
Chapter 1
Introduction

We intend this monograph to be a self-contained presentation of the theory of
persistence modules over the real line. We give the best proofs we know of the
most important results. Each theorem is located at an appropriate level of abstraction
(we believe).

• Newcomers will find this to be an accessible introduction to the algebraic founda-
tions of persistence. They will learn what persistence modules are, how to access
their internal structure, their different degrees of ‘tameness’, how to construct
their persistence diagrams mathematically, and how to show that those diagrams
are stable.

• Experts will find that our methods add precision and power to what they already
know. We construct persistence modules in great generality and show that they
can be manipulated just as easily as the traditional examples. We give evidence
that this greater generality occurs naturally ‘in the wild’.

Persistence modules are the mathematical object at the heart of the young, rapidly
growing field of topological data analysis. This field—a blend of computer science,
algebraic topology and statistics—is founded on the assumption that scientific data
sets carry information in their internal structure and that sometimes this internal
structure is topological. Persistence modules were designed to carry topological
information about a data set atmanydifferent scales simultaneously. This information
can be extracted in the form of an invariant—the persistence diagram or barcode—
that can be computed effectively and is statistically robust.

New researchers in the field have to come to terms with multiple aspects of
persistence. They must learn how data can be turned into geometric objects (usually
a nested family of simplicial complexes). Theymust learn toworkwith the algorithms
that turn these geometric objects into barcodes or persistence diagrams. They need
algebraic topology to know how to interpret these barcodes. And, increasingly often
nowadays, they must know enough statistical theory to draw valid inferences from
the results of these calculations. There is by now a great deal of literature covering
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2 1 Introduction

these different facets, written by and intended for researchers across a large range of
disciplines.

Our focus is narrower. In this monograph, we are concerned almost exclusively
with the mathematical properties of persistence modules. We have several reasons
for doing this:

• The existing literature is largely built around particular instances of topological
persistence, such as the sublevelset persistent homology of a Morse function on a
compact manifold. While this can be useful for developing intuition, it does create
bias in how the subject is understood. We wish to correct this bias.

• Several components of the theory are algebraic in nature. The fact that most of
the usual examples come from topology sometimes creates a different impression.
Here we give a purely algebraic presentation of the main ingredients: the persis-
tence diagram, tameness, stability. Topological arguments are used when studying
the properties of persistence modules obtained from topological data, but are not
needed otherwise.

• Variations such as image and kernel persistence can be treated equally.

More specifically, we are interested in persistence modules indexed by a single
real parameter. Much of our work goes to show that a continuous parameter can be
handled just as effectively as a discrete parameter; this fills a gap in the literature.
On the other hand, we make no attempt to discuss multiparameter persistence. It is
a complicated subject and at some point will be ready for its own book.

Within its scope, the monograph is almost entirely self-contained. We do appeal
to two off-the-shelf technical results from module theory (Theorems 2.7 and 2.8).
When discussing persistent homology, we assume that the reader is familiar with
the standard properties of simplicial complexes and homology functors. Since it is
important to remain connected to the larger world of topological data analysis, we
briefly present two applications in Sects. 1.3 and 1.4, and a themed reading list in
Sect. 1.5.

1.1 A Brief History of Persistence

The early history of persistence is concerned with the quantity

rs
t = rank(H(Xs) → H(Xt ))

for an object X represented at two different scales s, t , and where H is homology.
This appeared in the early 1990s in the work of Frosini [34], with different notation
and under the name ‘size function’. Independently, a few years later, Robins [46]
introduced the term ‘persistent Betti numbers’ for quantities of the form rεε+ρ , and
noted their stability with respect to Hausdorff distance.

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
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The modern theory of persistence is built on three pillars:

• The persistence diagram, and an algorithm for computing it, were introduced by
Edelsbrunner, Letscher and Zomorodian [30]. This gives a compact representation
of the size function and an effective way to compute it.

• Zomorodian andCarlsson [50] defined persistencemodules in the abstract, indexed
by the natural numbers and viewed as graded modules over the polynomial
ring k[t]. This introduced tools from commutative algebra.

• Cohen-Steiner, Edelsbrunner and Harer [19] formulated and proved the stability
theorem, which guarantees that the persistence diagram is robust to changes in the
input data. Robustness is measured in terms of a ‘bottleneck distance’ between
persistence diagrams.

All three papers make the assumption that the data is essentially finite. This is under-
standable from the perspective of computer science: a finite machine can only handle
a finite amount of data. And mathematically it is the natural place to begin. In the
realm of continuous topology it is common to make finiteness assumptions: a con-
tinuous function on a smooth manifold may be approximated by a Morse function,
and on a polyhedron may be approximated by a piecewise-linear map.

The finiteness restrictions were lifted in [15] (and its published conference ver-
sion [14]), which generalises the main results to persistence modules indexed over
the real line, under the relatively mild assumption that rs

t < ∞ for s < t . In the
present work, we call these modules ‘q-tame’. It turns out that this is a natural condi-
tion; large classes of examples are q-tame. Moreover, the formulation of the stability
theorem in [15] is purely algebraic, and not tied to any particular geometric situation.
The only drawback is that some of the arguments are rather complicated.

In this monograph, we carry out the program of [15] with new arguments. The
proofs are now very clean and the methods are versatile. Let us say a few words
about whywe think it worth the effort to workwith continuous-parameter persistence
modules. Here are our two main reasons:

• Real-world data sets are always finite, but they may be statistical samples from
an underlying continuous object or process. Ideally the persistent homology of
a sample will be an approximation to the persistent homology of the continuous
model. Formulating this requires a theory of continuous-parameter persistence.

• Continuous-parameter persistence extends the applicability of the theory from
finite data sets to more general objects such as compact metric spaces. This widens
the applicability of persistence within pure mathematics.

In support of this last point, we observe that in recent years the discrete form of
persistence has seen application in various branches of pure mathematics. For exam-
ple, Ellis and King [33] use persistence to study p-groups; and Pakianathan and
Winfree [45] have reformulated a number of famous problems in number theory,
including the Riemann Hypothesis, in terms of the persistent homology of certain
filtered simplicial complexes.

We draw attention to three recent papers which share our goal of understanding
continuous-parameter persistence modules:
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• Lesnick [42] gives an extensive algebraic treatment of modules over one or more
real parameters. The converse stability inequality, and hence the isometry theorem,
appears for the first time in his work. Our present work was carried out largely
independently, with one salient exception: it was from Lesnick [42] we learned of
results of Webb [48] that resolved a sticking-point for us.

• Bubenik and Scott [5] develop the category-theoretical view of persistence mod-
ules. This allows them to formulate and prove stability theorems in great generality.
Categories and functors surface occasionally in the present monograph, and can
be used to streamline some of the work very effectively and non-trivially.

• Bauer and Lesnick [3] give a completely original proof of the stability theorem
for q-tame continuous-parameter persistence modules, making no use of the inter-
polation lemma that is so crucial to our approach (which is based on the original
proof of Cohen-Steiner, Edelsbrunner and Harer [19]). Their work depends on
strong results on the decomposition of persistence modules.

All of these works appeared during the writing of this monograph.

1.2 Main Contributions

Many authors have studied persistence modules in recent years, and many of the
theorems presented here are not original in themselves. The originality lies in the
methods that we use. Our main innovations are these:

• We construct persistence diagrams using measure theory. The existence of a dia-
gram is equivalent to the existence of a certain kind of measure on rectangles in
the plane.

• We introduce ‘decorated’ real numbers for two related purposes: to remove the
ambiguity about the endpoints of persistence intervals, and to get the measure
theory to work.

• We introduce a special notation for calculations on quiver representations. This
considerably simplifies the linear algebra (for instance, in proving the ‘box
lemma’).

• We define several kinds of ‘tameness’ for a persistence module. These occur nat-
urally in practice. The most restrictive of these, finite type, is what is normally
seen in the literature. We show how to work effectively with the less restrictive
hypotheses.

• We give a clean proof of the algebraic interpolation theorem of [15].
• We rewrite the algebraic stability theorem of [15] as a theorem about measures.
Among other consequences, this leads to diagram stability results for even quite
badly behaved persistence modules.

Our goal in introducing these ideas is to enable our readers to define persis-
tence diagrams cleanly and effectively in a wide variety of situations. In the earlier
work [15], continuous-parameter persistence diagrams are constructedusing a careful
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limiting process through ever-finer discretisations of the parameter. Unfortunately
the limiting arguments turn out to be quite complicated, and the resulting diagrams
are difficult to work with. Our approach in the present monograph gives the best of
both worlds; we are able to work with broader classes of persistence modules, and
we can reason about their diagrams in a clean way using arguments of a finite nature.

1.3 Application: Stable Descriptors for Metric Spaces

In this section and the next, we illustrate the usefulness of the persistence diagram for
problems in data analysis and machine learning. The key point is that the persistence
diagram is a robust invariant of the underlying geometric situation.

It often happens in classification tasks that the objects to be classified cannot be
compared against one another directly but only through descriptors or ‘signatures’.
Consider the problem of organizing a database of 3-dimensional objects into mean-
ingful classes, as illustrated in Fig. 1.1. Each object—or ‘3d shape’—is represented as
some part of the bounding surface of a 3-dimensional region, and it can be abstracted
mathematically as a compact metric space (P, dP) where the set P is the surface
itself and the metric is the geodesic distance along the surface. Comparing two 3d
shapes amounts to comparing the corresponding metric spaces.

The natural distance on the space of compact metric spaces is the so-called
Gromov–Hausdorff distance dGH, a generalisation of the classical Hausdorff dis-
tance defined as follows:

dGH(P, Q) = inf
S, f,g

dH( f (P), g(Q))

where (P, dP) and (Q, dQ) are the two given compact metric spaces, where (S, dS)
ranges over all metric spaces, where f : P → S and g : Q → S range over
all isometric embeddings of P and Q into S, and where dH denotes the Hausdorff
distance in (S, dS).

The issue with this distance is that its direct computation leads to a quadratic
assignment problem that is hard to solve in practice. Upper bounds can be obtained
easily, but lower bounds are more difficult. A workaround is to map the metric spaces
P, Q to some space of signatures in which distances are easier to compute. Ideally,
one would like the distance between signatures to be the same as the Gromov–
Hausdorff distance between the initial metric spaces, but this is usually too much
to ask. We can at least require that the distance between signatures provide a lower
bound on the distance between the metric spaces, so in particular the signatures are
provably stable under small perturbations of the spaces.

The general stability theorem stated in the present monograph (Theorem 5.25)
makes it possible to derive such a stability guarantee, when the signature of a compact

http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Fig. 1.1 (From [13]) An unsupervised classification task using persistence-based signatures. Top:
The collection of 60 shapes to be classified into 6 classes (labels unknown).Bottom-left:The distance
matrix in signature space, with color-coded values (each row and column corresponds to a single
shape in the collection). Bottom-right: The signatures are embedded into the Euclidean plane using
multidimensional scaling. The objects are then classified by a simple k-means clustering procedure
applied to this embedding. Label names can be extrapolated to classes if some of the individual
objects have known labels

metric space is taken to be the persistence diagram of the homology of its Vietoris–
Rips complexes1:

Theorem 1.1 ([13, 16]) For any compact metric spaces (P, dP) and (Q, dQ),

db(dgm(H∗(Rips(P))), dgm(H∗(Rips(Q)))) ≤ dGH(P, Q).

1We do not give the details of this construction here; see [13, 16] for instance. What matters is
that the signature dgm(H∗(Rips(P))) is easily computed, the distance between two signatures is
easily computed, the distance is robust in the sense of Theorem 1.1, and that the lower bound in the
theorem is sufficiently tight to solve the learning problem under consideration.
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As desired, this result provides a lower bound on the Gromov–Hausdorff distance
between the metric spaces in terms of the bottleneck distance db between their
signatures.

It turns out that signatures of this type are rich enough to be used effectively in
machine learning applications such as the one depicted in Fig. 1.1. In such applica-
tions, the continuous shapes themselves are replaced by finite samples for practical
purposes. One can exploit Theorem 1.1 to prove minimax-optimal upper bounds on
the convergence rate of the sample signatures to the signatures of the underlying
continuous objects [17]. It is also possible to define local versions of the signa-
tures, with similar stability guarantees, for use in partial comparison and matching
applications [11].

1.4 Application: Stable Clustering Using Persistence

Unsupervised learning or clustering is an important tool for understanding and inter-
preting data. Among the wealth of existing approaches, mode seeking is the one
most closely related to Morse theory and persistence. The approach assumes that
the data points have been drawn from some unknown probability distribution with
density f . The idea is to detect the local peaks of f and use them as cluster centers,
grouping each data point with the local peak that it eventually reaches by following
the gradient vector field of f uphill—assuming f has a well-behaved gradient flow.

A common issue faced by these techniques is that the gradient and extremal
points of a density function are notoriously unstable, so their approximation from a
density estimator can lead to unpredictable results (Fig. 1.2, top-right). One possible
workaround is to smoothe the estimator before launching the hill-climbing procedure;
this raises the difficult question of howmuch smoothing is needed to remove the noise
without affecting the signal and still obtain the correct number of clusters. A different
workaround, proposed in [18], is to do the hill-climbing anyway and afterwards detect
and merge the unstable clusters to regain some stability. This is where persistence
comes into play.

The persistence diagram of the density estimator f̂ provides a measure of promi-
nence for the peaks of f̂ , through the distances of their corresponding diagram points
to the diagonal. Whenever the diagram satisfies a ‘sufficient separation’ condition, it
is easy to pick a prominence threshold that will separate the relevant peaks of f̂ from
the irrelevant ones. The clusters associated to the irrelevant peaks can then bemerged
into the clusters of the relevant peaks, using the hierarchy built by the persistence
algorithm. In this way one obtains the correct number of clusters: see Fig. 1.2.

Theorem 1.2 ([18]) Let c be the Lipschitz constant of the true density f , let η be
the approximation error (in the supremum norm) of the estimator f̂ , and let δ be the
neighborhood size parameter used in the hill-climbing procedure. Assume that the
peaks of the true density f have prominences at least d. Then, for any prominence
threshold within the range (2(cδ + η), d − 3(cδ + η)), the number of clusters
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Fig. 1.2 (From [18]) Persistence-based clustering in a nutshell. Top-left: The underlying density
function f is estimated at the data points. Top-right: The hill-climbing procedure applied to the
estimated density f̂ leads to a large number of unreliable clusters. Bottom-left: The persistence
diagram of f̂ shows 2 points far off the diagonal corresponding to the 2 peaks of the true density f .
Bottom-right: The final result is obtained by merging the clusters of the other peaks of f̂

computed by the above procedure, on an input of n random sample points drawn
i.i.d. according to f , is equal to the number of peaks of f with probability at least
1−e−Ω((cδ+η)n), where the constant in the big-Ω notation depends only on geometric
quantities (e.g. volumes of balls) associated with the ambient space.

The proof of this result relies on a partial notion of interleaving and a version of
the stability theorem for such partial interleavings (Theorem 6.1). Both follow easily
from the framework developed in this monograph.

http://dx.doi.org/10.1007/978-3-319-42545-0_6


1.5 Recommended Reading 9

1.5 Recommended Reading

There is by now a substantial literature on topological persistence, launched by the
work of Edelsbrunner, Letscher and Zomorodian [30], with antecedents in papers
of Frosini [34] and Robins [46]. Beyond these historical documents, we have some
themed suggested readings for the reader seeking orientation in the larger field of
topological data analysis.

Applied Algebraic Topology

A substantial grounding in the broad field of applied algebraic topology may be
found in the following books, each reflecting the particular tastes of its author(s).

• Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational
Homology, volume 157 of Applied Mathematical Sciences. Springer, 2004.

• AfraZomorodian.Topology for Computing, volume 16 ofCambridge Monographs
on Applied and Computational Mathematics. Cambridge University Press, 2005.

• Herbert Edelsbrunner and JohnL.Harer.Computational topology: an introduction.
American Mathematical Society, 2010.

• RobertGhrist.Elementary Applied Topology. CreateSpace Independent Publishing
Platform, September 2014.

• Steve Y. Oudot. Persistence Theory: from quiver representations to data analysis,
volume 209 of Mathematical Surveys and Monographs. American Mathematical
Society, 2015.

Topological Data Analysis

The following survey articles provide different perspectives on the application of
topological persistence to data analysis. These articles provide a good introduction
for readers new to the field. In particular, they explain how persistence diagrams (or,
equivalently, barcodes) are used in practice.

• Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American
Mathematical Society, 45(1):61–75, 2008.

• Gunnar Carlsson. Topology and data.Bulletin of the American Mathematical Soci-
ety, 46(2):255–308, 2009.

• Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and
practice. In European Congress of Mathematics, pages 31–50. European Mathe-
matical Society, 2012.

The Persistence Algorithm

The following articles deal specifically with the details of the persistence algorithm,
an aspect that is not covered in the present book.

• Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persis-
tence and simplification.Discrete & Computational Geometry, 28:511–533, 2002.
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• Afra Zomorodian andGunnar Carlsson. Computing persistent homology.Discrete
& Computational Geometry, 33(2):249–274, 2005.

• Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in
persistent (co)homology. Inverse Problems, 27:124003, 2011.

Stability Theorems

The following articles present various versions of the proof of stability for persistence
diagrams. We are omitting [15], which served as a basis for the present work.

• David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persis-
tence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

• David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko.
Lipschitz functions have Lp-stable persistence. Foundations of Computational
Mathematics, 10(2):127–139, 2010.

• Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the alge-
braic stability of persistence. In Proceedings of the 30th Annual Symposium on

Computational Geometry (SoCG), pages 355–364, Kyoto, Japan, June 2014.

Geometric Complexes on Compact Metric Spaces

The following paper uses the tools introduced in the present book to derive stable
topological signatures for compact metric spaces.

• Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability of geometric
complexes. Geometriae Dedicata, 173:193–214, 2014.

It follows previous work in the non-persistent context:

• Jean-ClaudeHausmann.On theVietoris-Rips complexes and a cohomology theory
formetric spaces. InProspects in Topology, volume 138 ofAnnals of Mathematical
Studies, pages 175–188. Princeton University Press, Princeton, New Jersey, 1995.

• Janko Latschev. Vietoris-Rips complexes of metric spaces near a closed
Riemannian manifold. Archiv der Mathematik, 77:522–528, 2001.

Variations on Persistence

The following articles introduce several variations of 1-dimensional persistence:
vineyards, extended persistence, image persistence, zigzag persistence. The tools
introduced in the present book can be used to simplify some parts of their analysis.

• David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and
vineyards byupdating persistence in linear time. InProceedings of the 22nd Annual
Symposium on Computational Geometry (SoCG), pages 119–126, 2006.

• David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persis-
tence using Poincaré and Lefschetz duality. Foundations of Computational Math-
ematics, 9:79–103, 2008.
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• David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov.
Persistent homology for kernels, images, and cokernels. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011–
1020, 2009.

• Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computa-
tional Mathematics, 10(4):367–405, 2010.

Multidimensional Persistence

The following articles extend the theory to persistence modules indexed over
multidimensional index sets. There the situation is much less clear than for 1-
dimensional index sets.

• Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persis-
tence. In Proceedings of the 23rd Annual Symposium on Computational Geometry
(SoCG), Gyeongju, South Korea, June 2007.

• Gunnar Carlsson, Gurjeet Singh, and Afra Zomorodian. Computing multidimen-
sional persistence. Journal of Computational Geometry, 1(1):72–100, 2010.

• Michael Lesnick. The theory of the interleaving distance on multidimensional
persistencemodules.Foundations of Computational Mathematics, 15(3):613–650,
2015.

Categorified Persistence

Finally, the following articles build more abstract versions of the theory using the
language of category theory. They complement the ideas developed in the present
book, providing an abstract framework that some readers may find congenial.

• Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology.
Discrete & Computational Geometry, 51:600–627, 2013.

• Peter Bubenik, Vin de Silva, and Jonathan Scott. Metrics for generalized persis-
tence modules. Foundations of Computational Mathematics, 15(6):1501–1531,
2015.

1.6 Organisation

The remaining chapters of the monograph are organised as follows.
Chapter 2 introduces the basic properties of persistence modules. These can be

defined over any partially ordered set; we are primarily interested in persistence
modules over the real line. In the best case a persistence module can be expressed as
a direct sum of ‘interval modules’, which can be thought of as the atomic building
blocks of the theory. Decorated real numbers are introduced here. Not all persis-
tence modules decompose into interval modules, so we spend much of the mono-
graph developing techniques that work without this assumption. These techniques
depend on a thorough understanding of finitely-indexed persistence modules known

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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as ‘An-quiver representations’ [35, 27]. We introduce a special notation for per-
forming calculations on these quiver representations. This ‘quiver calculus’ is used
throughout.2

Chapter 3 addresses the question of how to define the diagram of a persistence
module. This is easy for modules which decompose into intervals. To handle the
general case, we establish an equivalence between diagrams and a certain kind of
measure definedon rectangles in the plane.Whenever a persistence diagram is sought,
therefore, it suffices to construct the corresponding persistence measure. Theorems
about a diagram can be replaced by simpler-to-prove theorems about itsmeasure. The
diagramexistswherever themeasure takes finite values. This leads to several different
notions of ‘tameness’. There are large classes of examples of naturally occurring per-
sistence modules which are tame enough for their diagrams to be defined everywhere
or almost everywhere. Some elementary ‘vanishing lemmas’ facilitate the explicit
calculation of persistence modules. We finish by showing how our abstractly defined
diagrams agree with the diagrams that are produced by the standard algorithms
[30, 50] when working in finite situations derived from real data.

Chapter 4 is concerned with interleavings. An interleaving is an approximate
isomorphism between two persistence modules. They occur naturally in applications
when the input data are known only up to some bounded error. After presenting the
basic properties, we give a clean proof of the technical lemma (from [15]) that two
interleaved modules can be interpolated by a 1-parameter family.

Chapter 5 is devoted to the isometry theorem, which asserts that the interleaving
distance between two persistencemodules is equal to the bottleneck distance between
their persistence diagrams. The two inequalities that comprise this result are treated
separately. One direction is the celebrated stability theorem of [19]. The more recent
converse inequality appears in [42].We formulate the stability theorem as a statement
about measures and their diagrams. The proof of this more abstract result closely
follows the original proof in [19]. Our version of the isometry theorem supposes that
the persistence modules are q-tame. We also provide a more general version of the
stability theorem which allows us to compare diagrams of persistence modules with
no assumptions on their tameness: wherever the two diagrams are defined, they must
be close to each other.

Chapter 6, finally, contains two worked examples. We show how the theory devel-
oped in this monograph can be used in practice to define various forms of persistence
and prove the needed theorems and lemmas. We hope these examples illustrate the
strength and flexibility of our approach.

2Readers who wish to adopt our notation are invited to contact us for the LATEX macros.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_6
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1.7 Multisets

Persistence diagrams are multisets rather than sets. For our purposes, a multiset is a
pair A = (S,m) where S is a set and

m : S → {1, 2, 3, . . . } ∪ {∞}

is the multiplicity function, which tells us how many times each element of S occurs
in A. Here are our conventions regarding multisets:

• The cardinality of A = (S,m) is defined to be

card A =
∑

s∈S

m(s)

which takes values in {0, 1, 2, . . . }∪{∞}. We do not distinguish between different
infinite cardinals.

• We never form the intersection of two multisets, but we will sometimes restrict a
multiset A to a set B:

A|B = (S ∩ B,m|S∩B)

We may write this as A ∩ B when A|B is typographically inconvenient.
• A pair (B,m) where

m : B → {0, 1, 2, . . . } ∪ {∞}

is implicitly regarded as defining a multiset A = (S,m|S) where S = B −m−1(0)
is the support of m.

• If A = (S,m) is a multiset and f : S → B where B is a set, then the notation

{ f (a) | a ∈ A}

is interpreted as the multiset in B with multiplicity function

m′(b) =
∑

s∈ f −1(b)

m(s)

Except in definitions like these, we seldom refer explicitly to S.
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