing delay.
zbMATH aims to cover all peer-reviewed research literature in mathematics,
which is quite diverse; a quite considerable fraction still exists only in print, and
the selection process for publications from journals containing only partially
mathematical content takes some time. Hence the most recent years will usually
not be covered completely (in a scope sense), so the matching does not yet apply
to the full corpus of published mathematics, and growth rates can only rely on
estimates.

Naturally, the precise size of the indexing delay is unknown, but it can be
estimated from Fig. 3 to be about 25,000 documents in the arXiv/zbMATH

4 The most extreme case so far seems to be [17] with a delay of no less than 21 years.

Progress of Self-Archiving Within the DML Corpus 69

overlap as the difference between the actual and projected overlaps under the
assumption of a similar growth development.

4 General Coverage Figures and Dynamics

In this section we provide a first analysis of the zbMATH/arXiv overlap relative
to the publication year as recorded in zbMATH, which allows for a discussion of
the growth rate of self-archiving in mathematics. Several effects need to be taken
into consideration: The time gap between arXiv submission and final publication
(publication delay), the time gap between publication and indexing in zbMATH
(indexing delay), the gap caused by a possibly different scope of the arXiv math
set and zbMATH (scope gap), and the amount of arXiv submissions with do not
make it into a peer-reviewed publication.

The number of zbMATH entries matched with an arXiv document is cur-
rently 119,881 out of 3,580,946, or about 3.3 %. Taking into account the low
amount of retroarchiving (only 21 of these arXiv documents have been pub-
lished before 1991), the fraction should be set into relation to the time frame:
For publications since 1991, the figures are already 119,860 out of 1,443,305,
or 8.3 %, despite the fact that the arXiv started very small. Figure 3 shows the
growth of arXiv/zbMATH overlap since 1991 relative to publication years; the
total decline of the figures for recent years is due to the already explained index-
ing delay.

One sees that the ratio is growing impressively; starting with an almost negli-
gible ratio of 0.05 % in 1991, the overall share of mathematical publications avail-
able via the arXiv has recently approached almost 20 %. For a number of subject
areas the ratio is even higher (see Sect. 6). While the growth of peer-reviewed
research publications (without predatory publishing) has been just slightly less
than 4 % every year for the last 25 years, the average growth of its arXiv frac-
tion was on average about 32 % for the same period. Perhaps more interesting,
even the last five years show a considerable growth by about 16 %, though the
growth rates slow down naturally due to saturation effects in some areas (see
also Sects. 5 and 6).

On the other hand, the growth of arXiv submission rates in mathematics has
declined recently to about 10 % [2]. The difference is not surprising, since due to
publication delay the 16 % mentioned above should rather be compared to the
similar growth of arXiv submissions between 2008 and 2013. In any case, the
growth will remain above the general publication growth during the next years
even when it still declines due to saturation effects, probably pushing the ratio
of recent publications available through self-archiving to above 25 % within the
next five years; but getting significantly nearer to 100 % would require additional
changes of attitude in the community.5

A further interesting question concerns the amount and character of arXiv
submissions that do not make it into zbMATH indexed publications. At first
5 The publication type plays a role as well: so far, only 331 math books are on the

arXiv, a considerable part of which are derived from PhD theses.

70 F. Müller and O. Teschke

Fig. 3. Number of publications indexed in zbMATH and share having also been sub-
mitted to arXiv, relative to publication year recorded in zbMATH (Color figure online)

sight, the number seems to be surprisingly large – more than 280,000 submissions
in the arXiv math set compared to only about 120,000 in the zbMATH overlap.
But one has to take into account that some publications may be outside the
zbMATH scope: this may concern some arXiv:math-ph submission for topical
reasons, or publications by predatory publishers. The amount can be estimated
by the DOI matching figures in Sect. 2: 60,000 articles with DOI in the arXiv
set match to 45,000 in zbMATH. Of the gap, about 10,000 can be estimated
to be caused by indexing delay (using a similar approach as indicated at the
end of the previous section), so slightly less than 10 % are really outside the
zbMATH scope; this would result in an overall gap of about 15,000 published
papers. Even larger are the delay effects on the overall scale: By assuming the
mentioned growth rates, one can estimate that about 40,000 submissions are
missing due to publication delay, and 25,000 due to indexing delay. So, in total,
there remain only about 80,000, or 30 %, arXiv math set submissions that do
not seem to make it into publication at all (a rate that seems rather stable
when one looks at specific submission years, and that corresponds to figures on
individual author levels described in Sect. 5). The reasons for this are certainly
quite varied – this set contains as diverse examples as Perelman’s work on the
Geometrisation Conjecture alongside frequent submissions in arXiv:math.GM of
elementary proofs of Fermat’s Last Theorem or the Riemann Hypothesis (though
the latter may occasionally find their way into predatory publishers’ journals).

Progress of Self-Archiving Within the DML Corpus 71

A considerable part might just be the basis of further derivative publications,
e.g. from merged or split arXiv submissions, which therefore do not match well
to the published version.

5 Submission Behavior: An Author-Based Analysis

In this section we analyse the structure of submissions to the arXiv math set
with respect to uniquely identified authors (as given by their zbMATH author
identifiers). The main goal is to identify the number of authors who submit to
the arXiv for the first time, and to obtain a first overview of the community
dynamics of arXiv submitters.

Submitting to the arXiv is, after all, mainly an individual decision of the
author(s). Hence it is natural to employ the zbMATH author database to obtain
more details on submission behaviour and dynamics. So far, 60,441 authors are
involved into the matched arXiv submissions; a fraction of the about 900,000
overall authors (more than half of them active after 1991) that roughly reflects
the publication ratios. However, the distribution is even more extreme than for
overall publications: 27,633 of these authors have only a single paper at the
arXiv, while 7,345 make up for half of the submissions. A natural guess might
be that the number of authors increases the chance that one of them posts
an article – but in fact, the opposite holds: among the authors present in the
arXiv math set, for the 8,354 authors with an average number of coauthors >2,
only 30 % of their math papers since their first submission are on the arXiv,
while this number rises to 40 % for the 18,826 authors with average number of
coauthors <1. The explanation is given by the subjects: although the largest
coauthors figures belong to submissions in high energy physics, which are very
well covered, they cannot outweigh the numbers of relatively sparse participation
in statistics or numerical and engineering mathematics, for which the arXiv
coverage is significantly lower, and the coauthor number higher, than in other
areas (see Sect. 6). In fact, though this cannot be checked on a large scale due
to data protection issues, small samples indicate that for coauthor groups with
several papers the author who submits to the arXiv might always be the same.

Hence it is not surprising that one cannot expect to have a full coverage
for every single author of the set, even when restricting to subsequent arXiv
submissions after their first. In fact, the overall ratio of self-archived published
papers to all publications after the first arXiv submission is about 36.1 %. The
diversity might be illustrated by the case of Saharon Shelah [19], currently the
author with the most arXived publications in zbMATH: As an early adopter
with 26 submissions in 1992 (23 of them later published), he has by now 981
publications in zbMATH, 706 since 1991, 390 of them matched to the arXiv, and
680 arXiv submissions overall – which can perhaps be considered as an almost
optimal ratio (taking delay effects into account). This is rather typical – indeed,
the 1,000 most prolific math submitters, which account for more than 20 % of
the total corpus, also reach an average overlap of just slightly above 50 % with
publications after their first submission.

72 F. Müller and O. Teschke

Fig. 4. Number of new actively self-archiving authors from arXiv/zbMATH overlap
per year

Moreover, data show that frequent submitters usually stick to self-archiving
during their whole research career. Hence, the growth of the arXiv depends at
the moment mainly on a steady inflow of regular contributors. Figure 4 shows
the number of authors having least two arXiv submissions who self-archive more
than half of their zbMATH indexed publications, depending on the date of their
first publication. While the decline after 2012 is certainly a delay effect, the
diagram indicates some stagnation since the 2010 peak, which coincides with
the decreasing growth rates. A possible explanation is offered in the following
section.

6 Subject Specifics

Results from previous sections already indicate that the attitude towards self-
archiving is highly dependent on the field of research. In this section we employ
the information available from the Mathematical Subject Classification (MSC)
in zbMATH to quantify the varying self-archiving rates within the 63 main
fields of mathematics according to the MSC. This analysis also offers possible
explanation for some of the saturation effects seen earlier, and helps to identify
challenges which need to be addressed in the course of approaching virtually
complete self-archiving for recent mathematical publications.

As we have already seen in the case of Saharon Shelah, logics was among the
first mathematical areas to adopt the arXiv; but on a larger scale, the service was
first adopted by algebraic geometers since 1998 (see also Fig. 2), probably due
to the close connection of this field to high energy physics. In 2002, more than
20 % of the arXiv/math papers were from this area, which also indicated a self-
archiving ratio of more than 20 % of the publications; and it remained the most

Progress of Self-Archiving Within the DML Corpus 73

numerous arXiv:math section until 2011 (much unlike for math publications in
general).

Since the publications in zbMATH are classified by MSC 2010 [15], we
can perform a granular analysis of subject dynamics. Figure 5 shows the self-
archiving ratio for the main MSC areas.

Fig. 5. arXiv ratio for zbMATH publications with publication year 2014, 2004, and
total after 1991, depending on MSC main area

We can see that the proportion of publications with arXiv versions available
varies dramatically with field: from almost a third of the publications in algebraic
geometry since 1991 or almost 30 % in algebraic topology and K-Theory, to only
about 2 % in numerical mathematics and less than 0.1 % in mathematics history
(surprisingly, the total figures are rather close to the 2004 distribution). This
pattern still prevails for recent publications, though some changes are certainly
visible, e.g., for the publication year 2014, about 55 % of research in algebraic
geometry, algebraic topology and K-Theory is available through the arXiv, but
only about 10 % in numerical mathematics and 1 % in mathematics history or
mathematics education. This may also serve as an explanation of the saturation
effects mentioned above: A look at the new frequent submitters reveals that
they come in large number from fields that already have a high arXiv coverage.
This helps to approach approximate completeness in these areas but will not
improve the total figures significantly. The main challenge will be to establish
in areas where self-archiving is less popular a similar culture like in those where
it is already the de facto standard. There is no reason why this should not be
possible – e.g., the 10 % in numerical mathematics are similar to the situation in
algebraic geometry in 1998, which turned out to be a sufficient critical mass for
a following dynamic development. But as we have seen in the previous section,
this relies on the efforts of a relatively small fraction of the mathematicians, a
base which needs permanent stabilisation and enlargement to achieve at least
approximate completeness for recent research.

74 F. Müller and O. Teschke

7 Conclusions

Self-archiving via the arXiv has made impressive progress during the last 25
years, and constitutes an important component to preserve the mathematical
research in the public domain.

It has already achieved a certain level of approximate completeness for recent
research in certain mathematical areas. However, the proportion depends much
on the field, so the total figure even for new mathematical publications is only
about 30 %. Furthermore, this has been achieved so far only through the efforts
of a relatively small group of very active mathematicians, which needs to be
enlarged by specialists from other fields to ensure further development.

With respect to the total DML corpus, retroarchiving is largely unsuccessful;
hence, to ensure public mathematical heritage, moving wall solutions as in digi-
tal libraries like EuDML seem appropriate. While there is no hope that a general
solution will work for the whole corpus, the joint forces of different approaches
may eventually prevail, and the main task will be to ensure a sustainable frame-
work to connect the different services and make them work well together.

References

1. arXiv e-Print archive. http://arxiv.org/
2. arXiv Mathematics article statistics (2015). http://arxiv.org/year/math/15
3. arXiv bulk data. https://arxiv.org/help/bulk data
4. The Global Digital Mathematics Library Working Group. https://blog.wias-berlin.

de/imu-icm-panel-wdml/2014/08/28/the-global-digital-mathematical-library-wor
king-group-gdml-wg/

5. dblp database. http://dblp.uni-trier.de/
6. Elasticsearch open source software. https://www.elastic.co/products/elasticsearch
7. Electronic Library of Mathematics. http://www.emis.de/elibm
8. European Digital Mathematics Library. https://eudml.org/
9. Giles, C.L., Khabsa, M.: The number of scholarly documents on the public web.

PLoS ONE 9(5), e93949 (2014)
10. Grobid Machine Learning Library. https://github.com/kermitt2/grobid
11. Hyper Articles en Ligne. https://hal.archives-ouvertes.fr/
12. Harnad, S.: The self-archiving initiative. Nature 410(6832), 1024–1025 (2001)
13. Ingoldsby, T.: Physics journals and the arXiv: what is myth and what is reality?

American Institute of Physics, Technical report (2009)
14. Kohlhase, M., Mihaljević-Brandt, H., Sperber, W., Teschke, O.: Mathematical for-

mula search. Eur. Math. Soc. Newsl. 89, 56–58 (2013)
15. Mathematics Subject Classification (2010). http://msc2010.org/
16. Müller, F., Teschke, O.: Will all mathematics be on the arXiv (soon)? Eur. Math.

Soc. Newslett. 99, 55–57 (2016)
17. Poirier, A.: Hubbard forests. Ergodic Theory Dyn. Syst. 33(1), 303–317 (2013).

arxiv:math/9208204
18. Grothendieck, A., Raynaud, M.: Séminaire de géométrie algébrique du Bois

Marie 1960/1961 (SGA 1). Lect. Notes Math. 224, xxii+447 pp. (1971).
arXiv:math/0206203

19. Saharon Shelah author profile. https://zbmath.org/authors/shelah.saharon
20. TEI XML format. http://www.tei-c.org/index.xml
21. zbMATcH interface. https://zbmath.org/citationmatching/
22. zbMATH database (1755–). https://zbmath.org/

http://arxiv.org/
http://arxiv.org/year/math/15
https://arxiv.org/help/bulk_data
https://blog.wias-berlin.de/imu-icm-panel-wdml/2014/08/28/the-global-digital-mathematical-library-working-group-gdml-wg/
https://blog.wias-berlin.de/imu-icm-panel-wdml/2014/08/28/the-global-digital-mathematical-library-working-group-gdml-wg/
https://blog.wias-berlin.de/imu-icm-panel-wdml/2014/08/28/the-global-digital-mathematical-library-working-group-gdml-wg/
http://dblp.uni-trier.de/
https://www.elastic.co/products/elasticsearch
http://www.emis.de/elibm
https://eudml.org/
https://github.com/kermitt2/grobid
https://hal.archives-ouvertes.fr/
http://msc2010.org/
http://arxiv.org/abs/math/9208204
http://arxiv.org/abs/math/0206203
https://zbmath.org/authors/shelah.saharon
http://www.tei-c.org/index.xml
https://zbmath.org/citationmatching/
https://zbmath.org/

Mathematical Knowledge
Management

Accessing the Mizar Library with a Weakly
Strict Mizar Parser

Adam Naumowicz1(B) and Rados�law Piliszek1,2

1 Institute of Informatics, University of Bia�lystok, Konstantego Cio�lkowskiego 1M,
15-245 Bia�lystok, Poland

adamn@math.uwb.edu.pl, r.piliszek@uwb.edu.pl
2 High Performance Computing Center, University of Bia�lystok,

Konstantego Cio�lkowskiego 1M, 15-245 Bia�lystok, Poland

Abstract. Our work is focused on the Mizar proof assistant and access-
ing the contents of its library in a machine readable and easily accessible
form. The main result of the work described here is the implementation of
an independent parser of the Weakly Strict Mizar language (WS-Mizar)
along with a formal specification of its grammar and a program simulat-
ing an existing Mizar utility but using the new parser. The WS-Mizar
language is less complex than the original Mizar language from a pro-
grammer’s point of view, while there is a software tool available that
can translate any text written in Mizar into its WS-Mizar representation
for easier access to the library. This is the key step towards developing
various external utilities for processing mathematical data contained in
Mizar articles.

1 Introduction

For over four decades [1], the Mizar project1 has been geared towards designing
a computer environment that supports writing traditional mathematical papers
under strict control of computer programs that check syntactical, semantical and
logical correctness of texts. The reader is kindly referred to a recent survey paper
[2] documenting the project’s state-of-the-art, in particular the proof-checking
system, the underlying language and a vast collection of formalized mathematical
data available as the Mizar Mathematical Library (MML).

The Mizar language has been devised to encode mathematical formulas and
their proofs in a form that is as much as possible readable for humans, which
makes its syntax rather complex (c.f. [3]). On the other hand, it has always
been equally important that the texts written in the Mizar language should be
effectively processed by the set of programs included in the Mizar system dis-
tribution. The complexity of the system grows as all sorts of new mechanisms
are being continuously added to the system [4–6] to cater to more and more
advanced developments formalized (e.g. [7–10]). At the same time, the effective-
ness of former implementations is being steadily enhanced taking advantage of
new methods and ideas (see e.g. [11,12]).
1 http://mizar.org.

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 77–82, 2016.
DOI: 10.1007/978-3-319-42547-4 6

http://mizar.org

78 A. Naumowicz and R. Piliszek

However, there is a lot of current research concerning the contents of the
Mizar library that do not require in-depth understanding of the inner workings of
the Mizar system. For example, categorizing and refactoring the library articles
[13–15], detecting duplications [16] or improving the legibility [17,18] of available
texts, etc. should be feasible, provided there are methods developed that allow
more “shallow” processing of MML articles [19,20].

For this reason, it is an important task to implement new independent util-
ities for parsing Mizar texts, that can be done not only by Mizar developers.
There have been several attempts to produce a working third party parser for the
Mizar language based on its high-level grammar. A detailed analysis highlighting
a number of difficulties posed by the complexity of the language was presented
in a paper by Cairns and Gow [21]. To tackle such problems, a new language
has been proposed – WS-Mizar (Weakly Strict Mizar, WSM) [22], which is less
complex than the original Mizar language from a programmer’s point of view,
while there is a software tool available that can translate any text written in
Mizar into its WS-Mizar representation. The goal of this paper is to present how
the grammar of WS-Mizar was formally created based on the available grammar
of the original Mizar language, which enabled the implementation of a dedicated
parser independent from the one built into the Mizar system.

The Mizar language is described by its grammar available in the system’s
distribution (syntax.txt and syntax.xml files) as well as on the project’s web-
site2. This grammar, however, contains some ambiguities stemming from making
the language as close as possible to the informal way of writing mathematical
proofs, which must be solved by a working implementation [23]. These ambigu-
ities make it practically difficult to implement an external utility for analyzing
Mizar texts based only on this grammar, and so the WS-Mizar language was
proposed.

The name “Weakly Strict Mizar” should indicate that the language is not
completely strict in the sense of containing full semantic representation, but it
is strict enough to enable parsing the text without any particular knowledge of
how the text is internally processed by the Mizar system. It is also worthwhile to
note another language mentioned in [22], namely MS-Mizar (More Strict Mizar,
MSM), which is a next step in representing more semantic information contained
in Mizar texts. Implementing a parser, however, does not require using MSM.
It is important to note that both WS-Mizar and MS-Mizar can be used by the
original Mizar utilities (after restoring the environment).

With the current Mizar system one can generate a WS-Mizar document from
a Mizar article using the wsmparser tool. When the article is processed, the
system creates also a WSX version of the file, which contains its WS-Mizar
content represented in a directly corresponding XML-based format. Here we
should note the difference between this format and the semantic internal XML
representation of Mizar texts developed by Urban [24].

Formal specification of the WS-Mizar grammar was possible thanks to com-
bining the original Mizar language’s grammar with Mizar articles’ representa-
tions stored in MIZ, WSX and WSM files.

2 http://mizar.org/language/mizar-grammar.xml.

http://mizar.org/language/mizar-grammar.xml

Accessing the Mizar Library with a Weakly Strict Mizar Parser 79

A parser for WS-Mizar, called wsm-parser (with a hyphen), based on that
grammar was implemented using the popular open-source GNU parser genera-
tor suite: flex and bison [25] that gets in line with the free license on which
the Mizar Mathematical Library is distributed [26]. The parser’s source code is
written in the C++ programming language and compiled with the GCC com-
piler. The underlying lexer generated by flex is augmented with the informa-
tion extracted from the environment of a Mizar article which needed a separate
ad-hoc parsing. The parser is to be used mainly in the GNU/Linux system, but
it can also be used within MinGW or Cygwin environments under Windows.

2 WS-Mizar Grammar Specification

The first step to obtain a formal machine-readable specification of the WS-
Mizar language informally introduced in [22] was the transformation from the
available EBNF form into plain BNF, which resembles the input format accepted
by GNU bison, by applying standard techniques (mainly eliminating optionality,
disjunctions and lists).

Specifying the grammar of WS-Mizar as opposed to the original Mizar lan-
guage, was aimed at normalization which should allow easy processing the texts
with external tools. This normalization should reflect the internal representation
of a Mizar article in an XML-based format stored in a *.wsx file generated by
the current implementation of the original Mizar parser. Simply speaking, WSX
is a representation of a Mizar article in an XML format reflecting the hierar-
chical structure of the article’s elements, which corresponds to the WS-Mizar
representation.

In the case of WS-Mizar, the article contains only the text proper, whereas
the environment part is not mentioned at all. This part is not that relevant for the
syntactic analysis, however the information about the vocabularies imported in
the environment must be extra provided for the lexer to correctly qualify each
identifier into a suitable category. These can be extracted from the .dct file
generated by the accom program. The WSM file generated by the wsmparser on
the basis of the WSX file immediately shows also other simple normalizations.

First of all, the file contains a number of extra white-space characters that
physically split all tokens [22]. This is not directly reflected in the grammar, but
significantly simplifies the lexer. All white-space characters are of course ignored.

The second main difference when we look at the two grammars is that WS-
Mizar requires the use of parentheses in many contexts where they are not nec-
essary in the original Mizar language. This is needed to compensate the lack of
a dedicated scanning algorithm [27] that efficiently handles notation overloading
commonly used in Mizar. See [22] for an example of how this disambiguation
makes it evident which type a reserved variable should have and eliminates the
need to refer to the overloaded notations to parse text correctly. In addition
to the above transformation, the generated WS-Mizar introduces a split into
several independent reservation blocks. A similar split is applied in the case of
multiple type-qualified variable segments that in the standard Mizar appear in

80 A. Naumowicz and R. Piliszek

quantifiers, or follow the let keyword for loci declarations in definitions as well
as generalizations within proofs.

3 Parser Implementation

Our complete WS-Mizar parser implementation consists of several modules: the
lexer (which transforms the input stream into a sequence of tokens for the main
parser), the parser proper (which is responsible for the syntax analysis), the
module processing the vocabulary contained in the article’s environment (which
is necessary for the lexer), and the main function (which handles command line
parameters and file input).

The WS-Mizar parser was implemented in the following programming envi-
ronment: (operating system: GNU/Linux, C++ compiler: GCC 4.8.2, lexer gen-
erator: flex 2.5.35, parser generator: bison 3.0.2). For wider applicability, the
tools were also tested on the Windows platform using Cygwin and MinGW.

The parser had been initially developed for the Mizar version 8.1.02 equipped
with the Mizar Mathematical Library (MML) version 5.22.1191. The relevant
updates within the Mizar grammar that stem from this development had been
incorporated in the current official Mizar version 8.1.04 distributed with MML
version 5.33.1254 (dated 16 Sep 2015). The parser code was written in the C++
language and complies with the ISO C++11 standard. It can be downloaded
from a dedicated Git repository3. The distribution includes a simple Makefile
for use with GNU make, which contains instructions to generate both the lexer
and parser source code, and then build an executable called wsm-parser.

Additionally, the repository provides two shell scripts to automate the appli-
cation of the parser to the whole Mizar library: wsm-all.sh which performs the
translation of all articles (*.miz files) into *.wsm, and parse-all.sh which can
be used to process all *.wsm files in a given directory with wsm-parser.

An example application also included in the Git repository imitates the
irrths utility which Mizar users commonly use to eliminate unnecessary library
references in an article being worked on (the Mizar system’s user manual is avail-
able as the paper [28]). The utility is very simplistic, yet the complete grammar
available for providing references (that can be split across several lines and apply
different format for theorems, definitions and schemes as well as shortened refer-
ence lists of labels within a given article) make it rather impossible to implement
it based only on simple regular expression search techniques without a proper
grammar analysis. The implementation based on our WSM parser requires only
a couple of additional input lines included for demonstration in two additional
source files: events.h and irrths.cpp and the action implementation for three
selected grammar rules concerning library references (included in the wsm.y file).

4 Conclusions

In this paper we presented a working parser for the WS-Mizar language, indepen-
dent from the built-in parser of the original Mizar language. The parser can now
3 https://github.com/MizarProject/wsm-tools.

https://github.com/MizarProject/wsm-tools

Accessing the Mizar Library with a Weakly Strict Mizar Parser 81

be used to properly access the Mizar library on a syntactic level with a simple
programming interface based on the popular open-source GNU parser generator
suite: flex and bison. The parser can be used in the GNU/Linux system, but it
can also be used within MinGW or Cygwin environments under Windows. This
opens new possibilities for carrying out numerous experiments with the library
that need syntactic processing. Using the provided parser, various experiments
can easily be conducted not only by Mizar developers, but also without the need
to have access to and recompiling the Mizar system’s dependent utilities.

References

1. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reason. 55(3), 191–198 (2015)

2. Bancerek, G., Byliński, C., Grabowski, A., Korni�lowicz, A., Matuszewski, R.,
Naumowicz, A., P ↪ak, K., Urban, J.: Mizar: state-of-the-art and beyond. In: Kerber,
M., et al. [29], pp. 261–279

3. Korni�lowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44,
238–250 (2015)

4. Korni�lowicz, A.: Definitional expansions in Mizar. J. Autom. Reason. 55(3), 257–
268 (2015)

5. Korni�lowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210
(2013)

6. Naumowicz, A.: Interfacing external CA systems for Gröbner bases computation
in Mizar proof checking. Int. J. Comput. Math. 87(1), 1–11 (2010)

7. P ↪ak, K.: Readable formalization of Euler’s partition theorem in Mizar. In: Kerber,
M., et al. [29], pp. 211–226

8. Grabowski, A.: Mechanizing complemented lattices within Mizar type system. J.
Autom. Reason. 55(3), 211–221 (2015)

9. Grabowski, A.: Efficient rough set theory merging. Fundamenta Informaticae
135(4), 371–385 (2014)

10. Grabowski, A.: Automated discovery of properties of rough sets. Fundamenta Infor-
maticae 128(1–2), 65–79 (2013)

11. Grabowski, A., Korni�lowicz, A., Schwarzweller, C.: Equality in computer proof-
assistants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of
the 2015 Federated Conference on Computer Science and Information Systems, pp.
45–54. IEEE (2015). doi:10.15439/2015F229

12. Naumowicz, A.: Automating Boolean set operations in Mizar proof checking with
the aid of an external SAT solver. J. Autom. Reason. 55(3), 285–294 (2015)

13. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathemat-
ical knowledge. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings
of Federated Conference on Computer Science and Information Systems - FedCSIS
2012, Wroclaw, 9–12 September 2012, pp. 63–68 (2012)

14. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathe-
matical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer,
Heidelberg (2007)

15. P ↪ak, K.: Methods of lemma extraction in natural deduction proofs. J. Autom.
Reason. 50(2), 217–228 (2013)

http://dx.doi.org/10.15439/2015F229

82 A. Naumowicz and R. Piliszek

16. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories. In:
Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton,
A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 300–314. Springer, Heidelberg (2010)

17. P ↪ak, K.: Improving legibility of formal proofs based on the close reference principle
is NP-hard. J. Autom. Reason. 55(3), 295–306 (2015)

18. P ↪ak, K.: Improving legibility of natural deduction proofs is not trivial. Log. Meth-
ods Comput. Sci. 10(3), 1–30 (2014)

19. Alama, J.: Mizar-items: exploring fine-grained dependencies in the Mizar mathemat-
ical library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM
2011 and Calculemus 2011. LNCS, vol. 6824, pp. 276–277. Springer, Heidelberg
(2011)

20. Naumowicz, A.: Tools for MML environment analysis. In: Kerber, M., et al. [29],
pp. 348–352

21. Cairns, P.A., Gow, J.: Using and parsing the Mizar language. Electr. Notes Theor.
Comput. Sci. 93, 60–69 (2004)

22. Bylinski, C., Alama, J.: New developments in parsing Mizar. In: Jeuring, J.,
Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS, vol. 7362, pp. 427–431. Springer, Heidelberg (2012)

23. Wenzel, M., Wiedijk, F.: A comparison of Mizar and Isar. J. Autom. Reason.
29(3–4), 389–411 (2002)

24. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006)

25. Levine, J.: Flex & Bison. O’Reilly Media, Sebastopol (2009)
26. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.:

Licensing the Mizar mathematical library. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp.
149–163. Springer, Heidelberg (2011)

27. Trybulec, A.: Some features of the Mizar language. In: ESPRIT Workshop, Torino
(1993)

28. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formaliz.
Reason. 3(2), 153–245 (2010)

29. Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.): CICM 2015.
LNCS, vol. 9150, pp. 261–279. Springer, Heidelberg (2015)

Incorporating Quotation and Evaluation into
Church’s Type Theory: Syntax and Semantics

William M. Farmer(B)

Computing and Software, McMaster University, Hamilton, Canada
wmfarmer@mcmaster.ca

Abstract. cttqe is a version of Church’s type theory that includes quo-
tation and evaluation operators that are similar to quote and eval in the
Lisp programming language. With quotation and evaluation it is possi-
ble to reason in cttqe about the interplay of the syntax and semantics
of expressions and, as a result, to formalize syntax-based mathemati-
cal algorithms. We present the syntax and semantics of cttqe and give
several examples that illustrate the usefulness of having quotation and
evaluation in cttqe. We do not give a proof system for cttqe, but we do
sketch what a proof system could look like.

1 Introduction

The Lisp programming language is famous for its use of quotation and evalu-
ation. From code the Lisp quotation operator called quote produces meta-level
data (i.e., S-expressions) that represents the code, and from this data the Lisp
evaluation operator called eval produces the code that the data represents. In
Lisp, metaprogramming (i.e., programming at the meta-level) is performed by
manipulating S-expressions and is reflected (i.e., integrated) into object-level
programming by the use of quote and eval.

Metaprogramming with reflection is a very powerful programming tool.
Besides Lisp, several other programming languages employ quotation and evalu-
ation mechanisms to enable metaprogramming with reflection. Examples include
Agda [16,17], Archon [22], Elixir [18], F# [25], MetaML [23], MetaOCaml [20],
reFLect [12], and Template Haskell [21].

Analogous to metaprogramming in a programming language, metareasoning
is performed in a logic by manipulating meta-level values (e.g., syntax trees)
that represent expressions in the logic and is reflected into object-level reasoning
using quotation and evaluation1 mechanisms [6]. In proof assistants like Coq
and Agda, metareasoning with reflection is implemented in the logic by defining
an infrastructure consisting of (1) an inductive type of syntactic values that
represent certain object-level expressions, (2) an informal quotation operator
that maps these object-level expressions to syntactic values, and (3) a formal

This research was supported by NSERC.
1 Evaluation in this context is also called unquoting, interpretation, dereferencing, and
dereification.

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 83–98, 2016.
DOI: 10.1007/978-3-319-42547-4 7

84 W.M. Farmer

evaluation operator that maps syntactic values to the values of the object-level
expressions that they represent [4,10,26]. Metareasoning with reflection is used
for formalizing metalogical techniques and incorporating symbolic computation
into proof assistants [4,8,10,13,26].

The metareasoning and reflection infrastructures that have been employed
in today’s proof assistants are local in the sense that the syntactic values of
the inductive type represent only a subset of the expressions of the logic, the
quotation operator can only be applied to these expressions, and the evaluation
operator can only be applied to the syntactic values of the inductive type. Can
metareasoning with reflection be implemented in a traditional logic like first-
order logic or simple type theory using a global infrastructure with quotation
and evaluation operators like Lisp’s quote and eval? This is largely an open
question. As far as we know, there is no readily implementable version of a
traditional logic that admits global quotation and evaluation. We have proposed
a version of NBG set theory named Chiron [7] and a version of Alonzo Church’s
type theory [5]2 named Quqe

0 [9] that include global quotation and evaluation
operators, but these logics have a high level of complexity and are not easy to
implement.

Many challenging problems face the logic engineer who seeks to incorporate
global quotation and evaluation into a traditional logic. The three problems that
most concern us are the following. We will write the quotation and evaluation
operators applied to an expression e as �e� and [[e]], respectively.

1. Evaluation Problem. An evaluation operator is applicable to syntactic values
that represent formulas and thus is effectively a truth predicate. Hence, by
the proof of Alfred Tarski’s theorem on the undefinability of truth [24], if the
evaluation operator is total in the context of a sufficiently strong theory like
first-order Peano arithmetic, then it is possible to express the liar paradox
using the quotation and evaluation operators. Therefore, the evaluation oper-
ator must be partial and the law of disquotation cannot hold universally (i.e.,
for some expressions e, [[�e�]] �= e). As a result, reasoning with evaluation is
cumbersome and leads to undefined expressions.

2. Variable Problem. The variable x is not free in the expression �x + 3� (or in
any quotation). However, x is free in [[�x + 3�]] because [[�x + 3�]] = x + 3.
If the value of a constant c is �x + 3�, then x is free in [[c]] because [[c]] =
[[�x + 3�]] = x + 3. Hence, in the presence of an evaluation operator, whether
or not a variable is free in an expression may depend on the values of the
expression’s components. As a consequence, the substitution of an expression
for the free occurrences of a variable in another expression depends on the
semantics (as well as the syntax) of the expressions involved and must be
integrated with the proof system of the logic. That is, a logic with quotation
and evaluation requires a semantics-dependent form of substitution in which
side conditions, like whether a variable is free in an expression, are proved
within the proof system. This is a major departure from traditional logic.

2 Church’s type theory is a version of simple type theory with lambda notation.

Incorporating Quotation and Evaluation into Church’s Type Theory 85

3. Double Substitution Problem. By the semantics of evaluation, the value of
[[e]] is the value of the expression whose syntax tree is represented by the
value of e. Hence the semantics of evaluation involves a double valuation
(see condition 6 of the definition of a model in Sect. 3.3). If the value of a
variable x is �x�, then [[x]] = [[�x�]] = x = �x�. Hence the substitution of �x�
for x in [[x]] requires one substitution inside the argument of the evaluation
operator and another substitution after the evaluation operator is eliminated.
This double substitution is another major departure from traditional logic.

cttqe is a version of Church’s type theory [5] with quotation and evaluation
that overcomes these three problems. It is much simpler than Quqe

0 since (1) the
quotation operator can only be applied to expressions that do not contain the
evaluation operator and (2) substitution is not a logical constant (applied to
syntactic values). Like Quqe

0 , cttqe is based on Q0 [2], Peter Andrews’ version
of Church’s type theory. In this paper, we present the syntax and semantics of
cttqe and give several examples that illustrate the usefulness of having quotation
and evaluation in cttqe. We do not give a proof system for cttqe, but we do
sketch what a proof system could look like.

2 Syntax

The syntax of cttqe is very similar to the syntax of Q0 [2, pp. 210–211]. cttqe

has the syntax of Church’s type theory plus an inductive type of syntactic val-
ues, a quotation operator, and a typed evaluation operator. Like Q0, the proposi-
tional connectives and quantifiers are defined using function application, function
abstraction, and equality. For the sake of simplicity, cttqe does not contain, as
in Q0, a definite description operator or, as in the logic of HOL [11], an indefinite
description (choice) operator or type variables.

2.1 Types

A type of cttqe is a string of symbols defined inductively by the following for-
mation rules:

1. Type of individuals: ι is a type.
2. Type of truth values: o is a type.
3. Type of constructions: ε is a type.
4. Function type: If α and β are types, then (α → β) is a type.3

Let T denote the set of types of cttqe. α, β, γ, . . . are syntactic variables ranging
over types. When there is no loss of meaning, matching pairs of parentheses in
types may be omitted. We assume that function type formation associates to the
right so that a type of the form (α → (β → γ)) may be written as α → β → γ.

We will see in the next section that in cttqe types are directly assigned to
variables and constants and thereby indirectly assigned to expressions.
3 In Andrews’ Q0 [2] and Church’s original system [5], the function type (α → β) is
written as (βα).

86 W.M. Farmer

2.2 Expressions

A typed symbol is a symbol with a subscript from T . Let V be a set of typed
symbols such that, for each α ∈ T , V contains denumerably many typed sym-
bols with subscript α. A variable of type α of cttqe is a member of V with
subscript α. fα,gα,hα,uα,vα,wα,xα,yα, zα, . . . are syntactic variables ranging
over variables of type α. We will assume that fα, gα, hα, uα, vα, wα, xα, yα, zα, . . .
are actual variables of type α of cttqe.

Let C be a set of typed symbols disjoint from V that includes the typed sym-
bols in Table 1. A constant of type α of cttqe is a member of C with subscript α.
The typed symbols in Table 1 are the logical constants of cttqe. cα,dα, . . . are
syntactic variables ranging over constants of type α.

Table 1. Logical constants

=α→α→o for all α ∈ T
is-varε→o

is-conε→o

appε→ε→ε

absε→ε→ε

quoε→ε

is-exprαε→o for all α ∈ T

An expression of type α of cttqe is a string of symbols defined inductively by
the formation rules below. Aα,Bα,Cα, . . . are syntactic variables ranging over
expressions of type α. An expression is eval-free if it is constructed using just
the first five formation rules.

1. Variable: xα is an expression of type α.
2. Constant : cα is an expression of type α.
3. Function application: (Fα→β Aα) is an expression of type β.
4. Function abstraction: (λxα . Bβ) is an expression of type α → β.
5. Quotation: �Aα� is an expression of type ε if Aα is eval-free.
6. Evaluation: [[Aε]]Bβ

is an expression of type β.

The purpose of the second component Bβ in an evaluation [[Aε]]Bβ
is to establish

the type of the evaluation. A formula is an expression of type o. When there is
no loss of meaning, matching pairs of parentheses in expressions may be omitted.
We assume that function application formation associates to the left so that an
expression of the form ((Gα→β→γ Aα)Bβ) may be written as Gα→β→γ Aα Bβ .

Incorporating Quotation and Evaluation into Church’s Type Theory 87

2.3 Constructions

A construction of cttqe is an expression of type ε defined inductively as follows:

1. �xα� is a construction.
2. �cα� is a construction.
3. If Aε and Bε are constructions, then appε→ε→ε Aε Bε, absε→ε→ε Aε Bε, and

quoε→ε Aε are constructions.

The set of constructions is thus an inductive type whose base elements are quota-
tions of variables and constants and whose constructors are appε→ε→ε, absε→ε→ε,
and quoε→ε. We will call these three constants syntax constructors.

Let E be the function mapping eval-free expressions to constructions that is
defined inductively as follows:

1. E(xα) = �xα�.
2. E(cα) = �cα�.
3. E(Fα→β Aα) = appε→ε→ε E(Fα→β) E(Aα).
4. E(λxα . Bβ) = absε→ε→ε E(xα) E(Bβ).
5. E(�Aα�) = quoε→ε E(Aα).

E is clearly injective. When Aα is eval-free, E(Aα) is a construction that repre-
sents the syntax tree of Aα. That is, E(Aα) is a syntactic value that represents
how Aα is syntactically constructed. For every eval-free expression, there is a
construction that represents its syntax tree, but not every construction repre-
sents the syntax tree of an eval-free expression. For example, appε→ε→ε �xα� �xα�
represents the syntax tree of (xα xα) which is not an expression of cttqe since
the types are mismatched. A construction is proper if it is in the range of E , i.e.,
it represents the syntax tree of an eval-free expression.

The five kinds of eval-free expressions and the syntactic values that represent
their syntax trees are given in Table 2.

Table 2. Five kinds of eval-free expressions

Kind Syntax Syntactic values

Variable xα �xα�
Constant cα �cα�
Function application Fα→β Aα appε→ε→ε E(Fα→β) E(Aα)

Function abstraction λxα . Bβ absε→ε→ε E(xα) E(Bβ)

Quotation �Aα� quoε→ε E(Aα)

88 W.M. Farmer

2.4 Definitions and Abbreviations

As Andrews does in [2, p. 212], we introduce in Table 3 several defined logical
constants and abbreviations. The former includes constants for true and false
and the propositional connectives. The latter includes notation for equality, the
propositional connectives, universal and existential quantification, and a simpli-
fied notation for evaluations.

Table 3. Definitions and abbreviations

(Aα = Bα) stands for =α→α→o Aα Bα

To stands for =o→o→o = =o→o→o

Fo stands for (λ xo . To) = (λ xo . xo)

(∀xα . Ao) stands for (λxα . To) = (λxα . Ao)

∧o→o→o stands for λ xo . λ yo . ((λ go→o→o . go→o→o To To) = (λ go→o→o . go→o→o xo yo))

(Ao ∧ Bo) stands for ∧o→o→o Ao Bo

⊃o→o→o stands for λ xo . λ yo . (xo = (xo ∧ yo))

(Ao ⊃ Bo) stands for ⊃o→o→o Ao Bo

¬o→o stands for =o→o→o Fo

(¬Ao) stands for ¬o→o Ao

∨o→o→o stands for λ xo . λ yo . ¬(¬xo ∧ ¬yo)

(Ao ∨ Bo) stands for ∨o→o→o Ao Bo

(∃xα . Ao) stands for ¬(∀xα . ¬Ao)

[[Aε]]β stands for [[Aε]]Bβ

3 Semantics

The semantics of cttqe extends the semantics of Q0 [2, pp. 238–239] by defining
the domain of the type ε and what quotations and evaluations mean.

3.1 Frames

A frame of cttqe is a collection {Dα | α ∈ T } of domains such that:

1. Dι is a nonempty set of values (called individuals).
2. Do = {t, f}, the set of standard truth values.
3. Dε is the set of constructions of cttqe.
4. For α, β ∈ T , Dα→β is the set of total functions from Dα to Dβ .

3.2 Interpretations

An interpretation of cttqe is a pair ({Dα | α ∈ T }, I) consisting of a frame and
an interpretation function I that maps each constant in C of type α to an element
of Dα such that:

Incorporating Quotation and Evaluation into Church’s Type Theory 89

1. For all α ∈ T , I(=α→α→o) is the function f ∈ Dα→α→o such that, for all
d1, d2 ∈ Dα, f(d1)(d2) = t iff d1 = d2. That is, I(=α→α→o) is the identity
relation on Dα.

2. I(is-varε→o) is the function f ∈ Dε→o such that, for all Aε ∈ Dε, f(Aε) = t iff
Aε = �xα� for some variable xα ∈ V.

3. I(is-conε→o) is the function f ∈ Dε→o such that, for all Aε ∈ Dε, f(Aε) = t iff
Aε = �cα� for some constant cα ∈ C.

4. I(appε→ε→ε) is the function f ∈ Dε→ε→ε such that, for all Aε,Bε ∈ Dε,
f(Aε)(Bε) is the construction appε→ε→ε Aε Bε.

5. I(absε→ε→ε) is the function f ∈ Dε→ε→ε such that, for all Aε,Bε ∈ Dε,
f(Aε)(Bε) is the construction absε→ε→ε Aε Bε.

6. I(quoε→ε) is the function f ∈ Dε→ε such that, for all Aε ∈ Dε, f(Aε) is the
construction quoε→ε Aε.

7. For all α ∈ T , I(is-exprαε→o) is the function f ∈ Dε→o such that, for all
Aε ∈ Dε, f(Aε) = t iff Aε = E(Bα) for some (eval-free) expression Bα.

Remark 3.21 (Domain of Constructions). We would prefer to define Dε

to be the set of proper constructions because we need only proper construc-
tions to represent the syntax trees of eval-free expressions. However, then the
natural interpretations of the three syntax constructors — appε→ε→ε, absε→ε→ε,
and quoε→ε — would be partial functions. Since cttqe admits only total func-
tions, it is more convenient to allow Dε to include improper constructions than
to interpret the syntax constructors as total functions that represent partial
functions.

An assignment into a frame {Dα | α ∈ T } is a function ϕ whose domain is V
such that, for each variable xα, ϕ(xα) ∈ Dα. Given an assignment ϕ, a variable xα,
and d ∈ Dα, let ϕ[xα �→ d] be the assignment ψ such that ψ(xα) = d and ψ(yβ) =
ϕ(yβ) for all variables yβ �= xα. Given an interpretation M = ({Dα | α ∈ T }, I),
assign(M) is the set of assignments into the frame of M.

3.3 Models

An interpretation M = ({Dα | α ∈ T), I} is a model for cttqe if there is a
binary valuation function V M such that, for all assignments ϕ ∈ assign(M) and
expressions Cγ , V M

ϕ (Cγ) ∈ Dγ and each of the following conditions is satisfied:

1. If Cγ ∈ V, then V M
ϕ (Cγ) = ϕ(Cγ).

2. If Cγ ∈ C, then V M
ϕ (Cγ) = I(Cγ).

3. If Cγ is Fα→β Aα, then V M
ϕ (Cγ) = V M

ϕ (Fα→β)(V M
ϕ (Aα)).

4. If Cγ is λxα . Bβ , then V M
ϕ (Cγ) is the function f ∈ Dα→β such that, for

each d ∈ Dα, f(d) = V M
ϕ[xα 	→d](Bβ).

5. If Cγ is �Aα�, then V M
ϕ (Cγ) = E(Aα).

6. If Cγ is [[Aε]]β and V M
ϕ (is-exprβε→o Aε) = t, then

V M
ϕ (Cγ) = V M

ϕ (E−1(V M
ϕ (Aε))).

90 W.M. Farmer

Proposition 3.31. Models for cttqe exist.

Proof. It is easy to construct an interpretation M = ({Dα | α ∈ T }, I) that is a
model for cttqe. Note that, if V M

ϕ (is-exprβε→o Aε) = f, then V M
ϕ ([[Aε]]β) can be

any value in Dβ . �

Remark 3.32 (Standard vs. General Models). The notion of a model
defined here is a standard model in which each function domain Dα→β is the set
of all total functions from Dα to Dβ . Andrews’ semantics for Q0 is based on
the notion of a general model, introduced by Henkin [15], in which each function
domain Dα→β is a set of some total functions from Dα to Dβ . General models
can be easily defined for cttqe. The definition of a frame, however, has to be
changed so that the domain Dε may include “nonstandard constructions”.

Remark 3.33 (Semantics of Evaluations). When V M
ϕ (is-exprβε→o Aε) = t,

the semantics of V M
ϕ ([[Aε]]β) involves a double valuation as mentioned in the

Double Substitution Problem described in the Introduction.

Remark 3.34 (Undefined Evaluations). Suppose V M
ϕ (Aε) is an improper

construction. Then V M
ϕ (E−1(V M

ϕ (Aε))) is undefined and V M
ϕ ([[Aε]]β) has no

natural value. Since cttqe does not admit undefined expressions, V M
ϕ ([[Aε]]β) is

defined but its value is unspecified. Similarly, if V M
ϕ (Aε) is a proper construction

of the form E(Bγ) with γ �= β, V M
ϕ ([[Aε]]β) is unspecified.

Let M be a model for cttqe. Ao is valid in M, written M |= Ao, if
VM

ϕ (Ao) = T for all assignments ϕ ∈ assign(M).

Proposition 3.35. Let M be a model for cttqe, Aε be a construction, and
ϕ ∈ assign(M). Then VM

ϕ (Aε) = Aε.

Proof. Follows immediately from conditions 4–6 of the definition of an interpre-
tation and condition 5 of the definition of a model. �

Theorem 3.36 (Law of Quotation). �Aα� = E(Aα) is valid in every model
of cttqe.

Proof. Let M be a model of cttqe and ϕ ∈ assign(M). Then

VM
ϕ (�Aα�) (1)

= E(Aα) (2)

= VM
ϕ (E(Aα)) (3)

(2) follows from condition 5 of the definition of a model, and (3) follows from
Proposition 3.35. Hence VM

ϕ (�Aα�) = V M
ϕ (E(Aα)) for all ϕ ∈ assign(M) which

implies �Aα� = E(Aα) is valid in M. �

Theorem 3.37 (Law of Disquotation). [[�Aα�]]α = Aα is valid in every
model of cttqe.

Incorporating Quotation and Evaluation into Church’s Type Theory 91

Proof. Let M be a model of cttqe and ϕ ∈ assign(M). Then

VM
ϕ ([[�Aα�]]α) (4)

= VM
ϕ (E−1(VM

ϕ (�Aα�))) (5)

= VM
ϕ (E−1(E(Aα))) (6)

= VM
ϕ (Aα) (7)

Since V M
ϕ (is-exprαε→o �Aα�) = t, (5) follows from condition 6 of the definition of

a model. VM
ϕ (�Aα�) = E(Aα) by condition 5 of the definition of a model. (6) and

(7) are then immediate. Hence VM
ϕ ([[�Aα�]]α) = VM

ϕ (Aα) for all ϕ ∈ assign(M)
which implies [[�Aα�]]α = Aα is valid in M. �

Remark 3.38 (Evaluation Problem). Theorem 3.37 shows that disquotation
holds universally in cttqe contrary to the Evaluation Problem described in the
Introduction. We have avoided the Evaluation Problem in cttqe by admitting
only quotations of eval-free expressions. If quotations of non-eval-free expressions
were allowed in cttqe, the logic would be significantly more expressive, but also
much more complicated, as seen in Quqe

0 [9].

Remark 3.39 (Quotation Restricted to Closed Expressions). If quota-
tion is restricted to closed eval-free expressions in cttqe, then the Variable Prob-
lem and Double Substitution Problem disappear. However, most of the usefulness
of having quotation and evaluation in cttqe would also disappear — which is
illustrated by the examples in the next section.

4 Examples

We will present in this section four examples that illustrate the utility of the
quotation and evaluation facility in cttqe.

4.1 Reasoning About Syntax

Reasoning about the syntax of expressions is normally performed in the met-
alogic, but in cttqe reasoning about the syntax of eval-free expressions can
be performed in the logic itself. This is done by reasoning about constructions
(which represent the syntax trees of eval-free expressions) using quotation and
the machinery of constructions. Algorithms that manipulate eval-free expressions
can be formalized as functions that manipulate constructions. The functions can
be executed using beta-reduction, rewriting, and other kinds of simplification.

As an example, consider the constant make-implicationε→ε→ε defined as

λxε . λ yε . (appε→ε→ε (appε→ε→ε �⊃o→o→o�xε) yε).

It can be used to build constructions that represent implications. As another
example, consider the constant is-appε→o defined as

λxε . ∃ yε . ∃ zε . xε = (appε→ε→ε yε zε).

92 W.M. Farmer

It can be used to test whether a construction represents a function application.
Reasoning about syntax is a two-step process: First, a construction is built

using quotation and the machinery of constructions, and second, the construction
is employed using evaluation. Continuing the example above,

make-implicationε→ε→ε �Ao� �Bo�

builds a construction equivalent to the quotation �Ao ⊃ Bo� and

[[make-implicationε→ε→ε �Ao� �Bo�]]o

employs the construction as the implication Ao ⊃ Bo. Using this mixture of
quotation and evaluation, it is possible to express the interplay of syntax and
semantics that is needed to formalize syntax-based algorithms that are commonly
used in mathematics [8]. See Sect. 4.4 for an example.

4.2 Quasiquotation

Quasiquotation is a parameterized form of quotation in which the parameters
serve as holes in a quotation that are filled with expressions that denote syntac-
tic values. It is a very powerful syntactic device for specifying expressions and
defining macros. Quasiquotation was introduced by Willard Van Orman Quine
in 1940 in the first version of his book Mathematical Logic [19]. It has been
extensively employed in the Lisp family of programming languages [3].4

In cttqe, constructing a large quotation from smaller quotations can be
tedious because it requires many applications of syntax constructors. Quasiquo-
tation provides a convenient way to construct big quotations from little quota-
tions. It can be defined straightforwardly in cttqe.

A quasi-expression of cttqe is defined inductively as follows:

1. �Aε	 is a quasi-expression called an antiquotation.
2. xα is a quasi-expression.
3. cα is a quasi-expression.
4. If M and N are quasi-expressions, then (M N), (λxα . N), (λ �Aε	 . N), and

�M� are quasi-expressions.

A quasi-expression is thus an expression where one or more subexpressions have
been replaced by antiquotations. For example, ¬(Ao∧�Bε) is a quasi-expression.
Obviously, every expression is a quasi-expression.

Let E ′ be the function mapping quasi-expressions to expressions of type ε
that is defined inductively as follows:

1. E ′(�Aε) = Aε.
2. E ′(xα) = �xα�.
3. E ′(cα) = �cα�.

4 In Lisp, the standard symbol for quasiquotation is the backquote (‘) symbol, and
thus in Lisp, quasiquotation is usually called backquote.

Incorporating Quotation and Evaluation into Church’s Type Theory 93

4. E ′(M N) = appε→ε→ε E ′(M) E ′(N).
5. E ′(λM . N) = absε→ε→ε E ′(M) E ′(N).
6. E(�M�) = quoε→ε E ′(M).

Notice that E ′(M) = E(M) when M is an expression. Continuing our example
above, E ′(¬(Ao ∧ �Bε)) =

appε→ε→ε �¬o→o� (appε→ε→ε (appε→ε→ε�∧o→o→o� E ′(Ao))Bε).

A quasiquotation is an expression of the form �M� where M is a quasi-
expression. Thus every quotation is a quasiquotation. The quasiquotation �M�
serves as an alternate notation for the expression E ′(M). So �¬(Ao ∧ �Bε)�
stands for the significantly more verbose expression in the previous paragraph.
It represents the syntax tree of a negated conjunction in which the part of the tree
corresponding to the second conjunct is replaced by the syntax tree represented
by Bε. If Bε is a quotation �Co�, then the quasiquotation �¬(Ao ∧ ��Co�)� is
equivalent to the quotation �¬(Ao ∧ Co)�.

4.3 Schemas

A schema is a metalogical expression containing syntactic variables. An instance
of a schema is a logical expression obtained by replacing the syntactic variables
with appropriate logical expressions. In cttqe, a schema can be formalized as a
single logical expression.

For example, consider the law of excluded middle (LEM) that is expressed
as the formula schema A ∨ ¬A where A is a syntactic variable ranging over all
formulas. LEM can be formalized in cttqe as the universal statement

∀xε . is-exproε→o xε ⊃ [[xε]]o ∨ ¬[[xε]]o.

An instance of this formalization of LEM is any instance of the universal state-
ment. Using quasiquotation, LEM could also be formalized in cttqe as

∀xε . is-exproε→o xε ⊃ [[��xε	 ∨ ¬�xε	�]]o.

If we assume that the domain of the type ι is the natural numbers and C
includes the usual constants of natural number arithmetic (including a constant
Sι→ι representing the successor function), then the (first-order) induction schema
for Peano arithmetic can be formalized in cttqe as

∀ fε . is-exprι→o
ε→o fε ⊃

(([[fε]]ι→o 0 ∧ (∀xι . [[fε]]ι→o xι ⊃ [[fε]]ι→o (Sι→ι xι))) ⊃ ∀xι . [[fε]]ι→o xι).

Hence it is possible to directly formalize first-order Peano arithmetic in cttqe.
Notice that there is no restriction on which formulas can be used to produce

instances of this schema. If we want to restrict the formulas, e.g., to formalized
the induction schema for Presburger arithmetic, we can do this by introducing a
new family of constants is-exprαε→(ε→o)→o such that is-exprαε→(ε→o)→o �Aα�Bε→o

is true iff Bε→o �cγ� is true for each constant cγ occurring in Aα. Bε→o represents
here a signature or language as a set of constants.

94 W.M. Farmer

4.4 Meaning Formulas

Many symbolic algorithms work by manipulating mathematical expressions in
a mathematically meaningful way. A meaning formula for such an algorithm is
a statement that captures the mathematical relationship between the input and
output expressions of the algorithm. For example, consider a symbolic differen-
tiation algorithm that takes as input an expression (say x2), repeatedly applies
syntactic differentiation rules to the expression, and then returns as output the
final expression (2x) that is produced. The intended meaning formula of this
algorithm states that the function (λx : R . 2x) represented by the output
expression is the derivative of the function (λx : R . x2) represented by the
input expression.

Meaning formulas are difficult to express in a traditional logic like first-order
logic or simple type theory since there is no way to directly refer to the syntactic
structure of the expressions in the logic [8]. However, meaning formulas can be
easily expressed in cttqe.

Consider the following example. Assume that the domain of the type ι is
the real numbers and C includes the usual constants of real number arith-
metic plus (1) is-polyε→o such that is-polyε→o Aε = t iff Aε represents a syn-
tax tree of an expression of type ι that is a polynomial, (2) deriv(ι→ι)→(ι→ι)

such that deriv(ι→ι)→(ι→ι) Fι→ι is the derivative of the function Fι→ι, and (3)
poly-diffε→ε→ε such that, if is-polyε→o Aε holds, then poly-diffε→ε→ε Aε �xι� is
the result of applying the usual differentiation rules for polynomials to Aε with
respect to xι. Then the meaning formula for poly-diffε→ε→ε is5

∀uε . ∀ vε . (is-varε→o uε ∧ is-polyε→o vε) ⊃
deriv(ι→ι)→(ι→ι)([[absε→ε→ε uε vε]]ι→ι) =
[[absε→ε→ε uε (poly-diffε→ε→ε vε uε)]]ι→ι.

The string of equations

deriv(ι→ι)→(ι→ι)(λxι . x2
ι) (8)

= deriv(ι→ι)→(ι→ι)([[�λxι . x2
ι �]]ι→ι) (9)

= deriv(ι→ι)→(ι→ι)([[absε→ε→ε �xι� �x2
ι �]]ι→ι) (10)

= [[absε→ε→ε �xι� (poly-diffε→ε→ε �x2
ι � �xι�)]]ι→ι (11)

= [[absε→ε→ε �xι� �2 ∗ xι�]]ι→ι (12)
= [[�λxι . 2 ∗ xι�]]ι→ι (13)
= λxι . 2 ∗ xι (14)

proves (informally) the desired result where the equation given by (10) and (11)
results from instantiating the meaning formula for poly-diffε→ε→ε with �xι� and
�x2

ι �.
5 We restrict this example to polynomials since polynomial functions and their deriv-
atives are always total. Thus issues of undefinedness do not arise in the formulation
of the meaning formula for poly-diffε→ε→ε.

Incorporating Quotation and Evaluation into Church’s Type Theory 95

5 A Sketch of a Simple Proof System

At first glance, it would appear that a proof system for cttqe could be straight-
forwardly developed by extending Andrews’ proof system for Q0 [2, p. 213].
We can define is-varε→o (and is-conε→o in a similar way) by the axiom schemas
is-varε→o �xα� and ¬is-varε→o Aε where Aε is any construction that is not a
quoted variable. We can recursively define is-exprαε→o using a set of axiom schemas
that say how expressions are constructed. We can specify that the type ε of con-
structions is an inductive type using a set of axioms that say (8) the constructions
are distinct from each other and (9) induction holds for constructions. We can
specify quotation using the Law of Quotation �Aα� = E(Aα) (Theorem 3.36).
And we can specify evaluation using the Law of Disquotation [[�Aα�]]α = Aα

(Theorem 3.37).
Andrews’ proof system with these added axioms would enable simple the-

orems involving quotation and evaluation to be proved, but the proof system
would not be able to substitute expressions for free variables occurring in the
argument of an evaluation. Hence schemas and meaning formulas could be
expressed in cttqe, but they would be useless because they could not be instanti-
ated. Clearly, a useful proof system for cttqe requires some form of substitution
that is applicable to evaluations.

Due to the Variable Problem, substitution involving evaluations cannot be
purely syntactic as in a traditional logic. It must be a semantics-dependent oper-
ation in which side conditions, like whether a variable is free in an expression,
are proved within the proof system. Since cttqe supports reasoning about syn-
tax, an obvious way forward is to add to C a logical constant subε→ε→ε→ε such
that, if Cβ is the result of substituting Aα for each free occurrence of xα in Bβ

without any variable captures, then

subε→ε→ε→ε �Aα� �xα� �Bβ� = �Cβ�.

subε→ε→ε→ε thus plays the role of an explicit substitution operator [1].
This approach, however, does not work in cttqe since Bβ may contain eval-

uations, but quotations in cttqe may not contain evaluations. Although the
approach does work in Quqe

0 [9] in which quotations in cttqe may contain eval-
uations, it is extremely complicated due to the Evaluation Problem.

A more promising approach is to add some axiom schemas to the five beta-
reduction axiom schemas used by Andrews’ in his proof system for Q0 [2, p. 213]
that specify beta-reduction of an application of the form (λxα . [[Bε]]β)Aα. But
how do we overcome the Double Substitution Problem? There seems to be no
easy way of emulating a double substitution with beta-reduction, so the best
approach appears to be to consider only cases that do not require a second
substitution, as formalized by the following axiom schema:

(is-exprβε→o ((λxα . Bε)Aα) ∧ ¬(is-free-inε→ε→o �xα� ((λxα . Bε)Aα))) ⊃
(λxα . [[Bε]]β)Aα = [[(λxα . Bε)Aα]]β .

96 W.M. Farmer

Here is-free-inε→ε→o would be a new logical constant in C, and the second con-
dition would say that xα is not free in the expression whose syntax tree is
represented by (λxα . Bε)Aα. As a result, there would be no free occurrences
of xα in the right-hand side of the conclusion after the evaluation is eliminated.
Details of this approach will be given in a future paper that presents the proof
system for cttqe that we have sketched.

6 Conclusion

Quotation and evaluation provide a basis for metaprogramming as seen in Lisp
and other programming languages. We believe that these mechanisms can also
provide a basis for metareasoning in traditional logics like first-order logic or
simple type theory. However, incorporating quotation and evaluation into a tra-
ditional logic is much more challenging than incorporating them into a program-
ming language due to the three problems we described in the Introduction.

In this paper we have introduced cttqe, a logic based on Q0 [2], Andrews’
version of Church’s type theory, that includes quotation and evaluation. We
have presented the syntax and semantics of cttqe, sketched a proof system for
it, and given examples that show the practical benefit of having quotation and
evaluation in a logic.

cttqe is a simpler version of Quqe
0 [9], a richer, but more complicated, version

of Q0 with undefinedness, quotation, and evaluation. In Quqe
0 , quotation may be

applied to expressions containing evaluations, expressions may be undefined and
functions may be partial, and substitution is implemented explicitly as a logical
constant. Allowing quotation to be applied to all expressions makes Quqe

0 much
more expressive than cttqe but also much more difficult to implement since
substitution in the presence of evaluations is highly complex. We believe that
cttqe would not be hard to implement. Since it is a version of Church’s type
theory, it could be implemented by extending an implementation of HOL [11]
such as HOL Light [14].

Our approach for incorporating quotation and evaluation into Church’s type
theory — introducing an inductive type of constructions, a quotation operator,
and a typed evaluation operator — can be applied to other logics including
many-sorted first-order logic. We have shown that developing the needed syntax
and semantics is relatively straightforward, while developing a proof system for
the logic is fraught with difficulties.

Acknowledgments. The author thanks the reviewers for their helpful comments and
suggestions.

Incorporating Quotation and Evaluation into Church’s Type Theory 97

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitution. J. Funct.
Program. 1, 375–416 (1991)

2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, 2nd edn. Kluwer, Dordrecht (2002)

3. Bawden, A.: Quasiquotation in Lisp. In: Danvy, O. (ed.) Proceedings of the 1999
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pp. 4–12, 1999. Technical report BRICS-NS-99-1, University
of Aarhus (1999)

4. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

5. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68
(1940)

6. Costantini, S.: Meta-reasoning: a survey. In: Kakas, A.C., Sadri, F. (eds.) Com-
putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp.
253–288. Springer, Heidelberg (2002)

7. Farmer, W.M.: Chiron: a set theory with types, undefinedness, quotation, and
evaluation. Computing Research Repository, abs/1305.6206, 154 p. (2013)

8. Farmer, W.M.: The formalization of syntax-based mathematical algorithms using
quotation and evaluation. In: Carette, J., Aspinall, D., Lange, C., Sojka, P.,
Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 35–50. Springer,
Heidelberg (2013)

9. Farmer, W.M.: Simple type theory with undefinedness, quotation, and evaluation.
Computing Research Repository, abs/1406.6706 (87 p.) (2014)

10. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2015)

11. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

12. Grundy, J., Melham, T., O’Leary, J.: A reflective functional language for hardware
design and theorem proving. J. Funct. Program. 16, 157–196 (2006)

13. Harrison, J.: Metatheory and reflection in theorem proving: a survey and cri-
tique. Technical report CRC-053, SRI Cambridge (1995). http://www.cl.cam.ac.
uk/∼jrh13/papers/reflect.ps.gz

14. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

15. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15, 81–91 (1950)
16. Norell, U.: Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology (2007)
17. Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed, A.

(eds.) TLDI, pp. 1–2. ACM (2009)
18. Plataformatec. Elixir (2015). http://elixir-lang.org/
19. Quine, W.V.O.: Mathematical Logic. Harvard University Press, Cambridge (2003).

Revised Edition
20. Rice University Programming Languages Team. Metaocaml: a compiled, type-safe,

multi-stage programming language (2011). http://www.metaocaml.org/
21. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. ACM SIGPLAN

Not. 37, 60–75 (2002)

http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz
http://elixir-lang.org/
http://www.metaocaml.org/

98 W.M. Farmer

22. Stump, A.: Directly reflective meta-programming. High. Order Symb. Comput. 22,
115–144 (2009)

23. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248, 211–242 (2000)

24. Tarski, A.: The concept of truth in formalized languages. In: Corcoran, J. (ed.)
Logic, Semantics, Meta-Mathematics, 2nd edn., pp. 152–278. Hackett (1983)

25. The F# Software Foundation. F# (2015). http://fsharp.org/
26. van der Walt, P., Swierstra, W.: Engineering proof by reflection in Agda. In: Hinze,

R. (ed.) IFL 2012. LNCS, vol. 8241, pp. 157–173. Springer, Heidelberg (2013)

http://fsharp.org/

Extracting Higher-Order Goals from the Mizar
Mathematical Library

Chad E. Brown and Josef Urban(B)

Czech Technical University, Prague, Czech Republic
Josef.Urban@gmail.com

Abstract. Certain constructs allowed in Mizar articles cannot be rep-
resented in first-order logic but can be represented in higher-order logic.
We describe a way to obtain higher-order theorem proving problems from
Mizar articles that make use of these constructs. In particular, higher-
order logic is used to represent schemes, a global choice construct and set
level binders. The higher-order automated theorem provers Satallax and
LEO-II have been run on collections of these problems and the results
are discussed.

Keywords: Formalized mathematics · Set theory · Higher-order logic ·
Automated theorem proving

1 Introduction

The Mizar Problems for Theorem Proving (MPTP) system has been developed
and used to extract first-order theorem proving problems from the Mizar Math-
ematical Library (MML) [14–16]. However, some aspects of the Mizar language
cannot be directly represented in first-order. In particular, Mizar provides sup-
ports for Schemes (allowing some degree of quantification over predicates and
functions), Fraenkel terms (allowing sets to be specified using term level binders
such as {f(x)|x ∈ A, p(x)}) and a global choice operator the on types [6]. In
order to obtain first-order problems, the MPTP has dealt with schemes used in
a proof by exporting the first-order instances of the scheme used in the proof.
Additionally, Fraenkel terms and global choice have been made first-order by a
process of deanonymization [14].

We describe an extension of MPTP targeting higher-order logic. Schemes can
be represented directly in higher-order logic since quantifiers over predicates and
functions are allowed. Instead of giving the instances of schemes used in a proof,
schemes are exported as second-order formulas (relying on the problem solver
to find appropriate instances). Global choice can be represented by a selection
operator on the type of individuals and a corresponding choice axiom. We also
give a method for representing Fraenkel terms, though these are more challenging
both to represent and to reason about.

J. Urban—This work was supported by ERC Consolidator grant nr. 649043
AI4REASON.

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 99–114, 2016.
DOI: 10.1007/978-3-319-42547-4 8

100 C.E. Brown and J. Urban

The resulting system has been used to extract a collection of higher-order the-
orem proving problems in THF0 format [9]. As in [14] we can partition the prob-
lem set into simple justifications (the Mizar by steps – or sometimes no explicit
justification), scheme justifications (the Mizar from steps indicating application
of a scheme) and theorems (including schemes proven in the MML). There are
roughly 10192 scheme justifications throughout Mizar proofs in the MML, and
we consider the higher-order problems corresponding to all of them. For simple
justifications, we focus only on those involving global choice or Fraenkel terms
and restrict ourselves to such steps in only four Mizar articles, giving 245 higher-
order problems involving Fraenkel terms and 47 problems involving the global
choice operator. For theorems, we focus only on 610 proven schemes whose proof
in the MML requires a scheme justification. We describe some examples and
results from running the higher-order automated theorem provers Satallax [3]
and LEO-II [2] on some collections of these problems.

In Sect. 2 we give a short description of the syntax of higher-order logic.
In Sect. 3 we define M-types, M-terms and M-propositions corresponding to an
idealized version of the Mizar language. In Sect. 4 we describe the mapping of M-
types, M-terms and M-propositions into higher-order terms, with a focus on the
higher-order aspects. Section 5 describes experiments using Satallax and LEO-II
on the resulting higher-order problems.

2 Syntax of Higher-Order Logic

We give a short introduction to the syntax of higher-order logic (in the form of
Church’s simple type theory [4]) so that we can describe the mapping in Sect. 4.
In order to present higher-order problems to theorem provers, the THF0 format
is used [9], but we mostly restrict ourselves to mathematical presentations of
higher-order terms here.

There are two base types o (for propositions) and ι (for individuals, which
will always be sets for us). The remaining types are function types αβ where
α and β are types. The type αβ is the type of functions from α to β (and is
sometimes written α → β).

We assume there are infinitely many variables x at each type α. We sometimes
write the type as a subscript to make it clear, as in xα. Likewise, there may be
arbitrarily many constants c at each type α. We freely generate the set of typed
terms as follows:

– A variable x of type α is a term of type α.
– A constant c of type α is a term of type α.
– If s is a term of type αβ and t is a term of type α, then (st) is a term of

type β.
– If x is a variable of type α and s is a term of type β, then (λx.s) is a term of

type αβ.
– � is a term of type o.
– If s and t are terms of type α, then (s =α t) is a term of type o.
– If s is a term of type o, then (¬s) is a term of type o.

Higher-Order Goals from the MML 101

– If s and t are terms of type o, then (s ∧ t), (s ∨ t), (s → t) and (s ↔ t) are
terms of type o.

– If x is a variable of type α and s is a term of type o, then (∀x.s) and (∃x.s)
are terms of type o.

Terms of type o are also called propositions.
We omit parentheses with the following conventions:

– Application associates to the left, e.g., stu means ((st)u).
– Binders have as large a scope as possible, e.g., both x are bound in ∀xo.x∨¬x.
– The connectives →, ∧ and ∨ are considered right associative.
– The precedence of the binary and unary connectives are =α, ¬, ∧, ∨, → and

finally ↔.

In addition, we omit the type subscript on = when it is clear, and we write s
= t
for ¬(s = t). Likewise we may write several binders together, as in ∀xyzα.s for
∀x.∀y.∀z.s where x, y and z should all have type α.

3 Idealized Mizar

In order to describe the translation from Mizar to Higher-Order Logic we first
give a short presentation of an idealized subset of the Mizar language. For a full
presentation of the Mizar language, we direct the reader to [6].

To simplify the presentation, we assume that some variables and constants
of higher-order logic are also variables and constants of Mizar, and that the
translation will simply map variables and constants to themselves. The language
of Mizar is restricted in a way that only variables and constants of certain types
can be used:

– We call variables of type ι object variables and call constants of type ι object
constants.

– For each n ≥ 1, we call variables of simple type ι . . . ι︸ ︷︷ ︸
n

ι function variables (of

arity n). Likewise, we call constants of this type function constants (of arity
n). We use F and G to range over function variables and f and g to range
over function constants.

– For each n ≥ 0, we call variables of simple type ι . . . ι︸ ︷︷ ︸
n

o predicate variables (of

arity n). Likewise, we call constants of this type predicate constants (of arity
n). We use P and Q to range over predicate variables and p and q to range
over predicate constants.

Mizar quantifiers only bind object variables. Predicate variables and function
variables only appear in schemes and are listed (with typing information) in the
prefix of a scheme.

Mizar articles typically consist of definitions and theorems (some of which
are schemes). A definition may be of an object constant, a function constant

102 C.E. Brown and J. Urban

or a predicate constant. Predicate constants are sometimes defined as modes or
attributes, which can then be used to construct Mizar types. Mizar types can
be thought of as predicates over the universe of discourse. Mizar insists that
types are nonempty and that all types, terms and propositions are well-typed
(in Mizar’s typing system).

In our idealized version of Mizar, we can ignore these restrictions and define
more liberal sets of M-types, M-terms and M-propositions by mutual recursion.
The intention is that Mizar types, terms and propositions (at least within the
subset of Mizar considered in this article) will give M-types, M-terms and M-
propositions, although not all M-types, M-terms and M-propositions would be
accepted by Mizar.

M-types A,B, . . . are generated as follows:

– set is an M-type.
– If p is an n + 1-ary predicate constant and T1, . . . Tn are M-terms, then

p(·, T1, . . . , Tn) is an M-type. (Here p is playing the role of a Mizar mode.)
– If q is a unary predicate constant and A is an M-type, then q A and non q A

are M-types. (Here q is playing the role of a Mizar attribute.)

M-terms S, T, . . . are generated as follows:

– An object variable x is an M-term.
– An object constant c is an M-term.
– If F is a function variable of arity n and T1, . . . Tn are M-terms, then

F (T1, . . . , Tn) is an M-term.
– If f is a function constant of arity n and T1, . . . Tn are M-terms, then

f(T1, . . . , Tn) is an M-term.
– If A is an M-type, then (the A) is an M-term. (The the is called a global
choice operator .)

– If x1, . . . , xn are object variables, A1, . . . , An are M-types, T is an M-term
and Φ is an M-proposition, then {T where x1 is A1, . . . xn is An : Φ} is an
M-term. (These are called Fraenkel terms.)

M-propositions Φ, Ψ, . . . are generated as follows:

– If P is an n-ary predicate variable of arity n and T1, . . . Tn are M-terms, then
P (T1, . . . , Tn) is an M-proposition.

– If p is an n-ary predicate constant of arity n and T1, . . . Tn are M-terms, then
p(T1, . . . , Tn) is an M-proposition.

– If S and T are M-terms, then (S = T) and (S in T) are M-propositions.
– If Φ is an M-proposition, then (not Φ) is an M-proposition.
– If Φ and Ψ are M-propositions, then (Φ & Ψ), (Φ or Ψ), (Φ implies Ψ) and

(Φ iff Ψ) are M-propositions.
– If x is an object variable, A is an M-type and Φ is an M-proposition, then

(for x being A holds Φ) and (ex x being A st Φ) are M-propositions.

Most Mizar theorems correspond to M-propositions. However, in some cases
(namely, schemes) there are function variables or predicate variables which can-
not be bound by quantifiers. We now define the notion of a prefix to list such

Higher-Order Goals from the MML 103

variables. When translating to higher-order propositions, the prefix will deter-
mine the outermost quantifiers.

A variable declaration is one of the following:

– x : A where x is an object variable and A is an M-type.
– F (A1, . . . , An) : B where F is a function variable of arity n and A1, . . . , An, B

are M-types.
– P [A1, . . . , An] where P is a predicate variable of arity n and A1, . . . , An are

M-types.

A prefix is a list of variable declarations.
An M-statement (Γ,Φ) is a prefix Γ and an M-proposition Φ. For Mizar

theorems other than schemes, the prefix Γ will always be empty. Some Mizar
schemes will declare what appears to be a function variable of arity 0. In such a
case, we use object variables instead. (This is why object variable declarations
are allowed in a prefix.)

An example of a scheme is Separation: for each set A and predicate P , there
is a set X such that x ∈ X iff x ∈ A and P (x) [5].

scheme Separation { A()-> set, P[set] } :

ex X being set st for x being set holds x in X iff x in A() & P[x]

The M-statement in this case is (Γ,Φ) where Γ is the prefix A : set, P [set]
(declaring an object variable A of type set and a predicate variable P of arity
1) and Φ is the M-proposition

ex X being set st for x being set holds x in X iff x in A & P (x)

corresponding to the body of the scheme.

4 Mapping Mizar to Higher-Order Logic

We now describe a mapping from M-types, M-terms, M-propositions and M-
statements to higher-order terms, concentrating on the aspects that require
higher-order constructs. The base type ι will correspond to Mizar objects (sets).
We will use �−� to denote the image of an M-type, M-term, M-proposition or M-
statement as a term in higher-order logic under the translation. The intention is
that mapping �−� should send M-statements corresponding to Mizar theorems
to provable propositions in higher-order logic. To be precise about this would
require giving details about the proof theory of Mizar, which is beyond the scope
of this paper.

In order to specify the translation, we need to declare a family of constants
the higher-order problems may make use of. A special relation in Mizar is set
membership (in), translated as r2 hidden by the MPTP system. For this reason,
we include a declared constant r2 hidden of type ιιo in the higher-order setting.
For readability, we will write s ∈ t for the term r2 hidden s t. (We will also
write s
∈ t for ¬(s ∈ t).) This allows us to translate an M-proposition S in T

104 C.E. Brown and J. Urban

simply as �S� ∈ �T�. We also declare a constant ε of type (ιo)ι. This allows use
to translate an M-term (the A) as ε�A�. Finally, we need a family of constants
for translating Fraenkel terms. For this purpose we declare a constant replSepn

of type
(ιo)(ιιo) · · · (ι · · · ι︸ ︷︷ ︸

n

o)(ι · · · ι︸ ︷︷ ︸
n

ι)(ι · · · ι︸ ︷︷ ︸
n

o)ι

for each n. (In practice only a finite number of these can be declared in a single
problem, and we declare them up to the maximum n required to translate the
problem. When translating the MML the maximum required n was 6.) We can
use replSepn to translate {T where x1 is A1, . . . xn is An : Φ} as

replSepn�A1�(λx1.�A2�) · · · (λx1 · · · xn−1.�An�)(λx1 · · · xn.�T�)(λx1 · · · xn.�Φ�).

Before giving the translation, let us also remark on the intended semantics
of these new constants. The constant ε is a choice operator so that εp satisfies
p unless p is empty. The remaining constants are set theory related, and are
required since the Mizar language targets set theory. In particular, the MML
is based on Tarski-Grothendieck Set Theory (TG). For this reason, we take
the intended interpretation of ι as a model of TG. The constant r2 hidden is
intended to be membership on this model. The replSepn constants give ways to
specify sets. For simplicity, we consider only the n = 1 case. A first approximation
would be to think of replSep1 s (λx.t) (λx.u) as a set {t|x ∈ s, u}. However, s
has type ιo, not type ι, so we should write {t|x : sx ∧ u}. In general, if s is a
predicate that corresponds to a class instead of a set, {t|x : sx ∧ u} will not be
a set. Mizar avoids this problem by enforcing an extra condition when Fraenkel
terms are used: all the types A1, . . . , An must satisfy a “sethood” condition: that
the collection of all elements of the type are contained in a bounding set. In the
higher-order problems we define a corresponding constant sethood of type (ιo)o
as follows:

λpιo.∃yι.∀xι.px → x ∈ y.

Then we can interpret replSep1 s (λx.t) (λx.u) to be {t|x : sx∧u} if sethood s
holds and interpret replSep1 s (λx.t) (λx.u) to be the empty set otherwise.
The new constants and corresponding axioms for the higher-order problems are
given in Fig. 1. For each n there are two axioms for replSepn: an introduction
axiom replSepIn and an elimination axiom replSepEn. The sethood conditions
are only required for replSepIn since the intended interpretation of replSepn

is the empty set when applied to an argument for which the sethood condition
is violated. In practice, sethood and replSepn (for n ≥ 1) are only included if
the problem contains a Fraenkel term.

Each M-type A will map to a term �A� of type ιo (a predicate or class), each
M-term T will map to a term �T� of type ι (a set) and each M-proposition Φ will
map to a term �Φ� of type o (a proposition). Note that Mizar has dependent
types and so an M-type A and the corresponding predicate �A� may contain
free variables. The mapping is defined by recursion as given in Fig. 2. Note that
while we take �x� = x and �c� = c in principle, variables and constants are

Higher-Order Goals from the MML 105

ε : (ιo)ι epsax : ∀pιo.∀xι.px → p(εp) r2 hidden : ιιo

sethood : (ιo)o := λpιo.∃yι.∀xι.px → x ∈ y replSep1 : (ιo)(ιι)(ιo)ι

replSepI1 : ∀Aιo.∀fιι.∀Pιo.∀xι.sethood A → Ax → Px → fx ∈ replSep1 A f P

replSepE1 : ∀Aιo.∀fιι.∀Pιo.∀yι.y ∈ replSep1 A f P → ∃xι.Ax ∧ Px ∧ y = fx

replSep2 : (ιo)(ιιo)(ιιι)(ιιo)ι

replSepI2 : ∀Aιo.∀Bιιo∀fιιι.∀Pιιo.∀xyι.sethood A → (∀xι.Ax → sethood (Bx)) →

Ax → Bxy → Pxy → fxy ∈ (replSep2 A B f P)

· · ·
replSepn : (ιo)(ιιo) · · · (ι · · · ι

︸ ︷︷ ︸

n

o)(ι · · · ι
︸ ︷︷ ︸

n

ι)(ι · · · ι
︸ ︷︷ ︸

n

o)ι

· · ·

Fig. 1. Higher-order declarations

�set� = λx.� �p(·, T1, . . . , Tn)� = λx.p x �T1� . . . �Tn�∗

�q A� = λx.q x ∧ �A�x∗ �non q A� = λx.¬q x ∧ �A�x∗ �x� = x �c� = c

�F (T1, . . . , Tn)� = F �T1� . . . �Tn� �f(T1, . . . , Tn)� = f �T1� . . . �Tn�

�the A� = ε�A� �{T where x1 is A1, . . . xn is An : Φ}� =

replSepn �A1� (λx1.A2) · · · (λx1 · · · xn−1.�An�) (λx1 · · · xn.�T�) (λx1 · · · xn.�Φ�)

�P (T1, . . . , Tn)� = P �T1� . . . �Tn� �p(T1, . . . , Tn)� = p �T1� . . . �Tn�

�S = T� = �S� =ι �T� �S in T� = �S� ∈ �T� �not Φ� = ¬�Φ�

�Φ & Ψ� = �Φ ∧ Ψ� �Φ or Ψ� = �Φ ∨ Ψ� �Φ implies Ψ� = �Φ → Ψ�

�Φ iff Ψ� = �Φ ↔ Ψ� �for x being A holds Φ� = ∀x.�A�x → �Φ�

�ex x being A st Φ� = ∃x.�A�x ∧ �Φ�
∗ where x is a fresh variable of type ι

Fig. 2. Definition of the translation

106 C.E. Brown and J. Urban

mapped to THF0 compliant names in practice. In order to map Mizar schemes
we define �(Γ,Φ)� for M-statements by a final recursion over the prefix Γ :

– �(·, Φ)� = �Φ�.
– �((x : A,Γ), Φ)� = ∀x.�A� x → �(Γ,Φ)�.
– �((F (A1, . . . , An) : B,Γ), Φ)� = ∀F.(∀x1.�A1� x1 → . . . → ∀xn.�An� xn →

�B� (Fx1 · · · xn)) → �(Γ,Φ)�.
– �((P [A1, . . . , An], Γ), Φ)� = ∀P.�(Γ,Φ)�.

As a Mizar development is processed, new definitions are processed and the
corresponding higher-order information must be declared in the problems which
use this new information. We consider a few examples from early in the MML.

A simple example of a definition of an attribute is empty given in xboole 0 [5]:

definition

let X be set;

attr X is empty means

:Def1:

not ex x being set st x in X;

end;

MPTP creates a name v1 xboole 0 of type ιo. Note that simply due to its
type, v1 xboole 0 can be used as an attribute and mode to form M-types.
It can also be used to form M-propositions. In the Mizar development, empty
the proposition X is empty corresponds to the M-proposition v1 xboole 0(X)
which translates to the higher-order proposition v1 xboole 0 X. For particular
problems, MPTP also exports relevant axioms about v1 xboole 0. For example,
its definition translates to ¬∃x.� ∧ x ∈ X (or, equivalently, ¬∃x.x ∈ X).

The most common example of a mode used in this paper is Element of from
the Mizar article subset 1 [13]:

definition

let X;

mode Element of X means :Def1:

it in X if X is non empty otherwise it is empty;

...

Since this is the first mode definition in the article, the corresponding
name created by MPTP is m1 subset 1, declared to have type ιιo. That is,
m1 subset 1 expects two arguments of type ι and yields a proposition. The
Mizar type Element of X corresponds to the M-type m1 subset 1(·,X) which
maps to the term λxι.m1 subset 1 x X. Note that the dependent Mizar type
Element of X maps to a term of type ιo with a free variable X (making
the dependency explicit). For the sake of readability, we will write s∈̂t for
m1 subset 1 s t. Note that since Mizar requires all types to be nonempty, the
Element of mode is defined so that x∈̂X if and only if either X is nonempty
and x ∈ X or both X and x are empty. That is, if X is nonempty, then x∈̂X if
and only if x ∈ X, as expected. However, x∈̂∅ if and only if x = ∅, which may
be surprising when it is first encountered.

Higher-Order Goals from the MML 107

Finally, we examine examples of schemes to see how M-statements are trans-
lated in practice.

The MML includes Fraenkel’s Replacement axiom scheme as an axiom of
TG. As formulated in Mizar, the scheme asserts that for each set A and each
binary relation P on sets, if P is functional, then there is a set X such that
x ∈ X iff there is a y ∈ A such that P (y, x) [11]. In Mizar’s syntax, the scheme
is specified as follows:

scheme Fraenkel { A()-> set, P[set, set] }:

ex X st for x holds x in X iff ex y st y in A() & P[y,x]

provided for x,y,z st P[x,y] & P[x,z] holds y = z

This can be seen as an M-statement with prefix A : set, P [set, set] and an
M-proposition corresponding to the body. The M-statement translates to the
higher-order proposition

∀Aι.∀Pιιo.(∀xyzι.Pxy ∧ Pxz → y = z) → ∃Xι.∀xι.x ∈ X ↔ ∃y.y ∈ A ∧ Pyx.

An early application of the Fraenkel scheme is to prove Zermelo’s Separation
scheme discussed at the end of Sect. 3, where the corresponding M-statement is
given. The M-statement translates to the following higher-order proposition:

∀Aι.∀Pιo.∃Xι.∀xι.x ∈ X ↔ x ∈ A ∧ Px.

For each scheme proven in the MML, the MPTP system has generated a
corresponding higher-order problem in THF0 format [9]. For example, the prob-
lem corresponding to the separation scheme is s1 xboole 0. In order to prove
s1 xboole 0 automatically, a prover would need to synthesize the appropriate
relation to use with Replacement, e.g., λxyι.x = y ∧Py where P is the predicate
from Separation. At the moment, neither Satallax nor LEO-II can prove this
automatically.

The Mizar proof begins by defining a predicate Q and then applying Replace-
ment with Q.

defpred Q[set,set] means $1 = $2 & P[$2];

A1: for x,y,z st Q[x,y] &Q[x,z] holds y = z;

consider X such that

A2: for x holds x in X iff ex y st y in A() & Q[y,x]

from TARSKI:sch 1(A1);

In λ-notation, the definition of Q is λxyι.x = y ∧ Py. Line A1 justifies y =
z whenever Qxy and Qxz. When schemes are used to justify Mizar proof steps,
the keyword from is used. These are the steps we classify as scheme justifications.
In this case, the Replacement scheme is used to justify the existence of a set
X such that x ∈ X iff ∃y.y ∈ A∧Qyx. A higher-order problem can be extracted
from each such scheme justification. For this particular example, the conjecture
to prove is ∃X.∀x.x ∈ X ↔ ∃y.y ∈ A∧y = x∧Px. This follows from Replacement
and A1, but requires instantiating the higher-order variable in the Replacement

108 C.E. Brown and J. Urban

axiom with Q. Note that Q is not explicitly given in the problem, but can easily
be recovered using pattern unification [7], as we now demonstrate. Suppose we
replace the outermost quantifiers in the Replacement axiom with existential
variables A of type ι and R of type ιιo. The conclusion of the implication has
the following form:

∃Xι.∀xι.x ∈ X ↔ ∃y.y ∈ A ∧ Ryx.

Since the subterm Ryx is the higher-order existential variable R applied to dis-
tinct bound variables (y and x), we can use pattern unification (in this case pat-
tern matching) to obtain solutions for A and R. That is, when we match against

∃X.∀x.x ∈ X ↔ ∃y.y ∈ A ∧ y = x ∧ Px

we obtain the disagreement pairs X,x, y|A =? A and X,x, y|Ryx =? y = x∧Px
which has the unique (desired) solution: A for A and λyx.y = x∧Px for R. Nei-
ther Satallax nor LEO-II re-prove this scheme justification within 5 min with the
default strategy schedule. However, Satallax is able to prove the problem corre-
sponding to this scheme justification under certain flag settings that encourage
pattern unification.

5 Experiments

We now report on the results of running two higher-order automated theorem
provers (Satallax and LEO-II) on some of the problems resulting from the trans-
lation described in the previous section. We consider four problem sets:1

– SimpGC: Simple justifications where the conclusion includes a global choice
operator. From four Mizar articles [1,10,12,13] 47 problems were extracted.

– SimpFr: Simple justifications where the problem contains a Fraenkel term. We
consider 245 such problems arising from three Mizar articles [1,10,12]. Since
these proved to be surprisingly difficult, we also considered “pruned” versions
of the problems in which the first-order theorem prover E [8] indicated which
axioms it used to find a corresponding first-order proof.

– SchJust: For each scheme justifications (using from) in a Mizar proof in the
MML, a corresponding problem was created. There are 10192 such problems.

– SchPfs: Out of 787 schemes proven in the MML, 610 have a proof making use
of a scheme justification. For each of these 610 we have created a corresponding
problem. Note that solving these problems requires finding a full proof, not
justifying a single Mizar step in a proof. Hence these should be harder than
the previous problem sets.

The results of running Satallax and LEO-II on the problem sets with the default
settings and a time limit of 5 min are shown in Table 1. In addition, we note the

1 The THF versions of the problems discussed here are available from http://147.32.
69.25/∼chad/mptp thf.tgz.

http://147.32.69.25/~chad/mptp_thf.tgz
http://147.32.69.25/~chad/mptp_thf.tgz

Higher-Order Goals from the MML 109

number of problems both provers solved. For the remainder of the section, we
discuss the results and describe some concrete examples.

One of the first uses of the global choice operator in Mizar is to define a
(first-order) choice operator on sets called choose [13].

definition

let S be set;

func choose S -> Element of S equals

the Element of S;

correctness;

end;

Table 1. Results on problem sets with 5min time limit

Total problems Satallax LEO-II Either

SimpGC 47 24 (51%) 28 (60%) 30 (64 %)

SimpFr 245 126 (52%) 88 (36%) 165 (67 %)

SimpFr pruned 245 159 (65%) 155 (63%) 192 (78 %)

SchJust 10192 5608 (55%) 1524 (15%) 6072 (60 %)

SchPfs 610 31 (5 %) 67 (11%) 81 (13 %)

Note that no proof is given for correctness, as Mizar recognizes that the
Element of S has type Element of S. Let us consider the corresponding higher-
order simple justification problem. The higher-order problem would include the
declaration of ε from Fig. 1. In addition, the fact that types of the form Element
of A are nonempty is given: ∀Aι.∃Bι.B∈̂A. The conjecture to justify is

ε(λAι.A∈̂c)∈̂c

for a fixed c. This, of course, follows immediately from the two axioms and both
Satallax and LEO-II can easily re-prove this simple justification.

Note that simply because a simple justification has a conclusion with a global
choice operator does not mean that the choice axiom plays a role in the justi-
fication. Indeed, for the two examples from the problem set SimpGC Satallax
proves but LEO-II does not, the proofs Satallax finds do not use the axiom
about ε. Furthermore, upon inspection it became clear that some problems nei-
ther prover could solve also do not require the axiom about ε. Consider the fol-
lowing fragment of a Mizar proof about group theory [12].

set a = the Element of G;

...

consider b such that

A4: H * a = {b} by A1;

h * a in H * a by A3,Th104;

then

A5: h * a = b by A4,TARSKI:def 1;

110 C.E. Brown and J. Urban

The final justification is essentially the definition of singleton. The only rea-
son the corresponding higher-order problem falls into class SimpGC is because
a is ε(λx.x∈̂(c G)) (where c is a function taking a group to its carrier set, left
implicit in the Mizar text). The fact that neither Satallax nor LEO-II could solve
this problem was due to the fact that there are too many extra (unnecessary)
axioms given in the generated problem. After pruning away the unnecessary
axioms (with the help of E prover on a corresponding first-order problem), both
Satallax and LEO-II can prove the pruned problem. LEO-II proves the pruned
problem within 8 s and Satallax proves the pruned problem in less than a second.

We now turn to the problem set SimpFr: simple justifications involving at
least one Fraenkel term, either in the conclusion or in one of the assumptions
MPTP included in the problem. There were 640 such examples in the four Mizar
articles we considered, but with experimentation it became clear that often the
Fraenkel term was in an assumption that was unnecessary for the proof. In
order to obtain a reasonable problem set, we used E on corresponding first-
order problems to obtain pruned versions of the 640 problems. (In cases where
E could not find the proof, we omitted the problem.) After pruning, there were
245 problems that still included a Fraenkel term. On each of these 245 problems,
we ran Satallax and LEO-II on both the original and pruned problems. On the
original versions, only 20 % of the problems could be solved by both provers,
whereas on the pruned versions, 50 % could be solved by both provers. This
suggests that better relevance filtering would be one of the most important
potential improvements.

We briefly examine two small examples involving Fraenkel terms. Consider
the following proof fragment from [10].

assume a in { x1 : x1 in A1 & not x1 in B1 or not x1 in A1 & x1 in B1 };

then ex x1 st a = x1 &

(x1 in A1 & not x1 in B1 or not x1 in A1 & x1 in B1);

In the context of this fragment, x1 ranges over elements of a nonempty set
X1. Mizar is able to verify the correctness of the last line from the first line
without any explicit references as this is simply the property of membership
in a Fraenkel term. In the corresponding higher-order problem, the elimination
principle replSepE1 is required for the justification. Satallax can prove the cor-
responding problem in less than a second. The first mode in the default strat-
egy schedule that finds the proof is one making use of pattern unification. In
particular, after replacing the outermost quantifiers of replSepE1 with existen-
tial variables A, F , P and Y, the proposition has the form:

Y ∈ replSep1 A F P → ∃xι.Ax ∧ Px ∧ Y = Fx.

All the occurrences of the existential variables are pattern occurrences, and so
pattern matching can be used to find the appropriate instances. In particular,
one axiom of the problem is

a ∈ replSep1 (λxι.x∈̂X) (λxι.x) (λxι.x ∈ A ∧ x /∈ B ∨ x /∈ A ∧ x ∈ B).

Higher-Order Goals from the MML 111

When the antecedent of the implication above is matched against this axiom,
the following instantiations result:

– Y := a
– A := λxι.x∈̂X
– F := λxι.x
– P := λxι.x ∈ A ∧ x /∈ B ∨ x /∈ A ∧ x ∈ B

Given these instantiations, the solution is immediate. Satallax can prove both
the pruned and unpruned version of this example in less than a second. LEO-II
timed out after five minutes on both versions.

We consider a simple justification requiring the replSepI1. Consider the
following proof fragment from [10]:

A2: a = x1 and
A3: P[x1];

Q[x1] by A1,A3;
hence thesis by A2;

where the thesis in the last step is

a in { z1 where z1 is Element of X1: Q[z1] }

As in the previous example, x1 ranges over elements of a nonempty set X1. In
the higher-order problem corresponding to the final simple justification (by A2),
the conjecture has the form a ∈ replSep1 (λxι.x∈̂X) (λxι.x) (λxι.Qx). In addi-
tion replSepI1, the axioms needed for the proof are x1∈̂X (using the type of
x1 in the Mizar article), a = x1 (from A2 in the proof fragment above), Qx1

(from the previous step in the proof fragment above) and the extra axiom
∀Xι.sethood (λxι.x∈̂X). Satallax requires roughly 6 s before reaching a mode in
the default strategy schedule that can solve this problem. The successful mode
requires less than a second to find the proof. Again, the mode makes use of pat-
tern unification to find the proper instantiations. LEO-II can also find the proof
in this example, and takes just under 6 s.

Lastly we turn to scheme justifications (SchJust) and full proofs of schemes
(SchPfs). In Sect. 4 we have already discussed an example of a scheme that
cannot be automatically proven (Separation from Replacement) by either prover.
In addition we saw that neither prover could even re-prove the relevant scheme
justification in the Mizar proof of Separation from Replacement within 5 min
using the default settings.

Satallax performed significantly better than LEO-II on scheme justifica-
tions, while LEO-II performed significantly better than Satallax on proofs of
full schemes. We consider one example of a scheme justification that Satallax
solved but LEO-II did not. We then consider an example of a full scheme that
LEO-II solved but Satallax did not.

112 C.E. Brown and J. Urban

The set operation X \ Y is defined in an early Mizar article [5], and the
following required existence proof is given:

defpred P[set] means not $1 in Y;

thus ex Z being set st for x holds x in Z iff x in X &P[x]

from Separation;

Note that the scheme justification makes use of the Separation scheme using
the set X and the predicate λx.x
∈ Y . Again, the higher-order instantiation
λx.x
∈ Y can be determined using pattern matching, and Satallax can re-prove
this in a fraction of a second using such a mode. With the default strategy
schedule, Satallax tries such a mode and solves the problem in 37 s. LEO-II
times out after 5 min.

A scheme LEO-II can fully prove but Satallax cannot is the following Mizar
scheme [13]:

scheme SubsetEx { A() -> non empty set, P[set] } :

ex B being Subset of A() st

for x being Element of A() holds x in B iff P[x]

This is again a form of Separation and is proven using the Separation scheme
already considered. The primary difference between the schemes is that the
new scheme SubsetEx asserts that the set has type Subset of A (notation for
Element of ℘A) and restricts the inner universal quantifier to Element of A. In
the corresponding higher-order problem, we must prove the formula

∃B.B∈̂℘A ∧ ∀x.x∈̂A → (x ∈ B ↔ Px)

from the higher-order formula

∀Qι∀Xι.∃B.∀x.x ∈ B ↔ x ∈ X ∧ Qx.

The solution is simple: instantiate the assumption with the Q := P and X :=
A giving an appropriate witness B for the conjecture. Some minor first-order
reasoning completes the proof. LEO-II can find the proof by doing some clause
normalization and calling E. It is E that does the “higher-order” instantiation
of P for Q and completes the proof. This is possible since the higher-order
problem, after being encoded into first-order, is still provable. (In particular, the
proof does not require β-reductions.) Satallax, on the other hand, does not solve
the problem and times out after 5 min. The minor structural differences between
the assumption and conclusion prevents pattern matching from suggesting the
instantiation P for Q. While P is among the possible instantiations considered
for Q, other possible instantiations are considered as well. The combination
of multiple possible instantiations and required first-order reasoning makes the
problem out of reach for the current version of Satallax.

Higher-Order Goals from the MML 113

6 Conclusion

We have described an extension of MPTP that creates higher-order theorem
proving problems from the MML. The resulting problems seem to present chal-
lenges for higher-order theorem provers. For example, even some of the easiest
problems become difficult if there are too many axioms, so better relevance filter-
ing is necessary. Even simple reasoning about Fraenkel terms seems to be more
difficult than one would expect, and so these examples may provide insights into
improvements that can be made to automated provers.

There are multiple possibilities for the translation of Fraenkel terms that
bind more than one set variable. We have implemented one way and suggested
another. Further experimentation will likely be helpful for determining a good
way to handle these cases.

The problems generated from scheme justifications and full proofs of schemes
turned out to show the different strengths and weaknesses of Satallax and LEO-
II. Hopefully such problem sets will lead to improvements in higher-order auto-
mated theorem provers. Given enough improvement on such problems, perhaps
higher-order automated provers could provide help to Mizar authors who make
use of the features of Mizar that go beyond first-order. In order to serve this
purpose, care would have to be taken that the automated provers do not search
for proofs that go beyond Mizar’s logic (e.g., make use of higher-order quantifiers
within instantiations). We leave such concerns to future work.

References

1. Bancerek, G.: On the characteristic and weight of a topological space. Formalized
Math. 13(1), 163–169 (2005)

2. Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order prover
LEO-II. J. Autom. Reasoning 55(4), 389–404 (2015)

3. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT prob-
lems. J. Autom. Reasoning 51(1), 57–77 (2013)

4. Church, A.: A formulation of the simple theory of types. J. Symbol. Logic 5, 56–68
(1940)

5. Committee, L.: Boolean properties of sets – definitions, April 2002. http://mizar.
org/JFM/EMM/xboole 0.html

6. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

7. Miller, D., Nadathur, G.: A logic programming approach to manipulating formulas
and programs. In: IEEE Symposium on Logic Programming. Salt Lake City (1987)

8. Schulz, S.: E - A Brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)
9. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the

TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)
10. Trybulec, A.: Domains and their Cartesian products. Formalized Math. 1(1), 115–

122 (1990)
11. Trybulec, A.: Tarski Grothendieck set theory. Formalized Math. 1(1), 9–11 (1990)
12. Trybulec, W.A.: Subgroup and cosets of subgroups. Formalized Math. 1(5), 855–

864 (1990)

http://mizar.org/JFM/EMM/xboole_0.html
http://mizar.org/JFM/EMM/xboole_0.html

114 C.E. Brown and J. Urban

13. Trybulec, Z.: Properties of subsets. Formalized Math. 1(1), 67–71 (1990)
14. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.

Reasoning 37(1–2), 21–43 (2006)
15. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A.,

Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–
215. Springer, Heidelberg (2003). doi:10.1007/3-540-36469-2 16

16. Urban, J.: MPTP - motivation, implementation, first experiments. J. Autom. Rea-
soning 33(3), 319–339 (2005). http://dx.org/10.1007/s10817-004-6245-1

http://dx.doi.org/10.1007/3-540-36469-2_16
http://dx.org/10.1007/s10817-004-6245-1

Surveys and Projects

Interoperability in the OpenDreamKit Project:
The Math-in-the-Middle Approach

Paul-Olivier Dehaye1(B), Mihnea Iancu2, Michael Kohlhase2,
Alexander Konovalov3, Samuel Lelièvre4, Dennis Müller2, Markus Pfeiffer3,

Florian Rabe2, Nicolas M. Thiéry4, and Tom Wiesing2

1 University of Zürich, Zürich, Switzerland
paul-olivier.dehaye@math.uzh.ch

2 Jacobs University, Bremen, Germany
3 University of St Andrews, St Andrews, Scotland

4 Université Paris-Sud, Orsay, France

Abstract. OpenDreamKit – “Open Digital Research Environment
Toolkit for the Advancement of Mathematics” – is an H2020 EU Research
Infrastructure project that aims at supporting, over the period 2015–
2019, the ecosystem of open-source mathematical software systems.
OpenDreamKit will deliver a flexible toolkit enabling research groups
to set up Virtual Research Environments, customised to meet the varied
needs of research projects in pure mathematics and applications.

An important step in the OpenDreamKit endeavor is to foster the
interoperability between a variety of systems, ranging from computer
algebra systems over mathematical databases to front-ends. This is the
mission of the integration work package. We report on experiments and
future plans with the Math-in-the-Middle approach. This architecture
consists of a central mathematical ontology that documents the domain
and fixes a joint vocabulary, or even a language, going beyond existing
systems such as OpenMath, combined with specifications of the func-
tionalities of the various systems. Interaction between systems can then
be enriched by pivoting around this architecture.

1 Introduction

From their earliest days, computers have been used in pure mathematics to
make tables, prove theorems (famously the four colour theorem) or, as with the
astronomer’s telescope, to explore new theories. Computer-aided experiments,
and the use of databases relying on computer calculations such as the Small
Groups Library in GAP, the Modular Atlas in group and representation theory,
or the L-functions and Modular Forms Database (LMFDB, see later), are part of
the standard toolbox of the pure mathematician. Certain areas of mathematics
completely depend on these libraries. Computers are also increasingly used to
support collaborative work and education.

In the last decades we witnessed the emergence of a wide ecosystem of open-
source tools to support research in pure mathematics. This ranges from special-
ized to general purpose computational tools such as GAP, PARI/GP, LinBox,
c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 117–131, 2016.
DOI: 10.1007/978-3-319-42547-4 9

118 P.-O. Dehaye et al.

MPIR, Sage, or Singular, via online databases like the LMFDB or online
services like Wikipedia, arXiv, to webpages like MathOverflow. A great oppor-
tunity is the rapid emergence of key technologies, in particular the Jupyter
(previously IPython) platform for interactive and exploratory computing which
targets all areas of science.

This has proven the viability and power of collaborative open-source develop-
ment models, by users and for users, even for delivering general purpose systems
targeting large audiences such as researchers, teachers, engineers, amateurs, and
others. Yet some critical long term investments, in particular on the technical
side, are in order to boost the productivity and lower the entry barrier:

– Streamlining access, distribution, portability on a wide range of platforms,
including High Performance Computers or cloud services.

– Improving user interfaces, in particular in the promising area of collaborative
workspaces as those provided by SageMathCloud.

– Lowering barriers between research communities and promoting dissemina-
tion. For example make it easy for a specialist of scientific computing to use
tools from pure mathematics, and vice versa.

– Bringing together the developer communities to promote tighter collaboration
and symbiosis, accelerate joint development, and share best practices.

– Structure the development to outsource as much of it as possible to larger
communities, and focus manpower on core specialities: the implementation of
mathematical algorithms and databases.

– And last but not least: Promoting collaborations at all scales to further
improve the productivity of researchers in pure mathematics and applications.

OpenDreamKit – “Open Digital Research Environment Toolkit for the
Advancement of Mathematics” [ODK] – is a project funded under the European
H2020 Infrastructure call [EI] on Virtual Research Environments, to work on
many of these problems.

In Sect. 2, we will introduce the OpenDreamKit project to establish the
context for the “Math-in-the-Middle” (MitM) integration approach described
in Sect. 3. The remaining sections then elucidate the approach by presenting
first experiments and refinements of the chosen integration paradigm: Sect. 4
details how existing knowledge representation and data structures can be repre-
sented as MitM interface theories with a case study of equipping the LMFDB
with a MitM-based programming interface. Section 5 discusses system integra-
tion between GAP and Sage and how this can be routed through a MitM
ontology. Section 6 concludes the paper and discusses future work.

2 The OPENDREAMKIT Project (2015–2019)

The OpenDreamKit project runs for four years, starting in September 2015,
and involves about 50 people spread over 15 sites in Europe, with a total budget
of 7.6 million euros. The largest portion of that is devoted to employing an

Interoperability in the OpenDreamKit Project 119

average of 11 researchers and developers working full time on the project, while
the other participants contribute the equivalent of six people working full time.

OpenDreamKit’s goal is to develop Virtual Research Environments (VRE),
that is online services enabling groups of researchers, typically spread across
many countries, to work collaboratively on a per project basis. Rather than
constructing a large monolithic VRE, we have designed our proposal around
the long-term investments listed in the previous section, working on the large
scale yet modular integration of mathematical software. Our goal is a modular,
interoperable, and customisable VRE toolkit built out of relatively modest com-
ponents, interfaced through our approach to work on the grease to make this
work. According to the funding scheme, the project addresses, besides its techni-
cal goals, aspects such as outreach, dissemination, or tools to support teaching.

An innovative aspect of the OpenDreamKit project is that its prepara-
tion and management happens, as much as is practical and without infringing
on privacy, in the open. For example, most documents, including the proposal
itself, are version controlled on public repositories and progress on tasks and
deliverables is tracked using public issues (see [ODK]). This has proven a strong
feature to collaborate tightly with the community and get early feedback.

In practice, OpenDreamKit’s work plan consists of several work packages:
component architecture (modularity, packaging, distribution, deployment), user
interfaces (Jupyter interactive notebook interfaces, 3D visualization, documen-
tation tools), high performance mathematical computing (especially on multi-
core/parallel architectures), a study of social aspects of collaborative software
development, and a package on data/knowledge/software-bases.

The latter package focuses on the identification and extension of ontologies
and standards to facilitate safe and efficient storage, reuse, interoperation and
sharing of rich mathematical data, whilst taking provenance and citability into
account. Its outcome will be a component architecture for semantically sound
data archival and sharing, and integrate computational software and databases.
The aim is to enable researchers to seamlessly manipulate mathematical objects
across computational engines (e.g. switch algorithm implementations from one
computer algebra system to another), front end interaction modes (database
queries, notebooks, web, etc.) and even backends (e.g. distributed vs. local).

In this paper, we discuss the general approach chosen to develop this seman-
tically aware component architecture.

3 Integrating Mathematical Software Systems
via the Math-in-the-Middle Approach

As discussed before, we aim to make our components interoperable at a mathe-
matical level. In particular, we have to establish a common meaning space that
will allow us to share computation, visualization of the mathematical concepts,
objects, and models between the respective systems. This mediation problem
is well understood in information systems [Wie92], and has for instance been
applied to natural language translation via a hub language [KW03]. Here, our

120 P.-O. Dehaye et al.

hub is mathematics itself, and the vocabulary (or even language) admits fur-
ther formalisation that translates into direct gains in interoperability. For this
reason, neither OpenMath [Bus+04] nor MathML [Aus+03] have the practical
expressivity needed for our intended applications.

3.1 A Common Meaning Space for Interoperability

One problem is that the software systems in OpenDreamKit cover different
mathematical concepts, and if there are overlaps, their models for them differ,
and the implementing objects have different functionalities. This starts with
simple naming issues (e.g. elliptic curves are named ec in the LMFDB, and
as EllipticCurve in Sage), persists through the underlying data structures and
in differing representations in the various tables of the LMFDB, and becomes
virulent at the level of algorithms, their parameters, and domains of applicability.

To obtain a common meaning space for a VRE, we have the three well-known
approaches in Fig. 1.

peer to peer open standard industry standard

A B

C

D

EF

G

H

A B

C

D

EF

G

H

S

A B

C

D

EF

G

H

n2/2 translations 2n translations 2n− 2 translations
symmetric symmetric asymmetric

Fig. 1. Approaches for many-systems interoperability

The first does not scale to a project with about a dozen systems, for the
third there is no obvious contender in the OpenDreamKit ecosystem. Fortu-
nately, we already have a “standard” for expressing the meaning of mathematical
concepts – mathematical vernacular: the language of mathematical commu-
nication, and in fact all the concepts supported in the OpenDreamKit VRE
are documented in mathematical vernacular in journal articles, manuals, etc.
The obvious problem is that mathematical vernacular is too (i) ambiguous: we
need a human to understand structure, words, and symbols (ii) redundant: every
paper introduces slightly different notions.

Therefore we explore an approach where we flexiformalize, i.e. partially
formalize; see [Koh13] mathematical vernacular to obtain a flexiformal ontology
of mathematics that can serve as an open communication vocabulary. We call
the approach the Math-in-the-Middle (MitM) Strategy for integration and
the ontology the MitM ontology.

Interoperability in the OpenDreamKit Project 121

A B

C

D

EF

G

H

S

a b
c

d
ef

g

h

Fig. 2. Interface theories (Color
figure online)

Before we go into any detail on this ontol-
ogy, and how it induces a uniform mean-
ing space – see Sect. 4 for an example – we
have to address another problem: the descrip-
tions in the MitM ontology must simulta-
neously be system-near to make interfacing
easy for systems, and serve as an interoper-
ability standard – i.e. be general and stable.
If we have an ontology system that allows
modular/structured ontologies, we can solve
this apparent dilemma by introducing inter-
face theories [KRSC11], i.e. ontology mod-
ules (the light purple circles in Fig. 2) that
are at the same time system-specific in their description of mathematical con-
cepts – near the actual representation of the system and part of the greater
MitM ontology (depicted by the cloud in Fig. 2) as they are connected to the
core MitM ontology (the blue circle) by views we call interface views. The
MitM approach stipulates that interface theories and interface views are main-
tained and released together with the respective systems, whereas the core MitM
ontology represents the mathematical scope of the VRE and is maintained with
it. In fact in many ways, the core MitM ontology is the conceptual essence of
the mathematical VRE.

3.2 Realizing and Utilizing a MitM Ontology

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC
f2h

add

mult

folsem

mod

Fig. 3. A OMDoc/MMT theory
graph

Our current candidate for representing the
MitM ontology is the OMDoc/MMT for-
mat [Koh06,MMT]. OMDoc/MMT is an
ontology format specialized for represent-
ing mathematical knowledge modularly in
a theory graph: theories are collections of
declarations of concepts, objects, and their
properties that are connected by truth-
preserving mappings called theory mor-
phisms. The latter come in two forms:
inclusions and structures that essentially
correspond to object-oriented inheritance (direct inheritance and inheritance
modulo renaming and identification of symbols), and views that connect pre-
existing theories – in these all axioms of the source theory have be to proven in
the target theory. See [RK13] for a full account. Figure 3 shows an example of a
theory graph. It has three layers:

(i) the (bottom) domain level which specifies mathematical domains as theo-
ries; here parts of elementary algebra. The hooked arrows are inclusions for
inheritance, while the regular arrows are named structures that induce the
additive and multiplicative structures of a ring.

122 P.-O. Dehaye et al.

(ii) the logic level represents the languages we use for talking about the prop-
erties of the objects at the domain level – again as theories: the meta-theories
of the domain-level ones – the dotted arrows signify the meta-relation. At
this level, we also have inclusions and views (the squiggly arrows) which cor-
respond to logic translations (f2h) and interpretations into foundational
theories like set theory (here ZFC). Incidentally models can be represented
as views into foundations.

(iii) The top layer contains theories that act as metalogics, e.g. the Logical
Framework LF and extensions which can be used to specify logics and their
translations.

The theory graph structure is very well-suited to represent heterogeneous collec-
tions of mathematical knowledge, because views at the domain level can be used
to connect differing but equivalent conceptualizations and views at the logic level
can be used to bridge the different foundations of the various systems. The top
level is only indirectly used in the MitM framework: it induces the joint meaning
space via the meta-relation.

If we apply OMDoc/MMT to the MitM architecture, we arrive at the situa-
tion in Fig. 4, where we drill into the MitM information architecture from Fig. 2,
but restrict at this stage to three systems from the OpenDreamKit project. In
the middle we see the core MitM ontology (the blue cloud) as an OMDoc/MMT
theory graph connected to the interface theories (the purple clouds) via MitM
interface views. Conceptually, the systems in OpenDreamKit consist of three
main components:

MathF

CompF

PyF C++F

Sage GAP

EC

. . .

SEC

. . .

GEC

. . .

LEC . . .

SAGE

Algorithms

Database

Knowledge

Abstract Classes

GAP

Algorithms

Database

Knowledge

AbstractClasses

LMFDB
MongoDBKnowls Abstract Classes

induce induce

induce

generategenerate

refactor refactor

refactor

Fig. 4. The MitM paradigm in detail. PyF, C++F and CompF are (basic) foundational
theories for Python, C++ and a generic computational model. SEC, LEC and GEC
are theories for Sage, LMFDB and GAP elliptic curves. (Color figure online)

Interoperability in the OpenDreamKit Project 123

(i) a Knowledge Representation component that provides data structures for the
objects modeling mathematical concepts and their properties.

(ii) a DataBase component that provides mass storage for objects, and
(iii) a library of algorithms that operate on these.

To connect a system to an MitM-based VRE, the knowledge representation com-
ponent is either refactored so that it can generate interface theories, or a schema-
like description of the underlying data structures is created manually from which
abstract data structures for the system can be generated automatically – in this
version the interface theories act as an Interface Description Language.

In this situation there are two ways to arrive at a greater MitM ontology:
the OpenDreamKit project aims to explore both: either (i) standardizing a
core MitM by refactoring the various interface theories where they overlap, or
(ii) flexiformalizing the available literature for a core MitM ontology. For (i),
the MitM interface views emerge as refinements that add system-specific details
to the general mathematical concepts1. For (ii), we have to give the interface
views directly.

To see that this architecture indeed gives us a uniform meaning space, we
observe that the core MitM ontology uses a mathematical foundation (presum-
ably some form of set theory), whereas the interface theories also use system-
specific foundations that describe aspects of the computational primitives of
the respective systems. We have good formalizations of the mathematical foun-
dations already; first steps towards a computational ones have been taken
in [KMR13].

Our efforts also fit neatly alongside similar efforts underway across the sci-
ences to standardize metadata formats (for instance through the Research Data
Alliance’s Typing Registry Working Group [Rda]), except for a typically much
higher complexity in the typing since our objects of study are sometimes seen
as types and sometimes as instances (think of groups for instance).

4 LMFDB Knowledge and Interoperability

The L-functions and modular forms database is a project involving dozens of
mathematicians who assemble computational data about L-functions, modular
forms, and related number theoretic objects. The main output of the project
is a website, hosted at http://www.lmfdb.org, that presents this data so that
it can serve as a reference for research efforts, and is accessible for postgradu-
ate students. The mathematical concepts underlying the LMFDB are extremely
complex and varied, so part of the effort has been focused on how to relay knowl-
edge, such as mathematical definitions and their relationships, to data and soft-
ware. For this purpose, the LMFDB has developed so-called knowls, which are
1 We use the word “interface theory” with a slightly different intention when compared

to the original use in [KRSC11]: There the core MitM ontology would be an interface
between the more specific implementations in the systems, whereas here we use
the “interface theories” as interfaces between systems and the core MitM ontology.
Technically the same issues apply.

http://www.lmfdb.org

124 P.-O. Dehaye et al.

a technical solution to present LATEX-encoded information interactively, heavily
exploiting the concept of transclusion. The end result is a very modular and
highly interlinked set of definitions in mathematical vernacular which can be
easily anchored in vastly different contexts, such as an interface to a database,
to browsable data, or as constituents of an encyclopedia [Lmfc].

The LMFDB code is primarily written in Python, with some reliance on
Sage for the business logic. The backend uses the NoSQL document database
system MongoDB [Lmfa]. Again, due to the complexity of the objects consid-
ered, many idiosyncratic encodings are used for the data. This makes the whole
data management lifecycle particularly tricky, and dependent on different select
groups of individuals for each component.

As the LMFDB spans the whole “vertical” workflow, from writing software,
to producing new data, up to presenting this new knowledge, it is a perfect test
case for a large scale case study of the MitM approach. Conversely, a semantic
layer would be beneficial to its activities across data, knowledge and software,
which it would help integrate more cohesively and systematically.

Among the components of the LMFDB, elliptic curves stand out in the best
shape, and a source of best practices for other areas. We have generated MitM
interface theories for LMFDB elliptic curves by (manually) refactoring and flexi-
formalizing the LATEX source of knowls into STEX (see Listing 1.1 for an excerpt),
which can be converted into flexiformal OMDoc/MMT automatically. The MMT
system can already type-check the definitions, avoiding circularity and ensuring
some level of consistency in their scope and make it browsable through Math-
Hub.info, a project developed in parallel to MMT to host such formalisations.

Listing 1.1.STEX flexiformalization of an LMFDB knowl (original: Lmfd)

\begin{mhmodnl}{minimal−Weierstrass−model}{en}
A \defi{minimal} \trefii{Weierstrass}{model} is one for which
$\absolutevalue\wediscriminantOp$ is minimal among all Weierstrass models
for the same curve. For elliptic curves over \RationalNumbers, minimal
models exist, and there is a unique minimal model which satisfies the
additional constraints $\minset{\livar{a}1,\livar{a}3}{\set{0,1}}$, and
$\inset{\livar{a}2}{\set{−1,0,1}}$.
This is defined as the reduced minimal Weierstrass model of the elliptic curve.

\end{definition}
\end{mhmodnl}

The second step consisted of translating these informal definitions into pro-
gressively more exhaustive MMT formalisations of mathematical concepts (see
Listing 1.2). The two representations are coordinated via the theory and symbol
names – we can see the STEX representation as a human-oriented documentation
of the MMT.

Interoperability in the OpenDreamKit Project 125

Listing 1.2. MMT formalisation of elliptic curves and their Weierstrass models

theory minimal Weierstrass model : odk:?Math =

include ?elliptic curve D

minimal : tm Ws model → tm Ws model D

is minimal : tm Ws model → prop \US = [A] (minimal A)
.= A D

minimality idempotence : {A} � minimal (minimal A)
.= minimal A D

minimality of minimal Ws model :

{A} � is minimal (minimal Ws model A) D
injective minimal Ws model :

{A,B} � minimal Ws model A
.= minimal Ws model B → � A

.= B D

M

Finally, we have to integrate computational data into the interface theo-
ries. Based on recent ongoing efforts [Lmfb] to document the LMFDB “data
schemata” we established OMDoc/MMT theories that link the database fields
to their data types (string vs. float vs. integer tuple, for instance) and mathemat-
ical types (elliptic curves or polynomials) – the latter based on the vocabulary
in the interface theories generated from the LMFDB knowls. This schema the-
ory is complemented by a theory on functorial hence composable MMT codecs,
which in turn acts as a specification for a collection of implementations in var-
ious programming languages (currently Python, Scala, and C++ for Sage,
MMT, and GAP respectively) which are first instances of a computational
foundation (see Sect. 3). For instance, one can compose two MMT codecs, say
polynomial-as-reversed-list and rational-as-tuple-of-int, to signify that the data
[(2, 3), (0, 1), (4, 1)] is meant to represent the polynomial 4x2 + 2/3. Of course,
these codecs could be further decomposed (e.g. for signaling which variable name
to use). The initial cost of developing these codecs is high, but the clarity gained
in documentation is valuable, they are highly reusable, and they drastically
expand the range of tooling that can be built around data management.

A Typical Application. Based on these MitM interface theories we can generate
I/O interfaces that translate between the low-level LMFDB API, which delivers
raw MongoDB data in JSON format into MMT expressions that are grounded
in the interface theories. This ties the LMFDB database into the MitM architec-
ture transparently. As a side effect, this opens up the LMFDB to programmatic
queries via the MMT API, which can be queried and can then relay them to the
LMFDB API directly and transparently.

5 Distributed Collaboration with GAP/Sage

Another aspect of interoperability in a mathematical VRE is the possibility of
distributed multisystem computations, where e.g. a given system may decide to
delegate certain subcomputations or reasoning tasks to other systems.

There are already a variety of peer-to-peer interfaces between systems in the
OpenDreamKit project (see Fig. 1), which are based on the handle paradigm;

126 P.-O. Dehaye et al.

for example Sage includes, among others, interfaces for GAP, Singular, and
PARI. In this paradigm, when a system A delegates a calculation to a system
B, the result r of the calculation is not converted to a native A object; instead
B just returns a handle h (or reference) to the object r. Later, A can run
further calculations with r by passing it as argument to functions or methods
implemented by B. Some advantages of this approach are that we can avoid
the overhead of back and forth conversions between A and B, and that we can
manipulate objects of B from A, even if they have no native representation in A.

The next desirable feature is for the handle h to behave in A as if it was a
native A object; in other words, one wants to adapt the API satisfied by r in B
to match the API for the same kind of objects in A. For example, the method
call h.cardinality() on a Sage handle h to a GAP object G should trigger in
GAP the corresponding function call Size(G).

This can be implemented using the classical adapter pattern, mapping calls to
Sage’s method to corresponding GAP methods. Adapter classes have already
been implemented for certain types of objects, like Sage’s PermutationGroup
or MatrixGroup. However, this implementation lacks modularity: for example,
if h is a handle to a mere set S, Sage cannot use the adapter method that maps
h.cardinality() to Size(S), because this adapter method is only available in
the above two adapter classes.

To get around this problem we have worked on a more semantic integration,
where adapter methods are made aware of the type hierarchies of the respective
systems, and defined at the highest available level of generality, as in Listing 1.3.

Listing 1.3. A semantic adapter method in Sage

class Sets: # Everything generic about sets in Sage
class GAP: # Adapter methods relevant to Sets in the Sage−Gap interface

class ParentMethods: # Adapter methods for sets
def cardinality(self): # The adapter for the cardinality method

return self.gap().Size().sage()
class ElementMethods: # Adapter methods for set elements

...
class MorphismMethods: # Adapter methods for set morphisms

...
class Groups: # Everything generic about groups in Sage

This automatically includes features defined at a more general level

This peer-to-peer approach however does not scale up to a dozen systems.
This is where the MitM paradigm comes to the rescue. With it, the task is
reduced to building interface theories and interface views into the core MitM
ontology in such a way that the adapter pattern can be made generic in terms
of the MitM ontology structure, without relying on the concrete structure of
the respective type systems. Then the adapter methods for each peer-to-peer
interface can be automatically generated. In our example the adapter method
for cardinality can be constructed automatically as soon as the MitM interface
views link the cardinality function in the Sage interface theory on Sets with
the Size function in the corresponding interface theory for GAP.

Interoperability in the OpenDreamKit Project 127

We will now show first results of our experiments with interface theories and
interface views, including several applications beyond the generation of interface
theories that support distributed computation for Sage and GAP.

5.1 Semantics in the Sage Category System

The Sage library includes 40k functions and allows for manipulating thousands
of different kinds of objects. In any large system it is critical to tame code bloat
by

(i) identifying the core concepts describing common behavior among the objects;
(ii) implementing generic operations that apply on all objects having a given

behavior, with appropriate specializations when performance calls for it;
(iii) designing or choosing a process for selecting the best implementation avail-

able when calling an operation objects.

Following mathematical tradition and the precedent of the Axiom, Fricas,
or MuPAD systems, Sage has developed a category-theory-inspired “category
system”, and found a way to implement it on top of the underlying Python
object system [Dev16,SC]. In short, a category specifies the available oper-
ations and the axioms they satisfy. This category system models taxonomic
knowledge from mathematics explicitly and uses it to support genericity, control
the method selection process, structure the code and documentation, enforce
consistency, and provide generic tests.

@semantic(mmt=”sets”)
class Sets:

class ParentMethods:
@semantic(mmt=”card?card”, gap=”Size”)
@abstractmethod
def cardinality(self):

”Return the cardinality of ‘‘self‘‘”

Fig. 5. An annotated category in Sage

To generate inter-
face theories from the
Sage category system,
we are experimenting
with a system of anno-
tations in the Sage
source files. Consider for
instance the situtation
in Fig. 5 where we have
annotated the Sets()
category in Sage with
@semantic lines that state correspondences to other interface theories. From
these the Sage-to-MMT exporter can generate the respective interface theories
and views.

In ongoing experiments, variants of the annotations are tested for annotating
existing categories without touching their source files and providing the signature
or the corresponding method names in other systems when this information has
not yet been formalized elsewhere.

5.2 Exporting the GAP Knowledge: Type System Documentation

As in Sage, the GAP type system encodes a wealth of mathematical knowledge,
which can influence method selection. For example establishing that a group is

128 P.-O. Dehaye et al.

nilpotent will allow for more efficient methods to be run for finding its centre. The
main difference between Sage and GAP lies in the method selection process. In
Sage the operations implemented for an object and the axioms they satisfy are
specified by its class which, together with its super classes, groups syntactically
all the methods applicable in this context. In GAP, this information is instead
specified by the truth-values of a collection of independent filters, while the
context of applicability is specified independently for each method. Breuer and
Linton describe the GAP type system in [BL] and the GAP documentation
[Gap] also contains extensive information on the types themselves.

Fig. 6. The GAP knowledge graph.

GAP allows some introspection
of this knowledge after the sys-
tem is loaded: the values of those
attributes and properties that are
unknown on creation, can be com-
puted on demand, and stored for
later reuse.

As a first step in generating
interface theories for the MitM
ontology, we have developed tools
to access mathematical knowledge
encoded in GAP, such as intro-
spection inside a running GAP ses-
sion, export to JSON to import
to MMT, and export as a graph
for visualisation and exploration.
These will become generally avail-
able in the next GAP release.
The JSON output of the GAP
object system with default pack-
ages is currently around 11 MB,
and represents a knowledge graph
with 540 vertices, 759 edges and 8
connected components, (see Figs. 6
and 7). If all packages are loaded,
this graph expands to 1616 ver-
tices, 2178 edges and 17 connected
components.

There is, however, another
source of knowledge in the GAP
universe: the documentation, which
is provided in the GAPDoc format [LN12]. Besides the main manuals, GAPDoc
is adopted by 97 out of the 130 packages currently redistributed with GAP.
Conventionally GAPDoc is used to build text, PDF and HTML versions of the
manual from a common source given in XML. The reference manual has almost
1400 pages and the packages add hundreds more.

Interoperability in the OpenDreamKit Project 129

Fig. 7. The GAP knowledge graph (fragment).

The GAPDoc sources classify documentation by the type of the documented
object (function, operation, attribute, property, etc.) and index them by system
name. In this sense they are synchronized with the type system (which e.g. has
the types of the functions) and can be combined into flexiformal OMDoc/MMT
interface theories, just like the ones for LMFDB in Sect. 4. This conversion is
currently under development and will lead to a significant increase of the scope
of the MitM ontology.

As a side-effect of this work, we discovered quite a few inconsistencies in the
GAP documentation which came from a semi-automated conversion of GAP
manuals from the TEX-based manuals used in GAP 4.4.12 and earlier. We devel-
oped the consistency checker for the GAP documentation, which extracts type
annotations from the documented GAP objects and compares them with their
actual types. It immediately reported almost 400 inconsistencies out of 3674
manual entries, 75 % of which have been eliminated in the subsequent cleanup.

6 Conclusion

In this paper we have presented the OpenDreamKit project and the “Math-in-
the-Middle” approach it explores for mitigating the system integration problems
inherent in combining an ecosystem of open source software systems into a coher-
ent mathematical virtual research environment. The MitM approach relies on a
central, curated, flexiformal ontology of the mathematical domains to be covered
by the VRE together with system-near interface theories and interface views to
the core ontology that liaise with the respective systems. We have reported on
two case studies that were used to evaluate the approach: an interface for the
LMFDB, and a more semantic handle interface between GAP and Sage.

130 P.-O. Dehaye et al.

Even though the development of the MitM is still at a formative stage, these
case studies show the potential of the approach. We hope that the nontrivial cost
of curating an ontology of mathematical knowledge and interface views to the
interface theories will be offset by its utility as a resource, which we are currently
exploring; the unification of the knowledge representation components

1. enables VRE-wide domain-centered (rather than system-centered) documen-
tation;

2. can be leveraged for distributed computation via uniform protocols like the
SCSCP [HR09] and MONET-style service matching [CDT04] (the absence of
content dictionaries – MitM theories – was the main hurdle that kept these
from gaining more traction);

3. will lead to the wider adoption of best practices in mathematical knowledge
management in the systems involved; in fact, this is already happening.

Whether in the end the investment into the MitM will pay off also depends on
the quality and usability of the tools for mathematical knowledge management.
Therefore we invite the CICM community to interact with and contribute to
the OpenDreamKit project, on this work package and the others. Possible
contributions include

1. interfacing another system to the MitM architecture via interface theories
2. contributing to the MitM core ontology
3. MitM-refactoring existing integrations of mathematical software systems.

Acknowledgements. The authors gratefully acknowledge the other participants of
the St Andrews workshop, in particular John Cremona, Luca de Feo, Steve Linton, and
Viviane Pons, for discussions and experimentation which clarified the ideas behind the
math-in-the-middle approach.

We acknowledge financial support from the OpenDreamKit Horizon 2020 European
Research Infrastructures project (#676541), from the EPSRC Collaborative Compu-
tational Project CoDiMa (EP/M022641/1) and from the Swiss National Science Foun-
dation grant PP00P2 138906.

References

[Aus+03] Ausbrooks, R.: Mathematical Markup Language (MathML) v. 2.0. In:
World Wide Web Consortium Recommendation (2003)

[BL] Breuer, T., Linton, S.: The GAP 4 type system: organising algebraic algo-
rithms. In: Proceedings of the 1998 International Symposium on Symbolic
and Algebraic Computation, ISSAC 1998, pp. 38–45. ACM

[Bus+04] Buswell, S., et al.: The Open Math standard. Technical report Version 2.0.
The Open Math Society (2004)

[CDT04] Caprotti, O., Dewar, M., Turi, D.: Mathematical Ser vice Matching Using
Description Logic and OWL. Technical report, The MONET Consortium
(2004)

[Dev16] The Sage Developers. SageMath the Sage Mathematics Software System
(Version 7.0) (2016). http://www.sagemath.org

http://www.sagemath.org

Interoperability in the OpenDreamKit Project 131

[EI] EINFRA-9: e-Infrastructure for Virtual Research Environment. http://ec.
europa.eu/research/participants/portal/desktop/en/opportunities/h2020/
topics/2144-einfra-9-2015.html

[Gap] GAP-Groups, Algorithms, Programming, Version 4.8.2. The GAP Group
(2016). http://www.gap-system.org

[HR09] Horn, P., Roozemond, D.: OpenMath in SCIEnce: SCSCP and POPCORN.
In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held
as Part of CICM 2009. LNCS (LNAI), vol. 5625, pp. 474–479. Springer,
Heidelberg (2009)

[KMR13] Kohlhase, M., Mance, F., Rabe, F.: A universal machine for biform theory
graphs. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 82–97. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39320-4

[Koh06] Kohlhase, M.: OMDoc–An Open Markup Format for Mathematical Docu-
ments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006).
http://omdoc.org/pubs/omdoc1.2.pdf

[Koh13] Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A., et al. (eds.)
14th International Workshop on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2012), pp. 30–36. IEEE Press, Timisoara
(2013)

[KRSC11] Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A foundational view on inte-
gration problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe,
F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 107–122.
Springer, Heidelberg (2011)

[KW03] Kanayama, H., Watanabe, H.: Multilingual translation via annotated hub
language. In: Proceedings of MT-Summit IX, pp. 202–207 (2003)

[Lmfa] LMFDB GitHub repository. https://github.com/LMFDB/lmfdb
[Lmfb] LMFDB inventory GitHub repository. https://github.com/LMFDB/

lmfdb-inventory
[Lmfc] LMFDB Knowledge Database. http://lmfdb.org/knowledge/
[Lmfd] LMFDB Knowledge Database entry for Minimal Weierstrass equation over

the rationals. http://lmfdb.org/knowledge/show/ec.q.minimal weierstrass
equation

[LN12] Lübeck, F., Neunhöffer, M.: GAPDoc, A Meta Package for GAP Documen-
tation, Version 1.5.1 (2012). http://www.math.rwth-aachen.de/∼Frank.
Luebeck/GAPDoc

[MMT] Rabe, F.: The MMT Language and System. https://svn.kwarc.info/repos/
MMT/doc/html. Accessed 11 Oct 2011

[ODK] OpenDreamKit Open Digital Research Environment Toolkit for the
Advancement of Mathematics. http://opendreamkit.org

[Rda] Research Data Alliance Type Registries Working Group. https://
rd-alliance.org/groups/data-type-registries-wg.html

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54
(2013)

[SC] Thiéry, N.M., et al.: Elements, parents, categories in Sage: a primer.
http://combinat.sagemath.org/doc/reference/categories/sage/categories/
primer.html

[Wie92] Wiederhold, G.: Mediators in the architecture of future information sys-
tems. Computer 25(3), 38–49 (1992)

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://www.gap-system.org
http://dx.doi.org/10.1007/978-3-642-39320-4
http://omdoc.org/pubs/omdoc1.2.pdf
https://github.com/LMFDB/lmfdb
https://github.com/LMFDB/lmfdb-inventory
https://github.com/LMFDB/lmfdb-inventory
http://lmfdb.org/knowledge/
http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation
http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
https://svn.kwarc.info/repos/MMT/doc/html
https://svn.kwarc.info/repos/MMT/doc/html
http://opendreamkit.org
https://rd-alliance.org/groups/data-type-registries-wg.html
https://rd-alliance.org/groups/data-type-registries-wg.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html

Formal Dependability Modeling and Analysis:
A Survey

Waqar Ahmad1(B), Osman Hasan1, and Sofiène Tahar2

1 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology, Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk
2 Electrical and Computer Engineering Department,

Concordia University, Montreal, Canada
tahar@ece.concordia.ca

Abstract. Dependability is an umbrella concept that subsumes many
key properties about a system, including reliability, maintainability,
safety, availability, confidentiality, and integrity. Various dependability
modeling techniques have been developed to effectively capture the fail-
ure characteristics of systems over time. Traditionally, dependability
models are analyzed using paper-and-pencil proof methods and computer
based simulation tools but their results cannot be trusted due to their
inherent inaccuracy limitations. The recent developments in probabilis-
tic analysis support using formal methods have enabled the possibility of
accurate and rigorous dependability analysis. Thus, the usage of formal
methods for dependability analysis is widely advocated for safety-critical
domains, such as transportation, aerospace and health. Given the com-
plementary strengths of mainstream formal methods, like theorem prov-
ing and model checking, and the variety of dependability models judging
the most suitable formal technique for a given dependability model is
not a straightforward task. In this paper, we present a comprehensive
review of existing formal dependability analysis techniques along with
their pros and cons for handling a particular dependability model.

Keywords: Reliability Block Diagrams · Fault Tree · Markov Chain ·
Petri Nets · Model Checking · Higher-order Logic · Theorem Proving

1 Introduction

The rapid advancement in technology in the past few decades has enabled us
to develop many sophisticated systems that range from ubiquitous hand-held
devices (like cell phones and tablets) to high-end computing equipment used in
aircrafts, power systems, nuclear plants and healthcare devices. Ensuring the

The original version of this chapter was revised. The spelling of the author
Waqar Ahmad has been corrected. The erratum to this chapter is available at
DOI: 10.1007/978-3-319-42547-4 13

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 132–147, 2016.
DOI: 10.1007/978-3-319-42547-4 10

http://dx.doi.org/10.1007/978-3-319-42547-4_13

Formal Dependability Modeling and Analysis: A Survey 133

reliable functioning of these sophisticated systems is a major concern for design
engineers. This concern is greatly amplified for safety-critical systems where a
slight malfunction in the system may endanger human lives or lead to heavy
financial set-backs. In order to avoid such scenarios beforehand, several depend-
ability modeling techniques have been developed that can effectively model the
failure characteristics of a system and thus analyze its failure behavior.

Dependability is primarily defined as the ability of a system to deliver service
that can justifiably be trusted [1]. Dependability is an umbrella concept which is
evolved from reliability and availability considerations [1]. Many authors describe
dependability of a system as a set attributes, such as reliability, maintainability,
safety, availability, confidentiality, and integrity [2]. Some of these attributes,
i.e. reliability and availability, are quantitative whereas some are qualitative, for
instance, safety [1].

Reliability is defined as the probability of a system or a sub-component func-
tioning correctly under certain conditions over a specified interval of time [1].
Availability is a closely related concept to reliability and it can be defined as the
probability that a component will be available when demanded [1]. To under-
stand the difference between reliability and availability, it is important to realize
that reliability refers to failure-free operation during an interval, while availabil-
ity refers to failure-free operation at a given instant of time [1]. Availability can
be viewed as a special case of reliability and is thus commonly considered as an
attribute of reliability [3]. The availability of a system is typically measured as a
function of reliability and maintainability, which is defined as the probability of
performing a successful repair action of a system under a given time and stated
conditions [1]. Additionally, if we keep the maintainability measure constant,
the availability of the system is directly proportional to the reliability of the
system [4]. This paper mainly focuses on reliability and availability attributes of
dependability, since maintainability can be considered as a part of availability.

The first step in conducting the dependability analysis is the calculation
of basic metrics of reliability and availability, such as mean-time to failure
(MTTF) [1], mean-time between failure (MTBF) [1] and mean-time to repair
(MTTR) [1], at the individual component level of the given system. The next
step is the selection of an appropriate dependability modeling technique. Some
of the widely used dependability modeling techniques include Reliability Block
Diagrams (RBD) [5], Fault Trees (FT) [6] and Markov chains (MC) [7]. The
selection among these modeling techniques depends upon numerous factors,
which include the level of available details, size and complexity of the given
system. These modeling techniques allow us to estimate the reliability and avail-
ability of the system at the system level and play a particularly useful role
at the design stage of a system for scrutinizing the design alternatives with-
out building the actual system. Once the modeling technique is selected, the
third and the last step is the choice of the appropriate system level reliabil-
ity and availability analysis technique. The dependability models, formed using
these techniques, are analyzed using paper-and-pencil based analytical meth-
ods or simulation. However, these analysis methods cannot ascertain absolute

134 W. Ahmad et al.

correctness of the analysis mainly because of the human error and manual
manipulations involved in the former and the sampling based deduction and
the usage of pseudo random numbers and computer arithmetic in the later.
Formal methods, on the other hand, use mathematical logic to precisely model
the system’s intended behavior and deploy mathematical reasoning to construct
an irrefutable proof that the given system satisfies its requirements. This kind
of mathematical modeling and analysis makes formal methods an accurate and
rigorous analysis method compared to the traditional analytical and simulation
based analysis. Thus, they are being strongly advocated for being used for the
dependability analysis of safety-critical systems.

The purpose of this survey paper is to provide a generic overview of the formal
methods that are being utilized for dependability analysis. These formal methods
primarily include: (i) Petri Nets (ii) Model Checking and (iii) Higher-order Logic
theorem proving as they have all been used for the dependability analysis using
the three dependability modeling techniques: RBD, FT, and MC. The main
focus of the paper is to study the utilization of formal methods in conjunction
with the dependability modeling techniques for real-world applications and thus
gain insights about the strengths and weaknesses of these formal methods and
how to use them in the most effective manner. It is important to note that
the paper is unique compared to existing surveys and tutorials on dependability
analysis [3,8–10] due to its exclusive focus on dependability modeling techniques
and their analysis with formal methods. For instnace, in [8] a unified framework
for reliability with Markov reward models is described and then a survey of
existing reliability analysis software tools is presented. Similarly, a survey of
work related to dependability modeling and analysis of software and systems
specified with UML is presented in [9]. In [3,10], tools and methods that have
been used for enhancing the dependability of Wireless Sensor networks (WSN)
and communication networks are also surveyed, respectively. Unlike above work,
this paper discusses about the pros and cons of modeling techniques and formal
methods for the dependability analysis of a broad range of systems.

The organization of the paper is as follows: Sect. 2 briefly describes commonly
used dependability modeling techniques. Section 3 presents a detailed survey
of formal methods that have been used for conducting accurate and rigorous
dependability analysis of real-world systems. Section 4 provides the insights and
the common pitfalls of the dependability modeling techniques and also a com-
parison of formal methods with traditional dependability analysis techniques.
Finally, Sect. 5 concludes the paper.

2 Dependability Modeling Techniques

Dependability assessment techniques can be utilized in every design phase of
the system or component including development, operation and maintenance.
FT and RBD based models are usually used to provide reliability and availabil-
ity estimates for both early and later stages of the design, where the system
models are more refined and have more detailed specifications compared to the

Formal Dependability Modeling and Analysis: A Survey 135

early stage system models [1]. While on the other hand, MC based models are
mainly used in the later design phase to perform trade-off analysis among dif-
ferent design alternatives when the detailed specification of the design becomes
available. In addition, when the system is deployed, these modeling techniques
can be beneficial in order to estimate the frequency of maintenance and part
replacement in the design, which allows us to determine the life cost of the sys-
tem elements or components. In this section, we present a brief detail about
some commonly used dependability modeling techniques to facilitate the under-
standing of the next sections.

2.1 Reliability Block Diagrams

Reliability Block Diagrams (RBD) [11] are graphical structures consisting of
blocks and connector lines. The blocks usually represent the system components
and the connection of these components is described by the connector lines. The
system is functional, if at least one path of properly functional components from
input to output exists otherwise it fails.

Table 1. RBDs with their mathematical expressions

An RBD construction can follow any one of three basic patterns of compo-
nent connections: (i) series (ii) active redundancy or (iii) standby redundancy.

136 W. Ahmad et al.

Table 2. Probability of failure of fault tree gates

In the series connection, shown in Table 1, all components should be functional
for the system to remain functional. The corresponding reliability expression is
also shown in Table 1, where Ai represents the event corresponding to ith compo-
nent. In an active redundancy, all components in at least one of the redundant
stages must be functioning in fully operational mode. The components in an
active redundancy might be connected in a parallel structure or a combination
of series and parallel structures as shown in Table 1. In a standby redundancy,
all components are not required to be active. In other words, at least k out of n
are required by the system to be functional, which can be seen in Table 1. There
are three main requirements for building the RBD of a given system, i.e., the
information about the (i) functional interaction of the system components; (ii)
reliability of each component usually expressed in terms of failure distributions,
such as exponential or Weibull, having appropriate failure rates; and (iii) mis-
sion times at which the reliability is desired. This information is then utilized
by the design engineers to identify the appropriate RBD configuration (series,
parallel or series-parallel) in order to determine the overall reliability of the given
system. The detail about these commonly used RBD configurations and their
corresponding mathematical expressions are presented in Table 1.

2.2 Fault Trees

Fault Tree (FT) [6] is a graphical technique for analyzing the conditions and
the factors causing an undesired top event, i.e., a critical event, which can cause
the whole system failure upon its occurrence. These causes of system failure are
represented in the form of a tree rooted by the top event. The preceding nodes
of the fault tree are represented by gates, which are used to link two or more
cause events causing one fault in a prescribed manner. For example, an OR FT
gate can be used when one fault suffices to enforce the fault. On the other hand,

Formal Dependability Modeling and Analysis: A Survey 137

the AND FT gate is used when all the cause events are essential for enforcing
the fault. Besides these gates, there are some other gates, such as exclusive OR
FT gate, priority FT gate and inhibit FT gate, which can be used to model the
occurrence of faults due to the corresponding cause events [6].

Once the fault tree model is constructed, both qualitative and quantitative
analysis can be carried out. A qualitative analysis in this context allows the
identification of all combinations of basic failure events, known as cut sets, which
can cause the top event to occur. The minimal cut sets (MCS) are those cut
sets that do not contain any subset of the basic cause events that are still a cut
set and are obtained by applying Boolean algebraic operations on these cut sets.
The smaller the number of basic cause events in these cut set, the more resilient
to failures is the considered modeled system. The quantitative analysis is used
to evaluate the probability of occurrence of the top event by considering these
minimal cut sets, which significantly contribute to the system failures.

In Fault Tree analysis (FTA), each FT gate has an associated failure probabil-
ity expression as shown in Table 2. These expressions can be utilized to evaluate
the reliability of the system. The first step in the FTA is the construction of the
FT of the given system. This is followed by the assignment of the failure dis-
tributions to basic cause-events and the identification of the Minimal Cut Set
(MCS) failure events, which contribute in the occurrence of the top event. These
MCS failure events are generally modeled in terms of the exponential or Weibull
random variables and the Probabilistic Inclusion-Exclusion (PIE) principle [11]
is then used to evaluate the probability of failure of the given system.

2.3 Markov Chain

A MC [12] is a stochastic process that consists of a set of states, i.e., S =
{s0, s1, ..., sn}, and arcs, which are used to point the transition from one state
to another. The initial state sini and the probability pij represent the starting
state and the transition probability from state si to state sj , respectively. The
process starts from an initial state and transitions from the current state to
the next state occur on the basis of transition probabilities, which only depend
upon the current state based on the Markov or the memoryless property. Markov
chains are usually classified into two categories: Discrete Time Markov Chains
(DTMC) and Continuous Time Markov Chains (CTMC). Markovian models
are frequently utilized for reliability analysis in scenarios where failure or repair
events can occur at any point in time [12].

Markov modeling has also been utilized for analyzing the dynamic behavior of
the other reliability models, i.e., RBD and FT. The notion of dynamic behavior,
for reliability analysis, represents the evolution of system topology/configuration
with respect to time. In the case of Dynamic Reliability Block Diagrams (DRBD)
[13], the system is modeled in terms of states of the components and the evolution
of these components states is carried out by a sequence of events [13]. A typical
DRBD contains the following states: (i) Active: the state of proper functioning of
the component; (ii) Failed : the failure state of the component; and (iii) Standby :
the state depicting the case when the component is not in functional or in active

138 W. Ahmad et al.

condition but it can be activated. In addition, there are other states such as Hot,
Warm and Cold, representing the conditions when the system or component is
disabled but energized, partially and completely disabled, respectively [13].

3 Formal Dependability Analysis Techniques

3.1 Petri Nets

A Petri Net (PN) [14] is a bipartite directed graph consisting of disjoint sets of
places P and transitions T . The former, which is represented by circles, models
the condition while the latter, signified by bars, represents the events or activities
that may occur in the system. The directed arcs (P×T) and (T×P), represented
by arrows, describe the input places P for the transitions T and output places
P for the transitions T , respectively. Places may be empty or contain more than
one token that is drawn by a block dot and term marking represents the tokens
over the set of places. A transition is said to be enabled, in a given marking, if all
its input places contain at least one token. An enabled transition can be fired
and as a result a token will be removed from the input places of the transition
and added to its output places.

Petri Nets and its variants are widely used as a reliability analysis tool for
many real-world systems due to their ability to efficiently handle large problems
of dynamic nature. For instance, PNs have been used for the reliability assess-
ment of Web services [15] and a wind turbine hydraulic variable pitch system [16].
Many existing work have utilized the PNs for availability analysis, for instance,
the availability of a mechanical system is hierarchically analyzed by dividing the
complete system into three levels [17]. A system level PN model is constructed
by composing the PNs of the subsystem levels, which are also composed from
the PNs of the component level. Similarly, PNs have been used to analyze the
availability of computational servers that are processing the jobs in a queue [18],
a replicated file system to reduce the overhead in a distributed environment [19],
a subsea blowout preventer (BOP), which is essentially required to provide safety
for drilling workers, rigs and natural environment [20] and the C160 series equip-
ment that can modify its own modules based on different process plan and forms
a new configuration [21]. In addition, a considerable amount of work has been
done by utilizing PN in conjunction with the dependability modeling techniques,
described in Sect. 2, for dependability analysis as follows:

Reliability Block Diagrams. Many PN variants are extensively utilized to
represent the RBDs to model the reliability of communication systems with
dynamic nature. For instance, the live migration process in cloud computing
networks makes the system dynamic and thus yields to a complex RBD model,
which can be effectively handled using Petri Nets with the support of commercial
tools, such as SNOOPY [22] and CPN [23]. Given the dynamic nature of visu-
alization, due to the presence of hardware systems, software systems, live migra-
tion techniques, resource allocation algorithms and concurrent failures, virtual-
ized networks are frequently modeled with RBDs, which are then transformed

Formal Dependability Modeling and Analysis: A Survey 139

to Petri Nets for the reliability analysis [24]. The reliability of communication
networks with redundancy mechanisms has also been efficiently analysed using
RBD based Petri Nets [25].

PNs have also been used to ensure the security/safety aspects of networks
in terms of reliability and availability by analyzing the safety/security aspects
of network protocols, such as internet voting systems [26] and high-speed trains
[27]. In addition to the communication network, PNs have been used to develop
the RBDs to analyze the reliability of a logistic supply chain [28] and redundant
electrical generator used to power-up the coast guard vessel [29]. Similarly, a
Cojoint system model consisting of CPN and RBD has been effectively used to
analyze the dependability and logistics of a fault-redundant space station [30].

Fault Trees. The PN approach has also been utilized, in conjunction with FTs,
for the reliability analysis of embedded systems by translating the PN reacha-
bility into provability of linear logic sequents, which empowers the analysis by
utilizing sequent calculus [31]. The dynamic behavior of networks components,
such as timed behavioral nature, cannot be captured by simple FT models but
PNs provide a very feasible alternative for this purpose. The system under con-
sideration is modeled with a FT, which is then transformed into its corresponding
PN based model for analysis. For example, the reliability of the broadband inte-
grated service network (B-ISDN) has been assessed by modeling the dynamic
re-routing mechanism of the traffic using the FT-based PN approach [32].

Markov Chains. A considerable amount of work has been done on analyzing
reliability of systems using PNs with Markov chains. Some other prominent
work in this direction include the reliability analysis of a preemptive M/D/1/2/2
client-server queuing system [33], the dynamic reconfiguration of FPGA [34],
the data communication systems of the WLAN based train control system [35],
cellular networks [36] and Wireless Sensor Networks (WSN) [37]. Moreover, some
network protocols, like the courier [38] and Fibre Distributed Data Interface
(FDDI) token ring protocol [39], have also been analyzed using the Petri Net
approach. Similarly, the reliability of a file server system [40], financial system
[41], distributed memories [42] and Low Earth Orbit (LEO) satellite has also
been analyzed using PNs based on Markov chains [43]. Moreover, a Markov
regenerative PN has been introduced in [44] to extend the capability of stochastic
PN analysis and then its effectiveness is illustrated by utilizing this approach to
approximate client-server systems.

3.2 Model Checking

Model Checking [45] allows to describe the behavior of a given system in the
form of a state machine and verify its temporal properties in a rigorous manner.
Probabilistic model checking extends traditional model checking principles for
the analysis of MCs and allows the verification of probabilistic properties. Some
notable probabilistic model checking include PRISM [46] and ETMCC [47].

Probabilistic model checking techniques have been considerably adopted to
verify the reliability and availability properties of many systems, for instance, the

140 W. Ahmad et al.

PRISM has been used to assess the reliability of e-health systems used in hospi-
tals based on the Fast Health Interoperable Resources (FHIR) standard [48] and
the Device Interoperability Middleware (DIM) used to bridge the gap between
different healthcare vendors [49]. In addition, the PRISM model checker has been
utilized for the reliability/safety analysis of airbone applications by augmenting
it to the Matlab simulink [50], a RAID disk protocol used for reading the data
from the disk sectors [51], multi-processor systems based on the Triple modular
redundancy (TMR) model [52]. PRISM has also been utilized for quantitative
reliability and availability analysis of a satellite system [53].

Fault Trees. The COMPASS tool [54] supports the formal FT analysis, specif-
ically for aerospace systems. For verification purposes, COMPASS provides sup-
port of several model checking tools, like NuSMV [55] and MRMC [56]. This
tool provide various templates containing placeholders that have to be filled in
by the user. These templates are primarily composed of the most frequently used
patterns that allow easy specifications of properties by non-experts by hiding the
details of the underlying temporal logic. The tool generates several outputs, such
as traces, FTs and Failure Mode and Effect Analysis (FMEA) tables, along with
diagnostic and performance measures.

Markov Chains. Probabilistic model checking extends traditional model check-
ing principles for the analysis of MCs and allows the verification of probabilis-
tic properties. Probabilistic model checking techniques have been considerably
adopted to verify the reliability properties of many systems, such as NAND
multiplexing [57], an airbag system, an industrial process control system and
the Herschel-Planck satellite system [58]. In [59], the reliability analysis of the
Fast And Secure Protocol (FASP) is carried out by first defining the successful
data transmission using STL and then the communication network is modeled in
the form of a sender, receiver and a communication channel module in PRISM.
Finally, the reliability property is then verified against the communication net-
work using the PRISM model checker.

3.3 Higher-Order-Logic Theorem Proving

Interactive theorem provers, like HOL4, Isabelle/HOL and Coq, can be used to
reason about probabilistic behaviors using the higher-order-logic formalizations
of probability theory [60–62]. This feature has been widely used to conduct the
dependability analysis of many systems. For instance, the probability theory in
HOL4 [61] has been used for the reliabililty analysis of combinational circuits
[63] and reconfigurable memory arrays [64]. In these work, however, the relia-
bility is evaluated based on probabilistic principles directly, i.e., no component
to system-level assessment based on RBD or FT methods is done. Similarly,
formally verified statistical properties of the continuous random variables have
been used to reason about the fundamental reliability properties, including sur-
vival function and hazard rate [65]. These reliability properties are then used to
analyzed the reliability of electronic system components [65].

Formal Dependability Modeling and Analysis: A Survey 141

Reliability Block Diagrams. The higher-order logic theorem prover HOL4
has been recently used for the formalization of RBDs, including series [66], par-
allel [67], parallel-series [67] and series-parallel [68]. These formalizations have
been used for the reliability analysis of a simple oil and gas pipeline with serial
components [66], WSN protocols [67] and logistic supply chains [67].

Fault Trees. A higher-order-logic formalization of generic Fault Tree gates, i.e.,
AND, OR, NAND, NOR, XOR and NOT and the formal verification of their
failure probability expressions have also been recently proposed in HOL4 [69].
In addition, this work also presents a formalization of probabilistic inclusion-
exclusion principle, which is then used to conduct the FT-based failure analysis
of a solar array used in a Dong Fang Hong-3 (DFH-3) satellite [69].

Markov Chains. A foundational formalization of time-homogeneous DTMC
with finite state space has been presented in HOL4 [70] and Isabelle/HOL [71].
These formalizations have been successfully used to formally analyze a binary
communication channel [70], ZeroConf [71] and anonymizing crowds protocols
[71]. None of these Markov chain formalizations has been used for reliability
analysis so far.

4 Comparison and Discussion

4.1 Comparison of Dependability Modeling Techniques

The criteria for the selection of these modeling techniques, for a certain system,
mainly depends upon the type of system and problem domain. A comparison
among these modeling techniques is shown in Table 3. For instance, RBD is pri-
marily used if we are interested in the successful working of the system while
FT models the failure relationship due to the failure of individual components
of the system. Also, both of these techniques utilize top-down analysis approach
that starts at the system level and then proceeds downward to link system per-
formance to failures at the component level. Due to this reason, these techniques
work only for combinatorial types of problems, where a combination of compo-
nents faults is used to determine the overall system failure. On the other hand,
Markov chains are more flexible in terms of handling a wide variety of problems,
as given in Table 3, including non-combinatorial problems, where systems are in
different operational modes, such as active or failed. However, Markov chains
fail to cater for large and complex systems due to the exponential growth in the
number of states.

Based on the survey conducted in Sect. 3, we have found that FTs have been
the mostly utilized dependability modeling technique by formal methods. On
the other hand, the utilization of RBD and MC models for the dependability
analysis is rapidly increasing specifically by PNs. The usage of RBD models with
model checking for the formal dependability analysis is an area that is almost
unexplored. We believe that this combination of modeling and analysis technique
has a huge potential for ensuring accurate reliability analysis of a wide variety
of safety-critical system.

142 W. Ahmad et al.

Table 3. Comparison of dependability modeling techniques

Features Reliability Block Fault Markov

Diagram Tree Chain

Success domain � �
Failure domain � �
Top-down approach � � �
Identification and prevention of faults � � �
Combinatorial problems � � �
Non-combinatorial problems �
Large and complex systems � �

4.2 Comparison of Dependability Analysis Techniques

A summary of various dependability analysis techniques is presented in Table 4.
These techniques are evaluated according to their expressiveness, accuracy and
the possibility of automating the analysis. Model checking and Petri Nets are
not expressive enough to model and verify all sorts of reliability properties due
to their state-based nature. The accuracy of the paper-and-pencil based proofs
is questionable because they are prone to human errors. Simulation is inaccu-
rate due to the involvement of pseudo-random number generators and computer
arithmetics along with its inherent sampling-based nature. Theorem proving does
not support all the reliability analysis foundations as of now. Finally, the paper-
and-pencil based proof methods and interactive theorem proving based analysis
involve human guidance and therefore are not categorized as automatic. How-
ever, there is some automatic verification support (e.g. [72]) available for theorem
proving, which can ease the human interaction in proofs and thus we cannot con-
sider interactive theorem proving as a completely manual approach. All three
formal methods techniques promise to provide accurate results and thus can be
very useful for analyzing the dependability aspects of safety and financial-critical
systems.

We have used the question mark symbol in accuracy feature for paper-and-
pencil to highlight its limitation of being prone to human error.

Table 4. Comparison of reliability analysis techniques

Feature Paper-and- Simulation Petri Nets Theorem Model

pencil proof tools proving checking

Expressiveness � � �
Accuracy � (?) � � �
Automation � � �

Formal Dependability Modeling and Analysis: A Survey 143

5 Conclusions

In this paper, we have discussed various dependability models constructed using
the building blocks offered by the formalisms of reliability block diagrams, fault
trees and Markov chains models. We have also presented a critical comparison,
of the various dependability analysis techniques, i.e., analytical methods, simu-
lation, and formal methods. Apart from providing the necessary background, we
have also provided a detailed survey of the application of formal methods avail-
able in the open literature focused on studying dependability analysis of various
real-world systems. The main contribution of this paper is that it is the first
work presenting a comprehensive review of the various dependability modeling
techniques in conjunction with formal methods along with a critical analysis
describing their pros and cons in various contexts. Existing surveys on depend-
ability analysis are either focused on software or communications networks and
do not cover formal methods in depth.

Acknowledgments. This publication was made possible by NPRP grant # [5 - 813 -
1 - 134] from the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the author[s].

References

1. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical report CS-TR-739, Newcastle University, UK (2001). http://pld.ttu.ee/
IAF0530/16/avi1.pdf

2. Spitzer, C.R., Spitzer, C.: Digital Avionics Handbook. CRC Press, Boca Raton
(2000)

3. Al-Kuwaiti, M., Kyriakopoulos, N., Hussein, S.: A comparative analysis of net-
work dependability, fault-tolerance, reliability, security, and survivability. Com-
mun. Surv. Tutorials 11(2), 106–124 (2009)

4. Weibull: (2015). http://www.weibull.com/hotwire/issue26/relbasics26.htm
5. Čepin, M.: Reliability block diagram. In: Čepin, M. (ed.) Assessment of Power

System Reliability, pp. 119–123. Springer, Heidelberg (2011)
6. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook

(NUREG-0492). Technical report, U.S. Nuclear Regulatory Commission (1981)
7. Gilks, W.R.: Markov Chain Monte Carlo. Wiley, New York (2005)
8. Trivedi, K.S., Malhotra, M.: Reliability and performability techniques and tools:

a survey. In: Walke, B., Spaniol, O. (eds.) Messung, Modellierung und Bewertung
von Rechen-und Kommunikationssystemen, pp. 27–48. Springer, New York (1993)

9. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv. 45(1), 1–48 (2012)

10. Venkatesan, L., Shanmugavel, S., Subramaniam, C., et al.: A survey on modeling
and enhancing reliability of wireless sensor network. Wirel. Sens. Netw. 5(03),
41–51 (2013)

11. Trivedi, K.S.: Probability & Statistics with Reliability, Queuing and Computer
Science Applications. Wiley, Hoboken (2008)

12. Fugua, N.: The applicability of markov analysis methods to reliability, maintain-
ability, and safety. Reliab. Anal. Cent. START Sheet 10(2), 1–8 (2003)

http://pld.ttu.ee/IAF0530/16/avi1.pdf
http://pld.ttu.ee/IAF0530/16/avi1.pdf
http://www.weibull.com/hotwire/issue26/relbasics26.htm

144 W. Ahmad et al.

13. Distefano, S., Xing, L.: A new approach to modeling the system reliability: dynamic
reliability block diagrams. In: Reliability and Maintainability Symposium, pp. 189–
195. IEEE (2006)

14. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Upper
Saddle River (1981)

15. Zhong, D., Qi, Z.: A petri net based approach for reliability prediction of web
services. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops.
LNCS, vol. 4277, pp. 116–125. Springer, Heidelberg (2006)

16. Yang, X., Li, J., Liu, W., Guo, P.: Petri net model and reliability evaluation for
wind turbine hydraulic variable pitch systems. Energies 4(6), 978–997 (2011)

17. Kumar, G., Jain, V., Gandhi, O.: Reliability and availability analysis of mechanical
systems using stochastic petri net modeling based on decomposition approach. Int.
J. Reliab. Qual. Safety Eng. 19(01), 1–39 (2012)

18. Jian, S., Shaoping, W., Yaoxing, S.: Petri-nets based availability model of fault-
tolerant server system. In: Robotics, Automation and Mechatronics, pp. 444–449.
IEEE (2008)

19. Dugan, J.B., Ciardo, G.: Stochastic petri net analysis of a replicated file system.
Softw. Eng. 15(4), 394–401 (1989)

20. Zengkai, L., Yonghong, L., Ju, L.: Availability and reliability analysis of subsea
annular blowout preventer. In: International Conference on Energy, vol. 25, pp.
73–76. Science & Engineering Research Support Society (2013)

21. Beirong, Z., Xiaowen, X., Wei, X.: Availability modeling and analysis of equipment
based on generalized stochastic petri nets. Res. J. Appl. Sci. Eng. Technol. 4(21),
4362–4366 (2012)

22. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying petri
net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347,
pp. 398–407. Springer, Heidelberg (2012)

23. Beaudouin-Lafon, M., et al.: CPN/Tools: a tool for editing and simulating coloured
petri nets ETAPS tool demonstration related to TACAS. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 574–577. Springer, Heidelberg (2001)

24. Wei, B., Lin, C., Kong, X.: Dependability Modeling and Analysis for the Virtual
Data Center of Cloud Computing. In: High Performance Computing and Commu-
nications, pp. 784–789. IEEE (2011)

25. Guimarães, A., Maciel, P., Matos Jr., R., Camboim, K.: Dependability analysis in
redundant communication networks using reliability importance. In: Information
and Network Technology, vol. 4, pp. 12–17. IACSIT Press (2011)

26. Omidi, A., Moradi, S.: Modeling and quantitative evaluation of an internet vot-
ing system based on dependable web services. In: Computer and Communication
Engineering, pp. 825–829. IEEE (2012)

27. Lijie, C., Tao, T., Xianqiong, Z., Schnieder, E.: Verification of the safety communi-
cation protocol in train control system using colored Petri net. Reliab. Eng. Syst.
Saf. 100, 8–18 (2012)

28. Li, Y.Z., Yi, H.Y.: Calculation method on reliability of logistics service supply
chain based on stochastic petri nets. Int. J. u-and e-Serv. Sci. Technol. 7(1), 103–
112 (2014)

29. Robidoux, R., Xu, H., Xing, L., Zhou, M.: Automated modeling of dynamic reli-
ability block diagrams using colored petri nets. Syst. Man Cybern. Part A Syst.
Hum. 40(2), 337–351 (2010)

Formal Dependability Modeling and Analysis: A Survey 145

30. Nebel, S., Bertsche, B.: Modeling and simulation methodology of the operational
availability and logistics using extended colored stochastic petri netsan astronautics
case study. In: Reliability and Maintainability Symposium, pp. 434–439. IEEE
(2008)

31. Sadou, N., Demmou, H.: Reliability analysis of discrete event dynamic systems
with petri nets. Reliab. Eng. Syst. Saf. 94(11), 1848–1861 (2009)

32. Balakrishnan, M., Trivedi, K.S.: Stochastic petri nets for the reliability analysis
of communication network applications with alternate-routing. Reliab. Eng. Syst.
Saf. 52(3), 243–259 (1996)

33. Radev, D., Rashkova, E., Denchev, V.: Analysis of markov reward models with
stochastic petri nets. In: International Conference on Computer Systems and Tech-
nologies, pp. 1–6. ACM (2008)

34. Kohĺık, M.: Dependability models based on petri nets and Markov Chains (2009)
35. Zhu, L., Yu, F.R., Ning, B., Tang, T.: Service availability analysis in

communication-based train control systems using WLANs. In: Communications,
pp. 1383–1387. IEEE (2012)

36. Jindal, V., Dharmaraja, S., Trivedi, K.S.: Markov modeling approach for surviv-
ability analysis of cellular networks. Int. J. Perform. Eng. 7(5), 429 (2011)

37. Schoenen, R., Yanikomeroglu, H.: Erlang analysis of cellular networks using sto-
chastic petri nets and user-in-the-loop extension for demand control. In: Global
Communication Conference, pp. 298–303. IEEE (2013)

38. Youness, O., Elkilani, W., El-Wahed, W.A., Torkey, F.: A robust methodology for
performance evaluation of communication networks protocols. In: Communication
Networks and Services Research Conference, pp. 1–10. IEEE (2006)

39. Christodoulou, S., Zhou, M.: A petri net approach to modeling and performance
analysis of fiber data distributed interface (FDDI) network. In: Emerging Tech-
nologies and Factory Automation, pp. 373–380. IEEE (1994)

40. Ibe, O.C., Choi, H., Trivedi, K.S.: Performance evaluation of client-server systems.
Parallel Distrib. Syst. 4(11), 1217–1229 (1993)

41. Tunik, A., Kharlashkin, I.: A formalistic method for the performance evaluation
of communication networks of distributed computing systems. In: Industrial Elec-
tronics, vol. 2, pp. 874–878. IEEE (1992)

42. Sun, X., Lin, C., Liu, W., Xiao, Y.: Survivability evaluation of distributed service
using stochastic petri net. In: Communications and Networking in China, pp. 1–5.
IEEE (2009)

43. Zeng, W., Hong, Z.G.: SPN-based performance analysis of LEO satellite networks
with multiple users. In: Machine Learning and Cybernetics, vol. 3, pp. 1425–1429.
IEEE (2011)

44. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic petri nets.
Performance Eval. 20(1), 337–357 (1994)

45. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

46. Lin, C.M., Yang, C.W., Teng, H.K., Chung, M.C., Lang, K.C., Teng, H.F.: Mod-
eling CAN network using PRISM. In: Industrial Informatics, pp. 390–394. IEEE
(2010)

47. Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: ETMCC: model checking
performability properties of Markov chains. In: Dependable Systems and Network-
ing, p. 1. IEEE (2003)

48. Pervez, U., Hasan, O., Latif, K., Tahar, S., Gawanmeh, A., Hamdi, M.S.: Formal
reliability analysis of a typical FHIR standard based e-Health system using PRISM.
In: e-Health Networking, Applications and Services, pp. 43–48. IEEE (2014)

146 W. Ahmad et al.

49. Pervez, U., Mahmood, A., Hasan, O., Latif, K., Gawanmeh, A.: Formal reliability
analysis of device interoperability middleware (DIM) based E-health system using
PRISM. In: e-Health Networking, Applications and Services, pp. 1–6. IEEE (2015)

50. Gomes, A., Mota, A., Sampaio, A., Ferri, F., Buzzi, J.: Systematic model-based
safety assessment via probabilistic model checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 625–639. Springer, Heidelberg
(2010)

51. Gopinath, K., Elerath, J., Long, D.: Reliability modelling of disk subsystems with
probabilistic model checking. Technical report, Technical Report UCSC-SSRC-09-
05, University of California, Santa Cruz (2009). http://www.crss.ucsc.edu/media/
papers/ssrctr-09-05.pdf

52. Ge, X., Paige, R.F., McDermid, J.A.: Analysing system failure behaviours with
PRISM. In: Secure Software Integration and Reliability Improvement Companion,
pp. 130–136. IEEE (2010)

53. Peng, Z., Lu, Y., Miller, A., Johnson, C., Zhao, T.: A probabilistic model check-
ing approach to analysing reliability, availability, and maintainability of a single
satellite system. In: Modelling Symposium, pp. 611–616. IEEE (2013)

54. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

55. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

56. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
Quantitative Evaluation of Systems, pp. 243–244. IEEE (2005)

57. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating the reliability of
NAND multiplexing with PRISM. Comput. Aided Des. Integr. Circ. Syst. 24(10),
1629–1637 (2005)

58. Norman, G., Parker, D.: Quantitative verification: formal guarantees for timeliness.
reliability and performance. Technical report (2014)

59. Conghua, Z., Meiling, C.: Analysis of fast and secure protocol based on continuous-
time Markov Chain. Commun. China 10(8), 137–149 (2013)

60. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge, UK (2002)

61. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 387–402. Springer, Heidelberg (2010)

62. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011)

63. Hasan, O., Patel, J., Tahar, S.: Formal reliability analysis of combinational circuits
using theorem proving. J. Appl. Log. 9(1), 41–60 (2011)

64. Hasan, O., Tahar, S., Abbasi, N.: Formal reliability analysis using theorem proving.
Trans. Comput. 59(5), 579–592 (2010)

65. Abbasi, N., Hasan, O., Tahar, S.: Formal lifetime reliability analysis using contin-
uous random variables. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS,
vol. 6188, pp. 84–97. Springer, Heidelberg (2010)

http://www.crss.ucsc.edu/media/papers/ssrctr-09-05.pdf
http://www.crss.ucsc.edu/media/papers/ssrctr-09-05.pdf

Formal Dependability Modeling and Analysis: A Survey 147

66. Ahmed, W., Hasan, O., Tahar, S., Hamdi, M.S.: Towards the formal reliability
analysis of oil and gas pipelines. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 30–44. Springer,
Heidelberg (2014)

67. Ahmed, W., Hasan, O., Tahar, S.: Formal reliability analysis of wireless sensor
network data transport protocols using HOL. In: Wireless and Mobile Computing,
Networking and Communications, pp. 217–224. IEEE (2015)

68. Ahmed, W., Hasan, O., Tahar, S.: Towards formal reliability analysis of logistics
service supply chains using theorem proving. In: Implementation of Logics, pp.
111–121 (2015)

69. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS, vol. 9150, pp. 39–54. Springer, Heidelberg (2015)

70. Liu, L., Hasan, O., Tahar, S.: Formal reasoning about finite-state discrete-time
markov chains in HOL. J. Comput. Sci. Technol. 28(2), 217–231 (2013)

71. Hölzl, J., Nipkow, T.: Interactive verification of Markov chains: two distributed
protocol case studies. arXiv preprint (2012). arXiv:1212.3870

72. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

http://arxiv.org/abs/1212.3870

Systems and Data

Extending E Prover with Similarity Based
Clause Selection Strategies

Jan Jakub̊uv(B) and Josef Urban

CIIRC, Czech Technical University, Prague, Czech Republic
jakubuv@gmail.com, josef.urban@gmail.com

Abstract. E prover is a state-of-the-art theorem prover for first-order
logic with equality. E prover is built around a saturation loop, where new
clauses are derived by inference rules from previously derived clauses.
Selection of clauses for the inference provides the main source of non-
determinism and an important choice-point of the loop where the right
choice can dramatically influence the proof search. In this work we extend
E Prover with several new clause selection strategies based on similarity
of a clause with the conjecture. In particular, clauses which are more
related to the conjecture are preferred. We implement different strate-
gies that define the relationship with a conjecture in different ways. We
provide an implementation of the proposed selection strategies and we
evaluate their efficiency on an extensive benchmark set.

Keywords: Automated theorem proving · Large theory reasoning ·
Clause selection

1 Introduction

Many state-of-the-art automated theorem provers (ATPs) are based on the given
clause algorithm introduced by Otter [5]. The input problem T ∪{¬C} is trans-
lated into a refutationally equivalent set of clauses. Then the search for a contra-
diction, represented by the empty clause, is performed maintaining two sets: the
set P of processed clauses and the set U of unprocessed clauses. Initially, all the
input clauses are unprocessed. The algorithm repeatedly selects a given clause
g from U and generates all possible inferences using g and the processed clauses
from P . Then, g is moved to P , and U is extended with the newly produced
clauses. This process continues until a resource limit is reached, or the empty
clause is inferred, or P becomes saturated, that is, nothing new can be inferred.

The search space of this loop grows quickly. Several methods can be used
to make the proof search more efficient. The search space can be narrowed by
adjusting (typically restricting) the inference rules, pruned by using forward and
backward subsumption, reduced by pre-selecting relevant input clauses, or other-
wise simplified. One of the main sources of non-determinism affecting efficiency

J. Jakub̊uv and J. Urban—Supported by the ERC Consolidator grant nr. 649043
AI4REASON.

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 151–156, 2016.
DOI: 10.1007/978-3-319-42547-4 11

152 J. Jakub̊uv and J. Urban

of the search is the selection of the given clause. Clever selection mechanism can
improve the search dramatically: in principle, one only needs to do the inferences
that participate in the final proof. So far, this is often only a tiny portion of all
the inferences done by the ATPs during the proof search.

2 Clause Selection in E Prover

E [6] is a state-of-the-art theorem prover which we use as a basis for implemen-
tation. The selection of a given clause in E is implemented by a combination
of priority and weight functions. A priority function assigns an integer to a
clause and is used to pre-order clauses for weight evaluation. A weight function
takes additional specific arguments and assigns to each clause a real number
called weight. A clause evaluation function CEF is specified by a priority func-
tion, weight function, and its arguments. Each CEF selects the clause with the
smallest pair (priority,weight) for inferences. E allows a user to select an expert
heuristic on a command line in the format “(n1*CEF1,...,nk*CEFk)”, where
integer ni indicates how often the corresponding CEFi should be used to select a
given clause. E additionally supports an autoschedule mode where several expert
heuristics are tried, each for a selected time period. The heuristics and time peri-
ods are automatically chosen based on input problem properties.

One of the well-performing weight functions in E, which we also use as a
reference for evaluation of our weight functions, is the conjecture symbol weight.
This weight function counts symbol occurrences with different weights based on
their appearance in the conjecture as follows. Different weights δf, δc, δp, and
δv are assigned to function, constant, and predicate symbols, and to variables.
The weight of a symbol which appears in the conjecture is multiplied by γconj,
typically γconj < 1 to prefer clauses with conjecture symbols. To compute a term
weight, the given symbol weights are summed for all symbol occurrences. This
evaluation is extended to equations and to clauses.

3 Similarity Based Clause Selection Strategies

Many of the best-performing weight functions in E are based on a similarity of a
clause with the conjecture, for example, the conjecture symbol weight from the pre-
vious section. In this paper we try to answer the question whether or not it makes
sense to also investigate a term structure. We propose, implement, and evaluate
several weight functions which utilize conjecture similarity in different ways. Typ-
ically they extend the symbol-based similarity by similarity on terms. Using finer
formula features improves the high-level premise selection task [2], which moti-
vates this work on steering also the internal selection in E. We first describe the
common arguments of our weight functions and then function-specific properties.

Common Arguments (v ,r ,e). We implement two ways of term variable nor-
malization, selected by the argument v. Either (1) variables are α-normalized,
naming them consistently by their appearance in the term from left to right

Extending E Prover with Similarity Based Clause Selection Strategies 153

(value “α”), or (2) all variables are unified to a single variable (“�”). This pro-
vides differently coarse notions of similarity. Each of our weight functions relates
a term to the global set RelatedTerms. This set RelatedTerms, controlled by the
argument r, contains either (1) all conjecture terms (“ter”), (2) conjecture terms
and their subterms (“sub”), (3) conjecture subterms and top-level generalizations
(“top”), or to (4) conjecture subterms and all their generalizations (“gen”). Each
of our weight functions implements a different function base-weight which assigns
a weight to a term. We use three different ways of extending base-weight to com-
pute a term weight, selected by the argument e. Either (1) base-weight value is
used directly (value “1”), or (2) values of base-weight for all the subterms are
summed (“Σ”), or (3) the maximal value of base-weight on all of the subterms
is used (“∨”).

Conjecture Subterm Weight (Term). The first of our weight functions is
similar to the standard conjecture symbol weight, counting instead of symbols
the number of subterms a term shares with the conjecture. The weight function
Term takes five specific arguments γconj, δf, δc, δp and δv and base-weightTerm(t)
equals weight δf for functional terms, δc for constants, δp for predicates, and δv
for variables, possibly multiplied by γconj when t ∈ RelatedTerms.

Conjecture Frequency Weight (Tfldf). Term frequency – inverse document
frequency, is a numerical statistic intended to reflect how important a word is to
a document in a corpus [3]. A term frequency is the number of occurrences of the
term in a given document. A document frequency is the number of documents
in a corpus which contain the term. The term frequency is typically multiplied
by the logarithm of the inverse of document frequency to reduce frequency of
terms which appear often. We define tf(t) as the number of occurrences of t in
RelatedTerms. We consider a fixed set of clauses denoted Docs. We define df(t) as
the count of clauses from Docs which contain t. Out weight function TfIdf takes
one specific argument δdoc to select documents, either (1) ax for the axioms or
(2) pro for all the processed clauses, and base-weightTfIdf is as follows.

base-weightTfIdf(t) =
1

1 + tfidf(t)
where tfidf(t) = tf(t) ∗ log

1 + |Docs|
1 + df(t)

Conjecture Term Prefix Weight (Pref). The above weight functions rely on an
exact match of a term with a conjecture related term. The following weight func-
tion loosen this restriction and consider also partial matches. We consider terms as
symbol sequences. Let max-pref(t) be the longest prefix t shares with a term from
RelatedTerms. A term prefix weight (Pref) counts the length of max-pref(t) using weight
arguments δmatch and δmiss, formally, base-weightPref(t) = δmatch ∗ |max-pref(t)| + δmiss ∗
(|t| − |max-pref(t)|).
Conjecture Levenshtein Distance Weight (Lev). A straightforward extension
of Pref is to employ the Levenshtein distance [4] which measures a distance of two
strings as the minimum number of edit operations (character insertion, deletion, or
change) required to change one word into the other. Our weight function Lev defines
base-weightLev(t) as the minimal distance from t to some s ∈ RelatedTerms. It takes
additional arguments δins, δdel, δch to assign different costs for edit operations.

154 J. Jakub̊uv and J. Urban

Conjecture Tree Distance Weight (Ted). The Levenshtein distance does not
respect a tree structure of terms. To achieve that, we implement the Tree edit dis-
tance [8] which is similar to Levenshtein but uses tree editing operations (inserting a
node into a tree, deleting a node while reconnecting its child nodes to the deleted posi-
tion, and renaming a node label). Our weight function Ted takes the same arguments
as Lev above and base-weightTed is defined similarly.

Conjecture Structural Distance Weight (Struc). With Ted, a tree produced by
the edit operations does not need to represent a valid term as the operations can change
number of child nodes. To avoid this we define a simple structural distance which mea-
sures a distance of two terms by a number of generalization and instantiation oper-
ations. Generalization transforms an arbitrary term to a variable while instantiation
does the reverse. Our weight function Struc takes additional arguments δmiss, γinst, and
γgen as penalties for variable mismatch and operation costs. The distance of a variable
x to a term t is the cost of instantiating x to t, computed as ΔStruc(x, t) = γinst ∗ |t|. The
distance of t to x is defined similarly but with γgen. A distance of non-variable terms
t and s which share the top-level symbol is the sum of distances of the corresponding
arguments. Otherwise, a generic formula ΔStruc(t, x0) + ΔStruc(x0, s) is used. Function
base-weightStruc is as for Lev but using ΔStruc.

4 Experimental Results and Evaluation

The best evaluation would be to measure how our weight functions enrich the
autoschedule mode of E. This is, however, beyond the scope of this paper. Instead,
we design experiments to help us estimate the quality of the new weights. For each
new weight function we run all possible combinations of common arguments (“v-r-e”,
see Sect. 3) and other manually selected arguments. First, we run the weight functions
on the 2078 MPTP bushy problems [1] with a 5 s time limit. We compare the number
of solved problems with the number of problems solved by the conjecture symbol weight
(denoted ref) discussed in Sect. 2. Second, to estimate how complementary our weight
functions are with existing functions, we pick a well-performing expert heuristic from
the autoschedule mode of E, and we compute how many problems were solved which the
expert heuristic was not able to solve in 10 s (denoted 2E+). The five best-performing
combinations of arguments for each weight function are presented in Table 1. Column
speed contains an average number of processed (kilo-)clauses per second to evaluate
implementation efficiency. Our implementation is available for download1.

From Table 1 we can see that the weights which rely on an exact match of a term
with a related term or its part (Term, TfIdf, and Pref) perform best when values of
base-weight are summed for all the subterms (e = Σ). On the other hand, weights
which incorporate some notion of term similarity directly in base-weight do not profit
so much from this. For weights Lev, Ted, and Struc we have tried to experiment with
operation costs (column δ, for example, 151 means that δdel is increased to 5 while
other costs are 1). In general, the experiments show that different arguments have an
impact on performance. Finally, the experiments also reveal a higher time complexity
of the Lev and Ted weights (Levenshtein distance of two terms is in O(n2) while Ted is
in O(n3)). However, a higher time complexity does not have to be a drawback as Lev
is still best performing.

1 http://people.ciirc.cvut.cz/jakubja5/src/E-arg-2016-03.tar.gz.

http://people.ciirc.cvut.cz/jakubja5/src/E-arg-2016-03.tar.gz

Extending E Prover with Similarity Based Clause Selection Strategies 155

Table 1. The five best-performing configurations for each weight function.

156 J. Jakub̊uv and J. Urban

5 Conclusions and Future Work

We have implemented several new weight functions for E prover based on term simi-
larity with a conjecture. The experiments suggest that our functions have a potential
to improve the autoschedule mode of E as they are reasonably complementary with
existing heuristics. In order to use our weight functions with the autoschedule mode of
E, we would need to (1) find the best performing parameters of our weight functions,
(2) find the best combinations of our weight functions with other weight functions, and
(3) find the most complementary combinations and create a scheduling strategy. As a
future research, we are planning to use parameter-searching methods such as BliStr [7]
to achieve this task.

References

1. Alama, J., et al.: Premise selection for mathematics by corpus analysis and kernel
methods. J. Autom. Reason. 52(2), 191–213 (2014)

2. Kaliszyk, C., Urban, J., Vyskocil, J.: Efficient semantic features for automated rea-
soning over large theories. In: IJCAI, vol. 15 (2015)

3. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn.
Cambridge University Press, Cambridge (2014)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and rever-
sals. Sov. Phys. Dokl. 10, 707 (1966)

5. McCune, W.W.: Otter 3.0 Reference Manual and Guide, vol. 9700. Argonne National
Laboratory, Argonne (1994)

6. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2), 111–126 (2002)
7. Urban, J.: BliStr: the blind strategymaker. In: Global Conference on Artificial Intel-

ligence, GCAI 2015, vol. 36, pp. 312–319. EasyChair (2015)
8. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees

and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

Enhancement of MIZAR Texts with Transitivity
Property of Predicates

Artur Korni�lowicz(B)

Institute of Informatics, University of Bia�lystok,
K. Cio�lkowskiego 1M, 15-245 Bia�lystok, Poland

arturk@mizar.org

Abstract. A typical proof step in mathematical reasoning consists of
two parts – a formula to be proven and a list of references used to justify
the formula. In addition, computer proof-assistants can use specialized
procedures and algorithms to strengthen their computational power to
verify the correctness of reasonings.

The Mizar system supports several mechanisms to increase automa-
tion of some reasoning steps. One of them is registration of chosen prop-
erties of predicates and functors when they are defined. We propose
strengthening of the Mizar system by processing another common prop-
erty used in mathematics – transitivity.

1 Introduction

The Mizar system [1–3] is a computer system invented for computer-assisted
verification of mathematical papers. It consists of three main components: a lan-
guage – the Mizar language, a bunch of computer programs including Veri-
fier and a repository of formal texts – Mizar Mathematical Library (MML) –
written in the language and automatically verified for their logical correctness.
The Mizar language is a declarative formal language designed to write math-
ematical papers readable for humans and effectively processed by computers.
The language is highly structured to ensure producing rigorous and semanti-
cally unambiguous texts. Apart from rules for writing traditional mathemati-
cal items (e.g. definitions, lemmas, theorems, proof steps, etc.) it also provides
syntactic constructions to launch distinguished algorithms for processing par-
ticular mechanisms (e.g. term identifications, term reductions [4], flexary con-
nectives [5]) increasing computational power of Verifier. The most interesting
mechanism, from the point of view of this research, is the possibility of regis-
tering various properties of predicates and functors [6] at the stage of defining
new notions. The current version of the Mizar system supports registration of
reflexivity, irreflexivity, symmetry, asymmetry and connectedness for
binary predicates; involutiveness and projectivity for unary operations;
and commutativity and idempotence for binary operations. Table 1 presents
how registrations of the properties are used in the MML and how they influence
on proofs stored in the library. Consecutive columns show numbers of occurrences

c© Springer International Publishing Switzerland 2016
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, pp. 157–162, 2016.
DOI: 10.1007/978-3-319-42547-4 12

158 A. Korni�lowicz

Table 1. Properties of predicates and functors

Property Occurrences Articles Errors Articles with errors

Predicates

reflexivity 138 91 356 44

irreflexivity 11 10 9 2

symmetry 122 82 498 47

asymmetry 6 6 6 4

connectedness 4 4 65 4

total 281 119 934 73

Functors

involutiveness 38 32 163 18

projectivity 21 18 11 3

commutativity 155 86 1423 55

idempotence 20 13 155 9

total 234 115 1718 70

of each property, numbers of articles in which the properties were declared, num-
bers of errors occurring after removing registrations of the properties from texts,
and numbers of articles with such errors.1

In this paper we propose strengthening of the Mizar system by processing of
another common property used in mathematics – transitivity. It is described
in Sect. 2. In Sect. 3 we present some results of our implementation and describe
its potential influence on the MML. In Sect. 4 we indicate several directions of
further development of processing properties in Mizar.

2 Transitivity

Transitivity is a very common property of predicates. It is a subject of research
in various branches of mathematics. It is used to define, for example, orders,
equivalences, etc. Many relations are tested to determine if they are transitive
or not. Many mathematical theorems assert the transitivity of various relations.

We propose an enhancement of the Mizar system supporting automatic
processing of transitive predicates, where by automatic we mean that some com-
putations during the verification process are executed based on knowledge gath-
ered in the MML which is not explicitly referred to in processed proof steps.2

To enable such an automation, when a new predicate is defined, if it is transi-
tive, it should be declared as transitive (just like in the case of other properties

1 Total numbers are not simply sums of columns, because errors occurring after remov-
ing different registrations could occur in the same articles.

2 Other such automations are, for example, processing of adjectives [7] and definitional
expansions [8].

Enhancement of MIZAR Texts with Transitivity Property of Predicates 159

supported by the Mizar verifier [6]). Such a declaration has to be done within
a definitional block with syntax

definition
let x1 be θ1, x2 be θ2, . . . , xn be θn, y1, y2 be θn+1;
pred π(y1, y2) means :ident:
Φ(x1, x2, . . . , xn, y1, y2);

transitivity
proof
thus for a, b, c being θn+1

st Φ(x1, x2, . . . , xn, a, b) and Φ(x1, x2, . . . , xn, b, c)
holds Φ(x1, x2, . . . , xn, a, c);

end;
end;

The correctness of the definition must be proven according to a special for-
mula expressing the transitivity of the defined predicate. The formula is gener-
ated by the system. Having such a definition, whenever Verifier meets a con-
junction of formulas π(a, b) and π(b, c) within an inference, the inference is
enlarged by automatically generated formula π(a, c) which may help to justify
the proof step. For example, when one wants to prove the transitivity of <=
for real numbers, that is the statement a<=b & b<=c implies a<=c, Verifier
(as a classical disprover) assumes three premises: a<=b, b<=c and a>c. Then,
by transitivity, it knows that a<=c which contradicts with a>c and finishes the
proof.

3 Experiments

The implemented software was tested on Mizar Version 8.1.02 working with the
MML Version 5.36.1267.3

An important part of the package is a tool (transdet) which detects theo-
rems stored in the MML, that could be rewritten as registrations of the transi-
tivity of some predicates (we will call such theorems transitivity-like theorems).
In the current version of the library 127 such theorems were found in 90 articles.
The Library Committee, who is responsible for the management, developing and
revisions of the MML, will analyze all cases and decide which of them would
be incorporated into the library. In the case of approval, a refactoring of the
MML [9] will be required while maintaining licensing its content [10].

To present some examples detected in the MML4 let us cite the transitivity
of ordering of elements of a semilattice [11]

3 Computations were carried out at the Computer Center of University of Bia�lystok
http://uco.uwb.edu.pl.

4 The full list is accessible at http://alioth.uwb.edu.pl/∼artur/transitivity/th2trans.
txt.

http://uco.uwb.edu.pl
http://alioth.uwb.edu.pl/~artur/transitivity/th2trans.txt
http://alioth.uwb.edu.pl/~artur/transitivity/th2trans.txt

160 A. Korni�lowicz

theorem

for L being join-associative non empty \/-SemiLattStr,

a, b, c being Element of L holds a [= b & b [= c implies a [= c;

and the transitivity of being isomorphic groups [12]

theorem

for G, H, I being Group holds

G,H are_isomorphic & H,I are_isomorphic implies G,I are_isomorphic;

An important gain from rewriting detected transitivity-like theorems as dec-
larations of the transitivity of used predicates is decreasing the number of explicit
references to the theorems from all proofs collected in the MML. Table 2 presents
top 10 most cited such theorems.5 These numbers mean that 16855 out of all
629048 (2.7 %) references in the entire library can be removed while ensuring
that all proofs remain valid.

Table 2. References to transitivity-like theorems

Article References

XXREAL 0:2 12601

XBOOLE 1:1 3162

ORDERS 2:3 319

ORDINAL1:10 235

LATTICES:7 97

NAT D:4 70

INT 2:9 44

WELLORD2:15 44

PBOOLE:13 43

BORSUK 6:79 31

.

total 16855

The software can be downloaded from http://alioth.uwb.edu.pl/∼artur/
transitivity.

4 Further Work

A possible direction to continue work is to implement processing of other com-
monly used in mathematics properties of relations, like, for example, antisymme-
try, trichotomy, left- and right- Euclidean. Another topic is to introduce proper-
ties which are collections of other properties, like equivalence which is reflexive,
5 The full list of non-zero numbers of references is accessible at http://alioth.uwb.edu.

pl/∼artur/transitivity/references.txt.

http://alioth.uwb.edu.pl/~artur/transitivity
http://alioth.uwb.edu.pl/~artur/transitivity
http://alioth.uwb.edu.pl/~artur/transitivity/references.txt
http://alioth.uwb.edu.pl/~artur/transitivity/references.txt

Enhancement of MIZAR Texts with Transitivity Property of Predicates 161

symmetric and transitive; or preorder which is reflexive and transitive; etc. Of
course, one may declare a relation as reflexive, symmetric and transitive, but it
would be probably worth to enrich the Mizar language to make it closer and
closer to traditional mathematical vernacular.

In the current stage of the Mizar system, all properties of predicates can be
registered for binary predicates only. So, for example, the theorem [13]

theorem :: REWRITE1:16

for R being Relation, a,b,c being object st R reduces a,b & R reduces b,c

holds R reduces a,c;

is not transformable to a registration of transitivity, since the predicate reduces
is ternary, not binary. But it is seen, that if we fix the value of one argument, the
predicate can be understood as binary one, and we may think about its transi-
tivity (or other properties of binary predicates). In general, properties dedicated
for binary predicates, can be introduced for n-ary predicates, where 2 ≤ n, with
n − 2 fixed arguments.

5 Conclusions

In the paper we presented an extension of the Mizar system by introducing
a new word to the Mizar language (transitivity) and new rules for processing
transitive predicates. We detected theorems describing the transitivity of various
relations gathered in the MML. It can be concluded that our implementation
will have strong impact on the shape of many proofs – many explicit references
to the theorems can be removed. It may even result in reorganization of proof
steps within entire proofs [14].

As the last observation, it can be said that this new feature of the Mizar
system was anticipated and expected by Mizar users. Josef Urban, in one of his
papers [15], annotated a theorem as follows6:

:: remove when transitivity implemented

theorem :: OSALG_1:2

for S being non empty non void OverloadedMSSign

for o,o1,o2 being OperSymbol of S

holds o ~= o1 & o1 ~= o2 implies o ~= o2;

References

1. Trybulec, A.: Mizar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 20–23. Springer, Heidelberg (2006). doi:10.1007/
11542384 4

2. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 261–279.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-20615-8 17

6 http://mizar.uwb.edu.pl/version/current/html/osalg 1.html.

http://dx.doi.org/10.1007/11542384_4
http://dx.doi.org/10.1007/11542384_4
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://mizar.uwb.edu.pl/version/current/html/osalg_1.html

162 A. Korni�lowicz

3. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reason. 55(3), 191–198 (2015). doi:10.1007/s10817-015-9345-1

4. Korni�lowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210
(2013). doi:10.1007/s10817-012-9261-6

5. Korni�lowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44,
238–250 (2015). doi:10.1016/j.cl.2015.07.002

6. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and require-
ments. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol.
3119, pp. 290–301. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27818-4 21

7. Naumowicz, A.: Enhanced processing of adjectives in Mizar. In: Grabowski, A.,
Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics. Stud-
ies in Logic, Grammar and Rhetoric, pp. 89–101. University of Bia�lystok, Bia�lystok
(2009)

8. Korni�lowicz, A.: Definitional expansions in Mizar. J. Autom. Reason. 55(3), 257–
268 (2015). doi:10.1007/s10817-015-9331-7

9. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathe-
matical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer, Hei-
delberg (2007). doi:10.1007/978-3-540-73086-6 20

10. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.:
Licensing the Mizar mathematical library. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp.
149–163. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22673-1 11

11. Żukowski, S.: Introduction to lattice theory. Formalized Math. 1(1), 215–222 (1990)
12. Trybulec, W.A., Trybulec, M.J.: Homomorphisms and isomorphisms of groups.

Quotient group. Formalized Math. 2(4), 573–578 (1991)
13. Bancerek, G.: Reduction relations. Formalized Math. 5(4), 469–478 (1996)
14. P ↪ak, K.: Improving legibility of formal proofs based on the close reference

principle is NP-hard. J. Autom. Reason. 55(3), 295–306 (2015). doi:10.1007/
s10817-015-9337-1

15. Urban, J.: Order sorted algebras. Formalized Math. 10(3), 179–188 (2002)

http://dx.doi.org/10.1007/s10817-015-9345-1
http://dx.doi.org/10.1007/s10817-012-9261-6
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.1007/978-3-540-27818-4_21
http://dx.doi.org/10.1007/s10817-015-9331-7
http://dx.doi.org/10.1007/978-3-540-73086-6_20
http://dx.doi.org/10.1007/978-3-642-22673-1_11
http://dx.doi.org/10.1007/s10817-015-9337-1
http://dx.doi.org/10.1007/s10817-015-9337-1

Erratum to: Formal Dependability Modeling
and Analysis: A Survey

Waqar Ahmad1(&), Osman Hasan1, and Sofiène Tahar2

1 School of Electrical Engineering and Computer Science,
National University of Sciences and Technology, Islamabad, Pakistan

{waqar.ahmad,osman.hasan}@seecs.nust.edu.pk
2 Electrical and Computer Engineering Department,

Concordia University, Montreal, Canada
tahar@ece.concordia.ca

Erratum to:
Chapter “Formal Dependability Modeling and Analysis:
A Survey” in: M. Kohlhase et al. (Eds.):
Intelligent Computer Mathematics, LNAI,
DOI: 10.1007/978-3-319-42547-4_10

The original version of this chapter contained an error. The name of the author
Waqar Ahmad was spelled incorrectly as Waqar Ahmed in the original publication.
The original chapter was corrected.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-42547-4_10

© Springer International Publishing Switzerland 2017
M. Kohlhase et al. (Eds.): CICM 2016, LNAI 9791, p. E1, 2016.
DOI: 10.1007/978-3-319-42547-4_13

http://dx.doi.org/10.1007/978-3-319-42547-4_10
http://dx.doi.org/10.1007/978-3-319-42547-4_10

Author Index

Abbott, John 28
Ábrahám, Erika 28
Ahmad, Waqar 132

Becker, Bernd 28
Bigatti, Anna M. 28
Brain, Martin 28
Brown, Chad E. 99
Buchberger, Bruno 28

Cimatti, Alessandro 28

Davenport, James H. 28
Dehaye, Paul-Olivier 117

Elleuch, Maissa 44
England, Matthew 28

Farmer, William M. 83
Fontaine, Pascal 28
Forrest, Stephen 28

Griggio, Alberto 28

Hagiwara, Manabu 18
Hasan, Osman 44, 132

Iancu, Mihnea 117

Jakubův, Jan 151

Kohlhase, Michael 117
Konovalov, Alexander 117

Korniłowicz, Artur 157
Kroening, Daniel 28
Kuga, Ken’ichi 18

Lelièvre, Samuel 117

Maletzky, Alexander 3
Müller, Dennis 117
Müller, Fabian 63

Naumowicz, Adam 77

Pfeiffer, Markus 117
Piliszek, Radosław 77

Qasim, Muhammad 44

Rabe, Florian 117

Seiler, Werner M. 28
Sturm, Thomas 28

Tahar, Sofiène 44, 132
Teschke, Olaf 63
Thiéry, Nicolas M. 117

Urban, Josef 99, 151

Wiesing, Tom 117

Yamamoto, Mitsuharu 18

	Preface
	Organization
	Contents
	CALCULEMUS
	Mathematical Theory Exploration in Theorema: Reduction Rings
	1 Introduction
	2 Gröbner Bases and Reduction Rings
	2.1 Reduction Rings
	2.2 Gröbner Bases
	2.3 Contributions to the Theory

	3 Buchberger's Algorithm
	4 Structure of the Formalization
	4.1 Elementary Theories
	4.2 Reduction Ring Theory

	5 New Tools
	5.1 Interactive Proof Strategy
	5.2 TheoryAnalyzer

	6 Conclusion
	References

	Formalization of Bing's Shrinking Method in Geometric Topology
	1 Introduction
	2 Formalization
	2.1 Bing Shrinking Criterion
	2.2 Baire Category Theorem

	3 Relation to Some Theorems in Geometric Topology
	3.1 Proof Sketch of the GST Using Bing's Shrinking Method
	3.2 Abstract Property of Disks Necessary for Shrinking Arguments
	3.3 Future Plan

	4 Conclusion
	References

	SC2: Satisfiability Checking Meets Symbolic Computation
	1 Introduction
	2 Background
	2.1 Symbolic Computation and Computer Algebra Systems
	2.2 Satisfiability Checking

	3 Some Scientific Challenges and Opportunities
	3.1 Symbolic Computation Techniques for Satisfiability Checking
	3.2 Satisfiability Checking Techniques for Symbolic Computation
	3.3 Standard Languages and Benchmarks

	4 Project Actions
	5 Conclusions and Future Work
	References

	Formalization of Normal Random Variables in HOL
	1 Introduction
	2 Preliminaries
	2.1 Measure Theory
	2.2 Lebesgue Integration Theory
	2.3 Probability Theory

	3 Formalization of Lebesgue-Borel Measure
	3.1 Gauge Integral
	3.2 Borel Measurable Sets
	3.3 Lebesgue Measure
	3.4 Lebesgue-Borel Measure

	4 Formalization of Normal Random Variables
	4.1 Radon Nikodym Theorem
	4.2 Probability Density Function
	4.3 Normal Random Variables
	4.4 Properties of Normal Random Variables

	5 Application: Probabilistic Clock Synchronization in Wireless Sensor Networks
	5.1 Single-Hop Network
	5.2 Multi-hop Network
	5.3 Discussion

	6 Conclusion
	References

	Digital Mathematics Libraries
	Progress of Self-Archiving Within the DML Corpus, with a View Toward Community Dynamics
	1 Introduction
	2 Matching the arXiv and zbMATH: Methodology and Precision
	3 Time Lag Effect: Retroarchiving and Publication/Indexing Delay
	4 General Coverage Figures and Dynamics
	5 Submission Behavior: An Author-Based Analysis
	6 Subject Specifics
	7 Conclusions
	References

	Mathematical Knowledge Management
	Accessing the Mizar Library with a Weakly Strict Mizar Parser
	1 Introduction
	2 WS-Mizar Grammar Specification
	3 Parser Implementation
	4 Conclusions
	References

	Incorporating Quotation and Evaluation into Church's Type Theory: Syntax and Semantics
	1 Introduction
	2 Syntax
	2.1 Types
	2.2 Expressions
	2.3 Constructions
	2.4 Definitions and Abbreviations

	3 Semantics
	3.1 Frames
	3.2 Interpretations
	3.3 Models

	4 Examples
	4.1 Reasoning About Syntax
	4.2 Quasiquotation
	4.3 Schemas
	4.4 Meaning Formulas

	5 A Sketch of a Simple Proof System
	6 Conclusion
	References

	Extracting Higher-Order Goals from the Mizar Mathematical Library
	1 Introduction
	2 Syntax of Higher-Order Logic
	3 Idealized Mizar
	4 Mapping Mizar to Higher-Order Logic
	5 Experiments
	6 Conclusion
	References

	Surveys and Projects
	Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach
	1 Introduction
	2 The OPENDREAMKIT Project (2015--2019)
	3 Integrating Mathematical Software Systems via the Math-in-the-Middle Approach
	3.1 A Common Meaning Space for Interoperability
	3.2 Realizing and Utilizing a MitM Ontology

	4 LMFDB Knowledge and Interoperability
	5 Distributed Collaboration with GAP/Sage
	5.1 Semantics in the Sage Category System
	5.2 Exporting the GAP Knowledge: Type System Documentation

	6 Conclusion
	References

	Formal Dependability Modeling and Analysis: A Survey
	1 Introduction
	2 Dependability Modeling Techniques
	2.1 Reliability Block Diagrams
	2.2 Fault Trees
	2.3 Markov Chain

	3 Formal Dependability Analysis Techniques
	3.1 Petri Nets
	3.2 Model Checking
	3.3 Higher-Order-Logic Theorem Proving

	4 Comparison and Discussion
	4.1 Comparison of Dependability Modeling Techniques
	4.2 Comparison of Dependability Analysis Techniques

	5 Conclusions
	References

	Systems and Data
	Extending E Prover with Similarity Based Clause Selection Strategies
	1 Introduction
	2 Clause Selection in E Prover
	3 Similarity Based Clause Selection Strategies
	4 Experimental Results and Evaluation
	5 Conclusions and Future Work
	References

	Enhancement of MIZAR Texts with Transitivity Property of Predicates
	1 Introduction
	2 Transitivity
	3 Experiments
	4 Further Work
	5 Conclusions
	References

	Erratum to: Formal Dependability Modeling and Analysis: A Survey
	Erratum to: Chapter “Formal Dependability Modeling and Analysis: A Survey” in: M. Kohlhase et al. (Eds.): Intelligent Computer Mathematics, LNAI, DOI: 10.1007/978-3-319-42547-4_10

	Author Index

