
Chapter 2
Persistence Modules

All vector spaces are taken to be over an arbitrary field k, fixed throughout.

2.1 Persistence Modules Over a Real Parameter

A persistence module V over the real numbers R is defined to be an indexed family
of vector spaces

(Vt | t ∈ R),

and a doubly-indexed family of linear maps

(vst : Vs → Vt | s ≤ t)

which satisfy the composition law

vst ◦ vrs = vrt

whenever r ≤ s ≤ t , and where vtt is the identity map on Vt .

Remark 2.1 Equivalently, a persistence module is a functor [43] from the real line
(viewed as a categorywith a uniquemorphism s → t whenever s ≤ t) to the category
of vector spaces. The uniqueness of the morphism s → t corresponds to the fact that
all possible compositions

vsn−1
t ◦ vsn−2

sn−1
◦ · · · ◦ vs1s2 ◦ vss1

from Vs to Vt are equal to each other, and in particular to vst .

Here is the standard class of examples from topological data analysis. Let X be
a topological space and let f : X → R be a function (not necessarily continuous).
Consider the sublevelsets:
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16 2 Persistence Modules

Xt = (X, f )t = {x ∈ X | f (x) ≤ t}

The inclusion maps (i st : Xs → Xt | s ≤ t) trivially satisfy the composition law and
the identity map condition. Collectively this information is called the sublevelset
filtration of (X, f ) and we call it Xsub or X

f
sub.

Remark 2.2 Here we are using closed sublevelsets {x ∈ X | f (x) ≤ t}, but one
might instead choose to work with open sublevelsets {x ∈ X | f (x) < t}.

We can obtain a persistence module by applying to this filtration any functor from
topological spaces to vector spaces. For example, let H = Hk(−;k) be the functor
‘k-dimensional singular homology with coefficients in k’. We define a persistence
module V by setting

Vt = H(Xt ) and vst = H(i st ) : Vs → Vt

using the fact that functors operate on maps as well as objects. We can express this
definition concisely by writing V = H(Xsub).

In the applied topology literature, there are many examples (X, f ) whose persis-
tent homology is of interest. Very often X is a finite simplicial complex and each Xt

is a subcomplex. It follows that the vector spaces H(Xt ) are finite-dimensional; and
as t increases there are finitely many ‘critical values’ at which the complex changes,
growing by one or more new cells. Suppose these critical values are

a1 < a2 < · · · < an.

Then all the information in the persistence module is contained in the finite diagram

H(Xa1) −→ H(Xa2) −→ . . . −→ H(Xan )

of finite-dimensional vector spaces and linear maps. In this situation,

• the isomorphism type of H(Xsub) admits a compact description [30, 50];
• there is a fast algorithm for computing this description [30, 50];
• the description is continuous (indeed 1-Lipschitz) with respect to f [19].

This description is the famous persistence diagram, or barcode. It encodes the
structure of the diagram as a list of intervals of the form [b, d) = [ai , a j ) or [ai ,+∞).
Each such interval represents a ‘feature’ that is ‘born’ at b and ‘dies’ at d.

There are good grounds for extending the results of [30, 50, 19] beyond the case
of finite diagrams. For example, theoretical guarantees are commonly formulated in
terms of an idealised model; for instance the sampled data may be an approximation
to an underlying continuous space. Finiteness becomes unnatural and difficult to
enforce in these ideal models, but one still wants the main results to be true.
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Here is (what we believe to be) a good notion of tameness: a persistence module
V is q-tame if

rst = rank(vst ) < ∞ whenever s < t.

The definition is taken from [15], where such modules are simply called ‘tame’.
Since that word is overloaded with too many different meanings in the persistence
literature, we say ‘q-tame’ instead (see Sect. 3.8 for the etymology).

It is shown in [15] that persistence diagrams can be constructed for q-tame per-
sistence modules, and that these diagrams are stable with respect to certain natural
metrics. We reproduce these results here, using different methods for many of the
arguments. We complete the picture by showing that the map from q-tame persis-
tence modules to persistence diagrams is an isometry. This isometry theorem is due
to Lesnick [42].

We believe that q-tame persistence modules are a good class of objects for two
complementary reasons: (i) we can prove almost everything we want to prove about
q-tame modules and their persistence diagrams; and (ii) they occur in practice. For
example, a continuous function on a finite simplicial complex has q-tame sublevelset
persistent homology (Theorem 3.33). See [16] for many other examples.

2.2 Index Posets

We can define a persistence module over any partially ordered set, or poset, T, in the
same way as for R, by specifying indexed families

(Vt | t ∈ T) and (vst | s, t ∈ T, s ≤ t)

of vector spaces and linear maps, for which vst ◦ vrs = vrt whenever r ≤ s ≤ t , and
where vtt is the identity onVt . The resulting collection of data is called aT-persistence
module or a persistence module over T.

If V is a T-persistence module and S ⊂ T, then we get an S-persistence module
by considering only those spaces and maps with indices in S. This is the restriction
ofV to S, andmay be writtenVS orV|S. Most commonly, wework with finite subsets
T ⊂ R. We collect information about an R-persistence module by considering its
restriction to different finite subsets. This works well because persistence modules
over {1, 2, . . . , n} are well understood.

In Chap.4, we make use of certain posets that are subsets of R2.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
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2.3 Module Categories

A homomorphism Φ between two T-persistence modules U,V is a collection of
linear maps (φt : Ut → Vt | t ∈ T) such that the diagram

Us

φs

��

ust �� Ut

φt

��

Vs
vst �� Vt

commutes for all s ≤ t . Composition is defined in the obvious way, as are identity
homomorphisms. This makes the collection of persistence modules into a category.
The category contains kernel, image, and cokernel objects for every map Φ, and
there is a zero object. Write

Hom(U,V) = {homomorphisms U → V},
End(V) = {homomorphisms V → V}.

Note that End(V) is a k-algebra. Later we consider homomorphisms that shift the
index, in order to define the interleaving relation between persistence modules.

2.4 Interval Modules

The building blocks of persistence are the interval modules. One seeks to understand
a persistence module by decomposing it into intervals. This is not always possible,
but it is sufficiently possible for our purposes.

An interval in a totally ordered set T is a subset J ⊆ T such that if r ∈ J and
t ∈ J and r < s < t then s ∈ J . For any nonempty interval J ⊆ T, the interval
module I = kJ is defined to be the T-persistence module with vector spaces

It =
{
k if t ∈ J
0 otherwise

and linear maps

i st =
{
1 if s, t ∈ J
0 otherwise

In informal language, the module kJ represents a ‘feature’ which ‘persists’ over
exactly the interval J and nowhere else. We write kJ

T when we wish to name the
index set explicitly.
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Intervals in a finite set T = {a0 < a1 < · · · < an} are usually written as closed
intervals [ai , a j ], and sometimes as half-open intervals [ai , a j+1)with the convention
that an+1 = +∞. We often lower the superscript when naming the corresponding
modules, writing k[ai , a j ] rather than k[ai ,a j ] for ease of reading.

Intervals in the real line R merit a special notation of their own. Each non-empty
real interval has endpoints (possibly ±∞) defined by its infimum and supremum,
and it may or may not attain its finite endpoints. To distinguish the various cases,
we introduce decorated reals, written as ordinary real numbers with a superscript +
(plus) or − (minus). For finite intervals we adopt the following dictionary:

(p−, q−) means [p, q)

(p−, q+) means [p, q]
(p+, q−) means (p, q)

(p+, q+) means (p, q]

We require p < q except for the special case (r−, r+) which represents the 1-point
interval [r, r ]. For infinite intervals we use the symbols −∞+ and +∞−:

(−∞+, q−) means (−∞, q)

(−∞+, q+) means (−∞, q]
(p−,+∞−) means [p,+∞)

(p+,+∞−) means (p,+∞)

(−∞+,+∞−) means (−∞,+∞)

When we wish to refer to a decorated number but don’t know what the decoration
is, we use an asterisk. Thus p∗ means p+ or p−.

The collection of decorated and undecorated numbers is totally ordered by setting

p− < p < p+ < q− < q < q+ (2.1)

for all p < q. One advantage of doing this is that nonempty real intervals now
correspond exactly to pairs (p∗, q∗) such that −∞ < p∗ < q∗ < +∞, with the
single statement

(p∗, q∗) means {t ∈ R | p∗ < t < q∗} (2.2)

uniformly replacing the nine dictionary definitions given above. Sometimes it is
helpful to extend membership of a real interval to decorated real numbers. We adopt
the convention that

t∗ ∈ (p∗, q∗) means p∗ < t∗ < q∗ (2.3)
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Fig. 2.1 The interval (left), rank function (middle), and decorated point (right) representations of
the interval module k[1, 3) = k(1−, 3−)

for any t∗ and (p∗, q∗). The interval itself continues to be a set of undecorated real
numbers; we are simply overloading the symbol ‘∈’ with an additional meaning.

We finish with some visual conventions for interval modules over R. Let

H = {(p, q) | p ≤ q}

be the half-plane of points in R2 which lie on or above the diagonal. A finite interval
module k(p∗, q∗) may be represented in several different ways (see Fig. 2.1):

• as an interval in the real line;
• as a function H → {0, 1}, defined by (s, t) 
→ rank(i st );
• as a point (p, q) inH, with a tick to specify the decoration.

Here are the four tick directions explicitly:

(p−,q+) = (p+,q+) =

(p−,q−) = (p+,q−) =

The convention is that the tick points into the quadrant suggested by the decorations.
We can represent infinite intervals by working in the extended half-plane

H = H ∪ {−∞} × R ∪ R × {+∞} ∪ {(−∞,+∞)}.

This can be drawn schematically as a triangle; see Fig. 2.2.

Remark 2.3 Persistence diagrams have traditionally been drawn without ticks. This
is adequate for most purposes, and indeed in most traditional examples the intervals
that occur are half-open intervals [p, q) = (p−, q−) and there is no need to consider
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Fig. 2.2 The extended half-plane H with examples of each interval type drawn as points with
ticks. Points on the left and top edges correspond to intervals that are unbounded below and above,
respectively. Points on the diagonal correspond to singleton intervals (r−, r+) = [r, r ] = {r}

other possibilities. In the present work, the extra precision provided by decorations
is essential to the correspondence between diagrams and measures.

2.5 Interval Decomposition

The direct sumW = U⊕V of two persistence modules U,V is defined as follows:

Wt = Ut ⊕ Vt , ws
t = ust ⊕ vst

This generalises immediately to arbitrary (finite or infinite) direct sums.
A persistence module W is indecomposable if the only decompositions W =

U ⊕ V are the trivial decompositions W ⊕ 0 and 0 ⊕ W.
Direct sums play both a synthetic role and an analytic role in our theory. On

the one hand, given an indexed family of intervals (J� | � ∈ L) we can synthesise a
persistence module

V =
⊕
�∈L

kJ�

whose isomorphism type depends only on the multiset {J� | � ∈ L}. In light of the
direct-sum decomposition, we can think of V as having an independent feature for
each � ∈ L , supported over the interval J�. On the other hand, we can attempt to
analyse a given persistencemoduleV by decomposing it into submodules isomorphic
to interval modules.

Remark 2.4 The decomposition of a persistence module is frequently described
in metaphorical terms. The index t ∈ R is interpreted as ‘time’. Each interval
summand kJ represents a ‘feature’ of the module which is ‘born’ at time inf(J )

and ‘dies’ at time sup(J ).
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We now present the necessary theory. A ‘building block’ in a module category
can be characterised by having a comparatively simple endomorphism ring. Interval
modules have the simplest possible:

Proposition 2.5 Let I = kJ
T be an interval module over T ⊆ R; then End(I) = k.

Proof Any endomorphism of I acts on each nonzero It = k by scalar multiplication.
By the commutative square for morphisms, it is the same scalar for each t . �

Proposition 2.6 Interval modules are indecomposable.

Proof Given a decomposition I = U ⊕ V, the projection maps onto U and V are
idempotent endomorphisms.1 The only idempotents in End(I) = k are 0 and 1. �

Theorem 2.7 (Krull–Remak–Schmidt–Azumaya) Suppose a persistence module
over T ⊆ R can be expressed as a direct sum of interval modules in two different
ways:

V ∼=
⊕
�∈L

kJ� ∼=
⊕
m∈M

kKm

Then there is a bijection σ : L → M such that J� = Kσ(�) for all �.

Proof This is from Azumaya [2] (Theorem 1), along with the trivial observation
that kJ ∼= kK implies J = K . The theorem requires a ‘locality’ condition on the
endomorphism ring of each possible interval module: if α, β ∈ End(I) are non-
isomorphisms then α + β is a non-isomorphism. Since each End(I) = k, the only
non-isomorphism is the zero map and the condition is satisfied. �

In other words, provided we can decompose a given persistence module V as
a direct sum of interval modules, then the multiset of intervals is an isomorphism
invariant of V. But when does such a decomposition exist?

Theorem 2.8 (Gabriel,Auslander,Ringel–Tachikawa,Webb,Crawley-Boevey) Let
V be a persistence module over T ⊆ R. Then V can be decomposed as a direct sum
of interval modules in either of the following situations:

(1) T is a finite set; or
(2) each Vt is finite-dimensional.

On the other hand, (3) there exists a persistence module over Z (indeed, over the
nonpositive integers) which does not admit an interval decomposition.

Proof (1) The decomposition of a diagram

V1 −→ V2 −→ . . . −→ Vn

into interval summands, when each dim(Vi ) is finite, is one of the simpler instances
of Gabriel’s theorem [35]; see [50] or [8] for a concrete explanation. The extension to

1An endomorphism e is idempotent if it satisfies ee = e.
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infinite-dimensionalmodules follows abstractly froma theoremofAuslander [1] and,
independently, Ringel and Tachikawa [47]. Alternatively, observe that the argument
given in [8] does not require finite-dimensionality (although it is presented as such).

(2) The result for T = Z, and therefore for any locally finite T ⊂ R, follows from
Propositions 2 and 3 and Theorem 3 of Webb [48]. This was generalised to T = R,
and therefore to any T ⊆ R, more recently by Crawley-Boevey [25].

(3) Webb [48] gives this example, indexed over the nonpositive integers −N:

W0 = {sequences (x1, x2, x3, . . . ) of scalars}
W−n = {such sequences with x1 = · · · = xn = 0} (n ≥ 1)

The w−m
−n are taken to be the canonical inclusion maps. We can succinctly describe

this module as an infinite product W = ∏
n≥0 k[−n, 0].

SupposeW has an interval decomposition. Since each map w−n−1
−n is injective, all

of the intervals must be of the form [−n, 0] or (−∞, 0]. The multiplicity of [−n, 0]
may then be calculated as dim(W−n/W−n−1) = 1. The multiplicity of (−∞, 0]
is zero, because any summand of that type requires a nonzero element of W0 that
is in the image of w−n

0 for all n ≥ 0, but
⋂

n≥0 W−n = {0} so such an element
doesn’t exist. All of this implies that W ∼= ⊕

n≥0 k[−n, 0]. This contradicts the
fact that dim(W0) is uncountable2 so W does not admit an interval decomposition
after all. �

In Examples 3.31 and 3.40, we show what we can do with the Webb module.

Remark 2.9 Here are other examples of persistence modules that lack an interval
decomposition. Crawley-Boevey [24] proposed the infinite product

∏
n≥1 k[0, 1/n].

A dimension count implies that any interval decompositionmust include uncountably
many copies of k[0, 0], but this contradicts the fact that⋂t>0 ker(v

0
t ) is trivial. Nor is

uncountable dimensionality a necessary feature. Lesnick [41] proposed the following
example that has countable dimension at every index in −N:

L0 = k

L−1 = {eventually-zero sequences (x1, x2, x3, . . . ) of scalars}
L−n = {such sequences with x1 = · · · = xn−1 = 0} (n ≥ 2)

The �−m
−n are taken to be the canonical inclusion maps when n ≥ 1, while �−m

0 is the
‘augmentation map’ which takes the sum of the entries of the sequence. Given an
interval decomposition, consider the unique summand that meets L0 nontrivially.We
can rule out k(−∞, 0] since⋂

n≥1 L−n = {0}, so it is isomorphic to some k[−m, 0].
No other summands reach L0, so �−m−1

0 must be the zero map; but it isn’t.

2No countable sequence of vectors w1,w2,w3, . . . can span W0. Consider a vector x = (x1, x2,
x3, . . . ) where for all k ≥ 1 the k + 1 terms xk2 , xk2+1, . . . , xk2+k have been chosen to guarantee
that x is not a linear combination of w1, . . . ,wk . Then x /∈ span(w1,w2,w3, . . . ).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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For a persistencemodule which decomposes into intervals, the way is now clear to
define its persistence diagram: it is simply the list of intervals, with multiplicity, that
occur in the decomposition. Theorem2.7 tells us that this multiset is an isomorphism
invariant.

Given that an arbitrary persistence module over R is not guaranteed an interval
decomposition, here are three possible ways to proceed:

• Work in restricted settings to ensure that the structure ofV depends only on finitely
many index values t ∈ R. For example, if X is a compact manifold and f is a
Morse function, then H(Xsub) is determined by the finite sequence

H(Xa1) −→ H(Xa2) −→ . . . −→ H(Xan )

where a1, a2, . . . , an are the critical values of f . This is the traditional approach.
In this setting, the word ‘tame’ typically refers to pairs (X, f ) for which H(Xsub)

is determined by a finite diagram of finite-dimensional vector spaces.
• Sample the persistence module V over a finite grid. Consider limits as the grid
converges to the whole real line. This is the strategy adopted in [15], where it is
shown that the q-tamehypothesis is sufficient to guarantee good limiting behaviour.

• Show that the persistence intervals (in the decomposable case) can be inferred
from the behaviour of V on finite index sets.3 Apply this indirect definition to
define the persistence diagram in the non-decomposable case. This is the method
of ‘rectangle measures’ developed in this monograph.

The first method is adequate for computational applications, at least on a first pass.
The second and third methods both entail a certain amount of analytic work. The
advantage of the third method is that this work is black-boxed as a technical result
(Theorem 3.12) that allows one to move freely between rectangle measures and their
corresponding persistence diagrams. The end-user is protected from the analytic
details.

2.6 The Decomposition Persistence Diagram

If a persistence module V indexed over R can be decomposed

V ∼=
⊕
�∈L

k(p∗
� , q

∗
� )

then we define the decorated persistence diagram to be the multiset

Dgm(V) = Int(V) = {(p∗
� , q

∗
� ) | � ∈ L}

3We consider index sets of length 4 to define the persistence measure, length 5 to show that it is
additive, and length 8 to prove the stability theorem.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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and the undecorated persistence diagram to be the multiset

dgm(V) = int(V) = {(p�, q�) | � ∈ L} − Δ

where Δ = {(r, r) | r ∈ R} is the diagonal in the plane.
These are the decomposition persistence diagrams. In Sect. 3.7 we give a dif-

ferent definition of persistence diagrams based on the persistence measure. Often
they coincide, but occasionally we need to distinguish them. In that case we use the
alternate names Int, int for the diagrams defined here.

Theorem 2.7 implies that Dgm(V) and dgm(V) are independent of the choice of
decomposition ofV. Notice that Dgm is a multiset of decorated points inH, whereas
dgm is a multiset of undecorated points in the interior of H. Here ‘interior’ means
that we exclude the diagonal but keep the points at infinity. The information retained
by dgm is the information we care about later when we discuss bottleneck distances.
See Chap.5.

Example 2.10 Consider the curve in R2 shown in Fig. 2.3, filtered by the height
function. The topology (that is, the homotopy type) of the sublevelsets of f is empty
over (−∞, a) and constant over the intervals [a, b), [b, c), [c, d), [d, e), [e, f ) and
[ f,+∞), so it is enough to consider the 6-term persistence modules obtained by
restricting H∗(Xsub) to the six critical values.

H0 : k �� k2 �� k �� k2 �� k �� k

H1 : 0 �� 0 �� 0 �� 0 �� 0 �� k

To decompose the H0 diagram we need knowledge of the maps. Let [a], [b],
[d] denote the 0-homology classes associated to the connected components born
at times a, b, d respectively. When two components merge at index c we get the

a

b

c

d

e

f

a

b

c

d

e

f

∞0

0

0

1

Fig. 2.3 A traditional example. Left: X is a smoothly embedded curve in the plane, and f is its
y-coordinate or ‘height’ function. Right: The decorated persistence diagram of H(Xsub): there are
three intervals in H0 (blue dots, marked 0) and one interval in H1 (red dot, marked 1)

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_5
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relation [a] = [b]. This becomes [a] = [b] = [d] at index e. It follows that H0(Xsub)

decomposes as follows.

[a] : k �� k �� k �� k �� k �� k

[b] − [a] : 0 �� k �� 0 �� 0 �� 0 �� 0

[d] − [a] : 0 �� 0 �� 0 �� k �� 0 �� 0

The generator of each summand is shown on the left. Each generator has precisely
the lifetime indicated by its interval module, and at each index the existing surviving
generators form a basis for the homology at that index.

The 1-homology is already an interval module with no further decomposition
necessary. It is generated by the 1-cycle [ f ] which appears at index f :

[ f ] : 0 �� 0 �� 0 �� 0 �� 0 �� k

It follows that the full persistent homology of Xsub looks like this:

H0(Xsub) ∼= k[a,+∞) ⊕ k[b, c) ⊕ k[d, e)

H1(Xsub) ∼= k[ f,+∞)

The decorated persistence diagram is drawn in Fig. 2.3.

Remark 2.11 For a Morse function on a compact manifold with critical values (ai ),
the intervals are always half-open, of type [ai , a j ) = (a−

i , a−
j ), since the homotopy

type of the sublevelsets is constant over the intervals [ai , ai+1). Compare Sect. 3.12.
The persistence algorithm of Edelsbrunner, Letscher and Zomorodian [30], later
presented in general form by Zomorodian and Carlsson [50], computes the interval
decomposition and therefore persistence diagram for any example of this type.

Remark 2.12 Becauseof torsionphenomena inhomology, different choices offieldk
can lead to different persistence diagrams for a given geometric object.

2.7 Quiver Calculations

We now set up the notation and algebraic tools for handling persistence modules
over a finite index set.

A persistence module V indexed over a finite subset

T : a1 < a2 < · · · < an

of the real line can be thought of as a diagram of n vector spaces and n − 1 linear
maps:

http://dx.doi.org/10.1007/978-3-319-42545-0_3


2.7 Quiver Calculations 27

V : Va1 −→ Va2 −→ · · · −→ Van

Such a diagram is a representation of the following quiver:

• −→ • −→ · · · −→ •

Wehave seen (Theorem2.8) thatV decomposes as a finite sumof intervalmodules
k[ai , a j ]. When n is small, we can represent these interval modules pictorially. The
following example illustrates how.

Example 2.13 Let a < b < c. There are six interval modules over {a, b, c}, namely:

k[a, a] = •a—◦b—◦c k[a, b] = •a—•b—◦c k[a, c] = •a—•b—•c
k[b, b] = ◦a—•b—◦c k[b, c] = ◦a—•b—•c
k[c, c] = ◦a—◦b—•c

A filled circle • indicates a copy of the 1-dimensional vector space k; an empty
circle ◦ indicates the zero vector space. A map between two filled circles is always
the identity; all other maps are by necessity zero.

Now let V be a persistence module indexed over R. For any finite set of indices

T : a1 < a2 < · · · < an

and any interval [ai , a j ] ⊆ T, we define the multiplicity of [ai , a j ] in VT to be the
number of copies of k[ai , a j ] to occur in the interval decomposition ofVT. This takes
values in the set {0, 1, 2, . . . ,∞}. (We do not distinguish different infinite cardinals.)

It is useful to have notation for these multiplicities. Again, we define by example.

Example 2.14 We write

〈[b, c] | Va,b,c〉 or 〈 ◦a—•b—•c | V 〉

for the multiplicity of ◦a—•b—•c in the following 3-term module:

Va,b,c : Va −→ Vb −→ Vc

When V is clear from the context, we may simply write

〈 ◦a—•b—•c 〉.

The abbreviation 〈[b, c]〉 is not permitted since it is ambiguous. For example, 〈[b, c] |
Vb,c〉 and 〈[b, c] | Va,b,c〉 are not generally the same. See Proposition 2.17 and
Example 2.18.
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Example 2.15 The invariants of a single linear map Va
v−→ Vb are:

rank(v) = 〈•a—•b | V〉
nullity(v) = 〈•a—◦b | V〉

conullity(v) = 〈◦a—•b | V〉

To see this when Va, Vb are finite dimensional, observe that by elementary linear
algebra we can find bases

e1, . . . , er , f1, . . . , fn and e′
1, . . . , e

′
r , g1, . . . , gc

for Va and Vb respectively, such that v(ei ) = e′
i and v( f j ) = 0 for all i, j . The basis

elements define a decomposition of the module (Va
v−→ Vb) into interval summands

of the three types

(
span(ei ) −→ span(e′

i )
)

and
(
span( f j ) −→ 0

)
and (0 −→ span(gk))

which are respectively isomorphic to •a—•b and •a—◦b and ◦a—•b .
Proposition 2.16 (direct sums) Suppose a persistence module V can be written as
a direct sum

V =
⊕
�∈L

V
�

Then
〈[ai , a j ] | VT〉 =

∑
�∈L

〈[ai , a j ] | V�
T〉

for any index set T = {a1, a2, . . . , an} and interval [ai , a j ] ⊆ T.

Proof Each summand V
�
T can be decomposed separately into interval modules.

Putting these together we get an interval decomposition of VT. The number of sum-
mands of a given type in VT is then equal to the total number of summands of that
type in all of the V�

T. �
Often we wish to compare multiplicities of intervals in different finite restrictions

of V. The principle is very simple:

Proposition 2.17 (restriction principle) Let S,T be finite index sets with S ⊂ T.
Then

〈I | VS〉 =
∑
J

〈J | VT〉

where the sum is over those intervals J ⊆ T which restrict over S to I.

Proof Take an arbitrary interval decomposition of VT. This induces an interval
decomposition ofVS. Summands ofVS of type I arise precisely from those summands
of VT of types J as above. �
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Example 2.18 Suppose a < p < b < q < c. Then we have

〈◦a———•b———•c〉 = 〈◦a———•b—•q—•c〉
〈◦a———•b———•c〉 = 〈◦a—◦p—•b———•c〉 + 〈◦a—•p—•b———•c〉

and

〈◦a———◦b———•c〉 = 〈◦a—◦p—◦b———•c〉
〈◦a———◦b———•c〉 = 〈◦a———◦b—◦q—•c〉 + 〈◦a———◦b—•q—•c〉

for instance. The extra term occurs when the inserted new index occurs between a
clear node and a filled node, because then there are two possible intervals which
restrict to the original interval.

Example 2.19 For any finite list of indices in which a, b and later c, d occur as
adjacent pairs, the restriction principle gives

〈. . .— ◦ —◦a—•b— • — . . .— • —•c—◦d— ◦ — . . . 〉 = 〈◦a—•b—•c—◦d〉.

When rank(Vb → Vc) < ∞, this observation combines with Proposition 3.6 to give
an easy expression for any interval multiplicity.

Wewill make frequent use of the restriction principle. Here is a simple illustration,
to serve as a template for similar arguments that we will encounter later on.

Example 2.20 Consider the elementary fact that rank(Vb → Vc) ≥ rank(Va → Vd)

when a ≤ b ≤ c ≤ d. The proof using quiver notation runs as follows:

rank(Vb → Vc) = 〈——•b—•c——〉
= 〈•a—•b—•c—•d〉 + three other terms

≥ 〈•a—•b—•c—•d〉
= 〈•a—————•d〉
= rank(Va → Vd)

The ‘three other terms’ are

〈◦a—•b—•c—•d〉, 〈•a—•b—•c—◦d〉, 〈◦a—•b—•c—◦d〉

as indicated by the restriction principle.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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