
Chapter 6
Variations

6.1 Partial Interleavings

In some practical data analysis situations, one considers persistence modules which
are only partially interleaved. One such scenario is presented by Chazal et al. in the
context of clustering bymode-seeking [18]. A filtered simplicial complex on an input
point cloud is compared with the sublevelset filtration of the density function it was
sampled from. In low-density regions, the sample is too sparse to expect there to be
an interleaving. Nevertheless, there is interleaving when the density is sufficiently
high.

This leads to the following notion of partial interleaving, adapted from [18]. Two
persistence modules U and V are said to be δ-interleaved up to time t0 if there
are maps φt : Ut → Vt+δ and ψt : Vt → Ut+δ defined for all t ≤ t0, such that the
diagrams (4.1) commute for all values s < t ≤ t0; that is, for all values where the
maps are defined.

We can prove a modified version of the stability theorem; see Fig. 6.1 (left).

Theorem 6.1 (from [18]) Let U and V be two q-tame persistence modules that are
δ-interleaved up to time t0. Then, there is a partial matchingM ⊂ dgm(U) × dgm(V)

with the following properties:

• Points (p, q) in either diagram for which 1
2 |p − q| ≤ δ are not required to be

matched.
• Points (p, q) in either diagram for which p ≥ t0 − δ are not required to be
matched.

All other points must be matched. Then:

• If α, β are matched, then the p-coordinates of α, β differ by at most δ.
• If α, β are matched and one of α, β lies below the line q = t0, then we have
d∞(α, β) ≤ δ.
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Fig. 6.1 Left: The partial matching of Theorem 6.1 between dgm(U) (•) and dgm(V) (◦). Right:
The projection from dgm(U) (• and •) to dgm(Ũ) (◦). The grey dots are the points that disappear

For the proof, we introduce two new persistence modules Ũ, Ṽ.

Ũt = Ut if t ≤ t0 + δ and Ũt = 0 otherwise
Ṽt = Vt if t ≤ t0 + δ and Ṽt = 0 otherwise

with maps
ũst = ust if t ≤ t0 + δ and ũst = 0 otherwise
ṽst = vst if t ≤ t0 + δ and ṽst = 0 otherwise

for all s ≤ t . We may call Û, V̂ the truncations of U,V to (−∞, T ], where T =
t0 + δ.

Proof There are three steps.

Step1. The decorated diagramof a persistencemoduleUdetermines the decorated
diagram of its truncation Ũ, in a straightforward way. Specifically, transform each
point (p∗, q∗) ∈ Dgm(U) as follows:

(p∗, q∗) 
→

⎧
⎪⎨

⎪⎩

(p∗, q∗) if q∗ < T+

(p∗, T+) if p∗ < T+ ≤ q∗

disappears if T+ ≤ p∗
(6.1)

Then Dgm(Ũ) is the result of this transformation. The consequent relationship
between the undecorated diagrams is illustrated in Fig. 6.1 (right).

Step 2. If U,V are δ-interleaved up to time t0, then Ũ, Ṽ are δ-interleaved.
Combining the first two steps we get the third.
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Step 3. The stability theorem gives a δ-matching between dgm(Ũ), dgm(Ṽ). This
lifts to a matching between dgm(U), dgm(V) which has the properties stated in the
theorem.

The second and third steps are straightforward. Only the (intuitively plausible)
first step requires any technical input. The framework developed in [14] leads to a
2-page argument, presented in the appendix of [18]. Here is a shorter proof. Write
μ = μU and μ̃ = μ

Ũ
. Let A denote the multiset obtained from Dgm(U) by applying

the transformation in Eq. (6.1). Consider an arbitrary rectangle [a, b] × [c, d] ∈
Rect(H). We easily see:

card(A|[a,b]×[c,d]) =

⎧
⎪⎨

⎪⎩

μ([a, b] × [c, d]) if d ≤ T

μ([a, b] × [c,+∞]) if c ≤ T < d

0 if T < c

To show that we have correctly determined Dgm(Ũ), it suffices to show that
card(A|[a,b]×[c,d]) = μ̃([a, b] × [c, d]) for all rectangles. And indeed:

• If d ≤ T , then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉
= 〈◦a—•b—•c—◦d | U〉 = μ([a, b] × [c, d])

• If c ≤ T < d, then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉
= 〈◦a—•b—•c—— | Ũ〉
= 〈◦a—•b—•c—— | U〉 = μ([a, b] × [c,+∞])

since Ũd = 0.
• If T < c, then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉 = 0

since Ũc = 0.

It follows that Dgm(Ũ) = A as claimed. �

6.2 Extended Persistence

Cohen-Steiner, Edelsbrunner and Harer [20] introduced extended persistence to cap-
ture the homological information carried by a pair (X, f ). Some but not all of this
information is recovered by the sublevelset persistence H(Xsub). The idea is to grow
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the space from the bottom up, through sublevelsets; and then to relativise the space
from the top down, with superlevelsets. Extended persistence is the persistent homol-
ogy of this sequence of spaces and pairs.

It is usually assumed that (X, f ) has finitelymany homological critical points (ai ).
One applies a homology functor to the finite sequence1

Xa0 → Xa1 → · · · → Xan−1 → X → (X, Xan ) → · · · → (X, Xa2) → (X, Xa1)

to get a quiver representation. The indecomposable summands of this representation
are interpreted as features, and are drawn as points in the ‘extended persistence
diagram’. There are three kinds of feature:

• ordinary features (which are born and die before the central X );
• relative features (which are born and die after the central X );
• extended features (which are born before the X and die after it).

We refer to [20] for the interpretation of these three types of features. The finiteness
assumption is satisfied when (X, f ) is a compact manifold with a Morse function,
or a compact polyhedron with a piecewise-linear map. In the former situation, there
are extra symmetries (Poincaré, Lefschetz) which are explored in [20].

In practice, it is straightforward to define the extended persistence diagram under
a weaker hypothesis. Suppose X is a compact polyhedron and f is a continuous
real-valued function on X . Then:

• rank
(
H(Xs) → H(Xt )

)
< ∞ whenever s < t ; and

• rank (H(X, Xs) → H(X, Xt )) < ∞ whenever s > t .

The first of these facts is Theorem 3.33. The second fact is proved similarly, by
factorising the map H(X, Xs) → H(X, Xt ) through some H(X,Y ), where Y is a
subpolyhedron of X nested between Xs, Xt . Since H(X,Y ) is finite-dimensional the
result follows.

Define the ordered set

R= {t | t ∈ R} ordered by s ≤ t ⇔ s ≥ t,

thought of as a ‘backwards’ copy of the real line, with bars under numbers to remind
us. For extended persistence we may work with the set

Rep = R ∪ {+∞} ∪ R

with the ordering s < +∞ < t for all s, t .

1We write Xt = (X, f )t = f −1(−∞, t] and Xt = (X, f )t = f −1[t,+∞) for sublevelsets and
superlevelsets.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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The extended persistence module Xep = X
f
ep for (X, f ) is defined as follows:

Vt = H(Xt ) for t ∈ R
V+∞ = H(X)

Vt = H(X, Xt ) for t ∈ R

Note that H(X+∞) = H(X) ∼= H(X,∅) = H(X, X+∞).
Since Rep is order-isomorphic to the real line, we may interpret Xep it as a per-

sistence module over R. The two facts cited above imply that it is q-tame, so the
decorated diagram is defined away from the diagonal.

Alternatively, we can define the extended persistence diagram in three pieces:

μord([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a < b ≤ c < d

μrel([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a > b ≥ c > d

μext([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a < b and c > d

taking V−∞ = 0 and V−∞ = 0 whenever needed.
The measuresμord, μrel are defined over the half-planeH, whereasμext is defined

over R2.
Stability for dgmord, dgmrel and dgmext may be proved individually for each dia-

gram. Given two functions f, g which are δ-close in the supremum norm, there are
inclusions

(X, f )t ⊆ (X, g)t+δ (X, f )t ⊆ (X, g)t−δ

(X, g)t ⊆ (X, f )t+δ (X, g)t ⊆ (X, f )t−δ

which imply the box lemma (Lemma 5.26) for each measure. Since linear combina-
tions of continuous functions are continuous, we can interpolate between f and g to
satisfy the hypotheses required by the measure stability theorem (Theorem 5.29).

Remark 6.1 In the spirit of Theorem 3.37, one may treat the case where X is a
locally compact polyhedron and f is proper. The exercise of locating the possible
singularities of the three measures is left to the persistent reader.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_3

	6 Variations
	6.1 Partial Interleavings
	6.2 Extended Persistence


