
Chapter 3
Rectangle Measures

For a decomposable R-persistence module

V ∼=
⊕

�∈L
k(p∗

� , q
∗
� ),

we have defined the decorated persistence diagram to be the multiset

Dgm(V) = Int(V) = {(p∗
� , q

∗
� ) | � ∈ L},

and the undecorated persistence diagram to be the multiset

dgm(V) = int(V) = {(p�, q�) | � ∈ L}.

If we don’t know thatV is decomposable then we have to proceed differently. We
are guided by the following heuristic: if we know howmany points of Dgm belong to
each rectangle in the half-space, then we know Dgm itself. For persistence modules,
counting points in rectangles turns out to be easy.

The language of measure theory is well suited to this argument. We will see
that a persistence module defines an integer-valued measure on rectangles. If the
module is tame then this measure is finite-valued, and therefore (Theorem 3.12) it is
concentrated at a discrete set of points. These points, taken with their multiplicities,
constitute the persistence diagram. In the case where the module is decomposable,
the persistence diagram constructed this way agrees with the persistence diagram
defined earlier. When the module is not known to be decomposable, we can proceed
regardless.

Remark 3.1 The persistence measures that we construct are not true measures on
subsets of R2: they are additive in the sense of tiling rather than in the usual sense of
disjoint set union. The discrepancy arises when we split a rectangle into two: what
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32 3 Rectangle Measures

happens to the points on the common edge? To which rectangle do they belong?
Decorated points resolve this question, and moreover the formalism fits perfectly
with our use of decorations to distinguish open and closed ends of intervals.

3.1 The Persistence Measure

Let V be a persistence module. The persistence measure of V is the function

μV(R) = 〈◦a—•b—•c—◦d | V〉

defined on rectangles R = [a, b] × [c, d] in the plane with a < b ≤ c < d.
For a decomposable persistence module, there is a clear relationship between μV

and the interval summands of V. Let us first consider the case of an interval module.

Proposition 3.2 Let V = kJ where J = (p∗, q∗) is a real interval. Let R =
[a, b] × [c, d] where a < b ≤ c < d. Then

μV (R) =
{
1 if [b, c] ⊆ J ⊆ (a, d)

0 otherwise

Proof It is clear that kJ restricted to {a, b, c, d} is an interval or is zero. Thus,
μV(R) ≤ 1. Moreover μV(R) = 1 precisely when

kJ
{a,b,c,d} = ◦a—•b—•c—◦d ,

which happens if and only if b, c ∈ J and a, d /∈ J . This is equivalent to the condition
[b, c] ⊆ J ⊆ (a, d). �

Proposition 3.2 has a graphical interpretation. Represent the interval J ⊆ R as a
decorated point in the extended plane. The following picture indicates exactly which
decorated points (p∗, q∗) are detected by μV(R):

If (p, q) is in the interior of R then (p∗, q∗) is always detected regardless of the
decoration. If (p, q) is on the boundary, then (p∗, q∗) is detected if the tick is directed
inwards.

We formalise this by defining a membership relation between decorated points
and rectangles.
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Definition 3.3 Let R = [a, b] × [c, d] where a < b ≤ c < d, and consider
a decorated point (p∗, q∗) with p∗ < q∗. We write (p∗, q∗) ∈ R if any of the
following equivalent statements is true:

• We have p∗ ∈ [a, b] and q∗ ∈ [c, d] in the notation of Eq. (2.3).
• We have a < p∗ < b and c < q∗ < d in the total order of Eq. (2.1).
• We have a+ ≤ p∗ ≤ b− and c+ ≤ q∗ ≤ d− in the total order of Eq. (2.1).
• The real interval (p∗, q∗) is sandwiched [b, c] ⊆ (p∗, q∗) ⊆ (a, d).
• The point-with-tick (p∗, q∗) lies in the closed rectangle R.

The set R× = {(p∗, q∗) | (p∗, q∗) ∈ R} is called the r-interior of R. We also
make use of its undecorated counterpart, R◦ = (a, b) × (c, d), the interior in the
standard sense of the finite rectangle R = [a, b] × [c, d].
Remark 3.4 The expressions (p∗, q∗) ∈ R and (p∗, q∗) ∈ R×mean the same thing
but we will tend to prefer the former. In the same spirit, we write |R to indicate the
restriction of a multiset of decorated points to (the r-interior of) the rectangle R.

Corollary 3.5 Suppose V is a decomposable persistence module over R:

V =
⊕

�∈L
k(p∗

� , q
∗
� )

Then
μV(R) = card (Dgm(V)|R) (3.1)

for every rectangle R = [a, b] × [c, d] with a < b ≤ c < d.

Proof This follows from Propositions 3.2 and 2.16 (direct sums). �

We now have a strategy for defining the persistence diagram without assuming a
decomposition: having constructed μV, we look for a multiset of decorated points
Dgm(V)which satisfies Eq. (3.1) for all rectangles. For this to work, we need to know
that such amultiset exists and is unique. Theorem 3.12 will take care of this under the
hypothesis thatμV is finite and additive; it is a sort of ‘Riesz representation theorem’
for measures on rectangles. By Corollary 3.5, the new and old definitions agree in
the case where V is decomposable.

3.2 The Persistence Measure (Continued)

We call μV a measure because it is additive with respect to splitting a rectangle into
two rectangles.We prove this shortly. First we consider the ‘alternating sum’ formula
for μV(R) that appears in [19]:

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Proposition 3.6 Let V be a persistence module, and let a < b ≤ c < d. If the
vector spaces Va, Vb, Vc, Vd are finite-dimensional, or less stringently if rbc < ∞,
then

〈◦a—•b—•c—◦d | V〉 = rbc − rac − rbd + rad .

(Here as before rst = rank(vst : Vs → Vt ).)

Proof Decompose the 4-term module V{a,b,c,d} into intervals. The left-hand side
counts intervals of type [b, c]. By the restriction principle, the four terms on the
right-hand side evaluate as follows:

rbc = 〈◦a– •b– •c– ◦d〉+〈•a– •b– •c– ◦d〉+〈◦a– •b– •c– •d〉+〈•a– •b– •c– •d〉
rac = 〈•a– •b– •c– ◦d〉 +〈•a– •b– •c– •d〉
rbd = 〈◦a– •b– •c– •d〉+〈•a– •b– •c– •d〉
rad = 〈•a– •b– •c– •d〉

These expressions are all finite: the hypothesis rbc < ∞ implies that the other three
ranks are finite too (Example 2.20). We can legitimately take the alternating sum,
and all terms on the right-hand side cancel except for the 〈◦a—•b—•c—◦d〉. �

We give three proofs of additivity. The first is completely general, whereas the
other two work under restricted settings but are illuminating in their own way.

Proposition 3.7 μV is additive under vertical and horizontal splitting, meaning that

μV([a, b] × [c, d]) = μV([a, p] × [c, d]) + μV([p, b] × [c, d])
μV([a, b] × [c, d]) = μV([a, b] × [c, q]) + μV([a, b] × [q, d])

whenever a < p < b ≤ c < q < d.

This additivity property is illustrated by the following figure

S

pa
c

b

d
R

a
c
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d
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V

a

q

b
c

d
T

where the claim is that μV(R) = μV(S) + μV(T ) = μV(U ) + μV(V ).

Proof (first version) Let a < p < b ≤ c < q < d. Then we calculate

μV([a, b] × [c, d]) = 〈◦a———•b—•c—◦d〉
= 〈◦a—•p—•b—•c—◦d〉 + 〈◦a—◦p—•b—•c—◦d〉
= 〈◦a—•p———•c—◦d〉 + 〈——◦p—•b—•c—◦d〉
= μV([a, p] × [c, d]) + μV([p, b] × [c, d])

http://dx.doi.org/10.1007/978-3-319-42545-0_2


3.2 The Persistence Measure (Continued) 35

for additivity with respect to a horizontal split, and

μV([a, b] × [c, d]) = 〈◦a—•b—•c———◦d〉
= 〈◦a—•b—•c—◦q—◦d〉 + 〈◦a—•b—•c—•q—◦d〉
= 〈◦a—•b—•c—◦q——〉 + 〈◦a—•b———•q—◦d〉
= μV([a, b] × [c, q]) + μV([a, b] × [q, d])

for additivity with respect to a vertical split. �

Proof (second version, assuming rbc < ∞) The alternating sum formula (Proposi-
tion 3.6) gives

rbc − rac − rbd + rad = (r pc − rac − r pd + rad ) + (rbc − r pc − rbd + r pd )

and
rbc − rac − rbd + rad = (rbc − rac − rbq + raq ) + (rbq − raq − rbd + rad )

as required. Note that rbc < ∞ implies r pc < ∞ and rbq < ∞, so the formula is valid
for all the rectangles in question. �

This second proof is particularly transparent when drawn geometrically in the
plane: the + and − signs at the corners of the rectangles cancel in a pleasant way:
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= =

Proof (third version, assuming V is decomposable) By Corollary 3.5, the measure
of a rectangle counts the interval summands whose corresponding decorated points
lie in the rectangle. Additivity follows from the observation that a decorated point
in R belongs to exactly one of its subrectangles S and T , and to exactly one of its
subrectangles U and V . �

Here are two further descriptions of μV([a, b] × [c, d]).
Proposition 3.8 We have the following formulae:

〈◦a—•b—•c—◦d | V〉 = dim

[
im(vbc ) ∩ ker(vcd)

im(vac ) ∩ ker(vcd)

]

= dim

[
ker(vbd)

ker(vbc ) + im(vab) ∩ ker(vbd)

]
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Proof This is covered, for instance, in the localisation discussion in Sect. 5.1 of [8].
The two formulae are obtained by localising at c and b, respectively. �

Proposition 3.8 expresses the measure of a rectangle as the dimension of a vector
space constructed functorially from V. (Ostensibly there are two vector spaces, one
for each formula, but the map vbc induces a natural isomorphism between them.)
Functoriality has its advantages, but in other regards this characterisation is harder
to use. For instance, additivity is not as obvious in this formulation.

3.3 Abstract r-Measures

We now consider rectangle measures more abstractly. Persistence measures are of
course our primary example, but the general formulation allows for many other
situations. For ease of exposition, we initially work in the plane R2 rather than the
extended plane R2. The picture is completed in Sect. 3.6 when we discuss the points
at infinity.

Definition 3.9 Let D be a subset of R2. Define

Rect(D) = {[a, b] × [c, d] ⊂ D | a < b and c < d}

(the set of closed rectangles contained in D). A rectangle measure or r-measure
on D is a function

μ : Rect(D) → {0, 1, 2, . . . } ∪ {∞}

which is additive under vertical and horizontal splitting (as in Proposition 3.7).

Proposition 3.10 Let μ be an r-measure on D ⊆ R2. Then:

• If R ∈ Rect(D) can be written as a union R = R1 ∪ · · · ∪ Rk of rectangles with
disjoint interiors, then μ(R) = μ(R1) + · · · + μ(Rk).

• If R ⊆ S then μ(R) ≤ μ(S).

In other words, μ is finitely additive and monotone.

Proof (Finitely additive) Let R = [a, b] × [c, d]. By induction and the vertical
splitting property, it follows that finite additivity holds for decompositions of the
form

R =
⋃

i

Ri

where Ri = [ai , ai+1] × [c, d] with a = a1 < a2 < · · · < am = b. By induction
and the horizontal splitting property, it then follows that finite additivity holds for
‘product’ decompositions
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R = [a, b] × [c, d] =
⋃

i, j

Ri j

where Ri j = [ai , ai+1] × [c j , c j+1] with a = a1 < a2 < · · · < am = b and
c = c1 < c2 < · · · < cn = d. For an arbitrary decomposition R = R1 ∪ · · · ∪ Rk ,
finally, the result follows by considering a product decomposition of R by which
each Ri is itself product-decomposed.

(Monotone) Decompose S into a collection of rectangles R and R1, . . . , Rk−1

which are interior-disjoint. (This can be done with at most 9 rectangles using a
product decomposition.) Then

μ(S) = μ(R) + μ(R1) + · · · + μ(Rk−1)

≥ μ(R)

by finite additivity and the fact that μ ≥ 0. �

Here is one more plausible-and-also-true statement about abstract r-measures.

Proposition 3.11 (Subadditivity) Let μ be an r-measure onD ⊆ R2. If a rectangle
R ∈ Rect(D) is contained in a finite union

R ⊆ R1 ∪ · · · ∪ Rk

of rectangles Ri ∈ Rect(D), then

μ(R) ≤ μ(R1) + · · · + μ(Rk).

Proof Let
a1 < a2 < · · · < am

include all the x-coordinates of the corners of all the rectangles, and let

c1 < c2 < · · · < cn

include all the y-coordinates. Each rectangle is then tiled as a union of pieces

[ai , ai+1] × [c j , c j+1]

with disjoint interiors, and the measure of the rectangle is the sum of the measures
of its tiles, by additivity. Since each tile belonging to R must also belong to one or
more of the Ri , the inequality follows. �
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3.4 Equivalence of Measures and Diagrams

We wish to establish a correspondence between r-measures and decorated diagrams.
The task of defining a continuous persistence diagram can then be replaced by the
simpler task of defining an r-measure. This works best when the measure is finite; in
Sect. 3.5 we consider measures that are not finite.

The r-interior of a region D ⊆ R2 is defined as follows:

D×= {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R

}
.

This is the set of decorated points that can be ‘accessed’ by some rectangle in D.
The decorated diagram will be a multiset in D×. Clearly, an r-measure in D cannot
tell us what happens outside D×. The interior of D in the classical sense is written
D◦. In terms of rectangles, we have

D◦ = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦}

,

where we recall that R◦ = (a, b)× (c, d) denotes the interior of the closed rectangle
R = [a, b] × [c, d]. The undecorated diagram will be a multiset in D◦.
Theorem 3.12 (The equivalence theorem) Let D ⊆ R2. There is a bijective corre-
spondence between:

• Finite r-measuresμ onD. ‘Finite’ means thatμ(R) < ∞ for every R ∈ Rect(D).
• Locally finite multisets A in D×. ‘Locally finite’ means that card(A|R) < ∞ for
every R ∈ Rect(D).

The measure μ corresponding to a multiset A is related to it by the formula

μ(R) = card(A|R) (3.2)

for every R ∈ Rect(D).

Remark 3.13 We can write Eq. (3.2) equivalently as

μ(R) =
∑

(p∗,q∗)∈R

m(p∗, q∗), (3.3)

where
m : D×→ {0, 1, 2, . . . }

is the multiplicity function for A.

Assuming the theorem, we define the persistence diagrams of a measure.

Definition 3.14 Let μ be a finite r-measure on a region D ⊆ R2.
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• The decorated diagram of μ is the unique locally finite multiset Dgm(μ) in D×
such that

μ(R) = card(Dgm(μ)|R)

for every R ∈ Rect(D).
• The undecorated diagram of μ is the locally finite multiset inD◦

dgm(μ) = {
(p, q) | (p∗, q∗) ∈ Dgm(μ)

} ∩ D◦

obtained by forgetting the decorations on the points and restricting to the interior.

Remark 3.15 Note that dgm is locally finite inD◦, but not necessarily locally finite
in R2—it may have accumulation points on the boundary of D.

Proof (Theorem 3.12) One direction of the correspondence is easy. If A is a multiset
on D× then the function μ(R) on rectangles defined by Eq. (3.2) is indeed an r-
measure. It is finite if A is locally finite. To verify additivity, suppose that a rectangle
R is split vertically or horizontally into two rectangles R1, R2. Notice that every
decorated point (p∗, q∗) ∈ R belongs to exactly one of R1, R2. It follows that

μ(R) = card(A|R) = card(A|R1) + card(A|R2) = μ(R1) + μ(R2),

as required.
The reverse direction takesmorework. Given an r-measureμwewill (1) construct

a multiset A inD×, (2) show thatμ and A are related by Eq. (3.2), and (3) show that A
is unique. In practice, we construct themultiplicity functionm and establish Eq. (3.3),
rather than referring to A directly.

Step 1. (Multiplicity formula.) Let μ be a finite r-measure on D. Define

m(p∗, q∗) = min
{
μ(R) | R ∈ Rect(D), (p∗, q∗) ∈ R

}
(3.4)

for (p∗, q∗) in D×. Note that the minimum is attained because the set is nonempty
and μ takes values in the natural numbers.

Here is an alternative characterisation. Instead of minimising over all rectangles,
we take the limit through a decreasing sequence of rectangles:

Lemma 3.16 Let (ξi ) and (ηi ) be non-increasing sequences of positive real numbers
which tend to zero as i → ∞. Then

m(p+, q+) = lim
i→∞ μ([p, p + ξi ] × [q, q + ηi ]),

and similarly
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m(p+, q−) = lim
i→∞ μ([p, p + ξi ] × [q − ηi , q]),

m(p−, q+) = lim
i→∞ μ([p − ξi , p] × [q, q + ηi ]),

m(p−, q−) = lim
i→∞ μ([p − ξi , p] × [q − ηi , q]).

Proof The key observation is that the sequence of rectangles Ri = [p, p + ξi ] ×
[q, q + ηi ] is cofinal in the set of rectangles R containing (p+, q+). In other words,
for any such R we have Ri ⊆ R for all sufficiently large i .

By monotonicity, the sequence of nonnegative integers μ(Ri ) is non-increasing,
and hence eventually stabilises to a limit. Then

m(p+, q+) ≤ min
i

μ(Ri ) = lim
i→∞ μ(Ri ) ≤ μ(R)

for any R containing (p+, q+). Taking the minimum over all R, the right-hand side
becomes m(p+, q+) and hence by squeezing

m(p+, q+) = lim
i→∞ μ(Ri ).

The other three cases of the lemma are similar. �

We return to the main proof.
Step 2. Having definedm(p∗, q∗), we nowshow that this is the ‘correct’ definition,

meaning that Eq. (3.3) is satisfied. We have seen already that m corresponds to an
r-measure

ν(R) =
∑

(p∗,q∗)∈R

m(p∗, q∗), (3.5)

and it remains to show (for this step) that ν = μ. We prove this by induction on
k = μ(R).

Base case. μ(R) = 0. Then for every (p∗, q∗) ∈ R we have

0 ≤ m(p∗, q∗) ≤ μ(R) = 0

so ν(R) = 0.
Inductive step. Suppose μ(R) = ν(R) for every rectangle R with μ(R) < k.

Consider a rectangle R0 with μ(R0) = k. We must show that ν(R0) = k.
Split the rectangle into four equal quadrants S1, S2, S3, S4. Certainly

μ(R0) = μ(S1) + μ(S2) + μ(S3) + μ(S4)

ν(R0) = ν(S1) + ν(S2) + ν(S3) + ν(S4)

by finite additivity (Proposition 3.10). If every quadrant satisfies μ(Si ) < k, then
by induction we deduce that μ(R0) = ν(R0). Otherwise, one of the quadrants has



3.4 Equivalence of Measures and Diagrams 41

μ = k and the other three quadrants satisfy μ = 0 (and hence ν = 0). Let R1 be the
distinguished quadrant, so μ(R1) = k. It is now enough to show that ν(R1) = k.

We repeat the argument. Subdivide Ri into four equal quadrants. Either all four
quadrants satisfy the inductive hypothesis μ < k, in which case we are done. Oth-
erwise we find a quadrant Ri+1 with μ(Ri+1) = k, and we are reduced to showing
that ν(Ri+1) = k.

In the worst case—the remaining unresolved case—this iteration never terminates
and we obtain a sequence of closed rectangles

R0 ⊃ R1 ⊃ R2 ⊃ · · ·

each being a quadrant of the previous one, with μ(Ri ) = k. Since the diameters of
the rectangles tend to zero, their intersection

⋂
i Ri contains a single point (r, s).

We are now in a position to show that ν(R0) = k, by evaluating the sum explicitly
over all decorated points in R0.

First of all, consider decorated points that eventually leave the sequence (Ri ).
Specifically, suppose that (p∗, q∗) ∈ R0 but (p∗, q∗) ∈ Ri−1 − Ri for some i . This
means that (p∗, q∗) belongs to one of the three quadrants of Ri−1 for which μ = 0.
It follows immediately that m(p∗, q∗) = 0.

Thus, the only contribution to ν(R0) comes from decorated points (p∗, q∗)which
belong to every rectangle in the sequence (Ri ). Clearly these must be decorated
versions (r∗, s∗) of the intersection point (r, s). There are 4, 2 or 1 of them depending
on how the nested sequence of rectangles converges to its limit. Here we illustrate
the three cases:

Suppose first that (r, s) lies in the interior of every rectangle Ri , so that all four
decorated points (r+, s+), (r+, s−), (r−, s+), (r−, s−) belong to every Ri . Divide
each Ri into 4 subrectangles R++

i , R+−
i , R−+

i , R−−
i , which share a common corner

at (r, s) so that each of the four decorated points (r∗, s∗) belongs to one of the
subrectangles in the obvious notation. By Lemma 3.16,

m(r+, s+) = lim
i→∞ μ(R++

i ), m(r+, s−) = lim
i→∞ μ(R+−

i ),

m(r−, s+) = lim
i→∞ μ(R−+

i ), m(r−, s−) = lim
i→∞ μ(R−−

i ),

and moreover each of these decreasing integer sequences eventually stabilises at its
limiting value. Thus, for sufficiently large i ,
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ν(R0) = m(r+, s+) + m(r+, s−) + m(r−, s+) + m(r−, s−)

= μ(R++
i ) + μ(R+−

i ) + μ(R−+
i ) + μ(R−−

i ) = μ(Ri ) = k

as required.
A similar argument (with fewer terms) can be made in the cases where only 2 or

1 of the decorated points (r∗, s∗) belong to every Ri . For instance, if (r, s) lies on
the interior of the right-hand edge of the rectangles (Ri ) for all sufficiently large i ,
we split each rectangle into two parts R−+

i and R−−
i and obtain

ν(R0) = m(r−, s+) + m(r−, s−) = μ(R−+
i ) + μ(R−−

i ) = μ(Ri ) = k

in the same way. In this case (r+, s+) and (r+, s−) eventually leave (or were never
in) the sequence (Ri ) and therefore do not contribute to ν(R0). We omit the details
of the remaining cases, which are equally straightforward.

This completes the inductive step. Thus μ(R) = ν(R) for every R ∈ Rect(D).

Step 3. Suppose m′(p∗, q∗) is some other multiplicity function on D× whose
associated r-measure

ν ′(R) =
∑

(p∗,q∗)∈R

m′(p∗, q∗)

satisfies μ = ν ′. We must show that m = m′.
Consider an arbitrary decorated point (p∗, q∗) ∈ D×. Let R be a rectangle which

contains (p∗, q∗) at its corner. Since

ν(R) = ν ′(R) = μ(R) < ∞,

there are only finitely many other decorated points (r∗, s∗) ∈ R with positive mul-
tiplicity in m or m′. By making R smaller, we can therefore assume that (p∗, q∗) is
the only decorated point in R with positive multiplicity in either measure. Then

m(p∗, q∗) = ν(R) = μ(R) = ν ′(R) = m′(p∗, q∗).

Since (p∗, q∗) was arbitrary it follows that m = m′.

This completes the proof of Theorem 3.12. �

3.5 Non-finite Measures

If an r-measure is not everywhere finite, we restrict our attention to the parts of the
plane where it is finite. Define the finite r-interior of an r-measure μ to be the set
of decorated points

F×(μ) = {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R andμ(R) < ∞}

.
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The finite interior is the set of undecorated points

F◦(μ) = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦ andμ(R) < ∞}

.

This is an open subset of the plane, being a union of open rectangles. It is easy to see
that (p, q) ∈ F◦(μ) if and only if (p∗, q∗) ∈ F×(μ) for all possible decorations. A
(decorated) point that is not in the finite (r-)interior may be called singular.

Although these interiors are defined in a pointwise sense, the next two propositions
show that the finiteness extends to any rectangle contained in them.

Proposition 3.17 Let R ∈ Rect(D). If R×⊆ F×(μ) then μ(R) < ∞.

Proof We show that each (p, q) ∈ R is contained in the interior relative to R of a
rectangle S ⊆ R of finite measure. If (p, q) lies in the interior of R, then each of the
four decorated points (p∗, q∗) belongs to F×(μ) so we can find four finite-measure
rectangles containing them. The union of these rectangles contains a neighbourhood
of (p, q), and we can take S ⊆ R to be a rectangle contained in this union with (p, q)

in its interior. It has finite measure, by subadditivity (Proposition 3.11). The other
cases are similar: if (p, q) lies on the interior of an edge, we take two finite-measure
rectangles containing a relative neighbourhood of (p, q); and if (p, q) is a corner
point we take just one rectangle.

To finish, we note that R, being compact, is the union of finitely many of these
rectangles; therefore by subadditivity it has finite measure. �

The undecorated version is an immediate consequence.

Proposition 3.18 Let R ∈ Rect(D). If R ⊆ F◦(μ) then μ(R) < ∞. �

Theorem 3.19 Let μ be an r-measure onD ⊆ R2. Then there is a uniquely defined
locally finite multiset Dgm(μ) in F×(μ) such that

μ(R) = card(Dgm(μ)|R) (3.6)

for every R ∈ Rect(D) with R×⊆ F×(μ).

Proof Within each rectangle S of finite measure, Theorem 3.12 provides a multiset
in S×such that Eq. (3.6) holds for all subrectangles R ⊆ S. Uniqueness implies that
the multisets for overlapping rectangles agree on the common intersection. Thus we
obtain a multiset defined in the union of these S×, which by definition is equal to
F×(μ), with the property that Eq. (3.6) holds for all rectangles R of finite measure.
By Proposition 3.17, this means all rectangles with R×⊆ F×(μ). �

Now we can define the persistence diagrams of a general r-measure.

Definition 3.20 Let μ be an r-measure on a region D ⊆ R2.

• The decorated diagram of an r-measure μ is the pair (Dgm(μ),F×(μ)), where
Dgm(μ) is the multiset in F×(μ) described in Theorem 3.19.
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• The undecorated diagram is the pair (dgm(μ),F◦(μ)), where

dgm(μ) = {
(p, q) | (p∗, q∗) ∈ Dgm(μ)

} ∩ F◦(μ)

is the locally finite1 multiset in F◦(μ) obtained by forgetting the decorations in
Dgm(μ) and restricting to the finite interior.

Remark 3.21 To make this backwards-compatible with the previously defined per-
sistence diagrams of a finite r-measure on a region D, we can regard Dgm(μ) and
dgm(μ) as abbreviations for (Dgm(μ),D×) and (dgm(μ),D◦).

Remark 3.22 It is sometimes useful to adopt the region extension convention: an
r-measure defined on a subset D ⊂ R2 can be interpreted as an r-measure on the
whole plane R2, by agreeing that μ(R) = ∞ for any rectangle that meets R2 − D.
The extension has the same diagram as the original r-measure.

3.6 Measures and Diagrams in the Extended Plane

We now consider r-measures in the extended plane R2. In Sect. 3.7, we will use
this to define the decorated and undecorated diagrams of an arbitrary persistence
module. The points at infinity take account of possible infinite interval summands of
the module. The development proceeds almost exactly as with the standard plane.
What is new is that we use infinite rectangles and we admit −∞+ and +∞− as
possible coordinates of decorated points.

A rectangle in the extended plane is a set of the form

R = [a, b] × [c, d]

where now −∞ ≤ a < b ≤ +∞ and −∞ ≤ c < d ≤ +∞. Thus there are various
types of infinite rectangle. The r-interior of a rectangle R = [a, b] × [c, d] is the set
of decorated points

R×= {(p∗, q∗) | p∗ ∈ [a, b] and q∗ ∈ [c, d]}

exactly as before, with the understanding that−∞+ and+∞− are permissible values
of p∗, q∗. The interior of R requires a little care:

R◦ = relative interior of R as a subspace ofR2

For instance, if R = [−∞, b]×[c, d]where b, c, d are finite, then R◦ = [−∞, b)×
(c, d). We adopt this convention because we do not wish to lose the points at infinity
when we pass from a decorated diagram to its undecorated counterpart.

1As before, this does not rule out accumulation points on the boundary of F◦(μ).
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For D ⊆ R2, let Rect(D) denote the set of rectangles R ⊆ D. The r-interior and
interior of D are formally the same as before (with R◦ as above):

D×= {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R

}
,

D◦ = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦}

.

An r-measure on D is a function

μ : Rect(D) → {0, 1, 2, . . . } ∪ {∞}

which is additive with respect to the vertical or horizontal splitting of a rectangle into
two rectangles. Propositions 3.10 and 3.11 (finite additivity, monotonicity, subaddi-
tivity) follow as before. The finite r-interior and finite interior are

F×(μ) = {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R andμ(R) < ∞}

,

F◦(μ) = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦ andμ(R) < ∞} ;

if μ is finite, then F×(μ) = D×and F◦(μ) = D◦.
Claim Theorems 3.12 and 3.19 are valid, verbatim, for r-measures onD ⊆ R2. The
multiplicity of a point in Dgm(μ) may be computed using Eq. (3.4).

Proof The statements (and indeed the proofs) of Theorems 3.12, 3.19, and Eq. (3.4)
are invariant under reparametrisations of the plane of the form

x ′ = f (x), y′ = g(y),

where f, g are homeomorphic embeddings. We can view R2 as a rectangle in R2 via
a transformation of this type; for instance

x ′ = arctan(x), y′ = arctan(y)

identifies R2 with the rectangle [−π/2, π/2] × [−π/2, π/2] in R2. Through this
hack, the original theorems are transferred to the extended plane. �

Definition 3.23 The decorated and undecorated diagrams of an r-measure μ are
the ordered pairs (Dgm(μ),F×(μ)) and (dgm(μ),F◦(μ)), where Dgm(μ) is given by
Theorem 3.19, and dgm(μ) is obtained from Dgm(μ) by forgetting the decorations
and restricting to F◦(μ).

So far we have treated the extended plane almost exactly like the standard plane.
When we come to prove the stability theorem for persistence diagrams (Sects. 5.6–
5.8), where metric properties become relevant, we end up considering the points at
infinity separately from the points in the standard plane. For this, we make use of
certain ‘measures at infinity’ that we derive now.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Consider an r-measure μ on R2. (If μ is given on a proper sub-region D ⊂ R2,
extend it to R2 using the region extension convention of Remark 3.22.) The extended
plane has 4 lines at infinity

(−∞, R), (+∞, R), (R,−∞), (R,+∞),

and 4 points at infinity

(−∞,−∞), (+∞,−∞), (−∞,+∞), (+∞,+∞).

There are measures defined on each of these. On the four lines at infinity, they are
‘interval measures’ (the 1-dimensional analogue of r-measures, defined on closed
intervals and additive with respect to splitting an interval into two). At the four
points at infinity, each measure is simply a number. We write out the three cases of
direct relevance to persistence modules. The other five cases are analogous.

• the line (−∞, R):

μ(−∞, [c, d]) = lim
b→−∞ μ([−∞, b] × [c, d]) = min

b
μ([−∞, b] × [c, d])

for any interval [c, d] ⊆ R.

• the line (R,+∞):

μ([a, b],+∞) = lim
c→+∞ μ([a, b] × [c,+∞]) = min

c
μ([a, b] × [c,+∞])

for any interval [a, b] ⊆ R.

• the point (−∞,+∞):

μ(−∞,+∞) = lim
e→+∞ μ([−∞,−e]×[e,+∞]) = min

e
μ([−∞,−e]×[e,+∞])

Monotonicity of μ guarantees that each limit exists. Each measure has a straightfor-
ward interpretation in terms of Dgm(μ). We give two sample propositions.

Proposition 3.24 (1) If μ(−∞, [c, d]) is finite, then it counts the decorated points
of Dgm(μ) of the form (−∞+, q∗) where q∗ ∈ [c, d].
(2) If μ(−∞, [c, d]) is infinite, then (−∞+, q∗) /∈ F×(μ) for some q∗ ∈ [c, d].
Proof (1) If the limit is finite, then for some finite b0 the rectangle [−∞, b0]×[c, d]
has finite measure and therefore contains finitely many points of Dgm(μ). For all
sufficiently small b, then, the rectangle [−∞, b] × [c, d] contains exactly those
points with first coordinate −∞+.
(2) Suppose the conclusion failed. Then, arguing as in Proposition 3.17, there would
be a finite collection of rectangles [−∞, bi ]×[ci , di ] of finitemeasurewhich together
cover {−∞} × [c, d]. Then the rectangle [−∞,min(bi )] × [c, d] would have finite
measure, contradicting the hypothesis. �
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Proposition 3.25 (1) If μ(−∞,+∞) is finite, then it counts the multiplicity of
(−∞+,+∞−) in Dgm(μ).
(2) If μ(−∞,+∞) is infinite, then (−∞+,+∞−) /∈ F×(μ).

Proof Similar, but easier (especially (2)). �

3.7 The Measure Persistence Diagram

We obtain the measure persistence diagrams of a persistence module V by defining
its persistence measure μV on the extended half-plane H.

Definition 3.26 (persistence measure in extended plane) Let V be a persistence
module, and let −∞ ≤ a < b ≤ c < d ≤ +∞. We define

μV([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | V〉

where for infinite rectangles we take V−∞ = 0 and V+∞ = 0 as needed.

It is easy to see (directly, or by using the arctan trick) that this extended version
of μV satisfies the same properties as before: additivity, monotonicity, and so on. In
particular, the alternating sum formula of Proposition 3.6 becomes:

μV ( [−∞, b] × [c,+∞] ) = 〈 •b—•c | V 〉 = rbc
μV ( [a, b] × [c,+∞] ) = 〈 ◦a—•b—•c | V 〉 = rbc − rac (if rac < ∞ )
μV ( [−∞, b] × [c, d] ) = 〈 •b—•c—◦d | V 〉 = rbc − rbd (if rbd < ∞ )

The first of these corresponds to the ‘k-triangle lemma’ of [19].
In this way μV becomes an r-measure on the extended half-plane

H = {(p, q) | −∞ ≤ p ≤ q ≤ +∞}

with its diagram Dgm(μV) defined on the subset of the r-interior

H×= {(p∗, q∗) | −∞+ ≤ p∗ < q∗ ≤ +∞−}

over which μV is finite. Proposition 3.2 and Corollary 3.5 extend straightforwardly
to infinite rectangles:

Corollary 3.27 IfV is decomposable into intervalmodules, then themeasureμV(R)

of any rectangle R in the extended half-plane precisely counts the interval summands
corresponding to decorated points which lie in R. �

Definition 3.28 Let V be a persistence module. Its measure persistence diagrams
are the decorated diagram
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Dgm(V) = (Dgm(μV),F×(μV)),

and the undecorated diagram

dgm(V) = (dgm(μV),F◦(μV)).

We work in the extended half-plane, so that the finite r-interior and finite interior
F×(μV), F◦(μV) are subsets of H×, H◦, respectively. When F×(μV), F◦(μV) are
clear from the context, we may allow ourselves to abuse notation and omit them.

The relationship between the measure and decomposition diagrams is explained
in the following proposition:

Proposition 3.29 If V is decomposable into intervals, then Int(V) agrees with
Dgm(μV) where the latter is defined, that is, on F×(μV).

Proof By Corollary 3.27 we have

card(Int(V)|R) = μV(R)

for all rectangles. On the other hand, we have

card(Dgm(μV)|R) = μV(R)

for all rectangles with μV(R) < ∞. By uniqueness, it follows that Int(V) and
Dgm(μV) must be the same multiset when restricted to F×(μV). �

Neither definition strictly outperforms the other, as the following examples show.

Example 3.30 (decomposition ≥ measure) Let

V =
⊕

�∈L
k(p∗

� , q
∗
� )

where the undecorated pairs (p�, q�) form a dense subset of the half-planeH. Then
Int(V) is defined; but μV(R) = ∞ for every rectangle, so F×(μV) is the empty set
and Dgm(μV) is nowhere defined.

Example 3.31 (measure ≥ decomposition) We adapt the example of Webb [48],
from our Theorem 2.8, to be indexed over R. LetW be the persistence module with
vector spaces

Wt = 0 for t > 0
W0 = {sequences (x1, x2, x3, . . . ) of scalars}
Wt = {sequences with xn = 0 for all n ≤ |t |} for t < 0

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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and maps ws
t taken to be the canonical inclusion Ws ⊆ Wt when t ≤ 0 and zero

otherwise. This is not decomposable into intervals because its restriction to −N is
not decomposable into intervals (Theorem 2.8(3)). On the other hand, we have

〈◦a—•b | W〉 = conullity(Wa → Wb) < ∞

except when a = −∞, and

〈•c—◦d | W〉 = nullity(Wc → Wd) < ∞

except when c ≤ 0 < d. Each of these terms dominates

〈◦a—•b—•c—◦d | W〉

which is therefore finite for all rectangles that do not contain (−∞+, 0+). Thus,
the measure persistence diagram Dgm(μW) is defined everywhere except at that
decorated point. We will complete the calculation of Dgm(μW) in Sect. 3.10.

3.8 Tameness

We now describe several different levels of ‘tameness’ for a persistence module,
beginning with the most docile.

• A persistence module is of finite type if it is a direct sum of finitely many interval
modules. This is the notion of tameness most commonly used in the persistence
literature, either explicitly or by implication. Traditionally these modules have
simply been called ‘tame’.

• A persistence module is locally finite if it is a direct sum of interval modules,
and satisfies the condition that any bounded subset of R meets only finitely many
of the intervals. By a compactness argument, it is sufficient to require that every
t ∈ R has a neighbourhood which meets at most finitely many of the intervals.

• ApersistencemoduleV ispointwise finite-dimensional (pfd) if each vector space
Vt is finite dimensional. As indicated in Theorem 2.8, all such modules have been
shown to admit an interval decomposition by Crawley-Boevey [25]. This class of
modules is favoured in the work of Lesnick and Bauer [3, 42].

For a module V that is of finite type, locally finite, or pfd, it is easy to see that
F×(μV) = H. The measure and decomposition diagrams agree and are defined
everywhere onH, including on the diagonal and at infinity. Any diagonal points are
decorated (p−, p+), since only these belong to rectangles in H.

We introduce four more kinds of tameness. The assumptions here concern the
finiteness ofμV over different types of rectangle: quadrants, horizontal strips, vertical
strips, and bounded rectangles (Fig. 3.1). Each condition guarantees the existence of
the persistence diagram over a certain subset of the extended half-plane. The finite

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
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V

H R

Q

Fig. 3.1 A quadrant, horizontal strip, vertical strip, and finite rectangle in H

part of the plane (except the diagonal) is always included; it is at infinity that the four
conditions differ.

• We say that V is q-tame, if μV(Q) < ∞ for every quadrant Q not touching the
diagonal. In other words

〈•b—•c | V〉 < ∞

(that is, rbc < ∞) for all b < c. The persistence diagram Dgm(μV) is defined over
the set:

{(p∗,q∗) | −∞ ≤ p< q ≤ +∞} =

• We say that V is h-tame, if μV(H) < ∞ for every horizontally infinite strip H
not touching the diagonal. In other words,

〈•b—•c—◦d | V〉 < ∞

for all b < c < d. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ ≤ p< q<+∞} =

• We say that V is v-tame, if μV(V ) < ∞ for every vertically infinite strip V not
touching the diagonal. In other words,

〈◦a—•b—•c | V〉 < ∞

for all a < b < c. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ < p< q ≤ +∞} =
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• We say that V is r-tame, if μV(R) < ∞ for every finite rectangle R not touching
the diagonal. In other words,

〈◦a—•b—•c—◦d | V〉 < ∞

for all a < b < c < d. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ < p< q<+∞} =

Here is the diagram of implications between the different conditions:

finite type ⇒ locally finite ⇒ pfd ⇒ q-tame ⇒ v-tame
⇓ ⇓

h-tame ⇒ r-tame

One can show that all of the implications are ‘strict’, in the sense that they cannot be
reversed; examples are easily found. The consequent implications

q-tame ⇒ (h-tame and v-tame) , (h-tame or v-tame) ⇒ r-tame

are also both strict; examples are suggested by the diagrams in Fig. 3.2. The second
of these examples is no surprise, and a better question is this: does every r-tame
module decompose as the direct sum of an h-tame module and a v-tame module?
This is certainly true if the module is decomposable into intervals, but the general
situation seems more subtle and we do not know the answer.

0

. . .

0

. . .

. . .

Fig. 3.2 Diagrams of persistence modules which are: (left) h-tame and v-tame but not q-tame;
(right) r-tame but not h-tame or v-tame



52 3 Rectangle Measures

Remark 3.32 Later we show that the class of ‘q-tame’ modules may be interpreted
as the closure of the class of ‘locally finite’ modules: a persistence module is q-tame
if and only if it can be approximated arbitrarily well by locally finite modules. See
Theorem 5.21.

3.9 Tameness (Continued)

Many naturally occurring persistence modules are q-tame, particularly those aris-
ing from persistent homology constructions on compact spaces. We consider some
typical examples in this section, using algebraic topology arguments.

A general result of the following kind was published by Cagliari and Landi [6]:

Theorem 3.33 Let X be a compact polyhedron,2 and let f : X → R be a continuous
function. Then the persistent homologyH(Xsub) of the sublevelset filtration of (X, f )
is q-tame.

Proof For any b < c we must show that

H(Xb) −→ H(Xc)

has finite rank. Begin with any triangulation of X , and subdivide it repeatedly until
no simplex meets both f −1(b) and f −1(c). If we define Y to be the union of the
closed simplices which meet Xb, then we have

Xb ⊆ Y ⊆ Xc

and hence the factorisation

H(Xb) −→ H(Y ) −→ H(Xc).

SinceY is a compact polyhedron, H(Y ) is finite dimensional and soH(Xb) → H(Xc)

has finite rank. �

Corollary 3.34 Let X be a locally compact polyhedron, and let f : X → R be a
proper3 continuous function which is bounded below. Then H(Xsub) is q-tame.

Proof To show that H(Xb) → H(Xc) has finite rank, it is enough to find a compact
subpolyhedron of X that contains Xc, becausewe can then apply Theorem3.33 in this
subpolyhedron. Accordingly, choose a locally finite triangulation of X and consider
the closed simplices that meet Xc. There are only finitely many of them because

2By ‘polyhedron’ wemean the realisation of a simplicial complex as a topological space. A compact
(resp. locally compact) polyhedron is the realisation of a finite (resp. locally finite) complex.
3By ‘proper’ we mean that the preimage f −1(K ) of every compact set K ⊂ R is compact.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Xc = f −1[min( f ), c] is compact. The union of these simplices is the required
subpolyhedron. �

Corollary 3.35 (persistent homology of offsets) Let A be a nonempty compact
subset of X = Rn and let f be the ‘distance from A’ in some norm, so f (x) =
mina∈A ‖x − a‖. It follows from Corollary 3.34 that H(Xsub) is q-tame. �

Sublevelsets of the ‘distance from A’ function are generally known as offsets of
the compact set A in the given norm, and written Aε = f −1(−∞, ε]. There is a rich
body of results in the computational geometry literaturewhich govern the topology of
these offsets, usually for small ε. These results generally assume that A is ‘sufficiently
regular’, and indeed an important part of that work is to formulate effective regularity
conditions that guarantee that offsets are well-behaved. In contrast, Corollary 3.35
tells us that no regularity conditions are needed to guarantee that the persistent
homology be q-tame.

Remark 3.36 Under some circumstances, we can obtain stronger tameness results
for offsets. If A is a polyconvex set—that is, a finite union of compact convex sets—
then H(Xsub) is of finite type. Indeed, the topology of the offsets can be modelled by
a finite filtered simplicial complex, specifically the nerve of the family of offsets of
the original convex sets. This works in any norm. On the other hand, the result does
not extend to submanifolds. One can manufacture a smooth embedding of the circle
in R2 such that the distance function has infinitely many critical points.

We can drop ‘bounded below’ in Corollary 3.34 without losing too much:

Theorem 3.37 Let X be a locally compact polyhedron, and let f : X → R be a
proper continuous function. Then the persistent homologyH(Xsub) of the sublevelset
filtration of (X, f ) is h-tame and v-tame.

This means that H(Xsub) can behave badly only at (−∞,+∞). It is easy to
construct examples which are definitely not q-tame. The simplest example is X =
Z (the integers), with f (n) = n. The 0-homology of any sublevelset is infinite
dimensional, and all inclusions have infinite rank.

Proof (h-tameness) Let b < c < d. We must show that

〈•b—•c—◦d | H(Xsub)〉 < ∞. (h-∗)

Begin with a triangulation of X . Only finitely many simplices meet the compact set
f −1(b), so again after a finite number of subdivisions no simplex meets both f −1(b)
and f −1(c).

Now let Y be the union of the closed simplices which meet Xb, and let Z be the
union of the closed simplices which meet Xd . This gives a diagram of inclusions

Xb ⊆ Y ⊆ Xc ⊆ Xd ⊆ Z .
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Note that the polyhedron Z differs from its subpolyhedron Y by the addition of
only finitely many simplices, since each such simplex must meet the compact set
f −1[b, d]. Thus the relative homology H(Z ,Y ) is finite-dimensional.
We now work with the induced homology diagram

H(Xb) −→ H(Y ) −→ H(Xc) −→ H(Xd) −→ H(Z).

In the obvious notation,

〈•b———•c—◦d——〉 = 〈•b—•y—•c—◦d—◦z 〉
≤ 〈——•y—————◦z 〉
= dim[ker(H(Y ) → H(Z))].

By the homology long exact sequence for the pair (Z ,Y ), we have

ker(H(Y ) −→ H(Z)) = im(H(Z ,Y ) −→ H(Y ))

which is finite-dimensional. This confirms (h-*).
v-tameness. Let a < b < c. We must show that

〈◦a—•b—•c | H(Xsub)〉 < ∞ (v-∗)

Using a similar argument to the above, we construct a diagram of inclusions

Y ⊆ Xa ⊆ Xb ⊆ Z ⊆ Xc

where Y, Z are polyhedra with H(Z ,Y ) finite-dimensional.Workingwith the homol-
ogy diagram

H(Y ) −→ H(Xa) −→ H(Xb) −→ H(Z) −→ H(Xc),

we estimate

〈——◦a—•b———•c〉 = 〈◦y—◦a—•b—•z—•c〉
≤ 〈◦y—————•z——〉
= dim[coker(H(Y ) → H(Z))]

By the homology long exact sequence of the pair (Z ,Y ), we have

coker(H(Y ) → H(Z)) ∼= im(H(Z) → H(Z ,Y ))

which is finite-dimensional. This confirms (v-*). �

There aremany other examples of naturally occurring q-tamemodules. It is shown
in [16] that the Vietoris–Rips and Čech complexes of a compact metric space have
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q-tame persistent homology. This is a situationwhere persistence ismanifestly neces-
sary, because such complexes can behave very badly at individual parameter values.
For instance, J.-M.Droz [28] has constructed a compactmetric spacewhoseVietoris–
Rips complex has homology of uncountable dimension at uncountablymany parame-
ter values (indeed, over an entire interval). The construction is not at all pathological
in appearance; see [16] for additional examples.

3.10 Vanishing Lemmas

Here are some easy lemmas that guarantee the vanishing of the persistence diagram
in certain parts of the plane. These lemmas simplify the task of computing Dgm,
often reducing it to a few specific quiver calculations.

Lemma 3.38 Let V be a persistence module, and let s < t .

(1) The map vst is surjective iff Dgm(V) is empty in the rectangle [s, t] × [t,+∞].
(2) The map vst is injective iff Dgm(V) is empty in the rectangle [−∞, s] × [s, t].
‘Empty’ means that the r-interior of the rectangle contains no points or singular
points of Dgm(V). See Fig.3.3.

Metaphorically, the surjectivity of vst tells us that every feature that survives to
time t already existed at time s. Injectivity tells us that every feature that survives
to time s remains alive time t . The small triangle between the two rectangles is the
‘wiggle-room’: new features may appear in the time interval (s, t) but must also
disappear in the same time interval, and vice versa. The lemma makes these claims
precise in terms of the persistence diagram.

t

s

t

s

Fig. 3.3 The shaded green rectangle indicates the region where the persistence diagram is guar-
anteed to be empty: (left) when vst is surjective; (right) when vst is injective
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Proof Indeed,

μV([s, t] × [t,+∞]) = 〈◦s—•t | V〉 = conullity(vst ),

the right-hand side of which is zero iff vst is surjective; and

μV([−∞, s] × [s, t]) = 〈•s—◦t | V〉 = nullity(vst ),

the right-hand side of which is zero iff vst is injective. �

In many situations the maps vst are surjective or injective everywhere in some
interval. The following lemma is stated carefully to give a sharp statement for all
possible interval types (open, closed, half-open, infinite).

Lemma 3.39 Let V be a persistence module and let J = (p∗, q∗) be an interval.

(1) The maps (vst | s, t ∈ J with s < t) are all surjective iff Dgm(V) is empty in the
vertical band

{(x∗, y∗) ∈ H | x∗ ∈ J }.

(2) The maps (vst | s, t ∈ J with s < t) are all injective iff Dgm(V) is empty in the
horizontal band

{(x∗, y∗) ∈ H | y∗ ∈ J }.

(We recall from Eq. (2.3) that x∗ ∈ J means p∗ < x∗ < q∗.) See Fig.3.4.

Proof This follows from Lemma 3.38, since the vertical (resp. horizontal) band is
the union, over s, t ∈ J with s < t , of the r-interiors of the vertical (resp. horizontal)
rectangles of the lemma. �

We now calculate the persistence diagram for the example of Webb given earlier.

J J

Fig. 3.4 The shaded green band indicates the region where the persistence diagram is guaranteed
to be emptywhen themaps (vst ) over the interval J are: (left) surjective; (right) injective. Along each
of the parallel boundary edges, vanishing of the diagram for points with inward ticks is guaranteed
if J contains its corresponding endpoint

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Example 3.40 (Continuation of Example 3.31) Recall thatWwas defined by setting

Wt = 0 for t > 0
W0 = {sequences (x1, x2, x3, . . . ) of real numbers}
Wt = {sequences with xn = 0 for all n ≤ |t |} for t < 0

and taking (ws
t ) to be the canonical inclusion maps or zero maps. We also take

W−∞ = W+∞ = 0 to allow uniform treatment of finite and infinite rectangles. Then
the maps (ws

t ) are surjective over the intervals

(−1,+∞] and (−2,−1], (−3,−2], . . . , (−n − 1,−n], . . .

and injective over the intervals

[−∞, 0] and (0,+∞]

so Lemma 3.39 allows only the possibilities

x∗ ∈ {−1+,−2+,−3+, . . . ,−∞+},

for (x∗, y∗) that are points or singular points of Dgm(W). We can determine the mul-
tiplicity of (−n+, 0+) by enclosing it in a rectangle that contains no other candidate
points: say [−n,−n + 1] × [0,+∞]. Let Ŵ be the restriction

W−n −→ W−n+1 −→ W0

of W to the index set {−n,−n + 1, 0}. Then

mW((−n+, 0+)) = μW([−n,−n + 1] × [0,+∞])
= 〈 ◦ — • — • | Ŵ〉
= 〈 ◦ — • —— | Ŵ〉 − 〈 ◦ — • — ◦ | Ŵ〉
= 〈 ◦ — • —— | Ŵ〉
= conullity(W−n → W−n+1) = 1.

The fourth equality follows from the injectivity ofW−n+1 → W0, which implies that
〈 ◦ — • — ◦ | Ŵ〉 vanishes.

The conclusion is that each (−n+, 0+) occurs exactly once in the persistence
diagram. Finally, we have already seen that (−∞+, 0+) is a singular point of μW.4

All decorated points in H have been accounted for. See Fig. 3.5.

4In retrospect it’s even clearer: any rectangle containing (−∞+, 0+) must also contain infinitely
many of the points (−n+, 0+) that we have calculated to have multiplicity 1, and therefore must
have infinite measure.
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0
. . .

Fig. 3.5 The persistence diagram Dgm(W) = Dgm(μW) for the example of Webb. This is defined
everywhere in the extended half-plane except at the singular point (−∞+, 0+)

3.11 Vanishing Lemmas (Continued)

In this optional section, we provide a set of four infinitesimal vanishing lemmas to
accompany the results of the previous section. These lemmas are expressed in terms
of direct limits and inverse limits. The reader unfamiliar with these concepts from
category theory may wish to consult a standard textbook, such as [43], for additional
details and context.

We begin with the observation that any persistence module over the real line has
a canonical extension to the totally ordered set

R ∪ R∗ = {t, t−, t+ | t ∈ R}

defined using direct limits and inverse limits in the category of vector spaces. Here
are the constructions.

Definition 3.41 (extension to t−) Let V be a persistence module and let t ∈ R. We
define

Vt− = lim−→ (Va | a < t).

This direct limit can be defined explicitly as the quotient of the direct sum vector
space ⊕

a<t

Va (3.7)

by the subspace generated by all vectors of the form xa ⊕ −vab(xa) ∈ Va ⊕ Vb where
a < b < t .

Definition 3.42 (extension to t+) Let V be a persistence module and let t ∈ R. We
define

Vt+ = lim←− (Va | a > t).
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This inverse limit can be defined explicitly as the subspace of the product vector
space ∏

a>t

Va (3.8)

that comprises those product vectors (xa | a > t) satisfying the constraint xb =
vab(xa) whenever t < a < b.

Note that for a < t < b there are canonical maps

Va

va
t− �� Vt− and Vt+

vt
+
b �� Vb

induced, respectively, from the inclusion of Va into the direct sum of (3.7) and from
the projection of the product of (3.8) onto Vb. We observe that

Vt− =
⋃

a<t

im(vat−) and 0 =
⋂

b>t

ker(vt
+
b ) (3.9)

where the union is a nested union and the intersection is a nested intersection. In the
other direction, there are canonical maps

Vt−
vt

−
t �� Vt

vt
t+ �� Vt+ (3.10)

resulting from the universal properties of direct and inverse limits stated below. It is
not difficult to check that these maps, and their various composites with each other
and with the maps vst , define an extension of the persistence module V to the index
set R ∪ R∗. The details are left to the reader.

Here are the universal properties that characterise these direct and inverse limits:

Proposition 3.43 (universal property of Vt− ) Given a vector space W and a family
of linear maps ( f a : Va → W | a < t) such that f a = f bvab whenever a < b < t ,
there is a unique linear map f : Vt− → W such that fa = f vat− whenever a < t . �

Proposition 3.44 (universal property of Vt+ ) Given a vector space U and a family
of linear maps ( fa : U → Va | a > t) such that fb = vab fa whenever t < a < b,
there is a unique linear map f : U → Vt+ such that fa = vt

+
a f whenever a > t . �

These universal properties are easily verified from the explicit definitions above.
The following diagrams represent these properties schematically:

(Va)
��
��

����
��

��
��

��

( f a)
����

��
��

��
��

Vt−

∃! f
��

W

and

Vt+
��
�� (Va)

U

∃! f

�� ������������ ( fa)

������������
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Double arrows indicate a system of maps that commute with the (vab).
Here is the main result of this section, stated in terms of the maps in (3.10).

Theorem 3.45 (infinitesimal vanishing lemmas) Let V be a q-tame persistence
module, and let t ∈ R. In the following, restrict to p < t < q.

(1) If vt
−
t is surjective then Dgm(V) contains no points of the form (t−, q∗).

(2) If vt
−
t is injective then Dgm(V) contains no points of the form (p∗, t−).

(3) If vtt+ is surjective then Dgm(V) contains no points of the form (t+, q∗).
(4) If vtt+ is injective then Dgm(V) contains no points of the form (p∗, t+).

The q-tameness assumption is needed for elementary numerical reasons in all four
cases, and also for deeper structural reasons in the case of (3).

Proof (1) Suppose t < c < q. We will find a < t such that the rectangle [a, t] ×
[c,+∞] has measure zero. This will imply that Dgm(V) does not contain (t−, q∗).

Using the sequence

Va
�� Vt− �� Vt

�� Vc

and the surjectivity hypothesis, 〈◦t−—•t 〉 = 0, we calculate

μV([a, t] × [c,+∞]) = 〈◦a—–––——•t— •c〉
= 〈◦a— •t−—•t— •c〉 + 〈◦a— ◦t−—•t— •c〉
= 〈◦a— •t−—•t— •c〉
= 〈◦a— •t−——— •c〉
= dim

[
im(Vt− −→ Vc)

im(Va −→ Vc)

]
.

It follows from the first assertion of (3.9) that

im(Vt− −→ Vc) =
⋃

a<t

im(Va −→ Vc) (3.11)

where the right-hand side is a nested union. Since the left-hand side is finite-
dimensional, V being q-tame, it follows that there exists a < t such that

im(Vt− −→ Vc) = im(Va −→ Vc)

and for this a we have μV([a, t] × [c,+∞]) = 0 as required.
(2) Suppose p < b < t . We will find c with b < c < t such that the rectangle

[−∞, b] × [c, t] has measure zero. This will imply that Dgm(V) does not contain
(p∗, t−). We use the sequence

Vb
�� Vc

�� Vt− �� Vt
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and the injectivity hypothesis, 〈•t− —◦t 〉 = 0, to calculate

μV([−∞, b] × [c, t]) = 〈•b—•c——–––—◦t 〉
= 〈•b—•c— ◦t− ——〉 = dim

[
ker(Vb −→ Vt−)

ker(Vb −→ Vc)

]

analogously to the computation in (1). Note that this quantity is finite, since it is
bounded by 〈•b—•c〉 = rbc . This time we use

ker(Vb −→ Vt−) =
⋃

c<t

ker(Vb −→ Vc) (3.12)

which follows from the fact that any element of Vc that maps to zero in Vt− must map
to zero in some Vc′ with c < c′ < t . Now the right-hand side is a nested increasing
union of subspaces of finite codimension in the left-hand side. It follows that there
exists c < t such that

ker(Vb −→ Vt−) = ker(Vb −→ Vc)

therefore for this c we have μV([−∞, b] × [c, t]) as required.
(3) Suppose t < c < q. We will find b with t < b < c such that the rectangle

[t, b] × [c,+∞] has measure zero. This will imply that Dgm(V) does not contain
(t+, q∗). We use the sequence

Vt
�� Vt+ �� Vb

�� Vc

and the surjectivity hypothesis 〈◦t— •t+〉 to calculate

μV([t, b] × [c,+∞]) = 〈◦t——–––—•b—•c〉
= 〈—— ◦t+ —•b—•c〉 = dim

[
im(Vb −→ Vc)

im(Vt+ −→ Vc)

]

in the usual way. We now proceed to deduce

im(Vt+ −→ Vc) =
⋂

b>t

im(Vb −→ Vc) (3.13)

from the q-tameness of V. Certainly the left-hand side is contained in the right-hand
side. Conversely, suppose that xc ∈ Vc lies in the image of every Vb. We have to find
a consistent family (xb | t < b ≤ c) of vectors xb ∈ Vb which map to xc. It suffices
to consider an arbitrary decreasing sequence (bi ) that converges to t , and define a
consistent family (xbi ). We begin with b0 = c, and then recursively select xbi ∈ Vbi
so that xbi maps to xbi−1 and is contained in the intersection of the subspaces im(vbbi )
where t < b < bi . The crucial property is that each such nested decreasing family of



62 3 Rectangle Measures

images is eventually constant; this is theMittag-Leffler condition, which is satisfied
by q-tame modules because each image has finite dimension. Using this property,
we set xbi = vbbi (xb) for some xb mapping to xbi−1 where b is sufficiently small that
the nested images in Vbi have stabilised.

With (3.13) established, the eventual constancy of the images on the right-hand
side implies that there exists b > t such that

im(Vt+ −→ Vc) = im(Vb −→ Vc)

and for this b we have μV([t, b] × [c,+∞]) = 0 as required.
(4) Suppose p < b < t .Wewill find d > t such that the rectangle [−∞, b]×[t, d]

has measure zero. This will imply that Dgm(V) does not contain the point (p∗, t+).
We use the sequence

Vb
�� Vt

�� Vt+ �� Vd

and the injectivity hypothesis, 〈•t— ◦t+〉 = 0, to calculate

μV([−∞, b] × [t, d]) = 〈•b—•t——–––— ◦d〉
= 〈•b——— •t+ — ◦d〉 = dim

[
ker(Vb −→ Vd)

ker(Vb −→ Vt+)

]

as usual. This quantity is finite, being bounded by 〈•b—•t 〉 = rbt . Now we use

ker(Vb −→ Vt+) =
⋂

d>t

ker(Vb −→ Vd) (3.14)

which follows from the second assertion of (3.9). Since the codimension of the left-
hand side is finite in any of the kernels on the right-hand side, this nested decreased
family of kernels must eventually be constant. Thus there exists d > t such that

ker(Vb −→ Vt+) = ker(Vb −→ Vd)

and for this d we have μV([−∞, b] × [t, d]) = 0 as required. �

Remark 3.46 In the language of abelian categories, identities (3.11)–(3.14) result
from the exactness properties of direct and inverse limits of vector spaces. Indeed,
(3.11) and (3.12) follow from the right- and left-exactness of the direct-limit functor,
and (3.14) follows from the left-exactness of the inverse-limit functor. The difficulty
with (3.13) is that the inverse-limit functor is not right-exact. When V satisfies the
Mittag-Leffler condition, however, the derived functor lim←−1 evaluates to zero on
V|(t,+∞) and restores right-exactness precisely where we need it.
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We finish this section with two corollaries. The first of these originally appeared
in Cerri et al. [12] as the assertion that certain ‘size functions’ are right-continuous.

Corollary 3.47 ([12] Proposition 2.9) LetXsub be the sublevelset filtration of a pair
(X, f )where X is a compact polyhedron, and let Ȟ = Ȟk(−; k) be a Čech homology
functor.5 Then the only points of Dgm(Ȟ(Xsub)) away from the diagonal are of the
form (p−, q−).

Proof The q-tameness of Ȟ(Xsub) follows the proof of Theorem 3.33, since Čech
homology agrees with simplicial homology on the intermediate polyhedron Y .

Chapter X, Theorem 3.1 of [32] implies that the natural map

vtt+ : Ȟ(Xt ) −→ lim←− (Ȟ(Xa) | a > t)

is an isomorphism for every t . Parts (3) and (4) of Theorem 3.45 now constrain the
off-diagonal points in the persistence diagram to negative decorations only. �

Remark 3.48 In the compact ‘Morselike’ situations of Example 3.51, a stronger
conclusion holds for simpler reasons and in any homology theory.

Corollary 3.49 LetX◦
sub be the open sublevelset filtration

6 of a pair (X, f )where X
is a compact polyhedron, and letH = Hk(−, k) be a singular homology functor. Then
the only points of Dgm(Ȟ(Xsub)) away from the diagonal are of the form (p+, q+).

Proof The q-tameness of H(X◦
sub) follows the proof of Theorem 3.33, with the com-

pact polyhedron Y equally well serving as an intermediate space between open
sublevelsets.

Since singular simplices are compactly supported, the natural map

vt
−
t : lim−→ (H(Xa

◦) | a < t) −→ H(Xt
◦)

is an isomorphism for every t . Parts (1) and (2) of Theorem 3.45 now constrain the
off-diagonal points in the persistence diagram to positive decorations only. �

3.12 Finite Approximations

We finish this chapter by relating our measure-theoretic persistence diagrams to the
diagrams constructed more traditionally, perhaps by computer, in situations of finite
information.

5The theory of Čech homology is described in detail by Eilenberg and Steenrod [32].
6The spaces are the open sublevelsets Xt◦ = f −1(−∞, t) and the maps are their inclusions.
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We begin by noting that, away from its finite r-interior, a persistence measure
gives only a limited view of the structure of its persistence module. For example:

• It is not possible to distinguish between the many non-isomorphic persistence
modules V for which μV is infinite on every rectangle.

• If the persistence diagram of V contains a sequence of points (p∗
n, q

∗
n ) with pn

converging to r from below and qn converging to r from above, then there is no
way to determine the multiplicity of (r−, r+) from the measure alone.

On the other hand, fromμV we do recover all information obtainable by restricting
V to finite subsets T ⊂ R. We may call this the ‘finitely observable’ part of V.
Specifically, for any finite index set

T : a1 < a2 < · · · < an

we can determine the interval decomposition of VT (the restriction of V to the index
set T) in terms of the measure μV. There are four plausible naming conventions for
intervals in T:

{ai , ai+1, . . . , a j } = [ai , a j ] = [ai , a j+1) = (ai−1, a j ] = (ai−1, a j+1)

Here a0, an+1 are to be interpreted as −∞,+∞ respectively. It is conventional in
this setting, for reasons that we will come to shortly, to agree to adopt the second
convention. Then we have

〈 [ai , a j+1) | VT〉 = 〈◦a1— . . .— ◦ai−1— •ai— . . .— •a j— ◦a j+1— . . .— ◦an | V〉
= 〈 ◦ai−1— •ai— •a j— ◦a j+1| V〉
= μV([ai−1, ai ] × [a j , a j+1]).

Ifwenowdraw the interval decomposition ofVT as a persistence diagram, identifying
the half-open intervals [ai , a j+1) with decorated points (a−

i , a−
j+1) in the usual way,

we find that Dgm(VT) is obtained by ‘snapping’ each decorated point of Dgm(V)

upwards and rightwards to the grid determined by T. Figure3.6 illustrates this for
the case n = 3. This is the ‘snapping principle’ of [14, 15].

There are some well known situations where the entire structure of V determined
by its behaviour on a particular finite index set.

Definition 3.50 We say that V is Morselike if there exists a finite set of indices
T = {a1, . . . , an} such that vst is an isomorphism whenever s < t belong to an
interval [ai , ai+1) for some 1 ≤ i ≤ n, and also Vt = 0 for t < a1.

When V is Morselike, it follows from Lemma 3.39 that if (x∗, y∗) is a point or
singular point of Dgm(V) then

x∗, y∗ ∈ {−∞+, a−
1 , a−

2 , . . . , a−
n ,+∞−}.
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a

c

b

snap−→

b

c

a

Fig. 3.6 A persistence module V discretised at T = {a, b, c}. The persistence diagram Dgm(VT)

is localised at six grid vertices, corresponding to the six possible interval summands of a 3-index
persistence module. The multiplicity of each vertex of Dgm(VT) is equal to the number of decorated
points of Dgm(V) in the rectangle immediately below and to the left of it, and may be computed
by evaluating μV on that rectangle. The tick directions indicate lower-closed half-open intervals.
Decorated points of Dgm(V) in the remaining triangular regions do not show up in Dgm(VT)

The possibility that x∗ = −∞+ is ruled out by the vanishing of V below a1. The
remaining candidates are the points (a−

i , a−
j+1) with 1 ≤ i ≤ j ≤ n. Similarly to

Example 3.40, we compute the multiplicity of each candidate by finding a rectangle
that contains that candidate alone:

mV(a−
i , a−

j+1) = μV([ai−1, ai ] × [a j , a j+1]).

Thus Dgm(V) = Dgm(VT) exactly, provided we use the half-open convention for
intervals in T that we agreed on earlier.

Example 3.51 The sublevelset persistent homology H(Xsub) of a pair (X, f ) is
Morselike if

• X is a compact manifold and f is a Morse function; or
• X is a compact polyhedron and f is piecewise linear.

Indeed, let T be the set of critical points of the Morse function, or the set of vertex-
values of the piecewise-linear function. Then the inclusion Xai ⊆ Xt is a homotopy
equivalence whenever t ∈ [ai , ai+1), so H(Xs) → H(Xt ) is an isomorphism when-
ever s < t belong to the same half-open interval [ai , ai+1).

Remark 3.52 Compare Example 3.51 with Corollary 3.47.

Example 3.53 Let S be a finite simplicial complex, and let f : S → R be a function
on its simplices such that f (σ ) ≤ f (τ ) whenever σ ≤ τ . This defines a nested
family S of simplicial complexes

St := {σ ∈ S | f (σ ) ≤ t}
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and their inclusions. Then H(S) is Morselike with respect to the index set T = f (S),
since St is constant over each half-open interval [ai , ai+1). This class of examples
occurs frequently in topological data analysis; the Vietoris–Rips filtration of a finite
metric space is perhaps the most commonly used. The classical algorithms [30, 50]
take (S, f ) as their input and return the summands of H(S) as a list of half-open
intervals.
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