
Chapter 5
The Isometry Theorem

In this section we discuss the metric relationship between persistence modules and
their persistence diagrams. As in Chap.4, all persistence modules are indexed by R
unless explicitly stated otherwise.

Theprincipal result is the famous stability theoremofCohen-Steiner, Edelsbrunner
and Harer [19], in the generality established by [15]. The main difference is that we
emphasise persistence measures, deriving the standard theorem from a more general
statement about measures. The structure of the proof remains the same as in [19].

The secondary result is the converse inequality, which together with the stability
theorem implies that the space of q-tame persistence modules is isometric with
the space of locally finite persistence diagrams. This isometry theorem appeared
originally in the work of Lesnick [42] for modules which satisfy dim(Vt ) < ∞ for
all t , and independently in the work of Bubenik and Scott [5] for modules of finite
type.

5.1 The Interleaving Distance

In this section we define the interleaving distance between persistence modules. This
was introduced in [15].

The first observation is that if U and V are δ-interleaved, then they are (δ + ε)-
interleaved for every ε > 0. Indeed, the maps

Φ ′ = Φ1ε
U

= 1ε
V
Φ

Ψ ′ = Ψ 1ε
V

= 1ε
U
Ψ

provide the required interleaving.
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82 5 The Isometry Theorem

The challenge, then, if two persistence modules are interleaved, is to make the
interleaving parameter as small as possible. Theminimum is not necessarily attained,
so we introduce some additional terminology: we say that two persistence modules
U,V are δ+-interleaved if they are (δ + ε)-interleaved for all ε > 0. This does not
imply that U,V are δ-interleaved, as we see now:

Example 5.1 Two persistence modules are 0-interleaved if and only if they are iso-
morphic.

Example 5.2 A persistence module V is ephemeral if vst = 0 for all s < t . An
ephemeral module may be constructed by selecting an arbitrary family of spaces (Vt )

and setting every vst to be zero. Let U and V be a pair of non-isomorphic ephemeral
modules. Then U,V are 0+-interleaved but not 0-interleaved. Indeed, 12ε

U
= 0 and

12ε
V

= 0 for all ε > 0, so the zero maps

Φ = 0 ∈ Homε(U,V)

Ψ = 0 ∈ Homε(V,U)

constitute an ε-interleaving.

The interleaving distance between two persistence modules is defined:

di(U,V) = inf{δ | U,V are δ -interleaved}
= min{δ | U,V are δ+ -interleaved}

If there is no δ-interleaving between U,V for any value of δ, then di(U,V) = ∞.

Proposition 5.3 The interleaving distance satisfies the triangle inequality:

di(U,W) ≤ di(U,V) + di(V,W)

for any three persistence modules U,V,W.

Proof Given a δ1-interleaving between U,V and a δ2-interleaving between V,W

one can construct a δ = (δ1 + δ2)-interleaving between U,W by composing the
interleaving maps:

U
Φ1−→ V

Φ2−→ W

U
Ψ1←− V

Ψ2←− W

One easily verifies thatΦ = Φ2Φ1 andΨ = Ψ1Ψ2 are interleaving maps. Explicitly:

Ψ Φ = Ψ1Ψ2Φ2Φ1 = Ψ11
2δ2
V

Φ1 = Ψ1Φ11
2δ2
U

= 12δ1
U

12δ2
U

= 12δ
U

ΦΨ = Φ2Φ1Ψ1Ψ2 = Φ21
2δ1
V

Ψ2 = Φ2Ψ21
2δ1
W

= 12δ2
W

12δ2
W

= 12δ
W

Now take the infimum over δ1, δ2. �
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The proposition tells us that di is an extended pseudometric. It is not a true metric
because di(U,V) = 0 does not imply U ∼= V, as we saw above. In fact, two q-tame
persistence modules have interleaving distance 0 if and only if their undecorated
persistence diagrams are the same. This is a consequence of the isometry theorem.

Here is the simplest instance. The straightforward proof is left to the reader (or
see Proposition5.6).

Example 5.4 The four interval modules

k[p, q], k[p, q), k(p, q], k(p, q)

are 0+-interleaved but not isomorphic.

The following property of interleaving distance will be useful later.

Proposition 5.5 Let U1,U2,V1,V2 be persistence modules. Then

di(U1 ⊕ U2,V1 ⊕ V2) ≤ max (di(U1,V1), di(U2,V2))

More generally, let (U� | � ∈ L) and (V� | � ∈ L) be families of persistence modules
indexed by the same set L, and let

U =
⊕

�∈L
U�, V =

⊕

�∈L
V�.

Then
di(U,V) ≤ sup (di(U�,V�) | � ∈ L) .

Proof Given δ-interleavings Φ�,Ψ� for each pair U�,V�, the direct sum maps Φ =⊕
Φ�, Ψ = ⊕

Ψ� constitute a δ-interleaving of U,V. Thus any upper bound on the
di(U�,V�) is an upper bound for di(U,V). In particular, this is true for the least upper
bound, or sup. �

5.2 The Bottleneck Distance

Now we define the metric on the other side of the isometry theorem, namely the
bottleneck distance between undecorated persistence diagrams. For a q-tame persis-
tence module V, every rectangle not touching the diagonal has finite μV-measure.
This implies that the undecorated diagram

dgm(V) = dgm(μV)
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is a multiset in the extended open half-plane

H◦ = {(p, q) | −∞ ≤ p < q ≤ +∞}.

In order to define the bottleneck distance, we need to specify the distance between
any pair of points inH◦, as well as the distance between any point and the diagonal
(the boundary of the half-plane). These distance functions are not arbitrary; they are
defined as they are because of the interleaving properties of interval modules.

(point to point): The first idea is that two undecorated diagrams are close if
there is a bijection between them which doesn’t move any point too far. We use the
�∞-metric in the plane:

d∞((p, q), (r, s)) = max (|p − r |, |q − s|)

Points at infinity are compared in the expected way:

d∞((−∞, q), (−∞, s)) = |q − s|,
d∞((p,+∞), (r,+∞)) = |p − r |,

and
d∞((−∞,+∞), (−∞,+∞)) = 0.

Distances between points in different strata (e.g. between (p, q) and (−∞, s)) are
infinite.

The next result gives a relationship between the �∞-metric and the interleaving
of interval modules.

Proposition 5.6 Let (p∗, q∗) and (r∗, s∗) be intervals (possibly infinite), and let

U = k(p∗, q∗) and V = k(r∗, s∗)

be the corresponding interval modules. Then

di(U,V) ≤ d∞((p, q), (r, s)).

The proof is postponed to the end of the section. We remark that equality holds
provided that the intervals overlap sufficiently (the closure of each interval must meet
the midpoint of the other), so the proposition is tight in that sense.

(point to diagonal): The next idea is that points which are close to the diagonal
are allowed to be swallowed up by the diagonal. Again we use the �∞-metric:

d∞((p, q),Δ) = 1
2 (q − p)

Again this is related to the behaviour of interval modules.
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Proposition 5.7 Let (p∗, q∗) be an interval, let

U = k(p∗, q∗),

be the corresponding interval module, and let 0 denote the zero persistence module.
Then

di(U, 0) = 1
2 (q − p).

(This is infinite if the interval is infinite.)

Proof Let δ ≥ 0. When is there a δ-interleaving? The interleaving maps must be
zero (no other maps exist to or from the module 0), so the only condition that needs
checking is Ψ Φ = 12δ

U
, which is really 0 = 12δ

U
. This holds when δ > 1

2 (q − p) and
fails when δ < 1

2 (q − p). �

We now use these two concepts to define the bottleneck distance between two
multisets A,B in the extended half-plane.

It is easier to work with sets rather than multisets. One way to do this is to attach
labels to distinguish multiple instances of each repeated point. For instance, α with
multiplicity k becomes α1, . . . ,αk . Henceforth we will do this implicitly, without
comment.

A partial matching between A and B is a collection of pairs

M ⊂ A × B

such that:

• for every α ∈ A there is at most one β ∈ B such that (α,β) ∈ M;
• for every β ∈ B there is at most one α ∈ A such that (α,β) ∈ M.

We say that a partial matching M is a δ -matching if all of the following are true:

• if (α,β) ∈ M then d∞(α,β) ≤ δ;
• if α ∈ A is unmatched then d∞(α,Δ) ≤ δ;
• if β ∈ B is unmatched then d∞(β,Δ) ≤ δ.

The bottleneck distance between two multisets A,B in the extended half-plane is

db(A,B) = inf (δ | there exists a δ-matching between A and B) .

In Sect. 5.3, we will show that ‘inf’ can be replaced by ‘min’ if A,B are locally finite.

Remark 5.8 In order for db(A,B) < ∞, it is necessary that the cardinalities of A,B
agree over each of the three strata at infinity:

card(A|{−∞}×R) = card(B|{−∞}×R)

card(A|R×{+∞}) = card(B|R×{+∞})
card(A|{−∞}×{+∞}) = card(B|{−∞}×{+∞})
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Indeed, these points have infinite distance from the diagonal and from points in the
other strata, and therefore they must be bijectively matched within each stratum.

Proposition 5.9 The bottleneck distance satisfies the triangle inequality:

db(A,C) ≤ db(A,B) + db(B,C)

for any three multisets A,B,C.

Proof Suppose M1 is a δ1-matching between A,B, and M2 is a δ2-matching between
B,C. Let δ = δ1 + δ2. We must show that there is a δ-matching between A,C.

Define the composition of M1,M2 to be

M = ((α, γ) | there existsβ ∈ B such that (α,β) ∈ M1 and (β, γ) ∈ M2) .

It is a partial matching because M1,M2 are partial matchings. We verify that M is the
required δ-matching:

• If (α, γ) ∈ M then

d∞(α, γ) ≤ d∞(α,β) + d∞(β, γ) ≤ δ1 + δ2 = δ

where β ∈ B is the point linking α to γ.

• If α is unmatched in M then there are two possibilities. Either α is unmatched in
M1, in which case

d∞(α,Δ) ≤ δ1 ≤ δ.

Or α is matched in M1, let’s say (α,β) ∈ M1. Then β must be unmatched in M2, so

d∞(α,Δ) ≤ d∞(α,β) + d∞(β,Δ) ≤ δ1 + δ2 = δ.

• If γ is unmatched in M, then a similar argument shows that

d∞(γ,Δ) ≤ δ.

This completes the proof. �

Remark 5.10 Because A,B,C are in truth multisets rather than sets, the composi-
tion operation between matchings is not uniquely defined, but depends on how the
matchings are realised when labels are added. Figure5.1 illustrates what can happen
when B has points of multiplicity greater than 1. Since we are concerned only with
the existence of the composite matching, this ambiguity does not trouble us.

Here is the first substantial-looking result comparing the interleaving and bottle-
neck distances.
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2

CA B

gives

CA

or

CA

Fig. 5.1 The partial matchings between A,B and B,C (left) compose to give a partial matching
between A,C in two different ways (middle, right). The non-uniqueness arises from the point of
multiplicity 2 in B

Theorem 5.11 Let U,V be decomposable persistence modules (i.e. direct sums of
interval modules). Then

di(U,V) ≤ db(dgm(U), dgm(V)).

(We remind the reader that tameness is not required to define Dgm and dgm in this
case: see Sect. 2.6.)

Proof We show that whenever there exists a δ-matching between dgm(U) and
dgm(V), we have di(U,V) ≤ δ. The result follows by taking the infimum over all
such δ.

LetM be a δ-matching between the two diagrams. Since the points in each diagram
correspond to the interval summands of themodule, we can construct fromM a partial
matching between the interval summands of U and V.

Rewrite U and V in the form

U =
⊕

�∈L
U�, V =

⊕

�∈L
V�

so that each pair (U�,V�) is one of the following:

• a pair of matched intervals;
• U� is an unmatched interval, V� = 0;
• V� is an unmatched interval, U� = 0.

In each case, by Propositions5.6 and 5.7, we have di(U�,V�) ≤ δ. It follows from
Proposition5.5 that di(U,V) ≤ δ. �

We complete this section with the postponed proof.

Proof (Proposition 5.6) We treat the case where p, q, r, s are all finite. We must
show that if

δ > max (|p − r |, |q − s|)

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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then U,V are δ-interleaved. We define systems of linear maps

Φ = (φt : Ut → Vt+δ)

Ψ = (ψt : Vt → Ut+δ)

and then show that the interleaving relations

Φ1η
U

= 1η
V
Φ, Ψ 1η

V
= 1η

U
Ψ, Ψ Φ = 12δ

U
, ΦΨ = 12δ

V

hold.
The definition of the maps φt ,ψt is straightforward. Each vector space in U,V is

equal to zero or to the field k. If the domain and codomain equal k, then the map is
defined to be the identity 1 = 1k. Otherwise, the map is necessarily 0.

The first step is to show that the systems of mapsΦ = (φt),Ψ = (ψt ) are module
homomorphisms. For Φ this entails verifying that the diagram

Ut
��

�������� Ut+η

��������

Vt+δ
�� Vt+η+δ

commutes for all t and for all η > 0. Because of the special form of the vector spaces
and maps, it is enough to show that the situation is not one of the following:

• ��

��
��

��
•

��
��

��

◦ �� •

or • ��

��
��

��
◦

��
��

��

• �� •
Here a filled circle • indicates that the vector space is k, and an open circle ◦ denotes
that it is zero. For the first situation to occur, one must have

p ≤ t and t + δ ≤ r

which would imply δ ≤ r − t ≤ r − p. This contradicts the hypothesis δ > r − p.
For the second situation to occur, one must have

q ≤ t + η and t + η + δ ≤ s

which would imply δ ≤ s − t − η ≤ s − q. This contradicts the hypothesis δ > s −
q. It follows that Φ is a module homomorphism. By symmetry, so is Ψ .

The second step is to show that Ψ Φ = 12δ
U
and ΦΨ = 12δ

V
. For the first of these,

we must verify that the diagram
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Ut
��

�����
���

� Ut+2δ

Vt+δ

��������

commutes for all t . This time the unique forbidden configuration is

• ��

��
��

��
•

◦
������

and if this occurs then the top row implies

p ≤ t and t + 2δ ≤ q.

Since δ > r − p and δ > q − s we infer that

r < p + δ ≤ t + δ ≤ q − δ < s

which implies that the circle on the bottom row is filled after all. It follows that
Ψ Φ = 12δ

U
. By symmetry, ΦΨ = 12δ

V
.

This finishes the proof when p, q, r, s are finite. The infinite cases are
similar. �

5.3 The Bottleneck Distance (Continued)

If A,B are locally finite, it turns out that the ‘inf’ is attained in the definition

db(A,B) = inf (δ | there exists a δ -matching between A and B) ,

and can be replaced by ‘min’. This will allow us to make a tighter statement of the
stability theorem (5.14′) for q-tame modules. See Theorem5.23.

Theorem 5.12 Let A,B be locally finite multisets in the extended open half-plane
H◦. Suppose for every η > δ there exists an η-matching between A,B. Then there
exists a δ-matching between A,B.

The assertion is obvious if A,B are finite. The general case is proved using a
compactness argument, as follows.

Proof As usual we treat A,B as sets rather than multisets.
For every integer n ≥ 1, let Mn be a (δ + 1

n )-matching between A,B. The plan is
to construct a δ-matching M from the sequence (Mn). In practice, we work with the
indicator functions
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χ : A × B → {0, 1}
χn : A × B → {0, 1}

of the partial matchings M,Mn .
The first step is to construct χ as a limit of the sequence (χn). Take a fixed

enumeration
((α�,β�) | � ≥ 1)

of the countable set A × B. We will inductively construct a descending sequence

N = N0 ⊇ N1 ⊇ · · · ⊇ N� ⊇ · · ·

of infinite subsets of the natural numbers, with the property that χn(α�,β�) takes the
same value for all n ∈ N�. Having done so, we define χ(α�,β�) to be this common
value.

The construction of N� is straightforward: once N�−1 is defined, at least one of
the two sets

{n ∈ N�−1 | χn(α�,β�) = 0} and {n ∈ N�−1 | χn(α�,β�) = 1}

has infinite cardinality, and that will be our N�. (If both, then either will do.) Repeat.

Lemma 5.13 If F is any finite subset of A × B, then there exists � ≥ 1 such that

χ(α,β) = χn(α,β)

for all (α,β) ∈ F and for all n ∈ N�.

Proof Indeed, select � such that (α1,β1), . . . , (α�,β�) include all of F. �

The second step is to verify that χ is the indicator function of a δ-matching. There
are several items to check.

• For α ∈ A there is at most one β ∈ B such that χ(α,β) = 1.
Proof Suppose χ(α,β) = χ(α,β′) = 1 for distinct elements β,β′ ∈ B. By the
lemma, there exists n such that χn(α,β) = χn(α,β′) = 1, which contradicts the
fact that Mn is a partial matching. �

• For α ∈ A with d∞(α,Δ) > δ, there is at least one β ∈ B such that χ(α,β) = 1.

Proof Select N such that d∞(α,Δ) > δ + 1
N . Then the set

Fα = {
β ∈ B | d∞(α,β) ≤ δ + 1

N

}

is finite, since B is locally finite and these points lie in a square bounded away from
the diagonal. By Lemma5.13, there exists � such that
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χ(α,β) = χn(α,β)

for all β ∈ Fα and for all n ∈ N�. On the other hand, if n ≥ N , then Mn matches α
with some β ∈ Fα. Combining these observations,

χ(α,β) = χn(α,β) = 1

for sufficiently large n ∈ N� and for some β ∈ Fα. �
By symmetry we have:

• For β ∈ B there is at most one α ∈ A such that χ(α,β) = 1.
• For β ∈ B with d∞(β,Δ) > δ, there is at least one α ∈ A such that χ(α,β) = 1.

Finally:

• If χ(α,β) = 1 then d∞(α,β) ≤ δ.

Proof By Lemma5.13, there are infinitely many n for which χn(α,β) = 1. Then

d∞(α,β) ≤ δ + 1
n

for these n. Since n may be arbitrarily large, the result follows. �

These five bullet points confirm that M, defined by its indicator function χ, is a
δ-matching between A,B. �

Althoughwe have chosen to spell out a direct argument, in fact Theorem5.12 is an
instance of the compactness theorem in first-order logic. The set of constraints that
must be satisfied by an η-matching can be formulated as a theory Tη on a collection of
binary-valued variables xαβ . An η-matching is precisely a model for that theory. The
theory Tδ is seen to be logically equivalent to the union of the theories (Tη | η > δ).
If each Tη has a model, then any finite subtheory of this union has a model, therefore
by compactness Tδ has a model. The details are left to the interested reader.

5.4 The Isometry Theorem

Having defined the interleaving distance and the bottleneck distance, we can now
state the main theorem.

Theorem 5.14 Let U,V be q-tame persistence modules. Then

di(U,V) = db(dgm(U), dgm(V))

(Recall that dgm denotes the undecorated persistence diagram).
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The result naturally falls into two parts: the ‘stability theorem’ [19], [14]

di(U,V) ≥ db(dgm(U), dgm(V)), (5.14′)

and the ‘converse stability theorem’ [42]

di(U,V) ≤ db(dgm(U), dgm(V)). (5.14′′)

The proof of the converse stability theorem (5.14′′) occupies Sect. 5.5. We have
already seen the result for decomposable modules, in Theorem5.11, so it is a matter
of extending the result to q-tame modules that are not known to be decomposable.
The proof of the stability theorem (5.14′) is given in Sects. 5.6 and 5.7.

5.5 The Converse Stability Theorem

In this sectionwe deduce the converse stability inequality (5.14′′) for q-tamemodules
from Theorem5.11. A similar argument was given by Lesnick [42], to whom the
theorem is due. The key idea is that persistence modules can be approximated by
better-behaved persistence modules, using a procedure we call ‘smoothing’.

Definition 5.15 Let V be a persistence module, and let ε > 0. The ε -smoothing
of V is the persistence module Vε defined to be the image of the map

12ε
V

: V[−ε] → V[ε]

(using the ‘shift’ notation from Remark4.1). Thus (V ε)t is the image of the map

vt−ε
t+ε : Vt−ε → Vt+ε,

and (vε)st is the restriction of v
s+ε
t+ε .

Then we have a factorisation of 12ε
V

V[−ε] �� V
ε �� V[ε] (5.1)

where the first map is surjective and the second map is injective. At a given index t
this is the sequence:

Vt−ε

vt+ε
t−ε

�� V ε
t

1 �� Vt+ε

Proposition 5.16 Let V be a persistence module. Then di(V,Vε) ≤ ε.

Proof One checks that the maps in (5.1) constitute an ε-interleaving. �

http://dx.doi.org/10.1007/978-3-319-42545-0_4
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Smoothing changes the persistence diagram in a predictable way. Here is the
atomic example (which the reader can easily verify):

Example 5.17 Let V = k(p∗, q∗). Then:

V
ε =

{
k((p + ε)∗, (q − ε)∗) if (p + ε)∗ < (q − ε)∗

0 otherwise

In other words, ε-smoothing shrinks the interval by ε at both ends. �

Proposition 5.18 The persistence diagram of Vε is obtained from the persistence
diagram of V by applying the translation Tε : (p, q) �→ (p + ε, q − ε) to the part
of the extended half-plane that lies above the line Δε = {(t − ε, t + ε) | t ∈ R}.

In otherwords, the entire diagram is pushed towards the diagonal by the translation
vector (ε,−ε). Information in Dgm(V) that lies below the line Δε is lost and cannot
be retrieved from Dgm(Vε).

In the case where Dgm is not everywhere defined, the proposition is understood to
include the assertion that the finite r-interior of the persistence measure, and hence
the region where Dgm is defined, is shifted by Tε.

Proof We consider three different cases. Case (ii) is subsumed by case (iii), but we
include it because it makes the proof easier to digest.

(i) V is decomposable. The image of a direct sum of maps is the direct sum of
the images of the maps; therefore ε-smoothing commutes with direct sums:

[ ⊕

�∈L
V�

]ε =
⊕

�∈L
V

ε
�

By Example5.17, the proposition is true for interval modules. It is therefore true for
direct sums of interval modules.

(ii) V is q-tame. It is enough to show that the rank function of Vε is equal to the
rank function of V shifted by Tε, since this determines the persistence measure and
hence the persistence diagram. Specifically, for all b < c we require:

rank[(V ε)b → (V ε)c] = rank[Vb−ε → Vc+ε]

In fact, these maps are related by the sequence

Vb−ε
�� (V ε)b �� (V ε)c �� Vc+ε

where the first map is surjective and the third map is injective. Since the rank of a
linear map is unchanged by pre-composing with a surjective map, or post-composing
with an injective map, it follows that the rank of the middle map is equal to the rank
of the composite. This is what we wished to prove.
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(iii) general case. We show that the persistence measure of Vε is equal to the
persistence measure of V shifted by Tε. Writing

A = a − ε, B = b − ε, C = c + ε, D = d + ε

this means showing that

〈◦A— •B— •C — ◦D | V〉 = 〈◦a— •b— •c—◦d | Vε〉

for all a < b ≤ c < d.
The proof is based on the following commutative diagram

(V ε)a �� (V ε)b �� (V ε)c ��

�����
���

� (V ε)d

�����
���

�

VA ��

									
VB ��

									
VC �� VD

in which the maps ↗ are surjective and the maps ↘ are injective. The diagram can
be thought of as a persistence module over an 8-element poset, the partial order being
implied by the arrows. We will carry out quiver calculations by restricting to various
totally-ordered subsets of this poset.

To begin with, surjectivity of the maps ↗ means that

〈◦A— •a〉 = 0 and 〈◦B — •b 〉 = 0,

and injectivity of the maps ↘ means that

〈 •c— ◦C 〉 = 0 and 〈 •d— ◦D〉 = 0.

Moreover, by the restriction principle, interval types containing any of these ‘forbid-
den’ configurations occur with multiplicity zero.

Then

〈◦A—–––— •b— •c—–––— ◦D〉 = 〈◦A—•B— •b— •c— •C— ◦D〉
+ three other terms

= 〈◦A—•B— •b— •c— •C— ◦D〉
= 〈◦A—•B—–––—–––— •C— ◦D〉
= 〈◦A—•B— •C— ◦D | V〉

and at the same time
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〈◦A—–––— •b— •c—–––— ◦D〉 = 〈◦A—◦a— •b— •c—◦d— ◦D〉
+ three other terms

= 〈◦A—◦a— •b— •c—◦d— ◦D〉
= 〈–––—◦a— •b— •c—◦d—–––〉
= 〈◦a— •b— •c—◦d | Vε〉

sowe get the required equality. The six ‘other terms’ are all zero because they contain
forbidden configurations. �

Corollary 5.19 Let V be q-tame. Then db(dgm(V), dgm(Vε)) ≤ ε.

Proof Indeed, an ε-matching is defined as follows:

(p, q) ∈ dgm(Vε) ↔ (p − ε, q + ε) ∈ dgm(V)

This is bijective except for the unmatched points of dgm(V), which lie on or below
the line Δε, and therefore have distance at most ε from the diagonal. �

Proposition 5.20 If V is q-tame then V
ε is locally finite.

Proof Since dim((V ε)t ) = rank[Vt−ε → Vt+ε] < ∞, it follows from Theorem 2.8
(2) that Vε is decomposable into interval modules. We claim that the collection of
intervals is locally finite. Specifically, for any t ∈ R, we estimate

#{intervals which meet [t − 1
2ε, t + 1

2ε]}
= #{points of Dgm(Vε) in the upper-left quadrant at (t + 1

2ε, t − 1
2ε)}

≤ #{points of Dgm(V) in the upper-left quadrant at (t − 1
2ε, t + 1

2ε)}
= rank[Vt− 1

2 ε → Vt+ 1
2 ε]

which is finite. The ‘≤’ in the third line is a consequence of Proposition5.18. �

We are now ready to prove the converse stability theorem for q-tame persistence
modules, using the triangle inequalities for di, db and our results on ε-smoothing.

Proof (5.14′′) Let U,V be q-tame persistence modules. For any ε > 0, the ε-
smoothings Uε,Vε are decomposable, so the converse stability theorem applies to
them. Then:

di(U,V) ≤ di(Uε,Vε) + 2ε by Proposition 5.16
≤ db(dgm(Uε), dgm(Vε)) + 2ε by Theorem 5.11
≤ db(dgm(U), dgm(V)) + 4ε by Corollary 5.19

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Since this is true for all ε > 0, we deduce that

di(U,V) ≤ db(dgm(U), dgm(V)).

The converse stability theorem for q-tame modules is proved. �

We finish this section with a characterisation of q-tame modules.

Theorem 5.21 A persistence module V is q-tame if and only if it can be approxi-
mated, in the interleaving distance, by locally finite modules.

Proof If V is q-tame then it is approximated by the modules Vε, which are locally
finite by Proposition5.20. Conversely, suppose V is approximated by locally finite
modules. Suppose b < c is given. Let W be a locally finite module which is ε-
interleaved with V, for some ε < (c − b)/2. Then

rcb = rank[Vb → Vc] = rank[Vb → Wb+ε → Wc−ε → Vc] ≤ dim(Wb+ε)

which is finite. It follows that V is q-tame. �

Example 5.22 It is easy to see that there are q-tame modules which are not locally
finite. For instance: ∞⊕

n=1

k[0, 1
n ] and

∞∏

n=1

k[0, 1
n ]

The latter is the example of Crawley–Boevey [24] with no interval decomposition
discussed in Remark 2.9. Incidentally, one can verify directly that the two modules
are 0-interleaved; and also that their persistencemeasures, and hence their persistence
diagrams, are equal away from the unique singular point (0−, 0+).

5.6 The Stability Theorem

The inequality (5.14′) can be expressed in the following form:

Theorem 5.23 Let U,V be q-tame persistence modules which are δ+-interleaved.
Then there exists a δ-matching between the multisets dgm(U), dgm(V).

It is easier to prove the following. (Notice the missing +.)

Theorem 5.24 Let U,V be q-tame persistence modules which are δ-interleaved.
Then there exists a δ-matching between the multisets dgm(U), dgm(V).

Theorem5.12 allows us to deduce Theorem5.23 from Theorem5.24: if U,V are
δ+-interleaved then there is an η-matching between their diagrams for every η >

δ, hence there is a δ-matching. The proof of Theorem5.24 depends on two main
ingredients:

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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• The interpolation Lemma4.6, which embeds U,V within a 1-parameter family.
• The box inequalities 5.26, which relate the persistence measures of U,V locally.

Once these ingredients are in place, the theorem can be proved using the continuity
method of [19]. Our persistence diagrams may have infinite cardinality, so we will
need an additional compactness argument to finish off the proof.

Definition 5.25 Let R = [a, b] × [c, d] be a rectangle inR2. The δ-thickening of R
is the rectangle

Rδ = [a − δ, b + δ] × [c − δ, d + δ].

For convenience we will write

A = a − δ, B = b + δ, C = c − δ, D = d + δ

in this situation.

For infinite rectangles, we use−∞ − δ = −∞ and+∞ + δ = +∞.We can also
thicken an individual point: if α = (p, q) then

αδ = [p − δ, p + δ] × [q − δ, q + δ]

for δ > 0.

Lemma 5.26 (Box inequalities [19]) LetU,V be a δ-interleaved pair of persistence
modules. Let R be a rectangle whose δ-thickening Rδ lies above the diagonal. Then
μU(R) ≤ μV(Rδ) and μV(R) ≤ μU(Rδ).

If we use the region extension convention (Remark 3.22) we can state the lemma
without the requirement that Rδ lies above the diagonal, since the convention gives
μ(Rδ) = ∞ if it doesn’t.

Proof Write R = [a, b] × [c, d] and Rδ = [A, B] × [C, D] as above. Thanks to the
interleaving, the finite modules

Ua,b,c,d : Ua → Ub → Uc → Ud

and
VA,B,C,D : VA → VB → VC → VD

are restrictions of the following 8-term module

W : VA
Ψ−→ Ua −→ Ub

Φ−→ VB −→ VC
Ψ−→ Uc −→ Ud

Φ−→ VD

where Φ,Ψ are the interleaving maps.

http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Using the restriction principle, we calculate:

μV([A, B] × [C, D]) = 〈 ◦A—————— •B— •C—————— ◦D | V 〉
= 〈 ◦A—————— •B— •C—————— ◦D | W 〉
= 〈 ◦A— ◦a— •b— •B— •C— •c— ◦d— ◦D | W 〉

+ eight other terms

≥ 〈 ◦A— ◦a— •b— •B— •C— •c— ◦d— ◦D | W 〉
= 〈–––— ◦a— •b—–––—–––—— •c— ◦d—––– | W 〉
= 〈–––— ◦a— •b—–––—–––—— •c— ◦d—––– | U 〉
= μU([a, b] × [c, d])

This proves μU(R) ≤ μV(Rδ). Then μV(R) ≤ μU(Rδ) follows by symmetry. �

Recall the measures at infinity defined in Sect. 3.6. By considering the appropriate
limits, we immediately have:

Proposition 5.27 (Box inequalities at infinity) Let μ, ν be r-measures onR2 which
satisfy a one-sided box inequality with parameter δ

μ(R) ≤ ν(Rδ)

for all rectangles R ∈ Rect(R2). Then

μ([a, b],−∞) ≤ ν([A, B],−∞), μ(−∞, [c, d]) ≤ ν(−∞, [C, D]),
μ([a, b],+∞) ≤ ν([A, B],+∞), μ(+∞, [c, d]) ≤ ν(+∞, [C, D]),

for all a < b and c < d; and

μ(−∞,−∞) ≤ ν(−∞,−∞), μ(+∞,−∞) ≤ ν(+∞,−∞),

μ(−∞,+∞) ≤ ν(−∞,+∞), μ(+∞,+∞) ≤ ν(+∞,+∞).

Here A = a − δ, B = b + δ, C = c − δ, D = d + δ. �

Consequently, if U,V are δ-interleaved persistence modules then μU,μV sat-
isfy (two-sided) box inequalities on (−∞,R) and (R,+∞) as well as the equality
μU(−∞,+∞) = μV(−∞,+∞).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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5.7 The Measure Stability Theorem

We now embed Theorem5.24 as a special case of a stability theorem for the diagrams
of abstract r-measures. The more general statement is no more difficult1 to prove,
and seems to be the natural home for the result.

Let D be an open subset of R2. For α ∈ D, define the exit distance of α to be

ex∞(α,D) = d∞(α,R2 − D) = min
(
d∞(α, x) | x ∈ R2 − D

)
. (5.2)

For instance, for the extended half-plane we have ex∞(α,H) = d∞(α,Δ).
Let A,B be multisets in D. A δ-matching between A,B is a partial matching

M ⊂ A × B such that

d∞(α,β) ≤ δ if α,β are matched,

ex∞(α,D) ≤ δ if α ∈ A is unmatched,

ex∞(β,D) ≤ δ if β ∈ B is unmatched.

If D is not clear from the context, we refer to M as a ‘δ-matching between (A,D)

and (B,D)’.
With the same proof as Proposition5.9, we have:

Proposition 5.28 (triangle inequality) If A,B,C are multisets in D and there exist
a δ1-matching between (A,D), (B,D) and a δ2-matching between (B,D), (C,D),
then there exists a (δ1 + δ2)-matching between (A,D), (C,D). �

Now for the main theorem.

Theorem 5.29 (stability for finite measures) Suppose (μx | x ∈ [0, δ]) is a 1-
parameter family of finite r-measures on an open set D ⊆ R2. Suppose for all
x, y ∈ [0, δ] the box inequality

μx (R) ≤ μy(R
|y−x |)

holds for all rectangles R whose |y − x |-thickening R|y−x | belongs to Rect(D).
Then there exists a δ-matching between the undecorated diagrams (dgm(μ0),D)

and (dgm(μδ),D).

In view of the interpolation Lemma4.6, this implies Theorem5.24 (take μx =
μ(Ux ) andD = H◦) and therefore the stability theorem (5.14′) for q-tame modules.

Example 5.30 The existence of a 1-parameter family interpolating between μ0

and μδ may seem unnecessarily strong. It is natural to hope that two measures μ, ν
which satisfy the (two-sided) box inequality with parameter δ will have diagrams

1In fact it’s a little easier to prove, because the compactness argument for diagrams with infinitely
many points can be made more cleanly in this generality.

http://dx.doi.org/10.1007/978-3-319-42545-0_4
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Fig. 5.2 The box inequalities do not control the bottleneck distance. The two diagrams (5 dark
blue squares; 5 light pink circles) have box distance 1 and bottleneck distance 3. Generalising this
example, one can exhibit a pair of diagrams with 4k + 1 points each, whose box distance is 1 and
whose bottleneck distance is 2k + 1. By ‘box distance 1’ we mean that every rectangle R covers at
most as many pink points as its 1-thickening R1 covers blue points, and vice versa

dgm(μ), dgm(ν)which are δ-matched. This is not true, and in fact there is no universal
bound on the bottleneck distance between the two diagrams. See Fig. 5.2.

Our goal for the rest of this section is to prove Theorem5.29. Parts 1 and 2 closely
follow the method of Cohen-Steiner, Edelsbrunner and Harer [19]. Afterwards, in
Sect. 5.8, we generalise the theorem to r-measures that are not finite.

Initial remark. Because the metric d∞ separatesR2 into nine strata (the standard
plane, the four lines at infinity, and the four points at infinity), we seek separate
δ-matchings for each stratum that meetsD. We begin with the points in the standard
plane.

Temporary hypothesis. Suppose initially that D ⊆ R2.

Part 1. The Hausdorff distance between (dgm(μx ),D), and (dgm(μy),D) is at
most |y − x |.

Write A = dgm(μx ), B = dgm(μy), and η = |y − x |. The assertion is understood
to mean:

• If α ∈ A and ex∞(α,D) > η, then there exists β ∈ B with d∞(α,β) ≤ η.
• If β ∈ B and ex∞(β,D) > η, then there exists α ∈ A with d∞(α,β) ≤ η.

Proof By symmetry, it is enough to prove the first statement. Given α, let ε > 0 be
small enough that η + ε < ex∞(α,D). Then the box inequality gives

1 ≤ μx (α
ε) ≤ μy(α

η+ε)

so there is at least one point of B in the square αη+ε. This is true for all sufficiently
small ε > 0, and moreover B is locally finite. Therefore there is at least one point
of B in αη. �
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Henceforth, we will write Ax = dgm(μx ) for all x .

Part 2. The theorem is true if Ax has finite cardinality for all x .

Proof (i) The triangle inequality for matchings includes the implication

A0,Ax are x-matched
Ax ,Ay are (y − x)-matched

}
⇒ A0,Ay are y-matched

whenever 0 < x < y.

(ii) We claim that for every x ∈ [0, δ] there exists ρ(x) > 0 such that Ax ,Ay are
|y − x |-matched whenever y ∈ [0, δ] with |y − x | < ρ(x).

Suppose α1, . . . ,αk is an enumeration of the distinct points of Ax , with respective
multiplicities n1, . . . , nk . Let ρ(x) be chosen to satisfy the following finite set of
constraints:

0 < ρ(x) ≤
{

1
2 ex

∞(αi ,D) all i
1
2d

∞(αi ,α j ) all i,j distinct

We must show that if |y − x | < ρ(x) then Ax ,Ay are |y − x |-matched. Write η =
|y − x | and let

(R2 − D)η = {
α ∈ D | ex∞(α,D) ≤ η

}
.

It follows from Part 1 that Ay is contained entirely in the closed set

(R2 − D)η ∪ α
η
1 ∪ · · · ∪ α

η
k

and it follows from the definition of ρ(x) that the terms in the union are disjoint. It
is easy to count the points of Ay in each square α

η
i . Let ε > 0 be small enough that

2η + ε < 2ρ(x). Then the box inequality gives

ni = μx (α
ε
i ) ≤ μy(α

η+ε
i ) ≤ μx (α

2η+ε
i ) = ni .

Thus μy(α
η+ε
i ) = ni for all small ε > 0. We conclude that the square α

η
i contains

precisely ni points of Ay .
This completes the proof of (ii), because we can match the ni copies of αi with

the ni points of Ay in the square α
η
i , for each i , to define an η-matching between

(Ax ,D), (Ay,D). All points of Ax are matched, and the only unmatched points of Ay

lie in R2 − D and do not need to be matched.

Items (i) and (ii) formally imply that A0,Aδ are δ-matched, using a standard
Heine–Borel argument. Indeed, let

m = sup(x ∈ [0, δ] | A0 and Ax are x-matched).

First,m is positive; specificallym ≥ ρ(0). Applying (i) to 0 < m ′ < m, whereA0,Am ′

arem ′-matched andm − m ′ < ρ(m), we deduce that A0,Am arem-matched. Suppose
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m < δ. Applying (i) to 0 < m < m ′′, wherem ′′ − m < ρ(m), we deduce that A0,Am ′′

are m ′′-matched. This contradicts the definition of m. Therefore m = δ, and A0,Aδ

are δ-matched. �

Part 3. The theorem is true without assuming finite cardinality.

Proof Let (Dn)be an increasing sequence of open subsets ofDwhoseunion equalsD
and such that each Dn has compact closure. Because Ax is locally finite, it follows
that Ax ∩ Dn is finite for all x, n. We can therefore restrict the family of measures
to each Dn in turn, and apply Part 2 to get a δ-matching Mn between (A0 ∩ Dn,Dn)

and (Aδ ∩ Dn,Dn).
We now take a limit M of the partial matchings Mn , using the construction in the

proof of Theorem5.12. This works because A0,Aδ are locally finite and therefore
countable. Let χ,χn denote the indicator functions of M,Mn . Recall Lemma5.13:
for any finite subset F ⊂ A0 × Aδ , there are infinitely many n ∈ N for which

χ(α,β) = χn(α,β)

for all (α,β) ∈ F.
Wemust show thatM is a δ-matching between (A0,D) and (Aδ,D). It is immediate

that each matched pair is separated by at most δ, since this is true for every Mn . The
argument that each α is matched with at most one β, and vice versa, is the same as
in Lemma5.13.

Finally, suppose α ∈ A0 with ex∞(α,D) > δ. The square αδ is contained in D

and is compact, and therefore is contained inDn for sufficiently large n. This means
that ex∞(α,Dn) > δ and hence α is matched in Mn for sufficiently large n. Now
α has only finitely many δ-neighbours β1, . . . ,βk in the locally finite set Aδ , so by
Lemma5.13 there are infinitely many n such that χ(α,βi ) = χn(α,βi ) for all i . By
taking a sufficiently large such n, we conclude that

χ(α,βi ) = χn(α,βi ) = 1

for some i . Thus α is matched.
By symmetry, any β ∈ Aδ with ex∞(β,Δ) > δ is matched in M to some α ∈ A0.

It follows that M is the required δ-matching. �

The theorem at infinity.Now supposeD ⊆ R2 meets any of the strata at infinity.
For each of the four lines at infinity, the 3-part proof given above works almost
verbatim, if we replace D with its intersection with the chosen line, and each r-
measureμx with the correspondingmeasure at infinity. The other change is to replace
the word ‘square’ with the word ‘interval’. The necessary box inequality at infinity
is found in Proposition5.27.

For the four corners (±∞,±∞), it is easier still: the box inequality at each corner
implies that μ0,μδ have the same multiplicity there. The interpolating measures are
not needed. �
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This completes the proof of the stability theorem for finite measures on an open
regionD, and hence the stability theorem for q-tame persistence modules, and hence
the isometry theorem for q-tame persistence modules.

5.8 The Measure Stability Theorem (Continued)

The stability theorem generalises to measures that are not necessarily finite. By
the region extension convention (Remark3.22), we may suppose that the measures
are defined on R2 (rather than just a subset of R2). Given a 1-parameter family
(μx | x ∈ [0, δ]), the finite interiors

Fx = F◦(μx )

now depend on x ; whereas previously we had Fx = D for all x .
For F ⊂ R2 an open set and δ ≥ 0, the ‘reverse offset’ is the open set

F−δ = {
α ∈ F | ex∞(α,F) > δ

} = {
α ∈ F | αδ ⊂ F

}
.

Intuitively, this shrinks F by δ at the boundary. Clearly F ⊇ G implies F−δ ⊇ G−δ ,
and (F−δ1)−δ2 = F−(δ1+δ2). Note also that (F ∩ G)−δ = F−δ ∩ G−δ . This is easiest to
see from the second characterisation.

Remark 5.31 The operation [·]−δ has no effect on the corners at infinity, and acts
independently on the standard plane and on the four lines at infinity.

We define δ-matchings for multisets in unequal regions. Let F,G be open subsets
of R2, let A,B be multisets in F,G respectively, and let δ > 0. A δ -matching
between (A,F), (B,G) is a partial matching M between A,B such that the following
four conditions hold:

• F ⊇ G−δ and G ⊇ F−δ ,
• if (α,β) ∈ M then d∞(α,β) ≤ δ,
• every α ∈ A ∩ G−δ is matched with some β ∈ B,
• every β ∈ B ∩ F−δ is matched with some α ∈ A.

The first of these is a compatibility condition between the regions: they cannot be too
unequal. This is automatic if F = G, which is why we haven’t seen it before. Notice
the cross-over in the last two conditions: a point in A is allowed to be unmatched
only if it is close to the boundary of B’s region G, and vice versa.

Proposition 5.32 (triangle inequality) If A,B,C are multisets in F,G,H respec-
tively, and there exist a δ1-matching between (A,F), (B,G) and a δ2-matching
between (B,G), (C,H), then there exists a (δ1 + δ2)-matching between (A,F),

(C,H).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Proof As usual, compose the two partial matchings to get a partial matching M
between A,C. Writing δ = δ1 + δ2, we must check that this is a δ-matching between
(A,F), (C,H). For the first condition we see that

F ⊇ G−δ1 ⊇ (H−δ2)−δ1 = H−δ and H ⊇ G−δ2 ⊇ (F−δ1)−δ2 = F−δ.

The second condition follows from the triangle inequality for d∞. For the third
condition, if α ∈ A lies inH−δ then by the inclusion above it lies in G−δ1 . Therefore
α is matched with β ∈ B. Moreover β must then lie in H−(δ−δ1) = H−δ2 and so is
matched with γ ∈ C. The fourth condition follows by symmetry. �

Remark 5.33 There is no triangle inequality if the compatibility condition between
the regions is dropped in the definition of δ-matching.

Here is the main theorem of this section and the last new theorem of the mono-
graph. Again we use the abbreviation Fx = F◦(μx ) for the finite interiors.

Theorem 5.34 (stability for measures) Suppose (μx | x ∈ [0, δ]) is a 1-parameter
family of r-measures on R2. Suppose for all x, y ∈ [0, δ] the box inequality

μx (R) ≤ μy(R
|y−x |)

holds for all rectangles R ∈ Rect(R2). Then there exists a δ-matching between the
undecorated diagrams (dgm(μ0),F0) and (dgm(μδ),Fδ).

Remark 5.35 This version of measure stability allows us to dispense with the final
assertion in Theorem4.7 when deducing stability (5.14′) for q-tame modules: we no
longer need to assume that the interpolating modules are themselves q-tame. The
reader may wish to consider why this works. It results from careful management of
the boundary.

An easy first step is to verify the condition on the regions F0,Fδ:

Proposition 5.36 Under the hypotheses of Theorem5.34, we have inclusions

Fx ⊇ F−|y−x |
y

for all x, y ∈ [0, δ].
Proof Suppose α ∈ F

−|y−x |
y , then equivalently α|y−x | ⊂ Fy . Since the square α|y−x |

is compact and Fy is open, there exists ε > 0 such that α|y−x |+ε ⊂ Fy . The box
inequality gives

μx (α
ε) ≤ μy(α

|y−x |+ε)

and the right-hand side is finite by Proposition 3.18. Thus α ∈ F◦(μx ) = Fx . �

http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Proof (Theorem 5.34) The argument closely follows the proof of the stability the-
orem for finite measure, so we will confine ourselves to indicating the necessary
modifications. We use the abbreviation Ax = dgm(μx ).

Initial remark. Recall that the proof is carried out separately for each of the nine
strata. The four corners at infinity are handled easily (each corner belongs to both F0

and Fδ , or to neither; in the former case the μ0,μδ multiplicities agree). The proof is
described for the points in the standard plane. The same proof applies to each of the
four lines at infinity, replacing each μx with the corresponding measure at infinity.

Part 1. The Hausdorff distance between (Ax ,Fx ), and (Ay,Fy) is at most η =
|y − x |.

The assertion is understood to mean:

• If α ∈ Ax and ex∞(α,Fy) > η, then there exists β ∈ Ay with d∞(α,β) ≤ η.
• If β ∈ Ay and ex∞(β,Fx ) > η, then there exists α ∈ Ax with d∞(α,β) ≤ η.

Proof By symmetry it is enough to prove the first statement. Letα ∈ Ax . For all ε > 0
with η + ε < ex∞(α,Fy), we have 1 ≤ μx (α

ε) ≤ μy(α
η+ε) so there is at least one

point of Ay in αη. �

Part 2. The theorem is true if Ax has finite cardinality for all x .

Proof Item (i) is given by the triangle inequality (Proposition5.32).
Item (ii) uses the same strategy as before. Let (αi ) be a finite enumeration of

the distinct points of Ax , with respective multiplicities (ni ). Then ρ(x) is chosen to
satisfy

0 < ρ(x) ≤
{

1
2 ex

∞(αi ,Fx ) all i
1
2d

∞(αi ,α j ) all i, j distinct.

If η = |y − x | < ρ(x), then Part 1 implies that Ay is contained in the disjoint union

(R2 − Fx )
η ∪ α

η
1 ∪ · · · ∪ α

η
k .

The box inequality is then used to count precisely ni points of Ay in the square α
η
i .

This defines a partial matching where all points of Ax are matched and all points of
Ay ∩ F

−η
x are matched.

The formal deduction of Part 2 from (i) and (ii) is unchanged, since it is a formal
deduction.

Part 3. The theorem is true without assuming finite cardinality.

Proof The idea is to restrict each measure μx to a relatively compact open subset
F̂x ⊂ Fx = F◦(μx ). The subsets satisfy the compatibility condition

F̂x ⊇ F̂−|y−x |
y
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for all x, y ∈ [0, δ].
Specifically, for ε > 0 and r > δ, let

F̂x = F−ε
x ∩ Qr

where Qr = (−r, r) × (−r, r) is the open d∞-disk of radius r . Define a function on
rectangles as follows:

μ̂x (R) =
{

μx (R) if R ⊂ F̂x

∞ otherwise

It is easy to check that μ̂x is an r-measure (additivity still holds), that F◦(μ̂x ) = F̂x ,
and that dgm(μ̂x ) = dgm(μx ) ∩ F̂x .

Lemma 5.37 The family (μ̂x ) satisfies the box inequality μ̂x (R) ≤ μ̂y(R|y−x |) for
all x, y ∈ [0, δ].
Proof Since the box inequality is assumed to hold for (μx ), it will automatically hold
for (μ̂x ); except possibly for rectangles R where the left-hand side of the inequality
has become infinite while the right-hand side hasn’t. This happens when R �⊂ F̂x

while R|y−x | ⊂ F̂y , andwe can prevent it by ensuring that F̂x ⊇ F̂
−|y−x |
y . And, indeed,

F̂−|y−x |
y = (F−ε

y ∩ Qr )−|y−x | = F−(ε+|y−x |)
y ∩ Qr−|y−x | ⊆ F−ε

x ∩ Qr = F̂x

as required. �

We resume the proof of Part 3. Since F̂x has compact closure in Fx , and Ax is
locally finite, it follows that Âx = dgm(μ̂x ) = Ax ∩ F̂x has finite cardinality. We can
therefore apply Part 2 to the family (μ̂x ) to get a δ-matching between (Â0, F̂0) and
(Âδ, F̂δ). This can be interpreted as a partial δ-matching between A0,Aδ where:

• α ∈ A0 is matched whenever α ∈ (F−ε
δ ∩ Qr )−δ = F

−(δ+ε)
δ ∩ Qr−δ

• β ∈ Aδ is matched whenever β ∈ (F−ε
0 ∩ Qr )−δ = F

−(δ+ε)
0 ∩ Qr−δ

Repeat this argument for a sequence (εn, rn) where εn → 0 and rn → +∞. This
gives a sequence of δ-matchings Mn , and we can form a limit M as before.

If α ∈ A0 ∩ F−δ
δ then eventually α ∈ F

−(δ+εn)
δ ∩ Qrn−δ and so α is matched by Mn

for all sufficiently large n. The same is true for β ∈ Aδ ∩ F−δ
0 . With this information,

we can complete the usual proof thatM is a δ-matching between (A0,F0) and (Aδ,Fδ).
This completes the proof of Part 3, and hence of Theorem5.34. �

Here is a sample consequence.

Example 5.38 (Stability of the Webb module) Let V be a persistence module which
is δ-interleaved with the moduleW of Example 3.31. By interpolation (Lemma 4.6)
and the box inequalities (Lemma5.26), we can apply the measure stability theo-
rem (Theorem5.34): there exists a δ-matching between the undecorated diagrams
(dgm(μV),F◦(μV)) and (dgm(μW),F◦(μW)). This amounts to the following.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
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• In the finite part H of the half-plane: Any singular points of μV are confined
to the diagonal strip Δ[0,δ]. Each point of dgm(μV) outside this strip is matched
with some point (−n, 0) ∈ dgm(μW). Conversely, the only unmatched points of
dgm(μW) must lie within distance δ of the diagonal or a singular point of μV. In
particular, if δ < 1

4 then all points of dgm(μW) are matched.

• On the line (−∞,R): All points and singular points of μV are contained in the
interval (−∞, [−δ,+δ]). There is at least one singular point.

• On (R,+∞) and at (−∞,+∞): ThemeasureμV has no points or singular points.
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