
Chapter 4
Interleaving

Interleaving is a way of comparing two persistence modules. As with any category,
two persistence modules U,V are said to be isomorphic if there are maps

Φ ∈ Hom(U,V), Ψ ∈ Hom(V,U),

such that
Ψ Φ = 1U, ΦΨ = 1V.

This relation is too strong in situations where the persistence modules have been
constructed fromnoisy or uncertain data. The natural response is to consider aweaker
relation, δ-interleaving, where δ ≥ 0 quantifies the uncertainty.

In this section, we define the interleaving relation and study its elementary prop-
erties. We prove the nontrivial result (from [14]) that if two persistence modules are
δ-interleaved, then they are connected in the space of persistence modules by a path
of length δ. This ‘interpolation lemma’ is a crucial step in the proof of the stability
theorem in Chap.5.

4.1 Shifted Homomorphisms

The first step is to consider homomorphisms which shift the value of the persistence
index. Let U,V be persistence modules over R, and let δ be any real number. A
homomorphism of degree δ is a collection Φ of linear maps

φt : Ut → Vt+δ

for all t ∈ R, such that the diagram
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Us
ust ��

φs

��

Ut

φt

��

Vs+δ

vs+δ
t+δ

�� Vt+δ

commutes whenever s ≤ t .
We write

Homδ(U,V) = {homomorphisms U → V of degree δ},
Endδ(V) = {homomorphisms V → V tof degree δ}.

Composition gives a map

Homδ2(V,W) × Homδ1(U,V) → Homδ1+δ2(U,W).

For δ ≥ 0, the most important degree-δ endomorphism is the shift map

1δ
V

∈ Endδ(V),

which is the collection of maps (vtt+δ) from the persistence structure on V. If Φ is a
homomorphismU → V of any degree, then by definition Φ1δ

U
= 1δ

V
Φ for all δ ≥ 0.

Remark 4.1 Here is another way to think of morphisms of non-zero degree. For any
persistence module V, and δ ∈ R, we let V[δ] denote the shifted module

(V [δ])t = Vt+δ, (v[δ])st = vs+δ
t+δ .

In other words, V[δ] is obtained from V by shifting all the information downwards
by δ. Then there are obvious identifications

Homδ(U,V) = Hom(U,V[δ]) = Hom(U[a],V[a + δ])

for all a ∈ R. To avoid excessive notation, we will use the same symbol for

Φ = (φt ) : U → V[δ]

as for its shifted equivalent

Φ = (φt+a) : U[a] → V[a + δ]

since the constituent maps are the same.
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4.2 Interleaving

Let δ ≥ 0. Two persistence modules U,V are said to be δ -interleaved if there are
maps

Φ ∈ Homδ(U,V), Ψ ∈ Homδ(V,U)

such that
Ψ Φ = 12δ

U
, ΦΨ = 12δ

V
.

More expansively (with many more indices written out), there are maps

φt : Ut → Vt+δ and ψt : Vt → Ut+δ

defined for all t , such that the following diagrams

Us
ust ��

φs

��

Ut

φt

��

Vs+δ

vs+δ
t+δ

�� Vt+δ

Us−δ

us−δ
s+δ

��

φs−δ
����

��
��

��
Us+δ

Vs

ψs

����������

Vs
vst ��

ψs

��

Vt

ψt

��

Us+δ

us+δ
t+δ

�� Ut+δ

Vs−δ

vs−δ
s+δ

��

ψs−δ
����

��
��

��
Vs+δ

Us

φs

����������

(4.1)

commute for all eligible parameter values; that is, for all s ≤ t .

Remark 4.2 Where possible, we will be concise rather than expansive.

Example 4.3 Let X be a topological space and let f, g : X → R. Suppose ‖ f −
g‖∞ < δ. Then the persistence modules H(X

f
sub), H(X

g
sub) are δ-interleaved. Indeed,

there are inclusions

(X, f )t ⊆ (X, g)t+δ

(X, g)t ⊆ (X, f )t+δ

for all t , which induce maps

Φ : H(X
f
sub) → H(X

g
sub)

Ψ : H(X
g
sub) → H(X

f
sub)
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of degree δ. Since all the maps are induced functorially from inclusion maps, the
interleaving relations are automatically satisfied.

This is the situation for which the stability theorem of Cohen-Steiner,
Edelsbrunner and Harer [19] was originally stated: if two functions f, g are close
then the diagrams for their sublevelset persistent homology are close. Subsequently,
stability has been formulated as a theorem about the diagrams of interleaved per-
sistence modules [14, 15]. In the present work, we will come to view stability as a
theorem about r-measures.

4.3 Interleaving (Continued)

An interleaving between two persistence modules can be thought of as a persistence
module over a certain partially ordered set (poset). We develop this idea next.

Consider the standard partial order on the plane:

(p1, q1) ≤ (p2, q2) ⇔ p1 ≤ p2 and q1 ≤ q2.

For any real number x , define the corresponding shifted diagonal in the plane:

Δx = {(p, q) | q − p = 2x} = {(t − x, t + x) | t ∈ R}

As a poset, this is isomorphic to the real line.Wewill use the specific isomorphism by
which t ∈ R corresponds to (t − x, t + x) ∈ Δx . This gives a canonical identification
between persistence modules over R and persistence modules over Δx .

Proposition 4.4 Let x, y be real numbers. Persistence modules U,V are |y − x |-
interleaved if and only if there is a persistence module W over Δx ∪ Δy such that
W|Δx = U and W|Δy = V. Here Δx ∪ Δy is regarded as a subposet of R2.

Proof Assume x < y without loss of generality. We claim that (i) the extra infor-
mation carried by (y − x)-interleaving maps Φ,Ψ is equivalent to (ii) the extra
information carried by W. Let us describe both, more carefully:

(i) In addition to U,V we have a system of maps Φ = (φt ), where

φt : Ut → Vt+y−x ,

and a system of maps Ψ = (ψt ), where

ψt : Vt → Ut+y−x .
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These are constrained by the relations (for all η ≥ 0).

Φ1η

U
= 1η

V
Φ, Ψ 1η

V
= 1η

U
Ψ, Ψ Φ = 12y−2x

U
, ΦΨ = 12y−2x

V
. (4.2)

There are no other constraints.
(ii) In addition toU,V the persistence moduleW carries maps between the two

components Δx ,Δy . These maps are constrained by the composition law

wR
T = wS

T ◦ wR
S

for all R, S, T ∈ Δx ∪ Δy with R ≤ S ≤ T .
First, observe that we recover the maps φt , ψt as vertical maps from Δx to Δy ,

and horizontal maps from Δy to Δx , respectively (see Fig. 4.1):

Ut = W(t−x,t+x) → W(t−x,t+2y−x) = Vt+y−x

Vt = W(t−y,t+y) → W(t+y−2x,t+y) = Ut+y−x

Next, observe that the composition law implies all of the relations (4.2).
Finally, there is no additional information in W, beyond the interleaving maps

and relations. Indeed, all remaining maps wS
T , where S ≤ T , can all be factored in

the form:
wS
T = vs+y−x

t ◦ φs if S ∈ Δx and T ∈ Δy,

wS
T = us+y−x

t ◦ ψs if S ∈ Δy and T ∈ Δx .

Thus each map inW is an instance of one of

1η

U
from Δx to Δx ,

1η

V
from Δy to Δy,

1η

V
Φ from Δx to Δy,

1η

U
Ψ from Δy to Δx .

Φ

x

Δ y

Δ

Ψ

x

Δ y

Δ

Fig. 4.1 The maps Φ,Ψ recovered from the module W over Δx ∪ Δy
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It is a simplematter to verify that the composition law is satisfied for each composable
pair of maps. For instance:

(1η

V
Φ)(1ζ

U
Ψ ) = 1η

V
Φ1ζ

U
Ψ = 1η

V
1ζ

V
ΦΨ = 1η+ζ

V
12y−2x
V

= 1η+ζ+2y−2x
V

This can be done using only the known relations, so there are no further constraints
on the wS

T . �
Remark 4.5 This characterisation makes it clear (or, in another view, depends on the
fact) that all composable combinations of themaps u, v, φ, ψ from a given domain to
a given codomain must be equal: indeed, they must agree with the appropriate map
wS
T of W.

4.4 The Interpolation Lemma

In this section we prove a crucial result from [14]:

Lemma 4.6 (interpolation lemma) Suppose U, V are a δ-interleaved pair of per-
sistence modules. Then there exists a 1-parameter family of persistence modules
(Ux | x ∈ [0, δ]) such that U0,Uδ are equal to U,V respectively, and Ux ,Uy are
|y − x |-interleaved for all x, y ∈ [0, δ]. Moreover, if U,V are q-tame then the (Ux )

may be assumed q-tame also.

We prove something sharper: given a specific pair of interleaving maps

Φ ∈ Homδ(U,V) Ψ ∈ Homδ(V,U)

we explicitly provide, for each x < y in [0, δ], a pair of interleaving maps

Φx
y ∈ Homy−x (Ux ,Uy) Ψ y

x ∈ Homy−x (Uy,Ux )

such that Φ0
δ = Φ and Ψ δ

0 = Ψ , and moreover

Φ y
z Φ

x
y = Φx

z Φ y
x Φ

z
y = Φ z

x

for all x < y < z. In view of Proposition 4.4, this sharp form of the interpolation
lemma can be restated as follows.

Theorem 4.7 (interpolation lemma, version 2) Any persistence module W over
Δ0 ∪ Δδ extends to a persistence module W over the diagonal strip

Δ[0,δ] = {(p, q) | 0 ≤ q − p ≤ 2δ} ⊂ R2.

If W|Δ0 ,W|Δδ
are q-tame, then the extension may be chosen so that each W|Δx is

q-tame.
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Remark 4.8 The extension is by no means unique.

Let us clarify how Theorem 4.7 implies Lemma 4.6. If U, V are δ-interleaved,
then there exists a persistence module W over Δ0 ∪ Δδ such that W|Δ0 = U and
W|Δδ

= V. By Theorem 4.7, this extends to W over the strip Δ[0,δ]. If we define a
1-parameter family Ux = W|Δx , then Ux ,Uy are |x − y|-interleaved for all x, y ∈
[0, δ].

For readers familiar with Kan extensions in category theory [43], here is a very
short proof of the theorem. Let us regard the posets Δ0 ∪ Δδ and Δ[0,δ] as categories
(see Remark 2.1); then persistencemodules over these posets are the same as functors
to the category of vector spaces. The theorem asserts the existence of an extensionW

Δ[x0,x1]

W

��
Δx0 ∪ Δx1

��

W �� Vect

for any functor W. Peter Bubenik has pointed out to us that the Kan extension
theorem immediately provides two such extensions, since the category Vect is both
complete (which yields the ‘right-extension’) and co-complete (which yields the
‘left-extension’).

We proceed now to a detailed proof, for those who would still like one.

Proof (Theorem 4.7) In order to express the proof more symmetrically, it is con-
venient to replace the interval [0, δ] by the interval [−1, 1]. This can be done by
rescaling and translating the plane. Accordingly, suppose we are given a persistence
module W over Δ−1 ∪ Δ1.

Our strategy is to construct two persistence modules over the strip Δ[−1,1] and a
module map between them. The image (or coimage) of this map is itself a persistence
module over the strip, and will be the required extension.

By Proposition 4.4, W provides U = W|Δ−1 and V = W|Δ1 , which we can view
as persistence modules over R using the canonical parametrisation:

Ut = W(t+1,t−1) and Vt = W(t−1,t+1)

and corresponding linearmaps ust , v
s
t . ThemoduleW also provides interleavingmaps

Φ ∈ Hom2(U,V) and Ψ ∈ Hom2(V,U) of degree 2:

φt = w(t+1,t−1)
(t+1,t+3) : Ut → Vt+2, ψt = w(t−1,t+1)

(t+3,t+1) : Vt → Ut+2,

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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From U,V we construct four persistence modules over R2:

A defined by A(p,q) = Up−1 and a(p,q)

(r,s) = u p−1
r−1

B defined by B(p,q) = Vq−1 and b(p,q)

(r,s) = vq−1
s−1

C defined by C(p,q) = Uq+1 and c(p,q)

(r,s) = uq+1
s+1

D defined by D(p,q) = Vp+1 and d(p,q)

(r,s) = vp+1
r+1

Note thatA,B,C,D are the vertical and horizontal extensions of the modulesW|Δ±1

to the whole plane. In particular, we have

A|Δ−1 = U, B|Δ1 = V, C|Δ−1 = U, D|Δ1 = V,

with respect to our canonical parametrisations of each diagonal. Restricting each
module to its ‘other’ diagonal, on the other hand, we have

A|Δ1 = U[−2], B|Δ−1 = V[−2], C|Δ1 = U[2], D|Δ−1 = V[2],

using the ‘shifted module’ notation of Remark 4.1.
Next, we construct four module maps:

1U : A → C defined at (p, q) to be u p−1
q+1 : Up−1 → Uq+1

Φ : A → D defined at (p, q) to be φp−1 : Up−1 → Vp+1

Ψ : B → C defined at (p, q) to be ψq−1 : Vq−1 → Uq+1

1V : B → D defined at (p, q) to be vq−1
p+1 : Vq−1 → Vp+1

The maps Φ,Ψ are defined over the whole plane, whereas 1U is defined only where
p − 1 ≤ q + 1, and 1V is defined only where q − 1 ≤ p + 1. To verify that the four
definitions give module maps, it is enough to observe that the required commutation
relations involve composable combinations of the maps u, v, φ, ψ , which always
agree by Remark 4.5.

Note that the intersection of the regions of definition, where all four maps are
defined, is precisely the stripΔ[−1,1]. Henceforth, we restrictA,B,C,D and the four
maps to that strip.

Define Ω ∈ Hom(A ⊕ B,C ⊕ D) by the 2-by-2 matrix

[
1U Ψ

Φ 1V

]
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of module maps. Our claim is that W = im(Ω) is the required extension. We may
equivalently claim that W = coim(Ω) = (A ⊕ B)/ker(Ω) is the required
extension.1

Step 1. W|Δ−1 is isomorphic to U.

Proof On the diagonal Δ−1 we have

(A ⊕ B)|Δ−1 = U ⊕ V[−2], (C ⊕ D)|Δ−1 = U ⊕ V[2],

and the homomorphism Ω|Δ−1 takes the matrix form

[
1U Ψ

Φ 14
V

]
.

Since 14
V

= ΦΨ , this factorises as

U ⊕ V[−2] Ω1 �� U
Ω2 �� U ⊕ V[2]

where

Ω1 = [ 1U Ψ ] and Ω2 =
[
1U
Φ

]

in matrix form. Thanks to the 1U entries, we see that Ω1 is surjective and Ω2 is
injective. This implies that Ω1,Ω2 induce isomorphisms

coim(Ω|Δ−1)
∼= �� U

∼= �� im(Ω|Δ−1)

as required. �

Step 2. W|Δ1 is isomorphic to V.

Proof On the diagonal Δ1 we have

(A ⊕ B)Δ1 = U[−2] ⊕ V, (C ⊕ D)Δ1 = U[2] ⊕ V,

and the homomorphism Ω|Δ1 takes the matrix form

[
14
U

Ψ

Φ 1V

]
.

1The image and the coimage are naturally isomorphic; the difference is whether we wish to think
of W as a submodule of C ⊕ D or as a quotient module of A ⊕ B. In the following pages, we will
treat the two points of view with equal emphasis.
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Since 14
U

= Ψ Φ, this factorises as

U[−2] ⊕ V
Ω3 �� V

Ω4 �� U[2] ⊕ V

where

Ω3 = [
Φ 1V

]
and Ω4 =

[
Ψ

1V

]

in matrix form. Thanks to the 1V entries, we see that Ω3 is surjective and Ω4 is
injective. This implies that Ω3,Ω4 induce isomorphisms

coim(Ω|Δ1)
∼= �� V

∼= �� im(Ω|Δ1)

as required. �

Step 3. The cross-maps ofW between Δ−1 and Δ1 correspond to Φ and Ψ under
the isomorphisms of Steps 1 and 2.

Proof The cross maps forW are induced by the cross maps forA ⊕ B (if we viewW

as a coimage) and equally by the cross maps for C ⊕ D (if we viewW as an image).
The vertical cross-map for A ⊕ B is a map

(A ⊕ B)|Δ−1
�� (A ⊕ B)|Δ1

of degree 2 which we can identify as

U ⊕ V[−2] 1U⊕14
V �� U ⊕ V[2].

Alternatively, the vertical cross-map for C ⊕ D is a map

(C ⊕ D)|Δ−1
�� (C ⊕ D)|Δ1

of degree 2 which we can identify as

U ⊕ V[2] 14
U
⊕1V

�� U[4] ⊕ V[2].

The following diagram shows the vertical cross-maps for A ⊕ B (on the left) and
C ⊕ D (on the right), the factorisations of Steps 1 and 2, and the map Φ.
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U ⊕ V[−2] Ω1 ��

1U ⊕ 14
V

��

U
Ω2 ��

Φ

��

U ⊕ V[2]
14
U

⊕ 1V

��

U ⊕ V[2] Ω3 �� V[2] Ω4 �� U[4] ⊕ V[2]

It is enough to show that either square commutes. And indeed

Ω3(1U ⊕ 14
V
) = [

Φ 1V
] [

1U 0
0 14

V

]
= [Φ 14

V
] = [Φ][ 1U Ψ ] = ΦΩ1

for the left square, and

(14
U

⊕ 1V)Ω2 =
[
14
U

0
0 1V

] [
1U
Φ

]
=

[
14
U

Φ

]
=

[
Ψ

1V

]
[Φ] = Ω4Φ

for the right square. Thus the induced vertical cross-map corresponds to Φ.
A similar argument using the diagram

U[2] ⊕ V
Ω3 ��

14
U

⊕ 1V

��

V
Ω4 ��

Ψ

��

U[2] ⊕ V

1U ⊕ 14
V

��

U[2] ⊕ V
Ω1 �� U[2] Ω2 �� U[2] ⊕ V[4]

shows that the induced horizontal cross-map corresponds to Ψ . �

This completes the construction of the extension W. Now we verify the last
assertion of theorem. Suppose that U,V are q-tame, meaning that their non-identity
structure maps have finite rank. On any diagonal Δx , the restricted modules A|Δx ,
B|Δx are shifted copies of U,V so they are q-tame. It follows that the direct sum
A ⊕ B|Δx and its homomorphic image Ux = Ω(A ⊕ B)|Δx are q-tame.

This completes the proof of Theorem 4.7. �
We point out that Step 3 isn’t necessary to deduce the interpolation Lemma 4.6.

It is sufficient to show that U = U−1 and V = U1 for some 1-parameter family of
persistence modules such that each pair Ux ,Uy admits an |x − y|-interleaving. This
already follows from Steps 1 and 2. We do not need to know that the 2-interleaving
of U,V induced fromW is equal to the original 2-interleaving.
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4.5 The Interpolation Lemma (Continued)

In this optional section,we study the interpolation lemma in greater depth. The results
are not used elsewhere. Given two modulesU,V and a δ-interleaving between them,
there are at least three natural ways to construct an interpolation. We describe these
constructions and some relationships between them.

As in the proof of Theorem 4.7, we may suppose that δ = 2 and that U,V and
their interleaving are represented as a module over Δ−1 ∪ Δ1 in the plane, which we
wish to extend to a module over Δ[−1,1].

It will be helpful to introduce some temporary notation. Let V be a persistence
module over R. Then V

p, Vq are the persistence modules over R2 defined by

(V p)(p,q) = Vp, (V q)(p,q) = Vq ,

and the canonical linear maps.
Now consider the sequence

U[−3]q
⊕

V[−3]p
Ω ′

��

U[−1]p
⊕

V[−1]q
Ω ��

U[1]q
⊕

V[1]p
Ω ′′

��

U[3]p
⊕

V[3]q
(4.3)

of modules over Δ[−1,1] with maps

Ω ′ =
[

1U −Ψ

−Φ 1V

]
, Ω =

[
1U Ψ

Φ 1V

]
, Ω ′′ =

[
1U −Ψ

−Φ 1V

]

defined analogously to Ω from the proof of Theorem 4.7.
Notice that Ω , Ω ′ and Ω ′′ are essentially the same map. Certainly Ω ′,Ω ′′ are

formally identical, up to a translation τ of the strip. In fact, each of the modules in
the sequence is related to the next by an isomorphism σ which changes the sign of
the V-term and transforms indices by (p, q) �→ (q + 2, p + 2). We have τ = σ 2,
and conjugacies Ω = σΩ ′σ−1 and Ω ′′ = σΩσ−1.

Proposition 4.9 Each of the three modules

coker(Ω ′), coim(Ω) = im(Ω), ker(Ω ′′)

over Δ[−1,1] defines an interpolating family between U,V.

Proof We already know this for coim(Ω) = im(Ω) from the proof of Theorem 4.7.
Now we outline the proof that coker(Ω ′) and ker(Ω ′′) restrict on Δ−1 to modules
isomorphic to U.
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On the diagonal Δ−1 the sequence (4.3) restricts to:

U[−4]
⊕

V[−2]
Ω ′

��

U

⊕
V[−2]

Ω ��

U

⊕
V[2]

Ω ′′
��

U[4]
⊕

V[2]

and we have factorisations

Ω ′ or Ω ′′ =
[

14
U

−Ψ

−Φ 1V

]
=

[−Ψ

1V

] [−Φ 1V
] = Ω ′

1Ω
′
2 or Ω ′′

1Ω ′′
2 .

These reveal that im(Ω ′) = im(Ω ′
1) is a complementary submodule to U ⊕ 0 in

U ⊕ V[t − 2], and that ker(Ω ′′) = ker(Ω ′′
2 ) is a complementary submodule to 0 ⊕

V[t + 2] inU ⊕ V[t + 2]. It follows that coker(Ω ′) and ker(Ω ′′) are each isomorphic
to U.

By a symmetric argument, the restriction of each module to Δ1 is isomorphic
to V. This completes the proof that coker(Ω ′) and ker(Ω ′′) interpolate between U

and V. �

Which of the three constructions should we prefer? It turns out that coker(Ω ′) and
ker(Ω ′′) are respectively isomorphic to the Kan left- and right-extensions, so these
are natural from the category theoretic point of view. Now observe thatΩΩ ′ = 0 and
Ω ′′Ω = 0, meaning that (4.3) is a chain complex. It follows that there is a natural
projection and a natural inclusion

coker(Ω ′) � coim(Ω) = im(Ω) ↪→ ker(Ω ′′)

bywhich we see that coim(Ω) = im(Ω) is isomorphic to the image of the composite
map coker(Ω ′) → ker(Ω ′′). In this sense, it is intermediate between the left- and
right-extensions; and structurally it is the ‘smallest’ of the three, being a quotient of
one and a subobject of the other.

The surplus information carried by the two Kan extensions may be measured as
the kernel of the projection and the cokernel of the inclusion. These are precisely
the homology at the second and third terms of (4.3). It follows from the conjugacies
described above that the two homology modules are isomorphic upon translating the
strip by 2 and interchanging p and q (i.e. reversing the interpolation parameter).

We can use the ‘vineyard’ technique of [23] to visualise the 1-parameter family
of persistence modules produced by each of the three constructions. We obtained
the vineyards by sketching the supports of the eight module summands in (4.3) and
using the sketches to partition the interpolation parameter range [−1, 1] into suitable
intervals for case splitting. It is perhaps easier done than described, so we invite
readers to conduct their own calculations and confirm that our vineyards are correct.
As further corroboration, one verifies that the homology modules are isomorphic in
the sense described above.
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Fig. 4.2 Vineyards of the cokernel (left), image (middle), and kernel (right) interpolations for the
2-interleaving between k[0, 4) and k[1, 6)
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Fig. 4.3 Vineyards of the cokernel (left), image (middle), and kernel (right) interpolations for the
3-interleaving between k[0, 4) and k[1, 6)

In Fig. 4.2, we consider the canonical 2-interleaving between interval modules
k[0, 4) and k[1, 6). The thick black lines show how the points of the persistence
diagram travel in the plane as we proceed along the interpolating family, for each
of the three constructions. Each point travels with speed 1 and traverses a path of
length 2 (in the d∞-metric). The cokernel interpolation has an extra ‘ghost’ summand
which emerges from the diagonal at (3, 3) at the beginning of the interpolation, and
is reabsorbed by the diagonal at (2, 2) at the end.

In Fig. 4.3 we repeat the exercise using the canonical 3-interleaving between
k[0, 4) and k[1, 6). The thick black paths now have length three, and the kernel and
cokernel interpolations both produce ‘ghosts’ at the diagonal.
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